1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 using namespace clang;
35 using namespace CodeGen;
36 
37 /***/
38 
39 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
40   switch (CC) {
41   default: return llvm::CallingConv::C;
42   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
43   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
44   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
45   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
46   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
47   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
48   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
49   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
50   // TODO: Add support for __pascal to LLVM.
51   case CC_X86Pascal: return llvm::CallingConv::C;
52   // TODO: Add support for __vectorcall to LLVM.
53   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
54   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
55   case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL;
56   }
57 }
58 
59 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
60 /// qualification.
61 /// FIXME: address space qualification?
62 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
63   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
64   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
65 }
66 
67 /// Returns the canonical formal type of the given C++ method.
68 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
69   return MD->getType()->getCanonicalTypeUnqualified()
70            .getAs<FunctionProtoType>();
71 }
72 
73 /// Returns the "extra-canonicalized" return type, which discards
74 /// qualifiers on the return type.  Codegen doesn't care about them,
75 /// and it makes ABI code a little easier to be able to assume that
76 /// all parameter and return types are top-level unqualified.
77 static CanQualType GetReturnType(QualType RetTy) {
78   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
79 }
80 
81 /// Arrange the argument and result information for a value of the given
82 /// unprototyped freestanding function type.
83 const CGFunctionInfo &
84 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
85   // When translating an unprototyped function type, always use a
86   // variadic type.
87   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
88                                  /*instanceMethod=*/false,
89                                  /*chainCall=*/false, None,
90                                  FTNP->getExtInfo(), RequiredArgs(0));
91 }
92 
93 /// Arrange the LLVM function layout for a value of the given function
94 /// type, on top of any implicit parameters already stored.
95 static const CGFunctionInfo &
96 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
97                         SmallVectorImpl<CanQualType> &prefix,
98                         CanQual<FunctionProtoType> FTP) {
99   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
100   // FIXME: Kill copy.
101   for (unsigned i = 0, e = FTP->getNumParams(); i != e; ++i)
102     prefix.push_back(FTP->getParamType(i));
103   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
104   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
105                                      /*chainCall=*/false, prefix,
106                                      FTP->getExtInfo(), required);
107 }
108 
109 /// Arrange the argument and result information for a value of the
110 /// given freestanding function type.
111 const CGFunctionInfo &
112 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
113   SmallVector<CanQualType, 16> argTypes;
114   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
115                                    FTP);
116 }
117 
118 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
119   // Set the appropriate calling convention for the Function.
120   if (D->hasAttr<StdCallAttr>())
121     return CC_X86StdCall;
122 
123   if (D->hasAttr<FastCallAttr>())
124     return CC_X86FastCall;
125 
126   if (D->hasAttr<ThisCallAttr>())
127     return CC_X86ThisCall;
128 
129   if (D->hasAttr<VectorCallAttr>())
130     return CC_X86VectorCall;
131 
132   if (D->hasAttr<PascalAttr>())
133     return CC_X86Pascal;
134 
135   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
136     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
137 
138   if (D->hasAttr<IntelOclBiccAttr>())
139     return CC_IntelOclBicc;
140 
141   if (D->hasAttr<MSABIAttr>())
142     return IsWindows ? CC_C : CC_X86_64Win64;
143 
144   if (D->hasAttr<SysVABIAttr>())
145     return IsWindows ? CC_X86_64SysV : CC_C;
146 
147   return CC_C;
148 }
149 
150 /// Arrange the argument and result information for a call to an
151 /// unknown C++ non-static member function of the given abstract type.
152 /// (Zero value of RD means we don't have any meaningful "this" argument type,
153 ///  so fall back to a generic pointer type).
154 /// The member function must be an ordinary function, i.e. not a
155 /// constructor or destructor.
156 const CGFunctionInfo &
157 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
158                                    const FunctionProtoType *FTP) {
159   SmallVector<CanQualType, 16> argTypes;
160 
161   // Add the 'this' pointer.
162   if (RD)
163     argTypes.push_back(GetThisType(Context, RD));
164   else
165     argTypes.push_back(Context.VoidPtrTy);
166 
167   return ::arrangeLLVMFunctionInfo(
168       *this, true, argTypes,
169       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
170 }
171 
172 /// Arrange the argument and result information for a declaration or
173 /// definition of the given C++ non-static member function.  The
174 /// member function must be an ordinary function, i.e. not a
175 /// constructor or destructor.
176 const CGFunctionInfo &
177 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
178   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
179   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
180 
181   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
182 
183   if (MD->isInstance()) {
184     // The abstract case is perfectly fine.
185     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
186     return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
187   }
188 
189   return arrangeFreeFunctionType(prototype);
190 }
191 
192 const CGFunctionInfo &
193 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
194                                             StructorType Type) {
195 
196   SmallVector<CanQualType, 16> argTypes;
197   argTypes.push_back(GetThisType(Context, MD->getParent()));
198 
199   GlobalDecl GD;
200   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
201     GD = GlobalDecl(CD, toCXXCtorType(Type));
202   } else {
203     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
204     GD = GlobalDecl(DD, toCXXDtorType(Type));
205   }
206 
207   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
208 
209   // Add the formal parameters.
210   for (unsigned i = 0, e = FTP->getNumParams(); i != e; ++i)
211     argTypes.push_back(FTP->getParamType(i));
212 
213   TheCXXABI.buildStructorSignature(MD, Type, argTypes);
214 
215   RequiredArgs required =
216       (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
217 
218   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
219   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
220                                ? argTypes.front()
221                                : TheCXXABI.hasMostDerivedReturn(GD)
222                                      ? CGM.getContext().VoidPtrTy
223                                      : Context.VoidTy;
224   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
225                                  /*chainCall=*/false, argTypes, extInfo,
226                                  required);
227 }
228 
229 /// Arrange a call to a C++ method, passing the given arguments.
230 const CGFunctionInfo &
231 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
232                                         const CXXConstructorDecl *D,
233                                         CXXCtorType CtorKind,
234                                         unsigned ExtraArgs) {
235   // FIXME: Kill copy.
236   SmallVector<CanQualType, 16> ArgTypes;
237   for (const auto &Arg : args)
238     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
239 
240   CanQual<FunctionProtoType> FPT = GetFormalType(D);
241   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
242   GlobalDecl GD(D, CtorKind);
243   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
244                                ? ArgTypes.front()
245                                : TheCXXABI.hasMostDerivedReturn(GD)
246                                      ? CGM.getContext().VoidPtrTy
247                                      : Context.VoidTy;
248 
249   FunctionType::ExtInfo Info = FPT->getExtInfo();
250   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
251                                  /*chainCall=*/false, ArgTypes, Info,
252                                  Required);
253 }
254 
255 /// Arrange the argument and result information for the declaration or
256 /// definition of the given function.
257 const CGFunctionInfo &
258 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
259   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
260     if (MD->isInstance())
261       return arrangeCXXMethodDeclaration(MD);
262 
263   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
264 
265   assert(isa<FunctionType>(FTy));
266 
267   // When declaring a function without a prototype, always use a
268   // non-variadic type.
269   if (isa<FunctionNoProtoType>(FTy)) {
270     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
271     return arrangeLLVMFunctionInfo(
272         noProto->getReturnType(), /*instanceMethod=*/false,
273         /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All);
274   }
275 
276   assert(isa<FunctionProtoType>(FTy));
277   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
278 }
279 
280 /// Arrange the argument and result information for the declaration or
281 /// definition of an Objective-C method.
282 const CGFunctionInfo &
283 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
284   // It happens that this is the same as a call with no optional
285   // arguments, except also using the formal 'self' type.
286   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
287 }
288 
289 /// Arrange the argument and result information for the function type
290 /// through which to perform a send to the given Objective-C method,
291 /// using the given receiver type.  The receiver type is not always
292 /// the 'self' type of the method or even an Objective-C pointer type.
293 /// This is *not* the right method for actually performing such a
294 /// message send, due to the possibility of optional arguments.
295 const CGFunctionInfo &
296 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
297                                               QualType receiverType) {
298   SmallVector<CanQualType, 16> argTys;
299   argTys.push_back(Context.getCanonicalParamType(receiverType));
300   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
301   // FIXME: Kill copy?
302   for (const auto *I : MD->params()) {
303     argTys.push_back(Context.getCanonicalParamType(I->getType()));
304   }
305 
306   FunctionType::ExtInfo einfo;
307   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
308   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
309 
310   if (getContext().getLangOpts().ObjCAutoRefCount &&
311       MD->hasAttr<NSReturnsRetainedAttr>())
312     einfo = einfo.withProducesResult(true);
313 
314   RequiredArgs required =
315     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
316 
317   return arrangeLLVMFunctionInfo(
318       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
319       /*chainCall=*/false, argTys, einfo, required);
320 }
321 
322 const CGFunctionInfo &
323 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
324   // FIXME: Do we need to handle ObjCMethodDecl?
325   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
326 
327   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
328     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
329 
330   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
331     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
332 
333   return arrangeFunctionDeclaration(FD);
334 }
335 
336 /// Arrange a thunk that takes 'this' as the first parameter followed by
337 /// varargs.  Return a void pointer, regardless of the actual return type.
338 /// The body of the thunk will end in a musttail call to a function of the
339 /// correct type, and the caller will bitcast the function to the correct
340 /// prototype.
341 const CGFunctionInfo &
342 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
343   assert(MD->isVirtual() && "only virtual memptrs have thunks");
344   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
345   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
346   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
347                                  /*chainCall=*/false, ArgTys,
348                                  FTP->getExtInfo(), RequiredArgs(1));
349 }
350 
351 /// Arrange a call as unto a free function, except possibly with an
352 /// additional number of formal parameters considered required.
353 static const CGFunctionInfo &
354 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
355                             CodeGenModule &CGM,
356                             const CallArgList &args,
357                             const FunctionType *fnType,
358                             unsigned numExtraRequiredArgs,
359                             bool chainCall) {
360   assert(args.size() >= numExtraRequiredArgs);
361 
362   // In most cases, there are no optional arguments.
363   RequiredArgs required = RequiredArgs::All;
364 
365   // If we have a variadic prototype, the required arguments are the
366   // extra prefix plus the arguments in the prototype.
367   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
368     if (proto->isVariadic())
369       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
370 
371   // If we don't have a prototype at all, but we're supposed to
372   // explicitly use the variadic convention for unprototyped calls,
373   // treat all of the arguments as required but preserve the nominal
374   // possibility of variadics.
375   } else if (CGM.getTargetCodeGenInfo()
376                 .isNoProtoCallVariadic(args,
377                                        cast<FunctionNoProtoType>(fnType))) {
378     required = RequiredArgs(args.size());
379   }
380 
381   // FIXME: Kill copy.
382   SmallVector<CanQualType, 16> argTypes;
383   for (const auto &arg : args)
384     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
385   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
386                                      /*instanceMethod=*/false, chainCall,
387                                      argTypes, fnType->getExtInfo(), required);
388 }
389 
390 /// Figure out the rules for calling a function with the given formal
391 /// type using the given arguments.  The arguments are necessary
392 /// because the function might be unprototyped, in which case it's
393 /// target-dependent in crazy ways.
394 const CGFunctionInfo &
395 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
396                                       const FunctionType *fnType,
397                                       bool chainCall) {
398   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
399                                      chainCall ? 1 : 0, chainCall);
400 }
401 
402 /// A block function call is essentially a free-function call with an
403 /// extra implicit argument.
404 const CGFunctionInfo &
405 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
406                                        const FunctionType *fnType) {
407   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
408                                      /*chainCall=*/false);
409 }
410 
411 const CGFunctionInfo &
412 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
413                                       const CallArgList &args,
414                                       FunctionType::ExtInfo info,
415                                       RequiredArgs required) {
416   // FIXME: Kill copy.
417   SmallVector<CanQualType, 16> argTypes;
418   for (const auto &Arg : args)
419     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
420   return arrangeLLVMFunctionInfo(
421       GetReturnType(resultType), /*instanceMethod=*/false,
422       /*chainCall=*/false, argTypes, info, required);
423 }
424 
425 /// Arrange a call to a C++ method, passing the given arguments.
426 const CGFunctionInfo &
427 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
428                                    const FunctionProtoType *FPT,
429                                    RequiredArgs required) {
430   // FIXME: Kill copy.
431   SmallVector<CanQualType, 16> argTypes;
432   for (const auto &Arg : args)
433     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
434 
435   FunctionType::ExtInfo info = FPT->getExtInfo();
436   return arrangeLLVMFunctionInfo(
437       GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true,
438       /*chainCall=*/false, argTypes, info, required);
439 }
440 
441 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
442     QualType resultType, const FunctionArgList &args,
443     const FunctionType::ExtInfo &info, bool isVariadic) {
444   // FIXME: Kill copy.
445   SmallVector<CanQualType, 16> argTypes;
446   for (auto Arg : args)
447     argTypes.push_back(Context.getCanonicalParamType(Arg->getType()));
448 
449   RequiredArgs required =
450     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
451   return arrangeLLVMFunctionInfo(
452       GetReturnType(resultType), /*instanceMethod=*/false,
453       /*chainCall=*/false, argTypes, info, required);
454 }
455 
456 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
457   return arrangeLLVMFunctionInfo(
458       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
459       None, FunctionType::ExtInfo(), RequiredArgs::All);
460 }
461 
462 /// Arrange the argument and result information for an abstract value
463 /// of a given function type.  This is the method which all of the
464 /// above functions ultimately defer to.
465 const CGFunctionInfo &
466 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
467                                       bool instanceMethod,
468                                       bool chainCall,
469                                       ArrayRef<CanQualType> argTypes,
470                                       FunctionType::ExtInfo info,
471                                       RequiredArgs required) {
472   assert(std::all_of(argTypes.begin(), argTypes.end(),
473                      std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
474 
475   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
476 
477   // Lookup or create unique function info.
478   llvm::FoldingSetNodeID ID;
479   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required,
480                           resultType, argTypes);
481 
482   void *insertPos = nullptr;
483   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
484   if (FI)
485     return *FI;
486 
487   // Construct the function info.  We co-allocate the ArgInfos.
