1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/SwiftCallingConv.h"
30 #include "clang/Frontend/CodeGenOptions.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_Win64: return llvm::CallingConv::Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
63   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
64   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
65   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
66   case CC_Swift: return llvm::CallingConv::Swift;
67   }
68 }
69 
70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
71 /// qualification.
72 /// FIXME: address space qualification?
73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
74   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
75   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
76 }
77 
78 /// Returns the canonical formal type of the given C++ method.
79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
80   return MD->getType()->getCanonicalTypeUnqualified()
81            .getAs<FunctionProtoType>();
82 }
83 
84 /// Returns the "extra-canonicalized" return type, which discards
85 /// qualifiers on the return type.  Codegen doesn't care about them,
86 /// and it makes ABI code a little easier to be able to assume that
87 /// all parameter and return types are top-level unqualified.
88 static CanQualType GetReturnType(QualType RetTy) {
89   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
90 }
91 
92 /// Arrange the argument and result information for a value of the given
93 /// unprototyped freestanding function type.
94 const CGFunctionInfo &
95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
96   // When translating an unprototyped function type, always use a
97   // variadic type.
98   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
99                                  /*instanceMethod=*/false,
100                                  /*chainCall=*/false, None,
101                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
102 }
103 
104 static void addExtParameterInfosForCall(
105          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
106                                         const FunctionProtoType *proto,
107                                         unsigned prefixArgs,
108                                         unsigned totalArgs) {
109   assert(proto->hasExtParameterInfos());
110   assert(paramInfos.size() <= prefixArgs);
111   assert(proto->getNumParams() + prefixArgs <= totalArgs);
112 
113   paramInfos.reserve(totalArgs);
114 
115   // Add default infos for any prefix args that don't already have infos.
116   paramInfos.resize(prefixArgs);
117 
118   // Add infos for the prototype.
119   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
120     paramInfos.push_back(ParamInfo);
121     // pass_object_size params have no parameter info.
122     if (ParamInfo.hasPassObjectSize())
123       paramInfos.emplace_back();
124   }
125 
126   assert(paramInfos.size() <= totalArgs &&
127          "Did we forget to insert pass_object_size args?");
128   // Add default infos for the variadic and/or suffix arguments.
129   paramInfos.resize(totalArgs);
130 }
131 
132 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
133 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
134 static void appendParameterTypes(const CodeGenTypes &CGT,
135                                  SmallVectorImpl<CanQualType> &prefix,
136               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
137                                  CanQual<FunctionProtoType> FPT) {
138   // Fast path: don't touch param info if we don't need to.
139   if (!FPT->hasExtParameterInfos()) {
140     assert(paramInfos.empty() &&
141            "We have paramInfos, but the prototype doesn't?");
142     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
143     return;
144   }
145 
146   unsigned PrefixSize = prefix.size();
147   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
148   // parameters; the only thing that can change this is the presence of
149   // pass_object_size. So, we preallocate for the common case.
150   prefix.reserve(prefix.size() + FPT->getNumParams());
151 
152   auto ExtInfos = FPT->getExtParameterInfos();
153   assert(ExtInfos.size() == FPT->getNumParams());
154   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
155     prefix.push_back(FPT->getParamType(I));
156     if (ExtInfos[I].hasPassObjectSize())
157       prefix.push_back(CGT.getContext().getSizeType());
158   }
159 
160   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
161                               prefix.size());
162 }
163 
164 /// Arrange the LLVM function layout for a value of the given function
165 /// type, on top of any implicit parameters already stored.
166 static const CGFunctionInfo &
167 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
168                         SmallVectorImpl<CanQualType> &prefix,
169                         CanQual<FunctionProtoType> FTP,
170                         const FunctionDecl *FD) {
171   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
172   RequiredArgs Required =
173       RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD);
174   // FIXME: Kill copy.
175   appendParameterTypes(CGT, prefix, paramInfos, FTP);
176   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
177 
178   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
179                                      /*chainCall=*/false, prefix,
180                                      FTP->getExtInfo(), paramInfos,
181                                      Required);
182 }
183 
184 /// Arrange the argument and result information for a value of the
185 /// given freestanding function type.
186 const CGFunctionInfo &
187 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
188                                       const FunctionDecl *FD) {
189   SmallVector<CanQualType, 16> argTypes;
190   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
191                                    FTP, FD);
192 }
193 
194 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
195   // Set the appropriate calling convention for the Function.
196   if (D->hasAttr<StdCallAttr>())
197     return CC_X86StdCall;
198 
199   if (D->hasAttr<FastCallAttr>())
200     return CC_X86FastCall;
201 
202   if (D->hasAttr<RegCallAttr>())
203     return CC_X86RegCall;
204 
205   if (D->hasAttr<ThisCallAttr>())
206     return CC_X86ThisCall;
207 
208   if (D->hasAttr<VectorCallAttr>())
209     return CC_X86VectorCall;
210 
211   if (D->hasAttr<PascalAttr>())
212     return CC_X86Pascal;
213 
214   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
215     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
216 
217   if (D->hasAttr<IntelOclBiccAttr>())
218     return CC_IntelOclBicc;
219 
220   if (D->hasAttr<MSABIAttr>())
221     return IsWindows ? CC_C : CC_Win64;
222 
223   if (D->hasAttr<SysVABIAttr>())
224     return IsWindows ? CC_X86_64SysV : CC_C;
225 
226   if (D->hasAttr<PreserveMostAttr>())
227     return CC_PreserveMost;
228 
229   if (D->hasAttr<PreserveAllAttr>())
230     return CC_PreserveAll;
231 
232   return CC_C;
233 }
234 
235 /// Arrange the argument and result information for a call to an
236 /// unknown C++ non-static member function of the given abstract type.
237 /// (Zero value of RD means we don't have any meaningful "this" argument type,
238 ///  so fall back to a generic pointer type).
239 /// The member function must be an ordinary function, i.e. not a
240 /// constructor or destructor.
241 const CGFunctionInfo &
242 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
243                                    const FunctionProtoType *FTP,
244                                    const CXXMethodDecl *MD) {
245   SmallVector<CanQualType, 16> argTypes;
246 
247   // Add the 'this' pointer.
248   if (RD)
249     argTypes.push_back(GetThisType(Context, RD));
250   else
251     argTypes.push_back(Context.VoidPtrTy);
252 
253   return ::arrangeLLVMFunctionInfo(
254       *this, true, argTypes,
255       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
256 }
257 
258 /// Arrange the argument and result information for a declaration or
259 /// definition of the given C++ non-static member function.  The
260 /// member function must be an ordinary function, i.e. not a
261 /// constructor or destructor.
262 const CGFunctionInfo &
263 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
264   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
265   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
266 
267   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
268 
269   if (MD->isInstance()) {
270     // The abstract case is perfectly fine.
271     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
272     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
273   }
274 
275   return arrangeFreeFunctionType(prototype, MD);
276 }
277 
278 bool CodeGenTypes::inheritingCtorHasParams(
279     const InheritedConstructor &Inherited, CXXCtorType Type) {
280   // Parameters are unnecessary if we're constructing a base class subobject
281   // and the inherited constructor lives in a virtual base.
282   return Type == Ctor_Complete ||
283          !Inherited.getShadowDecl()->constructsVirtualBase() ||
284          !Target.getCXXABI().hasConstructorVariants();
285   }
286 
287 const CGFunctionInfo &
288 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
289                                             StructorType Type) {
290 
291   SmallVector<CanQualType, 16> argTypes;
292   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
293   argTypes.push_back(GetThisType(Context, MD->getParent()));
294 
295   bool PassParams = true;
296 
297   GlobalDecl GD;
298   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
299     GD = GlobalDecl(CD, toCXXCtorType(Type));
300 
301     // A base class inheriting constructor doesn't get forwarded arguments
302     // needed to construct a virtual base (or base class thereof).
303     if (auto Inherited = CD->getInheritedConstructor())
304       PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
305   } else {
306     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
307     GD = GlobalDecl(DD, toCXXDtorType(Type));
308   }
309 
310   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
311 
312   // Add the formal parameters.
313   if (PassParams)
314     appendParameterTypes(*this, argTypes, paramInfos, FTP);
315 
316   CGCXXABI::AddedStructorArgs AddedArgs =
317       TheCXXABI.buildStructorSignature(MD, Type, argTypes);
318   if (!paramInfos.empty()) {
319     // Note: prefix implies after the first param.
320     if (AddedArgs.Prefix)
321       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
322                         FunctionProtoType::ExtParameterInfo{});
323     if (AddedArgs.Suffix)
324       paramInfos.append(AddedArgs.Suffix,
325                         FunctionProtoType::ExtParameterInfo{});
326   }
327 
328   RequiredArgs required =
329       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
330                                       : RequiredArgs::All);
331 
332   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
333   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
334                                ? argTypes.front()
335                                : TheCXXABI.hasMostDerivedReturn(GD)
336                                      ? CGM.getContext().VoidPtrTy
337                                      : Context.VoidTy;
338   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
339                                  /*chainCall=*/false, argTypes, extInfo,
340                                  paramInfos, required);
341 }
342 
343 static SmallVector<CanQualType, 16>
344 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
345   SmallVector<CanQualType, 16> argTypes;
346   for (auto &arg : args)
347     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
348   return argTypes;
349 }
350 
351 static SmallVector<CanQualType, 16>
352 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
353   SmallVector<CanQualType, 16> argTypes;
354   for (auto &arg : args)
355     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
356   return argTypes;
357 }
358 
359 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
360 getExtParameterInfosForCall(const FunctionProtoType *proto,
361                             unsigned prefixArgs, unsigned totalArgs) {
362   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
363   if (proto->hasExtParameterInfos()) {
364     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
365   }
366   return result;
367 }
368 
369 /// Arrange a call to a C++ method, passing the given arguments.
370 ///
371 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
372 /// parameter.
373 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
374 /// args.
375 /// PassProtoArgs indicates whether `args` has args for the parameters in the
376 /// given CXXConstructorDecl.
377 const CGFunctionInfo &
378 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
379                                         const CXXConstructorDecl *D,
380                                         CXXCtorType CtorKind,
381                                         unsigned ExtraPrefixArgs,
382                                         unsigned ExtraSuffixArgs,
383                                         bool PassProtoArgs) {
384   // FIXME: Kill copy.
385   SmallVector<CanQualType, 16> ArgTypes;
386   for (const auto &Arg : args)
387     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
388 
389   // +1 for implicit this, which should always be args[0].
390   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
391 
392   CanQual<FunctionProtoType> FPT = GetFormalType(D);
393   RequiredArgs Required =
394       RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D);
395   GlobalDecl GD(D, CtorKind);
396   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
397                                ? ArgTypes.front()
398                                : TheCXXABI.hasMostDerivedReturn(GD)
399                                      ? CGM.getContext().VoidPtrTy
400                                      : Context.VoidTy;
401 
402   FunctionType::ExtInfo Info = FPT->getExtInfo();
403   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
404   // If the prototype args are elided, we should only have ABI-specific args,
405   // which never have param info.
406   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
407     // ABI-specific suffix arguments are treated the same as variadic arguments.
408     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
409                                 ArgTypes.size());
410   }
411   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
412                                  /*chainCall=*/false, ArgTypes, Info,
413                                  ParamInfos, Required);
414 }
415 
416 /// Arrange the argument and result information for the declaration or
417 /// definition of the given function.
418 const CGFunctionInfo &
419 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
420   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
421     if (MD->isInstance())
422       return arrangeCXXMethodDeclaration(MD);
423 
424   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
425 
426   assert(isa<FunctionType>(FTy));
427 
428   // When declaring a function without a prototype, always use a
429   // non-variadic type.
430   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
431     return arrangeLLVMFunctionInfo(
432         noProto->getReturnType(), /*instanceMethod=*/false,
433         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
434   }
435 
436   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD);
437 }
438 
439 /// Arrange the argument and result information for the declaration or
440 /// definition of an Objective-C method.
441 const CGFunctionInfo &
442 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
443   // It happens that this is the same as a call with no optional
444   // arguments, except also using the formal 'self' type.
445   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
446 }
447 
448 /// Arrange the argument and result information for the function type
449 /// through which to perform a send to the given Objective-C method,
450 /// using the given receiver type.  The receiver type is not always
451 /// the 'self' type of the method or even an Objective-C pointer type.
452 /// This is *not* the right method for actually performing such a
453 /// message send, due to the possibility of optional arguments.
454 const CGFunctionInfo &
455 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
456                                               QualType receiverType) {
457   SmallVector<CanQualType, 16> argTys;
458   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
459   argTys.push_back(Context.getCanonicalParamType(receiverType));
460   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
461   // FIXME: Kill copy?
462   for (const auto *I : MD->parameters()) {
463     argTys.push_back(Context.getCanonicalParamType(I->getType()));
464     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
465         I->hasAttr<NoEscapeAttr>());
466     extParamInfos.push_back(extParamInfo);
467   }
468 
469   FunctionType::ExtInfo einfo;
470   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
471   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
472 
473   if (getContext().getLangOpts().ObjCAutoRefCount &&
474       MD->hasAttr<NSReturnsRetainedAttr>())
475     einfo = einfo.withProducesResult(true);
476 
477   RequiredArgs required =
478     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
479 
480   return arrangeLLVMFunctionInfo(
481       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
482       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
483 }
484 
485 const CGFunctionInfo &
486 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
487                                                  const CallArgList &args) {
488   auto argTypes = getArgTypesForCall(Context, args);
489   FunctionType::ExtInfo einfo;
490 
491   return arrangeLLVMFunctionInfo(
492       GetReturnType(returnType), /*instanceMethod=*/false,
493       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
494 }
495 
496 const CGFunctionInfo &
497 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
498   // FIXME: Do we need to handle ObjCMethodDecl?
499   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
500 
501   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
502     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
503 
504   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
505     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
506 
507   return arrangeFunctionDeclaration(FD);
508 }
509 
510 /// Arrange a thunk that takes 'this' as the first parameter followed by
511 /// varargs.  Return a void pointer, regardless of the actual return type.
512 /// The body of the thunk will end in a musttail call to a function of the
513 /// correct type, and the caller will bitcast the function to the correct
514 /// prototype.
515 const CGFunctionInfo &
516 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
517   assert(MD->isVirtual() && "only virtual memptrs have thunks");
518   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
519   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
520   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
521                                  /*chainCall=*/false, ArgTys,
522                                  FTP->getExtInfo(), {}, RequiredArgs(1));
523 }
524 
525 const CGFunctionInfo &
526 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
527                                    CXXCtorType CT) {
528   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
529 
530   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
531   SmallVector<CanQualType, 2> ArgTys;
532   const CXXRecordDecl *RD = CD->getParent();
533   ArgTys.push_back(GetThisType(Context, RD));
534   if (CT == Ctor_CopyingClosure)
535     ArgTys.push_back(*FTP->param_type_begin());
536   if (RD->getNumVBases() > 0)
537     ArgTys.push_back(Context.IntTy);
538   CallingConv CC = Context.getDefaultCallingConvention(
539       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
540   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
541                                  /*chainCall=*/false, ArgTys,
542                                  FunctionType::ExtInfo(CC), {},
543                                  RequiredArgs::All);
544 }
545 
546 /// Arrange a call as unto a free function, except possibly with an
547 /// additional number of formal parameters considered required.
548 static const CGFunctionInfo &
549 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
550                             CodeGenModule &CGM,
551                             const CallArgList &args,
552                             const FunctionType *fnType,
553                             unsigned numExtraRequiredArgs,
554                             bool chainCall) {
555   assert(args.size() >= numExtraRequiredArgs);
556 
557   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
558 
559   // In most cases, there are no optional arguments.
560   RequiredArgs required = RequiredArgs::All;
561 
562   // If we have a variadic prototype, the required arguments are the
563   // extra prefix plus the arguments in the prototype.
564   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
565     if (proto->isVariadic())
566       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
567 
568     if (proto->hasExtParameterInfos())
569       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
570                                   args.size());
571 
572   // If we don't have a prototype at all, but we're supposed to
573   // explicitly use the variadic convention for unprototyped calls,
574   // treat all of the arguments as required but preserve the nominal
575   // possibility of variadics.
576   } else if (CGM.getTargetCodeGenInfo()
577                 .isNoProtoCallVariadic(args,
578                                        cast<FunctionNoProtoType>(fnType))) {
579     required = RequiredArgs(args.size());
580   }
581 
582   // FIXME: Kill copy.
583   SmallVector<CanQualType, 16> argTypes;
584   for (const auto &arg : args)
585     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
586   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
587                                      /*instanceMethod=*/false, chainCall,
588                                      argTypes, fnType->getExtInfo(), paramInfos,
589                                      required);
590 }
591 
592 /// Figure out the rules for calling a function with the given formal
593 /// type using the given arguments.  The arguments are necessary
594 /// because the function might be unprototyped, in which case it's
595 /// target-dependent in crazy ways.
596 const CGFunctionInfo &
597 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
598                                       const FunctionType *fnType,
599                                       bool chainCall) {
600   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
601                                      chainCall ? 1 : 0, chainCall);
602 }
603 
604 /// A block function is essentially a free function with an
605 /// extra implicit argument.
