1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/Attr.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/TargetBuiltins.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/CodeGen/CGFunctionInfo.h" 30 #include "clang/CodeGen/SwiftCallingConv.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/Transforms/Utils/Local.h" 40 using namespace clang; 41 using namespace CodeGen; 42 43 /***/ 44 45 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 46 switch (CC) { 47 default: return llvm::CallingConv::C; 48 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 49 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 50 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 51 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 52 case CC_Win64: return llvm::CallingConv::Win64; 53 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 54 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 55 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 56 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 57 // TODO: Add support for __pascal to LLVM. 58 case CC_X86Pascal: return llvm::CallingConv::C; 59 // TODO: Add support for __vectorcall to LLVM. 60 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 61 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 62 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 63 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 64 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 65 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 66 case CC_Swift: return llvm::CallingConv::Swift; 67 } 68 } 69 70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 71 /// qualification. Either or both of RD and MD may be null. A null RD indicates 72 /// that there is no meaningful 'this' type, and a null MD can occur when 73 /// calling a method pointer. 74 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 75 const CXXMethodDecl *MD) { 76 QualType RecTy; 77 if (RD) 78 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 79 else 80 RecTy = Context.VoidTy; 81 82 if (MD) 83 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 84 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 85 } 86 87 /// Returns the canonical formal type of the given C++ method. 88 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 89 return MD->getType()->getCanonicalTypeUnqualified() 90 .getAs<FunctionProtoType>(); 91 } 92 93 /// Returns the "extra-canonicalized" return type, which discards 94 /// qualifiers on the return type. Codegen doesn't care about them, 95 /// and it makes ABI code a little easier to be able to assume that 96 /// all parameter and return types are top-level unqualified. 97 static CanQualType GetReturnType(QualType RetTy) { 98 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 99 } 100 101 /// Arrange the argument and result information for a value of the given 102 /// unprototyped freestanding function type. 103 const CGFunctionInfo & 104 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 105 // When translating an unprototyped function type, always use a 106 // variadic type. 107 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 108 /*instanceMethod=*/false, 109 /*chainCall=*/false, None, 110 FTNP->getExtInfo(), {}, RequiredArgs(0)); 111 } 112 113 static void addExtParameterInfosForCall( 114 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 115 const FunctionProtoType *proto, 116 unsigned prefixArgs, 117 unsigned totalArgs) { 118 assert(proto->hasExtParameterInfos()); 119 assert(paramInfos.size() <= prefixArgs); 120 assert(proto->getNumParams() + prefixArgs <= totalArgs); 121 122 paramInfos.reserve(totalArgs); 123 124 // Add default infos for any prefix args that don't already have infos. 125 paramInfos.resize(prefixArgs); 126 127 // Add infos for the prototype. 128 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 129 paramInfos.push_back(ParamInfo); 130 // pass_object_size params have no parameter info. 131 if (ParamInfo.hasPassObjectSize()) 132 paramInfos.emplace_back(); 133 } 134 135 assert(paramInfos.size() <= totalArgs && 136 "Did we forget to insert pass_object_size args?"); 137 // Add default infos for the variadic and/or suffix arguments. 138 paramInfos.resize(totalArgs); 139 } 140 141 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 142 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 143 static void appendParameterTypes(const CodeGenTypes &CGT, 144 SmallVectorImpl<CanQualType> &prefix, 145 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 146 CanQual<FunctionProtoType> FPT) { 147 // Fast path: don't touch param info if we don't need to. 148 if (!FPT->hasExtParameterInfos()) { 149 assert(paramInfos.empty() && 150 "We have paramInfos, but the prototype doesn't?"); 151 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 152 return; 153 } 154 155 unsigned PrefixSize = prefix.size(); 156 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 157 // parameters; the only thing that can change this is the presence of 158 // pass_object_size. So, we preallocate for the common case. 159 prefix.reserve(prefix.size() + FPT->getNumParams()); 160 161 auto ExtInfos = FPT->getExtParameterInfos(); 162 assert(ExtInfos.size() == FPT->getNumParams()); 163 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 164 prefix.push_back(FPT->getParamType(I)); 165 if (ExtInfos[I].hasPassObjectSize()) 166 prefix.push_back(CGT.getContext().getSizeType()); 167 } 168 169 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 170 prefix.size()); 171 } 172 173 /// Arrange the LLVM function layout for a value of the given function 174 /// type, on top of any implicit parameters already stored. 175 static const CGFunctionInfo & 176 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 177 SmallVectorImpl<CanQualType> &prefix, 178 CanQual<FunctionProtoType> FTP) { 179 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 180 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 181 // FIXME: Kill copy. 182 appendParameterTypes(CGT, prefix, paramInfos, FTP); 183 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 184 185 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 186 /*chainCall=*/false, prefix, 187 FTP->getExtInfo(), paramInfos, 188 Required); 189 } 190 191 /// Arrange the argument and result information for a value of the 192 /// given freestanding function type. 193 const CGFunctionInfo & 194 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 195 SmallVector<CanQualType, 16> argTypes; 196 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 197 FTP); 198 } 199 200 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 201 // Set the appropriate calling convention for the Function. 202 if (D->hasAttr<StdCallAttr>()) 203 return CC_X86StdCall; 204 205 if (D->hasAttr<FastCallAttr>()) 206 return CC_X86FastCall; 207 208 if (D->hasAttr<RegCallAttr>()) 209 return CC_X86RegCall; 210 211 if (D->hasAttr<ThisCallAttr>()) 212 return CC_X86ThisCall; 213 214 if (D->hasAttr<VectorCallAttr>()) 215 return CC_X86VectorCall; 216 217 if (D->hasAttr<PascalAttr>()) 218 return CC_X86Pascal; 219 220 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 221 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 222 223 if (D->hasAttr<AArch64VectorPcsAttr>()) 224 return CC_AArch64VectorCall; 225 226 if (D->hasAttr<IntelOclBiccAttr>()) 227 return CC_IntelOclBicc; 228 229 if (D->hasAttr<MSABIAttr>()) 230 return IsWindows ? CC_C : CC_Win64; 231 232 if (D->hasAttr<SysVABIAttr>()) 233 return IsWindows ? CC_X86_64SysV : CC_C; 234 235 if (D->hasAttr<PreserveMostAttr>()) 236 return CC_PreserveMost; 237 238 if (D->hasAttr<PreserveAllAttr>()) 239 return CC_PreserveAll; 240 241 return CC_C; 242 } 243 244 /// Arrange the argument and result information for a call to an 245 /// unknown C++ non-static member function of the given abstract type. 246 /// (A null RD means we don't have any meaningful "this" argument type, 247 /// so fall back to a generic pointer type). 248 /// The member function must be an ordinary function, i.e. not a 249 /// constructor or destructor. 250 const CGFunctionInfo & 251 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 252 const FunctionProtoType *FTP, 253 const CXXMethodDecl *MD) { 254 SmallVector<CanQualType, 16> argTypes; 255 256 // Add the 'this' pointer. 257 argTypes.push_back(DeriveThisType(RD, MD)); 258 259 return ::arrangeLLVMFunctionInfo( 260 *this, true, argTypes, 261 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 262 } 263 264 /// Set calling convention for CUDA/HIP kernel. 265 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 266 const FunctionDecl *FD) { 267 if (FD->hasAttr<CUDAGlobalAttr>()) { 268 const FunctionType *FT = FTy->getAs<FunctionType>(); 269 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 270 FTy = FT->getCanonicalTypeUnqualified(); 271 } 272 } 273 274 /// Arrange the argument and result information for a declaration or 275 /// definition of the given C++ non-static member function. The 276 /// member function must be an ordinary function, i.e. not a 277 /// constructor or destructor. 278 const CGFunctionInfo & 279 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 280 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 281 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 282 283 CanQualType FT = GetFormalType(MD).getAs<Type>(); 284 setCUDAKernelCallingConvention(FT, CGM, MD); 285 auto prototype = FT.getAs<FunctionProtoType>(); 286 287 if (MD->isInstance()) { 288 // The abstract case is perfectly fine. 289 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 290 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 291 } 292 293 return arrangeFreeFunctionType(prototype); 294 } 295 296 bool CodeGenTypes::inheritingCtorHasParams( 297 const InheritedConstructor &Inherited, CXXCtorType Type) { 298 // Parameters are unnecessary if we're constructing a base class subobject 299 // and the inherited constructor lives in a virtual base. 300 return Type == Ctor_Complete || 301 !Inherited.getShadowDecl()->constructsVirtualBase() || 302 !Target.getCXXABI().hasConstructorVariants(); 303 } 304 305 const CGFunctionInfo & 306 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 307 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 308 309 SmallVector<CanQualType, 16> argTypes; 310 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 311 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 312 313 bool PassParams = true; 314 315 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 316 // A base class inheriting constructor doesn't get forwarded arguments 317 // needed to construct a virtual base (or base class thereof). 318 if (auto Inherited = CD->getInheritedConstructor()) 319 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 320 } 321 322 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 323 324 // Add the formal parameters. 325 if (PassParams) 326 appendParameterTypes(*this, argTypes, paramInfos, FTP); 327 328 CGCXXABI::AddedStructorArgs AddedArgs = 329 TheCXXABI.buildStructorSignature(GD, argTypes); 330 if (!paramInfos.empty()) { 331 // Note: prefix implies after the first param. 332 if (AddedArgs.Prefix) 333 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 334 FunctionProtoType::ExtParameterInfo{}); 335 if (AddedArgs.Suffix) 336 paramInfos.append(AddedArgs.Suffix, 337 FunctionProtoType::ExtParameterInfo{}); 338 } 339 340 RequiredArgs required = 341 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 342 : RequiredArgs::All); 343 344 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 345 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 346 ? argTypes.front() 347 : TheCXXABI.hasMostDerivedReturn(GD) 348 ? CGM.getContext().VoidPtrTy 349 : Context.VoidTy; 350 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 351 /*chainCall=*/false, argTypes, extInfo, 352 paramInfos, required); 353 } 354 355 static SmallVector<CanQualType, 16> 356 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 357 SmallVector<CanQualType, 16> argTypes; 358 for (auto &arg : args) 359 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 360 return argTypes; 361 } 362 363 static SmallVector<CanQualType, 16> 364 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 365 SmallVector<CanQualType, 16> argTypes; 366 for (auto &arg : args) 367 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 368 return argTypes; 369 } 370 371 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 372 getExtParameterInfosForCall(const FunctionProtoType *proto, 373 unsigned prefixArgs, unsigned totalArgs) { 374 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 375 if (proto->hasExtParameterInfos()) { 376 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 377 } 378 return result; 379 } 380 381 /// Arrange a call to a C++ method, passing the given arguments. 382 /// 383 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 384 /// parameter. 385 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 386 /// args. 387 /// PassProtoArgs indicates whether `args` has args for the parameters in the 388 /// given CXXConstructorDecl. 389 const CGFunctionInfo & 390 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 391 const CXXConstructorDecl *D, 392 CXXCtorType CtorKind, 393 unsigned ExtraPrefixArgs, 394 unsigned ExtraSuffixArgs, 395 bool PassProtoArgs) { 396 // FIXME: Kill copy. 397 SmallVector<CanQualType, 16> ArgTypes; 398 for (const auto &Arg : args) 399 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 400 401 // +1 for implicit this, which should always be args[0]. 402 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 403 404 CanQual<FunctionProtoType> FPT = GetFormalType(D); 405 RequiredArgs Required = PassProtoArgs 406 ? RequiredArgs::forPrototypePlus( 407 FPT, TotalPrefixArgs + ExtraSuffixArgs) 408 : RequiredArgs::All; 409 410 GlobalDecl GD(D, CtorKind); 411 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 412 ? ArgTypes.front() 413 : TheCXXABI.hasMostDerivedReturn(GD) 414 ? CGM.getContext().VoidPtrTy 415 : Context.VoidTy; 416 417 FunctionType::ExtInfo Info = FPT->getExtInfo(); 418 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 419 // If the prototype args are elided, we should only have ABI-specific args, 420 // which never have param info. 421 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 422 // ABI-specific suffix arguments are treated the same as variadic arguments. 423 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 424 ArgTypes.size()); 425 } 426 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 427 /*chainCall=*/false, ArgTypes, Info, 428 ParamInfos, Required); 429 } 430 431 /// Arrange the argument and result information for the declaration or 432 /// definition of the given function. 433 const CGFunctionInfo & 434 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 435 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 436 if (MD->isInstance()) 437 return arrangeCXXMethodDeclaration(MD); 438 439 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 440 441 assert(isa<FunctionType>(FTy)); 442 setCUDAKernelCallingConvention(FTy, CGM, FD); 443 444 // When declaring a function without a prototype, always use a 445 // non-variadic type. 446 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 447 return arrangeLLVMFunctionInfo( 448 noProto->getReturnType(), /*instanceMethod=*/false, 449 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 450 } 451 452 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 453 } 454 455 /// Arrange the argument and result information for the declaration or 456 /// definition of an Objective-C method. 457 const CGFunctionInfo & 458 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 459 // It happens that this is the same as a call with no optional 460 // arguments, except also using the formal 'self' type. 461 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 462 } 463 464 /// Arrange the argument and result information for the function type 465 /// through which to perform a send to the given Objective-C method, 466 /// using the given receiver type. The receiver type is not always 467 /// the 'self' type of the method or even an Objective-C pointer type. 468 /// This is *not* the right method for actually performing such a 469 /// message send, due to the possibility of optional arguments. 470 const CGFunctionInfo & 471 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 472 QualType receiverType) { 473 SmallVector<CanQualType, 16> argTys; 474 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 475 argTys.push_back(Context.getCanonicalParamType(receiverType)); 476 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 477 // FIXME: Kill copy? 478 for (const auto *I : MD->parameters()) { 479 argTys.push_back(Context.getCanonicalParamType(I->getType())); 480 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 481 I->hasAttr<NoEscapeAttr>()); 482 extParamInfos.push_back(extParamInfo); 483 } 484 485 FunctionType::ExtInfo einfo; 486 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 487 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 488 489 if (getContext().getLangOpts().ObjCAutoRefCount && 490 MD->hasAttr<NSReturnsRetainedAttr>()) 491 einfo = einfo.withProducesResult(true); 492 493 RequiredArgs required = 494 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 495 496 return arrangeLLVMFunctionInfo( 497 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 498 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 499 } 500 501 const CGFunctionInfo & 502 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 503 const CallArgList &args) { 504 auto argTypes = getArgTypesForCall(Context, args); 505 FunctionType::ExtInfo einfo; 506 507 return arrangeLLVMFunctionInfo( 508 GetReturnType(returnType), /*instanceMethod=*/false, 509 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 510 } 511 512 const CGFunctionInfo & 513 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 514 // FIXME: Do we need to handle ObjCMethodDecl? 515 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 516 517 if (isa<CXXConstructorDecl>(GD.getDecl()) || 518 isa<CXXDestructorDecl>(GD.getDecl())) 519 return arrangeCXXStructorDeclaration(GD); 520 521 return arrangeFunctionDeclaration(FD); 522 } 523 524 /// Arrange a thunk that takes 'this' as the first parameter followed by 525 /// varargs. Return a void pointer, regardless of the actual return type. 526 /// The body of the thunk will end in a musttail call to a function of the 527 /// correct type, and the caller will bitcast the function to the correct 528 /// prototype. 529 const CGFunctionInfo & 530 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 531 assert(MD->isVirtual() && "only methods have thunks"); 532 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 533 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 534 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 535 /*chainCall=*/false, ArgTys, 536 FTP->getExtInfo(), {}, RequiredArgs(1)); 537 } 538 539 const CGFunctionInfo & 540 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 541 CXXCtorType CT) { 542 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 543 544 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 545 SmallVector<CanQualType, 2> ArgTys; 546 const CXXRecordDecl *RD = CD->getParent(); 547 ArgTys.push_back(DeriveThisType(RD, CD)); 548 if (CT == Ctor_CopyingClosure) 549 ArgTys.push_back(*FTP->param_type_begin()); 550 if (RD->getNumVBases() > 0) 551 ArgTys.push_back(Context.IntTy); 552 CallingConv CC = Context.getDefaultCallingConvention( 553 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 554 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 555 /*chainCall=*/false, ArgTys, 556 FunctionType::ExtInfo(CC), {}, 557 RequiredArgs::All); 558 } 559 560 /// Arrange a call as unto a free function, except possibly with an 561 /// additional number of formal parameters considered required. 562 static const CGFunctionInfo & 563 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 564 CodeGenModule &CGM, 565 const CallArgList &args, 566 const FunctionType *fnType, 567 unsigned numExtraRequiredArgs, 568 bool chainCall) { 569 assert(args.size() >= numExtraRequiredArgs); 570 571 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 572 573 // In most cases, there are no optional arguments. 574 RequiredArgs required = RequiredArgs::All; 575 576 // If we have a variadic prototype, the required arguments are the 577 // extra prefix plus the arguments in the prototype. 578 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 579 if (proto->isVariadic()) 580 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 581 582 if (proto->hasExtParameterInfos()) 583 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 584 args.size()); 585 586 // If we don't have a prototype at all, but we're supposed to 587 // explicitly use the variadic convention for unprototyped calls, 588 // treat all of the arguments as required but preserve the nominal 589 // possibility of variadics. 590 } else if (CGM.getTargetCodeGenInfo() 591 .isNoProtoCallVariadic(args, 592 cast<FunctionNoProtoType>(fnType))) { 593 required = RequiredArgs(args.size()); 594 } 595 596 // FIXME: Kill copy. 597 SmallVector<CanQualType, 16> argTypes; 598 for (const auto &arg : args) 599 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 600 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 601 /*instanceMethod=*/false, chainCall, 602 argTypes, fnType->getExtInfo(), paramInfos, 603 required); 604 } 605 606 /// Figure out the rules for calling a function with the given formal 607 /// type using the given arguments. The arguments are necessary 608 /// because the function might be unprototyped, in which case it's 609 /// target-dependent in crazy ways. 610 const CGFunctionInfo & 611 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 612 const FunctionType *fnType, 613 bool chainCall) { 614 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 615 chainCall ? 1 : 0, chainCall); 616 } 617 618 /// A block function is essentially a free function with an 619 /// extra implicit argument. 