488   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
489                               resultType, argTypes, required);
490   FunctionInfos.InsertNode(FI, insertPos);
491 
492   bool inserted = FunctionsBeingProcessed.insert(FI).second;
493   (void)inserted;
494   assert(inserted && "Recursively being processed?");
495 
496   // Compute ABI information.
497   getABIInfo().computeInfo(*FI);
498 
499   // Loop over all of the computed argument and return value info.  If any of
500   // them are direct or extend without a specified coerce type, specify the
501   // default now.
502   ABIArgInfo &retInfo = FI->getReturnInfo();
503   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
504     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
505 
506   for (auto &I : FI->arguments())
507     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
508       I.info.setCoerceToType(ConvertType(I.type));
509 
510   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
511   assert(erased && "Not in set?");
512 
513   return *FI;
514 }
515 
516 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
517                                        bool instanceMethod,
518                                        bool chainCall,
519                                        const FunctionType::ExtInfo &info,
520                                        CanQualType resultType,
521                                        ArrayRef<CanQualType> argTypes,
522                                        RequiredArgs required) {
523   void *buffer = operator new(sizeof(CGFunctionInfo) +
524                               sizeof(ArgInfo) * (argTypes.size() + 1));
525   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
526   FI->CallingConvention = llvmCC;
527   FI->EffectiveCallingConvention = llvmCC;
528   FI->ASTCallingConvention = info.getCC();
529   FI->InstanceMethod = instanceMethod;
530   FI->ChainCall = chainCall;
531   FI->NoReturn = info.getNoReturn();
532   FI->ReturnsRetained = info.getProducesResult();
533   FI->Required = required;
534   FI->HasRegParm = info.getHasRegParm();
535   FI->RegParm = info.getRegParm();
536   FI->ArgStruct = nullptr;
537   FI->NumArgs = argTypes.size();
538   FI->getArgsBuffer()[0].type = resultType;
539   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
540     FI->getArgsBuffer()[i + 1].type = argTypes[i];
541   return FI;
542 }
543 
544 /***/
545 
546 namespace {
547 // ABIArgInfo::Expand implementation.
548 
549 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
550 struct TypeExpansion {
551   enum TypeExpansionKind {
552     // Elements of constant arrays are expanded recursively.
553     TEK_ConstantArray,
554     // Record fields are expanded recursively (but if record is a union, only
555     // the field with the largest size is expanded).
556     TEK_Record,
557     // For complex types, real and imaginary parts are expanded recursively.
558     TEK_Complex,
559     // All other types are not expandable.
560     TEK_None
561   };
562 
563   const TypeExpansionKind Kind;
564 
565   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
566   virtual ~TypeExpansion() {}
567 };
568 
569 struct ConstantArrayExpansion : TypeExpansion {
570   QualType EltTy;
571   uint64_t NumElts;
572 
573   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
574       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
575   static bool classof(const TypeExpansion *TE) {
576     return TE->Kind == TEK_ConstantArray;
577   }
578 };
579 
580 struct RecordExpansion : TypeExpansion {
581   SmallVector<const CXXBaseSpecifier *, 1> Bases;
582 
583   SmallVector<const FieldDecl *, 1> Fields;
584 
585   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
586                   SmallVector<const FieldDecl *, 1> &&Fields)
587       : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {}
588   static bool classof(const TypeExpansion *TE) {
589     return TE->Kind == TEK_Record;
590   }
591 };
592 
593 struct ComplexExpansion : TypeExpansion {
594   QualType EltTy;
595 
596   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
597   static bool classof(const TypeExpansion *TE) {
598     return TE->Kind == TEK_Complex;
599   }
600 };
601 
602 struct NoExpansion : TypeExpansion {
603   NoExpansion() : TypeExpansion(TEK_None) {}
604   static bool classof(const TypeExpansion *TE) {
605     return TE->Kind == TEK_None;
606   }
607 };
608 }  // namespace
609 
610 static std::unique_ptr<TypeExpansion>
611 getTypeExpansion(QualType Ty, const ASTContext &Context) {
612   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
613     return llvm::make_unique<ConstantArrayExpansion>(
614         AT->getElementType(), AT->getSize().getZExtValue());
615   }
616   if (const RecordType *RT = Ty->getAs<RecordType>()) {
617     SmallVector<const CXXBaseSpecifier *, 1> Bases;
618     SmallVector<const FieldDecl *, 1> Fields;
619     const RecordDecl *RD = RT->getDecl();
620     assert(!RD->hasFlexibleArrayMember() &&
621            "Cannot expand structure with flexible array.");
622     if (RD->isUnion()) {
623       // Unions can be here only in degenerative cases - all the fields are same
624       // after flattening. Thus we have to use the "largest" field.
625       const FieldDecl *LargestFD = nullptr;
626       CharUnits UnionSize = CharUnits::Zero();
627 
628       for (const auto *FD : RD->fields()) {
629         // Skip zero length bitfields.
630         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
631           continue;
632         assert(!FD->isBitField() &&
633                "Cannot expand structure with bit-field members.");
634         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
635         if (UnionSize < FieldSize) {
636           UnionSize = FieldSize;
637           LargestFD = FD;
638         }
639       }
640       if (LargestFD)
641         Fields.push_back(LargestFD);
642     } else {
643       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
644         assert(!CXXRD->isDynamicClass() &&
645                "cannot expand vtable pointers in dynamic classes");
646         for (const CXXBaseSpecifier &BS : CXXRD->bases())
647           Bases.push_back(&BS);
648       }
649 
650       for (const auto *FD : RD->fields()) {
651         // Skip zero length bitfields.
652         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
653           continue;
654         assert(!FD->isBitField() &&
655                "Cannot expand structure with bit-field members.");
656         Fields.push_back(FD);
657       }
658     }
659     return llvm::make_unique<RecordExpansion>(std::move(Bases),
660                                               std::move(Fields));
661   }
662   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
663     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
664   }
665   return llvm::make_unique<NoExpansion>();
666 }
667 
668 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
669   auto Exp = getTypeExpansion(Ty, Context);
670   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
671     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
672   }
673   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
674     int Res = 0;
675     for (auto BS : RExp->Bases)
676       Res += getExpansionSize(BS->getType(), Context);
677     for (auto FD : RExp->Fields)
678       Res += getExpansionSize(FD->getType(), Context);
679     return Res;
680   }
681   if (isa<ComplexExpansion>(Exp.get()))
682     return 2;
683   assert(isa<NoExpansion>(Exp.get()));
684   return 1;
685 }
686 
687 void
688 CodeGenTypes::getExpandedTypes(QualType Ty,
689                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
690   auto Exp = getTypeExpansion(Ty, Context);
691   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
692     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
693       getExpandedTypes(CAExp->EltTy, TI);
694     }
695   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
696     for (auto BS : RExp->Bases)
697       getExpandedTypes(BS->getType(), TI);
698     for (auto FD : RExp->Fields)
699       getExpandedTypes(FD->getType(), TI);
700   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
701     llvm::Type *EltTy = ConvertType(CExp->EltTy);
702     *TI++ = EltTy;
703     *TI++ = EltTy;
704   } else {
705     assert(isa<NoExpansion>(Exp.get()));
706     *TI++ = ConvertType(Ty);
707   }
708 }
709 
710 void CodeGenFunction::ExpandTypeFromArgs(
711     QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) {
712   assert(LV.isSimple() &&
713          "Unexpected non-simple lvalue during struct expansion.");
714 
715   auto Exp = getTypeExpansion(Ty, getContext());
716   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
717     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
718       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, i);
719       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
720       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
721     }
722   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
723     llvm::Value *This = LV.getAddress();
724     for (const CXXBaseSpecifier *BS : RExp->Bases) {
725       // Perform a single step derived-to-base conversion.
726       llvm::Value *Base =
727           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
728                                 /*NullCheckValue=*/false, SourceLocation());
729       LValue SubLV = MakeAddrLValue(Base, BS->getType());
730 
731       // Recurse onto bases.
732       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
733     }
734     for (auto FD : RExp->Fields) {
735       // FIXME: What are the right qualifiers here?
736       LValue SubLV = EmitLValueForField(LV, FD);
737       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
738     }
739   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
740     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
741     EmitStoreThroughLValue(RValue::get(*AI++),
742                            MakeAddrLValue(RealAddr, CExp->EltTy));
743     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
744     EmitStoreThroughLValue(RValue::get(*AI++),
745                            MakeAddrLValue(ImagAddr, CExp->EltTy));
746   } else {
747     assert(isa<NoExpansion>(Exp.get()));
748     EmitStoreThroughLValue(RValue::get(*AI++), LV);
749   }
750 }
751 
752 void CodeGenFunction::ExpandTypeToArgs(
753     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
754     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
755   auto Exp = getTypeExpansion(Ty, getContext());
756   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
757     llvm::Value *Addr = RV.getAggregateAddr();
758     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
759       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, i);
760       RValue EltRV =
761           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
762       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
763     }
764   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
765     llvm::Value *This = RV.getAggregateAddr();
766     for (const CXXBaseSpecifier *BS : RExp->Bases) {
767       // Perform a single step derived-to-base conversion.
768       llvm::Value *Base =
769           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
770                                 /*NullCheckValue=*/false, SourceLocation());
771       RValue BaseRV = RValue::getAggregate(Base);
772 
773       // Recurse onto bases.
774       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
775                        IRCallArgPos);
776     }
777 
778     LValue LV = MakeAddrLValue(This, Ty);
779     for (auto FD : RExp->Fields) {
780       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
781       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
782                        IRCallArgPos);
783     }
784   } else if (isa<ComplexExpansion>(Exp.get())) {
785     ComplexPairTy CV = RV.getComplexVal();
786     IRCallArgs[IRCallArgPos++] = CV.first;
787     IRCallArgs[IRCallArgPos++] = CV.second;
788   } else {
789     assert(isa<NoExpansion>(Exp.get()));
790     assert(RV.isScalar() &&
791            "Unexpected non-scalar rvalue during struct expansion.");
792 
793     // Insert a bitcast as needed.
794     llvm::Value *V = RV.getScalarVal();
795     if (IRCallArgPos < IRFuncTy->getNumParams() &&
796         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
797       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
798 
799     IRCallArgs[IRCallArgPos++] = V;
800   }
801 }
802 
803 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
804 /// accessing some number of bytes out of it, try to gep into the struct to get
805 /// at its inner goodness.  Dive as deep as possible without entering an element
806 /// with an in-memory size smaller than DstSize.
807 static llvm::Value *
808 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
809                                    llvm::StructType *SrcSTy,
810                                    uint64_t DstSize, CodeGenFunction &CGF) {
811   // We can't dive into a zero-element struct.
812   if (SrcSTy->getNumElements() == 0) return SrcPtr;
813 
814   llvm::Type *FirstElt = SrcSTy->getElementType(0);
815 
816   // If the first elt is at least as large as what we're looking for, or if the
817   // first element is the same size as the whole struct, we can enter it. The
818   // comparison must be made on the store size and not the alloca size. Using
819   // the alloca size may overstate the size of the load.
820   uint64_t FirstEltSize =
821     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
822   if (FirstEltSize < DstSize &&
823       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
824     return SrcPtr;
825 
826   // GEP into the first element.
827   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
828 
829   // If the first element is a struct, recurse.
830   llvm::Type *SrcTy =
831     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
832   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
833     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
834 
835   return SrcPtr;
836 }
837 
838 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
839 /// are either integers or pointers.  This does a truncation of the value if it
840 /// is too large or a zero extension if it is too small.
841 ///
842 /// This behaves as if the value were coerced through memory, so on big-endian
843 /// targets the high bits are preserved in a truncation, while little-endian
844 /// targets preserve the low bits.
845 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
846                                              llvm::Type *Ty,
847                                              CodeGenFunction &CGF) {
848   if (Val->getType() == Ty)
849     return Val;
850 
851   if (isa<llvm::PointerType>(Val->getType())) {
852     // If this is Pointer->Pointer avoid conversion to and from int.
853     if (isa<llvm::PointerType>(Ty))
854       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
855 
856     // Convert the pointer to an integer so we can play with its width.
857     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
858   }
859 
860   llvm::Type *DestIntTy = Ty;
861   if (isa<llvm::PointerType>(DestIntTy))
862     DestIntTy = CGF.IntPtrTy;
863 
864   if (Val->getType() != DestIntTy) {
865     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
866     if (DL.isBigEndian()) {
867       // Preserve the high bits on big-endian targets.
868       // That is what memory coercion does.
869       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
870       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
871 
872       if (SrcSize > DstSize) {
873         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
874         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
875       } else {
876         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
877         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
878       }
879     } else {
880       // Little-endian targets preserve the low bits. No shifts required.
881       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
882     }
883   }
884 
885   if (isa<llvm::PointerType>(Ty))
886     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
887   return Val;
888 }
889 
890 
891 
892 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
893 /// a pointer to an object of type \arg Ty.
894 ///
895 /// This safely handles the case when the src type is smaller than the
896 /// destination type; in this situation the values of bits which not
897 /// present in the src are undefined.
898 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
899                                       llvm::Type *Ty,
900                                       CodeGenFunction &CGF) {
901   llvm::Type *SrcTy =
902     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
903 
904   // If SrcTy and Ty are the same, just do a load.
905   if (SrcTy == Ty)
906     return CGF.Builder.CreateLoad(SrcPtr);
907 
908   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
909 
910   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
911     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
912     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
913   }
914 
915   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
916 
917   // If the source and destination are integer or pointer types, just do an
918   // extension or truncation to the desired type.
919   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
920       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
921     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
922     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
923   }
924 
925   // If load is legal, just bitcast the src pointer.
926   if (SrcSize >= DstSize) {
927     // Generally SrcSize is never greater than DstSize, since this means we are
928     // losing bits. However, this can happen in cases where the structure has
929     // additional padding, for example due to a user specified alignment.
