1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "clang/Frontend/CodeGenOptions.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_Win64: return llvm::CallingConv::Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 63 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 64 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 65 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 66 case CC_Swift: return llvm::CallingConv::Swift; 67 } 68 } 69 70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 71 /// qualification. 72 /// FIXME: address space qualification? 73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 74 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 75 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 76 } 77 78 /// Returns the canonical formal type of the given C++ method. 79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 80 return MD->getType()->getCanonicalTypeUnqualified() 81 .getAs<FunctionProtoType>(); 82 } 83 84 /// Returns the "extra-canonicalized" return type, which discards 85 /// qualifiers on the return type. Codegen doesn't care about them, 86 /// and it makes ABI code a little easier to be able to assume that 87 /// all parameter and return types are top-level unqualified. 88 static CanQualType GetReturnType(QualType RetTy) { 89 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 90 } 91 92 /// Arrange the argument and result information for a value of the given 93 /// unprototyped freestanding function type. 94 const CGFunctionInfo & 95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 96 // When translating an unprototyped function type, always use a 97 // variadic type. 98 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 99 /*instanceMethod=*/false, 100 /*chainCall=*/false, None, 101 FTNP->getExtInfo(), {}, RequiredArgs(0)); 102 } 103 104 static void addExtParameterInfosForCall( 105 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 106 const FunctionProtoType *proto, 107 unsigned prefixArgs, 108 unsigned totalArgs) { 109 assert(proto->hasExtParameterInfos()); 110 assert(paramInfos.size() <= prefixArgs); 111 assert(proto->getNumParams() + prefixArgs <= totalArgs); 112 113 paramInfos.reserve(totalArgs); 114 115 // Add default infos for any prefix args that don't already have infos. 116 paramInfos.resize(prefixArgs); 117 118 // Add infos for the prototype. 119 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 120 paramInfos.push_back(ParamInfo); 121 // pass_object_size params have no parameter info. 122 if (ParamInfo.hasPassObjectSize()) 123 paramInfos.emplace_back(); 124 } 125 126 assert(paramInfos.size() <= totalArgs && 127 "Did we forget to insert pass_object_size args?"); 128 // Add default infos for the variadic and/or suffix arguments. 129 paramInfos.resize(totalArgs); 130 } 131 132 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 133 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 134 static void appendParameterTypes(const CodeGenTypes &CGT, 135 SmallVectorImpl<CanQualType> &prefix, 136 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 137 CanQual<FunctionProtoType> FPT) { 138 // Fast path: don't touch param info if we don't need to. 139 if (!FPT->hasExtParameterInfos()) { 140 assert(paramInfos.empty() && 141 "We have paramInfos, but the prototype doesn't?"); 142 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 143 return; 144 } 145 146 unsigned PrefixSize = prefix.size(); 147 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 148 // parameters; the only thing that can change this is the presence of 149 // pass_object_size. So, we preallocate for the common case. 150 prefix.reserve(prefix.size() + FPT->getNumParams()); 151 152 auto ExtInfos = FPT->getExtParameterInfos(); 153 assert(ExtInfos.size() == FPT->getNumParams()); 154 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 155 prefix.push_back(FPT->getParamType(I)); 156 if (ExtInfos[I].hasPassObjectSize()) 157 prefix.push_back(CGT.getContext().getSizeType()); 158 } 159 160 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 161 prefix.size()); 162 } 163 164 /// Arrange the LLVM function layout for a value of the given function 165 /// type, on top of any implicit parameters already stored. 166 static const CGFunctionInfo & 167 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 168 SmallVectorImpl<CanQualType> &prefix, 169 CanQual<FunctionProtoType> FTP, 170 const FunctionDecl *FD) { 171 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 172 RequiredArgs Required = 173 RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD); 174 // FIXME: Kill copy. 175 appendParameterTypes(CGT, prefix, paramInfos, FTP); 176 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 177 178 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 179 /*chainCall=*/false, prefix, 180 FTP->getExtInfo(), paramInfos, 181 Required); 182 } 183 184 /// Arrange the argument and result information for a value of the 185 /// given freestanding function type. 186 const CGFunctionInfo & 187 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 188 const FunctionDecl *FD) { 189 SmallVector<CanQualType, 16> argTypes; 190 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 191 FTP, FD); 192 } 193 194 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 195 // Set the appropriate calling convention for the Function. 196 if (D->hasAttr<StdCallAttr>()) 197 return CC_X86StdCall; 198 199 if (D->hasAttr<FastCallAttr>()) 200 return CC_X86FastCall; 201 202 if (D->hasAttr<RegCallAttr>()) 203 return CC_X86RegCall; 204 205 if (D->hasAttr<ThisCallAttr>()) 206 return CC_X86ThisCall; 207 208 if (D->hasAttr<VectorCallAttr>()) 209 return CC_X86VectorCall; 210 211 if (D->hasAttr<PascalAttr>()) 212 return CC_X86Pascal; 213 214 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 215 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 216 217 if (D->hasAttr<IntelOclBiccAttr>()) 218 return CC_IntelOclBicc; 219 220 if (D->hasAttr<MSABIAttr>()) 221 return IsWindows ? CC_C : CC_Win64; 222 223 if (D->hasAttr<SysVABIAttr>()) 224 return IsWindows ? CC_X86_64SysV : CC_C; 225 226 if (D->hasAttr<PreserveMostAttr>()) 227 return CC_PreserveMost; 228 229 if (D->hasAttr<PreserveAllAttr>()) 230 return CC_PreserveAll; 231 232 return CC_C; 233 } 234 235 /// Arrange the argument and result information for a call to an 236 /// unknown C++ non-static member function of the given abstract type. 237 /// (Zero value of RD means we don't have any meaningful "this" argument type, 238 /// so fall back to a generic pointer type). 239 /// The member function must be an ordinary function, i.e. not a 240 /// constructor or destructor. 241 const CGFunctionInfo & 242 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 243 const FunctionProtoType *FTP, 244 const CXXMethodDecl *MD) { 245 SmallVector<CanQualType, 16> argTypes; 246 247 // Add the 'this' pointer. 248 if (RD) 249 argTypes.push_back(GetThisType(Context, RD)); 250 else 251 argTypes.push_back(Context.VoidPtrTy); 252 253 return ::arrangeLLVMFunctionInfo( 254 *this, true, argTypes, 255 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 256 } 257 258 /// Arrange the argument and result information for a declaration or 259 /// definition of the given C++ non-static member function. The 260 /// member function must be an ordinary function, i.e. not a 261 /// constructor or destructor. 262 const CGFunctionInfo & 263 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 264 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 265 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 266 267 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 268 269 if (MD->isInstance()) { 270 // The abstract case is perfectly fine. 271 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 272 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 273 } 274 275 return arrangeFreeFunctionType(prototype, MD); 276 } 277 278 bool CodeGenTypes::inheritingCtorHasParams( 279 const InheritedConstructor &Inherited, CXXCtorType Type) { 280 // Parameters are unnecessary if we're constructing a base class subobject 281 // and the inherited constructor lives in a virtual base. 282 return Type == Ctor_Complete || 283 !Inherited.getShadowDecl()->constructsVirtualBase() || 284 !Target.getCXXABI().hasConstructorVariants(); 285 } 286 287 const CGFunctionInfo & 288 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 289 StructorType Type) { 290 291 SmallVector<CanQualType, 16> argTypes; 292 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 293 argTypes.push_back(GetThisType(Context, MD->getParent())); 294 295 bool PassParams = true; 296 297 GlobalDecl GD; 298 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 299 GD = GlobalDecl(CD, toCXXCtorType(Type)); 300 301 // A base class inheriting constructor doesn't get forwarded arguments 302 // needed to construct a virtual base (or base class thereof). 303 if (auto Inherited = CD->getInheritedConstructor()) 304 PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); 305 } else { 306 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 307 GD = GlobalDecl(DD, toCXXDtorType(Type)); 308 } 309 310 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 311 312 // Add the formal parameters. 313 if (PassParams) 314 appendParameterTypes(*this, argTypes, paramInfos, FTP); 315 316 CGCXXABI::AddedStructorArgs AddedArgs = 317 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 318 if (!paramInfos.empty()) { 319 // Note: prefix implies after the first param. 320 if (AddedArgs.Prefix) 321 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 322 FunctionProtoType::ExtParameterInfo{}); 323 if (AddedArgs.Suffix) 324 paramInfos.append(AddedArgs.Suffix, 325 FunctionProtoType::ExtParameterInfo{}); 326 } 327 328 RequiredArgs required = 329 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 330 : RequiredArgs::All); 331 332 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 333 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 334 ? argTypes.front() 335 : TheCXXABI.hasMostDerivedReturn(GD) 336 ? CGM.getContext().VoidPtrTy 337 : Context.VoidTy; 338 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 339 /*chainCall=*/false, argTypes, extInfo, 340 paramInfos, required); 341 } 342 343 static SmallVector<CanQualType, 16> 344 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 345 SmallVector<CanQualType, 16> argTypes; 346 for (auto &arg : args) 347 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 348 return argTypes; 349 } 350 351 static SmallVector<CanQualType, 16> 352 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 353 SmallVector<CanQualType, 16> argTypes; 354 for (auto &arg : args) 355 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 356 return argTypes; 357 } 358 359 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 360 getExtParameterInfosForCall(const FunctionProtoType *proto, 361 unsigned prefixArgs, unsigned totalArgs) { 362 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 363 if (proto->hasExtParameterInfos()) { 364 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 365 } 366 return result; 367 } 368 369 /// Arrange a call to a C++ method, passing the given arguments. 370 /// 371 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 372 /// parameter. 373 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 374 /// args. 375 /// PassProtoArgs indicates whether `args` has args for the parameters in the 376 /// given CXXConstructorDecl. 377 const CGFunctionInfo & 378 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 379 const CXXConstructorDecl *D, 380 CXXCtorType CtorKind, 381 unsigned ExtraPrefixArgs, 382 unsigned ExtraSuffixArgs, 383 bool PassProtoArgs) { 384 // FIXME: Kill copy. 385 SmallVector<CanQualType, 16> ArgTypes; 386 for (const auto &Arg : args) 387 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 388 389 // +1 for implicit this, which should always be args[0]. 390 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 391 392 CanQual<FunctionProtoType> FPT = GetFormalType(D); 393 RequiredArgs Required = 394 RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D); 395 GlobalDecl GD(D, CtorKind); 396 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 397 ? ArgTypes.front() 398 : TheCXXABI.hasMostDerivedReturn(GD) 399 ? CGM.getContext().VoidPtrTy 400 : Context.VoidTy; 401 402 FunctionType::ExtInfo Info = FPT->getExtInfo(); 403 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 404 // If the prototype args are elided, we should only have ABI-specific args, 405 // which never have param info. 406 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 407 // ABI-specific suffix arguments are treated the same as variadic arguments. 408 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 409 ArgTypes.size()); 410 } 411 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 412 /*chainCall=*/false, ArgTypes, Info, 413 ParamInfos, Required); 414 } 415 416 /// Arrange the argument and result information for the declaration or 417 /// definition of the given function. 418 const CGFunctionInfo & 419 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 420 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 421 if (MD->isInstance()) 422 return arrangeCXXMethodDeclaration(MD); 423 424 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 425 426 assert(isa<FunctionType>(FTy)); 427 428 // When declaring a function without a prototype, always use a 429 // non-variadic type. 430 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 431 return arrangeLLVMFunctionInfo( 432 noProto->getReturnType(), /*instanceMethod=*/false, 433 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 434 } 435 436 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD); 437 } 438 439 /// Arrange the argument and result information for the declaration or 440 /// definition of an Objective-C method. 441 const CGFunctionInfo & 442 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 443 // It happens that this is the same as a call with no optional 444 // arguments, except also using the formal 'self' type. 445 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 446 } 447 448 /// Arrange the argument and result information for the function type 449 /// through which to perform a send to the given Objective-C method, 450 /// using the given receiver type. The receiver type is not always 451 /// the 'self' type of the method or even an Objective-C pointer type. 452 /// This is *not* the right method for actually performing such a 453 /// message send, due to the possibility of optional arguments. 454 const CGFunctionInfo & 455 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 456 QualType receiverType) { 457 SmallVector<CanQualType, 16> argTys; 458 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 459 argTys.push_back(Context.getCanonicalParamType(receiverType)); 460 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 461 // FIXME: Kill copy? 462 for (const auto *I : MD->parameters()) { 463 argTys.push_back(Context.getCanonicalParamType(I->getType())); 464 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 465 I->hasAttr<NoEscapeAttr>()); 466 extParamInfos.push_back(extParamInfo); 467 } 468 469 FunctionType::ExtInfo einfo; 470 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 471 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 472 473 if (getContext().getLangOpts().ObjCAutoRefCount && 474 MD->hasAttr<NSReturnsRetainedAttr>()) 475 einfo = einfo.withProducesResult(true); 476 477 RequiredArgs required = 478 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 479 480 return arrangeLLVMFunctionInfo( 481 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 482 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 483 } 484 485 const CGFunctionInfo & 486 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 487 const CallArgList &args) { 488 auto argTypes = getArgTypesForCall(Context, args); 489 FunctionType::ExtInfo einfo; 490 491 return arrangeLLVMFunctionInfo( 492 GetReturnType(returnType), /*instanceMethod=*/false, 493 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 494 } 495 496 const CGFunctionInfo & 497 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 498 // FIXME: Do we need to handle ObjCMethodDecl? 499 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 500 501 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 502 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 503 504 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 505 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 506 507 return arrangeFunctionDeclaration(FD); 508 } 509 510 /// Arrange a thunk that takes 'this' as the first parameter followed by 511 /// varargs. Return a void pointer, regardless of the actual return type. 512 /// The body of the thunk will end in a musttail call to a function of the 513 /// correct type, and the caller will bitcast the function to the correct 514 /// prototype. 515 const CGFunctionInfo & 516 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) { 517 assert(MD->isVirtual() && "only virtual memptrs have thunks"); 518 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 519 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 520 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 521 /*chainCall=*/false, ArgTys, 522 FTP->getExtInfo(), {}, RequiredArgs(1)); 523 } 524 525 const CGFunctionInfo & 526 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 527 CXXCtorType CT) { 528 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 529 530 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 531 SmallVector<CanQualType, 2> ArgTys; 532 const CXXRecordDecl *RD = CD->getParent(); 533 ArgTys.push_back(GetThisType(Context, RD)); 534 if (CT == Ctor_CopyingClosure) 535 ArgTys.push_back(*FTP->param_type_begin()); 536 if (RD->getNumVBases() > 0) 537 ArgTys.push_back(Context.IntTy); 538 CallingConv CC = Context.getDefaultCallingConvention( 539 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 540 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 541 /*chainCall=*/false, ArgTys, 542 FunctionType::ExtInfo(CC), {}, 543 RequiredArgs::All); 544 } 545 546 /// Arrange a call as unto a free function, except possibly with an 547 /// additional number of formal parameters considered required. 548 static const CGFunctionInfo & 549 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 550 CodeGenModule &CGM, 551 const CallArgList &args, 552 const FunctionType *fnType, 553 unsigned numExtraRequiredArgs, 554 bool chainCall) { 555 assert(args.size() >= numExtraRequiredArgs); 556 557 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 558 559 // In most cases, there are no optional arguments. 560 RequiredArgs required = RequiredArgs::All; 561 562 // If we have a variadic prototype, the required arguments are the 563 // extra prefix plus the arguments in the prototype. 564 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 565 if (proto->isVariadic()) 566 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 567 568 if (proto->hasExtParameterInfos()) 569 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 570 args.size()); 571 572 // If we don't have a prototype at all, but we're supposed to 573 // explicitly use the variadic convention for unprototyped calls, 574 // treat all of the arguments as required but preserve the nominal 575 // possibility of variadics. 576 } else if (CGM.getTargetCodeGenInfo() 577 .isNoProtoCallVariadic(args, 578 cast<FunctionNoProtoType>(fnType))) { 579 required = RequiredArgs(args.size()); 580 } 581 582 // FIXME: Kill copy. 583 SmallVector<CanQualType, 16> argTypes; 584 for (const auto &arg : args) 585 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 586 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 587 /*instanceMethod=*/false, chainCall, 588 argTypes, fnType->getExtInfo(), paramInfos, 589 required); 590 } 591 592 /// Figure out the rules for calling a function with the given formal 593 /// type using the given arguments. The arguments are necessary 594 /// because the function might be unprototyped, in which case it's 595 /// target-dependent in crazy ways. 596 const CGFunctionInfo & 597 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 598 const FunctionType *fnType, 599 bool chainCall) { 600 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 601 chainCall ? 