1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/Basic/TargetBuiltins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 /***/ 47 48 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 49 switch (CC) { 50 default: return llvm::CallingConv::C; 51 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 52 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 53 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 54 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 55 case CC_Win64: return llvm::CallingConv::Win64; 56 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 57 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 58 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 59 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 60 // TODO: Add support for __pascal to LLVM. 61 case CC_X86Pascal: return llvm::CallingConv::C; 62 // TODO: Add support for __vectorcall to LLVM. 63 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 64 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 65 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 66 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 67 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 68 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 69 case CC_Swift: return llvm::CallingConv::Swift; 70 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail; 71 } 72 } 73 74 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 75 /// qualification. Either or both of RD and MD may be null. A null RD indicates 76 /// that there is no meaningful 'this' type, and a null MD can occur when 77 /// calling a method pointer. 78 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 79 const CXXMethodDecl *MD) { 80 QualType RecTy; 81 if (RD) 82 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 83 else 84 RecTy = Context.VoidTy; 85 86 if (MD) 87 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 88 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 89 } 90 91 /// Returns the canonical formal type of the given C++ method. 92 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 93 return MD->getType()->getCanonicalTypeUnqualified() 94 .getAs<FunctionProtoType>(); 95 } 96 97 /// Returns the "extra-canonicalized" return type, which discards 98 /// qualifiers on the return type. Codegen doesn't care about them, 99 /// and it makes ABI code a little easier to be able to assume that 100 /// all parameter and return types are top-level unqualified. 101 static CanQualType GetReturnType(QualType RetTy) { 102 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 103 } 104 105 /// Arrange the argument and result information for a value of the given 106 /// unprototyped freestanding function type. 107 const CGFunctionInfo & 108 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 109 // When translating an unprototyped function type, always use a 110 // variadic type. 111 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 112 /*instanceMethod=*/false, 113 /*chainCall=*/false, None, 114 FTNP->getExtInfo(), {}, RequiredArgs(0)); 115 } 116 117 static void addExtParameterInfosForCall( 118 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 119 const FunctionProtoType *proto, 120 unsigned prefixArgs, 121 unsigned totalArgs) { 122 assert(proto->hasExtParameterInfos()); 123 assert(paramInfos.size() <= prefixArgs); 124 assert(proto->getNumParams() + prefixArgs <= totalArgs); 125 126 paramInfos.reserve(totalArgs); 127 128 // Add default infos for any prefix args that don't already have infos. 129 paramInfos.resize(prefixArgs); 130 131 // Add infos for the prototype. 132 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 133 paramInfos.push_back(ParamInfo); 134 // pass_object_size params have no parameter info. 135 if (ParamInfo.hasPassObjectSize()) 136 paramInfos.emplace_back(); 137 } 138 139 assert(paramInfos.size() <= totalArgs && 140 "Did we forget to insert pass_object_size args?"); 141 // Add default infos for the variadic and/or suffix arguments. 142 paramInfos.resize(totalArgs); 143 } 144 145 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 146 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 147 static void appendParameterTypes(const CodeGenTypes &CGT, 148 SmallVectorImpl<CanQualType> &prefix, 149 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 150 CanQual<FunctionProtoType> FPT) { 151 // Fast path: don't touch param info if we don't need to. 152 if (!FPT->hasExtParameterInfos()) { 153 assert(paramInfos.empty() && 154 "We have paramInfos, but the prototype doesn't?"); 155 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 156 return; 157 } 158 159 unsigned PrefixSize = prefix.size(); 160 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 161 // parameters; the only thing that can change this is the presence of 162 // pass_object_size. So, we preallocate for the common case. 163 prefix.reserve(prefix.size() + FPT->getNumParams()); 164 165 auto ExtInfos = FPT->getExtParameterInfos(); 166 assert(ExtInfos.size() == FPT->getNumParams()); 167 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 168 prefix.push_back(FPT->getParamType(I)); 169 if (ExtInfos[I].hasPassObjectSize()) 170 prefix.push_back(CGT.getContext().getSizeType()); 171 } 172 173 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 174 prefix.size()); 175 } 176 177 /// Arrange the LLVM function layout for a value of the given function 178 /// type, on top of any implicit parameters already stored. 179 static const CGFunctionInfo & 180 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 181 SmallVectorImpl<CanQualType> &prefix, 182 CanQual<FunctionProtoType> FTP) { 183 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 184 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 185 // FIXME: Kill copy. 186 appendParameterTypes(CGT, prefix, paramInfos, FTP); 187 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 188 189 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 190 /*chainCall=*/false, prefix, 191 FTP->getExtInfo(), paramInfos, 192 Required); 193 } 194 195 /// Arrange the argument and result information for a value of the 196 /// given freestanding function type. 197 const CGFunctionInfo & 198 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 199 SmallVector<CanQualType, 16> argTypes; 200 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 201 FTP); 202 } 203 204 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, 205 bool IsWindows) { 206 // Set the appropriate calling convention for the Function. 207 if (D->hasAttr<StdCallAttr>()) 208 return CC_X86StdCall; 209 210 if (D->hasAttr<FastCallAttr>()) 211 return CC_X86FastCall; 212 213 if (D->hasAttr<RegCallAttr>()) 214 return CC_X86RegCall; 215 216 if (D->hasAttr<ThisCallAttr>()) 217 return CC_X86ThisCall; 218 219 if (D->hasAttr<VectorCallAttr>()) 220 return CC_X86VectorCall; 221 222 if (D->hasAttr<PascalAttr>()) 223 return CC_X86Pascal; 224 225 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 226 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 227 228 if (D->hasAttr<AArch64VectorPcsAttr>()) 229 return CC_AArch64VectorCall; 230 231 if (D->hasAttr<IntelOclBiccAttr>()) 232 return CC_IntelOclBicc; 233 234 if (D->hasAttr<MSABIAttr>()) 235 return IsWindows ? CC_C : CC_Win64; 236 237 if (D->hasAttr<SysVABIAttr>()) 238 return IsWindows ? CC_X86_64SysV : CC_C; 239 240 if (D->hasAttr<PreserveMostAttr>()) 241 return CC_PreserveMost; 242 243 if (D->hasAttr<PreserveAllAttr>()) 244 return CC_PreserveAll; 245 246 return CC_C; 247 } 248 249 /// Arrange the argument and result information for a call to an 250 /// unknown C++ non-static member function of the given abstract type. 251 /// (A null RD means we don't have any meaningful "this" argument type, 252 /// so fall back to a generic pointer type). 253 /// The member function must be an ordinary function, i.e. not a 254 /// constructor or destructor. 255 const CGFunctionInfo & 256 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 257 const FunctionProtoType *FTP, 258 const CXXMethodDecl *MD) { 259 SmallVector<CanQualType, 16> argTypes; 260 261 // Add the 'this' pointer. 262 argTypes.push_back(DeriveThisType(RD, MD)); 263 264 return ::arrangeLLVMFunctionInfo( 265 *this, true, argTypes, 266 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 267 } 268 269 /// Set calling convention for CUDA/HIP kernel. 270 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 271 const FunctionDecl *FD) { 272 if (FD->hasAttr<CUDAGlobalAttr>()) { 273 const FunctionType *FT = FTy->getAs<FunctionType>(); 274 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 275 FTy = FT->getCanonicalTypeUnqualified(); 276 } 277 } 278 279 /// Arrange the argument and result information for a declaration or 280 /// definition of the given C++ non-static member function. The 281 /// member function must be an ordinary function, i.e. not a 282 /// constructor or destructor. 283 const CGFunctionInfo & 284 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 285 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 286 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 287 288 CanQualType FT = GetFormalType(MD).getAs<Type>(); 289 setCUDAKernelCallingConvention(FT, CGM, MD); 290 auto prototype = FT.getAs<FunctionProtoType>(); 291 292 if (MD->isInstance()) { 293 // The abstract case is perfectly fine. 294 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 295 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 296 } 297 298 return arrangeFreeFunctionType(prototype); 299 } 300 301 bool CodeGenTypes::inheritingCtorHasParams( 302 const InheritedConstructor &Inherited, CXXCtorType Type) { 303 // Parameters are unnecessary if we're constructing a base class subobject 304 // and the inherited constructor lives in a virtual base. 305 return Type == Ctor_Complete || 306 !Inherited.getShadowDecl()->constructsVirtualBase() || 307 !Target.getCXXABI().hasConstructorVariants(); 308 } 309 310 const CGFunctionInfo & 311 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 312 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 313 314 SmallVector<CanQualType, 16> argTypes; 315 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 316 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 317 318 bool PassParams = true; 319 320 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 321 // A base class inheriting constructor doesn't get forwarded arguments 322 // needed to construct a virtual base (or base class thereof). 323 if (auto Inherited = CD->getInheritedConstructor()) 324 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 325 } 326 327 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 328 329 // Add the formal parameters. 330 if (PassParams) 331 appendParameterTypes(*this, argTypes, paramInfos, FTP); 332 333 CGCXXABI::AddedStructorArgCounts AddedArgs = 334 TheCXXABI.buildStructorSignature(GD, argTypes); 335 if (!paramInfos.empty()) { 336 // Note: prefix implies after the first param. 337 if (AddedArgs.Prefix) 338 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 339 FunctionProtoType::ExtParameterInfo{}); 340 if (AddedArgs.Suffix) 341 paramInfos.append(AddedArgs.Suffix, 342 FunctionProtoType::ExtParameterInfo{}); 343 } 344 345 RequiredArgs required = 346 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 347 : RequiredArgs::All); 348 349 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 350 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 351 ? argTypes.front() 352 : TheCXXABI.hasMostDerivedReturn(GD) 353 ? CGM.getContext().VoidPtrTy 354 : Context.VoidTy; 355 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 356 /*chainCall=*/false, argTypes, extInfo, 357 paramInfos, required); 358 } 359 360 static SmallVector<CanQualType, 16> 361 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 362 SmallVector<CanQualType, 16> argTypes; 363 for (auto &arg : args) 364 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 365 return argTypes; 366 } 367 368 static SmallVector<CanQualType, 16> 369 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 370 SmallVector<CanQualType, 16> argTypes; 371 for (auto &arg : args) 372 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 373 return argTypes; 374 } 375 376 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 377 getExtParameterInfosForCall(const FunctionProtoType *proto, 378 unsigned prefixArgs, unsigned totalArgs) { 379 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 380 if (proto->hasExtParameterInfos()) { 381 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 382 } 383 return result; 384 } 385 386 /// Arrange a call to a C++ method, passing the given arguments. 387 /// 388 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 389 /// parameter. 390 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 391 /// args. 392 /// PassProtoArgs indicates whether `args` has args for the parameters in the 393 /// given CXXConstructorDecl. 394 const CGFunctionInfo & 395 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 396 const CXXConstructorDecl *D, 397 CXXCtorType CtorKind, 398 unsigned ExtraPrefixArgs, 399 unsigned ExtraSuffixArgs, 400 bool PassProtoArgs) { 401 // FIXME: Kill copy. 402 SmallVector<CanQualType, 16> ArgTypes; 403 for (const auto &Arg : args) 404 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 405 406 // +1 for implicit this, which should always be args[0]. 407 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 408 409 CanQual<FunctionProtoType> FPT = GetFormalType(D); 410 RequiredArgs Required = PassProtoArgs 411 ? RequiredArgs::forPrototypePlus( 412 FPT, TotalPrefixArgs + ExtraSuffixArgs) 413 : RequiredArgs::All; 414 415 GlobalDecl GD(D, CtorKind); 416 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 417 ? ArgTypes.front() 418 : TheCXXABI.hasMostDerivedReturn(GD) 419 ? CGM.getContext().VoidPtrTy 420 : Context.VoidTy; 421 422 FunctionType::ExtInfo Info = FPT->getExtInfo(); 423 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 424 // If the prototype args are elided, we should only have ABI-specific args, 425 // which never have param info. 426 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 427 // ABI-specific suffix arguments are treated the same as variadic arguments. 428 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 429 ArgTypes.size()); 430 } 431 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 432 /*chainCall=*/false, ArgTypes, Info, 433 ParamInfos, Required); 434 } 435 436 /// Arrange the argument and result information for the declaration or 437 /// definition of the given function. 438 const CGFunctionInfo & 439 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 440 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 441 if (MD->isInstance()) 442 return arrangeCXXMethodDeclaration(MD); 443 444 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 445 446 assert(isa<FunctionType>(FTy)); 447 setCUDAKernelCallingConvention(FTy, CGM, FD); 448 449 // When declaring a function without a prototype, always use a 450 // non-variadic type. 451 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 452 return arrangeLLVMFunctionInfo( 453 noProto->getReturnType(), /*instanceMethod=*/false, 454 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 455 } 456 457 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 458 } 459 460 /// Arrange the argument and result information for the declaration or 461 /// definition of an Objective-C method. 462 const CGFunctionInfo & 463 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 464 // It happens that this is the same as a call with no optional 465 // arguments, except also using the formal 'self' type. 466 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 467 } 468 469 /// Arrange the argument and result information for the function type 470 /// through which to perform a send to the given Objective-C method, 471 /// using the given receiver type. The receiver type is not always 472 /// the 'self' type of the method or even an Objective-C pointer type. 473 /// This is *not* the right method for actually performing such a 474 /// message send, due to the possibility of optional arguments. 475 const CGFunctionInfo & 476 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 477 QualType receiverType) { 478 SmallVector<CanQualType, 16> argTys; 479 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 480 argTys.push_back(Context.getCanonicalParamType(receiverType)); 481 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 482 // FIXME: Kill copy? 483 for (const auto *I : MD->parameters()) { 484 argTys.push_back(Context.getCanonicalParamType(I->getType())); 485 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 486 I->hasAttr<NoEscapeAttr>()); 487 extParamInfos.push_back(extParamInfo); 488 } 489 490 FunctionType::ExtInfo einfo; 491 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 492 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 493 494 if (getContext().getLangOpts().ObjCAutoRefCount && 495 MD->hasAttr<NSReturnsRetainedAttr>()) 496 einfo = einfo.withProducesResult(true); 497 498 RequiredArgs required = 499 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 500 501 return arrangeLLVMFunctionInfo( 502 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 503 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 504 } 505 506 const CGFunctionInfo & 507 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 508 const CallArgList &args) { 509 auto argTypes = getArgTypesForCall(Context, args); 510 FunctionType::ExtInfo einfo; 511 512 return arrangeLLVMFunctionInfo( 513 GetReturnType(returnType), /*instanceMethod=*/false, 514 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 515 } 516 517 const CGFunctionInfo & 518 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 519 // FIXME: Do we need to handle ObjCMethodDecl? 520 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 521 522 if (isa<CXXConstructorDecl>(GD.getDecl()) || 523 isa<CXXDestructorDecl>(GD.getDecl())) 524 return arrangeCXXStructorDeclaration(GD); 525 526 return arrangeFunctionDeclaration(FD); 527 } 528 529 /// Arrange a thunk that takes 'this' as the first parameter followed by 530 /// varargs. Return a void pointer, regardless of the actual return type. 531 /// The body of the thunk will end in a musttail call to a function of the 532 /// correct type, and the caller will bitcast the function to the correct 533 /// prototype. 534 const CGFunctionInfo & 535 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 536 assert(MD->isVirtual() && "only methods have thunks"); 537 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 538 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 539 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 540 /*chainCall=*/false, ArgTys, 541 FTP->getExtInfo(), {}, RequiredArgs(1)); 542 } 543 544 const CGFunctionInfo & 545 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 546 CXXCtorType CT) { 547 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 548 549 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 550 SmallVector<CanQualType, 2> ArgTys; 551 const CXXRecordDecl *RD = CD->getParent(); 552 ArgTys.push_back(DeriveThisType(RD, CD)); 553 if (CT == Ctor_CopyingClosure) 554 ArgTys.push_back(*FTP->param_type_begin()); 555 if (RD->getNumVBases() > 0) 556 ArgTys.push_back(Context.IntTy); 557 CallingConv CC = Context.getDefaultCallingConvention( 558 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 559 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 560 /*chainCall=*/false, ArgTys, 561 FunctionType::ExtInfo(CC), {}, 562 RequiredArgs::All); 563 } 564 565 /// Arrange a call as unto a free function, except possibly with an 566 /// additional number of formal parameters considered required. 567 static const CGFunctionInfo & 568 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 569 CodeGenModule &CGM, 570 const CallArgList &args, 571 const FunctionType *fnType, 572 unsigned numExtraRequiredArgs, 573 bool chainCall) { 574 assert(args.size() >= numExtraRequiredArgs); 575 576 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 577 578 // In most cases, there are no optional arguments. 579 RequiredArgs required = RequiredArgs::All; 580 581 // If we have a variadic prototype, the required arguments are the 582 // extra prefix plus the arguments in the prototype. 583 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 584 if (proto->isVariadic()) 585 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 586 587 if (proto->hasExtParameterInfos()) 588 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 589 args.size()); 590 591 // If we don't have a prototype at all, but we're supposed to 592 // explicitly use the variadic convention for unprototyped calls, 593 // treat all of the arguments as required but preserve the nominal 594 // possibility of variadics. 595 } else if (CGM.getTargetCodeGenInfo() 596 .isNoProtoCallVariadic(args, 597 cast<FunctionNoProtoType>(fnType))) { 598 required = RequiredArgs(args.size()); 599 } 600 601 // FIXME: Kill copy. 602 SmallVector<CanQualType, 16> argTypes; 603 for (const auto &arg : args) 604 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 605 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 606 /*instanceMethod=*/false, chainCall, 607 argTypes, fnType->getExtInfo(), paramInfos, 608 required); 609 } 610 611 /// Figure out the rules for calling a function with the given formal 612 /// type using the given arguments. The arguments are necessary 613 /// because the function might be unprototyped, in which case it's 614 /// target-dependent in crazy ways. 615 const CGFunctionInfo & 616 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 617 const FunctionType *fnType, 618 bool chainCall) { 619 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 620 chainCall ? 1 : 0, chainCall); 621 } 622 623 /// A block function is essentially a free function with an 624 /// extra implicit argument. 625 const CGFunctionInfo & 626 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 627 const FunctionType *fnType) { 628 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 629 /*chainCall=*/false); 630 } 631 632 const CGFunctionInfo & 633 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 634 const FunctionArgList ¶ms) { 635 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 636 auto argTypes = getArgTypesForDeclaration(Context, params); 637 638 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 639 /*instanceMethod*/ false, /*chainCall*/ false, 640 argTypes, proto->getExtInfo(), paramInfos, 641 RequiredArgs::forPrototypePlus(proto, 1)); 642 } 643 644 const CGFunctionInfo & 645 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 646 const CallArgList &args) { 647 // FIXME: Kill copy. 648 SmallVector<CanQualType, 16> argTypes; 649 for (const auto &Arg : args) 650 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 651 return arrangeLLVMFunctionInfo( 652 GetReturnType(resultType), /*instanceMethod=*/false, 653 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 654 /*paramInfos=*/ {}, RequiredArgs::All); 655 } 656 657 const CGFunctionInfo & 658 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 659 const FunctionArgList &args) { 660 auto argTypes = getArgTypesForDeclaration(Context, args); 661 662 return arrangeLLVMFunctionInfo( 663 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 664 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 665 } 666 667 const CGFunctionInfo & 668 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 669 ArrayRef<CanQualType> argTypes) { 670 return arrangeLLVMFunctionInfo( 671 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 672 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 673 } 674 675 /// Arrange a call to a C++ method, passing the given arguments. 676 /// 677 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 678 /// does not count `this`. 679 const CGFunctionInfo & 680 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 681 const FunctionProtoType *proto, 682 RequiredArgs required, 683 unsigned numPrefixArgs) { 684 assert(numPrefixArgs + 1 <= args.size() && 685 "Emitting a call with less args than the required prefix?"); 686 // Add one to account for `this`. It's a bit awkward here, but we don't count 687 // `this` in similar places elsewhere. 688 auto paramInfos = 689 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 690 691 // FIXME: Kill copy. 692 auto argTypes = getArgTypesForCall(Context, args); 693 694 FunctionType::ExtInfo info = proto->getExtInfo(); 695 return arrangeLLVMFunctionInfo( 696 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 697 /*chainCall=*/false, argTypes, info, paramInfos, required); 698 } 699 700 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 701 return arrangeLLVMFunctionInfo( 702 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 703 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 704 } 705 706 const CGFunctionInfo & 707 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 708 const CallArgList &args) { 709 assert(signature.arg_size() <= args.size()); 710 if (signature.arg_size() == args.size()) 711 return signature; 712 713 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 714 auto sigParamInfos = signature.getExtParameterInfos(); 715 if (!sigParamInfos.empty()) { 716 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 717 paramInfos.resize(args.size()); 718 } 719 720 auto argTypes = getArgTypesForCall(Context, args); 721 722 assert(signature.getRequiredArgs().allowsOptionalArgs()); 723 return arrangeLLVMFunctionInfo(signature.getReturnType(), 724 signature.isInstanceMethod(), 725 signature.isChainCall(), 726 argTypes, 727 signature.getExtInfo(), 728 paramInfos, 729 signature.getRequiredArgs()); 730 } 731 732 namespace clang { 733 namespace CodeGen { 734 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 735 } 736 } 737 738 /// Arrange the argument and result information for an abstract value 739 /// of a given function type. This is the method which all of the 740 /// above functions ultimately defer to. 741 const CGFunctionInfo & 742 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 743 bool instanceMethod, 744 bool chainCall, 745 ArrayRef<CanQualType> argTypes, 746 FunctionType::ExtInfo info, 747 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 748 RequiredArgs required) { 749 assert(llvm::all_of(argTypes, 750 [](CanQualType T) { return T.isCanonicalAsParam(); })); 751 752 // Lookup or create unique function info. 753 llvm::FoldingSetNodeID ID; 754 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 755 required, resultType, argTypes); 756 757 void *insertPos = nullptr; 758 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 759 if (FI) 760 return *FI; 761 762 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 763 764 // Construct the function info. We co-allocate the ArgInfos. 