606 const CGFunctionInfo &
607 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
608                                        const FunctionType *fnType) {
609   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
610                                      /*chainCall=*/false);
611 }
612 
613 const CGFunctionInfo &
614 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
615                                               const FunctionArgList &params) {
616   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
617   auto argTypes = getArgTypesForDeclaration(Context, params);
618 
619   return arrangeLLVMFunctionInfo(
620       GetReturnType(proto->getReturnType()),
621       /*instanceMethod*/ false, /*chainCall*/ false, argTypes,
622       proto->getExtInfo(), paramInfos,
623       RequiredArgs::forPrototypePlus(proto, 1, nullptr));
624 }
625 
626 const CGFunctionInfo &
627 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
628                                          const CallArgList &args) {
629   // FIXME: Kill copy.
630   SmallVector<CanQualType, 16> argTypes;
631   for (const auto &Arg : args)
632     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
633   return arrangeLLVMFunctionInfo(
634       GetReturnType(resultType), /*instanceMethod=*/false,
635       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
636       /*paramInfos=*/ {}, RequiredArgs::All);
637 }
638 
639 const CGFunctionInfo &
640 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
641                                                 const FunctionArgList &args) {
642   auto argTypes = getArgTypesForDeclaration(Context, args);
643 
644   return arrangeLLVMFunctionInfo(
645       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
646       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
647 }
648 
649 const CGFunctionInfo &
650 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
651                                               ArrayRef<CanQualType> argTypes) {
652   return arrangeLLVMFunctionInfo(
653       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
654       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
655 }
656 
657 /// Arrange a call to a C++ method, passing the given arguments.
658 ///
659 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
660 /// does not count `this`.
661 const CGFunctionInfo &
662 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
663                                    const FunctionProtoType *proto,
664                                    RequiredArgs required,
665                                    unsigned numPrefixArgs) {
666   assert(numPrefixArgs + 1 <= args.size() &&
667          "Emitting a call with less args than the required prefix?");
668   // Add one to account for `this`. It's a bit awkward here, but we don't count
669   // `this` in similar places elsewhere.
670   auto paramInfos =
671     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
672 
673   // FIXME: Kill copy.
674   auto argTypes = getArgTypesForCall(Context, args);
675 
676   FunctionType::ExtInfo info = proto->getExtInfo();
677   return arrangeLLVMFunctionInfo(
678       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
679       /*chainCall=*/false, argTypes, info, paramInfos, required);
680 }
681 
682 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
683   return arrangeLLVMFunctionInfo(
684       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
685       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
686 }
687 
688 const CGFunctionInfo &
689 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
690                           const CallArgList &args) {
691   assert(signature.arg_size() <= args.size());
692   if (signature.arg_size() == args.size())
693     return signature;
694 
695   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
696   auto sigParamInfos = signature.getExtParameterInfos();
697   if (!sigParamInfos.empty()) {
698     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
699     paramInfos.resize(args.size());
700   }
701 
702   auto argTypes = getArgTypesForCall(Context, args);
703 
704   assert(signature.getRequiredArgs().allowsOptionalArgs());
705   return arrangeLLVMFunctionInfo(signature.getReturnType(),
706                                  signature.isInstanceMethod(),
707                                  signature.isChainCall(),
708                                  argTypes,
709                                  signature.getExtInfo(),
710                                  paramInfos,
711                                  signature.getRequiredArgs());
712 }
713 
714 namespace clang {
715 namespace CodeGen {
716 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
717 }
718 }
719 
720 /// Arrange the argument and result information for an abstract value
721 /// of a given function type.  This is the method which all of the
722 /// above functions ultimately defer to.
723 const CGFunctionInfo &
724 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
725                                       bool instanceMethod,
726                                       bool chainCall,
727                                       ArrayRef<CanQualType> argTypes,
728                                       FunctionType::ExtInfo info,
729                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
730                                       RequiredArgs required) {
731   assert(std::all_of(argTypes.begin(), argTypes.end(),
732                      [](CanQualType T) { return T.isCanonicalAsParam(); }));
733 
734   // Lookup or create unique function info.
735   llvm::FoldingSetNodeID ID;
736   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
737                           required, resultType, argTypes);
738 
739   void *insertPos = nullptr;
740   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
741   if (FI)
742     return *FI;
743 
744   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
745 
746   // Construct the function info.  We co-allocate the ArgInfos.
747   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
748                               paramInfos, resultType, argTypes, required);
749   FunctionInfos.InsertNode(FI, insertPos);
750 
751   bool inserted = FunctionsBeingProcessed.insert(FI).second;
752   (void)inserted;
753   assert(inserted && "Recursively being processed?");
754 
755   // Compute ABI information.
756   if (CC == llvm::CallingConv::SPIR_KERNEL) {
757     // Force target independent argument handling for the host visible
758     // kernel functions.
759     computeSPIRKernelABIInfo(CGM, *FI);
760   } else if (info.getCC() == CC_Swift) {
761     swiftcall::computeABIInfo(CGM, *FI);
762   } else {
763     getABIInfo().computeInfo(*FI);
764   }
765 
766   // Loop over all of the computed argument and return value info.  If any of
767   // them are direct or extend without a specified coerce type, specify the
768   // default now.
769   ABIArgInfo &retInfo = FI->getReturnInfo();
770   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
771     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
772 
773   for (auto &I : FI->arguments())
774     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
775       I.info.setCoerceToType(ConvertType(I.type));
776 
777   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
778   assert(erased && "Not in set?");
779 
780   return *FI;
781 }
782 
783 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
784                                        bool instanceMethod,
785                                        bool chainCall,
786                                        const FunctionType::ExtInfo &info,
787                                        ArrayRef<ExtParameterInfo> paramInfos,
788                                        CanQualType resultType,
789                                        ArrayRef<CanQualType> argTypes,
790                                        RequiredArgs required) {
791   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
792 
793   void *buffer =
794     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
795                                   argTypes.size() + 1, paramInfos.size()));
796 
797   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
798   FI->CallingConvention = llvmCC;
799   FI->EffectiveCallingConvention = llvmCC;
800   FI->ASTCallingConvention = info.getCC();
801   FI->InstanceMethod = instanceMethod;
802   FI->ChainCall = chainCall;
803   FI->NoReturn = info.getNoReturn();
804   FI->ReturnsRetained = info.getProducesResult();
805   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
806   FI->NoCfCheck = info.getNoCfCheck();
807   FI->Required = required;
808   FI->HasRegParm = info.getHasRegParm();
809   FI->RegParm = info.getRegParm();
810   FI->ArgStruct = nullptr;
811   FI->ArgStructAlign = 0;
812   FI->NumArgs = argTypes.size();
813   FI->HasExtParameterInfos = !paramInfos.empty();
814   FI->getArgsBuffer()[0].type = resultType;
815   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
816     FI->getArgsBuffer()[i + 1].type = argTypes[i];
817   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
818     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
819   return FI;
820 }
821 
822 /***/
823 
824 namespace {
825 // ABIArgInfo::Expand implementation.
826 
827 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
828 struct TypeExpansion {
829   enum TypeExpansionKind {
830     // Elements of constant arrays are expanded recursively.
831     TEK_ConstantArray,
832     // Record fields are expanded recursively (but if record is a union, only
833     // the field with the largest size is expanded).
834     TEK_Record,
835     // For complex types, real and imaginary parts are expanded recursively.
836     TEK_Complex,
837     // All other types are not expandable.
838     TEK_None
839   };
840 
841   const TypeExpansionKind Kind;
842 
843   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
844   virtual ~TypeExpansion() {}
845 };
846 
847 struct ConstantArrayExpansion : TypeExpansion {
848   QualType EltTy;
849   uint64_t NumElts;
850 
851   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
852       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
853   static bool classof(const TypeExpansion *TE) {
854     return TE->Kind == TEK_ConstantArray;
855   }
856 };
857 
858 struct RecordExpansion : TypeExpansion {
859   SmallVector<const CXXBaseSpecifier *, 1> Bases;
860 
861   SmallVector<const FieldDecl *, 1> Fields;
862 
863   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
864                   SmallVector<const FieldDecl *, 1> &&Fields)
865       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
866         Fields(std::move(Fields)) {}
867   static bool classof(const TypeExpansion *TE) {
868     return TE->Kind == TEK_Record;
869   }
870 };
871 
872 struct ComplexExpansion : TypeExpansion {
873   QualType EltTy;
874 
875   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
876   static bool classof(const TypeExpansion *TE) {
877     return TE->Kind == TEK_Complex;
878   }
879 };
880 
881 struct NoExpansion : TypeExpansion {
882   NoExpansion() : TypeExpansion(TEK_None) {}
883   static bool classof(const TypeExpansion *TE) {
884     return TE->Kind == TEK_None;
885   }
886 };
887 }  // namespace
888 
889 static std::unique_ptr<TypeExpansion>
890 getTypeExpansion(QualType Ty, const ASTContext &Context) {
891   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
892     return llvm::make_unique<ConstantArrayExpansion>(
893         AT->getElementType(), AT->getSize().getZExtValue());
894   }
895   if (const RecordType *RT = Ty->getAs<RecordType>()) {
896     SmallVector<const CXXBaseSpecifier *, 1> Bases;
897     SmallVector<const FieldDecl *, 1> Fields;
898     const RecordDecl *RD = RT->getDecl();
899     assert(!RD->hasFlexibleArrayMember() &&
900            "Cannot expand structure with flexible array.");
901     if (RD->isUnion()) {
902       // Unions can be here only in degenerative cases - all the fields are same
903       // after flattening. Thus we have to use the "largest" field.
904       const FieldDecl *LargestFD = nullptr;
905       CharUnits UnionSize = CharUnits::Zero();
906 
907       for (const auto *FD : RD->fields()) {
908         // Skip zero length bitfields.
909         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
910           continue;
911         assert(!FD->isBitField() &&
912                "Cannot expand structure with bit-field members.");
913         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
914         if (UnionSize < FieldSize) {
915           UnionSize = FieldSize;
916           LargestFD = FD;
917         }
918       }
919       if (LargestFD)
920         Fields.push_back(LargestFD);
921     } else {
922       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
923         assert(!CXXRD->isDynamicClass() &&
924                "cannot expand vtable pointers in dynamic classes");
925         for (const CXXBaseSpecifier &BS : CXXRD->bases())
926           Bases.push_back(&BS);
927       }
928 
929       for (const auto *FD : RD->fields()) {
930         // Skip zero length bitfields.
931         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
932           continue;
933         assert(!FD->isBitField() &&
934                "Cannot expand structure with bit-field members.");
935         Fields.push_back(FD);
936       }
937     }
938     return llvm::make_unique<RecordExpansion>(std::move(Bases),
939                                               std::move(Fields));
940   }
941   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
942     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
943   }
944   return llvm::make_unique<NoExpansion>();
945 }
946 
947 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
948   auto Exp = getTypeExpansion(Ty, Context);
949   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
950     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
951   }
952   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
953     int Res = 0;
954     for (auto BS : RExp->Bases)
955       Res += getExpansionSize(BS->getType(), Context);
956     for (auto FD : RExp->Fields)
957       Res += getExpansionSize(FD->getType(), Context);
958     return Res;
959   }
960   if (isa<ComplexExpansion>(Exp.get()))
961     return 2;
962   assert(isa<NoExpansion>(Exp.get()));
963   return 1;
964 }
965 
966 void
967 CodeGenTypes::getExpandedTypes(QualType Ty,
968                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
969   auto Exp = getTypeExpansion(Ty, Context);
970   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
971     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
972       getExpandedTypes(CAExp->EltTy, TI);
973     }
974   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
975     for (auto BS : RExp->Bases)
976       getExpandedTypes(BS->getType(), TI);
977     for (auto FD : RExp->Fields)
978       getExpandedTypes(FD->getType(), TI);
979   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
980     llvm::Type *EltTy = ConvertType(CExp->EltTy);
981     *TI++ = EltTy;
982     *TI++ = EltTy;
983   } else {
984     assert(isa<NoExpansion>(Exp.get()));
985     *TI++ = ConvertType(Ty);
986   }
987 }
988 
989 static void forConstantArrayExpansion(CodeGenFunction &CGF,
990                                       ConstantArrayExpansion *CAE,
991                                       Address BaseAddr,
992                                       llvm::function_ref<void(Address)> Fn) {
993   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
994   CharUnits EltAlign =
995     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
996 
997   for (int i = 0, n = CAE->NumElts; i < n; i++) {
998     llvm::Value *EltAddr =
999       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1000     Fn(Address(EltAddr, EltAlign));
1001   }
1002 }
1003 
1004 void CodeGenFunction::ExpandTypeFromArgs(
1005     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1006   assert(LV.isSimple() &&
1007          "Unexpected non-simple lvalue during struct expansion.");
1008 
1009   auto Exp = getTypeExpansion(Ty, getContext());
1010   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1011     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
1012                               [&](Address EltAddr) {
1013       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1014       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1015     });
1016   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1017     Address This = LV.getAddress();
1018     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1019       // Perform a single step derived-to-base conversion.
1020       Address Base =
1021           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1022                                 /*NullCheckValue=*/false, SourceLocation());
1023       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1024 
1025       // Recurse onto bases.
1026       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1027     }
1028     for (auto FD : RExp->Fields) {
1029       // FIXME: What are the right qualifiers here?
1030       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1031       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1032     }
1033   } else if (isa<ComplexExpansion>(Exp.get())) {
1034     auto realValue = *AI++;
1035     auto imagValue = *AI++;
1036     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1037   } else {
1038     assert(isa<NoExpansion>(Exp.get()));
1039     EmitStoreThroughLValue(RValue::get(*AI++), LV);
1040   }
1041 }
1042 
1043 void CodeGenFunction::ExpandTypeToArgs(
1044     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1045     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1046   auto Exp = getTypeExpansion(Ty, getContext());
1047   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1048     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1049                                    : Arg.getKnownRValue().getAggregateAddress();
1050     forConstantArrayExpansion(
1051         *this, CAExp, Addr, [&](Address EltAddr) {
1052           CallArg EltArg = CallArg(
1053               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1054               CAExp->EltTy);
1055           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1056                            IRCallArgPos);
1057         });
1058   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1059     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1060                                    : Arg.getKnownRValue().getAggregateAddress();
1061     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1062       // Perform a single step derived-to-base conversion.
1063       Address Base =
1064           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1065                                 /*NullCheckValue=*/false, SourceLocation());
1066       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1067 
1068       // Recurse onto bases.
1069       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1070                        IRCallArgPos);
1071     }
1072 
1073     LValue LV = MakeAddrLValue(This, Ty);
1074     for (auto FD : RExp->Fields) {
1075       CallArg FldArg =
1076           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1077       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1078                        IRCallArgPos);
1079     }
1080   } else if (isa<ComplexExpansion>(Exp.get())) {
1081     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1082     IRCallArgs[IRCallArgPos++] = CV.first;
1083     IRCallArgs[IRCallArgPos++] = CV.second;
1084   } else {
1085     assert(isa<NoExpansion>(Exp.get()));
1086     auto RV = Arg.getKnownRValue();
1087     assert(RV.isScalar() &&
1088            "Unexpected non-scalar rvalue during struct expansion.");
1089 
1090     // Insert a bitcast as needed.
1091     llvm::Value *V = RV.getScalarVal();
1092     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1093         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1094       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1095 
1096     IRCallArgs[IRCallArgPos++] = V;
1097   }
1098 }
1099 
1100 /// Create a temporary allocation for the purposes of coercion.
1101 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1102                                            CharUnits MinAlign) {
1103   // Don't use an alignment that's worse than what LLVM would prefer.
1104   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1105   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1106 
1107   return CGF.CreateTempAlloca(Ty, Align);
1108 }
1109 
1110 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1111 /// accessing some number of bytes out of it, try to gep into the struct to get
1112 /// at its inner goodness.  Dive as deep as possible without entering an element
1113 /// with an in-memory size smaller than DstSize.
1114 static Address
1115 EnterStructPointerForCoercedAccess(Address SrcPtr,
1116                                    llvm::StructType *SrcSTy,
1117                                    uint64_t DstSize, CodeGenFunction &CGF) {
1118   // We can't dive into a zero-element struct.
1119   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1120 
1121   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1122 
1123   // If the first elt is at least as large as what we're looking for, or if the
1124   // first element is the same size as the whole struct, we can enter it. The
1125   // comparison must be made on the store size and not the alloca size. Using
1126   // the alloca size may overstate the size of the load.
1127   uint64_t FirstEltSize =
1128     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1129   if (FirstEltSize < DstSize &&
1130       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1131     return SrcPtr;
1132 
1133   // GEP into the first element.
1134   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
1135 
1136   // If the first element is a struct, recurse.
1137   llvm::Type *SrcTy = SrcPtr.getElementType();
1138   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1139     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1140 
1141   return SrcPtr;
1142 }
1143 
1144 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1145 /// are either integers or pointers.  This does a truncation of the value if it
1146 /// is too large or a zero extension if it is too small.
1147 ///
1148 /// This behaves as if the value were coerced through memory, so on big-endian
1149 /// targets the high bits are preserved in a truncation, while little-endian
1150 /// targets preserve the low bits.
1151 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1152                                              llvm::Type *Ty,
1153                                              CodeGenFunction &CGF) {
1154   if (Val->getType() == Ty)
1155     return Val;
1156 
1157   if (isa<llvm::PointerType>(Val->getType())) {
1158     // If this is Pointer->Pointer avoid conversion to and from int.
1159     if (isa<llvm::PointerType>(Ty))
1160       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1161 
1162     // Convert the pointer to an integer so we can play with its width.
1163     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1164   }
1165 
1166   llvm::Type *DestIntTy = Ty;
1167   if (isa<llvm::PointerType>(DestIntTy))
1168     DestIntTy = CGF.IntPtrTy;
1169 
1170   if (Val->getType() != DestIntTy) {
1171     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1172     if (DL.isBigEndian()) {
1173       // Preserve the high bits on big-endian targets.