620 const CGFunctionInfo & 621 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 622 const FunctionType *fnType) { 623 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 624 /*chainCall=*/false); 625 } 626 627 const CGFunctionInfo & 628 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 629 const FunctionArgList ¶ms) { 630 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 631 auto argTypes = getArgTypesForDeclaration(Context, params); 632 633 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 634 /*instanceMethod*/ false, /*chainCall*/ false, 635 argTypes, proto->getExtInfo(), paramInfos, 636 RequiredArgs::forPrototypePlus(proto, 1)); 637 } 638 639 const CGFunctionInfo & 640 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 641 const CallArgList &args) { 642 // FIXME: Kill copy. 643 SmallVector<CanQualType, 16> argTypes; 644 for (const auto &Arg : args) 645 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 646 return arrangeLLVMFunctionInfo( 647 GetReturnType(resultType), /*instanceMethod=*/false, 648 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 649 /*paramInfos=*/ {}, RequiredArgs::All); 650 } 651 652 const CGFunctionInfo & 653 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 654 const FunctionArgList &args) { 655 auto argTypes = getArgTypesForDeclaration(Context, args); 656 657 return arrangeLLVMFunctionInfo( 658 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 659 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 660 } 661 662 const CGFunctionInfo & 663 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 664 ArrayRef<CanQualType> argTypes) { 665 return arrangeLLVMFunctionInfo( 666 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 667 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 668 } 669 670 /// Arrange a call to a C++ method, passing the given arguments. 671 /// 672 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 673 /// does not count `this`. 674 const CGFunctionInfo & 675 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 676 const FunctionProtoType *proto, 677 RequiredArgs required, 678 unsigned numPrefixArgs) { 679 assert(numPrefixArgs + 1 <= args.size() && 680 "Emitting a call with less args than the required prefix?"); 681 // Add one to account for `this`. It's a bit awkward here, but we don't count 682 // `this` in similar places elsewhere. 683 auto paramInfos = 684 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 685 686 // FIXME: Kill copy. 687 auto argTypes = getArgTypesForCall(Context, args); 688 689 FunctionType::ExtInfo info = proto->getExtInfo(); 690 return arrangeLLVMFunctionInfo( 691 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 692 /*chainCall=*/false, argTypes, info, paramInfos, required); 693 } 694 695 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 696 return arrangeLLVMFunctionInfo( 697 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 698 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 699 } 700 701 const CGFunctionInfo & 702 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 703 const CallArgList &args) { 704 assert(signature.arg_size() <= args.size()); 705 if (signature.arg_size() == args.size()) 706 return signature; 707 708 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 709 auto sigParamInfos = signature.getExtParameterInfos(); 710 if (!sigParamInfos.empty()) { 711 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 712 paramInfos.resize(args.size()); 713 } 714 715 auto argTypes = getArgTypesForCall(Context, args); 716 717 assert(signature.getRequiredArgs().allowsOptionalArgs()); 718 return arrangeLLVMFunctionInfo(signature.getReturnType(), 719 signature.isInstanceMethod(), 720 signature.isChainCall(), 721 argTypes, 722 signature.getExtInfo(), 723 paramInfos, 724 signature.getRequiredArgs()); 725 } 726 727 namespace clang { 728 namespace CodeGen { 729 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 730 } 731 } 732 733 /// Arrange the argument and result information for an abstract value 734 /// of a given function type. This is the method which all of the 735 /// above functions ultimately defer to. 736 const CGFunctionInfo & 737 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 738 bool instanceMethod, 739 bool chainCall, 740 ArrayRef<CanQualType> argTypes, 741 FunctionType::ExtInfo info, 742 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 743 RequiredArgs required) { 744 assert(llvm::all_of(argTypes, 745 [](CanQualType T) { return T.isCanonicalAsParam(); })); 746 747 // Lookup or create unique function info. 748 llvm::FoldingSetNodeID ID; 749 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 750 required, resultType, argTypes); 751 752 void *insertPos = nullptr; 753 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 754 if (FI) 755 return *FI; 756 757 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 758 759 // Construct the function info. We co-allocate the ArgInfos. 760 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 761 paramInfos, resultType, argTypes, required); 762 FunctionInfos.InsertNode(FI, insertPos); 763 764 bool inserted = FunctionsBeingProcessed.insert(FI).second; 765 (void)inserted; 766 assert(inserted && "Recursively being processed?"); 767 768 // Compute ABI information. 769 if (CC == llvm::CallingConv::SPIR_KERNEL) { 770 // Force target independent argument handling for the host visible 771 // kernel functions. 772 computeSPIRKernelABIInfo(CGM, *FI); 773 } else if (info.getCC() == CC_Swift) { 774 swiftcall::computeABIInfo(CGM, *FI); 775 } else { 776 getABIInfo().computeInfo(*FI); 777 } 778 779 // Loop over all of the computed argument and return value info. If any of 780 // them are direct or extend without a specified coerce type, specify the 781 // default now. 782 ABIArgInfo &retInfo = FI->getReturnInfo(); 783 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 784 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 785 786 for (auto &I : FI->arguments()) 787 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 788 I.info.setCoerceToType(ConvertType(I.type)); 789 790 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 791 assert(erased && "Not in set?"); 792 793 return *FI; 794 } 795 796 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 797 bool instanceMethod, 798 bool chainCall, 799 const FunctionType::ExtInfo &info, 800 ArrayRef<ExtParameterInfo> paramInfos, 801 CanQualType resultType, 802 ArrayRef<CanQualType> argTypes, 803 RequiredArgs required) { 804 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 805 assert(!required.allowsOptionalArgs() || 806 required.getNumRequiredArgs() <= argTypes.size()); 807 808 void *buffer = 809 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 810 argTypes.size() + 1, paramInfos.size())); 811 812 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 813 FI->CallingConvention = llvmCC; 814 FI->EffectiveCallingConvention = llvmCC; 815 FI->ASTCallingConvention = info.getCC(); 816 FI->InstanceMethod = instanceMethod; 817 FI->ChainCall = chainCall; 818 FI->NoReturn = info.getNoReturn(); 819 FI->ReturnsRetained = info.getProducesResult(); 820 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 821 FI->NoCfCheck = info.getNoCfCheck(); 822 FI->Required = required; 823 FI->HasRegParm = info.getHasRegParm(); 824 FI->RegParm = info.getRegParm(); 825 FI->ArgStruct = nullptr; 826 FI->ArgStructAlign = 0; 827 FI->NumArgs = argTypes.size(); 828 FI->HasExtParameterInfos = !paramInfos.empty(); 829 FI->getArgsBuffer()[0].type = resultType; 830 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 831 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 832 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 833 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 834 return FI; 835 } 836 837 /***/ 838 839 namespace { 840 // ABIArgInfo::Expand implementation. 841 842 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 843 struct TypeExpansion { 844 enum TypeExpansionKind { 845 // Elements of constant arrays are expanded recursively. 846 TEK_ConstantArray, 847 // Record fields are expanded recursively (but if record is a union, only 848 // the field with the largest size is expanded). 849 TEK_Record, 850 // For complex types, real and imaginary parts are expanded recursively. 851 TEK_Complex, 852 // All other types are not expandable. 853 TEK_None 854 }; 855 856 const TypeExpansionKind Kind; 857 858 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 859 virtual ~TypeExpansion() {} 860 }; 861 862 struct ConstantArrayExpansion : TypeExpansion { 863 QualType EltTy; 864 uint64_t NumElts; 865 866 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 867 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 868 static bool classof(const TypeExpansion *TE) { 869 return TE->Kind == TEK_ConstantArray; 870 } 871 }; 872 873 struct RecordExpansion : TypeExpansion { 874 SmallVector<const CXXBaseSpecifier *, 1> Bases; 875 876 SmallVector<const FieldDecl *, 1> Fields; 877 878 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 879 SmallVector<const FieldDecl *, 1> &&Fields) 880 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 881 Fields(std::move(Fields)) {} 882 static bool classof(const TypeExpansion *TE) { 883 return TE->Kind == TEK_Record; 884 } 885 }; 886 887 struct ComplexExpansion : TypeExpansion { 888 QualType EltTy; 889 890 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 891 static bool classof(const TypeExpansion *TE) { 892 return TE->Kind == TEK_Complex; 893 } 894 }; 895 896 struct NoExpansion : TypeExpansion { 897 NoExpansion() : TypeExpansion(TEK_None) {} 898 static bool classof(const TypeExpansion *TE) { 899 return TE->Kind == TEK_None; 900 } 901 }; 902 } // namespace 903 904 static std::unique_ptr<TypeExpansion> 905 getTypeExpansion(QualType Ty, const ASTContext &Context) { 906 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 907 return std::make_unique<ConstantArrayExpansion>( 908 AT->getElementType(), AT->getSize().getZExtValue()); 909 } 910 if (const RecordType *RT = Ty->getAs<RecordType>()) { 911 SmallVector<const CXXBaseSpecifier *, 1> Bases; 912 SmallVector<const FieldDecl *, 1> Fields; 913 const RecordDecl *RD = RT->getDecl(); 914 assert(!RD->hasFlexibleArrayMember() && 915 "Cannot expand structure with flexible array."); 916 if (RD->isUnion()) { 917 // Unions can be here only in degenerative cases - all the fields are same 918 // after flattening. Thus we have to use the "largest" field. 919 const FieldDecl *LargestFD = nullptr; 920 CharUnits UnionSize = CharUnits::Zero(); 921 922 for (const auto *FD : RD->fields()) { 923 if (FD->isZeroLengthBitField(Context)) 924 continue; 925 assert(!FD->isBitField() && 926 "Cannot expand structure with bit-field members."); 927 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 928 if (UnionSize < FieldSize) { 929 UnionSize = FieldSize; 930 LargestFD = FD; 931 } 932 } 933 if (LargestFD) 934 Fields.push_back(LargestFD); 935 } else { 936 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 937 assert(!CXXRD->isDynamicClass() && 938 "cannot expand vtable pointers in dynamic classes"); 939 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 940 Bases.push_back(&BS); 941 } 942 943 for (const auto *FD : RD->fields()) { 944 if (FD->isZeroLengthBitField(Context)) 945 continue; 946 assert(!FD->isBitField() && 947 "Cannot expand structure with bit-field members."); 948 Fields.push_back(FD); 949 } 950 } 951 return std::make_unique<RecordExpansion>(std::move(Bases), 952 std::move(Fields)); 953 } 954 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 955 return std::make_unique<ComplexExpansion>(CT->getElementType()); 956 } 957 return std::make_unique<NoExpansion>(); 958 } 959 960 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 961 auto Exp = getTypeExpansion(Ty, Context); 962 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 963 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 964 } 965 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 966 int Res = 0; 967 for (auto BS : RExp->Bases) 968 Res += getExpansionSize(BS->getType(), Context); 969 for (auto FD : RExp->Fields) 970 Res += getExpansionSize(FD->getType(), Context); 971 return Res; 972 } 973 if (isa<ComplexExpansion>(Exp.get())) 974 return 2; 975 assert(isa<NoExpansion>(Exp.get())); 976 return 1; 977 } 978 979 void 980 CodeGenTypes::getExpandedTypes(QualType Ty, 981 SmallVectorImpl<llvm::Type *>::iterator &TI) { 982 auto Exp = getTypeExpansion(Ty, Context); 983 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 984 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 985 getExpandedTypes(CAExp->EltTy, TI); 986 } 987 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 988 for (auto BS : RExp->Bases) 989 getExpandedTypes(BS->getType(), TI); 990 for (auto FD : RExp->Fields) 991 getExpandedTypes(FD->getType(), TI); 992 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 993 llvm::Type *EltTy = ConvertType(CExp->EltTy); 994 *TI++ = EltTy; 995 *TI++ = EltTy; 996 } else { 997 assert(isa<NoExpansion>(Exp.get())); 998 *TI++ = ConvertType(Ty); 999 } 1000 } 1001 1002 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1003 ConstantArrayExpansion *CAE, 1004 Address BaseAddr, 1005 llvm::function_ref<void(Address)> Fn) { 1006 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1007 CharUnits EltAlign = 1008 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1009 1010 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1011 llvm::Value *EltAddr = 1012 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1013 Fn(Address(EltAddr, EltAlign)); 1014 } 1015 } 1016 1017 void CodeGenFunction::ExpandTypeFromArgs( 1018 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 1019 assert(LV.isSimple() && 1020 "Unexpected non-simple lvalue during struct expansion."); 1021 1022 auto Exp = getTypeExpansion(Ty, getContext()); 1023 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1024 forConstantArrayExpansion( 1025 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1026 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1027 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1028 }); 1029 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1030 Address This = LV.getAddress(*this); 1031 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1032 // Perform a single step derived-to-base conversion. 1033 Address Base = 1034 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1035 /*NullCheckValue=*/false, SourceLocation()); 1036 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1037 1038 // Recurse onto bases. 1039 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1040 } 1041 for (auto FD : RExp->Fields) { 1042 // FIXME: What are the right qualifiers here? 1043 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1044 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1045 } 1046 } else if (isa<ComplexExpansion>(Exp.get())) { 1047 auto realValue = *AI++; 1048 auto imagValue = *AI++; 1049 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1050 } else { 1051 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1052 // primitive store. 1053 assert(isa<NoExpansion>(Exp.get())); 1054 if (LV.isBitField()) 1055 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1056 else 1057 EmitStoreOfScalar(*AI++, LV); 1058 } 1059 } 1060 1061 void CodeGenFunction::ExpandTypeToArgs( 1062 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1063 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1064 auto Exp = getTypeExpansion(Ty, getContext()); 1065 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1066 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1067 : Arg.getKnownRValue().getAggregateAddress(); 1068 forConstantArrayExpansion( 1069 *this, CAExp, Addr, [&](Address EltAddr) { 1070 CallArg EltArg = CallArg( 1071 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1072 CAExp->EltTy); 1073 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1074 IRCallArgPos); 1075 }); 1076 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1077 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1078 : Arg.getKnownRValue().getAggregateAddress(); 1079 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1080 // Perform a single step derived-to-base conversion. 1081 Address Base = 1082 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1083 /*NullCheckValue=*/false, SourceLocation()); 1084 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1085 1086 // Recurse onto bases. 1087 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1088 IRCallArgPos); 1089 } 1090 1091 LValue LV = MakeAddrLValue(This, Ty); 1092 for (auto FD : RExp->Fields) { 1093 CallArg FldArg = 1094 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1095 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1096 IRCallArgPos); 1097 } 1098 } else if (isa<ComplexExpansion>(Exp.get())) { 1099 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1100 IRCallArgs[IRCallArgPos++] = CV.first; 1101 IRCallArgs[IRCallArgPos++] = CV.second; 1102 } else { 1103 assert(isa<NoExpansion>(Exp.get())); 1104 auto RV = Arg.getKnownRValue(); 1105 assert(RV.isScalar() && 1106 "Unexpected non-scalar rvalue during struct expansion."); 1107 1108 // Insert a bitcast as needed. 1109 llvm::Value *V = RV.getScalarVal(); 1110 if (IRCallArgPos < IRFuncTy->getNumParams() && 1111 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1112 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1113 1114 IRCallArgs[IRCallArgPos++] = V; 1115 } 1116 } 1117 1118 /// Create a temporary allocation for the purposes of coercion. 1119 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1120 CharUnits MinAlign) { 1121 // Don't use an alignment that's worse than what LLVM would prefer. 1122 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1123 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1124 1125 return CGF.CreateTempAlloca(Ty, Align); 1126 } 1127 1128 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1129 /// accessing some number of bytes out of it, try to gep into the struct to get 1130 /// at its inner goodness. Dive as deep as possible without entering an element 1131 /// with an in-memory size smaller than DstSize. 1132 static Address 1133 EnterStructPointerForCoercedAccess(Address SrcPtr, 1134 llvm::StructType *SrcSTy, 1135 uint64_t DstSize, CodeGenFunction &CGF) { 1136 // We can't dive into a zero-element struct. 1137 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1138 1139 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1140 1141 // If the first elt is at least as large as what we're looking for, or if the 1142 // first element is the same size as the whole struct, we can enter it. The 1143 // comparison must be made on the store size and not the alloca size. Using 1144 // the alloca size may overstate the size of the load. 1145 uint64_t FirstEltSize = 1146 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1147 if (FirstEltSize < DstSize && 1148 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1149 return SrcPtr; 1150 1151 // GEP into the first element. 1152 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1153 1154 // If the first element is a struct, recurse. 1155 llvm::Type *SrcTy = SrcPtr.getElementType(); 1156 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1157 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1158 1159 return SrcPtr; 1160 } 1161 1162 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1163 /// are either integers or pointers. This does a truncation of the value if it 1164 /// is too large or a zero extension if it is too small. 1165 /// 1166 /// This behaves as if the value were coerced through memory, so on big-endian 1167 /// targets the high bits are preserved in a truncation, while little-endian 1168 /// targets preserve the low bits. 1169 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1170 llvm::Type *Ty, 1171 CodeGenFunction &CGF) { 1172 if (Val->getType() == Ty) 1173 return Val; 1174 1175 if (isa<llvm::PointerType>(Val->getType())) { 1176 // If this is Pointer->Pointer avoid conversion to and from int. 1177 if (isa<llvm::PointerType>(Ty)) 1178 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1179 1180 // Convert the pointer to an integer so we can play with its width. 1181 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1182 } 1183 1184 llvm::Type *DestIntTy = Ty; 1185 if (isa<llvm::PointerType>(DestIntTy)) 1186 DestIntTy = CGF.IntPtrTy; 1187 1188 if (Val->getType() != DestIntTy) { 1189 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1190 if (DL.isBigEndian()) { 1191 // Preserve the high bits on big-endian targets. 1192 // That is what memory coercion does. 1193 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1194 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1195 1196 if (SrcSize > DstSize) { 1197 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1198 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1199 } else { 1200 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1201 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1202 } 1203 } else { 1204 // Little-endian targets preserve the low bits. No shifts required. 1205 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1206 } 1207 } 1208 1209 if (isa<llvm::PointerType>(Ty)) 1210 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1211 return Val; 1212 } 1213 1214 1215 1216 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1217 /// a pointer to an object of type \arg Ty, known to be aligned to 1218 /// \arg SrcAlign bytes. 1219 /// 1220 /// This safely handles the case when the src type is smaller than the 1221 /// destination type; in this situation the values of bits which not 1222 /// present in the src are undefined. 