1 : 0, chainCall); 602 } 603 604 /// A block function is essentially a free function with an 605 /// extra implicit argument. 606 const CGFunctionInfo & 607 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 608 const FunctionType *fnType) { 609 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 610 /*chainCall=*/false); 611 } 612 613 const CGFunctionInfo & 614 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 615 const FunctionArgList ¶ms) { 616 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 617 auto argTypes = getArgTypesForDeclaration(Context, params); 618 619 return arrangeLLVMFunctionInfo( 620 GetReturnType(proto->getReturnType()), 621 /*instanceMethod*/ false, /*chainCall*/ false, argTypes, 622 proto->getExtInfo(), paramInfos, 623 RequiredArgs::forPrototypePlus(proto, 1, nullptr)); 624 } 625 626 const CGFunctionInfo & 627 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 628 const CallArgList &args) { 629 // FIXME: Kill copy. 630 SmallVector<CanQualType, 16> argTypes; 631 for (const auto &Arg : args) 632 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 633 return arrangeLLVMFunctionInfo( 634 GetReturnType(resultType), /*instanceMethod=*/false, 635 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 636 /*paramInfos=*/ {}, RequiredArgs::All); 637 } 638 639 const CGFunctionInfo & 640 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 641 const FunctionArgList &args) { 642 auto argTypes = getArgTypesForDeclaration(Context, args); 643 644 return arrangeLLVMFunctionInfo( 645 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 646 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 647 } 648 649 const CGFunctionInfo & 650 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 651 ArrayRef<CanQualType> argTypes) { 652 return arrangeLLVMFunctionInfo( 653 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 654 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 655 } 656 657 /// Arrange a call to a C++ method, passing the given arguments. 658 /// 659 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 660 /// does not count `this`. 661 const CGFunctionInfo & 662 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 663 const FunctionProtoType *proto, 664 RequiredArgs required, 665 unsigned numPrefixArgs) { 666 assert(numPrefixArgs + 1 <= args.size() && 667 "Emitting a call with less args than the required prefix?"); 668 // Add one to account for `this`. It's a bit awkward here, but we don't count 669 // `this` in similar places elsewhere. 670 auto paramInfos = 671 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 672 673 // FIXME: Kill copy. 674 auto argTypes = getArgTypesForCall(Context, args); 675 676 FunctionType::ExtInfo info = proto->getExtInfo(); 677 return arrangeLLVMFunctionInfo( 678 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 679 /*chainCall=*/false, argTypes, info, paramInfos, required); 680 } 681 682 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 683 return arrangeLLVMFunctionInfo( 684 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 685 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 686 } 687 688 const CGFunctionInfo & 689 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 690 const CallArgList &args) { 691 assert(signature.arg_size() <= args.size()); 692 if (signature.arg_size() == args.size()) 693 return signature; 694 695 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 696 auto sigParamInfos = signature.getExtParameterInfos(); 697 if (!sigParamInfos.empty()) { 698 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 699 paramInfos.resize(args.size()); 700 } 701 702 auto argTypes = getArgTypesForCall(Context, args); 703 704 assert(signature.getRequiredArgs().allowsOptionalArgs()); 705 return arrangeLLVMFunctionInfo(signature.getReturnType(), 706 signature.isInstanceMethod(), 707 signature.isChainCall(), 708 argTypes, 709 signature.getExtInfo(), 710 paramInfos, 711 signature.getRequiredArgs()); 712 } 713 714 namespace clang { 715 namespace CodeGen { 716 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 717 } 718 } 719 720 /// Arrange the argument and result information for an abstract value 721 /// of a given function type. This is the method which all of the 722 /// above functions ultimately defer to. 723 const CGFunctionInfo & 724 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 725 bool instanceMethod, 726 bool chainCall, 727 ArrayRef<CanQualType> argTypes, 728 FunctionType::ExtInfo info, 729 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 730 RequiredArgs required) { 731 assert(std::all_of(argTypes.begin(), argTypes.end(), 732 [](CanQualType T) { return T.isCanonicalAsParam(); })); 733 734 // Lookup or create unique function info. 735 llvm::FoldingSetNodeID ID; 736 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 737 required, resultType, argTypes); 738 739 void *insertPos = nullptr; 740 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 741 if (FI) 742 return *FI; 743 744 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 745 746 // Construct the function info. We co-allocate the ArgInfos. 747 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 748 paramInfos, resultType, argTypes, required); 749 FunctionInfos.InsertNode(FI, insertPos); 750 751 bool inserted = FunctionsBeingProcessed.insert(FI).second; 752 (void)inserted; 753 assert(inserted && "Recursively being processed?"); 754 755 // Compute ABI information. 756 if (CC == llvm::CallingConv::SPIR_KERNEL) { 757 // Force target independent argument handling for the host visible 758 // kernel functions. 759 computeSPIRKernelABIInfo(CGM, *FI); 760 } else if (info.getCC() == CC_Swift) { 761 swiftcall::computeABIInfo(CGM, *FI); 762 } else { 763 getABIInfo().computeInfo(*FI); 764 } 765 766 // Loop over all of the computed argument and return value info. If any of 767 // them are direct or extend without a specified coerce type, specify the 768 // default now. 769 ABIArgInfo &retInfo = FI->getReturnInfo(); 770 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 771 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 772 773 for (auto &I : FI->arguments()) 774 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 775 I.info.setCoerceToType(ConvertType(I.type)); 776 777 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 778 assert(erased && "Not in set?"); 779 780 return *FI; 781 } 782 783 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 784 bool instanceMethod, 785 bool chainCall, 786 const FunctionType::ExtInfo &info, 787 ArrayRef<ExtParameterInfo> paramInfos, 788 CanQualType resultType, 789 ArrayRef<CanQualType> argTypes, 790 RequiredArgs required) { 791 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 792 793 void *buffer = 794 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 795 argTypes.size() + 1, paramInfos.size())); 796 797 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 798 FI->CallingConvention = llvmCC; 799 FI->EffectiveCallingConvention = llvmCC; 800 FI->ASTCallingConvention = info.getCC(); 801 FI->InstanceMethod = instanceMethod; 802 FI->ChainCall = chainCall; 803 FI->NoReturn = info.getNoReturn(); 804 FI->ReturnsRetained = info.getProducesResult(); 805 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 806 FI->NoCfCheck = info.getNoCfCheck(); 807 FI->Required = required; 808 FI->HasRegParm = info.getHasRegParm(); 809 FI->RegParm = info.getRegParm(); 810 FI->ArgStruct = nullptr; 811 FI->ArgStructAlign = 0; 812 FI->NumArgs = argTypes.size(); 813 FI->HasExtParameterInfos = !paramInfos.empty(); 814 FI->getArgsBuffer()[0].type = resultType; 815 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 816 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 817 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 818 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 819 return FI; 820 } 821 822 /***/ 823 824 namespace { 825 // ABIArgInfo::Expand implementation. 826 827 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 828 struct TypeExpansion { 829 enum TypeExpansionKind { 830 // Elements of constant arrays are expanded recursively. 831 TEK_ConstantArray, 832 // Record fields are expanded recursively (but if record is a union, only 833 // the field with the largest size is expanded). 834 TEK_Record, 835 // For complex types, real and imaginary parts are expanded recursively. 836 TEK_Complex, 837 // All other types are not expandable. 838 TEK_None 839 }; 840 841 const TypeExpansionKind Kind; 842 843 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 844 virtual ~TypeExpansion() {} 845 }; 846 847 struct ConstantArrayExpansion : TypeExpansion { 848 QualType EltTy; 849 uint64_t NumElts; 850 851 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 852 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 853 static bool classof(const TypeExpansion *TE) { 854 return TE->Kind == TEK_ConstantArray; 855 } 856 }; 857 858 struct RecordExpansion : TypeExpansion { 859 SmallVector<const CXXBaseSpecifier *, 1> Bases; 860 861 SmallVector<const FieldDecl *, 1> Fields; 862 863 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 864 SmallVector<const FieldDecl *, 1> &&Fields) 865 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 866 Fields(std::move(Fields)) {} 867 static bool classof(const TypeExpansion *TE) { 868 return TE->Kind == TEK_Record; 869 } 870 }; 871 872 struct ComplexExpansion : TypeExpansion { 873 QualType EltTy; 874 875 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 876 static bool classof(const TypeExpansion *TE) { 877 return TE->Kind == TEK_Complex; 878 } 879 }; 880 881 struct NoExpansion : TypeExpansion { 882 NoExpansion() : TypeExpansion(TEK_None) {} 883 static bool classof(const TypeExpansion *TE) { 884 return TE->Kind == TEK_None; 885 } 886 }; 887 } // namespace 888 889 static std::unique_ptr<TypeExpansion> 890 getTypeExpansion(QualType Ty, const ASTContext &Context) { 891 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 892 return llvm::make_unique<ConstantArrayExpansion>( 893 AT->getElementType(), AT->getSize().getZExtValue()); 894 } 895 if (const RecordType *RT = Ty->getAs<RecordType>()) { 896 SmallVector<const CXXBaseSpecifier *, 1> Bases; 897 SmallVector<const FieldDecl *, 1> Fields; 898 const RecordDecl *RD = RT->getDecl(); 899 assert(!RD->hasFlexibleArrayMember() && 900 "Cannot expand structure with flexible array."); 901 if (RD->isUnion()) { 902 // Unions can be here only in degenerative cases - all the fields are same 903 // after flattening. Thus we have to use the "largest" field. 904 const FieldDecl *LargestFD = nullptr; 905 CharUnits UnionSize = CharUnits::Zero(); 906 907 for (const auto *FD : RD->fields()) { 908 // Skip zero length bitfields. 909 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 910 continue; 911 assert(!FD->isBitField() && 912 "Cannot expand structure with bit-field members."); 913 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 914 if (UnionSize < FieldSize) { 915 UnionSize = FieldSize; 916 LargestFD = FD; 917 } 918 } 919 if (LargestFD) 920 Fields.push_back(LargestFD); 921 } else { 922 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 923 assert(!CXXRD->isDynamicClass() && 924 "cannot expand vtable pointers in dynamic classes"); 925 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 926 Bases.push_back(&BS); 927 } 928 929 for (const auto *FD : RD->fields()) { 930 // Skip zero length bitfields. 931 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 932 continue; 933 assert(!FD->isBitField() && 934 "Cannot expand structure with bit-field members."); 935 Fields.push_back(FD); 936 } 937 } 938 return llvm::make_unique<RecordExpansion>(std::move(Bases), 939 std::move(Fields)); 940 } 941 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 942 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 943 } 944 return llvm::make_unique<NoExpansion>(); 945 } 946 947 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 948 auto Exp = getTypeExpansion(Ty, Context); 949 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 950 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 951 } 952 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 953 int Res = 0; 954 for (auto BS : RExp->Bases) 955 Res += getExpansionSize(BS->getType(), Context); 956 for (auto FD : RExp->Fields) 957 Res += getExpansionSize(FD->getType(), Context); 958 return Res; 959 } 960 if (isa<ComplexExpansion>(Exp.get())) 961 return 2; 962 assert(isa<NoExpansion>(Exp.get())); 963 return 1; 964 } 965 966 void 967 CodeGenTypes::getExpandedTypes(QualType Ty, 968 SmallVectorImpl<llvm::Type *>::iterator &TI) { 969 auto Exp = getTypeExpansion(Ty, Context); 970 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 971 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 972 getExpandedTypes(CAExp->EltTy, TI); 973 } 974 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 975 for (auto BS : RExp->Bases) 976 getExpandedTypes(BS->getType(), TI); 977 for (auto FD : RExp->Fields) 978 getExpandedTypes(FD->getType(), TI); 979 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 980 llvm::Type *EltTy = ConvertType(CExp->EltTy); 981 *TI++ = EltTy; 982 *TI++ = EltTy; 983 } else { 984 assert(isa<NoExpansion>(Exp.get())); 985 *TI++ = ConvertType(Ty); 986 } 987 } 988 989 static void forConstantArrayExpansion(CodeGenFunction &CGF, 990 ConstantArrayExpansion *CAE, 991 Address BaseAddr, 992 llvm::function_ref<void(Address)> Fn) { 993 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 994 CharUnits EltAlign = 995 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 996 997 for (int i = 0, n = CAE->NumElts; i < n; i++) { 998 llvm::Value *EltAddr = 999 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1000 Fn(Address(EltAddr, EltAlign)); 1001 } 1002 } 1003 1004 void CodeGenFunction::ExpandTypeFromArgs( 1005 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 1006 assert(LV.isSimple() && 1007 "Unexpected non-simple lvalue during struct expansion."); 1008 1009 auto Exp = getTypeExpansion(Ty, getContext()); 1010 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1011 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 1012 [&](Address EltAddr) { 1013 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1014 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1015 }); 1016 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1017 Address This = LV.getAddress(); 1018 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1019 // Perform a single step derived-to-base conversion. 1020 Address Base = 1021 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1022 /*NullCheckValue=*/false, SourceLocation()); 1023 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1024 1025 // Recurse onto bases. 1026 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1027 } 1028 for (auto FD : RExp->Fields) { 1029 // FIXME: What are the right qualifiers here? 1030 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1031 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1032 } 1033 } else if (isa<ComplexExpansion>(Exp.get())) { 1034 auto realValue = *AI++; 1035 auto imagValue = *AI++; 1036 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1037 } else { 1038 assert(isa<NoExpansion>(Exp.get())); 1039 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1040 } 1041 } 1042 1043 void CodeGenFunction::ExpandTypeToArgs( 1044 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1045 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1046 auto Exp = getTypeExpansion(Ty, getContext()); 1047 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1048 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1049 : Arg.getKnownRValue().getAggregateAddress(); 1050 forConstantArrayExpansion( 1051 *this, CAExp, Addr, [&](Address EltAddr) { 1052 CallArg EltArg = CallArg( 1053 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1054 CAExp->EltTy); 1055 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1056 IRCallArgPos); 1057 }); 1058 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1059 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1060 : Arg.getKnownRValue().getAggregateAddress(); 1061 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1062 // Perform a single step derived-to-base conversion. 1063 Address Base = 1064 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1065 /*NullCheckValue=*/false, SourceLocation()); 1066 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1067 1068 // Recurse onto bases. 1069 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1070 IRCallArgPos); 1071 } 1072 1073 LValue LV = MakeAddrLValue(This, Ty); 1074 for (auto FD : RExp->Fields) { 1075 CallArg FldArg = 1076 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1077 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1078 IRCallArgPos); 1079 } 1080 } else if (isa<ComplexExpansion>(Exp.get())) { 1081 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1082 IRCallArgs[IRCallArgPos++] = CV.first; 1083 IRCallArgs[IRCallArgPos++] = CV.second; 1084 } else { 1085 assert(isa<NoExpansion>(Exp.get())); 1086 auto RV = Arg.getKnownRValue(); 1087 assert(RV.isScalar() && 1088 "Unexpected non-scalar rvalue during struct expansion."); 1089 1090 // Insert a bitcast as needed. 1091 llvm::Value *V = RV.getScalarVal(); 1092 if (IRCallArgPos < IRFuncTy->getNumParams() && 1093 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1094 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1095 1096 IRCallArgs[IRCallArgPos++] = V; 1097 } 1098 } 1099 1100 /// Create a temporary allocation for the purposes of coercion. 1101 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1102 CharUnits MinAlign) { 1103 // Don't use an alignment that's worse than what LLVM would prefer. 1104 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1105 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1106 1107 return CGF.CreateTempAlloca(Ty, Align); 1108 } 1109 1110 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1111 /// accessing some number of bytes out of it, try to gep into the struct to get 1112 /// at its inner goodness. Dive as deep as possible without entering an element 1113 /// with an in-memory size smaller than DstSize. 1114 static Address 1115 EnterStructPointerForCoercedAccess(Address SrcPtr, 1116 llvm::StructType *SrcSTy, 1117 uint64_t DstSize, CodeGenFunction &CGF) { 1118 // We can't dive into a zero-element struct. 1119 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1120 1121 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1122 1123 // If the first elt is at least as large as what we're looking for, or if the 1124 // first element is the same size as the whole struct, we can enter it. The 1125 // comparison must be made on the store size and not the alloca size. Using 1126 // the alloca size may overstate the size of the load. 1127 uint64_t FirstEltSize = 1128 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1129 if (FirstEltSize < DstSize && 1130 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1131 return SrcPtr; 1132 1133 // GEP into the first element. 1134 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 1135 1136 // If the first element is a struct, recurse. 1137 llvm::Type *SrcTy = SrcPtr.getElementType(); 1138 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1139 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1140 1141 return SrcPtr; 1142 } 1143 1144 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1145 /// are either integers or pointers. This does a truncation of the value if it 1146 /// is too large or a zero extension if it is too small. 1147 /// 1148 /// This behaves as if the value were coerced through memory, so on big-endian 1149 /// targets the high bits are preserved in a truncation, while little-endian 1150 /// targets preserve the low bits. 1151 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1152 llvm::Type *Ty, 1153 CodeGenFunction &CGF) { 1154 if (Val->getType() == Ty) 1155 return Val; 1156 1157 if (isa<llvm::PointerType>(Val->getType())) { 1158 // If this is Pointer->Pointer avoid conversion to and from int. 1159 if (isa<llvm::PointerType>(Ty)) 1160 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1161 1162 // Convert the pointer to an integer so we can play with its width. 