1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_Win64: return llvm::CallingConv::Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
63   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
64   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
65   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
66   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
67   case CC_Swift: return llvm::CallingConv::Swift;
68   }
69 }
70 
71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
72 /// qualification. Either or both of RD and MD may be null. A null RD indicates
73 /// that there is no meaningful 'this' type, and a null MD can occur when
74 /// calling a method pointer.
75 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
76                                          const CXXMethodDecl *MD) {
77   QualType RecTy;
78   if (RD)
79     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
80   else
81     RecTy = Context.VoidTy;
82 
83   if (MD)
84     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
85   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
86 }
87 
88 /// Returns the canonical formal type of the given C++ method.
89 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
90   return MD->getType()->getCanonicalTypeUnqualified()
91            .getAs<FunctionProtoType>();
92 }
93 
94 /// Returns the "extra-canonicalized" return type, which discards
95 /// qualifiers on the return type.  Codegen doesn't care about them,
96 /// and it makes ABI code a little easier to be able to assume that
97 /// all parameter and return types are top-level unqualified.
98 static CanQualType GetReturnType(QualType RetTy) {
99   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
100 }
101 
102 /// Arrange the argument and result information for a value of the given
103 /// unprototyped freestanding function type.
104 const CGFunctionInfo &
105 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
106   // When translating an unprototyped function type, always use a
107   // variadic type.
108   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
109                                  /*instanceMethod=*/false,
110                                  /*chainCall=*/false, None,
111                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
112 }
113 
114 static void addExtParameterInfosForCall(
115          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
116                                         const FunctionProtoType *proto,
117                                         unsigned prefixArgs,
118                                         unsigned totalArgs) {
119   assert(proto->hasExtParameterInfos());
120   assert(paramInfos.size() <= prefixArgs);
121   assert(proto->getNumParams() + prefixArgs <= totalArgs);
122 
123   paramInfos.reserve(totalArgs);
124 
125   // Add default infos for any prefix args that don't already have infos.
126   paramInfos.resize(prefixArgs);
127 
128   // Add infos for the prototype.
129   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
130     paramInfos.push_back(ParamInfo);
131     // pass_object_size params have no parameter info.
132     if (ParamInfo.hasPassObjectSize())
133       paramInfos.emplace_back();
134   }
135 
136   assert(paramInfos.size() <= totalArgs &&
137          "Did we forget to insert pass_object_size args?");
138   // Add default infos for the variadic and/or suffix arguments.
139   paramInfos.resize(totalArgs);
140 }
141 
142 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
143 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
144 static void appendParameterTypes(const CodeGenTypes &CGT,
145                                  SmallVectorImpl<CanQualType> &prefix,
146               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
147                                  CanQual<FunctionProtoType> FPT) {
148   // Fast path: don't touch param info if we don't need to.
149   if (!FPT->hasExtParameterInfos()) {
150     assert(paramInfos.empty() &&
151            "We have paramInfos, but the prototype doesn't?");
152     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
153     return;
154   }
155 
156   unsigned PrefixSize = prefix.size();
157   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
158   // parameters; the only thing that can change this is the presence of
159   // pass_object_size. So, we preallocate for the common case.
160   prefix.reserve(prefix.size() + FPT->getNumParams());
161 
162   auto ExtInfos = FPT->getExtParameterInfos();
163   assert(ExtInfos.size() == FPT->getNumParams());
164   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
165     prefix.push_back(FPT->getParamType(I));
166     if (ExtInfos[I].hasPassObjectSize())
167       prefix.push_back(CGT.getContext().getSizeType());
168   }
169 
170   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
171                               prefix.size());
172 }
173 
174 /// Arrange the LLVM function layout for a value of the given function
175 /// type, on top of any implicit parameters already stored.
176 static const CGFunctionInfo &
177 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
178                         SmallVectorImpl<CanQualType> &prefix,
179                         CanQual<FunctionProtoType> FTP) {
180   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
181   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
182   // FIXME: Kill copy.
183   appendParameterTypes(CGT, prefix, paramInfos, FTP);
184   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
185 
186   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
187                                      /*chainCall=*/false, prefix,
188                                      FTP->getExtInfo(), paramInfos,
189                                      Required);
190 }
191 
192 /// Arrange the argument and result information for a value of the
193 /// given freestanding function type.
194 const CGFunctionInfo &
195 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
196   SmallVector<CanQualType, 16> argTypes;
197   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
198                                    FTP);
199 }
200 
201 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
202                                                bool IsWindows) {
203   // Set the appropriate calling convention for the Function.
204   if (D->hasAttr<StdCallAttr>())
205     return CC_X86StdCall;
206 
207   if (D->hasAttr<FastCallAttr>())
208     return CC_X86FastCall;
209 
210   if (D->hasAttr<RegCallAttr>())
211     return CC_X86RegCall;
212 
213   if (D->hasAttr<ThisCallAttr>())
214     return CC_X86ThisCall;
215 
216   if (D->hasAttr<VectorCallAttr>())
217     return CC_X86VectorCall;
218 
219   if (D->hasAttr<PascalAttr>())
220     return CC_X86Pascal;
221 
222   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
223     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
224 
225   if (D->hasAttr<AArch64VectorPcsAttr>())
226     return CC_AArch64VectorCall;
227 
228   if (D->hasAttr<IntelOclBiccAttr>())
229     return CC_IntelOclBicc;
230 
231   if (D->hasAttr<MSABIAttr>())
232     return IsWindows ? CC_C : CC_Win64;
233 
234   if (D->hasAttr<SysVABIAttr>())
235     return IsWindows ? CC_X86_64SysV : CC_C;
236 
237   if (D->hasAttr<PreserveMostAttr>())
238     return CC_PreserveMost;
239 
240   if (D->hasAttr<PreserveAllAttr>())
241     return CC_PreserveAll;
242 
243   return CC_C;
244 }
245 
246 /// Arrange the argument and result information for a call to an
247 /// unknown C++ non-static member function of the given abstract type.
248 /// (A null RD means we don't have any meaningful "this" argument type,
249 ///  so fall back to a generic pointer type).
250 /// The member function must be an ordinary function, i.e. not a
251 /// constructor or destructor.
252 const CGFunctionInfo &
253 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
254                                    const FunctionProtoType *FTP,
255                                    const CXXMethodDecl *MD) {
256   SmallVector<CanQualType, 16> argTypes;
257 
258   // Add the 'this' pointer.
259   argTypes.push_back(DeriveThisType(RD, MD));
260 
261   return ::arrangeLLVMFunctionInfo(
262       *this, true, argTypes,
263       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
264 }
265 
266 /// Set calling convention for CUDA/HIP kernel.
267 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
268                                            const FunctionDecl *FD) {
269   if (FD->hasAttr<CUDAGlobalAttr>()) {
270     const FunctionType *FT = FTy->getAs<FunctionType>();
271     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
272     FTy = FT->getCanonicalTypeUnqualified();
273   }
274 }
275 
276 /// Arrange the argument and result information for a declaration or
277 /// definition of the given C++ non-static member function.  The
278 /// member function must be an ordinary function, i.e. not a
279 /// constructor or destructor.
280 const CGFunctionInfo &
281 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
282   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
283   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
284 
285   CanQualType FT = GetFormalType(MD).getAs<Type>();
286   setCUDAKernelCallingConvention(FT, CGM, MD);
287   auto prototype = FT.getAs<FunctionProtoType>();
288 
289   if (MD->isInstance()) {
290     // The abstract case is perfectly fine.
291     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
292     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
293   }
294 
295   return arrangeFreeFunctionType(prototype);
296 }
297 
298 bool CodeGenTypes::inheritingCtorHasParams(
299     const InheritedConstructor &Inherited, CXXCtorType Type) {
300   // Parameters are unnecessary if we're constructing a base class subobject
301   // and the inherited constructor lives in a virtual base.
302   return Type == Ctor_Complete ||
303          !Inherited.getShadowDecl()->constructsVirtualBase() ||
304          !Target.getCXXABI().hasConstructorVariants();
305 }
306 
307 const CGFunctionInfo &
308 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
309   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
310 
311   SmallVector<CanQualType, 16> argTypes;
312   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
313   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
314 
315   bool PassParams = true;
316 
317   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
318     // A base class inheriting constructor doesn't get forwarded arguments
319     // needed to construct a virtual base (or base class thereof).
320     if (auto Inherited = CD->getInheritedConstructor())
321       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
322   }
323 
324   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
325 
326   // Add the formal parameters.
327   if (PassParams)
328     appendParameterTypes(*this, argTypes, paramInfos, FTP);
329 
330   CGCXXABI::AddedStructorArgCounts AddedArgs =
331       TheCXXABI.buildStructorSignature(GD, argTypes);
332   if (!paramInfos.empty()) {
333     // Note: prefix implies after the first param.
334     if (AddedArgs.Prefix)
335       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
336                         FunctionProtoType::ExtParameterInfo{});
337     if (AddedArgs.Suffix)
338       paramInfos.append(AddedArgs.Suffix,
339                         FunctionProtoType::ExtParameterInfo{});
340   }
341 
342   RequiredArgs required =
343       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
344                                       : RequiredArgs::All);
345 
346   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
347   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
348                                ? argTypes.front()
349                                : TheCXXABI.hasMostDerivedReturn(GD)
350                                      ? CGM.getContext().VoidPtrTy
351                                      : Context.VoidTy;
352   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
353                                  /*chainCall=*/false, argTypes, extInfo,
354                                  paramInfos, required);
355 }
356 
357 static SmallVector<CanQualType, 16>
358 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
359   SmallVector<CanQualType, 16> argTypes;
360   for (auto &arg : args)
361     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
362   return argTypes;
363 }
364 
365 static SmallVector<CanQualType, 16>
366 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
367   SmallVector<CanQualType, 16> argTypes;
368   for (auto &arg : args)
369     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
370   return argTypes;
371 }
372 
373 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
374 getExtParameterInfosForCall(const FunctionProtoType *proto,
375                             unsigned prefixArgs, unsigned totalArgs) {
376   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
377   if (proto->hasExtParameterInfos()) {
378     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
379   }
380   return result;
381 }
382 
383 /// Arrange a call to a C++ method, passing the given arguments.
384 ///
385 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
386 /// parameter.
387 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
388 /// args.
389 /// PassProtoArgs indicates whether `args` has args for the parameters in the
390 /// given CXXConstructorDecl.
391 const CGFunctionInfo &
392 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
393                                         const CXXConstructorDecl *D,
394                                         CXXCtorType CtorKind,
395                                         unsigned ExtraPrefixArgs,
396                                         unsigned ExtraSuffixArgs,
397                                         bool PassProtoArgs) {
398   // FIXME: Kill copy.
399   SmallVector<CanQualType, 16> ArgTypes;
400   for (const auto &Arg : args)
401     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
402 
403   // +1 for implicit this, which should always be args[0].
404   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
405 
406   CanQual<FunctionProtoType> FPT = GetFormalType(D);
407   RequiredArgs Required = PassProtoArgs
408                               ? RequiredArgs::forPrototypePlus(
409                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
410                               : RequiredArgs::All;
411 
412   GlobalDecl GD(D, CtorKind);
413   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
414                                ? ArgTypes.front()
415                                : TheCXXABI.hasMostDerivedReturn(GD)
416                                      ? CGM.getContext().VoidPtrTy
417                                      : Context.VoidTy;
418 
419   FunctionType::ExtInfo Info = FPT->getExtInfo();
420   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
421   // If the prototype args are elided, we should only have ABI-specific args,
422   // which never have param info.
423   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
424     // ABI-specific suffix arguments are treated the same as variadic arguments.
425     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
426                                 ArgTypes.size());
427   }
428   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
429                                  /*chainCall=*/false, ArgTypes, Info,
430                                  ParamInfos, Required);
431 }
432 
433 /// Arrange the argument and result information for the declaration or
434 /// definition of the given function.
435 const CGFunctionInfo &
436 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
437   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
438     if (MD->isInstance())
439       return arrangeCXXMethodDeclaration(MD);
440 
441   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
442 
443   assert(isa<FunctionType>(FTy));
444   setCUDAKernelCallingConvention(FTy, CGM, FD);
445 
446   // When declaring a function without a prototype, always use a
447   // non-variadic type.
448   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
449     return arrangeLLVMFunctionInfo(
450         noProto->getReturnType(), /*instanceMethod=*/false,
451         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
452   }
453 
454   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
455 }
456 
457 /// Arrange the argument and result information for the declaration or
458 /// definition of an Objective-C method.
459 const CGFunctionInfo &
460 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
461   // It happens that this is the same as a call with no optional
462   // arguments, except also using the formal 'self' type.
463   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
464 }
465 
466 /// Arrange the argument and result information for the function type
467 /// through which to perform a send to the given Objective-C method,
468 /// using the given receiver type.  The receiver type is not always
469 /// the 'self' type of the method or even an Objective-C pointer type.
470 /// This is *not* the right method for actually performing such a
471 /// message send, due to the possibility of optional arguments.
472 const CGFunctionInfo &
473 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
474                                               QualType receiverType) {
475   SmallVector<CanQualType, 16> argTys;
476   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
477   argTys.push_back(Context.getCanonicalParamType(receiverType));
478   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
479   // FIXME: Kill copy?
480   for (const auto *I : MD->parameters()) {
481     argTys.push_back(Context.getCanonicalParamType(I->getType()));
482     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
483         I->hasAttr<NoEscapeAttr>());
484     extParamInfos.push_back(extParamInfo);
485   }
486 
487   FunctionType::ExtInfo einfo;
488   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
489   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
490 
491   if (getContext().getLangOpts().ObjCAutoRefCount &&
492       MD->hasAttr<NSReturnsRetainedAttr>())
493     einfo = einfo.withProducesResult(true);
494 
495   RequiredArgs required =
496     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
497 
498   return arrangeLLVMFunctionInfo(
499       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
500       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
501 }
502 
503 const CGFunctionInfo &
504 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
505                                                  const CallArgList &args) {
506   auto argTypes = getArgTypesForCall(Context, args);
507   FunctionType::ExtInfo einfo;
508 
509   return arrangeLLVMFunctionInfo(
510       GetReturnType(returnType), /*instanceMethod=*/false,
511       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
512 }
513 
514 const CGFunctionInfo &
515 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
516   // FIXME: Do we need to handle ObjCMethodDecl?
517   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
518 
519   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
520       isa<CXXDestructorDecl>(GD.getDecl()))
521     return arrangeCXXStructorDeclaration(GD);
522 
523   return arrangeFunctionDeclaration(FD);
524 }
525 
526 /// Arrange a thunk that takes 'this' as the first parameter followed by
527 /// varargs.  Return a void pointer, regardless of the actual return type.
528 /// The body of the thunk will end in a musttail call to a function of the
529 /// correct type, and the caller will bitcast the function to the correct
530 /// prototype.
531 const CGFunctionInfo &
532 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
533   assert(MD->isVirtual() && "only methods have thunks");
534   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
535   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
536   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
537                                  /*chainCall=*/false, ArgTys,
538                                  FTP->getExtInfo(), {}, RequiredArgs(1));
539 }
540 
541 const CGFunctionInfo &
542 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
543                                    CXXCtorType CT) {
544   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
545 
546   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
547   SmallVector<CanQualType, 2> ArgTys;
548   const CXXRecordDecl *RD = CD->getParent();
549   ArgTys.push_back(DeriveThisType(RD, CD));
550   if (CT == Ctor_CopyingClosure)
551     ArgTys.push_back(*FTP->param_type_begin());
552   if (RD->getNumVBases() > 0)
553     ArgTys.push_back(Context.IntTy);
554   CallingConv CC = Context.getDefaultCallingConvention(
555       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
556   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
557                                  /*chainCall=*/false, ArgTys,
558                                  FunctionType::ExtInfo(CC), {},
559                                  RequiredArgs::All);
560 }
561 
562 /// Arrange a call as unto a free function, except possibly with an
563 /// additional number of formal parameters considered required.
564 static const CGFunctionInfo &
565 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
566                             CodeGenModule &CGM,
567                             const CallArgList &args,
568                             const FunctionType *fnType,
569                             unsigned numExtraRequiredArgs,
570                             bool chainCall) {
571   assert(args.size() >= numExtraRequiredArgs);
572 
573   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
574 
575   // In most cases, there are no optional arguments.
576   RequiredArgs required = RequiredArgs::All;
577 
578   // If we have a variadic prototype, the required arguments are the
579   // extra prefix plus the arguments in the prototype.
580   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
581     if (proto->isVariadic())
582       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
583 
584     if (proto->hasExtParameterInfos())
585       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
586                                   args.size());
587 
588   // If we don't have a prototype at all, but we're supposed to
589   // explicitly use the variadic convention for unprototyped calls,
590   // treat all of the arguments as required but preserve the nominal
591   // possibility of variadics.
592   } else if (CGM.getTargetCodeGenInfo()
593                 .isNoProtoCallVariadic(args,
594                                        cast<FunctionNoProtoType>(fnType))) {
595     required = RequiredArgs(args.size());
596   }
597 
598   // FIXME: Kill copy.
599   SmallVector<CanQualType, 16> argTypes;
600   for (const auto &arg : args)
601     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
602   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
603                                      /*instanceMethod=*/false, chainCall,
604                                      argTypes, fnType->getExtInfo(), paramInfos,
605                                      required);
606 }
607 
608 /// Figure out the rules for calling a function with the given formal
609 /// type using the given arguments.  The arguments are necessary
610 /// because the function might be unprototyped, in which case it's
611 /// target-dependent in crazy ways.
612 const CGFunctionInfo &
613 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
614                                       const FunctionType *fnType,
615                                       bool chainCall) {
616   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
617                                      chainCall ? 1 : 0, chainCall);
618 }
619 
620 /// A block function is essentially a free function with an
621 /// extra implicit argument.
622 const CGFunctionInfo &
623 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
624                                        const FunctionType *fnType) {
625   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
626                                      /*chainCall=*/false);
627 }
628 
629 const CGFunctionInfo &
630 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
631                                               const FunctionArgList &params) {
632   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
633   auto argTypes = getArgTypesForDeclaration(Context, params);
634 
635   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
636                                  /*instanceMethod*/ false, /*chainCall*/ false,
637                                  argTypes, proto->getExtInfo(), paramInfos,
638                                  RequiredArgs::forPrototypePlus(proto, 1));
639 }
640 
641 const CGFunctionInfo &
642 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
643                                          const CallArgList &args) {
644   // FIXME: Kill copy.
645   SmallVector<CanQualType, 16> argTypes;
646   for (const auto &Arg : args)
647     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
648   return arrangeLLVMFunctionInfo(
649       GetReturnType(resultType), /*instanceMethod=*/false,
650       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
651       /*paramInfos=*/ {}, RequiredArgs::All);
652 }
653 
654 const CGFunctionInfo &
655 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
656                                                 const FunctionArgList &args) {
657   auto argTypes = getArgTypesForDeclaration(Context, args);
658 
659   return arrangeLLVMFunctionInfo(
660       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
661       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
662 }
663 
664 const CGFunctionInfo &
665 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
666                                               ArrayRef<CanQualType> argTypes) {
667   return arrangeLLVMFunctionInfo(
668       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
669       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
670 }
671 
672 /// Arrange a call to a C++ method, passing the given arguments.