1223 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1224 CodeGenFunction &CGF) { 1225 llvm::Type *SrcTy = Src.getElementType(); 1226 1227 // If SrcTy and Ty are the same, just do a load. 1228 if (SrcTy == Ty) 1229 return CGF.Builder.CreateLoad(Src); 1230 1231 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1232 1233 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1234 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1235 SrcTy = Src.getType()->getElementType(); 1236 } 1237 1238 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1239 1240 // If the source and destination are integer or pointer types, just do an 1241 // extension or truncation to the desired type. 1242 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1243 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1244 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1245 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1246 } 1247 1248 // If load is legal, just bitcast the src pointer. 1249 if (SrcSize >= DstSize) { 1250 // Generally SrcSize is never greater than DstSize, since this means we are 1251 // losing bits. However, this can happen in cases where the structure has 1252 // additional padding, for example due to a user specified alignment. 1253 // 1254 // FIXME: Assert that we aren't truncating non-padding bits when have access 1255 // to that information. 1256 Src = CGF.Builder.CreateBitCast(Src, 1257 Ty->getPointerTo(Src.getAddressSpace())); 1258 return CGF.Builder.CreateLoad(Src); 1259 } 1260 1261 // Otherwise do coercion through memory. This is stupid, but simple. 1262 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1263 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); 1264 Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty); 1265 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1266 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1267 false); 1268 return CGF.Builder.CreateLoad(Tmp); 1269 } 1270 1271 // Function to store a first-class aggregate into memory. We prefer to 1272 // store the elements rather than the aggregate to be more friendly to 1273 // fast-isel. 1274 // FIXME: Do we need to recurse here? 1275 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1276 Address Dest, bool DestIsVolatile) { 1277 // Prefer scalar stores to first-class aggregate stores. 1278 if (llvm::StructType *STy = 1279 dyn_cast<llvm::StructType>(Val->getType())) { 1280 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1281 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i); 1282 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1283 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1284 } 1285 } else { 1286 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1287 } 1288 } 1289 1290 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1291 /// where the source and destination may have different types. The 1292 /// destination is known to be aligned to \arg DstAlign bytes. 1293 /// 1294 /// This safely handles the case when the src type is larger than the 1295 /// destination type; the upper bits of the src will be lost. 1296 static void CreateCoercedStore(llvm::Value *Src, 1297 Address Dst, 1298 bool DstIsVolatile, 1299 CodeGenFunction &CGF) { 1300 llvm::Type *SrcTy = Src->getType(); 1301 llvm::Type *DstTy = Dst.getType()->getElementType(); 1302 if (SrcTy == DstTy) { 1303 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1304 return; 1305 } 1306 1307 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1308 1309 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1310 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1311 DstTy = Dst.getType()->getElementType(); 1312 } 1313 1314 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1315 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1316 if (SrcPtrTy && DstPtrTy && 1317 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1318 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1319 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1320 return; 1321 } 1322 1323 // If the source and destination are integer or pointer types, just do an 1324 // extension or truncation to the desired type. 1325 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1326 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1327 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1328 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1329 return; 1330 } 1331 1332 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1333 1334 // If store is legal, just bitcast the src pointer. 1335 if (SrcSize <= DstSize) { 1336 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1337 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1338 } else { 1339 // Otherwise do coercion through memory. This is stupid, but 1340 // simple. 1341 1342 // Generally SrcSize is never greater than DstSize, since this means we are 1343 // losing bits. However, this can happen in cases where the structure has 1344 // additional padding, for example due to a user specified alignment. 1345 // 1346 // FIXME: Assert that we aren't truncating non-padding bits when have access 1347 // to that information. 1348 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1349 CGF.Builder.CreateStore(Src, Tmp); 1350 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); 1351 Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty); 1352 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1353 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1354 false); 1355 } 1356 } 1357 1358 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1359 const ABIArgInfo &info) { 1360 if (unsigned offset = info.getDirectOffset()) { 1361 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1362 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1363 CharUnits::fromQuantity(offset)); 1364 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1365 } 1366 return addr; 1367 } 1368 1369 namespace { 1370 1371 /// Encapsulates information about the way function arguments from 1372 /// CGFunctionInfo should be passed to actual LLVM IR function. 1373 class ClangToLLVMArgMapping { 1374 static const unsigned InvalidIndex = ~0U; 1375 unsigned InallocaArgNo; 1376 unsigned SRetArgNo; 1377 unsigned TotalIRArgs; 1378 1379 /// Arguments of LLVM IR function corresponding to single Clang argument. 1380 struct IRArgs { 1381 unsigned PaddingArgIndex; 1382 // Argument is expanded to IR arguments at positions 1383 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1384 unsigned FirstArgIndex; 1385 unsigned NumberOfArgs; 1386 1387 IRArgs() 1388 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1389 NumberOfArgs(0) {} 1390 }; 1391 1392 SmallVector<IRArgs, 8> ArgInfo; 1393 1394 public: 1395 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1396 bool OnlyRequiredArgs = false) 1397 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1398 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1399 construct(Context, FI, OnlyRequiredArgs); 1400 } 1401 1402 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1403 unsigned getInallocaArgNo() const { 1404 assert(hasInallocaArg()); 1405 return InallocaArgNo; 1406 } 1407 1408 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1409 unsigned getSRetArgNo() const { 1410 assert(hasSRetArg()); 1411 return SRetArgNo; 1412 } 1413 1414 unsigned totalIRArgs() const { return TotalIRArgs; } 1415 1416 bool hasPaddingArg(unsigned ArgNo) const { 1417 assert(ArgNo < ArgInfo.size()); 1418 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1419 } 1420 unsigned getPaddingArgNo(unsigned ArgNo) const { 1421 assert(hasPaddingArg(ArgNo)); 1422 return ArgInfo[ArgNo].PaddingArgIndex; 1423 } 1424 1425 /// Returns index of first IR argument corresponding to ArgNo, and their 1426 /// quantity. 1427 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1428 assert(ArgNo < ArgInfo.size()); 1429 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1430 ArgInfo[ArgNo].NumberOfArgs); 1431 } 1432 1433 private: 1434 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1435 bool OnlyRequiredArgs); 1436 }; 1437 1438 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1439 const CGFunctionInfo &FI, 1440 bool OnlyRequiredArgs) { 1441 unsigned IRArgNo = 0; 1442 bool SwapThisWithSRet = false; 1443 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1444 1445 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1446 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1447 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1448 } 1449 1450 unsigned ArgNo = 0; 1451 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1452 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1453 ++I, ++ArgNo) { 1454 assert(I != FI.arg_end()); 1455 QualType ArgType = I->type; 1456 const ABIArgInfo &AI = I->info; 1457 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1458 auto &IRArgs = ArgInfo[ArgNo]; 1459 1460 if (AI.getPaddingType()) 1461 IRArgs.PaddingArgIndex = IRArgNo++; 1462 1463 switch (AI.getKind()) { 1464 case ABIArgInfo::Extend: 1465 case ABIArgInfo::Direct: { 1466 // FIXME: handle sseregparm someday... 1467 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1468 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1469 IRArgs.NumberOfArgs = STy->getNumElements(); 1470 } else { 1471 IRArgs.NumberOfArgs = 1; 1472 } 1473 break; 1474 } 1475 case ABIArgInfo::Indirect: 1476 IRArgs.NumberOfArgs = 1; 1477 break; 1478 case ABIArgInfo::Ignore: 1479 case ABIArgInfo::InAlloca: 1480 // ignore and inalloca doesn't have matching LLVM parameters. 1481 IRArgs.NumberOfArgs = 0; 1482 break; 1483 case ABIArgInfo::CoerceAndExpand: 1484 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1485 break; 1486 case ABIArgInfo::Expand: 1487 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1488 break; 1489 } 1490 1491 if (IRArgs.NumberOfArgs > 0) { 1492 IRArgs.FirstArgIndex = IRArgNo; 1493 IRArgNo += IRArgs.NumberOfArgs; 1494 } 1495 1496 // Skip over the sret parameter when it comes second. We already handled it 1497 // above. 1498 if (IRArgNo == 1 && SwapThisWithSRet) 1499 IRArgNo++; 1500 } 1501 assert(ArgNo == ArgInfo.size()); 1502 1503 if (FI.usesInAlloca()) 1504 InallocaArgNo = IRArgNo++; 1505 1506 TotalIRArgs = IRArgNo; 1507 } 1508 } // namespace 1509 1510 /***/ 1511 1512 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1513 const auto &RI = FI.getReturnInfo(); 1514 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1515 } 1516 1517 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1518 return ReturnTypeUsesSRet(FI) && 1519 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1520 } 1521 1522 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1523 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1524 switch (BT->getKind()) { 1525 default: 1526 return false; 1527 case BuiltinType::Float: 1528 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1529 case BuiltinType::Double: 1530 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1531 case BuiltinType::LongDouble: 1532 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1533 } 1534 } 1535 1536 return false; 1537 } 1538 1539 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1540 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1541 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1542 if (BT->getKind() == BuiltinType::LongDouble) 1543 return getTarget().useObjCFP2RetForComplexLongDouble(); 1544 } 1545 } 1546 1547 return false; 1548 } 1549 1550 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1551 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1552 return GetFunctionType(FI); 1553 } 1554 1555 llvm::FunctionType * 1556 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1557 1558 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1559 (void)Inserted; 1560 assert(Inserted && "Recursively being processed?"); 1561 1562 llvm::Type *resultType = nullptr; 1563 const ABIArgInfo &retAI = FI.getReturnInfo(); 1564 switch (retAI.getKind()) { 1565 case ABIArgInfo::Expand: 1566 llvm_unreachable("Invalid ABI kind for return argument"); 1567 1568 case ABIArgInfo::Extend: 1569 case ABIArgInfo::Direct: 1570 resultType = retAI.getCoerceToType(); 1571 break; 1572 1573 case ABIArgInfo::InAlloca: 1574 if (retAI.getInAllocaSRet()) { 1575 // sret things on win32 aren't void, they return the sret pointer. 1576 QualType ret = FI.getReturnType(); 1577 llvm::Type *ty = ConvertType(ret); 1578 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1579 resultType = llvm::PointerType::get(ty, addressSpace); 1580 } else { 1581 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1582 } 1583 break; 1584 1585 case ABIArgInfo::Indirect: 1586 case ABIArgInfo::Ignore: 1587 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1588 break; 1589 1590 case ABIArgInfo::CoerceAndExpand: 1591 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1592 break; 1593 } 1594 1595 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1596 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1597 1598 // Add type for sret argument. 1599 if (IRFunctionArgs.hasSRetArg()) { 1600 QualType Ret = FI.getReturnType(); 1601 llvm::Type *Ty = ConvertType(Ret); 1602 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1603 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1604 llvm::PointerType::get(Ty, AddressSpace); 1605 } 1606 1607 // Add type for inalloca argument. 1608 if (IRFunctionArgs.hasInallocaArg()) { 1609 auto ArgStruct = FI.getArgStruct(); 1610 assert(ArgStruct); 1611 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1612 } 1613 1614 // Add in all of the required arguments. 1615 unsigned ArgNo = 0; 1616 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1617 ie = it + FI.getNumRequiredArgs(); 1618 for (; it != ie; ++it, ++ArgNo) { 1619 const ABIArgInfo &ArgInfo = it->info; 1620 1621 // Insert a padding type to ensure proper alignment. 1622 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1623 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1624 ArgInfo.getPaddingType(); 1625 1626 unsigned FirstIRArg, NumIRArgs; 1627 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1628 1629 switch (ArgInfo.getKind()) { 1630 case ABIArgInfo::Ignore: 1631 case ABIArgInfo::InAlloca: 1632 assert(NumIRArgs == 0); 1633 break; 1634 1635 case ABIArgInfo::Indirect: { 1636 assert(NumIRArgs == 1); 1637 // indirect arguments are always on the stack, which is alloca addr space. 1638 llvm::Type *LTy = ConvertTypeForMem(it->type); 1639 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1640 CGM.getDataLayout().getAllocaAddrSpace()); 1641 break; 1642 } 1643 1644 case ABIArgInfo::Extend: 1645 case ABIArgInfo::Direct: { 1646 // Fast-isel and the optimizer generally like scalar values better than 1647 // FCAs, so we flatten them if this is safe to do for this argument. 1648 llvm::Type *argType = ArgInfo.getCoerceToType(); 1649 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1650 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1651 assert(NumIRArgs == st->getNumElements()); 1652 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1653 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1654 } else { 1655 assert(NumIRArgs == 1); 1656 ArgTypes[FirstIRArg] = argType; 1657 } 1658 break; 1659 } 1660 1661 case ABIArgInfo::CoerceAndExpand: { 1662 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1663 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1664 *ArgTypesIter++ = EltTy; 1665 } 1666 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1667 break; 1668 } 1669 1670 case ABIArgInfo::Expand: 1671 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1672 getExpandedTypes(it->type, ArgTypesIter); 1673 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1674 break; 1675 } 1676 } 1677 1678 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1679 assert(Erased && "Not in set?"); 1680 1681 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1682 } 1683 1684 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1685 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1686 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1687 1688 if (!isFuncTypeConvertible(FPT)) 1689 return llvm::StructType::get(getLLVMContext()); 1690 1691 return GetFunctionType(GD); 1692 } 1693 1694 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1695 llvm::AttrBuilder &FuncAttrs, 1696 const FunctionProtoType *FPT) { 1697 if (!FPT) 1698 return; 1699 1700 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1701 FPT->isNothrow()) 1702 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1703 } 1704 1705 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1706 bool AttrOnCallSite, 1707 llvm::AttrBuilder &FuncAttrs) { 1708 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1709 if (!HasOptnone) { 1710 if (CodeGenOpts.OptimizeSize) 1711 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1712 if (CodeGenOpts.OptimizeSize == 2) 1713 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1714 } 1715 1716 if (CodeGenOpts.DisableRedZone) 1717 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1718 if (CodeGenOpts.IndirectTlsSegRefs) 1719 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1720 if (CodeGenOpts.NoImplicitFloat) 1721 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1722 1723 if (AttrOnCallSite) { 1724 // Attributes that should go on the call site only. 1725 if (!CodeGenOpts.SimplifyLibCalls || 1726 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1727 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1728 if (!CodeGenOpts.TrapFuncName.empty()) 1729 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1730 } else { 1731 StringRef FpKind; 1732 switch (CodeGenOpts.getFramePointer()) { 1733 case CodeGenOptions::FramePointerKind::None: 1734 FpKind = "none"; 1735 break; 1736 case CodeGenOptions::FramePointerKind::NonLeaf: 1737 FpKind = "non-leaf"; 1738 break; 1739 case CodeGenOptions::FramePointerKind::All: 1740 FpKind = "all"; 1741 break; 1742 } 1743 FuncAttrs.addAttribute("frame-pointer", FpKind); 1744 1745 FuncAttrs.addAttribute("less-precise-fpmad", 1746 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1747 1748 if (CodeGenOpts.NullPointerIsValid) 1749 FuncAttrs.addAttribute("null-pointer-is-valid", "true"); 1750 1751 // TODO: Omit attribute when the default is IEEE. 1752 if (CodeGenOpts.FPDenormalMode.isValid()) 1753 FuncAttrs.addAttribute("denormal-fp-math", 1754 CodeGenOpts.FPDenormalMode.str()); 1755 if (CodeGenOpts.FP32DenormalMode.isValid()) { 1756 FuncAttrs.addAttribute( 1757 "denormal-fp-math-f32", 1758 CodeGenOpts.FP32DenormalMode.str()); 1759 } 1760 1761 FuncAttrs.addAttribute("no-trapping-math", 1762 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1763 1764 // Strict (compliant) code is the default, so only add this attribute to 1765 // indicate that we are trying to workaround a problem case. 1766 if (!CodeGenOpts.StrictFloatCastOverflow) 1767 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1768 1769 // TODO: Are these all needed? 1770 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1771 FuncAttrs.addAttribute("no-infs-fp-math", 1772 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1773 FuncAttrs.addAttribute("no-nans-fp-math", 1774 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1775 FuncAttrs.addAttribute("unsafe-fp-math", 1776 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1777 FuncAttrs.addAttribute("use-soft-float", 1778 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1779 FuncAttrs.addAttribute("stack-protector-buffer-size", 1780 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1781 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1782 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1783 FuncAttrs.addAttribute( 1784 "correctly-rounded-divide-sqrt-fp-math", 1785 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1786 1787 // TODO: Reciprocal estimate codegen options should apply to instructions? 1788 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1789 if (!Recips.empty()) 1790 FuncAttrs.addAttribute("reciprocal-estimates", 1791 llvm::join(Recips, ",")); 1792 1793 if (!CodeGenOpts.PreferVectorWidth.empty() && 1794 CodeGenOpts.PreferVectorWidth != "none") 1795 FuncAttrs.addAttribute("prefer-vector-width", 1796 CodeGenOpts.PreferVectorWidth); 1797 1798 if (CodeGenOpts.StackRealignment) 1799 FuncAttrs.addAttribute("stackrealign"); 1800 if (CodeGenOpts.Backchain) 1801 FuncAttrs.addAttribute("backchain"); 1802 1803 if (CodeGenOpts.SpeculativeLoadHardening) 1804 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1805 } 1806 1807 if (getLangOpts().assumeFunctionsAreConvergent()) { 1808 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1809 // convergent (meaning, they may call an intrinsically convergent op, such 1810 // as __syncthreads() / barrier(), and so can't have certain optimizations 1811 // applied around them). LLVM will remove this attribute where it safely 1812 // can. 1813 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1814 } 1815 1816 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1817 // Exceptions aren't supported in CUDA device code. 1818 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1819 } 1820 1821 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1822 StringRef Var, Value; 1823 std::tie(Var, Value) = Attr.split('='); 1824 FuncAttrs.addAttribute(Var, Value); 1825 } 1826 } 1827 1828 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1829 llvm::AttrBuilder FuncAttrs; 1830 ConstructDefaultFnAttrList(F.getName(), F.hasOptNone(), 1831 /* AttrOnCallSite = */ false, FuncAttrs); 1832 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1833 } 1834 1835 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 1836 const LangOptions &LangOpts, 1837 const NoBuiltinAttr *NBA = nullptr) { 1838 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 1839 SmallString<32> AttributeName; 1840 AttributeName += "no-builtin-"; 1841 AttributeName += BuiltinName; 1842 FuncAttrs.addAttribute(AttributeName); 1843 }; 1844 1845 // First, handle the language options passed through -fno-builtin. 1846 if (LangOpts.NoBuiltin) { 1847 // -fno-builtin disables them all. 1848 FuncAttrs.addAttribute("no-builtins"); 1849 return; 1850 } 1851 1852 // Then, add attributes for builtins specified through -fno-builtin-<name>. 1853 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 1854 1855 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 1856 // the source. 1857 if (!NBA) 1858 return; 1859 1860 // If there is a wildcard in the builtin names specified through the 1861 // attribute, disable them all. 1862 if (llvm::is_contained(NBA->builtinNames(), "*")) { 1863 FuncAttrs.addAttribute("no-builtins"); 1864 return; 1865 } 1866 1867 // And last, add the rest of the builtin names. 