1163 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1164 } 1165 1166 llvm::Type *DestIntTy = Ty; 1167 if (isa<llvm::PointerType>(DestIntTy)) 1168 DestIntTy = CGF.IntPtrTy; 1169 1170 if (Val->getType() != DestIntTy) { 1171 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1172 if (DL.isBigEndian()) { 1173 // Preserve the high bits on big-endian targets. 1174 // That is what memory coercion does. 1175 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1176 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1177 1178 if (SrcSize > DstSize) { 1179 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1180 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1181 } else { 1182 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1183 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1184 } 1185 } else { 1186 // Little-endian targets preserve the low bits. No shifts required. 1187 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1188 } 1189 } 1190 1191 if (isa<llvm::PointerType>(Ty)) 1192 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1193 return Val; 1194 } 1195 1196 1197 1198 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1199 /// a pointer to an object of type \arg Ty, known to be aligned to 1200 /// \arg SrcAlign bytes. 1201 /// 1202 /// This safely handles the case when the src type is smaller than the 1203 /// destination type; in this situation the values of bits which not 1204 /// present in the src are undefined. 1205 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1206 CodeGenFunction &CGF) { 1207 llvm::Type *SrcTy = Src.getElementType(); 1208 1209 // If SrcTy and Ty are the same, just do a load. 1210 if (SrcTy == Ty) 1211 return CGF.Builder.CreateLoad(Src); 1212 1213 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1214 1215 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1216 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1217 SrcTy = Src.getType()->getElementType(); 1218 } 1219 1220 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1221 1222 // If the source and destination are integer or pointer types, just do an 1223 // extension or truncation to the desired type. 1224 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1225 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1226 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1227 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1228 } 1229 1230 // If load is legal, just bitcast the src pointer. 1231 if (SrcSize >= DstSize) { 1232 // Generally SrcSize is never greater than DstSize, since this means we are 1233 // losing bits. However, this can happen in cases where the structure has 1234 // additional padding, for example due to a user specified alignment. 1235 // 1236 // FIXME: Assert that we aren't truncating non-padding bits when have access 1237 // to that information. 1238 Src = CGF.Builder.CreateBitCast(Src, 1239 Ty->getPointerTo(Src.getAddressSpace())); 1240 return CGF.Builder.CreateLoad(Src); 1241 } 1242 1243 // Otherwise do coercion through memory. This is stupid, but simple. 1244 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1245 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy); 1246 Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.AllocaInt8PtrTy); 1247 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1248 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1249 false); 1250 return CGF.Builder.CreateLoad(Tmp); 1251 } 1252 1253 // Function to store a first-class aggregate into memory. We prefer to 1254 // store the elements rather than the aggregate to be more friendly to 1255 // fast-isel. 1256 // FIXME: Do we need to recurse here? 1257 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1258 Address Dest, bool DestIsVolatile) { 1259 // Prefer scalar stores to first-class aggregate stores. 1260 if (llvm::StructType *STy = 1261 dyn_cast<llvm::StructType>(Val->getType())) { 1262 const llvm::StructLayout *Layout = 1263 CGF.CGM.getDataLayout().getStructLayout(STy); 1264 1265 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1266 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1267 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1268 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1269 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1270 } 1271 } else { 1272 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1273 } 1274 } 1275 1276 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1277 /// where the source and destination may have different types. The 1278 /// destination is known to be aligned to \arg DstAlign bytes. 1279 /// 1280 /// This safely handles the case when the src type is larger than the 1281 /// destination type; the upper bits of the src will be lost. 1282 static void CreateCoercedStore(llvm::Value *Src, 1283 Address Dst, 1284 bool DstIsVolatile, 1285 CodeGenFunction &CGF) { 1286 llvm::Type *SrcTy = Src->getType(); 1287 llvm::Type *DstTy = Dst.getType()->getElementType(); 1288 if (SrcTy == DstTy) { 1289 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1290 return; 1291 } 1292 1293 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1294 1295 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1296 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1297 DstTy = Dst.getType()->getElementType(); 1298 } 1299 1300 // If the source and destination are integer or pointer types, just do an 1301 // extension or truncation to the desired type. 1302 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1303 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1304 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1305 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1306 return; 1307 } 1308 1309 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1310 1311 // If store is legal, just bitcast the src pointer. 1312 if (SrcSize <= DstSize) { 1313 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1314 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1315 } else { 1316 // Otherwise do coercion through memory. This is stupid, but 1317 // simple. 1318 1319 // Generally SrcSize is never greater than DstSize, since this means we are 1320 // losing bits. However, this can happen in cases where the structure has 1321 // additional padding, for example due to a user specified alignment. 1322 // 1323 // FIXME: Assert that we aren't truncating non-padding bits when have access 1324 // to that information. 1325 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1326 CGF.Builder.CreateStore(Src, Tmp); 1327 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy); 1328 Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.AllocaInt8PtrTy); 1329 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1330 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1331 false); 1332 } 1333 } 1334 1335 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1336 const ABIArgInfo &info) { 1337 if (unsigned offset = info.getDirectOffset()) { 1338 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1339 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1340 CharUnits::fromQuantity(offset)); 1341 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1342 } 1343 return addr; 1344 } 1345 1346 namespace { 1347 1348 /// Encapsulates information about the way function arguments from 1349 /// CGFunctionInfo should be passed to actual LLVM IR function. 1350 class ClangToLLVMArgMapping { 1351 static const unsigned InvalidIndex = ~0U; 1352 unsigned InallocaArgNo; 1353 unsigned SRetArgNo; 1354 unsigned TotalIRArgs; 1355 1356 /// Arguments of LLVM IR function corresponding to single Clang argument. 1357 struct IRArgs { 1358 unsigned PaddingArgIndex; 1359 // Argument is expanded to IR arguments at positions 1360 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1361 unsigned FirstArgIndex; 1362 unsigned NumberOfArgs; 1363 1364 IRArgs() 1365 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1366 NumberOfArgs(0) {} 1367 }; 1368 1369 SmallVector<IRArgs, 8> ArgInfo; 1370 1371 public: 1372 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1373 bool OnlyRequiredArgs = false) 1374 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1375 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1376 construct(Context, FI, OnlyRequiredArgs); 1377 } 1378 1379 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1380 unsigned getInallocaArgNo() const { 1381 assert(hasInallocaArg()); 1382 return InallocaArgNo; 1383 } 1384 1385 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1386 unsigned getSRetArgNo() const { 1387 assert(hasSRetArg()); 1388 return SRetArgNo; 1389 } 1390 1391 unsigned totalIRArgs() const { return TotalIRArgs; } 1392 1393 bool hasPaddingArg(unsigned ArgNo) const { 1394 assert(ArgNo < ArgInfo.size()); 1395 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1396 } 1397 unsigned getPaddingArgNo(unsigned ArgNo) const { 1398 assert(hasPaddingArg(ArgNo)); 1399 return ArgInfo[ArgNo].PaddingArgIndex; 1400 } 1401 1402 /// Returns index of first IR argument corresponding to ArgNo, and their 1403 /// quantity. 1404 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1405 assert(ArgNo < ArgInfo.size()); 1406 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1407 ArgInfo[ArgNo].NumberOfArgs); 1408 } 1409 1410 private: 1411 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1412 bool OnlyRequiredArgs); 1413 }; 1414 1415 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1416 const CGFunctionInfo &FI, 1417 bool OnlyRequiredArgs) { 1418 unsigned IRArgNo = 0; 1419 bool SwapThisWithSRet = false; 1420 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1421 1422 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1423 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1424 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1425 } 1426 1427 unsigned ArgNo = 0; 1428 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1429 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1430 ++I, ++ArgNo) { 1431 assert(I != FI.arg_end()); 1432 QualType ArgType = I->type; 1433 const ABIArgInfo &AI = I->info; 1434 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1435 auto &IRArgs = ArgInfo[ArgNo]; 1436 1437 if (AI.getPaddingType()) 1438 IRArgs.PaddingArgIndex = IRArgNo++; 1439 1440 switch (AI.getKind()) { 1441 case ABIArgInfo::Extend: 1442 case ABIArgInfo::Direct: { 1443 // FIXME: handle sseregparm someday... 1444 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1445 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1446 IRArgs.NumberOfArgs = STy->getNumElements(); 1447 } else { 1448 IRArgs.NumberOfArgs = 1; 1449 } 1450 break; 1451 } 1452 case ABIArgInfo::Indirect: 1453 IRArgs.NumberOfArgs = 1; 1454 break; 1455 case ABIArgInfo::Ignore: 1456 case ABIArgInfo::InAlloca: 1457 // ignore and inalloca doesn't have matching LLVM parameters. 1458 IRArgs.NumberOfArgs = 0; 1459 break; 1460 case ABIArgInfo::CoerceAndExpand: 1461 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1462 break; 1463 case ABIArgInfo::Expand: 1464 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1465 break; 1466 } 1467 1468 if (IRArgs.NumberOfArgs > 0) { 1469 IRArgs.FirstArgIndex = IRArgNo; 1470 IRArgNo += IRArgs.NumberOfArgs; 1471 } 1472 1473 // Skip over the sret parameter when it comes second. We already handled it 1474 // above. 1475 if (IRArgNo == 1 && SwapThisWithSRet) 1476 IRArgNo++; 1477 } 1478 assert(ArgNo == ArgInfo.size()); 1479 1480 if (FI.usesInAlloca()) 1481 InallocaArgNo = IRArgNo++; 1482 1483 TotalIRArgs = IRArgNo; 1484 } 1485 } // namespace 1486 1487 /***/ 1488 1489 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1490 const auto &RI = FI.getReturnInfo(); 1491 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1492 } 1493 1494 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1495 return ReturnTypeUsesSRet(FI) && 1496 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1497 } 1498 1499 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1500 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1501 switch (BT->getKind()) { 1502 default: 1503 return false; 1504 case BuiltinType::Float: 1505 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1506 case BuiltinType::Double: 1507 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1508 case BuiltinType::LongDouble: 1509 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1510 } 1511 } 1512 1513 return false; 1514 } 1515 1516 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1517 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1518 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1519 if (BT->getKind() == BuiltinType::LongDouble) 1520 return getTarget().useObjCFP2RetForComplexLongDouble(); 1521 } 1522 } 1523 1524 return false; 1525 } 1526 1527 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1528 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1529 return GetFunctionType(FI); 1530 } 1531 1532 llvm::FunctionType * 1533 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1534 1535 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1536 (void)Inserted; 1537 assert(Inserted && "Recursively being processed?"); 1538 1539 llvm::Type *resultType = nullptr; 1540 const ABIArgInfo &retAI = FI.getReturnInfo(); 1541 switch (retAI.getKind()) { 1542 case ABIArgInfo::Expand: 1543 llvm_unreachable("Invalid ABI kind for return argument"); 1544 1545 case ABIArgInfo::Extend: 1546 case ABIArgInfo::Direct: 1547 resultType = retAI.getCoerceToType(); 1548 break; 1549 1550 case ABIArgInfo::InAlloca: 1551 if (retAI.getInAllocaSRet()) { 1552 // sret things on win32 aren't void, they return the sret pointer. 1553 QualType ret = FI.getReturnType(); 1554 llvm::Type *ty = ConvertType(ret); 1555 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1556 resultType = llvm::PointerType::get(ty, addressSpace); 1557 } else { 1558 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1559 } 1560 break; 1561 1562 case ABIArgInfo::Indirect: 1563 case ABIArgInfo::Ignore: 1564 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1565 break; 1566 1567 case ABIArgInfo::CoerceAndExpand: 1568 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1569 break; 1570 } 1571 1572 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1573 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1574 1575 // Add type for sret argument. 1576 if (IRFunctionArgs.hasSRetArg()) { 1577 QualType Ret = FI.getReturnType(); 1578 llvm::Type *Ty = ConvertType(Ret); 1579 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1580 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1581 llvm::PointerType::get(Ty, AddressSpace); 1582 } 1583 1584 // Add type for inalloca argument. 1585 if (IRFunctionArgs.hasInallocaArg()) { 1586 auto ArgStruct = FI.getArgStruct(); 1587 assert(ArgStruct); 1588 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1589 } 1590 1591 // Add in all of the required arguments. 1592 unsigned ArgNo = 0; 1593 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1594 ie = it + FI.getNumRequiredArgs(); 1595 for (; it != ie; ++it, ++ArgNo) { 1596 const ABIArgInfo &ArgInfo = it->info; 1597 1598 // Insert a padding type to ensure proper alignment. 1599 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1600 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1601 ArgInfo.getPaddingType(); 1602 1603 unsigned FirstIRArg, NumIRArgs; 1604 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1605 1606 switch (ArgInfo.getKind()) { 1607 case ABIArgInfo::Ignore: 1608 case ABIArgInfo::InAlloca: 1609 assert(NumIRArgs == 0); 1610 break; 1611 1612 case ABIArgInfo::Indirect: { 1613 assert(NumIRArgs == 1); 1614 // indirect arguments are always on the stack, which is alloca addr space. 1615 llvm::Type *LTy = ConvertTypeForMem(it->type); 1616 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1617 CGM.getDataLayout().getAllocaAddrSpace()); 1618 break; 1619 } 1620 1621 case ABIArgInfo::Extend: 1622 case ABIArgInfo::Direct: { 1623 // Fast-isel and the optimizer generally like scalar values better than 1624 // FCAs, so we flatten them if this is safe to do for this argument. 1625 llvm::Type *argType = ArgInfo.getCoerceToType(); 1626 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1627 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1628 assert(NumIRArgs == st->getNumElements()); 1629 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1630 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1631 } else { 1632 assert(NumIRArgs == 1); 1633 ArgTypes[FirstIRArg] = argType; 1634 } 1635 break; 1636 } 1637 1638 case ABIArgInfo::CoerceAndExpand: { 1639 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1640 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1641 *ArgTypesIter++ = EltTy; 1642 } 1643 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1644 break; 1645 } 1646 1647 case ABIArgInfo::Expand: 1648 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1649 getExpandedTypes(it->type, ArgTypesIter); 1650 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1651 break; 1652 } 1653 } 1654 1655 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1656 assert(Erased && "Not in set?"); 1657 1658 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1659 } 1660 1661 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1662 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1663 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1664 1665 if (!isFuncTypeConvertible(FPT)) 1666 return llvm::StructType::get(getLLVMContext()); 1667 1668 const CGFunctionInfo *Info; 1669 if (isa<CXXDestructorDecl>(MD)) 1670 Info = 1671 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1672 else 1673 Info = &arrangeCXXMethodDeclaration(MD); 1674 return GetFunctionType(*Info); 1675 } 1676 1677 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1678 llvm::AttrBuilder &FuncAttrs, 1679 const FunctionProtoType *FPT) { 1680 if (!FPT) 1681 return; 1682 1683 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1684 FPT->isNothrow(Ctx)) 1685 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1686 } 1687 1688 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1689 bool AttrOnCallSite, 1690 llvm::AttrBuilder &FuncAttrs) { 1691 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1692 if (!HasOptnone) { 1693 if (CodeGenOpts.OptimizeSize) 1694 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1695 if (CodeGenOpts.OptimizeSize == 2) 1696 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1697 } 1698 1699 if (CodeGenOpts.DisableRedZone) 1700 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1701 if (CodeGenOpts.NoImplicitFloat) 1702 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1703 1704 if (AttrOnCallSite) { 1705 // Attributes that should go on the call site only. 1706 if (!CodeGenOpts.SimplifyLibCalls || 1707 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1708 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1709 if (!CodeGenOpts.TrapFuncName.empty()) 1710 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1711 } else { 1712 // Attributes that should go on the function, but not the call site. 1713 if (!CodeGenOpts.DisableFPElim) { 1714 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1715 } else if (CodeGenOpts.OmitLeafFramePointer) { 1716 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1717 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1718 } else { 1719 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1720 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1721 } 1722 1723 FuncAttrs.addAttribute("less-precise-fpmad", 1724 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1725 1726 if (!CodeGenOpts.FPDenormalMode.empty()) 1727 FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); 1728 1729 FuncAttrs.addAttribute("no-trapping-math", 1730 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1731 1732 // TODO: Are these all needed? 