673 ///
674 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
675 /// does not count `this`.
676 const CGFunctionInfo &
677 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
678                                    const FunctionProtoType *proto,
679                                    RequiredArgs required,
680                                    unsigned numPrefixArgs) {
681   assert(numPrefixArgs + 1 <= args.size() &&
682          "Emitting a call with less args than the required prefix?");
683   // Add one to account for `this`. It's a bit awkward here, but we don't count
684   // `this` in similar places elsewhere.
685   auto paramInfos =
686     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
687 
688   // FIXME: Kill copy.
689   auto argTypes = getArgTypesForCall(Context, args);
690 
691   FunctionType::ExtInfo info = proto->getExtInfo();
692   return arrangeLLVMFunctionInfo(
693       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
694       /*chainCall=*/false, argTypes, info, paramInfos, required);
695 }
696 
697 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
698   return arrangeLLVMFunctionInfo(
699       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
700       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
701 }
702 
703 const CGFunctionInfo &
704 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
705                           const CallArgList &args) {
706   assert(signature.arg_size() <= args.size());
707   if (signature.arg_size() == args.size())
708     return signature;
709 
710   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
711   auto sigParamInfos = signature.getExtParameterInfos();
712   if (!sigParamInfos.empty()) {
713     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
714     paramInfos.resize(args.size());
715   }
716 
717   auto argTypes = getArgTypesForCall(Context, args);
718 
719   assert(signature.getRequiredArgs().allowsOptionalArgs());
720   return arrangeLLVMFunctionInfo(signature.getReturnType(),
721                                  signature.isInstanceMethod(),
722                                  signature.isChainCall(),
723                                  argTypes,
724                                  signature.getExtInfo(),
725                                  paramInfos,
726                                  signature.getRequiredArgs());
727 }
728 
729 namespace clang {
730 namespace CodeGen {
731 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
732 }
733 }
734 
735 /// Arrange the argument and result information for an abstract value
736 /// of a given function type.  This is the method which all of the
737 /// above functions ultimately defer to.
738 const CGFunctionInfo &
739 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
740                                       bool instanceMethod,
741                                       bool chainCall,
742                                       ArrayRef<CanQualType> argTypes,
743                                       FunctionType::ExtInfo info,
744                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
745                                       RequiredArgs required) {
746   assert(llvm::all_of(argTypes,
747                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
748 
749   // Lookup or create unique function info.
750   llvm::FoldingSetNodeID ID;
751   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
752                           required, resultType, argTypes);
753 
754   void *insertPos = nullptr;
755   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
756   if (FI)
757     return *FI;
758 
759   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
760 
761   // Construct the function info.  We co-allocate the ArgInfos.
762   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
763                               paramInfos, resultType, argTypes, required);
764   FunctionInfos.InsertNode(FI, insertPos);
765 
766   bool inserted = FunctionsBeingProcessed.insert(FI).second;
767   (void)inserted;
768   assert(inserted && "Recursively being processed?");
769 
770   // Compute ABI information.
771   if (CC == llvm::CallingConv::SPIR_KERNEL) {
772     // Force target independent argument handling for the host visible
773     // kernel functions.
774     computeSPIRKernelABIInfo(CGM, *FI);
775   } else if (info.getCC() == CC_Swift) {
776     swiftcall::computeABIInfo(CGM, *FI);
777   } else {
778     getABIInfo().computeInfo(*FI);
779   }
780 
781   // Loop over all of the computed argument and return value info.  If any of
782   // them are direct or extend without a specified coerce type, specify the
783   // default now.
784   ABIArgInfo &retInfo = FI->getReturnInfo();
785   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
786     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
787 
788   for (auto &I : FI->arguments())
789     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
790       I.info.setCoerceToType(ConvertType(I.type));
791 
792   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
793   assert(erased && "Not in set?");
794 
795   return *FI;
796 }
797 
798 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
799                                        bool instanceMethod,
800                                        bool chainCall,
801                                        const FunctionType::ExtInfo &info,
802                                        ArrayRef<ExtParameterInfo> paramInfos,
803                                        CanQualType resultType,
804                                        ArrayRef<CanQualType> argTypes,
805                                        RequiredArgs required) {
806   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
807   assert(!required.allowsOptionalArgs() ||
808          required.getNumRequiredArgs() <= argTypes.size());
809 
810   void *buffer =
811     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
812                                   argTypes.size() + 1, paramInfos.size()));
813 
814   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
815   FI->CallingConvention = llvmCC;
816   FI->EffectiveCallingConvention = llvmCC;
817   FI->ASTCallingConvention = info.getCC();
818   FI->InstanceMethod = instanceMethod;
819   FI->ChainCall = chainCall;
820   FI->CmseNSCall = info.getCmseNSCall();
821   FI->NoReturn = info.getNoReturn();
822   FI->ReturnsRetained = info.getProducesResult();
823   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
824   FI->NoCfCheck = info.getNoCfCheck();
825   FI->Required = required;
826   FI->HasRegParm = info.getHasRegParm();
827   FI->RegParm = info.getRegParm();
828   FI->ArgStruct = nullptr;
829   FI->ArgStructAlign = 0;
830   FI->NumArgs = argTypes.size();
831   FI->HasExtParameterInfos = !paramInfos.empty();
832   FI->getArgsBuffer()[0].type = resultType;
833   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
834     FI->getArgsBuffer()[i + 1].type = argTypes[i];
835   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
836     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
837   return FI;
838 }
839 
840 /***/
841 
842 namespace {
843 // ABIArgInfo::Expand implementation.
844 
845 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
846 struct TypeExpansion {
847   enum TypeExpansionKind {
848     // Elements of constant arrays are expanded recursively.
849     TEK_ConstantArray,
850     // Record fields are expanded recursively (but if record is a union, only
851     // the field with the largest size is expanded).
852     TEK_Record,
853     // For complex types, real and imaginary parts are expanded recursively.
854     TEK_Complex,
855     // All other types are not expandable.
856     TEK_None
857   };
858 
859   const TypeExpansionKind Kind;
860 
861   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
862   virtual ~TypeExpansion() {}
863 };
864 
865 struct ConstantArrayExpansion : TypeExpansion {
866   QualType EltTy;
867   uint64_t NumElts;
868 
869   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
870       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
871   static bool classof(const TypeExpansion *TE) {
872     return TE->Kind == TEK_ConstantArray;
873   }
874 };
875 
876 struct RecordExpansion : TypeExpansion {
877   SmallVector<const CXXBaseSpecifier *, 1> Bases;
878 
879   SmallVector<const FieldDecl *, 1> Fields;
880 
881   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
882                   SmallVector<const FieldDecl *, 1> &&Fields)
883       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
884         Fields(std::move(Fields)) {}
885   static bool classof(const TypeExpansion *TE) {
886     return TE->Kind == TEK_Record;
887   }
888 };
889 
890 struct ComplexExpansion : TypeExpansion {
891   QualType EltTy;
892 
893   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
894   static bool classof(const TypeExpansion *TE) {
895     return TE->Kind == TEK_Complex;
896   }
897 };
898 
899 struct NoExpansion : TypeExpansion {
900   NoExpansion() : TypeExpansion(TEK_None) {}
901   static bool classof(const TypeExpansion *TE) {
902     return TE->Kind == TEK_None;
903   }
904 };
905 }  // namespace
906 
907 static std::unique_ptr<TypeExpansion>
908 getTypeExpansion(QualType Ty, const ASTContext &Context) {
909   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
910     return std::make_unique<ConstantArrayExpansion>(
911         AT->getElementType(), AT->getSize().getZExtValue());
912   }
913   if (const RecordType *RT = Ty->getAs<RecordType>()) {
914     SmallVector<const CXXBaseSpecifier *, 1> Bases;
915     SmallVector<const FieldDecl *, 1> Fields;
916     const RecordDecl *RD = RT->getDecl();
917     assert(!RD->hasFlexibleArrayMember() &&
918            "Cannot expand structure with flexible array.");
919     if (RD->isUnion()) {
920       // Unions can be here only in degenerative cases - all the fields are same
921       // after flattening. Thus we have to use the "largest" field.
922       const FieldDecl *LargestFD = nullptr;
923       CharUnits UnionSize = CharUnits::Zero();
924 
925       for (const auto *FD : RD->fields()) {
926         if (FD->isZeroLengthBitField(Context))
927           continue;
928         assert(!FD->isBitField() &&
929                "Cannot expand structure with bit-field members.");
930         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
931         if (UnionSize < FieldSize) {
932           UnionSize = FieldSize;
933           LargestFD = FD;
934         }
935       }
936       if (LargestFD)
937         Fields.push_back(LargestFD);
938     } else {
939       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
940         assert(!CXXRD->isDynamicClass() &&
941                "cannot expand vtable pointers in dynamic classes");
942         for (const CXXBaseSpecifier &BS : CXXRD->bases())
943           Bases.push_back(&BS);
944       }
945 
946       for (const auto *FD : RD->fields()) {
947         if (FD->isZeroLengthBitField(Context))
948           continue;
949         assert(!FD->isBitField() &&
950                "Cannot expand structure with bit-field members.");
951         Fields.push_back(FD);
952       }
953     }
954     return std::make_unique<RecordExpansion>(std::move(Bases),
955                                               std::move(Fields));
956   }
957   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
958     return std::make_unique<ComplexExpansion>(CT->getElementType());
959   }
960   return std::make_unique<NoExpansion>();
961 }
962 
963 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
964   auto Exp = getTypeExpansion(Ty, Context);
965   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
966     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
967   }
968   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
969     int Res = 0;
970     for (auto BS : RExp->Bases)
971       Res += getExpansionSize(BS->getType(), Context);
972     for (auto FD : RExp->Fields)
973       Res += getExpansionSize(FD->getType(), Context);
974     return Res;
975   }
976   if (isa<ComplexExpansion>(Exp.get()))
977     return 2;
978   assert(isa<NoExpansion>(Exp.get()));
979   return 1;
980 }
981 
982 void
983 CodeGenTypes::getExpandedTypes(QualType Ty,
984                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
985   auto Exp = getTypeExpansion(Ty, Context);
986   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
987     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
988       getExpandedTypes(CAExp->EltTy, TI);
989     }
990   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
991     for (auto BS : RExp->Bases)
992       getExpandedTypes(BS->getType(), TI);
993     for (auto FD : RExp->Fields)
994       getExpandedTypes(FD->getType(), TI);
995   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
996     llvm::Type *EltTy = ConvertType(CExp->EltTy);
997     *TI++ = EltTy;
998     *TI++ = EltTy;
999   } else {
1000     assert(isa<NoExpansion>(Exp.get()));
1001     *TI++ = ConvertType(Ty);
1002   }
1003 }
1004 
1005 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1006                                       ConstantArrayExpansion *CAE,
1007                                       Address BaseAddr,
1008                                       llvm::function_ref<void(Address)> Fn) {
1009   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1010   CharUnits EltAlign =
1011     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1012 
1013   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1014     llvm::Value *EltAddr =
1015       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1016     Fn(Address(EltAddr, EltAlign));
1017   }
1018 }
1019 
1020 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1021                                          llvm::Function::arg_iterator &AI) {
1022   assert(LV.isSimple() &&
1023          "Unexpected non-simple lvalue during struct expansion.");
1024 
1025   auto Exp = getTypeExpansion(Ty, getContext());
1026   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1027     forConstantArrayExpansion(
1028         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1029           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1030           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1031         });
1032   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1033     Address This = LV.getAddress(*this);
1034     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1035       // Perform a single step derived-to-base conversion.
1036       Address Base =
1037           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1038                                 /*NullCheckValue=*/false, SourceLocation());
1039       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1040 
1041       // Recurse onto bases.
1042       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1043     }
1044     for (auto FD : RExp->Fields) {
1045       // FIXME: What are the right qualifiers here?
1046       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1047       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1048     }
1049   } else if (isa<ComplexExpansion>(Exp.get())) {
1050     auto realValue = &*AI++;
1051     auto imagValue = &*AI++;
1052     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1053   } else {
1054     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1055     // primitive store.
1056     assert(isa<NoExpansion>(Exp.get()));
1057     if (LV.isBitField())
1058       EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1059     else
1060       EmitStoreOfScalar(&*AI++, LV);
1061   }
1062 }
1063 
1064 void CodeGenFunction::ExpandTypeToArgs(
1065     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1066     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1067   auto Exp = getTypeExpansion(Ty, getContext());
1068   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1069     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1070                                    : Arg.getKnownRValue().getAggregateAddress();
1071     forConstantArrayExpansion(
1072         *this, CAExp, Addr, [&](Address EltAddr) {
1073           CallArg EltArg = CallArg(
1074               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1075               CAExp->EltTy);
1076           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1077                            IRCallArgPos);
1078         });
1079   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1080     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1081                                    : Arg.getKnownRValue().getAggregateAddress();
1082     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1083       // Perform a single step derived-to-base conversion.
1084       Address Base =
1085           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1086                                 /*NullCheckValue=*/false, SourceLocation());
1087       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1088 
1089       // Recurse onto bases.
1090       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1091                        IRCallArgPos);
1092     }
1093 
1094     LValue LV = MakeAddrLValue(This, Ty);
1095     for (auto FD : RExp->Fields) {
1096       CallArg FldArg =
1097           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1098       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1099                        IRCallArgPos);
1100     }
1101   } else if (isa<ComplexExpansion>(Exp.get())) {
1102     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1103     IRCallArgs[IRCallArgPos++] = CV.first;
1104     IRCallArgs[IRCallArgPos++] = CV.second;
1105   } else {
1106     assert(isa<NoExpansion>(Exp.get()));
1107     auto RV = Arg.getKnownRValue();
1108     assert(RV.isScalar() &&
1109            "Unexpected non-scalar rvalue during struct expansion.");
1110 
1111     // Insert a bitcast as needed.
1112     llvm::Value *V = RV.getScalarVal();
1113     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1114         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1115       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1116 
1117     IRCallArgs[IRCallArgPos++] = V;
1118   }
1119 }
1120 
1121 /// Create a temporary allocation for the purposes of coercion.
1122 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1123                                            CharUnits MinAlign,
1124                                            const Twine &Name = "tmp") {
1125   // Don't use an alignment that's worse than what LLVM would prefer.
1126   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1127   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1128 
1129   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1130 }
1131 
1132 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1133 /// accessing some number of bytes out of it, try to gep into the struct to get
1134 /// at its inner goodness.  Dive as deep as possible without entering an element
1135 /// with an in-memory size smaller than DstSize.
1136 static Address
1137 EnterStructPointerForCoercedAccess(Address SrcPtr,
1138                                    llvm::StructType *SrcSTy,
1139                                    uint64_t DstSize, CodeGenFunction &CGF) {
1140   // We can't dive into a zero-element struct.
1141   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1142 
1143   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1144 
1145   // If the first elt is at least as large as what we're looking for, or if the
1146   // first element is the same size as the whole struct, we can enter it. The
1147   // comparison must be made on the store size and not the alloca size. Using
1148   // the alloca size may overstate the size of the load.
1149   uint64_t FirstEltSize =
1150     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1151   if (FirstEltSize < DstSize &&
1152       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1153     return SrcPtr;
1154 
1155   // GEP into the first element.
1156   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1157 
1158   // If the first element is a struct, recurse.
1159   llvm::Type *SrcTy = SrcPtr.getElementType();
1160   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1161     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1162 
1163   return SrcPtr;
1164 }
1165 
1166 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1167 /// are either integers or pointers.  This does a truncation of the value if it
1168 /// is too large or a zero extension if it is too small.
1169 ///
1170 /// This behaves as if the value were coerced through memory, so on big-endian
1171 /// targets the high bits are preserved in a truncation, while little-endian
1172 /// targets preserve the low bits.
1173 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1174                                              llvm::Type *Ty,
1175                                              CodeGenFunction &CGF) {
1176   if (Val->getType() == Ty)
1177     return Val;
1178 
1179   if (isa<llvm::PointerType>(Val->getType())) {
1180     // If this is Pointer->Pointer avoid conversion to and from int.
1181     if (isa<llvm::PointerType>(Ty))
1182       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1183 
1184     // Convert the pointer to an integer so we can play with its width.
1185     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1186   }
1187 
1188   llvm::Type *DestIntTy = Ty;
1189   if (isa<llvm::PointerType>(DestIntTy))
1190     DestIntTy = CGF.IntPtrTy;
1191 
1192   if (Val->getType() != DestIntTy) {
1193     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1194     if (DL.isBigEndian()) {
1195       // Preserve the high bits on big-endian targets.
1196       // That is what memory coercion does.
1197       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1198       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1199 
1200       if (SrcSize > DstSize) {
1201         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1202         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1203       } else {
1204         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1205         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1206       }
1207     } else {
1208       // Little-endian targets preserve the low bits. No shifts required.
1209       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1210     }
1211   }
1212 
1213   if (isa<llvm::PointerType>(Ty))
1214     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1215   return Val;
1216 }
1217 
1218 
1219 
1220 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1221 /// a pointer to an object of type \arg Ty, known to be aligned to
1222 /// \arg SrcAlign bytes.
1223 ///
1224 /// This safely handles the case when the src type is smaller than the
1225 /// destination type; in this situation the values of bits which not
1226 /// present in the src are undefined.
1227 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1228                                       CodeGenFunction &CGF) {
1229   llvm::Type *SrcTy = Src.getElementType();
1230 
1231   // If SrcTy and Ty are the same, just do a load.
1232   if (SrcTy == Ty)
1233     return CGF.Builder.CreateLoad(Src);
1234 
1235   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1236 
1237   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1238     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1239                                              DstSize.getFixedSize(), CGF);
1240     SrcTy = Src.getElementType();
1241   }
1242 
1243   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1244 
1245   // If the source and destination are integer or pointer types, just do an
1246   // extension or truncation to the desired type.
1247   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1248       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1249     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1250     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1251   }
1252 
1253   // If load is legal, just bitcast the src pointer.
1254   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1255       SrcSize.getFixedSize() >= DstSize.getFixedSize()) {
1256     // Generally SrcSize is never greater than DstSize, since this means we are
1257     // losing bits. However, this can happen in cases where the structure has
1258     // additional padding, for example due to a user specified alignment.
1259     //
1260     // FIXME: Assert that we aren't truncating non-padding bits when have access
1261     // to that information.
1262     Src = CGF.Builder.CreateBitCast(Src,
1263                                     Ty->getPointerTo(Src.getAddressSpace()));
1264     return CGF.Builder.CreateLoad(Src);
1265   }
1266 
1267   // Otherwise do coercion through memory. This is stupid, but simple.