1868 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 1869 } 1870 1871 void CodeGenModule::ConstructAttributeList( 1872 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1873 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1874 llvm::AttrBuilder FuncAttrs; 1875 llvm::AttrBuilder RetAttrs; 1876 1877 CallingConv = FI.getEffectiveCallingConvention(); 1878 if (FI.isNoReturn()) 1879 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1880 1881 // If we have information about the function prototype, we can learn 1882 // attributes from there. 1883 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1884 CalleeInfo.getCalleeFunctionProtoType()); 1885 1886 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 1887 1888 bool HasOptnone = false; 1889 // The NoBuiltinAttr attached to a TargetDecl (only allowed on FunctionDecls). 1890 const NoBuiltinAttr *NBA = nullptr; 1891 // FIXME: handle sseregparm someday... 1892 if (TargetDecl) { 1893 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1894 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1895 if (TargetDecl->hasAttr<NoThrowAttr>()) 1896 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1897 if (TargetDecl->hasAttr<NoReturnAttr>()) 1898 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1899 if (TargetDecl->hasAttr<ColdAttr>()) 1900 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1901 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1902 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1903 if (TargetDecl->hasAttr<ConvergentAttr>()) 1904 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1905 1906 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1907 AddAttributesFromFunctionProtoType( 1908 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1909 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 1910 // A sane operator new returns a non-aliasing pointer. 1911 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 1912 if (getCodeGenOpts().AssumeSaneOperatorNew && 1913 (Kind == OO_New || Kind == OO_Array_New)) 1914 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1915 } 1916 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1917 const bool IsVirtualCall = MD && MD->isVirtual(); 1918 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 1919 // virtual function. These attributes are not inherited by overloads. 1920 if (!(AttrOnCallSite && IsVirtualCall)) { 1921 if (Fn->isNoReturn()) 1922 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1923 NBA = Fn->getAttr<NoBuiltinAttr>(); 1924 } 1925 } 1926 1927 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1928 if (TargetDecl->hasAttr<ConstAttr>()) { 1929 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1930 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1931 } else if (TargetDecl->hasAttr<PureAttr>()) { 1932 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1933 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1934 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1935 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1936 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1937 } 1938 if (TargetDecl->hasAttr<RestrictAttr>()) 1939 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1940 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1941 !CodeGenOpts.NullPointerIsValid) 1942 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1943 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1944 FuncAttrs.addAttribute("no_caller_saved_registers"); 1945 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1946 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1947 1948 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1949 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1950 Optional<unsigned> NumElemsParam; 1951 if (AllocSize->getNumElemsParam().isValid()) 1952 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 1953 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 1954 NumElemsParam); 1955 } 1956 } 1957 1958 // Attach "no-builtins" attributes to: 1959 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 1960 // * definitions: "no-builtins" or "no-builtin-<name>" only. 1961 // The attributes can come from: 1962 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 1963 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 1964 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 1965 1966 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1967 1968 // This must run after constructing the default function attribute list 1969 // to ensure that the speculative load hardening attribute is removed 1970 // in the case where the -mspeculative-load-hardening flag was passed. 1971 if (TargetDecl) { 1972 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 1973 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 1974 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 1975 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1976 } 1977 1978 if (CodeGenOpts.EnableSegmentedStacks && 1979 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1980 FuncAttrs.addAttribute("split-stack"); 1981 1982 // Add NonLazyBind attribute to function declarations when -fno-plt 1983 // is used. 1984 if (TargetDecl && CodeGenOpts.NoPLT) { 1985 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1986 if (!Fn->isDefined() && !AttrOnCallSite) { 1987 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 1988 } 1989 } 1990 } 1991 1992 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) { 1993 if (getLangOpts().OpenCLVersion <= 120) { 1994 // OpenCL v1.2 Work groups are always uniform 1995 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 1996 } else { 1997 // OpenCL v2.0 Work groups may be whether uniform or not. 1998 // '-cl-uniform-work-group-size' compile option gets a hint 1999 // to the compiler that the global work-size be a multiple of 2000 // the work-group size specified to clEnqueueNDRangeKernel 2001 // (i.e. work groups are uniform). 2002 FuncAttrs.addAttribute("uniform-work-group-size", 2003 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 2004 } 2005 } 2006 2007 if (!AttrOnCallSite) { 2008 bool DisableTailCalls = false; 2009 2010 if (CodeGenOpts.DisableTailCalls) 2011 DisableTailCalls = true; 2012 else if (TargetDecl) { 2013 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2014 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2015 DisableTailCalls = true; 2016 else if (CodeGenOpts.NoEscapingBlockTailCalls) { 2017 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2018 if (!BD->doesNotEscape()) 2019 DisableTailCalls = true; 2020 } 2021 } 2022 2023 FuncAttrs.addAttribute("disable-tail-calls", 2024 llvm::toStringRef(DisableTailCalls)); 2025 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2026 } 2027 2028 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2029 2030 QualType RetTy = FI.getReturnType(); 2031 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2032 switch (RetAI.getKind()) { 2033 case ABIArgInfo::Extend: 2034 if (RetAI.isSignExt()) 2035 RetAttrs.addAttribute(llvm::Attribute::SExt); 2036 else 2037 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2038 LLVM_FALLTHROUGH; 2039 case ABIArgInfo::Direct: 2040 if (RetAI.getInReg()) 2041 RetAttrs.addAttribute(llvm::Attribute::InReg); 2042 break; 2043 case ABIArgInfo::Ignore: 2044 break; 2045 2046 case ABIArgInfo::InAlloca: 2047 case ABIArgInfo::Indirect: { 2048 // inalloca and sret disable readnone and readonly 2049 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2050 .removeAttribute(llvm::Attribute::ReadNone); 2051 break; 2052 } 2053 2054 case ABIArgInfo::CoerceAndExpand: 2055 break; 2056 2057 case ABIArgInfo::Expand: 2058 llvm_unreachable("Invalid ABI kind for return argument"); 2059 } 2060 2061 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2062 QualType PTy = RefTy->getPointeeType(); 2063 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2064 RetAttrs.addDereferenceableAttr( 2065 getMinimumObjectSize(PTy).getQuantity()); 2066 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2067 !CodeGenOpts.NullPointerIsValid) 2068 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2069 } 2070 2071 bool hasUsedSRet = false; 2072 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2073 2074 // Attach attributes to sret. 2075 if (IRFunctionArgs.hasSRetArg()) { 2076 llvm::AttrBuilder SRETAttrs; 2077 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 2078 hasUsedSRet = true; 2079 if (RetAI.getInReg()) 2080 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2081 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2082 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2083 } 2084 2085 // Attach attributes to inalloca argument. 2086 if (IRFunctionArgs.hasInallocaArg()) { 2087 llvm::AttrBuilder Attrs; 2088 Attrs.addAttribute(llvm::Attribute::InAlloca); 2089 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2090 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2091 } 2092 2093 unsigned ArgNo = 0; 2094 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2095 E = FI.arg_end(); 2096 I != E; ++I, ++ArgNo) { 2097 QualType ParamType = I->type; 2098 const ABIArgInfo &AI = I->info; 2099 llvm::AttrBuilder Attrs; 2100 2101 // Add attribute for padding argument, if necessary. 2102 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2103 if (AI.getPaddingInReg()) { 2104 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2105 llvm::AttributeSet::get( 2106 getLLVMContext(), 2107 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2108 } 2109 } 2110 2111 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2112 // have the corresponding parameter variable. It doesn't make 2113 // sense to do it here because parameters are so messed up. 2114 switch (AI.getKind()) { 2115 case ABIArgInfo::Extend: 2116 if (AI.isSignExt()) 2117 Attrs.addAttribute(llvm::Attribute::SExt); 2118 else 2119 Attrs.addAttribute(llvm::Attribute::ZExt); 2120 LLVM_FALLTHROUGH; 2121 case ABIArgInfo::Direct: 2122 if (ArgNo == 0 && FI.isChainCall()) 2123 Attrs.addAttribute(llvm::Attribute::Nest); 2124 else if (AI.getInReg()) 2125 Attrs.addAttribute(llvm::Attribute::InReg); 2126 break; 2127 2128 case ABIArgInfo::Indirect: { 2129 if (AI.getInReg()) 2130 Attrs.addAttribute(llvm::Attribute::InReg); 2131 2132 if (AI.getIndirectByVal()) 2133 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2134 2135 CharUnits Align = AI.getIndirectAlign(); 2136 2137 // In a byval argument, it is important that the required 2138 // alignment of the type is honored, as LLVM might be creating a 2139 // *new* stack object, and needs to know what alignment to give 2140 // it. (Sometimes it can deduce a sensible alignment on its own, 2141 // but not if clang decides it must emit a packed struct, or the 2142 // user specifies increased alignment requirements.) 2143 // 2144 // This is different from indirect *not* byval, where the object 2145 // exists already, and the align attribute is purely 2146 // informative. 2147 assert(!Align.isZero()); 2148 2149 // For now, only add this when we have a byval argument. 2150 // TODO: be less lazy about updating test cases. 2151 if (AI.getIndirectByVal()) 2152 Attrs.addAlignmentAttr(Align.getQuantity()); 2153 2154 // byval disables readnone and readonly. 2155 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2156 .removeAttribute(llvm::Attribute::ReadNone); 2157 break; 2158 } 2159 case ABIArgInfo::Ignore: 2160 case ABIArgInfo::Expand: 2161 case ABIArgInfo::CoerceAndExpand: 2162 break; 2163 2164 case ABIArgInfo::InAlloca: 2165 // inalloca disables readnone and readonly. 2166 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2167 .removeAttribute(llvm::Attribute::ReadNone); 2168 continue; 2169 } 2170 2171 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2172 QualType PTy = RefTy->getPointeeType(); 2173 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2174 Attrs.addDereferenceableAttr( 2175 getMinimumObjectSize(PTy).getQuantity()); 2176 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2177 !CodeGenOpts.NullPointerIsValid) 2178 Attrs.addAttribute(llvm::Attribute::NonNull); 2179 } 2180 2181 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2182 case ParameterABI::Ordinary: 2183 break; 2184 2185 case ParameterABI::SwiftIndirectResult: { 2186 // Add 'sret' if we haven't already used it for something, but 2187 // only if the result is void. 2188 if (!hasUsedSRet && RetTy->isVoidType()) { 2189 Attrs.addAttribute(llvm::Attribute::StructRet); 2190 hasUsedSRet = true; 2191 } 2192 2193 // Add 'noalias' in either case. 2194 Attrs.addAttribute(llvm::Attribute::NoAlias); 2195 2196 // Add 'dereferenceable' and 'alignment'. 2197 auto PTy = ParamType->getPointeeType(); 2198 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2199 auto info = getContext().getTypeInfoInChars(PTy); 2200 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2201 Attrs.addAttribute(llvm::Attribute::getWithAlignment( 2202 getLLVMContext(), info.second.getAsAlign())); 2203 } 2204 break; 2205 } 2206 2207 case ParameterABI::SwiftErrorResult: 2208 Attrs.addAttribute(llvm::Attribute::SwiftError); 2209 break; 2210 2211 case ParameterABI::SwiftContext: 2212 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2213 break; 2214 } 2215 2216 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2217 Attrs.addAttribute(llvm::Attribute::NoCapture); 2218 2219 if (Attrs.hasAttributes()) { 2220 unsigned FirstIRArg, NumIRArgs; 2221 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2222 for (unsigned i = 0; i < NumIRArgs; i++) 2223 ArgAttrs[FirstIRArg + i] = 2224 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2225 } 2226 } 2227 assert(ArgNo == FI.arg_size()); 2228 2229 AttrList = llvm::AttributeList::get( 2230 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2231 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2232 } 2233 2234 /// An argument came in as a promoted argument; demote it back to its 2235 /// declared type. 2236 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2237 const VarDecl *var, 2238 llvm::Value *value) { 2239 llvm::Type *varType = CGF.ConvertType(var->getType()); 2240 2241 // This can happen with promotions that actually don't change the 2242 // underlying type, like the enum promotions. 2243 if (value->getType() == varType) return value; 2244 2245 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2246 && "unexpected promotion type"); 2247 2248 if (isa<llvm::IntegerType>(varType)) 2249 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2250 2251 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2252 } 2253 2254 /// Returns the attribute (either parameter attribute, or function 2255 /// attribute), which declares argument ArgNo to be non-null. 2256 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2257 QualType ArgType, unsigned ArgNo) { 2258 // FIXME: __attribute__((nonnull)) can also be applied to: 2259 // - references to pointers, where the pointee is known to be 2260 // nonnull (apparently a Clang extension) 2261 // - transparent unions containing pointers 2262 // In the former case, LLVM IR cannot represent the constraint. In 2263 // the latter case, we have no guarantee that the transparent union 2264 // is in fact passed as a pointer. 2265 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2266 return nullptr; 2267 // First, check attribute on parameter itself. 2268 if (PVD) { 2269 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2270 return ParmNNAttr; 2271 } 2272 // Check function attributes. 2273 if (!FD) 2274 return nullptr; 2275 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2276 if (NNAttr->isNonNull(ArgNo)) 2277 return NNAttr; 2278 } 2279 return nullptr; 2280 } 2281 2282 namespace { 2283 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2284 Address Temp; 2285 Address Arg; 2286 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2287 void Emit(CodeGenFunction &CGF, Flags flags) override { 2288 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2289 CGF.Builder.CreateStore(errorValue, Arg); 2290 } 2291 }; 2292 } 2293 2294 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2295 llvm::Function *Fn, 2296 const FunctionArgList &Args) { 2297 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2298 // Naked functions don't have prologues. 2299 return; 2300 2301 // If this is an implicit-return-zero function, go ahead and 2302 // initialize the return value. TODO: it might be nice to have 2303 // a more general mechanism for this that didn't require synthesized 2304 // return statements. 2305 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2306 if (FD->hasImplicitReturnZero()) { 2307 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2308 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2309 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2310 Builder.CreateStore(Zero, ReturnValue); 2311 } 2312 } 2313 2314 // FIXME: We no longer need the types from FunctionArgList; lift up and 2315 // simplify. 2316 2317 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2318 // Flattened function arguments. 2319 SmallVector<llvm::Value *, 16> FnArgs; 2320 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2321 for (auto &Arg : Fn->args()) { 2322 FnArgs.push_back(&Arg); 2323 } 2324 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2325 2326 // If we're using inalloca, all the memory arguments are GEPs off of the last 2327 // parameter, which is a pointer to the complete memory area. 2328 Address ArgStruct = Address::invalid(); 2329 if (IRFunctionArgs.hasInallocaArg()) { 2330 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2331 FI.getArgStructAlignment()); 2332 2333 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2334 } 2335 2336 // Name the struct return parameter. 2337 if (IRFunctionArgs.hasSRetArg()) { 2338 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2339 AI->setName("agg.result"); 2340 AI->addAttr(llvm::Attribute::NoAlias); 2341 } 2342 2343 // Track if we received the parameter as a pointer (indirect, byval, or 2344 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2345 // into a local alloca for us. 2346 SmallVector<ParamValue, 16> ArgVals; 2347 ArgVals.reserve(Args.size()); 2348 2349 // Create a pointer value for every parameter declaration. This usually 2350 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2351 // any cleanups or do anything that might unwind. We do that separately, so 2352 // we can push the cleanups in the correct order for the ABI. 2353 assert(FI.arg_size() == Args.size() && 2354 "Mismatch between function signature & arguments."); 2355 unsigned ArgNo = 0; 2356 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2357 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2358 i != e; ++i, ++info_it, ++ArgNo) { 2359 const VarDecl *Arg = *i; 2360 const ABIArgInfo &ArgI = info_it->info; 2361 2362 bool isPromoted = 2363 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2364 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2365 // the parameter is promoted. In this case we convert to 2366 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2367 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2368 assert(hasScalarEvaluationKind(Ty) == 2369 hasScalarEvaluationKind(Arg->getType())); 2370 2371 unsigned FirstIRArg, NumIRArgs; 2372 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2373 2374 switch (ArgI.getKind()) { 2375 case ABIArgInfo::InAlloca: { 2376 assert(NumIRArgs == 0); 2377 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2378 Address V = 2379 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2380 if (ArgI.getInAllocaIndirect()) 2381 V = Address(Builder.CreateLoad(V), 2382 getContext().getTypeAlignInChars(Ty)); 2383 ArgVals.push_back(ParamValue::forIndirect(V)); 2384 break; 2385 } 2386 2387 case ABIArgInfo::Indirect: { 2388 assert(NumIRArgs == 1); 2389 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2390 2391 if (!hasScalarEvaluationKind(Ty)) { 2392 // Aggregates and complex variables are accessed by reference. All we 2393 // need to do is realign the value, if requested. 2394 Address V = ParamAddr; 2395 if (ArgI.getIndirectRealign()) { 2396 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2397 2398 // Copy from the incoming argument pointer to the temporary with the 2399 // appropriate alignment. 2400 // 2401 // FIXME: We should have a common utility for generating an aggregate 2402 // copy. 2403 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2404 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2405 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2406 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2407 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2408 V = AlignedTemp; 2409 } 2410 ArgVals.push_back(ParamValue::forIndirect(V)); 2411 } else { 2412 // Load scalar value from indirect argument. 2413 llvm::Value *V = 2414 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2415 2416 if (isPromoted) 2417 V = emitArgumentDemotion(*this, Arg, V); 2418 ArgVals.push_back(ParamValue::forDirect(V)); 2419 } 2420 break; 2421 } 2422 2423 case ABIArgInfo::Extend: 2424 case ABIArgInfo::Direct: { 2425 2426 // If we have the trivial case, handle it with no muss and fuss. 2427 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2428 ArgI.getCoerceToType() == ConvertType(Ty) && 2429 ArgI.getDirectOffset() == 0) { 2430 assert(NumIRArgs == 1); 2431 llvm::Value *V = FnArgs[FirstIRArg]; 2432 auto AI = cast<llvm::Argument>(V); 2433 2434 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2435 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2436 PVD->getFunctionScopeIndex()) && 2437 !CGM.getCodeGenOpts().NullPointerIsValid) 2438 AI->addAttr(llvm::Attribute::NonNull); 2439 2440 QualType OTy = PVD->getOriginalType(); 2441 if (const auto *ArrTy = 2442 getContext().getAsConstantArrayType(OTy)) { 2443 // A C99 array parameter declaration with the static keyword also 2444 // indicates dereferenceability, and if the size is constant we can 2445 // use the dereferenceable attribute (which requires the size in 2446 // bytes). 