1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/Basic/TargetBuiltins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/Transforms/Utils/Local.h" 42 using namespace clang; 43 using namespace CodeGen; 44 45 /***/ 46 47 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 48 switch (CC) { 49 default: return llvm::CallingConv::C; 50 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 51 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 52 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 53 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 54 case CC_Win64: return llvm::CallingConv::Win64; 55 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 56 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 57 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 58 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 59 // TODO: Add support for __pascal to LLVM. 60 case CC_X86Pascal: return llvm::CallingConv::C; 61 // TODO: Add support for __vectorcall to LLVM. 62 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 63 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 64 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 65 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 66 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 67 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 68 case CC_Swift: return llvm::CallingConv::Swift; 69 } 70 } 71 72 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 73 /// qualification. Either or both of RD and MD may be null. A null RD indicates 74 /// that there is no meaningful 'this' type, and a null MD can occur when 75 /// calling a method pointer. 76 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 77 const CXXMethodDecl *MD) { 78 QualType RecTy; 79 if (RD) 80 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 81 else 82 RecTy = Context.VoidTy; 83 84 if (MD) 85 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 86 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 87 } 88 89 /// Returns the canonical formal type of the given C++ method. 90 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 91 return MD->getType()->getCanonicalTypeUnqualified() 92 .getAs<FunctionProtoType>(); 93 } 94 95 /// Returns the "extra-canonicalized" return type, which discards 96 /// qualifiers on the return type. Codegen doesn't care about them, 97 /// and it makes ABI code a little easier to be able to assume that 98 /// all parameter and return types are top-level unqualified. 99 static CanQualType GetReturnType(QualType RetTy) { 100 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 101 } 102 103 /// Arrange the argument and result information for a value of the given 104 /// unprototyped freestanding function type. 105 const CGFunctionInfo & 106 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 107 // When translating an unprototyped function type, always use a 108 // variadic type. 109 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 110 /*instanceMethod=*/false, 111 /*chainCall=*/false, None, 112 FTNP->getExtInfo(), {}, RequiredArgs(0)); 113 } 114 115 static void addExtParameterInfosForCall( 116 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 117 const FunctionProtoType *proto, 118 unsigned prefixArgs, 119 unsigned totalArgs) { 120 assert(proto->hasExtParameterInfos()); 121 assert(paramInfos.size() <= prefixArgs); 122 assert(proto->getNumParams() + prefixArgs <= totalArgs); 123 124 paramInfos.reserve(totalArgs); 125 126 // Add default infos for any prefix args that don't already have infos. 127 paramInfos.resize(prefixArgs); 128 129 // Add infos for the prototype. 130 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 131 paramInfos.push_back(ParamInfo); 132 // pass_object_size params have no parameter info. 133 if (ParamInfo.hasPassObjectSize()) 134 paramInfos.emplace_back(); 135 } 136 137 assert(paramInfos.size() <= totalArgs && 138 "Did we forget to insert pass_object_size args?"); 139 // Add default infos for the variadic and/or suffix arguments. 140 paramInfos.resize(totalArgs); 141 } 142 143 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 144 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 145 static void appendParameterTypes(const CodeGenTypes &CGT, 146 SmallVectorImpl<CanQualType> &prefix, 147 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 148 CanQual<FunctionProtoType> FPT) { 149 // Fast path: don't touch param info if we don't need to. 150 if (!FPT->hasExtParameterInfos()) { 151 assert(paramInfos.empty() && 152 "We have paramInfos, but the prototype doesn't?"); 153 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 154 return; 155 } 156 157 unsigned PrefixSize = prefix.size(); 158 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 159 // parameters; the only thing that can change this is the presence of 160 // pass_object_size. So, we preallocate for the common case. 161 prefix.reserve(prefix.size() + FPT->getNumParams()); 162 163 auto ExtInfos = FPT->getExtParameterInfos(); 164 assert(ExtInfos.size() == FPT->getNumParams()); 165 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 166 prefix.push_back(FPT->getParamType(I)); 167 if (ExtInfos[I].hasPassObjectSize()) 168 prefix.push_back(CGT.getContext().getSizeType()); 169 } 170 171 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 172 prefix.size()); 173 } 174 175 /// Arrange the LLVM function layout for a value of the given function 176 /// type, on top of any implicit parameters already stored. 177 static const CGFunctionInfo & 178 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 179 SmallVectorImpl<CanQualType> &prefix, 180 CanQual<FunctionProtoType> FTP) { 181 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 182 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 183 // FIXME: Kill copy. 184 appendParameterTypes(CGT, prefix, paramInfos, FTP); 185 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 186 187 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 188 /*chainCall=*/false, prefix, 189 FTP->getExtInfo(), paramInfos, 190 Required); 191 } 192 193 /// Arrange the argument and result information for a value of the 194 /// given freestanding function type. 195 const CGFunctionInfo & 196 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 197 SmallVector<CanQualType, 16> argTypes; 198 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 199 FTP); 200 } 201 202 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, 203 bool IsWindows) { 204 // Set the appropriate calling convention for the Function. 205 if (D->hasAttr<StdCallAttr>()) 206 return CC_X86StdCall; 207 208 if (D->hasAttr<FastCallAttr>()) 209 return CC_X86FastCall; 210 211 if (D->hasAttr<RegCallAttr>()) 212 return CC_X86RegCall; 213 214 if (D->hasAttr<ThisCallAttr>()) 215 return CC_X86ThisCall; 216 217 if (D->hasAttr<VectorCallAttr>()) 218 return CC_X86VectorCall; 219 220 if (D->hasAttr<PascalAttr>()) 221 return CC_X86Pascal; 222 223 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 224 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 225 226 if (D->hasAttr<AArch64VectorPcsAttr>()) 227 return CC_AArch64VectorCall; 228 229 if (D->hasAttr<IntelOclBiccAttr>()) 230 return CC_IntelOclBicc; 231 232 if (D->hasAttr<MSABIAttr>()) 233 return IsWindows ? CC_C : CC_Win64; 234 235 if (D->hasAttr<SysVABIAttr>()) 236 return IsWindows ? CC_X86_64SysV : CC_C; 237 238 if (D->hasAttr<PreserveMostAttr>()) 239 return CC_PreserveMost; 240 241 if (D->hasAttr<PreserveAllAttr>()) 242 return CC_PreserveAll; 243 244 return CC_C; 245 } 246 247 /// Arrange the argument and result information for a call to an 248 /// unknown C++ non-static member function of the given abstract type. 249 /// (A null RD means we don't have any meaningful "this" argument type, 250 /// so fall back to a generic pointer type). 251 /// The member function must be an ordinary function, i.e. not a 252 /// constructor or destructor. 253 const CGFunctionInfo & 254 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 255 const FunctionProtoType *FTP, 256 const CXXMethodDecl *MD) { 257 SmallVector<CanQualType, 16> argTypes; 258 259 // Add the 'this' pointer. 260 argTypes.push_back(DeriveThisType(RD, MD)); 261 262 return ::arrangeLLVMFunctionInfo( 263 *this, true, argTypes, 264 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 265 } 266 267 /// Set calling convention for CUDA/HIP kernel. 268 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 269 const FunctionDecl *FD) { 270 if (FD->hasAttr<CUDAGlobalAttr>()) { 271 const FunctionType *FT = FTy->getAs<FunctionType>(); 272 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 273 FTy = FT->getCanonicalTypeUnqualified(); 274 } 275 } 276 277 /// Arrange the argument and result information for a declaration or 278 /// definition of the given C++ non-static member function. The 279 /// member function must be an ordinary function, i.e. not a 280 /// constructor or destructor. 281 const CGFunctionInfo & 282 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 283 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 284 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 285 286 CanQualType FT = GetFormalType(MD).getAs<Type>(); 287 setCUDAKernelCallingConvention(FT, CGM, MD); 288 auto prototype = FT.getAs<FunctionProtoType>(); 289 290 if (MD->isInstance()) { 291 // The abstract case is perfectly fine. 292 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 293 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 294 } 295 296 return arrangeFreeFunctionType(prototype); 297 } 298 299 bool CodeGenTypes::inheritingCtorHasParams( 300 const InheritedConstructor &Inherited, CXXCtorType Type) { 301 // Parameters are unnecessary if we're constructing a base class subobject 302 // and the inherited constructor lives in a virtual base. 303 return Type == Ctor_Complete || 304 !Inherited.getShadowDecl()->constructsVirtualBase() || 305 !Target.getCXXABI().hasConstructorVariants(); 306 } 307 308 const CGFunctionInfo & 309 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 310 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 311 312 SmallVector<CanQualType, 16> argTypes; 313 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 314 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 315 316 bool PassParams = true; 317 318 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 319 // A base class inheriting constructor doesn't get forwarded arguments 320 // needed to construct a virtual base (or base class thereof). 321 if (auto Inherited = CD->getInheritedConstructor()) 322 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 323 } 324 325 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 326 327 // Add the formal parameters. 328 if (PassParams) 329 appendParameterTypes(*this, argTypes, paramInfos, FTP); 330 331 CGCXXABI::AddedStructorArgCounts AddedArgs = 332 TheCXXABI.buildStructorSignature(GD, argTypes); 333 if (!paramInfos.empty()) { 334 // Note: prefix implies after the first param. 335 if (AddedArgs.Prefix) 336 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 337 FunctionProtoType::ExtParameterInfo{}); 338 if (AddedArgs.Suffix) 339 paramInfos.append(AddedArgs.Suffix, 340 FunctionProtoType::ExtParameterInfo{}); 341 } 342 343 RequiredArgs required = 344 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 345 : RequiredArgs::All); 346 347 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 348 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 349 ? argTypes.front() 350 : TheCXXABI.hasMostDerivedReturn(GD) 351 ? CGM.getContext().VoidPtrTy 352 : Context.VoidTy; 353 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 354 /*chainCall=*/false, argTypes, extInfo, 355 paramInfos, required); 356 } 357 358 static SmallVector<CanQualType, 16> 359 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 360 SmallVector<CanQualType, 16> argTypes; 361 for (auto &arg : args) 362 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 363 return argTypes; 364 } 365 366 static SmallVector<CanQualType, 16> 367 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 368 SmallVector<CanQualType, 16> argTypes; 369 for (auto &arg : args) 370 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 371 return argTypes; 372 } 373 374 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 375 getExtParameterInfosForCall(const FunctionProtoType *proto, 376 unsigned prefixArgs, unsigned totalArgs) { 377 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 378 if (proto->hasExtParameterInfos()) { 379 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 380 } 381 return result; 382 } 383 384 /// Arrange a call to a C++ method, passing the given arguments. 385 /// 386 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 387 /// parameter. 388 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 389 /// args. 390 /// PassProtoArgs indicates whether `args` has args for the parameters in the 391 /// given CXXConstructorDecl. 392 const CGFunctionInfo & 393 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 394 const CXXConstructorDecl *D, 395 CXXCtorType CtorKind, 396 unsigned ExtraPrefixArgs, 397 unsigned ExtraSuffixArgs, 398 bool PassProtoArgs) { 399 // FIXME: Kill copy. 400 SmallVector<CanQualType, 16> ArgTypes; 401 for (const auto &Arg : args) 402 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 403 404 // +1 for implicit this, which should always be args[0]. 405 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 406 407 CanQual<FunctionProtoType> FPT = GetFormalType(D); 408 RequiredArgs Required = PassProtoArgs 409 ? RequiredArgs::forPrototypePlus( 410 FPT, TotalPrefixArgs + ExtraSuffixArgs) 411 : RequiredArgs::All; 412 413 GlobalDecl GD(D, CtorKind); 414 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 415 ? ArgTypes.front() 416 : TheCXXABI.hasMostDerivedReturn(GD) 417 ? CGM.getContext().VoidPtrTy 418 : Context.VoidTy; 419 420 FunctionType::ExtInfo Info = FPT->getExtInfo(); 421 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 422 // If the prototype args are elided, we should only have ABI-specific args, 423 // which never have param info. 424 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 425 // ABI-specific suffix arguments are treated the same as variadic arguments. 426 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 427 ArgTypes.size()); 428 } 429 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 430 /*chainCall=*/false, ArgTypes, Info, 431 ParamInfos, Required); 432 } 433 434 /// Arrange the argument and result information for the declaration or 435 /// definition of the given function. 436 const CGFunctionInfo & 437 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 438 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 439 if (MD->isInstance()) 440 return arrangeCXXMethodDeclaration(MD); 441 442 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 443 444 assert(isa<FunctionType>(FTy)); 445 setCUDAKernelCallingConvention(FTy, CGM, FD); 446 447 // When declaring a function without a prototype, always use a 448 // non-variadic type. 449 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 450 return arrangeLLVMFunctionInfo( 451 noProto->getReturnType(), /*instanceMethod=*/false, 452 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 453 } 454 455 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 456 } 457 458 /// Arrange the argument and result information for the declaration or 459 /// definition of an Objective-C method. 460 const CGFunctionInfo & 461 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 462 // It happens that this is the same as a call with no optional 463 // arguments, except also using the formal 'self' type. 464 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 465 } 466 467 /// Arrange the argument and result information for the function type 468 /// through which to perform a send to the given Objective-C method, 469 /// using the given receiver type. The receiver type is not always 470 /// the 'self' type of the method or even an Objective-C pointer type. 471 /// This is *not* the right method for actually performing such a 472 /// message send, due to the possibility of optional arguments. 473 const CGFunctionInfo & 474 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 475 QualType receiverType) { 476 SmallVector<CanQualType, 16> argTys; 477 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 478 argTys.push_back(Context.getCanonicalParamType(receiverType)); 479 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 480 // FIXME: Kill copy? 481 for (const auto *I : MD->parameters()) { 482 argTys.push_back(Context.getCanonicalParamType(I->getType())); 483 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 484 I->hasAttr<NoEscapeAttr>()); 485 extParamInfos.push_back(extParamInfo); 486 } 487 488 FunctionType::ExtInfo einfo; 489 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 490 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 491 492 if (getContext().getLangOpts().ObjCAutoRefCount && 493 MD->hasAttr<NSReturnsRetainedAttr>()) 494 einfo = einfo.withProducesResult(true); 495 496 RequiredArgs required = 497 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 498 499 return arrangeLLVMFunctionInfo( 500 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 501 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 502 } 503 504 const CGFunctionInfo & 505 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 506 const CallArgList &args) { 507 auto argTypes = getArgTypesForCall(Context, args); 508 FunctionType::ExtInfo einfo; 509 510 return arrangeLLVMFunctionInfo( 511 GetReturnType(returnType), /*instanceMethod=*/false, 512 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 513 } 514 515 const CGFunctionInfo & 516 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 517 // FIXME: Do we need to handle ObjCMethodDecl? 518 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 519 520 if (isa<CXXConstructorDecl>(GD.getDecl()) || 521 isa<CXXDestructorDecl>(GD.getDecl())) 522 return arrangeCXXStructorDeclaration(GD); 523 524 return arrangeFunctionDeclaration(FD); 525 } 526 527 /// Arrange a thunk that takes 'this' as the first parameter followed by 528 /// varargs. Return a void pointer, regardless of the actual return type. 529 /// The body of the thunk will end in a musttail call to a function of the 530 /// correct type, and the caller will bitcast the function to the correct 531 /// prototype. 532 const CGFunctionInfo & 533 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 534 assert(MD->isVirtual() && "only methods have thunks"); 535 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 536 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 537 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 538 /*chainCall=*/false, ArgTys, 539 FTP->getExtInfo(), {}, RequiredArgs(1)); 540 } 541 542 const CGFunctionInfo & 543 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 544 CXXCtorType CT) { 545 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 546 547 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 548 SmallVector<CanQualType, 2> ArgTys; 549 const CXXRecordDecl *RD = CD->getParent(); 550 ArgTys.push_back(DeriveThisType(RD, CD)); 551 if (CT == Ctor_CopyingClosure) 552 ArgTys.push_back(*FTP->param_type_begin()); 553 if (RD->getNumVBases() > 0) 554 ArgTys.push_back(Context.IntTy); 555 CallingConv CC = Context.getDefaultCallingConvention( 556 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 557 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 558 /*chainCall=*/false, ArgTys, 559 FunctionType::ExtInfo(CC), {}, 560 RequiredArgs::All); 561 } 562 563 /// Arrange a call as unto a free function, except possibly with an 564 /// additional number of formal parameters considered required. 565 static const CGFunctionInfo & 566 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 567 CodeGenModule &CGM, 568 const CallArgList &args, 569 const FunctionType *fnType, 570 unsigned numExtraRequiredArgs, 571 bool chainCall) { 572 assert(args.size() >= numExtraRequiredArgs); 573 574 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 575 576 // In most cases, there are no optional arguments. 577 RequiredArgs required = RequiredArgs::All; 578 579 // If we have a variadic prototype, the required arguments are the 580 // extra prefix plus the arguments in the prototype. 581 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 582 if (proto->isVariadic()) 583 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 584 585 if (proto->hasExtParameterInfos()) 586 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 587 args.size()); 588 589 // If we don't have a prototype at all, but we're supposed to 590 // explicitly use the variadic convention for unprototyped calls, 591 // treat all of the arguments as required but preserve the nominal 592 // possibility of variadics. 593 } else if (CGM.getTargetCodeGenInfo() 594 .isNoProtoCallVariadic(args, 595 cast<FunctionNoProtoType>(fnType))) { 596 required = RequiredArgs(args.size()); 597 } 598 599 // FIXME: Kill copy. 600 SmallVector<CanQualType, 16> argTypes; 601 for (const auto &arg : args) 602 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 603 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 604 /*instanceMethod=*/false, chainCall, 605 argTypes, fnType->getExtInfo(), paramInfos, 606 required); 607 } 608 609 /// Figure out the rules for calling a function with the given formal 610 /// type using the given arguments. The arguments are necessary 611 /// because the function might be unprototyped, in which case it's 612 /// target-dependent in crazy ways. 613 const CGFunctionInfo & 614 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 615 const FunctionType *fnType, 616 bool chainCall) { 617 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 618 chainCall ? 1 : 0, chainCall); 619 } 620 621 /// A block function is essentially a free function with an 622 /// extra implicit argument. 623 const CGFunctionInfo & 624 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 625 const FunctionType *fnType) { 626 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 627 /*chainCall=*/false); 628 } 629 630 const CGFunctionInfo & 631 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 632 const FunctionArgList ¶ms) { 633 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 634 auto argTypes = getArgTypesForDeclaration(Context, params); 635 636 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 637 /*instanceMethod*/ false, /*chainCall*/ false, 638 argTypes, proto->getExtInfo(), paramInfos, 639 RequiredArgs::forPrototypePlus(proto, 1)); 640 } 641 642 const CGFunctionInfo & 643 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 644 const CallArgList &args) { 645 // FIXME: Kill copy. 646 SmallVector<CanQualType, 16> argTypes; 647 for (const auto &Arg : args) 648 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 649 return arrangeLLVMFunctionInfo( 650 GetReturnType(resultType), /*instanceMethod=*/false, 651 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 652 /*paramInfos=*/ {}, RequiredArgs::All); 653 } 654 655 const CGFunctionInfo & 656 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 657 const FunctionArgList &args) { 658 auto argTypes = getArgTypesForDeclaration(Context, args); 659 660 return arrangeLLVMFunctionInfo( 661 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 662 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 663 } 664 665 const CGFunctionInfo & 666 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 667 ArrayRef<CanQualType> argTypes) { 668 return arrangeLLVMFunctionInfo( 669 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 670 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 671 } 672 673 /// Arrange a call to a C++ method, passing the given arguments. 674 /// 675 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 676 /// does not count `this`. 677 const CGFunctionInfo & 678 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 679 const FunctionProtoType *proto, 680 RequiredArgs required, 681 unsigned numPrefixArgs) { 682 assert(numPrefixArgs + 1 <= args.size() && 683 "Emitting a call with less args than the required prefix?"); 684 // Add one to account for `this`. It's a bit awkward here, but we don't count 685 // `this` in similar places elsewhere. 