1733 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1734 FuncAttrs.addAttribute("no-infs-fp-math", 1735 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1736 FuncAttrs.addAttribute("no-nans-fp-math", 1737 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1738 FuncAttrs.addAttribute("unsafe-fp-math", 1739 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1740 FuncAttrs.addAttribute("use-soft-float", 1741 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1742 FuncAttrs.addAttribute("stack-protector-buffer-size", 1743 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1744 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1745 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1746 FuncAttrs.addAttribute( 1747 "correctly-rounded-divide-sqrt-fp-math", 1748 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1749 1750 // TODO: Reciprocal estimate codegen options should apply to instructions? 1751 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1752 if (!Recips.empty()) 1753 FuncAttrs.addAttribute("reciprocal-estimates", 1754 llvm::join(Recips, ",")); 1755 1756 if (!CodeGenOpts.PreferVectorWidth.empty() && 1757 CodeGenOpts.PreferVectorWidth != "none") 1758 FuncAttrs.addAttribute("prefer-vector-width", 1759 CodeGenOpts.PreferVectorWidth); 1760 1761 if (CodeGenOpts.StackRealignment) 1762 FuncAttrs.addAttribute("stackrealign"); 1763 if (CodeGenOpts.Backchain) 1764 FuncAttrs.addAttribute("backchain"); 1765 } 1766 1767 if (getLangOpts().assumeFunctionsAreConvergent()) { 1768 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1769 // convergent (meaning, they may call an intrinsically convergent op, such 1770 // as __syncthreads() / barrier(), and so can't have certain optimizations 1771 // applied around them). LLVM will remove this attribute where it safely 1772 // can. 1773 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1774 } 1775 1776 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1777 // Exceptions aren't supported in CUDA device code. 1778 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1779 1780 // Respect -fcuda-flush-denormals-to-zero. 1781 if (getLangOpts().CUDADeviceFlushDenormalsToZero) 1782 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1783 } 1784 } 1785 1786 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1787 llvm::AttrBuilder FuncAttrs; 1788 ConstructDefaultFnAttrList(F.getName(), 1789 F.hasFnAttribute(llvm::Attribute::OptimizeNone), 1790 /* AttrOnCallsite = */ false, FuncAttrs); 1791 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1792 } 1793 1794 void CodeGenModule::ConstructAttributeList( 1795 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1796 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1797 llvm::AttrBuilder FuncAttrs; 1798 llvm::AttrBuilder RetAttrs; 1799 1800 CallingConv = FI.getEffectiveCallingConvention(); 1801 if (FI.isNoReturn()) 1802 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1803 1804 // If we have information about the function prototype, we can learn 1805 // attributes form there. 1806 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1807 CalleeInfo.getCalleeFunctionProtoType()); 1808 1809 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 1810 1811 bool HasOptnone = false; 1812 // FIXME: handle sseregparm someday... 1813 if (TargetDecl) { 1814 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1815 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1816 if (TargetDecl->hasAttr<NoThrowAttr>()) 1817 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1818 if (TargetDecl->hasAttr<NoReturnAttr>()) 1819 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1820 if (TargetDecl->hasAttr<ColdAttr>()) 1821 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1822 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1823 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1824 if (TargetDecl->hasAttr<ConvergentAttr>()) 1825 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1826 1827 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1828 AddAttributesFromFunctionProtoType( 1829 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1830 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1831 // These attributes are not inherited by overloads. 1832 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1833 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1834 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1835 } 1836 1837 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1838 if (TargetDecl->hasAttr<ConstAttr>()) { 1839 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1840 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1841 } else if (TargetDecl->hasAttr<PureAttr>()) { 1842 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1843 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1844 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1845 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1846 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1847 } 1848 if (TargetDecl->hasAttr<RestrictAttr>()) 1849 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1850 if (TargetDecl->hasAttr<ReturnsNonNullAttr>()) 1851 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1852 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1853 FuncAttrs.addAttribute("no_caller_saved_registers"); 1854 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1855 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1856 1857 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1858 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1859 Optional<unsigned> NumElemsParam; 1860 if (AllocSize->getNumElemsParam().isValid()) 1861 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 1862 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 1863 NumElemsParam); 1864 } 1865 } 1866 1867 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1868 1869 if (CodeGenOpts.EnableSegmentedStacks && 1870 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1871 FuncAttrs.addAttribute("split-stack"); 1872 1873 // Add NonLazyBind attribute to function declarations when -fno-plt 1874 // is used. 1875 if (TargetDecl && CodeGenOpts.NoPLT) { 1876 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1877 if (!Fn->isDefined() && !AttrOnCallSite) { 1878 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 1879 } 1880 } 1881 } 1882 1883 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) { 1884 if (getLangOpts().OpenCLVersion <= 120) { 1885 // OpenCL v1.2 Work groups are always uniform 1886 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 1887 } else { 1888 // OpenCL v2.0 Work groups may be whether uniform or not. 1889 // '-cl-uniform-work-group-size' compile option gets a hint 1890 // to the compiler that the global work-size be a multiple of 1891 // the work-group size specified to clEnqueueNDRangeKernel 1892 // (i.e. work groups are uniform). 1893 FuncAttrs.addAttribute("uniform-work-group-size", 1894 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 1895 } 1896 } 1897 1898 if (!AttrOnCallSite) { 1899 bool DisableTailCalls = false; 1900 1901 if (CodeGenOpts.DisableTailCalls) 1902 DisableTailCalls = true; 1903 else if (TargetDecl) { 1904 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 1905 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 1906 DisableTailCalls = true; 1907 else if (CodeGenOpts.NoEscapingBlockTailCalls) { 1908 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 1909 if (!BD->doesNotEscape()) 1910 DisableTailCalls = true; 1911 } 1912 } 1913 1914 FuncAttrs.addAttribute("disable-tail-calls", 1915 llvm::toStringRef(DisableTailCalls)); 1916 GetCPUAndFeaturesAttributes(TargetDecl, FuncAttrs); 1917 } 1918 1919 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1920 1921 QualType RetTy = FI.getReturnType(); 1922 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1923 switch (RetAI.getKind()) { 1924 case ABIArgInfo::Extend: 1925 if (RetAI.isSignExt()) 1926 RetAttrs.addAttribute(llvm::Attribute::SExt); 1927 else 1928 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1929 LLVM_FALLTHROUGH; 1930 case ABIArgInfo::Direct: 1931 if (RetAI.getInReg()) 1932 RetAttrs.addAttribute(llvm::Attribute::InReg); 1933 break; 1934 case ABIArgInfo::Ignore: 1935 break; 1936 1937 case ABIArgInfo::InAlloca: 1938 case ABIArgInfo::Indirect: { 1939 // inalloca and sret disable readnone and readonly 1940 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1941 .removeAttribute(llvm::Attribute::ReadNone); 1942 break; 1943 } 1944 1945 case ABIArgInfo::CoerceAndExpand: 1946 break; 1947 1948 case ABIArgInfo::Expand: 1949 llvm_unreachable("Invalid ABI kind for return argument"); 1950 } 1951 1952 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1953 QualType PTy = RefTy->getPointeeType(); 1954 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1955 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1956 .getQuantity()); 1957 else if (getContext().getTargetAddressSpace(PTy) == 0) 1958 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1959 } 1960 1961 bool hasUsedSRet = false; 1962 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 1963 1964 // Attach attributes to sret. 1965 if (IRFunctionArgs.hasSRetArg()) { 1966 llvm::AttrBuilder SRETAttrs; 1967 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1968 hasUsedSRet = true; 1969 if (RetAI.getInReg()) 1970 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1971 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 1972 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 1973 } 1974 1975 // Attach attributes to inalloca argument. 1976 if (IRFunctionArgs.hasInallocaArg()) { 1977 llvm::AttrBuilder Attrs; 1978 Attrs.addAttribute(llvm::Attribute::InAlloca); 1979 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 1980 llvm::AttributeSet::get(getLLVMContext(), Attrs); 1981 } 1982 1983 unsigned ArgNo = 0; 1984 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 1985 E = FI.arg_end(); 1986 I != E; ++I, ++ArgNo) { 1987 QualType ParamType = I->type; 1988 const ABIArgInfo &AI = I->info; 1989 llvm::AttrBuilder Attrs; 1990 1991 // Add attribute for padding argument, if necessary. 1992 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 1993 if (AI.getPaddingInReg()) { 1994 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1995 llvm::AttributeSet::get( 1996 getLLVMContext(), 1997 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 1998 } 1999 } 2000 2001 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2002 // have the corresponding parameter variable. It doesn't make 2003 // sense to do it here because parameters are so messed up. 2004 switch (AI.getKind()) { 2005 case ABIArgInfo::Extend: 2006 if (AI.isSignExt()) 2007 Attrs.addAttribute(llvm::Attribute::SExt); 2008 else 2009 Attrs.addAttribute(llvm::Attribute::ZExt); 2010 LLVM_FALLTHROUGH; 2011 case ABIArgInfo::Direct: 2012 if (ArgNo == 0 && FI.isChainCall()) 2013 Attrs.addAttribute(llvm::Attribute::Nest); 2014 else if (AI.getInReg()) 2015 Attrs.addAttribute(llvm::Attribute::InReg); 2016 break; 2017 2018 case ABIArgInfo::Indirect: { 2019 if (AI.getInReg()) 2020 Attrs.addAttribute(llvm::Attribute::InReg); 2021 2022 if (AI.getIndirectByVal()) 2023 Attrs.addAttribute(llvm::Attribute::ByVal); 2024 2025 CharUnits Align = AI.getIndirectAlign(); 2026 2027 // In a byval argument, it is important that the required 2028 // alignment of the type is honored, as LLVM might be creating a 2029 // *new* stack object, and needs to know what alignment to give 2030 // it. (Sometimes it can deduce a sensible alignment on its own, 2031 // but not if clang decides it must emit a packed struct, or the 2032 // user specifies increased alignment requirements.) 2033 // 2034 // This is different from indirect *not* byval, where the object 2035 // exists already, and the align attribute is purely 2036 // informative. 2037 assert(!Align.isZero()); 2038 2039 // For now, only add this when we have a byval argument. 2040 // TODO: be less lazy about updating test cases. 2041 if (AI.getIndirectByVal()) 2042 Attrs.addAlignmentAttr(Align.getQuantity()); 2043 2044 // byval disables readnone and readonly. 2045 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2046 .removeAttribute(llvm::Attribute::ReadNone); 2047 break; 2048 } 2049 case ABIArgInfo::Ignore: 2050 case ABIArgInfo::Expand: 2051 case ABIArgInfo::CoerceAndExpand: 2052 break; 2053 2054 case ABIArgInfo::InAlloca: 2055 // inalloca disables readnone and readonly. 2056 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2057 .removeAttribute(llvm::Attribute::ReadNone); 2058 continue; 2059 } 2060 2061 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2062 QualType PTy = RefTy->getPointeeType(); 2063 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2064 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2065 .getQuantity()); 2066 else if (getContext().getTargetAddressSpace(PTy) == 0) 2067 Attrs.addAttribute(llvm::Attribute::NonNull); 2068 } 2069 2070 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2071 case ParameterABI::Ordinary: 2072 break; 2073 2074 case ParameterABI::SwiftIndirectResult: { 2075 // Add 'sret' if we haven't already used it for something, but 2076 // only if the result is void. 2077 if (!hasUsedSRet && RetTy->isVoidType()) { 2078 Attrs.addAttribute(llvm::Attribute::StructRet); 2079 hasUsedSRet = true; 2080 } 2081 2082 // Add 'noalias' in either case. 2083 Attrs.addAttribute(llvm::Attribute::NoAlias); 2084 2085 // Add 'dereferenceable' and 'alignment'. 2086 auto PTy = ParamType->getPointeeType(); 2087 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2088 auto info = getContext().getTypeInfoInChars(PTy); 2089 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2090 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 2091 info.second.getQuantity())); 2092 } 2093 break; 2094 } 2095 2096 case ParameterABI::SwiftErrorResult: 2097 Attrs.addAttribute(llvm::Attribute::SwiftError); 2098 break; 2099 2100 case ParameterABI::SwiftContext: 2101 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2102 break; 2103 } 2104 2105 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2106 Attrs.addAttribute(llvm::Attribute::NoCapture); 2107 2108 if (Attrs.hasAttributes()) { 2109 unsigned FirstIRArg, NumIRArgs; 2110 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2111 for (unsigned i = 0; i < NumIRArgs; i++) 2112 ArgAttrs[FirstIRArg + i] = 2113 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2114 } 2115 } 2116 assert(ArgNo == FI.arg_size()); 2117 2118 AttrList = llvm::AttributeList::get( 2119 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2120 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2121 } 2122 2123 /// An argument came in as a promoted argument; demote it back to its 2124 /// declared type. 2125 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2126 const VarDecl *var, 2127 llvm::Value *value) { 2128 llvm::Type *varType = CGF.ConvertType(var->getType()); 2129 2130 // This can happen with promotions that actually don't change the 2131 // underlying type, like the enum promotions. 2132 if (value->getType() == varType) return value; 2133 2134 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2135 && "unexpected promotion type"); 2136 2137 if (isa<llvm::IntegerType>(varType)) 2138 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2139 2140 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2141 } 2142 2143 /// Returns the attribute (either parameter attribute, or function 2144 /// attribute), which declares argument ArgNo to be non-null. 2145 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2146 QualType ArgType, unsigned ArgNo) { 2147 // FIXME: __attribute__((nonnull)) can also be applied to: 2148 // - references to pointers, where the pointee is known to be 2149 // nonnull (apparently a Clang extension) 2150 // - transparent unions containing pointers 2151 // In the former case, LLVM IR cannot represent the constraint. In 2152 // the latter case, we have no guarantee that the transparent union 2153 // is in fact passed as a pointer. 2154 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2155 return nullptr; 2156 // First, check attribute on parameter itself. 2157 if (PVD) { 2158 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2159 return ParmNNAttr; 2160 } 2161 // Check function attributes. 2162 if (!FD) 2163 return nullptr; 2164 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2165 if (NNAttr->isNonNull(ArgNo)) 2166 return NNAttr; 2167 } 2168 return nullptr; 2169 } 2170 2171 namespace { 2172 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2173 Address Temp; 2174 Address Arg; 2175 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2176 void Emit(CodeGenFunction &CGF, Flags flags) override { 2177 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2178 CGF.Builder.CreateStore(errorValue, Arg); 2179 } 2180 }; 2181 } 2182 2183 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2184 llvm::Function *Fn, 2185 const FunctionArgList &Args) { 2186 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2187 // Naked functions don't have prologues. 2188 return; 2189 2190 // If this is an implicit-return-zero function, go ahead and 2191 // initialize the return value. TODO: it might be nice to have 2192 // a more general mechanism for this that didn't require synthesized 2193 // return statements. 2194 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2195 if (FD->hasImplicitReturnZero()) { 2196 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2197 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2198 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2199 Builder.CreateStore(Zero, ReturnValue); 2200 } 2201 } 2202 2203 // FIXME: We no longer need the types from FunctionArgList; lift up and 2204 // simplify. 2205 2206 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2207 // Flattened function arguments. 2208 SmallVector<llvm::Value *, 16> FnArgs; 2209 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2210 for (auto &Arg : Fn->args()) { 2211 FnArgs.push_back(&Arg); 2212 } 2213 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2214 2215 // If we're using inalloca, all the memory arguments are GEPs off of the last 2216 // parameter, which is a pointer to the complete memory area. 2217 Address ArgStruct = Address::invalid(); 2218 const llvm::StructLayout *ArgStructLayout = nullptr; 2219 if (IRFunctionArgs.hasInallocaArg()) { 2220 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 2221 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2222 FI.getArgStructAlignment()); 2223 2224 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2225 } 2226 2227 // Name the struct return parameter. 2228 if (IRFunctionArgs.hasSRetArg()) { 2229 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2230 AI->setName("agg.result"); 2231 AI->addAttr(llvm::Attribute::NoAlias); 2232 } 2233 2234 // Track if we received the parameter as a pointer (indirect, byval, or 2235 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2236 // into a local alloca for us. 2237 SmallVector<ParamValue, 16> ArgVals; 2238 ArgVals.reserve(Args.size()); 2239 2240 // Create a pointer value for every parameter declaration. This usually 2241 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2242 // any cleanups or do anything that might unwind. We do that separately, so 2243 // we can push the cleanups in the correct order for the ABI. 2244 assert(FI.arg_size() == Args.size() && 2245 "Mismatch between function signature & arguments."); 2246 unsigned ArgNo = 0; 2247 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2248 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2249 i != e; ++i, ++info_it, ++ArgNo) { 2250 const VarDecl *Arg = *i; 2251 const ABIArgInfo &ArgI = info_it->info; 2252 2253 bool isPromoted = 2254 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2255 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2256 // the parameter is promoted. In this case we convert to 2257 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2258 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2259 assert(hasScalarEvaluationKind(Ty) == 2260 hasScalarEvaluationKind(Arg->getType())); 2261 2262 unsigned FirstIRArg, NumIRArgs; 2263 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2264 2265 switch (ArgI.getKind()) { 2266 case ABIArgInfo::InAlloca: { 2267 assert(NumIRArgs == 0); 2268 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2269 CharUnits FieldOffset = 2270 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 2271 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 2272 Arg->getName()); 2273 ArgVals.push_back(ParamValue::forIndirect(V)); 2274 break; 2275 } 2276 2277 case ABIArgInfo::Indirect: { 2278 assert(NumIRArgs == 1); 2279 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2280 2281 if (!hasScalarEvaluationKind(Ty)) { 2282 // Aggregates and complex variables are accessed by reference. All we 2283 // need to do is realign the value, if requested. 