930     //
931     // FIXME: Assert that we aren't truncating non-padding bits when have access
932     // to that information.
933     llvm::Value *Casted =
934       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
935     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
936     // FIXME: Use better alignment / avoid requiring aligned load.
937     Load->setAlignment(1);
938     return Load;
939   }
940 
941   // Otherwise do coercion through memory. This is stupid, but
942   // simple.
943   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
944   llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
945   llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
946   llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
947   // FIXME: Use better alignment.
948   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
949       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
950       1, false);
951   return CGF.Builder.CreateLoad(Tmp);
952 }
953 
954 // Function to store a first-class aggregate into memory.  We prefer to
955 // store the elements rather than the aggregate to be more friendly to
956 // fast-isel.
957 // FIXME: Do we need to recurse here?
958 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
959                           llvm::Value *DestPtr, bool DestIsVolatile,
960                           bool LowAlignment) {
961   // Prefer scalar stores to first-class aggregate stores.
962   if (llvm::StructType *STy =
963         dyn_cast<llvm::StructType>(Val->getType())) {
964     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
965       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
966       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
967       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
968                                                     DestIsVolatile);
969       if (LowAlignment)
970         SI->setAlignment(1);
971     }
972   } else {
973     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
974     if (LowAlignment)
975       SI->setAlignment(1);
976   }
977 }
978 
979 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
980 /// where the source and destination may have different types.
981 ///
982 /// This safely handles the case when the src type is larger than the
983 /// destination type; the upper bits of the src will be lost.
984 static void CreateCoercedStore(llvm::Value *Src,
985                                llvm::Value *DstPtr,
986                                bool DstIsVolatile,
987                                CodeGenFunction &CGF) {
988   llvm::Type *SrcTy = Src->getType();
989   llvm::Type *DstTy =
990     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
991   if (SrcTy == DstTy) {
992     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
993     return;
994   }
995 
996   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
997 
998   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
999     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
1000     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
1001   }
1002 
1003   // If the source and destination are integer or pointer types, just do an
1004   // extension or truncation to the desired type.
1005   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1006       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1007     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1008     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
1009     return;
1010   }
1011 
1012   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1013 
1014   // If store is legal, just bitcast the src pointer.
1015   if (SrcSize <= DstSize) {
1016     llvm::Value *Casted =
1017       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
1018     // FIXME: Use better alignment / avoid requiring aligned store.
1019     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
1020   } else {
1021     // Otherwise do coercion through memory. This is stupid, but
1022     // simple.
1023 
1024     // Generally SrcSize is never greater than DstSize, since this means we are
1025     // losing bits. However, this can happen in cases where the structure has
1026     // additional padding, for example due to a user specified alignment.
1027     //
1028     // FIXME: Assert that we aren't truncating non-padding bits when have access
1029     // to that information.
1030     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
1031     CGF.Builder.CreateStore(Src, Tmp);
1032     llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
1033     llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
1034     llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
1035     // FIXME: Use better alignment.
1036     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1037         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1038         1, false);
1039   }
1040 }
1041 
1042 namespace {
1043 
1044 /// Encapsulates information about the way function arguments from
1045 /// CGFunctionInfo should be passed to actual LLVM IR function.
1046 class ClangToLLVMArgMapping {
1047   static const unsigned InvalidIndex = ~0U;
1048   unsigned InallocaArgNo;
1049   unsigned SRetArgNo;
1050   unsigned TotalIRArgs;
1051 
1052   /// Arguments of LLVM IR function corresponding to single Clang argument.
1053   struct IRArgs {
1054     unsigned PaddingArgIndex;
1055     // Argument is expanded to IR arguments at positions
1056     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1057     unsigned FirstArgIndex;
1058     unsigned NumberOfArgs;
1059 
1060     IRArgs()
1061         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1062           NumberOfArgs(0) {}
1063   };
1064 
1065   SmallVector<IRArgs, 8> ArgInfo;
1066 
1067 public:
1068   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1069                         bool OnlyRequiredArgs = false)
1070       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1071         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1072     construct(Context, FI, OnlyRequiredArgs);
1073   }
1074 
1075   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1076   unsigned getInallocaArgNo() const {
1077     assert(hasInallocaArg());
1078     return InallocaArgNo;
1079   }
1080 
1081   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1082   unsigned getSRetArgNo() const {
1083     assert(hasSRetArg());
1084     return SRetArgNo;
1085   }
1086 
1087   unsigned totalIRArgs() const { return TotalIRArgs; }
1088 
1089   bool hasPaddingArg(unsigned ArgNo) const {
1090     assert(ArgNo < ArgInfo.size());
1091     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1092   }
1093   unsigned getPaddingArgNo(unsigned ArgNo) const {
1094     assert(hasPaddingArg(ArgNo));
1095     return ArgInfo[ArgNo].PaddingArgIndex;
1096   }
1097 
1098   /// Returns index of first IR argument corresponding to ArgNo, and their
1099   /// quantity.
1100   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1101     assert(ArgNo < ArgInfo.size());
1102     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1103                           ArgInfo[ArgNo].NumberOfArgs);
1104   }
1105 
1106 private:
1107   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1108                  bool OnlyRequiredArgs);
1109 };
1110 
1111 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1112                                       const CGFunctionInfo &FI,
1113                                       bool OnlyRequiredArgs) {
1114   unsigned IRArgNo = 0;
1115   bool SwapThisWithSRet = false;
1116   const ABIArgInfo &RetAI = FI.getReturnInfo();
1117 
1118   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1119     SwapThisWithSRet = RetAI.isSRetAfterThis();
1120     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1121   }
1122 
1123   unsigned ArgNo = 0;
1124   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1125   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1126        ++I, ++ArgNo) {
1127     assert(I != FI.arg_end());
1128     QualType ArgType = I->type;
1129     const ABIArgInfo &AI = I->info;
1130     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1131     auto &IRArgs = ArgInfo[ArgNo];
1132 
1133     if (AI.getPaddingType())
1134       IRArgs.PaddingArgIndex = IRArgNo++;
1135 
1136     switch (AI.getKind()) {
1137     case ABIArgInfo::Extend:
1138     case ABIArgInfo::Direct: {
1139       // FIXME: handle sseregparm someday...
1140       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1141       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1142         IRArgs.NumberOfArgs = STy->getNumElements();
1143       } else {
1144         IRArgs.NumberOfArgs = 1;
1145       }
1146       break;
1147     }
1148     case ABIArgInfo::Indirect:
1149       IRArgs.NumberOfArgs = 1;
1150       break;
1151     case ABIArgInfo::Ignore:
1152     case ABIArgInfo::InAlloca:
1153       // ignore and inalloca doesn't have matching LLVM parameters.
1154       IRArgs.NumberOfArgs = 0;
1155       break;
1156     case ABIArgInfo::Expand: {
1157       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1158       break;
1159     }
1160     }
1161 
1162     if (IRArgs.NumberOfArgs > 0) {
1163       IRArgs.FirstArgIndex = IRArgNo;
1164       IRArgNo += IRArgs.NumberOfArgs;
1165     }
1166 
1167     // Skip over the sret parameter when it comes second.  We already handled it
1168     // above.
1169     if (IRArgNo == 1 && SwapThisWithSRet)
1170       IRArgNo++;
1171   }
1172   assert(ArgNo == ArgInfo.size());
1173 
1174   if (FI.usesInAlloca())
1175     InallocaArgNo = IRArgNo++;
1176 
1177   TotalIRArgs = IRArgNo;
1178 }
1179 }  // namespace
1180 
1181 /***/
1182 
1183 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1184   return FI.getReturnInfo().isIndirect();
1185 }
1186 
1187 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1188   return ReturnTypeUsesSRet(FI) &&
1189          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1190 }
1191 
1192 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1193   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1194     switch (BT->getKind()) {
1195     default:
1196       return false;
1197     case BuiltinType::Float:
1198       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1199     case BuiltinType::Double:
1200       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1201     case BuiltinType::LongDouble:
1202       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1203     }
1204   }
1205 
1206   return false;
1207 }
1208 
1209 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1210   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1211     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1212       if (BT->getKind() == BuiltinType::LongDouble)
1213         return getTarget().useObjCFP2RetForComplexLongDouble();
1214     }
1215   }
1216 
1217   return false;
1218 }
1219 
1220 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1221   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1222   return GetFunctionType(FI);
1223 }
1224 
1225 llvm::FunctionType *
1226 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1227 
1228   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1229   (void)Inserted;
1230   assert(Inserted && "Recursively being processed?");
1231 
1232   llvm::Type *resultType = nullptr;
1233   const ABIArgInfo &retAI = FI.getReturnInfo();
1234   switch (retAI.getKind()) {
1235   case ABIArgInfo::Expand:
1236     llvm_unreachable("Invalid ABI kind for return argument");
1237 
1238   case ABIArgInfo::Extend:
1239   case ABIArgInfo::Direct:
1240     resultType = retAI.getCoerceToType();
1241     break;
1242 
1243   case ABIArgInfo::InAlloca:
1244     if (retAI.getInAllocaSRet()) {
1245       // sret things on win32 aren't void, they return the sret pointer.
1246       QualType ret = FI.getReturnType();
1247       llvm::Type *ty = ConvertType(ret);
1248       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1249       resultType = llvm::PointerType::get(ty, addressSpace);
1250     } else {
1251       resultType = llvm::Type::getVoidTy(getLLVMContext());
1252     }
1253     break;
1254 
1255   case ABIArgInfo::Indirect: {
1256     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
1257     resultType = llvm::Type::getVoidTy(getLLVMContext());
1258     break;
1259   }
1260 
1261   case ABIArgInfo::Ignore:
1262     resultType = llvm::Type::getVoidTy(getLLVMContext());
1263     break;
1264   }
1265 
1266   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1267   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1268 
1269   // Add type for sret argument.
1270   if (IRFunctionArgs.hasSRetArg()) {
1271     QualType Ret = FI.getReturnType();
1272     llvm::Type *Ty = ConvertType(Ret);
1273     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1274     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1275         llvm::PointerType::get(Ty, AddressSpace);
1276   }
1277 
1278   // Add type for inalloca argument.
1279   if (IRFunctionArgs.hasInallocaArg()) {
1280     auto ArgStruct = FI.getArgStruct();
1281     assert(ArgStruct);
1282     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1283   }
1284 
1285   // Add in all of the required arguments.
1286   unsigned ArgNo = 0;
1287   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1288                                      ie = it + FI.getNumRequiredArgs();
1289   for (; it != ie; ++it, ++ArgNo) {
1290     const ABIArgInfo &ArgInfo = it->info;
1291 
1292     // Insert a padding type to ensure proper alignment.
1293     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1294       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1295           ArgInfo.getPaddingType();
1296 
1297     unsigned FirstIRArg, NumIRArgs;
1298     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1299 
1300     switch (ArgInfo.getKind()) {
1301     case ABIArgInfo::Ignore:
1302     case ABIArgInfo::InAlloca:
1303       assert(NumIRArgs == 0);
1304       break;
1305 
1306     case ABIArgInfo::Indirect: {
1307       assert(NumIRArgs == 1);
1308       // indirect arguments are always on the stack, which is addr space #0.
1309       llvm::Type *LTy = ConvertTypeForMem(it->type);
1310       ArgTypes[FirstIRArg] = LTy->getPointerTo();
1311       break;
1312     }
1313 
1314     case ABIArgInfo::Extend:
1315     case ABIArgInfo::Direct: {
1316       // Fast-isel and the optimizer generally like scalar values better than
1317       // FCAs, so we flatten them if this is safe to do for this argument.
1318       llvm::Type *argType = ArgInfo.getCoerceToType();
1319       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1320       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1321         assert(NumIRArgs == st->getNumElements());
1322         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1323           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1324       } else {
1325         assert(NumIRArgs == 1);
1326         ArgTypes[FirstIRArg] = argType;
1327       }
1328       break;
1329     }
1330 
1331     case ABIArgInfo::Expand:
1332       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1333       getExpandedTypes(it->type, ArgTypesIter);
1334       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1335       break;
1336     }
1337   }
1338 
1339   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1340   assert(Erased && "Not in set?");
1341 
1342   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1343 }
1344 
1345 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1346   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1347   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1348 
1349   if (!isFuncTypeConvertible(FPT))
1350     return llvm::StructType::get(getLLVMContext());
1351 
1352   const CGFunctionInfo *Info;
1353   if (isa<CXXDestructorDecl>(MD))
1354     Info =
1355         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1356   else
1357     Info = &arrangeCXXMethodDeclaration(MD);
1358   return GetFunctionType(*Info);
1359 }
1360 
1361 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1362                                            const Decl *TargetDecl,
1363                                            AttributeListType &PAL,
1364                                            unsigned &CallingConv,
1365                                            bool AttrOnCallSite) {
1366   llvm::AttrBuilder FuncAttrs;
1367   llvm::AttrBuilder RetAttrs;
1368   bool HasOptnone = false;
1369 
1370   CallingConv = FI.getEffectiveCallingConvention();
1371 
1372   if (FI.isNoReturn())
1373     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1374 
1375   // FIXME: handle sseregparm someday...
1376   if (TargetDecl) {
1377     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1378       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1379     if (TargetDecl->hasAttr<NoThrowAttr>())
1380       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1381     if (TargetDecl->hasAttr<NoReturnAttr>())
1382       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1383     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1384       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1385 
1386     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1387       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1388       if (FPT && FPT->isNothrow(getContext()))
1389         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1390       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1391       // These attributes are not inherited by overloads.
1392       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1393       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1394         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1395     }
1396 
1397     // 'const' and 'pure' attribute functions are also nounwind.