686 auto paramInfos = 687 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 688 689 // FIXME: Kill copy. 690 auto argTypes = getArgTypesForCall(Context, args); 691 692 FunctionType::ExtInfo info = proto->getExtInfo(); 693 return arrangeLLVMFunctionInfo( 694 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 695 /*chainCall=*/false, argTypes, info, paramInfos, required); 696 } 697 698 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 699 return arrangeLLVMFunctionInfo( 700 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 701 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 702 } 703 704 const CGFunctionInfo & 705 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 706 const CallArgList &args) { 707 assert(signature.arg_size() <= args.size()); 708 if (signature.arg_size() == args.size()) 709 return signature; 710 711 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 712 auto sigParamInfos = signature.getExtParameterInfos(); 713 if (!sigParamInfos.empty()) { 714 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 715 paramInfos.resize(args.size()); 716 } 717 718 auto argTypes = getArgTypesForCall(Context, args); 719 720 assert(signature.getRequiredArgs().allowsOptionalArgs()); 721 return arrangeLLVMFunctionInfo(signature.getReturnType(), 722 signature.isInstanceMethod(), 723 signature.isChainCall(), 724 argTypes, 725 signature.getExtInfo(), 726 paramInfos, 727 signature.getRequiredArgs()); 728 } 729 730 namespace clang { 731 namespace CodeGen { 732 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 733 } 734 } 735 736 /// Arrange the argument and result information for an abstract value 737 /// of a given function type. This is the method which all of the 738 /// above functions ultimately defer to. 739 const CGFunctionInfo & 740 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 741 bool instanceMethod, 742 bool chainCall, 743 ArrayRef<CanQualType> argTypes, 744 FunctionType::ExtInfo info, 745 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 746 RequiredArgs required) { 747 assert(llvm::all_of(argTypes, 748 [](CanQualType T) { return T.isCanonicalAsParam(); })); 749 750 // Lookup or create unique function info. 751 llvm::FoldingSetNodeID ID; 752 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 753 required, resultType, argTypes); 754 755 void *insertPos = nullptr; 756 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 757 if (FI) 758 return *FI; 759 760 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 761 762 // Construct the function info. We co-allocate the ArgInfos. 763 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 764 paramInfos, resultType, argTypes, required); 765 FunctionInfos.InsertNode(FI, insertPos); 766 767 bool inserted = FunctionsBeingProcessed.insert(FI).second; 768 (void)inserted; 769 assert(inserted && "Recursively being processed?"); 770 771 // Compute ABI information. 772 if (CC == llvm::CallingConv::SPIR_KERNEL) { 773 // Force target independent argument handling for the host visible 774 // kernel functions. 775 computeSPIRKernelABIInfo(CGM, *FI); 776 } else if (info.getCC() == CC_Swift) { 777 swiftcall::computeABIInfo(CGM, *FI); 778 } else { 779 getABIInfo().computeInfo(*FI); 780 } 781 782 // Loop over all of the computed argument and return value info. If any of 783 // them are direct or extend without a specified coerce type, specify the 784 // default now. 785 ABIArgInfo &retInfo = FI->getReturnInfo(); 786 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 787 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 788 789 for (auto &I : FI->arguments()) 790 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 791 I.info.setCoerceToType(ConvertType(I.type)); 792 793 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 794 assert(erased && "Not in set?"); 795 796 return *FI; 797 } 798 799 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 800 bool instanceMethod, 801 bool chainCall, 802 const FunctionType::ExtInfo &info, 803 ArrayRef<ExtParameterInfo> paramInfos, 804 CanQualType resultType, 805 ArrayRef<CanQualType> argTypes, 806 RequiredArgs required) { 807 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 808 assert(!required.allowsOptionalArgs() || 809 required.getNumRequiredArgs() <= argTypes.size()); 810 811 void *buffer = 812 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 813 argTypes.size() + 1, paramInfos.size())); 814 815 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 816 FI->CallingConvention = llvmCC; 817 FI->EffectiveCallingConvention = llvmCC; 818 FI->ASTCallingConvention = info.getCC(); 819 FI->InstanceMethod = instanceMethod; 820 FI->ChainCall = chainCall; 821 FI->CmseNSCall = info.getCmseNSCall(); 822 FI->NoReturn = info.getNoReturn(); 823 FI->ReturnsRetained = info.getProducesResult(); 824 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 825 FI->NoCfCheck = info.getNoCfCheck(); 826 FI->Required = required; 827 FI->HasRegParm = info.getHasRegParm(); 828 FI->RegParm = info.getRegParm(); 829 FI->ArgStruct = nullptr; 830 FI->ArgStructAlign = 0; 831 FI->NumArgs = argTypes.size(); 832 FI->HasExtParameterInfos = !paramInfos.empty(); 833 FI->getArgsBuffer()[0].type = resultType; 834 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 835 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 836 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 837 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 838 return FI; 839 } 840 841 /***/ 842 843 namespace { 844 // ABIArgInfo::Expand implementation. 845 846 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 847 struct TypeExpansion { 848 enum TypeExpansionKind { 849 // Elements of constant arrays are expanded recursively. 850 TEK_ConstantArray, 851 // Record fields are expanded recursively (but if record is a union, only 852 // the field with the largest size is expanded). 853 TEK_Record, 854 // For complex types, real and imaginary parts are expanded recursively. 855 TEK_Complex, 856 // All other types are not expandable. 857 TEK_None 858 }; 859 860 const TypeExpansionKind Kind; 861 862 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 863 virtual ~TypeExpansion() {} 864 }; 865 866 struct ConstantArrayExpansion : TypeExpansion { 867 QualType EltTy; 868 uint64_t NumElts; 869 870 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 871 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 872 static bool classof(const TypeExpansion *TE) { 873 return TE->Kind == TEK_ConstantArray; 874 } 875 }; 876 877 struct RecordExpansion : TypeExpansion { 878 SmallVector<const CXXBaseSpecifier *, 1> Bases; 879 880 SmallVector<const FieldDecl *, 1> Fields; 881 882 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 883 SmallVector<const FieldDecl *, 1> &&Fields) 884 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 885 Fields(std::move(Fields)) {} 886 static bool classof(const TypeExpansion *TE) { 887 return TE->Kind == TEK_Record; 888 } 889 }; 890 891 struct ComplexExpansion : TypeExpansion { 892 QualType EltTy; 893 894 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 895 static bool classof(const TypeExpansion *TE) { 896 return TE->Kind == TEK_Complex; 897 } 898 }; 899 900 struct NoExpansion : TypeExpansion { 901 NoExpansion() : TypeExpansion(TEK_None) {} 902 static bool classof(const TypeExpansion *TE) { 903 return TE->Kind == TEK_None; 904 } 905 }; 906 } // namespace 907 908 static std::unique_ptr<TypeExpansion> 909 getTypeExpansion(QualType Ty, const ASTContext &Context) { 910 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 911 return std::make_unique<ConstantArrayExpansion>( 912 AT->getElementType(), AT->getSize().getZExtValue()); 913 } 914 if (const RecordType *RT = Ty->getAs<RecordType>()) { 915 SmallVector<const CXXBaseSpecifier *, 1> Bases; 916 SmallVector<const FieldDecl *, 1> Fields; 917 const RecordDecl *RD = RT->getDecl(); 918 assert(!RD->hasFlexibleArrayMember() && 919 "Cannot expand structure with flexible array."); 920 if (RD->isUnion()) { 921 // Unions can be here only in degenerative cases - all the fields are same 922 // after flattening. Thus we have to use the "largest" field. 923 const FieldDecl *LargestFD = nullptr; 924 CharUnits UnionSize = CharUnits::Zero(); 925 926 for (const auto *FD : RD->fields()) { 927 if (FD->isZeroLengthBitField(Context)) 928 continue; 929 assert(!FD->isBitField() && 930 "Cannot expand structure with bit-field members."); 931 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 932 if (UnionSize < FieldSize) { 933 UnionSize = FieldSize; 934 LargestFD = FD; 935 } 936 } 937 if (LargestFD) 938 Fields.push_back(LargestFD); 939 } else { 940 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 941 assert(!CXXRD->isDynamicClass() && 942 "cannot expand vtable pointers in dynamic classes"); 943 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 944 Bases.push_back(&BS); 945 } 946 947 for (const auto *FD : RD->fields()) { 948 if (FD->isZeroLengthBitField(Context)) 949 continue; 950 assert(!FD->isBitField() && 951 "Cannot expand structure with bit-field members."); 952 Fields.push_back(FD); 953 } 954 } 955 return std::make_unique<RecordExpansion>(std::move(Bases), 956 std::move(Fields)); 957 } 958 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 959 return std::make_unique<ComplexExpansion>(CT->getElementType()); 960 } 961 return std::make_unique<NoExpansion>(); 962 } 963 964 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 965 auto Exp = getTypeExpansion(Ty, Context); 966 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 967 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 968 } 969 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 970 int Res = 0; 971 for (auto BS : RExp->Bases) 972 Res += getExpansionSize(BS->getType(), Context); 973 for (auto FD : RExp->Fields) 974 Res += getExpansionSize(FD->getType(), Context); 975 return Res; 976 } 977 if (isa<ComplexExpansion>(Exp.get())) 978 return 2; 979 assert(isa<NoExpansion>(Exp.get())); 980 return 1; 981 } 982 983 void 984 CodeGenTypes::getExpandedTypes(QualType Ty, 985 SmallVectorImpl<llvm::Type *>::iterator &TI) { 986 auto Exp = getTypeExpansion(Ty, Context); 987 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 988 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 989 getExpandedTypes(CAExp->EltTy, TI); 990 } 991 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 992 for (auto BS : RExp->Bases) 993 getExpandedTypes(BS->getType(), TI); 994 for (auto FD : RExp->Fields) 995 getExpandedTypes(FD->getType(), TI); 996 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 997 llvm::Type *EltTy = ConvertType(CExp->EltTy); 998 *TI++ = EltTy; 999 *TI++ = EltTy; 1000 } else { 1001 assert(isa<NoExpansion>(Exp.get())); 1002 *TI++ = ConvertType(Ty); 1003 } 1004 } 1005 1006 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1007 ConstantArrayExpansion *CAE, 1008 Address BaseAddr, 1009 llvm::function_ref<void(Address)> Fn) { 1010 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1011 CharUnits EltAlign = 1012 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1013 1014 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1015 llvm::Value *EltAddr = 1016 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1017 Fn(Address(EltAddr, EltAlign)); 1018 } 1019 } 1020 1021 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1022 llvm::Function::arg_iterator &AI) { 1023 assert(LV.isSimple() && 1024 "Unexpected non-simple lvalue during struct expansion."); 1025 1026 auto Exp = getTypeExpansion(Ty, getContext()); 1027 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1028 forConstantArrayExpansion( 1029 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1030 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1031 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1032 }); 1033 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1034 Address This = LV.getAddress(*this); 1035 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1036 // Perform a single step derived-to-base conversion. 1037 Address Base = 1038 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1039 /*NullCheckValue=*/false, SourceLocation()); 1040 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1041 1042 // Recurse onto bases. 1043 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1044 } 1045 for (auto FD : RExp->Fields) { 1046 // FIXME: What are the right qualifiers here? 1047 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1048 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1049 } 1050 } else if (isa<ComplexExpansion>(Exp.get())) { 1051 auto realValue = &*AI++; 1052 auto imagValue = &*AI++; 1053 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1054 } else { 1055 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1056 // primitive store. 1057 assert(isa<NoExpansion>(Exp.get())); 1058 if (LV.isBitField()) 1059 EmitStoreThroughLValue(RValue::get(&*AI++), LV); 1060 else 1061 EmitStoreOfScalar(&*AI++, LV); 1062 } 1063 } 1064 1065 void CodeGenFunction::ExpandTypeToArgs( 1066 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1067 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1068 auto Exp = getTypeExpansion(Ty, getContext()); 1069 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1070 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1071 : Arg.getKnownRValue().getAggregateAddress(); 1072 forConstantArrayExpansion( 1073 *this, CAExp, Addr, [&](Address EltAddr) { 1074 CallArg EltArg = CallArg( 1075 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1076 CAExp->EltTy); 1077 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1078 IRCallArgPos); 1079 }); 1080 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1081 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1082 : Arg.getKnownRValue().getAggregateAddress(); 1083 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1084 // Perform a single step derived-to-base conversion. 1085 Address Base = 1086 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1087 /*NullCheckValue=*/false, SourceLocation()); 1088 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1089 1090 // Recurse onto bases. 1091 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1092 IRCallArgPos); 1093 } 1094 1095 LValue LV = MakeAddrLValue(This, Ty); 1096 for (auto FD : RExp->Fields) { 1097 CallArg FldArg = 1098 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1099 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1100 IRCallArgPos); 1101 } 1102 } else if (isa<ComplexExpansion>(Exp.get())) { 1103 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1104 IRCallArgs[IRCallArgPos++] = CV.first; 1105 IRCallArgs[IRCallArgPos++] = CV.second; 1106 } else { 1107 assert(isa<NoExpansion>(Exp.get())); 1108 auto RV = Arg.getKnownRValue(); 1109 assert(RV.isScalar() && 1110 "Unexpected non-scalar rvalue during struct expansion."); 1111 1112 // Insert a bitcast as needed. 1113 llvm::Value *V = RV.getScalarVal(); 1114 if (IRCallArgPos < IRFuncTy->getNumParams() && 1115 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1116 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1117 1118 IRCallArgs[IRCallArgPos++] = V; 1119 } 1120 } 1121 1122 /// Create a temporary allocation for the purposes of coercion. 1123 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1124 CharUnits MinAlign, 1125 const Twine &Name = "tmp") { 1126 // Don't use an alignment that's worse than what LLVM would prefer. 1127 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1128 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1129 1130 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1131 } 1132 1133 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1134 /// accessing some number of bytes out of it, try to gep into the struct to get 1135 /// at its inner goodness. Dive as deep as possible without entering an element 1136 /// with an in-memory size smaller than DstSize. 1137 static Address 1138 EnterStructPointerForCoercedAccess(Address SrcPtr, 1139 llvm::StructType *SrcSTy, 1140 uint64_t DstSize, CodeGenFunction &CGF) { 1141 // We can't dive into a zero-element struct. 1142 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1143 1144 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1145 1146 // If the first elt is at least as large as what we're looking for, or if the 1147 // first element is the same size as the whole struct, we can enter it. The 1148 // comparison must be made on the store size and not the alloca size. Using 1149 // the alloca size may overstate the size of the load. 1150 uint64_t FirstEltSize = 1151 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1152 if (FirstEltSize < DstSize && 1153 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1154 return SrcPtr; 1155 1156 // GEP into the first element. 1157 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1158 1159 // If the first element is a struct, recurse. 1160 llvm::Type *SrcTy = SrcPtr.getElementType(); 1161 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1162 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1163 1164 return SrcPtr; 1165 } 1166 1167 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1168 /// are either integers or pointers. This does a truncation of the value if it 1169 /// is too large or a zero extension if it is too small. 1170 /// 1171 /// This behaves as if the value were coerced through memory, so on big-endian 1172 /// targets the high bits are preserved in a truncation, while little-endian 1173 /// targets preserve the low bits. 1174 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1175 llvm::Type *Ty, 1176 CodeGenFunction &CGF) { 1177 if (Val->getType() == Ty) 1178 return Val; 1179 1180 if (isa<llvm::PointerType>(Val->getType())) { 1181 // If this is Pointer->Pointer avoid conversion to and from int. 1182 if (isa<llvm::PointerType>(Ty)) 1183 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1184 1185 // Convert the pointer to an integer so we can play with its width. 1186 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1187 } 1188 1189 llvm::Type *DestIntTy = Ty; 1190 if (isa<llvm::PointerType>(DestIntTy)) 1191 DestIntTy = CGF.IntPtrTy; 1192 1193 if (Val->getType() != DestIntTy) { 1194 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1195 if (DL.isBigEndian()) { 1196 // Preserve the high bits on big-endian targets. 1197 // That is what memory coercion does. 1198 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1199 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1200 1201 if (SrcSize > DstSize) { 1202 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1203 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1204 } else { 1205 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1206 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1207 } 1208 } else { 1209 // Little-endian targets preserve the low bits. No shifts required. 1210 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1211 } 1212 } 1213 1214 if (isa<llvm::PointerType>(Ty)) 1215 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1216 return Val; 1217 } 1218 1219 1220 1221 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1222 /// a pointer to an object of type \arg Ty, known to be aligned to 1223 /// \arg SrcAlign bytes. 1224 /// 1225 /// This safely handles the case when the src type is smaller than the 1226 /// destination type; in this situation the values of bits which not 1227 /// present in the src are undefined. 1228 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1229 CodeGenFunction &CGF) { 1230 llvm::Type *SrcTy = Src.getElementType(); 1231 1232 // If SrcTy and Ty are the same, just do a load. 1233 if (SrcTy == Ty) 1234 return CGF.Builder.CreateLoad(Src); 1235 1236 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1237 1238 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1239 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1240 DstSize.getFixedSize(), CGF); 1241 SrcTy = Src.getElementType(); 1242 } 1243 1244 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1245 1246 // If the source and destination are integer or pointer types, just do an 1247 // extension or truncation to the desired type. 1248 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1249 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1250 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1251 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1252 } 1253 1254 // If load is legal, just bitcast the src pointer. 1255 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1256 SrcSize.getFixedSize() >= DstSize.getFixedSize()) { 1257 // Generally SrcSize is never greater than DstSize, since this means we are 1258 // losing bits. However, this can happen in cases where the structure has 1259 // additional padding, for example due to a user specified alignment. 1260 // 1261 // FIXME: Assert that we aren't truncating non-padding bits when have access 1262 // to that information. 1263 Src = CGF.Builder.CreateBitCast(Src, 1264 Ty->getPointerTo(Src.getAddressSpace())); 1265 return CGF.Builder.CreateLoad(Src); 1266 } 1267 1268 // Otherwise do coercion through memory. This is stupid, but simple. 1269 Address Tmp = 1270 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1271 CGF.Builder.CreateMemCpy( 1272 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(), 1273 Src.getAlignment().getAsAlign(), 1274 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize())); 1275 return CGF.Builder.CreateLoad(Tmp); 1276 } 1277 1278 // Function to store a first-class aggregate into memory. We prefer to 1279 // store the elements rather than the aggregate to be more friendly to 1280 // fast-isel. 1281 // FIXME: Do we need to recurse here? 1282 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1283 bool DestIsVolatile) { 1284 // Prefer scalar stores to first-class aggregate stores. 1285 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1286 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1287 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1288 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1289 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1290 } 1291 } else { 1292 Builder.CreateStore(Val, Dest, DestIsVolatile); 1293 } 1294 } 1295 1296 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1297 /// where the source and destination may have different types. The 1298 /// destination is known to be aligned to \arg DstAlign bytes. 1299 /// 1300 /// This safely handles the case when the src type is larger than the 1301 /// destination type; the upper bits of the src will be lost. 1302 static void CreateCoercedStore(llvm::Value *Src, 1303 Address Dst, 1304 bool DstIsVolatile, 1305 CodeGenFunction &CGF) { 1306 llvm::Type *SrcTy = Src->getType(); 1307 llvm::Type *DstTy = Dst.getElementType(); 1308 if (SrcTy == DstTy) { 1309 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1310 return; 1311 } 1312 1313 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1314 1315 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1316 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1317 SrcSize.getFixedSize(), CGF); 1318 DstTy = Dst.getElementType(); 1319 } 1320 1321 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1322 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1323 if (SrcPtrTy && DstPtrTy && 1324 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1325 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1326 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1327 return; 1328 } 1329 1330 // If the source and destination are integer or pointer types, just do an 1331 // extension or truncation to the desired type. 1332 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1333 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1334 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1335 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1336 return; 1337 } 1338 1339 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1340 1341 // If store is legal, just bitcast the src pointer. 1342 if (isa<llvm::ScalableVectorType>(SrcTy) || 1343 isa<llvm::ScalableVectorType>(DstTy) || 1344 SrcSize.getFixedSize() <= DstSize.getFixedSize()) { 1345 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1346 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1347 } else { 1348 // Otherwise do coercion through memory. This is stupid, but 1349 // simple. 1350 1351 // Generally SrcSize is never greater than DstSize, since this means we are 1352 // losing bits. However, this can happen in cases where the structure has 1353 // additional padding, for example due to a user specified alignment. 1354 // 1355 // FIXME: Assert that we aren't truncating non-padding bits when have access 1356 // to that information. 