1268   Address Tmp =
1269       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1270   CGF.Builder.CreateMemCpy(
1271       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1272       Src.getAlignment().getAsAlign(),
1273       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize()));
1274   return CGF.Builder.CreateLoad(Tmp);
1275 }
1276 
1277 // Function to store a first-class aggregate into memory.  We prefer to
1278 // store the elements rather than the aggregate to be more friendly to
1279 // fast-isel.
1280 // FIXME: Do we need to recurse here?
1281 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1282                                          bool DestIsVolatile) {
1283   // Prefer scalar stores to first-class aggregate stores.
1284   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1285     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1286       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1287       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1288       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1289     }
1290   } else {
1291     Builder.CreateStore(Val, Dest, DestIsVolatile);
1292   }
1293 }
1294 
1295 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1296 /// where the source and destination may have different types.  The
1297 /// destination is known to be aligned to \arg DstAlign bytes.
1298 ///
1299 /// This safely handles the case when the src type is larger than the
1300 /// destination type; the upper bits of the src will be lost.
1301 static void CreateCoercedStore(llvm::Value *Src,
1302                                Address Dst,
1303                                bool DstIsVolatile,
1304                                CodeGenFunction &CGF) {
1305   llvm::Type *SrcTy = Src->getType();
1306   llvm::Type *DstTy = Dst.getElementType();
1307   if (SrcTy == DstTy) {
1308     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1309     return;
1310   }
1311 
1312   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1313 
1314   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1315     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1316                                              SrcSize.getFixedSize(), CGF);
1317     DstTy = Dst.getElementType();
1318   }
1319 
1320   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1321   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1322   if (SrcPtrTy && DstPtrTy &&
1323       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1324     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1325     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1326     return;
1327   }
1328 
1329   // If the source and destination are integer or pointer types, just do an
1330   // extension or truncation to the desired type.
1331   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1332       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1333     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1334     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1335     return;
1336   }
1337 
1338   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1339 
1340   // If store is legal, just bitcast the src pointer.
1341   if (isa<llvm::ScalableVectorType>(SrcTy) ||
1342       isa<llvm::ScalableVectorType>(DstTy) ||
1343       SrcSize.getFixedSize() <= DstSize.getFixedSize()) {
1344     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1345     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1346   } else {
1347     // Otherwise do coercion through memory. This is stupid, but
1348     // simple.
1349 
1350     // Generally SrcSize is never greater than DstSize, since this means we are
1351     // losing bits. However, this can happen in cases where the structure has
1352     // additional padding, for example due to a user specified alignment.
1353     //
1354     // FIXME: Assert that we aren't truncating non-padding bits when have access
1355     // to that information.
1356     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1357     CGF.Builder.CreateStore(Src, Tmp);
1358     CGF.Builder.CreateMemCpy(
1359         Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1360         Tmp.getAlignment().getAsAlign(),
1361         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize()));
1362   }
1363 }
1364 
1365 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1366                                    const ABIArgInfo &info) {
1367   if (unsigned offset = info.getDirectOffset()) {
1368     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1369     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1370                                              CharUnits::fromQuantity(offset));
1371     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1372   }
1373   return addr;
1374 }
1375 
1376 namespace {
1377 
1378 /// Encapsulates information about the way function arguments from
1379 /// CGFunctionInfo should be passed to actual LLVM IR function.
1380 class ClangToLLVMArgMapping {
1381   static const unsigned InvalidIndex = ~0U;
1382   unsigned InallocaArgNo;
1383   unsigned SRetArgNo;
1384   unsigned TotalIRArgs;
1385 
1386   /// Arguments of LLVM IR function corresponding to single Clang argument.
1387   struct IRArgs {
1388     unsigned PaddingArgIndex;
1389     // Argument is expanded to IR arguments at positions
1390     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1391     unsigned FirstArgIndex;
1392     unsigned NumberOfArgs;
1393 
1394     IRArgs()
1395         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1396           NumberOfArgs(0) {}
1397   };
1398 
1399   SmallVector<IRArgs, 8> ArgInfo;
1400 
1401 public:
1402   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1403                         bool OnlyRequiredArgs = false)
1404       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1405         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1406     construct(Context, FI, OnlyRequiredArgs);
1407   }
1408 
1409   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1410   unsigned getInallocaArgNo() const {
1411     assert(hasInallocaArg());
1412     return InallocaArgNo;
1413   }
1414 
1415   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1416   unsigned getSRetArgNo() const {
1417     assert(hasSRetArg());
1418     return SRetArgNo;
1419   }
1420 
1421   unsigned totalIRArgs() const { return TotalIRArgs; }
1422 
1423   bool hasPaddingArg(unsigned ArgNo) const {
1424     assert(ArgNo < ArgInfo.size());
1425     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1426   }
1427   unsigned getPaddingArgNo(unsigned ArgNo) const {
1428     assert(hasPaddingArg(ArgNo));
1429     return ArgInfo[ArgNo].PaddingArgIndex;
1430   }
1431 
1432   /// Returns index of first IR argument corresponding to ArgNo, and their
1433   /// quantity.
1434   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1435     assert(ArgNo < ArgInfo.size());
1436     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1437                           ArgInfo[ArgNo].NumberOfArgs);
1438   }
1439 
1440 private:
1441   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1442                  bool OnlyRequiredArgs);
1443 };
1444 
1445 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1446                                       const CGFunctionInfo &FI,
1447                                       bool OnlyRequiredArgs) {
1448   unsigned IRArgNo = 0;
1449   bool SwapThisWithSRet = false;
1450   const ABIArgInfo &RetAI = FI.getReturnInfo();
1451 
1452   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1453     SwapThisWithSRet = RetAI.isSRetAfterThis();
1454     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1455   }
1456 
1457   unsigned ArgNo = 0;
1458   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1459   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1460        ++I, ++ArgNo) {
1461     assert(I != FI.arg_end());
1462     QualType ArgType = I->type;
1463     const ABIArgInfo &AI = I->info;
1464     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1465     auto &IRArgs = ArgInfo[ArgNo];
1466 
1467     if (AI.getPaddingType())
1468       IRArgs.PaddingArgIndex = IRArgNo++;
1469 
1470     switch (AI.getKind()) {
1471     case ABIArgInfo::Extend:
1472     case ABIArgInfo::Direct: {
1473       // FIXME: handle sseregparm someday...
1474       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1475       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1476         IRArgs.NumberOfArgs = STy->getNumElements();
1477       } else {
1478         IRArgs.NumberOfArgs = 1;
1479       }
1480       break;
1481     }
1482     case ABIArgInfo::Indirect:
1483     case ABIArgInfo::IndirectAliased:
1484       IRArgs.NumberOfArgs = 1;
1485       break;
1486     case ABIArgInfo::Ignore:
1487     case ABIArgInfo::InAlloca:
1488       // ignore and inalloca doesn't have matching LLVM parameters.
1489       IRArgs.NumberOfArgs = 0;
1490       break;
1491     case ABIArgInfo::CoerceAndExpand:
1492       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1493       break;
1494     case ABIArgInfo::Expand:
1495       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1496       break;
1497     }
1498 
1499     if (IRArgs.NumberOfArgs > 0) {
1500       IRArgs.FirstArgIndex = IRArgNo;
1501       IRArgNo += IRArgs.NumberOfArgs;
1502     }
1503 
1504     // Skip over the sret parameter when it comes second.  We already handled it
1505     // above.
1506     if (IRArgNo == 1 && SwapThisWithSRet)
1507       IRArgNo++;
1508   }
1509   assert(ArgNo == ArgInfo.size());
1510 
1511   if (FI.usesInAlloca())
1512     InallocaArgNo = IRArgNo++;
1513 
1514   TotalIRArgs = IRArgNo;
1515 }
1516 }  // namespace
1517 
1518 /***/
1519 
1520 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1521   const auto &RI = FI.getReturnInfo();
1522   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1523 }
1524 
1525 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1526   return ReturnTypeUsesSRet(FI) &&
1527          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1528 }
1529 
1530 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1531   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1532     switch (BT->getKind()) {
1533     default:
1534       return false;
1535     case BuiltinType::Float:
1536       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1537     case BuiltinType::Double:
1538       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1539     case BuiltinType::LongDouble:
1540       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1541     }
1542   }
1543 
1544   return false;
1545 }
1546 
1547 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1548   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1549     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1550       if (BT->getKind() == BuiltinType::LongDouble)
1551         return getTarget().useObjCFP2RetForComplexLongDouble();
1552     }
1553   }
1554 
1555   return false;
1556 }
1557 
1558 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1559   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1560   return GetFunctionType(FI);
1561 }
1562 
1563 llvm::FunctionType *
1564 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1565 
1566   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1567   (void)Inserted;
1568   assert(Inserted && "Recursively being processed?");
1569 
1570   llvm::Type *resultType = nullptr;
1571   const ABIArgInfo &retAI = FI.getReturnInfo();
1572   switch (retAI.getKind()) {
1573   case ABIArgInfo::Expand:
1574   case ABIArgInfo::IndirectAliased:
1575     llvm_unreachable("Invalid ABI kind for return argument");
1576 
1577   case ABIArgInfo::Extend:
1578   case ABIArgInfo::Direct:
1579     resultType = retAI.getCoerceToType();
1580     break;
1581 
1582   case ABIArgInfo::InAlloca:
1583     if (retAI.getInAllocaSRet()) {
1584       // sret things on win32 aren't void, they return the sret pointer.
1585       QualType ret = FI.getReturnType();
1586       llvm::Type *ty = ConvertType(ret);
1587       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1588       resultType = llvm::PointerType::get(ty, addressSpace);
1589     } else {
1590       resultType = llvm::Type::getVoidTy(getLLVMContext());
1591     }
1592     break;
1593 
1594   case ABIArgInfo::Indirect:
1595   case ABIArgInfo::Ignore:
1596     resultType = llvm::Type::getVoidTy(getLLVMContext());
1597     break;
1598 
1599   case ABIArgInfo::CoerceAndExpand:
1600     resultType = retAI.getUnpaddedCoerceAndExpandType();
1601     break;
1602   }
1603 
1604   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1605   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1606 
1607   // Add type for sret argument.
1608   if (IRFunctionArgs.hasSRetArg()) {
1609     QualType Ret = FI.getReturnType();
1610     llvm::Type *Ty = ConvertType(Ret);
1611     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1612     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1613         llvm::PointerType::get(Ty, AddressSpace);
1614   }
1615 
1616   // Add type for inalloca argument.
1617   if (IRFunctionArgs.hasInallocaArg()) {
1618     auto ArgStruct = FI.getArgStruct();
1619     assert(ArgStruct);
1620     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1621   }
1622 
1623   // Add in all of the required arguments.
1624   unsigned ArgNo = 0;
1625   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1626                                      ie = it + FI.getNumRequiredArgs();
1627   for (; it != ie; ++it, ++ArgNo) {
1628     const ABIArgInfo &ArgInfo = it->info;
1629 
1630     // Insert a padding type to ensure proper alignment.
1631     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1632       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1633           ArgInfo.getPaddingType();
1634 
1635     unsigned FirstIRArg, NumIRArgs;
1636     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1637 
1638     switch (ArgInfo.getKind()) {
1639     case ABIArgInfo::Ignore:
1640     case ABIArgInfo::InAlloca:
1641       assert(NumIRArgs == 0);
1642       break;
1643 
1644     case ABIArgInfo::Indirect: {
1645       assert(NumIRArgs == 1);
1646       // indirect arguments are always on the stack, which is alloca addr space.
1647       llvm::Type *LTy = ConvertTypeForMem(it->type);
1648       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1649           CGM.getDataLayout().getAllocaAddrSpace());
1650       break;
1651     }
1652     case ABIArgInfo::IndirectAliased: {
1653       assert(NumIRArgs == 1);
1654       llvm::Type *LTy = ConvertTypeForMem(it->type);
1655       ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1656       break;
1657     }
1658     case ABIArgInfo::Extend:
1659     case ABIArgInfo::Direct: {
1660       // Fast-isel and the optimizer generally like scalar values better than
1661       // FCAs, so we flatten them if this is safe to do for this argument.
1662       llvm::Type *argType = ArgInfo.getCoerceToType();
1663       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1664       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1665         assert(NumIRArgs == st->getNumElements());
1666         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1667           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1668       } else {
1669         assert(NumIRArgs == 1);
1670         ArgTypes[FirstIRArg] = argType;
1671       }
1672       break;
1673     }
1674 
1675     case ABIArgInfo::CoerceAndExpand: {
1676       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1677       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1678         *ArgTypesIter++ = EltTy;
1679       }
1680       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1681       break;
1682     }
1683 
1684     case ABIArgInfo::Expand:
1685       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1686       getExpandedTypes(it->type, ArgTypesIter);
1687       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1688       break;
1689     }
1690   }
1691 
1692   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1693   assert(Erased && "Not in set?");
1694 
1695   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1696 }
1697 
1698 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1699   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1700   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1701 
1702   if (!isFuncTypeConvertible(FPT))
1703     return llvm::StructType::get(getLLVMContext());
1704 
1705   return GetFunctionType(GD);
1706 }
1707 
1708 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1709                                                llvm::AttrBuilder &FuncAttrs,
1710                                                const FunctionProtoType *FPT) {
1711   if (!FPT)
1712     return;
1713 
1714   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1715       FPT->isNothrow())
1716     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1717 }
1718 
1719 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1720                                                  bool HasOptnone,
1721                                                  bool AttrOnCallSite,
1722                                                llvm::AttrBuilder &FuncAttrs) {
1723   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1724   if (!HasOptnone) {
1725     if (CodeGenOpts.OptimizeSize)
1726       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1727     if (CodeGenOpts.OptimizeSize == 2)
1728       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1729   }
1730 
1731   if (CodeGenOpts.DisableRedZone)
1732     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1733   if (CodeGenOpts.IndirectTlsSegRefs)
1734     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1735   if (CodeGenOpts.NoImplicitFloat)
1736     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1737 
1738   if (AttrOnCallSite) {
1739     // Attributes that should go on the call site only.
1740     if (!CodeGenOpts.SimplifyLibCalls ||
1741         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1742       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1743     if (!CodeGenOpts.TrapFuncName.empty())
1744       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1745   } else {
1746     StringRef FpKind;
1747     switch (CodeGenOpts.getFramePointer()) {
1748     case CodeGenOptions::FramePointerKind::None:
1749       FpKind = "none";
1750       break;
1751     case CodeGenOptions::FramePointerKind::NonLeaf:
1752       FpKind = "non-leaf";
1753       break;
1754     case CodeGenOptions::FramePointerKind::All:
1755       FpKind = "all";
1756       break;
1757     }
1758     FuncAttrs.addAttribute("frame-pointer", FpKind);
1759 
1760     FuncAttrs.addAttribute("less-precise-fpmad",
1761                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1762 
1763     if (CodeGenOpts.NullPointerIsValid)
1764       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1765 
1766     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1767       FuncAttrs.addAttribute("denormal-fp-math",
1768                              CodeGenOpts.FPDenormalMode.str());
1769     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1770       FuncAttrs.addAttribute(
1771           "denormal-fp-math-f32",
1772           CodeGenOpts.FP32DenormalMode.str());
1773     }
1774 
1775     FuncAttrs.addAttribute("no-trapping-math",
1776                            llvm::toStringRef(LangOpts.getFPExceptionMode() ==
1777                                              LangOptions::FPE_Ignore));
1778 
1779     // Strict (compliant) code is the default, so only add this attribute to
1780     // indicate that we are trying to workaround a problem case.
1781     if (!CodeGenOpts.StrictFloatCastOverflow)
1782       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1783 
1784     // TODO: Are these all needed?
1785     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1786     FuncAttrs.addAttribute("no-infs-fp-math",
1787                            llvm::toStringRef(LangOpts.NoHonorInfs));
1788     FuncAttrs.addAttribute("no-nans-fp-math",
1789                            llvm::toStringRef(LangOpts.NoHonorNaNs));
1790     FuncAttrs.addAttribute("unsafe-fp-math",
1791                            llvm::toStringRef(LangOpts.UnsafeFPMath));
1792     FuncAttrs.addAttribute("use-soft-float",
1793                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1794     FuncAttrs.addAttribute("stack-protector-buffer-size",
1795                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1796     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1797                            llvm::toStringRef(LangOpts.NoSignedZero));
1798 
1799     // TODO: Reciprocal estimate codegen options should apply to instructions?
1800     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1801     if (!Recips.empty())
1802       FuncAttrs.addAttribute("reciprocal-estimates",
1803                              llvm::join(Recips, ","));
1804 
1805     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1806         CodeGenOpts.PreferVectorWidth != "none")
1807       FuncAttrs.addAttribute("prefer-vector-width",
1808                              CodeGenOpts.PreferVectorWidth);
1809 
1810     if (CodeGenOpts.StackRealignment)
1811       FuncAttrs.addAttribute("stackrealign");
1812     if (CodeGenOpts.Backchain)
1813       FuncAttrs.addAttribute("backchain");
1814     if (CodeGenOpts.EnableSegmentedStacks)
1815       FuncAttrs.addAttribute("split-stack");
1816 
1817     if (CodeGenOpts.SpeculativeLoadHardening)
1818       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1819   }
1820 
1821   if (getLangOpts().assumeFunctionsAreConvergent()) {
1822     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1823     // convergent (meaning, they may call an intrinsically convergent op, such
1824     // as __syncthreads() / barrier(), and so can't have certain optimizations
1825     // applied around them).  LLVM will remove this attribute where it safely
1826     // can.
1827     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1828   }
1829 
1830   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1831     // Exceptions aren't supported in CUDA device code.
1832     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1833   }
1834 
1835   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1836     StringRef Var, Value;
1837     std::tie(Var, Value) = Attr.split('=');
1838     FuncAttrs.addAttribute(Var, Value);
1839   }
1840 }
1841 
1842 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1843   llvm::AttrBuilder FuncAttrs;
1844   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1845                                /* AttrOnCallSite = */ false, FuncAttrs);
1846   // TODO: call GetCPUAndFeaturesAttributes?
1847   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1848 }
1849 
1850 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1851                                                    llvm::AttrBuilder &attrs) {
1852   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1853                                /*for call*/ false, attrs);
1854   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1855 }
1856 
1857 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1858                                    const LangOptions &LangOpts,
1859                                    const NoBuiltinAttr *NBA = nullptr) {
1860   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1861     SmallString<32> AttributeName;
1862     AttributeName += "no-builtin-";
1863     AttributeName += BuiltinName;
1864     FuncAttrs.addAttribute(AttributeName);
1865   };
1866 
1867   // First, handle the language options passed through -fno-builtin.
1868   if (LangOpts.NoBuiltin) {
1869     // -fno-builtin disables them all.
1870     FuncAttrs.addAttribute("no-builtins");
1871     return;
1872   }
1873 
1874   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1875   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1876 
1877   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1878   // the source.
1879   if (!NBA)
1880     return;
1881 
1882   // If there is a wildcard in the builtin names specified through the
1883   // attribute, disable them all.
1884   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1885     FuncAttrs.addAttribute("no-builtins");
1886     return;
1887   }
1888 
1889   // And last, add the rest of the builtin names.