1174       // That is what memory coercion does.
1175       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1176       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1177 
1178       if (SrcSize > DstSize) {
1179         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1180         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1181       } else {
1182         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1183         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1184       }
1185     } else {
1186       // Little-endian targets preserve the low bits. No shifts required.
1187       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1188     }
1189   }
1190 
1191   if (isa<llvm::PointerType>(Ty))
1192     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1193   return Val;
1194 }
1195 
1196 
1197 
1198 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1199 /// a pointer to an object of type \arg Ty, known to be aligned to
1200 /// \arg SrcAlign bytes.
1201 ///
1202 /// This safely handles the case when the src type is smaller than the
1203 /// destination type; in this situation the values of bits which not
1204 /// present in the src are undefined.
1205 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1206                                       CodeGenFunction &CGF) {
1207   llvm::Type *SrcTy = Src.getElementType();
1208 
1209   // If SrcTy and Ty are the same, just do a load.
1210   if (SrcTy == Ty)
1211     return CGF.Builder.CreateLoad(Src);
1212 
1213   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1214 
1215   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1216     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1217     SrcTy = Src.getType()->getElementType();
1218   }
1219 
1220   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1221 
1222   // If the source and destination are integer or pointer types, just do an
1223   // extension or truncation to the desired type.
1224   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1225       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1226     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1227     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1228   }
1229 
1230   // If load is legal, just bitcast the src pointer.
1231   if (SrcSize >= DstSize) {
1232     // Generally SrcSize is never greater than DstSize, since this means we are
1233     // losing bits. However, this can happen in cases where the structure has
1234     // additional padding, for example due to a user specified alignment.
1235     //
1236     // FIXME: Assert that we aren't truncating non-padding bits when have access
1237     // to that information.
1238     Src = CGF.Builder.CreateBitCast(Src,
1239                                     Ty->getPointerTo(Src.getAddressSpace()));
1240     return CGF.Builder.CreateLoad(Src);
1241   }
1242 
1243   // Otherwise do coercion through memory. This is stupid, but simple.
1244   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1245   Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy);
1246   Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.AllocaInt8PtrTy);
1247   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1248       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1249       false);
1250   return CGF.Builder.CreateLoad(Tmp);
1251 }
1252 
1253 // Function to store a first-class aggregate into memory.  We prefer to
1254 // store the elements rather than the aggregate to be more friendly to
1255 // fast-isel.
1256 // FIXME: Do we need to recurse here?
1257 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1258                           Address Dest, bool DestIsVolatile) {
1259   // Prefer scalar stores to first-class aggregate stores.
1260   if (llvm::StructType *STy =
1261         dyn_cast<llvm::StructType>(Val->getType())) {
1262     const llvm::StructLayout *Layout =
1263       CGF.CGM.getDataLayout().getStructLayout(STy);
1264 
1265     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1266       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1267       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1268       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1269       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1270     }
1271   } else {
1272     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1273   }
1274 }
1275 
1276 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1277 /// where the source and destination may have different types.  The
1278 /// destination is known to be aligned to \arg DstAlign bytes.
1279 ///
1280 /// This safely handles the case when the src type is larger than the
1281 /// destination type; the upper bits of the src will be lost.
1282 static void CreateCoercedStore(llvm::Value *Src,
1283                                Address Dst,
1284                                bool DstIsVolatile,
1285                                CodeGenFunction &CGF) {
1286   llvm::Type *SrcTy = Src->getType();
1287   llvm::Type *DstTy = Dst.getType()->getElementType();
1288   if (SrcTy == DstTy) {
1289     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1290     return;
1291   }
1292 
1293   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1294 
1295   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1296     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1297     DstTy = Dst.getType()->getElementType();
1298   }
1299 
1300   // If the source and destination are integer or pointer types, just do an
1301   // extension or truncation to the desired type.
1302   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1303       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1304     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1305     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1306     return;
1307   }
1308 
1309   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1310 
1311   // If store is legal, just bitcast the src pointer.
1312   if (SrcSize <= DstSize) {
1313     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1314     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1315   } else {
1316     // Otherwise do coercion through memory. This is stupid, but
1317     // simple.
1318 
1319     // Generally SrcSize is never greater than DstSize, since this means we are
1320     // losing bits. However, this can happen in cases where the structure has
1321     // additional padding, for example due to a user specified alignment.
1322     //
1323     // FIXME: Assert that we aren't truncating non-padding bits when have access
1324     // to that information.
1325     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1326     CGF.Builder.CreateStore(Src, Tmp);
1327     Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy);
1328     Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.AllocaInt8PtrTy);
1329     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1330         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1331         false);
1332   }
1333 }
1334 
1335 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1336                                    const ABIArgInfo &info) {
1337   if (unsigned offset = info.getDirectOffset()) {
1338     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1339     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1340                                              CharUnits::fromQuantity(offset));
1341     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1342   }
1343   return addr;
1344 }
1345 
1346 namespace {
1347 
1348 /// Encapsulates information about the way function arguments from
1349 /// CGFunctionInfo should be passed to actual LLVM IR function.
1350 class ClangToLLVMArgMapping {
1351   static const unsigned InvalidIndex = ~0U;
1352   unsigned InallocaArgNo;
1353   unsigned SRetArgNo;
1354   unsigned TotalIRArgs;
1355 
1356   /// Arguments of LLVM IR function corresponding to single Clang argument.
1357   struct IRArgs {
1358     unsigned PaddingArgIndex;
1359     // Argument is expanded to IR arguments at positions
1360     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1361     unsigned FirstArgIndex;
1362     unsigned NumberOfArgs;
1363 
1364     IRArgs()
1365         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1366           NumberOfArgs(0) {}
1367   };
1368 
1369   SmallVector<IRArgs, 8> ArgInfo;
1370 
1371 public:
1372   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1373                         bool OnlyRequiredArgs = false)
1374       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1375         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1376     construct(Context, FI, OnlyRequiredArgs);
1377   }
1378 
1379   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1380   unsigned getInallocaArgNo() const {
1381     assert(hasInallocaArg());
1382     return InallocaArgNo;
1383   }
1384 
1385   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1386   unsigned getSRetArgNo() const {
1387     assert(hasSRetArg());
1388     return SRetArgNo;
1389   }
1390 
1391   unsigned totalIRArgs() const { return TotalIRArgs; }
1392 
1393   bool hasPaddingArg(unsigned ArgNo) const {
1394     assert(ArgNo < ArgInfo.size());
1395     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1396   }
1397   unsigned getPaddingArgNo(unsigned ArgNo) const {
1398     assert(hasPaddingArg(ArgNo));
1399     return ArgInfo[ArgNo].PaddingArgIndex;
1400   }
1401 
1402   /// Returns index of first IR argument corresponding to ArgNo, and their
1403   /// quantity.
1404   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1405     assert(ArgNo < ArgInfo.size());
1406     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1407                           ArgInfo[ArgNo].NumberOfArgs);
1408   }
1409 
1410 private:
1411   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1412                  bool OnlyRequiredArgs);
1413 };
1414 
1415 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1416                                       const CGFunctionInfo &FI,
1417                                       bool OnlyRequiredArgs) {
1418   unsigned IRArgNo = 0;
1419   bool SwapThisWithSRet = false;
1420   const ABIArgInfo &RetAI = FI.getReturnInfo();
1421 
1422   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1423     SwapThisWithSRet = RetAI.isSRetAfterThis();
1424     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1425   }
1426 
1427   unsigned ArgNo = 0;
1428   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1429   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1430        ++I, ++ArgNo) {
1431     assert(I != FI.arg_end());
1432     QualType ArgType = I->type;
1433     const ABIArgInfo &AI = I->info;
1434     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1435     auto &IRArgs = ArgInfo[ArgNo];
1436 
1437     if (AI.getPaddingType())
1438       IRArgs.PaddingArgIndex = IRArgNo++;
1439 
1440     switch (AI.getKind()) {
1441     case ABIArgInfo::Extend:
1442     case ABIArgInfo::Direct: {
1443       // FIXME: handle sseregparm someday...
1444       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1445       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1446         IRArgs.NumberOfArgs = STy->getNumElements();
1447       } else {
1448         IRArgs.NumberOfArgs = 1;
1449       }
1450       break;
1451     }
1452     case ABIArgInfo::Indirect:
1453       IRArgs.NumberOfArgs = 1;
1454       break;
1455     case ABIArgInfo::Ignore:
1456     case ABIArgInfo::InAlloca:
1457       // ignore and inalloca doesn't have matching LLVM parameters.
1458       IRArgs.NumberOfArgs = 0;
1459       break;
1460     case ABIArgInfo::CoerceAndExpand:
1461       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1462       break;
1463     case ABIArgInfo::Expand:
1464       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1465       break;
1466     }
1467 
1468     if (IRArgs.NumberOfArgs > 0) {
1469       IRArgs.FirstArgIndex = IRArgNo;
1470       IRArgNo += IRArgs.NumberOfArgs;
1471     }
1472 
1473     // Skip over the sret parameter when it comes second.  We already handled it
1474     // above.
1475     if (IRArgNo == 1 && SwapThisWithSRet)
1476       IRArgNo++;
1477   }
1478   assert(ArgNo == ArgInfo.size());
1479 
1480   if (FI.usesInAlloca())
1481     InallocaArgNo = IRArgNo++;
1482 
1483   TotalIRArgs = IRArgNo;
1484 }
1485 }  // namespace
1486 
1487 /***/
1488 
1489 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1490   const auto &RI = FI.getReturnInfo();
1491   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1492 }
1493 
1494 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1495   return ReturnTypeUsesSRet(FI) &&
1496          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1497 }
1498 
1499 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1500   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1501     switch (BT->getKind()) {
1502     default:
1503       return false;
1504     case BuiltinType::Float:
1505       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1506     case BuiltinType::Double:
1507       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1508     case BuiltinType::LongDouble:
1509       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1510     }
1511   }
1512 
1513   return false;
1514 }
1515 
1516 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1517   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1518     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1519       if (BT->getKind() == BuiltinType::LongDouble)
1520         return getTarget().useObjCFP2RetForComplexLongDouble();
1521     }
1522   }
1523 
1524   return false;
1525 }
1526 
1527 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1528   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1529   return GetFunctionType(FI);
1530 }
1531 
1532 llvm::FunctionType *
1533 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1534 
1535   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1536   (void)Inserted;
1537   assert(Inserted && "Recursively being processed?");
1538 
1539   llvm::Type *resultType = nullptr;
1540   const ABIArgInfo &retAI = FI.getReturnInfo();
1541   switch (retAI.getKind()) {
1542   case ABIArgInfo::Expand:
1543     llvm_unreachable("Invalid ABI kind for return argument");
1544 
1545   case ABIArgInfo::Extend:
1546   case ABIArgInfo::Direct:
1547     resultType = retAI.getCoerceToType();
1548     break;
1549 
1550   case ABIArgInfo::InAlloca:
1551     if (retAI.getInAllocaSRet()) {
1552       // sret things on win32 aren't void, they return the sret pointer.
1553       QualType ret = FI.getReturnType();
1554       llvm::Type *ty = ConvertType(ret);
1555       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1556       resultType = llvm::PointerType::get(ty, addressSpace);
1557     } else {
1558       resultType = llvm::Type::getVoidTy(getLLVMContext());
1559     }
1560     break;
1561 
1562   case ABIArgInfo::Indirect:
1563   case ABIArgInfo::Ignore:
1564     resultType = llvm::Type::getVoidTy(getLLVMContext());
1565     break;
1566 
1567   case ABIArgInfo::CoerceAndExpand:
1568     resultType = retAI.getUnpaddedCoerceAndExpandType();
1569     break;
1570   }
1571 
1572   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1573   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1574 
1575   // Add type for sret argument.
1576   if (IRFunctionArgs.hasSRetArg()) {
1577     QualType Ret = FI.getReturnType();
1578     llvm::Type *Ty = ConvertType(Ret);
1579     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1580     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1581         llvm::PointerType::get(Ty, AddressSpace);
1582   }
1583 
1584   // Add type for inalloca argument.
1585   if (IRFunctionArgs.hasInallocaArg()) {
1586     auto ArgStruct = FI.getArgStruct();
1587     assert(ArgStruct);
1588     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1589   }
1590 
1591   // Add in all of the required arguments.
1592   unsigned ArgNo = 0;
1593   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1594                                      ie = it + FI.getNumRequiredArgs();
1595   for (; it != ie; ++it, ++ArgNo) {
1596     const ABIArgInfo &ArgInfo = it->info;
1597 
1598     // Insert a padding type to ensure proper alignment.
1599     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1600       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1601           ArgInfo.getPaddingType();
1602 
1603     unsigned FirstIRArg, NumIRArgs;
1604     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1605 
1606     switch (ArgInfo.getKind()) {
1607     case ABIArgInfo::Ignore:
1608     case ABIArgInfo::InAlloca:
1609       assert(NumIRArgs == 0);
1610       break;
1611 
1612     case ABIArgInfo::Indirect: {
1613       assert(NumIRArgs == 1);
1614       // indirect arguments are always on the stack, which is alloca addr space.
1615       llvm::Type *LTy = ConvertTypeForMem(it->type);
1616       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1617           CGM.getDataLayout().getAllocaAddrSpace());
1618       break;
1619     }
1620 
1621     case ABIArgInfo::Extend:
1622     case ABIArgInfo::Direct: {
1623       // Fast-isel and the optimizer generally like scalar values better than
1624       // FCAs, so we flatten them if this is safe to do for this argument.
1625       llvm::Type *argType = ArgInfo.getCoerceToType();
1626       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1627       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1628         assert(NumIRArgs == st->getNumElements());
1629         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1630           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1631       } else {
1632         assert(NumIRArgs == 1);
1633         ArgTypes[FirstIRArg] = argType;
1634       }
1635       break;
1636     }
1637 
1638     case ABIArgInfo::CoerceAndExpand: {
1639       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1640       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1641         *ArgTypesIter++ = EltTy;
1642       }
1643       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1644       break;
1645     }
1646 
1647     case ABIArgInfo::Expand:
1648       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1649       getExpandedTypes(it->type, ArgTypesIter);
1650       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1651       break;
1652     }
1653   }
1654 
1655   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1656   assert(Erased && "Not in set?");
1657 
1658   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1659 }
1660 
1661 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1662   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1663   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1664 
1665   if (!isFuncTypeConvertible(FPT))
1666     return llvm::StructType::get(getLLVMContext());
1667 
1668   const CGFunctionInfo *Info;
1669   if (isa<CXXDestructorDecl>(MD))
1670     Info =
1671         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1672   else
1673     Info = &arrangeCXXMethodDeclaration(MD);
1674   return GetFunctionType(*Info);
1675 }
1676 
1677 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1678                                                llvm::AttrBuilder &FuncAttrs,
1679                                                const FunctionProtoType *FPT) {
1680   if (!FPT)
1681     return;
1682 
1683   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1684       FPT->isNothrow(Ctx))
1685     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1686 }
1687 
1688 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1689                                                bool AttrOnCallSite,
1690                                                llvm::AttrBuilder &FuncAttrs) {
1691   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1692   if (!HasOptnone) {
1693     if (CodeGenOpts.OptimizeSize)
1694       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1695     if (CodeGenOpts.OptimizeSize == 2)
1696       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1697   }
1698 
1699   if (CodeGenOpts.DisableRedZone)
1700     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1701   if (CodeGenOpts.NoImplicitFloat)
1702     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1703 
1704   if (AttrOnCallSite) {
1705     // Attributes that should go on the call site only.
1706     if (!CodeGenOpts.SimplifyLibCalls ||
1707         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1708       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1709     if (!CodeGenOpts.TrapFuncName.empty())
1710       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1711   } else {
1712     // Attributes that should go on the function, but not the call site.
1713     if (!CodeGenOpts.DisableFPElim) {
1714       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1715     } else if (CodeGenOpts.OmitLeafFramePointer) {
1716       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1717       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1718     } else {
1719       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1720       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1721     }
1722 
1723     FuncAttrs.addAttribute("less-precise-fpmad",
1724                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1725 
1726     if (!CodeGenOpts.FPDenormalMode.empty())
1727       FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
1728 
1729     FuncAttrs.addAttribute("no-trapping-math",
1730                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1731 
1732     // TODO: Are these all needed?
1733     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1734     FuncAttrs.addAttribute("no-infs-fp-math",
1735                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1736     FuncAttrs.addAttribute("no-nans-fp-math",
1737                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1738     FuncAttrs.addAttribute("unsafe-fp-math",
1739                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1740     FuncAttrs.addAttribute("use-soft-float",
1741                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1742     FuncAttrs.addAttribute("stack-protector-buffer-size",
1743                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1744     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1745                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1746     FuncAttrs.addAttribute(
1747         "correctly-rounded-divide-sqrt-fp-math",
1748         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1749 
1750     // TODO: Reciprocal estimate codegen options should apply to instructions?
1751     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1752     if (!Recips.empty())
1753       FuncAttrs.addAttribute("reciprocal-estimates",
1754                              llvm::join(Recips, ","));
1755 
1756     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1757         CodeGenOpts.PreferVectorWidth != "none")
1758       FuncAttrs.addAttribute("prefer-vector-width",
1759                              CodeGenOpts.PreferVectorWidth);
1760 
1761     if (CodeGenOpts.StackRealignment)
1762       FuncAttrs.addAttribute("stackrealign");
1763     if (CodeGenOpts.Backchain)
1764       FuncAttrs.addAttribute("backchain");
1765   }
1766 
1767   if (getLangOpts().assumeFunctionsAreConvergent()) {
1768     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1769     // convergent (meaning, they may call an intrinsically convergent op, such
1770     // as __syncthreads() / barrier(), and so can't have certain optimizations
1771     // applied around them).  LLVM will remove this attribute where it safely
1772     // can.