765 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 766 paramInfos, resultType, argTypes, required); 767 FunctionInfos.InsertNode(FI, insertPos); 768 769 bool inserted = FunctionsBeingProcessed.insert(FI).second; 770 (void)inserted; 771 assert(inserted && "Recursively being processed?"); 772 773 // Compute ABI information. 774 if (CC == llvm::CallingConv::SPIR_KERNEL) { 775 // Force target independent argument handling for the host visible 776 // kernel functions. 777 computeSPIRKernelABIInfo(CGM, *FI); 778 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) { 779 swiftcall::computeABIInfo(CGM, *FI); 780 } else { 781 getABIInfo().computeInfo(*FI); 782 } 783 784 // Loop over all of the computed argument and return value info. If any of 785 // them are direct or extend without a specified coerce type, specify the 786 // default now. 787 ABIArgInfo &retInfo = FI->getReturnInfo(); 788 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 789 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 790 791 for (auto &I : FI->arguments()) 792 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 793 I.info.setCoerceToType(ConvertType(I.type)); 794 795 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 796 assert(erased && "Not in set?"); 797 798 return *FI; 799 } 800 801 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 802 bool instanceMethod, 803 bool chainCall, 804 const FunctionType::ExtInfo &info, 805 ArrayRef<ExtParameterInfo> paramInfos, 806 CanQualType resultType, 807 ArrayRef<CanQualType> argTypes, 808 RequiredArgs required) { 809 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 810 assert(!required.allowsOptionalArgs() || 811 required.getNumRequiredArgs() <= argTypes.size()); 812 813 void *buffer = 814 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 815 argTypes.size() + 1, paramInfos.size())); 816 817 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 818 FI->CallingConvention = llvmCC; 819 FI->EffectiveCallingConvention = llvmCC; 820 FI->ASTCallingConvention = info.getCC(); 821 FI->InstanceMethod = instanceMethod; 822 FI->ChainCall = chainCall; 823 FI->CmseNSCall = info.getCmseNSCall(); 824 FI->NoReturn = info.getNoReturn(); 825 FI->ReturnsRetained = info.getProducesResult(); 826 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 827 FI->NoCfCheck = info.getNoCfCheck(); 828 FI->Required = required; 829 FI->HasRegParm = info.getHasRegParm(); 830 FI->RegParm = info.getRegParm(); 831 FI->ArgStruct = nullptr; 832 FI->ArgStructAlign = 0; 833 FI->NumArgs = argTypes.size(); 834 FI->HasExtParameterInfos = !paramInfos.empty(); 835 FI->getArgsBuffer()[0].type = resultType; 836 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 837 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 838 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 839 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 840 return FI; 841 } 842 843 /***/ 844 845 namespace { 846 // ABIArgInfo::Expand implementation. 847 848 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 849 struct TypeExpansion { 850 enum TypeExpansionKind { 851 // Elements of constant arrays are expanded recursively. 852 TEK_ConstantArray, 853 // Record fields are expanded recursively (but if record is a union, only 854 // the field with the largest size is expanded). 855 TEK_Record, 856 // For complex types, real and imaginary parts are expanded recursively. 857 TEK_Complex, 858 // All other types are not expandable. 859 TEK_None 860 }; 861 862 const TypeExpansionKind Kind; 863 864 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 865 virtual ~TypeExpansion() {} 866 }; 867 868 struct ConstantArrayExpansion : TypeExpansion { 869 QualType EltTy; 870 uint64_t NumElts; 871 872 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 873 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 874 static bool classof(const TypeExpansion *TE) { 875 return TE->Kind == TEK_ConstantArray; 876 } 877 }; 878 879 struct RecordExpansion : TypeExpansion { 880 SmallVector<const CXXBaseSpecifier *, 1> Bases; 881 882 SmallVector<const FieldDecl *, 1> Fields; 883 884 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 885 SmallVector<const FieldDecl *, 1> &&Fields) 886 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 887 Fields(std::move(Fields)) {} 888 static bool classof(const TypeExpansion *TE) { 889 return TE->Kind == TEK_Record; 890 } 891 }; 892 893 struct ComplexExpansion : TypeExpansion { 894 QualType EltTy; 895 896 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 897 static bool classof(const TypeExpansion *TE) { 898 return TE->Kind == TEK_Complex; 899 } 900 }; 901 902 struct NoExpansion : TypeExpansion { 903 NoExpansion() : TypeExpansion(TEK_None) {} 904 static bool classof(const TypeExpansion *TE) { 905 return TE->Kind == TEK_None; 906 } 907 }; 908 } // namespace 909 910 static std::unique_ptr<TypeExpansion> 911 getTypeExpansion(QualType Ty, const ASTContext &Context) { 912 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 913 return std::make_unique<ConstantArrayExpansion>( 914 AT->getElementType(), AT->getSize().getZExtValue()); 915 } 916 if (const RecordType *RT = Ty->getAs<RecordType>()) { 917 SmallVector<const CXXBaseSpecifier *, 1> Bases; 918 SmallVector<const FieldDecl *, 1> Fields; 919 const RecordDecl *RD = RT->getDecl(); 920 assert(!RD->hasFlexibleArrayMember() && 921 "Cannot expand structure with flexible array."); 922 if (RD->isUnion()) { 923 // Unions can be here only in degenerative cases - all the fields are same 924 // after flattening. Thus we have to use the "largest" field. 925 const FieldDecl *LargestFD = nullptr; 926 CharUnits UnionSize = CharUnits::Zero(); 927 928 for (const auto *FD : RD->fields()) { 929 if (FD->isZeroLengthBitField(Context)) 930 continue; 931 assert(!FD->isBitField() && 932 "Cannot expand structure with bit-field members."); 933 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 934 if (UnionSize < FieldSize) { 935 UnionSize = FieldSize; 936 LargestFD = FD; 937 } 938 } 939 if (LargestFD) 940 Fields.push_back(LargestFD); 941 } else { 942 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 943 assert(!CXXRD->isDynamicClass() && 944 "cannot expand vtable pointers in dynamic classes"); 945 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 946 Bases.push_back(&BS); 947 } 948 949 for (const auto *FD : RD->fields()) { 950 if (FD->isZeroLengthBitField(Context)) 951 continue; 952 assert(!FD->isBitField() && 953 "Cannot expand structure with bit-field members."); 954 Fields.push_back(FD); 955 } 956 } 957 return std::make_unique<RecordExpansion>(std::move(Bases), 958 std::move(Fields)); 959 } 960 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 961 return std::make_unique<ComplexExpansion>(CT->getElementType()); 962 } 963 return std::make_unique<NoExpansion>(); 964 } 965 966 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 967 auto Exp = getTypeExpansion(Ty, Context); 968 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 969 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 970 } 971 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 972 int Res = 0; 973 for (auto BS : RExp->Bases) 974 Res += getExpansionSize(BS->getType(), Context); 975 for (auto FD : RExp->Fields) 976 Res += getExpansionSize(FD->getType(), Context); 977 return Res; 978 } 979 if (isa<ComplexExpansion>(Exp.get())) 980 return 2; 981 assert(isa<NoExpansion>(Exp.get())); 982 return 1; 983 } 984 985 void 986 CodeGenTypes::getExpandedTypes(QualType Ty, 987 SmallVectorImpl<llvm::Type *>::iterator &TI) { 988 auto Exp = getTypeExpansion(Ty, Context); 989 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 990 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 991 getExpandedTypes(CAExp->EltTy, TI); 992 } 993 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 994 for (auto BS : RExp->Bases) 995 getExpandedTypes(BS->getType(), TI); 996 for (auto FD : RExp->Fields) 997 getExpandedTypes(FD->getType(), TI); 998 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 999 llvm::Type *EltTy = ConvertType(CExp->EltTy); 1000 *TI++ = EltTy; 1001 *TI++ = EltTy; 1002 } else { 1003 assert(isa<NoExpansion>(Exp.get())); 1004 *TI++ = ConvertType(Ty); 1005 } 1006 } 1007 1008 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1009 ConstantArrayExpansion *CAE, 1010 Address BaseAddr, 1011 llvm::function_ref<void(Address)> Fn) { 1012 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1013 CharUnits EltAlign = 1014 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1015 1016 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1017 llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32( 1018 BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i); 1019 Fn(Address(EltAddr, EltAlign)); 1020 } 1021 } 1022 1023 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1024 llvm::Function::arg_iterator &AI) { 1025 assert(LV.isSimple() && 1026 "Unexpected non-simple lvalue during struct expansion."); 1027 1028 auto Exp = getTypeExpansion(Ty, getContext()); 1029 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1030 forConstantArrayExpansion( 1031 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1032 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1033 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1034 }); 1035 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1036 Address This = LV.getAddress(*this); 1037 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1038 // Perform a single step derived-to-base conversion. 1039 Address Base = 1040 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1041 /*NullCheckValue=*/false, SourceLocation()); 1042 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1043 1044 // Recurse onto bases. 1045 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1046 } 1047 for (auto FD : RExp->Fields) { 1048 // FIXME: What are the right qualifiers here? 1049 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1050 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1051 } 1052 } else if (isa<ComplexExpansion>(Exp.get())) { 1053 auto realValue = &*AI++; 1054 auto imagValue = &*AI++; 1055 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1056 } else { 1057 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1058 // primitive store. 1059 assert(isa<NoExpansion>(Exp.get())); 1060 llvm::Value *Arg = &*AI++; 1061 if (LV.isBitField()) { 1062 EmitStoreThroughLValue(RValue::get(Arg), LV); 1063 } else { 1064 // TODO: currently there are some places are inconsistent in what LLVM 1065 // pointer type they use (see D118744). Once clang uses opaque pointers 1066 // all LLVM pointer types will be the same and we can remove this check. 1067 if (Arg->getType()->isPointerTy()) { 1068 Address Addr = LV.getAddress(*this); 1069 Arg = Builder.CreateBitCast(Arg, Addr.getElementType()); 1070 } 1071 EmitStoreOfScalar(Arg, LV); 1072 } 1073 } 1074 } 1075 1076 void CodeGenFunction::ExpandTypeToArgs( 1077 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1078 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1079 auto Exp = getTypeExpansion(Ty, getContext()); 1080 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1081 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1082 : Arg.getKnownRValue().getAggregateAddress(); 1083 forConstantArrayExpansion( 1084 *this, CAExp, Addr, [&](Address EltAddr) { 1085 CallArg EltArg = CallArg( 1086 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1087 CAExp->EltTy); 1088 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1089 IRCallArgPos); 1090 }); 1091 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1092 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1093 : Arg.getKnownRValue().getAggregateAddress(); 1094 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1095 // Perform a single step derived-to-base conversion. 1096 Address Base = 1097 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1098 /*NullCheckValue=*/false, SourceLocation()); 1099 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1100 1101 // Recurse onto bases. 1102 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1103 IRCallArgPos); 1104 } 1105 1106 LValue LV = MakeAddrLValue(This, Ty); 1107 for (auto FD : RExp->Fields) { 1108 CallArg FldArg = 1109 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1110 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1111 IRCallArgPos); 1112 } 1113 } else if (isa<ComplexExpansion>(Exp.get())) { 1114 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1115 IRCallArgs[IRCallArgPos++] = CV.first; 1116 IRCallArgs[IRCallArgPos++] = CV.second; 1117 } else { 1118 assert(isa<NoExpansion>(Exp.get())); 1119 auto RV = Arg.getKnownRValue(); 1120 assert(RV.isScalar() && 1121 "Unexpected non-scalar rvalue during struct expansion."); 1122 1123 // Insert a bitcast as needed. 1124 llvm::Value *V = RV.getScalarVal(); 1125 if (IRCallArgPos < IRFuncTy->getNumParams() && 1126 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1127 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1128 1129 IRCallArgs[IRCallArgPos++] = V; 1130 } 1131 } 1132 1133 /// Create a temporary allocation for the purposes of coercion. 1134 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1135 CharUnits MinAlign, 1136 const Twine &Name = "tmp") { 1137 // Don't use an alignment that's worse than what LLVM would prefer. 1138 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1139 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1140 1141 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1142 } 1143 1144 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1145 /// accessing some number of bytes out of it, try to gep into the struct to get 1146 /// at its inner goodness. Dive as deep as possible without entering an element 1147 /// with an in-memory size smaller than DstSize. 1148 static Address 1149 EnterStructPointerForCoercedAccess(Address SrcPtr, 1150 llvm::StructType *SrcSTy, 1151 uint64_t DstSize, CodeGenFunction &CGF) { 1152 // We can't dive into a zero-element struct. 1153 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1154 1155 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1156 1157 // If the first elt is at least as large as what we're looking for, or if the 1158 // first element is the same size as the whole struct, we can enter it. The 1159 // comparison must be made on the store size and not the alloca size. Using 1160 // the alloca size may overstate the size of the load. 1161 uint64_t FirstEltSize = 1162 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1163 if (FirstEltSize < DstSize && 1164 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1165 return SrcPtr; 1166 1167 // GEP into the first element. 1168 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1169 1170 // If the first element is a struct, recurse. 1171 llvm::Type *SrcTy = SrcPtr.getElementType(); 1172 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1173 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1174 1175 return SrcPtr; 1176 } 1177 1178 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1179 /// are either integers or pointers. This does a truncation of the value if it 1180 /// is too large or a zero extension if it is too small. 1181 /// 1182 /// This behaves as if the value were coerced through memory, so on big-endian 1183 /// targets the high bits are preserved in a truncation, while little-endian 1184 /// targets preserve the low bits. 1185 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1186 llvm::Type *Ty, 1187 CodeGenFunction &CGF) { 1188 if (Val->getType() == Ty) 1189 return Val; 1190 1191 if (isa<llvm::PointerType>(Val->getType())) { 1192 // If this is Pointer->Pointer avoid conversion to and from int. 1193 if (isa<llvm::PointerType>(Ty)) 1194 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1195 1196 // Convert the pointer to an integer so we can play with its width. 1197 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1198 } 1199 1200 llvm::Type *DestIntTy = Ty; 1201 if (isa<llvm::PointerType>(DestIntTy)) 1202 DestIntTy = CGF.IntPtrTy; 1203 1204 if (Val->getType() != DestIntTy) { 1205 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1206 if (DL.isBigEndian()) { 1207 // Preserve the high bits on big-endian targets. 1208 // That is what memory coercion does. 1209 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1210 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1211 1212 if (SrcSize > DstSize) { 1213 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1214 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1215 } else { 1216 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1217 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1218 } 1219 } else { 1220 // Little-endian targets preserve the low bits. No shifts required. 1221 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1222 } 1223 } 1224 1225 if (isa<llvm::PointerType>(Ty)) 1226 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1227 return Val; 1228 } 1229 1230 1231 1232 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1233 /// a pointer to an object of type \arg Ty, known to be aligned to 1234 /// \arg SrcAlign bytes. 1235 /// 1236 /// This safely handles the case when the src type is smaller than the 1237 /// destination type; in this situation the values of bits which not 1238 /// present in the src are undefined. 1239 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1240 CodeGenFunction &CGF) { 1241 llvm::Type *SrcTy = Src.getElementType(); 1242 1243 // If SrcTy and Ty are the same, just do a load. 1244 if (SrcTy == Ty) 1245 return CGF.Builder.CreateLoad(Src); 1246 1247 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1248 1249 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1250 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1251 DstSize.getFixedSize(), CGF); 1252 SrcTy = Src.getElementType(); 1253 } 1254 1255 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1256 1257 // If the source and destination are integer or pointer types, just do an 1258 // extension or truncation to the desired type. 1259 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1260 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1261 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1262 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1263 } 1264 1265 // If load is legal, just bitcast the src pointer. 1266 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1267 SrcSize.getFixedSize() >= DstSize.getFixedSize()) { 1268 // Generally SrcSize is never greater than DstSize, since this means we are 1269 // losing bits. However, this can happen in cases where the structure has 1270 // additional padding, for example due to a user specified alignment. 1271 // 1272 // FIXME: Assert that we aren't truncating non-padding bits when have access 1273 // to that information. 1274 Src = CGF.Builder.CreateElementBitCast(Src, Ty); 1275 return CGF.Builder.CreateLoad(Src); 1276 } 1277 1278 // If coercing a fixed vector to a scalable vector for ABI compatibility, and 1279 // the types match, use the llvm.experimental.vector.insert intrinsic to 1280 // perform the conversion. 1281 if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) { 1282 if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 1283 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate 1284 // vector, use a vector insert and bitcast the result. 1285 bool NeedsBitcast = false; 1286 auto PredType = 1287 llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16); 1288 llvm::Type *OrigType = Ty; 1289 if (ScalableDst == PredType && 1290 FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) { 1291 ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2); 1292 NeedsBitcast = true; 1293 } 1294 if (ScalableDst->getElementType() == FixedSrc->getElementType()) { 1295 auto *Load = CGF.Builder.CreateLoad(Src); 1296 auto *UndefVec = llvm::UndefValue::get(ScalableDst); 1297 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 1298 llvm::Value *Result = CGF.Builder.CreateInsertVector( 1299 ScalableDst, UndefVec, Load, Zero, "castScalableSve"); 1300 if (NeedsBitcast) 1301 Result = CGF.Builder.CreateBitCast(Result, OrigType); 1302 return Result; 1303 } 1304 } 1305 } 1306 1307 // Otherwise do coercion through memory. This is stupid, but simple. 1308 Address Tmp = 1309 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1310 CGF.Builder.CreateMemCpy( 1311 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(), 1312 Src.getAlignment().getAsAlign(), 1313 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize())); 1314 return CGF.Builder.CreateLoad(Tmp); 1315 } 1316 1317 // Function to store a first-class aggregate into memory. We prefer to 1318 // store the elements rather than the aggregate to be more friendly to 1319 // fast-isel. 1320 // FIXME: Do we need to recurse here? 1321 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1322 bool DestIsVolatile) { 1323 // Prefer scalar stores to first-class aggregate stores. 1324 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1325 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1326 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1327 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1328 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1329 } 1330 } else { 1331 Builder.CreateStore(Val, Dest, DestIsVolatile); 1332 } 1333 } 1334 1335 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1336 /// where the source and destination may have different types. The 1337 /// destination is known to be aligned to \arg DstAlign bytes. 1338 /// 1339 /// This safely handles the case when the src type is larger than the 1340 /// destination type; the upper bits of the src will be lost. 1341 static void CreateCoercedStore(llvm::Value *Src, 1342 Address Dst, 1343 bool DstIsVolatile, 1344 CodeGenFunction &CGF) { 1345 llvm::Type *SrcTy = Src->getType(); 1346 llvm::Type *DstTy = Dst.getElementType(); 1347 if (SrcTy == DstTy) { 1348 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1349 return; 1350 } 1351 1352 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1353 1354 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1355 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1356 SrcSize.getFixedSize(), CGF); 1357 DstTy = Dst.getElementType(); 1358 } 1359 1360 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1361 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1362 if (SrcPtrTy && DstPtrTy && 1363 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1364 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1365 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1366 return; 1367 } 1368 1369 // If the source and destination are integer or pointer types, just do an 1370 // extension or truncation to the desired type. 1371 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1372 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1373 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1374 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1375 return; 1376 } 1377 1378 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1379 1380 // If store is legal, just bitcast the src pointer. 1381 if (isa<llvm::ScalableVectorType>(SrcTy) || 1382 isa<llvm::ScalableVectorType>(DstTy) || 1383 SrcSize.getFixedSize() <= DstSize.getFixedSize()) { 1384 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1385 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1386 } else { 1387 // Otherwise do coercion through memory. This is stupid, but 1388 // simple. 1389 1390 // Generally SrcSize is never greater than DstSize, since this means we are 1391 // losing bits. However, this can happen in cases where the structure has 1392 // additional padding, for example due to a user specified alignment. 1393 // 1394 // FIXME: Assert that we aren't truncating non-padding bits when have access 1395 // to that information. 1396 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1397 CGF.Builder.CreateStore(Src, Tmp); 1398 CGF.Builder.CreateMemCpy( 1399 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1400 Tmp.getAlignment().getAsAlign(), 1401 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize())); 1402 } 1403 } 1404 1405 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1406 const ABIArgInfo &info) { 1407 if (unsigned offset = info.getDirectOffset()) { 1408 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1409 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1410 CharUnits::fromQuantity(offset)); 1411 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1412 } 1413 return addr; 1414 } 1415 1416 namespace { 1417 1418 /// Encapsulates information about the way function arguments from 1419 /// CGFunctionInfo should be passed to actual LLVM IR function. 