1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/CodeGen/CGFunctionInfo.h"
30 #include "clang/CodeGen/SwiftCallingConv.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 using namespace clang;
41 using namespace CodeGen;
42 
43 /***/
44 
45 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
46   switch (CC) {
47   default: return llvm::CallingConv::C;
48   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
49   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
50   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
51   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
52   case CC_Win64: return llvm::CallingConv::Win64;
53   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
54   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
55   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
56   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
57   // TODO: Add support for __pascal to LLVM.
58   case CC_X86Pascal: return llvm::CallingConv::C;
59   // TODO: Add support for __vectorcall to LLVM.
60   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
61   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
62   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
63   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
64   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
65   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
66   case CC_Swift: return llvm::CallingConv::Swift;
67   }
68 }
69 
70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
71 /// qualification. Either or both of RD and MD may be null. A null RD indicates
72 /// that there is no meaningful 'this' type, and a null MD can occur when
73 /// calling a method pointer.
74 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
75                                          const CXXMethodDecl *MD) {
76   QualType RecTy;
77   if (RD)
78     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
79   else
80     RecTy = Context.VoidTy;
81 
82   if (MD)
83     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
84   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
85 }
86 
87 /// Returns the canonical formal type of the given C++ method.
88 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
89   return MD->getType()->getCanonicalTypeUnqualified()
90            .getAs<FunctionProtoType>();
91 }
92 
93 /// Returns the "extra-canonicalized" return type, which discards
94 /// qualifiers on the return type.  Codegen doesn't care about them,
95 /// and it makes ABI code a little easier to be able to assume that
96 /// all parameter and return types are top-level unqualified.
97 static CanQualType GetReturnType(QualType RetTy) {
98   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
99 }
100 
101 /// Arrange the argument and result information for a value of the given
102 /// unprototyped freestanding function type.
103 const CGFunctionInfo &
104 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
105   // When translating an unprototyped function type, always use a
106   // variadic type.
107   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
108                                  /*instanceMethod=*/false,
109                                  /*chainCall=*/false, None,
110                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
111 }
112 
113 static void addExtParameterInfosForCall(
114          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
115                                         const FunctionProtoType *proto,
116                                         unsigned prefixArgs,
117                                         unsigned totalArgs) {
118   assert(proto->hasExtParameterInfos());
119   assert(paramInfos.size() <= prefixArgs);
120   assert(proto->getNumParams() + prefixArgs <= totalArgs);
121 
122   paramInfos.reserve(totalArgs);
123 
124   // Add default infos for any prefix args that don't already have infos.
125   paramInfos.resize(prefixArgs);
126 
127   // Add infos for the prototype.
128   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
129     paramInfos.push_back(ParamInfo);
130     // pass_object_size params have no parameter info.
131     if (ParamInfo.hasPassObjectSize())
132       paramInfos.emplace_back();
133   }
134 
135   assert(paramInfos.size() <= totalArgs &&
136          "Did we forget to insert pass_object_size args?");
137   // Add default infos for the variadic and/or suffix arguments.
138   paramInfos.resize(totalArgs);
139 }
140 
141 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
142 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
143 static void appendParameterTypes(const CodeGenTypes &CGT,
144                                  SmallVectorImpl<CanQualType> &prefix,
145               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
146                                  CanQual<FunctionProtoType> FPT) {
147   // Fast path: don't touch param info if we don't need to.
148   if (!FPT->hasExtParameterInfos()) {
149     assert(paramInfos.empty() &&
150            "We have paramInfos, but the prototype doesn't?");
151     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
152     return;
153   }
154 
155   unsigned PrefixSize = prefix.size();
156   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
157   // parameters; the only thing that can change this is the presence of
158   // pass_object_size. So, we preallocate for the common case.
159   prefix.reserve(prefix.size() + FPT->getNumParams());
160 
161   auto ExtInfos = FPT->getExtParameterInfos();
162   assert(ExtInfos.size() == FPT->getNumParams());
163   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
164     prefix.push_back(FPT->getParamType(I));
165     if (ExtInfos[I].hasPassObjectSize())
166       prefix.push_back(CGT.getContext().getSizeType());
167   }
168 
169   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
170                               prefix.size());
171 }
172 
173 /// Arrange the LLVM function layout for a value of the given function
174 /// type, on top of any implicit parameters already stored.
175 static const CGFunctionInfo &
176 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
177                         SmallVectorImpl<CanQualType> &prefix,
178                         CanQual<FunctionProtoType> FTP) {
179   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
180   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
181   // FIXME: Kill copy.
182   appendParameterTypes(CGT, prefix, paramInfos, FTP);
183   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
184 
185   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
186                                      /*chainCall=*/false, prefix,
187                                      FTP->getExtInfo(), paramInfos,
188                                      Required);
189 }
190 
191 /// Arrange the argument and result information for a value of the
192 /// given freestanding function type.
193 const CGFunctionInfo &
194 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
195   SmallVector<CanQualType, 16> argTypes;
196   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
197                                    FTP);
198 }
199 
200 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
201   // Set the appropriate calling convention for the Function.
202   if (D->hasAttr<StdCallAttr>())
203     return CC_X86StdCall;
204 
205   if (D->hasAttr<FastCallAttr>())
206     return CC_X86FastCall;
207 
208   if (D->hasAttr<RegCallAttr>())
209     return CC_X86RegCall;
210 
211   if (D->hasAttr<ThisCallAttr>())
212     return CC_X86ThisCall;
213 
214   if (D->hasAttr<VectorCallAttr>())
215     return CC_X86VectorCall;
216 
217   if (D->hasAttr<PascalAttr>())
218     return CC_X86Pascal;
219 
220   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
221     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
222 
223   if (D->hasAttr<AArch64VectorPcsAttr>())
224     return CC_AArch64VectorCall;
225 
226   if (D->hasAttr<IntelOclBiccAttr>())
227     return CC_IntelOclBicc;
228 
229   if (D->hasAttr<MSABIAttr>())
230     return IsWindows ? CC_C : CC_Win64;
231 
232   if (D->hasAttr<SysVABIAttr>())
233     return IsWindows ? CC_X86_64SysV : CC_C;
234 
235   if (D->hasAttr<PreserveMostAttr>())
236     return CC_PreserveMost;
237 
238   if (D->hasAttr<PreserveAllAttr>())
239     return CC_PreserveAll;
240 
241   return CC_C;
242 }
243 
244 /// Arrange the argument and result information for a call to an
245 /// unknown C++ non-static member function of the given abstract type.
246 /// (A null RD means we don't have any meaningful "this" argument type,
247 ///  so fall back to a generic pointer type).
248 /// The member function must be an ordinary function, i.e. not a
249 /// constructor or destructor.
250 const CGFunctionInfo &
251 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
252                                    const FunctionProtoType *FTP,
253                                    const CXXMethodDecl *MD) {
254   SmallVector<CanQualType, 16> argTypes;
255 
256   // Add the 'this' pointer.
257   argTypes.push_back(DeriveThisType(RD, MD));
258 
259   return ::arrangeLLVMFunctionInfo(
260       *this, true, argTypes,
261       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
262 }
263 
264 /// Set calling convention for CUDA/HIP kernel.
265 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
266                                            const FunctionDecl *FD) {
267   if (FD->hasAttr<CUDAGlobalAttr>()) {
268     const FunctionType *FT = FTy->getAs<FunctionType>();
269     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
270     FTy = FT->getCanonicalTypeUnqualified();
271   }
272 }
273 
274 /// Arrange the argument and result information for a declaration or
275 /// definition of the given C++ non-static member function.  The
276 /// member function must be an ordinary function, i.e. not a
277 /// constructor or destructor.
278 const CGFunctionInfo &
279 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
280   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
281   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
282 
283   CanQualType FT = GetFormalType(MD).getAs<Type>();
284   setCUDAKernelCallingConvention(FT, CGM, MD);
285   auto prototype = FT.getAs<FunctionProtoType>();
286 
287   if (MD->isInstance()) {
288     // The abstract case is perfectly fine.
289     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
290     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
291   }
292 
293   return arrangeFreeFunctionType(prototype);
294 }
295 
296 bool CodeGenTypes::inheritingCtorHasParams(
297     const InheritedConstructor &Inherited, CXXCtorType Type) {
298   // Parameters are unnecessary if we're constructing a base class subobject
299   // and the inherited constructor lives in a virtual base.
300   return Type == Ctor_Complete ||
301          !Inherited.getShadowDecl()->constructsVirtualBase() ||
302          !Target.getCXXABI().hasConstructorVariants();
303 }
304 
305 const CGFunctionInfo &
306 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
307   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
308 
309   SmallVector<CanQualType, 16> argTypes;
310   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
311   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
312 
313   bool PassParams = true;
314 
315   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
316     // A base class inheriting constructor doesn't get forwarded arguments
317     // needed to construct a virtual base (or base class thereof).
318     if (auto Inherited = CD->getInheritedConstructor())
319       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
320   }
321 
322   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
323 
324   // Add the formal parameters.
325   if (PassParams)
326     appendParameterTypes(*this, argTypes, paramInfos, FTP);
327 
328   CGCXXABI::AddedStructorArgs AddedArgs =
329       TheCXXABI.buildStructorSignature(GD, argTypes);
330   if (!paramInfos.empty()) {
331     // Note: prefix implies after the first param.
332     if (AddedArgs.Prefix)
333       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
334                         FunctionProtoType::ExtParameterInfo{});
335     if (AddedArgs.Suffix)
336       paramInfos.append(AddedArgs.Suffix,
337                         FunctionProtoType::ExtParameterInfo{});
338   }
339 
340   RequiredArgs required =
341       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
342                                       : RequiredArgs::All);
343 
344   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
345   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
346                                ? argTypes.front()
347                                : TheCXXABI.hasMostDerivedReturn(GD)
348                                      ? CGM.getContext().VoidPtrTy
349                                      : Context.VoidTy;
350   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
351                                  /*chainCall=*/false, argTypes, extInfo,
352                                  paramInfos, required);
353 }
354 
355 static SmallVector<CanQualType, 16>
356 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
357   SmallVector<CanQualType, 16> argTypes;
358   for (auto &arg : args)
359     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
360   return argTypes;
361 }
362 
363 static SmallVector<CanQualType, 16>
364 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
365   SmallVector<CanQualType, 16> argTypes;
366   for (auto &arg : args)
367     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
368   return argTypes;
369 }
370 
371 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
372 getExtParameterInfosForCall(const FunctionProtoType *proto,
373                             unsigned prefixArgs, unsigned totalArgs) {
374   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
375   if (proto->hasExtParameterInfos()) {
376     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
377   }
378   return result;
379 }
380 
381 /// Arrange a call to a C++ method, passing the given arguments.
382 ///
383 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
384 /// parameter.
385 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
386 /// args.
387 /// PassProtoArgs indicates whether `args` has args for the parameters in the
388 /// given CXXConstructorDecl.
389 const CGFunctionInfo &
390 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
391                                         const CXXConstructorDecl *D,
392                                         CXXCtorType CtorKind,
393                                         unsigned ExtraPrefixArgs,
394                                         unsigned ExtraSuffixArgs,
395                                         bool PassProtoArgs) {
396   // FIXME: Kill copy.
397   SmallVector<CanQualType, 16> ArgTypes;
398   for (const auto &Arg : args)
399     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
400 
401   // +1 for implicit this, which should always be args[0].
402   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
403 
404   CanQual<FunctionProtoType> FPT = GetFormalType(D);
405   RequiredArgs Required = PassProtoArgs
406                               ? RequiredArgs::forPrototypePlus(
407                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
408                               : RequiredArgs::All;
409 
410   GlobalDecl GD(D, CtorKind);
411   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
412                                ? ArgTypes.front()
413                                : TheCXXABI.hasMostDerivedReturn(GD)
414                                      ? CGM.getContext().VoidPtrTy
415                                      : Context.VoidTy;
416 
417   FunctionType::ExtInfo Info = FPT->getExtInfo();
418   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
419   // If the prototype args are elided, we should only have ABI-specific args,
420   // which never have param info.
421   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
422     // ABI-specific suffix arguments are treated the same as variadic arguments.
423     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
424                                 ArgTypes.size());
425   }
426   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
427                                  /*chainCall=*/false, ArgTypes, Info,
428                                  ParamInfos, Required);
429 }
430 
431 /// Arrange the argument and result information for the declaration or
432 /// definition of the given function.
433 const CGFunctionInfo &
434 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
435   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
436     if (MD->isInstance())
437       return arrangeCXXMethodDeclaration(MD);
438 
439   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
440 
441   assert(isa<FunctionType>(FTy));
442   setCUDAKernelCallingConvention(FTy, CGM, FD);
443 
444   // When declaring a function without a prototype, always use a
445   // non-variadic type.
446   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
447     return arrangeLLVMFunctionInfo(
448         noProto->getReturnType(), /*instanceMethod=*/false,
449         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
450   }
451 
452   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
453 }
454 
455 /// Arrange the argument and result information for the declaration or
456 /// definition of an Objective-C method.
457 const CGFunctionInfo &
458 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
459   // It happens that this is the same as a call with no optional
460   // arguments, except also using the formal 'self' type.
461   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
462 }
463 
464 /// Arrange the argument and result information for the function type
465 /// through which to perform a send to the given Objective-C method,
466 /// using the given receiver type.  The receiver type is not always
467 /// the 'self' type of the method or even an Objective-C pointer type.
468 /// This is *not* the right method for actually performing such a
469 /// message send, due to the possibility of optional arguments.
470 const CGFunctionInfo &
471 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
472                                               QualType receiverType) {
473   SmallVector<CanQualType, 16> argTys;
474   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
475   argTys.push_back(Context.getCanonicalParamType(receiverType));
476   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
477   // FIXME: Kill copy?
478   for (const auto *I : MD->parameters()) {
479     argTys.push_back(Context.getCanonicalParamType(I->getType()));
480     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
481         I->hasAttr<NoEscapeAttr>());
482     extParamInfos.push_back(extParamInfo);
483   }
484 
485   FunctionType::ExtInfo einfo;
486   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
487   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
488 
489   if (getContext().getLangOpts().ObjCAutoRefCount &&
490       MD->hasAttr<NSReturnsRetainedAttr>())
491     einfo = einfo.withProducesResult(true);
492 
493   RequiredArgs required =
494     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
495 
496   return arrangeLLVMFunctionInfo(
497       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
498       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
499 }
500 
501 const CGFunctionInfo &
502 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
503                                                  const CallArgList &args) {
504   auto argTypes = getArgTypesForCall(Context, args);
505   FunctionType::ExtInfo einfo;
506 
507   return arrangeLLVMFunctionInfo(
508       GetReturnType(returnType), /*instanceMethod=*/false,
509       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
510 }
511 
512 const CGFunctionInfo &
513 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
514   // FIXME: Do we need to handle ObjCMethodDecl?
515   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
516 
517   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
518       isa<CXXDestructorDecl>(GD.getDecl()))
519     return arrangeCXXStructorDeclaration(GD);
520 
521   return arrangeFunctionDeclaration(FD);
522 }
523 
524 /// Arrange a thunk that takes 'this' as the first parameter followed by
525 /// varargs.  Return a void pointer, regardless of the actual return type.
526 /// The body of the thunk will end in a musttail call to a function of the
527 /// correct type, and the caller will bitcast the function to the correct
528 /// prototype.
529 const CGFunctionInfo &
530 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
531   assert(MD->isVirtual() && "only methods have thunks");
532   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
533   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
534   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
535                                  /*chainCall=*/false, ArgTys,
536                                  FTP->getExtInfo(), {}, RequiredArgs(1));
537 }
538 
539 const CGFunctionInfo &
540 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
541                                    CXXCtorType CT) {
542   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
543 
544   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
545   SmallVector<CanQualType, 2> ArgTys;
546   const CXXRecordDecl *RD = CD->getParent();
547   ArgTys.push_back(DeriveThisType(RD, CD));
548   if (CT == Ctor_CopyingClosure)
549     ArgTys.push_back(*FTP->param_type_begin());
550   if (RD->getNumVBases() > 0)
551     ArgTys.push_back(Context.IntTy);
552   CallingConv CC = Context.getDefaultCallingConvention(
553       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
554   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
555                                  /*chainCall=*/false, ArgTys,
556                                  FunctionType::ExtInfo(CC), {},
557                                  RequiredArgs::All);
558 }
559 
560 /// Arrange a call as unto a free function, except possibly with an
561 /// additional number of formal parameters considered required.
562 static const CGFunctionInfo &
563 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
564                             CodeGenModule &CGM,
565                             const CallArgList &args,
566                             const FunctionType *fnType,
567                             unsigned numExtraRequiredArgs,
568                             bool chainCall) {
569   assert(args.size() >= numExtraRequiredArgs);
570 
571   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
572 
573   // In most cases, there are no optional arguments.
574   RequiredArgs required = RequiredArgs::All;
575 
576   // If we have a variadic prototype, the required arguments are the
577   // extra prefix plus the arguments in the prototype.
578   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
579     if (proto->isVariadic())
580       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
581 
582     if (proto->hasExtParameterInfos())
583       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
584                                   args.size());
585 
586   // If we don't have a prototype at all, but we're supposed to
587   // explicitly use the variadic convention for unprototyped calls,
588   // treat all of the arguments as required but preserve the nominal
589   // possibility of variadics.
590   } else if (CGM.getTargetCodeGenInfo()
591                 .isNoProtoCallVariadic(args,
592                                        cast<FunctionNoProtoType>(fnType))) {
593     required = RequiredArgs(args.size());
594   }
595 
596   // FIXME: Kill copy.
597   SmallVector<CanQualType, 16> argTypes;
598   for (const auto &arg : args)
599     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
600   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
601                                      /*instanceMethod=*/false, chainCall,
602                                      argTypes, fnType->getExtInfo(), paramInfos,
603                                      required);
604 }
605 
606 /// Figure out the rules for calling a function with the given formal
607 /// type using the given arguments.  The arguments are necessary
608 /// because the function might be unprototyped, in which case it's
609 /// target-dependent in crazy ways.
610 const CGFunctionInfo &
611 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
612                                       const FunctionType *fnType,
613                                       bool chainCall) {
614   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
615                                      chainCall ? 1 : 0, chainCall);
616 }
617 
618 /// A block function is essentially a free function with an
619 /// extra implicit argument.