1890   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1891 }
1892 
1893 /// Construct the IR attribute list of a function or call.
1894 ///
1895 /// When adding an attribute, please consider where it should be handled:
1896 ///
1897 ///   - getDefaultFunctionAttributes is for attributes that are essentially
1898 ///     part of the global target configuration (but perhaps can be
1899 ///     overridden on a per-function basis).  Adding attributes there
1900 ///     will cause them to also be set in frontends that build on Clang's
1901 ///     target-configuration logic, as well as for code defined in library
1902 ///     modules such as CUDA's libdevice.
1903 ///
1904 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
1905 ///     and adds declaration-specific, convention-specific, and
1906 ///     frontend-specific logic.  The last is of particular importance:
1907 ///     attributes that restrict how the frontend generates code must be
1908 ///     added here rather than getDefaultFunctionAttributes.
1909 ///
1910 void CodeGenModule::ConstructAttributeList(
1911     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1912     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1913   llvm::AttrBuilder FuncAttrs;
1914   llvm::AttrBuilder RetAttrs;
1915 
1916   // Collect function IR attributes from the CC lowering.
1917   // We'll collect the paramete and result attributes later.
1918   CallingConv = FI.getEffectiveCallingConvention();
1919   if (FI.isNoReturn())
1920     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1921   if (FI.isCmseNSCall())
1922     FuncAttrs.addAttribute("cmse_nonsecure_call");
1923 
1924   // Collect function IR attributes from the callee prototype if we have one.
1925   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1926                                      CalleeInfo.getCalleeFunctionProtoType());
1927 
1928   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1929 
1930   bool HasOptnone = false;
1931   // The NoBuiltinAttr attached to the target FunctionDecl.
1932   const NoBuiltinAttr *NBA = nullptr;
1933 
1934   // Collect function IR attributes based on declaration-specific
1935   // information.
1936   // FIXME: handle sseregparm someday...
1937   if (TargetDecl) {
1938     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1939       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1940     if (TargetDecl->hasAttr<NoThrowAttr>())
1941       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1942     if (TargetDecl->hasAttr<NoReturnAttr>())
1943       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1944     if (TargetDecl->hasAttr<ColdAttr>())
1945       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1946     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1947       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1948     if (TargetDecl->hasAttr<ConvergentAttr>())
1949       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1950 
1951     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1952       AddAttributesFromFunctionProtoType(
1953           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1954       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
1955         // A sane operator new returns a non-aliasing pointer.
1956         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
1957         if (getCodeGenOpts().AssumeSaneOperatorNew &&
1958             (Kind == OO_New || Kind == OO_Array_New))
1959           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1960       }
1961       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1962       const bool IsVirtualCall = MD && MD->isVirtual();
1963       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
1964       // virtual function. These attributes are not inherited by overloads.
1965       if (!(AttrOnCallSite && IsVirtualCall)) {
1966         if (Fn->isNoReturn())
1967           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1968         NBA = Fn->getAttr<NoBuiltinAttr>();
1969       }
1970     }
1971 
1972     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1973     if (TargetDecl->hasAttr<ConstAttr>()) {
1974       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1975       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1976     } else if (TargetDecl->hasAttr<PureAttr>()) {
1977       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1978       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1979     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1980       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1981       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1982     }
1983     if (TargetDecl->hasAttr<RestrictAttr>())
1984       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1985     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1986         !CodeGenOpts.NullPointerIsValid)
1987       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1988     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1989       FuncAttrs.addAttribute("no_caller_saved_registers");
1990     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1991       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1992 
1993     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1994     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1995       Optional<unsigned> NumElemsParam;
1996       if (AllocSize->getNumElemsParam().isValid())
1997         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1998       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1999                                  NumElemsParam);
2000     }
2001 
2002     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2003       if (getLangOpts().OpenCLVersion <= 120) {
2004         // OpenCL v1.2 Work groups are always uniform
2005         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2006       } else {
2007         // OpenCL v2.0 Work groups may be whether uniform or not.
2008         // '-cl-uniform-work-group-size' compile option gets a hint
2009         // to the compiler that the global work-size be a multiple of
2010         // the work-group size specified to clEnqueueNDRangeKernel
2011         // (i.e. work groups are uniform).
2012         FuncAttrs.addAttribute("uniform-work-group-size",
2013                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2014       }
2015     }
2016   }
2017 
2018   // Attach "no-builtins" attributes to:
2019   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2020   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2021   // The attributes can come from:
2022   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2023   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2024   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2025 
2026   // Collect function IR attributes based on global settiings.
2027   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2028 
2029   // Override some default IR attributes based on declaration-specific
2030   // information.
2031   if (TargetDecl) {
2032     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2033       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2034     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2035       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2036     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2037       FuncAttrs.removeAttribute("split-stack");
2038 
2039     // Add NonLazyBind attribute to function declarations when -fno-plt
2040     // is used.
2041     // FIXME: what if we just haven't processed the function definition
2042     // yet, or if it's an external definition like C99 inline?
2043     if (CodeGenOpts.NoPLT) {
2044       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2045         if (!Fn->isDefined() && !AttrOnCallSite) {
2046           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2047         }
2048       }
2049     }
2050   }
2051 
2052   // Collect non-call-site function IR attributes from declaration-specific
2053   // information.
2054   if (!AttrOnCallSite) {
2055     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2056       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2057 
2058     // Whether tail calls are enabled.
2059     auto shouldDisableTailCalls = [&] {
2060       // Should this be honored in getDefaultFunctionAttributes?
2061       if (CodeGenOpts.DisableTailCalls)
2062         return true;
2063 
2064       if (!TargetDecl)
2065         return false;
2066 
2067       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2068           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2069         return true;
2070 
2071       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2072         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2073           if (!BD->doesNotEscape())
2074             return true;
2075       }
2076 
2077       return false;
2078     };
2079     FuncAttrs.addAttribute("disable-tail-calls",
2080                            llvm::toStringRef(shouldDisableTailCalls()));
2081 
2082     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2083     // handles these separately to set them based on the global defaults.
2084     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2085   }
2086 
2087   // Collect attributes from arguments and return values.
2088   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2089 
2090   QualType RetTy = FI.getReturnType();
2091   const ABIArgInfo &RetAI = FI.getReturnInfo();
2092   switch (RetAI.getKind()) {
2093   case ABIArgInfo::Extend:
2094     if (RetAI.isSignExt())
2095       RetAttrs.addAttribute(llvm::Attribute::SExt);
2096     else
2097       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2098     LLVM_FALLTHROUGH;
2099   case ABIArgInfo::Direct:
2100     if (RetAI.getInReg())
2101       RetAttrs.addAttribute(llvm::Attribute::InReg);
2102     break;
2103   case ABIArgInfo::Ignore:
2104     break;
2105 
2106   case ABIArgInfo::InAlloca:
2107   case ABIArgInfo::Indirect: {
2108     // inalloca and sret disable readnone and readonly
2109     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2110       .removeAttribute(llvm::Attribute::ReadNone);
2111     break;
2112   }
2113 
2114   case ABIArgInfo::CoerceAndExpand:
2115     break;
2116 
2117   case ABIArgInfo::Expand:
2118   case ABIArgInfo::IndirectAliased:
2119     llvm_unreachable("Invalid ABI kind for return argument");
2120   }
2121 
2122   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2123     QualType PTy = RefTy->getPointeeType();
2124     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2125       RetAttrs.addDereferenceableAttr(
2126           getMinimumObjectSize(PTy).getQuantity());
2127     if (getContext().getTargetAddressSpace(PTy) == 0 &&
2128         !CodeGenOpts.NullPointerIsValid)
2129       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2130     if (PTy->isObjectType()) {
2131       llvm::Align Alignment =
2132           getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2133       RetAttrs.addAlignmentAttr(Alignment);
2134     }
2135   }
2136 
2137   bool hasUsedSRet = false;
2138   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2139 
2140   // Attach attributes to sret.
2141   if (IRFunctionArgs.hasSRetArg()) {
2142     llvm::AttrBuilder SRETAttrs;
2143     SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2144     hasUsedSRet = true;
2145     if (RetAI.getInReg())
2146       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2147     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2148     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2149         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2150   }
2151 
2152   // Attach attributes to inalloca argument.
2153   if (IRFunctionArgs.hasInallocaArg()) {
2154     llvm::AttrBuilder Attrs;
2155     Attrs.addAttribute(llvm::Attribute::InAlloca);
2156     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2157         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2158   }
2159 
2160   // Apply `nonnull` and `dereferencable(N)` to the `this` argument.
2161   if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2162       !FI.arg_begin()->type->isVoidPointerType()) {
2163     auto IRArgs = IRFunctionArgs.getIRArgs(0);
2164 
2165     assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2166 
2167     llvm::AttrBuilder Attrs;
2168 
2169     if (!CodeGenOpts.NullPointerIsValid &&
2170         getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2171       Attrs.addAttribute(llvm::Attribute::NonNull);
2172       Attrs.addDereferenceableAttr(
2173           getMinimumObjectSize(
2174               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2175               .getQuantity());
2176     } else {
2177       // FIXME dereferenceable should be correct here, regardless of
2178       // NullPointerIsValid. However, dereferenceable currently does not always
2179       // respect NullPointerIsValid and may imply nonnull and break the program.
2180       // See https://reviews.llvm.org/D66618 for discussions.
2181       Attrs.addDereferenceableOrNullAttr(
2182           getMinimumObjectSize(
2183               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2184               .getQuantity());
2185     }
2186 
2187     ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2188   }
2189 
2190   unsigned ArgNo = 0;
2191   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2192                                           E = FI.arg_end();
2193        I != E; ++I, ++ArgNo) {
2194     QualType ParamType = I->type;
2195     const ABIArgInfo &AI = I->info;
2196     llvm::AttrBuilder Attrs;
2197 
2198     // Add attribute for padding argument, if necessary.
2199     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2200       if (AI.getPaddingInReg()) {
2201         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2202             llvm::AttributeSet::get(
2203                 getLLVMContext(),
2204                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2205       }
2206     }
2207 
2208     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2209     // have the corresponding parameter variable.  It doesn't make
2210     // sense to do it here because parameters are so messed up.
2211     switch (AI.getKind()) {
2212     case ABIArgInfo::Extend:
2213       if (AI.isSignExt())
2214         Attrs.addAttribute(llvm::Attribute::SExt);
2215       else
2216         Attrs.addAttribute(llvm::Attribute::ZExt);
2217       LLVM_FALLTHROUGH;
2218     case ABIArgInfo::Direct:
2219       if (ArgNo == 0 && FI.isChainCall())
2220         Attrs.addAttribute(llvm::Attribute::Nest);
2221       else if (AI.getInReg())
2222         Attrs.addAttribute(llvm::Attribute::InReg);
2223       break;
2224 
2225     case ABIArgInfo::Indirect: {
2226       if (AI.getInReg())
2227         Attrs.addAttribute(llvm::Attribute::InReg);
2228 
2229       if (AI.getIndirectByVal())
2230         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2231 
2232       auto *Decl = ParamType->getAsRecordDecl();
2233       if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2234           Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
2235         // When calling the function, the pointer passed in will be the only
2236         // reference to the underlying object. Mark it accordingly.
2237         Attrs.addAttribute(llvm::Attribute::NoAlias);
2238 
2239       // TODO: We could add the byref attribute if not byval, but it would
2240       // require updating many testcases.
2241 
2242       CharUnits Align = AI.getIndirectAlign();
2243 
2244       // In a byval argument, it is important that the required
2245       // alignment of the type is honored, as LLVM might be creating a
2246       // *new* stack object, and needs to know what alignment to give
2247       // it. (Sometimes it can deduce a sensible alignment on its own,
2248       // but not if clang decides it must emit a packed struct, or the
2249       // user specifies increased alignment requirements.)
2250       //
2251       // This is different from indirect *not* byval, where the object
2252       // exists already, and the align attribute is purely
2253       // informative.
2254       assert(!Align.isZero());
2255 
2256       // For now, only add this when we have a byval argument.
2257       // TODO: be less lazy about updating test cases.
2258       if (AI.getIndirectByVal())
2259         Attrs.addAlignmentAttr(Align.getQuantity());
2260 
2261       // byval disables readnone and readonly.
2262       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2263         .removeAttribute(llvm::Attribute::ReadNone);
2264 
2265       break;
2266     }
2267     case ABIArgInfo::IndirectAliased: {
2268       CharUnits Align = AI.getIndirectAlign();
2269       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2270       Attrs.addAlignmentAttr(Align.getQuantity());
2271       break;
2272     }
2273     case ABIArgInfo::Ignore:
2274     case ABIArgInfo::Expand:
2275     case ABIArgInfo::CoerceAndExpand:
2276       break;
2277 
2278     case ABIArgInfo::InAlloca:
2279       // inalloca disables readnone and readonly.
2280       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2281           .removeAttribute(llvm::Attribute::ReadNone);
2282       continue;
2283     }
2284 
2285     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2286       QualType PTy = RefTy->getPointeeType();
2287       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2288         Attrs.addDereferenceableAttr(
2289             getMinimumObjectSize(PTy).getQuantity());
2290       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2291           !CodeGenOpts.NullPointerIsValid)
2292         Attrs.addAttribute(llvm::Attribute::NonNull);
2293       if (PTy->isObjectType()) {
2294         llvm::Align Alignment =
2295             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2296         Attrs.addAlignmentAttr(Alignment);
2297       }
2298     }
2299 
2300     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2301     case ParameterABI::Ordinary:
2302       break;
2303 
2304     case ParameterABI::SwiftIndirectResult: {
2305       // Add 'sret' if we haven't already used it for something, but
2306       // only if the result is void.
2307       if (!hasUsedSRet && RetTy->isVoidType()) {
2308         Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2309         hasUsedSRet = true;
2310       }
2311 
2312       // Add 'noalias' in either case.
2313       Attrs.addAttribute(llvm::Attribute::NoAlias);
2314 
2315       // Add 'dereferenceable' and 'alignment'.
2316       auto PTy = ParamType->getPointeeType();
2317       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2318         auto info = getContext().getTypeInfoInChars(PTy);
2319         Attrs.addDereferenceableAttr(info.Width.getQuantity());
2320         Attrs.addAlignmentAttr(info.Align.getAsAlign());
2321       }
2322       break;
2323     }
2324 
2325     case ParameterABI::SwiftErrorResult:
2326       Attrs.addAttribute(llvm::Attribute::SwiftError);
2327       break;
2328 
2329     case ParameterABI::SwiftContext:
2330       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2331       break;
2332     }
2333 
2334     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2335       Attrs.addAttribute(llvm::Attribute::NoCapture);
2336 
2337     if (Attrs.hasAttributes()) {
2338       unsigned FirstIRArg, NumIRArgs;
2339       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2340       for (unsigned i = 0; i < NumIRArgs; i++)
2341         ArgAttrs[FirstIRArg + i] =
2342             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2343     }
2344   }
2345   assert(ArgNo == FI.arg_size());
2346 
2347   AttrList = llvm::AttributeList::get(
2348       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2349       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2350 }
2351 
2352 /// An argument came in as a promoted argument; demote it back to its
2353 /// declared type.
2354 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2355                                          const VarDecl *var,
2356                                          llvm::Value *value) {
2357   llvm::Type *varType = CGF.ConvertType(var->getType());
2358 
2359   // This can happen with promotions that actually don't change the
2360   // underlying type, like the enum promotions.
2361   if (value->getType() == varType) return value;
2362 
2363   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2364          && "unexpected promotion type");
2365 
2366   if (isa<llvm::IntegerType>(varType))
2367     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2368 
2369   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2370 }
2371 
2372 /// Returns the attribute (either parameter attribute, or function
2373 /// attribute), which declares argument ArgNo to be non-null.
2374 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2375                                          QualType ArgType, unsigned ArgNo) {
2376   // FIXME: __attribute__((nonnull)) can also be applied to:
2377   //   - references to pointers, where the pointee is known to be
2378   //     nonnull (apparently a Clang extension)
2379   //   - transparent unions containing pointers
2380   // In the former case, LLVM IR cannot represent the constraint. In
2381   // the latter case, we have no guarantee that the transparent union
2382   // is in fact passed as a pointer.
2383   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2384     return nullptr;
2385   // First, check attribute on parameter itself.
2386   if (PVD) {
2387     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2388       return ParmNNAttr;
2389   }
2390   // Check function attributes.
2391   if (!FD)
2392     return nullptr;
2393   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2394     if (NNAttr->isNonNull(ArgNo))
2395       return NNAttr;
2396   }
2397   return nullptr;
2398 }
2399 
2400 namespace {
2401   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2402     Address Temp;
2403     Address Arg;
2404     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2405     void Emit(CodeGenFunction &CGF, Flags flags) override {
2406       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2407       CGF.Builder.CreateStore(errorValue, Arg);
2408     }
2409   };
2410 }
2411 
2412 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2413                                          llvm::Function *Fn,
2414                                          const FunctionArgList &Args) {
2415   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2416     // Naked functions don't have prologues.
2417     return;
2418 
2419   // If this is an implicit-return-zero function, go ahead and
2420   // initialize the return value.  TODO: it might be nice to have
2421   // a more general mechanism for this that didn't require synthesized
2422   // return statements.
2423   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2424     if (FD->hasImplicitReturnZero()) {
2425       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2426       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2427       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2428       Builder.CreateStore(Zero, ReturnValue);
2429     }
2430   }
2431 
2432   // FIXME: We no longer need the types from FunctionArgList; lift up and
2433   // simplify.
2434 
2435   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2436   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2437 
2438   // If we're using inalloca, all the memory arguments are GEPs off of the last
2439   // parameter, which is a pointer to the complete memory area.
2440   Address ArgStruct = Address::invalid();
2441   if (IRFunctionArgs.hasInallocaArg()) {
2442     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2443                         FI.getArgStructAlignment());
2444 
2445     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2446   }
2447 
2448   // Name the struct return parameter.
2449   if (IRFunctionArgs.hasSRetArg()) {
2450     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2451     AI->setName("agg.result");
2452     AI->addAttr(llvm::Attribute::NoAlias);
2453   }
2454 
2455   // Track if we received the parameter as a pointer (indirect, byval, or
2456   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2457   // into a local alloca for us.
2458   SmallVector<ParamValue, 16> ArgVals;
2459   ArgVals.reserve(Args.size());
2460 
2461   // Create a pointer value for every parameter declaration.  This usually
2462   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2463   // any cleanups or do anything that might unwind.  We do that separately, so
2464   // we can push the cleanups in the correct order for the ABI.