1357 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1358 CGF.Builder.CreateStore(Src, Tmp); 1359 CGF.Builder.CreateMemCpy( 1360 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1361 Tmp.getAlignment().getAsAlign(), 1362 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize())); 1363 } 1364 } 1365 1366 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1367 const ABIArgInfo &info) { 1368 if (unsigned offset = info.getDirectOffset()) { 1369 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1370 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1371 CharUnits::fromQuantity(offset)); 1372 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1373 } 1374 return addr; 1375 } 1376 1377 namespace { 1378 1379 /// Encapsulates information about the way function arguments from 1380 /// CGFunctionInfo should be passed to actual LLVM IR function. 1381 class ClangToLLVMArgMapping { 1382 static const unsigned InvalidIndex = ~0U; 1383 unsigned InallocaArgNo; 1384 unsigned SRetArgNo; 1385 unsigned TotalIRArgs; 1386 1387 /// Arguments of LLVM IR function corresponding to single Clang argument. 1388 struct IRArgs { 1389 unsigned PaddingArgIndex; 1390 // Argument is expanded to IR arguments at positions 1391 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1392 unsigned FirstArgIndex; 1393 unsigned NumberOfArgs; 1394 1395 IRArgs() 1396 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1397 NumberOfArgs(0) {} 1398 }; 1399 1400 SmallVector<IRArgs, 8> ArgInfo; 1401 1402 public: 1403 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1404 bool OnlyRequiredArgs = false) 1405 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1406 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1407 construct(Context, FI, OnlyRequiredArgs); 1408 } 1409 1410 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1411 unsigned getInallocaArgNo() const { 1412 assert(hasInallocaArg()); 1413 return InallocaArgNo; 1414 } 1415 1416 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1417 unsigned getSRetArgNo() const { 1418 assert(hasSRetArg()); 1419 return SRetArgNo; 1420 } 1421 1422 unsigned totalIRArgs() const { return TotalIRArgs; } 1423 1424 bool hasPaddingArg(unsigned ArgNo) const { 1425 assert(ArgNo < ArgInfo.size()); 1426 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1427 } 1428 unsigned getPaddingArgNo(unsigned ArgNo) const { 1429 assert(hasPaddingArg(ArgNo)); 1430 return ArgInfo[ArgNo].PaddingArgIndex; 1431 } 1432 1433 /// Returns index of first IR argument corresponding to ArgNo, and their 1434 /// quantity. 1435 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1436 assert(ArgNo < ArgInfo.size()); 1437 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1438 ArgInfo[ArgNo].NumberOfArgs); 1439 } 1440 1441 private: 1442 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1443 bool OnlyRequiredArgs); 1444 }; 1445 1446 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1447 const CGFunctionInfo &FI, 1448 bool OnlyRequiredArgs) { 1449 unsigned IRArgNo = 0; 1450 bool SwapThisWithSRet = false; 1451 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1452 1453 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1454 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1455 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1456 } 1457 1458 unsigned ArgNo = 0; 1459 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1460 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1461 ++I, ++ArgNo) { 1462 assert(I != FI.arg_end()); 1463 QualType ArgType = I->type; 1464 const ABIArgInfo &AI = I->info; 1465 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1466 auto &IRArgs = ArgInfo[ArgNo]; 1467 1468 if (AI.getPaddingType()) 1469 IRArgs.PaddingArgIndex = IRArgNo++; 1470 1471 switch (AI.getKind()) { 1472 case ABIArgInfo::Extend: 1473 case ABIArgInfo::Direct: { 1474 // FIXME: handle sseregparm someday... 1475 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1476 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1477 IRArgs.NumberOfArgs = STy->getNumElements(); 1478 } else { 1479 IRArgs.NumberOfArgs = 1; 1480 } 1481 break; 1482 } 1483 case ABIArgInfo::Indirect: 1484 case ABIArgInfo::IndirectAliased: 1485 IRArgs.NumberOfArgs = 1; 1486 break; 1487 case ABIArgInfo::Ignore: 1488 case ABIArgInfo::InAlloca: 1489 // ignore and inalloca doesn't have matching LLVM parameters. 1490 IRArgs.NumberOfArgs = 0; 1491 break; 1492 case ABIArgInfo::CoerceAndExpand: 1493 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1494 break; 1495 case ABIArgInfo::Expand: 1496 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1497 break; 1498 } 1499 1500 if (IRArgs.NumberOfArgs > 0) { 1501 IRArgs.FirstArgIndex = IRArgNo; 1502 IRArgNo += IRArgs.NumberOfArgs; 1503 } 1504 1505 // Skip over the sret parameter when it comes second. We already handled it 1506 // above. 1507 if (IRArgNo == 1 && SwapThisWithSRet) 1508 IRArgNo++; 1509 } 1510 assert(ArgNo == ArgInfo.size()); 1511 1512 if (FI.usesInAlloca()) 1513 InallocaArgNo = IRArgNo++; 1514 1515 TotalIRArgs = IRArgNo; 1516 } 1517 } // namespace 1518 1519 /***/ 1520 1521 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1522 const auto &RI = FI.getReturnInfo(); 1523 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1524 } 1525 1526 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1527 return ReturnTypeUsesSRet(FI) && 1528 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1529 } 1530 1531 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1532 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1533 switch (BT->getKind()) { 1534 default: 1535 return false; 1536 case BuiltinType::Float: 1537 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1538 case BuiltinType::Double: 1539 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1540 case BuiltinType::LongDouble: 1541 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1542 } 1543 } 1544 1545 return false; 1546 } 1547 1548 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1549 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1550 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1551 if (BT->getKind() == BuiltinType::LongDouble) 1552 return getTarget().useObjCFP2RetForComplexLongDouble(); 1553 } 1554 } 1555 1556 return false; 1557 } 1558 1559 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1560 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1561 return GetFunctionType(FI); 1562 } 1563 1564 llvm::FunctionType * 1565 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1566 1567 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1568 (void)Inserted; 1569 assert(Inserted && "Recursively being processed?"); 1570 1571 llvm::Type *resultType = nullptr; 1572 const ABIArgInfo &retAI = FI.getReturnInfo(); 1573 switch (retAI.getKind()) { 1574 case ABIArgInfo::Expand: 1575 case ABIArgInfo::IndirectAliased: 1576 llvm_unreachable("Invalid ABI kind for return argument"); 1577 1578 case ABIArgInfo::Extend: 1579 case ABIArgInfo::Direct: 1580 resultType = retAI.getCoerceToType(); 1581 break; 1582 1583 case ABIArgInfo::InAlloca: 1584 if (retAI.getInAllocaSRet()) { 1585 // sret things on win32 aren't void, they return the sret pointer. 1586 QualType ret = FI.getReturnType(); 1587 llvm::Type *ty = ConvertType(ret); 1588 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1589 resultType = llvm::PointerType::get(ty, addressSpace); 1590 } else { 1591 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1592 } 1593 break; 1594 1595 case ABIArgInfo::Indirect: 1596 case ABIArgInfo::Ignore: 1597 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1598 break; 1599 1600 case ABIArgInfo::CoerceAndExpand: 1601 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1602 break; 1603 } 1604 1605 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1606 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1607 1608 // Add type for sret argument. 1609 if (IRFunctionArgs.hasSRetArg()) { 1610 QualType Ret = FI.getReturnType(); 1611 llvm::Type *Ty = ConvertType(Ret); 1612 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1613 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1614 llvm::PointerType::get(Ty, AddressSpace); 1615 } 1616 1617 // Add type for inalloca argument. 1618 if (IRFunctionArgs.hasInallocaArg()) { 1619 auto ArgStruct = FI.getArgStruct(); 1620 assert(ArgStruct); 1621 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1622 } 1623 1624 // Add in all of the required arguments. 1625 unsigned ArgNo = 0; 1626 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1627 ie = it + FI.getNumRequiredArgs(); 1628 for (; it != ie; ++it, ++ArgNo) { 1629 const ABIArgInfo &ArgInfo = it->info; 1630 1631 // Insert a padding type to ensure proper alignment. 1632 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1633 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1634 ArgInfo.getPaddingType(); 1635 1636 unsigned FirstIRArg, NumIRArgs; 1637 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1638 1639 switch (ArgInfo.getKind()) { 1640 case ABIArgInfo::Ignore: 1641 case ABIArgInfo::InAlloca: 1642 assert(NumIRArgs == 0); 1643 break; 1644 1645 case ABIArgInfo::Indirect: { 1646 assert(NumIRArgs == 1); 1647 // indirect arguments are always on the stack, which is alloca addr space. 1648 llvm::Type *LTy = ConvertTypeForMem(it->type); 1649 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1650 CGM.getDataLayout().getAllocaAddrSpace()); 1651 break; 1652 } 1653 case ABIArgInfo::IndirectAliased: { 1654 assert(NumIRArgs == 1); 1655 llvm::Type *LTy = ConvertTypeForMem(it->type); 1656 ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace()); 1657 break; 1658 } 1659 case ABIArgInfo::Extend: 1660 case ABIArgInfo::Direct: { 1661 // Fast-isel and the optimizer generally like scalar values better than 1662 // FCAs, so we flatten them if this is safe to do for this argument. 1663 llvm::Type *argType = ArgInfo.getCoerceToType(); 1664 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1665 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1666 assert(NumIRArgs == st->getNumElements()); 1667 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1668 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1669 } else { 1670 assert(NumIRArgs == 1); 1671 ArgTypes[FirstIRArg] = argType; 1672 } 1673 break; 1674 } 1675 1676 case ABIArgInfo::CoerceAndExpand: { 1677 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1678 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1679 *ArgTypesIter++ = EltTy; 1680 } 1681 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1682 break; 1683 } 1684 1685 case ABIArgInfo::Expand: 1686 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1687 getExpandedTypes(it->type, ArgTypesIter); 1688 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1689 break; 1690 } 1691 } 1692 1693 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1694 assert(Erased && "Not in set?"); 1695 1696 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1697 } 1698 1699 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1700 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1701 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1702 1703 if (!isFuncTypeConvertible(FPT)) 1704 return llvm::StructType::get(getLLVMContext()); 1705 1706 return GetFunctionType(GD); 1707 } 1708 1709 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1710 llvm::AttrBuilder &FuncAttrs, 1711 const FunctionProtoType *FPT) { 1712 if (!FPT) 1713 return; 1714 1715 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1716 FPT->isNothrow()) 1717 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1718 } 1719 1720 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 1721 bool HasOptnone, 1722 bool AttrOnCallSite, 1723 llvm::AttrBuilder &FuncAttrs) { 1724 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1725 if (!HasOptnone) { 1726 if (CodeGenOpts.OptimizeSize) 1727 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1728 if (CodeGenOpts.OptimizeSize == 2) 1729 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1730 } 1731 1732 if (CodeGenOpts.DisableRedZone) 1733 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1734 if (CodeGenOpts.IndirectTlsSegRefs) 1735 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1736 if (CodeGenOpts.NoImplicitFloat) 1737 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1738 1739 if (AttrOnCallSite) { 1740 // Attributes that should go on the call site only. 1741 if (!CodeGenOpts.SimplifyLibCalls || 1742 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1743 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1744 if (!CodeGenOpts.TrapFuncName.empty()) 1745 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1746 } else { 1747 StringRef FpKind; 1748 switch (CodeGenOpts.getFramePointer()) { 1749 case CodeGenOptions::FramePointerKind::None: 1750 FpKind = "none"; 1751 break; 1752 case CodeGenOptions::FramePointerKind::NonLeaf: 1753 FpKind = "non-leaf"; 1754 break; 1755 case CodeGenOptions::FramePointerKind::All: 1756 FpKind = "all"; 1757 break; 1758 } 1759 FuncAttrs.addAttribute("frame-pointer", FpKind); 1760 1761 FuncAttrs.addAttribute("less-precise-fpmad", 1762 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1763 1764 if (CodeGenOpts.NullPointerIsValid) 1765 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1766 1767 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE()) 1768 FuncAttrs.addAttribute("denormal-fp-math", 1769 CodeGenOpts.FPDenormalMode.str()); 1770 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) { 1771 FuncAttrs.addAttribute( 1772 "denormal-fp-math-f32", 1773 CodeGenOpts.FP32DenormalMode.str()); 1774 } 1775 1776 FuncAttrs.addAttribute("no-trapping-math", 1777 llvm::toStringRef(LangOpts.getFPExceptionMode() == 1778 LangOptions::FPE_Ignore)); 1779 1780 // Strict (compliant) code is the default, so only add this attribute to 1781 // indicate that we are trying to workaround a problem case. 1782 if (!CodeGenOpts.StrictFloatCastOverflow) 1783 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1784 1785 // TODO: Are these all needed? 1786 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1787 FuncAttrs.addAttribute("no-infs-fp-math", 1788 llvm::toStringRef(LangOpts.NoHonorInfs)); 1789 FuncAttrs.addAttribute("no-nans-fp-math", 1790 llvm::toStringRef(LangOpts.NoHonorNaNs)); 1791 FuncAttrs.addAttribute("unsafe-fp-math", 1792 llvm::toStringRef(LangOpts.UnsafeFPMath)); 1793 FuncAttrs.addAttribute("use-soft-float", 1794 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1795 FuncAttrs.addAttribute("stack-protector-buffer-size", 1796 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1797 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1798 llvm::toStringRef(LangOpts.NoSignedZero)); 1799 1800 // TODO: Reciprocal estimate codegen options should apply to instructions? 1801 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1802 if (!Recips.empty()) 1803 FuncAttrs.addAttribute("reciprocal-estimates", 1804 llvm::join(Recips, ",")); 1805 1806 if (!CodeGenOpts.PreferVectorWidth.empty() && 1807 CodeGenOpts.PreferVectorWidth != "none") 1808 FuncAttrs.addAttribute("prefer-vector-width", 1809 CodeGenOpts.PreferVectorWidth); 1810 1811 if (CodeGenOpts.StackRealignment) 1812 FuncAttrs.addAttribute("stackrealign"); 1813 if (CodeGenOpts.Backchain) 1814 FuncAttrs.addAttribute("backchain"); 1815 if (CodeGenOpts.EnableSegmentedStacks) 1816 FuncAttrs.addAttribute("split-stack"); 1817 1818 if (CodeGenOpts.SpeculativeLoadHardening) 1819 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1820 } 1821 1822 if (getLangOpts().assumeFunctionsAreConvergent()) { 1823 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1824 // convergent (meaning, they may call an intrinsically convergent op, such 1825 // as __syncthreads() / barrier(), and so can't have certain optimizations 1826 // applied around them). LLVM will remove this attribute where it safely 1827 // can. 1828 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1829 } 1830 1831 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1832 // Exceptions aren't supported in CUDA device code. 1833 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1834 } 1835 1836 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1837 StringRef Var, Value; 1838 std::tie(Var, Value) = Attr.split('='); 1839 FuncAttrs.addAttribute(Var, Value); 1840 } 1841 } 1842 1843 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) { 1844 llvm::AttrBuilder FuncAttrs; 1845 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 1846 /* AttrOnCallSite = */ false, FuncAttrs); 1847 // TODO: call GetCPUAndFeaturesAttributes? 1848 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1849 } 1850 1851 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 1852 llvm::AttrBuilder &attrs) { 1853 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 1854 /*for call*/ false, attrs); 1855 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 1856 } 1857 1858 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 1859 const LangOptions &LangOpts, 1860 const NoBuiltinAttr *NBA = nullptr) { 1861 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 1862 SmallString<32> AttributeName; 1863 AttributeName += "no-builtin-"; 1864 AttributeName += BuiltinName; 1865 FuncAttrs.addAttribute(AttributeName); 1866 }; 1867 1868 // First, handle the language options passed through -fno-builtin. 1869 if (LangOpts.NoBuiltin) { 1870 // -fno-builtin disables them all. 1871 FuncAttrs.addAttribute("no-builtins"); 1872 return; 1873 } 1874 1875 // Then, add attributes for builtins specified through -fno-builtin-<name>. 1876 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 1877 1878 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 1879 // the source. 1880 if (!NBA) 1881 return; 1882 1883 // If there is a wildcard in the builtin names specified through the 1884 // attribute, disable them all. 1885 if (llvm::is_contained(NBA->builtinNames(), "*")) { 1886 FuncAttrs.addAttribute("no-builtins"); 1887 return; 1888 } 1889 1890 // And last, add the rest of the builtin names. 1891 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 1892 } 1893 1894 /// Construct the IR attribute list of a function or call. 1895 /// 1896 /// When adding an attribute, please consider where it should be handled: 1897 /// 1898 /// - getDefaultFunctionAttributes is for attributes that are essentially 1899 /// part of the global target configuration (but perhaps can be 1900 /// overridden on a per-function basis). Adding attributes there 1901 /// will cause them to also be set in frontends that build on Clang's 1902 /// target-configuration logic, as well as for code defined in library 1903 /// modules such as CUDA's libdevice. 1904 /// 1905 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 1906 /// and adds declaration-specific, convention-specific, and 1907 /// frontend-specific logic. The last is of particular importance: 1908 /// attributes that restrict how the frontend generates code must be 1909 /// added here rather than getDefaultFunctionAttributes. 1910 /// 1911 void CodeGenModule::ConstructAttributeList( 1912 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1913 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1914 llvm::AttrBuilder FuncAttrs; 1915 llvm::AttrBuilder RetAttrs; 1916 1917 // Collect function IR attributes from the CC lowering. 1918 // We'll collect the paramete and result attributes later. 1919 CallingConv = FI.getEffectiveCallingConvention(); 1920 if (FI.isNoReturn()) 1921 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1922 if (FI.isCmseNSCall()) 1923 FuncAttrs.addAttribute("cmse_nonsecure_call"); 1924 1925 // Collect function IR attributes from the callee prototype if we have one. 1926 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1927 CalleeInfo.getCalleeFunctionProtoType()); 1928 1929 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 1930 1931 bool HasOptnone = false; 1932 // The NoBuiltinAttr attached to the target FunctionDecl. 1933 const NoBuiltinAttr *NBA = nullptr; 1934 1935 // Collect function IR attributes based on declaration-specific 1936 // information. 1937 // FIXME: handle sseregparm someday... 1938 if (TargetDecl) { 1939 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1940 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1941 if (TargetDecl->hasAttr<NoThrowAttr>()) 1942 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1943 if (TargetDecl->hasAttr<NoReturnAttr>()) 1944 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1945 if (TargetDecl->hasAttr<ColdAttr>()) 1946 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1947 if (TargetDecl->hasAttr<HotAttr>()) 1948 FuncAttrs.addAttribute(llvm::Attribute::Hot); 1949 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1950 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1951 if (TargetDecl->hasAttr<ConvergentAttr>()) 1952 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1953 1954 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1955 AddAttributesFromFunctionProtoType( 1956 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1957 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 1958 // A sane operator new returns a non-aliasing pointer. 1959 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 1960 if (getCodeGenOpts().AssumeSaneOperatorNew && 1961 (Kind == OO_New || Kind == OO_Array_New)) 1962 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1963 } 1964 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1965 const bool IsVirtualCall = MD && MD->isVirtual(); 1966 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 1967 // virtual function. These attributes are not inherited by overloads. 1968 if (!(AttrOnCallSite && IsVirtualCall)) { 1969 if (Fn->isNoReturn()) 1970 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1971 NBA = Fn->getAttr<NoBuiltinAttr>(); 1972 } 1973 if (!AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>()) 1974 FuncAttrs.addAttribute(llvm::Attribute::NoMerge); 1975 } 1976 1977 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1978 if (TargetDecl->hasAttr<ConstAttr>()) { 1979 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1980 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1981 } else if (TargetDecl->hasAttr<PureAttr>()) { 1982 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1983 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1984 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1985 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1986 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1987 } 1988 if (TargetDecl->hasAttr<RestrictAttr>()) 1989 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1990 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1991 !CodeGenOpts.NullPointerIsValid) 1992 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1993 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1994 FuncAttrs.addAttribute("no_caller_saved_registers"); 1995 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1996 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1997 if (TargetDecl->hasAttr<LeafAttr>()) 1998 FuncAttrs.addAttribute(llvm::Attribute::NoCallback); 1999 2000 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 2001 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 2002 Optional<unsigned> NumElemsParam; 2003 if (AllocSize->getNumElemsParam().isValid()) 2004 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 2005 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 2006 NumElemsParam); 2007 } 2008 2009 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2010 if (getLangOpts().OpenCLVersion <= 120) { 2011 // OpenCL v1.2 Work groups are always uniform 2012 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2013 } else { 2014 // OpenCL v2.0 Work groups may be whether uniform or not. 2015 // '-cl-uniform-work-group-size' compile option gets a hint 2016 // to the compiler that the global work-size be a multiple of 2017 // the work-group size specified to clEnqueueNDRangeKernel 2018 // (i.e. work groups are uniform). 2019 FuncAttrs.addAttribute("uniform-work-group-size", 2020 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 2021 } 2022 } 2023 2024 std::string AssumptionValueStr; 2025 for (AssumptionAttr *AssumptionA : 2026 TargetDecl->specific_attrs<AssumptionAttr>()) { 2027 std::string AS = AssumptionA->getAssumption().str(); 2028 if (!AS.empty() && !AssumptionValueStr.empty()) 2029 AssumptionValueStr += ","; 2030 AssumptionValueStr += AS; 2031 } 2032 2033 if (!AssumptionValueStr.empty()) 2034 FuncAttrs.addAttribute(llvm::AssumptionAttrKey, AssumptionValueStr); 2035 } 2036 2037 // Attach "no-builtins" attributes to: 2038 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2039 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2040 // The attributes can come from: 2041 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2042 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2043 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2044 2045 // Collect function IR attributes based on global settiings. 