620 const CGFunctionInfo &
621 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
622                                        const FunctionType *fnType) {
623   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
624                                      /*chainCall=*/false);
625 }
626 
627 const CGFunctionInfo &
628 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
629                                               const FunctionArgList &params) {
630   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
631   auto argTypes = getArgTypesForDeclaration(Context, params);
632 
633   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
634                                  /*instanceMethod*/ false, /*chainCall*/ false,
635                                  argTypes, proto->getExtInfo(), paramInfos,
636                                  RequiredArgs::forPrototypePlus(proto, 1));
637 }
638 
639 const CGFunctionInfo &
640 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
641                                          const CallArgList &args) {
642   // FIXME: Kill copy.
643   SmallVector<CanQualType, 16> argTypes;
644   for (const auto &Arg : args)
645     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
646   return arrangeLLVMFunctionInfo(
647       GetReturnType(resultType), /*instanceMethod=*/false,
648       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
649       /*paramInfos=*/ {}, RequiredArgs::All);
650 }
651 
652 const CGFunctionInfo &
653 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
654                                                 const FunctionArgList &args) {
655   auto argTypes = getArgTypesForDeclaration(Context, args);
656 
657   return arrangeLLVMFunctionInfo(
658       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
659       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
660 }
661 
662 const CGFunctionInfo &
663 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
664                                               ArrayRef<CanQualType> argTypes) {
665   return arrangeLLVMFunctionInfo(
666       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
667       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
668 }
669 
670 /// Arrange a call to a C++ method, passing the given arguments.
671 ///
672 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
673 /// does not count `this`.
674 const CGFunctionInfo &
675 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
676                                    const FunctionProtoType *proto,
677                                    RequiredArgs required,
678                                    unsigned numPrefixArgs) {
679   assert(numPrefixArgs + 1 <= args.size() &&
680          "Emitting a call with less args than the required prefix?");
681   // Add one to account for `this`. It's a bit awkward here, but we don't count
682   // `this` in similar places elsewhere.
683   auto paramInfos =
684     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
685 
686   // FIXME: Kill copy.
687   auto argTypes = getArgTypesForCall(Context, args);
688 
689   FunctionType::ExtInfo info = proto->getExtInfo();
690   return arrangeLLVMFunctionInfo(
691       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
692       /*chainCall=*/false, argTypes, info, paramInfos, required);
693 }
694 
695 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
696   return arrangeLLVMFunctionInfo(
697       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
698       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
699 }
700 
701 const CGFunctionInfo &
702 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
703                           const CallArgList &args) {
704   assert(signature.arg_size() <= args.size());
705   if (signature.arg_size() == args.size())
706     return signature;
707 
708   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
709   auto sigParamInfos = signature.getExtParameterInfos();
710   if (!sigParamInfos.empty()) {
711     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
712     paramInfos.resize(args.size());
713   }
714 
715   auto argTypes = getArgTypesForCall(Context, args);
716 
717   assert(signature.getRequiredArgs().allowsOptionalArgs());
718   return arrangeLLVMFunctionInfo(signature.getReturnType(),
719                                  signature.isInstanceMethod(),
720                                  signature.isChainCall(),
721                                  argTypes,
722                                  signature.getExtInfo(),
723                                  paramInfos,
724                                  signature.getRequiredArgs());
725 }
726 
727 namespace clang {
728 namespace CodeGen {
729 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
730 }
731 }
732 
733 /// Arrange the argument and result information for an abstract value
734 /// of a given function type.  This is the method which all of the
735 /// above functions ultimately defer to.
736 const CGFunctionInfo &
737 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
738                                       bool instanceMethod,
739                                       bool chainCall,
740                                       ArrayRef<CanQualType> argTypes,
741                                       FunctionType::ExtInfo info,
742                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
743                                       RequiredArgs required) {
744   assert(llvm::all_of(argTypes,
745                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
746 
747   // Lookup or create unique function info.
748   llvm::FoldingSetNodeID ID;
749   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
750                           required, resultType, argTypes);
751 
752   void *insertPos = nullptr;
753   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
754   if (FI)
755     return *FI;
756 
757   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
758 
759   // Construct the function info.  We co-allocate the ArgInfos.
760   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
761                               paramInfos, resultType, argTypes, required);
762   FunctionInfos.InsertNode(FI, insertPos);
763 
764   bool inserted = FunctionsBeingProcessed.insert(FI).second;
765   (void)inserted;
766   assert(inserted && "Recursively being processed?");
767 
768   // Compute ABI information.
769   if (CC == llvm::CallingConv::SPIR_KERNEL) {
770     // Force target independent argument handling for the host visible
771     // kernel functions.
772     computeSPIRKernelABIInfo(CGM, *FI);
773   } else if (info.getCC() == CC_Swift) {
774     swiftcall::computeABIInfo(CGM, *FI);
775   } else {
776     getABIInfo().computeInfo(*FI);
777   }
778 
779   // Loop over all of the computed argument and return value info.  If any of
780   // them are direct or extend without a specified coerce type, specify the
781   // default now.
782   ABIArgInfo &retInfo = FI->getReturnInfo();
783   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
784     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
785 
786   for (auto &I : FI->arguments())
787     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
788       I.info.setCoerceToType(ConvertType(I.type));
789 
790   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
791   assert(erased && "Not in set?");
792 
793   return *FI;
794 }
795 
796 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
797                                        bool instanceMethod,
798                                        bool chainCall,
799                                        const FunctionType::ExtInfo &info,
800                                        ArrayRef<ExtParameterInfo> paramInfos,
801                                        CanQualType resultType,
802                                        ArrayRef<CanQualType> argTypes,
803                                        RequiredArgs required) {
804   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
805   assert(!required.allowsOptionalArgs() ||
806          required.getNumRequiredArgs() <= argTypes.size());
807 
808   void *buffer =
809     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
810                                   argTypes.size() + 1, paramInfos.size()));
811 
812   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
813   FI->CallingConvention = llvmCC;
814   FI->EffectiveCallingConvention = llvmCC;
815   FI->ASTCallingConvention = info.getCC();
816   FI->InstanceMethod = instanceMethod;
817   FI->ChainCall = chainCall;
818   FI->NoReturn = info.getNoReturn();
819   FI->ReturnsRetained = info.getProducesResult();
820   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
821   FI->NoCfCheck = info.getNoCfCheck();
822   FI->Required = required;
823   FI->HasRegParm = info.getHasRegParm();
824   FI->RegParm = info.getRegParm();
825   FI->ArgStruct = nullptr;
826   FI->ArgStructAlign = 0;
827   FI->NumArgs = argTypes.size();
828   FI->HasExtParameterInfos = !paramInfos.empty();
829   FI->getArgsBuffer()[0].type = resultType;
830   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
831     FI->getArgsBuffer()[i + 1].type = argTypes[i];
832   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
833     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
834   return FI;
835 }
836 
837 /***/
838 
839 namespace {
840 // ABIArgInfo::Expand implementation.
841 
842 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
843 struct TypeExpansion {
844   enum TypeExpansionKind {
845     // Elements of constant arrays are expanded recursively.
846     TEK_ConstantArray,
847     // Record fields are expanded recursively (but if record is a union, only
848     // the field with the largest size is expanded).
849     TEK_Record,
850     // For complex types, real and imaginary parts are expanded recursively.
851     TEK_Complex,
852     // All other types are not expandable.
853     TEK_None
854   };
855 
856   const TypeExpansionKind Kind;
857 
858   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
859   virtual ~TypeExpansion() {}
860 };
861 
862 struct ConstantArrayExpansion : TypeExpansion {
863   QualType EltTy;
864   uint64_t NumElts;
865 
866   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
867       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
868   static bool classof(const TypeExpansion *TE) {
869     return TE->Kind == TEK_ConstantArray;
870   }
871 };
872 
873 struct RecordExpansion : TypeExpansion {
874   SmallVector<const CXXBaseSpecifier *, 1> Bases;
875 
876   SmallVector<const FieldDecl *, 1> Fields;
877 
878   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
879                   SmallVector<const FieldDecl *, 1> &&Fields)
880       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
881         Fields(std::move(Fields)) {}
882   static bool classof(const TypeExpansion *TE) {
883     return TE->Kind == TEK_Record;
884   }
885 };
886 
887 struct ComplexExpansion : TypeExpansion {
888   QualType EltTy;
889 
890   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
891   static bool classof(const TypeExpansion *TE) {
892     return TE->Kind == TEK_Complex;
893   }
894 };
895 
896 struct NoExpansion : TypeExpansion {
897   NoExpansion() : TypeExpansion(TEK_None) {}
898   static bool classof(const TypeExpansion *TE) {
899     return TE->Kind == TEK_None;
900   }
901 };
902 }  // namespace
903 
904 static std::unique_ptr<TypeExpansion>
905 getTypeExpansion(QualType Ty, const ASTContext &Context) {
906   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
907     return std::make_unique<ConstantArrayExpansion>(
908         AT->getElementType(), AT->getSize().getZExtValue());
909   }
910   if (const RecordType *RT = Ty->getAs<RecordType>()) {
911     SmallVector<const CXXBaseSpecifier *, 1> Bases;
912     SmallVector<const FieldDecl *, 1> Fields;
913     const RecordDecl *RD = RT->getDecl();
914     assert(!RD->hasFlexibleArrayMember() &&
915            "Cannot expand structure with flexible array.");
916     if (RD->isUnion()) {
917       // Unions can be here only in degenerative cases - all the fields are same
918       // after flattening. Thus we have to use the "largest" field.
919       const FieldDecl *LargestFD = nullptr;
920       CharUnits UnionSize = CharUnits::Zero();
921 
922       for (const auto *FD : RD->fields()) {
923         if (FD->isZeroLengthBitField(Context))
924           continue;
925         assert(!FD->isBitField() &&
926                "Cannot expand structure with bit-field members.");
927         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
928         if (UnionSize < FieldSize) {
929           UnionSize = FieldSize;
930           LargestFD = FD;
931         }
932       }
933       if (LargestFD)
934         Fields.push_back(LargestFD);
935     } else {
936       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
937         assert(!CXXRD->isDynamicClass() &&
938                "cannot expand vtable pointers in dynamic classes");
939         for (const CXXBaseSpecifier &BS : CXXRD->bases())
940           Bases.push_back(&BS);
941       }
942 
943       for (const auto *FD : RD->fields()) {
944         if (FD->isZeroLengthBitField(Context))
945           continue;
946         assert(!FD->isBitField() &&
947                "Cannot expand structure with bit-field members.");
948         Fields.push_back(FD);
949       }
950     }
951     return std::make_unique<RecordExpansion>(std::move(Bases),
952                                               std::move(Fields));
953   }
954   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
955     return std::make_unique<ComplexExpansion>(CT->getElementType());
956   }
957   return std::make_unique<NoExpansion>();
958 }
959 
960 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
961   auto Exp = getTypeExpansion(Ty, Context);
962   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
963     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
964   }
965   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
966     int Res = 0;
967     for (auto BS : RExp->Bases)
968       Res += getExpansionSize(BS->getType(), Context);
969     for (auto FD : RExp->Fields)
970       Res += getExpansionSize(FD->getType(), Context);
971     return Res;
972   }
973   if (isa<ComplexExpansion>(Exp.get()))
974     return 2;
975   assert(isa<NoExpansion>(Exp.get()));
976   return 1;
977 }
978 
979 void
980 CodeGenTypes::getExpandedTypes(QualType Ty,
981                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
982   auto Exp = getTypeExpansion(Ty, Context);
983   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
984     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
985       getExpandedTypes(CAExp->EltTy, TI);
986     }
987   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
988     for (auto BS : RExp->Bases)
989       getExpandedTypes(BS->getType(), TI);
990     for (auto FD : RExp->Fields)
991       getExpandedTypes(FD->getType(), TI);
992   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
993     llvm::Type *EltTy = ConvertType(CExp->EltTy);
994     *TI++ = EltTy;
995     *TI++ = EltTy;
996   } else {
997     assert(isa<NoExpansion>(Exp.get()));
998     *TI++ = ConvertType(Ty);
999   }
1000 }
1001 
1002 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1003                                       ConstantArrayExpansion *CAE,
1004                                       Address BaseAddr,
1005                                       llvm::function_ref<void(Address)> Fn) {
1006   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1007   CharUnits EltAlign =
1008     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1009 
1010   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1011     llvm::Value *EltAddr =
1012       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1013     Fn(Address(EltAddr, EltAlign));
1014   }
1015 }
1016 
1017 void CodeGenFunction::ExpandTypeFromArgs(
1018     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1019   assert(LV.isSimple() &&
1020          "Unexpected non-simple lvalue during struct expansion.");
1021 
1022   auto Exp = getTypeExpansion(Ty, getContext());
1023   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1024     forConstantArrayExpansion(
1025         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1026           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1027           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1028         });
1029   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1030     Address This = LV.getAddress(*this);
1031     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1032       // Perform a single step derived-to-base conversion.
1033       Address Base =
1034           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1035                                 /*NullCheckValue=*/false, SourceLocation());
1036       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1037 
1038       // Recurse onto bases.
1039       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1040     }
1041     for (auto FD : RExp->Fields) {
1042       // FIXME: What are the right qualifiers here?
1043       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1044       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1045     }
1046   } else if (isa<ComplexExpansion>(Exp.get())) {
1047     auto realValue = *AI++;
1048     auto imagValue = *AI++;
1049     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1050   } else {
1051     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1052     // primitive store.
1053     assert(isa<NoExpansion>(Exp.get()));
1054     if (LV.isBitField())
1055       EmitStoreThroughLValue(RValue::get(*AI++), LV);
1056     else
1057       EmitStoreOfScalar(*AI++, LV);
1058   }
1059 }
1060 
1061 void CodeGenFunction::ExpandTypeToArgs(
1062     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1063     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1064   auto Exp = getTypeExpansion(Ty, getContext());
1065   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1066     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1067                                    : Arg.getKnownRValue().getAggregateAddress();
1068     forConstantArrayExpansion(
1069         *this, CAExp, Addr, [&](Address EltAddr) {
1070           CallArg EltArg = CallArg(
1071               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1072               CAExp->EltTy);
1073           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1074                            IRCallArgPos);
1075         });
1076   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1077     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1078                                    : Arg.getKnownRValue().getAggregateAddress();
1079     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1080       // Perform a single step derived-to-base conversion.
1081       Address Base =
1082           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1083                                 /*NullCheckValue=*/false, SourceLocation());
1084       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1085 
1086       // Recurse onto bases.
1087       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1088                        IRCallArgPos);
1089     }
1090 
1091     LValue LV = MakeAddrLValue(This, Ty);
1092     for (auto FD : RExp->Fields) {
1093       CallArg FldArg =
1094           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1095       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1096                        IRCallArgPos);
1097     }
1098   } else if (isa<ComplexExpansion>(Exp.get())) {
1099     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1100     IRCallArgs[IRCallArgPos++] = CV.first;
1101     IRCallArgs[IRCallArgPos++] = CV.second;
1102   } else {
1103     assert(isa<NoExpansion>(Exp.get()));
1104     auto RV = Arg.getKnownRValue();
1105     assert(RV.isScalar() &&
1106            "Unexpected non-scalar rvalue during struct expansion.");
1107 
1108     // Insert a bitcast as needed.
1109     llvm::Value *V = RV.getScalarVal();
1110     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1111         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1112       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1113 
1114     IRCallArgs[IRCallArgPos++] = V;
1115   }
1116 }
1117 
1118 /// Create a temporary allocation for the purposes of coercion.
1119 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1120                                            CharUnits MinAlign) {
1121   // Don't use an alignment that's worse than what LLVM would prefer.
1122   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1123   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1124 
1125   return CGF.CreateTempAlloca(Ty, Align);
1126 }
1127 
1128 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1129 /// accessing some number of bytes out of it, try to gep into the struct to get
1130 /// at its inner goodness.  Dive as deep as possible without entering an element
1131 /// with an in-memory size smaller than DstSize.
1132 static Address
1133 EnterStructPointerForCoercedAccess(Address SrcPtr,
1134                                    llvm::StructType *SrcSTy,
1135                                    uint64_t DstSize, CodeGenFunction &CGF) {
1136   // We can't dive into a zero-element struct.
1137   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1138 
1139   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1140 
1141   // If the first elt is at least as large as what we're looking for, or if the
1142   // first element is the same size as the whole struct, we can enter it. The
1143   // comparison must be made on the store size and not the alloca size. Using
1144   // the alloca size may overstate the size of the load.
1145   uint64_t FirstEltSize =
1146     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1147   if (FirstEltSize < DstSize &&
1148       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1149     return SrcPtr;
1150 
1151   // GEP into the first element.
1152   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1153 
1154   // If the first element is a struct, recurse.
1155   llvm::Type *SrcTy = SrcPtr.getElementType();
1156   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1157     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1158 
1159   return SrcPtr;
1160 }
1161 
1162 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1163 /// are either integers or pointers.  This does a truncation of the value if it
1164 /// is too large or a zero extension if it is too small.
1165 ///
1166 /// This behaves as if the value were coerced through memory, so on big-endian
1167 /// targets the high bits are preserved in a truncation, while little-endian
1168 /// targets preserve the low bits.
1169 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1170                                              llvm::Type *Ty,
1171                                              CodeGenFunction &CGF) {
1172   if (Val->getType() == Ty)
1173     return Val;
1174 
1175   if (isa<llvm::PointerType>(Val->getType())) {
1176     // If this is Pointer->Pointer avoid conversion to and from int.
1177     if (isa<llvm::PointerType>(Ty))
1178       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1179 
1180     // Convert the pointer to an integer so we can play with its width.
1181     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1182   }
1183 
1184   llvm::Type *DestIntTy = Ty;
1185   if (isa<llvm::PointerType>(DestIntTy))
1186     DestIntTy = CGF.IntPtrTy;
1187 
1188   if (Val->getType() != DestIntTy) {
1189     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1190     if (DL.isBigEndian()) {
1191       // Preserve the high bits on big-endian targets.
1192       // That is what memory coercion does.
1193       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1194       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1195 
1196       if (SrcSize > DstSize) {
1197         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1198         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1199       } else {
1200         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1201         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1202       }
1203     } else {
1204       // Little-endian targets preserve the low bits. No shifts required.