2465   assert(FI.arg_size() == Args.size() &&
2466          "Mismatch between function signature & arguments.");
2467   unsigned ArgNo = 0;
2468   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2469   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2470        i != e; ++i, ++info_it, ++ArgNo) {
2471     const VarDecl *Arg = *i;
2472     const ABIArgInfo &ArgI = info_it->info;
2473 
2474     bool isPromoted =
2475       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2476     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2477     // the parameter is promoted. In this case we convert to
2478     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2479     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2480     assert(hasScalarEvaluationKind(Ty) ==
2481            hasScalarEvaluationKind(Arg->getType()));
2482 
2483     unsigned FirstIRArg, NumIRArgs;
2484     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2485 
2486     switch (ArgI.getKind()) {
2487     case ABIArgInfo::InAlloca: {
2488       assert(NumIRArgs == 0);
2489       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2490       Address V =
2491           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2492       if (ArgI.getInAllocaIndirect())
2493         V = Address(Builder.CreateLoad(V),
2494                     getContext().getTypeAlignInChars(Ty));
2495       ArgVals.push_back(ParamValue::forIndirect(V));
2496       break;
2497     }
2498 
2499     case ABIArgInfo::Indirect:
2500     case ABIArgInfo::IndirectAliased: {
2501       assert(NumIRArgs == 1);
2502       Address ParamAddr =
2503           Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign());
2504 
2505       if (!hasScalarEvaluationKind(Ty)) {
2506         // Aggregates and complex variables are accessed by reference. All we
2507         // need to do is realign the value, if requested. Also, if the address
2508         // may be aliased, copy it to ensure that the parameter variable is
2509         // mutable and has a unique adress, as C requires.
2510         Address V = ParamAddr;
2511         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2512           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2513 
2514           // Copy from the incoming argument pointer to the temporary with the
2515           // appropriate alignment.
2516           //
2517           // FIXME: We should have a common utility for generating an aggregate
2518           // copy.
2519           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2520           Builder.CreateMemCpy(
2521               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2522               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2523               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2524           V = AlignedTemp;
2525         }
2526         ArgVals.push_back(ParamValue::forIndirect(V));
2527       } else {
2528         // Load scalar value from indirect argument.
2529         llvm::Value *V =
2530             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2531 
2532         if (isPromoted)
2533           V = emitArgumentDemotion(*this, Arg, V);
2534         ArgVals.push_back(ParamValue::forDirect(V));
2535       }
2536       break;
2537     }
2538 
2539     case ABIArgInfo::Extend:
2540     case ABIArgInfo::Direct: {
2541       auto AI = Fn->getArg(FirstIRArg);
2542       llvm::Type *LTy = ConvertType(Arg->getType());
2543 
2544       // Prepare parameter attributes. So far, only attributes for pointer
2545       // parameters are prepared. See
2546       // http://llvm.org/docs/LangRef.html#paramattrs.
2547       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2548           ArgI.getCoerceToType()->isPointerTy()) {
2549         assert(NumIRArgs == 1);
2550 
2551         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2552           // Set `nonnull` attribute if any.
2553           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2554                              PVD->getFunctionScopeIndex()) &&
2555               !CGM.getCodeGenOpts().NullPointerIsValid)
2556             AI->addAttr(llvm::Attribute::NonNull);
2557 
2558           QualType OTy = PVD->getOriginalType();
2559           if (const auto *ArrTy =
2560               getContext().getAsConstantArrayType(OTy)) {
2561             // A C99 array parameter declaration with the static keyword also
2562             // indicates dereferenceability, and if the size is constant we can
2563             // use the dereferenceable attribute (which requires the size in
2564             // bytes).
2565             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2566               QualType ETy = ArrTy->getElementType();
2567               llvm::Align Alignment =
2568                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2569               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2570               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2571               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2572                   ArrSize) {
2573                 llvm::AttrBuilder Attrs;
2574                 Attrs.addDereferenceableAttr(
2575                     getContext().getTypeSizeInChars(ETy).getQuantity() *
2576                     ArrSize);
2577                 AI->addAttrs(Attrs);
2578               } else if (getContext().getTargetInfo().getNullPointerValue(
2579                              ETy.getAddressSpace()) == 0 &&
2580                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2581                 AI->addAttr(llvm::Attribute::NonNull);
2582               }
2583             }
2584           } else if (const auto *ArrTy =
2585                      getContext().getAsVariableArrayType(OTy)) {
2586             // For C99 VLAs with the static keyword, we don't know the size so
2587             // we can't use the dereferenceable attribute, but in addrspace(0)
2588             // we know that it must be nonnull.
2589             if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2590               QualType ETy = ArrTy->getElementType();
2591               llvm::Align Alignment =
2592                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2593               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2594               if (!getContext().getTargetAddressSpace(ETy) &&
2595                   !CGM.getCodeGenOpts().NullPointerIsValid)
2596                 AI->addAttr(llvm::Attribute::NonNull);
2597             }
2598           }
2599 
2600           // Set `align` attribute if any.
2601           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2602           if (!AVAttr)
2603             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2604               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2605           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2606             // If alignment-assumption sanitizer is enabled, we do *not* add
2607             // alignment attribute here, but emit normal alignment assumption,
2608             // so the UBSAN check could function.
2609             llvm::ConstantInt *AlignmentCI =
2610                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2611             unsigned AlignmentInt =
2612                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2613             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2614               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2615               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(
2616                   llvm::Align(AlignmentInt)));
2617             }
2618           }
2619         }
2620 
2621         // Set 'noalias' if an argument type has the `restrict` qualifier.
2622         if (Arg->getType().isRestrictQualified())
2623           AI->addAttr(llvm::Attribute::NoAlias);
2624       }
2625 
2626       // Prepare the argument value. If we have the trivial case, handle it
2627       // with no muss and fuss.
2628       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2629           ArgI.getCoerceToType() == ConvertType(Ty) &&
2630           ArgI.getDirectOffset() == 0) {
2631         assert(NumIRArgs == 1);
2632 
2633         // LLVM expects swifterror parameters to be used in very restricted
2634         // ways.  Copy the value into a less-restricted temporary.
2635         llvm::Value *V = AI;
2636         if (FI.getExtParameterInfo(ArgNo).getABI()
2637               == ParameterABI::SwiftErrorResult) {
2638           QualType pointeeTy = Ty->getPointeeType();
2639           assert(pointeeTy->isPointerType());
2640           Address temp =
2641             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2642           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2643           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2644           Builder.CreateStore(incomingErrorValue, temp);
2645           V = temp.getPointer();
2646 
2647           // Push a cleanup to copy the value back at the end of the function.
2648           // The convention does not guarantee that the value will be written
2649           // back if the function exits with an unwind exception.
2650           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2651         }
2652 
2653         // Ensure the argument is the correct type.
2654         if (V->getType() != ArgI.getCoerceToType())
2655           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2656 
2657         if (isPromoted)
2658           V = emitArgumentDemotion(*this, Arg, V);
2659 
2660         // Because of merging of function types from multiple decls it is
2661         // possible for the type of an argument to not match the corresponding
2662         // type in the function type. Since we are codegening the callee
2663         // in here, add a cast to the argument type.
2664         llvm::Type *LTy = ConvertType(Arg->getType());
2665         if (V->getType() != LTy)
2666           V = Builder.CreateBitCast(V, LTy);
2667 
2668         ArgVals.push_back(ParamValue::forDirect(V));
2669         break;
2670       }
2671 
2672       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2673                                      Arg->getName());
2674 
2675       // Pointer to store into.
2676       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2677 
2678       // Fast-isel and the optimizer generally like scalar values better than
2679       // FCAs, so we flatten them if this is safe to do for this argument.
2680       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2681       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2682           STy->getNumElements() > 1) {
2683         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2684         llvm::Type *DstTy = Ptr.getElementType();
2685         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2686 
2687         Address AddrToStoreInto = Address::invalid();
2688         if (SrcSize <= DstSize) {
2689           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2690         } else {
2691           AddrToStoreInto =
2692             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2693         }
2694 
2695         assert(STy->getNumElements() == NumIRArgs);
2696         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2697           auto AI = Fn->getArg(FirstIRArg + i);
2698           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2699           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2700           Builder.CreateStore(AI, EltPtr);
2701         }
2702 
2703         if (SrcSize > DstSize) {
2704           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2705         }
2706 
2707       } else {
2708         // Simple case, just do a coerced store of the argument into the alloca.
2709         assert(NumIRArgs == 1);
2710         auto AI = Fn->getArg(FirstIRArg);
2711         AI->setName(Arg->getName() + ".coerce");
2712         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2713       }
2714 
2715       // Match to what EmitParmDecl is expecting for this type.
2716       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2717         llvm::Value *V =
2718             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2719         if (isPromoted)
2720           V = emitArgumentDemotion(*this, Arg, V);
2721         ArgVals.push_back(ParamValue::forDirect(V));
2722       } else {
2723         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2724       }
2725       break;
2726     }
2727 
2728     case ABIArgInfo::CoerceAndExpand: {
2729       // Reconstruct into a temporary.
2730       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2731       ArgVals.push_back(ParamValue::forIndirect(alloca));
2732 
2733       auto coercionType = ArgI.getCoerceAndExpandType();
2734       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2735 
2736       unsigned argIndex = FirstIRArg;
2737       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2738         llvm::Type *eltType = coercionType->getElementType(i);
2739         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2740           continue;
2741 
2742         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2743         auto elt = Fn->getArg(argIndex++);
2744         Builder.CreateStore(elt, eltAddr);
2745       }
2746       assert(argIndex == FirstIRArg + NumIRArgs);
2747       break;
2748     }
2749 
2750     case ABIArgInfo::Expand: {
2751       // If this structure was expanded into multiple arguments then
2752       // we need to create a temporary and reconstruct it from the
2753       // arguments.
2754       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2755       LValue LV = MakeAddrLValue(Alloca, Ty);
2756       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2757 
2758       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2759       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2760       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2761       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2762         auto AI = Fn->getArg(FirstIRArg + i);
2763         AI->setName(Arg->getName() + "." + Twine(i));
2764       }
2765       break;
2766     }
2767 
2768     case ABIArgInfo::Ignore:
2769       assert(NumIRArgs == 0);
2770       // Initialize the local variable appropriately.
2771       if (!hasScalarEvaluationKind(Ty)) {
2772         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2773       } else {
2774         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2775         ArgVals.push_back(ParamValue::forDirect(U));
2776       }
2777       break;
2778     }
2779   }
2780 
2781   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2782     for (int I = Args.size() - 1; I >= 0; --I)
2783       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2784   } else {
2785     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2786       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2787   }
2788 }
2789 
2790 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2791   while (insn->use_empty()) {
2792     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2793     if (!bitcast) return;
2794 
2795     // This is "safe" because we would have used a ConstantExpr otherwise.
2796     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2797     bitcast->eraseFromParent();
2798   }
2799 }
2800 
2801 /// Try to emit a fused autorelease of a return result.
2802 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2803                                                     llvm::Value *result) {
2804   // We must be immediately followed the cast.
2805   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2806   if (BB->empty()) return nullptr;
2807   if (&BB->back() != result) return nullptr;
2808 
2809   llvm::Type *resultType = result->getType();
2810 
2811   // result is in a BasicBlock and is therefore an Instruction.
2812   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2813 
2814   SmallVector<llvm::Instruction *, 4> InstsToKill;
2815 
2816   // Look for:
2817   //  %generator = bitcast %type1* %generator2 to %type2*
2818   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2819     // We would have emitted this as a constant if the operand weren't
2820     // an Instruction.
2821     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2822 
2823     // Require the generator to be immediately followed by the cast.
2824     if (generator->getNextNode() != bitcast)
2825       return nullptr;
2826 
2827     InstsToKill.push_back(bitcast);
2828   }
2829 
2830   // Look for:
2831   //   %generator = call i8* @objc_retain(i8* %originalResult)
2832   // or
2833   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2834   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2835   if (!call) return nullptr;
2836 
2837   bool doRetainAutorelease;
2838 
2839   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2840     doRetainAutorelease = true;
2841   } else if (call->getCalledOperand() ==
2842              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
2843     doRetainAutorelease = false;
2844 
2845     // If we emitted an assembly marker for this call (and the
2846     // ARCEntrypoints field should have been set if so), go looking
2847     // for that call.  If we can't find it, we can't do this
2848     // optimization.  But it should always be the immediately previous
2849     // instruction, unless we needed bitcasts around the call.
2850     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2851       llvm::Instruction *prev = call->getPrevNode();
2852       assert(prev);
2853       if (isa<llvm::BitCastInst>(prev)) {
2854         prev = prev->getPrevNode();
2855         assert(prev);
2856       }
2857       assert(isa<llvm::CallInst>(prev));
2858       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
2859              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2860       InstsToKill.push_back(prev);
2861     }
2862   } else {
2863     return nullptr;
2864   }
2865 
2866   result = call->getArgOperand(0);
2867   InstsToKill.push_back(call);
2868 
2869   // Keep killing bitcasts, for sanity.  Note that we no longer care
2870   // about precise ordering as long as there's exactly one use.
2871   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2872     if (!bitcast->hasOneUse()) break;
2873     InstsToKill.push_back(bitcast);
2874     result = bitcast->getOperand(0);
2875   }
2876 
2877   // Delete all the unnecessary instructions, from latest to earliest.
2878   for (auto *I : InstsToKill)
2879     I->eraseFromParent();
2880 
2881   // Do the fused retain/autorelease if we were asked to.
2882   if (doRetainAutorelease)
2883     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2884 
2885   // Cast back to the result type.
2886   return CGF.Builder.CreateBitCast(result, resultType);
2887 }
2888 
2889 /// If this is a +1 of the value of an immutable 'self', remove it.
2890 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2891                                           llvm::Value *result) {
2892   // This is only applicable to a method with an immutable 'self'.
2893   const ObjCMethodDecl *method =
2894     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2895   if (!method) return nullptr;
2896   const VarDecl *self = method->getSelfDecl();
2897   if (!self->getType().isConstQualified()) return nullptr;
2898 
2899   // Look for a retain call.
2900   llvm::CallInst *retainCall =
2901     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2902   if (!retainCall || retainCall->getCalledOperand() !=
2903                          CGF.CGM.getObjCEntrypoints().objc_retain)
2904     return nullptr;
2905 
2906   // Look for an ordinary load of 'self'.
2907   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2908   llvm::LoadInst *load =
2909     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2910   if (!load || load->isAtomic() || load->isVolatile() ||
2911       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2912     return nullptr;
2913 
2914   // Okay!  Burn it all down.  This relies for correctness on the
2915   // assumption that the retain is emitted as part of the return and
2916   // that thereafter everything is used "linearly".
2917   llvm::Type *resultType = result->getType();
2918   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2919   assert(retainCall->use_empty());
2920   retainCall->eraseFromParent();
2921   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2922 
2923   return CGF.Builder.CreateBitCast(load, resultType);
2924 }
2925 
2926 /// Emit an ARC autorelease of the result of a function.
2927 ///
2928 /// \return the value to actually return from the function
2929 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2930                                             llvm::Value *result) {
2931   // If we're returning 'self', kill the initial retain.  This is a
2932   // heuristic attempt to "encourage correctness" in the really unfortunate
2933   // case where we have a return of self during a dealloc and we desperately
2934   // need to avoid the possible autorelease.
2935   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2936     return self;
2937 
2938   // At -O0, try to emit a fused retain/autorelease.
2939   if (CGF.shouldUseFusedARCCalls())
2940     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2941       return fused;
2942 
2943   return CGF.EmitARCAutoreleaseReturnValue(result);
2944 }
2945 
2946 /// Heuristically search for a dominating store to the return-value slot.
2947 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2948   // Check if a User is a store which pointerOperand is the ReturnValue.
2949   // We are looking for stores to the ReturnValue, not for stores of the
2950   // ReturnValue to some other location.
2951   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2952     auto *SI = dyn_cast<llvm::StoreInst>(U);
2953     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2954       return nullptr;
2955     // These aren't actually possible for non-coerced returns, and we
2956     // only care about non-coerced returns on this code path.
2957     assert(!SI->isAtomic() && !SI->isVolatile());
2958     return SI;
2959   };
2960   // If there are multiple uses of the return-value slot, just check
2961   // for something immediately preceding the IP.  Sometimes this can
2962   // happen with how we generate implicit-returns; it can also happen
2963   // with noreturn cleanups.
2964   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2965     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2966     if (IP->empty()) return nullptr;
2967     llvm::Instruction *I = &IP->back();
2968 
2969     // Skip lifetime markers
2970     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2971                                             IE = IP->rend();
2972          II != IE; ++II) {
2973       if (llvm::IntrinsicInst *Intrinsic =
2974               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2975         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2976           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2977           ++II;
2978           if (II == IE)
2979             break;
2980           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2981             continue;
2982         }
2983       }
2984       I = &*II;
2985       break;
2986     }
2987 
2988     return GetStoreIfValid(I);
2989   }
2990 
2991   llvm::StoreInst *store =
2992       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2993   if (!store) return nullptr;
2994 
2995   // Now do a first-and-dirty dominance check: just walk up the
2996   // single-predecessors chain from the current insertion point.
2997   llvm::BasicBlock *StoreBB = store->getParent();
2998   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2999   while (IP != StoreBB) {
3000     if (!(IP = IP->getSinglePredecessor()))
3001       return nullptr;
3002   }
3003 
3004   // Okay, the store's basic block dominates the insertion point; we
3005   // can do our thing.
3006   return store;
3007 }
3008 
3009 // Helper functions for EmitCMSEClearRecord
3010 
3011 // Set the bits corresponding to a field having width `BitWidth` and located at
3012 // offset `BitOffset` (from the least significant bit) within a storage unit of
3013 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3014 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3015 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3016                         int BitWidth, int CharWidth) {
3017   assert(CharWidth <= 64);
3018   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3019 
3020   int Pos = 0;
3021   if (BitOffset >= CharWidth) {
3022     Pos += BitOffset / CharWidth;
3023     BitOffset = BitOffset % CharWidth;
3024   }
3025 
3026   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3027   if (BitOffset + BitWidth >= CharWidth) {
3028     Bits[Pos++] |= (Used << BitOffset) & Used;
3029     BitWidth -= CharWidth - BitOffset;
3030     BitOffset = 0;
3031   }
3032 
3033   while (BitWidth >= CharWidth) {
3034     Bits[Pos++] = Used;
3035     BitWidth -= CharWidth;
3036   }
3037 
3038   if (BitWidth > 0)
3039     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3040 }
3041 
3042 // Set the bits corresponding to a field having width `BitWidth` and located at
3043 // offset `BitOffset` (from the least significant bit) within a storage unit of
3044 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3045 // `Bits` corresponds to one target byte. Use target endian layout.
3046 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3047                         int StorageSize, int BitOffset, int BitWidth,
3048                         int CharWidth, bool BigEndian) {
3049 
3050   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3051   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3052 
3053   if (BigEndian)
3054     std::reverse(TmpBits.begin(), TmpBits.end());
3055 
3056   for (uint64_t V : TmpBits)
3057     Bits[StorageOffset++] |= V;
3058 }
3059 
3060 static void setUsedBits(CodeGenModule &, QualType, int,
3061                         SmallVectorImpl<uint64_t> &);
3062 
3063 // Set the bits in `Bits`, which correspond to the value representations of
3064 // the actual members of the record type `RTy`. Note that this function does
3065 // not handle base classes, virtual tables, etc, since they cannot happen in
3066 // CMSE function arguments or return. The bit mask corresponds to the target
3067 // memory layout, i.e. it's endian dependent.