1420 class ClangToLLVMArgMapping { 1421 static const unsigned InvalidIndex = ~0U; 1422 unsigned InallocaArgNo; 1423 unsigned SRetArgNo; 1424 unsigned TotalIRArgs; 1425 1426 /// Arguments of LLVM IR function corresponding to single Clang argument. 1427 struct IRArgs { 1428 unsigned PaddingArgIndex; 1429 // Argument is expanded to IR arguments at positions 1430 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1431 unsigned FirstArgIndex; 1432 unsigned NumberOfArgs; 1433 1434 IRArgs() 1435 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1436 NumberOfArgs(0) {} 1437 }; 1438 1439 SmallVector<IRArgs, 8> ArgInfo; 1440 1441 public: 1442 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1443 bool OnlyRequiredArgs = false) 1444 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1445 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1446 construct(Context, FI, OnlyRequiredArgs); 1447 } 1448 1449 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1450 unsigned getInallocaArgNo() const { 1451 assert(hasInallocaArg()); 1452 return InallocaArgNo; 1453 } 1454 1455 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1456 unsigned getSRetArgNo() const { 1457 assert(hasSRetArg()); 1458 return SRetArgNo; 1459 } 1460 1461 unsigned totalIRArgs() const { return TotalIRArgs; } 1462 1463 bool hasPaddingArg(unsigned ArgNo) const { 1464 assert(ArgNo < ArgInfo.size()); 1465 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1466 } 1467 unsigned getPaddingArgNo(unsigned ArgNo) const { 1468 assert(hasPaddingArg(ArgNo)); 1469 return ArgInfo[ArgNo].PaddingArgIndex; 1470 } 1471 1472 /// Returns index of first IR argument corresponding to ArgNo, and their 1473 /// quantity. 1474 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1475 assert(ArgNo < ArgInfo.size()); 1476 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1477 ArgInfo[ArgNo].NumberOfArgs); 1478 } 1479 1480 private: 1481 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1482 bool OnlyRequiredArgs); 1483 }; 1484 1485 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1486 const CGFunctionInfo &FI, 1487 bool OnlyRequiredArgs) { 1488 unsigned IRArgNo = 0; 1489 bool SwapThisWithSRet = false; 1490 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1491 1492 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1493 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1494 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1495 } 1496 1497 unsigned ArgNo = 0; 1498 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1499 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1500 ++I, ++ArgNo) { 1501 assert(I != FI.arg_end()); 1502 QualType ArgType = I->type; 1503 const ABIArgInfo &AI = I->info; 1504 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1505 auto &IRArgs = ArgInfo[ArgNo]; 1506 1507 if (AI.getPaddingType()) 1508 IRArgs.PaddingArgIndex = IRArgNo++; 1509 1510 switch (AI.getKind()) { 1511 case ABIArgInfo::Extend: 1512 case ABIArgInfo::Direct: { 1513 // FIXME: handle sseregparm someday... 1514 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1515 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1516 IRArgs.NumberOfArgs = STy->getNumElements(); 1517 } else { 1518 IRArgs.NumberOfArgs = 1; 1519 } 1520 break; 1521 } 1522 case ABIArgInfo::Indirect: 1523 case ABIArgInfo::IndirectAliased: 1524 IRArgs.NumberOfArgs = 1; 1525 break; 1526 case ABIArgInfo::Ignore: 1527 case ABIArgInfo::InAlloca: 1528 // ignore and inalloca doesn't have matching LLVM parameters. 1529 IRArgs.NumberOfArgs = 0; 1530 break; 1531 case ABIArgInfo::CoerceAndExpand: 1532 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1533 break; 1534 case ABIArgInfo::Expand: 1535 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1536 break; 1537 } 1538 1539 if (IRArgs.NumberOfArgs > 0) { 1540 IRArgs.FirstArgIndex = IRArgNo; 1541 IRArgNo += IRArgs.NumberOfArgs; 1542 } 1543 1544 // Skip over the sret parameter when it comes second. We already handled it 1545 // above. 1546 if (IRArgNo == 1 && SwapThisWithSRet) 1547 IRArgNo++; 1548 } 1549 assert(ArgNo == ArgInfo.size()); 1550 1551 if (FI.usesInAlloca()) 1552 InallocaArgNo = IRArgNo++; 1553 1554 TotalIRArgs = IRArgNo; 1555 } 1556 } // namespace 1557 1558 /***/ 1559 1560 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1561 const auto &RI = FI.getReturnInfo(); 1562 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1563 } 1564 1565 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1566 return ReturnTypeUsesSRet(FI) && 1567 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1568 } 1569 1570 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1571 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1572 switch (BT->getKind()) { 1573 default: 1574 return false; 1575 case BuiltinType::Float: 1576 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float); 1577 case BuiltinType::Double: 1578 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double); 1579 case BuiltinType::LongDouble: 1580 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble); 1581 } 1582 } 1583 1584 return false; 1585 } 1586 1587 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1588 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1589 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1590 if (BT->getKind() == BuiltinType::LongDouble) 1591 return getTarget().useObjCFP2RetForComplexLongDouble(); 1592 } 1593 } 1594 1595 return false; 1596 } 1597 1598 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1599 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1600 return GetFunctionType(FI); 1601 } 1602 1603 llvm::FunctionType * 1604 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1605 1606 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1607 (void)Inserted; 1608 assert(Inserted && "Recursively being processed?"); 1609 1610 llvm::Type *resultType = nullptr; 1611 const ABIArgInfo &retAI = FI.getReturnInfo(); 1612 switch (retAI.getKind()) { 1613 case ABIArgInfo::Expand: 1614 case ABIArgInfo::IndirectAliased: 1615 llvm_unreachable("Invalid ABI kind for return argument"); 1616 1617 case ABIArgInfo::Extend: 1618 case ABIArgInfo::Direct: 1619 resultType = retAI.getCoerceToType(); 1620 break; 1621 1622 case ABIArgInfo::InAlloca: 1623 if (retAI.getInAllocaSRet()) { 1624 // sret things on win32 aren't void, they return the sret pointer. 1625 QualType ret = FI.getReturnType(); 1626 llvm::Type *ty = ConvertType(ret); 1627 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1628 resultType = llvm::PointerType::get(ty, addressSpace); 1629 } else { 1630 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1631 } 1632 break; 1633 1634 case ABIArgInfo::Indirect: 1635 case ABIArgInfo::Ignore: 1636 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1637 break; 1638 1639 case ABIArgInfo::CoerceAndExpand: 1640 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1641 break; 1642 } 1643 1644 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1645 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1646 1647 // Add type for sret argument. 1648 if (IRFunctionArgs.hasSRetArg()) { 1649 QualType Ret = FI.getReturnType(); 1650 llvm::Type *Ty = ConvertType(Ret); 1651 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1652 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1653 llvm::PointerType::get(Ty, AddressSpace); 1654 } 1655 1656 // Add type for inalloca argument. 1657 if (IRFunctionArgs.hasInallocaArg()) { 1658 auto ArgStruct = FI.getArgStruct(); 1659 assert(ArgStruct); 1660 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1661 } 1662 1663 // Add in all of the required arguments. 1664 unsigned ArgNo = 0; 1665 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1666 ie = it + FI.getNumRequiredArgs(); 1667 for (; it != ie; ++it, ++ArgNo) { 1668 const ABIArgInfo &ArgInfo = it->info; 1669 1670 // Insert a padding type to ensure proper alignment. 1671 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1672 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1673 ArgInfo.getPaddingType(); 1674 1675 unsigned FirstIRArg, NumIRArgs; 1676 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1677 1678 switch (ArgInfo.getKind()) { 1679 case ABIArgInfo::Ignore: 1680 case ABIArgInfo::InAlloca: 1681 assert(NumIRArgs == 0); 1682 break; 1683 1684 case ABIArgInfo::Indirect: { 1685 assert(NumIRArgs == 1); 1686 // indirect arguments are always on the stack, which is alloca addr space. 1687 llvm::Type *LTy = ConvertTypeForMem(it->type); 1688 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1689 CGM.getDataLayout().getAllocaAddrSpace()); 1690 break; 1691 } 1692 case ABIArgInfo::IndirectAliased: { 1693 assert(NumIRArgs == 1); 1694 llvm::Type *LTy = ConvertTypeForMem(it->type); 1695 ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace()); 1696 break; 1697 } 1698 case ABIArgInfo::Extend: 1699 case ABIArgInfo::Direct: { 1700 // Fast-isel and the optimizer generally like scalar values better than 1701 // FCAs, so we flatten them if this is safe to do for this argument. 1702 llvm::Type *argType = ArgInfo.getCoerceToType(); 1703 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1704 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1705 assert(NumIRArgs == st->getNumElements()); 1706 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1707 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1708 } else { 1709 assert(NumIRArgs == 1); 1710 ArgTypes[FirstIRArg] = argType; 1711 } 1712 break; 1713 } 1714 1715 case ABIArgInfo::CoerceAndExpand: { 1716 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1717 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1718 *ArgTypesIter++ = EltTy; 1719 } 1720 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1721 break; 1722 } 1723 1724 case ABIArgInfo::Expand: 1725 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1726 getExpandedTypes(it->type, ArgTypesIter); 1727 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1728 break; 1729 } 1730 } 1731 1732 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1733 assert(Erased && "Not in set?"); 1734 1735 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1736 } 1737 1738 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1739 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1740 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1741 1742 if (!isFuncTypeConvertible(FPT)) 1743 return llvm::StructType::get(getLLVMContext()); 1744 1745 return GetFunctionType(GD); 1746 } 1747 1748 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1749 llvm::AttrBuilder &FuncAttrs, 1750 const FunctionProtoType *FPT) { 1751 if (!FPT) 1752 return; 1753 1754 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1755 FPT->isNothrow()) 1756 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1757 } 1758 1759 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs, 1760 const Decl *Callee) { 1761 if (!Callee) 1762 return; 1763 1764 SmallVector<StringRef, 4> Attrs; 1765 1766 for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>()) 1767 AA->getAssumption().split(Attrs, ","); 1768 1769 if (!Attrs.empty()) 1770 FuncAttrs.addAttribute(llvm::AssumptionAttrKey, 1771 llvm::join(Attrs.begin(), Attrs.end(), ",")); 1772 } 1773 1774 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context, 1775 QualType ReturnType) { 1776 // We can't just discard the return value for a record type with a 1777 // complex destructor or a non-trivially copyable type. 1778 if (const RecordType *RT = 1779 ReturnType.getCanonicalType()->getAs<RecordType>()) { 1780 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1781 return ClassDecl->hasTrivialDestructor(); 1782 } 1783 return ReturnType.isTriviallyCopyableType(Context); 1784 } 1785 1786 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 1787 bool HasOptnone, 1788 bool AttrOnCallSite, 1789 llvm::AttrBuilder &FuncAttrs) { 1790 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1791 if (!HasOptnone) { 1792 if (CodeGenOpts.OptimizeSize) 1793 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1794 if (CodeGenOpts.OptimizeSize == 2) 1795 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1796 } 1797 1798 if (CodeGenOpts.DisableRedZone) 1799 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1800 if (CodeGenOpts.IndirectTlsSegRefs) 1801 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1802 if (CodeGenOpts.NoImplicitFloat) 1803 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1804 1805 if (AttrOnCallSite) { 1806 // Attributes that should go on the call site only. 1807 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name)) 1808 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1809 if (!CodeGenOpts.TrapFuncName.empty()) 1810 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1811 } else { 1812 StringRef FpKind; 1813 switch (CodeGenOpts.getFramePointer()) { 1814 case CodeGenOptions::FramePointerKind::None: 1815 FpKind = "none"; 1816 break; 1817 case CodeGenOptions::FramePointerKind::NonLeaf: 1818 FpKind = "non-leaf"; 1819 break; 1820 case CodeGenOptions::FramePointerKind::All: 1821 FpKind = "all"; 1822 break; 1823 } 1824 FuncAttrs.addAttribute("frame-pointer", FpKind); 1825 1826 if (CodeGenOpts.LessPreciseFPMAD) 1827 FuncAttrs.addAttribute("less-precise-fpmad", "true"); 1828 1829 if (CodeGenOpts.NullPointerIsValid) 1830 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1831 1832 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE()) 1833 FuncAttrs.addAttribute("denormal-fp-math", 1834 CodeGenOpts.FPDenormalMode.str()); 1835 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) { 1836 FuncAttrs.addAttribute( 1837 "denormal-fp-math-f32", 1838 CodeGenOpts.FP32DenormalMode.str()); 1839 } 1840 1841 if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore) 1842 FuncAttrs.addAttribute("no-trapping-math", "true"); 1843 1844 // TODO: Are these all needed? 1845 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1846 if (LangOpts.NoHonorInfs) 1847 FuncAttrs.addAttribute("no-infs-fp-math", "true"); 1848 if (LangOpts.NoHonorNaNs) 1849 FuncAttrs.addAttribute("no-nans-fp-math", "true"); 1850 if (LangOpts.ApproxFunc) 1851 FuncAttrs.addAttribute("approx-func-fp-math", "true"); 1852 if (LangOpts.UnsafeFPMath) 1853 FuncAttrs.addAttribute("unsafe-fp-math", "true"); 1854 if (CodeGenOpts.SoftFloat) 1855 FuncAttrs.addAttribute("use-soft-float", "true"); 1856 FuncAttrs.addAttribute("stack-protector-buffer-size", 1857 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1858 if (LangOpts.NoSignedZero) 1859 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true"); 1860 1861 // TODO: Reciprocal estimate codegen options should apply to instructions? 1862 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1863 if (!Recips.empty()) 1864 FuncAttrs.addAttribute("reciprocal-estimates", 1865 llvm::join(Recips, ",")); 1866 1867 if (!CodeGenOpts.PreferVectorWidth.empty() && 1868 CodeGenOpts.PreferVectorWidth != "none") 1869 FuncAttrs.addAttribute("prefer-vector-width", 1870 CodeGenOpts.PreferVectorWidth); 1871 1872 if (CodeGenOpts.StackRealignment) 1873 FuncAttrs.addAttribute("stackrealign"); 1874 if (CodeGenOpts.Backchain) 1875 FuncAttrs.addAttribute("backchain"); 1876 if (CodeGenOpts.EnableSegmentedStacks) 1877 FuncAttrs.addAttribute("split-stack"); 1878 1879 if (CodeGenOpts.SpeculativeLoadHardening) 1880 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1881 } 1882 1883 if (getLangOpts().assumeFunctionsAreConvergent()) { 1884 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1885 // convergent (meaning, they may call an intrinsically convergent op, such 1886 // as __syncthreads() / barrier(), and so can't have certain optimizations 1887 // applied around them). LLVM will remove this attribute where it safely 1888 // can. 1889 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1890 } 1891 1892 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1893 // Exceptions aren't supported in CUDA device code. 1894 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1895 } 1896 1897 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1898 StringRef Var, Value; 1899 std::tie(Var, Value) = Attr.split('='); 1900 FuncAttrs.addAttribute(Var, Value); 1901 } 1902 } 1903 1904 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) { 1905 llvm::AttrBuilder FuncAttrs(F.getContext()); 1906 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 1907 /* AttrOnCallSite = */ false, FuncAttrs); 1908 // TODO: call GetCPUAndFeaturesAttributes? 1909 F.addFnAttrs(FuncAttrs); 1910 } 1911 1912 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 1913 llvm::AttrBuilder &attrs) { 1914 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 1915 /*for call*/ false, attrs); 1916 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 1917 } 1918 1919 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 1920 const LangOptions &LangOpts, 1921 const NoBuiltinAttr *NBA = nullptr) { 1922 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 1923 SmallString<32> AttributeName; 1924 AttributeName += "no-builtin-"; 1925 AttributeName += BuiltinName; 1926 FuncAttrs.addAttribute(AttributeName); 1927 }; 1928 1929 // First, handle the language options passed through -fno-builtin. 1930 if (LangOpts.NoBuiltin) { 1931 // -fno-builtin disables them all. 1932 FuncAttrs.addAttribute("no-builtins"); 1933 return; 1934 } 1935 1936 // Then, add attributes for builtins specified through -fno-builtin-<name>. 1937 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 1938 1939 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 1940 // the source. 1941 if (!NBA) 1942 return; 1943 1944 // If there is a wildcard in the builtin names specified through the 1945 // attribute, disable them all. 1946 if (llvm::is_contained(NBA->builtinNames(), "*")) { 1947 FuncAttrs.addAttribute("no-builtins"); 1948 return; 1949 } 1950 1951 // And last, add the rest of the builtin names. 1952 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 1953 } 1954 1955 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types, 1956 const llvm::DataLayout &DL, const ABIArgInfo &AI, 1957 bool CheckCoerce = true) { 1958 llvm::Type *Ty = Types.ConvertTypeForMem(QTy); 1959 if (AI.getKind() == ABIArgInfo::Indirect) 1960 return true; 1961 if (AI.getKind() == ABIArgInfo::Extend) 1962 return true; 1963 if (!DL.typeSizeEqualsStoreSize(Ty)) 1964 // TODO: This will result in a modest amount of values not marked noundef 1965 // when they could be. We care about values that *invisibly* contain undef 1966 // bits from the perspective of LLVM IR. 1967 return false; 1968 if (CheckCoerce && AI.canHaveCoerceToType()) { 1969 llvm::Type *CoerceTy = AI.getCoerceToType(); 1970 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy), 1971 DL.getTypeSizeInBits(Ty))) 1972 // If we're coercing to a type with a greater size than the canonical one, 1973 // we're introducing new undef bits. 1974 // Coercing to a type of smaller or equal size is ok, as we know that 1975 // there's no internal padding (typeSizeEqualsStoreSize). 1976 return false; 1977 } 1978 if (QTy->isBitIntType()) 1979 return true; 1980 if (QTy->isReferenceType()) 1981 return true; 1982 if (QTy->isNullPtrType()) 1983 return false; 1984 if (QTy->isMemberPointerType()) 1985 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For 1986 // now, never mark them. 1987 return false; 1988 if (QTy->isScalarType()) { 1989 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy)) 1990 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false); 1991 return true; 1992 } 1993 if (const VectorType *Vector = dyn_cast<VectorType>(QTy)) 1994 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false); 1995 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy)) 1996 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false); 1997 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy)) 1998 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false); 1999 2000 // TODO: Some structs may be `noundef`, in specific situations. 2001 return false; 2002 } 2003 2004 /// Construct the IR attribute list of a function or call. 2005 /// 2006 /// When adding an attribute, please consider where it should be handled: 2007 /// 2008 /// - getDefaultFunctionAttributes is for attributes that are essentially 2009 /// part of the global target configuration (but perhaps can be 2010 /// overridden on a per-function basis). Adding attributes there 2011 /// will cause them to also be set in frontends that build on Clang's 2012 /// target-configuration logic, as well as for code defined in library 2013 /// modules such as CUDA's libdevice. 2014 /// 2015 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 2016 /// and adds declaration-specific, convention-specific, and 2017 /// frontend-specific logic. The last is of particular importance: 2018 /// attributes that restrict how the frontend generates code must be 2019 /// added here rather than getDefaultFunctionAttributes. 2020 /// 2021 void CodeGenModule::ConstructAttributeList(StringRef Name, 2022 const CGFunctionInfo &FI, 2023 CGCalleeInfo CalleeInfo, 2024 llvm::AttributeList &AttrList, 2025 unsigned &CallingConv, 2026 bool AttrOnCallSite, bool IsThunk) { 2027 llvm::AttrBuilder FuncAttrs(getLLVMContext()); 2028 llvm::AttrBuilder RetAttrs(getLLVMContext()); 2029 2030 // Collect function IR attributes from the CC lowering. 2031 // We'll collect the paramete and result attributes later. 2032 CallingConv = FI.getEffectiveCallingConvention(); 2033 if (FI.isNoReturn()) 2034 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2035 if (FI.isCmseNSCall()) 2036 FuncAttrs.addAttribute("cmse_nonsecure_call"); 2037 2038 // Collect function IR attributes from the callee prototype if we have one. 2039 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 2040 CalleeInfo.getCalleeFunctionProtoType()); 2041 2042 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 2043 2044 // Attach assumption attributes to the declaration. If this is a call 2045 // site, attach assumptions from the caller to the call as well. 2046 AddAttributesFromAssumes(FuncAttrs, TargetDecl); 2047 2048 bool HasOptnone = false; 2049 // The NoBuiltinAttr attached to the target FunctionDecl. 2050 const NoBuiltinAttr *NBA = nullptr; 2051 2052 // Collect function IR attributes based on declaration-specific 2053 // information. 2054 // FIXME: handle sseregparm someday... 2055 if (TargetDecl) { 2056 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 2057 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 2058 if (TargetDecl->hasAttr<NoThrowAttr>()) 2059 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2060 if (TargetDecl->hasAttr<NoReturnAttr>()) 2061 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2062 if (TargetDecl->hasAttr<ColdAttr>()) 2063 FuncAttrs.addAttribute(llvm::Attribute::Cold); 2064 if (TargetDecl->hasAttr<HotAttr>()) 2065 FuncAttrs.addAttribute(llvm::Attribute::Hot); 2066 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 2067 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 2068 if (TargetDecl->hasAttr<ConvergentAttr>()) 2069 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 2070 2071 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2072 AddAttributesFromFunctionProtoType( 2073 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 2074 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 2075 // A sane operator new returns a non-aliasing pointer. 2076 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 2077 if (getCodeGenOpts().AssumeSaneOperatorNew && 2078 (Kind == OO_New || Kind == OO_Array_New)) 2079 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2080 } 2081 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 2082 const bool IsVirtualCall = MD && MD->isVirtual(); 2083 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 2084 // virtual function. These attributes are not inherited by overloads. 2085 if (!(AttrOnCallSite && IsVirtualCall)) { 2086 if (Fn->isNoReturn()) 2087 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2088 NBA = Fn->getAttr<NoBuiltinAttr>(); 2089 } 2090 // Only place nomerge attribute on call sites, never functions. This 2091 // allows it to work on indirect virtual function calls. 2092 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>()) 2093 FuncAttrs.addAttribute(llvm::Attribute::NoMerge); 2094 } 2095 2096 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 2097 if (TargetDecl->hasAttr<ConstAttr>()) { 2098 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 2099 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2100 // gcc specifies that 'const' functions have greater restrictions than 2101 // 'pure' functions, so they also cannot have infinite loops. 2102 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2103 } else if (TargetDecl->hasAttr<PureAttr>()) { 2104 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 2105 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2106 // gcc specifies that 'pure' functions cannot have infinite loops. 