1398     if (TargetDecl->hasAttr<ConstAttr>()) {
1399       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1400       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1401     } else if (TargetDecl->hasAttr<PureAttr>()) {
1402       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1403       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1404     }
1405     if (TargetDecl->hasAttr<RestrictAttr>())
1406       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1407     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1408       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1409 
1410     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1411   }
1412 
1413   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1414   if (!HasOptnone) {
1415     if (CodeGenOpts.OptimizeSize)
1416       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1417     if (CodeGenOpts.OptimizeSize == 2)
1418       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1419   }
1420 
1421   if (CodeGenOpts.DisableRedZone)
1422     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1423   if (CodeGenOpts.NoImplicitFloat)
1424     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1425   if (CodeGenOpts.EnableSegmentedStacks &&
1426       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1427     FuncAttrs.addAttribute("split-stack");
1428 
1429   if (AttrOnCallSite) {
1430     // Attributes that should go on the call site only.
1431     if (!CodeGenOpts.SimplifyLibCalls)
1432       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1433   } else {
1434     // Attributes that should go on the function, but not the call site.
1435     if (!CodeGenOpts.DisableFPElim) {
1436       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1437     } else if (CodeGenOpts.OmitLeafFramePointer) {
1438       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1439       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1440     } else {
1441       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1442       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1443     }
1444 
1445     FuncAttrs.addAttribute("less-precise-fpmad",
1446                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1447     FuncAttrs.addAttribute("no-infs-fp-math",
1448                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1449     FuncAttrs.addAttribute("no-nans-fp-math",
1450                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1451     FuncAttrs.addAttribute("unsafe-fp-math",
1452                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1453     FuncAttrs.addAttribute("use-soft-float",
1454                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1455     FuncAttrs.addAttribute("stack-protector-buffer-size",
1456                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1457 
1458     if (!CodeGenOpts.StackRealignment)
1459       FuncAttrs.addAttribute("no-realign-stack");
1460   }
1461 
1462   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1463 
1464   QualType RetTy = FI.getReturnType();
1465   const ABIArgInfo &RetAI = FI.getReturnInfo();
1466   switch (RetAI.getKind()) {
1467   case ABIArgInfo::Extend:
1468     if (RetTy->hasSignedIntegerRepresentation())
1469       RetAttrs.addAttribute(llvm::Attribute::SExt);
1470     else if (RetTy->hasUnsignedIntegerRepresentation())
1471       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1472     // FALL THROUGH
1473   case ABIArgInfo::Direct:
1474     if (RetAI.getInReg())
1475       RetAttrs.addAttribute(llvm::Attribute::InReg);
1476     break;
1477   case ABIArgInfo::Ignore:
1478     break;
1479 
1480   case ABIArgInfo::InAlloca:
1481   case ABIArgInfo::Indirect: {
1482     // inalloca and sret disable readnone and readonly
1483     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1484       .removeAttribute(llvm::Attribute::ReadNone);
1485     break;
1486   }
1487 
1488   case ABIArgInfo::Expand:
1489     llvm_unreachable("Invalid ABI kind for return argument");
1490   }
1491 
1492   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1493     QualType PTy = RefTy->getPointeeType();
1494     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1495       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1496                                         .getQuantity());
1497     else if (getContext().getTargetAddressSpace(PTy) == 0)
1498       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1499   }
1500 
1501   // Attach return attributes.
1502   if (RetAttrs.hasAttributes()) {
1503     PAL.push_back(llvm::AttributeSet::get(
1504         getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
1505   }
1506 
1507   // Attach attributes to sret.
1508   if (IRFunctionArgs.hasSRetArg()) {
1509     llvm::AttrBuilder SRETAttrs;
1510     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1511     if (RetAI.getInReg())
1512       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1513     PAL.push_back(llvm::AttributeSet::get(
1514         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1515   }
1516 
1517   // Attach attributes to inalloca argument.
1518   if (IRFunctionArgs.hasInallocaArg()) {
1519     llvm::AttrBuilder Attrs;
1520     Attrs.addAttribute(llvm::Attribute::InAlloca);
1521     PAL.push_back(llvm::AttributeSet::get(
1522         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1523   }
1524 
1525   unsigned ArgNo = 0;
1526   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1527                                           E = FI.arg_end();
1528        I != E; ++I, ++ArgNo) {
1529     QualType ParamType = I->type;
1530     const ABIArgInfo &AI = I->info;
1531     llvm::AttrBuilder Attrs;
1532 
1533     // Add attribute for padding argument, if necessary.
1534     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1535       if (AI.getPaddingInReg())
1536         PAL.push_back(llvm::AttributeSet::get(
1537             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1538             llvm::Attribute::InReg));
1539     }
1540 
1541     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1542     // have the corresponding parameter variable.  It doesn't make
1543     // sense to do it here because parameters are so messed up.
1544     switch (AI.getKind()) {
1545     case ABIArgInfo::Extend:
1546       if (ParamType->isSignedIntegerOrEnumerationType())
1547         Attrs.addAttribute(llvm::Attribute::SExt);
1548       else if (ParamType->isUnsignedIntegerOrEnumerationType())
1549         Attrs.addAttribute(llvm::Attribute::ZExt);
1550       // FALL THROUGH
1551     case ABIArgInfo::Direct:
1552       if (ArgNo == 0 && FI.isChainCall())
1553         Attrs.addAttribute(llvm::Attribute::Nest);
1554       else if (AI.getInReg())
1555         Attrs.addAttribute(llvm::Attribute::InReg);
1556       break;
1557 
1558     case ABIArgInfo::Indirect:
1559       if (AI.getInReg())
1560         Attrs.addAttribute(llvm::Attribute::InReg);
1561 
1562       if (AI.getIndirectByVal())
1563         Attrs.addAttribute(llvm::Attribute::ByVal);
1564 
1565       Attrs.addAlignmentAttr(AI.getIndirectAlign());
1566 
1567       // byval disables readnone and readonly.
1568       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1569         .removeAttribute(llvm::Attribute::ReadNone);
1570       break;
1571 
1572     case ABIArgInfo::Ignore:
1573     case ABIArgInfo::Expand:
1574       continue;
1575 
1576     case ABIArgInfo::InAlloca:
1577       // inalloca disables readnone and readonly.
1578       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1579           .removeAttribute(llvm::Attribute::ReadNone);
1580       continue;
1581     }
1582 
1583     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1584       QualType PTy = RefTy->getPointeeType();
1585       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1586         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1587                                        .getQuantity());
1588       else if (getContext().getTargetAddressSpace(PTy) == 0)
1589         Attrs.addAttribute(llvm::Attribute::NonNull);
1590     }
1591 
1592     if (Attrs.hasAttributes()) {
1593       unsigned FirstIRArg, NumIRArgs;
1594       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1595       for (unsigned i = 0; i < NumIRArgs; i++)
1596         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
1597                                               FirstIRArg + i + 1, Attrs));
1598     }
1599   }
1600   assert(ArgNo == FI.arg_size());
1601 
1602   if (FuncAttrs.hasAttributes())
1603     PAL.push_back(llvm::
1604                   AttributeSet::get(getLLVMContext(),
1605                                     llvm::AttributeSet::FunctionIndex,
1606                                     FuncAttrs));
1607 }
1608 
1609 /// An argument came in as a promoted argument; demote it back to its
1610 /// declared type.
1611 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1612                                          const VarDecl *var,
1613                                          llvm::Value *value) {
1614   llvm::Type *varType = CGF.ConvertType(var->getType());
1615 
1616   // This can happen with promotions that actually don't change the
1617   // underlying type, like the enum promotions.
1618   if (value->getType() == varType) return value;
1619 
1620   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1621          && "unexpected promotion type");
1622 
1623   if (isa<llvm::IntegerType>(varType))
1624     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1625 
1626   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1627 }
1628 
1629 /// Returns the attribute (either parameter attribute, or function
1630 /// attribute), which declares argument ArgNo to be non-null.
1631 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
1632                                          QualType ArgType, unsigned ArgNo) {
1633   // FIXME: __attribute__((nonnull)) can also be applied to:
1634   //   - references to pointers, where the pointee is known to be
1635   //     nonnull (apparently a Clang extension)
1636   //   - transparent unions containing pointers
1637   // In the former case, LLVM IR cannot represent the constraint. In
1638   // the latter case, we have no guarantee that the transparent union
1639   // is in fact passed as a pointer.
1640   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
1641     return nullptr;
1642   // First, check attribute on parameter itself.
1643   if (PVD) {
1644     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
1645       return ParmNNAttr;
1646   }
1647   // Check function attributes.
1648   if (!FD)
1649     return nullptr;
1650   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
1651     if (NNAttr->isNonNull(ArgNo))
1652       return NNAttr;
1653   }
1654   return nullptr;
1655 }
1656 
1657 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1658                                          llvm::Function *Fn,
1659                                          const FunctionArgList &Args) {
1660   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
1661     // Naked functions don't have prologues.
1662     return;
1663 
1664   // If this is an implicit-return-zero function, go ahead and
1665   // initialize the return value.  TODO: it might be nice to have
1666   // a more general mechanism for this that didn't require synthesized
1667   // return statements.
1668   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1669     if (FD->hasImplicitReturnZero()) {
1670       QualType RetTy = FD->getReturnType().getUnqualifiedType();
1671       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1672       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1673       Builder.CreateStore(Zero, ReturnValue);
1674     }
1675   }
1676 
1677   // FIXME: We no longer need the types from FunctionArgList; lift up and
1678   // simplify.
1679 
1680   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
1681   // Flattened function arguments.
1682   SmallVector<llvm::Argument *, 16> FnArgs;
1683   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
1684   for (auto &Arg : Fn->args()) {
1685     FnArgs.push_back(&Arg);
1686   }
1687   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
1688 
1689   // If we're using inalloca, all the memory arguments are GEPs off of the last
1690   // parameter, which is a pointer to the complete memory area.
1691   llvm::Value *ArgStruct = nullptr;
1692   if (IRFunctionArgs.hasInallocaArg()) {
1693     ArgStruct = FnArgs[IRFunctionArgs.getInallocaArgNo()];
1694     assert(ArgStruct->getType() == FI.getArgStruct()->getPointerTo());
1695   }
1696 
1697   // Name the struct return parameter.
1698   if (IRFunctionArgs.hasSRetArg()) {
1699     auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()];
1700     AI->setName("agg.result");
1701     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
1702                                         llvm::Attribute::NoAlias));
1703   }
1704 
1705   // Track if we received the parameter as a pointer (indirect, byval, or
1706   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
1707   // into a local alloca for us.
1708   enum ValOrPointer { HaveValue = 0, HavePointer = 1 };
1709   typedef llvm::PointerIntPair<llvm::Value *, 1> ValueAndIsPtr;
1710   SmallVector<ValueAndIsPtr, 16> ArgVals;
1711   ArgVals.reserve(Args.size());
1712 
1713   // Create a pointer value for every parameter declaration.  This usually
1714   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
1715   // any cleanups or do anything that might unwind.  We do that separately, so
1716   // we can push the cleanups in the correct order for the ABI.
1717   assert(FI.arg_size() == Args.size() &&
1718          "Mismatch between function signature & arguments.");
1719   unsigned ArgNo = 0;
1720   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1721   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1722        i != e; ++i, ++info_it, ++ArgNo) {
1723     const VarDecl *Arg = *i;
1724     QualType Ty = info_it->type;
1725     const ABIArgInfo &ArgI = info_it->info;
1726 
1727     bool isPromoted =
1728       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1729 
1730     unsigned FirstIRArg, NumIRArgs;
1731     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1732 
1733     switch (ArgI.getKind()) {
1734     case ABIArgInfo::InAlloca: {
1735       assert(NumIRArgs == 0);
1736       llvm::Value *V = Builder.CreateStructGEP(
1737           ArgStruct, ArgI.getInAllocaFieldIndex(), Arg->getName());
1738       ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1739       break;
1740     }
1741 
1742     case ABIArgInfo::Indirect: {
1743       assert(NumIRArgs == 1);
1744       llvm::Value *V = FnArgs[FirstIRArg];
1745 
1746       if (!hasScalarEvaluationKind(Ty)) {
1747         // Aggregates and complex variables are accessed by reference.  All we
1748         // need to do is realign the value, if requested
1749         if (ArgI.getIndirectRealign()) {
1750           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1751 
1752           // Copy from the incoming argument pointer to the temporary with the
1753           // appropriate alignment.
1754           //
1755           // FIXME: We should have a common utility for generating an aggregate
1756           // copy.
1757           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1758           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1759           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1760           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1761           Builder.CreateMemCpy(Dst,
1762                                Src,
1763                                llvm::ConstantInt::get(IntPtrTy,
1764                                                       Size.getQuantity()),
1765                                ArgI.getIndirectAlign(),
1766                                false);
1767           V = AlignedTemp;
1768         }
1769         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1770       } else {
1771         // Load scalar value from indirect argument.
1772         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1773         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty,
1774                              Arg->getLocStart());
1775 
1776         if (isPromoted)
1777           V = emitArgumentDemotion(*this, Arg, V);
1778         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1779       }
1780       break;
1781     }
1782 
1783     case ABIArgInfo::Extend:
1784     case ABIArgInfo::Direct: {
1785 
1786       // If we have the trivial case, handle it with no muss and fuss.
1787       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1788           ArgI.getCoerceToType() == ConvertType(Ty) &&
1789           ArgI.getDirectOffset() == 0) {
1790         assert(NumIRArgs == 1);
1791         auto AI = FnArgs[FirstIRArg];
1792         llvm::Value *V = AI;
1793 
1794         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
1795           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
1796                              PVD->getFunctionScopeIndex()))
1797             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1798                                                 AI->getArgNo() + 1,
1799                                                 llvm::Attribute::NonNull));
1800 
1801           QualType OTy = PVD->getOriginalType();
1802           if (const auto *ArrTy =
1803               getContext().getAsConstantArrayType(OTy)) {
1804             // A C99 array parameter declaration with the static keyword also
1805             // indicates dereferenceability, and if the size is constant we can
1806             // use the dereferenceable attribute (which requires the size in
1807             // bytes).