2447 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2448 QualType ETy = ArrTy->getElementType(); 2449 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2450 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2451 ArrSize) { 2452 llvm::AttrBuilder Attrs; 2453 Attrs.addDereferenceableAttr( 2454 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2455 AI->addAttrs(Attrs); 2456 } else if (getContext().getTargetAddressSpace(ETy) == 0 && 2457 !CGM.getCodeGenOpts().NullPointerIsValid) { 2458 AI->addAttr(llvm::Attribute::NonNull); 2459 } 2460 } 2461 } else if (const auto *ArrTy = 2462 getContext().getAsVariableArrayType(OTy)) { 2463 // For C99 VLAs with the static keyword, we don't know the size so 2464 // we can't use the dereferenceable attribute, but in addrspace(0) 2465 // we know that it must be nonnull. 2466 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2467 !getContext().getTargetAddressSpace(ArrTy->getElementType()) && 2468 !CGM.getCodeGenOpts().NullPointerIsValid) 2469 AI->addAttr(llvm::Attribute::NonNull); 2470 } 2471 2472 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2473 if (!AVAttr) 2474 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2475 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2476 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2477 // If alignment-assumption sanitizer is enabled, we do *not* add 2478 // alignment attribute here, but emit normal alignment assumption, 2479 // so the UBSAN check could function. 2480 llvm::Value *AlignmentValue = 2481 EmitScalarExpr(AVAttr->getAlignment()); 2482 llvm::ConstantInt *AlignmentCI = 2483 cast<llvm::ConstantInt>(AlignmentValue); 2484 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(llvm::MaybeAlign( 2485 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)))); 2486 } 2487 } 2488 2489 if (Arg->getType().isRestrictQualified()) 2490 AI->addAttr(llvm::Attribute::NoAlias); 2491 2492 // LLVM expects swifterror parameters to be used in very restricted 2493 // ways. Copy the value into a less-restricted temporary. 2494 if (FI.getExtParameterInfo(ArgNo).getABI() 2495 == ParameterABI::SwiftErrorResult) { 2496 QualType pointeeTy = Ty->getPointeeType(); 2497 assert(pointeeTy->isPointerType()); 2498 Address temp = 2499 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2500 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2501 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2502 Builder.CreateStore(incomingErrorValue, temp); 2503 V = temp.getPointer(); 2504 2505 // Push a cleanup to copy the value back at the end of the function. 2506 // The convention does not guarantee that the value will be written 2507 // back if the function exits with an unwind exception. 2508 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2509 } 2510 2511 // Ensure the argument is the correct type. 2512 if (V->getType() != ArgI.getCoerceToType()) 2513 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2514 2515 if (isPromoted) 2516 V = emitArgumentDemotion(*this, Arg, V); 2517 2518 // Because of merging of function types from multiple decls it is 2519 // possible for the type of an argument to not match the corresponding 2520 // type in the function type. Since we are codegening the callee 2521 // in here, add a cast to the argument type. 2522 llvm::Type *LTy = ConvertType(Arg->getType()); 2523 if (V->getType() != LTy) 2524 V = Builder.CreateBitCast(V, LTy); 2525 2526 ArgVals.push_back(ParamValue::forDirect(V)); 2527 break; 2528 } 2529 2530 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2531 Arg->getName()); 2532 2533 // Pointer to store into. 2534 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2535 2536 // Fast-isel and the optimizer generally like scalar values better than 2537 // FCAs, so we flatten them if this is safe to do for this argument. 2538 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2539 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2540 STy->getNumElements() > 1) { 2541 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2542 llvm::Type *DstTy = Ptr.getElementType(); 2543 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2544 2545 Address AddrToStoreInto = Address::invalid(); 2546 if (SrcSize <= DstSize) { 2547 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2548 } else { 2549 AddrToStoreInto = 2550 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2551 } 2552 2553 assert(STy->getNumElements() == NumIRArgs); 2554 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2555 auto AI = FnArgs[FirstIRArg + i]; 2556 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2557 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2558 Builder.CreateStore(AI, EltPtr); 2559 } 2560 2561 if (SrcSize > DstSize) { 2562 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2563 } 2564 2565 } else { 2566 // Simple case, just do a coerced store of the argument into the alloca. 2567 assert(NumIRArgs == 1); 2568 auto AI = FnArgs[FirstIRArg]; 2569 AI->setName(Arg->getName() + ".coerce"); 2570 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 2571 } 2572 2573 // Match to what EmitParmDecl is expecting for this type. 2574 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2575 llvm::Value *V = 2576 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2577 if (isPromoted) 2578 V = emitArgumentDemotion(*this, Arg, V); 2579 ArgVals.push_back(ParamValue::forDirect(V)); 2580 } else { 2581 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2582 } 2583 break; 2584 } 2585 2586 case ABIArgInfo::CoerceAndExpand: { 2587 // Reconstruct into a temporary. 2588 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2589 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2590 2591 auto coercionType = ArgI.getCoerceAndExpandType(); 2592 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2593 2594 unsigned argIndex = FirstIRArg; 2595 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2596 llvm::Type *eltType = coercionType->getElementType(i); 2597 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2598 continue; 2599 2600 auto eltAddr = Builder.CreateStructGEP(alloca, i); 2601 auto elt = FnArgs[argIndex++]; 2602 Builder.CreateStore(elt, eltAddr); 2603 } 2604 assert(argIndex == FirstIRArg + NumIRArgs); 2605 break; 2606 } 2607 2608 case ABIArgInfo::Expand: { 2609 // If this structure was expanded into multiple arguments then 2610 // we need to create a temporary and reconstruct it from the 2611 // arguments. 2612 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2613 LValue LV = MakeAddrLValue(Alloca, Ty); 2614 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2615 2616 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2617 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2618 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2619 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2620 auto AI = FnArgs[FirstIRArg + i]; 2621 AI->setName(Arg->getName() + "." + Twine(i)); 2622 } 2623 break; 2624 } 2625 2626 case ABIArgInfo::Ignore: 2627 assert(NumIRArgs == 0); 2628 // Initialize the local variable appropriately. 2629 if (!hasScalarEvaluationKind(Ty)) { 2630 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2631 } else { 2632 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2633 ArgVals.push_back(ParamValue::forDirect(U)); 2634 } 2635 break; 2636 } 2637 } 2638 2639 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2640 for (int I = Args.size() - 1; I >= 0; --I) 2641 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2642 } else { 2643 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2644 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2645 } 2646 } 2647 2648 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2649 while (insn->use_empty()) { 2650 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2651 if (!bitcast) return; 2652 2653 // This is "safe" because we would have used a ConstantExpr otherwise. 2654 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2655 bitcast->eraseFromParent(); 2656 } 2657 } 2658 2659 /// Try to emit a fused autorelease of a return result. 2660 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2661 llvm::Value *result) { 2662 // We must be immediately followed the cast. 2663 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2664 if (BB->empty()) return nullptr; 2665 if (&BB->back() != result) return nullptr; 2666 2667 llvm::Type *resultType = result->getType(); 2668 2669 // result is in a BasicBlock and is therefore an Instruction. 2670 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2671 2672 SmallVector<llvm::Instruction *, 4> InstsToKill; 2673 2674 // Look for: 2675 // %generator = bitcast %type1* %generator2 to %type2* 2676 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2677 // We would have emitted this as a constant if the operand weren't 2678 // an Instruction. 2679 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2680 2681 // Require the generator to be immediately followed by the cast. 2682 if (generator->getNextNode() != bitcast) 2683 return nullptr; 2684 2685 InstsToKill.push_back(bitcast); 2686 } 2687 2688 // Look for: 2689 // %generator = call i8* @objc_retain(i8* %originalResult) 2690 // or 2691 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2692 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2693 if (!call) return nullptr; 2694 2695 bool doRetainAutorelease; 2696 2697 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2698 doRetainAutorelease = true; 2699 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2700 .objc_retainAutoreleasedReturnValue) { 2701 doRetainAutorelease = false; 2702 2703 // If we emitted an assembly marker for this call (and the 2704 // ARCEntrypoints field should have been set if so), go looking 2705 // for that call. If we can't find it, we can't do this 2706 // optimization. But it should always be the immediately previous 2707 // instruction, unless we needed bitcasts around the call. 2708 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2709 llvm::Instruction *prev = call->getPrevNode(); 2710 assert(prev); 2711 if (isa<llvm::BitCastInst>(prev)) { 2712 prev = prev->getPrevNode(); 2713 assert(prev); 2714 } 2715 assert(isa<llvm::CallInst>(prev)); 2716 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2717 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2718 InstsToKill.push_back(prev); 2719 } 2720 } else { 2721 return nullptr; 2722 } 2723 2724 result = call->getArgOperand(0); 2725 InstsToKill.push_back(call); 2726 2727 // Keep killing bitcasts, for sanity. Note that we no longer care 2728 // about precise ordering as long as there's exactly one use. 2729 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2730 if (!bitcast->hasOneUse()) break; 2731 InstsToKill.push_back(bitcast); 2732 result = bitcast->getOperand(0); 2733 } 2734 2735 // Delete all the unnecessary instructions, from latest to earliest. 2736 for (auto *I : InstsToKill) 2737 I->eraseFromParent(); 2738 2739 // Do the fused retain/autorelease if we were asked to. 2740 if (doRetainAutorelease) 2741 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2742 2743 // Cast back to the result type. 2744 return CGF.Builder.CreateBitCast(result, resultType); 2745 } 2746 2747 /// If this is a +1 of the value of an immutable 'self', remove it. 2748 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2749 llvm::Value *result) { 2750 // This is only applicable to a method with an immutable 'self'. 2751 const ObjCMethodDecl *method = 2752 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2753 if (!method) return nullptr; 2754 const VarDecl *self = method->getSelfDecl(); 2755 if (!self->getType().isConstQualified()) return nullptr; 2756 2757 // Look for a retain call. 2758 llvm::CallInst *retainCall = 2759 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2760 if (!retainCall || 2761 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2762 return nullptr; 2763 2764 // Look for an ordinary load of 'self'. 2765 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2766 llvm::LoadInst *load = 2767 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2768 if (!load || load->isAtomic() || load->isVolatile() || 2769 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2770 return nullptr; 2771 2772 // Okay! Burn it all down. This relies for correctness on the 2773 // assumption that the retain is emitted as part of the return and 2774 // that thereafter everything is used "linearly". 2775 llvm::Type *resultType = result->getType(); 2776 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2777 assert(retainCall->use_empty()); 2778 retainCall->eraseFromParent(); 2779 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2780 2781 return CGF.Builder.CreateBitCast(load, resultType); 2782 } 2783 2784 /// Emit an ARC autorelease of the result of a function. 2785 /// 2786 /// \return the value to actually return from the function 2787 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2788 llvm::Value *result) { 2789 // If we're returning 'self', kill the initial retain. This is a 2790 // heuristic attempt to "encourage correctness" in the really unfortunate 2791 // case where we have a return of self during a dealloc and we desperately 2792 // need to avoid the possible autorelease. 2793 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2794 return self; 2795 2796 // At -O0, try to emit a fused retain/autorelease. 2797 if (CGF.shouldUseFusedARCCalls()) 2798 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2799 return fused; 2800 2801 return CGF.EmitARCAutoreleaseReturnValue(result); 2802 } 2803 2804 /// Heuristically search for a dominating store to the return-value slot. 2805 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2806 // Check if a User is a store which pointerOperand is the ReturnValue. 2807 // We are looking for stores to the ReturnValue, not for stores of the 2808 // ReturnValue to some other location. 2809 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2810 auto *SI = dyn_cast<llvm::StoreInst>(U); 2811 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2812 return nullptr; 2813 // These aren't actually possible for non-coerced returns, and we 2814 // only care about non-coerced returns on this code path. 2815 assert(!SI->isAtomic() && !SI->isVolatile()); 2816 return SI; 2817 }; 2818 // If there are multiple uses of the return-value slot, just check 2819 // for something immediately preceding the IP. Sometimes this can 2820 // happen with how we generate implicit-returns; it can also happen 2821 // with noreturn cleanups. 2822 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2823 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2824 if (IP->empty()) return nullptr; 2825 llvm::Instruction *I = &IP->back(); 2826 2827 // Skip lifetime markers 2828 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2829 IE = IP->rend(); 2830 II != IE; ++II) { 2831 if (llvm::IntrinsicInst *Intrinsic = 2832 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2833 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2834 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2835 ++II; 2836 if (II == IE) 2837 break; 2838 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2839 continue; 2840 } 2841 } 2842 I = &*II; 2843 break; 2844 } 2845 2846 return GetStoreIfValid(I); 2847 } 2848 2849 llvm::StoreInst *store = 2850 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2851 if (!store) return nullptr; 2852 2853 // Now do a first-and-dirty dominance check: just walk up the 2854 // single-predecessors chain from the current insertion point. 2855 llvm::BasicBlock *StoreBB = store->getParent(); 2856 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2857 while (IP != StoreBB) { 2858 if (!(IP = IP->getSinglePredecessor())) 2859 return nullptr; 2860 } 2861 2862 // Okay, the store's basic block dominates the insertion point; we 2863 // can do our thing. 2864 return store; 2865 } 2866 2867 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2868 bool EmitRetDbgLoc, 2869 SourceLocation EndLoc) { 2870 if (FI.isNoReturn()) { 2871 // Noreturn functions don't return. 2872 EmitUnreachable(EndLoc); 2873 return; 2874 } 2875 2876 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2877 // Naked functions don't have epilogues. 2878 Builder.CreateUnreachable(); 2879 return; 2880 } 2881 2882 // Functions with no result always return void. 2883 if (!ReturnValue.isValid()) { 2884 Builder.CreateRetVoid(); 2885 return; 2886 } 2887 2888 llvm::DebugLoc RetDbgLoc; 2889 llvm::Value *RV = nullptr; 2890 QualType RetTy = FI.getReturnType(); 2891 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2892 2893 switch (RetAI.getKind()) { 2894 case ABIArgInfo::InAlloca: 2895 // Aggregrates get evaluated directly into the destination. Sometimes we 2896 // need to return the sret value in a register, though. 2897 assert(hasAggregateEvaluationKind(RetTy)); 2898 if (RetAI.getInAllocaSRet()) { 2899 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2900 --EI; 2901 llvm::Value *ArgStruct = &*EI; 2902 llvm::Value *SRet = Builder.CreateStructGEP( 2903 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2904 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2905 } 2906 break; 2907 2908 case ABIArgInfo::Indirect: { 2909 auto AI = CurFn->arg_begin(); 2910 if (RetAI.isSRetAfterThis()) 2911 ++AI; 2912 switch (getEvaluationKind(RetTy)) { 2913 case TEK_Complex: { 2914 ComplexPairTy RT = 2915 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2916 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2917 /*isInit*/ true); 2918 break; 2919 } 2920 case TEK_Aggregate: 2921 // Do nothing; aggregrates get evaluated directly into the destination. 2922 break; 2923 case TEK_Scalar: 2924 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2925 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2926 /*isInit*/ true); 2927 break; 2928 } 2929 break; 2930 } 2931 2932 case ABIArgInfo::Extend: 2933 case ABIArgInfo::Direct: 2934 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2935 RetAI.getDirectOffset() == 0) { 2936 // The internal return value temp always will have pointer-to-return-type 2937 // type, just do a load. 2938 2939 // If there is a dominating store to ReturnValue, we can elide 2940 // the load, zap the store, and usually zap the alloca. 2941 if (llvm::StoreInst *SI = 2942 findDominatingStoreToReturnValue(*this)) { 2943 // Reuse the debug location from the store unless there is 2944 // cleanup code to be emitted between the store and return 2945 // instruction. 2946 if (EmitRetDbgLoc && !AutoreleaseResult) 2947 RetDbgLoc = SI->getDebugLoc(); 2948 // Get the stored value and nuke the now-dead store. 2949 RV = SI->getValueOperand(); 2950 SI->eraseFromParent(); 2951 2952 // Otherwise, we have to do a simple load. 2953 } else { 2954 RV = Builder.CreateLoad(ReturnValue); 2955 } 2956 } else { 2957 // If the value is offset in memory, apply the offset now. 2958 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2959 2960 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2961 } 2962 2963 // In ARC, end functions that return a retainable type with a call 2964 // to objc_autoreleaseReturnValue. 2965 if (AutoreleaseResult) { 2966 #ifndef NDEBUG 2967 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2968 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2969 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2970 // CurCodeDecl or BlockInfo. 2971 QualType RT; 2972 2973 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2974 RT = FD->getReturnType(); 2975 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2976 RT = MD->getReturnType(); 2977 else if (isa<BlockDecl>(CurCodeDecl)) 2978 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2979 else 2980 llvm_unreachable("Unexpected function/method type"); 2981 2982 assert(getLangOpts().ObjCAutoRefCount && 2983 !FI.isReturnsRetained() && 2984 RT->isObjCRetainableType()); 2985 #endif 2986 RV = emitAutoreleaseOfResult(*this, RV); 2987 } 2988 2989 break; 2990 2991 case ABIArgInfo::Ignore: 2992 break; 2993 2994 case ABIArgInfo::CoerceAndExpand: { 2995 auto coercionType = RetAI.getCoerceAndExpandType(); 2996 2997 // Load all of the coerced elements out into results. 2998 llvm::SmallVector<llvm::Value*, 4> results; 2999 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 3000 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3001 auto coercedEltType = coercionType->getElementType(i); 3002 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3003 continue; 3004 3005 auto eltAddr = Builder.CreateStructGEP(addr, i); 3006 auto elt = Builder.CreateLoad(eltAddr); 3007 results.push_back(elt); 3008 } 3009 3010 // If we have one result, it's the single direct result type. 3011 if (results.size() == 1) { 3012 RV = results[0]; 3013 3014 // Otherwise, we need to make a first-class aggregate. 3015 } else { 3016 // Construct a return type that lacks padding elements. 3017 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3018 3019 RV = llvm::UndefValue::get(returnType); 3020 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3021 RV = Builder.CreateInsertValue(RV, results[i], i); 3022 } 3023 } 3024 break; 3025 } 3026 3027 case ABIArgInfo::Expand: 3028 llvm_unreachable("Invalid ABI kind for return argument"); 3029 } 3030 3031 llvm::Instruction *Ret; 3032 if (RV) { 3033 EmitReturnValueCheck(RV); 3034 Ret = Builder.CreateRet(RV); 3035 } else { 3036 Ret = Builder.CreateRetVoid(); 3037 } 3038 3039 if (RetDbgLoc) 3040 Ret->setDebugLoc(std::move(RetDbgLoc)); 3041 } 3042 3043 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3044 // A current decl may not be available when emitting vtable thunks. 3045 if (!CurCodeDecl) 3046 return; 3047 3048 // If the return block isn't reachable, neither is this check, so don't emit 3049 // it. 3050 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3051 return; 3052 3053 ReturnsNonNullAttr *RetNNAttr = nullptr; 3054 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3055 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3056 3057 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3058 return; 3059 3060 // Prefer the returns_nonnull attribute if it's present. 