2107 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2108 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 2109 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 2110 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2111 } 2112 if (TargetDecl->hasAttr<RestrictAttr>()) 2113 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2114 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 2115 !CodeGenOpts.NullPointerIsValid) 2116 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2117 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 2118 FuncAttrs.addAttribute("no_caller_saved_registers"); 2119 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 2120 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 2121 if (TargetDecl->hasAttr<LeafAttr>()) 2122 FuncAttrs.addAttribute(llvm::Attribute::NoCallback); 2123 2124 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 2125 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 2126 Optional<unsigned> NumElemsParam; 2127 if (AllocSize->getNumElemsParam().isValid()) 2128 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 2129 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 2130 NumElemsParam); 2131 } 2132 2133 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2134 if (getLangOpts().OpenCLVersion <= 120) { 2135 // OpenCL v1.2 Work groups are always uniform 2136 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2137 } else { 2138 // OpenCL v2.0 Work groups may be whether uniform or not. 2139 // '-cl-uniform-work-group-size' compile option gets a hint 2140 // to the compiler that the global work-size be a multiple of 2141 // the work-group size specified to clEnqueueNDRangeKernel 2142 // (i.e. work groups are uniform). 2143 FuncAttrs.addAttribute("uniform-work-group-size", 2144 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 2145 } 2146 } 2147 } 2148 2149 // Attach "no-builtins" attributes to: 2150 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2151 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2152 // The attributes can come from: 2153 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2154 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2155 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2156 2157 // Collect function IR attributes based on global settiings. 2158 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2159 2160 // Override some default IR attributes based on declaration-specific 2161 // information. 2162 if (TargetDecl) { 2163 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2164 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2165 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2166 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2167 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2168 FuncAttrs.removeAttribute("split-stack"); 2169 2170 // Add NonLazyBind attribute to function declarations when -fno-plt 2171 // is used. 2172 // FIXME: what if we just haven't processed the function definition 2173 // yet, or if it's an external definition like C99 inline? 2174 if (CodeGenOpts.NoPLT) { 2175 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2176 if (!Fn->isDefined() && !AttrOnCallSite) { 2177 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2178 } 2179 } 2180 } 2181 } 2182 2183 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage 2184 // functions with -funique-internal-linkage-names. 2185 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) { 2186 if (isa<FunctionDecl>(TargetDecl)) { 2187 if (this->getFunctionLinkage(CalleeInfo.getCalleeDecl()) == 2188 llvm::GlobalValue::InternalLinkage) 2189 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy", 2190 "selected"); 2191 } 2192 } 2193 2194 // Collect non-call-site function IR attributes from declaration-specific 2195 // information. 2196 if (!AttrOnCallSite) { 2197 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2198 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2199 2200 // Whether tail calls are enabled. 2201 auto shouldDisableTailCalls = [&] { 2202 // Should this be honored in getDefaultFunctionAttributes? 2203 if (CodeGenOpts.DisableTailCalls) 2204 return true; 2205 2206 if (!TargetDecl) 2207 return false; 2208 2209 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2210 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2211 return true; 2212 2213 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2214 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2215 if (!BD->doesNotEscape()) 2216 return true; 2217 } 2218 2219 return false; 2220 }; 2221 if (shouldDisableTailCalls()) 2222 FuncAttrs.addAttribute("disable-tail-calls", "true"); 2223 2224 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2225 // handles these separately to set them based on the global defaults. 2226 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2227 } 2228 2229 // Collect attributes from arguments and return values. 2230 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2231 2232 QualType RetTy = FI.getReturnType(); 2233 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2234 const llvm::DataLayout &DL = getDataLayout(); 2235 2236 // C++ explicitly makes returning undefined values UB. C's rule only applies 2237 // to used values, so we never mark them noundef for now. 2238 bool HasStrictReturn = getLangOpts().CPlusPlus; 2239 if (TargetDecl && HasStrictReturn) { 2240 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) 2241 HasStrictReturn &= !FDecl->isExternC(); 2242 else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) 2243 // Function pointer 2244 HasStrictReturn &= !VDecl->isExternC(); 2245 } 2246 2247 // We don't want to be too aggressive with the return checking, unless 2248 // it's explicit in the code opts or we're using an appropriate sanitizer. 2249 // Try to respect what the programmer intended. 2250 HasStrictReturn &= getCodeGenOpts().StrictReturn || 2251 !MayDropFunctionReturn(getContext(), RetTy) || 2252 getLangOpts().Sanitize.has(SanitizerKind::Memory) || 2253 getLangOpts().Sanitize.has(SanitizerKind::Return); 2254 2255 // Determine if the return type could be partially undef 2256 if (!CodeGenOpts.DisableNoundefAttrs && HasStrictReturn) { 2257 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect && 2258 DetermineNoUndef(RetTy, getTypes(), DL, RetAI)) 2259 RetAttrs.addAttribute(llvm::Attribute::NoUndef); 2260 } 2261 2262 switch (RetAI.getKind()) { 2263 case ABIArgInfo::Extend: 2264 if (RetAI.isSignExt()) 2265 RetAttrs.addAttribute(llvm::Attribute::SExt); 2266 else 2267 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2268 LLVM_FALLTHROUGH; 2269 case ABIArgInfo::Direct: 2270 if (RetAI.getInReg()) 2271 RetAttrs.addAttribute(llvm::Attribute::InReg); 2272 break; 2273 case ABIArgInfo::Ignore: 2274 break; 2275 2276 case ABIArgInfo::InAlloca: 2277 case ABIArgInfo::Indirect: { 2278 // inalloca and sret disable readnone and readonly 2279 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2280 .removeAttribute(llvm::Attribute::ReadNone); 2281 break; 2282 } 2283 2284 case ABIArgInfo::CoerceAndExpand: 2285 break; 2286 2287 case ABIArgInfo::Expand: 2288 case ABIArgInfo::IndirectAliased: 2289 llvm_unreachable("Invalid ABI kind for return argument"); 2290 } 2291 2292 if (!IsThunk) { 2293 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2294 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2295 QualType PTy = RefTy->getPointeeType(); 2296 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2297 RetAttrs.addDereferenceableAttr( 2298 getMinimumObjectSize(PTy).getQuantity()); 2299 if (getContext().getTargetAddressSpace(PTy) == 0 && 2300 !CodeGenOpts.NullPointerIsValid) 2301 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2302 if (PTy->isObjectType()) { 2303 llvm::Align Alignment = 2304 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2305 RetAttrs.addAlignmentAttr(Alignment); 2306 } 2307 } 2308 } 2309 2310 bool hasUsedSRet = false; 2311 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2312 2313 // Attach attributes to sret. 2314 if (IRFunctionArgs.hasSRetArg()) { 2315 llvm::AttrBuilder SRETAttrs(getLLVMContext()); 2316 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2317 hasUsedSRet = true; 2318 if (RetAI.getInReg()) 2319 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2320 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2321 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2322 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2323 } 2324 2325 // Attach attributes to inalloca argument. 2326 if (IRFunctionArgs.hasInallocaArg()) { 2327 llvm::AttrBuilder Attrs(getLLVMContext()); 2328 Attrs.addInAllocaAttr(FI.getArgStruct()); 2329 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2330 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2331 } 2332 2333 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument, 2334 // unless this is a thunk function. 2335 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2336 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2337 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) { 2338 auto IRArgs = IRFunctionArgs.getIRArgs(0); 2339 2340 assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2341 2342 llvm::AttrBuilder Attrs(getLLVMContext()); 2343 2344 QualType ThisTy = 2345 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType(); 2346 2347 if (!CodeGenOpts.NullPointerIsValid && 2348 getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2349 Attrs.addAttribute(llvm::Attribute::NonNull); 2350 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity()); 2351 } else { 2352 // FIXME dereferenceable should be correct here, regardless of 2353 // NullPointerIsValid. However, dereferenceable currently does not always 2354 // respect NullPointerIsValid and may imply nonnull and break the program. 2355 // See https://reviews.llvm.org/D66618 for discussions. 2356 Attrs.addDereferenceableOrNullAttr( 2357 getMinimumObjectSize( 2358 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2359 .getQuantity()); 2360 } 2361 2362 llvm::Align Alignment = 2363 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr, 2364 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true) 2365 .getAsAlign(); 2366 Attrs.addAlignmentAttr(Alignment); 2367 2368 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2369 } 2370 2371 unsigned ArgNo = 0; 2372 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2373 E = FI.arg_end(); 2374 I != E; ++I, ++ArgNo) { 2375 QualType ParamType = I->type; 2376 const ABIArgInfo &AI = I->info; 2377 llvm::AttrBuilder Attrs(getLLVMContext()); 2378 2379 // Add attribute for padding argument, if necessary. 2380 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2381 if (AI.getPaddingInReg()) { 2382 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2383 llvm::AttributeSet::get( 2384 getLLVMContext(), 2385 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg)); 2386 } 2387 } 2388 2389 // Decide whether the argument we're handling could be partially undef 2390 if (!CodeGenOpts.DisableNoundefAttrs && 2391 DetermineNoUndef(ParamType, getTypes(), DL, AI)) { 2392 Attrs.addAttribute(llvm::Attribute::NoUndef); 2393 } 2394 2395 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2396 // have the corresponding parameter variable. It doesn't make 2397 // sense to do it here because parameters are so messed up. 2398 switch (AI.getKind()) { 2399 case ABIArgInfo::Extend: 2400 if (AI.isSignExt()) 2401 Attrs.addAttribute(llvm::Attribute::SExt); 2402 else 2403 Attrs.addAttribute(llvm::Attribute::ZExt); 2404 LLVM_FALLTHROUGH; 2405 case ABIArgInfo::Direct: 2406 if (ArgNo == 0 && FI.isChainCall()) 2407 Attrs.addAttribute(llvm::Attribute::Nest); 2408 else if (AI.getInReg()) 2409 Attrs.addAttribute(llvm::Attribute::InReg); 2410 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign())); 2411 break; 2412 2413 case ABIArgInfo::Indirect: { 2414 if (AI.getInReg()) 2415 Attrs.addAttribute(llvm::Attribute::InReg); 2416 2417 if (AI.getIndirectByVal()) 2418 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2419 2420 auto *Decl = ParamType->getAsRecordDecl(); 2421 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2422 Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs) 2423 // When calling the function, the pointer passed in will be the only 2424 // reference to the underlying object. Mark it accordingly. 2425 Attrs.addAttribute(llvm::Attribute::NoAlias); 2426 2427 // TODO: We could add the byref attribute if not byval, but it would 2428 // require updating many testcases. 2429 2430 CharUnits Align = AI.getIndirectAlign(); 2431 2432 // In a byval argument, it is important that the required 2433 // alignment of the type is honored, as LLVM might be creating a 2434 // *new* stack object, and needs to know what alignment to give 2435 // it. (Sometimes it can deduce a sensible alignment on its own, 2436 // but not if clang decides it must emit a packed struct, or the 2437 // user specifies increased alignment requirements.) 2438 // 2439 // This is different from indirect *not* byval, where the object 2440 // exists already, and the align attribute is purely 2441 // informative. 2442 assert(!Align.isZero()); 2443 2444 // For now, only add this when we have a byval argument. 2445 // TODO: be less lazy about updating test cases. 2446 if (AI.getIndirectByVal()) 2447 Attrs.addAlignmentAttr(Align.getQuantity()); 2448 2449 // byval disables readnone and readonly. 2450 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2451 .removeAttribute(llvm::Attribute::ReadNone); 2452 2453 break; 2454 } 2455 case ABIArgInfo::IndirectAliased: { 2456 CharUnits Align = AI.getIndirectAlign(); 2457 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2458 Attrs.addAlignmentAttr(Align.getQuantity()); 2459 break; 2460 } 2461 case ABIArgInfo::Ignore: 2462 case ABIArgInfo::Expand: 2463 case ABIArgInfo::CoerceAndExpand: 2464 break; 2465 2466 case ABIArgInfo::InAlloca: 2467 // inalloca disables readnone and readonly. 2468 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2469 .removeAttribute(llvm::Attribute::ReadNone); 2470 continue; 2471 } 2472 2473 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2474 QualType PTy = RefTy->getPointeeType(); 2475 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2476 Attrs.addDereferenceableAttr( 2477 getMinimumObjectSize(PTy).getQuantity()); 2478 if (getContext().getTargetAddressSpace(PTy) == 0 && 2479 !CodeGenOpts.NullPointerIsValid) 2480 Attrs.addAttribute(llvm::Attribute::NonNull); 2481 if (PTy->isObjectType()) { 2482 llvm::Align Alignment = 2483 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2484 Attrs.addAlignmentAttr(Alignment); 2485 } 2486 } 2487 2488 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types: 2489 // > For arguments to a __kernel function declared to be a pointer to a 2490 // > data type, the OpenCL compiler can assume that the pointee is always 2491 // > appropriately aligned as required by the data type. 2492 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() && 2493 ParamType->isPointerType()) { 2494 QualType PTy = ParamType->getPointeeType(); 2495 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2496 llvm::Align Alignment = 2497 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2498 Attrs.addAlignmentAttr(Alignment); 2499 } 2500 } 2501 2502 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2503 case ParameterABI::Ordinary: 2504 break; 2505 2506 case ParameterABI::SwiftIndirectResult: { 2507 // Add 'sret' if we haven't already used it for something, but 2508 // only if the result is void. 2509 if (!hasUsedSRet && RetTy->isVoidType()) { 2510 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2511 hasUsedSRet = true; 2512 } 2513 2514 // Add 'noalias' in either case. 2515 Attrs.addAttribute(llvm::Attribute::NoAlias); 2516 2517 // Add 'dereferenceable' and 'alignment'. 2518 auto PTy = ParamType->getPointeeType(); 2519 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2520 auto info = getContext().getTypeInfoInChars(PTy); 2521 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2522 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2523 } 2524 break; 2525 } 2526 2527 case ParameterABI::SwiftErrorResult: 2528 Attrs.addAttribute(llvm::Attribute::SwiftError); 2529 break; 2530 2531 case ParameterABI::SwiftContext: 2532 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2533 break; 2534 2535 case ParameterABI::SwiftAsyncContext: 2536 Attrs.addAttribute(llvm::Attribute::SwiftAsync); 2537 break; 2538 } 2539 2540 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2541 Attrs.addAttribute(llvm::Attribute::NoCapture); 2542 2543 if (Attrs.hasAttributes()) { 2544 unsigned FirstIRArg, NumIRArgs; 2545 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2546 for (unsigned i = 0; i < NumIRArgs; i++) 2547 ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes( 2548 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs)); 2549 } 2550 } 2551 assert(ArgNo == FI.arg_size()); 2552 2553 AttrList = llvm::AttributeList::get( 2554 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2555 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2556 } 2557 2558 /// An argument came in as a promoted argument; demote it back to its 2559 /// declared type. 2560 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2561 const VarDecl *var, 2562 llvm::Value *value) { 2563 llvm::Type *varType = CGF.ConvertType(var->getType()); 2564 2565 // This can happen with promotions that actually don't change the 2566 // underlying type, like the enum promotions. 2567 if (value->getType() == varType) return value; 2568 2569 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2570 && "unexpected promotion type"); 2571 2572 if (isa<llvm::IntegerType>(varType)) 2573 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2574 2575 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2576 } 2577 2578 /// Returns the attribute (either parameter attribute, or function 2579 /// attribute), which declares argument ArgNo to be non-null. 2580 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2581 QualType ArgType, unsigned ArgNo) { 2582 // FIXME: __attribute__((nonnull)) can also be applied to: 2583 // - references to pointers, where the pointee is known to be 2584 // nonnull (apparently a Clang extension) 2585 // - transparent unions containing pointers 2586 // In the former case, LLVM IR cannot represent the constraint. In 2587 // the latter case, we have no guarantee that the transparent union 2588 // is in fact passed as a pointer. 2589 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2590 return nullptr; 2591 // First, check attribute on parameter itself. 2592 if (PVD) { 2593 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2594 return ParmNNAttr; 2595 } 2596 // Check function attributes. 2597 if (!FD) 2598 return nullptr; 2599 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2600 if (NNAttr->isNonNull(ArgNo)) 2601 return NNAttr; 2602 } 2603 return nullptr; 2604 } 2605 2606 namespace { 2607 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2608 Address Temp; 2609 Address Arg; 2610 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2611 void Emit(CodeGenFunction &CGF, Flags flags) override { 2612 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2613 CGF.Builder.CreateStore(errorValue, Arg); 2614 } 2615 }; 2616 } 2617 2618 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2619 llvm::Function *Fn, 2620 const FunctionArgList &Args) { 2621 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2622 // Naked functions don't have prologues. 2623 return; 2624 2625 // If this is an implicit-return-zero function, go ahead and 2626 // initialize the return value. TODO: it might be nice to have 2627 // a more general mechanism for this that didn't require synthesized 2628 // return statements. 2629 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2630 if (FD->hasImplicitReturnZero()) { 2631 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2632 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2633 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2634 Builder.CreateStore(Zero, ReturnValue); 2635 } 2636 } 2637 2638 // FIXME: We no longer need the types from FunctionArgList; lift up and 2639 // simplify. 2640 2641 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2642 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2643 2644 // If we're using inalloca, all the memory arguments are GEPs off of the last 2645 // parameter, which is a pointer to the complete memory area. 2646 Address ArgStruct = Address::invalid(); 2647 if (IRFunctionArgs.hasInallocaArg()) { 2648 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2649 FI.getArgStructAlignment()); 2650 2651 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2652 } 2653 2654 // Name the struct return parameter. 2655 if (IRFunctionArgs.hasSRetArg()) { 2656 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2657 AI->setName("agg.result"); 2658 AI->addAttr(llvm::Attribute::NoAlias); 2659 } 2660 2661 // Track if we received the parameter as a pointer (indirect, byval, or 2662 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2663 // into a local alloca for us. 2664 SmallVector<ParamValue, 16> ArgVals; 2665 ArgVals.reserve(Args.size()); 2666 2667 // Create a pointer value for every parameter declaration. This usually 2668 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2669 // any cleanups or do anything that might unwind. We do that separately, so 2670 // we can push the cleanups in the correct order for the ABI. 2671 assert(FI.arg_size() == Args.size() && 2672 "Mismatch between function signature & arguments."); 2673 unsigned ArgNo = 0; 2674 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2675 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2676 i != e; ++i, ++info_it, ++ArgNo) { 2677 const VarDecl *Arg = *i; 2678 const ABIArgInfo &ArgI = info_it->info; 2679 2680 bool isPromoted = 2681 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2682 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2683 // the parameter is promoted. In this case we convert to 2684 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2685 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2686 assert(hasScalarEvaluationKind(Ty) == 2687 hasScalarEvaluationKind(Arg->getType())); 2688 2689 unsigned FirstIRArg, NumIRArgs; 2690 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2691 2692 switch (ArgI.getKind()) { 2693 case ABIArgInfo::InAlloca: { 2694 assert(NumIRArgs == 0); 2695 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2696 Address V = 2697 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2698 if (ArgI.getInAllocaIndirect()) 2699 V = Address(Builder.CreateLoad(V), 2700 getContext().getTypeAlignInChars(Ty)); 2701 ArgVals.push_back(ParamValue::forIndirect(V)); 2702 break; 2703 } 2704 2705 case ABIArgInfo::Indirect: 2706 case ABIArgInfo::IndirectAliased: { 2707 assert(NumIRArgs == 1); 2708 Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty), 2709 ArgI.getIndirectAlign()); 2710 2711 if (!hasScalarEvaluationKind(Ty)) { 2712 // Aggregates and complex variables are accessed by reference. All we 2713 // need to do is realign the value, if requested. Also, if the address 2714 // may be aliased, copy it to ensure that the parameter variable is 2715 // mutable and has a unique adress, as C requires. 2716 Address V = ParamAddr; 2717 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 2718 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2719 2720 // Copy from the incoming argument pointer to the temporary with the 2721 // appropriate alignment. 2722 // 2723 // FIXME: We should have a common utility for generating an aggregate 2724 // copy. 2725 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2726 Builder.CreateMemCpy( 2727 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 2728 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 2729 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 2730 V = AlignedTemp; 2731 } 2732 ArgVals.push_back(ParamValue::forIndirect(V)); 2733 } else { 2734 // Load scalar value from indirect argument. 2735 llvm::Value *V = 2736 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2737 2738 if (isPromoted) 2739 V = emitArgumentDemotion(*this, Arg, V); 2740 ArgVals.push_back(ParamValue::forDirect(V)); 2741 } 2742 break; 2743 } 2744 2745 case ABIArgInfo::Extend: 2746 case ABIArgInfo::Direct: { 2747 auto AI = Fn->getArg(FirstIRArg); 2748 llvm::Type *LTy = ConvertType(Arg->getType()); 2749 2750 // Prepare parameter attributes. So far, only attributes for pointer 2751 // parameters are prepared. See 2752 // http://llvm.org/docs/LangRef.html#paramattrs. 2753 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 2754 ArgI.getCoerceToType()->isPointerTy()) { 2755 assert(NumIRArgs == 1); 2756 2757 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2758 // Set `nonnull` attribute if any. 2759 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2760 PVD->getFunctionScopeIndex()) && 2761 !CGM.getCodeGenOpts().NullPointerIsValid) 2762 AI->addAttr(llvm::Attribute::NonNull); 2763 2764 QualType OTy = PVD->getOriginalType(); 2765 if (const auto *ArrTy = 2766 getContext().getAsConstantArrayType(OTy)) { 2767 // A C99 array parameter declaration with the static keyword also 2768 // indicates dereferenceability, and if the size is constant we can 2769 // use the dereferenceable attribute (which requires the size in 2770 // bytes). 2771 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2772 QualType ETy = ArrTy->getElementType(); 2773 llvm::Align Alignment = 2774 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2775 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 2776 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2777 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2778 ArrSize) { 2779 llvm::AttrBuilder Attrs(getLLVMContext()); 2780 Attrs.addDereferenceableAttr( 2781 getContext().getTypeSizeInChars(ETy).getQuantity() * 2782 ArrSize); 2783 AI->addAttrs(Attrs); 2784 } else if (getContext().getTargetInfo().getNullPointerValue( 2785 ETy.getAddressSpace()) == 0 && 2786 !CGM.getCodeGenOpts().NullPointerIsValid) { 2787 AI->addAttr(llvm::Attribute::NonNull); 2788 } 2789 } 2790 } else if (const auto *ArrTy = 2791 getContext().getAsVariableArrayType(OTy)) { 2792 // For C99 VLAs with the static keyword, we don't know the size so 2793 // we can't use the dereferenceable attribute, but in addrspace(0) 2794 // we know that it must be nonnull. 