1773     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1774   }
1775 
1776   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1777     // Exceptions aren't supported in CUDA device code.
1778     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1779 
1780     // Respect -fcuda-flush-denormals-to-zero.
1781     if (getLangOpts().CUDADeviceFlushDenormalsToZero)
1782       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1783   }
1784 }
1785 
1786 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1787   llvm::AttrBuilder FuncAttrs;
1788   ConstructDefaultFnAttrList(F.getName(),
1789                              F.hasFnAttribute(llvm::Attribute::OptimizeNone),
1790                              /* AttrOnCallsite = */ false, FuncAttrs);
1791   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1792 }
1793 
1794 void CodeGenModule::ConstructAttributeList(
1795     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1796     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1797   llvm::AttrBuilder FuncAttrs;
1798   llvm::AttrBuilder RetAttrs;
1799 
1800   CallingConv = FI.getEffectiveCallingConvention();
1801   if (FI.isNoReturn())
1802     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1803 
1804   // If we have information about the function prototype, we can learn
1805   // attributes form there.
1806   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1807                                      CalleeInfo.getCalleeFunctionProtoType());
1808 
1809   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
1810 
1811   bool HasOptnone = false;
1812   // FIXME: handle sseregparm someday...
1813   if (TargetDecl) {
1814     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1815       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1816     if (TargetDecl->hasAttr<NoThrowAttr>())
1817       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1818     if (TargetDecl->hasAttr<NoReturnAttr>())
1819       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1820     if (TargetDecl->hasAttr<ColdAttr>())
1821       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1822     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1823       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1824     if (TargetDecl->hasAttr<ConvergentAttr>())
1825       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1826 
1827     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1828       AddAttributesFromFunctionProtoType(
1829           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1830       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1831       // These attributes are not inherited by overloads.
1832       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1833       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1834         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1835     }
1836 
1837     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1838     if (TargetDecl->hasAttr<ConstAttr>()) {
1839       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1840       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1841     } else if (TargetDecl->hasAttr<PureAttr>()) {
1842       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1843       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1844     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1845       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1846       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1847     }
1848     if (TargetDecl->hasAttr<RestrictAttr>())
1849       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1850     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1851       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1852     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1853       FuncAttrs.addAttribute("no_caller_saved_registers");
1854     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1855       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1856 
1857     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1858     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1859       Optional<unsigned> NumElemsParam;
1860       if (AllocSize->getNumElemsParam().isValid())
1861         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1862       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1863                                  NumElemsParam);
1864     }
1865   }
1866 
1867   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1868 
1869   if (CodeGenOpts.EnableSegmentedStacks &&
1870       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1871     FuncAttrs.addAttribute("split-stack");
1872 
1873   // Add NonLazyBind attribute to function declarations when -fno-plt
1874   // is used.
1875   if (TargetDecl && CodeGenOpts.NoPLT) {
1876     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1877       if (!Fn->isDefined() && !AttrOnCallSite) {
1878         FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1879       }
1880     }
1881   }
1882 
1883   if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1884     if (getLangOpts().OpenCLVersion <= 120) {
1885       // OpenCL v1.2 Work groups are always uniform
1886       FuncAttrs.addAttribute("uniform-work-group-size", "true");
1887     } else {
1888       // OpenCL v2.0 Work groups may be whether uniform or not.
1889       // '-cl-uniform-work-group-size' compile option gets a hint
1890       // to the compiler that the global work-size be a multiple of
1891       // the work-group size specified to clEnqueueNDRangeKernel
1892       // (i.e. work groups are uniform).
1893       FuncAttrs.addAttribute("uniform-work-group-size",
1894                              llvm::toStringRef(CodeGenOpts.UniformWGSize));
1895     }
1896   }
1897 
1898   if (!AttrOnCallSite) {
1899     bool DisableTailCalls = false;
1900 
1901     if (CodeGenOpts.DisableTailCalls)
1902       DisableTailCalls = true;
1903     else if (TargetDecl) {
1904       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1905           TargetDecl->hasAttr<AnyX86InterruptAttr>())
1906         DisableTailCalls = true;
1907       else if (CodeGenOpts.NoEscapingBlockTailCalls) {
1908         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
1909           if (!BD->doesNotEscape())
1910             DisableTailCalls = true;
1911       }
1912     }
1913 
1914     FuncAttrs.addAttribute("disable-tail-calls",
1915                            llvm::toStringRef(DisableTailCalls));
1916     GetCPUAndFeaturesAttributes(TargetDecl, FuncAttrs);
1917   }
1918 
1919   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1920 
1921   QualType RetTy = FI.getReturnType();
1922   const ABIArgInfo &RetAI = FI.getReturnInfo();
1923   switch (RetAI.getKind()) {
1924   case ABIArgInfo::Extend:
1925     if (RetAI.isSignExt())
1926       RetAttrs.addAttribute(llvm::Attribute::SExt);
1927     else
1928       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1929     LLVM_FALLTHROUGH;
1930   case ABIArgInfo::Direct:
1931     if (RetAI.getInReg())
1932       RetAttrs.addAttribute(llvm::Attribute::InReg);
1933     break;
1934   case ABIArgInfo::Ignore:
1935     break;
1936 
1937   case ABIArgInfo::InAlloca:
1938   case ABIArgInfo::Indirect: {
1939     // inalloca and sret disable readnone and readonly
1940     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1941       .removeAttribute(llvm::Attribute::ReadNone);
1942     break;
1943   }
1944 
1945   case ABIArgInfo::CoerceAndExpand:
1946     break;
1947 
1948   case ABIArgInfo::Expand:
1949     llvm_unreachable("Invalid ABI kind for return argument");
1950   }
1951 
1952   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1953     QualType PTy = RefTy->getPointeeType();
1954     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1955       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1956                                         .getQuantity());
1957     else if (getContext().getTargetAddressSpace(PTy) == 0)
1958       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1959   }
1960 
1961   bool hasUsedSRet = false;
1962   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
1963 
1964   // Attach attributes to sret.
1965   if (IRFunctionArgs.hasSRetArg()) {
1966     llvm::AttrBuilder SRETAttrs;
1967     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1968     hasUsedSRet = true;
1969     if (RetAI.getInReg())
1970       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1971     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
1972         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
1973   }
1974 
1975   // Attach attributes to inalloca argument.
1976   if (IRFunctionArgs.hasInallocaArg()) {
1977     llvm::AttrBuilder Attrs;
1978     Attrs.addAttribute(llvm::Attribute::InAlloca);
1979     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
1980         llvm::AttributeSet::get(getLLVMContext(), Attrs);
1981   }
1982 
1983   unsigned ArgNo = 0;
1984   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1985                                           E = FI.arg_end();
1986        I != E; ++I, ++ArgNo) {
1987     QualType ParamType = I->type;
1988     const ABIArgInfo &AI = I->info;
1989     llvm::AttrBuilder Attrs;
1990 
1991     // Add attribute for padding argument, if necessary.
1992     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1993       if (AI.getPaddingInReg()) {
1994         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1995             llvm::AttributeSet::get(
1996                 getLLVMContext(),
1997                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
1998       }
1999     }
2000 
2001     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2002     // have the corresponding parameter variable.  It doesn't make
2003     // sense to do it here because parameters are so messed up.
2004     switch (AI.getKind()) {
2005     case ABIArgInfo::Extend:
2006       if (AI.isSignExt())
2007         Attrs.addAttribute(llvm::Attribute::SExt);
2008       else
2009         Attrs.addAttribute(llvm::Attribute::ZExt);
2010       LLVM_FALLTHROUGH;
2011     case ABIArgInfo::Direct:
2012       if (ArgNo == 0 && FI.isChainCall())
2013         Attrs.addAttribute(llvm::Attribute::Nest);
2014       else if (AI.getInReg())
2015         Attrs.addAttribute(llvm::Attribute::InReg);
2016       break;
2017 
2018     case ABIArgInfo::Indirect: {
2019       if (AI.getInReg())
2020         Attrs.addAttribute(llvm::Attribute::InReg);
2021 
2022       if (AI.getIndirectByVal())
2023         Attrs.addAttribute(llvm::Attribute::ByVal);
2024 
2025       CharUnits Align = AI.getIndirectAlign();
2026 
2027       // In a byval argument, it is important that the required
2028       // alignment of the type is honored, as LLVM might be creating a
2029       // *new* stack object, and needs to know what alignment to give
2030       // it. (Sometimes it can deduce a sensible alignment on its own,
2031       // but not if clang decides it must emit a packed struct, or the
2032       // user specifies increased alignment requirements.)
2033       //
2034       // This is different from indirect *not* byval, where the object
2035       // exists already, and the align attribute is purely
2036       // informative.
2037       assert(!Align.isZero());
2038 
2039       // For now, only add this when we have a byval argument.
2040       // TODO: be less lazy about updating test cases.
2041       if (AI.getIndirectByVal())
2042         Attrs.addAlignmentAttr(Align.getQuantity());
2043 
2044       // byval disables readnone and readonly.
2045       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2046         .removeAttribute(llvm::Attribute::ReadNone);
2047       break;
2048     }
2049     case ABIArgInfo::Ignore:
2050     case ABIArgInfo::Expand:
2051     case ABIArgInfo::CoerceAndExpand:
2052       break;
2053 
2054     case ABIArgInfo::InAlloca:
2055       // inalloca disables readnone and readonly.
2056       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2057           .removeAttribute(llvm::Attribute::ReadNone);
2058       continue;
2059     }
2060 
2061     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2062       QualType PTy = RefTy->getPointeeType();
2063       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2064         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2065                                        .getQuantity());
2066       else if (getContext().getTargetAddressSpace(PTy) == 0)
2067         Attrs.addAttribute(llvm::Attribute::NonNull);
2068     }
2069 
2070     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2071     case ParameterABI::Ordinary:
2072       break;
2073 
2074     case ParameterABI::SwiftIndirectResult: {
2075       // Add 'sret' if we haven't already used it for something, but
2076       // only if the result is void.
2077       if (!hasUsedSRet && RetTy->isVoidType()) {
2078         Attrs.addAttribute(llvm::Attribute::StructRet);
2079         hasUsedSRet = true;
2080       }
2081 
2082       // Add 'noalias' in either case.
2083       Attrs.addAttribute(llvm::Attribute::NoAlias);
2084 
2085       // Add 'dereferenceable' and 'alignment'.
2086       auto PTy = ParamType->getPointeeType();
2087       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2088         auto info = getContext().getTypeInfoInChars(PTy);
2089         Attrs.addDereferenceableAttr(info.first.getQuantity());
2090         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
2091                                                  info.second.getQuantity()));
2092       }
2093       break;
2094     }
2095 
2096     case ParameterABI::SwiftErrorResult:
2097       Attrs.addAttribute(llvm::Attribute::SwiftError);
2098       break;
2099 
2100     case ParameterABI::SwiftContext:
2101       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2102       break;
2103     }
2104 
2105     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2106       Attrs.addAttribute(llvm::Attribute::NoCapture);
2107 
2108     if (Attrs.hasAttributes()) {
2109       unsigned FirstIRArg, NumIRArgs;
2110       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2111       for (unsigned i = 0; i < NumIRArgs; i++)
2112         ArgAttrs[FirstIRArg + i] =
2113             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2114     }
2115   }
2116   assert(ArgNo == FI.arg_size());
2117 
2118   AttrList = llvm::AttributeList::get(
2119       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2120       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2121 }
2122 
2123 /// An argument came in as a promoted argument; demote it back to its
2124 /// declared type.
2125 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2126                                          const VarDecl *var,
2127                                          llvm::Value *value) {
2128   llvm::Type *varType = CGF.ConvertType(var->getType());
2129 
2130   // This can happen with promotions that actually don't change the
2131   // underlying type, like the enum promotions.
2132   if (value->getType() == varType) return value;
2133 
2134   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2135          && "unexpected promotion type");
2136 
2137   if (isa<llvm::IntegerType>(varType))
2138     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2139 
2140   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2141 }
2142 
2143 /// Returns the attribute (either parameter attribute, or function
2144 /// attribute), which declares argument ArgNo to be non-null.
2145 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2146                                          QualType ArgType, unsigned ArgNo) {
2147   // FIXME: __attribute__((nonnull)) can also be applied to:
2148   //   - references to pointers, where the pointee is known to be
2149   //     nonnull (apparently a Clang extension)
2150   //   - transparent unions containing pointers
2151   // In the former case, LLVM IR cannot represent the constraint. In
2152   // the latter case, we have no guarantee that the transparent union
2153   // is in fact passed as a pointer.
2154   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2155     return nullptr;
2156   // First, check attribute on parameter itself.
2157   if (PVD) {
2158     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2159       return ParmNNAttr;
2160   }
2161   // Check function attributes.
2162   if (!FD)
2163     return nullptr;
2164   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2165     if (NNAttr->isNonNull(ArgNo))
2166       return NNAttr;
2167   }
2168   return nullptr;
2169 }
2170 
2171 namespace {
2172   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2173     Address Temp;
2174     Address Arg;
2175     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2176     void Emit(CodeGenFunction &CGF, Flags flags) override {
2177       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2178       CGF.Builder.CreateStore(errorValue, Arg);
2179     }
2180   };
2181 }
2182 
2183 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2184                                          llvm::Function *Fn,
2185                                          const FunctionArgList &Args) {
2186   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2187     // Naked functions don't have prologues.
2188     return;
2189 
2190   // If this is an implicit-return-zero function, go ahead and
2191   // initialize the return value.  TODO: it might be nice to have
2192   // a more general mechanism for this that didn't require synthesized
2193   // return statements.
2194   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2195     if (FD->hasImplicitReturnZero()) {
2196       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2197       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2198       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2199       Builder.CreateStore(Zero, ReturnValue);
2200     }
2201   }
2202 
2203   // FIXME: We no longer need the types from FunctionArgList; lift up and
2204   // simplify.
2205 
2206   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2207   // Flattened function arguments.
2208   SmallVector<llvm::Value *, 16> FnArgs;
2209   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2210   for (auto &Arg : Fn->args()) {
2211     FnArgs.push_back(&Arg);
2212   }
2213   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2214 
2215   // If we're using inalloca, all the memory arguments are GEPs off of the last
2216   // parameter, which is a pointer to the complete memory area.
2217   Address ArgStruct = Address::invalid();
2218   const llvm::StructLayout *ArgStructLayout = nullptr;
2219   if (IRFunctionArgs.hasInallocaArg()) {
2220     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
2221     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2222                         FI.getArgStructAlignment());
2223 
2224     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2225   }
2226 
2227   // Name the struct return parameter.
2228   if (IRFunctionArgs.hasSRetArg()) {
2229     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2230     AI->setName("agg.result");
2231     AI->addAttr(llvm::Attribute::NoAlias);
2232   }
2233 
2234   // Track if we received the parameter as a pointer (indirect, byval, or
2235   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2236   // into a local alloca for us.
2237   SmallVector<ParamValue, 16> ArgVals;
2238   ArgVals.reserve(Args.size());
2239 
2240   // Create a pointer value for every parameter declaration.  This usually
2241   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2242   // any cleanups or do anything that might unwind.  We do that separately, so
2243   // we can push the cleanups in the correct order for the ABI.
2244   assert(FI.arg_size() == Args.size() &&
2245          "Mismatch between function signature & arguments.");
2246   unsigned ArgNo = 0;
2247   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2248   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2249        i != e; ++i, ++info_it, ++ArgNo) {
2250     const VarDecl *Arg = *i;
2251     const ABIArgInfo &ArgI = info_it->info;
2252 
2253     bool isPromoted =
2254       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2255     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2256     // the parameter is promoted. In this case we convert to
2257     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2258     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2259     assert(hasScalarEvaluationKind(Ty) ==
2260            hasScalarEvaluationKind(Arg->getType()));
2261 
2262     unsigned FirstIRArg, NumIRArgs;
2263     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2264 
2265     switch (ArgI.getKind()) {
2266     case ABIArgInfo::InAlloca: {
2267       assert(NumIRArgs == 0);
2268       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2269       CharUnits FieldOffset =
2270         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
2271       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
2272                                           Arg->getName());
2273       ArgVals.push_back(ParamValue::forIndirect(V));
2274       break;
2275     }
2276 
2277     case ABIArgInfo::Indirect: {
2278       assert(NumIRArgs == 1);
2279       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2280 
2281       if (!hasScalarEvaluationKind(Ty)) {
2282         // Aggregates and complex variables are accessed by reference.  All we
2283         // need to do is realign the value, if requested.
2284         Address V = ParamAddr;
2285         if (ArgI.getIndirectRealign()) {
2286           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2287 
2288           // Copy from the incoming argument pointer to the temporary with the
2289           // appropriate alignment.
2290           //
2291           // FIXME: We should have a common utility for generating an aggregate
2292           // copy.
2293           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2294           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2295           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2296           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2297           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2298           V = AlignedTemp;
2299         }
2300         ArgVals.push_back(ParamValue::forIndirect(V));
2301       } else {
2302         // Load scalar value from indirect argument.