1808             if (ArrTy->getSizeModifier() == ArrayType::Static) {
1809               QualType ETy = ArrTy->getElementType();
1810               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
1811               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
1812                   ArrSize) {
1813                 llvm::AttrBuilder Attrs;
1814                 Attrs.addDereferenceableAttr(
1815                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
1816                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1817                                                     AI->getArgNo() + 1, Attrs));
1818               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
1819                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1820                                                     AI->getArgNo() + 1,
1821                                                     llvm::Attribute::NonNull));
1822               }
1823             }
1824           } else if (const auto *ArrTy =
1825                      getContext().getAsVariableArrayType(OTy)) {
1826             // For C99 VLAs with the static keyword, we don't know the size so
1827             // we can't use the dereferenceable attribute, but in addrspace(0)
1828             // we know that it must be nonnull.
1829             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
1830                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
1831               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1832                                                   AI->getArgNo() + 1,
1833                                                   llvm::Attribute::NonNull));
1834           }
1835 
1836           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
1837           if (!AVAttr)
1838             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
1839               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
1840           if (AVAttr) {
1841             llvm::Value *AlignmentValue =
1842               EmitScalarExpr(AVAttr->getAlignment());
1843             llvm::ConstantInt *AlignmentCI =
1844               cast<llvm::ConstantInt>(AlignmentValue);
1845             unsigned Alignment =
1846               std::min((unsigned) AlignmentCI->getZExtValue(),
1847                        +llvm::Value::MaximumAlignment);
1848 
1849             llvm::AttrBuilder Attrs;
1850             Attrs.addAlignmentAttr(Alignment);
1851             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1852                                                 AI->getArgNo() + 1, Attrs));
1853           }
1854         }
1855 
1856         if (Arg->getType().isRestrictQualified())
1857           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1858                                               AI->getArgNo() + 1,
1859                                               llvm::Attribute::NoAlias));
1860 
1861         // Ensure the argument is the correct type.
1862         if (V->getType() != ArgI.getCoerceToType())
1863           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1864 
1865         if (isPromoted)
1866           V = emitArgumentDemotion(*this, Arg, V);
1867 
1868         if (const CXXMethodDecl *MD =
1869             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1870           if (MD->isVirtual() && Arg == CXXABIThisDecl)
1871             V = CGM.getCXXABI().
1872                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
1873         }
1874 
1875         // Because of merging of function types from multiple decls it is
1876         // possible for the type of an argument to not match the corresponding
1877         // type in the function type. Since we are codegening the callee
1878         // in here, add a cast to the argument type.
1879         llvm::Type *LTy = ConvertType(Arg->getType());
1880         if (V->getType() != LTy)
1881           V = Builder.CreateBitCast(V, LTy);
1882 
1883         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1884         break;
1885       }
1886 
1887       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1888 
1889       // The alignment we need to use is the max of the requested alignment for
1890       // the argument plus the alignment required by our access code below.
1891       unsigned AlignmentToUse =
1892         CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1893       AlignmentToUse = std::max(AlignmentToUse,
1894                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1895 
1896       Alloca->setAlignment(AlignmentToUse);
1897       llvm::Value *V = Alloca;
1898       llvm::Value *Ptr = V;    // Pointer to store into.
1899 
1900       // If the value is offset in memory, apply the offset now.
1901       if (unsigned Offs = ArgI.getDirectOffset()) {
1902         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1903         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1904         Ptr = Builder.CreateBitCast(Ptr,
1905                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1906       }
1907 
1908       // Fast-isel and the optimizer generally like scalar values better than
1909       // FCAs, so we flatten them if this is safe to do for this argument.
1910       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1911       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
1912           STy->getNumElements() > 1) {
1913         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1914         llvm::Type *DstTy =
1915           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1916         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1917 
1918         if (SrcSize <= DstSize) {
1919           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1920 
1921           assert(STy->getNumElements() == NumIRArgs);
1922           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1923             auto AI = FnArgs[FirstIRArg + i];
1924             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1925             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1926             Builder.CreateStore(AI, EltPtr);
1927           }
1928         } else {
1929           llvm::AllocaInst *TempAlloca =
1930             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1931           TempAlloca->setAlignment(AlignmentToUse);
1932           llvm::Value *TempV = TempAlloca;
1933 
1934           assert(STy->getNumElements() == NumIRArgs);
1935           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1936             auto AI = FnArgs[FirstIRArg + i];
1937             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1938             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1939             Builder.CreateStore(AI, EltPtr);
1940           }
1941 
1942           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1943         }
1944       } else {
1945         // Simple case, just do a coerced store of the argument into the alloca.
1946         assert(NumIRArgs == 1);
1947         auto AI = FnArgs[FirstIRArg];
1948         AI->setName(Arg->getName() + ".coerce");
1949         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
1950       }
1951 
1952 
1953       // Match to what EmitParmDecl is expecting for this type.
1954       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1955         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart());
1956         if (isPromoted)
1957           V = emitArgumentDemotion(*this, Arg, V);
1958         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1959       } else {
1960         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1961       }
1962       break;
1963     }
1964 
1965     case ABIArgInfo::Expand: {
1966       // If this structure was expanded into multiple arguments then
1967       // we need to create a temporary and reconstruct it from the
1968       // arguments.
1969       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1970       CharUnits Align = getContext().getDeclAlign(Arg);
1971       Alloca->setAlignment(Align.getQuantity());
1972       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1973       ArgVals.push_back(ValueAndIsPtr(Alloca, HavePointer));
1974 
1975       auto FnArgIter = FnArgs.begin() + FirstIRArg;
1976       ExpandTypeFromArgs(Ty, LV, FnArgIter);
1977       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
1978       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
1979         auto AI = FnArgs[FirstIRArg + i];
1980         AI->setName(Arg->getName() + "." + Twine(i));
1981       }
1982       break;
1983     }
1984 
1985     case ABIArgInfo::Ignore:
1986       assert(NumIRArgs == 0);
1987       // Initialize the local variable appropriately.
1988       if (!hasScalarEvaluationKind(Ty)) {
1989         ArgVals.push_back(ValueAndIsPtr(CreateMemTemp(Ty), HavePointer));
1990       } else {
1991         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
1992         ArgVals.push_back(ValueAndIsPtr(U, HaveValue));
1993       }
1994       break;
1995     }
1996   }
1997 
1998   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1999     for (int I = Args.size() - 1; I >= 0; --I)
2000       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
2001                    I + 1);
2002   } else {
2003     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2004       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
2005                    I + 1);
2006   }
2007 }
2008 
2009 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2010   while (insn->use_empty()) {
2011     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2012     if (!bitcast) return;
2013 
2014     // This is "safe" because we would have used a ConstantExpr otherwise.
2015     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2016     bitcast->eraseFromParent();
2017   }
2018 }
2019 
2020 /// Try to emit a fused autorelease of a return result.
2021 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2022                                                     llvm::Value *result) {
2023   // We must be immediately followed the cast.
2024   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2025   if (BB->empty()) return nullptr;
2026   if (&BB->back() != result) return nullptr;
2027 
2028   llvm::Type *resultType = result->getType();
2029 
2030   // result is in a BasicBlock and is therefore an Instruction.
2031   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2032 
2033   SmallVector<llvm::Instruction*,4> insnsToKill;
2034 
2035   // Look for:
2036   //  %generator = bitcast %type1* %generator2 to %type2*
2037   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2038     // We would have emitted this as a constant if the operand weren't
2039     // an Instruction.
2040     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2041 
2042     // Require the generator to be immediately followed by the cast.
2043     if (generator->getNextNode() != bitcast)
2044       return nullptr;
2045 
2046     insnsToKill.push_back(bitcast);
2047   }
2048 
2049   // Look for:
2050   //   %generator = call i8* @objc_retain(i8* %originalResult)
2051   // or
2052   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2053   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2054   if (!call) return nullptr;
2055 
2056   bool doRetainAutorelease;
2057 
2058   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
2059     doRetainAutorelease = true;
2060   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
2061                                           .objc_retainAutoreleasedReturnValue) {
2062     doRetainAutorelease = false;
2063 
2064     // If we emitted an assembly marker for this call (and the
2065     // ARCEntrypoints field should have been set if so), go looking
2066     // for that call.  If we can't find it, we can't do this
2067     // optimization.  But it should always be the immediately previous
2068     // instruction, unless we needed bitcasts around the call.
2069     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
2070       llvm::Instruction *prev = call->getPrevNode();
2071       assert(prev);
2072       if (isa<llvm::BitCastInst>(prev)) {
2073         prev = prev->getPrevNode();
2074         assert(prev);
2075       }
2076       assert(isa<llvm::CallInst>(prev));
2077       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2078                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
2079       insnsToKill.push_back(prev);
2080     }
2081   } else {
2082     return nullptr;
2083   }
2084 
2085   result = call->getArgOperand(0);
2086   insnsToKill.push_back(call);
2087 
2088   // Keep killing bitcasts, for sanity.  Note that we no longer care
2089   // about precise ordering as long as there's exactly one use.
2090   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2091     if (!bitcast->hasOneUse()) break;
2092     insnsToKill.push_back(bitcast);
2093     result = bitcast->getOperand(0);
2094   }
2095 
2096   // Delete all the unnecessary instructions, from latest to earliest.
2097   for (SmallVectorImpl<llvm::Instruction*>::iterator
2098          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
2099     (*i)->eraseFromParent();
2100 
2101   // Do the fused retain/autorelease if we were asked to.
2102   if (doRetainAutorelease)
2103     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2104 
2105   // Cast back to the result type.
2106   return CGF.Builder.CreateBitCast(result, resultType);
2107 }
2108 
2109 /// If this is a +1 of the value of an immutable 'self', remove it.
2110 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2111                                           llvm::Value *result) {
2112   // This is only applicable to a method with an immutable 'self'.
2113   const ObjCMethodDecl *method =
2114     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2115   if (!method) return nullptr;
2116   const VarDecl *self = method->getSelfDecl();
2117   if (!self->getType().isConstQualified()) return nullptr;
2118 
2119   // Look for a retain call.
2120   llvm::CallInst *retainCall =
2121     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2122   if (!retainCall ||
2123       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
2124     return nullptr;
2125 
2126   // Look for an ordinary load of 'self'.
2127   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2128   llvm::LoadInst *load =
2129     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2130   if (!load || load->isAtomic() || load->isVolatile() ||
2131       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
2132     return nullptr;
2133 
2134   // Okay!  Burn it all down.  This relies for correctness on the
2135   // assumption that the retain is emitted as part of the return and
2136   // that thereafter everything is used "linearly".
2137   llvm::Type *resultType = result->getType();
2138   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2139   assert(retainCall->use_empty());
2140   retainCall->eraseFromParent();
2141   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2142 
2143   return CGF.Builder.CreateBitCast(load, resultType);
2144 }
2145 
2146 /// Emit an ARC autorelease of the result of a function.
2147 ///
2148 /// \return the value to actually return from the function
2149 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2150                                             llvm::Value *result) {
2151   // If we're returning 'self', kill the initial retain.  This is a
2152   // heuristic attempt to "encourage correctness" in the really unfortunate
2153   // case where we have a return of self during a dealloc and we desperately
2154   // need to avoid the possible autorelease.
2155   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2156     return self;
2157 
2158   // At -O0, try to emit a fused retain/autorelease.
2159   if (CGF.shouldUseFusedARCCalls())
2160     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2161       return fused;
2162 
2163   return CGF.EmitARCAutoreleaseReturnValue(result);
2164 }
2165 
2166 /// Heuristically search for a dominating store to the return-value slot.
2167 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2168   // If there are multiple uses of the return-value slot, just check
2169   // for something immediately preceding the IP.  Sometimes this can
2170   // happen with how we generate implicit-returns; it can also happen
2171   // with noreturn cleanups.
2172   if (!CGF.ReturnValue->hasOneUse()) {
2173     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2174     if (IP->empty()) return nullptr;
2175     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
2176     if (!store) return nullptr;
2177     if (store->getPointerOperand() != CGF.ReturnValue) return nullptr;
2178     assert(!store->isAtomic() && !store->isVolatile()); // see below
2179     return store;
2180   }
2181 
2182   llvm::StoreInst *store =
2183     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->user_back());
2184   if (!store) return nullptr;
2185 
2186   // These aren't actually possible for non-coerced returns, and we
2187   // only care about non-coerced returns on this code path.
2188   assert(!store->isAtomic() && !store->isVolatile());
2189 
2190   // Now do a first-and-dirty dominance check: just walk up the
2191   // single-predecessors chain from the current insertion point.
2192   llvm::BasicBlock *StoreBB = store->getParent();
2193   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2194   while (IP != StoreBB) {
2195     if (!(IP = IP->getSinglePredecessor()))
2196       return nullptr;
2197   }
2198 
2199   // Okay, the store's basic block dominates the insertion point; we
2200   // can do our thing.
2201   return store;
2202 }
2203 
2204 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2205                                          bool EmitRetDbgLoc,
2206                                          SourceLocation EndLoc) {
2207   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2208     // Naked functions don't have epilogues.
2209     Builder.CreateUnreachable();
2210     return;
2211   }
2212 
2213   // Functions with no result always return void.
2214   if (!ReturnValue) {
2215     Builder.CreateRetVoid();
2216     return;
2217   }
2218 
2219   llvm::DebugLoc RetDbgLoc;
2220   llvm::Value *RV = nullptr;
2221   QualType RetTy = FI.getReturnType();
2222   const ABIArgInfo &RetAI = FI.getReturnInfo();
2223 
2224   switch (RetAI.getKind()) {
2225   case ABIArgInfo::InAlloca:
2226     // Aggregrates get evaluated directly into the destination.  Sometimes we
2227     // need to return the sret value in a register, though.