2795 if (ArrTy->getSizeModifier() == VariableArrayType::Static) { 2796 QualType ETy = ArrTy->getElementType(); 2797 llvm::Align Alignment = 2798 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2799 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 2800 if (!getContext().getTargetAddressSpace(ETy) && 2801 !CGM.getCodeGenOpts().NullPointerIsValid) 2802 AI->addAttr(llvm::Attribute::NonNull); 2803 } 2804 } 2805 2806 // Set `align` attribute if any. 2807 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2808 if (!AVAttr) 2809 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2810 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2811 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2812 // If alignment-assumption sanitizer is enabled, we do *not* add 2813 // alignment attribute here, but emit normal alignment assumption, 2814 // so the UBSAN check could function. 2815 llvm::ConstantInt *AlignmentCI = 2816 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 2817 uint64_t AlignmentInt = 2818 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 2819 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 2820 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 2821 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr( 2822 llvm::Align(AlignmentInt))); 2823 } 2824 } 2825 } 2826 2827 // Set 'noalias' if an argument type has the `restrict` qualifier. 2828 if (Arg->getType().isRestrictQualified()) 2829 AI->addAttr(llvm::Attribute::NoAlias); 2830 } 2831 2832 // Prepare the argument value. If we have the trivial case, handle it 2833 // with no muss and fuss. 2834 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2835 ArgI.getCoerceToType() == ConvertType(Ty) && 2836 ArgI.getDirectOffset() == 0) { 2837 assert(NumIRArgs == 1); 2838 2839 // LLVM expects swifterror parameters to be used in very restricted 2840 // ways. Copy the value into a less-restricted temporary. 2841 llvm::Value *V = AI; 2842 if (FI.getExtParameterInfo(ArgNo).getABI() 2843 == ParameterABI::SwiftErrorResult) { 2844 QualType pointeeTy = Ty->getPointeeType(); 2845 assert(pointeeTy->isPointerType()); 2846 Address temp = 2847 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2848 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2849 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2850 Builder.CreateStore(incomingErrorValue, temp); 2851 V = temp.getPointer(); 2852 2853 // Push a cleanup to copy the value back at the end of the function. 2854 // The convention does not guarantee that the value will be written 2855 // back if the function exits with an unwind exception. 2856 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2857 } 2858 2859 // Ensure the argument is the correct type. 2860 if (V->getType() != ArgI.getCoerceToType()) 2861 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2862 2863 if (isPromoted) 2864 V = emitArgumentDemotion(*this, Arg, V); 2865 2866 // Because of merging of function types from multiple decls it is 2867 // possible for the type of an argument to not match the corresponding 2868 // type in the function type. Since we are codegening the callee 2869 // in here, add a cast to the argument type. 2870 llvm::Type *LTy = ConvertType(Arg->getType()); 2871 if (V->getType() != LTy) 2872 V = Builder.CreateBitCast(V, LTy); 2873 2874 ArgVals.push_back(ParamValue::forDirect(V)); 2875 break; 2876 } 2877 2878 // VLST arguments are coerced to VLATs at the function boundary for 2879 // ABI consistency. If this is a VLST that was coerced to 2880 // a VLAT at the function boundary and the types match up, use 2881 // llvm.experimental.vector.extract to convert back to the original 2882 // VLST. 2883 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) { 2884 llvm::Value *Coerced = Fn->getArg(FirstIRArg); 2885 if (auto *VecTyFrom = 2886 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) { 2887 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 2888 // vector, bitcast the source and use a vector extract. 2889 auto PredType = 2890 llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2891 if (VecTyFrom == PredType && 2892 VecTyTo->getElementType() == Builder.getInt8Ty()) { 2893 VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2894 Coerced = Builder.CreateBitCast(Coerced, VecTyFrom); 2895 } 2896 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) { 2897 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 2898 2899 assert(NumIRArgs == 1); 2900 Coerced->setName(Arg->getName() + ".coerce"); 2901 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector( 2902 VecTyTo, Coerced, Zero, "castFixedSve"))); 2903 break; 2904 } 2905 } 2906 } 2907 2908 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2909 Arg->getName()); 2910 2911 // Pointer to store into. 2912 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2913 2914 // Fast-isel and the optimizer generally like scalar values better than 2915 // FCAs, so we flatten them if this is safe to do for this argument. 2916 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2917 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2918 STy->getNumElements() > 1) { 2919 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2920 llvm::Type *DstTy = Ptr.getElementType(); 2921 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2922 2923 Address AddrToStoreInto = Address::invalid(); 2924 if (SrcSize <= DstSize) { 2925 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2926 } else { 2927 AddrToStoreInto = 2928 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2929 } 2930 2931 assert(STy->getNumElements() == NumIRArgs); 2932 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2933 auto AI = Fn->getArg(FirstIRArg + i); 2934 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2935 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2936 Builder.CreateStore(AI, EltPtr); 2937 } 2938 2939 if (SrcSize > DstSize) { 2940 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2941 } 2942 2943 } else { 2944 // Simple case, just do a coerced store of the argument into the alloca. 2945 assert(NumIRArgs == 1); 2946 auto AI = Fn->getArg(FirstIRArg); 2947 AI->setName(Arg->getName() + ".coerce"); 2948 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 2949 } 2950 2951 // Match to what EmitParmDecl is expecting for this type. 2952 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2953 llvm::Value *V = 2954 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2955 if (isPromoted) 2956 V = emitArgumentDemotion(*this, Arg, V); 2957 ArgVals.push_back(ParamValue::forDirect(V)); 2958 } else { 2959 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2960 } 2961 break; 2962 } 2963 2964 case ABIArgInfo::CoerceAndExpand: { 2965 // Reconstruct into a temporary. 2966 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2967 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2968 2969 auto coercionType = ArgI.getCoerceAndExpandType(); 2970 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2971 2972 unsigned argIndex = FirstIRArg; 2973 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2974 llvm::Type *eltType = coercionType->getElementType(i); 2975 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2976 continue; 2977 2978 auto eltAddr = Builder.CreateStructGEP(alloca, i); 2979 auto elt = Fn->getArg(argIndex++); 2980 Builder.CreateStore(elt, eltAddr); 2981 } 2982 assert(argIndex == FirstIRArg + NumIRArgs); 2983 break; 2984 } 2985 2986 case ABIArgInfo::Expand: { 2987 // If this structure was expanded into multiple arguments then 2988 // we need to create a temporary and reconstruct it from the 2989 // arguments. 2990 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2991 LValue LV = MakeAddrLValue(Alloca, Ty); 2992 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2993 2994 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 2995 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2996 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 2997 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2998 auto AI = Fn->getArg(FirstIRArg + i); 2999 AI->setName(Arg->getName() + "." + Twine(i)); 3000 } 3001 break; 3002 } 3003 3004 case ABIArgInfo::Ignore: 3005 assert(NumIRArgs == 0); 3006 // Initialize the local variable appropriately. 3007 if (!hasScalarEvaluationKind(Ty)) { 3008 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 3009 } else { 3010 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 3011 ArgVals.push_back(ParamValue::forDirect(U)); 3012 } 3013 break; 3014 } 3015 } 3016 3017 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3018 for (int I = Args.size() - 1; I >= 0; --I) 3019 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3020 } else { 3021 for (unsigned I = 0, E = Args.size(); I != E; ++I) 3022 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3023 } 3024 } 3025 3026 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 3027 while (insn->use_empty()) { 3028 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 3029 if (!bitcast) return; 3030 3031 // This is "safe" because we would have used a ConstantExpr otherwise. 3032 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 3033 bitcast->eraseFromParent(); 3034 } 3035 } 3036 3037 /// Try to emit a fused autorelease of a return result. 3038 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 3039 llvm::Value *result) { 3040 // We must be immediately followed the cast. 3041 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 3042 if (BB->empty()) return nullptr; 3043 if (&BB->back() != result) return nullptr; 3044 3045 llvm::Type *resultType = result->getType(); 3046 3047 // result is in a BasicBlock and is therefore an Instruction. 3048 llvm::Instruction *generator = cast<llvm::Instruction>(result); 3049 3050 SmallVector<llvm::Instruction *, 4> InstsToKill; 3051 3052 // Look for: 3053 // %generator = bitcast %type1* %generator2 to %type2* 3054 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 3055 // We would have emitted this as a constant if the operand weren't 3056 // an Instruction. 3057 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 3058 3059 // Require the generator to be immediately followed by the cast. 3060 if (generator->getNextNode() != bitcast) 3061 return nullptr; 3062 3063 InstsToKill.push_back(bitcast); 3064 } 3065 3066 // Look for: 3067 // %generator = call i8* @objc_retain(i8* %originalResult) 3068 // or 3069 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 3070 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 3071 if (!call) return nullptr; 3072 3073 bool doRetainAutorelease; 3074 3075 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 3076 doRetainAutorelease = true; 3077 } else if (call->getCalledOperand() == 3078 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 3079 doRetainAutorelease = false; 3080 3081 // If we emitted an assembly marker for this call (and the 3082 // ARCEntrypoints field should have been set if so), go looking 3083 // for that call. If we can't find it, we can't do this 3084 // optimization. But it should always be the immediately previous 3085 // instruction, unless we needed bitcasts around the call. 3086 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 3087 llvm::Instruction *prev = call->getPrevNode(); 3088 assert(prev); 3089 if (isa<llvm::BitCastInst>(prev)) { 3090 prev = prev->getPrevNode(); 3091 assert(prev); 3092 } 3093 assert(isa<llvm::CallInst>(prev)); 3094 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 3095 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 3096 InstsToKill.push_back(prev); 3097 } 3098 } else { 3099 return nullptr; 3100 } 3101 3102 result = call->getArgOperand(0); 3103 InstsToKill.push_back(call); 3104 3105 // Keep killing bitcasts, for sanity. Note that we no longer care 3106 // about precise ordering as long as there's exactly one use. 3107 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 3108 if (!bitcast->hasOneUse()) break; 3109 InstsToKill.push_back(bitcast); 3110 result = bitcast->getOperand(0); 3111 } 3112 3113 // Delete all the unnecessary instructions, from latest to earliest. 3114 for (auto *I : InstsToKill) 3115 I->eraseFromParent(); 3116 3117 // Do the fused retain/autorelease if we were asked to. 3118 if (doRetainAutorelease) 3119 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 3120 3121 // Cast back to the result type. 3122 return CGF.Builder.CreateBitCast(result, resultType); 3123 } 3124 3125 /// If this is a +1 of the value of an immutable 'self', remove it. 3126 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 3127 llvm::Value *result) { 3128 // This is only applicable to a method with an immutable 'self'. 3129 const ObjCMethodDecl *method = 3130 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 3131 if (!method) return nullptr; 3132 const VarDecl *self = method->getSelfDecl(); 3133 if (!self->getType().isConstQualified()) return nullptr; 3134 3135 // Look for a retain call. 3136 llvm::CallInst *retainCall = 3137 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 3138 if (!retainCall || retainCall->getCalledOperand() != 3139 CGF.CGM.getObjCEntrypoints().objc_retain) 3140 return nullptr; 3141 3142 // Look for an ordinary load of 'self'. 3143 llvm::Value *retainedValue = retainCall->getArgOperand(0); 3144 llvm::LoadInst *load = 3145 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 3146 if (!load || load->isAtomic() || load->isVolatile() || 3147 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 3148 return nullptr; 3149 3150 // Okay! Burn it all down. This relies for correctness on the 3151 // assumption that the retain is emitted as part of the return and 3152 // that thereafter everything is used "linearly". 3153 llvm::Type *resultType = result->getType(); 3154 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 3155 assert(retainCall->use_empty()); 3156 retainCall->eraseFromParent(); 3157 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 3158 3159 return CGF.Builder.CreateBitCast(load, resultType); 3160 } 3161 3162 /// Emit an ARC autorelease of the result of a function. 3163 /// 3164 /// \return the value to actually return from the function 3165 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 3166 llvm::Value *result) { 3167 // If we're returning 'self', kill the initial retain. This is a 3168 // heuristic attempt to "encourage correctness" in the really unfortunate 3169 // case where we have a return of self during a dealloc and we desperately 3170 // need to avoid the possible autorelease. 3171 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 3172 return self; 3173 3174 // At -O0, try to emit a fused retain/autorelease. 3175 if (CGF.shouldUseFusedARCCalls()) 3176 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 3177 return fused; 3178 3179 return CGF.EmitARCAutoreleaseReturnValue(result); 3180 } 3181 3182 /// Heuristically search for a dominating store to the return-value slot. 3183 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 3184 // Check if a User is a store which pointerOperand is the ReturnValue. 3185 // We are looking for stores to the ReturnValue, not for stores of the 3186 // ReturnValue to some other location. 3187 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 3188 auto *SI = dyn_cast<llvm::StoreInst>(U); 3189 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 3190 return nullptr; 3191 // These aren't actually possible for non-coerced returns, and we 3192 // only care about non-coerced returns on this code path. 3193 assert(!SI->isAtomic() && !SI->isVolatile()); 3194 return SI; 3195 }; 3196 // If there are multiple uses of the return-value slot, just check 3197 // for something immediately preceding the IP. Sometimes this can 3198 // happen with how we generate implicit-returns; it can also happen 3199 // with noreturn cleanups. 3200 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 3201 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3202 if (IP->empty()) return nullptr; 3203 llvm::Instruction *I = &IP->back(); 3204 3205 // Skip lifetime markers 3206 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 3207 IE = IP->rend(); 3208 II != IE; ++II) { 3209 if (llvm::IntrinsicInst *Intrinsic = 3210 dyn_cast<llvm::IntrinsicInst>(&*II)) { 3211 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 3212 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 3213 ++II; 3214 if (II == IE) 3215 break; 3216 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 3217 continue; 3218 } 3219 } 3220 I = &*II; 3221 break; 3222 } 3223 3224 return GetStoreIfValid(I); 3225 } 3226 3227 llvm::StoreInst *store = 3228 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 3229 if (!store) return nullptr; 3230 3231 // Now do a first-and-dirty dominance check: just walk up the 3232 // single-predecessors chain from the current insertion point. 3233 llvm::BasicBlock *StoreBB = store->getParent(); 3234 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3235 while (IP != StoreBB) { 3236 if (!(IP = IP->getSinglePredecessor())) 3237 return nullptr; 3238 } 3239 3240 // Okay, the store's basic block dominates the insertion point; we 3241 // can do our thing. 3242 return store; 3243 } 3244 3245 // Helper functions for EmitCMSEClearRecord 3246 3247 // Set the bits corresponding to a field having width `BitWidth` and located at 3248 // offset `BitOffset` (from the least significant bit) within a storage unit of 3249 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 3250 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 3251 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 3252 int BitWidth, int CharWidth) { 3253 assert(CharWidth <= 64); 3254 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 3255 3256 int Pos = 0; 3257 if (BitOffset >= CharWidth) { 3258 Pos += BitOffset / CharWidth; 3259 BitOffset = BitOffset % CharWidth; 3260 } 3261 3262 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 3263 if (BitOffset + BitWidth >= CharWidth) { 3264 Bits[Pos++] |= (Used << BitOffset) & Used; 3265 BitWidth -= CharWidth - BitOffset; 3266 BitOffset = 0; 3267 } 3268 3269 while (BitWidth >= CharWidth) { 3270 Bits[Pos++] = Used; 3271 BitWidth -= CharWidth; 3272 } 3273 3274 if (BitWidth > 0) 3275 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3276 } 3277 3278 // Set the bits corresponding to a field having width `BitWidth` and located at 3279 // offset `BitOffset` (from the least significant bit) within a storage unit of 3280 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3281 // `Bits` corresponds to one target byte. Use target endian layout. 3282 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3283 int StorageSize, int BitOffset, int BitWidth, 3284 int CharWidth, bool BigEndian) { 3285 3286 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3287 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3288 3289 if (BigEndian) 3290 std::reverse(TmpBits.begin(), TmpBits.end()); 3291 3292 for (uint64_t V : TmpBits) 3293 Bits[StorageOffset++] |= V; 3294 } 3295 3296 static void setUsedBits(CodeGenModule &, QualType, int, 3297 SmallVectorImpl<uint64_t> &); 3298 3299 // Set the bits in `Bits`, which correspond to the value representations of 3300 // the actual members of the record type `RTy`. Note that this function does 3301 // not handle base classes, virtual tables, etc, since they cannot happen in 3302 // CMSE function arguments or return. The bit mask corresponds to the target 3303 // memory layout, i.e. it's endian dependent. 3304 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3305 SmallVectorImpl<uint64_t> &Bits) { 3306 ASTContext &Context = CGM.getContext(); 3307 int CharWidth = Context.getCharWidth(); 3308 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3309 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3310 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3311 3312 int Idx = 0; 3313 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3314 const FieldDecl *F = *I; 3315 3316 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3317 F->getType()->isIncompleteArrayType()) 3318 continue; 3319 3320 if (F->isBitField()) { 3321 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3322 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3323 BFI.StorageSize / CharWidth, BFI.Offset, 3324 BFI.Size, CharWidth, 3325 CGM.getDataLayout().isBigEndian()); 3326 continue; 3327 } 3328 3329 setUsedBits(CGM, F->getType(), 3330 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3331 } 3332 } 3333 3334 // Set the bits in `Bits`, which correspond to the value representations of 3335 // the elements of an array type `ATy`. 3336 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3337 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3338 const ASTContext &Context = CGM.getContext(); 3339 3340 QualType ETy = Context.getBaseElementType(ATy); 3341 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3342 SmallVector<uint64_t, 4> TmpBits(Size); 3343 setUsedBits(CGM, ETy, 0, TmpBits); 3344 3345 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3346 auto Src = TmpBits.begin(); 3347 auto Dst = Bits.begin() + Offset + I * Size; 3348 for (int J = 0; J < Size; ++J) 3349 *Dst++ |= *Src++; 3350 } 3351 } 3352 3353 // Set the bits in `Bits`, which correspond to the value representations of 3354 // the type `QTy`. 3355 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3356 SmallVectorImpl<uint64_t> &Bits) { 3357 if (const auto *RTy = QTy->getAs<RecordType>()) 3358 return setUsedBits(CGM, RTy, Offset, Bits); 3359 3360 ASTContext &Context = CGM.getContext(); 3361 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3362 return setUsedBits(CGM, ATy, Offset, Bits); 3363 3364 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3365 if (Size <= 0) 3366 return; 3367 3368 std::fill_n(Bits.begin() + Offset, Size, 3369 (uint64_t(1) << Context.getCharWidth()) - 1); 3370 } 3371 3372 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3373 int Pos, int Size, int CharWidth, 3374 bool BigEndian) { 3375 assert(Size > 0); 3376 uint64_t Mask = 0; 3377 if (BigEndian) { 3378 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3379 ++P) 3380 Mask = (Mask << CharWidth) | *P; 3381 } else { 3382 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3383 do 3384 Mask = (Mask << CharWidth) | *--P; 3385 while (P != End); 3386 } 3387 return Mask; 3388 } 3389 3390 // Emit code to clear the bits in a record, which aren't a part of any user 3391 // declared member, when the record is a function return. 3392 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3393 llvm::IntegerType *ITy, 3394 QualType QTy) { 3395 assert(Src->getType() == ITy); 3396 assert(ITy->getScalarSizeInBits() <= 64); 3397 3398 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3399 int Size = DataLayout.getTypeStoreSize(ITy); 3400 SmallVector<uint64_t, 4> Bits(Size); 3401 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3402 3403 int CharWidth = CGM.getContext().getCharWidth(); 3404 uint64_t Mask = 3405 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3406 3407 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3408 } 3409 3410 // Emit code to clear the bits in a record, which aren't a part of any user 3411 // declared member, when the record is a function argument. 3412 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3413 llvm::ArrayType *ATy, 3414 QualType QTy) { 3415 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3416 int Size = DataLayout.getTypeStoreSize(ATy); 3417 SmallVector<uint64_t, 16> Bits(Size); 3418 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3419 3420 // Clear each element of the LLVM array. 3421 int CharWidth = CGM.getContext().getCharWidth(); 3422 int CharsPerElt = 3423 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3424 int MaskIndex = 0; 3425 llvm::Value *R = llvm::UndefValue::get(ATy); 3426 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3427 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3428 DataLayout.isBigEndian()); 3429 MaskIndex += CharsPerElt; 3430 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3431 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3432 R = Builder.CreateInsertValue(R, T1, I); 3433 } 3434 3435 return R; 3436 } 3437 3438 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3439 bool EmitRetDbgLoc, 3440 SourceLocation EndLoc) { 3441 if (FI.isNoReturn()) { 3442 // Noreturn functions don't return. 3443 EmitUnreachable(EndLoc); 3444 return; 3445 } 3446 3447 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3448 // Naked functions don't have epilogues. 3449 Builder.CreateUnreachable(); 3450 return; 3451 } 3452 3453 // Functions with no result always return void. 3454 if (!ReturnValue.isValid()) { 3455 Builder.CreateRetVoid(); 3456 return; 3457 } 3458 3459 llvm::DebugLoc RetDbgLoc; 3460 llvm::Value *RV = nullptr; 3461 QualType RetTy = FI.getReturnType(); 3462 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3463 3464 switch (RetAI.getKind()) { 3465 case ABIArgInfo::InAlloca: 3466 // Aggregrates get evaluated directly into the destination. Sometimes we 3467 // need to return the sret value in a register, though. 3468 assert(hasAggregateEvaluationKind(RetTy)); 3469 if (RetAI.getInAllocaSRet()) { 3470 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3471 --EI; 3472 llvm::Value *ArgStruct = &*EI; 3473 llvm::Value *SRet = Builder.CreateStructGEP( 3474 EI->getType()->getPointerElementType(), ArgStruct, 3475 RetAI.getInAllocaFieldIndex()); 3476 llvm::Type *Ty = 3477 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType(); 3478 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret"); 3479 } 3480 break; 3481 3482 case ABIArgInfo::Indirect: { 3483 auto AI = CurFn->arg_begin(); 3484 if (RetAI.isSRetAfterThis()) 3485 ++AI; 3486 switch (getEvaluationKind(RetTy)) { 3487 case TEK_Complex: { 3488 ComplexPairTy RT = 3489 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3490 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3491 /*isInit*/ true); 3492 break; 3493 } 3494 case TEK_Aggregate: 3495 // Do nothing; aggregrates get evaluated directly into the destination. 