3068 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3069                         SmallVectorImpl<uint64_t> &Bits) {
3070   ASTContext &Context = CGM.getContext();
3071   int CharWidth = Context.getCharWidth();
3072   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3073   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3074   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3075 
3076   int Idx = 0;
3077   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3078     const FieldDecl *F = *I;
3079 
3080     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3081         F->getType()->isIncompleteArrayType())
3082       continue;
3083 
3084     if (F->isBitField()) {
3085       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3086       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3087                   BFI.StorageSize / CharWidth, BFI.Offset,
3088                   BFI.Size, CharWidth,
3089                   CGM.getDataLayout().isBigEndian());
3090       continue;
3091     }
3092 
3093     setUsedBits(CGM, F->getType(),
3094                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3095   }
3096 }
3097 
3098 // Set the bits in `Bits`, which correspond to the value representations of
3099 // the elements of an array type `ATy`.
3100 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3101                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3102   const ASTContext &Context = CGM.getContext();
3103 
3104   QualType ETy = Context.getBaseElementType(ATy);
3105   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3106   SmallVector<uint64_t, 4> TmpBits(Size);
3107   setUsedBits(CGM, ETy, 0, TmpBits);
3108 
3109   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3110     auto Src = TmpBits.begin();
3111     auto Dst = Bits.begin() + Offset + I * Size;
3112     for (int J = 0; J < Size; ++J)
3113       *Dst++ |= *Src++;
3114   }
3115 }
3116 
3117 // Set the bits in `Bits`, which correspond to the value representations of
3118 // the type `QTy`.
3119 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3120                         SmallVectorImpl<uint64_t> &Bits) {
3121   if (const auto *RTy = QTy->getAs<RecordType>())
3122     return setUsedBits(CGM, RTy, Offset, Bits);
3123 
3124   ASTContext &Context = CGM.getContext();
3125   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3126     return setUsedBits(CGM, ATy, Offset, Bits);
3127 
3128   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3129   if (Size <= 0)
3130     return;
3131 
3132   std::fill_n(Bits.begin() + Offset, Size,
3133               (uint64_t(1) << Context.getCharWidth()) - 1);
3134 }
3135 
3136 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3137                                    int Pos, int Size, int CharWidth,
3138                                    bool BigEndian) {
3139   assert(Size > 0);
3140   uint64_t Mask = 0;
3141   if (BigEndian) {
3142     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3143          ++P)
3144       Mask = (Mask << CharWidth) | *P;
3145   } else {
3146     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3147     do
3148       Mask = (Mask << CharWidth) | *--P;
3149     while (P != End);
3150   }
3151   return Mask;
3152 }
3153 
3154 // Emit code to clear the bits in a record, which aren't a part of any user
3155 // declared member, when the record is a function return.
3156 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3157                                                   llvm::IntegerType *ITy,
3158                                                   QualType QTy) {
3159   assert(Src->getType() == ITy);
3160   assert(ITy->getScalarSizeInBits() <= 64);
3161 
3162   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3163   int Size = DataLayout.getTypeStoreSize(ITy);
3164   SmallVector<uint64_t, 4> Bits(Size);
3165   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3166 
3167   int CharWidth = CGM.getContext().getCharWidth();
3168   uint64_t Mask =
3169       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3170 
3171   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3172 }
3173 
3174 // Emit code to clear the bits in a record, which aren't a part of any user
3175 // declared member, when the record is a function argument.
3176 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3177                                                   llvm::ArrayType *ATy,
3178                                                   QualType QTy) {
3179   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3180   int Size = DataLayout.getTypeStoreSize(ATy);
3181   SmallVector<uint64_t, 16> Bits(Size);
3182   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3183 
3184   // Clear each element of the LLVM array.
3185   int CharWidth = CGM.getContext().getCharWidth();
3186   int CharsPerElt =
3187       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3188   int MaskIndex = 0;
3189   llvm::Value *R = llvm::UndefValue::get(ATy);
3190   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3191     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3192                                        DataLayout.isBigEndian());
3193     MaskIndex += CharsPerElt;
3194     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3195     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3196     R = Builder.CreateInsertValue(R, T1, I);
3197   }
3198 
3199   return R;
3200 }
3201 
3202 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3203                                          bool EmitRetDbgLoc,
3204                                          SourceLocation EndLoc) {
3205   if (FI.isNoReturn()) {
3206     // Noreturn functions don't return.
3207     EmitUnreachable(EndLoc);
3208     return;
3209   }
3210 
3211   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3212     // Naked functions don't have epilogues.
3213     Builder.CreateUnreachable();
3214     return;
3215   }
3216 
3217   // Functions with no result always return void.
3218   if (!ReturnValue.isValid()) {
3219     Builder.CreateRetVoid();
3220     return;
3221   }
3222 
3223   llvm::DebugLoc RetDbgLoc;
3224   llvm::Value *RV = nullptr;
3225   QualType RetTy = FI.getReturnType();
3226   const ABIArgInfo &RetAI = FI.getReturnInfo();
3227 
3228   switch (RetAI.getKind()) {
3229   case ABIArgInfo::InAlloca:
3230     // Aggregrates get evaluated directly into the destination.  Sometimes we
3231     // need to return the sret value in a register, though.
3232     assert(hasAggregateEvaluationKind(RetTy));
3233     if (RetAI.getInAllocaSRet()) {
3234       llvm::Function::arg_iterator EI = CurFn->arg_end();
3235       --EI;
3236       llvm::Value *ArgStruct = &*EI;
3237       llvm::Value *SRet = Builder.CreateStructGEP(
3238           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
3239       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
3240     }
3241     break;
3242 
3243   case ABIArgInfo::Indirect: {
3244     auto AI = CurFn->arg_begin();
3245     if (RetAI.isSRetAfterThis())
3246       ++AI;
3247     switch (getEvaluationKind(RetTy)) {
3248     case TEK_Complex: {
3249       ComplexPairTy RT =
3250         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3251       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3252                          /*isInit*/ true);
3253       break;
3254     }
3255     case TEK_Aggregate:
3256       // Do nothing; aggregrates get evaluated directly into the destination.
3257       break;
3258     case TEK_Scalar:
3259       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
3260                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
3261                         /*isInit*/ true);
3262       break;
3263     }
3264     break;
3265   }
3266 
3267   case ABIArgInfo::Extend:
3268   case ABIArgInfo::Direct:
3269     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3270         RetAI.getDirectOffset() == 0) {
3271       // The internal return value temp always will have pointer-to-return-type
3272       // type, just do a load.
3273 
3274       // If there is a dominating store to ReturnValue, we can elide
3275       // the load, zap the store, and usually zap the alloca.
3276       if (llvm::StoreInst *SI =
3277               findDominatingStoreToReturnValue(*this)) {
3278         // Reuse the debug location from the store unless there is
3279         // cleanup code to be emitted between the store and return
3280         // instruction.
3281         if (EmitRetDbgLoc && !AutoreleaseResult)
3282           RetDbgLoc = SI->getDebugLoc();
3283         // Get the stored value and nuke the now-dead store.
3284         RV = SI->getValueOperand();
3285         SI->eraseFromParent();
3286 
3287       // Otherwise, we have to do a simple load.
3288       } else {
3289         RV = Builder.CreateLoad(ReturnValue);
3290       }
3291     } else {
3292       // If the value is offset in memory, apply the offset now.
3293       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3294 
3295       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3296     }
3297 
3298     // In ARC, end functions that return a retainable type with a call
3299     // to objc_autoreleaseReturnValue.
3300     if (AutoreleaseResult) {
3301 #ifndef NDEBUG
3302       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3303       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3304       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3305       // CurCodeDecl or BlockInfo.
3306       QualType RT;
3307 
3308       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3309         RT = FD->getReturnType();
3310       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3311         RT = MD->getReturnType();
3312       else if (isa<BlockDecl>(CurCodeDecl))
3313         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3314       else
3315         llvm_unreachable("Unexpected function/method type");
3316 
3317       assert(getLangOpts().ObjCAutoRefCount &&
3318              !FI.isReturnsRetained() &&
3319              RT->isObjCRetainableType());
3320 #endif
3321       RV = emitAutoreleaseOfResult(*this, RV);
3322     }
3323 
3324     break;
3325 
3326   case ABIArgInfo::Ignore:
3327     break;
3328 
3329   case ABIArgInfo::CoerceAndExpand: {
3330     auto coercionType = RetAI.getCoerceAndExpandType();
3331 
3332     // Load all of the coerced elements out into results.
3333     llvm::SmallVector<llvm::Value*, 4> results;
3334     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3335     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3336       auto coercedEltType = coercionType->getElementType(i);
3337       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3338         continue;
3339 
3340       auto eltAddr = Builder.CreateStructGEP(addr, i);
3341       auto elt = Builder.CreateLoad(eltAddr);
3342       results.push_back(elt);
3343     }
3344 
3345     // If we have one result, it's the single direct result type.
3346     if (results.size() == 1) {
3347       RV = results[0];
3348 
3349     // Otherwise, we need to make a first-class aggregate.
3350     } else {
3351       // Construct a return type that lacks padding elements.
3352       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3353 
3354       RV = llvm::UndefValue::get(returnType);
3355       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3356         RV = Builder.CreateInsertValue(RV, results[i], i);
3357       }
3358     }
3359     break;
3360   }
3361   case ABIArgInfo::Expand:
3362   case ABIArgInfo::IndirectAliased:
3363     llvm_unreachable("Invalid ABI kind for return argument");
3364   }
3365 
3366   llvm::Instruction *Ret;
3367   if (RV) {
3368     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3369       // For certain return types, clear padding bits, as they may reveal
3370       // sensitive information.
3371       // Small struct/union types are passed as integers.
3372       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3373       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3374         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3375     }
3376     EmitReturnValueCheck(RV);
3377     Ret = Builder.CreateRet(RV);
3378   } else {
3379     Ret = Builder.CreateRetVoid();
3380   }
3381 
3382   if (RetDbgLoc)
3383     Ret->setDebugLoc(std::move(RetDbgLoc));
3384 }
3385 
3386 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3387   // A current decl may not be available when emitting vtable thunks.
3388   if (!CurCodeDecl)
3389     return;
3390 
3391   // If the return block isn't reachable, neither is this check, so don't emit
3392   // it.
3393   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3394     return;
3395 
3396   ReturnsNonNullAttr *RetNNAttr = nullptr;
3397   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3398     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3399 
3400   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3401     return;
3402 
3403   // Prefer the returns_nonnull attribute if it's present.
3404   SourceLocation AttrLoc;
3405   SanitizerMask CheckKind;
3406   SanitizerHandler Handler;
3407   if (RetNNAttr) {
3408     assert(!requiresReturnValueNullabilityCheck() &&
3409            "Cannot check nullability and the nonnull attribute");
3410     AttrLoc = RetNNAttr->getLocation();
3411     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3412     Handler = SanitizerHandler::NonnullReturn;
3413   } else {
3414     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3415       if (auto *TSI = DD->getTypeSourceInfo())
3416         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3417           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3418     CheckKind = SanitizerKind::NullabilityReturn;
3419     Handler = SanitizerHandler::NullabilityReturn;
3420   }
3421 
3422   SanitizerScope SanScope(this);
3423 
3424   // Make sure the "return" source location is valid. If we're checking a
3425   // nullability annotation, make sure the preconditions for the check are met.
3426   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3427   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3428   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3429   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3430   if (requiresReturnValueNullabilityCheck())
3431     CanNullCheck =
3432         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3433   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3434   EmitBlock(Check);
3435 
3436   // Now do the null check.
3437   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3438   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3439   llvm::Value *DynamicData[] = {SLocPtr};
3440   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3441 
3442   EmitBlock(NoCheck);
3443 
3444 #ifndef NDEBUG
3445   // The return location should not be used after the check has been emitted.
3446   ReturnLocation = Address::invalid();
3447 #endif
3448 }
3449 
3450 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3451   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3452   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3453 }
3454 
3455 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3456                                           QualType Ty) {
3457   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3458   // placeholders.
3459   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3460   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3461   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3462 
3463   // FIXME: When we generate this IR in one pass, we shouldn't need
3464   // this win32-specific alignment hack.
3465   CharUnits Align = CharUnits::fromQuantity(4);
3466   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3467 
3468   return AggValueSlot::forAddr(Address(Placeholder, Align),
3469                                Ty.getQualifiers(),
3470                                AggValueSlot::IsNotDestructed,
3471                                AggValueSlot::DoesNotNeedGCBarriers,
3472                                AggValueSlot::IsNotAliased,
3473                                AggValueSlot::DoesNotOverlap);
3474 }
3475 
3476 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3477                                           const VarDecl *param,
3478                                           SourceLocation loc) {
3479   // StartFunction converted the ABI-lowered parameter(s) into a
3480   // local alloca.  We need to turn that into an r-value suitable
3481   // for EmitCall.
3482   Address local = GetAddrOfLocalVar(param);
3483 
3484   QualType type = param->getType();
3485 
3486   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3487     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3488   }
3489 
3490   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3491   // but the argument needs to be the original pointer.
3492   if (type->isReferenceType()) {
3493     args.add(RValue::get(Builder.CreateLoad(local)), type);
3494 
3495   // In ARC, move out of consumed arguments so that the release cleanup
3496   // entered by StartFunction doesn't cause an over-release.  This isn't
3497   // optimal -O0 code generation, but it should get cleaned up when
3498   // optimization is enabled.  This also assumes that delegate calls are
3499   // performed exactly once for a set of arguments, but that should be safe.
3500   } else if (getLangOpts().ObjCAutoRefCount &&
3501              param->hasAttr<NSConsumedAttr>() &&
3502              type->isObjCRetainableType()) {
3503     llvm::Value *ptr = Builder.CreateLoad(local);
3504     auto null =
3505       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3506     Builder.CreateStore(null, local);
3507     args.add(RValue::get(ptr), type);
3508 
3509   // For the most part, we just need to load the alloca, except that
3510   // aggregate r-values are actually pointers to temporaries.
3511   } else {
3512     args.add(convertTempToRValue(local, type, loc), type);
3513   }
3514 
3515   // Deactivate the cleanup for the callee-destructed param that was pushed.
3516   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3517       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3518       param->needsDestruction(getContext())) {
3519     EHScopeStack::stable_iterator cleanup =
3520         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3521     assert(cleanup.isValid() &&
3522            "cleanup for callee-destructed param not recorded");
3523     // This unreachable is a temporary marker which will be removed later.
3524     llvm::Instruction *isActive = Builder.CreateUnreachable();
3525     args.addArgCleanupDeactivation(cleanup, isActive);
3526   }
3527 }
3528 
3529 static bool isProvablyNull(llvm::Value *addr) {
3530   return isa<llvm::ConstantPointerNull>(addr);
3531 }
3532 
3533 /// Emit the actual writing-back of a writeback.
3534 static void emitWriteback(CodeGenFunction &CGF,
3535                           const CallArgList::Writeback &writeback) {
3536   const LValue &srcLV = writeback.Source;
3537   Address srcAddr = srcLV.getAddress(CGF);
3538   assert(!isProvablyNull(srcAddr.getPointer()) &&
3539          "shouldn't have writeback for provably null argument");
3540 
3541   llvm::BasicBlock *contBB = nullptr;
3542 
3543   // If the argument wasn't provably non-null, we need to null check
3544   // before doing the store.
3545   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3546                                               CGF.CGM.getDataLayout());
3547   if (!provablyNonNull) {
3548     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3549     contBB = CGF.createBasicBlock("icr.done");
3550 
3551     llvm::Value *isNull =
3552       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3553     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3554     CGF.EmitBlock(writebackBB);
3555   }
3556 
3557   // Load the value to writeback.
3558   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3559 
3560   // Cast it back, in case we're writing an id to a Foo* or something.
3561   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3562                                     "icr.writeback-cast");
3563 
3564   // Perform the writeback.
3565 
3566   // If we have a "to use" value, it's something we need to emit a use
3567   // of.  This has to be carefully threaded in: if it's done after the
3568   // release it's potentially undefined behavior (and the optimizer
3569   // will ignore it), and if it happens before the retain then the
3570   // optimizer could move the release there.
3571   if (writeback.ToUse) {
3572     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3573 
3574     // Retain the new value.  No need to block-copy here:  the block's
3575     // being passed up the stack.
3576     value = CGF.EmitARCRetainNonBlock(value);
3577 
3578     // Emit the intrinsic use here.
3579     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3580 
3581     // Load the old value (primitively).
3582     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3583 
3584     // Put the new value in place (primitively).
3585     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3586 
3587     // Release the old value.
3588     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3589 
3590   // Otherwise, we can just do a normal lvalue store.
3591   } else {
3592     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3593   }
3594 
3595   // Jump to the continuation block.
3596   if (!provablyNonNull)
3597     CGF.EmitBlock(contBB);
3598 }
3599 
3600 static void emitWritebacks(CodeGenFunction &CGF,
3601                            const CallArgList &args) {
3602   for (const auto &I : args.writebacks())
3603     emitWriteback(CGF, I);
3604 }
3605 
3606 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3607                                             const CallArgList &CallArgs) {
3608   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3609     CallArgs.getCleanupsToDeactivate();
3610   // Iterate in reverse to increase the likelihood of popping the cleanup.
3611   for (const auto &I : llvm::reverse(Cleanups)) {
3612     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3613     I.IsActiveIP->eraseFromParent();
3614   }
3615 }
3616 
3617 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3618   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3619     if (uop->getOpcode() == UO_AddrOf)
3620       return uop->getSubExpr();
3621   return nullptr;
3622 }
3623 
3624 /// Emit an argument that's being passed call-by-writeback.  That is,
3625 /// we are passing the address of an __autoreleased temporary; it
3626 /// might be copy-initialized with the current value of the given
3627 /// address, but it will definitely be copied out of after the call.
3628 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3629                              const ObjCIndirectCopyRestoreExpr *CRE) {
3630   LValue srcLV;
3631 
3632   // Make an optimistic effort to emit the address as an l-value.
3633   // This can fail if the argument expression is more complicated.
3634   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3635     srcLV = CGF.EmitLValue(lvExpr);
3636 
3637   // Otherwise, just emit it as a scalar.
3638   } else {
3639     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3640 
3641     QualType srcAddrType =
3642       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3643     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3644   }
3645   Address srcAddr = srcLV.getAddress(CGF);
3646 
3647   // The dest and src types don't necessarily match in LLVM terms
3648   // because of the crazy ObjC compatibility rules.
3649 
3650   llvm::PointerType *destType =
3651     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3652 
3653   // If the address is a constant null, just pass the appropriate null.
3654   if (isProvablyNull(srcAddr.getPointer())) {
3655     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3656              CRE->getType());
3657     return;
3658   }
3659 
3660   // Create the temporary.