2303         llvm::Value *V =
2304           EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
2305 
2306         if (isPromoted)
2307           V = emitArgumentDemotion(*this, Arg, V);
2308         ArgVals.push_back(ParamValue::forDirect(V));
2309       }
2310       break;
2311     }
2312 
2313     case ABIArgInfo::Extend:
2314     case ABIArgInfo::Direct: {
2315 
2316       // If we have the trivial case, handle it with no muss and fuss.
2317       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2318           ArgI.getCoerceToType() == ConvertType(Ty) &&
2319           ArgI.getDirectOffset() == 0) {
2320         assert(NumIRArgs == 1);
2321         llvm::Value *V = FnArgs[FirstIRArg];
2322         auto AI = cast<llvm::Argument>(V);
2323 
2324         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2325           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2326                              PVD->getFunctionScopeIndex()))
2327             AI->addAttr(llvm::Attribute::NonNull);
2328 
2329           QualType OTy = PVD->getOriginalType();
2330           if (const auto *ArrTy =
2331               getContext().getAsConstantArrayType(OTy)) {
2332             // A C99 array parameter declaration with the static keyword also
2333             // indicates dereferenceability, and if the size is constant we can
2334             // use the dereferenceable attribute (which requires the size in
2335             // bytes).
2336             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2337               QualType ETy = ArrTy->getElementType();
2338               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2339               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2340                   ArrSize) {
2341                 llvm::AttrBuilder Attrs;
2342                 Attrs.addDereferenceableAttr(
2343                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2344                 AI->addAttrs(Attrs);
2345               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
2346                 AI->addAttr(llvm::Attribute::NonNull);
2347               }
2348             }
2349           } else if (const auto *ArrTy =
2350                      getContext().getAsVariableArrayType(OTy)) {
2351             // For C99 VLAs with the static keyword, we don't know the size so
2352             // we can't use the dereferenceable attribute, but in addrspace(0)
2353             // we know that it must be nonnull.
2354             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2355                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
2356               AI->addAttr(llvm::Attribute::NonNull);
2357           }
2358 
2359           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2360           if (!AVAttr)
2361             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2362               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2363           if (AVAttr) {
2364             llvm::Value *AlignmentValue =
2365               EmitScalarExpr(AVAttr->getAlignment());
2366             llvm::ConstantInt *AlignmentCI =
2367               cast<llvm::ConstantInt>(AlignmentValue);
2368             unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
2369                                           +llvm::Value::MaximumAlignment);
2370             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2371           }
2372         }
2373 
2374         if (Arg->getType().isRestrictQualified())
2375           AI->addAttr(llvm::Attribute::NoAlias);
2376 
2377         // LLVM expects swifterror parameters to be used in very restricted
2378         // ways.  Copy the value into a less-restricted temporary.
2379         if (FI.getExtParameterInfo(ArgNo).getABI()
2380               == ParameterABI::SwiftErrorResult) {
2381           QualType pointeeTy = Ty->getPointeeType();
2382           assert(pointeeTy->isPointerType());
2383           Address temp =
2384             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2385           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2386           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2387           Builder.CreateStore(incomingErrorValue, temp);
2388           V = temp.getPointer();
2389 
2390           // Push a cleanup to copy the value back at the end of the function.
2391           // The convention does not guarantee that the value will be written
2392           // back if the function exits with an unwind exception.
2393           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2394         }
2395 
2396         // Ensure the argument is the correct type.
2397         if (V->getType() != ArgI.getCoerceToType())
2398           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2399 
2400         if (isPromoted)
2401           V = emitArgumentDemotion(*this, Arg, V);
2402 
2403         // Because of merging of function types from multiple decls it is
2404         // possible for the type of an argument to not match the corresponding
2405         // type in the function type. Since we are codegening the callee
2406         // in here, add a cast to the argument type.
2407         llvm::Type *LTy = ConvertType(Arg->getType());
2408         if (V->getType() != LTy)
2409           V = Builder.CreateBitCast(V, LTy);
2410 
2411         ArgVals.push_back(ParamValue::forDirect(V));
2412         break;
2413       }
2414 
2415       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2416                                      Arg->getName());
2417 
2418       // Pointer to store into.
2419       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2420 
2421       // Fast-isel and the optimizer generally like scalar values better than
2422       // FCAs, so we flatten them if this is safe to do for this argument.
2423       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2424       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2425           STy->getNumElements() > 1) {
2426         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2427         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2428         llvm::Type *DstTy = Ptr.getElementType();
2429         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2430 
2431         Address AddrToStoreInto = Address::invalid();
2432         if (SrcSize <= DstSize) {
2433           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2434         } else {
2435           AddrToStoreInto =
2436             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2437         }
2438 
2439         assert(STy->getNumElements() == NumIRArgs);
2440         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2441           auto AI = FnArgs[FirstIRArg + i];
2442           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2443           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2444           Address EltPtr =
2445             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2446           Builder.CreateStore(AI, EltPtr);
2447         }
2448 
2449         if (SrcSize > DstSize) {
2450           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2451         }
2452 
2453       } else {
2454         // Simple case, just do a coerced store of the argument into the alloca.
2455         assert(NumIRArgs == 1);
2456         auto AI = FnArgs[FirstIRArg];
2457         AI->setName(Arg->getName() + ".coerce");
2458         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2459       }
2460 
2461       // Match to what EmitParmDecl is expecting for this type.
2462       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2463         llvm::Value *V =
2464           EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
2465         if (isPromoted)
2466           V = emitArgumentDemotion(*this, Arg, V);
2467         ArgVals.push_back(ParamValue::forDirect(V));
2468       } else {
2469         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2470       }
2471       break;
2472     }
2473 
2474     case ABIArgInfo::CoerceAndExpand: {
2475       // Reconstruct into a temporary.
2476       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2477       ArgVals.push_back(ParamValue::forIndirect(alloca));
2478 
2479       auto coercionType = ArgI.getCoerceAndExpandType();
2480       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2481       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2482 
2483       unsigned argIndex = FirstIRArg;
2484       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2485         llvm::Type *eltType = coercionType->getElementType(i);
2486         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2487           continue;
2488 
2489         auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
2490         auto elt = FnArgs[argIndex++];
2491         Builder.CreateStore(elt, eltAddr);
2492       }
2493       assert(argIndex == FirstIRArg + NumIRArgs);
2494       break;
2495     }
2496 
2497     case ABIArgInfo::Expand: {
2498       // If this structure was expanded into multiple arguments then
2499       // we need to create a temporary and reconstruct it from the
2500       // arguments.
2501       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2502       LValue LV = MakeAddrLValue(Alloca, Ty);
2503       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2504 
2505       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2506       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2507       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2508       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2509         auto AI = FnArgs[FirstIRArg + i];
2510         AI->setName(Arg->getName() + "." + Twine(i));
2511       }
2512       break;
2513     }
2514 
2515     case ABIArgInfo::Ignore:
2516       assert(NumIRArgs == 0);
2517       // Initialize the local variable appropriately.
2518       if (!hasScalarEvaluationKind(Ty)) {
2519         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2520       } else {
2521         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2522         ArgVals.push_back(ParamValue::forDirect(U));
2523       }
2524       break;
2525     }
2526   }
2527 
2528   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2529     for (int I = Args.size() - 1; I >= 0; --I)
2530       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2531   } else {
2532     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2533       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2534   }
2535 }
2536 
2537 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2538   while (insn->use_empty()) {
2539     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2540     if (!bitcast) return;
2541 
2542     // This is "safe" because we would have used a ConstantExpr otherwise.
2543     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2544     bitcast->eraseFromParent();
2545   }
2546 }
2547 
2548 /// Try to emit a fused autorelease of a return result.
2549 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2550                                                     llvm::Value *result) {
2551   // We must be immediately followed the cast.
2552   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2553   if (BB->empty()) return nullptr;
2554   if (&BB->back() != result) return nullptr;
2555 
2556   llvm::Type *resultType = result->getType();
2557 
2558   // result is in a BasicBlock and is therefore an Instruction.
2559   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2560 
2561   SmallVector<llvm::Instruction *, 4> InstsToKill;
2562 
2563   // Look for:
2564   //  %generator = bitcast %type1* %generator2 to %type2*
2565   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2566     // We would have emitted this as a constant if the operand weren't
2567     // an Instruction.
2568     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2569 
2570     // Require the generator to be immediately followed by the cast.
2571     if (generator->getNextNode() != bitcast)
2572       return nullptr;
2573 
2574     InstsToKill.push_back(bitcast);
2575   }
2576 
2577   // Look for:
2578   //   %generator = call i8* @objc_retain(i8* %originalResult)
2579   // or
2580   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2581   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2582   if (!call) return nullptr;
2583 
2584   bool doRetainAutorelease;
2585 
2586   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2587     doRetainAutorelease = true;
2588   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2589                                           .objc_retainAutoreleasedReturnValue) {
2590     doRetainAutorelease = false;
2591 
2592     // If we emitted an assembly marker for this call (and the
2593     // ARCEntrypoints field should have been set if so), go looking
2594     // for that call.  If we can't find it, we can't do this
2595     // optimization.  But it should always be the immediately previous
2596     // instruction, unless we needed bitcasts around the call.
2597     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2598       llvm::Instruction *prev = call->getPrevNode();
2599       assert(prev);
2600       if (isa<llvm::BitCastInst>(prev)) {
2601         prev = prev->getPrevNode();
2602         assert(prev);
2603       }
2604       assert(isa<llvm::CallInst>(prev));
2605       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2606                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2607       InstsToKill.push_back(prev);
2608     }
2609   } else {
2610     return nullptr;
2611   }
2612 
2613   result = call->getArgOperand(0);
2614   InstsToKill.push_back(call);
2615 
2616   // Keep killing bitcasts, for sanity.  Note that we no longer care
2617   // about precise ordering as long as there's exactly one use.
2618   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2619     if (!bitcast->hasOneUse()) break;
2620     InstsToKill.push_back(bitcast);
2621     result = bitcast->getOperand(0);
2622   }
2623 
2624   // Delete all the unnecessary instructions, from latest to earliest.
2625   for (auto *I : InstsToKill)
2626     I->eraseFromParent();
2627 
2628   // Do the fused retain/autorelease if we were asked to.
2629   if (doRetainAutorelease)
2630     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2631 
2632   // Cast back to the result type.
2633   return CGF.Builder.CreateBitCast(result, resultType);
2634 }
2635 
2636 /// If this is a +1 of the value of an immutable 'self', remove it.
2637 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2638                                           llvm::Value *result) {
2639   // This is only applicable to a method with an immutable 'self'.
2640   const ObjCMethodDecl *method =
2641     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2642   if (!method) return nullptr;
2643   const VarDecl *self = method->getSelfDecl();
2644   if (!self->getType().isConstQualified()) return nullptr;
2645 
2646   // Look for a retain call.
2647   llvm::CallInst *retainCall =
2648     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2649   if (!retainCall ||
2650       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2651     return nullptr;
2652 
2653   // Look for an ordinary load of 'self'.
2654   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2655   llvm::LoadInst *load =
2656     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2657   if (!load || load->isAtomic() || load->isVolatile() ||
2658       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2659     return nullptr;
2660 
2661   // Okay!  Burn it all down.  This relies for correctness on the
2662   // assumption that the retain is emitted as part of the return and
2663   // that thereafter everything is used "linearly".
2664   llvm::Type *resultType = result->getType();
2665   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2666   assert(retainCall->use_empty());
2667   retainCall->eraseFromParent();
2668   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2669 
2670   return CGF.Builder.CreateBitCast(load, resultType);
2671 }
2672 
2673 /// Emit an ARC autorelease of the result of a function.
2674 ///
2675 /// \return the value to actually return from the function
2676 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2677                                             llvm::Value *result) {
2678   // If we're returning 'self', kill the initial retain.  This is a
2679   // heuristic attempt to "encourage correctness" in the really unfortunate
2680   // case where we have a return of self during a dealloc and we desperately
2681   // need to avoid the possible autorelease.
2682   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2683     return self;
2684 
2685   // At -O0, try to emit a fused retain/autorelease.
2686   if (CGF.shouldUseFusedARCCalls())
2687     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2688       return fused;
2689 
2690   return CGF.EmitARCAutoreleaseReturnValue(result);
2691 }
2692 
2693 /// Heuristically search for a dominating store to the return-value slot.
2694 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2695   // Check if a User is a store which pointerOperand is the ReturnValue.
2696   // We are looking for stores to the ReturnValue, not for stores of the
2697   // ReturnValue to some other location.
2698   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2699     auto *SI = dyn_cast<llvm::StoreInst>(U);
2700     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2701       return nullptr;
2702     // These aren't actually possible for non-coerced returns, and we
2703     // only care about non-coerced returns on this code path.
2704     assert(!SI->isAtomic() && !SI->isVolatile());
2705     return SI;
2706   };
2707   // If there are multiple uses of the return-value slot, just check
2708   // for something immediately preceding the IP.  Sometimes this can
2709   // happen with how we generate implicit-returns; it can also happen
2710   // with noreturn cleanups.
2711   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2712     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2713     if (IP->empty()) return nullptr;
2714     llvm::Instruction *I = &IP->back();
2715 
2716     // Skip lifetime markers
2717     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2718                                             IE = IP->rend();
2719          II != IE; ++II) {
2720       if (llvm::IntrinsicInst *Intrinsic =
2721               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2722         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2723           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2724           ++II;
2725           if (II == IE)
2726             break;
2727           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2728             continue;
2729         }
2730       }
2731       I = &*II;
2732       break;
2733     }
2734 
2735     return GetStoreIfValid(I);
2736   }
2737 
2738   llvm::StoreInst *store =
2739       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2740   if (!store) return nullptr;
2741 
2742   // Now do a first-and-dirty dominance check: just walk up the
2743   // single-predecessors chain from the current insertion point.
2744   llvm::BasicBlock *StoreBB = store->getParent();
2745   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2746   while (IP != StoreBB) {
2747     if (!(IP = IP->getSinglePredecessor()))
2748       return nullptr;
2749   }
2750 
2751   // Okay, the store's basic block dominates the insertion point; we
2752   // can do our thing.
2753   return store;
2754 }
2755 
2756 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2757                                          bool EmitRetDbgLoc,
2758                                          SourceLocation EndLoc) {
2759   if (FI.isNoReturn()) {
2760     // Noreturn functions don't return.
2761     EmitUnreachable(EndLoc);
2762     return;
2763   }
2764 
2765   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2766     // Naked functions don't have epilogues.
2767     Builder.CreateUnreachable();
2768     return;
2769   }
2770 
2771   // Functions with no result always return void.
2772   if (!ReturnValue.isValid()) {
2773     Builder.CreateRetVoid();
2774     return;
2775   }
2776 
2777   llvm::DebugLoc RetDbgLoc;
2778   llvm::Value *RV = nullptr;
2779   QualType RetTy = FI.getReturnType();
2780   const ABIArgInfo &RetAI = FI.getReturnInfo();
2781 
2782   switch (RetAI.getKind()) {
2783   case ABIArgInfo::InAlloca:
2784     // Aggregrates get evaluated directly into the destination.  Sometimes we
2785     // need to return the sret value in a register, though.
2786     assert(hasAggregateEvaluationKind(RetTy));
2787     if (RetAI.getInAllocaSRet()) {
2788       llvm::Function::arg_iterator EI = CurFn->arg_end();
2789       --EI;
2790       llvm::Value *ArgStruct = &*EI;
2791       llvm::Value *SRet = Builder.CreateStructGEP(
2792           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2793       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2794     }
2795     break;
2796 
2797   case ABIArgInfo::Indirect: {
2798     auto AI = CurFn->arg_begin();
2799     if (RetAI.isSRetAfterThis())
2800       ++AI;
2801     switch (getEvaluationKind(RetTy)) {
2802     case TEK_Complex: {
2803       ComplexPairTy RT =
2804         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2805       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2806                          /*isInit*/ true);
2807       break;
2808     }
2809     case TEK_Aggregate:
2810       // Do nothing; aggregrates get evaluated directly into the destination.
2811       break;
2812     case TEK_Scalar:
2813       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2814                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2815                         /*isInit*/ true);
2816       break;
2817     }
2818     break;
2819   }
2820 
2821   case ABIArgInfo::Extend:
2822   case ABIArgInfo::Direct:
2823     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2824         RetAI.getDirectOffset() == 0) {
2825       // The internal return value temp always will have pointer-to-return-type
2826       // type, just do a load.
2827 
2828       // If there is a dominating store to ReturnValue, we can elide
2829       // the load, zap the store, and usually zap the alloca.
2830       if (llvm::StoreInst *SI =
2831               findDominatingStoreToReturnValue(*this)) {
2832         // Reuse the debug location from the store unless there is
2833         // cleanup code to be emitted between the store and return
2834         // instruction.
2835         if (EmitRetDbgLoc && !AutoreleaseResult)
2836           RetDbgLoc = SI->getDebugLoc();
2837         // Get the stored value and nuke the now-dead store.
2838         RV = SI->getValueOperand();
2839         SI->eraseFromParent();
2840 
2841         // If that was the only use of the return value, nuke it as well now.
2842         auto returnValueInst = ReturnValue.getPointer();
2843         if (returnValueInst->use_empty()) {
2844           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2845             alloca->eraseFromParent();
2846             ReturnValue = Address::invalid();
2847           }
2848         }
2849 
2850       // Otherwise, we have to do a simple load.
2851       } else {
2852         RV = Builder.CreateLoad(ReturnValue);
2853       }
2854     } else {
2855       // If the value is offset in memory, apply the offset now.
2856       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2857 
2858       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2859     }
2860 
2861     // In ARC, end functions that return a retainable type with a call
2862     // to objc_autoreleaseReturnValue.