2046 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2047 2048 // Override some default IR attributes based on declaration-specific 2049 // information. 2050 if (TargetDecl) { 2051 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2052 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2053 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2054 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2055 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2056 FuncAttrs.removeAttribute("split-stack"); 2057 2058 // Add NonLazyBind attribute to function declarations when -fno-plt 2059 // is used. 2060 // FIXME: what if we just haven't processed the function definition 2061 // yet, or if it's an external definition like C99 inline? 2062 if (CodeGenOpts.NoPLT) { 2063 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2064 if (!Fn->isDefined() && !AttrOnCallSite) { 2065 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2066 } 2067 } 2068 } 2069 } 2070 2071 // Collect non-call-site function IR attributes from declaration-specific 2072 // information. 2073 if (!AttrOnCallSite) { 2074 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2075 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2076 2077 // Whether tail calls are enabled. 2078 auto shouldDisableTailCalls = [&] { 2079 // Should this be honored in getDefaultFunctionAttributes? 2080 if (CodeGenOpts.DisableTailCalls) 2081 return true; 2082 2083 if (!TargetDecl) 2084 return false; 2085 2086 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2087 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2088 return true; 2089 2090 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2091 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2092 if (!BD->doesNotEscape()) 2093 return true; 2094 } 2095 2096 return false; 2097 }; 2098 FuncAttrs.addAttribute("disable-tail-calls", 2099 llvm::toStringRef(shouldDisableTailCalls())); 2100 2101 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2102 // handles these separately to set them based on the global defaults. 2103 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2104 } 2105 2106 // Collect attributes from arguments and return values. 2107 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2108 2109 QualType RetTy = FI.getReturnType(); 2110 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2111 switch (RetAI.getKind()) { 2112 case ABIArgInfo::Extend: 2113 if (RetAI.isSignExt()) 2114 RetAttrs.addAttribute(llvm::Attribute::SExt); 2115 else 2116 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2117 LLVM_FALLTHROUGH; 2118 case ABIArgInfo::Direct: 2119 if (RetAI.getInReg()) 2120 RetAttrs.addAttribute(llvm::Attribute::InReg); 2121 break; 2122 case ABIArgInfo::Ignore: 2123 break; 2124 2125 case ABIArgInfo::InAlloca: 2126 case ABIArgInfo::Indirect: { 2127 // inalloca and sret disable readnone and readonly 2128 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2129 .removeAttribute(llvm::Attribute::ReadNone); 2130 break; 2131 } 2132 2133 case ABIArgInfo::CoerceAndExpand: 2134 break; 2135 2136 case ABIArgInfo::Expand: 2137 case ABIArgInfo::IndirectAliased: 2138 llvm_unreachable("Invalid ABI kind for return argument"); 2139 } 2140 2141 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2142 QualType PTy = RefTy->getPointeeType(); 2143 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2144 RetAttrs.addDereferenceableAttr( 2145 getMinimumObjectSize(PTy).getQuantity()); 2146 if (getContext().getTargetAddressSpace(PTy) == 0 && 2147 !CodeGenOpts.NullPointerIsValid) 2148 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2149 if (PTy->isObjectType()) { 2150 llvm::Align Alignment = 2151 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2152 RetAttrs.addAlignmentAttr(Alignment); 2153 } 2154 } 2155 2156 bool hasUsedSRet = false; 2157 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2158 2159 // Attach attributes to sret. 2160 if (IRFunctionArgs.hasSRetArg()) { 2161 llvm::AttrBuilder SRETAttrs; 2162 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2163 hasUsedSRet = true; 2164 if (RetAI.getInReg()) 2165 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2166 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2167 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2168 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2169 } 2170 2171 // Attach attributes to inalloca argument. 2172 if (IRFunctionArgs.hasInallocaArg()) { 2173 llvm::AttrBuilder Attrs; 2174 Attrs.addAttribute(llvm::Attribute::InAlloca); 2175 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2176 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2177 } 2178 2179 // Apply `nonnull` and `dereferencable(N)` to the `this` argument. 2180 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2181 !FI.arg_begin()->type->isVoidPointerType()) { 2182 auto IRArgs = IRFunctionArgs.getIRArgs(0); 2183 2184 assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2185 2186 llvm::AttrBuilder Attrs; 2187 2188 if (!CodeGenOpts.NullPointerIsValid && 2189 getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2190 Attrs.addAttribute(llvm::Attribute::NonNull); 2191 Attrs.addDereferenceableAttr( 2192 getMinimumObjectSize( 2193 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2194 .getQuantity()); 2195 } else { 2196 // FIXME dereferenceable should be correct here, regardless of 2197 // NullPointerIsValid. However, dereferenceable currently does not always 2198 // respect NullPointerIsValid and may imply nonnull and break the program. 2199 // See https://reviews.llvm.org/D66618 for discussions. 2200 Attrs.addDereferenceableOrNullAttr( 2201 getMinimumObjectSize( 2202 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2203 .getQuantity()); 2204 } 2205 2206 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2207 } 2208 2209 unsigned ArgNo = 0; 2210 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2211 E = FI.arg_end(); 2212 I != E; ++I, ++ArgNo) { 2213 QualType ParamType = I->type; 2214 const ABIArgInfo &AI = I->info; 2215 llvm::AttrBuilder Attrs; 2216 2217 // Add attribute for padding argument, if necessary. 2218 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2219 if (AI.getPaddingInReg()) { 2220 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2221 llvm::AttributeSet::get( 2222 getLLVMContext(), 2223 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2224 } 2225 } 2226 2227 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2228 // have the corresponding parameter variable. It doesn't make 2229 // sense to do it here because parameters are so messed up. 2230 switch (AI.getKind()) { 2231 case ABIArgInfo::Extend: 2232 if (AI.isSignExt()) 2233 Attrs.addAttribute(llvm::Attribute::SExt); 2234 else 2235 Attrs.addAttribute(llvm::Attribute::ZExt); 2236 LLVM_FALLTHROUGH; 2237 case ABIArgInfo::Direct: 2238 if (ArgNo == 0 && FI.isChainCall()) 2239 Attrs.addAttribute(llvm::Attribute::Nest); 2240 else if (AI.getInReg()) 2241 Attrs.addAttribute(llvm::Attribute::InReg); 2242 break; 2243 2244 case ABIArgInfo::Indirect: { 2245 if (AI.getInReg()) 2246 Attrs.addAttribute(llvm::Attribute::InReg); 2247 2248 if (AI.getIndirectByVal()) 2249 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2250 2251 auto *Decl = ParamType->getAsRecordDecl(); 2252 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2253 Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs) 2254 // When calling the function, the pointer passed in will be the only 2255 // reference to the underlying object. Mark it accordingly. 2256 Attrs.addAttribute(llvm::Attribute::NoAlias); 2257 2258 // TODO: We could add the byref attribute if not byval, but it would 2259 // require updating many testcases. 2260 2261 CharUnits Align = AI.getIndirectAlign(); 2262 2263 // In a byval argument, it is important that the required 2264 // alignment of the type is honored, as LLVM might be creating a 2265 // *new* stack object, and needs to know what alignment to give 2266 // it. (Sometimes it can deduce a sensible alignment on its own, 2267 // but not if clang decides it must emit a packed struct, or the 2268 // user specifies increased alignment requirements.) 2269 // 2270 // This is different from indirect *not* byval, where the object 2271 // exists already, and the align attribute is purely 2272 // informative. 2273 assert(!Align.isZero()); 2274 2275 // For now, only add this when we have a byval argument. 2276 // TODO: be less lazy about updating test cases. 2277 if (AI.getIndirectByVal()) 2278 Attrs.addAlignmentAttr(Align.getQuantity()); 2279 2280 // byval disables readnone and readonly. 2281 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2282 .removeAttribute(llvm::Attribute::ReadNone); 2283 2284 break; 2285 } 2286 case ABIArgInfo::IndirectAliased: { 2287 CharUnits Align = AI.getIndirectAlign(); 2288 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2289 Attrs.addAlignmentAttr(Align.getQuantity()); 2290 break; 2291 } 2292 case ABIArgInfo::Ignore: 2293 case ABIArgInfo::Expand: 2294 case ABIArgInfo::CoerceAndExpand: 2295 break; 2296 2297 case ABIArgInfo::InAlloca: 2298 // inalloca disables readnone and readonly. 2299 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2300 .removeAttribute(llvm::Attribute::ReadNone); 2301 continue; 2302 } 2303 2304 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2305 QualType PTy = RefTy->getPointeeType(); 2306 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2307 Attrs.addDereferenceableAttr( 2308 getMinimumObjectSize(PTy).getQuantity()); 2309 if (getContext().getTargetAddressSpace(PTy) == 0 && 2310 !CodeGenOpts.NullPointerIsValid) 2311 Attrs.addAttribute(llvm::Attribute::NonNull); 2312 if (PTy->isObjectType()) { 2313 llvm::Align Alignment = 2314 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2315 Attrs.addAlignmentAttr(Alignment); 2316 } 2317 } 2318 2319 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2320 case ParameterABI::Ordinary: 2321 break; 2322 2323 case ParameterABI::SwiftIndirectResult: { 2324 // Add 'sret' if we haven't already used it for something, but 2325 // only if the result is void. 2326 if (!hasUsedSRet && RetTy->isVoidType()) { 2327 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2328 hasUsedSRet = true; 2329 } 2330 2331 // Add 'noalias' in either case. 2332 Attrs.addAttribute(llvm::Attribute::NoAlias); 2333 2334 // Add 'dereferenceable' and 'alignment'. 2335 auto PTy = ParamType->getPointeeType(); 2336 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2337 auto info = getContext().getTypeInfoInChars(PTy); 2338 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2339 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2340 } 2341 break; 2342 } 2343 2344 case ParameterABI::SwiftErrorResult: 2345 Attrs.addAttribute(llvm::Attribute::SwiftError); 2346 break; 2347 2348 case ParameterABI::SwiftContext: 2349 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2350 break; 2351 } 2352 2353 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2354 Attrs.addAttribute(llvm::Attribute::NoCapture); 2355 2356 if (Attrs.hasAttributes()) { 2357 unsigned FirstIRArg, NumIRArgs; 2358 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2359 for (unsigned i = 0; i < NumIRArgs; i++) 2360 ArgAttrs[FirstIRArg + i] = 2361 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2362 } 2363 } 2364 assert(ArgNo == FI.arg_size()); 2365 2366 AttrList = llvm::AttributeList::get( 2367 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2368 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2369 } 2370 2371 /// An argument came in as a promoted argument; demote it back to its 2372 /// declared type. 2373 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2374 const VarDecl *var, 2375 llvm::Value *value) { 2376 llvm::Type *varType = CGF.ConvertType(var->getType()); 2377 2378 // This can happen with promotions that actually don't change the 2379 // underlying type, like the enum promotions. 2380 if (value->getType() == varType) return value; 2381 2382 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2383 && "unexpected promotion type"); 2384 2385 if (isa<llvm::IntegerType>(varType)) 2386 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2387 2388 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2389 } 2390 2391 /// Returns the attribute (either parameter attribute, or function 2392 /// attribute), which declares argument ArgNo to be non-null. 2393 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2394 QualType ArgType, unsigned ArgNo) { 2395 // FIXME: __attribute__((nonnull)) can also be applied to: 2396 // - references to pointers, where the pointee is known to be 2397 // nonnull (apparently a Clang extension) 2398 // - transparent unions containing pointers 2399 // In the former case, LLVM IR cannot represent the constraint. In 2400 // the latter case, we have no guarantee that the transparent union 2401 // is in fact passed as a pointer. 2402 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2403 return nullptr; 2404 // First, check attribute on parameter itself. 2405 if (PVD) { 2406 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2407 return ParmNNAttr; 2408 } 2409 // Check function attributes. 2410 if (!FD) 2411 return nullptr; 2412 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2413 if (NNAttr->isNonNull(ArgNo)) 2414 return NNAttr; 2415 } 2416 return nullptr; 2417 } 2418 2419 namespace { 2420 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2421 Address Temp; 2422 Address Arg; 2423 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2424 void Emit(CodeGenFunction &CGF, Flags flags) override { 2425 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2426 CGF.Builder.CreateStore(errorValue, Arg); 2427 } 2428 }; 2429 } 2430 2431 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2432 llvm::Function *Fn, 2433 const FunctionArgList &Args) { 2434 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2435 // Naked functions don't have prologues. 2436 return; 2437 2438 // If this is an implicit-return-zero function, go ahead and 2439 // initialize the return value. TODO: it might be nice to have 2440 // a more general mechanism for this that didn't require synthesized 2441 // return statements. 2442 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2443 if (FD->hasImplicitReturnZero()) { 2444 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2445 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2446 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2447 Builder.CreateStore(Zero, ReturnValue); 2448 } 2449 } 2450 2451 // FIXME: We no longer need the types from FunctionArgList; lift up and 2452 // simplify. 2453 2454 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2455 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2456 2457 // If we're using inalloca, all the memory arguments are GEPs off of the last 2458 // parameter, which is a pointer to the complete memory area. 2459 Address ArgStruct = Address::invalid(); 2460 if (IRFunctionArgs.hasInallocaArg()) { 2461 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2462 FI.getArgStructAlignment()); 2463 2464 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2465 } 2466 2467 // Name the struct return parameter. 2468 if (IRFunctionArgs.hasSRetArg()) { 2469 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2470 AI->setName("agg.result"); 2471 AI->addAttr(llvm::Attribute::NoAlias); 2472 } 2473 2474 // Track if we received the parameter as a pointer (indirect, byval, or 2475 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2476 // into a local alloca for us. 2477 SmallVector<ParamValue, 16> ArgVals; 2478 ArgVals.reserve(Args.size()); 2479 2480 // Create a pointer value for every parameter declaration. This usually 2481 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2482 // any cleanups or do anything that might unwind. We do that separately, so 2483 // we can push the cleanups in the correct order for the ABI. 2484 assert(FI.arg_size() == Args.size() && 2485 "Mismatch between function signature & arguments."); 2486 unsigned ArgNo = 0; 2487 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2488 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2489 i != e; ++i, ++info_it, ++ArgNo) { 2490 const VarDecl *Arg = *i; 2491 const ABIArgInfo &ArgI = info_it->info; 2492 2493 bool isPromoted = 2494 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2495 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2496 // the parameter is promoted. In this case we convert to 2497 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2498 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2499 assert(hasScalarEvaluationKind(Ty) == 2500 hasScalarEvaluationKind(Arg->getType())); 2501 2502 unsigned FirstIRArg, NumIRArgs; 2503 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2504 2505 switch (ArgI.getKind()) { 2506 case ABIArgInfo::InAlloca: { 2507 assert(NumIRArgs == 0); 2508 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2509 Address V = 2510 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2511 if (ArgI.getInAllocaIndirect()) 2512 V = Address(Builder.CreateLoad(V), 2513 getContext().getTypeAlignInChars(Ty)); 2514 ArgVals.push_back(ParamValue::forIndirect(V)); 2515 break; 2516 } 2517 2518 case ABIArgInfo::Indirect: 2519 case ABIArgInfo::IndirectAliased: { 2520 assert(NumIRArgs == 1); 2521 Address ParamAddr = 2522 Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign()); 2523 2524 if (!hasScalarEvaluationKind(Ty)) { 2525 // Aggregates and complex variables are accessed by reference. All we 2526 // need to do is realign the value, if requested. Also, if the address 2527 // may be aliased, copy it to ensure that the parameter variable is 2528 // mutable and has a unique adress, as C requires. 2529 Address V = ParamAddr; 2530 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 2531 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2532 2533 // Copy from the incoming argument pointer to the temporary with the 2534 // appropriate alignment. 2535 // 2536 // FIXME: We should have a common utility for generating an aggregate 2537 // copy. 2538 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2539 Builder.CreateMemCpy( 2540 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 2541 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 2542 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 2543 V = AlignedTemp; 2544 } 2545 ArgVals.push_back(ParamValue::forIndirect(V)); 2546 } else { 2547 // Load scalar value from indirect argument. 2548 llvm::Value *V = 2549 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2550 2551 if (isPromoted) 2552 V = emitArgumentDemotion(*this, Arg, V); 2553 ArgVals.push_back(ParamValue::forDirect(V)); 2554 } 2555 break; 2556 } 2557 2558 case ABIArgInfo::Extend: 2559 case ABIArgInfo::Direct: { 2560 auto AI = Fn->getArg(FirstIRArg); 2561 llvm::Type *LTy = ConvertType(Arg->getType()); 2562 2563 // Prepare parameter attributes. So far, only attributes for pointer 2564 // parameters are prepared. See 2565 // http://llvm.org/docs/LangRef.html#paramattrs. 2566 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 2567 ArgI.getCoerceToType()->isPointerTy()) { 2568 assert(NumIRArgs == 1); 2569 2570 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2571 // Set `nonnull` attribute if any. 2572 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2573 PVD->getFunctionScopeIndex()) && 2574 !CGM.getCodeGenOpts().NullPointerIsValid) 2575 AI->addAttr(llvm::Attribute::NonNull); 2576 2577 QualType OTy = PVD->getOriginalType(); 2578 if (const auto *ArrTy = 2579 getContext().getAsConstantArrayType(OTy)) { 2580 // A C99 array parameter declaration with the static keyword also 2581 // indicates dereferenceability, and if the size is constant we can 2582 // use the dereferenceable attribute (which requires the size in 2583 // bytes). 2584 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2585 QualType ETy = ArrTy->getElementType(); 2586 llvm::Align Alignment = 2587 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2588 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2589 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2590 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2591 ArrSize) { 2592 llvm::AttrBuilder Attrs; 2593 Attrs.addDereferenceableAttr( 2594 getContext().getTypeSizeInChars(ETy).getQuantity() * 2595 ArrSize); 2596 AI->addAttrs(Attrs); 2597 } else if (getContext().getTargetInfo().getNullPointerValue( 2598 ETy.getAddressSpace()) == 0 && 2599 !CGM.getCodeGenOpts().NullPointerIsValid) { 2600 AI->addAttr(llvm::Attribute::NonNull); 2601 } 2602 } 2603 } else if (const auto *ArrTy = 2604 getContext().getAsVariableArrayType(OTy)) { 2605 // For C99 VLAs with the static keyword, we don't know the size so 2606 // we can't use the dereferenceable attribute, but in addrspace(0) 2607 // we know that it must be nonnull. 2608 if (ArrTy->getSizeModifier() == VariableArrayType::Static) { 2609 QualType ETy = ArrTy->getElementType(); 2610 llvm::Align Alignment = 2611 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2612 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2613 if (!getContext().getTargetAddressSpace(ETy) && 2614 !CGM.getCodeGenOpts().NullPointerIsValid) 2615 AI->addAttr(llvm::Attribute::NonNull); 2616 } 2617 } 2618 2619 // Set `align` attribute if any. 2620 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2621 if (!AVAttr) 2622 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2623 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2624 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2625 // If alignment-assumption sanitizer is enabled, we do *not* add 2626 // alignment attribute here, but emit normal alignment assumption, 2627 // so the UBSAN check could function. 2628 llvm::ConstantInt *AlignmentCI = 2629 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 2630 unsigned AlignmentInt = 2631 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 2632 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 2633 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 2634 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr( 2635 llvm::Align(AlignmentInt))); 2636 } 2637 } 2638 } 2639 2640 // Set 'noalias' if an argument type has the `restrict` qualifier. 2641 if (Arg->getType().isRestrictQualified()) 2642 AI->addAttr(llvm::Attribute::NoAlias); 2643 } 2644 2645 // Prepare the argument value. If we have the trivial case, handle it 2646 // with no muss and fuss. 2647 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2648 ArgI.getCoerceToType() == ConvertType(Ty) && 2649 ArgI.getDirectOffset() == 0) { 2650 assert(NumIRArgs == 1); 2651 2652 // LLVM expects swifterror parameters to be used in very restricted 2653 // ways. Copy the value into a less-restricted temporary. 2654 llvm::Value *V = AI; 2655 if (FI.getExtParameterInfo(ArgNo).getABI() 2656 == ParameterABI::SwiftErrorResult) { 2657 QualType pointeeTy = Ty->getPointeeType(); 2658 assert(pointeeTy->isPointerType()); 2659 Address temp = 2660 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2661 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2662 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2663 Builder.CreateStore(incomingErrorValue, temp); 2664 V = temp.getPointer(); 2665 2666 // Push a cleanup to copy the value back at the end of the function. 2667 // The convention does not guarantee that the value will be written 2668 // back if the function exits with an unwind exception. 