2228     assert(hasAggregateEvaluationKind(RetTy));
2229     if (RetAI.getInAllocaSRet()) {
2230       llvm::Function::arg_iterator EI = CurFn->arg_end();
2231       --EI;
2232       llvm::Value *ArgStruct = EI;
2233       llvm::Value *SRet =
2234           Builder.CreateStructGEP(ArgStruct, RetAI.getInAllocaFieldIndex());
2235       RV = Builder.CreateLoad(SRet, "sret");
2236     }
2237     break;
2238 
2239   case ABIArgInfo::Indirect: {
2240     auto AI = CurFn->arg_begin();
2241     if (RetAI.isSRetAfterThis())
2242       ++AI;
2243     switch (getEvaluationKind(RetTy)) {
2244     case TEK_Complex: {
2245       ComplexPairTy RT =
2246         EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy),
2247                           EndLoc);
2248       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(AI, RetTy),
2249                          /*isInit*/ true);
2250       break;
2251     }
2252     case TEK_Aggregate:
2253       // Do nothing; aggregrates get evaluated directly into the destination.
2254       break;
2255     case TEK_Scalar:
2256       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2257                         MakeNaturalAlignAddrLValue(AI, RetTy),
2258                         /*isInit*/ true);
2259       break;
2260     }
2261     break;
2262   }
2263 
2264   case ABIArgInfo::Extend:
2265   case ABIArgInfo::Direct:
2266     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2267         RetAI.getDirectOffset() == 0) {
2268       // The internal return value temp always will have pointer-to-return-type
2269       // type, just do a load.
2270 
2271       // If there is a dominating store to ReturnValue, we can elide
2272       // the load, zap the store, and usually zap the alloca.
2273       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
2274         // Reuse the debug location from the store unless there is
2275         // cleanup code to be emitted between the store and return
2276         // instruction.
2277         if (EmitRetDbgLoc && !AutoreleaseResult)
2278           RetDbgLoc = SI->getDebugLoc();
2279         // Get the stored value and nuke the now-dead store.
2280         RV = SI->getValueOperand();
2281         SI->eraseFromParent();
2282 
2283         // If that was the only use of the return value, nuke it as well now.
2284         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
2285           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
2286           ReturnValue = nullptr;
2287         }
2288 
2289       // Otherwise, we have to do a simple load.
2290       } else {
2291         RV = Builder.CreateLoad(ReturnValue);
2292       }
2293     } else {
2294       llvm::Value *V = ReturnValue;
2295       // If the value is offset in memory, apply the offset now.
2296       if (unsigned Offs = RetAI.getDirectOffset()) {
2297         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
2298         V = Builder.CreateConstGEP1_32(V, Offs);
2299         V = Builder.CreateBitCast(V,
2300                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2301       }
2302 
2303       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2304     }
2305 
2306     // In ARC, end functions that return a retainable type with a call
2307     // to objc_autoreleaseReturnValue.
2308     if (AutoreleaseResult) {
2309       assert(getLangOpts().ObjCAutoRefCount &&
2310              !FI.isReturnsRetained() &&
2311              RetTy->isObjCRetainableType());
2312       RV = emitAutoreleaseOfResult(*this, RV);
2313     }
2314 
2315     break;
2316 
2317   case ABIArgInfo::Ignore:
2318     break;
2319 
2320   case ABIArgInfo::Expand:
2321     llvm_unreachable("Invalid ABI kind for return argument");
2322   }
2323 
2324   llvm::Instruction *Ret;
2325   if (RV) {
2326     if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
2327       if (auto RetNNAttr = CurGD.getDecl()->getAttr<ReturnsNonNullAttr>()) {
2328         SanitizerScope SanScope(this);
2329         llvm::Value *Cond = Builder.CreateICmpNE(
2330             RV, llvm::Constant::getNullValue(RV->getType()));
2331         llvm::Constant *StaticData[] = {
2332             EmitCheckSourceLocation(EndLoc),
2333             EmitCheckSourceLocation(RetNNAttr->getLocation()),
2334         };
2335         EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
2336                   "nonnull_return", StaticData, None);
2337       }
2338     }
2339     Ret = Builder.CreateRet(RV);
2340   } else {
2341     Ret = Builder.CreateRetVoid();
2342   }
2343 
2344   if (!RetDbgLoc.isUnknown())
2345     Ret->setDebugLoc(std::move(RetDbgLoc));
2346 }
2347 
2348 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2349   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2350   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2351 }
2352 
2353 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) {
2354   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2355   // placeholders.
2356   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2357   llvm::Value *Placeholder =
2358       llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
2359   Placeholder = CGF.Builder.CreateLoad(Placeholder);
2360   return AggValueSlot::forAddr(Placeholder, CharUnits::Zero(),
2361                                Ty.getQualifiers(),
2362                                AggValueSlot::IsNotDestructed,
2363                                AggValueSlot::DoesNotNeedGCBarriers,
2364                                AggValueSlot::IsNotAliased);
2365 }
2366 
2367 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2368                                           const VarDecl *param,
2369                                           SourceLocation loc) {
2370   // StartFunction converted the ABI-lowered parameter(s) into a
2371   // local alloca.  We need to turn that into an r-value suitable
2372   // for EmitCall.
2373   llvm::Value *local = GetAddrOfLocalVar(param);
2374 
2375   QualType type = param->getType();
2376 
2377   // For the most part, we just need to load the alloca, except:
2378   // 1) aggregate r-values are actually pointers to temporaries, and
2379   // 2) references to non-scalars are pointers directly to the aggregate.
2380   // I don't know why references to scalars are different here.
2381   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
2382     if (!hasScalarEvaluationKind(ref->getPointeeType()))
2383       return args.add(RValue::getAggregate(local), type);
2384 
2385     // Locals which are references to scalars are represented
2386     // with allocas holding the pointer.
2387     return args.add(RValue::get(Builder.CreateLoad(local)), type);
2388   }
2389 
2390   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2391          "cannot emit delegate call arguments for inalloca arguments!");
2392 
2393   args.add(convertTempToRValue(local, type, loc), type);
2394 }
2395 
2396 static bool isProvablyNull(llvm::Value *addr) {
2397   return isa<llvm::ConstantPointerNull>(addr);
2398 }
2399 
2400 static bool isProvablyNonNull(llvm::Value *addr) {
2401   return isa<llvm::AllocaInst>(addr);
2402 }
2403 
2404 /// Emit the actual writing-back of a writeback.
2405 static void emitWriteback(CodeGenFunction &CGF,
2406                           const CallArgList::Writeback &writeback) {
2407   const LValue &srcLV = writeback.Source;
2408   llvm::Value *srcAddr = srcLV.getAddress();
2409   assert(!isProvablyNull(srcAddr) &&
2410          "shouldn't have writeback for provably null argument");
2411 
2412   llvm::BasicBlock *contBB = nullptr;
2413 
2414   // If the argument wasn't provably non-null, we need to null check
2415   // before doing the store.
2416   bool provablyNonNull = isProvablyNonNull(srcAddr);
2417   if (!provablyNonNull) {
2418     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2419     contBB = CGF.createBasicBlock("icr.done");
2420 
2421     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2422     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2423     CGF.EmitBlock(writebackBB);
2424   }
2425 
2426   // Load the value to writeback.
2427   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2428 
2429   // Cast it back, in case we're writing an id to a Foo* or something.
2430   value = CGF.Builder.CreateBitCast(value,
2431                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
2432                             "icr.writeback-cast");
2433 
2434   // Perform the writeback.
2435 
2436   // If we have a "to use" value, it's something we need to emit a use
2437   // of.  This has to be carefully threaded in: if it's done after the
2438   // release it's potentially undefined behavior (and the optimizer
2439   // will ignore it), and if it happens before the retain then the
2440   // optimizer could move the release there.
2441   if (writeback.ToUse) {
2442     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2443 
2444     // Retain the new value.  No need to block-copy here:  the block's
2445     // being passed up the stack.
2446     value = CGF.EmitARCRetainNonBlock(value);
2447 
2448     // Emit the intrinsic use here.
2449     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2450 
2451     // Load the old value (primitively).
2452     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2453 
2454     // Put the new value in place (primitively).
2455     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2456 
2457     // Release the old value.
2458     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2459 
2460   // Otherwise, we can just do a normal lvalue store.
2461   } else {
2462     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2463   }
2464 
2465   // Jump to the continuation block.
2466   if (!provablyNonNull)
2467     CGF.EmitBlock(contBB);
2468 }
2469 
2470 static void emitWritebacks(CodeGenFunction &CGF,
2471                            const CallArgList &args) {
2472   for (const auto &I : args.writebacks())
2473     emitWriteback(CGF, I);
2474 }
2475 
2476 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2477                                             const CallArgList &CallArgs) {
2478   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2479   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2480     CallArgs.getCleanupsToDeactivate();
2481   // Iterate in reverse to increase the likelihood of popping the cleanup.
2482   for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
2483          I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
2484     CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
2485     I->IsActiveIP->eraseFromParent();
2486   }
2487 }
2488 
2489 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2490   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2491     if (uop->getOpcode() == UO_AddrOf)
2492       return uop->getSubExpr();
2493   return nullptr;
2494 }
2495 
2496 /// Emit an argument that's being passed call-by-writeback.  That is,
2497 /// we are passing the address of
2498 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2499                              const ObjCIndirectCopyRestoreExpr *CRE) {
2500   LValue srcLV;
2501 
2502   // Make an optimistic effort to emit the address as an l-value.
2503   // This can fail if the the argument expression is more complicated.
2504   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2505     srcLV = CGF.EmitLValue(lvExpr);
2506 
2507   // Otherwise, just emit it as a scalar.
2508   } else {
2509     llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
2510 
2511     QualType srcAddrType =
2512       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
2513     srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
2514   }
2515   llvm::Value *srcAddr = srcLV.getAddress();
2516 
2517   // The dest and src types don't necessarily match in LLVM terms
2518   // because of the crazy ObjC compatibility rules.
2519 
2520   llvm::PointerType *destType =
2521     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
2522 
2523   // If the address is a constant null, just pass the appropriate null.
2524   if (isProvablyNull(srcAddr)) {
2525     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
2526              CRE->getType());
2527     return;
2528   }
2529 
2530   // Create the temporary.
2531   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
2532                                            "icr.temp");
2533   // Loading an l-value can introduce a cleanup if the l-value is __weak,
2534   // and that cleanup will be conditional if we can't prove that the l-value
2535   // isn't null, so we need to register a dominating point so that the cleanups
2536   // system will make valid IR.
2537   CodeGenFunction::ConditionalEvaluation condEval(CGF);
2538 
2539   // Zero-initialize it if we're not doing a copy-initialization.
2540   bool shouldCopy = CRE->shouldCopy();
2541   if (!shouldCopy) {
2542     llvm::Value *null =
2543       llvm::ConstantPointerNull::get(
2544         cast<llvm::PointerType>(destType->getElementType()));
2545     CGF.Builder.CreateStore(null, temp);
2546   }
2547 
2548   llvm::BasicBlock *contBB = nullptr;
2549   llvm::BasicBlock *originBB = nullptr;
2550 
2551   // If the address is *not* known to be non-null, we need to switch.
2552   llvm::Value *finalArgument;
2553 
2554   bool provablyNonNull = isProvablyNonNull(srcAddr);
2555   if (provablyNonNull) {
2556     finalArgument = temp;
2557   } else {
2558     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2559 
2560     finalArgument = CGF.Builder.CreateSelect(isNull,
2561                                    llvm::ConstantPointerNull::get(destType),
2562                                              temp, "icr.argument");
2563 
2564     // If we need to copy, then the load has to be conditional, which
2565     // means we need control flow.
2566     if (shouldCopy) {
2567       originBB = CGF.Builder.GetInsertBlock();
2568       contBB = CGF.createBasicBlock("icr.cont");
2569       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
2570       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
2571       CGF.EmitBlock(copyBB);
2572       condEval.begin(CGF);
2573     }
2574   }
2575 
2576   llvm::Value *valueToUse = nullptr;
2577 
2578   // Perform a copy if necessary.
2579   if (shouldCopy) {
2580     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
2581     assert(srcRV.isScalar());
2582 
2583     llvm::Value *src = srcRV.getScalarVal();
2584     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
2585                                     "icr.cast");
2586 
2587     // Use an ordinary store, not a store-to-lvalue.
2588     CGF.Builder.CreateStore(src, temp);
2589 
2590     // If optimization is enabled, and the value was held in a
2591     // __strong variable, we need to tell the optimizer that this
2592     // value has to stay alive until we're doing the store back.
2593     // This is because the temporary is effectively unretained,
2594     // and so otherwise we can violate the high-level semantics.
2595     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2596         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
2597       valueToUse = src;
2598     }
2599   }
2600 
2601   // Finish the control flow if we needed it.
2602   if (shouldCopy && !provablyNonNull) {
2603     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
2604     CGF.EmitBlock(contBB);
2605 
2606     // Make a phi for the value to intrinsically use.
2607     if (valueToUse) {
2608       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2609                                                       "icr.to-use");
2610       phiToUse->addIncoming(valueToUse, copyBB);
2611       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2612                             originBB);
2613       valueToUse = phiToUse;
2614     }
2615 
2616     condEval.end(CGF);
2617   }
2618 
2619   args.addWriteback(srcLV, temp, valueToUse);
2620   args.add(RValue::get(finalArgument), CRE->getType());
2621 }
2622 
2623 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
2624   assert(!StackBase && !StackCleanup.isValid());
2625 
2626   // Save the stack.
2627   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
2628   StackBase = CGF.Builder.CreateCall(F, "inalloca.save");
2629 
2630   // Control gets really tied up in landing pads, so we have to spill the
2631   // stacksave to an alloca to avoid violating SSA form.
2632   // TODO: This is dead if we never emit the cleanup.  We should create the
2633   // alloca and store lazily on the first cleanup emission.
2634   StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, "inalloca.spmem");
2635   CGF.Builder.CreateStore(StackBase, StackBaseMem);
2636   CGF.pushStackRestore(EHCleanup, StackBaseMem);
2637   StackCleanup = CGF.EHStack.getInnermostEHScope();
2638   assert(StackCleanup.isValid());
2639 }
2640 
2641 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
2642   if (StackBase) {
2643     CGF.DeactivateCleanupBlock(StackCleanup, StackBase);
2644     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
2645     // We could load StackBase from StackBaseMem, but in the non-exceptional
2646     // case we can skip it.