2863     if (AutoreleaseResult) {
2864 #ifndef NDEBUG
2865       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2866       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2867       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2868       // CurCodeDecl or BlockInfo.
2869       QualType RT;
2870 
2871       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2872         RT = FD->getReturnType();
2873       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2874         RT = MD->getReturnType();
2875       else if (isa<BlockDecl>(CurCodeDecl))
2876         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2877       else
2878         llvm_unreachable("Unexpected function/method type");
2879 
2880       assert(getLangOpts().ObjCAutoRefCount &&
2881              !FI.isReturnsRetained() &&
2882              RT->isObjCRetainableType());
2883 #endif
2884       RV = emitAutoreleaseOfResult(*this, RV);
2885     }
2886 
2887     break;
2888 
2889   case ABIArgInfo::Ignore:
2890     break;
2891 
2892   case ABIArgInfo::CoerceAndExpand: {
2893     auto coercionType = RetAI.getCoerceAndExpandType();
2894     auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2895 
2896     // Load all of the coerced elements out into results.
2897     llvm::SmallVector<llvm::Value*, 4> results;
2898     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2899     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2900       auto coercedEltType = coercionType->getElementType(i);
2901       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2902         continue;
2903 
2904       auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
2905       auto elt = Builder.CreateLoad(eltAddr);
2906       results.push_back(elt);
2907     }
2908 
2909     // If we have one result, it's the single direct result type.
2910     if (results.size() == 1) {
2911       RV = results[0];
2912 
2913     // Otherwise, we need to make a first-class aggregate.
2914     } else {
2915       // Construct a return type that lacks padding elements.
2916       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2917 
2918       RV = llvm::UndefValue::get(returnType);
2919       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2920         RV = Builder.CreateInsertValue(RV, results[i], i);
2921       }
2922     }
2923     break;
2924   }
2925 
2926   case ABIArgInfo::Expand:
2927     llvm_unreachable("Invalid ABI kind for return argument");
2928   }
2929 
2930   llvm::Instruction *Ret;
2931   if (RV) {
2932     EmitReturnValueCheck(RV);
2933     Ret = Builder.CreateRet(RV);
2934   } else {
2935     Ret = Builder.CreateRetVoid();
2936   }
2937 
2938   if (RetDbgLoc)
2939     Ret->setDebugLoc(std::move(RetDbgLoc));
2940 }
2941 
2942 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
2943   // A current decl may not be available when emitting vtable thunks.
2944   if (!CurCodeDecl)
2945     return;
2946 
2947   ReturnsNonNullAttr *RetNNAttr = nullptr;
2948   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
2949     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
2950 
2951   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
2952     return;
2953 
2954   // Prefer the returns_nonnull attribute if it's present.
2955   SourceLocation AttrLoc;
2956   SanitizerMask CheckKind;
2957   SanitizerHandler Handler;
2958   if (RetNNAttr) {
2959     assert(!requiresReturnValueNullabilityCheck() &&
2960            "Cannot check nullability and the nonnull attribute");
2961     AttrLoc = RetNNAttr->getLocation();
2962     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
2963     Handler = SanitizerHandler::NonnullReturn;
2964   } else {
2965     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
2966       if (auto *TSI = DD->getTypeSourceInfo())
2967         if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
2968           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
2969     CheckKind = SanitizerKind::NullabilityReturn;
2970     Handler = SanitizerHandler::NullabilityReturn;
2971   }
2972 
2973   SanitizerScope SanScope(this);
2974 
2975   // Make sure the "return" source location is valid. If we're checking a
2976   // nullability annotation, make sure the preconditions for the check are met.
2977   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
2978   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
2979   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
2980   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
2981   if (requiresReturnValueNullabilityCheck())
2982     CanNullCheck =
2983         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
2984   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
2985   EmitBlock(Check);
2986 
2987   // Now do the null check.
2988   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
2989   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
2990   llvm::Value *DynamicData[] = {SLocPtr};
2991   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
2992 
2993   EmitBlock(NoCheck);
2994 
2995 #ifndef NDEBUG
2996   // The return location should not be used after the check has been emitted.
2997   ReturnLocation = Address::invalid();
2998 #endif
2999 }
3000 
3001 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3002   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3003   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3004 }
3005 
3006 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3007                                           QualType Ty) {
3008   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3009   // placeholders.
3010   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3011   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3012   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3013 
3014   // FIXME: When we generate this IR in one pass, we shouldn't need
3015   // this win32-specific alignment hack.
3016   CharUnits Align = CharUnits::fromQuantity(4);
3017   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3018 
3019   return AggValueSlot::forAddr(Address(Placeholder, Align),
3020                                Ty.getQualifiers(),
3021                                AggValueSlot::IsNotDestructed,
3022                                AggValueSlot::DoesNotNeedGCBarriers,
3023                                AggValueSlot::IsNotAliased);
3024 }
3025 
3026 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3027                                           const VarDecl *param,
3028                                           SourceLocation loc) {
3029   // StartFunction converted the ABI-lowered parameter(s) into a
3030   // local alloca.  We need to turn that into an r-value suitable
3031   // for EmitCall.
3032   Address local = GetAddrOfLocalVar(param);
3033 
3034   QualType type = param->getType();
3035 
3036   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
3037          "cannot emit delegate call arguments for inalloca arguments!");
3038 
3039   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3040   // but the argument needs to be the original pointer.
3041   if (type->isReferenceType()) {
3042     args.add(RValue::get(Builder.CreateLoad(local)), type);
3043 
3044   // In ARC, move out of consumed arguments so that the release cleanup
3045   // entered by StartFunction doesn't cause an over-release.  This isn't
3046   // optimal -O0 code generation, but it should get cleaned up when
3047   // optimization is enabled.  This also assumes that delegate calls are
3048   // performed exactly once for a set of arguments, but that should be safe.
3049   } else if (getLangOpts().ObjCAutoRefCount &&
3050              param->hasAttr<NSConsumedAttr>() &&
3051              type->isObjCRetainableType()) {
3052     llvm::Value *ptr = Builder.CreateLoad(local);
3053     auto null =
3054       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3055     Builder.CreateStore(null, local);
3056     args.add(RValue::get(ptr), type);
3057 
3058   // For the most part, we just need to load the alloca, except that
3059   // aggregate r-values are actually pointers to temporaries.
3060   } else {
3061     args.add(convertTempToRValue(local, type, loc), type);
3062   }
3063 }
3064 
3065 static bool isProvablyNull(llvm::Value *addr) {
3066   return isa<llvm::ConstantPointerNull>(addr);
3067 }
3068 
3069 /// Emit the actual writing-back of a writeback.
3070 static void emitWriteback(CodeGenFunction &CGF,
3071                           const CallArgList::Writeback &writeback) {
3072   const LValue &srcLV = writeback.Source;
3073   Address srcAddr = srcLV.getAddress();
3074   assert(!isProvablyNull(srcAddr.getPointer()) &&
3075          "shouldn't have writeback for provably null argument");
3076 
3077   llvm::BasicBlock *contBB = nullptr;
3078 
3079   // If the argument wasn't provably non-null, we need to null check
3080   // before doing the store.
3081   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3082                                               CGF.CGM.getDataLayout());
3083   if (!provablyNonNull) {
3084     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3085     contBB = CGF.createBasicBlock("icr.done");
3086 
3087     llvm::Value *isNull =
3088       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3089     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3090     CGF.EmitBlock(writebackBB);
3091   }
3092 
3093   // Load the value to writeback.
3094   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3095 
3096   // Cast it back, in case we're writing an id to a Foo* or something.
3097   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3098                                     "icr.writeback-cast");
3099 
3100   // Perform the writeback.
3101 
3102   // If we have a "to use" value, it's something we need to emit a use
3103   // of.  This has to be carefully threaded in: if it's done after the
3104   // release it's potentially undefined behavior (and the optimizer
3105   // will ignore it), and if it happens before the retain then the
3106   // optimizer could move the release there.
3107   if (writeback.ToUse) {
3108     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3109 
3110     // Retain the new value.  No need to block-copy here:  the block's
3111     // being passed up the stack.
3112     value = CGF.EmitARCRetainNonBlock(value);
3113 
3114     // Emit the intrinsic use here.
3115     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3116 
3117     // Load the old value (primitively).
3118     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3119 
3120     // Put the new value in place (primitively).
3121     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3122 
3123     // Release the old value.
3124     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3125 
3126   // Otherwise, we can just do a normal lvalue store.
3127   } else {
3128     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3129   }
3130 
3131   // Jump to the continuation block.
3132   if (!provablyNonNull)
3133     CGF.EmitBlock(contBB);
3134 }
3135 
3136 static void emitWritebacks(CodeGenFunction &CGF,
3137                            const CallArgList &args) {
3138   for (const auto &I : args.writebacks())
3139     emitWriteback(CGF, I);
3140 }
3141 
3142 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3143                                             const CallArgList &CallArgs) {
3144   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3145     CallArgs.getCleanupsToDeactivate();
3146   // Iterate in reverse to increase the likelihood of popping the cleanup.
3147   for (const auto &I : llvm::reverse(Cleanups)) {
3148     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3149     I.IsActiveIP->eraseFromParent();
3150   }
3151 }
3152 
3153 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3154   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3155     if (uop->getOpcode() == UO_AddrOf)
3156       return uop->getSubExpr();
3157   return nullptr;
3158 }
3159 
3160 /// Emit an argument that's being passed call-by-writeback.  That is,
3161 /// we are passing the address of an __autoreleased temporary; it
3162 /// might be copy-initialized with the current value of the given
3163 /// address, but it will definitely be copied out of after the call.
3164 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3165                              const ObjCIndirectCopyRestoreExpr *CRE) {
3166   LValue srcLV;
3167 
3168   // Make an optimistic effort to emit the address as an l-value.
3169   // This can fail if the argument expression is more complicated.
3170   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3171     srcLV = CGF.EmitLValue(lvExpr);
3172 
3173   // Otherwise, just emit it as a scalar.
3174   } else {
3175     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3176 
3177     QualType srcAddrType =
3178       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3179     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3180   }
3181   Address srcAddr = srcLV.getAddress();
3182 
3183   // The dest and src types don't necessarily match in LLVM terms
3184   // because of the crazy ObjC compatibility rules.
3185 
3186   llvm::PointerType *destType =
3187     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3188 
3189   // If the address is a constant null, just pass the appropriate null.
3190   if (isProvablyNull(srcAddr.getPointer())) {
3191     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3192              CRE->getType());
3193     return;
3194   }
3195 
3196   // Create the temporary.
3197   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3198                                       CGF.getPointerAlign(),
3199                                       "icr.temp");
3200   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3201   // and that cleanup will be conditional if we can't prove that the l-value
3202   // isn't null, so we need to register a dominating point so that the cleanups
3203   // system will make valid IR.
3204   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3205 
3206   // Zero-initialize it if we're not doing a copy-initialization.
3207   bool shouldCopy = CRE->shouldCopy();
3208   if (!shouldCopy) {
3209     llvm::Value *null =
3210       llvm::ConstantPointerNull::get(
3211         cast<llvm::PointerType>(destType->getElementType()));
3212     CGF.Builder.CreateStore(null, temp);
3213   }
3214 
3215   llvm::BasicBlock *contBB = nullptr;
3216   llvm::BasicBlock *originBB = nullptr;
3217 
3218   // If the address is *not* known to be non-null, we need to switch.
3219   llvm::Value *finalArgument;
3220 
3221   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3222                                               CGF.CGM.getDataLayout());
3223   if (provablyNonNull) {
3224     finalArgument = temp.getPointer();
3225   } else {
3226     llvm::Value *isNull =
3227       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3228 
3229     finalArgument = CGF.Builder.CreateSelect(isNull,
3230                                    llvm::ConstantPointerNull::get(destType),
3231                                              temp.getPointer(), "icr.argument");
3232 
3233     // If we need to copy, then the load has to be conditional, which
3234     // means we need control flow.
3235     if (shouldCopy) {
3236       originBB = CGF.Builder.GetInsertBlock();
3237       contBB = CGF.createBasicBlock("icr.cont");
3238       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3239       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3240       CGF.EmitBlock(copyBB);
3241       condEval.begin(CGF);
3242     }
3243   }
3244 
3245   llvm::Value *valueToUse = nullptr;
3246 
3247   // Perform a copy if necessary.
3248   if (shouldCopy) {
3249     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3250     assert(srcRV.isScalar());
3251 
3252     llvm::Value *src = srcRV.getScalarVal();
3253     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3254                                     "icr.cast");
3255 
3256     // Use an ordinary store, not a store-to-lvalue.
3257     CGF.Builder.CreateStore(src, temp);
3258 
3259     // If optimization is enabled, and the value was held in a
3260     // __strong variable, we need to tell the optimizer that this
3261     // value has to stay alive until we're doing the store back.
3262     // This is because the temporary is effectively unretained,
3263     // and so otherwise we can violate the high-level semantics.
3264     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3265         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3266       valueToUse = src;
3267     }
3268   }
3269 
3270   // Finish the control flow if we needed it.
3271   if (shouldCopy && !provablyNonNull) {
3272     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3273     CGF.EmitBlock(contBB);
3274 
3275     // Make a phi for the value to intrinsically use.
3276     if (valueToUse) {
3277       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3278                                                       "icr.to-use");
3279       phiToUse->addIncoming(valueToUse, copyBB);
3280       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3281                             originBB);
3282       valueToUse = phiToUse;
3283     }
3284 
3285     condEval.end(CGF);
3286   }
3287 
3288   args.addWriteback(srcLV, temp, valueToUse);
3289   args.add(RValue::get(finalArgument), CRE->getType());
3290 }
3291 
3292 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3293   assert(!StackBase);
3294 
3295   // Save the stack.
3296   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3297   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3298 }
3299 
3300 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3301   if (StackBase) {
3302     // Restore the stack after the call.
3303     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3304     CGF.Builder.CreateCall(F, StackBase);
3305   }
3306 }
3307 
3308 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3309                                           SourceLocation ArgLoc,
3310                                           AbstractCallee AC,
3311                                           unsigned ParmNum) {
3312   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3313                          SanOpts.has(SanitizerKind::NullabilityArg)))
3314     return;
3315 
3316   // The param decl may be missing in a variadic function.
3317   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3318   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3319 
3320   // Prefer the nonnull attribute if it's present.
3321   const NonNullAttr *NNAttr = nullptr;
3322   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3323     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3324 
3325   bool CanCheckNullability = false;
3326   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3327     auto Nullability = PVD->getType()->getNullability(getContext());
3328     CanCheckNullability = Nullability &&
3329                           *Nullability == NullabilityKind::NonNull &&
3330                           PVD->getTypeSourceInfo();
3331   }
3332 
3333   if (!NNAttr && !CanCheckNullability)
3334     return;
3335 
3336   SourceLocation AttrLoc;
3337   SanitizerMask CheckKind;
3338   SanitizerHandler Handler;
3339   if (NNAttr) {
3340     AttrLoc = NNAttr->getLocation();
3341     CheckKind = SanitizerKind::NonnullAttribute;
3342     Handler = SanitizerHandler::NonnullArg;
3343   } else {
3344     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3345     CheckKind = SanitizerKind::NullabilityArg;
3346     Handler = SanitizerHandler::NullabilityArg;
3347   }
3348 
3349   SanitizerScope SanScope(this);
3350   assert(RV.isScalar());
3351   llvm::Value *V = RV.getScalarVal();
3352   llvm::Value *Cond =
3353       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3354   llvm::Constant *StaticData[] = {
3355       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3356       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3357   };
3358   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3359 }
3360 
3361 void CodeGenFunction::EmitCallArgs(
3362     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3363     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3364     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3365   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3366 
3367   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3368   // because arguments are destroyed left to right in the callee. As a special
3369   // case, there are certain language constructs that require left-to-right
3370   // evaluation, and in those cases we consider the evaluation order requirement
3371   // to trump the "destruction order is reverse construction order" guarantee.
3372   bool LeftToRight =
3373       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3374           ? Order == EvaluationOrder::ForceLeftToRight
3375           : Order != EvaluationOrder::ForceRightToLeft;
3376 
3377   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3378                                          RValue EmittedArg) {
3379     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3380       return;
3381     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3382     if (PS == nullptr)
3383       return;
3384 
3385     const auto &Context = getContext();
3386     auto SizeTy = Context.getSizeType();
3387     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3388     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3389     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3390                                                      EmittedArg.getScalarVal());
3391     Args.add(RValue::get(V), SizeTy);
3392     // If we're emitting args in reverse, be sure to do so with
3393     // pass_object_size, as well.
3394     if (!LeftToRight)
3395       std::swap(Args.back(), *(&Args.back() - 1));
3396   };
3397 
3398   // Insert a stack save if we're going to need any inalloca args.
3399   bool HasInAllocaArgs = false;
3400   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3401     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3402          I != E && !HasInAllocaArgs; ++I)
3403       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3404     if (HasInAllocaArgs) {
3405       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3406       Args.allocateArgumentMemory(*this);
3407     }
3408   }
3409 
3410   // Evaluate each argument in the appropriate order.
3411   size_t CallArgsStart = Args.size();
3412   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3413     unsigned Idx = LeftToRight ? I : E - I - 1;
3414     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3415     unsigned InitialArgSize = Args.size();
3416     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3417     // the argument and parameter match or the objc method is parameterized.
3418     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3419             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3420                                                 ArgTypes[Idx]) ||
3421             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3422              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3423            "Argument and parameter types don't match");
3424     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3425     // In particular, we depend on it being the last arg in Args, and the
3426     // objectsize bits depend on there only being one arg if !LeftToRight.