3496 break; 3497 case TEK_Scalar: { 3498 LValueBaseInfo BaseInfo; 3499 TBAAAccessInfo TBAAInfo; 3500 CharUnits Alignment = 3501 CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo); 3502 Address ArgAddr(&*AI, ConvertType(RetTy), Alignment); 3503 LValue ArgVal = 3504 LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo); 3505 EmitStoreOfScalar( 3506 Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true); 3507 break; 3508 } 3509 } 3510 break; 3511 } 3512 3513 case ABIArgInfo::Extend: 3514 case ABIArgInfo::Direct: 3515 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3516 RetAI.getDirectOffset() == 0) { 3517 // The internal return value temp always will have pointer-to-return-type 3518 // type, just do a load. 3519 3520 // If there is a dominating store to ReturnValue, we can elide 3521 // the load, zap the store, and usually zap the alloca. 3522 if (llvm::StoreInst *SI = 3523 findDominatingStoreToReturnValue(*this)) { 3524 // Reuse the debug location from the store unless there is 3525 // cleanup code to be emitted between the store and return 3526 // instruction. 3527 if (EmitRetDbgLoc && !AutoreleaseResult) 3528 RetDbgLoc = SI->getDebugLoc(); 3529 // Get the stored value and nuke the now-dead store. 3530 RV = SI->getValueOperand(); 3531 SI->eraseFromParent(); 3532 3533 // Otherwise, we have to do a simple load. 3534 } else { 3535 RV = Builder.CreateLoad(ReturnValue); 3536 } 3537 } else { 3538 // If the value is offset in memory, apply the offset now. 3539 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3540 3541 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3542 } 3543 3544 // In ARC, end functions that return a retainable type with a call 3545 // to objc_autoreleaseReturnValue. 3546 if (AutoreleaseResult) { 3547 #ifndef NDEBUG 3548 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3549 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3550 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3551 // CurCodeDecl or BlockInfo. 3552 QualType RT; 3553 3554 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3555 RT = FD->getReturnType(); 3556 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3557 RT = MD->getReturnType(); 3558 else if (isa<BlockDecl>(CurCodeDecl)) 3559 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3560 else 3561 llvm_unreachable("Unexpected function/method type"); 3562 3563 assert(getLangOpts().ObjCAutoRefCount && 3564 !FI.isReturnsRetained() && 3565 RT->isObjCRetainableType()); 3566 #endif 3567 RV = emitAutoreleaseOfResult(*this, RV); 3568 } 3569 3570 break; 3571 3572 case ABIArgInfo::Ignore: 3573 break; 3574 3575 case ABIArgInfo::CoerceAndExpand: { 3576 auto coercionType = RetAI.getCoerceAndExpandType(); 3577 3578 // Load all of the coerced elements out into results. 3579 llvm::SmallVector<llvm::Value*, 4> results; 3580 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 3581 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3582 auto coercedEltType = coercionType->getElementType(i); 3583 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3584 continue; 3585 3586 auto eltAddr = Builder.CreateStructGEP(addr, i); 3587 auto elt = Builder.CreateLoad(eltAddr); 3588 results.push_back(elt); 3589 } 3590 3591 // If we have one result, it's the single direct result type. 3592 if (results.size() == 1) { 3593 RV = results[0]; 3594 3595 // Otherwise, we need to make a first-class aggregate. 3596 } else { 3597 // Construct a return type that lacks padding elements. 3598 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3599 3600 RV = llvm::UndefValue::get(returnType); 3601 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3602 RV = Builder.CreateInsertValue(RV, results[i], i); 3603 } 3604 } 3605 break; 3606 } 3607 case ABIArgInfo::Expand: 3608 case ABIArgInfo::IndirectAliased: 3609 llvm_unreachable("Invalid ABI kind for return argument"); 3610 } 3611 3612 llvm::Instruction *Ret; 3613 if (RV) { 3614 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3615 // For certain return types, clear padding bits, as they may reveal 3616 // sensitive information. 3617 // Small struct/union types are passed as integers. 3618 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3619 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3620 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3621 } 3622 EmitReturnValueCheck(RV); 3623 Ret = Builder.CreateRet(RV); 3624 } else { 3625 Ret = Builder.CreateRetVoid(); 3626 } 3627 3628 if (RetDbgLoc) 3629 Ret->setDebugLoc(std::move(RetDbgLoc)); 3630 } 3631 3632 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3633 // A current decl may not be available when emitting vtable thunks. 3634 if (!CurCodeDecl) 3635 return; 3636 3637 // If the return block isn't reachable, neither is this check, so don't emit 3638 // it. 3639 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3640 return; 3641 3642 ReturnsNonNullAttr *RetNNAttr = nullptr; 3643 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3644 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3645 3646 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3647 return; 3648 3649 // Prefer the returns_nonnull attribute if it's present. 3650 SourceLocation AttrLoc; 3651 SanitizerMask CheckKind; 3652 SanitizerHandler Handler; 3653 if (RetNNAttr) { 3654 assert(!requiresReturnValueNullabilityCheck() && 3655 "Cannot check nullability and the nonnull attribute"); 3656 AttrLoc = RetNNAttr->getLocation(); 3657 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3658 Handler = SanitizerHandler::NonnullReturn; 3659 } else { 3660 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3661 if (auto *TSI = DD->getTypeSourceInfo()) 3662 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3663 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3664 CheckKind = SanitizerKind::NullabilityReturn; 3665 Handler = SanitizerHandler::NullabilityReturn; 3666 } 3667 3668 SanitizerScope SanScope(this); 3669 3670 // Make sure the "return" source location is valid. If we're checking a 3671 // nullability annotation, make sure the preconditions for the check are met. 3672 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3673 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3674 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3675 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3676 if (requiresReturnValueNullabilityCheck()) 3677 CanNullCheck = 3678 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3679 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3680 EmitBlock(Check); 3681 3682 // Now do the null check. 3683 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3684 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3685 llvm::Value *DynamicData[] = {SLocPtr}; 3686 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3687 3688 EmitBlock(NoCheck); 3689 3690 #ifndef NDEBUG 3691 // The return location should not be used after the check has been emitted. 3692 ReturnLocation = Address::invalid(); 3693 #endif 3694 } 3695 3696 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3697 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3698 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3699 } 3700 3701 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3702 QualType Ty) { 3703 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3704 // placeholders. 3705 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3706 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3707 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3708 3709 // FIXME: When we generate this IR in one pass, we shouldn't need 3710 // this win32-specific alignment hack. 3711 CharUnits Align = CharUnits::fromQuantity(4); 3712 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3713 3714 return AggValueSlot::forAddr(Address(Placeholder, Align), 3715 Ty.getQualifiers(), 3716 AggValueSlot::IsNotDestructed, 3717 AggValueSlot::DoesNotNeedGCBarriers, 3718 AggValueSlot::IsNotAliased, 3719 AggValueSlot::DoesNotOverlap); 3720 } 3721 3722 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3723 const VarDecl *param, 3724 SourceLocation loc) { 3725 // StartFunction converted the ABI-lowered parameter(s) into a 3726 // local alloca. We need to turn that into an r-value suitable 3727 // for EmitCall. 3728 Address local = GetAddrOfLocalVar(param); 3729 3730 QualType type = param->getType(); 3731 3732 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3733 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3734 } 3735 3736 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3737 // but the argument needs to be the original pointer. 3738 if (type->isReferenceType()) { 3739 args.add(RValue::get(Builder.CreateLoad(local)), type); 3740 3741 // In ARC, move out of consumed arguments so that the release cleanup 3742 // entered by StartFunction doesn't cause an over-release. This isn't 3743 // optimal -O0 code generation, but it should get cleaned up when 3744 // optimization is enabled. This also assumes that delegate calls are 3745 // performed exactly once for a set of arguments, but that should be safe. 3746 } else if (getLangOpts().ObjCAutoRefCount && 3747 param->hasAttr<NSConsumedAttr>() && 3748 type->isObjCRetainableType()) { 3749 llvm::Value *ptr = Builder.CreateLoad(local); 3750 auto null = 3751 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3752 Builder.CreateStore(null, local); 3753 args.add(RValue::get(ptr), type); 3754 3755 // For the most part, we just need to load the alloca, except that 3756 // aggregate r-values are actually pointers to temporaries. 3757 } else { 3758 args.add(convertTempToRValue(local, type, loc), type); 3759 } 3760 3761 // Deactivate the cleanup for the callee-destructed param that was pushed. 3762 if (type->isRecordType() && !CurFuncIsThunk && 3763 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3764 param->needsDestruction(getContext())) { 3765 EHScopeStack::stable_iterator cleanup = 3766 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3767 assert(cleanup.isValid() && 3768 "cleanup for callee-destructed param not recorded"); 3769 // This unreachable is a temporary marker which will be removed later. 3770 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3771 args.addArgCleanupDeactivation(cleanup, isActive); 3772 } 3773 } 3774 3775 static bool isProvablyNull(llvm::Value *addr) { 3776 return isa<llvm::ConstantPointerNull>(addr); 3777 } 3778 3779 /// Emit the actual writing-back of a writeback. 3780 static void emitWriteback(CodeGenFunction &CGF, 3781 const CallArgList::Writeback &writeback) { 3782 const LValue &srcLV = writeback.Source; 3783 Address srcAddr = srcLV.getAddress(CGF); 3784 assert(!isProvablyNull(srcAddr.getPointer()) && 3785 "shouldn't have writeback for provably null argument"); 3786 3787 llvm::BasicBlock *contBB = nullptr; 3788 3789 // If the argument wasn't provably non-null, we need to null check 3790 // before doing the store. 3791 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3792 CGF.CGM.getDataLayout()); 3793 if (!provablyNonNull) { 3794 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3795 contBB = CGF.createBasicBlock("icr.done"); 3796 3797 llvm::Value *isNull = 3798 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3799 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3800 CGF.EmitBlock(writebackBB); 3801 } 3802 3803 // Load the value to writeback. 3804 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3805 3806 // Cast it back, in case we're writing an id to a Foo* or something. 3807 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3808 "icr.writeback-cast"); 3809 3810 // Perform the writeback. 3811 3812 // If we have a "to use" value, it's something we need to emit a use 3813 // of. This has to be carefully threaded in: if it's done after the 3814 // release it's potentially undefined behavior (and the optimizer 3815 // will ignore it), and if it happens before the retain then the 3816 // optimizer could move the release there. 3817 if (writeback.ToUse) { 3818 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3819 3820 // Retain the new value. No need to block-copy here: the block's 3821 // being passed up the stack. 3822 value = CGF.EmitARCRetainNonBlock(value); 3823 3824 // Emit the intrinsic use here. 3825 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3826 3827 // Load the old value (primitively). 3828 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3829 3830 // Put the new value in place (primitively). 3831 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3832 3833 // Release the old value. 3834 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3835 3836 // Otherwise, we can just do a normal lvalue store. 3837 } else { 3838 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3839 } 3840 3841 // Jump to the continuation block. 3842 if (!provablyNonNull) 3843 CGF.EmitBlock(contBB); 3844 } 3845 3846 static void emitWritebacks(CodeGenFunction &CGF, 3847 const CallArgList &args) { 3848 for (const auto &I : args.writebacks()) 3849 emitWriteback(CGF, I); 3850 } 3851 3852 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3853 const CallArgList &CallArgs) { 3854 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3855 CallArgs.getCleanupsToDeactivate(); 3856 // Iterate in reverse to increase the likelihood of popping the cleanup. 3857 for (const auto &I : llvm::reverse(Cleanups)) { 3858 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3859 I.IsActiveIP->eraseFromParent(); 3860 } 3861 } 3862 3863 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3864 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3865 if (uop->getOpcode() == UO_AddrOf) 3866 return uop->getSubExpr(); 3867 return nullptr; 3868 } 3869 3870 /// Emit an argument that's being passed call-by-writeback. That is, 3871 /// we are passing the address of an __autoreleased temporary; it 3872 /// might be copy-initialized with the current value of the given 3873 /// address, but it will definitely be copied out of after the call. 3874 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3875 const ObjCIndirectCopyRestoreExpr *CRE) { 3876 LValue srcLV; 3877 3878 // Make an optimistic effort to emit the address as an l-value. 3879 // This can fail if the argument expression is more complicated. 3880 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3881 srcLV = CGF.EmitLValue(lvExpr); 3882 3883 // Otherwise, just emit it as a scalar. 3884 } else { 3885 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3886 3887 QualType srcAddrType = 3888 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3889 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3890 } 3891 Address srcAddr = srcLV.getAddress(CGF); 3892 3893 // The dest and src types don't necessarily match in LLVM terms 3894 // because of the crazy ObjC compatibility rules. 3895 3896 llvm::PointerType *destType = 3897 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3898 3899 // If the address is a constant null, just pass the appropriate null. 3900 if (isProvablyNull(srcAddr.getPointer())) { 3901 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3902 CRE->getType()); 3903 return; 3904 } 3905 3906 // Create the temporary. 3907 Address temp = CGF.CreateTempAlloca(destType->getPointerElementType(), 3908 CGF.getPointerAlign(), "icr.temp"); 3909 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3910 // and that cleanup will be conditional if we can't prove that the l-value 3911 // isn't null, so we need to register a dominating point so that the cleanups 3912 // system will make valid IR. 3913 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3914 3915 // Zero-initialize it if we're not doing a copy-initialization. 3916 bool shouldCopy = CRE->shouldCopy(); 3917 if (!shouldCopy) { 3918 llvm::Value *null = llvm::ConstantPointerNull::get( 3919 cast<llvm::PointerType>(destType->getPointerElementType())); 3920 CGF.Builder.CreateStore(null, temp); 3921 } 3922 3923 llvm::BasicBlock *contBB = nullptr; 3924 llvm::BasicBlock *originBB = nullptr; 3925 3926 // If the address is *not* known to be non-null, we need to switch. 3927 llvm::Value *finalArgument; 3928 3929 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3930 CGF.CGM.getDataLayout()); 3931 if (provablyNonNull) { 3932 finalArgument = temp.getPointer(); 3933 } else { 3934 llvm::Value *isNull = 3935 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3936 3937 finalArgument = CGF.Builder.CreateSelect(isNull, 3938 llvm::ConstantPointerNull::get(destType), 3939 temp.getPointer(), "icr.argument"); 3940 3941 // If we need to copy, then the load has to be conditional, which 3942 // means we need control flow. 3943 if (shouldCopy) { 3944 originBB = CGF.Builder.GetInsertBlock(); 3945 contBB = CGF.createBasicBlock("icr.cont"); 3946 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3947 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3948 CGF.EmitBlock(copyBB); 3949 condEval.begin(CGF); 3950 } 3951 } 3952 3953 llvm::Value *valueToUse = nullptr; 3954 3955 // Perform a copy if necessary. 3956 if (shouldCopy) { 3957 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3958 assert(srcRV.isScalar()); 3959 3960 llvm::Value *src = srcRV.getScalarVal(); 3961 src = CGF.Builder.CreateBitCast(src, destType->getPointerElementType(), 3962 "icr.cast"); 3963 3964 // Use an ordinary store, not a store-to-lvalue. 3965 CGF.Builder.CreateStore(src, temp); 3966 3967 // If optimization is enabled, and the value was held in a 3968 // __strong variable, we need to tell the optimizer that this 3969 // value has to stay alive until we're doing the store back. 3970 // This is because the temporary is effectively unretained, 3971 // and so otherwise we can violate the high-level semantics. 3972 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3973 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3974 valueToUse = src; 3975 } 3976 } 3977 3978 // Finish the control flow if we needed it. 3979 if (shouldCopy && !provablyNonNull) { 3980 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3981 CGF.EmitBlock(contBB); 3982 3983 // Make a phi for the value to intrinsically use. 3984 if (valueToUse) { 3985 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3986 "icr.to-use"); 3987 phiToUse->addIncoming(valueToUse, copyBB); 3988 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3989 originBB); 3990 valueToUse = phiToUse; 3991 } 3992 3993 condEval.end(CGF); 3994 } 3995 3996 args.addWriteback(srcLV, temp, valueToUse); 3997 args.add(RValue::get(finalArgument), CRE->getType()); 3998 } 3999 4000 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 4001 assert(!StackBase); 4002 4003 // Save the stack. 4004 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 4005 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 4006 } 4007 4008 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 4009 if (StackBase) { 4010 // Restore the stack after the call. 4011 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 4012 CGF.Builder.CreateCall(F, StackBase); 4013 } 4014 } 4015 4016 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 4017 SourceLocation ArgLoc, 4018 AbstractCallee AC, 4019 unsigned ParmNum) { 4020 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 4021 SanOpts.has(SanitizerKind::NullabilityArg))) 4022 return; 4023 4024 // The param decl may be missing in a variadic function. 4025 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 4026 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 4027 4028 // Prefer the nonnull attribute if it's present. 4029 const NonNullAttr *NNAttr = nullptr; 4030 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 4031 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 4032 4033 bool CanCheckNullability = false; 4034 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 4035 auto Nullability = PVD->getType()->getNullability(getContext()); 4036 CanCheckNullability = Nullability && 4037 *Nullability == NullabilityKind::NonNull && 4038 PVD->getTypeSourceInfo(); 4039 } 4040 4041 if (!NNAttr && !CanCheckNullability) 4042 return; 4043 4044 SourceLocation AttrLoc; 4045 SanitizerMask CheckKind; 4046 SanitizerHandler Handler; 4047 if (NNAttr) { 4048 AttrLoc = NNAttr->getLocation(); 4049 CheckKind = SanitizerKind::NonnullAttribute; 4050 Handler = SanitizerHandler::NonnullArg; 4051 } else { 4052 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 4053 CheckKind = SanitizerKind::NullabilityArg; 4054 Handler = SanitizerHandler::NullabilityArg; 4055 } 4056 4057 SanitizerScope SanScope(this); 4058 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 4059 llvm::Constant *StaticData[] = { 4060 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 4061 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 4062 }; 4063 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 4064 } 4065 4066 // Check if the call is going to use the inalloca convention. This needs to 4067 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged 4068 // later, so we can't check it directly. 4069 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, 4070 ArrayRef<QualType> ArgTypes) { 4071 // The Swift calling conventions don't go through the target-specific 4072 // argument classification, they never use inalloca. 4073 // TODO: Consider limiting inalloca use to only calling conventions supported 4074 // by MSVC. 4075 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync) 4076 return false; 4077 if (!CGM.getTarget().getCXXABI().isMicrosoft()) 4078 return false; 4079 return llvm::any_of(ArgTypes, [&](QualType Ty) { 4080 return isInAllocaArgument(CGM.getCXXABI(), Ty); 4081 }); 4082 } 4083 4084 #ifndef NDEBUG 4085 // Determine whether the given argument is an Objective-C method 4086 // that may have type parameters in its signature. 4087 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4088 const DeclContext *dc = method->getDeclContext(); 4089 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { 4090 return classDecl->getTypeParamListAsWritten(); 4091 } 4092 4093 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4094 return catDecl->getTypeParamList(); 4095 } 4096 4097 return false; 4098 } 4099 #endif 4100 4101 /// EmitCallArgs - Emit call arguments for a function. 4102 void CodeGenFunction::EmitCallArgs( 4103 CallArgList &Args, PrototypeWrapper Prototype, 4104 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4105 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 4106 SmallVector<QualType, 16> ArgTypes; 4107 4108 assert((ParamsToSkip == 0 || Prototype.P) && 4109 "Can't skip parameters if type info is not provided"); 4110 4111 // This variable only captures *explicitly* written conventions, not those 4112 // applied by default via command line flags or target defaults, such as 4113 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would 4114 // require knowing if this is a C++ instance method or being able to see 4115 // unprototyped FunctionTypes. 4116 CallingConv ExplicitCC = CC_C; 4117 4118 // First, if a prototype was provided, use those argument types. 4119 bool IsVariadic = false; 4120 if (Prototype.P) { 4121 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>(); 4122 if (MD) { 4123 IsVariadic = MD->isVariadic(); 4124 ExplicitCC = getCallingConventionForDecl( 4125 MD, CGM.getTarget().getTriple().isOSWindows()); 4126 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, 4127 MD->param_type_end()); 4128 } else { 4129 const auto *FPT = Prototype.P.get<const FunctionProtoType *>(); 4130 IsVariadic = FPT->isVariadic(); 4131 ExplicitCC = FPT->getExtInfo().getCC(); 4132 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, 4133 FPT->param_type_end()); 4134 } 4135 4136 #ifndef NDEBUG 4137 // Check that the prototyped types match the argument expression types. 4138 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); 4139 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4140 for (QualType Ty : ArgTypes) { 4141 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4142 assert( 4143 (isGenericMethod || Ty->isVariablyModifiedType() || 4144 Ty.getNonReferenceType()->isObjCRetainableType() || 4145 getContext() 4146 .getCanonicalType(Ty.getNonReferenceType()) 4147 .getTypePtr() == 4148 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && 4149 "type mismatch in call argument!"); 4150 ++Arg; 4151 } 4152 4153 // Either we've emitted all the call args, or we have a call to variadic 4154 // function. 4155 assert((Arg == ArgRange.end() || IsVariadic) && 4156 "Extra arguments in non-variadic function!"); 4157 #endif 4158 } 4159 4160 // If we still have any arguments, emit them using the type of the argument. 4161 for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size())) 4162 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); 4163 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 4164 4165 // We must evaluate arguments from right to left in the MS C++ ABI, 4166 // because arguments are destroyed left to right in the callee. As a special 4167 // case, there are certain language constructs that require left-to-right 4168 // evaluation, and in those cases we consider the evaluation order requirement 4169 // to trump the "destruction order is reverse construction order" guarantee. 