2647     CGF.Builder.CreateCall(F, StackBase);
2648   }
2649 }
2650 
2651 static void emitNonNullArgCheck(CodeGenFunction &CGF, RValue RV,
2652                                 QualType ArgType, SourceLocation ArgLoc,
2653                                 const FunctionDecl *FD, unsigned ParmNum) {
2654   if (!CGF.SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
2655     return;
2656   auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
2657   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
2658   auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
2659   if (!NNAttr)
2660     return;
2661   CodeGenFunction::SanitizerScope SanScope(&CGF);
2662   assert(RV.isScalar());
2663   llvm::Value *V = RV.getScalarVal();
2664   llvm::Value *Cond =
2665       CGF.Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
2666   llvm::Constant *StaticData[] = {
2667       CGF.EmitCheckSourceLocation(ArgLoc),
2668       CGF.EmitCheckSourceLocation(NNAttr->getLocation()),
2669       llvm::ConstantInt::get(CGF.Int32Ty, ArgNo + 1),
2670   };
2671   CGF.EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
2672                 "nonnull_arg", StaticData, None);
2673 }
2674 
2675 void CodeGenFunction::EmitCallArgs(CallArgList &Args,
2676                                    ArrayRef<QualType> ArgTypes,
2677                                    CallExpr::const_arg_iterator ArgBeg,
2678                                    CallExpr::const_arg_iterator ArgEnd,
2679                                    const FunctionDecl *CalleeDecl,
2680                                    unsigned ParamsToSkip) {
2681   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
2682   // because arguments are destroyed left to right in the callee.
2683   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2684     // Insert a stack save if we're going to need any inalloca args.
2685     bool HasInAllocaArgs = false;
2686     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
2687          I != E && !HasInAllocaArgs; ++I)
2688       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
2689     if (HasInAllocaArgs) {
2690       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2691       Args.allocateArgumentMemory(*this);
2692     }
2693 
2694     // Evaluate each argument.
2695     size_t CallArgsStart = Args.size();
2696     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
2697       CallExpr::const_arg_iterator Arg = ArgBeg + I;
2698       EmitCallArg(Args, *Arg, ArgTypes[I]);
2699       emitNonNullArgCheck(*this, Args.back().RV, ArgTypes[I], Arg->getExprLoc(),
2700                           CalleeDecl, ParamsToSkip + I);
2701     }
2702 
2703     // Un-reverse the arguments we just evaluated so they match up with the LLVM
2704     // IR function.
2705     std::reverse(Args.begin() + CallArgsStart, Args.end());
2706     return;
2707   }
2708 
2709   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
2710     CallExpr::const_arg_iterator Arg = ArgBeg + I;
2711     assert(Arg != ArgEnd);
2712     EmitCallArg(Args, *Arg, ArgTypes[I]);
2713     emitNonNullArgCheck(*this, Args.back().RV, ArgTypes[I], Arg->getExprLoc(),
2714                         CalleeDecl, ParamsToSkip + I);
2715   }
2716 }
2717 
2718 namespace {
2719 
2720 struct DestroyUnpassedArg : EHScopeStack::Cleanup {
2721   DestroyUnpassedArg(llvm::Value *Addr, QualType Ty)
2722       : Addr(Addr), Ty(Ty) {}
2723 
2724   llvm::Value *Addr;
2725   QualType Ty;
2726 
2727   void Emit(CodeGenFunction &CGF, Flags flags) override {
2728     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
2729     assert(!Dtor->isTrivial());
2730     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
2731                               /*Delegating=*/false, Addr);
2732   }
2733 };
2734 
2735 }
2736 
2737 struct DisableDebugLocationUpdates {
2738   CodeGenFunction &CGF;
2739   bool disabledDebugInfo;
2740   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
2741     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
2742       CGF.disableDebugInfo();
2743   }
2744   ~DisableDebugLocationUpdates() {
2745     if (disabledDebugInfo)
2746       CGF.enableDebugInfo();
2747   }
2748 };
2749 
2750 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2751                                   QualType type) {
2752   DisableDebugLocationUpdates Dis(*this, E);
2753   if (const ObjCIndirectCopyRestoreExpr *CRE
2754         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2755     assert(getLangOpts().ObjCAutoRefCount);
2756     assert(getContext().hasSameType(E->getType(), type));
2757     return emitWritebackArg(*this, args, CRE);
2758   }
2759 
2760   assert(type->isReferenceType() == E->isGLValue() &&
2761          "reference binding to unmaterialized r-value!");
2762 
2763   if (E->isGLValue()) {
2764     assert(E->getObjectKind() == OK_Ordinary);
2765     return args.add(EmitReferenceBindingToExpr(E), type);
2766   }
2767 
2768   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2769 
2770   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2771   // However, we still have to push an EH-only cleanup in case we unwind before
2772   // we make it to the call.
2773   if (HasAggregateEvalKind &&
2774       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2775     // If we're using inalloca, use the argument memory.  Otherwise, use a
2776     // temporary.
2777     AggValueSlot Slot;
2778     if (args.isUsingInAlloca())
2779       Slot = createPlaceholderSlot(*this, type);
2780     else
2781       Slot = CreateAggTemp(type, "agg.tmp");
2782 
2783     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2784     bool DestroyedInCallee =
2785         RD && RD->hasNonTrivialDestructor() &&
2786         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
2787     if (DestroyedInCallee)
2788       Slot.setExternallyDestructed();
2789 
2790     EmitAggExpr(E, Slot);
2791     RValue RV = Slot.asRValue();
2792     args.add(RV, type);
2793 
2794     if (DestroyedInCallee) {
2795       // Create a no-op GEP between the placeholder and the cleanup so we can
2796       // RAUW it successfully.  It also serves as a marker of the first
2797       // instruction where the cleanup is active.
2798       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddr(), type);
2799       // This unreachable is a temporary marker which will be removed later.
2800       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2801       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2802     }
2803     return;
2804   }
2805 
2806   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2807       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2808     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2809     assert(L.isSimple());
2810     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2811       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2812     } else {
2813       // We can't represent a misaligned lvalue in the CallArgList, so copy
2814       // to an aligned temporary now.
2815       llvm::Value *tmp = CreateMemTemp(type);
2816       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2817                         L.getAlignment());
2818       args.add(RValue::getAggregate(tmp), type);
2819     }
2820     return;
2821   }
2822 
2823   args.add(EmitAnyExprToTemp(E), type);
2824 }
2825 
2826 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
2827   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
2828   // implicitly widens null pointer constants that are arguments to varargs
2829   // functions to pointer-sized ints.
2830   if (!getTarget().getTriple().isOSWindows())
2831     return Arg->getType();
2832 
2833   if (Arg->getType()->isIntegerType() &&
2834       getContext().getTypeSize(Arg->getType()) <
2835           getContext().getTargetInfo().getPointerWidth(0) &&
2836       Arg->isNullPointerConstant(getContext(),
2837                                  Expr::NPC_ValueDependentIsNotNull)) {
2838     return getContext().getIntPtrType();
2839   }
2840 
2841   return Arg->getType();
2842 }
2843 
2844 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2845 // optimizer it can aggressively ignore unwind edges.
2846 void
2847 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2848   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2849       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2850     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2851                       CGM.getNoObjCARCExceptionsMetadata());
2852 }
2853 
2854 /// Emits a call to the given no-arguments nounwind runtime function.
2855 llvm::CallInst *
2856 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2857                                          const llvm::Twine &name) {
2858   return EmitNounwindRuntimeCall(callee, None, name);
2859 }
2860 
2861 /// Emits a call to the given nounwind runtime function.
2862 llvm::CallInst *
2863 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2864                                          ArrayRef<llvm::Value*> args,
2865                                          const llvm::Twine &name) {
2866   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2867   call->setDoesNotThrow();
2868   return call;
2869 }
2870 
2871 /// Emits a simple call (never an invoke) to the given no-arguments
2872 /// runtime function.
2873 llvm::CallInst *
2874 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2875                                  const llvm::Twine &name) {
2876   return EmitRuntimeCall(callee, None, name);
2877 }
2878 
2879 /// Emits a simple call (never an invoke) to the given runtime
2880 /// function.
2881 llvm::CallInst *
2882 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2883                                  ArrayRef<llvm::Value*> args,
2884                                  const llvm::Twine &name) {
2885   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2886   call->setCallingConv(getRuntimeCC());
2887   return call;
2888 }
2889 
2890 /// Emits a call or invoke to the given noreturn runtime function.
2891 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2892                                                ArrayRef<llvm::Value*> args) {
2893   if (getInvokeDest()) {
2894     llvm::InvokeInst *invoke =
2895       Builder.CreateInvoke(callee,
2896                            getUnreachableBlock(),
2897                            getInvokeDest(),
2898                            args);
2899     invoke->setDoesNotReturn();
2900     invoke->setCallingConv(getRuntimeCC());
2901   } else {
2902     llvm::CallInst *call = Builder.CreateCall(callee, args);
2903     call->setDoesNotReturn();
2904     call->setCallingConv(getRuntimeCC());
2905     Builder.CreateUnreachable();
2906   }
2907   PGO.setCurrentRegionUnreachable();
2908 }
2909 
2910 /// Emits a call or invoke instruction to the given nullary runtime
2911 /// function.
2912 llvm::CallSite
2913 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2914                                          const Twine &name) {
2915   return EmitRuntimeCallOrInvoke(callee, None, name);
2916 }
2917 
2918 /// Emits a call or invoke instruction to the given runtime function.
2919 llvm::CallSite
2920 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2921                                          ArrayRef<llvm::Value*> args,
2922                                          const Twine &name) {
2923   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2924   callSite.setCallingConv(getRuntimeCC());
2925   return callSite;
2926 }
2927 
2928 llvm::CallSite
2929 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2930                                   const Twine &Name) {
2931   return EmitCallOrInvoke(Callee, None, Name);
2932 }
2933 
2934 /// Emits a call or invoke instruction to the given function, depending
2935 /// on the current state of the EH stack.
2936 llvm::CallSite
2937 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2938                                   ArrayRef<llvm::Value *> Args,
2939                                   const Twine &Name) {
2940   llvm::BasicBlock *InvokeDest = getInvokeDest();
2941 
2942   llvm::Instruction *Inst;
2943   if (!InvokeDest)
2944     Inst = Builder.CreateCall(Callee, Args, Name);
2945   else {
2946     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2947     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2948     EmitBlock(ContBB);
2949   }
2950 
2951   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2952   // optimizer it can aggressively ignore unwind edges.
2953   if (CGM.getLangOpts().ObjCAutoRefCount)
2954     AddObjCARCExceptionMetadata(Inst);
2955 
2956   return Inst;
2957 }
2958 
2959 /// \brief Store a non-aggregate value to an address to initialize it.  For
2960 /// initialization, a non-atomic store will be used.
2961 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
2962                                         LValue Dst) {
2963   if (Src.isScalar())
2964     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
2965   else
2966     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
2967 }
2968 
2969 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
2970                                                   llvm::Value *New) {
2971   DeferredReplacements.push_back(std::make_pair(Old, New));
2972 }
2973 
2974 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
2975                                  llvm::Value *Callee,
2976                                  ReturnValueSlot ReturnValue,
2977                                  const CallArgList &CallArgs,
2978                                  const Decl *TargetDecl,
2979                                  llvm::Instruction **callOrInvoke) {
2980   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
2981 
2982   // Handle struct-return functions by passing a pointer to the
2983   // location that we would like to return into.
2984   QualType RetTy = CallInfo.getReturnType();
2985   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
2986 
2987   llvm::FunctionType *IRFuncTy =
2988     cast<llvm::FunctionType>(
2989                   cast<llvm::PointerType>(Callee->getType())->getElementType());
2990 
2991   // If we're using inalloca, insert the allocation after the stack save.
2992   // FIXME: Do this earlier rather than hacking it in here!
2993   llvm::Value *ArgMemory = nullptr;
2994   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
2995     llvm::Instruction *IP = CallArgs.getStackBase();
2996     llvm::AllocaInst *AI;
2997     if (IP) {
2998       IP = IP->getNextNode();
2999       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
3000     } else {
3001       AI = CreateTempAlloca(ArgStruct, "argmem");
3002     }
3003     AI->setUsedWithInAlloca(true);
3004     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3005     ArgMemory = AI;
3006   }
3007 
3008   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3009   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3010 
3011   // If the call returns a temporary with struct return, create a temporary
3012   // alloca to hold the result, unless one is given to us.
3013   llvm::Value *SRetPtr = nullptr;
3014   if (RetAI.isIndirect() || RetAI.isInAlloca()) {
3015     SRetPtr = ReturnValue.getValue();
3016     if (!SRetPtr)
3017       SRetPtr = CreateMemTemp(RetTy);
3018     if (IRFunctionArgs.hasSRetArg()) {
3019       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr;
3020     } else {
3021       llvm::Value *Addr =
3022           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
3023       Builder.CreateStore(SRetPtr, Addr);
3024     }
3025   }
3026 
3027   assert(CallInfo.arg_size() == CallArgs.size() &&
3028          "Mismatch between function signature & arguments.");
3029   unsigned ArgNo = 0;
3030   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3031   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3032        I != E; ++I, ++info_it, ++ArgNo) {
3033     const ABIArgInfo &ArgInfo = info_it->info;
3034     RValue RV = I->RV;
3035 
3036     CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
3037 
3038     // Insert a padding argument to ensure proper alignment.
3039     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3040       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3041           llvm::UndefValue::get(ArgInfo.getPaddingType());
3042 
3043     unsigned FirstIRArg, NumIRArgs;
3044     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3045 
3046     switch (ArgInfo.getKind()) {
3047     case ABIArgInfo::InAlloca: {
3048       assert(NumIRArgs == 0);
3049       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3050       if (RV.isAggregate()) {
3051         // Replace the placeholder with the appropriate argument slot GEP.