3427     assert(InitialArgSize + 1 == Args.size() &&
3428            "The code below depends on only adding one arg per EmitCallArg");
3429     (void)InitialArgSize;
3430     // Since pointer argument are never emitted as LValue, it is safe to emit
3431     // non-null argument check for r-value only.
3432     if (!Args.back().hasLValue()) {
3433       RValue RVArg = Args.back().getKnownRValue();
3434       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3435                           ParamsToSkip + Idx);
3436       // @llvm.objectsize should never have side-effects and shouldn't need
3437       // destruction/cleanups, so we can safely "emit" it after its arg,
3438       // regardless of right-to-leftness
3439       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3440     }
3441   }
3442 
3443   if (!LeftToRight) {
3444     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3445     // IR function.
3446     std::reverse(Args.begin() + CallArgsStart, Args.end());
3447   }
3448 }
3449 
3450 namespace {
3451 
3452 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3453   DestroyUnpassedArg(Address Addr, QualType Ty)
3454       : Addr(Addr), Ty(Ty) {}
3455 
3456   Address Addr;
3457   QualType Ty;
3458 
3459   void Emit(CodeGenFunction &CGF, Flags flags) override {
3460     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3461     if (DtorKind == QualType::DK_cxx_destructor) {
3462       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3463       assert(!Dtor->isTrivial());
3464       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3465                                 /*Delegating=*/false, Addr);
3466     } else {
3467       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3468     }
3469   }
3470 };
3471 
3472 struct DisableDebugLocationUpdates {
3473   CodeGenFunction &CGF;
3474   bool disabledDebugInfo;
3475   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3476     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3477       CGF.disableDebugInfo();
3478   }
3479   ~DisableDebugLocationUpdates() {
3480     if (disabledDebugInfo)
3481       CGF.enableDebugInfo();
3482   }
3483 };
3484 
3485 } // end anonymous namespace
3486 
3487 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3488   if (!HasLV)
3489     return RV;
3490   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3491   CGF.EmitAggregateCopy(Copy, LV, Ty, LV.isVolatile());
3492   IsUsed = true;
3493   return RValue::getAggregate(Copy.getAddress());
3494 }
3495 
3496 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3497   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3498   if (!HasLV && RV.isScalar())
3499     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true);
3500   else if (!HasLV && RV.isComplex())
3501     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3502   else {
3503     auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress();
3504     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3505     CGF.EmitAggregateCopy(Dst, SrcLV, Ty,
3506                           HasLV ? LV.isVolatileQualified()
3507                                 : RV.isVolatileQualified());
3508   }
3509   IsUsed = true;
3510 }
3511 
3512 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3513                                   QualType type) {
3514   DisableDebugLocationUpdates Dis(*this, E);
3515   if (const ObjCIndirectCopyRestoreExpr *CRE
3516         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3517     assert(getLangOpts().ObjCAutoRefCount);
3518     return emitWritebackArg(*this, args, CRE);
3519   }
3520 
3521   assert(type->isReferenceType() == E->isGLValue() &&
3522          "reference binding to unmaterialized r-value!");
3523 
3524   if (E->isGLValue()) {
3525     assert(E->getObjectKind() == OK_Ordinary);
3526     return args.add(EmitReferenceBindingToExpr(E), type);
3527   }
3528 
3529   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3530 
3531   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3532   // However, we still have to push an EH-only cleanup in case we unwind before
3533   // we make it to the call.
3534   if (HasAggregateEvalKind && getContext().isParamDestroyedInCallee(type)) {
3535     // If we're using inalloca, use the argument memory.  Otherwise, use a
3536     // temporary.
3537     AggValueSlot Slot;
3538     if (args.isUsingInAlloca())
3539       Slot = createPlaceholderSlot(*this, type);
3540     else
3541       Slot = CreateAggTemp(type, "agg.tmp");
3542 
3543     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3544     if (const auto *RD = type->getAsCXXRecordDecl()) {
3545       DestroyedInCallee =
3546           RD && RD->hasNonTrivialDestructor() &&
3547           (CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default ||
3548            RD->hasTrivialABIOverride());
3549     } else {
3550       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3551     }
3552 
3553     if (DestroyedInCallee)
3554       Slot.setExternallyDestructed();
3555 
3556     EmitAggExpr(E, Slot);
3557     RValue RV = Slot.asRValue();
3558     args.add(RV, type);
3559 
3560     if (DestroyedInCallee && NeedsEHCleanup) {
3561       // Create a no-op GEP between the placeholder and the cleanup so we can
3562       // RAUW it successfully.  It also serves as a marker of the first
3563       // instruction where the cleanup is active.
3564       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3565                                               type);
3566       // This unreachable is a temporary marker which will be removed later.
3567       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3568       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3569     }
3570     return;
3571   }
3572 
3573   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3574       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3575     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3576     assert(L.isSimple());
3577     args.addUncopiedAggregate(L, type);
3578     return;
3579   }
3580 
3581   args.add(EmitAnyExprToTemp(E), type);
3582 }
3583 
3584 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3585   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3586   // implicitly widens null pointer constants that are arguments to varargs
3587   // functions to pointer-sized ints.
3588   if (!getTarget().getTriple().isOSWindows())
3589     return Arg->getType();
3590 
3591   if (Arg->getType()->isIntegerType() &&
3592       getContext().getTypeSize(Arg->getType()) <
3593           getContext().getTargetInfo().getPointerWidth(0) &&
3594       Arg->isNullPointerConstant(getContext(),
3595                                  Expr::NPC_ValueDependentIsNotNull)) {
3596     return getContext().getIntPtrType();
3597   }
3598 
3599   return Arg->getType();
3600 }
3601 
3602 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3603 // optimizer it can aggressively ignore unwind edges.
3604 void
3605 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3606   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3607       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3608     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3609                       CGM.getNoObjCARCExceptionsMetadata());
3610 }
3611 
3612 /// Emits a call to the given no-arguments nounwind runtime function.
3613 llvm::CallInst *
3614 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3615                                          const llvm::Twine &name) {
3616   return EmitNounwindRuntimeCall(callee, None, name);
3617 }
3618 
3619 /// Emits a call to the given nounwind runtime function.
3620 llvm::CallInst *
3621 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3622                                          ArrayRef<llvm::Value*> args,
3623                                          const llvm::Twine &name) {
3624   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3625   call->setDoesNotThrow();
3626   return call;
3627 }
3628 
3629 /// Emits a simple call (never an invoke) to the given no-arguments
3630 /// runtime function.
3631 llvm::CallInst *
3632 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3633                                  const llvm::Twine &name) {
3634   return EmitRuntimeCall(callee, None, name);
3635 }
3636 
3637 // Calls which may throw must have operand bundles indicating which funclet
3638 // they are nested within.
3639 SmallVector<llvm::OperandBundleDef, 1>
3640 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3641   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3642   // There is no need for a funclet operand bundle if we aren't inside a
3643   // funclet.
3644   if (!CurrentFuncletPad)
3645     return BundleList;
3646 
3647   // Skip intrinsics which cannot throw.
3648   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3649   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3650     return BundleList;
3651 
3652   BundleList.emplace_back("funclet", CurrentFuncletPad);
3653   return BundleList;
3654 }
3655 
3656 /// Emits a simple call (never an invoke) to the given runtime function.
3657 llvm::CallInst *
3658 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3659                                  ArrayRef<llvm::Value*> args,
3660                                  const llvm::Twine &name) {
3661   llvm::CallInst *call =
3662       Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name);
3663   call->setCallingConv(getRuntimeCC());
3664   return call;
3665 }
3666 
3667 /// Emits a call or invoke to the given noreturn runtime function.
3668 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3669                                                ArrayRef<llvm::Value*> args) {
3670   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3671       getBundlesForFunclet(callee);
3672 
3673   if (getInvokeDest()) {
3674     llvm::InvokeInst *invoke =
3675       Builder.CreateInvoke(callee,
3676                            getUnreachableBlock(),
3677                            getInvokeDest(),
3678                            args,
3679                            BundleList);
3680     invoke->setDoesNotReturn();
3681     invoke->setCallingConv(getRuntimeCC());
3682   } else {
3683     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3684     call->setDoesNotReturn();
3685     call->setCallingConv(getRuntimeCC());
3686     Builder.CreateUnreachable();
3687   }
3688 }
3689 
3690 /// Emits a call or invoke instruction to the given nullary runtime function.
3691 llvm::CallSite
3692 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3693                                          const Twine &name) {
3694   return EmitRuntimeCallOrInvoke(callee, None, name);
3695 }
3696 
3697 /// Emits a call or invoke instruction to the given runtime function.
3698 llvm::CallSite
3699 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3700                                          ArrayRef<llvm::Value*> args,
3701                                          const Twine &name) {
3702   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3703   callSite.setCallingConv(getRuntimeCC());
3704   return callSite;
3705 }
3706 
3707 /// Emits a call or invoke instruction to the given function, depending
3708 /// on the current state of the EH stack.
3709 llvm::CallSite
3710 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3711                                   ArrayRef<llvm::Value *> Args,
3712                                   const Twine &Name) {
3713   llvm::BasicBlock *InvokeDest = getInvokeDest();
3714   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3715       getBundlesForFunclet(Callee);
3716 
3717   llvm::Instruction *Inst;
3718   if (!InvokeDest)
3719     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3720   else {
3721     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3722     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3723                                 Name);
3724     EmitBlock(ContBB);
3725   }
3726 
3727   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3728   // optimizer it can aggressively ignore unwind edges.
3729   if (CGM.getLangOpts().ObjCAutoRefCount)
3730     AddObjCARCExceptionMetadata(Inst);
3731 
3732   return llvm::CallSite(Inst);
3733 }
3734 
3735 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3736                                                   llvm::Value *New) {
3737   DeferredReplacements.push_back(std::make_pair(Old, New));
3738 }
3739 
3740 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3741                                  const CGCallee &Callee,
3742                                  ReturnValueSlot ReturnValue,
3743                                  const CallArgList &CallArgs,
3744                                  llvm::Instruction **callOrInvoke,
3745                                  SourceLocation Loc) {
3746   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3747 
3748   assert(Callee.isOrdinary() || Callee.isVirtual());
3749 
3750   // Handle struct-return functions by passing a pointer to the
3751   // location that we would like to return into.
3752   QualType RetTy = CallInfo.getReturnType();
3753   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3754 
3755   llvm::FunctionType *IRFuncTy = Callee.getFunctionType();
3756 
3757   // 1. Set up the arguments.
3758 
3759   // If we're using inalloca, insert the allocation after the stack save.
3760   // FIXME: Do this earlier rather than hacking it in here!
3761   Address ArgMemory = Address::invalid();
3762   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3763   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3764     const llvm::DataLayout &DL = CGM.getDataLayout();
3765     ArgMemoryLayout = DL.getStructLayout(ArgStruct);
3766     llvm::Instruction *IP = CallArgs.getStackBase();
3767     llvm::AllocaInst *AI;
3768     if (IP) {
3769       IP = IP->getNextNode();
3770       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3771                                 "argmem", IP);
3772     } else {
3773       AI = CreateTempAlloca(ArgStruct, "argmem");
3774     }
3775     auto Align = CallInfo.getArgStructAlignment();
3776     AI->setAlignment(Align.getQuantity());
3777     AI->setUsedWithInAlloca(true);
3778     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3779     ArgMemory = Address(AI, Align);
3780   }
3781 
3782   // Helper function to drill into the inalloca allocation.
3783   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3784     auto FieldOffset =
3785       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3786     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3787   };
3788 
3789   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3790   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3791 
3792   // If the call returns a temporary with struct return, create a temporary
3793   // alloca to hold the result, unless one is given to us.
3794   Address SRetPtr = Address::invalid();
3795   llvm::Value *UnusedReturnSizePtr = nullptr;
3796   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3797     if (!ReturnValue.isNull()) {
3798       SRetPtr = ReturnValue.getValue();
3799     } else {
3800       SRetPtr = CreateMemTemp(RetTy);
3801       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3802         uint64_t size =
3803             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3804         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetPtr.getPointer());
3805       }
3806     }
3807     if (IRFunctionArgs.hasSRetArg()) {
3808       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3809     } else if (RetAI.isInAlloca()) {
3810       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3811       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3812     }
3813   }
3814 
3815   Address swiftErrorTemp = Address::invalid();
3816   Address swiftErrorArg = Address::invalid();
3817 
3818   // Translate all of the arguments as necessary to match the IR lowering.
3819   assert(CallInfo.arg_size() == CallArgs.size() &&
3820          "Mismatch between function signature & arguments.");
3821   unsigned ArgNo = 0;
3822   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3823   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3824        I != E; ++I, ++info_it, ++ArgNo) {
3825     const ABIArgInfo &ArgInfo = info_it->info;
3826 
3827     // Insert a padding argument to ensure proper alignment.
3828     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3829       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3830           llvm::UndefValue::get(ArgInfo.getPaddingType());
3831 
3832     unsigned FirstIRArg, NumIRArgs;
3833     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3834 
3835     switch (ArgInfo.getKind()) {
3836     case ABIArgInfo::InAlloca: {
3837       assert(NumIRArgs == 0);
3838       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3839       if (I->isAggregate()) {
3840         // Replace the placeholder with the appropriate argument slot GEP.
3841         Address Addr = I->hasLValue()
3842                            ? I->getKnownLValue().getAddress()
3843                            : I->getKnownRValue().getAggregateAddress();
3844         llvm::Instruction *Placeholder =
3845             cast<llvm::Instruction>(Addr.getPointer());
3846         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3847         Builder.SetInsertPoint(Placeholder);
3848         Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3849         Builder.restoreIP(IP);
3850         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3851       } else {
3852         // Store the RValue into the argument struct.
3853         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3854         unsigned AS = Addr.getType()->getPointerAddressSpace();
3855         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3856         // There are some cases where a trivial bitcast is not avoidable.  The
3857         // definition of a type later in a translation unit may change it's type
3858         // from {}* to (%struct.foo*)*.
3859         if (Addr.getType() != MemType)
3860           Addr = Builder.CreateBitCast(Addr, MemType);
3861         I->copyInto(*this, Addr);
3862       }
3863       break;
3864     }
3865 
3866     case ABIArgInfo::Indirect: {
3867       assert(NumIRArgs == 1);
3868       if (!I->isAggregate()) {
3869         // Make a temporary alloca to pass the argument.
3870         Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(),
3871                                      "indirect-arg-temp", false);
3872         IRCallArgs[FirstIRArg] = Addr.getPointer();
3873 
3874         I->copyInto(*this, Addr);
3875       } else {
3876         // We want to avoid creating an unnecessary temporary+copy here;
3877         // however, we need one in three cases:
3878         // 1. If the argument is not byval, and we are required to copy the
3879         //    source.  (This case doesn't occur on any common architecture.)
3880         // 2. If the argument is byval, RV is not sufficiently aligned, and
3881         //    we cannot force it to be sufficiently aligned.
3882         // 3. If the argument is byval, but RV is not located in default
3883         //    or alloca address space.
3884         Address Addr = I->hasLValue()
3885                            ? I->getKnownLValue().getAddress()
3886                            : I->getKnownRValue().getAggregateAddress();
3887         llvm::Value *V = Addr.getPointer();
3888         CharUnits Align = ArgInfo.getIndirectAlign();
3889         const llvm::DataLayout *TD = &CGM.getDataLayout();
3890 
3891         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
3892                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
3893                     TD->getAllocaAddrSpace()) &&
3894                "indirect argument must be in alloca address space");
3895 
3896         bool NeedCopy = false;
3897 
3898         if (Addr.getAlignment() < Align &&
3899             llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
3900                 Align.getQuantity()) {
3901           NeedCopy = true;
3902         } else if (I->hasLValue()) {
3903           auto LV = I->getKnownLValue();
3904           auto AS = LV.getAddressSpace();
3905           if ((!ArgInfo.getIndirectByVal() &&
3906                (LV.getAlignment() >=
3907                 getContext().getTypeAlignInChars(I->Ty))) ||
3908               (ArgInfo.getIndirectByVal() &&
3909                ((AS != LangAS::Default && AS != LangAS::opencl_private &&
3910                  AS != CGM.getASTAllocaAddressSpace())))) {
3911             NeedCopy = true;
3912           }
3913         }
3914         if (NeedCopy) {
3915           // Create an aligned temporary, and copy to it.
3916           Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(),
3917                                      "byval-temp", false);
3918           IRCallArgs[FirstIRArg] = AI.getPointer();
3919           I->copyInto(*this, AI);
3920         } else {
3921           // Skip the extra memcpy call.
3922           auto *T = V->getType()->getPointerElementType()->getPointerTo(
3923               CGM.getDataLayout().getAllocaAddrSpace());
3924           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
3925               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
3926               true);
3927         }
3928       }
3929       break;
3930     }
3931 
3932     case ABIArgInfo::Ignore:
3933       assert(NumIRArgs == 0);
3934       break;
3935 
3936     case ABIArgInfo::Extend:
3937     case ABIArgInfo::Direct: {
3938       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3939           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3940           ArgInfo.getDirectOffset() == 0) {
3941         assert(NumIRArgs == 1);
3942         llvm::Value *V;
3943         if (!I->isAggregate())
3944           V = I->getKnownRValue().getScalarVal();
3945         else
3946           V = Builder.CreateLoad(
3947               I->hasLValue() ? I->getKnownLValue().getAddress()
3948                              : I->getKnownRValue().getAggregateAddress());
3949 
3950         // Implement swifterror by copying into a new swifterror argument.