4170 bool LeftToRight = 4171 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 4172 ? Order == EvaluationOrder::ForceLeftToRight 4173 : Order != EvaluationOrder::ForceRightToLeft; 4174 4175 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 4176 RValue EmittedArg) { 4177 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 4178 return; 4179 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 4180 if (PS == nullptr) 4181 return; 4182 4183 const auto &Context = getContext(); 4184 auto SizeTy = Context.getSizeType(); 4185 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4186 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 4187 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 4188 EmittedArg.getScalarVal(), 4189 PS->isDynamic()); 4190 Args.add(RValue::get(V), SizeTy); 4191 // If we're emitting args in reverse, be sure to do so with 4192 // pass_object_size, as well. 4193 if (!LeftToRight) 4194 std::swap(Args.back(), *(&Args.back() - 1)); 4195 }; 4196 4197 // Insert a stack save if we're going to need any inalloca args. 4198 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { 4199 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && 4200 "inalloca only supported on x86"); 4201 Args.allocateArgumentMemory(*this); 4202 } 4203 4204 // Evaluate each argument in the appropriate order. 4205 size_t CallArgsStart = Args.size(); 4206 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 4207 unsigned Idx = LeftToRight ? I : E - I - 1; 4208 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 4209 unsigned InitialArgSize = Args.size(); 4210 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 4211 // the argument and parameter match or the objc method is parameterized. 4212 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 4213 getContext().hasSameUnqualifiedType((*Arg)->getType(), 4214 ArgTypes[Idx]) || 4215 (isa<ObjCMethodDecl>(AC.getDecl()) && 4216 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 4217 "Argument and parameter types don't match"); 4218 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 4219 // In particular, we depend on it being the last arg in Args, and the 4220 // objectsize bits depend on there only being one arg if !LeftToRight. 4221 assert(InitialArgSize + 1 == Args.size() && 4222 "The code below depends on only adding one arg per EmitCallArg"); 4223 (void)InitialArgSize; 4224 // Since pointer argument are never emitted as LValue, it is safe to emit 4225 // non-null argument check for r-value only. 4226 if (!Args.back().hasLValue()) { 4227 RValue RVArg = Args.back().getKnownRValue(); 4228 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 4229 ParamsToSkip + Idx); 4230 // @llvm.objectsize should never have side-effects and shouldn't need 4231 // destruction/cleanups, so we can safely "emit" it after its arg, 4232 // regardless of right-to-leftness 4233 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 4234 } 4235 } 4236 4237 if (!LeftToRight) { 4238 // Un-reverse the arguments we just evaluated so they match up with the LLVM 4239 // IR function. 4240 std::reverse(Args.begin() + CallArgsStart, Args.end()); 4241 } 4242 } 4243 4244 namespace { 4245 4246 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 4247 DestroyUnpassedArg(Address Addr, QualType Ty) 4248 : Addr(Addr), Ty(Ty) {} 4249 4250 Address Addr; 4251 QualType Ty; 4252 4253 void Emit(CodeGenFunction &CGF, Flags flags) override { 4254 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 4255 if (DtorKind == QualType::DK_cxx_destructor) { 4256 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 4257 assert(!Dtor->isTrivial()); 4258 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 4259 /*Delegating=*/false, Addr, Ty); 4260 } else { 4261 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 4262 } 4263 } 4264 }; 4265 4266 struct DisableDebugLocationUpdates { 4267 CodeGenFunction &CGF; 4268 bool disabledDebugInfo; 4269 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 4270 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 4271 CGF.disableDebugInfo(); 4272 } 4273 ~DisableDebugLocationUpdates() { 4274 if (disabledDebugInfo) 4275 CGF.enableDebugInfo(); 4276 } 4277 }; 4278 4279 } // end anonymous namespace 4280 4281 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 4282 if (!HasLV) 4283 return RV; 4284 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 4285 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 4286 LV.isVolatile()); 4287 IsUsed = true; 4288 return RValue::getAggregate(Copy.getAddress(CGF)); 4289 } 4290 4291 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 4292 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 4293 if (!HasLV && RV.isScalar()) 4294 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 4295 else if (!HasLV && RV.isComplex()) 4296 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 4297 else { 4298 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 4299 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 4300 // We assume that call args are never copied into subobjects. 4301 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 4302 HasLV ? LV.isVolatileQualified() 4303 : RV.isVolatileQualified()); 4304 } 4305 IsUsed = true; 4306 } 4307 4308 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 4309 QualType type) { 4310 DisableDebugLocationUpdates Dis(*this, E); 4311 if (const ObjCIndirectCopyRestoreExpr *CRE 4312 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 4313 assert(getLangOpts().ObjCAutoRefCount); 4314 return emitWritebackArg(*this, args, CRE); 4315 } 4316 4317 assert(type->isReferenceType() == E->isGLValue() && 4318 "reference binding to unmaterialized r-value!"); 4319 4320 if (E->isGLValue()) { 4321 assert(E->getObjectKind() == OK_Ordinary); 4322 return args.add(EmitReferenceBindingToExpr(E), type); 4323 } 4324 4325 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 4326 4327 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 4328 // However, we still have to push an EH-only cleanup in case we unwind before 4329 // we make it to the call. 4330 if (type->isRecordType() && 4331 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 4332 // If we're using inalloca, use the argument memory. Otherwise, use a 4333 // temporary. 4334 AggValueSlot Slot = args.isUsingInAlloca() 4335 ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp"); 4336 4337 bool DestroyedInCallee = true, NeedsEHCleanup = true; 4338 if (const auto *RD = type->getAsCXXRecordDecl()) 4339 DestroyedInCallee = RD->hasNonTrivialDestructor(); 4340 else 4341 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 4342 4343 if (DestroyedInCallee) 4344 Slot.setExternallyDestructed(); 4345 4346 EmitAggExpr(E, Slot); 4347 RValue RV = Slot.asRValue(); 4348 args.add(RV, type); 4349 4350 if (DestroyedInCallee && NeedsEHCleanup) { 4351 // Create a no-op GEP between the placeholder and the cleanup so we can 4352 // RAUW it successfully. It also serves as a marker of the first 4353 // instruction where the cleanup is active. 4354 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 4355 type); 4356 // This unreachable is a temporary marker which will be removed later. 4357 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 4358 args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive); 4359 } 4360 return; 4361 } 4362 4363 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4364 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 4365 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4366 assert(L.isSimple()); 4367 args.addUncopiedAggregate(L, type); 4368 return; 4369 } 4370 4371 args.add(EmitAnyExprToTemp(E), type); 4372 } 4373 4374 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4375 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4376 // implicitly widens null pointer constants that are arguments to varargs 4377 // functions to pointer-sized ints. 4378 if (!getTarget().getTriple().isOSWindows()) 4379 return Arg->getType(); 4380 4381 if (Arg->getType()->isIntegerType() && 4382 getContext().getTypeSize(Arg->getType()) < 4383 getContext().getTargetInfo().getPointerWidth(0) && 4384 Arg->isNullPointerConstant(getContext(), 4385 Expr::NPC_ValueDependentIsNotNull)) { 4386 return getContext().getIntPtrType(); 4387 } 4388 4389 return Arg->getType(); 4390 } 4391 4392 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4393 // optimizer it can aggressively ignore unwind edges. 4394 void 4395 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4396 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4397 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4398 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4399 CGM.getNoObjCARCExceptionsMetadata()); 4400 } 4401 4402 /// Emits a call to the given no-arguments nounwind runtime function. 4403 llvm::CallInst * 4404 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4405 const llvm::Twine &name) { 4406 return EmitNounwindRuntimeCall(callee, None, name); 4407 } 4408 4409 /// Emits a call to the given nounwind runtime function. 4410 llvm::CallInst * 4411 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4412 ArrayRef<llvm::Value *> args, 4413 const llvm::Twine &name) { 4414 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4415 call->setDoesNotThrow(); 4416 return call; 4417 } 4418 4419 /// Emits a simple call (never an invoke) to the given no-arguments 4420 /// runtime function. 4421 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4422 const llvm::Twine &name) { 4423 return EmitRuntimeCall(callee, None, name); 4424 } 4425 4426 // Calls which may throw must have operand bundles indicating which funclet 4427 // they are nested within. 4428 SmallVector<llvm::OperandBundleDef, 1> 4429 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4430 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4431 // There is no need for a funclet operand bundle if we aren't inside a 4432 // funclet. 4433 if (!CurrentFuncletPad) 4434 return BundleList; 4435 4436 // Skip intrinsics which cannot throw. 4437 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 4438 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 4439 return BundleList; 4440 4441 BundleList.emplace_back("funclet", CurrentFuncletPad); 4442 return BundleList; 4443 } 4444 4445 /// Emits a simple call (never an invoke) to the given runtime function. 4446 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4447 ArrayRef<llvm::Value *> args, 4448 const llvm::Twine &name) { 4449 llvm::CallInst *call = Builder.CreateCall( 4450 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4451 call->setCallingConv(getRuntimeCC()); 4452 return call; 4453 } 4454 4455 /// Emits a call or invoke to the given noreturn runtime function. 4456 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4457 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4458 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4459 getBundlesForFunclet(callee.getCallee()); 4460 4461 if (getInvokeDest()) { 4462 llvm::InvokeInst *invoke = 4463 Builder.CreateInvoke(callee, 4464 getUnreachableBlock(), 4465 getInvokeDest(), 4466 args, 4467 BundleList); 4468 invoke->setDoesNotReturn(); 4469 invoke->setCallingConv(getRuntimeCC()); 4470 } else { 4471 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4472 call->setDoesNotReturn(); 4473 call->setCallingConv(getRuntimeCC()); 4474 Builder.CreateUnreachable(); 4475 } 4476 } 4477 4478 /// Emits a call or invoke instruction to the given nullary runtime function. 4479 llvm::CallBase * 4480 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4481 const Twine &name) { 4482 return EmitRuntimeCallOrInvoke(callee, None, name); 4483 } 4484 4485 /// Emits a call or invoke instruction to the given runtime function. 4486 llvm::CallBase * 4487 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4488 ArrayRef<llvm::Value *> args, 4489 const Twine &name) { 4490 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4491 call->setCallingConv(getRuntimeCC()); 4492 return call; 4493 } 4494 4495 /// Emits a call or invoke instruction to the given function, depending 4496 /// on the current state of the EH stack. 4497 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4498 ArrayRef<llvm::Value *> Args, 4499 const Twine &Name) { 4500 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4501 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4502 getBundlesForFunclet(Callee.getCallee()); 4503 4504 llvm::CallBase *Inst; 4505 if (!InvokeDest) 4506 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4507 else { 4508 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4509 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4510 Name); 4511 EmitBlock(ContBB); 4512 } 4513 4514 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4515 // optimizer it can aggressively ignore unwind edges. 4516 if (CGM.getLangOpts().ObjCAutoRefCount) 4517 AddObjCARCExceptionMetadata(Inst); 4518 4519 return Inst; 4520 } 4521 4522 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4523 llvm::Value *New) { 4524 DeferredReplacements.push_back( 4525 std::make_pair(llvm::WeakTrackingVH(Old), New)); 4526 } 4527 4528 namespace { 4529 4530 /// Specify given \p NewAlign as the alignment of return value attribute. If 4531 /// such attribute already exists, re-set it to the maximal one of two options. 4532 LLVM_NODISCARD llvm::AttributeList 4533 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4534 const llvm::AttributeList &Attrs, 4535 llvm::Align NewAlign) { 4536 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4537 if (CurAlign >= NewAlign) 4538 return Attrs; 4539 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4540 return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment) 4541 .addRetAttribute(Ctx, AlignAttr); 4542 } 4543 4544 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4545 protected: 4546 CodeGenFunction &CGF; 4547 4548 /// We do nothing if this is, or becomes, nullptr. 4549 const AlignedAttrTy *AA = nullptr; 4550 4551 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4552 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4553 4554 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4555 : CGF(CGF_) { 4556 if (!FuncDecl) 4557 return; 4558 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4559 } 4560 4561 public: 4562 /// If we can, materialize the alignment as an attribute on return value. 4563 LLVM_NODISCARD llvm::AttributeList 4564 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4565 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4566 return Attrs; 4567 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4568 if (!AlignmentCI) 4569 return Attrs; 4570 // We may legitimately have non-power-of-2 alignment here. 4571 // If so, this is UB land, emit it via `@llvm.assume` instead. 4572 if (!AlignmentCI->getValue().isPowerOf2()) 4573 return Attrs; 4574 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4575 CGF.getLLVMContext(), Attrs, 4576 llvm::Align( 4577 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4578 AA = nullptr; // We're done. Disallow doing anything else. 4579 return NewAttrs; 4580 } 4581 4582 /// Emit alignment assumption. 4583 /// This is a general fallback that we take if either there is an offset, 4584 /// or the alignment is variable or we are sanitizing for alignment. 4585 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4586 if (!AA) 4587 return; 4588 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4589 AA->getLocation(), Alignment, OffsetCI); 4590 AA = nullptr; // We're done. Disallow doing anything else. 4591 } 4592 }; 4593 4594 /// Helper data structure to emit `AssumeAlignedAttr`. 4595 class AssumeAlignedAttrEmitter final 4596 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4597 public: 4598 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4599 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4600 if (!AA) 4601 return; 4602 // It is guaranteed that the alignment/offset are constants. 4603 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4604 if (Expr *Offset = AA->getOffset()) { 4605 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4606 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4607 OffsetCI = nullptr; 4608 } 4609 } 4610 }; 4611 4612 /// Helper data structure to emit `AllocAlignAttr`. 4613 class AllocAlignAttrEmitter final 4614 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4615 public: 4616 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4617 const CallArgList &CallArgs) 4618 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4619 if (!AA) 4620 return; 4621 // Alignment may or may not be a constant, and that is okay. 4622 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4623 .getRValue(CGF) 4624 .getScalarVal(); 4625 } 4626 }; 4627 4628 } // namespace 4629 4630 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4631 const CGCallee &Callee, 4632 ReturnValueSlot ReturnValue, 4633 const CallArgList &CallArgs, 4634 llvm::CallBase **callOrInvoke, bool IsMustTail, 4635 SourceLocation Loc) { 4636 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4637 4638 assert(Callee.isOrdinary() || Callee.isVirtual()); 4639 4640 // Handle struct-return functions by passing a pointer to the 4641 // location that we would like to return into. 4642 QualType RetTy = CallInfo.getReturnType(); 4643 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4644 4645 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4646 4647 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4648 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 4649 // We can only guarantee that a function is called from the correct 4650 // context/function based on the appropriate target attributes, 4651 // so only check in the case where we have both always_inline and target 4652 // since otherwise we could be making a conditional call after a check for 4653 // the proper cpu features (and it won't cause code generation issues due to 4654 // function based code generation). 4655 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4656 TargetDecl->hasAttr<TargetAttr>()) 4657 checkTargetFeatures(Loc, FD); 4658 4659 // Some architectures (such as x86-64) have the ABI changed based on 4660 // attribute-target/features. Give them a chance to diagnose. 4661 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 4662 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs); 4663 } 4664 4665 #ifndef NDEBUG 4666 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 4667 // For an inalloca varargs function, we don't expect CallInfo to match the 4668 // function pointer's type, because the inalloca struct a will have extra 4669 // fields in it for the varargs parameters. Code later in this function 4670 // bitcasts the function pointer to the type derived from CallInfo. 4671 // 4672 // In other cases, we assert that the types match up (until pointers stop 4673 // having pointee types). 4674 if (Callee.isVirtual()) 4675 assert(IRFuncTy == Callee.getVirtualFunctionType()); 4676 else { 4677 llvm::PointerType *PtrTy = 4678 llvm::cast<llvm::PointerType>(Callee.getFunctionPointer()->getType()); 4679 assert(PtrTy->isOpaqueOrPointeeTypeMatches(IRFuncTy)); 4680 } 4681 } 4682 #endif 4683 4684 // 1. Set up the arguments. 4685 4686 // If we're using inalloca, insert the allocation after the stack save. 4687 // FIXME: Do this earlier rather than hacking it in here! 4688 Address ArgMemory = Address::invalid(); 4689 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4690 const llvm::DataLayout &DL = CGM.getDataLayout(); 4691 llvm::Instruction *IP = CallArgs.getStackBase(); 4692 llvm::AllocaInst *AI; 4693 if (IP) { 4694 IP = IP->getNextNode(); 4695 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 4696 "argmem", IP); 4697 } else { 4698 AI = CreateTempAlloca(ArgStruct, "argmem"); 4699 } 4700 auto Align = CallInfo.getArgStructAlignment(); 4701 AI->setAlignment(Align.getAsAlign()); 4702 AI->setUsedWithInAlloca(true); 4703 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 4704 ArgMemory = Address(AI, Align); 4705 } 4706 4707 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 4708 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 4709 4710 // If the call returns a temporary with struct return, create a temporary 4711 // alloca to hold the result, unless one is given to us. 4712 Address SRetPtr = Address::invalid(); 4713 Address SRetAlloca = Address::invalid(); 4714 llvm::Value *UnusedReturnSizePtr = nullptr; 4715 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 4716 if (!ReturnValue.isNull()) { 4717 SRetPtr = ReturnValue.getValue(); 4718 } else { 4719 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 4720 if (HaveInsertPoint() && ReturnValue.isUnused()) { 4721 llvm::TypeSize size = 4722 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 4723 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 4724 } 4725 } 4726 if (IRFunctionArgs.hasSRetArg()) { 4727 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 4728 } else if (RetAI.isInAlloca()) { 4729 Address Addr = 4730 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 4731 Builder.CreateStore(SRetPtr.getPointer(), Addr); 4732 } 4733 } 4734 4735 Address swiftErrorTemp = Address::invalid(); 4736 Address swiftErrorArg = Address::invalid(); 4737 4738 // When passing arguments using temporary allocas, we need to add the 4739 // appropriate lifetime markers. This vector keeps track of all the lifetime 4740 // markers that need to be ended right after the call. 4741 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 4742 4743 // Translate all of the arguments as necessary to match the IR lowering. 4744 assert(CallInfo.arg_size() == CallArgs.size() && 4745 "Mismatch between function signature & arguments."); 4746 unsigned ArgNo = 0; 4747 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 4748 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 4749 I != E; ++I, ++info_it, ++ArgNo) { 4750 const ABIArgInfo &ArgInfo = info_it->info; 4751 4752 // Insert a padding argument to ensure proper alignment. 4753 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 4754 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 4755 llvm::UndefValue::get(ArgInfo.getPaddingType()); 4756 4757 unsigned FirstIRArg, NumIRArgs; 4758 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 4759 4760 switch (ArgInfo.getKind()) { 4761 case ABIArgInfo::InAlloca: { 4762 assert(NumIRArgs == 0); 4763 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 4764 if (I->isAggregate()) { 4765 Address Addr = I->hasLValue() 4766 ? I->getKnownLValue().getAddress(*this) 4767 : I->getKnownRValue().getAggregateAddress(); 4768 llvm::Instruction *Placeholder = 4769 cast<llvm::Instruction>(Addr.getPointer()); 4770 4771 if (!ArgInfo.getInAllocaIndirect()) { 4772 // Replace the placeholder with the appropriate argument slot GEP. 4773 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 4774 Builder.SetInsertPoint(Placeholder); 4775 Addr = Builder.CreateStructGEP(ArgMemory, 4776 ArgInfo.getInAllocaFieldIndex()); 4777 Builder.restoreIP(IP); 4778 } else { 4779 // For indirect things such as overaligned structs, replace the 4780 // placeholder with a regular aggregate temporary alloca. Store the 4781 // address of this alloca into the struct. 4782 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 4783 Address ArgSlot = Builder.CreateStructGEP( 4784 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4785 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4786 } 4787 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 4788 } else if (ArgInfo.getInAllocaIndirect()) { 4789 // Make a temporary alloca and store the address of it into the argument 4790 // struct. 4791 Address Addr = CreateMemTempWithoutCast( 4792 I->Ty, getContext().getTypeAlignInChars(I->Ty), 4793 "indirect-arg-temp"); 4794 I->copyInto(*this, Addr); 4795 Address ArgSlot = 4796 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4797 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4798 } else { 4799 // Store the RValue into the argument struct. 4800 Address Addr = 4801 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4802 unsigned AS = Addr.getType()->getPointerAddressSpace(); 4803 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 4804 // There are some cases where a trivial bitcast is not avoidable. The 4805 // definition of a type later in a translation unit may change it's type 4806 // from {}* to (%struct.foo*)*. 4807 if (Addr.getType() != MemType) 4808 Addr = Builder.CreateBitCast(Addr, MemType); 4809 I->copyInto(*this, Addr); 4810 } 4811 break; 4812 } 4813 4814 case ABIArgInfo::Indirect: 4815 case ABIArgInfo::IndirectAliased: { 4816 assert(NumIRArgs == 1); 4817 if (!I->isAggregate()) { 4818 // Make a temporary alloca to pass the argument. 4819 Address Addr = CreateMemTempWithoutCast( 4820 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 4821 IRCallArgs[FirstIRArg] = Addr.getPointer(); 4822 4823 I->copyInto(*this, Addr); 4824 } else { 4825 // We want to avoid creating an unnecessary temporary+copy here; 4826 // however, we need one in three cases: 4827 // 1. If the argument is not byval, and we are required to copy the 4828 // source. (This case doesn't occur on any common architecture.) 4829 // 2. If the argument is byval, RV is not sufficiently aligned, and 4830 // we cannot force it to be sufficiently aligned. 4831 // 3. If the argument is byval, but RV is not located in default 4832 // or alloca address space. 