2284 Address V = ParamAddr; 2285 if (ArgI.getIndirectRealign()) { 2286 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2287 2288 // Copy from the incoming argument pointer to the temporary with the 2289 // appropriate alignment. 2290 // 2291 // FIXME: We should have a common utility for generating an aggregate 2292 // copy. 2293 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2294 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2295 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2296 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2297 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2298 V = AlignedTemp; 2299 } 2300 ArgVals.push_back(ParamValue::forIndirect(V)); 2301 } else { 2302 // Load scalar value from indirect argument. 2303 llvm::Value *V = 2304 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart()); 2305 2306 if (isPromoted) 2307 V = emitArgumentDemotion(*this, Arg, V); 2308 ArgVals.push_back(ParamValue::forDirect(V)); 2309 } 2310 break; 2311 } 2312 2313 case ABIArgInfo::Extend: 2314 case ABIArgInfo::Direct: { 2315 2316 // If we have the trivial case, handle it with no muss and fuss. 2317 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2318 ArgI.getCoerceToType() == ConvertType(Ty) && 2319 ArgI.getDirectOffset() == 0) { 2320 assert(NumIRArgs == 1); 2321 llvm::Value *V = FnArgs[FirstIRArg]; 2322 auto AI = cast<llvm::Argument>(V); 2323 2324 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2325 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2326 PVD->getFunctionScopeIndex())) 2327 AI->addAttr(llvm::Attribute::NonNull); 2328 2329 QualType OTy = PVD->getOriginalType(); 2330 if (const auto *ArrTy = 2331 getContext().getAsConstantArrayType(OTy)) { 2332 // A C99 array parameter declaration with the static keyword also 2333 // indicates dereferenceability, and if the size is constant we can 2334 // use the dereferenceable attribute (which requires the size in 2335 // bytes). 2336 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2337 QualType ETy = ArrTy->getElementType(); 2338 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2339 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2340 ArrSize) { 2341 llvm::AttrBuilder Attrs; 2342 Attrs.addDereferenceableAttr( 2343 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2344 AI->addAttrs(Attrs); 2345 } else if (getContext().getTargetAddressSpace(ETy) == 0) { 2346 AI->addAttr(llvm::Attribute::NonNull); 2347 } 2348 } 2349 } else if (const auto *ArrTy = 2350 getContext().getAsVariableArrayType(OTy)) { 2351 // For C99 VLAs with the static keyword, we don't know the size so 2352 // we can't use the dereferenceable attribute, but in addrspace(0) 2353 // we know that it must be nonnull. 2354 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2355 !getContext().getTargetAddressSpace(ArrTy->getElementType())) 2356 AI->addAttr(llvm::Attribute::NonNull); 2357 } 2358 2359 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2360 if (!AVAttr) 2361 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2362 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2363 if (AVAttr) { 2364 llvm::Value *AlignmentValue = 2365 EmitScalarExpr(AVAttr->getAlignment()); 2366 llvm::ConstantInt *AlignmentCI = 2367 cast<llvm::ConstantInt>(AlignmentValue); 2368 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), 2369 +llvm::Value::MaximumAlignment); 2370 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2371 } 2372 } 2373 2374 if (Arg->getType().isRestrictQualified()) 2375 AI->addAttr(llvm::Attribute::NoAlias); 2376 2377 // LLVM expects swifterror parameters to be used in very restricted 2378 // ways. Copy the value into a less-restricted temporary. 2379 if (FI.getExtParameterInfo(ArgNo).getABI() 2380 == ParameterABI::SwiftErrorResult) { 2381 QualType pointeeTy = Ty->getPointeeType(); 2382 assert(pointeeTy->isPointerType()); 2383 Address temp = 2384 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2385 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2386 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2387 Builder.CreateStore(incomingErrorValue, temp); 2388 V = temp.getPointer(); 2389 2390 // Push a cleanup to copy the value back at the end of the function. 2391 // The convention does not guarantee that the value will be written 2392 // back if the function exits with an unwind exception. 2393 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2394 } 2395 2396 // Ensure the argument is the correct type. 2397 if (V->getType() != ArgI.getCoerceToType()) 2398 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2399 2400 if (isPromoted) 2401 V = emitArgumentDemotion(*this, Arg, V); 2402 2403 // Because of merging of function types from multiple decls it is 2404 // possible for the type of an argument to not match the corresponding 2405 // type in the function type. Since we are codegening the callee 2406 // in here, add a cast to the argument type. 2407 llvm::Type *LTy = ConvertType(Arg->getType()); 2408 if (V->getType() != LTy) 2409 V = Builder.CreateBitCast(V, LTy); 2410 2411 ArgVals.push_back(ParamValue::forDirect(V)); 2412 break; 2413 } 2414 2415 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2416 Arg->getName()); 2417 2418 // Pointer to store into. 2419 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2420 2421 // Fast-isel and the optimizer generally like scalar values better than 2422 // FCAs, so we flatten them if this is safe to do for this argument. 2423 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2424 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2425 STy->getNumElements() > 1) { 2426 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2427 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2428 llvm::Type *DstTy = Ptr.getElementType(); 2429 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2430 2431 Address AddrToStoreInto = Address::invalid(); 2432 if (SrcSize <= DstSize) { 2433 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2434 } else { 2435 AddrToStoreInto = 2436 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2437 } 2438 2439 assert(STy->getNumElements() == NumIRArgs); 2440 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2441 auto AI = FnArgs[FirstIRArg + i]; 2442 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2443 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2444 Address EltPtr = 2445 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2446 Builder.CreateStore(AI, EltPtr); 2447 } 2448 2449 if (SrcSize > DstSize) { 2450 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2451 } 2452 2453 } else { 2454 // Simple case, just do a coerced store of the argument into the alloca. 2455 assert(NumIRArgs == 1); 2456 auto AI = FnArgs[FirstIRArg]; 2457 AI->setName(Arg->getName() + ".coerce"); 2458 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2459 } 2460 2461 // Match to what EmitParmDecl is expecting for this type. 2462 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2463 llvm::Value *V = 2464 EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart()); 2465 if (isPromoted) 2466 V = emitArgumentDemotion(*this, Arg, V); 2467 ArgVals.push_back(ParamValue::forDirect(V)); 2468 } else { 2469 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2470 } 2471 break; 2472 } 2473 2474 case ABIArgInfo::CoerceAndExpand: { 2475 // Reconstruct into a temporary. 2476 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2477 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2478 2479 auto coercionType = ArgI.getCoerceAndExpandType(); 2480 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2481 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2482 2483 unsigned argIndex = FirstIRArg; 2484 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2485 llvm::Type *eltType = coercionType->getElementType(i); 2486 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2487 continue; 2488 2489 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); 2490 auto elt = FnArgs[argIndex++]; 2491 Builder.CreateStore(elt, eltAddr); 2492 } 2493 assert(argIndex == FirstIRArg + NumIRArgs); 2494 break; 2495 } 2496 2497 case ABIArgInfo::Expand: { 2498 // If this structure was expanded into multiple arguments then 2499 // we need to create a temporary and reconstruct it from the 2500 // arguments. 2501 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2502 LValue LV = MakeAddrLValue(Alloca, Ty); 2503 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2504 2505 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2506 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2507 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2508 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2509 auto AI = FnArgs[FirstIRArg + i]; 2510 AI->setName(Arg->getName() + "." + Twine(i)); 2511 } 2512 break; 2513 } 2514 2515 case ABIArgInfo::Ignore: 2516 assert(NumIRArgs == 0); 2517 // Initialize the local variable appropriately. 2518 if (!hasScalarEvaluationKind(Ty)) { 2519 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2520 } else { 2521 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2522 ArgVals.push_back(ParamValue::forDirect(U)); 2523 } 2524 break; 2525 } 2526 } 2527 2528 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2529 for (int I = Args.size() - 1; I >= 0; --I) 2530 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2531 } else { 2532 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2533 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2534 } 2535 } 2536 2537 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2538 while (insn->use_empty()) { 2539 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2540 if (!bitcast) return; 2541 2542 // This is "safe" because we would have used a ConstantExpr otherwise. 2543 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2544 bitcast->eraseFromParent(); 2545 } 2546 } 2547 2548 /// Try to emit a fused autorelease of a return result. 2549 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2550 llvm::Value *result) { 2551 // We must be immediately followed the cast. 2552 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2553 if (BB->empty()) return nullptr; 2554 if (&BB->back() != result) return nullptr; 2555 2556 llvm::Type *resultType = result->getType(); 2557 2558 // result is in a BasicBlock and is therefore an Instruction. 2559 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2560 2561 SmallVector<llvm::Instruction *, 4> InstsToKill; 2562 2563 // Look for: 2564 // %generator = bitcast %type1* %generator2 to %type2* 2565 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2566 // We would have emitted this as a constant if the operand weren't 2567 // an Instruction. 2568 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2569 2570 // Require the generator to be immediately followed by the cast. 2571 if (generator->getNextNode() != bitcast) 2572 return nullptr; 2573 2574 InstsToKill.push_back(bitcast); 2575 } 2576 2577 // Look for: 2578 // %generator = call i8* @objc_retain(i8* %originalResult) 2579 // or 2580 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2581 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2582 if (!call) return nullptr; 2583 2584 bool doRetainAutorelease; 2585 2586 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2587 doRetainAutorelease = true; 2588 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2589 .objc_retainAutoreleasedReturnValue) { 2590 doRetainAutorelease = false; 2591 2592 // If we emitted an assembly marker for this call (and the 2593 // ARCEntrypoints field should have been set if so), go looking 2594 // for that call. If we can't find it, we can't do this 2595 // optimization. But it should always be the immediately previous 2596 // instruction, unless we needed bitcasts around the call. 2597 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2598 llvm::Instruction *prev = call->getPrevNode(); 2599 assert(prev); 2600 if (isa<llvm::BitCastInst>(prev)) { 2601 prev = prev->getPrevNode(); 2602 assert(prev); 2603 } 2604 assert(isa<llvm::CallInst>(prev)); 2605 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2606 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2607 InstsToKill.push_back(prev); 2608 } 2609 } else { 2610 return nullptr; 2611 } 2612 2613 result = call->getArgOperand(0); 2614 InstsToKill.push_back(call); 2615 2616 // Keep killing bitcasts, for sanity. Note that we no longer care 2617 // about precise ordering as long as there's exactly one use. 2618 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2619 if (!bitcast->hasOneUse()) break; 2620 InstsToKill.push_back(bitcast); 2621 result = bitcast->getOperand(0); 2622 } 2623 2624 // Delete all the unnecessary instructions, from latest to earliest. 2625 for (auto *I : InstsToKill) 2626 I->eraseFromParent(); 2627 2628 // Do the fused retain/autorelease if we were asked to. 2629 if (doRetainAutorelease) 2630 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2631 2632 // Cast back to the result type. 2633 return CGF.Builder.CreateBitCast(result, resultType); 2634 } 2635 2636 /// If this is a +1 of the value of an immutable 'self', remove it. 2637 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2638 llvm::Value *result) { 2639 // This is only applicable to a method with an immutable 'self'. 2640 const ObjCMethodDecl *method = 2641 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2642 if (!method) return nullptr; 2643 const VarDecl *self = method->getSelfDecl(); 2644 if (!self->getType().isConstQualified()) return nullptr; 2645 2646 // Look for a retain call. 2647 llvm::CallInst *retainCall = 2648 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2649 if (!retainCall || 2650 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2651 return nullptr; 2652 2653 // Look for an ordinary load of 'self'. 2654 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2655 llvm::LoadInst *load = 2656 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2657 if (!load || load->isAtomic() || load->isVolatile() || 2658 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2659 return nullptr; 2660 2661 // Okay! Burn it all down. This relies for correctness on the 2662 // assumption that the retain is emitted as part of the return and 2663 // that thereafter everything is used "linearly". 2664 llvm::Type *resultType = result->getType(); 2665 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2666 assert(retainCall->use_empty()); 2667 retainCall->eraseFromParent(); 2668 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2669 2670 return CGF.Builder.CreateBitCast(load, resultType); 2671 } 2672 2673 /// Emit an ARC autorelease of the result of a function. 2674 /// 2675 /// \return the value to actually return from the function 2676 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2677 llvm::Value *result) { 2678 // If we're returning 'self', kill the initial retain. This is a 2679 // heuristic attempt to "encourage correctness" in the really unfortunate 2680 // case where we have a return of self during a dealloc and we desperately 2681 // need to avoid the possible autorelease. 2682 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2683 return self; 2684 2685 // At -O0, try to emit a fused retain/autorelease. 2686 if (CGF.shouldUseFusedARCCalls()) 2687 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2688 return fused; 2689 2690 return CGF.EmitARCAutoreleaseReturnValue(result); 2691 } 2692 2693 /// Heuristically search for a dominating store to the return-value slot. 2694 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2695 // Check if a User is a store which pointerOperand is the ReturnValue. 2696 // We are looking for stores to the ReturnValue, not for stores of the 2697 // ReturnValue to some other location. 2698 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2699 auto *SI = dyn_cast<llvm::StoreInst>(U); 2700 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2701 return nullptr; 2702 // These aren't actually possible for non-coerced returns, and we 2703 // only care about non-coerced returns on this code path. 2704 assert(!SI->isAtomic() && !SI->isVolatile()); 2705 return SI; 2706 }; 2707 // If there are multiple uses of the return-value slot, just check 2708 // for something immediately preceding the IP. Sometimes this can 2709 // happen with how we generate implicit-returns; it can also happen 2710 // with noreturn cleanups. 2711 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2712 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2713 if (IP->empty()) return nullptr; 2714 llvm::Instruction *I = &IP->back(); 2715 2716 // Skip lifetime markers 2717 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2718 IE = IP->rend(); 2719 II != IE; ++II) { 2720 if (llvm::IntrinsicInst *Intrinsic = 2721 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2722 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2723 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2724 ++II; 2725 if (II == IE) 2726 break; 2727 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2728 continue; 2729 } 2730 } 2731 I = &*II; 2732 break; 2733 } 2734 2735 return GetStoreIfValid(I); 2736 } 2737 2738 llvm::StoreInst *store = 2739 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2740 if (!store) return nullptr; 2741 2742 // Now do a first-and-dirty dominance check: just walk up the 2743 // single-predecessors chain from the current insertion point. 2744 llvm::BasicBlock *StoreBB = store->getParent(); 2745 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2746 while (IP != StoreBB) { 2747 if (!(IP = IP->getSinglePredecessor())) 2748 return nullptr; 2749 } 2750 2751 // Okay, the store's basic block dominates the insertion point; we 2752 // can do our thing. 2753 return store; 2754 } 2755 2756 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2757 bool EmitRetDbgLoc, 2758 SourceLocation EndLoc) { 2759 if (FI.isNoReturn()) { 2760 // Noreturn functions don't return. 2761 EmitUnreachable(EndLoc); 2762 return; 2763 } 2764 2765 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2766 // Naked functions don't have epilogues. 2767 Builder.CreateUnreachable(); 2768 return; 2769 } 2770 2771 // Functions with no result always return void. 2772 if (!ReturnValue.isValid()) { 2773 Builder.CreateRetVoid(); 2774 return; 2775 } 2776 2777 llvm::DebugLoc RetDbgLoc; 2778 llvm::Value *RV = nullptr; 2779 QualType RetTy = FI.getReturnType(); 2780 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2781 2782 switch (RetAI.getKind()) { 2783 case ABIArgInfo::InAlloca: 2784 // Aggregrates get evaluated directly into the destination. Sometimes we 2785 // need to return the sret value in a register, though. 2786 assert(hasAggregateEvaluationKind(RetTy)); 2787 if (RetAI.getInAllocaSRet()) { 2788 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2789 --EI; 2790 llvm::Value *ArgStruct = &*EI; 2791 llvm::Value *SRet = Builder.CreateStructGEP( 2792 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2793 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2794 } 2795 break; 2796 2797 case ABIArgInfo::Indirect: { 2798 auto AI = CurFn->arg_begin(); 2799 if (RetAI.isSRetAfterThis()) 2800 ++AI; 2801 switch (getEvaluationKind(RetTy)) { 2802 case TEK_Complex: { 2803 ComplexPairTy RT = 2804 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2805 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2806 /*isInit*/ true); 2807 break; 2808 } 2809 case TEK_Aggregate: 2810 // Do nothing; aggregrates get evaluated directly into the destination. 2811 break; 2812 case TEK_Scalar: 2813 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2814 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2815 /*isInit*/ true); 2816 break; 2817 } 2818 break; 2819 } 2820 2821 case ABIArgInfo::Extend: 2822 case ABIArgInfo::Direct: 2823 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2824 RetAI.getDirectOffset() == 0) { 2825 // The internal return value temp always will have pointer-to-return-type 2826 // type, just do a load. 2827 2828 // If there is a dominating store to ReturnValue, we can elide 2829 // the load, zap the store, and usually zap the alloca. 