3951         // We'll write back in the normal path out of the call.
3952         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
3953               == ParameterABI::SwiftErrorResult) {
3954           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
3955 
3956           QualType pointeeTy = I->Ty->getPointeeType();
3957           swiftErrorArg =
3958             Address(V, getContext().getTypeAlignInChars(pointeeTy));
3959 
3960           swiftErrorTemp =
3961             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
3962           V = swiftErrorTemp.getPointer();
3963           cast<llvm::AllocaInst>(V)->setSwiftError(true);
3964 
3965           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
3966           Builder.CreateStore(errorValue, swiftErrorTemp);
3967         }
3968 
3969         // We might have to widen integers, but we should never truncate.
3970         if (ArgInfo.getCoerceToType() != V->getType() &&
3971             V->getType()->isIntegerTy())
3972           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3973 
3974         // If the argument doesn't match, perform a bitcast to coerce it.  This
3975         // can happen due to trivial type mismatches.
3976         if (FirstIRArg < IRFuncTy->getNumParams() &&
3977             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3978           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3979 
3980         IRCallArgs[FirstIRArg] = V;
3981         break;
3982       }
3983 
3984       // FIXME: Avoid the conversion through memory if possible.
3985       Address Src = Address::invalid();
3986       if (!I->isAggregate()) {
3987         Src = CreateMemTemp(I->Ty, "coerce");
3988         I->copyInto(*this, Src);
3989       } else {
3990         Src = I->hasLValue() ? I->getKnownLValue().getAddress()
3991                              : I->getKnownRValue().getAggregateAddress();
3992       }
3993 
3994       // If the value is offset in memory, apply the offset now.
3995       Src = emitAddressAtOffset(*this, Src, ArgInfo);
3996 
3997       // Fast-isel and the optimizer generally like scalar values better than
3998       // FCAs, so we flatten them if this is safe to do for this argument.
3999       llvm::StructType *STy =
4000             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4001       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4002         llvm::Type *SrcTy = Src.getType()->getElementType();
4003         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4004         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4005 
4006         // If the source type is smaller than the destination type of the
4007         // coerce-to logic, copy the source value into a temp alloca the size
4008         // of the destination type to allow loading all of it. The bits past
4009         // the source value are left undef.
4010         if (SrcSize < DstSize) {
4011           Address TempAlloca
4012             = CreateTempAlloca(STy, Src.getAlignment(),
4013                                Src.getName() + ".coerce");
4014           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4015           Src = TempAlloca;
4016         } else {
4017           Src = Builder.CreateBitCast(Src,
4018                                       STy->getPointerTo(Src.getAddressSpace()));
4019         }
4020 
4021         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
4022         assert(NumIRArgs == STy->getNumElements());
4023         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4024           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
4025           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
4026           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4027           IRCallArgs[FirstIRArg + i] = LI;
4028         }
4029       } else {
4030         // In the simple case, just pass the coerced loaded value.
4031         assert(NumIRArgs == 1);
4032         IRCallArgs[FirstIRArg] =
4033           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4034       }
4035 
4036       break;
4037     }
4038 
4039     case ABIArgInfo::CoerceAndExpand: {
4040       auto coercionType = ArgInfo.getCoerceAndExpandType();
4041       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4042 
4043       llvm::Value *tempSize = nullptr;
4044       Address addr = Address::invalid();
4045       if (I->isAggregate()) {
4046         addr = I->hasLValue() ? I->getKnownLValue().getAddress()
4047                               : I->getKnownRValue().getAggregateAddress();
4048 
4049       } else {
4050         RValue RV = I->getKnownRValue();
4051         assert(RV.isScalar()); // complex should always just be direct
4052 
4053         llvm::Type *scalarType = RV.getScalarVal()->getType();
4054         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4055         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4056 
4057         // Materialize to a temporary.
4058         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
4059                  CharUnits::fromQuantity(std::max(layout->getAlignment(),
4060                                                   scalarAlign)));
4061         tempSize = EmitLifetimeStart(scalarSize, addr.getPointer());
4062 
4063         Builder.CreateStore(RV.getScalarVal(), addr);
4064       }
4065 
4066       addr = Builder.CreateElementBitCast(addr, coercionType);
4067 
4068       unsigned IRArgPos = FirstIRArg;
4069       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4070         llvm::Type *eltType = coercionType->getElementType(i);
4071         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4072         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4073         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4074         IRCallArgs[IRArgPos++] = elt;
4075       }
4076       assert(IRArgPos == FirstIRArg + NumIRArgs);
4077 
4078       if (tempSize) {
4079         EmitLifetimeEnd(tempSize, addr.getPointer());
4080       }
4081 
4082       break;
4083     }
4084 
4085     case ABIArgInfo::Expand:
4086       unsigned IRArgPos = FirstIRArg;
4087       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4088       assert(IRArgPos == FirstIRArg + NumIRArgs);
4089       break;
4090     }
4091   }
4092 
4093   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4094   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4095 
4096   // If we're using inalloca, set up that argument.
4097   if (ArgMemory.isValid()) {
4098     llvm::Value *Arg = ArgMemory.getPointer();
4099     if (CallInfo.isVariadic()) {
4100       // When passing non-POD arguments by value to variadic functions, we will
4101       // end up with a variadic prototype and an inalloca call site.  In such
4102       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4103       // the callee.
4104       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4105       auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS);
4106       CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy);
4107     } else {
4108       llvm::Type *LastParamTy =
4109           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4110       if (Arg->getType() != LastParamTy) {
4111 #ifndef NDEBUG
4112         // Assert that these structs have equivalent element types.
4113         llvm::StructType *FullTy = CallInfo.getArgStruct();
4114         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4115             cast<llvm::PointerType>(LastParamTy)->getElementType());
4116         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4117         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4118                                                 DE = DeclaredTy->element_end(),
4119                                                 FI = FullTy->element_begin();
4120              DI != DE; ++DI, ++FI)
4121           assert(*DI == *FI);
4122 #endif
4123         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4124       }
4125     }
4126     assert(IRFunctionArgs.hasInallocaArg());
4127     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4128   }
4129 
4130   // 2. Prepare the function pointer.
4131 
4132   // If the callee is a bitcast of a non-variadic function to have a
4133   // variadic function pointer type, check to see if we can remove the
4134   // bitcast.  This comes up with unprototyped functions.
4135   //
4136   // This makes the IR nicer, but more importantly it ensures that we
4137   // can inline the function at -O0 if it is marked always_inline.
4138   auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* {
4139     llvm::FunctionType *CalleeFT =
4140       cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType());
4141     if (!CalleeFT->isVarArg())
4142       return Ptr;
4143 
4144     llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr);
4145     if (!CE || CE->getOpcode() != llvm::Instruction::BitCast)
4146       return Ptr;
4147 
4148     llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0));
4149     if (!OrigFn)
4150       return Ptr;
4151 
4152     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4153 
4154     // If the original type is variadic, or if any of the component types
4155     // disagree, we cannot remove the cast.
4156     if (OrigFT->isVarArg() ||
4157         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4158         OrigFT->getReturnType() != CalleeFT->getReturnType())
4159       return Ptr;
4160 
4161     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4162       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4163         return Ptr;
4164 
4165     return OrigFn;
4166   };
4167   CalleePtr = simplifyVariadicCallee(CalleePtr);
4168 
4169   // 3. Perform the actual call.
4170 
4171   // Deactivate any cleanups that we're supposed to do immediately before
4172   // the call.
4173   if (!CallArgs.getCleanupsToDeactivate().empty())
4174     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4175 
4176   // Assert that the arguments we computed match up.  The IR verifier
4177   // will catch this, but this is a common enough source of problems
4178   // during IRGen changes that it's way better for debugging to catch
4179   // it ourselves here.
4180 #ifndef NDEBUG
4181   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4182   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4183     // Inalloca argument can have different type.
4184     if (IRFunctionArgs.hasInallocaArg() &&
4185         i == IRFunctionArgs.getInallocaArgNo())
4186       continue;
4187     if (i < IRFuncTy->getNumParams())
4188       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4189   }
4190 #endif
4191 
4192   // Compute the calling convention and attributes.
4193   unsigned CallingConv;
4194   llvm::AttributeList Attrs;
4195   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4196                              Callee.getAbstractInfo(), Attrs, CallingConv,
4197                              /*AttrOnCallSite=*/true);
4198 
4199   // Apply some call-site-specific attributes.
4200   // TODO: work this into building the attribute set.
4201 
4202   // Apply always_inline to all calls within flatten functions.
4203   // FIXME: should this really take priority over __try, below?
4204   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4205       !(Callee.getAbstractInfo().getCalleeDecl() &&
4206         Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) {
4207     Attrs =
4208         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4209                            llvm::Attribute::AlwaysInline);
4210   }
4211 
4212   // Disable inlining inside SEH __try blocks.
4213   if (isSEHTryScope()) {
4214     Attrs =
4215         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4216                            llvm::Attribute::NoInline);
4217   }
4218 
4219   // Decide whether to use a call or an invoke.
4220   bool CannotThrow;
4221   if (currentFunctionUsesSEHTry()) {
4222     // SEH cares about asynchronous exceptions, so everything can "throw."
4223     CannotThrow = false;
4224   } else if (isCleanupPadScope() &&
4225              EHPersonality::get(*this).isMSVCXXPersonality()) {
4226     // The MSVC++ personality will implicitly terminate the program if an
4227     // exception is thrown during a cleanup outside of a try/catch.
4228     // We don't need to model anything in IR to get this behavior.
4229     CannotThrow = true;
4230   } else {
4231     // Otherwise, nounwind call sites will never throw.
4232     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4233                                      llvm::Attribute::NoUnwind);
4234   }
4235 
4236   // If we made a temporary, be sure to clean up after ourselves. Note that we
4237   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4238   // pop this cleanup later on. Being eager about this is OK, since this
4239   // temporary is 'invisible' outside of the callee.
4240   if (UnusedReturnSizePtr)
4241     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetPtr,
4242                                          UnusedReturnSizePtr);
4243 
4244   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4245 
4246   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4247       getBundlesForFunclet(CalleePtr);
4248 
4249   // Emit the actual call/invoke instruction.
4250   llvm::CallSite CS;
4251   if (!InvokeDest) {
4252     CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList);
4253   } else {
4254     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4255     CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs,
4256                               BundleList);
4257     EmitBlock(Cont);
4258   }
4259   llvm::Instruction *CI = CS.getInstruction();
4260   if (callOrInvoke)
4261     *callOrInvoke = CI;
4262 
4263   // Apply the attributes and calling convention.
4264   CS.setAttributes(Attrs);
4265   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4266 
4267   // Apply various metadata.
4268 
4269   if (!CI->getType()->isVoidTy())
4270     CI->setName("call");
4271 
4272   // Insert instrumentation or attach profile metadata at indirect call sites.
4273   // For more details, see the comment before the definition of
4274   // IPVK_IndirectCallTarget in InstrProfData.inc.
4275   if (!CS.getCalledFunction())
4276     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4277                      CI, CalleePtr);
4278 
4279   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4280   // optimizer it can aggressively ignore unwind edges.
4281   if (CGM.getLangOpts().ObjCAutoRefCount)
4282     AddObjCARCExceptionMetadata(CI);
4283 
4284   // Suppress tail calls if requested.
4285   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4286     const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl();
4287     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4288       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4289   }
4290 
4291   // 4. Finish the call.
4292 
4293   // If the call doesn't return, finish the basic block and clear the
4294   // insertion point; this allows the rest of IRGen to discard
4295   // unreachable code.
4296   if (CS.doesNotReturn()) {
4297     if (UnusedReturnSizePtr)
4298       PopCleanupBlock();
4299 
4300     // Strip away the noreturn attribute to better diagnose unreachable UB.
4301     if (SanOpts.has(SanitizerKind::Unreachable)) {
4302       if (auto *F = CS.getCalledFunction())
4303         F->removeFnAttr(llvm::Attribute::NoReturn);
4304       CS.removeAttribute(llvm::AttributeList::FunctionIndex,
4305                          llvm::Attribute::NoReturn);
4306     }
4307 
4308     EmitUnreachable(Loc);
4309     Builder.ClearInsertionPoint();
4310 
4311     // FIXME: For now, emit a dummy basic block because expr emitters in
4312     // generally are not ready to handle emitting expressions at unreachable
4313     // points.
4314     EnsureInsertPoint();
4315 
4316     // Return a reasonable RValue.
4317     return GetUndefRValue(RetTy);
4318   }
4319 
4320   // Perform the swifterror writeback.
4321   if (swiftErrorTemp.isValid()) {
4322     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4323     Builder.CreateStore(errorResult, swiftErrorArg);
4324   }
4325 
4326   // Emit any call-associated writebacks immediately.  Arguably this
4327   // should happen after any return-value munging.
4328   if (CallArgs.hasWritebacks())
4329     emitWritebacks(*this, CallArgs);
4330 
4331   // The stack cleanup for inalloca arguments has to run out of the normal
4332   // lexical order, so deactivate it and run it manually here.
4333   CallArgs.freeArgumentMemory(*this);
4334 
4335   // Extract the return value.
4336   RValue Ret = [&] {
4337     switch (RetAI.getKind()) {
4338     case ABIArgInfo::CoerceAndExpand: {
4339       auto coercionType = RetAI.getCoerceAndExpandType();
4340       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4341 
4342       Address addr = SRetPtr;
4343       addr = Builder.CreateElementBitCast(addr, coercionType);
4344 
4345       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4346       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4347 
4348       unsigned unpaddedIndex = 0;
4349       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4350         llvm::Type *eltType = coercionType->getElementType(i);
4351         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4352         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4353         llvm::Value *elt = CI;
4354         if (requiresExtract)
4355           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4356         else
4357           assert(unpaddedIndex == 0);
4358         Builder.CreateStore(elt, eltAddr);
4359       }
4360       // FALLTHROUGH
4361       LLVM_FALLTHROUGH;
4362     }
4363 
4364     case ABIArgInfo::InAlloca:
4365     case ABIArgInfo::Indirect: {
4366       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4367       if (UnusedReturnSizePtr)
4368         PopCleanupBlock();
4369       return ret;
4370     }
4371 
4372     case ABIArgInfo::Ignore:
4373       // If we are ignoring an argument that had a result, make sure to
4374       // construct the appropriate return value for our caller.
4375       return GetUndefRValue(RetTy);
4376 
4377     case ABIArgInfo::Extend:
4378     case ABIArgInfo::Direct: {
4379       llvm::Type *RetIRTy = ConvertType(RetTy);
4380       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4381         switch (getEvaluationKind(RetTy)) {
4382         case TEK_Complex: {
4383           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4384           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4385           return RValue::getComplex(std::make_pair(Real, Imag));
4386         }
4387         case TEK_Aggregate: {
4388           Address DestPtr = ReturnValue.getValue();
4389           bool DestIsVolatile = ReturnValue.isVolatile();
4390 
4391           if (!DestPtr.isValid()) {
4392             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4393             DestIsVolatile = false;
4394           }
4395           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4396           return RValue::getAggregate(DestPtr);
4397         }
4398         case TEK_Scalar: {
4399           // If the argument doesn't match, perform a bitcast to coerce it.  This
4400           // can happen due to trivial type mismatches.
4401           llvm::Value *V = CI;
4402           if (V->getType() != RetIRTy)
4403             V = Builder.CreateBitCast(V, RetIRTy);
4404           return RValue::get(V);
4405         }
4406         }
4407         llvm_unreachable("bad evaluation kind");
4408       }
4409 
4410       Address DestPtr = ReturnValue.getValue();
4411       bool DestIsVolatile = ReturnValue.isVolatile();
4412 
4413       if (!DestPtr.isValid()) {
4414         DestPtr = CreateMemTemp(RetTy, "coerce");
4415         DestIsVolatile = false;
4416       }
4417 
4418       // If the value is offset in memory, apply the offset now.
4419       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4420       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4421 
4422       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4423     }
4424 
4425     case ABIArgInfo::Expand:
4426       llvm_unreachable("Invalid ABI kind for return argument");
4427     }
4428 
4429     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4430   } ();
4431 
4432   // Emit the assume_aligned check on the return value.
4433   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl();
4434   if (Ret.isScalar() && TargetDecl) {
4435     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4436       llvm::Value *OffsetValue = nullptr;
4437       if (const auto *Offset = AA->getOffset())
4438         OffsetValue = EmitScalarExpr(Offset);
4439 
4440       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4441       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4442       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
4443                               OffsetValue);
4444     } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4445       llvm::Value *ParamVal =
4446           CallArgs[AA->getParamIndex().getLLVMIndex()].getRValue(
4447               *this).getScalarVal();
4448       EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal);
4449     }
4450   }
4451 
4452   return Ret;
4453 }
4454 
4455 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
4456   if (isVirtual()) {
4457     const CallExpr *CE = getVirtualCallExpr();
4458     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
4459         CGF, getVirtualMethodDecl(), getThisAddress(),
4460         getFunctionType(), CE ? CE->getLocStart() : SourceLocation());
4461   }
4462 
4463   return *this;
4464 }
4465 
4466 /* VarArg handling */
4467 
4468 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4469   VAListAddr = VE->isMicrosoftABI()
4470                  ? EmitMSVAListRef(VE->getSubExpr())
4471                  : EmitVAListRef(VE->getSubExpr());
4472   QualType Ty = VE->getType();
4473   if (VE->isMicrosoftABI())
4474     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4475   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4476 }
4477