1205       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1206     }
1207   }
1208 
1209   if (isa<llvm::PointerType>(Ty))
1210     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1211   return Val;
1212 }
1213 
1214 
1215 
1216 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1217 /// a pointer to an object of type \arg Ty, known to be aligned to
1218 /// \arg SrcAlign bytes.
1219 ///
1220 /// This safely handles the case when the src type is smaller than the
1221 /// destination type; in this situation the values of bits which not
1222 /// present in the src are undefined.
1223 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1224                                       CodeGenFunction &CGF) {
1225   llvm::Type *SrcTy = Src.getElementType();
1226 
1227   // If SrcTy and Ty are the same, just do a load.
1228   if (SrcTy == Ty)
1229     return CGF.Builder.CreateLoad(Src);
1230 
1231   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1232 
1233   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1234     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1235     SrcTy = Src.getType()->getElementType();
1236   }
1237 
1238   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1239 
1240   // If the source and destination are integer or pointer types, just do an
1241   // extension or truncation to the desired type.
1242   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1243       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1244     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1245     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1246   }
1247 
1248   // If load is legal, just bitcast the src pointer.
1249   if (SrcSize >= DstSize) {
1250     // Generally SrcSize is never greater than DstSize, since this means we are
1251     // losing bits. However, this can happen in cases where the structure has
1252     // additional padding, for example due to a user specified alignment.
1253     //
1254     // FIXME: Assert that we aren't truncating non-padding bits when have access
1255     // to that information.
1256     Src = CGF.Builder.CreateBitCast(Src,
1257                                     Ty->getPointerTo(Src.getAddressSpace()));
1258     return CGF.Builder.CreateLoad(Src);
1259   }
1260 
1261   // Otherwise do coercion through memory. This is stupid, but simple.
1262   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1263   Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1264   Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty);
1265   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1266       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1267       false);
1268   return CGF.Builder.CreateLoad(Tmp);
1269 }
1270 
1271 // Function to store a first-class aggregate into memory.  We prefer to
1272 // store the elements rather than the aggregate to be more friendly to
1273 // fast-isel.
1274 // FIXME: Do we need to recurse here?
1275 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1276                           Address Dest, bool DestIsVolatile) {
1277   // Prefer scalar stores to first-class aggregate stores.
1278   if (llvm::StructType *STy =
1279         dyn_cast<llvm::StructType>(Val->getType())) {
1280     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1281       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i);
1282       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1283       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1284     }
1285   } else {
1286     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1287   }
1288 }
1289 
1290 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1291 /// where the source and destination may have different types.  The
1292 /// destination is known to be aligned to \arg DstAlign bytes.
1293 ///
1294 /// This safely handles the case when the src type is larger than the
1295 /// destination type; the upper bits of the src will be lost.
1296 static void CreateCoercedStore(llvm::Value *Src,
1297                                Address Dst,
1298                                bool DstIsVolatile,
1299                                CodeGenFunction &CGF) {
1300   llvm::Type *SrcTy = Src->getType();
1301   llvm::Type *DstTy = Dst.getType()->getElementType();
1302   if (SrcTy == DstTy) {
1303     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1304     return;
1305   }
1306 
1307   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1308 
1309   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1310     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1311     DstTy = Dst.getType()->getElementType();
1312   }
1313 
1314   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1315   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1316   if (SrcPtrTy && DstPtrTy &&
1317       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1318     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1319     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1320     return;
1321   }
1322 
1323   // If the source and destination are integer or pointer types, just do an
1324   // extension or truncation to the desired type.
1325   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1326       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1327     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1328     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1329     return;
1330   }
1331 
1332   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1333 
1334   // If store is legal, just bitcast the src pointer.
1335   if (SrcSize <= DstSize) {
1336     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1337     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1338   } else {
1339     // Otherwise do coercion through memory. This is stupid, but
1340     // simple.
1341 
1342     // Generally SrcSize is never greater than DstSize, since this means we are
1343     // losing bits. However, this can happen in cases where the structure has
1344     // additional padding, for example due to a user specified alignment.
1345     //
1346     // FIXME: Assert that we aren't truncating non-padding bits when have access
1347     // to that information.
1348     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1349     CGF.Builder.CreateStore(Src, Tmp);
1350     Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1351     Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty);
1352     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1353         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1354         false);
1355   }
1356 }
1357 
1358 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1359                                    const ABIArgInfo &info) {
1360   if (unsigned offset = info.getDirectOffset()) {
1361     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1362     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1363                                              CharUnits::fromQuantity(offset));
1364     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1365   }
1366   return addr;
1367 }
1368 
1369 namespace {
1370 
1371 /// Encapsulates information about the way function arguments from
1372 /// CGFunctionInfo should be passed to actual LLVM IR function.
1373 class ClangToLLVMArgMapping {
1374   static const unsigned InvalidIndex = ~0U;
1375   unsigned InallocaArgNo;
1376   unsigned SRetArgNo;
1377   unsigned TotalIRArgs;
1378 
1379   /// Arguments of LLVM IR function corresponding to single Clang argument.
1380   struct IRArgs {
1381     unsigned PaddingArgIndex;
1382     // Argument is expanded to IR arguments at positions
1383     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1384     unsigned FirstArgIndex;
1385     unsigned NumberOfArgs;
1386 
1387     IRArgs()
1388         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1389           NumberOfArgs(0) {}
1390   };
1391 
1392   SmallVector<IRArgs, 8> ArgInfo;
1393 
1394 public:
1395   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1396                         bool OnlyRequiredArgs = false)
1397       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1398         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1399     construct(Context, FI, OnlyRequiredArgs);
1400   }
1401 
1402   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1403   unsigned getInallocaArgNo() const {
1404     assert(hasInallocaArg());
1405     return InallocaArgNo;
1406   }
1407 
1408   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1409   unsigned getSRetArgNo() const {
1410     assert(hasSRetArg());
1411     return SRetArgNo;
1412   }
1413 
1414   unsigned totalIRArgs() const { return TotalIRArgs; }
1415 
1416   bool hasPaddingArg(unsigned ArgNo) const {
1417     assert(ArgNo < ArgInfo.size());
1418     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1419   }
1420   unsigned getPaddingArgNo(unsigned ArgNo) const {
1421     assert(hasPaddingArg(ArgNo));
1422     return ArgInfo[ArgNo].PaddingArgIndex;
1423   }
1424 
1425   /// Returns index of first IR argument corresponding to ArgNo, and their
1426   /// quantity.
1427   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1428     assert(ArgNo < ArgInfo.size());
1429     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1430                           ArgInfo[ArgNo].NumberOfArgs);
1431   }
1432 
1433 private:
1434   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1435                  bool OnlyRequiredArgs);
1436 };
1437 
1438 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1439                                       const CGFunctionInfo &FI,
1440                                       bool OnlyRequiredArgs) {
1441   unsigned IRArgNo = 0;
1442   bool SwapThisWithSRet = false;
1443   const ABIArgInfo &RetAI = FI.getReturnInfo();
1444 
1445   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1446     SwapThisWithSRet = RetAI.isSRetAfterThis();
1447     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1448   }
1449 
1450   unsigned ArgNo = 0;
1451   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1452   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1453        ++I, ++ArgNo) {
1454     assert(I != FI.arg_end());
1455     QualType ArgType = I->type;
1456     const ABIArgInfo &AI = I->info;
1457     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1458     auto &IRArgs = ArgInfo[ArgNo];
1459 
1460     if (AI.getPaddingType())
1461       IRArgs.PaddingArgIndex = IRArgNo++;
1462 
1463     switch (AI.getKind()) {
1464     case ABIArgInfo::Extend:
1465     case ABIArgInfo::Direct: {
1466       // FIXME: handle sseregparm someday...
1467       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1468       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1469         IRArgs.NumberOfArgs = STy->getNumElements();
1470       } else {
1471         IRArgs.NumberOfArgs = 1;
1472       }
1473       break;
1474     }
1475     case ABIArgInfo::Indirect:
1476       IRArgs.NumberOfArgs = 1;
1477       break;
1478     case ABIArgInfo::Ignore:
1479     case ABIArgInfo::InAlloca:
1480       // ignore and inalloca doesn't have matching LLVM parameters.
1481       IRArgs.NumberOfArgs = 0;
1482       break;
1483     case ABIArgInfo::CoerceAndExpand:
1484       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1485       break;
1486     case ABIArgInfo::Expand:
1487       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1488       break;
1489     }
1490 
1491     if (IRArgs.NumberOfArgs > 0) {
1492       IRArgs.FirstArgIndex = IRArgNo;
1493       IRArgNo += IRArgs.NumberOfArgs;
1494     }
1495 
1496     // Skip over the sret parameter when it comes second.  We already handled it
1497     // above.
1498     if (IRArgNo == 1 && SwapThisWithSRet)
1499       IRArgNo++;
1500   }
1501   assert(ArgNo == ArgInfo.size());
1502 
1503   if (FI.usesInAlloca())
1504     InallocaArgNo = IRArgNo++;
1505 
1506   TotalIRArgs = IRArgNo;
1507 }
1508 }  // namespace
1509 
1510 /***/
1511 
1512 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1513   const auto &RI = FI.getReturnInfo();
1514   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1515 }
1516 
1517 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1518   return ReturnTypeUsesSRet(FI) &&
1519          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1520 }
1521 
1522 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1523   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1524     switch (BT->getKind()) {
1525     default:
1526       return false;
1527     case BuiltinType::Float:
1528       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1529     case BuiltinType::Double:
1530       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1531     case BuiltinType::LongDouble:
1532       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1533     }
1534   }
1535 
1536   return false;
1537 }
1538 
1539 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1540   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1541     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1542       if (BT->getKind() == BuiltinType::LongDouble)
1543         return getTarget().useObjCFP2RetForComplexLongDouble();
1544     }
1545   }
1546 
1547   return false;
1548 }
1549 
1550 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1551   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1552   return GetFunctionType(FI);
1553 }
1554 
1555 llvm::FunctionType *
1556 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1557 
1558   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1559   (void)Inserted;
1560   assert(Inserted && "Recursively being processed?");
1561 
1562   llvm::Type *resultType = nullptr;
1563   const ABIArgInfo &retAI = FI.getReturnInfo();
1564   switch (retAI.getKind()) {
1565   case ABIArgInfo::Expand:
1566     llvm_unreachable("Invalid ABI kind for return argument");
1567 
1568   case ABIArgInfo::Extend:
1569   case ABIArgInfo::Direct:
1570     resultType = retAI.getCoerceToType();
1571     break;
1572 
1573   case ABIArgInfo::InAlloca:
1574     if (retAI.getInAllocaSRet()) {
1575       // sret things on win32 aren't void, they return the sret pointer.
1576       QualType ret = FI.getReturnType();
1577       llvm::Type *ty = ConvertType(ret);
1578       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1579       resultType = llvm::PointerType::get(ty, addressSpace);
1580     } else {
1581       resultType = llvm::Type::getVoidTy(getLLVMContext());
1582     }
1583     break;
1584 
1585   case ABIArgInfo::Indirect:
1586   case ABIArgInfo::Ignore:
1587     resultType = llvm::Type::getVoidTy(getLLVMContext());
1588     break;
1589 
1590   case ABIArgInfo::CoerceAndExpand:
1591     resultType = retAI.getUnpaddedCoerceAndExpandType();
1592     break;
1593   }
1594 
1595   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1596   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1597 
1598   // Add type for sret argument.
1599   if (IRFunctionArgs.hasSRetArg()) {
1600     QualType Ret = FI.getReturnType();
1601     llvm::Type *Ty = ConvertType(Ret);
1602     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1603     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1604         llvm::PointerType::get(Ty, AddressSpace);
1605   }
1606 
1607   // Add type for inalloca argument.
1608   if (IRFunctionArgs.hasInallocaArg()) {
1609     auto ArgStruct = FI.getArgStruct();
1610     assert(ArgStruct);
1611     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1612   }
1613 
1614   // Add in all of the required arguments.
1615   unsigned ArgNo = 0;
1616   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1617                                      ie = it + FI.getNumRequiredArgs();
1618   for (; it != ie; ++it, ++ArgNo) {
1619     const ABIArgInfo &ArgInfo = it->info;
1620 
1621     // Insert a padding type to ensure proper alignment.
1622     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1623       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1624           ArgInfo.getPaddingType();
1625 
1626     unsigned FirstIRArg, NumIRArgs;
1627     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1628 
1629     switch (ArgInfo.getKind()) {
1630     case ABIArgInfo::Ignore:
1631     case ABIArgInfo::InAlloca:
1632       assert(NumIRArgs == 0);
1633       break;
1634 
1635     case ABIArgInfo::Indirect: {
1636       assert(NumIRArgs == 1);
1637       // indirect arguments are always on the stack, which is alloca addr space.
1638       llvm::Type *LTy = ConvertTypeForMem(it->type);
1639       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1640           CGM.getDataLayout().getAllocaAddrSpace());
1641       break;
1642     }
1643 
1644     case ABIArgInfo::Extend:
1645     case ABIArgInfo::Direct: {
1646       // Fast-isel and the optimizer generally like scalar values better than
1647       // FCAs, so we flatten them if this is safe to do for this argument.
1648       llvm::Type *argType = ArgInfo.getCoerceToType();
1649       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1650       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1651         assert(NumIRArgs == st->getNumElements());
1652         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1653           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1654       } else {
1655         assert(NumIRArgs == 1);
1656         ArgTypes[FirstIRArg] = argType;
1657       }
1658       break;
1659     }
1660 
1661     case ABIArgInfo::CoerceAndExpand: {
1662       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1663       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1664         *ArgTypesIter++ = EltTy;
1665       }
1666       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1667       break;
1668     }
1669 
1670     case ABIArgInfo::Expand:
1671       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1672       getExpandedTypes(it->type, ArgTypesIter);
1673       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1674       break;
1675     }
1676   }
1677 
1678   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1679   assert(Erased && "Not in set?");
1680 
1681   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1682 }
1683 
1684 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1685   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1686   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1687 
1688   if (!isFuncTypeConvertible(FPT))
1689     return llvm::StructType::get(getLLVMContext());
1690 
1691   return GetFunctionType(GD);
1692 }
1693 
1694 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1695                                                llvm::AttrBuilder &FuncAttrs,
1696                                                const FunctionProtoType *FPT) {
1697   if (!FPT)
1698     return;
1699 
1700   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1701       FPT->isNothrow())
1702     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1703 }
1704 
1705 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1706                                                bool AttrOnCallSite,
1707                                                llvm::AttrBuilder &FuncAttrs) {
1708   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1709   if (!HasOptnone) {
1710     if (CodeGenOpts.OptimizeSize)
1711       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1712     if (CodeGenOpts.OptimizeSize == 2)
1713       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1714   }
1715 
1716   if (CodeGenOpts.DisableRedZone)
1717     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1718   if (CodeGenOpts.IndirectTlsSegRefs)
1719     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1720   if (CodeGenOpts.NoImplicitFloat)
1721     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1722 
1723   if (AttrOnCallSite) {
1724     // Attributes that should go on the call site only.
1725     if (!CodeGenOpts.SimplifyLibCalls ||
1726         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1727       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1728     if (!CodeGenOpts.TrapFuncName.empty())
1729       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1730   } else {
1731     StringRef FpKind;
1732     switch (CodeGenOpts.getFramePointer()) {
1733     case CodeGenOptions::FramePointerKind::None:
1734       FpKind = "none";
1735       break;
1736     case CodeGenOptions::FramePointerKind::NonLeaf:
1737       FpKind = "non-leaf";
1738       break;
1739     case CodeGenOptions::FramePointerKind::All:
1740       FpKind = "all";
1741       break;
1742     }
1743     FuncAttrs.addAttribute("frame-pointer", FpKind);
1744 
1745     FuncAttrs.addAttribute("less-precise-fpmad",
1746                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1747 
1748     if (CodeGenOpts.NullPointerIsValid)
1749       FuncAttrs.addAttribute("null-pointer-is-valid", "true");
1750 
1751     // TODO: Omit attribute when the default is IEEE.
1752     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::Invalid)
1753       FuncAttrs.addAttribute("denormal-fp-math",
1754                              llvm::denormalModeName(CodeGenOpts.FPDenormalMode));
1755 
1756     if (CodeGenOpts.FP32DenormalMode != llvm::DenormalMode::Invalid)
1757       FuncAttrs.addAttribute(
1758           "denormal-fp-math-f32",
1759           llvm::denormalModeName(CodeGenOpts.FP32DenormalMode));
1760 
1761     FuncAttrs.addAttribute("no-trapping-math",
1762                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1763 
1764     // Strict (compliant) code is the default, so only add this attribute to
1765     // indicate that we are trying to workaround a problem case.
1766     if (!CodeGenOpts.StrictFloatCastOverflow)
1767       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1768 
1769     // TODO: Are these all needed?
1770     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1771     FuncAttrs.addAttribute("no-infs-fp-math",
1772                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1773     FuncAttrs.addAttribute("no-nans-fp-math",
1774                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1775     FuncAttrs.addAttribute("unsafe-fp-math",
1776                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1777     FuncAttrs.addAttribute("use-soft-float",
1778                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1779     FuncAttrs.addAttribute("stack-protector-buffer-size",
1780                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1781     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1782                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1783     FuncAttrs.addAttribute(
1784         "correctly-rounded-divide-sqrt-fp-math",
1785         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1786 
1787     // TODO: Reciprocal estimate codegen options should apply to instructions?
1788     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1789     if (!Recips.empty())
1790       FuncAttrs.addAttribute("reciprocal-estimates",
1791                              llvm::join(Recips, ","));
1792 
1793     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1794         CodeGenOpts.PreferVectorWidth != "none")
1795       FuncAttrs.addAttribute("prefer-vector-width",
1796                              CodeGenOpts.PreferVectorWidth);
1797 
1798     if (CodeGenOpts.StackRealignment)
1799       FuncAttrs.addAttribute("stackrealign");
1800     if (CodeGenOpts.Backchain)
1801       FuncAttrs.addAttribute("backchain");
1802 
1803     if (CodeGenOpts.SpeculativeLoadHardening)
1804       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1805   }
1806 
1807   if (getLangOpts().assumeFunctionsAreConvergent()) {
1808     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1809     // convergent (meaning, they may call an intrinsically convergent op, such
1810     // as __syncthreads() / barrier(), and so can't have certain optimizations
1811     // applied around them).  LLVM will remove this attribute where it safely
1812     // can.
1813     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1814   }
1815 
1816   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1817     // Exceptions aren't supported in CUDA device code.