3061 SourceLocation AttrLoc; 3062 SanitizerMask CheckKind; 3063 SanitizerHandler Handler; 3064 if (RetNNAttr) { 3065 assert(!requiresReturnValueNullabilityCheck() && 3066 "Cannot check nullability and the nonnull attribute"); 3067 AttrLoc = RetNNAttr->getLocation(); 3068 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3069 Handler = SanitizerHandler::NonnullReturn; 3070 } else { 3071 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3072 if (auto *TSI = DD->getTypeSourceInfo()) 3073 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3074 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3075 CheckKind = SanitizerKind::NullabilityReturn; 3076 Handler = SanitizerHandler::NullabilityReturn; 3077 } 3078 3079 SanitizerScope SanScope(this); 3080 3081 // Make sure the "return" source location is valid. If we're checking a 3082 // nullability annotation, make sure the preconditions for the check are met. 3083 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3084 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3085 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3086 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3087 if (requiresReturnValueNullabilityCheck()) 3088 CanNullCheck = 3089 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3090 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3091 EmitBlock(Check); 3092 3093 // Now do the null check. 3094 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3095 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3096 llvm::Value *DynamicData[] = {SLocPtr}; 3097 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3098 3099 EmitBlock(NoCheck); 3100 3101 #ifndef NDEBUG 3102 // The return location should not be used after the check has been emitted. 3103 ReturnLocation = Address::invalid(); 3104 #endif 3105 } 3106 3107 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3108 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3109 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3110 } 3111 3112 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3113 QualType Ty) { 3114 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3115 // placeholders. 3116 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3117 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3118 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3119 3120 // FIXME: When we generate this IR in one pass, we shouldn't need 3121 // this win32-specific alignment hack. 3122 CharUnits Align = CharUnits::fromQuantity(4); 3123 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3124 3125 return AggValueSlot::forAddr(Address(Placeholder, Align), 3126 Ty.getQualifiers(), 3127 AggValueSlot::IsNotDestructed, 3128 AggValueSlot::DoesNotNeedGCBarriers, 3129 AggValueSlot::IsNotAliased, 3130 AggValueSlot::DoesNotOverlap); 3131 } 3132 3133 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3134 const VarDecl *param, 3135 SourceLocation loc) { 3136 // StartFunction converted the ABI-lowered parameter(s) into a 3137 // local alloca. We need to turn that into an r-value suitable 3138 // for EmitCall. 3139 Address local = GetAddrOfLocalVar(param); 3140 3141 QualType type = param->getType(); 3142 3143 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3144 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3145 } 3146 3147 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3148 // but the argument needs to be the original pointer. 3149 if (type->isReferenceType()) { 3150 args.add(RValue::get(Builder.CreateLoad(local)), type); 3151 3152 // In ARC, move out of consumed arguments so that the release cleanup 3153 // entered by StartFunction doesn't cause an over-release. This isn't 3154 // optimal -O0 code generation, but it should get cleaned up when 3155 // optimization is enabled. This also assumes that delegate calls are 3156 // performed exactly once for a set of arguments, but that should be safe. 3157 } else if (getLangOpts().ObjCAutoRefCount && 3158 param->hasAttr<NSConsumedAttr>() && 3159 type->isObjCRetainableType()) { 3160 llvm::Value *ptr = Builder.CreateLoad(local); 3161 auto null = 3162 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3163 Builder.CreateStore(null, local); 3164 args.add(RValue::get(ptr), type); 3165 3166 // For the most part, we just need to load the alloca, except that 3167 // aggregate r-values are actually pointers to temporaries. 3168 } else { 3169 args.add(convertTempToRValue(local, type, loc), type); 3170 } 3171 3172 // Deactivate the cleanup for the callee-destructed param that was pushed. 3173 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3174 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3175 param->needsDestruction(getContext())) { 3176 EHScopeStack::stable_iterator cleanup = 3177 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3178 assert(cleanup.isValid() && 3179 "cleanup for callee-destructed param not recorded"); 3180 // This unreachable is a temporary marker which will be removed later. 3181 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3182 args.addArgCleanupDeactivation(cleanup, isActive); 3183 } 3184 } 3185 3186 static bool isProvablyNull(llvm::Value *addr) { 3187 return isa<llvm::ConstantPointerNull>(addr); 3188 } 3189 3190 /// Emit the actual writing-back of a writeback. 3191 static void emitWriteback(CodeGenFunction &CGF, 3192 const CallArgList::Writeback &writeback) { 3193 const LValue &srcLV = writeback.Source; 3194 Address srcAddr = srcLV.getAddress(CGF); 3195 assert(!isProvablyNull(srcAddr.getPointer()) && 3196 "shouldn't have writeback for provably null argument"); 3197 3198 llvm::BasicBlock *contBB = nullptr; 3199 3200 // If the argument wasn't provably non-null, we need to null check 3201 // before doing the store. 3202 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3203 CGF.CGM.getDataLayout()); 3204 if (!provablyNonNull) { 3205 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3206 contBB = CGF.createBasicBlock("icr.done"); 3207 3208 llvm::Value *isNull = 3209 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3210 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3211 CGF.EmitBlock(writebackBB); 3212 } 3213 3214 // Load the value to writeback. 3215 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3216 3217 // Cast it back, in case we're writing an id to a Foo* or something. 3218 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3219 "icr.writeback-cast"); 3220 3221 // Perform the writeback. 3222 3223 // If we have a "to use" value, it's something we need to emit a use 3224 // of. This has to be carefully threaded in: if it's done after the 3225 // release it's potentially undefined behavior (and the optimizer 3226 // will ignore it), and if it happens before the retain then the 3227 // optimizer could move the release there. 3228 if (writeback.ToUse) { 3229 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3230 3231 // Retain the new value. No need to block-copy here: the block's 3232 // being passed up the stack. 3233 value = CGF.EmitARCRetainNonBlock(value); 3234 3235 // Emit the intrinsic use here. 3236 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3237 3238 // Load the old value (primitively). 3239 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3240 3241 // Put the new value in place (primitively). 3242 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3243 3244 // Release the old value. 3245 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3246 3247 // Otherwise, we can just do a normal lvalue store. 3248 } else { 3249 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3250 } 3251 3252 // Jump to the continuation block. 3253 if (!provablyNonNull) 3254 CGF.EmitBlock(contBB); 3255 } 3256 3257 static void emitWritebacks(CodeGenFunction &CGF, 3258 const CallArgList &args) { 3259 for (const auto &I : args.writebacks()) 3260 emitWriteback(CGF, I); 3261 } 3262 3263 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3264 const CallArgList &CallArgs) { 3265 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3266 CallArgs.getCleanupsToDeactivate(); 3267 // Iterate in reverse to increase the likelihood of popping the cleanup. 3268 for (const auto &I : llvm::reverse(Cleanups)) { 3269 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3270 I.IsActiveIP->eraseFromParent(); 3271 } 3272 } 3273 3274 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3275 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3276 if (uop->getOpcode() == UO_AddrOf) 3277 return uop->getSubExpr(); 3278 return nullptr; 3279 } 3280 3281 /// Emit an argument that's being passed call-by-writeback. That is, 3282 /// we are passing the address of an __autoreleased temporary; it 3283 /// might be copy-initialized with the current value of the given 3284 /// address, but it will definitely be copied out of after the call. 3285 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3286 const ObjCIndirectCopyRestoreExpr *CRE) { 3287 LValue srcLV; 3288 3289 // Make an optimistic effort to emit the address as an l-value. 3290 // This can fail if the argument expression is more complicated. 3291 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3292 srcLV = CGF.EmitLValue(lvExpr); 3293 3294 // Otherwise, just emit it as a scalar. 3295 } else { 3296 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3297 3298 QualType srcAddrType = 3299 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3300 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3301 } 3302 Address srcAddr = srcLV.getAddress(CGF); 3303 3304 // The dest and src types don't necessarily match in LLVM terms 3305 // because of the crazy ObjC compatibility rules. 3306 3307 llvm::PointerType *destType = 3308 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3309 3310 // If the address is a constant null, just pass the appropriate null. 3311 if (isProvablyNull(srcAddr.getPointer())) { 3312 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3313 CRE->getType()); 3314 return; 3315 } 3316 3317 // Create the temporary. 3318 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3319 CGF.getPointerAlign(), 3320 "icr.temp"); 3321 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3322 // and that cleanup will be conditional if we can't prove that the l-value 3323 // isn't null, so we need to register a dominating point so that the cleanups 3324 // system will make valid IR. 3325 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3326 3327 // Zero-initialize it if we're not doing a copy-initialization. 3328 bool shouldCopy = CRE->shouldCopy(); 3329 if (!shouldCopy) { 3330 llvm::Value *null = 3331 llvm::ConstantPointerNull::get( 3332 cast<llvm::PointerType>(destType->getElementType())); 3333 CGF.Builder.CreateStore(null, temp); 3334 } 3335 3336 llvm::BasicBlock *contBB = nullptr; 3337 llvm::BasicBlock *originBB = nullptr; 3338 3339 // If the address is *not* known to be non-null, we need to switch. 3340 llvm::Value *finalArgument; 3341 3342 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3343 CGF.CGM.getDataLayout()); 3344 if (provablyNonNull) { 3345 finalArgument = temp.getPointer(); 3346 } else { 3347 llvm::Value *isNull = 3348 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3349 3350 finalArgument = CGF.Builder.CreateSelect(isNull, 3351 llvm::ConstantPointerNull::get(destType), 3352 temp.getPointer(), "icr.argument"); 3353 3354 // If we need to copy, then the load has to be conditional, which 3355 // means we need control flow. 3356 if (shouldCopy) { 3357 originBB = CGF.Builder.GetInsertBlock(); 3358 contBB = CGF.createBasicBlock("icr.cont"); 3359 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3360 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3361 CGF.EmitBlock(copyBB); 3362 condEval.begin(CGF); 3363 } 3364 } 3365 3366 llvm::Value *valueToUse = nullptr; 3367 3368 // Perform a copy if necessary. 3369 if (shouldCopy) { 3370 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3371 assert(srcRV.isScalar()); 3372 3373 llvm::Value *src = srcRV.getScalarVal(); 3374 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3375 "icr.cast"); 3376 3377 // Use an ordinary store, not a store-to-lvalue. 3378 CGF.Builder.CreateStore(src, temp); 3379 3380 // If optimization is enabled, and the value was held in a 3381 // __strong variable, we need to tell the optimizer that this 3382 // value has to stay alive until we're doing the store back. 3383 // This is because the temporary is effectively unretained, 3384 // and so otherwise we can violate the high-level semantics. 3385 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3386 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3387 valueToUse = src; 3388 } 3389 } 3390 3391 // Finish the control flow if we needed it. 3392 if (shouldCopy && !provablyNonNull) { 3393 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3394 CGF.EmitBlock(contBB); 3395 3396 // Make a phi for the value to intrinsically use. 3397 if (valueToUse) { 3398 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3399 "icr.to-use"); 3400 phiToUse->addIncoming(valueToUse, copyBB); 3401 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3402 originBB); 3403 valueToUse = phiToUse; 3404 } 3405 3406 condEval.end(CGF); 3407 } 3408 3409 args.addWriteback(srcLV, temp, valueToUse); 3410 args.add(RValue::get(finalArgument), CRE->getType()); 3411 } 3412 3413 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3414 assert(!StackBase); 3415 3416 // Save the stack. 3417 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3418 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3419 } 3420 3421 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3422 if (StackBase) { 3423 // Restore the stack after the call. 3424 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3425 CGF.Builder.CreateCall(F, StackBase); 3426 } 3427 } 3428 3429 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3430 SourceLocation ArgLoc, 3431 AbstractCallee AC, 3432 unsigned ParmNum) { 3433 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3434 SanOpts.has(SanitizerKind::NullabilityArg))) 3435 return; 3436 3437 // The param decl may be missing in a variadic function. 3438 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3439 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3440 3441 // Prefer the nonnull attribute if it's present. 3442 const NonNullAttr *NNAttr = nullptr; 3443 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3444 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3445 3446 bool CanCheckNullability = false; 3447 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3448 auto Nullability = PVD->getType()->getNullability(getContext()); 3449 CanCheckNullability = Nullability && 3450 *Nullability == NullabilityKind::NonNull && 3451 PVD->getTypeSourceInfo(); 3452 } 3453 3454 if (!NNAttr && !CanCheckNullability) 3455 return; 3456 3457 SourceLocation AttrLoc; 3458 SanitizerMask CheckKind; 3459 SanitizerHandler Handler; 3460 if (NNAttr) { 3461 AttrLoc = NNAttr->getLocation(); 3462 CheckKind = SanitizerKind::NonnullAttribute; 3463 Handler = SanitizerHandler::NonnullArg; 3464 } else { 3465 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3466 CheckKind = SanitizerKind::NullabilityArg; 3467 Handler = SanitizerHandler::NullabilityArg; 3468 } 3469 3470 SanitizerScope SanScope(this); 3471 assert(RV.isScalar()); 3472 llvm::Value *V = RV.getScalarVal(); 3473 llvm::Value *Cond = 3474 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3475 llvm::Constant *StaticData[] = { 3476 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3477 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3478 }; 3479 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3480 } 3481 3482 void CodeGenFunction::EmitCallArgs( 3483 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3484 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3485 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3486 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3487 3488 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3489 // because arguments are destroyed left to right in the callee. As a special 3490 // case, there are certain language constructs that require left-to-right 3491 // evaluation, and in those cases we consider the evaluation order requirement 3492 // to trump the "destruction order is reverse construction order" guarantee. 3493 bool LeftToRight = 3494 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3495 ? Order == EvaluationOrder::ForceLeftToRight 3496 : Order != EvaluationOrder::ForceRightToLeft; 3497 3498 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3499 RValue EmittedArg) { 3500 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3501 return; 3502 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3503 if (PS == nullptr) 3504 return; 3505 3506 const auto &Context = getContext(); 3507 auto SizeTy = Context.getSizeType(); 3508 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3509 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3510 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3511 EmittedArg.getScalarVal(), 3512 PS->isDynamic()); 3513 Args.add(RValue::get(V), SizeTy); 3514 // If we're emitting args in reverse, be sure to do so with 3515 // pass_object_size, as well. 3516 if (!LeftToRight) 3517 std::swap(Args.back(), *(&Args.back() - 1)); 3518 }; 3519 3520 // Insert a stack save if we're going to need any inalloca args. 3521 bool HasInAllocaArgs = false; 3522 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3523 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3524 I != E && !HasInAllocaArgs; ++I) 3525 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3526 if (HasInAllocaArgs) { 3527 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3528 Args.allocateArgumentMemory(*this); 3529 } 3530 } 3531 3532 // Evaluate each argument in the appropriate order. 3533 size_t CallArgsStart = Args.size(); 3534 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3535 unsigned Idx = LeftToRight ? I : E - I - 1; 3536 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3537 unsigned InitialArgSize = Args.size(); 3538 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3539 // the argument and parameter match or the objc method is parameterized. 3540 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3541 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3542 ArgTypes[Idx]) || 3543 (isa<ObjCMethodDecl>(AC.getDecl()) && 3544 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3545 "Argument and parameter types don't match"); 3546 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3547 // In particular, we depend on it being the last arg in Args, and the 3548 // objectsize bits depend on there only being one arg if !LeftToRight. 3549 assert(InitialArgSize + 1 == Args.size() && 3550 "The code below depends on only adding one arg per EmitCallArg"); 3551 (void)InitialArgSize; 3552 // Since pointer argument are never emitted as LValue, it is safe to emit 3553 // non-null argument check for r-value only. 3554 if (!Args.back().hasLValue()) { 3555 RValue RVArg = Args.back().getKnownRValue(); 3556 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3557 ParamsToSkip + Idx); 3558 // @llvm.objectsize should never have side-effects and shouldn't need 3559 // destruction/cleanups, so we can safely "emit" it after its arg, 3560 // regardless of right-to-leftness 3561 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3562 } 3563 } 3564 3565 if (!LeftToRight) { 3566 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3567 // IR function. 3568 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3569 } 3570 } 3571 3572 namespace { 3573 3574 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3575 DestroyUnpassedArg(Address Addr, QualType Ty) 3576 : Addr(Addr), Ty(Ty) {} 3577 3578 Address Addr; 3579 QualType Ty; 3580 3581 void Emit(CodeGenFunction &CGF, Flags flags) override { 3582 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3583 if (DtorKind == QualType::DK_cxx_destructor) { 3584 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3585 assert(!Dtor->isTrivial()); 3586 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3587 /*Delegating=*/false, Addr, Ty); 3588 } else { 3589 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3590 } 3591 } 3592 }; 3593 3594 struct DisableDebugLocationUpdates { 3595 CodeGenFunction &CGF; 3596 bool disabledDebugInfo; 3597 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3598 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3599 CGF.disableDebugInfo(); 3600 } 3601 ~DisableDebugLocationUpdates() { 3602 if (disabledDebugInfo) 3603 CGF.enableDebugInfo(); 3604 } 3605 }; 3606 3607 } // end anonymous namespace 3608 3609 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3610 if (!HasLV) 3611 return RV; 3612 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3613 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 3614 LV.isVolatile()); 3615 IsUsed = true; 3616 return RValue::getAggregate(Copy.getAddress(CGF)); 3617 } 3618 3619 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3620 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3621 if (!HasLV && RV.isScalar()) 3622 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 3623 else if (!HasLV && RV.isComplex()) 3624 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3625 else { 3626 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 3627 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3628 // We assume that call args are never copied into subobjects. 