2830 if (llvm::StoreInst *SI = 2831 findDominatingStoreToReturnValue(*this)) { 2832 // Reuse the debug location from the store unless there is 2833 // cleanup code to be emitted between the store and return 2834 // instruction. 2835 if (EmitRetDbgLoc && !AutoreleaseResult) 2836 RetDbgLoc = SI->getDebugLoc(); 2837 // Get the stored value and nuke the now-dead store. 2838 RV = SI->getValueOperand(); 2839 SI->eraseFromParent(); 2840 2841 // If that was the only use of the return value, nuke it as well now. 2842 auto returnValueInst = ReturnValue.getPointer(); 2843 if (returnValueInst->use_empty()) { 2844 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2845 alloca->eraseFromParent(); 2846 ReturnValue = Address::invalid(); 2847 } 2848 } 2849 2850 // Otherwise, we have to do a simple load. 2851 } else { 2852 RV = Builder.CreateLoad(ReturnValue); 2853 } 2854 } else { 2855 // If the value is offset in memory, apply the offset now. 2856 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2857 2858 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2859 } 2860 2861 // In ARC, end functions that return a retainable type with a call 2862 // to objc_autoreleaseReturnValue. 2863 if (AutoreleaseResult) { 2864 #ifndef NDEBUG 2865 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2866 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2867 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2868 // CurCodeDecl or BlockInfo. 2869 QualType RT; 2870 2871 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2872 RT = FD->getReturnType(); 2873 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2874 RT = MD->getReturnType(); 2875 else if (isa<BlockDecl>(CurCodeDecl)) 2876 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2877 else 2878 llvm_unreachable("Unexpected function/method type"); 2879 2880 assert(getLangOpts().ObjCAutoRefCount && 2881 !FI.isReturnsRetained() && 2882 RT->isObjCRetainableType()); 2883 #endif 2884 RV = emitAutoreleaseOfResult(*this, RV); 2885 } 2886 2887 break; 2888 2889 case ABIArgInfo::Ignore: 2890 break; 2891 2892 case ABIArgInfo::CoerceAndExpand: { 2893 auto coercionType = RetAI.getCoerceAndExpandType(); 2894 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2895 2896 // Load all of the coerced elements out into results. 2897 llvm::SmallVector<llvm::Value*, 4> results; 2898 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2899 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2900 auto coercedEltType = coercionType->getElementType(i); 2901 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2902 continue; 2903 2904 auto eltAddr = Builder.CreateStructGEP(addr, i, layout); 2905 auto elt = Builder.CreateLoad(eltAddr); 2906 results.push_back(elt); 2907 } 2908 2909 // If we have one result, it's the single direct result type. 2910 if (results.size() == 1) { 2911 RV = results[0]; 2912 2913 // Otherwise, we need to make a first-class aggregate. 2914 } else { 2915 // Construct a return type that lacks padding elements. 2916 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2917 2918 RV = llvm::UndefValue::get(returnType); 2919 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2920 RV = Builder.CreateInsertValue(RV, results[i], i); 2921 } 2922 } 2923 break; 2924 } 2925 2926 case ABIArgInfo::Expand: 2927 llvm_unreachable("Invalid ABI kind for return argument"); 2928 } 2929 2930 llvm::Instruction *Ret; 2931 if (RV) { 2932 EmitReturnValueCheck(RV); 2933 Ret = Builder.CreateRet(RV); 2934 } else { 2935 Ret = Builder.CreateRetVoid(); 2936 } 2937 2938 if (RetDbgLoc) 2939 Ret->setDebugLoc(std::move(RetDbgLoc)); 2940 } 2941 2942 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 2943 // A current decl may not be available when emitting vtable thunks. 2944 if (!CurCodeDecl) 2945 return; 2946 2947 ReturnsNonNullAttr *RetNNAttr = nullptr; 2948 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 2949 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 2950 2951 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 2952 return; 2953 2954 // Prefer the returns_nonnull attribute if it's present. 2955 SourceLocation AttrLoc; 2956 SanitizerMask CheckKind; 2957 SanitizerHandler Handler; 2958 if (RetNNAttr) { 2959 assert(!requiresReturnValueNullabilityCheck() && 2960 "Cannot check nullability and the nonnull attribute"); 2961 AttrLoc = RetNNAttr->getLocation(); 2962 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 2963 Handler = SanitizerHandler::NonnullReturn; 2964 } else { 2965 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 2966 if (auto *TSI = DD->getTypeSourceInfo()) 2967 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) 2968 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 2969 CheckKind = SanitizerKind::NullabilityReturn; 2970 Handler = SanitizerHandler::NullabilityReturn; 2971 } 2972 2973 SanitizerScope SanScope(this); 2974 2975 // Make sure the "return" source location is valid. If we're checking a 2976 // nullability annotation, make sure the preconditions for the check are met. 2977 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 2978 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 2979 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 2980 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 2981 if (requiresReturnValueNullabilityCheck()) 2982 CanNullCheck = 2983 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 2984 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 2985 EmitBlock(Check); 2986 2987 // Now do the null check. 2988 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 2989 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 2990 llvm::Value *DynamicData[] = {SLocPtr}; 2991 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 2992 2993 EmitBlock(NoCheck); 2994 2995 #ifndef NDEBUG 2996 // The return location should not be used after the check has been emitted. 2997 ReturnLocation = Address::invalid(); 2998 #endif 2999 } 3000 3001 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3002 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3003 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3004 } 3005 3006 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3007 QualType Ty) { 3008 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3009 // placeholders. 3010 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3011 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3012 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3013 3014 // FIXME: When we generate this IR in one pass, we shouldn't need 3015 // this win32-specific alignment hack. 3016 CharUnits Align = CharUnits::fromQuantity(4); 3017 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3018 3019 return AggValueSlot::forAddr(Address(Placeholder, Align), 3020 Ty.getQualifiers(), 3021 AggValueSlot::IsNotDestructed, 3022 AggValueSlot::DoesNotNeedGCBarriers, 3023 AggValueSlot::IsNotAliased); 3024 } 3025 3026 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3027 const VarDecl *param, 3028 SourceLocation loc) { 3029 // StartFunction converted the ABI-lowered parameter(s) into a 3030 // local alloca. We need to turn that into an r-value suitable 3031 // for EmitCall. 3032 Address local = GetAddrOfLocalVar(param); 3033 3034 QualType type = param->getType(); 3035 3036 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 3037 "cannot emit delegate call arguments for inalloca arguments!"); 3038 3039 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3040 // but the argument needs to be the original pointer. 3041 if (type->isReferenceType()) { 3042 args.add(RValue::get(Builder.CreateLoad(local)), type); 3043 3044 // In ARC, move out of consumed arguments so that the release cleanup 3045 // entered by StartFunction doesn't cause an over-release. This isn't 3046 // optimal -O0 code generation, but it should get cleaned up when 3047 // optimization is enabled. This also assumes that delegate calls are 3048 // performed exactly once for a set of arguments, but that should be safe. 3049 } else if (getLangOpts().ObjCAutoRefCount && 3050 param->hasAttr<NSConsumedAttr>() && 3051 type->isObjCRetainableType()) { 3052 llvm::Value *ptr = Builder.CreateLoad(local); 3053 auto null = 3054 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3055 Builder.CreateStore(null, local); 3056 args.add(RValue::get(ptr), type); 3057 3058 // For the most part, we just need to load the alloca, except that 3059 // aggregate r-values are actually pointers to temporaries. 3060 } else { 3061 args.add(convertTempToRValue(local, type, loc), type); 3062 } 3063 } 3064 3065 static bool isProvablyNull(llvm::Value *addr) { 3066 return isa<llvm::ConstantPointerNull>(addr); 3067 } 3068 3069 /// Emit the actual writing-back of a writeback. 3070 static void emitWriteback(CodeGenFunction &CGF, 3071 const CallArgList::Writeback &writeback) { 3072 const LValue &srcLV = writeback.Source; 3073 Address srcAddr = srcLV.getAddress(); 3074 assert(!isProvablyNull(srcAddr.getPointer()) && 3075 "shouldn't have writeback for provably null argument"); 3076 3077 llvm::BasicBlock *contBB = nullptr; 3078 3079 // If the argument wasn't provably non-null, we need to null check 3080 // before doing the store. 3081 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3082 CGF.CGM.getDataLayout()); 3083 if (!provablyNonNull) { 3084 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3085 contBB = CGF.createBasicBlock("icr.done"); 3086 3087 llvm::Value *isNull = 3088 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3089 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3090 CGF.EmitBlock(writebackBB); 3091 } 3092 3093 // Load the value to writeback. 3094 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3095 3096 // Cast it back, in case we're writing an id to a Foo* or something. 3097 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3098 "icr.writeback-cast"); 3099 3100 // Perform the writeback. 3101 3102 // If we have a "to use" value, it's something we need to emit a use 3103 // of. This has to be carefully threaded in: if it's done after the 3104 // release it's potentially undefined behavior (and the optimizer 3105 // will ignore it), and if it happens before the retain then the 3106 // optimizer could move the release there. 3107 if (writeback.ToUse) { 3108 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3109 3110 // Retain the new value. No need to block-copy here: the block's 3111 // being passed up the stack. 3112 value = CGF.EmitARCRetainNonBlock(value); 3113 3114 // Emit the intrinsic use here. 3115 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3116 3117 // Load the old value (primitively). 3118 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3119 3120 // Put the new value in place (primitively). 3121 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3122 3123 // Release the old value. 3124 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3125 3126 // Otherwise, we can just do a normal lvalue store. 3127 } else { 3128 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3129 } 3130 3131 // Jump to the continuation block. 3132 if (!provablyNonNull) 3133 CGF.EmitBlock(contBB); 3134 } 3135 3136 static void emitWritebacks(CodeGenFunction &CGF, 3137 const CallArgList &args) { 3138 for (const auto &I : args.writebacks()) 3139 emitWriteback(CGF, I); 3140 } 3141 3142 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3143 const CallArgList &CallArgs) { 3144 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3145 CallArgs.getCleanupsToDeactivate(); 3146 // Iterate in reverse to increase the likelihood of popping the cleanup. 3147 for (const auto &I : llvm::reverse(Cleanups)) { 3148 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3149 I.IsActiveIP->eraseFromParent(); 3150 } 3151 } 3152 3153 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3154 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3155 if (uop->getOpcode() == UO_AddrOf) 3156 return uop->getSubExpr(); 3157 return nullptr; 3158 } 3159 3160 /// Emit an argument that's being passed call-by-writeback. That is, 3161 /// we are passing the address of an __autoreleased temporary; it 3162 /// might be copy-initialized with the current value of the given 3163 /// address, but it will definitely be copied out of after the call. 3164 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3165 const ObjCIndirectCopyRestoreExpr *CRE) { 3166 LValue srcLV; 3167 3168 // Make an optimistic effort to emit the address as an l-value. 3169 // This can fail if the argument expression is more complicated. 3170 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3171 srcLV = CGF.EmitLValue(lvExpr); 3172 3173 // Otherwise, just emit it as a scalar. 3174 } else { 3175 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3176 3177 QualType srcAddrType = 3178 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3179 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3180 } 3181 Address srcAddr = srcLV.getAddress(); 3182 3183 // The dest and src types don't necessarily match in LLVM terms 3184 // because of the crazy ObjC compatibility rules. 3185 3186 llvm::PointerType *destType = 3187 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3188 3189 // If the address is a constant null, just pass the appropriate null. 3190 if (isProvablyNull(srcAddr.getPointer())) { 3191 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3192 CRE->getType()); 3193 return; 3194 } 3195 3196 // Create the temporary. 3197 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3198 CGF.getPointerAlign(), 3199 "icr.temp"); 3200 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3201 // and that cleanup will be conditional if we can't prove that the l-value 3202 // isn't null, so we need to register a dominating point so that the cleanups 3203 // system will make valid IR. 3204 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3205 3206 // Zero-initialize it if we're not doing a copy-initialization. 3207 bool shouldCopy = CRE->shouldCopy(); 3208 if (!shouldCopy) { 3209 llvm::Value *null = 3210 llvm::ConstantPointerNull::get( 3211 cast<llvm::PointerType>(destType->getElementType())); 3212 CGF.Builder.CreateStore(null, temp); 3213 } 3214 3215 llvm::BasicBlock *contBB = nullptr; 3216 llvm::BasicBlock *originBB = nullptr; 3217 3218 // If the address is *not* known to be non-null, we need to switch. 3219 llvm::Value *finalArgument; 3220 3221 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3222 CGF.CGM.getDataLayout()); 3223 if (provablyNonNull) { 3224 finalArgument = temp.getPointer(); 3225 } else { 3226 llvm::Value *isNull = 3227 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3228 3229 finalArgument = CGF.Builder.CreateSelect(isNull, 3230 llvm::ConstantPointerNull::get(destType), 3231 temp.getPointer(), "icr.argument"); 3232 3233 // If we need to copy, then the load has to be conditional, which 3234 // means we need control flow. 3235 if (shouldCopy) { 3236 originBB = CGF.Builder.GetInsertBlock(); 3237 contBB = CGF.createBasicBlock("icr.cont"); 3238 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3239 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3240 CGF.EmitBlock(copyBB); 3241 condEval.begin(CGF); 3242 } 3243 } 3244 3245 llvm::Value *valueToUse = nullptr; 3246 3247 // Perform a copy if necessary. 3248 if (shouldCopy) { 3249 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3250 assert(srcRV.isScalar()); 3251 3252 llvm::Value *src = srcRV.getScalarVal(); 3253 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3254 "icr.cast"); 3255 3256 // Use an ordinary store, not a store-to-lvalue. 3257 CGF.Builder.CreateStore(src, temp); 3258 3259 // If optimization is enabled, and the value was held in a 3260 // __strong variable, we need to tell the optimizer that this 3261 // value has to stay alive until we're doing the store back. 3262 // This is because the temporary is effectively unretained, 3263 // and so otherwise we can violate the high-level semantics. 3264 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3265 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3266 valueToUse = src; 3267 } 3268 } 3269 3270 // Finish the control flow if we needed it. 3271 if (shouldCopy && !provablyNonNull) { 3272 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3273 CGF.EmitBlock(contBB); 3274 3275 // Make a phi for the value to intrinsically use. 3276 if (valueToUse) { 3277 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3278 "icr.to-use"); 3279 phiToUse->addIncoming(valueToUse, copyBB); 3280 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3281 originBB); 3282 valueToUse = phiToUse; 3283 } 3284 3285 condEval.end(CGF); 3286 } 3287 3288 args.addWriteback(srcLV, temp, valueToUse); 3289 args.add(RValue::get(finalArgument), CRE->getType()); 3290 } 3291 3292 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3293 assert(!StackBase); 3294 3295 // Save the stack. 3296 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3297 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3298 } 3299 3300 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3301 if (StackBase) { 3302 // Restore the stack after the call. 3303 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3304 CGF.Builder.CreateCall(F, StackBase); 3305 } 3306 } 3307 3308 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3309 SourceLocation ArgLoc, 3310 AbstractCallee AC, 3311 unsigned ParmNum) { 3312 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3313 SanOpts.has(SanitizerKind::NullabilityArg))) 3314 return; 3315 3316 // The param decl may be missing in a variadic function. 3317 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3318 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3319 3320 // Prefer the nonnull attribute if it's present. 3321 const NonNullAttr *NNAttr = nullptr; 3322 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3323 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3324 3325 bool CanCheckNullability = false; 3326 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3327 auto Nullability = PVD->getType()->getNullability(getContext()); 3328 CanCheckNullability = Nullability && 3329 *Nullability == NullabilityKind::NonNull && 3330 PVD->getTypeSourceInfo(); 3331 } 3332 3333 if (!NNAttr && !CanCheckNullability) 3334 return; 3335 3336 SourceLocation AttrLoc; 3337 SanitizerMask CheckKind; 3338 SanitizerHandler Handler; 3339 if (NNAttr) { 3340 AttrLoc = NNAttr->getLocation(); 3341 CheckKind = SanitizerKind::NonnullAttribute; 3342 Handler = SanitizerHandler::NonnullArg; 3343 } else { 3344 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3345 CheckKind = SanitizerKind::NullabilityArg; 3346 Handler = SanitizerHandler::NullabilityArg; 3347 } 3348 3349 SanitizerScope SanScope(this); 3350 assert(RV.isScalar()); 3351 llvm::Value *V = RV.getScalarVal(); 3352 llvm::Value *Cond = 3353 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3354 llvm::Constant *StaticData[] = { 3355 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3356 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3357 }; 3358 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3359 } 3360 3361 void CodeGenFunction::EmitCallArgs( 3362 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3363 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3364 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3365 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3366 3367 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3368 // because arguments are destroyed left to right in the callee. As a special 3369 // case, there are certain language constructs that require left-to-right 3370 // evaluation, and in those cases we consider the evaluation order requirement 3371 // to trump the "destruction order is reverse construction order" guarantee. 