3661   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3662                                       CGF.getPointerAlign(),
3663                                       "icr.temp");
3664   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3665   // and that cleanup will be conditional if we can't prove that the l-value
3666   // isn't null, so we need to register a dominating point so that the cleanups
3667   // system will make valid IR.
3668   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3669 
3670   // Zero-initialize it if we're not doing a copy-initialization.
3671   bool shouldCopy = CRE->shouldCopy();
3672   if (!shouldCopy) {
3673     llvm::Value *null =
3674       llvm::ConstantPointerNull::get(
3675         cast<llvm::PointerType>(destType->getElementType()));
3676     CGF.Builder.CreateStore(null, temp);
3677   }
3678 
3679   llvm::BasicBlock *contBB = nullptr;
3680   llvm::BasicBlock *originBB = nullptr;
3681 
3682   // If the address is *not* known to be non-null, we need to switch.
3683   llvm::Value *finalArgument;
3684 
3685   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3686                                               CGF.CGM.getDataLayout());
3687   if (provablyNonNull) {
3688     finalArgument = temp.getPointer();
3689   } else {
3690     llvm::Value *isNull =
3691       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3692 
3693     finalArgument = CGF.Builder.CreateSelect(isNull,
3694                                    llvm::ConstantPointerNull::get(destType),
3695                                              temp.getPointer(), "icr.argument");
3696 
3697     // If we need to copy, then the load has to be conditional, which
3698     // means we need control flow.
3699     if (shouldCopy) {
3700       originBB = CGF.Builder.GetInsertBlock();
3701       contBB = CGF.createBasicBlock("icr.cont");
3702       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3703       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3704       CGF.EmitBlock(copyBB);
3705       condEval.begin(CGF);
3706     }
3707   }
3708 
3709   llvm::Value *valueToUse = nullptr;
3710 
3711   // Perform a copy if necessary.
3712   if (shouldCopy) {
3713     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3714     assert(srcRV.isScalar());
3715 
3716     llvm::Value *src = srcRV.getScalarVal();
3717     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3718                                     "icr.cast");
3719 
3720     // Use an ordinary store, not a store-to-lvalue.
3721     CGF.Builder.CreateStore(src, temp);
3722 
3723     // If optimization is enabled, and the value was held in a
3724     // __strong variable, we need to tell the optimizer that this
3725     // value has to stay alive until we're doing the store back.
3726     // This is because the temporary is effectively unretained,
3727     // and so otherwise we can violate the high-level semantics.
3728     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3729         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3730       valueToUse = src;
3731     }
3732   }
3733 
3734   // Finish the control flow if we needed it.
3735   if (shouldCopy && !provablyNonNull) {
3736     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3737     CGF.EmitBlock(contBB);
3738 
3739     // Make a phi for the value to intrinsically use.
3740     if (valueToUse) {
3741       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3742                                                       "icr.to-use");
3743       phiToUse->addIncoming(valueToUse, copyBB);
3744       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3745                             originBB);
3746       valueToUse = phiToUse;
3747     }
3748 
3749     condEval.end(CGF);
3750   }
3751 
3752   args.addWriteback(srcLV, temp, valueToUse);
3753   args.add(RValue::get(finalArgument), CRE->getType());
3754 }
3755 
3756 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3757   assert(!StackBase);
3758 
3759   // Save the stack.
3760   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3761   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3762 }
3763 
3764 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3765   if (StackBase) {
3766     // Restore the stack after the call.
3767     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3768     CGF.Builder.CreateCall(F, StackBase);
3769   }
3770 }
3771 
3772 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3773                                           SourceLocation ArgLoc,
3774                                           AbstractCallee AC,
3775                                           unsigned ParmNum) {
3776   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3777                          SanOpts.has(SanitizerKind::NullabilityArg)))
3778     return;
3779 
3780   // The param decl may be missing in a variadic function.
3781   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3782   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3783 
3784   // Prefer the nonnull attribute if it's present.
3785   const NonNullAttr *NNAttr = nullptr;
3786   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3787     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3788 
3789   bool CanCheckNullability = false;
3790   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3791     auto Nullability = PVD->getType()->getNullability(getContext());
3792     CanCheckNullability = Nullability &&
3793                           *Nullability == NullabilityKind::NonNull &&
3794                           PVD->getTypeSourceInfo();
3795   }
3796 
3797   if (!NNAttr && !CanCheckNullability)
3798     return;
3799 
3800   SourceLocation AttrLoc;
3801   SanitizerMask CheckKind;
3802   SanitizerHandler Handler;
3803   if (NNAttr) {
3804     AttrLoc = NNAttr->getLocation();
3805     CheckKind = SanitizerKind::NonnullAttribute;
3806     Handler = SanitizerHandler::NonnullArg;
3807   } else {
3808     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3809     CheckKind = SanitizerKind::NullabilityArg;
3810     Handler = SanitizerHandler::NullabilityArg;
3811   }
3812 
3813   SanitizerScope SanScope(this);
3814   llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
3815   llvm::Constant *StaticData[] = {
3816       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3817       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3818   };
3819   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3820 }
3821 
3822 // Check if the call is going to use the inalloca convention. This needs to
3823 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
3824 // later, so we can't check it directly.
3825 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
3826                             ArrayRef<QualType> ArgTypes) {
3827   // The Swift calling convention doesn't go through the target-specific
3828   // argument classification, so it never uses inalloca.
3829   // TODO: Consider limiting inalloca use to only calling conventions supported
3830   // by MSVC.
3831   if (ExplicitCC == CC_Swift)
3832     return false;
3833   if (!CGM.getTarget().getCXXABI().isMicrosoft())
3834     return false;
3835   return llvm::any_of(ArgTypes, [&](QualType Ty) {
3836     return isInAllocaArgument(CGM.getCXXABI(), Ty);
3837   });
3838 }
3839 
3840 #ifndef NDEBUG
3841 // Determine whether the given argument is an Objective-C method
3842 // that may have type parameters in its signature.
3843 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3844   const DeclContext *dc = method->getDeclContext();
3845   if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
3846     return classDecl->getTypeParamListAsWritten();
3847   }
3848 
3849   if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3850     return catDecl->getTypeParamList();
3851   }
3852 
3853   return false;
3854 }
3855 #endif
3856 
3857 /// EmitCallArgs - Emit call arguments for a function.
3858 void CodeGenFunction::EmitCallArgs(
3859     CallArgList &Args, PrototypeWrapper Prototype,
3860     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3861     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3862   SmallVector<QualType, 16> ArgTypes;
3863 
3864   assert((ParamsToSkip == 0 || Prototype.P) &&
3865          "Can't skip parameters if type info is not provided");
3866 
3867   // This variable only captures *explicitly* written conventions, not those
3868   // applied by default via command line flags or target defaults, such as
3869   // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
3870   // require knowing if this is a C++ instance method or being able to see
3871   // unprototyped FunctionTypes.
3872   CallingConv ExplicitCC = CC_C;
3873 
3874   // First, if a prototype was provided, use those argument types.
3875   bool IsVariadic = false;
3876   if (Prototype.P) {
3877     const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
3878     if (MD) {
3879       IsVariadic = MD->isVariadic();
3880       ExplicitCC = getCallingConventionForDecl(
3881           MD, CGM.getTarget().getTriple().isOSWindows());
3882       ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
3883                       MD->param_type_end());
3884     } else {
3885       const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
3886       IsVariadic = FPT->isVariadic();
3887       ExplicitCC = FPT->getExtInfo().getCC();
3888       ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
3889                       FPT->param_type_end());
3890     }
3891 
3892 #ifndef NDEBUG
3893     // Check that the prototyped types match the argument expression types.
3894     bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
3895     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3896     for (QualType Ty : ArgTypes) {
3897       assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3898       assert(
3899           (isGenericMethod || Ty->isVariablyModifiedType() ||
3900            Ty.getNonReferenceType()->isObjCRetainableType() ||
3901            getContext()
3902                    .getCanonicalType(Ty.getNonReferenceType())
3903                    .getTypePtr() ==
3904                getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
3905           "type mismatch in call argument!");
3906       ++Arg;
3907     }
3908 
3909     // Either we've emitted all the call args, or we have a call to variadic
3910     // function.
3911     assert((Arg == ArgRange.end() || IsVariadic) &&
3912            "Extra arguments in non-variadic function!");
3913 #endif
3914   }
3915 
3916   // If we still have any arguments, emit them using the type of the argument.
3917   for (auto *A : llvm::make_range(std::next(ArgRange.begin(), ArgTypes.size()),
3918                                   ArgRange.end()))
3919     ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
3920   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3921 
3922   // We must evaluate arguments from right to left in the MS C++ ABI,
3923   // because arguments are destroyed left to right in the callee. As a special
3924   // case, there are certain language constructs that require left-to-right
3925   // evaluation, and in those cases we consider the evaluation order requirement
3926   // to trump the "destruction order is reverse construction order" guarantee.
3927   bool LeftToRight =
3928       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3929           ? Order == EvaluationOrder::ForceLeftToRight
3930           : Order != EvaluationOrder::ForceRightToLeft;
3931 
3932   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3933                                          RValue EmittedArg) {
3934     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3935       return;
3936     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3937     if (PS == nullptr)
3938       return;
3939 
3940     const auto &Context = getContext();
3941     auto SizeTy = Context.getSizeType();
3942     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3943     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3944     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3945                                                      EmittedArg.getScalarVal(),
3946                                                      PS->isDynamic());
3947     Args.add(RValue::get(V), SizeTy);
3948     // If we're emitting args in reverse, be sure to do so with
3949     // pass_object_size, as well.
3950     if (!LeftToRight)
3951       std::swap(Args.back(), *(&Args.back() - 1));
3952   };
3953 
3954   // Insert a stack save if we're going to need any inalloca args.
3955   if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
3956     assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
3957            "inalloca only supported on x86");
3958     Args.allocateArgumentMemory(*this);
3959   }
3960 
3961   // Evaluate each argument in the appropriate order.
3962   size_t CallArgsStart = Args.size();
3963   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3964     unsigned Idx = LeftToRight ? I : E - I - 1;
3965     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3966     unsigned InitialArgSize = Args.size();
3967     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3968     // the argument and parameter match or the objc method is parameterized.
3969     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3970             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3971                                                 ArgTypes[Idx]) ||
3972             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3973              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3974            "Argument and parameter types don't match");
3975     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3976     // In particular, we depend on it being the last arg in Args, and the
3977     // objectsize bits depend on there only being one arg if !LeftToRight.
3978     assert(InitialArgSize + 1 == Args.size() &&
3979            "The code below depends on only adding one arg per EmitCallArg");
3980     (void)InitialArgSize;
3981     // Since pointer argument are never emitted as LValue, it is safe to emit
3982     // non-null argument check for r-value only.
3983     if (!Args.back().hasLValue()) {
3984       RValue RVArg = Args.back().getKnownRValue();
3985       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3986                           ParamsToSkip + Idx);
3987       // @llvm.objectsize should never have side-effects and shouldn't need
3988       // destruction/cleanups, so we can safely "emit" it after its arg,
3989       // regardless of right-to-leftness
3990       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3991     }
3992   }
3993 
3994   if (!LeftToRight) {
3995     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3996     // IR function.
3997     std::reverse(Args.begin() + CallArgsStart, Args.end());
3998   }
3999 }
4000 
4001 namespace {
4002 
4003 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
4004   DestroyUnpassedArg(Address Addr, QualType Ty)
4005       : Addr(Addr), Ty(Ty) {}
4006 
4007   Address Addr;
4008   QualType Ty;
4009 
4010   void Emit(CodeGenFunction &CGF, Flags flags) override {
4011     QualType::DestructionKind DtorKind = Ty.isDestructedType();
4012     if (DtorKind == QualType::DK_cxx_destructor) {
4013       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4014       assert(!Dtor->isTrivial());
4015       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4016                                 /*Delegating=*/false, Addr, Ty);
4017     } else {
4018       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4019     }
4020   }
4021 };
4022 
4023 struct DisableDebugLocationUpdates {
4024   CodeGenFunction &CGF;
4025   bool disabledDebugInfo;
4026   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4027     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4028       CGF.disableDebugInfo();
4029   }
4030   ~DisableDebugLocationUpdates() {
4031     if (disabledDebugInfo)
4032       CGF.enableDebugInfo();
4033   }
4034 };
4035 
4036 } // end anonymous namespace
4037 
4038 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4039   if (!HasLV)
4040     return RV;
4041   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4042   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4043                         LV.isVolatile());
4044   IsUsed = true;
4045   return RValue::getAggregate(Copy.getAddress(CGF));
4046 }
4047 
4048 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4049   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4050   if (!HasLV && RV.isScalar())
4051     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4052   else if (!HasLV && RV.isComplex())
4053     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4054   else {
4055     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
4056     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4057     // We assume that call args are never copied into subobjects.
4058     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4059                           HasLV ? LV.isVolatileQualified()
4060                                 : RV.isVolatileQualified());
4061   }
4062   IsUsed = true;
4063 }
4064 
4065 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4066                                   QualType type) {
4067   DisableDebugLocationUpdates Dis(*this, E);
4068   if (const ObjCIndirectCopyRestoreExpr *CRE
4069         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4070     assert(getLangOpts().ObjCAutoRefCount);
4071     return emitWritebackArg(*this, args, CRE);
4072   }
4073 
4074   assert(type->isReferenceType() == E->isGLValue() &&
4075          "reference binding to unmaterialized r-value!");
4076 
4077   if (E->isGLValue()) {
4078     assert(E->getObjectKind() == OK_Ordinary);
4079     return args.add(EmitReferenceBindingToExpr(E), type);
4080   }
4081 
4082   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4083 
4084   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4085   // However, we still have to push an EH-only cleanup in case we unwind before
4086   // we make it to the call.
4087   if (HasAggregateEvalKind &&
4088       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4089     // If we're using inalloca, use the argument memory.  Otherwise, use a
4090     // temporary.
4091     AggValueSlot Slot;
4092     if (args.isUsingInAlloca())
4093       Slot = createPlaceholderSlot(*this, type);
4094     else
4095       Slot = CreateAggTemp(type, "agg.tmp");
4096 
4097     bool DestroyedInCallee = true, NeedsEHCleanup = true;
4098     if (const auto *RD = type->getAsCXXRecordDecl())
4099       DestroyedInCallee = RD->hasNonTrivialDestructor();
4100     else
4101       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4102 
4103     if (DestroyedInCallee)
4104       Slot.setExternallyDestructed();
4105 
4106     EmitAggExpr(E, Slot);
4107     RValue RV = Slot.asRValue();
4108     args.add(RV, type);
4109 
4110     if (DestroyedInCallee && NeedsEHCleanup) {
4111       // Create a no-op GEP between the placeholder and the cleanup so we can
4112       // RAUW it successfully.  It also serves as a marker of the first
4113       // instruction where the cleanup is active.
4114       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4115                                               type);
4116       // This unreachable is a temporary marker which will be removed later.
4117       llvm::Instruction *IsActive = Builder.CreateUnreachable();
4118       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
4119     }
4120     return;
4121   }
4122 
4123   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4124       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4125     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4126     assert(L.isSimple());
4127     args.addUncopiedAggregate(L, type);
4128     return;
4129   }
4130 
4131   args.add(EmitAnyExprToTemp(E), type);
4132 }
4133 
4134 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4135   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4136   // implicitly widens null pointer constants that are arguments to varargs
4137   // functions to pointer-sized ints.
4138   if (!getTarget().getTriple().isOSWindows())
4139     return Arg->getType();
4140 
4141   if (Arg->getType()->isIntegerType() &&
4142       getContext().getTypeSize(Arg->getType()) <
4143           getContext().getTargetInfo().getPointerWidth(0) &&
4144       Arg->isNullPointerConstant(getContext(),
4145                                  Expr::NPC_ValueDependentIsNotNull)) {
4146     return getContext().getIntPtrType();
4147   }
4148 
4149   return Arg->getType();
4150 }
4151 
4152 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4153 // optimizer it can aggressively ignore unwind edges.
4154 void
4155 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4156   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4157       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4158     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4159                       CGM.getNoObjCARCExceptionsMetadata());
4160 }
4161 
4162 /// Emits a call to the given no-arguments nounwind runtime function.
4163 llvm::CallInst *
4164 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4165                                          const llvm::Twine &name) {
4166   return EmitNounwindRuntimeCall(callee, None, name);
4167 }
4168 
4169 /// Emits a call to the given nounwind runtime function.
4170 llvm::CallInst *
4171 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4172                                          ArrayRef<llvm::Value *> args,
4173                                          const llvm::Twine &name) {
4174   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4175   call->setDoesNotThrow();
4176   return call;
4177 }
4178 
4179 /// Emits a simple call (never an invoke) to the given no-arguments
4180 /// runtime function.
4181 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4182                                                  const llvm::Twine &name) {
4183   return EmitRuntimeCall(callee, None, name);
4184 }
4185 
4186 // Calls which may throw must have operand bundles indicating which funclet
4187 // they are nested within.
4188 SmallVector<llvm::OperandBundleDef, 1>
4189 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4190   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4191   // There is no need for a funclet operand bundle if we aren't inside a
4192   // funclet.
4193   if (!CurrentFuncletPad)
4194     return BundleList;
4195 
4196   // Skip intrinsics which cannot throw.
4197   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4198   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4199     return BundleList;
4200 
4201   BundleList.emplace_back("funclet", CurrentFuncletPad);
4202   return BundleList;
4203 }
4204 
4205 /// Emits a simple call (never an invoke) to the given runtime function.
4206 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4207                                                  ArrayRef<llvm::Value *> args,
4208                                                  const llvm::Twine &name) {
4209   llvm::CallInst *call = Builder.CreateCall(
4210       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4211   call->setCallingConv(getRuntimeCC());
4212   return call;
4213 }
4214 
4215 /// Emits a call or invoke to the given noreturn runtime function.
4216 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4217     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4218   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4219       getBundlesForFunclet(callee.getCallee());
4220 
4221   if (getInvokeDest()) {
4222     llvm::InvokeInst *invoke =
4223       Builder.CreateInvoke(callee,
4224                            getUnreachableBlock(),
4225                            getInvokeDest(),
4226                            args,
4227                            BundleList);
4228     invoke->setDoesNotReturn();
4229     invoke->setCallingConv(getRuntimeCC());
4230   } else {
4231     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4232     call->setDoesNotReturn();
4233     call->setCallingConv(getRuntimeCC());
4234     Builder.CreateUnreachable();
4235   }
4236 }
4237 
4238 /// Emits a call or invoke instruction to the given nullary runtime function.
4239 llvm::CallBase *
4240 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4241                                          const Twine &name) {
4242   return EmitRuntimeCallOrInvoke(callee, None, name);
4243 }
4244 
4245 /// Emits a call or invoke instruction to the given runtime function.
4246 llvm::CallBase *
4247 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4248                                          ArrayRef<llvm::Value *> args,
4249                                          const Twine &name) {
4250   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4251   call->setCallingConv(getRuntimeCC());
4252   return call;
4253 }
4254 
4255 /// Emits a call or invoke instruction to the given function, depending
4256 /// on the current state of the EH stack.