2669 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2670 } 2671 2672 // Ensure the argument is the correct type. 2673 if (V->getType() != ArgI.getCoerceToType()) 2674 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2675 2676 if (isPromoted) 2677 V = emitArgumentDemotion(*this, Arg, V); 2678 2679 // Because of merging of function types from multiple decls it is 2680 // possible for the type of an argument to not match the corresponding 2681 // type in the function type. Since we are codegening the callee 2682 // in here, add a cast to the argument type. 2683 llvm::Type *LTy = ConvertType(Arg->getType()); 2684 if (V->getType() != LTy) 2685 V = Builder.CreateBitCast(V, LTy); 2686 2687 ArgVals.push_back(ParamValue::forDirect(V)); 2688 break; 2689 } 2690 2691 // VLST arguments are coerced to VLATs at the function boundary for 2692 // ABI consistency. If this is a VLST that was coerced to 2693 // a VLAT at the function boundary and the types match up, use 2694 // llvm.experimental.vector.extract to convert back to the original 2695 // VLST. 2696 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) { 2697 auto *Coerced = Fn->getArg(FirstIRArg); 2698 if (auto *VecTyFrom = 2699 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) { 2700 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) { 2701 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 2702 2703 assert(NumIRArgs == 1); 2704 Coerced->setName(Arg->getName() + ".coerce"); 2705 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector( 2706 VecTyTo, Coerced, Zero, "castFixedSve"))); 2707 break; 2708 } 2709 } 2710 } 2711 2712 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2713 Arg->getName()); 2714 2715 // Pointer to store into. 2716 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2717 2718 // Fast-isel and the optimizer generally like scalar values better than 2719 // FCAs, so we flatten them if this is safe to do for this argument. 2720 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2721 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2722 STy->getNumElements() > 1) { 2723 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2724 llvm::Type *DstTy = Ptr.getElementType(); 2725 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2726 2727 Address AddrToStoreInto = Address::invalid(); 2728 if (SrcSize <= DstSize) { 2729 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2730 } else { 2731 AddrToStoreInto = 2732 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2733 } 2734 2735 assert(STy->getNumElements() == NumIRArgs); 2736 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2737 auto AI = Fn->getArg(FirstIRArg + i); 2738 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2739 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2740 Builder.CreateStore(AI, EltPtr); 2741 } 2742 2743 if (SrcSize > DstSize) { 2744 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2745 } 2746 2747 } else { 2748 // Simple case, just do a coerced store of the argument into the alloca. 2749 assert(NumIRArgs == 1); 2750 auto AI = Fn->getArg(FirstIRArg); 2751 AI->setName(Arg->getName() + ".coerce"); 2752 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 2753 } 2754 2755 // Match to what EmitParmDecl is expecting for this type. 2756 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2757 llvm::Value *V = 2758 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2759 if (isPromoted) 2760 V = emitArgumentDemotion(*this, Arg, V); 2761 ArgVals.push_back(ParamValue::forDirect(V)); 2762 } else { 2763 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2764 } 2765 break; 2766 } 2767 2768 case ABIArgInfo::CoerceAndExpand: { 2769 // Reconstruct into a temporary. 2770 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2771 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2772 2773 auto coercionType = ArgI.getCoerceAndExpandType(); 2774 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2775 2776 unsigned argIndex = FirstIRArg; 2777 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2778 llvm::Type *eltType = coercionType->getElementType(i); 2779 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2780 continue; 2781 2782 auto eltAddr = Builder.CreateStructGEP(alloca, i); 2783 auto elt = Fn->getArg(argIndex++); 2784 Builder.CreateStore(elt, eltAddr); 2785 } 2786 assert(argIndex == FirstIRArg + NumIRArgs); 2787 break; 2788 } 2789 2790 case ABIArgInfo::Expand: { 2791 // If this structure was expanded into multiple arguments then 2792 // we need to create a temporary and reconstruct it from the 2793 // arguments. 2794 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2795 LValue LV = MakeAddrLValue(Alloca, Ty); 2796 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2797 2798 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 2799 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2800 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 2801 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2802 auto AI = Fn->getArg(FirstIRArg + i); 2803 AI->setName(Arg->getName() + "." + Twine(i)); 2804 } 2805 break; 2806 } 2807 2808 case ABIArgInfo::Ignore: 2809 assert(NumIRArgs == 0); 2810 // Initialize the local variable appropriately. 2811 if (!hasScalarEvaluationKind(Ty)) { 2812 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2813 } else { 2814 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2815 ArgVals.push_back(ParamValue::forDirect(U)); 2816 } 2817 break; 2818 } 2819 } 2820 2821 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2822 for (int I = Args.size() - 1; I >= 0; --I) 2823 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2824 } else { 2825 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2826 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2827 } 2828 } 2829 2830 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2831 while (insn->use_empty()) { 2832 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2833 if (!bitcast) return; 2834 2835 // This is "safe" because we would have used a ConstantExpr otherwise. 2836 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2837 bitcast->eraseFromParent(); 2838 } 2839 } 2840 2841 /// Try to emit a fused autorelease of a return result. 2842 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2843 llvm::Value *result) { 2844 // We must be immediately followed the cast. 2845 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2846 if (BB->empty()) return nullptr; 2847 if (&BB->back() != result) return nullptr; 2848 2849 llvm::Type *resultType = result->getType(); 2850 2851 // result is in a BasicBlock and is therefore an Instruction. 2852 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2853 2854 SmallVector<llvm::Instruction *, 4> InstsToKill; 2855 2856 // Look for: 2857 // %generator = bitcast %type1* %generator2 to %type2* 2858 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2859 // We would have emitted this as a constant if the operand weren't 2860 // an Instruction. 2861 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2862 2863 // Require the generator to be immediately followed by the cast. 2864 if (generator->getNextNode() != bitcast) 2865 return nullptr; 2866 2867 InstsToKill.push_back(bitcast); 2868 } 2869 2870 // Look for: 2871 // %generator = call i8* @objc_retain(i8* %originalResult) 2872 // or 2873 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2874 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2875 if (!call) return nullptr; 2876 2877 bool doRetainAutorelease; 2878 2879 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2880 doRetainAutorelease = true; 2881 } else if (call->getCalledOperand() == 2882 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 2883 doRetainAutorelease = false; 2884 2885 // If we emitted an assembly marker for this call (and the 2886 // ARCEntrypoints field should have been set if so), go looking 2887 // for that call. If we can't find it, we can't do this 2888 // optimization. But it should always be the immediately previous 2889 // instruction, unless we needed bitcasts around the call. 2890 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2891 llvm::Instruction *prev = call->getPrevNode(); 2892 assert(prev); 2893 if (isa<llvm::BitCastInst>(prev)) { 2894 prev = prev->getPrevNode(); 2895 assert(prev); 2896 } 2897 assert(isa<llvm::CallInst>(prev)); 2898 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 2899 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2900 InstsToKill.push_back(prev); 2901 } 2902 } else { 2903 return nullptr; 2904 } 2905 2906 result = call->getArgOperand(0); 2907 InstsToKill.push_back(call); 2908 2909 // Keep killing bitcasts, for sanity. Note that we no longer care 2910 // about precise ordering as long as there's exactly one use. 2911 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2912 if (!bitcast->hasOneUse()) break; 2913 InstsToKill.push_back(bitcast); 2914 result = bitcast->getOperand(0); 2915 } 2916 2917 // Delete all the unnecessary instructions, from latest to earliest. 2918 for (auto *I : InstsToKill) 2919 I->eraseFromParent(); 2920 2921 // Do the fused retain/autorelease if we were asked to. 2922 if (doRetainAutorelease) 2923 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2924 2925 // Cast back to the result type. 2926 return CGF.Builder.CreateBitCast(result, resultType); 2927 } 2928 2929 /// If this is a +1 of the value of an immutable 'self', remove it. 2930 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2931 llvm::Value *result) { 2932 // This is only applicable to a method with an immutable 'self'. 2933 const ObjCMethodDecl *method = 2934 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2935 if (!method) return nullptr; 2936 const VarDecl *self = method->getSelfDecl(); 2937 if (!self->getType().isConstQualified()) return nullptr; 2938 2939 // Look for a retain call. 2940 llvm::CallInst *retainCall = 2941 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2942 if (!retainCall || retainCall->getCalledOperand() != 2943 CGF.CGM.getObjCEntrypoints().objc_retain) 2944 return nullptr; 2945 2946 // Look for an ordinary load of 'self'. 2947 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2948 llvm::LoadInst *load = 2949 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2950 if (!load || load->isAtomic() || load->isVolatile() || 2951 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2952 return nullptr; 2953 2954 // Okay! Burn it all down. This relies for correctness on the 2955 // assumption that the retain is emitted as part of the return and 2956 // that thereafter everything is used "linearly". 2957 llvm::Type *resultType = result->getType(); 2958 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2959 assert(retainCall->use_empty()); 2960 retainCall->eraseFromParent(); 2961 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2962 2963 return CGF.Builder.CreateBitCast(load, resultType); 2964 } 2965 2966 /// Emit an ARC autorelease of the result of a function. 2967 /// 2968 /// \return the value to actually return from the function 2969 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2970 llvm::Value *result) { 2971 // If we're returning 'self', kill the initial retain. This is a 2972 // heuristic attempt to "encourage correctness" in the really unfortunate 2973 // case where we have a return of self during a dealloc and we desperately 2974 // need to avoid the possible autorelease. 2975 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2976 return self; 2977 2978 // At -O0, try to emit a fused retain/autorelease. 2979 if (CGF.shouldUseFusedARCCalls()) 2980 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2981 return fused; 2982 2983 return CGF.EmitARCAutoreleaseReturnValue(result); 2984 } 2985 2986 /// Heuristically search for a dominating store to the return-value slot. 2987 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2988 // Check if a User is a store which pointerOperand is the ReturnValue. 2989 // We are looking for stores to the ReturnValue, not for stores of the 2990 // ReturnValue to some other location. 2991 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2992 auto *SI = dyn_cast<llvm::StoreInst>(U); 2993 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2994 return nullptr; 2995 // These aren't actually possible for non-coerced returns, and we 2996 // only care about non-coerced returns on this code path. 2997 assert(!SI->isAtomic() && !SI->isVolatile()); 2998 return SI; 2999 }; 3000 // If there are multiple uses of the return-value slot, just check 3001 // for something immediately preceding the IP. Sometimes this can 3002 // happen with how we generate implicit-returns; it can also happen 3003 // with noreturn cleanups. 3004 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 3005 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3006 if (IP->empty()) return nullptr; 3007 llvm::Instruction *I = &IP->back(); 3008 3009 // Skip lifetime markers 3010 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 3011 IE = IP->rend(); 3012 II != IE; ++II) { 3013 if (llvm::IntrinsicInst *Intrinsic = 3014 dyn_cast<llvm::IntrinsicInst>(&*II)) { 3015 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 3016 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 3017 ++II; 3018 if (II == IE) 3019 break; 3020 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 3021 continue; 3022 } 3023 } 3024 I = &*II; 3025 break; 3026 } 3027 3028 return GetStoreIfValid(I); 3029 } 3030 3031 llvm::StoreInst *store = 3032 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 3033 if (!store) return nullptr; 3034 3035 // Now do a first-and-dirty dominance check: just walk up the 3036 // single-predecessors chain from the current insertion point. 3037 llvm::BasicBlock *StoreBB = store->getParent(); 3038 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3039 while (IP != StoreBB) { 3040 if (!(IP = IP->getSinglePredecessor())) 3041 return nullptr; 3042 } 3043 3044 // Okay, the store's basic block dominates the insertion point; we 3045 // can do our thing. 3046 return store; 3047 } 3048 3049 // Helper functions for EmitCMSEClearRecord 3050 3051 // Set the bits corresponding to a field having width `BitWidth` and located at 3052 // offset `BitOffset` (from the least significant bit) within a storage unit of 3053 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 3054 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 3055 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 3056 int BitWidth, int CharWidth) { 3057 assert(CharWidth <= 64); 3058 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 3059 3060 int Pos = 0; 3061 if (BitOffset >= CharWidth) { 3062 Pos += BitOffset / CharWidth; 3063 BitOffset = BitOffset % CharWidth; 3064 } 3065 3066 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 3067 if (BitOffset + BitWidth >= CharWidth) { 3068 Bits[Pos++] |= (Used << BitOffset) & Used; 3069 BitWidth -= CharWidth - BitOffset; 3070 BitOffset = 0; 3071 } 3072 3073 while (BitWidth >= CharWidth) { 3074 Bits[Pos++] = Used; 3075 BitWidth -= CharWidth; 3076 } 3077 3078 if (BitWidth > 0) 3079 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3080 } 3081 3082 // Set the bits corresponding to a field having width `BitWidth` and located at 3083 // offset `BitOffset` (from the least significant bit) within a storage unit of 3084 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3085 // `Bits` corresponds to one target byte. Use target endian layout. 3086 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3087 int StorageSize, int BitOffset, int BitWidth, 3088 int CharWidth, bool BigEndian) { 3089 3090 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3091 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3092 3093 if (BigEndian) 3094 std::reverse(TmpBits.begin(), TmpBits.end()); 3095 3096 for (uint64_t V : TmpBits) 3097 Bits[StorageOffset++] |= V; 3098 } 3099 3100 static void setUsedBits(CodeGenModule &, QualType, int, 3101 SmallVectorImpl<uint64_t> &); 3102 3103 // Set the bits in `Bits`, which correspond to the value representations of 3104 // the actual members of the record type `RTy`. Note that this function does 3105 // not handle base classes, virtual tables, etc, since they cannot happen in 3106 // CMSE function arguments or return. The bit mask corresponds to the target 3107 // memory layout, i.e. it's endian dependent. 3108 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3109 SmallVectorImpl<uint64_t> &Bits) { 3110 ASTContext &Context = CGM.getContext(); 3111 int CharWidth = Context.getCharWidth(); 3112 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3113 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3114 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3115 3116 int Idx = 0; 3117 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3118 const FieldDecl *F = *I; 3119 3120 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3121 F->getType()->isIncompleteArrayType()) 3122 continue; 3123 3124 if (F->isBitField()) { 3125 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3126 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3127 BFI.StorageSize / CharWidth, BFI.Offset, 3128 BFI.Size, CharWidth, 3129 CGM.getDataLayout().isBigEndian()); 3130 continue; 3131 } 3132 3133 setUsedBits(CGM, F->getType(), 3134 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3135 } 3136 } 3137 3138 // Set the bits in `Bits`, which correspond to the value representations of 3139 // the elements of an array type `ATy`. 3140 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3141 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3142 const ASTContext &Context = CGM.getContext(); 3143 3144 QualType ETy = Context.getBaseElementType(ATy); 3145 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3146 SmallVector<uint64_t, 4> TmpBits(Size); 3147 setUsedBits(CGM, ETy, 0, TmpBits); 3148 3149 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3150 auto Src = TmpBits.begin(); 3151 auto Dst = Bits.begin() + Offset + I * Size; 3152 for (int J = 0; J < Size; ++J) 3153 *Dst++ |= *Src++; 3154 } 3155 } 3156 3157 // Set the bits in `Bits`, which correspond to the value representations of 3158 // the type `QTy`. 3159 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3160 SmallVectorImpl<uint64_t> &Bits) { 3161 if (const auto *RTy = QTy->getAs<RecordType>()) 3162 return setUsedBits(CGM, RTy, Offset, Bits); 3163 3164 ASTContext &Context = CGM.getContext(); 3165 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3166 return setUsedBits(CGM, ATy, Offset, Bits); 3167 3168 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3169 if (Size <= 0) 3170 return; 3171 3172 std::fill_n(Bits.begin() + Offset, Size, 3173 (uint64_t(1) << Context.getCharWidth()) - 1); 3174 } 3175 3176 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3177 int Pos, int Size, int CharWidth, 3178 bool BigEndian) { 3179 assert(Size > 0); 3180 uint64_t Mask = 0; 3181 if (BigEndian) { 3182 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3183 ++P) 3184 Mask = (Mask << CharWidth) | *P; 3185 } else { 3186 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3187 do 3188 Mask = (Mask << CharWidth) | *--P; 3189 while (P != End); 3190 } 3191 return Mask; 3192 } 3193 3194 // Emit code to clear the bits in a record, which aren't a part of any user 3195 // declared member, when the record is a function return. 3196 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3197 llvm::IntegerType *ITy, 3198 QualType QTy) { 3199 assert(Src->getType() == ITy); 3200 assert(ITy->getScalarSizeInBits() <= 64); 3201 3202 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3203 int Size = DataLayout.getTypeStoreSize(ITy); 3204 SmallVector<uint64_t, 4> Bits(Size); 3205 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3206 3207 int CharWidth = CGM.getContext().getCharWidth(); 3208 uint64_t Mask = 3209 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3210 3211 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3212 } 3213 3214 // Emit code to clear the bits in a record, which aren't a part of any user 3215 // declared member, when the record is a function argument. 3216 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3217 llvm::ArrayType *ATy, 3218 QualType QTy) { 3219 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3220 int Size = DataLayout.getTypeStoreSize(ATy); 3221 SmallVector<uint64_t, 16> Bits(Size); 3222 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3223 3224 // Clear each element of the LLVM array. 3225 int CharWidth = CGM.getContext().getCharWidth(); 3226 int CharsPerElt = 3227 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3228 int MaskIndex = 0; 3229 llvm::Value *R = llvm::UndefValue::get(ATy); 3230 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3231 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3232 DataLayout.isBigEndian()); 3233 MaskIndex += CharsPerElt; 3234 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3235 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3236 R = Builder.CreateInsertValue(R, T1, I); 3237 } 3238 3239 return R; 3240 } 3241 3242 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3243 bool EmitRetDbgLoc, 3244 SourceLocation EndLoc) { 3245 if (FI.isNoReturn()) { 3246 // Noreturn functions don't return. 3247 EmitUnreachable(EndLoc); 3248 return; 3249 } 3250 3251 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3252 // Naked functions don't have epilogues. 3253 Builder.CreateUnreachable(); 3254 return; 3255 } 3256 3257 // Functions with no result always return void. 3258 if (!ReturnValue.isValid()) { 3259 Builder.CreateRetVoid(); 3260 return; 3261 } 3262 3263 llvm::DebugLoc RetDbgLoc; 3264 llvm::Value *RV = nullptr; 3265 QualType RetTy = FI.getReturnType(); 3266 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3267 3268 switch (RetAI.getKind()) { 3269 case ABIArgInfo::InAlloca: 3270 // Aggregrates get evaluated directly into the destination. Sometimes we 3271 // need to return the sret value in a register, though. 3272 assert(hasAggregateEvaluationKind(RetTy)); 3273 if (RetAI.getInAllocaSRet()) { 3274 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3275 --EI; 3276 llvm::Value *ArgStruct = &*EI; 3277 llvm::Value *SRet = Builder.CreateStructGEP( 3278 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 3279 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 3280 } 3281 break; 3282 3283 case ABIArgInfo::Indirect: { 3284 auto AI = CurFn->arg_begin(); 3285 if (RetAI.isSRetAfterThis()) 3286 ++AI; 3287 switch (getEvaluationKind(RetTy)) { 3288 case TEK_Complex: { 3289 ComplexPairTy RT = 3290 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3291 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3292 /*isInit*/ true); 3293 break; 3294 } 3295 case TEK_Aggregate: 3296 // Do nothing; aggregrates get evaluated directly into the destination. 3297 break; 3298 case TEK_Scalar: 3299 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 3300 MakeNaturalAlignAddrLValue(&*AI, RetTy), 3301 /*isInit*/ true); 3302 break; 3303 } 3304 break; 3305 } 3306 3307 case ABIArgInfo::Extend: 3308 case ABIArgInfo::Direct: 3309 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3310 RetAI.getDirectOffset() == 0) { 3311 // The internal return value temp always will have pointer-to-return-type 3312 // type, just do a load. 3313 3314 // If there is a dominating store to ReturnValue, we can elide 3315 // the load, zap the store, and usually zap the alloca. 3316 if (llvm::StoreInst *SI = 3317 findDominatingStoreToReturnValue(*this)) { 3318 // Reuse the debug location from the store unless there is 3319 // cleanup code to be emitted between the store and return 3320 // instruction. 3321 if (EmitRetDbgLoc && !AutoreleaseResult) 3322 RetDbgLoc = SI->getDebugLoc(); 3323 // Get the stored value and nuke the now-dead store. 3324 RV = SI->getValueOperand(); 3325 SI->eraseFromParent(); 3326 3327 // Otherwise, we have to do a simple load. 3328 } else { 3329 RV = Builder.CreateLoad(ReturnValue); 3330 } 3331 } else { 3332 // If the value is offset in memory, apply the offset now. 3333 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3334 3335 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3336 } 3337 3338 // In ARC, end functions that return a retainable type with a call 3339 // to objc_autoreleaseReturnValue. 3340 if (AutoreleaseResult) { 3341 #ifndef NDEBUG 3342 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3343 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3344 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3345 // CurCodeDecl or BlockInfo. 3346 QualType RT; 3347 3348 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3349 RT = FD->getReturnType(); 3350 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3351 RT = MD->getReturnType(); 3352 else if (isa<BlockDecl>(CurCodeDecl)) 3353 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3354 else 3355 llvm_unreachable("Unexpected function/method type"); 3356 3357 assert(getLangOpts().ObjCAutoRefCount && 3358 !FI.isReturnsRetained() && 3359 RT->isObjCRetainableType()); 3360 #endif 3361 RV = emitAutoreleaseOfResult(*this, RV); 3362 } 3363 3364 break; 3365 3366 case ABIArgInfo::Ignore: 3367 break; 3368 3369 case ABIArgInfo::CoerceAndExpand: { 3370 auto coercionType = RetAI.getCoerceAndExpandType(); 3371 3372 // Load all of the coerced elements out into results. 