3052         llvm::Instruction *Placeholder =
3053             cast<llvm::Instruction>(RV.getAggregateAddr());
3054         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3055         Builder.SetInsertPoint(Placeholder);
3056         llvm::Value *Addr = Builder.CreateStructGEP(
3057             ArgMemory, ArgInfo.getInAllocaFieldIndex());
3058         Builder.restoreIP(IP);
3059         deferPlaceholderReplacement(Placeholder, Addr);
3060       } else {
3061         // Store the RValue into the argument struct.
3062         llvm::Value *Addr =
3063             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
3064         unsigned AS = Addr->getType()->getPointerAddressSpace();
3065         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3066         // There are some cases where a trivial bitcast is not avoidable.  The
3067         // definition of a type later in a translation unit may change it's type
3068         // from {}* to (%struct.foo*)*.
3069         if (Addr->getType() != MemType)
3070           Addr = Builder.CreateBitCast(Addr, MemType);
3071         LValue argLV = MakeAddrLValue(Addr, I->Ty, TypeAlign);
3072         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3073       }
3074       break;
3075     }
3076 
3077     case ABIArgInfo::Indirect: {
3078       assert(NumIRArgs == 1);
3079       if (RV.isScalar() || RV.isComplex()) {
3080         // Make a temporary alloca to pass the argument.
3081         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
3082         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
3083           AI->setAlignment(ArgInfo.getIndirectAlign());
3084         IRCallArgs[FirstIRArg] = AI;
3085 
3086         LValue argLV = MakeAddrLValue(AI, I->Ty, TypeAlign);
3087         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3088       } else {
3089         // We want to avoid creating an unnecessary temporary+copy here;
3090         // however, we need one in three cases:
3091         // 1. If the argument is not byval, and we are required to copy the
3092         //    source.  (This case doesn't occur on any common architecture.)
3093         // 2. If the argument is byval, RV is not sufficiently aligned, and
3094         //    we cannot force it to be sufficiently aligned.
3095         // 3. If the argument is byval, but RV is located in an address space
3096         //    different than that of the argument (0).
3097         llvm::Value *Addr = RV.getAggregateAddr();
3098         unsigned Align = ArgInfo.getIndirectAlign();
3099         const llvm::DataLayout *TD = &CGM.getDataLayout();
3100         const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
3101         const unsigned ArgAddrSpace =
3102             (FirstIRArg < IRFuncTy->getNumParams()
3103                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3104                  : 0);
3105         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3106             (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
3107              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
3108              (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3109           // Create an aligned temporary, and copy to it.
3110           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
3111           if (Align > AI->getAlignment())
3112             AI->setAlignment(Align);
3113           IRCallArgs[FirstIRArg] = AI;
3114           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3115         } else {
3116           // Skip the extra memcpy call.
3117           IRCallArgs[FirstIRArg] = Addr;
3118         }
3119       }
3120       break;
3121     }
3122 
3123     case ABIArgInfo::Ignore:
3124       assert(NumIRArgs == 0);
3125       break;
3126 
3127     case ABIArgInfo::Extend:
3128     case ABIArgInfo::Direct: {
3129       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3130           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3131           ArgInfo.getDirectOffset() == 0) {
3132         assert(NumIRArgs == 1);
3133         llvm::Value *V;
3134         if (RV.isScalar())
3135           V = RV.getScalarVal();
3136         else
3137           V = Builder.CreateLoad(RV.getAggregateAddr());
3138 
3139         // We might have to widen integers, but we should never truncate.
3140         if (ArgInfo.getCoerceToType() != V->getType() &&
3141             V->getType()->isIntegerTy())
3142           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3143 
3144         // If the argument doesn't match, perform a bitcast to coerce it.  This
3145         // can happen due to trivial type mismatches.
3146         if (FirstIRArg < IRFuncTy->getNumParams() &&
3147             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3148           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3149         IRCallArgs[FirstIRArg] = V;
3150         break;
3151       }
3152 
3153       // FIXME: Avoid the conversion through memory if possible.
3154       llvm::Value *SrcPtr;
3155       if (RV.isScalar() || RV.isComplex()) {
3156         SrcPtr = CreateMemTemp(I->Ty, "coerce");
3157         LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
3158         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3159       } else
3160         SrcPtr = RV.getAggregateAddr();
3161 
3162       // If the value is offset in memory, apply the offset now.
3163       if (unsigned Offs = ArgInfo.getDirectOffset()) {
3164         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
3165         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
3166         SrcPtr = Builder.CreateBitCast(SrcPtr,
3167                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
3168 
3169       }
3170 
3171       // Fast-isel and the optimizer generally like scalar values better than
3172       // FCAs, so we flatten them if this is safe to do for this argument.
3173       llvm::StructType *STy =
3174             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3175       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3176         llvm::Type *SrcTy =
3177           cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
3178         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3179         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3180 
3181         // If the source type is smaller than the destination type of the
3182         // coerce-to logic, copy the source value into a temp alloca the size
3183         // of the destination type to allow loading all of it. The bits past
3184         // the source value are left undef.
3185         if (SrcSize < DstSize) {
3186           llvm::AllocaInst *TempAlloca
3187             = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
3188           Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
3189           SrcPtr = TempAlloca;
3190         } else {
3191           SrcPtr = Builder.CreateBitCast(SrcPtr,
3192                                          llvm::PointerType::getUnqual(STy));
3193         }
3194 
3195         assert(NumIRArgs == STy->getNumElements());
3196         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3197           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
3198           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
3199           // We don't know what we're loading from.
3200           LI->setAlignment(1);
3201           IRCallArgs[FirstIRArg + i] = LI;
3202         }
3203       } else {
3204         // In the simple case, just pass the coerced loaded value.
3205         assert(NumIRArgs == 1);
3206         IRCallArgs[FirstIRArg] =
3207             CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), *this);
3208       }
3209 
3210       break;
3211     }
3212 
3213     case ABIArgInfo::Expand:
3214       unsigned IRArgPos = FirstIRArg;
3215       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
3216       assert(IRArgPos == FirstIRArg + NumIRArgs);
3217       break;
3218     }
3219   }
3220 
3221   if (ArgMemory) {
3222     llvm::Value *Arg = ArgMemory;
3223     if (CallInfo.isVariadic()) {
3224       // When passing non-POD arguments by value to variadic functions, we will
3225       // end up with a variadic prototype and an inalloca call site.  In such
3226       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
3227       // the callee.
3228       unsigned CalleeAS =
3229           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
3230       Callee = Builder.CreateBitCast(
3231           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
3232     } else {
3233       llvm::Type *LastParamTy =
3234           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
3235       if (Arg->getType() != LastParamTy) {
3236 #ifndef NDEBUG
3237         // Assert that these structs have equivalent element types.
3238         llvm::StructType *FullTy = CallInfo.getArgStruct();
3239         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
3240             cast<llvm::PointerType>(LastParamTy)->getElementType());
3241         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
3242         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
3243                                                 DE = DeclaredTy->element_end(),
3244                                                 FI = FullTy->element_begin();
3245              DI != DE; ++DI, ++FI)
3246           assert(*DI == *FI);
3247 #endif
3248         Arg = Builder.CreateBitCast(Arg, LastParamTy);
3249       }
3250     }
3251     assert(IRFunctionArgs.hasInallocaArg());
3252     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
3253   }
3254 
3255   if (!CallArgs.getCleanupsToDeactivate().empty())
3256     deactivateArgCleanupsBeforeCall(*this, CallArgs);
3257 
3258   // If the callee is a bitcast of a function to a varargs pointer to function
3259   // type, check to see if we can remove the bitcast.  This handles some cases
3260   // with unprototyped functions.
3261   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
3262     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
3263       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
3264       llvm::FunctionType *CurFT =
3265         cast<llvm::FunctionType>(CurPT->getElementType());
3266       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
3267 
3268       if (CE->getOpcode() == llvm::Instruction::BitCast &&
3269           ActualFT->getReturnType() == CurFT->getReturnType() &&
3270           ActualFT->getNumParams() == CurFT->getNumParams() &&
3271           ActualFT->getNumParams() == IRCallArgs.size() &&
3272           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
3273         bool ArgsMatch = true;
3274         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
3275           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
3276             ArgsMatch = false;
3277             break;
3278           }
3279 
3280         // Strip the cast if we can get away with it.  This is a nice cleanup,
3281         // but also allows us to inline the function at -O0 if it is marked
3282         // always_inline.
3283         if (ArgsMatch)
3284           Callee = CalleeF;
3285       }
3286     }
3287 
3288   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
3289   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
3290     // Inalloca argument can have different type.
3291     if (IRFunctionArgs.hasInallocaArg() &&
3292         i == IRFunctionArgs.getInallocaArgNo())
3293       continue;
3294     if (i < IRFuncTy->getNumParams())
3295       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
3296   }
3297 
3298   unsigned CallingConv;
3299   CodeGen::AttributeListType AttributeList;
3300   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
3301                              CallingConv, true);
3302   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
3303                                                      AttributeList);
3304 
3305   llvm::BasicBlock *InvokeDest = nullptr;
3306   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
3307                           llvm::Attribute::NoUnwind))
3308     InvokeDest = getInvokeDest();
3309 
3310   llvm::CallSite CS;
3311   if (!InvokeDest) {
3312     CS = Builder.CreateCall(Callee, IRCallArgs);
3313   } else {
3314     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
3315     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs);
3316     EmitBlock(Cont);
3317   }
3318   if (callOrInvoke)
3319     *callOrInvoke = CS.getInstruction();
3320 
3321   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
3322       !CS.hasFnAttr(llvm::Attribute::NoInline))
3323     Attrs =
3324         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3325                            llvm::Attribute::AlwaysInline);
3326 
3327   CS.setAttributes(Attrs);
3328   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
3329 
3330   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3331   // optimizer it can aggressively ignore unwind edges.
3332   if (CGM.getLangOpts().ObjCAutoRefCount)
3333     AddObjCARCExceptionMetadata(CS.getInstruction());
3334 
3335   // If the call doesn't return, finish the basic block and clear the
3336   // insertion point; this allows the rest of IRgen to discard
3337   // unreachable code.
3338   if (CS.doesNotReturn()) {
3339     Builder.CreateUnreachable();
3340     Builder.ClearInsertionPoint();
3341 
3342     // FIXME: For now, emit a dummy basic block because expr emitters in
3343     // generally are not ready to handle emitting expressions at unreachable
3344     // points.
3345     EnsureInsertPoint();
3346 
3347     // Return a reasonable RValue.
3348     return GetUndefRValue(RetTy);
3349   }
3350 
3351   llvm::Instruction *CI = CS.getInstruction();
3352   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
3353     CI->setName("call");
3354 
3355   // Emit any writebacks immediately.  Arguably this should happen
3356   // after any return-value munging.
3357   if (CallArgs.hasWritebacks())
3358     emitWritebacks(*this, CallArgs);
3359 
3360   // The stack cleanup for inalloca arguments has to run out of the normal
3361   // lexical order, so deactivate it and run it manually here.
3362   CallArgs.freeArgumentMemory(*this);
3363 
3364   RValue Ret = [&] {
3365     switch (RetAI.getKind()) {
3366     case ABIArgInfo::InAlloca:
3367     case ABIArgInfo::Indirect:
3368       return convertTempToRValue(SRetPtr, RetTy, SourceLocation());
3369 
3370     case ABIArgInfo::Ignore:
3371       // If we are ignoring an argument that had a result, make sure to
3372       // construct the appropriate return value for our caller.
3373       return GetUndefRValue(RetTy);
3374 
3375     case ABIArgInfo::Extend:
3376     case ABIArgInfo::Direct: {
3377       llvm::Type *RetIRTy = ConvertType(RetTy);
3378       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
3379         switch (getEvaluationKind(RetTy)) {
3380         case TEK_Complex: {
3381           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
3382           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
3383           return RValue::getComplex(std::make_pair(Real, Imag));
3384         }
3385         case TEK_Aggregate: {
3386           llvm::Value *DestPtr = ReturnValue.getValue();
3387           bool DestIsVolatile = ReturnValue.isVolatile();
3388 
3389           if (!DestPtr) {
3390             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
3391             DestIsVolatile = false;
3392           }
3393           BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
3394           return RValue::getAggregate(DestPtr);
3395         }
3396         case TEK_Scalar: {
3397           // If the argument doesn't match, perform a bitcast to coerce it.  This
3398           // can happen due to trivial type mismatches.
3399           llvm::Value *V = CI;
3400           if (V->getType() != RetIRTy)
3401             V = Builder.CreateBitCast(V, RetIRTy);
3402           return RValue::get(V);
3403         }
3404         }
3405         llvm_unreachable("bad evaluation kind");
3406       }
3407 
3408       llvm::Value *DestPtr = ReturnValue.getValue();
3409       bool DestIsVolatile = ReturnValue.isVolatile();
3410 
3411       if (!DestPtr) {
3412         DestPtr = CreateMemTemp(RetTy, "coerce");
3413         DestIsVolatile = false;
3414       }
3415 
3416       // If the value is offset in memory, apply the offset now.
3417       llvm::Value *StorePtr = DestPtr;
3418       if (unsigned Offs = RetAI.getDirectOffset()) {
3419         StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
3420         StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
3421         StorePtr = Builder.CreateBitCast(StorePtr,
3422                            llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
3423       }
3424       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
3425 
3426       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
3427     }
3428 
3429     case ABIArgInfo::Expand:
3430       llvm_unreachable("Invalid ABI kind for return argument");
3431     }
3432 
3433     llvm_unreachable("Unhandled ABIArgInfo::Kind");
3434   } ();
3435 
3436   if (Ret.isScalar() && TargetDecl) {
3437     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
3438       llvm::Value *OffsetValue = nullptr;
3439       if (const auto *Offset = AA->getOffset())
3440         OffsetValue = EmitScalarExpr(Offset);
3441 
3442       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
3443       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
3444       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
3445                               OffsetValue);
3446     }
3447   }
3448 
3449   return Ret;
3450 }
3451 
3452 /* VarArg handling */
3453 
3454 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
3455   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
3456 }
3457