1818     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1819   }
1820 
1821   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1822     StringRef Var, Value;
1823     std::tie(Var, Value) = Attr.split('=');
1824     FuncAttrs.addAttribute(Var, Value);
1825   }
1826 }
1827 
1828 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1829   llvm::AttrBuilder FuncAttrs;
1830   ConstructDefaultFnAttrList(F.getName(), F.hasOptNone(),
1831                              /* AttrOnCallSite = */ false, FuncAttrs);
1832   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1833 }
1834 
1835 void CodeGenModule::ConstructAttributeList(
1836     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1837     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1838   llvm::AttrBuilder FuncAttrs;
1839   llvm::AttrBuilder RetAttrs;
1840 
1841   CallingConv = FI.getEffectiveCallingConvention();
1842   if (FI.isNoReturn())
1843     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1844 
1845   // If we have information about the function prototype, we can learn
1846   // attributes from there.
1847   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1848                                      CalleeInfo.getCalleeFunctionProtoType());
1849 
1850   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1851 
1852   bool HasOptnone = false;
1853   // FIXME: handle sseregparm someday...
1854   if (TargetDecl) {
1855     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1856       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1857     if (TargetDecl->hasAttr<NoThrowAttr>())
1858       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1859     if (TargetDecl->hasAttr<NoReturnAttr>())
1860       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1861     if (TargetDecl->hasAttr<ColdAttr>())
1862       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1863     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1864       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1865     if (TargetDecl->hasAttr<ConvergentAttr>())
1866       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1867 
1868     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1869       AddAttributesFromFunctionProtoType(
1870           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1871       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1872       const bool IsVirtualCall = MD && MD->isVirtual();
1873       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
1874       // virtual function. These attributes are not inherited by overloads.
1875       if (!(AttrOnCallSite && IsVirtualCall)) {
1876         if (Fn->isNoReturn())
1877           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1878 
1879         const auto *NBA = Fn->getAttr<NoBuiltinAttr>();
1880         bool HasWildcard = NBA && llvm::is_contained(NBA->builtinNames(), "*");
1881         if (getLangOpts().NoBuiltin || HasWildcard)
1882           FuncAttrs.addAttribute("no-builtins");
1883         else {
1884           auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1885             SmallString<32> AttributeName;
1886             AttributeName += "no-builtin-";
1887             AttributeName += BuiltinName;
1888             FuncAttrs.addAttribute(AttributeName);
1889           };
1890           llvm::for_each(getLangOpts().NoBuiltinFuncs, AddNoBuiltinAttr);
1891           if (NBA)
1892             llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1893         }
1894       }
1895     }
1896 
1897     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1898     if (TargetDecl->hasAttr<ConstAttr>()) {
1899       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1900       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1901     } else if (TargetDecl->hasAttr<PureAttr>()) {
1902       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1903       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1904     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1905       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1906       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1907     }
1908     if (TargetDecl->hasAttr<RestrictAttr>())
1909       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1910     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1911         !CodeGenOpts.NullPointerIsValid)
1912       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1913     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1914       FuncAttrs.addAttribute("no_caller_saved_registers");
1915     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1916       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1917 
1918     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1919     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1920       Optional<unsigned> NumElemsParam;
1921       if (AllocSize->getNumElemsParam().isValid())
1922         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1923       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1924                                  NumElemsParam);
1925     }
1926   }
1927 
1928   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1929 
1930   // This must run after constructing the default function attribute list
1931   // to ensure that the speculative load hardening attribute is removed
1932   // in the case where the -mspeculative-load-hardening flag was passed.
1933   if (TargetDecl) {
1934     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
1935       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
1936     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
1937       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1938   }
1939 
1940   if (CodeGenOpts.EnableSegmentedStacks &&
1941       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1942     FuncAttrs.addAttribute("split-stack");
1943 
1944   // Add NonLazyBind attribute to function declarations when -fno-plt
1945   // is used.
1946   if (TargetDecl && CodeGenOpts.NoPLT) {
1947     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1948       if (!Fn->isDefined() && !AttrOnCallSite) {
1949         FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1950       }
1951     }
1952   }
1953 
1954   if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1955     if (getLangOpts().OpenCLVersion <= 120) {
1956       // OpenCL v1.2 Work groups are always uniform
1957       FuncAttrs.addAttribute("uniform-work-group-size", "true");
1958     } else {
1959       // OpenCL v2.0 Work groups may be whether uniform or not.
1960       // '-cl-uniform-work-group-size' compile option gets a hint
1961       // to the compiler that the global work-size be a multiple of
1962       // the work-group size specified to clEnqueueNDRangeKernel
1963       // (i.e. work groups are uniform).
1964       FuncAttrs.addAttribute("uniform-work-group-size",
1965                              llvm::toStringRef(CodeGenOpts.UniformWGSize));
1966     }
1967   }
1968 
1969   if (!AttrOnCallSite) {
1970     bool DisableTailCalls = false;
1971 
1972     if (CodeGenOpts.DisableTailCalls)
1973       DisableTailCalls = true;
1974     else if (TargetDecl) {
1975       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1976           TargetDecl->hasAttr<AnyX86InterruptAttr>())
1977         DisableTailCalls = true;
1978       else if (CodeGenOpts.NoEscapingBlockTailCalls) {
1979         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
1980           if (!BD->doesNotEscape())
1981             DisableTailCalls = true;
1982       }
1983     }
1984 
1985     FuncAttrs.addAttribute("disable-tail-calls",
1986                            llvm::toStringRef(DisableTailCalls));
1987     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
1988   }
1989 
1990   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1991 
1992   QualType RetTy = FI.getReturnType();
1993   const ABIArgInfo &RetAI = FI.getReturnInfo();
1994   switch (RetAI.getKind()) {
1995   case ABIArgInfo::Extend:
1996     if (RetAI.isSignExt())
1997       RetAttrs.addAttribute(llvm::Attribute::SExt);
1998     else
1999       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2000     LLVM_FALLTHROUGH;
2001   case ABIArgInfo::Direct:
2002     if (RetAI.getInReg())
2003       RetAttrs.addAttribute(llvm::Attribute::InReg);
2004     break;
2005   case ABIArgInfo::Ignore:
2006     break;
2007 
2008   case ABIArgInfo::InAlloca:
2009   case ABIArgInfo::Indirect: {
2010     // inalloca and sret disable readnone and readonly
2011     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2012       .removeAttribute(llvm::Attribute::ReadNone);
2013     break;
2014   }
2015 
2016   case ABIArgInfo::CoerceAndExpand:
2017     break;
2018 
2019   case ABIArgInfo::Expand:
2020     llvm_unreachable("Invalid ABI kind for return argument");
2021   }
2022 
2023   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2024     QualType PTy = RefTy->getPointeeType();
2025     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2026       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2027                                         .getQuantity());
2028     else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2029              !CodeGenOpts.NullPointerIsValid)
2030       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2031   }
2032 
2033   bool hasUsedSRet = false;
2034   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2035 
2036   // Attach attributes to sret.
2037   if (IRFunctionArgs.hasSRetArg()) {
2038     llvm::AttrBuilder SRETAttrs;
2039     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2040     hasUsedSRet = true;
2041     if (RetAI.getInReg())
2042       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2043     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2044         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2045   }
2046 
2047   // Attach attributes to inalloca argument.
2048   if (IRFunctionArgs.hasInallocaArg()) {
2049     llvm::AttrBuilder Attrs;
2050     Attrs.addAttribute(llvm::Attribute::InAlloca);
2051     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2052         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2053   }
2054 
2055   unsigned ArgNo = 0;
2056   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2057                                           E = FI.arg_end();
2058        I != E; ++I, ++ArgNo) {
2059     QualType ParamType = I->type;
2060     const ABIArgInfo &AI = I->info;
2061     llvm::AttrBuilder Attrs;
2062 
2063     // Add attribute for padding argument, if necessary.
2064     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2065       if (AI.getPaddingInReg()) {
2066         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2067             llvm::AttributeSet::get(
2068                 getLLVMContext(),
2069                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2070       }
2071     }
2072 
2073     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2074     // have the corresponding parameter variable.  It doesn't make
2075     // sense to do it here because parameters are so messed up.
2076     switch (AI.getKind()) {
2077     case ABIArgInfo::Extend:
2078       if (AI.isSignExt())
2079         Attrs.addAttribute(llvm::Attribute::SExt);
2080       else
2081         Attrs.addAttribute(llvm::Attribute::ZExt);
2082       LLVM_FALLTHROUGH;
2083     case ABIArgInfo::Direct:
2084       if (ArgNo == 0 && FI.isChainCall())
2085         Attrs.addAttribute(llvm::Attribute::Nest);
2086       else if (AI.getInReg())
2087         Attrs.addAttribute(llvm::Attribute::InReg);
2088       break;
2089 
2090     case ABIArgInfo::Indirect: {
2091       if (AI.getInReg())
2092         Attrs.addAttribute(llvm::Attribute::InReg);
2093 
2094       if (AI.getIndirectByVal())
2095         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2096 
2097       CharUnits Align = AI.getIndirectAlign();
2098 
2099       // In a byval argument, it is important that the required
2100       // alignment of the type is honored, as LLVM might be creating a
2101       // *new* stack object, and needs to know what alignment to give
2102       // it. (Sometimes it can deduce a sensible alignment on its own,
2103       // but not if clang decides it must emit a packed struct, or the
2104       // user specifies increased alignment requirements.)
2105       //
2106       // This is different from indirect *not* byval, where the object
2107       // exists already, and the align attribute is purely
2108       // informative.
2109       assert(!Align.isZero());
2110 
2111       // For now, only add this when we have a byval argument.
2112       // TODO: be less lazy about updating test cases.
2113       if (AI.getIndirectByVal())
2114         Attrs.addAlignmentAttr(Align.getQuantity());
2115 
2116       // byval disables readnone and readonly.
2117       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2118         .removeAttribute(llvm::Attribute::ReadNone);
2119       break;
2120     }
2121     case ABIArgInfo::Ignore:
2122     case ABIArgInfo::Expand:
2123     case ABIArgInfo::CoerceAndExpand:
2124       break;
2125 
2126     case ABIArgInfo::InAlloca:
2127       // inalloca disables readnone and readonly.
2128       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2129           .removeAttribute(llvm::Attribute::ReadNone);
2130       continue;
2131     }
2132 
2133     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2134       QualType PTy = RefTy->getPointeeType();
2135       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2136         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2137                                        .getQuantity());
2138       else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2139                !CodeGenOpts.NullPointerIsValid)
2140         Attrs.addAttribute(llvm::Attribute::NonNull);
2141     }
2142 
2143     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2144     case ParameterABI::Ordinary:
2145       break;
2146 
2147     case ParameterABI::SwiftIndirectResult: {
2148       // Add 'sret' if we haven't already used it for something, but
2149       // only if the result is void.
2150       if (!hasUsedSRet && RetTy->isVoidType()) {
2151         Attrs.addAttribute(llvm::Attribute::StructRet);
2152         hasUsedSRet = true;
2153       }
2154 
2155       // Add 'noalias' in either case.
2156       Attrs.addAttribute(llvm::Attribute::NoAlias);
2157 
2158       // Add 'dereferenceable' and 'alignment'.
2159       auto PTy = ParamType->getPointeeType();
2160       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2161         auto info = getContext().getTypeInfoInChars(PTy);
2162         Attrs.addDereferenceableAttr(info.first.getQuantity());
2163         Attrs.addAttribute(llvm::Attribute::getWithAlignment(
2164             getLLVMContext(), info.second.getAsAlign()));
2165       }
2166       break;
2167     }
2168 
2169     case ParameterABI::SwiftErrorResult:
2170       Attrs.addAttribute(llvm::Attribute::SwiftError);
2171       break;
2172 
2173     case ParameterABI::SwiftContext:
2174       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2175       break;
2176     }
2177 
2178     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2179       Attrs.addAttribute(llvm::Attribute::NoCapture);
2180 
2181     if (Attrs.hasAttributes()) {
2182       unsigned FirstIRArg, NumIRArgs;
2183       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2184       for (unsigned i = 0; i < NumIRArgs; i++)
2185         ArgAttrs[FirstIRArg + i] =
2186             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2187     }
2188   }
2189   assert(ArgNo == FI.arg_size());
2190 
2191   AttrList = llvm::AttributeList::get(
2192       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2193       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2194 }
2195 
2196 /// An argument came in as a promoted argument; demote it back to its
2197 /// declared type.
2198 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2199                                          const VarDecl *var,
2200                                          llvm::Value *value) {
2201   llvm::Type *varType = CGF.ConvertType(var->getType());
2202 
2203   // This can happen with promotions that actually don't change the
2204   // underlying type, like the enum promotions.
2205   if (value->getType() == varType) return value;
2206 
2207   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2208          && "unexpected promotion type");
2209 
2210   if (isa<llvm::IntegerType>(varType))
2211     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2212 
2213   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2214 }
2215 
2216 /// Returns the attribute (either parameter attribute, or function
2217 /// attribute), which declares argument ArgNo to be non-null.
2218 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2219                                          QualType ArgType, unsigned ArgNo) {
2220   // FIXME: __attribute__((nonnull)) can also be applied to:
2221   //   - references to pointers, where the pointee is known to be
2222   //     nonnull (apparently a Clang extension)
2223   //   - transparent unions containing pointers
2224   // In the former case, LLVM IR cannot represent the constraint. In
2225   // the latter case, we have no guarantee that the transparent union
2226   // is in fact passed as a pointer.
2227   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2228     return nullptr;
2229   // First, check attribute on parameter itself.
2230   if (PVD) {
2231     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2232       return ParmNNAttr;
2233   }
2234   // Check function attributes.
2235   if (!FD)
2236     return nullptr;
2237   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2238     if (NNAttr->isNonNull(ArgNo))
2239       return NNAttr;
2240   }
2241   return nullptr;
2242 }
2243 
2244 namespace {
2245   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2246     Address Temp;
2247     Address Arg;
2248     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2249     void Emit(CodeGenFunction &CGF, Flags flags) override {
2250       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2251       CGF.Builder.CreateStore(errorValue, Arg);
2252     }
2253   };
2254 }
2255 
2256 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2257                                          llvm::Function *Fn,
2258                                          const FunctionArgList &Args) {
2259   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2260     // Naked functions don't have prologues.
2261     return;
2262 
2263   // If this is an implicit-return-zero function, go ahead and
2264   // initialize the return value.  TODO: it might be nice to have
2265   // a more general mechanism for this that didn't require synthesized
2266   // return statements.
2267   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2268     if (FD->hasImplicitReturnZero()) {
2269       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2270       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2271       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2272       Builder.CreateStore(Zero, ReturnValue);
2273     }
2274   }
2275 
2276   // FIXME: We no longer need the types from FunctionArgList; lift up and
2277   // simplify.
2278 
2279   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2280   // Flattened function arguments.
2281   SmallVector<llvm::Value *, 16> FnArgs;
2282   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2283   for (auto &Arg : Fn->args()) {
2284     FnArgs.push_back(&Arg);
2285   }
2286   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2287 
2288   // If we're using inalloca, all the memory arguments are GEPs off of the last
2289   // parameter, which is a pointer to the complete memory area.
2290   Address ArgStruct = Address::invalid();
2291   if (IRFunctionArgs.hasInallocaArg()) {
2292     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2293                         FI.getArgStructAlignment());
2294 
2295     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2296   }
2297 
2298   // Name the struct return parameter.
2299   if (IRFunctionArgs.hasSRetArg()) {
2300     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2301     AI->setName("agg.result");
2302     AI->addAttr(llvm::Attribute::NoAlias);
2303   }
2304 
2305   // Track if we received the parameter as a pointer (indirect, byval, or
2306   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2307   // into a local alloca for us.
2308   SmallVector<ParamValue, 16> ArgVals;
2309   ArgVals.reserve(Args.size());
2310 
2311   // Create a pointer value for every parameter declaration.  This usually
2312   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2313   // any cleanups or do anything that might unwind.  We do that separately, so
2314   // we can push the cleanups in the correct order for the ABI.
2315   assert(FI.arg_size() == Args.size() &&
2316          "Mismatch between function signature & arguments.");
2317   unsigned ArgNo = 0;
2318   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2319   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2320        i != e; ++i, ++info_it, ++ArgNo) {
2321     const VarDecl *Arg = *i;
2322     const ABIArgInfo &ArgI = info_it->info;
2323 
2324     bool isPromoted =
2325       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2326     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2327     // the parameter is promoted. In this case we convert to
2328     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2329     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2330     assert(hasScalarEvaluationKind(Ty) ==
2331            hasScalarEvaluationKind(Arg->getType()));
2332 
2333     unsigned FirstIRArg, NumIRArgs;
2334     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2335 
2336     switch (ArgI.getKind()) {
2337     case ABIArgInfo::InAlloca: {
2338       assert(NumIRArgs == 0);
2339       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2340       Address V =
2341           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2342       ArgVals.push_back(ParamValue::forIndirect(V));
2343       break;
2344     }
2345 
2346     case ABIArgInfo::Indirect: {
2347       assert(NumIRArgs == 1);
2348       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2349 
2350       if (!hasScalarEvaluationKind(Ty)) {
2351         // Aggregates and complex variables are accessed by reference.  All we
2352         // need to do is realign the value, if requested.
2353         Address V = ParamAddr;
2354         if (ArgI.getIndirectRealign()) {
2355           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2356 
2357           // Copy from the incoming argument pointer to the temporary with the
2358           // appropriate alignment.
2359           //
2360           // FIXME: We should have a common utility for generating an aggregate
2361           // copy.
2362           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2363           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2364           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2365           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2366           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2367           V = AlignedTemp;
2368         }
2369         ArgVals.push_back(ParamValue::forIndirect(V));
2370       } else {
2371         // Load scalar value from indirect argument.
2372         llvm::Value *V =
2373             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2374 
2375         if (isPromoted)
2376           V = emitArgumentDemotion(*this, Arg, V);
2377         ArgVals.push_back(ParamValue::forDirect(V));
2378       }
2379       break;
2380     }
2381 
2382     case ABIArgInfo::Extend:
2383     case ABIArgInfo::Direct: {
2384 
2385       // If we have the trivial case, handle it with no muss and fuss.