3372 bool LeftToRight = 3373 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3374 ? Order == EvaluationOrder::ForceLeftToRight 3375 : Order != EvaluationOrder::ForceRightToLeft; 3376 3377 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3378 RValue EmittedArg) { 3379 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3380 return; 3381 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3382 if (PS == nullptr) 3383 return; 3384 3385 const auto &Context = getContext(); 3386 auto SizeTy = Context.getSizeType(); 3387 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3388 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3389 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3390 EmittedArg.getScalarVal()); 3391 Args.add(RValue::get(V), SizeTy); 3392 // If we're emitting args in reverse, be sure to do so with 3393 // pass_object_size, as well. 3394 if (!LeftToRight) 3395 std::swap(Args.back(), *(&Args.back() - 1)); 3396 }; 3397 3398 // Insert a stack save if we're going to need any inalloca args. 3399 bool HasInAllocaArgs = false; 3400 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3401 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3402 I != E && !HasInAllocaArgs; ++I) 3403 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3404 if (HasInAllocaArgs) { 3405 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3406 Args.allocateArgumentMemory(*this); 3407 } 3408 } 3409 3410 // Evaluate each argument in the appropriate order. 3411 size_t CallArgsStart = Args.size(); 3412 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3413 unsigned Idx = LeftToRight ? I : E - I - 1; 3414 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3415 unsigned InitialArgSize = Args.size(); 3416 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3417 // the argument and parameter match or the objc method is parameterized. 3418 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3419 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3420 ArgTypes[Idx]) || 3421 (isa<ObjCMethodDecl>(AC.getDecl()) && 3422 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3423 "Argument and parameter types don't match"); 3424 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3425 // In particular, we depend on it being the last arg in Args, and the 3426 // objectsize bits depend on there only being one arg if !LeftToRight. 3427 assert(InitialArgSize + 1 == Args.size() && 3428 "The code below depends on only adding one arg per EmitCallArg"); 3429 (void)InitialArgSize; 3430 // Since pointer argument are never emitted as LValue, it is safe to emit 3431 // non-null argument check for r-value only. 3432 if (!Args.back().hasLValue()) { 3433 RValue RVArg = Args.back().getKnownRValue(); 3434 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3435 ParamsToSkip + Idx); 3436 // @llvm.objectsize should never have side-effects and shouldn't need 3437 // destruction/cleanups, so we can safely "emit" it after its arg, 3438 // regardless of right-to-leftness 3439 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3440 } 3441 } 3442 3443 if (!LeftToRight) { 3444 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3445 // IR function. 3446 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3447 } 3448 } 3449 3450 namespace { 3451 3452 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3453 DestroyUnpassedArg(Address Addr, QualType Ty) 3454 : Addr(Addr), Ty(Ty) {} 3455 3456 Address Addr; 3457 QualType Ty; 3458 3459 void Emit(CodeGenFunction &CGF, Flags flags) override { 3460 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3461 if (DtorKind == QualType::DK_cxx_destructor) { 3462 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3463 assert(!Dtor->isTrivial()); 3464 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3465 /*Delegating=*/false, Addr); 3466 } else { 3467 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3468 } 3469 } 3470 }; 3471 3472 struct DisableDebugLocationUpdates { 3473 CodeGenFunction &CGF; 3474 bool disabledDebugInfo; 3475 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3476 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3477 CGF.disableDebugInfo(); 3478 } 3479 ~DisableDebugLocationUpdates() { 3480 if (disabledDebugInfo) 3481 CGF.enableDebugInfo(); 3482 } 3483 }; 3484 3485 } // end anonymous namespace 3486 3487 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3488 if (!HasLV) 3489 return RV; 3490 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3491 CGF.EmitAggregateCopy(Copy, LV, Ty, LV.isVolatile()); 3492 IsUsed = true; 3493 return RValue::getAggregate(Copy.getAddress()); 3494 } 3495 3496 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3497 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3498 if (!HasLV && RV.isScalar()) 3499 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true); 3500 else if (!HasLV && RV.isComplex()) 3501 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3502 else { 3503 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); 3504 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3505 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, 3506 HasLV ? LV.isVolatileQualified() 3507 : RV.isVolatileQualified()); 3508 } 3509 IsUsed = true; 3510 } 3511 3512 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3513 QualType type) { 3514 DisableDebugLocationUpdates Dis(*this, E); 3515 if (const ObjCIndirectCopyRestoreExpr *CRE 3516 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3517 assert(getLangOpts().ObjCAutoRefCount); 3518 return emitWritebackArg(*this, args, CRE); 3519 } 3520 3521 assert(type->isReferenceType() == E->isGLValue() && 3522 "reference binding to unmaterialized r-value!"); 3523 3524 if (E->isGLValue()) { 3525 assert(E->getObjectKind() == OK_Ordinary); 3526 return args.add(EmitReferenceBindingToExpr(E), type); 3527 } 3528 3529 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3530 3531 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3532 // However, we still have to push an EH-only cleanup in case we unwind before 3533 // we make it to the call. 3534 if (HasAggregateEvalKind && getContext().isParamDestroyedInCallee(type)) { 3535 // If we're using inalloca, use the argument memory. Otherwise, use a 3536 // temporary. 3537 AggValueSlot Slot; 3538 if (args.isUsingInAlloca()) 3539 Slot = createPlaceholderSlot(*this, type); 3540 else 3541 Slot = CreateAggTemp(type, "agg.tmp"); 3542 3543 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3544 if (const auto *RD = type->getAsCXXRecordDecl()) { 3545 DestroyedInCallee = 3546 RD && RD->hasNonTrivialDestructor() && 3547 (CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default || 3548 RD->hasTrivialABIOverride()); 3549 } else { 3550 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3551 } 3552 3553 if (DestroyedInCallee) 3554 Slot.setExternallyDestructed(); 3555 3556 EmitAggExpr(E, Slot); 3557 RValue RV = Slot.asRValue(); 3558 args.add(RV, type); 3559 3560 if (DestroyedInCallee && NeedsEHCleanup) { 3561 // Create a no-op GEP between the placeholder and the cleanup so we can 3562 // RAUW it successfully. It also serves as a marker of the first 3563 // instruction where the cleanup is active. 3564 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3565 type); 3566 // This unreachable is a temporary marker which will be removed later. 3567 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3568 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3569 } 3570 return; 3571 } 3572 3573 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3574 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3575 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3576 assert(L.isSimple()); 3577 args.addUncopiedAggregate(L, type); 3578 return; 3579 } 3580 3581 args.add(EmitAnyExprToTemp(E), type); 3582 } 3583 3584 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3585 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3586 // implicitly widens null pointer constants that are arguments to varargs 3587 // functions to pointer-sized ints. 3588 if (!getTarget().getTriple().isOSWindows()) 3589 return Arg->getType(); 3590 3591 if (Arg->getType()->isIntegerType() && 3592 getContext().getTypeSize(Arg->getType()) < 3593 getContext().getTargetInfo().getPointerWidth(0) && 3594 Arg->isNullPointerConstant(getContext(), 3595 Expr::NPC_ValueDependentIsNotNull)) { 3596 return getContext().getIntPtrType(); 3597 } 3598 3599 return Arg->getType(); 3600 } 3601 3602 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3603 // optimizer it can aggressively ignore unwind edges. 3604 void 3605 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3606 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3607 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3608 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3609 CGM.getNoObjCARCExceptionsMetadata()); 3610 } 3611 3612 /// Emits a call to the given no-arguments nounwind runtime function. 3613 llvm::CallInst * 3614 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3615 const llvm::Twine &name) { 3616 return EmitNounwindRuntimeCall(callee, None, name); 3617 } 3618 3619 /// Emits a call to the given nounwind runtime function. 3620 llvm::CallInst * 3621 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3622 ArrayRef<llvm::Value*> args, 3623 const llvm::Twine &name) { 3624 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3625 call->setDoesNotThrow(); 3626 return call; 3627 } 3628 3629 /// Emits a simple call (never an invoke) to the given no-arguments 3630 /// runtime function. 3631 llvm::CallInst * 3632 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3633 const llvm::Twine &name) { 3634 return EmitRuntimeCall(callee, None, name); 3635 } 3636 3637 // Calls which may throw must have operand bundles indicating which funclet 3638 // they are nested within. 3639 SmallVector<llvm::OperandBundleDef, 1> 3640 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 3641 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3642 // There is no need for a funclet operand bundle if we aren't inside a 3643 // funclet. 3644 if (!CurrentFuncletPad) 3645 return BundleList; 3646 3647 // Skip intrinsics which cannot throw. 3648 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3649 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3650 return BundleList; 3651 3652 BundleList.emplace_back("funclet", CurrentFuncletPad); 3653 return BundleList; 3654 } 3655 3656 /// Emits a simple call (never an invoke) to the given runtime function. 3657 llvm::CallInst * 3658 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3659 ArrayRef<llvm::Value*> args, 3660 const llvm::Twine &name) { 3661 llvm::CallInst *call = 3662 Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name); 3663 call->setCallingConv(getRuntimeCC()); 3664 return call; 3665 } 3666 3667 /// Emits a call or invoke to the given noreturn runtime function. 3668 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3669 ArrayRef<llvm::Value*> args) { 3670 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3671 getBundlesForFunclet(callee); 3672 3673 if (getInvokeDest()) { 3674 llvm::InvokeInst *invoke = 3675 Builder.CreateInvoke(callee, 3676 getUnreachableBlock(), 3677 getInvokeDest(), 3678 args, 3679 BundleList); 3680 invoke->setDoesNotReturn(); 3681 invoke->setCallingConv(getRuntimeCC()); 3682 } else { 3683 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3684 call->setDoesNotReturn(); 3685 call->setCallingConv(getRuntimeCC()); 3686 Builder.CreateUnreachable(); 3687 } 3688 } 3689 3690 /// Emits a call or invoke instruction to the given nullary runtime function. 3691 llvm::CallSite 3692 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3693 const Twine &name) { 3694 return EmitRuntimeCallOrInvoke(callee, None, name); 3695 } 3696 3697 /// Emits a call or invoke instruction to the given runtime function. 3698 llvm::CallSite 3699 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3700 ArrayRef<llvm::Value*> args, 3701 const Twine &name) { 3702 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3703 callSite.setCallingConv(getRuntimeCC()); 3704 return callSite; 3705 } 3706 3707 /// Emits a call or invoke instruction to the given function, depending 3708 /// on the current state of the EH stack. 3709 llvm::CallSite 3710 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3711 ArrayRef<llvm::Value *> Args, 3712 const Twine &Name) { 3713 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3714 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3715 getBundlesForFunclet(Callee); 3716 3717 llvm::Instruction *Inst; 3718 if (!InvokeDest) 3719 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3720 else { 3721 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3722 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3723 Name); 3724 EmitBlock(ContBB); 3725 } 3726 3727 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3728 // optimizer it can aggressively ignore unwind edges. 3729 if (CGM.getLangOpts().ObjCAutoRefCount) 3730 AddObjCARCExceptionMetadata(Inst); 3731 3732 return llvm::CallSite(Inst); 3733 } 3734 3735 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3736 llvm::Value *New) { 3737 DeferredReplacements.push_back(std::make_pair(Old, New)); 3738 } 3739 3740 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3741 const CGCallee &Callee, 3742 ReturnValueSlot ReturnValue, 3743 const CallArgList &CallArgs, 3744 llvm::Instruction **callOrInvoke, 3745 SourceLocation Loc) { 3746 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3747 3748 assert(Callee.isOrdinary() || Callee.isVirtual()); 3749 3750 // Handle struct-return functions by passing a pointer to the 3751 // location that we would like to return into. 3752 QualType RetTy = CallInfo.getReturnType(); 3753 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3754 3755 llvm::FunctionType *IRFuncTy = Callee.getFunctionType(); 3756 3757 // 1. Set up the arguments. 3758 3759 // If we're using inalloca, insert the allocation after the stack save. 3760 // FIXME: Do this earlier rather than hacking it in here! 3761 Address ArgMemory = Address::invalid(); 3762 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3763 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3764 const llvm::DataLayout &DL = CGM.getDataLayout(); 3765 ArgMemoryLayout = DL.getStructLayout(ArgStruct); 3766 llvm::Instruction *IP = CallArgs.getStackBase(); 3767 llvm::AllocaInst *AI; 3768 if (IP) { 3769 IP = IP->getNextNode(); 3770 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 3771 "argmem", IP); 3772 } else { 3773 AI = CreateTempAlloca(ArgStruct, "argmem"); 3774 } 3775 auto Align = CallInfo.getArgStructAlignment(); 3776 AI->setAlignment(Align.getQuantity()); 3777 AI->setUsedWithInAlloca(true); 3778 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3779 ArgMemory = Address(AI, Align); 3780 } 3781 3782 // Helper function to drill into the inalloca allocation. 3783 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3784 auto FieldOffset = 3785 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3786 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3787 }; 3788 3789 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3790 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3791 3792 // If the call returns a temporary with struct return, create a temporary 3793 // alloca to hold the result, unless one is given to us. 3794 Address SRetPtr = Address::invalid(); 3795 llvm::Value *UnusedReturnSizePtr = nullptr; 3796 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3797 if (!ReturnValue.isNull()) { 3798 SRetPtr = ReturnValue.getValue(); 3799 } else { 3800 SRetPtr = CreateMemTemp(RetTy); 3801 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3802 uint64_t size = 3803 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3804 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetPtr.getPointer()); 3805 } 3806 } 3807 if (IRFunctionArgs.hasSRetArg()) { 3808 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3809 } else if (RetAI.isInAlloca()) { 3810 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3811 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3812 } 3813 } 3814 3815 Address swiftErrorTemp = Address::invalid(); 3816 Address swiftErrorArg = Address::invalid(); 3817 3818 // Translate all of the arguments as necessary to match the IR lowering. 3819 assert(CallInfo.arg_size() == CallArgs.size() && 3820 "Mismatch between function signature & arguments."); 3821 unsigned ArgNo = 0; 3822 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3823 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3824 I != E; ++I, ++info_it, ++ArgNo) { 3825 const ABIArgInfo &ArgInfo = info_it->info; 3826 3827 // Insert a padding argument to ensure proper alignment. 3828 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3829 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3830 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3831 3832 unsigned FirstIRArg, NumIRArgs; 3833 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3834 3835 switch (ArgInfo.getKind()) { 3836 case ABIArgInfo::InAlloca: { 3837 assert(NumIRArgs == 0); 3838 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3839 if (I->isAggregate()) { 3840 // Replace the placeholder with the appropriate argument slot GEP. 3841 Address Addr = I->hasLValue() 3842 ? I->getKnownLValue().getAddress() 3843 : I->getKnownRValue().getAggregateAddress(); 3844 llvm::Instruction *Placeholder = 3845 cast<llvm::Instruction>(Addr.getPointer()); 3846 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3847 Builder.SetInsertPoint(Placeholder); 3848 Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3849 Builder.restoreIP(IP); 3850 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3851 } else { 3852 // Store the RValue into the argument struct. 3853 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3854 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3855 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3856 // There are some cases where a trivial bitcast is not avoidable. The 3857 // definition of a type later in a translation unit may change it's type 3858 // from {}* to (%struct.foo*)*. 3859 if (Addr.getType() != MemType) 3860 Addr = Builder.CreateBitCast(Addr, MemType); 3861 I->copyInto(*this, Addr); 3862 } 3863 break; 3864 } 3865 3866 case ABIArgInfo::Indirect: { 3867 assert(NumIRArgs == 1); 3868 if (!I->isAggregate()) { 3869 // Make a temporary alloca to pass the argument. 3870 Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(), 3871 "indirect-arg-temp", false); 3872 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3873 3874 I->copyInto(*this, Addr); 3875 } else { 3876 // We want to avoid creating an unnecessary temporary+copy here; 3877 // however, we need one in three cases: 3878 // 1. If the argument is not byval, and we are required to copy the 3879 // source. (This case doesn't occur on any common architecture.) 3880 // 2. If the argument is byval, RV is not sufficiently aligned, and 3881 // we cannot force it to be sufficiently aligned. 3882 // 3. If the argument is byval, but RV is not located in default 3883 // or alloca address space. 3884 Address Addr = I->hasLValue() 3885 ? I->getKnownLValue().getAddress() 3886 : I->getKnownRValue().getAggregateAddress(); 3887 llvm::Value *V = Addr.getPointer(); 3888 CharUnits Align = ArgInfo.getIndirectAlign(); 3889 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3890 3891 assert((FirstIRArg >= IRFuncTy->getNumParams() || 3892 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 3893 TD->getAllocaAddrSpace()) && 3894 "indirect argument must be in alloca address space"); 3895 3896 bool NeedCopy = false; 3897 3898 if (Addr.getAlignment() < Align && 3899 llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) < 3900 Align.getQuantity()) { 3901 NeedCopy = true; 3902 } else if (I->hasLValue()) { 3903 auto LV = I->getKnownLValue(); 3904 auto AS = LV.getAddressSpace(); 3905 if ((!ArgInfo.getIndirectByVal() && 3906 (LV.getAlignment() >= 3907 getContext().getTypeAlignInChars(I->Ty))) || 3908 (ArgInfo.getIndirectByVal() && 3909 ((AS != LangAS::Default && AS != LangAS::opencl_private && 3910 AS != CGM.getASTAllocaAddressSpace())))) { 3911 NeedCopy = true; 3912 } 3913 } 3914 if (NeedCopy) { 3915 // Create an aligned temporary, and copy to it. 3916 Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(), 3917 "byval-temp", false); 3918 IRCallArgs[FirstIRArg] = AI.getPointer(); 3919 I->copyInto(*this, AI); 3920 } else { 3921 // Skip the extra memcpy call. 3922 auto *T = V->getType()->getPointerElementType()->getPointerTo( 3923 CGM.getDataLayout().getAllocaAddrSpace()); 3924 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 3925 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 3926 true); 3927 } 3928 } 3929 break; 3930 } 3931 3932 case ABIArgInfo::Ignore: 3933 assert(NumIRArgs == 0); 3934 break; 3935 3936 case ABIArgInfo::Extend: 3937 case ABIArgInfo::Direct: { 3938 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3939 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3940 ArgInfo.getDirectOffset() == 0) { 3941 assert(NumIRArgs == 1); 3942 llvm::Value *V; 3943 if (!I->isAggregate()) 3944 V = I->getKnownRValue().getScalarVal(); 3945 else 3946 V = Builder.CreateLoad( 3947 I->hasLValue() ? I->getKnownLValue().getAddress() 3948 : I->getKnownRValue().getAggregateAddress()); 3949 3950 // Implement swifterror by copying into a new swifterror argument. 