4833 Address Addr = I->hasLValue() 4834 ? I->getKnownLValue().getAddress(*this) 4835 : I->getKnownRValue().getAggregateAddress(); 4836 llvm::Value *V = Addr.getPointer(); 4837 CharUnits Align = ArgInfo.getIndirectAlign(); 4838 const llvm::DataLayout *TD = &CGM.getDataLayout(); 4839 4840 assert((FirstIRArg >= IRFuncTy->getNumParams() || 4841 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 4842 TD->getAllocaAddrSpace()) && 4843 "indirect argument must be in alloca address space"); 4844 4845 bool NeedCopy = false; 4846 4847 if (Addr.getAlignment() < Align && 4848 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 4849 Align.getAsAlign()) { 4850 NeedCopy = true; 4851 } else if (I->hasLValue()) { 4852 auto LV = I->getKnownLValue(); 4853 auto AS = LV.getAddressSpace(); 4854 4855 if (!ArgInfo.getIndirectByVal() || 4856 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4857 NeedCopy = true; 4858 } 4859 if (!getLangOpts().OpenCL) { 4860 if ((ArgInfo.getIndirectByVal() && 4861 (AS != LangAS::Default && 4862 AS != CGM.getASTAllocaAddressSpace()))) { 4863 NeedCopy = true; 4864 } 4865 } 4866 // For OpenCL even if RV is located in default or alloca address space 4867 // we don't want to perform address space cast for it. 4868 else if ((ArgInfo.getIndirectByVal() && 4869 Addr.getType()->getAddressSpace() != IRFuncTy-> 4870 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4871 NeedCopy = true; 4872 } 4873 } 4874 4875 if (NeedCopy) { 4876 // Create an aligned temporary, and copy to it. 4877 Address AI = CreateMemTempWithoutCast( 4878 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4879 IRCallArgs[FirstIRArg] = AI.getPointer(); 4880 4881 // Emit lifetime markers for the temporary alloca. 4882 llvm::TypeSize ByvalTempElementSize = 4883 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4884 llvm::Value *LifetimeSize = 4885 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4886 4887 // Add cleanup code to emit the end lifetime marker after the call. 4888 if (LifetimeSize) // In case we disabled lifetime markers. 4889 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4890 4891 // Generate the copy. 4892 I->copyInto(*this, AI); 4893 } else { 4894 // Skip the extra memcpy call. 4895 auto *T = llvm::PointerType::getWithSamePointeeType( 4896 cast<llvm::PointerType>(V->getType()), 4897 CGM.getDataLayout().getAllocaAddrSpace()); 4898 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4899 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4900 true); 4901 } 4902 } 4903 break; 4904 } 4905 4906 case ABIArgInfo::Ignore: 4907 assert(NumIRArgs == 0); 4908 break; 4909 4910 case ABIArgInfo::Extend: 4911 case ABIArgInfo::Direct: { 4912 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4913 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4914 ArgInfo.getDirectOffset() == 0) { 4915 assert(NumIRArgs == 1); 4916 llvm::Value *V; 4917 if (!I->isAggregate()) 4918 V = I->getKnownRValue().getScalarVal(); 4919 else 4920 V = Builder.CreateLoad( 4921 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4922 : I->getKnownRValue().getAggregateAddress()); 4923 4924 // Implement swifterror by copying into a new swifterror argument. 4925 // We'll write back in the normal path out of the call. 4926 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4927 == ParameterABI::SwiftErrorResult) { 4928 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4929 4930 QualType pointeeTy = I->Ty->getPointeeType(); 4931 swiftErrorArg = 4932 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4933 4934 swiftErrorTemp = 4935 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4936 V = swiftErrorTemp.getPointer(); 4937 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4938 4939 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4940 Builder.CreateStore(errorValue, swiftErrorTemp); 4941 } 4942 4943 // We might have to widen integers, but we should never truncate. 4944 if (ArgInfo.getCoerceToType() != V->getType() && 4945 V->getType()->isIntegerTy()) 4946 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4947 4948 // If the argument doesn't match, perform a bitcast to coerce it. This 4949 // can happen due to trivial type mismatches. 4950 if (FirstIRArg < IRFuncTy->getNumParams() && 4951 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4952 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4953 4954 IRCallArgs[FirstIRArg] = V; 4955 break; 4956 } 4957 4958 // FIXME: Avoid the conversion through memory if possible. 4959 Address Src = Address::invalid(); 4960 if (!I->isAggregate()) { 4961 Src = CreateMemTemp(I->Ty, "coerce"); 4962 I->copyInto(*this, Src); 4963 } else { 4964 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4965 : I->getKnownRValue().getAggregateAddress(); 4966 } 4967 4968 // If the value is offset in memory, apply the offset now. 4969 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4970 4971 // Fast-isel and the optimizer generally like scalar values better than 4972 // FCAs, so we flatten them if this is safe to do for this argument. 4973 llvm::StructType *STy = 4974 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4975 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4976 llvm::Type *SrcTy = Src.getElementType(); 4977 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4978 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4979 4980 // If the source type is smaller than the destination type of the 4981 // coerce-to logic, copy the source value into a temp alloca the size 4982 // of the destination type to allow loading all of it. The bits past 4983 // the source value are left undef. 4984 if (SrcSize < DstSize) { 4985 Address TempAlloca 4986 = CreateTempAlloca(STy, Src.getAlignment(), 4987 Src.getName() + ".coerce"); 4988 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4989 Src = TempAlloca; 4990 } else { 4991 Src = Builder.CreateElementBitCast(Src, STy); 4992 } 4993 4994 assert(NumIRArgs == STy->getNumElements()); 4995 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4996 Address EltPtr = Builder.CreateStructGEP(Src, i); 4997 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4998 IRCallArgs[FirstIRArg + i] = LI; 4999 } 5000 } else { 5001 // In the simple case, just pass the coerced loaded value. 5002 assert(NumIRArgs == 1); 5003 llvm::Value *Load = 5004 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 5005 5006 if (CallInfo.isCmseNSCall()) { 5007 // For certain parameter types, clear padding bits, as they may reveal 5008 // sensitive information. 5009 // Small struct/union types are passed as integer arrays. 5010 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 5011 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 5012 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 5013 } 5014 IRCallArgs[FirstIRArg] = Load; 5015 } 5016 5017 break; 5018 } 5019 5020 case ABIArgInfo::CoerceAndExpand: { 5021 auto coercionType = ArgInfo.getCoerceAndExpandType(); 5022 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 5023 5024 llvm::Value *tempSize = nullptr; 5025 Address addr = Address::invalid(); 5026 Address AllocaAddr = Address::invalid(); 5027 if (I->isAggregate()) { 5028 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5029 : I->getKnownRValue().getAggregateAddress(); 5030 5031 } else { 5032 RValue RV = I->getKnownRValue(); 5033 assert(RV.isScalar()); // complex should always just be direct 5034 5035 llvm::Type *scalarType = RV.getScalarVal()->getType(); 5036 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 5037 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 5038 5039 // Materialize to a temporary. 5040 addr = 5041 CreateTempAlloca(RV.getScalarVal()->getType(), 5042 CharUnits::fromQuantity(std::max( 5043 layout->getAlignment().value(), scalarAlign)), 5044 "tmp", 5045 /*ArraySize=*/nullptr, &AllocaAddr); 5046 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 5047 5048 Builder.CreateStore(RV.getScalarVal(), addr); 5049 } 5050 5051 addr = Builder.CreateElementBitCast(addr, coercionType); 5052 5053 unsigned IRArgPos = FirstIRArg; 5054 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5055 llvm::Type *eltType = coercionType->getElementType(i); 5056 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5057 Address eltAddr = Builder.CreateStructGEP(addr, i); 5058 llvm::Value *elt = Builder.CreateLoad(eltAddr); 5059 IRCallArgs[IRArgPos++] = elt; 5060 } 5061 assert(IRArgPos == FirstIRArg + NumIRArgs); 5062 5063 if (tempSize) { 5064 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 5065 } 5066 5067 break; 5068 } 5069 5070 case ABIArgInfo::Expand: { 5071 unsigned IRArgPos = FirstIRArg; 5072 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 5073 assert(IRArgPos == FirstIRArg + NumIRArgs); 5074 break; 5075 } 5076 } 5077 } 5078 5079 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 5080 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 5081 5082 // If we're using inalloca, set up that argument. 5083 if (ArgMemory.isValid()) { 5084 llvm::Value *Arg = ArgMemory.getPointer(); 5085 if (CallInfo.isVariadic()) { 5086 // When passing non-POD arguments by value to variadic functions, we will 5087 // end up with a variadic prototype and an inalloca call site. In such 5088 // cases, we can't do any parameter mismatch checks. Give up and bitcast 5089 // the callee. 5090 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 5091 CalleePtr = 5092 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 5093 } else { 5094 llvm::Type *LastParamTy = 5095 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 5096 if (Arg->getType() != LastParamTy) { 5097 #ifndef NDEBUG 5098 // Assert that these structs have equivalent element types. 5099 llvm::StructType *FullTy = CallInfo.getArgStruct(); 5100 llvm::StructType *DeclaredTy = 5101 cast<llvm::StructType>(LastParamTy->getPointerElementType()); 5102 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 5103 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 5104 DE = DeclaredTy->element_end(), 5105 FI = FullTy->element_begin(); 5106 DI != DE; ++DI, ++FI) 5107 assert(*DI == *FI); 5108 #endif 5109 Arg = Builder.CreateBitCast(Arg, LastParamTy); 5110 } 5111 } 5112 assert(IRFunctionArgs.hasInallocaArg()); 5113 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 5114 } 5115 5116 // 2. Prepare the function pointer. 5117 5118 // If the callee is a bitcast of a non-variadic function to have a 5119 // variadic function pointer type, check to see if we can remove the 5120 // bitcast. This comes up with unprototyped functions. 5121 // 5122 // This makes the IR nicer, but more importantly it ensures that we 5123 // can inline the function at -O0 if it is marked always_inline. 5124 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 5125 llvm::Value *Ptr) -> llvm::Function * { 5126 if (!CalleeFT->isVarArg()) 5127 return nullptr; 5128 5129 // Get underlying value if it's a bitcast 5130 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 5131 if (CE->getOpcode() == llvm::Instruction::BitCast) 5132 Ptr = CE->getOperand(0); 5133 } 5134 5135 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 5136 if (!OrigFn) 5137 return nullptr; 5138 5139 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 5140 5141 // If the original type is variadic, or if any of the component types 5142 // disagree, we cannot remove the cast. 5143 if (OrigFT->isVarArg() || 5144 OrigFT->getNumParams() != CalleeFT->getNumParams() || 5145 OrigFT->getReturnType() != CalleeFT->getReturnType()) 5146 return nullptr; 5147 5148 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 5149 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 5150 return nullptr; 5151 5152 return OrigFn; 5153 }; 5154 5155 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 5156 CalleePtr = OrigFn; 5157 IRFuncTy = OrigFn->getFunctionType(); 5158 } 5159 5160 // 3. Perform the actual call. 5161 5162 // Deactivate any cleanups that we're supposed to do immediately before 5163 // the call. 5164 if (!CallArgs.getCleanupsToDeactivate().empty()) 5165 deactivateArgCleanupsBeforeCall(*this, CallArgs); 5166 5167 // Assert that the arguments we computed match up. The IR verifier 5168 // will catch this, but this is a common enough source of problems 5169 // during IRGen changes that it's way better for debugging to catch 5170 // it ourselves here. 5171 #ifndef NDEBUG 5172 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 5173 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5174 // Inalloca argument can have different type. 5175 if (IRFunctionArgs.hasInallocaArg() && 5176 i == IRFunctionArgs.getInallocaArgNo()) 5177 continue; 5178 if (i < IRFuncTy->getNumParams()) 5179 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 5180 } 5181 #endif 5182 5183 // Update the largest vector width if any arguments have vector types. 5184 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5185 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 5186 LargestVectorWidth = 5187 std::max((uint64_t)LargestVectorWidth, 5188 VT->getPrimitiveSizeInBits().getKnownMinSize()); 5189 } 5190 5191 // Compute the calling convention and attributes. 5192 unsigned CallingConv; 5193 llvm::AttributeList Attrs; 5194 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 5195 Callee.getAbstractInfo(), Attrs, CallingConv, 5196 /*AttrOnCallSite=*/true, 5197 /*IsThunk=*/false); 5198 5199 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5200 if (FD->hasAttr<StrictFPAttr>()) 5201 // All calls within a strictfp function are marked strictfp 5202 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5203 5204 // Add call-site nomerge attribute if exists. 5205 if (InNoMergeAttributedStmt) 5206 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge); 5207 5208 // Apply some call-site-specific attributes. 5209 // TODO: work this into building the attribute set. 5210 5211 // Apply always_inline to all calls within flatten functions. 5212 // FIXME: should this really take priority over __try, below? 5213 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 5214 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 5215 Attrs = 5216 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5217 } 5218 5219 // Disable inlining inside SEH __try blocks. 5220 if (isSEHTryScope()) { 5221 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5222 } 5223 5224 // Decide whether to use a call or an invoke. 5225 bool CannotThrow; 5226 if (currentFunctionUsesSEHTry()) { 5227 // SEH cares about asynchronous exceptions, so everything can "throw." 5228 CannotThrow = false; 5229 } else if (isCleanupPadScope() && 5230 EHPersonality::get(*this).isMSVCXXPersonality()) { 5231 // The MSVC++ personality will implicitly terminate the program if an 5232 // exception is thrown during a cleanup outside of a try/catch. 5233 // We don't need to model anything in IR to get this behavior. 5234 CannotThrow = true; 5235 } else { 5236 // Otherwise, nounwind call sites will never throw. 5237 CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind); 5238 5239 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 5240 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 5241 CannotThrow = true; 5242 } 5243 5244 // If we made a temporary, be sure to clean up after ourselves. Note that we 5245 // can't depend on being inside of an ExprWithCleanups, so we need to manually 5246 // pop this cleanup later on. Being eager about this is OK, since this 5247 // temporary is 'invisible' outside of the callee. 5248 if (UnusedReturnSizePtr) 5249 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 5250 UnusedReturnSizePtr); 5251 5252 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 5253 5254 SmallVector<llvm::OperandBundleDef, 1> BundleList = 5255 getBundlesForFunclet(CalleePtr); 5256 5257 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5258 if (FD->hasAttr<StrictFPAttr>()) 5259 // All calls within a strictfp function are marked strictfp 5260 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5261 5262 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 5263 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5264 5265 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 5266 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5267 5268 // Emit the actual call/invoke instruction. 5269 llvm::CallBase *CI; 5270 if (!InvokeDest) { 5271 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 5272 } else { 5273 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 5274 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 5275 BundleList); 5276 EmitBlock(Cont); 5277 } 5278 if (callOrInvoke) 5279 *callOrInvoke = CI; 5280 5281 // If this is within a function that has the guard(nocf) attribute and is an 5282 // indirect call, add the "guard_nocf" attribute to this call to indicate that 5283 // Control Flow Guard checks should not be added, even if the call is inlined. 5284 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5285 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 5286 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 5287 Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf"); 5288 } 5289 } 5290 5291 // Apply the attributes and calling convention. 5292 CI->setAttributes(Attrs); 5293 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 5294 5295 // Apply various metadata. 5296 5297 if (!CI->getType()->isVoidTy()) 5298 CI->setName("call"); 5299 5300 // Update largest vector width from the return type. 5301 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 5302 LargestVectorWidth = 5303 std::max((uint64_t)LargestVectorWidth, 5304 VT->getPrimitiveSizeInBits().getKnownMinSize()); 5305 5306 // Insert instrumentation or attach profile metadata at indirect call sites. 5307 // For more details, see the comment before the definition of 5308 // IPVK_IndirectCallTarget in InstrProfData.inc. 5309 if (!CI->getCalledFunction()) 5310 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 5311 CI, CalleePtr); 5312 5313 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 5314 // optimizer it can aggressively ignore unwind edges. 5315 if (CGM.getLangOpts().ObjCAutoRefCount) 5316 AddObjCARCExceptionMetadata(CI); 5317 5318 // Set tail call kind if necessary. 5319 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 5320 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 5321 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 5322 else if (IsMustTail) 5323 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 5324 } 5325 5326 // Add metadata for calls to MSAllocator functions 5327 if (getDebugInfo() && TargetDecl && 5328 TargetDecl->hasAttr<MSAllocatorAttr>()) 5329 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 5330 5331 // Add metadata if calling an __attribute__((error(""))) or warning fn. 5332 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) { 5333 llvm::ConstantInt *Line = 5334 llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding()); 5335 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line); 5336 llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD}); 5337 CI->setMetadata("srcloc", MDT); 5338 } 5339 5340 // 4. Finish the call. 5341 5342 // If the call doesn't return, finish the basic block and clear the 5343 // insertion point; this allows the rest of IRGen to discard 5344 // unreachable code. 5345 if (CI->doesNotReturn()) { 5346 if (UnusedReturnSizePtr) 5347 PopCleanupBlock(); 5348 5349 // Strip away the noreturn attribute to better diagnose unreachable UB. 5350 if (SanOpts.has(SanitizerKind::Unreachable)) { 5351 // Also remove from function since CallBase::hasFnAttr additionally checks 5352 // attributes of the called function. 5353 if (auto *F = CI->getCalledFunction()) 5354 F->removeFnAttr(llvm::Attribute::NoReturn); 5355 CI->removeFnAttr(llvm::Attribute::NoReturn); 5356 5357 // Avoid incompatibility with ASan which relies on the `noreturn` 5358 // attribute to insert handler calls. 5359 if (SanOpts.hasOneOf(SanitizerKind::Address | 5360 SanitizerKind::KernelAddress)) { 5361 SanitizerScope SanScope(this); 5362 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5363 Builder.SetInsertPoint(CI); 5364 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5365 llvm::FunctionCallee Fn = 5366 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5367 EmitNounwindRuntimeCall(Fn); 5368 } 5369 } 5370 5371 EmitUnreachable(Loc); 5372 Builder.ClearInsertionPoint(); 5373 5374 // FIXME: For now, emit a dummy basic block because expr emitters in 5375 // generally are not ready to handle emitting expressions at unreachable 5376 // points. 5377 EnsureInsertPoint(); 5378 5379 // Return a reasonable RValue. 5380 return GetUndefRValue(RetTy); 5381 } 5382 5383 // If this is a musttail call, return immediately. We do not branch to the 5384 // epilogue in this case. 5385 if (IsMustTail) { 5386 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end(); 5387 ++it) { 5388 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it); 5389 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn())) 5390 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups"); 5391 } 5392 if (CI->getType()->isVoidTy()) 5393 Builder.CreateRetVoid(); 5394 else 5395 Builder.CreateRet(CI); 5396 Builder.ClearInsertionPoint(); 5397 EnsureInsertPoint(); 5398 return GetUndefRValue(RetTy); 5399 } 5400 5401 // Perform the swifterror writeback. 5402 if (swiftErrorTemp.isValid()) { 5403 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5404 Builder.CreateStore(errorResult, swiftErrorArg); 5405 } 5406 5407 // Emit any call-associated writebacks immediately. Arguably this 5408 // should happen after any return-value munging. 5409 if (CallArgs.hasWritebacks()) 5410 emitWritebacks(*this, CallArgs); 5411 5412 // The stack cleanup for inalloca arguments has to run out of the normal 5413 // lexical order, so deactivate it and run it manually here. 5414 CallArgs.freeArgumentMemory(*this); 5415 5416 // Extract the return value. 5417 RValue Ret = [&] { 5418 switch (RetAI.getKind()) { 5419 case ABIArgInfo::CoerceAndExpand: { 5420 auto coercionType = RetAI.getCoerceAndExpandType(); 5421 5422 Address addr = SRetPtr; 5423 addr = Builder.CreateElementBitCast(addr, coercionType); 5424 5425 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5426 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5427 5428 unsigned unpaddedIndex = 0; 5429 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5430 llvm::Type *eltType = coercionType->getElementType(i); 5431 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5432 Address eltAddr = Builder.CreateStructGEP(addr, i); 5433 llvm::Value *elt = CI; 5434 if (requiresExtract) 5435 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5436 else 5437 assert(unpaddedIndex == 0); 5438 Builder.CreateStore(elt, eltAddr); 5439 } 5440 // FALLTHROUGH 5441 LLVM_FALLTHROUGH; 5442 } 5443 5444 case ABIArgInfo::InAlloca: 5445 case ABIArgInfo::Indirect: { 5446 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5447 if (UnusedReturnSizePtr) 5448 PopCleanupBlock(); 5449 return ret; 5450 } 5451 5452 case ABIArgInfo::Ignore: 5453 // If we are ignoring an argument that had a result, make sure to 5454 // construct the appropriate return value for our caller. 5455 return GetUndefRValue(RetTy); 5456 5457 case ABIArgInfo::Extend: 5458 case ABIArgInfo::Direct: { 5459 llvm::Type *RetIRTy = ConvertType(RetTy); 5460 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5461 switch (getEvaluationKind(RetTy)) { 5462 case TEK_Complex: { 5463 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5464 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5465 return RValue::getComplex(std::make_pair(Real, Imag)); 5466 } 5467 case TEK_Aggregate: { 5468 Address DestPtr = ReturnValue.getValue(); 5469 bool DestIsVolatile = ReturnValue.isVolatile(); 5470 5471 if (!DestPtr.isValid()) { 5472 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5473 DestIsVolatile = false; 5474 } 5475 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5476 return RValue::getAggregate(DestPtr); 5477 } 5478 case TEK_Scalar: { 5479 // If the argument doesn't match, perform a bitcast to coerce it. This 5480 // can happen due to trivial type mismatches. 5481 llvm::Value *V = CI; 5482 if (V->getType() != RetIRTy) 5483 V = Builder.CreateBitCast(V, RetIRTy); 5484 return RValue::get(V); 5485 } 5486 } 5487 llvm_unreachable("bad evaluation kind"); 5488 } 5489 5490 Address DestPtr = ReturnValue.getValue(); 5491 bool DestIsVolatile = ReturnValue.isVolatile(); 5492 5493 if (!DestPtr.isValid()) { 5494 DestPtr = CreateMemTemp(RetTy, "coerce"); 5495 DestIsVolatile = false; 5496 } 5497 5498 // If the value is offset in memory, apply the offset now. 5499 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5500 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5501 5502 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5503 } 5504 5505 case ABIArgInfo::Expand: 5506 case ABIArgInfo::IndirectAliased: 5507 llvm_unreachable("Invalid ABI kind for return argument"); 5508 } 5509 5510 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5511 } (); 5512 5513 // Emit the assume_aligned check on the return value. 5514 if (Ret.isScalar() && TargetDecl) { 5515 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5516 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5517 } 5518 5519 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5520 // we can't use the full cleanup mechanism. 5521 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5522 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5523 5524 if (!ReturnValue.isExternallyDestructed() && 5525 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5526 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5527 RetTy); 5528 5529 return Ret; 5530 } 5531 5532 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5533 if (isVirtual()) { 5534 const CallExpr *CE = getVirtualCallExpr(); 5535 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5536 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5537 CE ? CE->getBeginLoc() : SourceLocation()); 5538 } 5539 5540 return *this; 5541 } 5542 5543 /* VarArg handling */ 5544 5545 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5546 VAListAddr = VE->isMicrosoftABI() 5547 ? EmitMSVAListRef(VE->getSubExpr()) 5548 : EmitVAListRef(VE->getSubExpr()); 5549 QualType Ty = VE->getType(); 5550 if (VE->isMicrosoftABI()) 5551 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5552 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5553 } 5554