3629 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 3630 HasLV ? LV.isVolatileQualified() 3631 : RV.isVolatileQualified()); 3632 } 3633 IsUsed = true; 3634 } 3635 3636 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3637 QualType type) { 3638 DisableDebugLocationUpdates Dis(*this, E); 3639 if (const ObjCIndirectCopyRestoreExpr *CRE 3640 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3641 assert(getLangOpts().ObjCAutoRefCount); 3642 return emitWritebackArg(*this, args, CRE); 3643 } 3644 3645 assert(type->isReferenceType() == E->isGLValue() && 3646 "reference binding to unmaterialized r-value!"); 3647 3648 if (E->isGLValue()) { 3649 assert(E->getObjectKind() == OK_Ordinary); 3650 return args.add(EmitReferenceBindingToExpr(E), type); 3651 } 3652 3653 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3654 3655 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3656 // However, we still have to push an EH-only cleanup in case we unwind before 3657 // we make it to the call. 3658 if (HasAggregateEvalKind && 3659 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 3660 // If we're using inalloca, use the argument memory. Otherwise, use a 3661 // temporary. 3662 AggValueSlot Slot; 3663 if (args.isUsingInAlloca()) 3664 Slot = createPlaceholderSlot(*this, type); 3665 else 3666 Slot = CreateAggTemp(type, "agg.tmp"); 3667 3668 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3669 if (const auto *RD = type->getAsCXXRecordDecl()) 3670 DestroyedInCallee = RD->hasNonTrivialDestructor(); 3671 else 3672 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3673 3674 if (DestroyedInCallee) 3675 Slot.setExternallyDestructed(); 3676 3677 EmitAggExpr(E, Slot); 3678 RValue RV = Slot.asRValue(); 3679 args.add(RV, type); 3680 3681 if (DestroyedInCallee && NeedsEHCleanup) { 3682 // Create a no-op GEP between the placeholder and the cleanup so we can 3683 // RAUW it successfully. It also serves as a marker of the first 3684 // instruction where the cleanup is active. 3685 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3686 type); 3687 // This unreachable is a temporary marker which will be removed later. 3688 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3689 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3690 } 3691 return; 3692 } 3693 3694 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3695 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3696 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3697 assert(L.isSimple()); 3698 args.addUncopiedAggregate(L, type); 3699 return; 3700 } 3701 3702 args.add(EmitAnyExprToTemp(E), type); 3703 } 3704 3705 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3706 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3707 // implicitly widens null pointer constants that are arguments to varargs 3708 // functions to pointer-sized ints. 3709 if (!getTarget().getTriple().isOSWindows()) 3710 return Arg->getType(); 3711 3712 if (Arg->getType()->isIntegerType() && 3713 getContext().getTypeSize(Arg->getType()) < 3714 getContext().getTargetInfo().getPointerWidth(0) && 3715 Arg->isNullPointerConstant(getContext(), 3716 Expr::NPC_ValueDependentIsNotNull)) { 3717 return getContext().getIntPtrType(); 3718 } 3719 3720 return Arg->getType(); 3721 } 3722 3723 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3724 // optimizer it can aggressively ignore unwind edges. 3725 void 3726 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3727 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3728 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3729 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3730 CGM.getNoObjCARCExceptionsMetadata()); 3731 } 3732 3733 /// Emits a call to the given no-arguments nounwind runtime function. 3734 llvm::CallInst * 3735 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3736 const llvm::Twine &name) { 3737 return EmitNounwindRuntimeCall(callee, None, name); 3738 } 3739 3740 /// Emits a call to the given nounwind runtime function. 3741 llvm::CallInst * 3742 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3743 ArrayRef<llvm::Value *> args, 3744 const llvm::Twine &name) { 3745 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3746 call->setDoesNotThrow(); 3747 return call; 3748 } 3749 3750 /// Emits a simple call (never an invoke) to the given no-arguments 3751 /// runtime function. 3752 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 3753 const llvm::Twine &name) { 3754 return EmitRuntimeCall(callee, None, name); 3755 } 3756 3757 // Calls which may throw must have operand bundles indicating which funclet 3758 // they are nested within. 3759 SmallVector<llvm::OperandBundleDef, 1> 3760 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 3761 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3762 // There is no need for a funclet operand bundle if we aren't inside a 3763 // funclet. 3764 if (!CurrentFuncletPad) 3765 return BundleList; 3766 3767 // Skip intrinsics which cannot throw. 3768 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3769 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3770 return BundleList; 3771 3772 BundleList.emplace_back("funclet", CurrentFuncletPad); 3773 return BundleList; 3774 } 3775 3776 /// Emits a simple call (never an invoke) to the given runtime function. 3777 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 3778 ArrayRef<llvm::Value *> args, 3779 const llvm::Twine &name) { 3780 llvm::CallInst *call = Builder.CreateCall( 3781 callee, args, getBundlesForFunclet(callee.getCallee()), name); 3782 call->setCallingConv(getRuntimeCC()); 3783 return call; 3784 } 3785 3786 /// Emits a call or invoke to the given noreturn runtime function. 3787 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 3788 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 3789 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3790 getBundlesForFunclet(callee.getCallee()); 3791 3792 if (getInvokeDest()) { 3793 llvm::InvokeInst *invoke = 3794 Builder.CreateInvoke(callee, 3795 getUnreachableBlock(), 3796 getInvokeDest(), 3797 args, 3798 BundleList); 3799 invoke->setDoesNotReturn(); 3800 invoke->setCallingConv(getRuntimeCC()); 3801 } else { 3802 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3803 call->setDoesNotReturn(); 3804 call->setCallingConv(getRuntimeCC()); 3805 Builder.CreateUnreachable(); 3806 } 3807 } 3808 3809 /// Emits a call or invoke instruction to the given nullary runtime function. 3810 llvm::CallBase * 3811 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3812 const Twine &name) { 3813 return EmitRuntimeCallOrInvoke(callee, None, name); 3814 } 3815 3816 /// Emits a call or invoke instruction to the given runtime function. 3817 llvm::CallBase * 3818 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3819 ArrayRef<llvm::Value *> args, 3820 const Twine &name) { 3821 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 3822 call->setCallingConv(getRuntimeCC()); 3823 return call; 3824 } 3825 3826 /// Emits a call or invoke instruction to the given function, depending 3827 /// on the current state of the EH stack. 3828 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 3829 ArrayRef<llvm::Value *> Args, 3830 const Twine &Name) { 3831 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3832 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3833 getBundlesForFunclet(Callee.getCallee()); 3834 3835 llvm::CallBase *Inst; 3836 if (!InvokeDest) 3837 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3838 else { 3839 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3840 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3841 Name); 3842 EmitBlock(ContBB); 3843 } 3844 3845 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3846 // optimizer it can aggressively ignore unwind edges. 3847 if (CGM.getLangOpts().ObjCAutoRefCount) 3848 AddObjCARCExceptionMetadata(Inst); 3849 3850 return Inst; 3851 } 3852 3853 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3854 llvm::Value *New) { 3855 DeferredReplacements.push_back(std::make_pair(Old, New)); 3856 } 3857 3858 namespace { 3859 3860 /// Specify given \p NewAlign as the alignment of return value attribute. If 3861 /// such attribute already exists, re-set it to the maximal one of two options. 3862 LLVM_NODISCARD llvm::AttributeList 3863 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 3864 const llvm::AttributeList &Attrs, 3865 llvm::Align NewAlign) { 3866 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 3867 if (CurAlign >= NewAlign) 3868 return Attrs; 3869 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 3870 return Attrs 3871 .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex, 3872 llvm::Attribute::AttrKind::Alignment) 3873 .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr); 3874 } 3875 3876 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 3877 protected: 3878 CodeGenFunction &CGF; 3879 3880 /// We do nothing if this is, or becomes, nullptr. 3881 const AlignedAttrTy *AA = nullptr; 3882 3883 llvm::Value *Alignment = nullptr; // May or may not be a constant. 3884 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 3885 3886 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 3887 : CGF(CGF_) { 3888 if (!FuncDecl) 3889 return; 3890 AA = FuncDecl->getAttr<AlignedAttrTy>(); 3891 } 3892 3893 public: 3894 /// If we can, materialize the alignment as an attribute on return value. 3895 LLVM_NODISCARD llvm::AttributeList 3896 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 3897 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 3898 return Attrs; 3899 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 3900 if (!AlignmentCI) 3901 return Attrs; 3902 // We may legitimately have non-power-of-2 alignment here. 3903 // If so, this is UB land, emit it via `@llvm.assume` instead. 3904 if (!AlignmentCI->getValue().isPowerOf2()) 3905 return Attrs; 3906 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 3907 CGF.getLLVMContext(), Attrs, 3908 llvm::Align( 3909 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 3910 AA = nullptr; // We're done. Disallow doing anything else. 3911 return NewAttrs; 3912 } 3913 3914 /// Emit alignment assumption. 3915 /// This is a general fallback that we take if either there is an offset, 3916 /// or the alignment is variable or we are sanitizing for alignment. 3917 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 3918 if (!AA) 3919 return; 3920 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 3921 AA->getLocation(), Alignment, OffsetCI); 3922 AA = nullptr; // We're done. Disallow doing anything else. 3923 } 3924 }; 3925 3926 /// Helper data structure to emit `AssumeAlignedAttr`. 3927 class AssumeAlignedAttrEmitter final 3928 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 3929 public: 3930 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 3931 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 3932 if (!AA) 3933 return; 3934 // It is guaranteed that the alignment/offset are constants. 3935 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 3936 if (Expr *Offset = AA->getOffset()) { 3937 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 3938 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 3939 OffsetCI = nullptr; 3940 } 3941 } 3942 }; 3943 3944 /// Helper data structure to emit `AllocAlignAttr`. 3945 class AllocAlignAttrEmitter final 3946 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 3947 public: 3948 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 3949 const CallArgList &CallArgs) 3950 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 3951 if (!AA) 3952 return; 3953 // Alignment may or may not be a constant, and that is okay. 3954 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 3955 .getRValue(CGF) 3956 .getScalarVal(); 3957 } 3958 }; 3959 3960 } // namespace 3961 3962 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3963 const CGCallee &Callee, 3964 ReturnValueSlot ReturnValue, 3965 const CallArgList &CallArgs, 3966 llvm::CallBase **callOrInvoke, 3967 SourceLocation Loc) { 3968 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3969 3970 assert(Callee.isOrdinary() || Callee.isVirtual()); 3971 3972 // Handle struct-return functions by passing a pointer to the 3973 // location that we would like to return into. 3974 QualType RetTy = CallInfo.getReturnType(); 3975 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3976 3977 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 3978 3979 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 3980 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 3981 // We can only guarantee that a function is called from the correct 3982 // context/function based on the appropriate target attributes, 3983 // so only check in the case where we have both always_inline and target 3984 // since otherwise we could be making a conditional call after a check for 3985 // the proper cpu features (and it won't cause code generation issues due to 3986 // function based code generation). 3987 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 3988 TargetDecl->hasAttr<TargetAttr>()) 3989 checkTargetFeatures(Loc, FD); 3990 3991 #ifndef NDEBUG 3992 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 3993 // For an inalloca varargs function, we don't expect CallInfo to match the 3994 // function pointer's type, because the inalloca struct a will have extra 3995 // fields in it for the varargs parameters. Code later in this function 3996 // bitcasts the function pointer to the type derived from CallInfo. 3997 // 3998 // In other cases, we assert that the types match up (until pointers stop 3999 // having pointee types). 4000 llvm::Type *TypeFromVal; 4001 if (Callee.isVirtual()) 4002 TypeFromVal = Callee.getVirtualFunctionType(); 4003 else 4004 TypeFromVal = 4005 Callee.getFunctionPointer()->getType()->getPointerElementType(); 4006 assert(IRFuncTy == TypeFromVal); 4007 } 4008 #endif 4009 4010 // 1. Set up the arguments. 4011 4012 // If we're using inalloca, insert the allocation after the stack save. 4013 // FIXME: Do this earlier rather than hacking it in here! 4014 Address ArgMemory = Address::invalid(); 4015 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4016 const llvm::DataLayout &DL = CGM.getDataLayout(); 4017 llvm::Instruction *IP = CallArgs.getStackBase(); 4018 llvm::AllocaInst *AI; 4019 if (IP) { 4020 IP = IP->getNextNode(); 4021 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 4022 "argmem", IP); 4023 } else { 4024 AI = CreateTempAlloca(ArgStruct, "argmem"); 4025 } 4026 auto Align = CallInfo.getArgStructAlignment(); 4027 AI->setAlignment(Align.getAsAlign()); 4028 AI->setUsedWithInAlloca(true); 4029 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 4030 ArgMemory = Address(AI, Align); 4031 } 4032 4033 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 4034 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 4035 4036 // If the call returns a temporary with struct return, create a temporary 4037 // alloca to hold the result, unless one is given to us. 4038 Address SRetPtr = Address::invalid(); 4039 Address SRetAlloca = Address::invalid(); 4040 llvm::Value *UnusedReturnSizePtr = nullptr; 4041 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 4042 if (!ReturnValue.isNull()) { 4043 SRetPtr = ReturnValue.getValue(); 4044 } else { 4045 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 4046 if (HaveInsertPoint() && ReturnValue.isUnused()) { 4047 uint64_t size = 4048 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 4049 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 4050 } 4051 } 4052 if (IRFunctionArgs.hasSRetArg()) { 4053 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 4054 } else if (RetAI.isInAlloca()) { 4055 Address Addr = 4056 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 4057 Builder.CreateStore(SRetPtr.getPointer(), Addr); 4058 } 4059 } 4060 4061 Address swiftErrorTemp = Address::invalid(); 4062 Address swiftErrorArg = Address::invalid(); 4063 4064 // When passing arguments using temporary allocas, we need to add the 4065 // appropriate lifetime markers. This vector keeps track of all the lifetime 4066 // markers that need to be ended right after the call. 4067 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 4068 4069 // Translate all of the arguments as necessary to match the IR lowering. 4070 assert(CallInfo.arg_size() == CallArgs.size() && 4071 "Mismatch between function signature & arguments."); 4072 unsigned ArgNo = 0; 4073 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 4074 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 4075 I != E; ++I, ++info_it, ++ArgNo) { 4076 const ABIArgInfo &ArgInfo = info_it->info; 4077 4078 // Insert a padding argument to ensure proper alignment. 4079 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 4080 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 4081 llvm::UndefValue::get(ArgInfo.getPaddingType()); 4082 4083 unsigned FirstIRArg, NumIRArgs; 4084 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 4085 4086 switch (ArgInfo.getKind()) { 4087 case ABIArgInfo::InAlloca: { 4088 assert(NumIRArgs == 0); 4089 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 4090 if (I->isAggregate()) { 4091 Address Addr = I->hasLValue() 4092 ? I->getKnownLValue().getAddress(*this) 4093 : I->getKnownRValue().getAggregateAddress(); 4094 llvm::Instruction *Placeholder = 4095 cast<llvm::Instruction>(Addr.getPointer()); 4096 4097 if (!ArgInfo.getInAllocaIndirect()) { 4098 // Replace the placeholder with the appropriate argument slot GEP. 4099 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 4100 Builder.SetInsertPoint(Placeholder); 4101 Addr = Builder.CreateStructGEP(ArgMemory, 4102 ArgInfo.getInAllocaFieldIndex()); 4103 Builder.restoreIP(IP); 4104 } else { 4105 // For indirect things such as overaligned structs, replace the 4106 // placeholder with a regular aggregate temporary alloca. Store the 4107 // address of this alloca into the struct. 4108 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 4109 Address ArgSlot = Builder.CreateStructGEP( 4110 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4111 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4112 } 4113 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 4114 } else if (ArgInfo.getInAllocaIndirect()) { 4115 // Make a temporary alloca and store the address of it into the argument 4116 // struct. 4117 Address Addr = CreateMemTempWithoutCast( 4118 I->Ty, getContext().getTypeAlignInChars(I->Ty), 4119 "indirect-arg-temp"); 4120 I->copyInto(*this, Addr); 4121 Address ArgSlot = 4122 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4123 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4124 } else { 4125 // Store the RValue into the argument struct. 4126 Address Addr = 4127 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4128 unsigned AS = Addr.getType()->getPointerAddressSpace(); 4129 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 4130 // There are some cases where a trivial bitcast is not avoidable. The 4131 // definition of a type later in a translation unit may change it's type 4132 // from {}* to (%struct.foo*)*. 4133 if (Addr.getType() != MemType) 4134 Addr = Builder.CreateBitCast(Addr, MemType); 4135 I->copyInto(*this, Addr); 4136 } 4137 break; 4138 } 4139 4140 case ABIArgInfo::Indirect: { 4141 assert(NumIRArgs == 1); 4142 if (!I->isAggregate()) { 4143 // Make a temporary alloca to pass the argument. 4144 Address Addr = CreateMemTempWithoutCast( 4145 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 4146 IRCallArgs[FirstIRArg] = Addr.getPointer(); 4147 4148 I->copyInto(*this, Addr); 4149 } else { 4150 // We want to avoid creating an unnecessary temporary+copy here; 4151 // however, we need one in three cases: 4152 // 1. If the argument is not byval, and we are required to copy the 4153 // source. (This case doesn't occur on any common architecture.) 4154 // 2. If the argument is byval, RV is not sufficiently aligned, and 4155 // we cannot force it to be sufficiently aligned. 4156 // 3. If the argument is byval, but RV is not located in default 4157 // or alloca address space. 4158 Address Addr = I->hasLValue() 4159 ? I->getKnownLValue().getAddress(*this) 4160 : I->getKnownRValue().getAggregateAddress(); 4161 llvm::Value *V = Addr.getPointer(); 4162 CharUnits Align = ArgInfo.getIndirectAlign(); 4163 const llvm::DataLayout *TD = &CGM.getDataLayout(); 4164 4165 assert((FirstIRArg >= IRFuncTy->getNumParams() || 4166 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 4167 TD->getAllocaAddrSpace()) && 4168 "indirect argument must be in alloca address space"); 4169 4170 bool NeedCopy = false; 4171 4172 if (Addr.getAlignment() < Align && 4173 llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) < 4174 Align.getQuantity()) { 4175 NeedCopy = true; 4176 } else if (I->hasLValue()) { 4177 auto LV = I->getKnownLValue(); 4178 auto AS = LV.getAddressSpace(); 4179 4180 if (!ArgInfo.getIndirectByVal() || 4181 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4182 NeedCopy = true; 4183 } 4184 if (!getLangOpts().OpenCL) { 4185 if ((ArgInfo.getIndirectByVal() && 4186 (AS != LangAS::Default && 4187 AS != CGM.getASTAllocaAddressSpace()))) { 4188 NeedCopy = true; 4189 } 4190 } 4191 // For OpenCL even if RV is located in default or alloca address space 4192 // we don't want to perform address space cast for it. 4193 else if ((ArgInfo.getIndirectByVal() && 4194 Addr.getType()->getAddressSpace() != IRFuncTy-> 4195 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4196 NeedCopy = true; 4197 } 4198 } 4199 4200 if (NeedCopy) { 4201 // Create an aligned temporary, and copy to it. 4202 Address AI = CreateMemTempWithoutCast( 4203 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4204 IRCallArgs[FirstIRArg] = AI.getPointer(); 4205 4206 // Emit lifetime markers for the temporary alloca. 4207 uint64_t ByvalTempElementSize = 4208 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4209 llvm::Value *LifetimeSize = 4210 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4211 4212 // Add cleanup code to emit the end lifetime marker after the call. 4213 if (LifetimeSize) // In case we disabled lifetime markers. 