2386       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2387           ArgI.getCoerceToType() == ConvertType(Ty) &&
2388           ArgI.getDirectOffset() == 0) {
2389         assert(NumIRArgs == 1);
2390         llvm::Value *V = FnArgs[FirstIRArg];
2391         auto AI = cast<llvm::Argument>(V);
2392 
2393         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2394           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2395                              PVD->getFunctionScopeIndex()) &&
2396               !CGM.getCodeGenOpts().NullPointerIsValid)
2397             AI->addAttr(llvm::Attribute::NonNull);
2398 
2399           QualType OTy = PVD->getOriginalType();
2400           if (const auto *ArrTy =
2401               getContext().getAsConstantArrayType(OTy)) {
2402             // A C99 array parameter declaration with the static keyword also
2403             // indicates dereferenceability, and if the size is constant we can
2404             // use the dereferenceable attribute (which requires the size in
2405             // bytes).
2406             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2407               QualType ETy = ArrTy->getElementType();
2408               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2409               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2410                   ArrSize) {
2411                 llvm::AttrBuilder Attrs;
2412                 Attrs.addDereferenceableAttr(
2413                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2414                 AI->addAttrs(Attrs);
2415               } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
2416                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2417                 AI->addAttr(llvm::Attribute::NonNull);
2418               }
2419             }
2420           } else if (const auto *ArrTy =
2421                      getContext().getAsVariableArrayType(OTy)) {
2422             // For C99 VLAs with the static keyword, we don't know the size so
2423             // we can't use the dereferenceable attribute, but in addrspace(0)
2424             // we know that it must be nonnull.
2425             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2426                 !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2427                 !CGM.getCodeGenOpts().NullPointerIsValid)
2428               AI->addAttr(llvm::Attribute::NonNull);
2429           }
2430 
2431           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2432           if (!AVAttr)
2433             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2434               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2435           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2436             // If alignment-assumption sanitizer is enabled, we do *not* add
2437             // alignment attribute here, but emit normal alignment assumption,
2438             // so the UBSAN check could function.
2439             llvm::Value *AlignmentValue =
2440               EmitScalarExpr(AVAttr->getAlignment());
2441             llvm::ConstantInt *AlignmentCI =
2442               cast<llvm::ConstantInt>(AlignmentValue);
2443             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(llvm::MaybeAlign(
2444                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))));
2445           }
2446         }
2447 
2448         if (Arg->getType().isRestrictQualified())
2449           AI->addAttr(llvm::Attribute::NoAlias);
2450 
2451         // LLVM expects swifterror parameters to be used in very restricted
2452         // ways.  Copy the value into a less-restricted temporary.
2453         if (FI.getExtParameterInfo(ArgNo).getABI()
2454               == ParameterABI::SwiftErrorResult) {
2455           QualType pointeeTy = Ty->getPointeeType();
2456           assert(pointeeTy->isPointerType());
2457           Address temp =
2458             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2459           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2460           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2461           Builder.CreateStore(incomingErrorValue, temp);
2462           V = temp.getPointer();
2463 
2464           // Push a cleanup to copy the value back at the end of the function.
2465           // The convention does not guarantee that the value will be written
2466           // back if the function exits with an unwind exception.
2467           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2468         }
2469 
2470         // Ensure the argument is the correct type.
2471         if (V->getType() != ArgI.getCoerceToType())
2472           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2473 
2474         if (isPromoted)
2475           V = emitArgumentDemotion(*this, Arg, V);
2476 
2477         // Because of merging of function types from multiple decls it is
2478         // possible for the type of an argument to not match the corresponding
2479         // type in the function type. Since we are codegening the callee
2480         // in here, add a cast to the argument type.
2481         llvm::Type *LTy = ConvertType(Arg->getType());
2482         if (V->getType() != LTy)
2483           V = Builder.CreateBitCast(V, LTy);
2484 
2485         ArgVals.push_back(ParamValue::forDirect(V));
2486         break;
2487       }
2488 
2489       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2490                                      Arg->getName());
2491 
2492       // Pointer to store into.
2493       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2494 
2495       // Fast-isel and the optimizer generally like scalar values better than
2496       // FCAs, so we flatten them if this is safe to do for this argument.
2497       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2498       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2499           STy->getNumElements() > 1) {
2500         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2501         llvm::Type *DstTy = Ptr.getElementType();
2502         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2503 
2504         Address AddrToStoreInto = Address::invalid();
2505         if (SrcSize <= DstSize) {
2506           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2507         } else {
2508           AddrToStoreInto =
2509             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2510         }
2511 
2512         assert(STy->getNumElements() == NumIRArgs);
2513         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2514           auto AI = FnArgs[FirstIRArg + i];
2515           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2516           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2517           Builder.CreateStore(AI, EltPtr);
2518         }
2519 
2520         if (SrcSize > DstSize) {
2521           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2522         }
2523 
2524       } else {
2525         // Simple case, just do a coerced store of the argument into the alloca.
2526         assert(NumIRArgs == 1);
2527         auto AI = FnArgs[FirstIRArg];
2528         AI->setName(Arg->getName() + ".coerce");
2529         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2530       }
2531 
2532       // Match to what EmitParmDecl is expecting for this type.
2533       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2534         llvm::Value *V =
2535             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2536         if (isPromoted)
2537           V = emitArgumentDemotion(*this, Arg, V);
2538         ArgVals.push_back(ParamValue::forDirect(V));
2539       } else {
2540         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2541       }
2542       break;
2543     }
2544 
2545     case ABIArgInfo::CoerceAndExpand: {
2546       // Reconstruct into a temporary.
2547       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2548       ArgVals.push_back(ParamValue::forIndirect(alloca));
2549 
2550       auto coercionType = ArgI.getCoerceAndExpandType();
2551       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2552 
2553       unsigned argIndex = FirstIRArg;
2554       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2555         llvm::Type *eltType = coercionType->getElementType(i);
2556         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2557           continue;
2558 
2559         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2560         auto elt = FnArgs[argIndex++];
2561         Builder.CreateStore(elt, eltAddr);
2562       }
2563       assert(argIndex == FirstIRArg + NumIRArgs);
2564       break;
2565     }
2566 
2567     case ABIArgInfo::Expand: {
2568       // If this structure was expanded into multiple arguments then
2569       // we need to create a temporary and reconstruct it from the
2570       // arguments.
2571       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2572       LValue LV = MakeAddrLValue(Alloca, Ty);
2573       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2574 
2575       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2576       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2577       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2578       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2579         auto AI = FnArgs[FirstIRArg + i];
2580         AI->setName(Arg->getName() + "." + Twine(i));
2581       }
2582       break;
2583     }
2584 
2585     case ABIArgInfo::Ignore:
2586       assert(NumIRArgs == 0);
2587       // Initialize the local variable appropriately.
2588       if (!hasScalarEvaluationKind(Ty)) {
2589         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2590       } else {
2591         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2592         ArgVals.push_back(ParamValue::forDirect(U));
2593       }
2594       break;
2595     }
2596   }
2597 
2598   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2599     for (int I = Args.size() - 1; I >= 0; --I)
2600       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2601   } else {
2602     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2603       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2604   }
2605 }
2606 
2607 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2608   while (insn->use_empty()) {
2609     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2610     if (!bitcast) return;
2611 
2612     // This is "safe" because we would have used a ConstantExpr otherwise.
2613     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2614     bitcast->eraseFromParent();
2615   }
2616 }
2617 
2618 /// Try to emit a fused autorelease of a return result.
2619 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2620                                                     llvm::Value *result) {
2621   // We must be immediately followed the cast.
2622   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2623   if (BB->empty()) return nullptr;
2624   if (&BB->back() != result) return nullptr;
2625 
2626   llvm::Type *resultType = result->getType();
2627 
2628   // result is in a BasicBlock and is therefore an Instruction.
2629   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2630 
2631   SmallVector<llvm::Instruction *, 4> InstsToKill;
2632 
2633   // Look for:
2634   //  %generator = bitcast %type1* %generator2 to %type2*
2635   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2636     // We would have emitted this as a constant if the operand weren't
2637     // an Instruction.
2638     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2639 
2640     // Require the generator to be immediately followed by the cast.
2641     if (generator->getNextNode() != bitcast)
2642       return nullptr;
2643 
2644     InstsToKill.push_back(bitcast);
2645   }
2646 
2647   // Look for:
2648   //   %generator = call i8* @objc_retain(i8* %originalResult)
2649   // or
2650   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2651   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2652   if (!call) return nullptr;
2653 
2654   bool doRetainAutorelease;
2655 
2656   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2657     doRetainAutorelease = true;
2658   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2659                                           .objc_retainAutoreleasedReturnValue) {
2660     doRetainAutorelease = false;
2661 
2662     // If we emitted an assembly marker for this call (and the
2663     // ARCEntrypoints field should have been set if so), go looking
2664     // for that call.  If we can't find it, we can't do this
2665     // optimization.  But it should always be the immediately previous
2666     // instruction, unless we needed bitcasts around the call.
2667     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2668       llvm::Instruction *prev = call->getPrevNode();
2669       assert(prev);
2670       if (isa<llvm::BitCastInst>(prev)) {
2671         prev = prev->getPrevNode();
2672         assert(prev);
2673       }
2674       assert(isa<llvm::CallInst>(prev));
2675       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2676                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2677       InstsToKill.push_back(prev);
2678     }
2679   } else {
2680     return nullptr;
2681   }
2682 
2683   result = call->getArgOperand(0);
2684   InstsToKill.push_back(call);
2685 
2686   // Keep killing bitcasts, for sanity.  Note that we no longer care
2687   // about precise ordering as long as there's exactly one use.
2688   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2689     if (!bitcast->hasOneUse()) break;
2690     InstsToKill.push_back(bitcast);
2691     result = bitcast->getOperand(0);
2692   }
2693 
2694   // Delete all the unnecessary instructions, from latest to earliest.
2695   for (auto *I : InstsToKill)
2696     I->eraseFromParent();
2697 
2698   // Do the fused retain/autorelease if we were asked to.
2699   if (doRetainAutorelease)
2700     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2701 
2702   // Cast back to the result type.
2703   return CGF.Builder.CreateBitCast(result, resultType);
2704 }
2705 
2706 /// If this is a +1 of the value of an immutable 'self', remove it.
2707 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2708                                           llvm::Value *result) {
2709   // This is only applicable to a method with an immutable 'self'.
2710   const ObjCMethodDecl *method =
2711     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2712   if (!method) return nullptr;
2713   const VarDecl *self = method->getSelfDecl();
2714   if (!self->getType().isConstQualified()) return nullptr;
2715 
2716   // Look for a retain call.
2717   llvm::CallInst *retainCall =
2718     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2719   if (!retainCall ||
2720       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2721     return nullptr;
2722 
2723   // Look for an ordinary load of 'self'.
2724   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2725   llvm::LoadInst *load =
2726     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2727   if (!load || load->isAtomic() || load->isVolatile() ||
2728       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2729     return nullptr;
2730 
2731   // Okay!  Burn it all down.  This relies for correctness on the
2732   // assumption that the retain is emitted as part of the return and
2733   // that thereafter everything is used "linearly".
2734   llvm::Type *resultType = result->getType();
2735   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2736   assert(retainCall->use_empty());
2737   retainCall->eraseFromParent();
2738   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2739 
2740   return CGF.Builder.CreateBitCast(load, resultType);
2741 }
2742 
2743 /// Emit an ARC autorelease of the result of a function.
2744 ///
2745 /// \return the value to actually return from the function
2746 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2747                                             llvm::Value *result) {
2748   // If we're returning 'self', kill the initial retain.  This is a
2749   // heuristic attempt to "encourage correctness" in the really unfortunate
2750   // case where we have a return of self during a dealloc and we desperately
2751   // need to avoid the possible autorelease.
2752   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2753     return self;
2754 
2755   // At -O0, try to emit a fused retain/autorelease.
2756   if (CGF.shouldUseFusedARCCalls())
2757     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2758       return fused;
2759 
2760   return CGF.EmitARCAutoreleaseReturnValue(result);
2761 }
2762 
2763 /// Heuristically search for a dominating store to the return-value slot.
2764 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2765   // Check if a User is a store which pointerOperand is the ReturnValue.
2766   // We are looking for stores to the ReturnValue, not for stores of the
2767   // ReturnValue to some other location.
2768   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2769     auto *SI = dyn_cast<llvm::StoreInst>(U);
2770     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2771       return nullptr;
2772     // These aren't actually possible for non-coerced returns, and we
2773     // only care about non-coerced returns on this code path.
2774     assert(!SI->isAtomic() && !SI->isVolatile());
2775     return SI;
2776   };
2777   // If there are multiple uses of the return-value slot, just check
2778   // for something immediately preceding the IP.  Sometimes this can
2779   // happen with how we generate implicit-returns; it can also happen
2780   // with noreturn cleanups.
2781   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2782     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2783     if (IP->empty()) return nullptr;
2784     llvm::Instruction *I = &IP->back();
2785 
2786     // Skip lifetime markers
2787     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2788                                             IE = IP->rend();
2789          II != IE; ++II) {
2790       if (llvm::IntrinsicInst *Intrinsic =
2791               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2792         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2793           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2794           ++II;
2795           if (II == IE)
2796             break;
2797           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2798             continue;
2799         }
2800       }
2801       I = &*II;
2802       break;
2803     }
2804 
2805     return GetStoreIfValid(I);
2806   }
2807 
2808   llvm::StoreInst *store =
2809       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2810   if (!store) return nullptr;
2811 
2812   // Now do a first-and-dirty dominance check: just walk up the
2813   // single-predecessors chain from the current insertion point.
2814   llvm::BasicBlock *StoreBB = store->getParent();
2815   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2816   while (IP != StoreBB) {
2817     if (!(IP = IP->getSinglePredecessor()))
2818       return nullptr;
2819   }
2820 
2821   // Okay, the store's basic block dominates the insertion point; we
2822   // can do our thing.
2823   return store;
2824 }
2825 
2826 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2827                                          bool EmitRetDbgLoc,
2828                                          SourceLocation EndLoc) {
2829   if (FI.isNoReturn()) {
2830     // Noreturn functions don't return.
2831     EmitUnreachable(EndLoc);
2832     return;
2833   }
2834 
2835   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2836     // Naked functions don't have epilogues.
2837     Builder.CreateUnreachable();
2838     return;
2839   }
2840 
2841   // Functions with no result always return void.
2842   if (!ReturnValue.isValid()) {
2843     Builder.CreateRetVoid();
2844     return;
2845   }
2846 
2847   llvm::DebugLoc RetDbgLoc;
2848   llvm::Value *RV = nullptr;
2849   QualType RetTy = FI.getReturnType();
2850   const ABIArgInfo &RetAI = FI.getReturnInfo();
2851 
2852   switch (RetAI.getKind()) {
2853   case ABIArgInfo::InAlloca:
2854     // Aggregrates get evaluated directly into the destination.  Sometimes we
2855     // need to return the sret value in a register, though.
2856     assert(hasAggregateEvaluationKind(RetTy));
2857     if (RetAI.getInAllocaSRet()) {
2858       llvm::Function::arg_iterator EI = CurFn->arg_end();
2859       --EI;
2860       llvm::Value *ArgStruct = &*EI;
2861       llvm::Value *SRet = Builder.CreateStructGEP(
2862           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2863       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2864     }
2865     break;
2866 
2867   case ABIArgInfo::Indirect: {
2868     auto AI = CurFn->arg_begin();
2869     if (RetAI.isSRetAfterThis())
2870       ++AI;
2871     switch (getEvaluationKind(RetTy)) {
2872     case TEK_Complex: {
2873       ComplexPairTy RT =
2874         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2875       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2876                          /*isInit*/ true);
2877       break;
2878     }
2879     case TEK_Aggregate:
2880       // Do nothing; aggregrates get evaluated directly into the destination.
2881       break;
2882     case TEK_Scalar:
2883       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2884                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2885                         /*isInit*/ true);
2886       break;
2887     }
2888     break;
2889   }
2890 
2891   case ABIArgInfo::Extend:
2892   case ABIArgInfo::Direct:
2893     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2894         RetAI.getDirectOffset() == 0) {
2895       // The internal return value temp always will have pointer-to-return-type
2896       // type, just do a load.
2897 
2898       // If there is a dominating store to ReturnValue, we can elide
2899       // the load, zap the store, and usually zap the alloca.
2900       if (llvm::StoreInst *SI =
2901               findDominatingStoreToReturnValue(*this)) {
2902         // Reuse the debug location from the store unless there is
2903         // cleanup code to be emitted between the store and return
2904         // instruction.
2905         if (EmitRetDbgLoc && !AutoreleaseResult)
2906           RetDbgLoc = SI->getDebugLoc();
2907         // Get the stored value and nuke the now-dead store.
2908         RV = SI->getValueOperand();
2909         SI->eraseFromParent();
2910 
2911       // Otherwise, we have to do a simple load.
2912       } else {
2913         RV = Builder.CreateLoad(ReturnValue);
2914       }
2915     } else {
2916       // If the value is offset in memory, apply the offset now.
2917       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2918 
2919       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2920     }
2921 
2922     // In ARC, end functions that return a retainable type with a call
2923     // to objc_autoreleaseReturnValue.
2924     if (AutoreleaseResult) {
2925 #ifndef NDEBUG
2926       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2927       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2928       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2929       // CurCodeDecl or BlockInfo.
2930       QualType RT;
2931 
2932       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2933         RT = FD->getReturnType();
2934       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2935         RT = MD->getReturnType();
2936       else if (isa<BlockDecl>(CurCodeDecl))
2937         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2938       else
2939         llvm_unreachable("Unexpected function/method type");
2940 
2941       assert(getLangOpts().ObjCAutoRefCount &&
2942              !FI.isReturnsRetained() &&
2943              RT->isObjCRetainableType());
2944 #endif
2945       RV = emitAutoreleaseOfResult(*this, RV);
2946     }
2947 
2948     break;
2949 
2950   case ABIArgInfo::Ignore:
2951     break;
2952 
2953   case ABIArgInfo::CoerceAndExpand: {
2954     auto coercionType = RetAI.getCoerceAndExpandType();
2955 
2956     // Load all of the coerced elements out into results.
2957     llvm::SmallVector<llvm::Value*, 4> results;
2958     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2959     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2960       auto coercedEltType = coercionType->getElementType(i);
2961       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2962         continue;
2963 
2964       auto eltAddr = Builder.CreateStructGEP(addr, i);
2965       auto elt = Builder.CreateLoad(eltAddr);
2966       results.push_back(elt);
2967     }
2968 
2969     // If we have one result, it's the single direct result type.