3951 // We'll write back in the normal path out of the call. 3952 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 3953 == ParameterABI::SwiftErrorResult) { 3954 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 3955 3956 QualType pointeeTy = I->Ty->getPointeeType(); 3957 swiftErrorArg = 3958 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 3959 3960 swiftErrorTemp = 3961 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 3962 V = swiftErrorTemp.getPointer(); 3963 cast<llvm::AllocaInst>(V)->setSwiftError(true); 3964 3965 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 3966 Builder.CreateStore(errorValue, swiftErrorTemp); 3967 } 3968 3969 // We might have to widen integers, but we should never truncate. 3970 if (ArgInfo.getCoerceToType() != V->getType() && 3971 V->getType()->isIntegerTy()) 3972 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 3973 3974 // If the argument doesn't match, perform a bitcast to coerce it. This 3975 // can happen due to trivial type mismatches. 3976 if (FirstIRArg < IRFuncTy->getNumParams() && 3977 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 3978 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 3979 3980 IRCallArgs[FirstIRArg] = V; 3981 break; 3982 } 3983 3984 // FIXME: Avoid the conversion through memory if possible. 3985 Address Src = Address::invalid(); 3986 if (!I->isAggregate()) { 3987 Src = CreateMemTemp(I->Ty, "coerce"); 3988 I->copyInto(*this, Src); 3989 } else { 3990 Src = I->hasLValue() ? I->getKnownLValue().getAddress() 3991 : I->getKnownRValue().getAggregateAddress(); 3992 } 3993 3994 // If the value is offset in memory, apply the offset now. 3995 Src = emitAddressAtOffset(*this, Src, ArgInfo); 3996 3997 // Fast-isel and the optimizer generally like scalar values better than 3998 // FCAs, so we flatten them if this is safe to do for this argument. 3999 llvm::StructType *STy = 4000 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4001 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4002 llvm::Type *SrcTy = Src.getType()->getElementType(); 4003 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4004 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4005 4006 // If the source type is smaller than the destination type of the 4007 // coerce-to logic, copy the source value into a temp alloca the size 4008 // of the destination type to allow loading all of it. The bits past 4009 // the source value are left undef. 4010 if (SrcSize < DstSize) { 4011 Address TempAlloca 4012 = CreateTempAlloca(STy, Src.getAlignment(), 4013 Src.getName() + ".coerce"); 4014 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4015 Src = TempAlloca; 4016 } else { 4017 Src = Builder.CreateBitCast(Src, 4018 STy->getPointerTo(Src.getAddressSpace())); 4019 } 4020 4021 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 4022 assert(NumIRArgs == STy->getNumElements()); 4023 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4024 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 4025 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 4026 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4027 IRCallArgs[FirstIRArg + i] = LI; 4028 } 4029 } else { 4030 // In the simple case, just pass the coerced loaded value. 4031 assert(NumIRArgs == 1); 4032 IRCallArgs[FirstIRArg] = 4033 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4034 } 4035 4036 break; 4037 } 4038 4039 case ABIArgInfo::CoerceAndExpand: { 4040 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4041 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4042 4043 llvm::Value *tempSize = nullptr; 4044 Address addr = Address::invalid(); 4045 if (I->isAggregate()) { 4046 addr = I->hasLValue() ? I->getKnownLValue().getAddress() 4047 : I->getKnownRValue().getAggregateAddress(); 4048 4049 } else { 4050 RValue RV = I->getKnownRValue(); 4051 assert(RV.isScalar()); // complex should always just be direct 4052 4053 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4054 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4055 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4056 4057 // Materialize to a temporary. 4058 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 4059 CharUnits::fromQuantity(std::max(layout->getAlignment(), 4060 scalarAlign))); 4061 tempSize = EmitLifetimeStart(scalarSize, addr.getPointer()); 4062 4063 Builder.CreateStore(RV.getScalarVal(), addr); 4064 } 4065 4066 addr = Builder.CreateElementBitCast(addr, coercionType); 4067 4068 unsigned IRArgPos = FirstIRArg; 4069 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4070 llvm::Type *eltType = coercionType->getElementType(i); 4071 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4072 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4073 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4074 IRCallArgs[IRArgPos++] = elt; 4075 } 4076 assert(IRArgPos == FirstIRArg + NumIRArgs); 4077 4078 if (tempSize) { 4079 EmitLifetimeEnd(tempSize, addr.getPointer()); 4080 } 4081 4082 break; 4083 } 4084 4085 case ABIArgInfo::Expand: 4086 unsigned IRArgPos = FirstIRArg; 4087 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4088 assert(IRArgPos == FirstIRArg + NumIRArgs); 4089 break; 4090 } 4091 } 4092 4093 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4094 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4095 4096 // If we're using inalloca, set up that argument. 4097 if (ArgMemory.isValid()) { 4098 llvm::Value *Arg = ArgMemory.getPointer(); 4099 if (CallInfo.isVariadic()) { 4100 // When passing non-POD arguments by value to variadic functions, we will 4101 // end up with a variadic prototype and an inalloca call site. In such 4102 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4103 // the callee. 4104 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4105 auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS); 4106 CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy); 4107 } else { 4108 llvm::Type *LastParamTy = 4109 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4110 if (Arg->getType() != LastParamTy) { 4111 #ifndef NDEBUG 4112 // Assert that these structs have equivalent element types. 4113 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4114 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4115 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4116 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4117 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4118 DE = DeclaredTy->element_end(), 4119 FI = FullTy->element_begin(); 4120 DI != DE; ++DI, ++FI) 4121 assert(*DI == *FI); 4122 #endif 4123 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4124 } 4125 } 4126 assert(IRFunctionArgs.hasInallocaArg()); 4127 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4128 } 4129 4130 // 2. Prepare the function pointer. 4131 4132 // If the callee is a bitcast of a non-variadic function to have a 4133 // variadic function pointer type, check to see if we can remove the 4134 // bitcast. This comes up with unprototyped functions. 4135 // 4136 // This makes the IR nicer, but more importantly it ensures that we 4137 // can inline the function at -O0 if it is marked always_inline. 4138 auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* { 4139 llvm::FunctionType *CalleeFT = 4140 cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType()); 4141 if (!CalleeFT->isVarArg()) 4142 return Ptr; 4143 4144 llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr); 4145 if (!CE || CE->getOpcode() != llvm::Instruction::BitCast) 4146 return Ptr; 4147 4148 llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0)); 4149 if (!OrigFn) 4150 return Ptr; 4151 4152 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4153 4154 // If the original type is variadic, or if any of the component types 4155 // disagree, we cannot remove the cast. 4156 if (OrigFT->isVarArg() || 4157 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4158 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4159 return Ptr; 4160 4161 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4162 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4163 return Ptr; 4164 4165 return OrigFn; 4166 }; 4167 CalleePtr = simplifyVariadicCallee(CalleePtr); 4168 4169 // 3. Perform the actual call. 4170 4171 // Deactivate any cleanups that we're supposed to do immediately before 4172 // the call. 4173 if (!CallArgs.getCleanupsToDeactivate().empty()) 4174 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4175 4176 // Assert that the arguments we computed match up. The IR verifier 4177 // will catch this, but this is a common enough source of problems 4178 // during IRGen changes that it's way better for debugging to catch 4179 // it ourselves here. 4180 #ifndef NDEBUG 4181 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4182 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4183 // Inalloca argument can have different type. 4184 if (IRFunctionArgs.hasInallocaArg() && 4185 i == IRFunctionArgs.getInallocaArgNo()) 4186 continue; 4187 if (i < IRFuncTy->getNumParams()) 4188 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4189 } 4190 #endif 4191 4192 // Compute the calling convention and attributes. 4193 unsigned CallingConv; 4194 llvm::AttributeList Attrs; 4195 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4196 Callee.getAbstractInfo(), Attrs, CallingConv, 4197 /*AttrOnCallSite=*/true); 4198 4199 // Apply some call-site-specific attributes. 4200 // TODO: work this into building the attribute set. 4201 4202 // Apply always_inline to all calls within flatten functions. 4203 // FIXME: should this really take priority over __try, below? 4204 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4205 !(Callee.getAbstractInfo().getCalleeDecl() && 4206 Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) { 4207 Attrs = 4208 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4209 llvm::Attribute::AlwaysInline); 4210 } 4211 4212 // Disable inlining inside SEH __try blocks. 4213 if (isSEHTryScope()) { 4214 Attrs = 4215 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4216 llvm::Attribute::NoInline); 4217 } 4218 4219 // Decide whether to use a call or an invoke. 4220 bool CannotThrow; 4221 if (currentFunctionUsesSEHTry()) { 4222 // SEH cares about asynchronous exceptions, so everything can "throw." 4223 CannotThrow = false; 4224 } else if (isCleanupPadScope() && 4225 EHPersonality::get(*this).isMSVCXXPersonality()) { 4226 // The MSVC++ personality will implicitly terminate the program if an 4227 // exception is thrown during a cleanup outside of a try/catch. 4228 // We don't need to model anything in IR to get this behavior. 4229 CannotThrow = true; 4230 } else { 4231 // Otherwise, nounwind call sites will never throw. 4232 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4233 llvm::Attribute::NoUnwind); 4234 } 4235 4236 // If we made a temporary, be sure to clean up after ourselves. Note that we 4237 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4238 // pop this cleanup later on. Being eager about this is OK, since this 4239 // temporary is 'invisible' outside of the callee. 4240 if (UnusedReturnSizePtr) 4241 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetPtr, 4242 UnusedReturnSizePtr); 4243 4244 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4245 4246 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4247 getBundlesForFunclet(CalleePtr); 4248 4249 // Emit the actual call/invoke instruction. 4250 llvm::CallSite CS; 4251 if (!InvokeDest) { 4252 CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList); 4253 } else { 4254 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4255 CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs, 4256 BundleList); 4257 EmitBlock(Cont); 4258 } 4259 llvm::Instruction *CI = CS.getInstruction(); 4260 if (callOrInvoke) 4261 *callOrInvoke = CI; 4262 4263 // Apply the attributes and calling convention. 4264 CS.setAttributes(Attrs); 4265 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4266 4267 // Apply various metadata. 4268 4269 if (!CI->getType()->isVoidTy()) 4270 CI->setName("call"); 4271 4272 // Insert instrumentation or attach profile metadata at indirect call sites. 4273 // For more details, see the comment before the definition of 4274 // IPVK_IndirectCallTarget in InstrProfData.inc. 4275 if (!CS.getCalledFunction()) 4276 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4277 CI, CalleePtr); 4278 4279 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4280 // optimizer it can aggressively ignore unwind edges. 4281 if (CGM.getLangOpts().ObjCAutoRefCount) 4282 AddObjCARCExceptionMetadata(CI); 4283 4284 // Suppress tail calls if requested. 4285 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4286 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4287 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4288 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4289 } 4290 4291 // 4. Finish the call. 4292 4293 // If the call doesn't return, finish the basic block and clear the 4294 // insertion point; this allows the rest of IRGen to discard 4295 // unreachable code. 4296 if (CS.doesNotReturn()) { 4297 if (UnusedReturnSizePtr) 4298 PopCleanupBlock(); 4299 4300 // Strip away the noreturn attribute to better diagnose unreachable UB. 4301 if (SanOpts.has(SanitizerKind::Unreachable)) { 4302 if (auto *F = CS.getCalledFunction()) 4303 F->removeFnAttr(llvm::Attribute::NoReturn); 4304 CS.removeAttribute(llvm::AttributeList::FunctionIndex, 4305 llvm::Attribute::NoReturn); 4306 } 4307 4308 EmitUnreachable(Loc); 4309 Builder.ClearInsertionPoint(); 4310 4311 // FIXME: For now, emit a dummy basic block because expr emitters in 4312 // generally are not ready to handle emitting expressions at unreachable 4313 // points. 4314 EnsureInsertPoint(); 4315 4316 // Return a reasonable RValue. 4317 return GetUndefRValue(RetTy); 4318 } 4319 4320 // Perform the swifterror writeback. 4321 if (swiftErrorTemp.isValid()) { 4322 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4323 Builder.CreateStore(errorResult, swiftErrorArg); 4324 } 4325 4326 // Emit any call-associated writebacks immediately. Arguably this 4327 // should happen after any return-value munging. 4328 if (CallArgs.hasWritebacks()) 4329 emitWritebacks(*this, CallArgs); 4330 4331 // The stack cleanup for inalloca arguments has to run out of the normal 4332 // lexical order, so deactivate it and run it manually here. 4333 CallArgs.freeArgumentMemory(*this); 4334 4335 // Extract the return value. 4336 RValue Ret = [&] { 4337 switch (RetAI.getKind()) { 4338 case ABIArgInfo::CoerceAndExpand: { 4339 auto coercionType = RetAI.getCoerceAndExpandType(); 4340 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4341 4342 Address addr = SRetPtr; 4343 addr = Builder.CreateElementBitCast(addr, coercionType); 4344 4345 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4346 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4347 4348 unsigned unpaddedIndex = 0; 4349 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4350 llvm::Type *eltType = coercionType->getElementType(i); 4351 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4352 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4353 llvm::Value *elt = CI; 4354 if (requiresExtract) 4355 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4356 else 4357 assert(unpaddedIndex == 0); 4358 Builder.CreateStore(elt, eltAddr); 4359 } 4360 // FALLTHROUGH 4361 LLVM_FALLTHROUGH; 4362 } 4363 4364 case ABIArgInfo::InAlloca: 4365 case ABIArgInfo::Indirect: { 4366 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4367 if (UnusedReturnSizePtr) 4368 PopCleanupBlock(); 4369 return ret; 4370 } 4371 4372 case ABIArgInfo::Ignore: 4373 // If we are ignoring an argument that had a result, make sure to 4374 // construct the appropriate return value for our caller. 4375 return GetUndefRValue(RetTy); 4376 4377 case ABIArgInfo::Extend: 4378 case ABIArgInfo::Direct: { 4379 llvm::Type *RetIRTy = ConvertType(RetTy); 4380 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4381 switch (getEvaluationKind(RetTy)) { 4382 case TEK_Complex: { 4383 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4384 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4385 return RValue::getComplex(std::make_pair(Real, Imag)); 4386 } 4387 case TEK_Aggregate: { 4388 Address DestPtr = ReturnValue.getValue(); 4389 bool DestIsVolatile = ReturnValue.isVolatile(); 4390 4391 if (!DestPtr.isValid()) { 4392 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4393 DestIsVolatile = false; 4394 } 4395 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4396 return RValue::getAggregate(DestPtr); 4397 } 4398 case TEK_Scalar: { 4399 // If the argument doesn't match, perform a bitcast to coerce it. This 4400 // can happen due to trivial type mismatches. 4401 llvm::Value *V = CI; 4402 if (V->getType() != RetIRTy) 4403 V = Builder.CreateBitCast(V, RetIRTy); 4404 return RValue::get(V); 4405 } 4406 } 4407 llvm_unreachable("bad evaluation kind"); 4408 } 4409 4410 Address DestPtr = ReturnValue.getValue(); 4411 bool DestIsVolatile = ReturnValue.isVolatile(); 4412 4413 if (!DestPtr.isValid()) { 4414 DestPtr = CreateMemTemp(RetTy, "coerce"); 4415 DestIsVolatile = false; 4416 } 4417 4418 // If the value is offset in memory, apply the offset now. 4419 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4420 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4421 4422 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4423 } 4424 4425 case ABIArgInfo::Expand: 4426 llvm_unreachable("Invalid ABI kind for return argument"); 4427 } 4428 4429 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4430 } (); 4431 4432 // Emit the assume_aligned check on the return value. 4433 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4434 if (Ret.isScalar() && TargetDecl) { 4435 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4436 llvm::Value *OffsetValue = nullptr; 4437 if (const auto *Offset = AA->getOffset()) 4438 OffsetValue = EmitScalarExpr(Offset); 4439 4440 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4441 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4442 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 4443 OffsetValue); 4444 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { 4445 llvm::Value *ParamVal = 4446 CallArgs[AA->getParamIndex().getLLVMIndex()].getRValue( 4447 *this).getScalarVal(); 4448 EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal); 4449 } 4450 } 4451 4452 return Ret; 4453 } 4454 4455 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 4456 if (isVirtual()) { 4457 const CallExpr *CE = getVirtualCallExpr(); 4458 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 4459 CGF, getVirtualMethodDecl(), getThisAddress(), 4460 getFunctionType(), CE ? CE->getLocStart() : SourceLocation()); 4461 } 4462 4463 return *this; 4464 } 4465 4466 /* VarArg handling */ 4467 4468 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4469 VAListAddr = VE->isMicrosoftABI() 4470 ? EmitMSVAListRef(VE->getSubExpr()) 4471 : EmitVAListRef(VE->getSubExpr()); 4472 QualType Ty = VE->getType(); 4473 if (VE->isMicrosoftABI()) 4474 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4475 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4476 } 4477