4214 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4215 4216 // Generate the copy. 4217 I->copyInto(*this, AI); 4218 } else { 4219 // Skip the extra memcpy call. 4220 auto *T = V->getType()->getPointerElementType()->getPointerTo( 4221 CGM.getDataLayout().getAllocaAddrSpace()); 4222 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4223 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4224 true); 4225 } 4226 } 4227 break; 4228 } 4229 4230 case ABIArgInfo::Ignore: 4231 assert(NumIRArgs == 0); 4232 break; 4233 4234 case ABIArgInfo::Extend: 4235 case ABIArgInfo::Direct: { 4236 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4237 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4238 ArgInfo.getDirectOffset() == 0) { 4239 assert(NumIRArgs == 1); 4240 llvm::Value *V; 4241 if (!I->isAggregate()) 4242 V = I->getKnownRValue().getScalarVal(); 4243 else 4244 V = Builder.CreateLoad( 4245 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4246 : I->getKnownRValue().getAggregateAddress()); 4247 4248 // Implement swifterror by copying into a new swifterror argument. 4249 // We'll write back in the normal path out of the call. 4250 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4251 == ParameterABI::SwiftErrorResult) { 4252 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4253 4254 QualType pointeeTy = I->Ty->getPointeeType(); 4255 swiftErrorArg = 4256 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4257 4258 swiftErrorTemp = 4259 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4260 V = swiftErrorTemp.getPointer(); 4261 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4262 4263 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4264 Builder.CreateStore(errorValue, swiftErrorTemp); 4265 } 4266 4267 // We might have to widen integers, but we should never truncate. 4268 if (ArgInfo.getCoerceToType() != V->getType() && 4269 V->getType()->isIntegerTy()) 4270 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4271 4272 // If the argument doesn't match, perform a bitcast to coerce it. This 4273 // can happen due to trivial type mismatches. 4274 if (FirstIRArg < IRFuncTy->getNumParams() && 4275 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4276 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4277 4278 IRCallArgs[FirstIRArg] = V; 4279 break; 4280 } 4281 4282 // FIXME: Avoid the conversion through memory if possible. 4283 Address Src = Address::invalid(); 4284 if (!I->isAggregate()) { 4285 Src = CreateMemTemp(I->Ty, "coerce"); 4286 I->copyInto(*this, Src); 4287 } else { 4288 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4289 : I->getKnownRValue().getAggregateAddress(); 4290 } 4291 4292 // If the value is offset in memory, apply the offset now. 4293 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4294 4295 // Fast-isel and the optimizer generally like scalar values better than 4296 // FCAs, so we flatten them if this is safe to do for this argument. 4297 llvm::StructType *STy = 4298 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4299 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4300 llvm::Type *SrcTy = Src.getType()->getElementType(); 4301 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4302 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4303 4304 // If the source type is smaller than the destination type of the 4305 // coerce-to logic, copy the source value into a temp alloca the size 4306 // of the destination type to allow loading all of it. The bits past 4307 // the source value are left undef. 4308 if (SrcSize < DstSize) { 4309 Address TempAlloca 4310 = CreateTempAlloca(STy, Src.getAlignment(), 4311 Src.getName() + ".coerce"); 4312 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4313 Src = TempAlloca; 4314 } else { 4315 Src = Builder.CreateBitCast(Src, 4316 STy->getPointerTo(Src.getAddressSpace())); 4317 } 4318 4319 assert(NumIRArgs == STy->getNumElements()); 4320 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4321 Address EltPtr = Builder.CreateStructGEP(Src, i); 4322 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4323 IRCallArgs[FirstIRArg + i] = LI; 4324 } 4325 } else { 4326 // In the simple case, just pass the coerced loaded value. 4327 assert(NumIRArgs == 1); 4328 IRCallArgs[FirstIRArg] = 4329 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4330 } 4331 4332 break; 4333 } 4334 4335 case ABIArgInfo::CoerceAndExpand: { 4336 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4337 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4338 4339 llvm::Value *tempSize = nullptr; 4340 Address addr = Address::invalid(); 4341 Address AllocaAddr = Address::invalid(); 4342 if (I->isAggregate()) { 4343 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4344 : I->getKnownRValue().getAggregateAddress(); 4345 4346 } else { 4347 RValue RV = I->getKnownRValue(); 4348 assert(RV.isScalar()); // complex should always just be direct 4349 4350 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4351 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4352 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4353 4354 // Materialize to a temporary. 4355 addr = CreateTempAlloca( 4356 RV.getScalarVal()->getType(), 4357 CharUnits::fromQuantity(std::max( 4358 (unsigned)layout->getAlignment().value(), scalarAlign)), 4359 "tmp", 4360 /*ArraySize=*/nullptr, &AllocaAddr); 4361 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4362 4363 Builder.CreateStore(RV.getScalarVal(), addr); 4364 } 4365 4366 addr = Builder.CreateElementBitCast(addr, coercionType); 4367 4368 unsigned IRArgPos = FirstIRArg; 4369 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4370 llvm::Type *eltType = coercionType->getElementType(i); 4371 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4372 Address eltAddr = Builder.CreateStructGEP(addr, i); 4373 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4374 IRCallArgs[IRArgPos++] = elt; 4375 } 4376 assert(IRArgPos == FirstIRArg + NumIRArgs); 4377 4378 if (tempSize) { 4379 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4380 } 4381 4382 break; 4383 } 4384 4385 case ABIArgInfo::Expand: 4386 unsigned IRArgPos = FirstIRArg; 4387 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4388 assert(IRArgPos == FirstIRArg + NumIRArgs); 4389 break; 4390 } 4391 } 4392 4393 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4394 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4395 4396 // If we're using inalloca, set up that argument. 4397 if (ArgMemory.isValid()) { 4398 llvm::Value *Arg = ArgMemory.getPointer(); 4399 if (CallInfo.isVariadic()) { 4400 // When passing non-POD arguments by value to variadic functions, we will 4401 // end up with a variadic prototype and an inalloca call site. In such 4402 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4403 // the callee. 4404 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4405 CalleePtr = 4406 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 4407 } else { 4408 llvm::Type *LastParamTy = 4409 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4410 if (Arg->getType() != LastParamTy) { 4411 #ifndef NDEBUG 4412 // Assert that these structs have equivalent element types. 4413 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4414 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4415 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4416 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4417 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4418 DE = DeclaredTy->element_end(), 4419 FI = FullTy->element_begin(); 4420 DI != DE; ++DI, ++FI) 4421 assert(*DI == *FI); 4422 #endif 4423 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4424 } 4425 } 4426 assert(IRFunctionArgs.hasInallocaArg()); 4427 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4428 } 4429 4430 // 2. Prepare the function pointer. 4431 4432 // If the callee is a bitcast of a non-variadic function to have a 4433 // variadic function pointer type, check to see if we can remove the 4434 // bitcast. This comes up with unprototyped functions. 4435 // 4436 // This makes the IR nicer, but more importantly it ensures that we 4437 // can inline the function at -O0 if it is marked always_inline. 4438 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 4439 llvm::Value *Ptr) -> llvm::Function * { 4440 if (!CalleeFT->isVarArg()) 4441 return nullptr; 4442 4443 // Get underlying value if it's a bitcast 4444 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 4445 if (CE->getOpcode() == llvm::Instruction::BitCast) 4446 Ptr = CE->getOperand(0); 4447 } 4448 4449 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 4450 if (!OrigFn) 4451 return nullptr; 4452 4453 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4454 4455 // If the original type is variadic, or if any of the component types 4456 // disagree, we cannot remove the cast. 4457 if (OrigFT->isVarArg() || 4458 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4459 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4460 return nullptr; 4461 4462 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4463 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4464 return nullptr; 4465 4466 return OrigFn; 4467 }; 4468 4469 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 4470 CalleePtr = OrigFn; 4471 IRFuncTy = OrigFn->getFunctionType(); 4472 } 4473 4474 // 3. Perform the actual call. 4475 4476 // Deactivate any cleanups that we're supposed to do immediately before 4477 // the call. 4478 if (!CallArgs.getCleanupsToDeactivate().empty()) 4479 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4480 4481 // Assert that the arguments we computed match up. The IR verifier 4482 // will catch this, but this is a common enough source of problems 4483 // during IRGen changes that it's way better for debugging to catch 4484 // it ourselves here. 4485 #ifndef NDEBUG 4486 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4487 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4488 // Inalloca argument can have different type. 4489 if (IRFunctionArgs.hasInallocaArg() && 4490 i == IRFunctionArgs.getInallocaArgNo()) 4491 continue; 4492 if (i < IRFuncTy->getNumParams()) 4493 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4494 } 4495 #endif 4496 4497 // Update the largest vector width if any arguments have vector types. 4498 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4499 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 4500 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 4501 VT->getPrimitiveSizeInBits().getFixedSize()); 4502 } 4503 4504 // Compute the calling convention and attributes. 4505 unsigned CallingConv; 4506 llvm::AttributeList Attrs; 4507 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4508 Callee.getAbstractInfo(), Attrs, CallingConv, 4509 /*AttrOnCallSite=*/true); 4510 4511 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 4512 if (FD->usesFPIntrin()) 4513 // All calls within a strictfp function are marked strictfp 4514 Attrs = 4515 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4516 llvm::Attribute::StrictFP); 4517 4518 // Apply some call-site-specific attributes. 4519 // TODO: work this into building the attribute set. 4520 4521 // Apply always_inline to all calls within flatten functions. 4522 // FIXME: should this really take priority over __try, below? 4523 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4524 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 4525 Attrs = 4526 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4527 llvm::Attribute::AlwaysInline); 4528 } 4529 4530 // Disable inlining inside SEH __try blocks. 4531 if (isSEHTryScope()) { 4532 Attrs = 4533 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4534 llvm::Attribute::NoInline); 4535 } 4536 4537 // Decide whether to use a call or an invoke. 4538 bool CannotThrow; 4539 if (currentFunctionUsesSEHTry()) { 4540 // SEH cares about asynchronous exceptions, so everything can "throw." 4541 CannotThrow = false; 4542 } else if (isCleanupPadScope() && 4543 EHPersonality::get(*this).isMSVCXXPersonality()) { 4544 // The MSVC++ personality will implicitly terminate the program if an 4545 // exception is thrown during a cleanup outside of a try/catch. 4546 // We don't need to model anything in IR to get this behavior. 4547 CannotThrow = true; 4548 } else { 4549 // Otherwise, nounwind call sites will never throw. 4550 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4551 llvm::Attribute::NoUnwind); 4552 } 4553 4554 // If we made a temporary, be sure to clean up after ourselves. Note that we 4555 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4556 // pop this cleanup later on. Being eager about this is OK, since this 4557 // temporary is 'invisible' outside of the callee. 4558 if (UnusedReturnSizePtr) 4559 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 4560 UnusedReturnSizePtr); 4561 4562 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4563 4564 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4565 getBundlesForFunclet(CalleePtr); 4566 4567 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 4568 if (FD->usesFPIntrin()) 4569 // All calls within a strictfp function are marked strictfp 4570 Attrs = 4571 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4572 llvm::Attribute::StrictFP); 4573 4574 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 4575 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 4576 4577 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 4578 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 4579 4580 // Emit the actual call/invoke instruction. 4581 llvm::CallBase *CI; 4582 if (!InvokeDest) { 4583 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 4584 } else { 4585 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4586 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 4587 BundleList); 4588 EmitBlock(Cont); 4589 } 4590 if (callOrInvoke) 4591 *callOrInvoke = CI; 4592 4593 // If this is within a function that has the guard(nocf) attribute and is an 4594 // indirect call, add the "guard_nocf" attribute to this call to indicate that 4595 // Control Flow Guard checks should not be added, even if the call is inlined. 4596 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 4597 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 4598 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 4599 Attrs = Attrs.addAttribute( 4600 getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf"); 4601 } 4602 } 4603 4604 // Apply the attributes and calling convention. 4605 CI->setAttributes(Attrs); 4606 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4607 4608 // Apply various metadata. 4609 4610 if (!CI->getType()->isVoidTy()) 4611 CI->setName("call"); 4612 4613 // Update largest vector width from the return type. 4614 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 4615 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 4616 VT->getPrimitiveSizeInBits().getFixedSize()); 4617 4618 // Insert instrumentation or attach profile metadata at indirect call sites. 4619 // For more details, see the comment before the definition of 4620 // IPVK_IndirectCallTarget in InstrProfData.inc. 4621 if (!CI->getCalledFunction()) 4622 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4623 CI, CalleePtr); 4624 4625 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4626 // optimizer it can aggressively ignore unwind edges. 4627 if (CGM.getLangOpts().ObjCAutoRefCount) 4628 AddObjCARCExceptionMetadata(CI); 4629 4630 // Suppress tail calls if requested. 4631 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4632 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4633 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4634 } 4635 4636 // Add metadata for calls to MSAllocator functions 4637 if (getDebugInfo() && TargetDecl && 4638 TargetDecl->hasAttr<MSAllocatorAttr>()) 4639 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy, Loc); 4640 4641 // 4. Finish the call. 4642 4643 // If the call doesn't return, finish the basic block and clear the 4644 // insertion point; this allows the rest of IRGen to discard 4645 // unreachable code. 4646 if (CI->doesNotReturn()) { 4647 if (UnusedReturnSizePtr) 4648 PopCleanupBlock(); 4649 4650 // Strip away the noreturn attribute to better diagnose unreachable UB. 4651 if (SanOpts.has(SanitizerKind::Unreachable)) { 4652 // Also remove from function since CallBase::hasFnAttr additionally checks 4653 // attributes of the called function. 4654 if (auto *F = CI->getCalledFunction()) 4655 F->removeFnAttr(llvm::Attribute::NoReturn); 4656 CI->removeAttribute(llvm::AttributeList::FunctionIndex, 4657 llvm::Attribute::NoReturn); 4658 4659 // Avoid incompatibility with ASan which relies on the `noreturn` 4660 // attribute to insert handler calls. 4661 if (SanOpts.hasOneOf(SanitizerKind::Address | 4662 SanitizerKind::KernelAddress)) { 4663 SanitizerScope SanScope(this); 4664 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 4665 Builder.SetInsertPoint(CI); 4666 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 4667 llvm::FunctionCallee Fn = 4668 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 4669 EmitNounwindRuntimeCall(Fn); 4670 } 4671 } 4672 4673 EmitUnreachable(Loc); 4674 Builder.ClearInsertionPoint(); 4675 4676 // FIXME: For now, emit a dummy basic block because expr emitters in 4677 // generally are not ready to handle emitting expressions at unreachable 4678 // points. 4679 EnsureInsertPoint(); 4680 4681 // Return a reasonable RValue. 4682 return GetUndefRValue(RetTy); 4683 } 4684 4685 // Perform the swifterror writeback. 4686 if (swiftErrorTemp.isValid()) { 4687 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4688 Builder.CreateStore(errorResult, swiftErrorArg); 4689 } 4690 4691 // Emit any call-associated writebacks immediately. Arguably this 4692 // should happen after any return-value munging. 4693 if (CallArgs.hasWritebacks()) 4694 emitWritebacks(*this, CallArgs); 4695 4696 // The stack cleanup for inalloca arguments has to run out of the normal 4697 // lexical order, so deactivate it and run it manually here. 4698 CallArgs.freeArgumentMemory(*this); 4699 4700 // Extract the return value. 4701 RValue Ret = [&] { 4702 switch (RetAI.getKind()) { 4703 case ABIArgInfo::CoerceAndExpand: { 4704 auto coercionType = RetAI.getCoerceAndExpandType(); 4705 4706 Address addr = SRetPtr; 4707 addr = Builder.CreateElementBitCast(addr, coercionType); 4708 4709 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4710 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4711 4712 unsigned unpaddedIndex = 0; 4713 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4714 llvm::Type *eltType = coercionType->getElementType(i); 4715 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4716 Address eltAddr = Builder.CreateStructGEP(addr, i); 4717 llvm::Value *elt = CI; 4718 if (requiresExtract) 4719 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4720 else 4721 assert(unpaddedIndex == 0); 4722 Builder.CreateStore(elt, eltAddr); 4723 } 4724 // FALLTHROUGH 4725 LLVM_FALLTHROUGH; 4726 } 4727 4728 case ABIArgInfo::InAlloca: 4729 case ABIArgInfo::Indirect: { 4730 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4731 if (UnusedReturnSizePtr) 4732 PopCleanupBlock(); 4733 return ret; 4734 } 4735 4736 case ABIArgInfo::Ignore: 4737 // If we are ignoring an argument that had a result, make sure to 4738 // construct the appropriate return value for our caller. 4739 return GetUndefRValue(RetTy); 4740 4741 case ABIArgInfo::Extend: 4742 case ABIArgInfo::Direct: { 4743 llvm::Type *RetIRTy = ConvertType(RetTy); 4744 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4745 switch (getEvaluationKind(RetTy)) { 4746 case TEK_Complex: { 4747 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4748 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4749 return RValue::getComplex(std::make_pair(Real, Imag)); 4750 } 4751 case TEK_Aggregate: { 4752 Address DestPtr = ReturnValue.getValue(); 4753 bool DestIsVolatile = ReturnValue.isVolatile(); 4754 4755 if (!DestPtr.isValid()) { 4756 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4757 DestIsVolatile = false; 4758 } 4759 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4760 return RValue::getAggregate(DestPtr); 4761 } 4762 case TEK_Scalar: { 4763 // If the argument doesn't match, perform a bitcast to coerce it. This 4764 // can happen due to trivial type mismatches. 4765 llvm::Value *V = CI; 4766 if (V->getType() != RetIRTy) 4767 V = Builder.CreateBitCast(V, RetIRTy); 4768 return RValue::get(V); 4769 } 4770 } 4771 llvm_unreachable("bad evaluation kind"); 4772 } 4773 4774 Address DestPtr = ReturnValue.getValue(); 4775 bool DestIsVolatile = ReturnValue.isVolatile(); 4776 4777 if (!DestPtr.isValid()) { 4778 DestPtr = CreateMemTemp(RetTy, "coerce"); 4779 DestIsVolatile = false; 4780 } 4781 4782 // If the value is offset in memory, apply the offset now. 4783 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4784 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4785 4786 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4787 } 4788 4789 case ABIArgInfo::Expand: 4790 llvm_unreachable("Invalid ABI kind for return argument"); 4791 } 4792 4793 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4794 } (); 4795 4796 // Emit the assume_aligned check on the return value. 4797 if (Ret.isScalar() && TargetDecl) { 4798 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 4799 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 4800 } 4801 4802 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 4803 // we can't use the full cleanup mechanism. 4804 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 4805 LifetimeEnd.Emit(*this, /*Flags=*/{}); 4806 4807 return Ret; 4808 } 4809 4810 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 4811 if (isVirtual()) { 4812 const CallExpr *CE = getVirtualCallExpr(); 4813 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 4814 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 4815 CE ? CE->getBeginLoc() : SourceLocation()); 4816 } 4817 4818 return *this; 4819 } 4820 4821 /* VarArg handling */ 4822 4823 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4824 VAListAddr = VE->isMicrosoftABI() 4825 ? EmitMSVAListRef(VE->getSubExpr()) 4826 : EmitVAListRef(VE->getSubExpr()); 4827 QualType Ty = VE->getType(); 4828 if (VE->isMicrosoftABI()) 4829 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4830 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4831 } 4832