3373 llvm::SmallVector<llvm::Value*, 4> results; 3374 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 3375 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3376 auto coercedEltType = coercionType->getElementType(i); 3377 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3378 continue; 3379 3380 auto eltAddr = Builder.CreateStructGEP(addr, i); 3381 auto elt = Builder.CreateLoad(eltAddr); 3382 results.push_back(elt); 3383 } 3384 3385 // If we have one result, it's the single direct result type. 3386 if (results.size() == 1) { 3387 RV = results[0]; 3388 3389 // Otherwise, we need to make a first-class aggregate. 3390 } else { 3391 // Construct a return type that lacks padding elements. 3392 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3393 3394 RV = llvm::UndefValue::get(returnType); 3395 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3396 RV = Builder.CreateInsertValue(RV, results[i], i); 3397 } 3398 } 3399 break; 3400 } 3401 case ABIArgInfo::Expand: 3402 case ABIArgInfo::IndirectAliased: 3403 llvm_unreachable("Invalid ABI kind for return argument"); 3404 } 3405 3406 llvm::Instruction *Ret; 3407 if (RV) { 3408 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3409 // For certain return types, clear padding bits, as they may reveal 3410 // sensitive information. 3411 // Small struct/union types are passed as integers. 3412 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3413 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3414 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3415 } 3416 EmitReturnValueCheck(RV); 3417 Ret = Builder.CreateRet(RV); 3418 } else { 3419 Ret = Builder.CreateRetVoid(); 3420 } 3421 3422 if (RetDbgLoc) 3423 Ret->setDebugLoc(std::move(RetDbgLoc)); 3424 } 3425 3426 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3427 // A current decl may not be available when emitting vtable thunks. 3428 if (!CurCodeDecl) 3429 return; 3430 3431 // If the return block isn't reachable, neither is this check, so don't emit 3432 // it. 3433 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3434 return; 3435 3436 ReturnsNonNullAttr *RetNNAttr = nullptr; 3437 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3438 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3439 3440 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3441 return; 3442 3443 // Prefer the returns_nonnull attribute if it's present. 3444 SourceLocation AttrLoc; 3445 SanitizerMask CheckKind; 3446 SanitizerHandler Handler; 3447 if (RetNNAttr) { 3448 assert(!requiresReturnValueNullabilityCheck() && 3449 "Cannot check nullability and the nonnull attribute"); 3450 AttrLoc = RetNNAttr->getLocation(); 3451 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3452 Handler = SanitizerHandler::NonnullReturn; 3453 } else { 3454 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3455 if (auto *TSI = DD->getTypeSourceInfo()) 3456 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3457 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3458 CheckKind = SanitizerKind::NullabilityReturn; 3459 Handler = SanitizerHandler::NullabilityReturn; 3460 } 3461 3462 SanitizerScope SanScope(this); 3463 3464 // Make sure the "return" source location is valid. If we're checking a 3465 // nullability annotation, make sure the preconditions for the check are met. 3466 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3467 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3468 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3469 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3470 if (requiresReturnValueNullabilityCheck()) 3471 CanNullCheck = 3472 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3473 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3474 EmitBlock(Check); 3475 3476 // Now do the null check. 3477 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3478 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3479 llvm::Value *DynamicData[] = {SLocPtr}; 3480 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3481 3482 EmitBlock(NoCheck); 3483 3484 #ifndef NDEBUG 3485 // The return location should not be used after the check has been emitted. 3486 ReturnLocation = Address::invalid(); 3487 #endif 3488 } 3489 3490 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3491 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3492 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3493 } 3494 3495 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3496 QualType Ty) { 3497 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3498 // placeholders. 3499 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3500 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3501 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3502 3503 // FIXME: When we generate this IR in one pass, we shouldn't need 3504 // this win32-specific alignment hack. 3505 CharUnits Align = CharUnits::fromQuantity(4); 3506 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3507 3508 return AggValueSlot::forAddr(Address(Placeholder, Align), 3509 Ty.getQualifiers(), 3510 AggValueSlot::IsNotDestructed, 3511 AggValueSlot::DoesNotNeedGCBarriers, 3512 AggValueSlot::IsNotAliased, 3513 AggValueSlot::DoesNotOverlap); 3514 } 3515 3516 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3517 const VarDecl *param, 3518 SourceLocation loc) { 3519 // StartFunction converted the ABI-lowered parameter(s) into a 3520 // local alloca. We need to turn that into an r-value suitable 3521 // for EmitCall. 3522 Address local = GetAddrOfLocalVar(param); 3523 3524 QualType type = param->getType(); 3525 3526 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3527 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3528 } 3529 3530 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3531 // but the argument needs to be the original pointer. 3532 if (type->isReferenceType()) { 3533 args.add(RValue::get(Builder.CreateLoad(local)), type); 3534 3535 // In ARC, move out of consumed arguments so that the release cleanup 3536 // entered by StartFunction doesn't cause an over-release. This isn't 3537 // optimal -O0 code generation, but it should get cleaned up when 3538 // optimization is enabled. This also assumes that delegate calls are 3539 // performed exactly once for a set of arguments, but that should be safe. 3540 } else if (getLangOpts().ObjCAutoRefCount && 3541 param->hasAttr<NSConsumedAttr>() && 3542 type->isObjCRetainableType()) { 3543 llvm::Value *ptr = Builder.CreateLoad(local); 3544 auto null = 3545 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3546 Builder.CreateStore(null, local); 3547 args.add(RValue::get(ptr), type); 3548 3549 // For the most part, we just need to load the alloca, except that 3550 // aggregate r-values are actually pointers to temporaries. 3551 } else { 3552 args.add(convertTempToRValue(local, type, loc), type); 3553 } 3554 3555 // Deactivate the cleanup for the callee-destructed param that was pushed. 3556 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3557 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3558 param->needsDestruction(getContext())) { 3559 EHScopeStack::stable_iterator cleanup = 3560 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3561 assert(cleanup.isValid() && 3562 "cleanup for callee-destructed param not recorded"); 3563 // This unreachable is a temporary marker which will be removed later. 3564 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3565 args.addArgCleanupDeactivation(cleanup, isActive); 3566 } 3567 } 3568 3569 static bool isProvablyNull(llvm::Value *addr) { 3570 return isa<llvm::ConstantPointerNull>(addr); 3571 } 3572 3573 /// Emit the actual writing-back of a writeback. 3574 static void emitWriteback(CodeGenFunction &CGF, 3575 const CallArgList::Writeback &writeback) { 3576 const LValue &srcLV = writeback.Source; 3577 Address srcAddr = srcLV.getAddress(CGF); 3578 assert(!isProvablyNull(srcAddr.getPointer()) && 3579 "shouldn't have writeback for provably null argument"); 3580 3581 llvm::BasicBlock *contBB = nullptr; 3582 3583 // If the argument wasn't provably non-null, we need to null check 3584 // before doing the store. 3585 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3586 CGF.CGM.getDataLayout()); 3587 if (!provablyNonNull) { 3588 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3589 contBB = CGF.createBasicBlock("icr.done"); 3590 3591 llvm::Value *isNull = 3592 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3593 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3594 CGF.EmitBlock(writebackBB); 3595 } 3596 3597 // Load the value to writeback. 3598 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3599 3600 // Cast it back, in case we're writing an id to a Foo* or something. 3601 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3602 "icr.writeback-cast"); 3603 3604 // Perform the writeback. 3605 3606 // If we have a "to use" value, it's something we need to emit a use 3607 // of. This has to be carefully threaded in: if it's done after the 3608 // release it's potentially undefined behavior (and the optimizer 3609 // will ignore it), and if it happens before the retain then the 3610 // optimizer could move the release there. 3611 if (writeback.ToUse) { 3612 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3613 3614 // Retain the new value. No need to block-copy here: the block's 3615 // being passed up the stack. 3616 value = CGF.EmitARCRetainNonBlock(value); 3617 3618 // Emit the intrinsic use here. 3619 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3620 3621 // Load the old value (primitively). 3622 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3623 3624 // Put the new value in place (primitively). 3625 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3626 3627 // Release the old value. 3628 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3629 3630 // Otherwise, we can just do a normal lvalue store. 3631 } else { 3632 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3633 } 3634 3635 // Jump to the continuation block. 3636 if (!provablyNonNull) 3637 CGF.EmitBlock(contBB); 3638 } 3639 3640 static void emitWritebacks(CodeGenFunction &CGF, 3641 const CallArgList &args) { 3642 for (const auto &I : args.writebacks()) 3643 emitWriteback(CGF, I); 3644 } 3645 3646 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3647 const CallArgList &CallArgs) { 3648 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3649 CallArgs.getCleanupsToDeactivate(); 3650 // Iterate in reverse to increase the likelihood of popping the cleanup. 3651 for (const auto &I : llvm::reverse(Cleanups)) { 3652 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3653 I.IsActiveIP->eraseFromParent(); 3654 } 3655 } 3656 3657 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3658 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3659 if (uop->getOpcode() == UO_AddrOf) 3660 return uop->getSubExpr(); 3661 return nullptr; 3662 } 3663 3664 /// Emit an argument that's being passed call-by-writeback. That is, 3665 /// we are passing the address of an __autoreleased temporary; it 3666 /// might be copy-initialized with the current value of the given 3667 /// address, but it will definitely be copied out of after the call. 3668 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3669 const ObjCIndirectCopyRestoreExpr *CRE) { 3670 LValue srcLV; 3671 3672 // Make an optimistic effort to emit the address as an l-value. 3673 // This can fail if the argument expression is more complicated. 3674 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3675 srcLV = CGF.EmitLValue(lvExpr); 3676 3677 // Otherwise, just emit it as a scalar. 3678 } else { 3679 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3680 3681 QualType srcAddrType = 3682 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3683 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3684 } 3685 Address srcAddr = srcLV.getAddress(CGF); 3686 3687 // The dest and src types don't necessarily match in LLVM terms 3688 // because of the crazy ObjC compatibility rules. 3689 3690 llvm::PointerType *destType = 3691 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3692 3693 // If the address is a constant null, just pass the appropriate null. 3694 if (isProvablyNull(srcAddr.getPointer())) { 3695 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3696 CRE->getType()); 3697 return; 3698 } 3699 3700 // Create the temporary. 3701 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3702 CGF.getPointerAlign(), 3703 "icr.temp"); 3704 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3705 // and that cleanup will be conditional if we can't prove that the l-value 3706 // isn't null, so we need to register a dominating point so that the cleanups 3707 // system will make valid IR. 3708 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3709 3710 // Zero-initialize it if we're not doing a copy-initialization. 3711 bool shouldCopy = CRE->shouldCopy(); 3712 if (!shouldCopy) { 3713 llvm::Value *null = 3714 llvm::ConstantPointerNull::get( 3715 cast<llvm::PointerType>(destType->getElementType())); 3716 CGF.Builder.CreateStore(null, temp); 3717 } 3718 3719 llvm::BasicBlock *contBB = nullptr; 3720 llvm::BasicBlock *originBB = nullptr; 3721 3722 // If the address is *not* known to be non-null, we need to switch. 3723 llvm::Value *finalArgument; 3724 3725 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3726 CGF.CGM.getDataLayout()); 3727 if (provablyNonNull) { 3728 finalArgument = temp.getPointer(); 3729 } else { 3730 llvm::Value *isNull = 3731 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3732 3733 finalArgument = CGF.Builder.CreateSelect(isNull, 3734 llvm::ConstantPointerNull::get(destType), 3735 temp.getPointer(), "icr.argument"); 3736 3737 // If we need to copy, then the load has to be conditional, which 3738 // means we need control flow. 3739 if (shouldCopy) { 3740 originBB = CGF.Builder.GetInsertBlock(); 3741 contBB = CGF.createBasicBlock("icr.cont"); 3742 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3743 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3744 CGF.EmitBlock(copyBB); 3745 condEval.begin(CGF); 3746 } 3747 } 3748 3749 llvm::Value *valueToUse = nullptr; 3750 3751 // Perform a copy if necessary. 3752 if (shouldCopy) { 3753 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3754 assert(srcRV.isScalar()); 3755 3756 llvm::Value *src = srcRV.getScalarVal(); 3757 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3758 "icr.cast"); 3759 3760 // Use an ordinary store, not a store-to-lvalue. 3761 CGF.Builder.CreateStore(src, temp); 3762 3763 // If optimization is enabled, and the value was held in a 3764 // __strong variable, we need to tell the optimizer that this 3765 // value has to stay alive until we're doing the store back. 3766 // This is because the temporary is effectively unretained, 3767 // and so otherwise we can violate the high-level semantics. 3768 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3769 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3770 valueToUse = src; 3771 } 3772 } 3773 3774 // Finish the control flow if we needed it. 3775 if (shouldCopy && !provablyNonNull) { 3776 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3777 CGF.EmitBlock(contBB); 3778 3779 // Make a phi for the value to intrinsically use. 3780 if (valueToUse) { 3781 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3782 "icr.to-use"); 3783 phiToUse->addIncoming(valueToUse, copyBB); 3784 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3785 originBB); 3786 valueToUse = phiToUse; 3787 } 3788 3789 condEval.end(CGF); 3790 } 3791 3792 args.addWriteback(srcLV, temp, valueToUse); 3793 args.add(RValue::get(finalArgument), CRE->getType()); 3794 } 3795 3796 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3797 assert(!StackBase); 3798 3799 // Save the stack. 3800 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3801 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3802 } 3803 3804 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3805 if (StackBase) { 3806 // Restore the stack after the call. 3807 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3808 CGF.Builder.CreateCall(F, StackBase); 3809 } 3810 } 3811 3812 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3813 SourceLocation ArgLoc, 3814 AbstractCallee AC, 3815 unsigned ParmNum) { 3816 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3817 SanOpts.has(SanitizerKind::NullabilityArg))) 3818 return; 3819 3820 // The param decl may be missing in a variadic function. 3821 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3822 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3823 3824 // Prefer the nonnull attribute if it's present. 3825 const NonNullAttr *NNAttr = nullptr; 3826 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3827 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3828 3829 bool CanCheckNullability = false; 3830 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3831 auto Nullability = PVD->getType()->getNullability(getContext()); 3832 CanCheckNullability = Nullability && 3833 *Nullability == NullabilityKind::NonNull && 3834 PVD->getTypeSourceInfo(); 3835 } 3836 3837 if (!NNAttr && !CanCheckNullability) 3838 return; 3839 3840 SourceLocation AttrLoc; 3841 SanitizerMask CheckKind; 3842 SanitizerHandler Handler; 3843 if (NNAttr) { 3844 AttrLoc = NNAttr->getLocation(); 3845 CheckKind = SanitizerKind::NonnullAttribute; 3846 Handler = SanitizerHandler::NonnullArg; 3847 } else { 3848 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3849 CheckKind = SanitizerKind::NullabilityArg; 3850 Handler = SanitizerHandler::NullabilityArg; 3851 } 3852 3853 SanitizerScope SanScope(this); 3854 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 3855 llvm::Constant *StaticData[] = { 3856 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3857 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3858 }; 3859 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3860 } 3861 3862 // Check if the call is going to use the inalloca convention. This needs to 3863 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged 3864 // later, so we can't check it directly. 3865 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, 3866 ArrayRef<QualType> ArgTypes) { 3867 // The Swift calling convention doesn't go through the target-specific 3868 // argument classification, so it never uses inalloca. 3869 // TODO: Consider limiting inalloca use to only calling conventions supported 3870 // by MSVC. 3871 if (ExplicitCC == CC_Swift) 3872 return false; 3873 if (!CGM.getTarget().getCXXABI().isMicrosoft()) 3874 return false; 3875 return llvm::any_of(ArgTypes, [&](QualType Ty) { 3876 return isInAllocaArgument(CGM.getCXXABI(), Ty); 3877 }); 3878 } 3879 3880 #ifndef NDEBUG 3881 // Determine whether the given argument is an Objective-C method 3882 // that may have type parameters in its signature. 3883 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3884 const DeclContext *dc = method->getDeclContext(); 3885 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { 3886 return classDecl->getTypeParamListAsWritten(); 3887 } 3888 3889 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3890 return catDecl->getTypeParamList(); 3891 } 3892 3893 return false; 3894 } 3895 #endif 3896 3897 /// EmitCallArgs - Emit call arguments for a function. 3898 void CodeGenFunction::EmitCallArgs( 3899 CallArgList &Args, PrototypeWrapper Prototype, 3900 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3901 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3902 SmallVector<QualType, 16> ArgTypes; 3903 3904 assert((ParamsToSkip == 0 || Prototype.P) && 3905 "Can't skip parameters if type info is not provided"); 3906 3907 // This variable only captures *explicitly* written conventions, not those 3908 // applied by default via command line flags or target defaults, such as 3909 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would 3910 // require knowing if this is a C++ instance method or being able to see 3911 // unprototyped FunctionTypes. 3912 CallingConv ExplicitCC = CC_C; 3913 3914 // First, if a prototype was provided, use those argument types. 3915 bool IsVariadic = false; 3916 if (Prototype.P) { 3917 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>(); 3918 if (MD) { 3919 IsVariadic = MD->isVariadic(); 3920 ExplicitCC = getCallingConventionForDecl( 3921 MD, CGM.getTarget().getTriple().isOSWindows()); 3922 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, 3923 MD->param_type_end()); 3924 } else { 3925 const auto *FPT = Prototype.P.get<const FunctionProtoType *>(); 3926 IsVariadic = FPT->isVariadic(); 3927 ExplicitCC = FPT->getExtInfo().getCC(); 3928 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, 3929 FPT->param_type_end()); 3930 } 3931 3932 #ifndef NDEBUG 3933 // Check that the prototyped types match the argument expression types. 3934 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); 3935 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3936 for (QualType Ty : ArgTypes) { 3937 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3938 assert( 3939 (isGenericMethod || Ty->isVariablyModifiedType() || 3940 Ty.getNonReferenceType()->isObjCRetainableType() || 3941 getContext() 3942 .getCanonicalType(Ty.getNonReferenceType()) 3943 .getTypePtr() == 3944 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && 3945 "type mismatch in call argument!"); 3946 ++Arg; 3947 } 3948 3949 // Either we've emitted all the call args, or we have a call to variadic 3950 // function. 3951 assert((Arg == ArgRange.end() || IsVariadic) && 3952 "Extra arguments in non-variadic function!"); 3953 #endif 3954 } 3955 3956 // If we still have any arguments, emit them using the type of the argument. 3957 for (auto *A : llvm::make_range(std::next(ArgRange.begin(), ArgTypes.size()), 3958 ArgRange.end())) 3959 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); 3960 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3961 3962 // We must evaluate arguments from right to left in the MS C++ ABI, 3963 // because arguments are destroyed left to right in the callee. As a special 3964 // case, there are certain language constructs that require left-to-right 3965 // evaluation, and in those cases we consider the evaluation order requirement 3966 // to trump the "destruction order is reverse construction order" guarantee. 3967 bool LeftToRight = 3968 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3969 ? Order == EvaluationOrder::ForceLeftToRight 3970 : Order != EvaluationOrder::ForceRightToLeft; 3971 3972 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3973 RValue EmittedArg) { 3974 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3975 return; 3976 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3977 if (PS == nullptr) 3978 return; 3979 3980 const auto &Context = getContext(); 3981 auto SizeTy = Context.getSizeType(); 3982 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3983 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3984 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3985 EmittedArg.getScalarVal(), 3986 PS->isDynamic()); 3987 Args.add(RValue::get(V), SizeTy); 3988 // If we're emitting args in reverse, be sure to do so with 3989 // pass_object_size, as well. 3990 if (!LeftToRight) 3991 std::swap(Args.back(), *(&Args.back() - 1)); 3992 }; 3993 3994 // Insert a stack save if we're going to need any inalloca args. 3995 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { 3996 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && 3997 "inalloca only supported on x86"); 3998 Args.allocateArgumentMemory(*this); 3999 } 4000 4001 // Evaluate each argument in the appropriate order. 4002 size_t CallArgsStart = Args.size(); 4003 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 4004 unsigned Idx = LeftToRight ? I : E - I - 1; 4005 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 4006 unsigned InitialArgSize = Args.size(); 4007 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 4008 // the argument and parameter match or the objc method is parameterized. 4009 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 4010 getContext().hasSameUnqualifiedType((*Arg)->getType(), 4011 ArgTypes[Idx]) || 4012 (isa<ObjCMethodDecl>(AC.getDecl()) && 4013 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 4014 "Argument and parameter types don't match"); 4015 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 4016 // In particular, we depend on it being the last arg in Args, and the 4017 // objectsize bits depend on there only being one arg if !LeftToRight. 