2970     if (results.size() == 1) {
2971       RV = results[0];
2972 
2973     // Otherwise, we need to make a first-class aggregate.
2974     } else {
2975       // Construct a return type that lacks padding elements.
2976       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2977 
2978       RV = llvm::UndefValue::get(returnType);
2979       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2980         RV = Builder.CreateInsertValue(RV, results[i], i);
2981       }
2982     }
2983     break;
2984   }
2985 
2986   case ABIArgInfo::Expand:
2987     llvm_unreachable("Invalid ABI kind for return argument");
2988   }
2989 
2990   llvm::Instruction *Ret;
2991   if (RV) {
2992     EmitReturnValueCheck(RV);
2993     Ret = Builder.CreateRet(RV);
2994   } else {
2995     Ret = Builder.CreateRetVoid();
2996   }
2997 
2998   if (RetDbgLoc)
2999     Ret->setDebugLoc(std::move(RetDbgLoc));
3000 }
3001 
3002 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3003   // A current decl may not be available when emitting vtable thunks.
3004   if (!CurCodeDecl)
3005     return;
3006 
3007   ReturnsNonNullAttr *RetNNAttr = nullptr;
3008   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3009     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3010 
3011   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3012     return;
3013 
3014   // Prefer the returns_nonnull attribute if it's present.
3015   SourceLocation AttrLoc;
3016   SanitizerMask CheckKind;
3017   SanitizerHandler Handler;
3018   if (RetNNAttr) {
3019     assert(!requiresReturnValueNullabilityCheck() &&
3020            "Cannot check nullability and the nonnull attribute");
3021     AttrLoc = RetNNAttr->getLocation();
3022     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3023     Handler = SanitizerHandler::NonnullReturn;
3024   } else {
3025     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3026       if (auto *TSI = DD->getTypeSourceInfo())
3027         if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
3028           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3029     CheckKind = SanitizerKind::NullabilityReturn;
3030     Handler = SanitizerHandler::NullabilityReturn;
3031   }
3032 
3033   SanitizerScope SanScope(this);
3034 
3035   // Make sure the "return" source location is valid. If we're checking a
3036   // nullability annotation, make sure the preconditions for the check are met.
3037   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3038   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3039   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3040   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3041   if (requiresReturnValueNullabilityCheck())
3042     CanNullCheck =
3043         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3044   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3045   EmitBlock(Check);
3046 
3047   // Now do the null check.
3048   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3049   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3050   llvm::Value *DynamicData[] = {SLocPtr};
3051   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3052 
3053   EmitBlock(NoCheck);
3054 
3055 #ifndef NDEBUG
3056   // The return location should not be used after the check has been emitted.
3057   ReturnLocation = Address::invalid();
3058 #endif
3059 }
3060 
3061 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3062   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3063   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3064 }
3065 
3066 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3067                                           QualType Ty) {
3068   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3069   // placeholders.
3070   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3071   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3072   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3073 
3074   // FIXME: When we generate this IR in one pass, we shouldn't need
3075   // this win32-specific alignment hack.
3076   CharUnits Align = CharUnits::fromQuantity(4);
3077   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3078 
3079   return AggValueSlot::forAddr(Address(Placeholder, Align),
3080                                Ty.getQualifiers(),
3081                                AggValueSlot::IsNotDestructed,
3082                                AggValueSlot::DoesNotNeedGCBarriers,
3083                                AggValueSlot::IsNotAliased,
3084                                AggValueSlot::DoesNotOverlap);
3085 }
3086 
3087 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3088                                           const VarDecl *param,
3089                                           SourceLocation loc) {
3090   // StartFunction converted the ABI-lowered parameter(s) into a
3091   // local alloca.  We need to turn that into an r-value suitable
3092   // for EmitCall.
3093   Address local = GetAddrOfLocalVar(param);
3094 
3095   QualType type = param->getType();
3096 
3097   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3098     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3099   }
3100 
3101   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3102   // but the argument needs to be the original pointer.
3103   if (type->isReferenceType()) {
3104     args.add(RValue::get(Builder.CreateLoad(local)), type);
3105 
3106   // In ARC, move out of consumed arguments so that the release cleanup
3107   // entered by StartFunction doesn't cause an over-release.  This isn't
3108   // optimal -O0 code generation, but it should get cleaned up when
3109   // optimization is enabled.  This also assumes that delegate calls are
3110   // performed exactly once for a set of arguments, but that should be safe.
3111   } else if (getLangOpts().ObjCAutoRefCount &&
3112              param->hasAttr<NSConsumedAttr>() &&
3113              type->isObjCRetainableType()) {
3114     llvm::Value *ptr = Builder.CreateLoad(local);
3115     auto null =
3116       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3117     Builder.CreateStore(null, local);
3118     args.add(RValue::get(ptr), type);
3119 
3120   // For the most part, we just need to load the alloca, except that
3121   // aggregate r-values are actually pointers to temporaries.
3122   } else {
3123     args.add(convertTempToRValue(local, type, loc), type);
3124   }
3125 
3126   // Deactivate the cleanup for the callee-destructed param that was pushed.
3127   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3128       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3129       param->needsDestruction(getContext())) {
3130     EHScopeStack::stable_iterator cleanup =
3131         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3132     assert(cleanup.isValid() &&
3133            "cleanup for callee-destructed param not recorded");
3134     // This unreachable is a temporary marker which will be removed later.
3135     llvm::Instruction *isActive = Builder.CreateUnreachable();
3136     args.addArgCleanupDeactivation(cleanup, isActive);
3137   }
3138 }
3139 
3140 static bool isProvablyNull(llvm::Value *addr) {
3141   return isa<llvm::ConstantPointerNull>(addr);
3142 }
3143 
3144 /// Emit the actual writing-back of a writeback.
3145 static void emitWriteback(CodeGenFunction &CGF,
3146                           const CallArgList::Writeback &writeback) {
3147   const LValue &srcLV = writeback.Source;
3148   Address srcAddr = srcLV.getAddress(CGF);
3149   assert(!isProvablyNull(srcAddr.getPointer()) &&
3150          "shouldn't have writeback for provably null argument");
3151 
3152   llvm::BasicBlock *contBB = nullptr;
3153 
3154   // If the argument wasn't provably non-null, we need to null check
3155   // before doing the store.
3156   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3157                                               CGF.CGM.getDataLayout());
3158   if (!provablyNonNull) {
3159     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3160     contBB = CGF.createBasicBlock("icr.done");
3161 
3162     llvm::Value *isNull =
3163       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3164     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3165     CGF.EmitBlock(writebackBB);
3166   }
3167 
3168   // Load the value to writeback.
3169   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3170 
3171   // Cast it back, in case we're writing an id to a Foo* or something.
3172   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3173                                     "icr.writeback-cast");
3174 
3175   // Perform the writeback.
3176 
3177   // If we have a "to use" value, it's something we need to emit a use
3178   // of.  This has to be carefully threaded in: if it's done after the
3179   // release it's potentially undefined behavior (and the optimizer
3180   // will ignore it), and if it happens before the retain then the
3181   // optimizer could move the release there.
3182   if (writeback.ToUse) {
3183     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3184 
3185     // Retain the new value.  No need to block-copy here:  the block's
3186     // being passed up the stack.
3187     value = CGF.EmitARCRetainNonBlock(value);
3188 
3189     // Emit the intrinsic use here.
3190     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3191 
3192     // Load the old value (primitively).
3193     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3194 
3195     // Put the new value in place (primitively).
3196     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3197 
3198     // Release the old value.
3199     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3200 
3201   // Otherwise, we can just do a normal lvalue store.
3202   } else {
3203     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3204   }
3205 
3206   // Jump to the continuation block.
3207   if (!provablyNonNull)
3208     CGF.EmitBlock(contBB);
3209 }
3210 
3211 static void emitWritebacks(CodeGenFunction &CGF,
3212                            const CallArgList &args) {
3213   for (const auto &I : args.writebacks())
3214     emitWriteback(CGF, I);
3215 }
3216 
3217 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3218                                             const CallArgList &CallArgs) {
3219   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3220     CallArgs.getCleanupsToDeactivate();
3221   // Iterate in reverse to increase the likelihood of popping the cleanup.
3222   for (const auto &I : llvm::reverse(Cleanups)) {
3223     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3224     I.IsActiveIP->eraseFromParent();
3225   }
3226 }
3227 
3228 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3229   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3230     if (uop->getOpcode() == UO_AddrOf)
3231       return uop->getSubExpr();
3232   return nullptr;
3233 }
3234 
3235 /// Emit an argument that's being passed call-by-writeback.  That is,
3236 /// we are passing the address of an __autoreleased temporary; it
3237 /// might be copy-initialized with the current value of the given
3238 /// address, but it will definitely be copied out of after the call.
3239 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3240                              const ObjCIndirectCopyRestoreExpr *CRE) {
3241   LValue srcLV;
3242 
3243   // Make an optimistic effort to emit the address as an l-value.
3244   // This can fail if the argument expression is more complicated.
3245   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3246     srcLV = CGF.EmitLValue(lvExpr);
3247 
3248   // Otherwise, just emit it as a scalar.
3249   } else {
3250     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3251 
3252     QualType srcAddrType =
3253       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3254     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3255   }
3256   Address srcAddr = srcLV.getAddress(CGF);
3257 
3258   // The dest and src types don't necessarily match in LLVM terms
3259   // because of the crazy ObjC compatibility rules.
3260 
3261   llvm::PointerType *destType =
3262     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3263 
3264   // If the address is a constant null, just pass the appropriate null.
3265   if (isProvablyNull(srcAddr.getPointer())) {
3266     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3267              CRE->getType());
3268     return;
3269   }
3270 
3271   // Create the temporary.
3272   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3273                                       CGF.getPointerAlign(),
3274                                       "icr.temp");
3275   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3276   // and that cleanup will be conditional if we can't prove that the l-value
3277   // isn't null, so we need to register a dominating point so that the cleanups
3278   // system will make valid IR.
3279   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3280 
3281   // Zero-initialize it if we're not doing a copy-initialization.
3282   bool shouldCopy = CRE->shouldCopy();
3283   if (!shouldCopy) {
3284     llvm::Value *null =
3285       llvm::ConstantPointerNull::get(
3286         cast<llvm::PointerType>(destType->getElementType()));
3287     CGF.Builder.CreateStore(null, temp);
3288   }
3289 
3290   llvm::BasicBlock *contBB = nullptr;
3291   llvm::BasicBlock *originBB = nullptr;
3292 
3293   // If the address is *not* known to be non-null, we need to switch.
3294   llvm::Value *finalArgument;
3295 
3296   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3297                                               CGF.CGM.getDataLayout());
3298   if (provablyNonNull) {
3299     finalArgument = temp.getPointer();
3300   } else {
3301     llvm::Value *isNull =
3302       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3303 
3304     finalArgument = CGF.Builder.CreateSelect(isNull,
3305                                    llvm::ConstantPointerNull::get(destType),
3306                                              temp.getPointer(), "icr.argument");
3307 
3308     // If we need to copy, then the load has to be conditional, which
3309     // means we need control flow.
3310     if (shouldCopy) {
3311       originBB = CGF.Builder.GetInsertBlock();
3312       contBB = CGF.createBasicBlock("icr.cont");
3313       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3314       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3315       CGF.EmitBlock(copyBB);
3316       condEval.begin(CGF);
3317     }
3318   }
3319 
3320   llvm::Value *valueToUse = nullptr;
3321 
3322   // Perform a copy if necessary.
3323   if (shouldCopy) {
3324     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3325     assert(srcRV.isScalar());
3326 
3327     llvm::Value *src = srcRV.getScalarVal();
3328     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3329                                     "icr.cast");
3330 
3331     // Use an ordinary store, not a store-to-lvalue.
3332     CGF.Builder.CreateStore(src, temp);
3333 
3334     // If optimization is enabled, and the value was held in a
3335     // __strong variable, we need to tell the optimizer that this
3336     // value has to stay alive until we're doing the store back.
3337     // This is because the temporary is effectively unretained,
3338     // and so otherwise we can violate the high-level semantics.
3339     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3340         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3341       valueToUse = src;
3342     }
3343   }
3344 
3345   // Finish the control flow if we needed it.
3346   if (shouldCopy && !provablyNonNull) {
3347     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3348     CGF.EmitBlock(contBB);
3349 
3350     // Make a phi for the value to intrinsically use.
3351     if (valueToUse) {
3352       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3353                                                       "icr.to-use");
3354       phiToUse->addIncoming(valueToUse, copyBB);
3355       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3356                             originBB);
3357       valueToUse = phiToUse;
3358     }
3359 
3360     condEval.end(CGF);
3361   }
3362 
3363   args.addWriteback(srcLV, temp, valueToUse);
3364   args.add(RValue::get(finalArgument), CRE->getType());
3365 }
3366 
3367 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3368   assert(!StackBase);
3369 
3370   // Save the stack.
3371   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3372   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3373 }
3374 
3375 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3376   if (StackBase) {
3377     // Restore the stack after the call.
3378     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3379     CGF.Builder.CreateCall(F, StackBase);
3380   }
3381 }
3382 
3383 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3384                                           SourceLocation ArgLoc,
3385                                           AbstractCallee AC,
3386                                           unsigned ParmNum) {
3387   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3388                          SanOpts.has(SanitizerKind::NullabilityArg)))
3389     return;
3390 
3391   // The param decl may be missing in a variadic function.
3392   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3393   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3394 
3395   // Prefer the nonnull attribute if it's present.
3396   const NonNullAttr *NNAttr = nullptr;
3397   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3398     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3399 
3400   bool CanCheckNullability = false;
3401   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3402     auto Nullability = PVD->getType()->getNullability(getContext());
3403     CanCheckNullability = Nullability &&
3404                           *Nullability == NullabilityKind::NonNull &&
3405                           PVD->getTypeSourceInfo();
3406   }
3407 
3408   if (!NNAttr && !CanCheckNullability)
3409     return;
3410 
3411   SourceLocation AttrLoc;
3412   SanitizerMask CheckKind;
3413   SanitizerHandler Handler;
3414   if (NNAttr) {
3415     AttrLoc = NNAttr->getLocation();
3416     CheckKind = SanitizerKind::NonnullAttribute;
3417     Handler = SanitizerHandler::NonnullArg;
3418   } else {
3419     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3420     CheckKind = SanitizerKind::NullabilityArg;
3421     Handler = SanitizerHandler::NullabilityArg;
3422   }
3423 
3424   SanitizerScope SanScope(this);
3425   assert(RV.isScalar());
3426   llvm::Value *V = RV.getScalarVal();
3427   llvm::Value *Cond =
3428       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3429   llvm::Constant *StaticData[] = {
3430       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3431       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3432   };
3433   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3434 }
3435 
3436 void CodeGenFunction::EmitCallArgs(
3437     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3438     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3439     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3440   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3441 
3442   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3443   // because arguments are destroyed left to right in the callee. As a special
3444   // case, there are certain language constructs that require left-to-right
3445   // evaluation, and in those cases we consider the evaluation order requirement
3446   // to trump the "destruction order is reverse construction order" guarantee.
3447   bool LeftToRight =
3448       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3449           ? Order == EvaluationOrder::ForceLeftToRight
3450           : Order != EvaluationOrder::ForceRightToLeft;
3451 
3452   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3453                                          RValue EmittedArg) {
3454     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3455       return;
3456     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3457     if (PS == nullptr)
3458       return;
3459 
3460     const auto &Context = getContext();
3461     auto SizeTy = Context.getSizeType();
3462     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3463     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3464     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3465                                                      EmittedArg.getScalarVal(),
3466                                                      PS->isDynamic());
3467     Args.add(RValue::get(V), SizeTy);
3468     // If we're emitting args in reverse, be sure to do so with
3469     // pass_object_size, as well.
3470     if (!LeftToRight)
3471       std::swap(Args.back(), *(&Args.back() - 1));
3472   };
3473 
3474   // Insert a stack save if we're going to need any inalloca args.
3475   bool HasInAllocaArgs = false;
3476   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3477     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3478          I != E && !HasInAllocaArgs; ++I)
3479       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3480     if (HasInAllocaArgs) {
3481       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3482       Args.allocateArgumentMemory(*this);
3483     }
3484   }
3485 
3486   // Evaluate each argument in the appropriate order.
3487   size_t CallArgsStart = Args.size();
3488   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3489     unsigned Idx = LeftToRight ? I : E - I - 1;
3490     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3491     unsigned InitialArgSize = Args.size();
3492     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3493     // the argument and parameter match or the objc method is parameterized.
3494     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3495             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3496                                                 ArgTypes[Idx]) ||
3497             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3498              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3499            "Argument and parameter types don't match");
3500     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3501     // In particular, we depend on it being the last arg in Args, and the
3502     // objectsize bits depend on there only being one arg if !LeftToRight.
3503     assert(InitialArgSize + 1 == Args.size() &&
3504            "The code below depends on only adding one arg per EmitCallArg");
3505     (void)InitialArgSize;
3506     // Since pointer argument are never emitted as LValue, it is safe to emit
3507     // non-null argument check for r-value only.
3508     if (!Args.back().hasLValue()) {
3509       RValue RVArg = Args.back().getKnownRValue();
3510       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3511                           ParamsToSkip + Idx);
3512       // @llvm.objectsize should never have side-effects and shouldn't need
3513       // destruction/cleanups, so we can safely "emit" it after its arg,
3514       // regardless of right-to-leftness
3515       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3516     }
3517   }
3518 
3519   if (!LeftToRight) {
3520     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3521     // IR function.
3522     std::reverse(Args.begin() + CallArgsStart, Args.end());
3523   }
3524 }
3525 
3526 namespace {
3527 
3528 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3529   DestroyUnpassedArg(Address Addr, QualType Ty)
3530       : Addr(Addr), Ty(Ty) {}
3531 
3532   Address Addr;
3533   QualType Ty;
3534 
3535   void Emit(CodeGenFunction &CGF, Flags flags) override {
3536     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3537     if (DtorKind == QualType::DK_cxx_destructor) {
3538       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3539       assert(!Dtor->isTrivial());
3540       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3541                                 /*Delegating=*/false, Addr, Ty);
3542     } else {
3543       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3544     }
3545   }
3546 };
3547 
3548 struct DisableDebugLocationUpdates {
3549   CodeGenFunction &CGF;
3550   bool disabledDebugInfo;
3551   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3552     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3553       CGF.disableDebugInfo();
3554   }
3555   ~DisableDebugLocationUpdates() {
3556     if (disabledDebugInfo)
3557       CGF.enableDebugInfo();
3558   }
3559 };
3560 
3561 } // end anonymous namespace
3562 
3563 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3564   if (!HasLV)
3565     return RV;
3566   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3567   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3568                         LV.isVolatile());
3569   IsUsed = true;
3570   return RValue::getAggregate(Copy.getAddress(CGF));
3571 }
3572 
3573 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3574   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3575   if (!HasLV && RV.isScalar())
3576     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
3577   else if (!HasLV && RV.isComplex())
3578     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3579   else {
3580     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
3581     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3582     // We assume that call args are never copied into subobjects.
3583     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3584                           HasLV ? LV.isVolatileQualified()
3585                                 : RV.isVolatileQualified());
3586   }
3587   IsUsed = true;
3588 }
3589 
3590 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3591                                   QualType type) {
3592   DisableDebugLocationUpdates Dis(*this, E);
3593   if (const ObjCIndirectCopyRestoreExpr *CRE
3594         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3595     assert(getLangOpts().ObjCAutoRefCount);
3596     return emitWritebackArg(*this, args, CRE);
3597   }
3598 
3599   assert(type->isReferenceType() == E->isGLValue() &&
3600          "reference binding to unmaterialized r-value!");
3601 
3602   if (E->isGLValue()) {
3603     assert(E->getObjectKind() == OK_Ordinary);
3604     return args.add(EmitReferenceBindingToExpr(E), type);
3605   }
3606 
3607   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3608 
3609   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3610   // However, we still have to push an EH-only cleanup in case we unwind before
3611   // we make it to the call.
3612   if (HasAggregateEvalKind &&
3613       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3614     // If we're using inalloca, use the argument memory.  Otherwise, use a
3615     // temporary.
3616     AggValueSlot Slot;
3617     if (args.isUsingInAlloca())
3618       Slot = createPlaceholderSlot(*this, type);
3619     else
3620       Slot = CreateAggTemp(type, "agg.tmp");
3621 
3622     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3623     if (const auto *RD = type->getAsCXXRecordDecl())
3624       DestroyedInCallee = RD->hasNonTrivialDestructor();
3625     else
3626       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3627 
3628     if (DestroyedInCallee)
3629       Slot.setExternallyDestructed();
3630 
3631     EmitAggExpr(E, Slot);
3632     RValue RV = Slot.asRValue();
3633     args.add(RV, type);
3634 
3635     if (DestroyedInCallee && NeedsEHCleanup) {
3636       // Create a no-op GEP between the placeholder and the cleanup so we can
3637       // RAUW it successfully.  It also serves as a marker of the first
3638       // instruction where the cleanup is active.
3639       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3640                                               type);
3641       // This unreachable is a temporary marker which will be removed later.
3642       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3643       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3644     }
3645     return;
3646   }
3647 
3648   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3649       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3650     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3651     assert(L.isSimple());
3652     args.addUncopiedAggregate(L, type);
3653     return;
3654   }
3655 
3656   args.add(EmitAnyExprToTemp(E), type);
3657 }
3658 
3659 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3660   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3661   // implicitly widens null pointer constants that are arguments to varargs
3662   // functions to pointer-sized ints.
3663   if (!getTarget().getTriple().isOSWindows())
3664     return Arg->getType();
3665 
3666   if (Arg->getType()->isIntegerType() &&
3667       getContext().getTypeSize(Arg->getType()) <
3668           getContext().getTargetInfo().getPointerWidth(0) &&
3669       Arg->isNullPointerConstant(getContext(),
3670                                  Expr::NPC_ValueDependentIsNotNull)) {
3671     return getContext().getIntPtrType();
3672   }
3673 
3674   return Arg->getType();
3675 }
3676 
3677 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3678 // optimizer it can aggressively ignore unwind edges.
3679 void
3680 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3681   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3682       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3683     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3684                       CGM.getNoObjCARCExceptionsMetadata());
3685 }
3686 
3687 /// Emits a call to the given no-arguments nounwind runtime function.
3688 llvm::CallInst *
3689 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3690                                          const llvm::Twine &name) {
3691   return EmitNounwindRuntimeCall(callee, None, name);
3692 }
3693 
3694 /// Emits a call to the given nounwind runtime function.
3695 llvm::CallInst *
3696 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3697                                          ArrayRef<llvm::Value *> args,
3698                                          const llvm::Twine &name) {
3699   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3700   call->setDoesNotThrow();
3701   return call;
3702 }
3703 
3704 /// Emits a simple call (never an invoke) to the given no-arguments
3705 /// runtime function.
3706 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
3707                                                  const llvm::Twine &name) {
3708   return EmitRuntimeCall(callee, None, name);
3709 }
3710 
3711 // Calls which may throw must have operand bundles indicating which funclet
3712 // they are nested within.
3713 SmallVector<llvm::OperandBundleDef, 1>
3714 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3715   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3716   // There is no need for a funclet operand bundle if we aren't inside a
3717   // funclet.
3718   if (!CurrentFuncletPad)
3719     return BundleList;
3720 
3721   // Skip intrinsics which cannot throw.
3722   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3723   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3724     return BundleList;
3725 
3726   BundleList.emplace_back("funclet", CurrentFuncletPad);
3727   return BundleList;
3728 }
3729 
3730 /// Emits a simple call (never an invoke) to the given runtime function.
3731 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
3732                                                  ArrayRef<llvm::Value *> args,
3733                                                  const llvm::Twine &name) {
3734   llvm::CallInst *call = Builder.CreateCall(
3735       callee, args, getBundlesForFunclet(callee.getCallee()), name);
3736   call->setCallingConv(getRuntimeCC());
3737   return call;
3738 }
3739 
3740 /// Emits a call or invoke to the given noreturn runtime function.
3741 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
3742     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
3743   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3744       getBundlesForFunclet(callee.getCallee());
3745 
3746   if (getInvokeDest()) {
3747     llvm::InvokeInst *invoke =
3748       Builder.CreateInvoke(callee,
3749                            getUnreachableBlock(),
3750                            getInvokeDest(),
3751                            args,
3752                            BundleList);
3753     invoke->setDoesNotReturn();
3754     invoke->setCallingConv(getRuntimeCC());
3755   } else {
3756     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3757     call->setDoesNotReturn();
3758     call->setCallingConv(getRuntimeCC());
3759     Builder.CreateUnreachable();
3760   }
3761 }
3762 
3763 /// Emits a call or invoke instruction to the given nullary runtime function.
3764 llvm::CallBase *
3765 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3766                                          const Twine &name) {
3767   return EmitRuntimeCallOrInvoke(callee, None, name);
3768 }
3769 
3770 /// Emits a call or invoke instruction to the given runtime function.
3771 llvm::CallBase *
3772 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3773                                          ArrayRef<llvm::Value *> args,
3774                                          const Twine &name) {
3775   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
3776   call->setCallingConv(getRuntimeCC());
3777   return call;
3778 }
3779 
3780 /// Emits a call or invoke instruction to the given function, depending
3781 /// on the current state of the EH stack.
3782 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
3783                                                   ArrayRef<llvm::Value *> Args,
3784                                                   const Twine &Name) {
3785   llvm::BasicBlock *InvokeDest = getInvokeDest();
3786   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3787       getBundlesForFunclet(Callee.getCallee());
3788 
3789   llvm::CallBase *Inst;
3790   if (!InvokeDest)
3791     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3792   else {
3793     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3794     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3795                                 Name);
3796     EmitBlock(ContBB);
3797   }
3798 
3799   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3800   // optimizer it can aggressively ignore unwind edges.
3801   if (CGM.getLangOpts().ObjCAutoRefCount)
3802     AddObjCARCExceptionMetadata(Inst);
3803 
3804   return Inst;
3805 }
3806 
3807 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3808                                                   llvm::Value *New) {
3809   DeferredReplacements.push_back(std::make_pair(Old, New));
3810 }
3811 
3812 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3813                                  const CGCallee &Callee,
3814                                  ReturnValueSlot ReturnValue,
3815                                  const CallArgList &CallArgs,
3816                                  llvm::CallBase **callOrInvoke,
3817                                  SourceLocation Loc) {
3818   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3819 
3820   assert(Callee.isOrdinary() || Callee.isVirtual());
3821 
3822   // Handle struct-return functions by passing a pointer to the
3823   // location that we would like to return into.
3824   QualType RetTy = CallInfo.getReturnType();
3825   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3826 
3827   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
3828 
3829   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
3830   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
3831     // We can only guarantee that a function is called from the correct
3832     // context/function based on the appropriate target attributes,
3833     // so only check in the case where we have both always_inline and target
3834     // since otherwise we could be making a conditional call after a check for
3835     // the proper cpu features (and it won't cause code generation issues due to
3836     // function based code generation).
3837     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
3838         TargetDecl->hasAttr<TargetAttr>())
3839       checkTargetFeatures(Loc, FD);
3840 
3841 #ifndef NDEBUG
3842   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
3843     // For an inalloca varargs function, we don't expect CallInfo to match the
3844     // function pointer's type, because the inalloca struct a will have extra
3845     // fields in it for the varargs parameters.  Code later in this function
3846     // bitcasts the function pointer to the type derived from CallInfo.
3847     //
3848     // In other cases, we assert that the types match up (until pointers stop
3849     // having pointee types).
3850     llvm::Type *TypeFromVal;
3851     if (Callee.isVirtual())
3852       TypeFromVal = Callee.getVirtualFunctionType();
3853     else
3854       TypeFromVal =
3855           Callee.getFunctionPointer()->getType()->getPointerElementType();
3856     assert(IRFuncTy == TypeFromVal);
3857   }
3858 #endif
3859 
3860   // 1. Set up the arguments.
3861 
3862   // If we're using inalloca, insert the allocation after the stack save.
3863   // FIXME: Do this earlier rather than hacking it in here!
3864   Address ArgMemory = Address::invalid();
3865   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3866     const llvm::DataLayout &DL = CGM.getDataLayout();
3867     llvm::Instruction *IP = CallArgs.getStackBase();
3868     llvm::AllocaInst *AI;
3869     if (IP) {
3870       IP = IP->getNextNode();
3871       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3872                                 "argmem", IP);
3873     } else {
3874       AI = CreateTempAlloca(ArgStruct, "argmem");
3875     }
3876     auto Align = CallInfo.getArgStructAlignment();
3877     AI->setAlignment(Align.getAsAlign());
3878     AI->setUsedWithInAlloca(true);
3879     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3880     ArgMemory = Address(AI, Align);
3881   }
3882 
3883   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3884   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3885 
3886   // If the call returns a temporary with struct return, create a temporary
3887   // alloca to hold the result, unless one is given to us.
3888   Address SRetPtr = Address::invalid();
3889   Address SRetAlloca = Address::invalid();
3890   llvm::Value *UnusedReturnSizePtr = nullptr;
3891   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3892     if (!ReturnValue.isNull()) {
3893       SRetPtr = ReturnValue.getValue();
3894     } else {
3895       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
3896       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3897         uint64_t size =
3898             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3899         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
3900       }
3901     }
3902     if (IRFunctionArgs.hasSRetArg()) {
3903       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3904     } else if (RetAI.isInAlloca()) {
3905       Address Addr =
3906           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
3907       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3908     }
3909   }
3910 
3911   Address swiftErrorTemp = Address::invalid();
3912   Address swiftErrorArg = Address::invalid();
3913 
3914   // When passing arguments using temporary allocas, we need to add the
3915   // appropriate lifetime markers. This vector keeps track of all the lifetime
3916   // markers that need to be ended right after the call.
3917   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
3918 
3919   // Translate all of the arguments as necessary to match the IR lowering.
3920   assert(CallInfo.arg_size() == CallArgs.size() &&
3921          "Mismatch between function signature & arguments.");
3922   unsigned ArgNo = 0;
3923   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3924   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3925        I != E; ++I, ++info_it, ++ArgNo) {
3926     const ABIArgInfo &ArgInfo = info_it->info;
3927 
3928     // Insert a padding argument to ensure proper alignment.
3929     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3930       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3931           llvm::UndefValue::get(ArgInfo.getPaddingType());
3932 
3933     unsigned FirstIRArg, NumIRArgs;
3934     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3935 
3936     switch (ArgInfo.getKind()) {
3937     case ABIArgInfo::InAlloca: {
3938       assert(NumIRArgs == 0);
3939       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3940       if (I->isAggregate()) {
3941         // Replace the placeholder with the appropriate argument slot GEP.
3942         Address Addr = I->hasLValue()
3943                            ? I->getKnownLValue().getAddress(*this)
3944                            : I->getKnownRValue().getAggregateAddress();
3945         llvm::Instruction *Placeholder =
3946             cast<llvm::Instruction>(Addr.getPointer());
3947         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3948         Builder.SetInsertPoint(Placeholder);
3949         Addr =
3950             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
3951         Builder.restoreIP(IP);
3952         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3953       } else {
3954         // Store the RValue into the argument struct.
3955         Address Addr =
3956             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
3957         unsigned AS = Addr.getType()->getPointerAddressSpace();
3958         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3959         // There are some cases where a trivial bitcast is not avoidable.  The
3960         // definition of a type later in a translation unit may change it's type
3961         // from {}* to (%struct.foo*)*.
3962         if (Addr.getType() != MemType)
3963           Addr = Builder.CreateBitCast(Addr, MemType);
3964         I->copyInto(*this, Addr);
3965       }
3966       break;
3967     }
3968 
3969     case ABIArgInfo::Indirect: {
3970       assert(NumIRArgs == 1);
3971       if (!I->isAggregate()) {
3972         // Make a temporary alloca to pass the argument.
3973         Address Addr = CreateMemTempWithoutCast(
3974             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
3975         IRCallArgs[FirstIRArg] = Addr.getPointer();
3976 
3977         I->copyInto(*this, Addr);
3978       } else {
3979         // We want to avoid creating an unnecessary temporary+copy here;
3980         // however, we need one in three cases:
3981         // 1. If the argument is not byval, and we are required to copy the
3982         //    source.  (This case doesn't occur on any common architecture.)
3983         // 2. If the argument is byval, RV is not sufficiently aligned, and
3984         //    we cannot force it to be sufficiently aligned.
3985         // 3. If the argument is byval, but RV is not located in default
3986         //    or alloca address space.
3987         Address Addr = I->hasLValue()
3988                            ? I->getKnownLValue().getAddress(*this)
3989                            : I->getKnownRValue().getAggregateAddress();
3990         llvm::Value *V = Addr.getPointer();
3991         CharUnits Align = ArgInfo.getIndirectAlign();
3992         const llvm::DataLayout *TD = &CGM.getDataLayout();
3993 
3994         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
3995                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
3996                     TD->getAllocaAddrSpace()) &&
3997                "indirect argument must be in alloca address space");
3998 
3999         bool NeedCopy = false;
4000 
4001         if (Addr.getAlignment() < Align &&
4002             llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
4003                 Align.getQuantity()) {
4004           NeedCopy = true;
4005         } else if (I->hasLValue()) {
4006           auto LV = I->getKnownLValue();
4007           auto AS = LV.getAddressSpace();
4008 
4009           if (!ArgInfo.getIndirectByVal() ||
4010               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4011             NeedCopy = true;
4012           }
4013           if (!getLangOpts().OpenCL) {
4014             if ((ArgInfo.getIndirectByVal() &&
4015                 (AS != LangAS::Default &&
4016                  AS != CGM.getASTAllocaAddressSpace()))) {
4017               NeedCopy = true;
4018             }
4019           }
4020           // For OpenCL even if RV is located in default or alloca address space
4021           // we don't want to perform address space cast for it.
4022           else if ((ArgInfo.getIndirectByVal() &&
4023                     Addr.getType()->getAddressSpace() != IRFuncTy->
4024                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4025             NeedCopy = true;
4026           }
4027         }
4028 
4029         if (NeedCopy) {
4030           // Create an aligned temporary, and copy to it.
4031           Address AI = CreateMemTempWithoutCast(
4032               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4033           IRCallArgs[FirstIRArg] = AI.getPointer();
4034 
4035           // Emit lifetime markers for the temporary alloca.
4036           uint64_t ByvalTempElementSize =
4037               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4038           llvm::Value *LifetimeSize =
4039               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4040 
4041           // Add cleanup code to emit the end lifetime marker after the call.
4042           if (LifetimeSize) // In case we disabled lifetime markers.
4043             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4044 
4045           // Generate the copy.
4046           I->copyInto(*this, AI);
4047         } else {
4048           // Skip the extra memcpy call.
4049           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4050               CGM.getDataLayout().getAllocaAddrSpace());
4051           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4052               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4053               true);
4054         }
4055       }
4056       break;
4057     }
4058 
4059     case ABIArgInfo::Ignore:
4060       assert(NumIRArgs == 0);
4061       break;
4062 
4063     case ABIArgInfo::Extend:
4064     case ABIArgInfo::Direct: {
4065       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4066           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4067           ArgInfo.getDirectOffset() == 0) {
4068         assert(NumIRArgs == 1);
4069         llvm::Value *V;
4070         if (!I->isAggregate())
4071           V = I->getKnownRValue().getScalarVal();
4072         else
4073           V = Builder.CreateLoad(
4074               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4075                              : I->getKnownRValue().getAggregateAddress());
4076 
4077         // Implement swifterror by copying into a new swifterror argument.
4078         // We'll write back in the normal path out of the call.
4079         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4080               == ParameterABI::SwiftErrorResult) {
4081           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4082 
4083           QualType pointeeTy = I->Ty->getPointeeType();
4084           swiftErrorArg =
4085             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4086 
4087           swiftErrorTemp =
4088             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4089           V = swiftErrorTemp.getPointer();
4090           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4091 
4092           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4093           Builder.CreateStore(errorValue, swiftErrorTemp);
4094         }
4095 
4096         // We might have to widen integers, but we should never truncate.
4097         if (ArgInfo.getCoerceToType() != V->getType() &&
4098             V->getType()->isIntegerTy())
4099           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4100 
4101         // If the argument doesn't match, perform a bitcast to coerce it.  This
4102         // can happen due to trivial type mismatches.