4018 assert(InitialArgSize + 1 == Args.size() && 4019 "The code below depends on only adding one arg per EmitCallArg"); 4020 (void)InitialArgSize; 4021 // Since pointer argument are never emitted as LValue, it is safe to emit 4022 // non-null argument check for r-value only. 4023 if (!Args.back().hasLValue()) { 4024 RValue RVArg = Args.back().getKnownRValue(); 4025 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 4026 ParamsToSkip + Idx); 4027 // @llvm.objectsize should never have side-effects and shouldn't need 4028 // destruction/cleanups, so we can safely "emit" it after its arg, 4029 // regardless of right-to-leftness 4030 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 4031 } 4032 } 4033 4034 if (!LeftToRight) { 4035 // Un-reverse the arguments we just evaluated so they match up with the LLVM 4036 // IR function. 4037 std::reverse(Args.begin() + CallArgsStart, Args.end()); 4038 } 4039 } 4040 4041 namespace { 4042 4043 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 4044 DestroyUnpassedArg(Address Addr, QualType Ty) 4045 : Addr(Addr), Ty(Ty) {} 4046 4047 Address Addr; 4048 QualType Ty; 4049 4050 void Emit(CodeGenFunction &CGF, Flags flags) override { 4051 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 4052 if (DtorKind == QualType::DK_cxx_destructor) { 4053 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 4054 assert(!Dtor->isTrivial()); 4055 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 4056 /*Delegating=*/false, Addr, Ty); 4057 } else { 4058 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 4059 } 4060 } 4061 }; 4062 4063 struct DisableDebugLocationUpdates { 4064 CodeGenFunction &CGF; 4065 bool disabledDebugInfo; 4066 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 4067 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 4068 CGF.disableDebugInfo(); 4069 } 4070 ~DisableDebugLocationUpdates() { 4071 if (disabledDebugInfo) 4072 CGF.enableDebugInfo(); 4073 } 4074 }; 4075 4076 } // end anonymous namespace 4077 4078 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 4079 if (!HasLV) 4080 return RV; 4081 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 4082 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 4083 LV.isVolatile()); 4084 IsUsed = true; 4085 return RValue::getAggregate(Copy.getAddress(CGF)); 4086 } 4087 4088 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 4089 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 4090 if (!HasLV && RV.isScalar()) 4091 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 4092 else if (!HasLV && RV.isComplex()) 4093 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 4094 else { 4095 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 4096 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 4097 // We assume that call args are never copied into subobjects. 4098 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 4099 HasLV ? LV.isVolatileQualified() 4100 : RV.isVolatileQualified()); 4101 } 4102 IsUsed = true; 4103 } 4104 4105 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 4106 QualType type) { 4107 DisableDebugLocationUpdates Dis(*this, E); 4108 if (const ObjCIndirectCopyRestoreExpr *CRE 4109 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 4110 assert(getLangOpts().ObjCAutoRefCount); 4111 return emitWritebackArg(*this, args, CRE); 4112 } 4113 4114 assert(type->isReferenceType() == E->isGLValue() && 4115 "reference binding to unmaterialized r-value!"); 4116 4117 if (E->isGLValue()) { 4118 assert(E->getObjectKind() == OK_Ordinary); 4119 return args.add(EmitReferenceBindingToExpr(E), type); 4120 } 4121 4122 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 4123 4124 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 4125 // However, we still have to push an EH-only cleanup in case we unwind before 4126 // we make it to the call. 4127 if (HasAggregateEvalKind && 4128 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 4129 // If we're using inalloca, use the argument memory. Otherwise, use a 4130 // temporary. 4131 AggValueSlot Slot; 4132 if (args.isUsingInAlloca()) 4133 Slot = createPlaceholderSlot(*this, type); 4134 else 4135 Slot = CreateAggTemp(type, "agg.tmp"); 4136 4137 bool DestroyedInCallee = true, NeedsEHCleanup = true; 4138 if (const auto *RD = type->getAsCXXRecordDecl()) 4139 DestroyedInCallee = RD->hasNonTrivialDestructor(); 4140 else 4141 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 4142 4143 if (DestroyedInCallee) 4144 Slot.setExternallyDestructed(); 4145 4146 EmitAggExpr(E, Slot); 4147 RValue RV = Slot.asRValue(); 4148 args.add(RV, type); 4149 4150 if (DestroyedInCallee && NeedsEHCleanup) { 4151 // Create a no-op GEP between the placeholder and the cleanup so we can 4152 // RAUW it successfully. It also serves as a marker of the first 4153 // instruction where the cleanup is active. 4154 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 4155 type); 4156 // This unreachable is a temporary marker which will be removed later. 4157 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 4158 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 4159 } 4160 return; 4161 } 4162 4163 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4164 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 4165 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4166 assert(L.isSimple()); 4167 args.addUncopiedAggregate(L, type); 4168 return; 4169 } 4170 4171 args.add(EmitAnyExprToTemp(E), type); 4172 } 4173 4174 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4175 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4176 // implicitly widens null pointer constants that are arguments to varargs 4177 // functions to pointer-sized ints. 4178 if (!getTarget().getTriple().isOSWindows()) 4179 return Arg->getType(); 4180 4181 if (Arg->getType()->isIntegerType() && 4182 getContext().getTypeSize(Arg->getType()) < 4183 getContext().getTargetInfo().getPointerWidth(0) && 4184 Arg->isNullPointerConstant(getContext(), 4185 Expr::NPC_ValueDependentIsNotNull)) { 4186 return getContext().getIntPtrType(); 4187 } 4188 4189 return Arg->getType(); 4190 } 4191 4192 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4193 // optimizer it can aggressively ignore unwind edges. 4194 void 4195 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4196 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4197 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4198 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4199 CGM.getNoObjCARCExceptionsMetadata()); 4200 } 4201 4202 /// Emits a call to the given no-arguments nounwind runtime function. 4203 llvm::CallInst * 4204 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4205 const llvm::Twine &name) { 4206 return EmitNounwindRuntimeCall(callee, None, name); 4207 } 4208 4209 /// Emits a call to the given nounwind runtime function. 4210 llvm::CallInst * 4211 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4212 ArrayRef<llvm::Value *> args, 4213 const llvm::Twine &name) { 4214 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4215 call->setDoesNotThrow(); 4216 return call; 4217 } 4218 4219 /// Emits a simple call (never an invoke) to the given no-arguments 4220 /// runtime function. 4221 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4222 const llvm::Twine &name) { 4223 return EmitRuntimeCall(callee, None, name); 4224 } 4225 4226 // Calls which may throw must have operand bundles indicating which funclet 4227 // they are nested within. 4228 SmallVector<llvm::OperandBundleDef, 1> 4229 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4230 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4231 // There is no need for a funclet operand bundle if we aren't inside a 4232 // funclet. 4233 if (!CurrentFuncletPad) 4234 return BundleList; 4235 4236 // Skip intrinsics which cannot throw. 4237 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 4238 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 4239 return BundleList; 4240 4241 BundleList.emplace_back("funclet", CurrentFuncletPad); 4242 return BundleList; 4243 } 4244 4245 /// Emits a simple call (never an invoke) to the given runtime function. 4246 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4247 ArrayRef<llvm::Value *> args, 4248 const llvm::Twine &name) { 4249 llvm::CallInst *call = Builder.CreateCall( 4250 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4251 call->setCallingConv(getRuntimeCC()); 4252 return call; 4253 } 4254 4255 /// Emits a call or invoke to the given noreturn runtime function. 4256 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4257 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4258 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4259 getBundlesForFunclet(callee.getCallee()); 4260 4261 if (getInvokeDest()) { 4262 llvm::InvokeInst *invoke = 4263 Builder.CreateInvoke(callee, 4264 getUnreachableBlock(), 4265 getInvokeDest(), 4266 args, 4267 BundleList); 4268 invoke->setDoesNotReturn(); 4269 invoke->setCallingConv(getRuntimeCC()); 4270 } else { 4271 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4272 call->setDoesNotReturn(); 4273 call->setCallingConv(getRuntimeCC()); 4274 Builder.CreateUnreachable(); 4275 } 4276 } 4277 4278 /// Emits a call or invoke instruction to the given nullary runtime function. 4279 llvm::CallBase * 4280 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4281 const Twine &name) { 4282 return EmitRuntimeCallOrInvoke(callee, None, name); 4283 } 4284 4285 /// Emits a call or invoke instruction to the given runtime function. 4286 llvm::CallBase * 4287 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4288 ArrayRef<llvm::Value *> args, 4289 const Twine &name) { 4290 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4291 call->setCallingConv(getRuntimeCC()); 4292 return call; 4293 } 4294 4295 /// Emits a call or invoke instruction to the given function, depending 4296 /// on the current state of the EH stack. 4297 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4298 ArrayRef<llvm::Value *> Args, 4299 const Twine &Name) { 4300 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4301 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4302 getBundlesForFunclet(Callee.getCallee()); 4303 4304 llvm::CallBase *Inst; 4305 if (!InvokeDest) 4306 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4307 else { 4308 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4309 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4310 Name); 4311 EmitBlock(ContBB); 4312 } 4313 4314 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4315 // optimizer it can aggressively ignore unwind edges. 4316 if (CGM.getLangOpts().ObjCAutoRefCount) 4317 AddObjCARCExceptionMetadata(Inst); 4318 4319 return Inst; 4320 } 4321 4322 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4323 llvm::Value *New) { 4324 DeferredReplacements.push_back(std::make_pair(Old, New)); 4325 } 4326 4327 namespace { 4328 4329 /// Specify given \p NewAlign as the alignment of return value attribute. If 4330 /// such attribute already exists, re-set it to the maximal one of two options. 4331 LLVM_NODISCARD llvm::AttributeList 4332 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4333 const llvm::AttributeList &Attrs, 4334 llvm::Align NewAlign) { 4335 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4336 if (CurAlign >= NewAlign) 4337 return Attrs; 4338 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4339 return Attrs 4340 .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex, 4341 llvm::Attribute::AttrKind::Alignment) 4342 .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr); 4343 } 4344 4345 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4346 protected: 4347 CodeGenFunction &CGF; 4348 4349 /// We do nothing if this is, or becomes, nullptr. 4350 const AlignedAttrTy *AA = nullptr; 4351 4352 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4353 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4354 4355 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4356 : CGF(CGF_) { 4357 if (!FuncDecl) 4358 return; 4359 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4360 } 4361 4362 public: 4363 /// If we can, materialize the alignment as an attribute on return value. 4364 LLVM_NODISCARD llvm::AttributeList 4365 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4366 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4367 return Attrs; 4368 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4369 if (!AlignmentCI) 4370 return Attrs; 4371 // We may legitimately have non-power-of-2 alignment here. 4372 // If so, this is UB land, emit it via `@llvm.assume` instead. 4373 if (!AlignmentCI->getValue().isPowerOf2()) 4374 return Attrs; 4375 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4376 CGF.getLLVMContext(), Attrs, 4377 llvm::Align( 4378 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4379 AA = nullptr; // We're done. Disallow doing anything else. 4380 return NewAttrs; 4381 } 4382 4383 /// Emit alignment assumption. 4384 /// This is a general fallback that we take if either there is an offset, 4385 /// or the alignment is variable or we are sanitizing for alignment. 4386 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4387 if (!AA) 4388 return; 4389 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4390 AA->getLocation(), Alignment, OffsetCI); 4391 AA = nullptr; // We're done. Disallow doing anything else. 4392 } 4393 }; 4394 4395 /// Helper data structure to emit `AssumeAlignedAttr`. 4396 class AssumeAlignedAttrEmitter final 4397 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4398 public: 4399 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4400 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4401 if (!AA) 4402 return; 4403 // It is guaranteed that the alignment/offset are constants. 4404 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4405 if (Expr *Offset = AA->getOffset()) { 4406 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4407 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4408 OffsetCI = nullptr; 4409 } 4410 } 4411 }; 4412 4413 /// Helper data structure to emit `AllocAlignAttr`. 4414 class AllocAlignAttrEmitter final 4415 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4416 public: 4417 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4418 const CallArgList &CallArgs) 4419 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4420 if (!AA) 4421 return; 4422 // Alignment may or may not be a constant, and that is okay. 4423 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4424 .getRValue(CGF) 4425 .getScalarVal(); 4426 } 4427 }; 4428 4429 } // namespace 4430 4431 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4432 const CGCallee &Callee, 4433 ReturnValueSlot ReturnValue, 4434 const CallArgList &CallArgs, 4435 llvm::CallBase **callOrInvoke, 4436 SourceLocation Loc) { 4437 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4438 4439 assert(Callee.isOrdinary() || Callee.isVirtual()); 4440 4441 // Handle struct-return functions by passing a pointer to the 4442 // location that we would like to return into. 4443 QualType RetTy = CallInfo.getReturnType(); 4444 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4445 4446 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4447 4448 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4449 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 4450 // We can only guarantee that a function is called from the correct 4451 // context/function based on the appropriate target attributes, 4452 // so only check in the case where we have both always_inline and target 4453 // since otherwise we could be making a conditional call after a check for 4454 // the proper cpu features (and it won't cause code generation issues due to 4455 // function based code generation). 4456 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4457 TargetDecl->hasAttr<TargetAttr>()) 4458 checkTargetFeatures(Loc, FD); 4459 4460 // Some architectures (such as x86-64) have the ABI changed based on 4461 // attribute-target/features. Give them a chance to diagnose. 4462 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 4463 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs); 4464 } 4465 4466 #ifndef NDEBUG 4467 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 4468 // For an inalloca varargs function, we don't expect CallInfo to match the 4469 // function pointer's type, because the inalloca struct a will have extra 4470 // fields in it for the varargs parameters. Code later in this function 4471 // bitcasts the function pointer to the type derived from CallInfo. 4472 // 4473 // In other cases, we assert that the types match up (until pointers stop 4474 // having pointee types). 4475 llvm::Type *TypeFromVal; 4476 if (Callee.isVirtual()) 4477 TypeFromVal = Callee.getVirtualFunctionType(); 4478 else 4479 TypeFromVal = 4480 Callee.getFunctionPointer()->getType()->getPointerElementType(); 4481 assert(IRFuncTy == TypeFromVal); 4482 } 4483 #endif 4484 4485 // 1. Set up the arguments. 4486 4487 // If we're using inalloca, insert the allocation after the stack save. 4488 // FIXME: Do this earlier rather than hacking it in here! 4489 Address ArgMemory = Address::invalid(); 4490 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4491 const llvm::DataLayout &DL = CGM.getDataLayout(); 4492 llvm::Instruction *IP = CallArgs.getStackBase(); 4493 llvm::AllocaInst *AI; 4494 if (IP) { 4495 IP = IP->getNextNode(); 4496 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 4497 "argmem", IP); 4498 } else { 4499 AI = CreateTempAlloca(ArgStruct, "argmem"); 4500 } 4501 auto Align = CallInfo.getArgStructAlignment(); 4502 AI->setAlignment(Align.getAsAlign()); 4503 AI->setUsedWithInAlloca(true); 4504 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 4505 ArgMemory = Address(AI, Align); 4506 } 4507 4508 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 4509 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 4510 4511 // If the call returns a temporary with struct return, create a temporary 4512 // alloca to hold the result, unless one is given to us. 4513 Address SRetPtr = Address::invalid(); 4514 Address SRetAlloca = Address::invalid(); 4515 llvm::Value *UnusedReturnSizePtr = nullptr; 4516 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 4517 if (!ReturnValue.isNull()) { 4518 SRetPtr = ReturnValue.getValue(); 4519 } else { 4520 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 4521 if (HaveInsertPoint() && ReturnValue.isUnused()) { 4522 uint64_t size = 4523 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 4524 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 4525 } 4526 } 4527 if (IRFunctionArgs.hasSRetArg()) { 4528 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 4529 } else if (RetAI.isInAlloca()) { 4530 Address Addr = 4531 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 4532 Builder.CreateStore(SRetPtr.getPointer(), Addr); 4533 } 4534 } 4535 4536 Address swiftErrorTemp = Address::invalid(); 4537 Address swiftErrorArg = Address::invalid(); 4538 4539 // When passing arguments using temporary allocas, we need to add the 4540 // appropriate lifetime markers. This vector keeps track of all the lifetime 4541 // markers that need to be ended right after the call. 4542 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 4543 4544 // Translate all of the arguments as necessary to match the IR lowering. 4545 assert(CallInfo.arg_size() == CallArgs.size() && 4546 "Mismatch between function signature & arguments."); 4547 unsigned ArgNo = 0; 4548 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 4549 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 4550 I != E; ++I, ++info_it, ++ArgNo) { 4551 const ABIArgInfo &ArgInfo = info_it->info; 4552 4553 // Insert a padding argument to ensure proper alignment. 4554 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 4555 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 4556 llvm::UndefValue::get(ArgInfo.getPaddingType()); 4557 4558 unsigned FirstIRArg, NumIRArgs; 4559 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 4560 4561 switch (ArgInfo.getKind()) { 4562 case ABIArgInfo::InAlloca: { 4563 assert(NumIRArgs == 0); 4564 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 4565 if (I->isAggregate()) { 4566 Address Addr = I->hasLValue() 4567 ? I->getKnownLValue().getAddress(*this) 4568 : I->getKnownRValue().getAggregateAddress(); 4569 llvm::Instruction *Placeholder = 4570 cast<llvm::Instruction>(Addr.getPointer()); 4571 4572 if (!ArgInfo.getInAllocaIndirect()) { 4573 // Replace the placeholder with the appropriate argument slot GEP. 4574 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 4575 Builder.SetInsertPoint(Placeholder); 4576 Addr = Builder.CreateStructGEP(ArgMemory, 4577 ArgInfo.getInAllocaFieldIndex()); 4578 Builder.restoreIP(IP); 4579 } else { 4580 // For indirect things such as overaligned structs, replace the 4581 // placeholder with a regular aggregate temporary alloca. Store the 4582 // address of this alloca into the struct. 4583 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 4584 Address ArgSlot = Builder.CreateStructGEP( 4585 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4586 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4587 } 4588 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 4589 } else if (ArgInfo.getInAllocaIndirect()) { 4590 // Make a temporary alloca and store the address of it into the argument 4591 // struct. 4592 Address Addr = CreateMemTempWithoutCast( 4593 I->Ty, getContext().getTypeAlignInChars(I->Ty), 4594 "indirect-arg-temp"); 4595 I->copyInto(*this, Addr); 4596 Address ArgSlot = 4597 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4598 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4599 } else { 4600 // Store the RValue into the argument struct. 4601 Address Addr = 4602 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4603 unsigned AS = Addr.getType()->getPointerAddressSpace(); 4604 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 4605 // There are some cases where a trivial bitcast is not avoidable. The 4606 // definition of a type later in a translation unit may change it's type 4607 // from {}* to (%struct.foo*)*. 4608 if (Addr.getType() != MemType) 4609 Addr = Builder.CreateBitCast(Addr, MemType); 4610 I->copyInto(*this, Addr); 4611 } 4612 break; 4613 } 4614 4615 case ABIArgInfo::Indirect: 4616 case ABIArgInfo::IndirectAliased: { 4617 assert(NumIRArgs == 1); 4618 if (!I->isAggregate()) { 4619 // Make a temporary alloca to pass the argument. 4620 Address Addr = CreateMemTempWithoutCast( 4621 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 4622 IRCallArgs[FirstIRArg] = Addr.getPointer(); 4623 4624 I->copyInto(*this, Addr); 4625 } else { 4626 // We want to avoid creating an unnecessary temporary+copy here; 4627 // however, we need one in three cases: 4628 // 1. If the argument is not byval, and we are required to copy the 4629 // source. (This case doesn't occur on any common architecture.) 4630 // 2. If the argument is byval, RV is not sufficiently aligned, and 4631 // we cannot force it to be sufficiently aligned. 4632 // 3. If the argument is byval, but RV is not located in default 4633 // or alloca address space. 4634 Address Addr = I->hasLValue() 4635 ? I->getKnownLValue().getAddress(*this) 4636 : I->getKnownRValue().getAggregateAddress(); 4637 llvm::Value *V = Addr.getPointer(); 4638 CharUnits Align = ArgInfo.getIndirectAlign(); 4639 const llvm::DataLayout *TD = &CGM.getDataLayout(); 4640 4641 assert((FirstIRArg >= IRFuncTy->getNumParams() || 4642 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 4643 TD->getAllocaAddrSpace()) && 4644 "indirect argument must be in alloca address space"); 4645 4646 bool NeedCopy = false; 4647 4648 if (Addr.getAlignment() < Align && 4649 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 4650 Align.getAsAlign()) { 4651 NeedCopy = true; 4652 } else if (I->hasLValue()) { 4653 auto LV = I->getKnownLValue(); 4654 auto AS = LV.getAddressSpace(); 4655 4656 if (!ArgInfo.getIndirectByVal() || 4657 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4658 NeedCopy = true; 4659 } 4660 if (!getLangOpts().OpenCL) { 4661 if ((ArgInfo.getIndirectByVal() && 4662 (AS != LangAS::Default && 4663 AS != CGM.getASTAllocaAddressSpace()))) { 4664 NeedCopy = true; 4665 } 4666 } 4667 // For OpenCL even if RV is located in default or alloca address space 4668 // we don't want to perform address space cast for it. 4669 else if ((ArgInfo.getIndirectByVal() && 4670 Addr.getType()->getAddressSpace() != IRFuncTy-> 4671 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4672 NeedCopy = true; 4673 } 4674 } 4675 4676 if (NeedCopy) { 4677 // Create an aligned temporary, and copy to it. 4678 Address AI = CreateMemTempWithoutCast( 4679 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4680 IRCallArgs[FirstIRArg] = AI.getPointer(); 4681 4682 // Emit lifetime markers for the temporary alloca. 4683 uint64_t ByvalTempElementSize = 4684 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4685 llvm::Value *LifetimeSize = 4686 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4687 4688 // Add cleanup code to emit the end lifetime marker after the call. 4689 if (LifetimeSize) // In case we disabled lifetime markers. 4690 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4691 4692 // Generate the copy. 4693 I->copyInto(*this, AI); 4694 } else { 4695 // Skip the extra memcpy call. 4696 auto *T = V->getType()->getPointerElementType()->getPointerTo( 4697 CGM.getDataLayout().getAllocaAddrSpace()); 4698 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4699 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4700 true); 4701 } 4702 } 4703 break; 4704 } 4705 4706 case ABIArgInfo::Ignore: 4707 assert(NumIRArgs == 0); 4708 break; 4709 4710 case ABIArgInfo::Extend: 4711 case ABIArgInfo::Direct: { 4712 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4713 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4714 ArgInfo.getDirectOffset() == 0) { 4715 assert(NumIRArgs == 1); 4716 llvm::Value *V; 4717 if (!I->isAggregate()) 4718 V = I->getKnownRValue().getScalarVal(); 4719 else 4720 V = Builder.CreateLoad( 4721 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4722 : I->getKnownRValue().getAggregateAddress()); 4723 4724 // Implement swifterror by copying into a new swifterror argument. 4725 // We'll write back in the normal path out of the call. 4726 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4727 == ParameterABI::SwiftErrorResult) { 4728 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4729 4730 QualType pointeeTy = I->Ty->getPointeeType(); 4731 swiftErrorArg = 4732 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4733 4734 swiftErrorTemp = 4735 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4736 V = swiftErrorTemp.getPointer(); 4737 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4738 4739 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4740 Builder.CreateStore(errorValue, swiftErrorTemp); 4741 } 4742 4743 // We might have to widen integers, but we should never truncate. 4744 if (ArgInfo.getCoerceToType() != V->getType() && 4745 V->getType()->isIntegerTy()) 4746 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4747 4748 // If the argument doesn't match, perform a bitcast to coerce it. This 4749 // can happen due to trivial type mismatches. 4750 if (FirstIRArg < IRFuncTy->getNumParams() && 4751 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4752 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4753 4754 IRCallArgs[FirstIRArg] = V; 4755 break; 4756 } 4757 4758 // FIXME: Avoid the conversion through memory if possible. 4759 Address Src = Address::invalid(); 4760 if (!I->isAggregate()) { 4761 Src = CreateMemTemp(I->Ty, "coerce"); 4762 I->copyInto(*this, Src); 4763 } else { 4764 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4765 : I->getKnownRValue().getAggregateAddress(); 4766 } 4767 4768 // If the value is offset in memory, apply the offset now. 4769 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4770 4771 // Fast-isel and the optimizer generally like scalar values better than 4772 // FCAs, so we flatten them if this is safe to do for this argument. 4773 llvm::StructType *STy = 4774 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4775 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4776 llvm::Type *SrcTy = Src.getElementType(); 4777 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4778 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4779 4780 // If the source type is smaller than the destination type of the 4781 // coerce-to logic, copy the source value into a temp alloca the size 4782 // of the destination type to allow loading all of it. The bits past 4783 // the source value are left undef. 4784 if (SrcSize < DstSize) { 4785 Address TempAlloca 4786 = CreateTempAlloca(STy, Src.getAlignment(), 4787 Src.getName() + ".coerce"); 4788 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4789 Src = TempAlloca; 4790 } else { 4791 Src = Builder.CreateBitCast(Src, 4792 STy->getPointerTo(Src.getAddressSpace())); 4793 } 4794 4795 assert(NumIRArgs == STy->getNumElements()); 4796 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4797 Address EltPtr = Builder.CreateStructGEP(Src, i); 4798 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4799 IRCallArgs[FirstIRArg + i] = LI; 4800 } 4801 } else { 4802 // In the simple case, just pass the coerced loaded value. 4803 assert(NumIRArgs == 1); 4804 llvm::Value *Load = 4805 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4806 4807 if (CallInfo.isCmseNSCall()) { 4808 // For certain parameter types, clear padding bits, as they may reveal 4809 // sensitive information. 4810 // Small struct/union types are passed as integer arrays. 4811 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 4812 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 4813 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 4814 } 4815 IRCallArgs[FirstIRArg] = Load; 4816 } 4817 4818 break; 4819 } 4820 4821 case ABIArgInfo::CoerceAndExpand: { 4822 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4823 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4824 4825 llvm::Value *tempSize = nullptr; 4826 Address addr = Address::invalid(); 4827 Address AllocaAddr = Address::invalid(); 4828 if (I->isAggregate()) { 4829 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4830 : I->getKnownRValue().getAggregateAddress(); 4831 4832 } else { 4833 RValue RV = I->getKnownRValue(); 4834 assert(RV.isScalar()); // complex should always just be direct 4835 4836 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4837 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4838 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4839 4840 // Materialize to a temporary. 4841 addr = CreateTempAlloca( 4842 RV.getScalarVal()->getType(), 4843 CharUnits::fromQuantity(std::max( 4844 (unsigned)layout->getAlignment().value(), scalarAlign)), 4845 "tmp", 4846 /*ArraySize=*/nullptr, &AllocaAddr); 4847 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4848 4849 Builder.CreateStore(RV.getScalarVal(), addr); 4850 } 4851 4852 addr = Builder.CreateElementBitCast(addr, coercionType); 4853 4854 unsigned IRArgPos = FirstIRArg; 4855 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4856 llvm::Type *eltType = coercionType->getElementType(i); 4857 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4858 Address eltAddr = Builder.CreateStructGEP(addr, i); 4859 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4860 IRCallArgs[IRArgPos++] = elt; 4861 } 4862 assert(IRArgPos == FirstIRArg + NumIRArgs); 4863 4864 if (tempSize) { 4865 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4866 } 4867 4868 break; 4869 } 4870 4871 case ABIArgInfo::Expand: { 4872 unsigned IRArgPos = FirstIRArg; 4873 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4874 assert(IRArgPos == FirstIRArg + NumIRArgs); 4875 break; 4876 } 4877 } 4878 } 4879 4880 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4881 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4882 4883 // If we're using inalloca, set up that argument. 4884 if (ArgMemory.isValid()) { 4885 llvm::Value *Arg = ArgMemory.getPointer(); 4886 if (CallInfo.isVariadic()) { 4887 // When passing non-POD arguments by value to variadic functions, we will 4888 // end up with a variadic prototype and an inalloca call site. In such 4889 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4890 // the callee. 4891 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4892 CalleePtr = 4893 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 4894 } else { 4895 llvm::Type *LastParamTy = 4896 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4897 if (Arg->getType() != LastParamTy) { 4898 #ifndef NDEBUG 4899 // Assert that these structs have equivalent element types. 4900 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4901 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4902 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4903 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4904 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4905 DE = DeclaredTy->element_end(), 4906 FI = FullTy->element_begin(); 4907 DI != DE; ++DI, ++FI) 4908 assert(*DI == *FI); 4909 #endif 4910 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4911 } 4912 } 4913 assert(IRFunctionArgs.hasInallocaArg()); 4914 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4915 } 4916 4917 // 2. Prepare the function pointer. 4918 4919 // If the callee is a bitcast of a non-variadic function to have a 4920 // variadic function pointer type, check to see if we can remove the 4921 // bitcast. This comes up with unprototyped functions. 4922 // 4923 // This makes the IR nicer, but more importantly it ensures that we 4924 // can inline the function at -O0 if it is marked always_inline. 4925 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 4926 llvm::Value *Ptr) -> llvm::Function * { 4927 if (!CalleeFT->isVarArg()) 4928 return nullptr; 4929 4930 // Get underlying value if it's a bitcast 4931 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 4932 if (CE->getOpcode() == llvm::Instruction::BitCast) 4933 Ptr = CE->getOperand(0); 4934 } 4935 4936 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 4937 if (!OrigFn) 4938 return nullptr; 4939 4940 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4941 4942 // If the original type is variadic, or if any of the component types 4943 // disagree, we cannot remove the cast. 4944 if (OrigFT->isVarArg() || 4945 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4946 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4947 return nullptr; 4948 4949 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4950 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4951 return nullptr; 4952 4953 return OrigFn; 4954 }; 4955 4956 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 4957 CalleePtr = OrigFn; 4958 IRFuncTy = OrigFn->getFunctionType(); 4959 } 4960 4961 // 3. Perform the actual call. 4962 4963 // Deactivate any cleanups that we're supposed to do immediately before 4964 // the call. 4965 if (!CallArgs.getCleanupsToDeactivate().empty()) 4966 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4967 4968 // Assert that the arguments we computed match up. The IR verifier 4969 // will catch this, but this is a common enough source of problems 4970 // during IRGen changes that it's way better for debugging to catch 4971 // it ourselves here. 4972 #ifndef NDEBUG 4973 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4974 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4975 // Inalloca argument can have different type. 4976 if (IRFunctionArgs.hasInallocaArg() && 4977 i == IRFunctionArgs.getInallocaArgNo()) 4978 continue; 4979 if (i < IRFuncTy->getNumParams()) 4980 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4981 } 4982 #endif 4983 4984 // Update the largest vector width if any arguments have vector types. 4985 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4986 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 4987 LargestVectorWidth = 4988 std::max((uint64_t)LargestVectorWidth, 4989 VT->getPrimitiveSizeInBits().getKnownMinSize()); 4990 } 4991 4992 // Compute the calling convention and attributes. 4993 unsigned CallingConv; 4994 llvm::AttributeList Attrs; 4995 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4996 Callee.getAbstractInfo(), Attrs, CallingConv, 4997 /*AttrOnCallSite=*/true); 4998 4999 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5000 if (FD->hasAttr<StrictFPAttr>()) 5001 // All calls within a strictfp function are marked strictfp 5002 Attrs = 5003 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 5004 llvm::Attribute::StrictFP); 5005 5006 // Add nomerge attribute to the call-site if the callee function doesn't have 5007 // the attribute. 5008 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 5009 if (!FD->hasAttr<NoMergeAttr>() && InNoMergeAttributedStmt) 5010 Attrs = Attrs.addAttribute(getLLVMContext(), 5011 llvm::AttributeList::FunctionIndex, 5012 llvm::Attribute::NoMerge); 5013 5014 // Apply some call-site-specific attributes. 5015 // TODO: work this into building the attribute set. 5016 5017 // Apply always_inline to all calls within flatten functions. 5018 // FIXME: should this really take priority over __try, below? 5019 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 5020 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 5021 Attrs = 5022 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 5023 llvm::Attribute::AlwaysInline); 5024 } 5025 5026 // Disable inlining inside SEH __try blocks. 5027 if (isSEHTryScope()) { 5028 Attrs = 5029 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 5030 llvm::Attribute::NoInline); 5031 } 5032 5033 // Decide whether to use a call or an invoke. 5034 bool CannotThrow; 5035 if (currentFunctionUsesSEHTry()) { 5036 // SEH cares about asynchronous exceptions, so everything can "throw." 5037 CannotThrow = false; 5038 } else if (isCleanupPadScope() && 5039 EHPersonality::get(*this).isMSVCXXPersonality()) { 5040 // The MSVC++ personality will implicitly terminate the program if an 5041 // exception is thrown during a cleanup outside of a try/catch. 5042 // We don't need to model anything in IR to get this behavior. 5043 CannotThrow = true; 5044 } else { 5045 // Otherwise, nounwind call sites will never throw. 5046 CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind); 5047 5048 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 5049 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 5050 CannotThrow = true; 5051 } 5052 5053 // If we made a temporary, be sure to clean up after ourselves. Note that we 5054 // can't depend on being inside of an ExprWithCleanups, so we need to manually 5055 // pop this cleanup later on. Being eager about this is OK, since this 5056 // temporary is 'invisible' outside of the callee. 5057 if (UnusedReturnSizePtr) 5058 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 5059 UnusedReturnSizePtr); 5060 5061 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 5062 5063 SmallVector<llvm::OperandBundleDef, 1> BundleList = 5064 getBundlesForFunclet(CalleePtr); 5065 5066 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5067 if (FD->hasAttr<StrictFPAttr>()) 5068 // All calls within a strictfp function are marked strictfp 5069 Attrs = 5070 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 5071 llvm::Attribute::StrictFP); 5072 5073 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 5074 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5075 5076 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 5077 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5078 5079 // Emit the actual call/invoke instruction. 5080 llvm::CallBase *CI; 5081 if (!InvokeDest) { 5082 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 5083 } else { 5084 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 5085 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 5086 BundleList); 5087 EmitBlock(Cont); 5088 } 5089 if (callOrInvoke) 5090 *callOrInvoke = CI; 5091 5092 // If this is within a function that has the guard(nocf) attribute and is an 5093 // indirect call, add the "guard_nocf" attribute to this call to indicate that 5094 // Control Flow Guard checks should not be added, even if the call is inlined. 5095 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5096 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 5097 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 5098 Attrs = Attrs.addAttribute( 5099 getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf"); 5100 } 5101 } 5102 5103 // Apply the attributes and calling convention. 5104 CI->setAttributes(Attrs); 5105 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 5106 5107 // Apply various metadata. 5108 5109 if (!CI->getType()->isVoidTy()) 5110 CI->setName("call"); 5111 5112 // Update largest vector width from the return type. 5113 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 5114 LargestVectorWidth = 5115 std::max((uint64_t)LargestVectorWidth, 5116 VT->getPrimitiveSizeInBits().getKnownMinSize()); 5117 5118 // Insert instrumentation or attach profile metadata at indirect call sites. 5119 // For more details, see the comment before the definition of 5120 // IPVK_IndirectCallTarget in InstrProfData.inc. 5121 if (!CI->getCalledFunction()) 5122 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 5123 CI, CalleePtr); 5124 5125 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 5126 // optimizer it can aggressively ignore unwind edges. 5127 if (CGM.getLangOpts().ObjCAutoRefCount) 5128 AddObjCARCExceptionMetadata(CI); 5129 5130 // Suppress tail calls if requested. 5131 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 5132 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 5133 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 5134 } 5135 5136 // Add metadata for calls to MSAllocator functions 5137 if (getDebugInfo() && TargetDecl && 5138 TargetDecl->hasAttr<MSAllocatorAttr>()) 5139 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 5140 5141 // 4. Finish the call. 5142 5143 // If the call doesn't return, finish the basic block and clear the 5144 // insertion point; this allows the rest of IRGen to discard 5145 // unreachable code. 5146 if (CI->doesNotReturn()) { 5147 if (UnusedReturnSizePtr) 5148 PopCleanupBlock(); 5149 5150 // Strip away the noreturn attribute to better diagnose unreachable UB. 5151 if (SanOpts.has(SanitizerKind::Unreachable)) { 5152 // Also remove from function since CallBase::hasFnAttr additionally checks 5153 // attributes of the called function. 5154 if (auto *F = CI->getCalledFunction()) 5155 F->removeFnAttr(llvm::Attribute::NoReturn); 5156 CI->removeAttribute(llvm::AttributeList::FunctionIndex, 5157 llvm::Attribute::NoReturn); 5158 5159 // Avoid incompatibility with ASan which relies on the `noreturn` 5160 // attribute to insert handler calls. 5161 if (SanOpts.hasOneOf(SanitizerKind::Address | 5162 SanitizerKind::KernelAddress)) { 5163 SanitizerScope SanScope(this); 5164 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5165 Builder.SetInsertPoint(CI); 5166 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5167 llvm::FunctionCallee Fn = 5168 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5169 EmitNounwindRuntimeCall(Fn); 5170 } 5171 } 5172 5173 EmitUnreachable(Loc); 5174 Builder.ClearInsertionPoint(); 5175 5176 // FIXME: For now, emit a dummy basic block because expr emitters in 5177 // generally are not ready to handle emitting expressions at unreachable 5178 // points. 5179 EnsureInsertPoint(); 5180 5181 // Return a reasonable RValue. 5182 return GetUndefRValue(RetTy); 5183 } 5184 5185 // Perform the swifterror writeback. 5186 if (swiftErrorTemp.isValid()) { 5187 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5188 Builder.CreateStore(errorResult, swiftErrorArg); 5189 } 5190 5191 // Emit any call-associated writebacks immediately. Arguably this 5192 // should happen after any return-value munging. 5193 if (CallArgs.hasWritebacks()) 5194 emitWritebacks(*this, CallArgs); 5195 5196 // The stack cleanup for inalloca arguments has to run out of the normal 5197 // lexical order, so deactivate it and run it manually here. 5198 CallArgs.freeArgumentMemory(*this); 5199 5200 // Extract the return value. 5201 RValue Ret = [&] { 5202 switch (RetAI.getKind()) { 5203 case ABIArgInfo::CoerceAndExpand: { 5204 auto coercionType = RetAI.getCoerceAndExpandType(); 5205 5206 Address addr = SRetPtr; 5207 addr = Builder.CreateElementBitCast(addr, coercionType); 5208 5209 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5210 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5211 5212 unsigned unpaddedIndex = 0; 5213 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5214 llvm::Type *eltType = coercionType->getElementType(i); 5215 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5216 Address eltAddr = Builder.CreateStructGEP(addr, i); 5217 llvm::Value *elt = CI; 5218 if (requiresExtract) 5219 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5220 else 5221 assert(unpaddedIndex == 0); 5222 Builder.CreateStore(elt, eltAddr); 5223 } 5224 // FALLTHROUGH 5225 LLVM_FALLTHROUGH; 5226 } 5227 5228 case ABIArgInfo::InAlloca: 5229 case ABIArgInfo::Indirect: { 5230 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5231 if (UnusedReturnSizePtr) 5232 PopCleanupBlock(); 5233 return ret; 5234 } 5235 5236 case ABIArgInfo::Ignore: 5237 // If we are ignoring an argument that had a result, make sure to 5238 // construct the appropriate return value for our caller. 5239 return GetUndefRValue(RetTy); 5240 5241 case ABIArgInfo::Extend: 5242 case ABIArgInfo::Direct: { 5243 llvm::Type *RetIRTy = ConvertType(RetTy); 5244 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5245 switch (getEvaluationKind(RetTy)) { 5246 case TEK_Complex: { 5247 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5248 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5249 return RValue::getComplex(std::make_pair(Real, Imag)); 5250 } 5251 case TEK_Aggregate: { 5252 Address DestPtr = ReturnValue.getValue(); 5253 bool DestIsVolatile = ReturnValue.isVolatile(); 5254 5255 if (!DestPtr.isValid()) { 5256 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5257 DestIsVolatile = false; 5258 } 5259 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5260 return RValue::getAggregate(DestPtr); 5261 } 5262 case TEK_Scalar: { 5263 // If the argument doesn't match, perform a bitcast to coerce it. This 5264 // can happen due to trivial type mismatches. 5265 llvm::Value *V = CI; 5266 if (V->getType() != RetIRTy) 5267 V = Builder.CreateBitCast(V, RetIRTy); 5268 return RValue::get(V); 5269 } 5270 } 5271 llvm_unreachable("bad evaluation kind"); 5272 } 5273 5274 Address DestPtr = ReturnValue.getValue(); 5275 bool DestIsVolatile = ReturnValue.isVolatile(); 5276 5277 if (!DestPtr.isValid()) { 5278 DestPtr = CreateMemTemp(RetTy, "coerce"); 5279 DestIsVolatile = false; 5280 } 5281 5282 // If the value is offset in memory, apply the offset now. 5283 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5284 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5285 5286 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5287 } 5288 5289 case ABIArgInfo::Expand: 5290 case ABIArgInfo::IndirectAliased: 5291 llvm_unreachable("Invalid ABI kind for return argument"); 5292 } 5293 5294 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5295 } (); 5296 5297 // Emit the assume_aligned check on the return value. 5298 if (Ret.isScalar() && TargetDecl) { 5299 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5300 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5301 } 5302 5303 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5304 // we can't use the full cleanup mechanism. 5305 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5306 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5307 5308 if (!ReturnValue.isExternallyDestructed() && 5309 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5310 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5311 RetTy); 5312 5313 return Ret; 5314 } 5315 5316 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5317 if (isVirtual()) { 5318 const CallExpr *CE = getVirtualCallExpr(); 5319 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5320 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5321 CE ? CE->getBeginLoc() : SourceLocation()); 5322 } 5323 5324 return *this; 5325 } 5326 5327 /* VarArg handling */ 5328 5329 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5330 VAListAddr = VE->isMicrosoftABI() 5331 ? EmitMSVAListRef(VE->getSubExpr()) 5332 : EmitVAListRef(VE->getSubExpr()); 5333 QualType Ty = VE->getType(); 5334 if (VE->isMicrosoftABI()) 5335 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5336 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5337 } 5338