4103         if (FirstIRArg < IRFuncTy->getNumParams() &&
4104             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4105           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4106 
4107         IRCallArgs[FirstIRArg] = V;
4108         break;
4109       }
4110 
4111       // FIXME: Avoid the conversion through memory if possible.
4112       Address Src = Address::invalid();
4113       if (!I->isAggregate()) {
4114         Src = CreateMemTemp(I->Ty, "coerce");
4115         I->copyInto(*this, Src);
4116       } else {
4117         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4118                              : I->getKnownRValue().getAggregateAddress();
4119       }
4120 
4121       // If the value is offset in memory, apply the offset now.
4122       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4123 
4124       // Fast-isel and the optimizer generally like scalar values better than
4125       // FCAs, so we flatten them if this is safe to do for this argument.
4126       llvm::StructType *STy =
4127             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4128       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4129         llvm::Type *SrcTy = Src.getType()->getElementType();
4130         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4131         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4132 
4133         // If the source type is smaller than the destination type of the
4134         // coerce-to logic, copy the source value into a temp alloca the size
4135         // of the destination type to allow loading all of it. The bits past
4136         // the source value are left undef.
4137         if (SrcSize < DstSize) {
4138           Address TempAlloca
4139             = CreateTempAlloca(STy, Src.getAlignment(),
4140                                Src.getName() + ".coerce");
4141           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4142           Src = TempAlloca;
4143         } else {
4144           Src = Builder.CreateBitCast(Src,
4145                                       STy->getPointerTo(Src.getAddressSpace()));
4146         }
4147 
4148         assert(NumIRArgs == STy->getNumElements());
4149         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4150           Address EltPtr = Builder.CreateStructGEP(Src, i);
4151           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4152           IRCallArgs[FirstIRArg + i] = LI;
4153         }
4154       } else {
4155         // In the simple case, just pass the coerced loaded value.
4156         assert(NumIRArgs == 1);
4157         IRCallArgs[FirstIRArg] =
4158           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4159       }
4160 
4161       break;
4162     }
4163 
4164     case ABIArgInfo::CoerceAndExpand: {
4165       auto coercionType = ArgInfo.getCoerceAndExpandType();
4166       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4167 
4168       llvm::Value *tempSize = nullptr;
4169       Address addr = Address::invalid();
4170       Address AllocaAddr = Address::invalid();
4171       if (I->isAggregate()) {
4172         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4173                               : I->getKnownRValue().getAggregateAddress();
4174 
4175       } else {
4176         RValue RV = I->getKnownRValue();
4177         assert(RV.isScalar()); // complex should always just be direct
4178 
4179         llvm::Type *scalarType = RV.getScalarVal()->getType();
4180         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4181         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4182 
4183         // Materialize to a temporary.
4184         addr = CreateTempAlloca(
4185             RV.getScalarVal()->getType(),
4186             CharUnits::fromQuantity(std::max(
4187                 (unsigned)layout->getAlignment().value(), scalarAlign)),
4188             "tmp",
4189             /*ArraySize=*/nullptr, &AllocaAddr);
4190         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4191 
4192         Builder.CreateStore(RV.getScalarVal(), addr);
4193       }
4194 
4195       addr = Builder.CreateElementBitCast(addr, coercionType);
4196 
4197       unsigned IRArgPos = FirstIRArg;
4198       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4199         llvm::Type *eltType = coercionType->getElementType(i);
4200         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4201         Address eltAddr = Builder.CreateStructGEP(addr, i);
4202         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4203         IRCallArgs[IRArgPos++] = elt;
4204       }
4205       assert(IRArgPos == FirstIRArg + NumIRArgs);
4206 
4207       if (tempSize) {
4208         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4209       }
4210 
4211       break;
4212     }
4213 
4214     case ABIArgInfo::Expand:
4215       unsigned IRArgPos = FirstIRArg;
4216       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4217       assert(IRArgPos == FirstIRArg + NumIRArgs);
4218       break;
4219     }
4220   }
4221 
4222   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4223   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4224 
4225   // If we're using inalloca, set up that argument.
4226   if (ArgMemory.isValid()) {
4227     llvm::Value *Arg = ArgMemory.getPointer();
4228     if (CallInfo.isVariadic()) {
4229       // When passing non-POD arguments by value to variadic functions, we will
4230       // end up with a variadic prototype and an inalloca call site.  In such
4231       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4232       // the callee.
4233       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4234       CalleePtr =
4235           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4236     } else {
4237       llvm::Type *LastParamTy =
4238           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4239       if (Arg->getType() != LastParamTy) {
4240 #ifndef NDEBUG
4241         // Assert that these structs have equivalent element types.
4242         llvm::StructType *FullTy = CallInfo.getArgStruct();
4243         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4244             cast<llvm::PointerType>(LastParamTy)->getElementType());
4245         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4246         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4247                                                 DE = DeclaredTy->element_end(),
4248                                                 FI = FullTy->element_begin();
4249              DI != DE; ++DI, ++FI)
4250           assert(*DI == *FI);
4251 #endif
4252         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4253       }
4254     }
4255     assert(IRFunctionArgs.hasInallocaArg());
4256     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4257   }
4258 
4259   // 2. Prepare the function pointer.
4260 
4261   // If the callee is a bitcast of a non-variadic function to have a
4262   // variadic function pointer type, check to see if we can remove the
4263   // bitcast.  This comes up with unprototyped functions.
4264   //
4265   // This makes the IR nicer, but more importantly it ensures that we
4266   // can inline the function at -O0 if it is marked always_inline.
4267   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4268                                    llvm::Value *Ptr) -> llvm::Function * {
4269     if (!CalleeFT->isVarArg())
4270       return nullptr;
4271 
4272     // Get underlying value if it's a bitcast
4273     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4274       if (CE->getOpcode() == llvm::Instruction::BitCast)
4275         Ptr = CE->getOperand(0);
4276     }
4277 
4278     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4279     if (!OrigFn)
4280       return nullptr;
4281 
4282     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4283 
4284     // If the original type is variadic, or if any of the component types
4285     // disagree, we cannot remove the cast.
4286     if (OrigFT->isVarArg() ||
4287         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4288         OrigFT->getReturnType() != CalleeFT->getReturnType())
4289       return nullptr;
4290 
4291     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4292       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4293         return nullptr;
4294 
4295     return OrigFn;
4296   };
4297 
4298   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4299     CalleePtr = OrigFn;
4300     IRFuncTy = OrigFn->getFunctionType();
4301   }
4302 
4303   // 3. Perform the actual call.
4304 
4305   // Deactivate any cleanups that we're supposed to do immediately before
4306   // the call.
4307   if (!CallArgs.getCleanupsToDeactivate().empty())
4308     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4309 
4310   // Assert that the arguments we computed match up.  The IR verifier
4311   // will catch this, but this is a common enough source of problems
4312   // during IRGen changes that it's way better for debugging to catch
4313   // it ourselves here.
4314 #ifndef NDEBUG
4315   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4316   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4317     // Inalloca argument can have different type.
4318     if (IRFunctionArgs.hasInallocaArg() &&
4319         i == IRFunctionArgs.getInallocaArgNo())
4320       continue;
4321     if (i < IRFuncTy->getNumParams())
4322       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4323   }
4324 #endif
4325 
4326   // Update the largest vector width if any arguments have vector types.
4327   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4328     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4329       LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
4330                                    VT->getPrimitiveSizeInBits().getFixedSize());
4331   }
4332 
4333   // Compute the calling convention and attributes.
4334   unsigned CallingConv;
4335   llvm::AttributeList Attrs;
4336   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4337                              Callee.getAbstractInfo(), Attrs, CallingConv,
4338                              /*AttrOnCallSite=*/true);
4339 
4340   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4341     if (FD->usesFPIntrin())
4342       // All calls within a strictfp function are marked strictfp
4343       Attrs =
4344         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4345                            llvm::Attribute::StrictFP);
4346 
4347   // Apply some call-site-specific attributes.
4348   // TODO: work this into building the attribute set.
4349 
4350   // Apply always_inline to all calls within flatten functions.
4351   // FIXME: should this really take priority over __try, below?
4352   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4353       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
4354     Attrs =
4355         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4356                            llvm::Attribute::AlwaysInline);
4357   }
4358 
4359   // Disable inlining inside SEH __try blocks.
4360   if (isSEHTryScope()) {
4361     Attrs =
4362         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4363                            llvm::Attribute::NoInline);
4364   }
4365 
4366   // Decide whether to use a call or an invoke.
4367   bool CannotThrow;
4368   if (currentFunctionUsesSEHTry()) {
4369     // SEH cares about asynchronous exceptions, so everything can "throw."
4370     CannotThrow = false;
4371   } else if (isCleanupPadScope() &&
4372              EHPersonality::get(*this).isMSVCXXPersonality()) {
4373     // The MSVC++ personality will implicitly terminate the program if an
4374     // exception is thrown during a cleanup outside of a try/catch.
4375     // We don't need to model anything in IR to get this behavior.
4376     CannotThrow = true;
4377   } else {
4378     // Otherwise, nounwind call sites will never throw.
4379     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4380                                      llvm::Attribute::NoUnwind);
4381   }
4382 
4383   // If we made a temporary, be sure to clean up after ourselves. Note that we
4384   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4385   // pop this cleanup later on. Being eager about this is OK, since this
4386   // temporary is 'invisible' outside of the callee.
4387   if (UnusedReturnSizePtr)
4388     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4389                                          UnusedReturnSizePtr);
4390 
4391   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4392 
4393   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4394       getBundlesForFunclet(CalleePtr);
4395 
4396   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4397     if (FD->usesFPIntrin())
4398       // All calls within a strictfp function are marked strictfp
4399       Attrs =
4400         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4401                            llvm::Attribute::StrictFP);
4402 
4403   // Emit the actual call/invoke instruction.
4404   llvm::CallBase *CI;
4405   if (!InvokeDest) {
4406     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
4407   } else {
4408     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4409     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
4410                               BundleList);
4411     EmitBlock(Cont);
4412   }
4413   if (callOrInvoke)
4414     *callOrInvoke = CI;
4415 
4416   // If this is within a function that has the guard(nocf) attribute and is an
4417   // indirect call, add the "guard_nocf" attribute to this call to indicate that
4418   // Control Flow Guard checks should not be added, even if the call is inlined.
4419   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
4420     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
4421       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
4422         Attrs = Attrs.addAttribute(
4423             getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
4424     }
4425   }
4426 
4427   // Apply the attributes and calling convention.
4428   CI->setAttributes(Attrs);
4429   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4430 
4431   // Apply various metadata.
4432 
4433   if (!CI->getType()->isVoidTy())
4434     CI->setName("call");
4435 
4436   // Update largest vector width from the return type.
4437   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4438     LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
4439                                   VT->getPrimitiveSizeInBits().getFixedSize());
4440 
4441   // Insert instrumentation or attach profile metadata at indirect call sites.
4442   // For more details, see the comment before the definition of
4443   // IPVK_IndirectCallTarget in InstrProfData.inc.
4444   if (!CI->getCalledFunction())
4445     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4446                      CI, CalleePtr);
4447 
4448   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4449   // optimizer it can aggressively ignore unwind edges.
4450   if (CGM.getLangOpts().ObjCAutoRefCount)
4451     AddObjCARCExceptionMetadata(CI);
4452 
4453   // Suppress tail calls if requested.
4454   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4455     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4456       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4457   }
4458 
4459   // Add metadata for calls to MSAllocator functions
4460   if (getDebugInfo() && TargetDecl &&
4461       TargetDecl->hasAttr<MSAllocatorAttr>())
4462     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy, Loc);
4463 
4464   // 4. Finish the call.
4465 
4466   // If the call doesn't return, finish the basic block and clear the
4467   // insertion point; this allows the rest of IRGen to discard
4468   // unreachable code.
4469   if (CI->doesNotReturn()) {
4470     if (UnusedReturnSizePtr)
4471       PopCleanupBlock();
4472 
4473     // Strip away the noreturn attribute to better diagnose unreachable UB.
4474     if (SanOpts.has(SanitizerKind::Unreachable)) {
4475       // Also remove from function since CallBase::hasFnAttr additionally checks
4476       // attributes of the called function.
4477       if (auto *F = CI->getCalledFunction())
4478         F->removeFnAttr(llvm::Attribute::NoReturn);
4479       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
4480                           llvm::Attribute::NoReturn);
4481 
4482       // Avoid incompatibility with ASan which relies on the `noreturn`
4483       // attribute to insert handler calls.
4484       if (SanOpts.hasOneOf(SanitizerKind::Address |
4485                            SanitizerKind::KernelAddress)) {
4486         SanitizerScope SanScope(this);
4487         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
4488         Builder.SetInsertPoint(CI);
4489         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
4490         llvm::FunctionCallee Fn =
4491             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
4492         EmitNounwindRuntimeCall(Fn);
4493       }
4494     }
4495 
4496     EmitUnreachable(Loc);
4497     Builder.ClearInsertionPoint();
4498 
4499     // FIXME: For now, emit a dummy basic block because expr emitters in
4500     // generally are not ready to handle emitting expressions at unreachable
4501     // points.
4502     EnsureInsertPoint();
4503 
4504     // Return a reasonable RValue.
4505     return GetUndefRValue(RetTy);
4506   }
4507 
4508   // Perform the swifterror writeback.
4509   if (swiftErrorTemp.isValid()) {
4510     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4511     Builder.CreateStore(errorResult, swiftErrorArg);
4512   }
4513 
4514   // Emit any call-associated writebacks immediately.  Arguably this
4515   // should happen after any return-value munging.
4516   if (CallArgs.hasWritebacks())
4517     emitWritebacks(*this, CallArgs);
4518 
4519   // The stack cleanup for inalloca arguments has to run out of the normal
4520   // lexical order, so deactivate it and run it manually here.
4521   CallArgs.freeArgumentMemory(*this);
4522 
4523   // Extract the return value.
4524   RValue Ret = [&] {
4525     switch (RetAI.getKind()) {
4526     case ABIArgInfo::CoerceAndExpand: {
4527       auto coercionType = RetAI.getCoerceAndExpandType();
4528 
4529       Address addr = SRetPtr;
4530       addr = Builder.CreateElementBitCast(addr, coercionType);
4531 
4532       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4533       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4534 
4535       unsigned unpaddedIndex = 0;
4536       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4537         llvm::Type *eltType = coercionType->getElementType(i);
4538         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4539         Address eltAddr = Builder.CreateStructGEP(addr, i);
4540         llvm::Value *elt = CI;
4541         if (requiresExtract)
4542           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4543         else
4544           assert(unpaddedIndex == 0);
4545         Builder.CreateStore(elt, eltAddr);
4546       }
4547       // FALLTHROUGH
4548       LLVM_FALLTHROUGH;
4549     }
4550 
4551     case ABIArgInfo::InAlloca:
4552     case ABIArgInfo::Indirect: {
4553       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4554       if (UnusedReturnSizePtr)
4555         PopCleanupBlock();
4556       return ret;
4557     }
4558 
4559     case ABIArgInfo::Ignore:
4560       // If we are ignoring an argument that had a result, make sure to
4561       // construct the appropriate return value for our caller.
4562       return GetUndefRValue(RetTy);
4563 
4564     case ABIArgInfo::Extend:
4565     case ABIArgInfo::Direct: {
4566       llvm::Type *RetIRTy = ConvertType(RetTy);
4567       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4568         switch (getEvaluationKind(RetTy)) {
4569         case TEK_Complex: {
4570           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4571           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4572           return RValue::getComplex(std::make_pair(Real, Imag));
4573         }
4574         case TEK_Aggregate: {
4575           Address DestPtr = ReturnValue.getValue();
4576           bool DestIsVolatile = ReturnValue.isVolatile();
4577 
4578           if (!DestPtr.isValid()) {
4579             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4580             DestIsVolatile = false;
4581           }
4582           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4583           return RValue::getAggregate(DestPtr);
4584         }
4585         case TEK_Scalar: {
4586           // If the argument doesn't match, perform a bitcast to coerce it.  This
4587           // can happen due to trivial type mismatches.
4588           llvm::Value *V = CI;
4589           if (V->getType() != RetIRTy)
4590             V = Builder.CreateBitCast(V, RetIRTy);
4591           return RValue::get(V);
4592         }
4593         }
4594         llvm_unreachable("bad evaluation kind");
4595       }
4596 
4597       Address DestPtr = ReturnValue.getValue();
4598       bool DestIsVolatile = ReturnValue.isVolatile();
4599 
4600       if (!DestPtr.isValid()) {
4601         DestPtr = CreateMemTemp(RetTy, "coerce");
4602         DestIsVolatile = false;
4603       }
4604 
4605       // If the value is offset in memory, apply the offset now.
4606       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4607       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4608 
4609       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4610     }
4611 
4612     case ABIArgInfo::Expand:
4613       llvm_unreachable("Invalid ABI kind for return argument");
4614     }
4615 
4616     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4617   } ();
4618 
4619   // Emit the assume_aligned check on the return value.
4620   if (Ret.isScalar() && TargetDecl) {
4621     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4622       llvm::Value *OffsetValue = nullptr;
4623       if (const auto *Offset = AA->getOffset())
4624         OffsetValue = EmitScalarExpr(Offset);
4625 
4626       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4627       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4628       EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4629                               AlignmentCI, OffsetValue);
4630     }
4631     if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4632       llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()]
4633                                       .getRValue(*this)
4634                                       .getScalarVal();
4635       EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4636                               AlignmentVal);
4637     }
4638   }
4639 
4640   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
4641   // we can't use the full cleanup mechanism.
4642   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
4643     LifetimeEnd.Emit(*this, /*Flags=*/{});
4644 
4645   return Ret;
4646 }
4647 
4648 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
4649   if (isVirtual()) {
4650     const CallExpr *CE = getVirtualCallExpr();
4651     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
4652         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
4653         CE ? CE->getBeginLoc() : SourceLocation());
4654   }
4655 
4656   return *this;
4657 }
4658 
4659 /* VarArg handling */
4660 
4661 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4662   VAListAddr = VE->isMicrosoftABI()
4663                  ? EmitMSVAListRef(VE->getSubExpr())
4664                  : EmitVAListRef(VE->getSubExpr());
4665   QualType Ty = VE->getType();
4666   if (VE->isMicrosoftABI())
4667     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4668   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4669 }
4670