4257 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4258                                                   ArrayRef<llvm::Value *> Args,
4259                                                   const Twine &Name) {
4260   llvm::BasicBlock *InvokeDest = getInvokeDest();
4261   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4262       getBundlesForFunclet(Callee.getCallee());
4263 
4264   llvm::CallBase *Inst;
4265   if (!InvokeDest)
4266     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4267   else {
4268     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4269     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4270                                 Name);
4271     EmitBlock(ContBB);
4272   }
4273 
4274   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4275   // optimizer it can aggressively ignore unwind edges.
4276   if (CGM.getLangOpts().ObjCAutoRefCount)
4277     AddObjCARCExceptionMetadata(Inst);
4278 
4279   return Inst;
4280 }
4281 
4282 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4283                                                   llvm::Value *New) {
4284   DeferredReplacements.push_back(std::make_pair(Old, New));
4285 }
4286 
4287 namespace {
4288 
4289 /// Specify given \p NewAlign as the alignment of return value attribute. If
4290 /// such attribute already exists, re-set it to the maximal one of two options.
4291 LLVM_NODISCARD llvm::AttributeList
4292 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4293                                 const llvm::AttributeList &Attrs,
4294                                 llvm::Align NewAlign) {
4295   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4296   if (CurAlign >= NewAlign)
4297     return Attrs;
4298   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4299   return Attrs
4300       .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex,
4301                        llvm::Attribute::AttrKind::Alignment)
4302       .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr);
4303 }
4304 
4305 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4306 protected:
4307   CodeGenFunction &CGF;
4308 
4309   /// We do nothing if this is, or becomes, nullptr.
4310   const AlignedAttrTy *AA = nullptr;
4311 
4312   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4313   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4314 
4315   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4316       : CGF(CGF_) {
4317     if (!FuncDecl)
4318       return;
4319     AA = FuncDecl->getAttr<AlignedAttrTy>();
4320   }
4321 
4322 public:
4323   /// If we can, materialize the alignment as an attribute on return value.
4324   LLVM_NODISCARD llvm::AttributeList
4325   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4326     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4327       return Attrs;
4328     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4329     if (!AlignmentCI)
4330       return Attrs;
4331     // We may legitimately have non-power-of-2 alignment here.
4332     // If so, this is UB land, emit it via `@llvm.assume` instead.
4333     if (!AlignmentCI->getValue().isPowerOf2())
4334       return Attrs;
4335     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4336         CGF.getLLVMContext(), Attrs,
4337         llvm::Align(
4338             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4339     AA = nullptr; // We're done. Disallow doing anything else.
4340     return NewAttrs;
4341   }
4342 
4343   /// Emit alignment assumption.
4344   /// This is a general fallback that we take if either there is an offset,
4345   /// or the alignment is variable or we are sanitizing for alignment.
4346   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4347     if (!AA)
4348       return;
4349     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4350                                 AA->getLocation(), Alignment, OffsetCI);
4351     AA = nullptr; // We're done. Disallow doing anything else.
4352   }
4353 };
4354 
4355 /// Helper data structure to emit `AssumeAlignedAttr`.
4356 class AssumeAlignedAttrEmitter final
4357     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4358 public:
4359   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4360       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4361     if (!AA)
4362       return;
4363     // It is guaranteed that the alignment/offset are constants.
4364     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4365     if (Expr *Offset = AA->getOffset()) {
4366       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4367       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4368         OffsetCI = nullptr;
4369     }
4370   }
4371 };
4372 
4373 /// Helper data structure to emit `AllocAlignAttr`.
4374 class AllocAlignAttrEmitter final
4375     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4376 public:
4377   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4378                         const CallArgList &CallArgs)
4379       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4380     if (!AA)
4381       return;
4382     // Alignment may or may not be a constant, and that is okay.
4383     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4384                     .getRValue(CGF)
4385                     .getScalarVal();
4386   }
4387 };
4388 
4389 } // namespace
4390 
4391 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4392                                  const CGCallee &Callee,
4393                                  ReturnValueSlot ReturnValue,
4394                                  const CallArgList &CallArgs,
4395                                  llvm::CallBase **callOrInvoke,
4396                                  SourceLocation Loc) {
4397   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4398 
4399   assert(Callee.isOrdinary() || Callee.isVirtual());
4400 
4401   // Handle struct-return functions by passing a pointer to the
4402   // location that we would like to return into.
4403   QualType RetTy = CallInfo.getReturnType();
4404   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4405 
4406   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4407 
4408   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4409   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4410     // We can only guarantee that a function is called from the correct
4411     // context/function based on the appropriate target attributes,
4412     // so only check in the case where we have both always_inline and target
4413     // since otherwise we could be making a conditional call after a check for
4414     // the proper cpu features (and it won't cause code generation issues due to
4415     // function based code generation).
4416     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4417         TargetDecl->hasAttr<TargetAttr>())
4418       checkTargetFeatures(Loc, FD);
4419 
4420     // Some architectures (such as x86-64) have the ABI changed based on
4421     // attribute-target/features. Give them a chance to diagnose.
4422     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4423         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4424   }
4425 
4426 #ifndef NDEBUG
4427   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4428     // For an inalloca varargs function, we don't expect CallInfo to match the
4429     // function pointer's type, because the inalloca struct a will have extra
4430     // fields in it for the varargs parameters.  Code later in this function
4431     // bitcasts the function pointer to the type derived from CallInfo.
4432     //
4433     // In other cases, we assert that the types match up (until pointers stop
4434     // having pointee types).
4435     llvm::Type *TypeFromVal;
4436     if (Callee.isVirtual())
4437       TypeFromVal = Callee.getVirtualFunctionType();
4438     else
4439       TypeFromVal =
4440           Callee.getFunctionPointer()->getType()->getPointerElementType();
4441     assert(IRFuncTy == TypeFromVal);
4442   }
4443 #endif
4444 
4445   // 1. Set up the arguments.
4446 
4447   // If we're using inalloca, insert the allocation after the stack save.
4448   // FIXME: Do this earlier rather than hacking it in here!
4449   Address ArgMemory = Address::invalid();
4450   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4451     const llvm::DataLayout &DL = CGM.getDataLayout();
4452     llvm::Instruction *IP = CallArgs.getStackBase();
4453     llvm::AllocaInst *AI;
4454     if (IP) {
4455       IP = IP->getNextNode();
4456       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4457                                 "argmem", IP);
4458     } else {
4459       AI = CreateTempAlloca(ArgStruct, "argmem");
4460     }
4461     auto Align = CallInfo.getArgStructAlignment();
4462     AI->setAlignment(Align.getAsAlign());
4463     AI->setUsedWithInAlloca(true);
4464     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4465     ArgMemory = Address(AI, Align);
4466   }
4467 
4468   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4469   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4470 
4471   // If the call returns a temporary with struct return, create a temporary
4472   // alloca to hold the result, unless one is given to us.
4473   Address SRetPtr = Address::invalid();
4474   Address SRetAlloca = Address::invalid();
4475   llvm::Value *UnusedReturnSizePtr = nullptr;
4476   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4477     if (!ReturnValue.isNull()) {
4478       SRetPtr = ReturnValue.getValue();
4479     } else {
4480       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4481       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4482         uint64_t size =
4483             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4484         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4485       }
4486     }
4487     if (IRFunctionArgs.hasSRetArg()) {
4488       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4489     } else if (RetAI.isInAlloca()) {
4490       Address Addr =
4491           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4492       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4493     }
4494   }
4495 
4496   Address swiftErrorTemp = Address::invalid();
4497   Address swiftErrorArg = Address::invalid();
4498 
4499   // When passing arguments using temporary allocas, we need to add the
4500   // appropriate lifetime markers. This vector keeps track of all the lifetime
4501   // markers that need to be ended right after the call.
4502   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4503 
4504   // Translate all of the arguments as necessary to match the IR lowering.
4505   assert(CallInfo.arg_size() == CallArgs.size() &&
4506          "Mismatch between function signature & arguments.");
4507   unsigned ArgNo = 0;
4508   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4509   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4510        I != E; ++I, ++info_it, ++ArgNo) {
4511     const ABIArgInfo &ArgInfo = info_it->info;
4512 
4513     // Insert a padding argument to ensure proper alignment.
4514     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4515       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4516           llvm::UndefValue::get(ArgInfo.getPaddingType());
4517 
4518     unsigned FirstIRArg, NumIRArgs;
4519     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4520 
4521     switch (ArgInfo.getKind()) {
4522     case ABIArgInfo::InAlloca: {
4523       assert(NumIRArgs == 0);
4524       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4525       if (I->isAggregate()) {
4526         Address Addr = I->hasLValue()
4527                            ? I->getKnownLValue().getAddress(*this)
4528                            : I->getKnownRValue().getAggregateAddress();
4529         llvm::Instruction *Placeholder =
4530             cast<llvm::Instruction>(Addr.getPointer());
4531 
4532         if (!ArgInfo.getInAllocaIndirect()) {
4533           // Replace the placeholder with the appropriate argument slot GEP.
4534           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4535           Builder.SetInsertPoint(Placeholder);
4536           Addr = Builder.CreateStructGEP(ArgMemory,
4537                                          ArgInfo.getInAllocaFieldIndex());
4538           Builder.restoreIP(IP);
4539         } else {
4540           // For indirect things such as overaligned structs, replace the
4541           // placeholder with a regular aggregate temporary alloca. Store the
4542           // address of this alloca into the struct.
4543           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4544           Address ArgSlot = Builder.CreateStructGEP(
4545               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4546           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4547         }
4548         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4549       } else if (ArgInfo.getInAllocaIndirect()) {
4550         // Make a temporary alloca and store the address of it into the argument
4551         // struct.
4552         Address Addr = CreateMemTempWithoutCast(
4553             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4554             "indirect-arg-temp");
4555         I->copyInto(*this, Addr);
4556         Address ArgSlot =
4557             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4558         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4559       } else {
4560         // Store the RValue into the argument struct.
4561         Address Addr =
4562             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4563         unsigned AS = Addr.getType()->getPointerAddressSpace();
4564         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4565         // There are some cases where a trivial bitcast is not avoidable.  The
4566         // definition of a type later in a translation unit may change it's type
4567         // from {}* to (%struct.foo*)*.
4568         if (Addr.getType() != MemType)
4569           Addr = Builder.CreateBitCast(Addr, MemType);
4570         I->copyInto(*this, Addr);
4571       }
4572       break;
4573     }
4574 
4575     case ABIArgInfo::Indirect:
4576     case ABIArgInfo::IndirectAliased: {
4577       assert(NumIRArgs == 1);
4578       if (!I->isAggregate()) {
4579         // Make a temporary alloca to pass the argument.
4580         Address Addr = CreateMemTempWithoutCast(
4581             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4582         IRCallArgs[FirstIRArg] = Addr.getPointer();
4583 
4584         I->copyInto(*this, Addr);
4585       } else {
4586         // We want to avoid creating an unnecessary temporary+copy here;
4587         // however, we need one in three cases:
4588         // 1. If the argument is not byval, and we are required to copy the
4589         //    source.  (This case doesn't occur on any common architecture.)
4590         // 2. If the argument is byval, RV is not sufficiently aligned, and
4591         //    we cannot force it to be sufficiently aligned.
4592         // 3. If the argument is byval, but RV is not located in default
4593         //    or alloca address space.
4594         Address Addr = I->hasLValue()
4595                            ? I->getKnownLValue().getAddress(*this)
4596                            : I->getKnownRValue().getAggregateAddress();
4597         llvm::Value *V = Addr.getPointer();
4598         CharUnits Align = ArgInfo.getIndirectAlign();
4599         const llvm::DataLayout *TD = &CGM.getDataLayout();
4600 
4601         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4602                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4603                     TD->getAllocaAddrSpace()) &&
4604                "indirect argument must be in alloca address space");
4605 
4606         bool NeedCopy = false;
4607 
4608         if (Addr.getAlignment() < Align &&
4609             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4610                 Align.getAsAlign()) {
4611           NeedCopy = true;
4612         } else if (I->hasLValue()) {
4613           auto LV = I->getKnownLValue();
4614           auto AS = LV.getAddressSpace();
4615 
4616           if (!ArgInfo.getIndirectByVal() ||
4617               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4618             NeedCopy = true;
4619           }
4620           if (!getLangOpts().OpenCL) {
4621             if ((ArgInfo.getIndirectByVal() &&
4622                 (AS != LangAS::Default &&
4623                  AS != CGM.getASTAllocaAddressSpace()))) {
4624               NeedCopy = true;
4625             }
4626           }
4627           // For OpenCL even if RV is located in default or alloca address space
4628           // we don't want to perform address space cast for it.
4629           else if ((ArgInfo.getIndirectByVal() &&
4630                     Addr.getType()->getAddressSpace() != IRFuncTy->
4631                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4632             NeedCopy = true;
4633           }
4634         }
4635 
4636         if (NeedCopy) {
4637           // Create an aligned temporary, and copy to it.
4638           Address AI = CreateMemTempWithoutCast(
4639               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4640           IRCallArgs[FirstIRArg] = AI.getPointer();
4641 
4642           // Emit lifetime markers for the temporary alloca.
4643           uint64_t ByvalTempElementSize =
4644               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4645           llvm::Value *LifetimeSize =
4646               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4647 
4648           // Add cleanup code to emit the end lifetime marker after the call.
4649           if (LifetimeSize) // In case we disabled lifetime markers.
4650             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4651 
4652           // Generate the copy.
4653           I->copyInto(*this, AI);
4654         } else {
4655           // Skip the extra memcpy call.
4656           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4657               CGM.getDataLayout().getAllocaAddrSpace());
4658           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4659               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4660               true);
4661         }
4662       }
4663       break;
4664     }
4665 
4666     case ABIArgInfo::Ignore:
4667       assert(NumIRArgs == 0);
4668       break;
4669 
4670     case ABIArgInfo::Extend:
4671     case ABIArgInfo::Direct: {
4672       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4673           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4674           ArgInfo.getDirectOffset() == 0) {
4675         assert(NumIRArgs == 1);
4676         llvm::Value *V;
4677         if (!I->isAggregate())
4678           V = I->getKnownRValue().getScalarVal();
4679         else
4680           V = Builder.CreateLoad(
4681               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4682                              : I->getKnownRValue().getAggregateAddress());
4683 
4684         // Implement swifterror by copying into a new swifterror argument.
4685         // We'll write back in the normal path out of the call.
4686         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4687               == ParameterABI::SwiftErrorResult) {
4688           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4689 
4690           QualType pointeeTy = I->Ty->getPointeeType();
4691           swiftErrorArg =
4692             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4693 
4694           swiftErrorTemp =
4695             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4696           V = swiftErrorTemp.getPointer();
4697           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4698 
4699           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4700           Builder.CreateStore(errorValue, swiftErrorTemp);
4701         }
4702 
4703         // We might have to widen integers, but we should never truncate.
4704         if (ArgInfo.getCoerceToType() != V->getType() &&
4705             V->getType()->isIntegerTy())
4706           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4707 
4708         // If the argument doesn't match, perform a bitcast to coerce it.  This
4709         // can happen due to trivial type mismatches.
4710         if (FirstIRArg < IRFuncTy->getNumParams() &&
4711             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4712           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4713 
4714         IRCallArgs[FirstIRArg] = V;
4715         break;
4716       }
4717 
4718       // FIXME: Avoid the conversion through memory if possible.
4719       Address Src = Address::invalid();
4720       if (!I->isAggregate()) {
4721         Src = CreateMemTemp(I->Ty, "coerce");
4722         I->copyInto(*this, Src);
4723       } else {
4724         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4725                              : I->getKnownRValue().getAggregateAddress();
4726       }
4727 
4728       // If the value is offset in memory, apply the offset now.
4729       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4730 
4731       // Fast-isel and the optimizer generally like scalar values better than
4732       // FCAs, so we flatten them if this is safe to do for this argument.
4733       llvm::StructType *STy =
4734             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4735       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4736         llvm::Type *SrcTy = Src.getElementType();
4737         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4738         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4739 
4740         // If the source type is smaller than the destination type of the
4741         // coerce-to logic, copy the source value into a temp alloca the size
4742         // of the destination type to allow loading all of it. The bits past
4743         // the source value are left undef.
4744         if (SrcSize < DstSize) {
4745           Address TempAlloca
4746             = CreateTempAlloca(STy, Src.getAlignment(),
4747                                Src.getName() + ".coerce");
4748           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4749           Src = TempAlloca;
4750         } else {
4751           Src = Builder.CreateBitCast(Src,
4752                                       STy->getPointerTo(Src.getAddressSpace()));
4753         }
4754 
4755         assert(NumIRArgs == STy->getNumElements());
4756         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4757           Address EltPtr = Builder.CreateStructGEP(Src, i);
4758           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4759           IRCallArgs[FirstIRArg + i] = LI;
4760         }
4761       } else {
4762         // In the simple case, just pass the coerced loaded value.
4763         assert(NumIRArgs == 1);
4764         llvm::Value *Load =
4765             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4766 
4767         if (CallInfo.isCmseNSCall()) {
4768           // For certain parameter types, clear padding bits, as they may reveal
4769           // sensitive information.
4770           // Small struct/union types are passed as integer arrays.
4771           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
4772           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
4773             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
4774         }
4775         IRCallArgs[FirstIRArg] = Load;
4776       }
4777 
4778       break;
4779     }
4780 
4781     case ABIArgInfo::CoerceAndExpand: {
4782       auto coercionType = ArgInfo.getCoerceAndExpandType();
4783       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4784 
4785       llvm::Value *tempSize = nullptr;
4786       Address addr = Address::invalid();
4787       Address AllocaAddr = Address::invalid();
4788       if (I->isAggregate()) {
4789         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4790                               : I->getKnownRValue().getAggregateAddress();
4791 
4792       } else {
4793         RValue RV = I->getKnownRValue();
4794         assert(RV.isScalar()); // complex should always just be direct
4795 
4796         llvm::Type *scalarType = RV.getScalarVal()->getType();
4797         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4798         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4799 
4800         // Materialize to a temporary.
4801         addr = CreateTempAlloca(
4802             RV.getScalarVal()->getType(),
4803             CharUnits::fromQuantity(std::max(
4804                 (unsigned)layout->getAlignment().value(), scalarAlign)),
4805             "tmp",
4806             /*ArraySize=*/nullptr, &AllocaAddr);
4807         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4808 
4809         Builder.CreateStore(RV.getScalarVal(), addr);
4810       }
4811 
4812       addr = Builder.CreateElementBitCast(addr, coercionType);
4813 
4814       unsigned IRArgPos = FirstIRArg;
4815       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4816         llvm::Type *eltType = coercionType->getElementType(i);
4817         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4818         Address eltAddr = Builder.CreateStructGEP(addr, i);
4819         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4820         IRCallArgs[IRArgPos++] = elt;
4821       }
4822       assert(IRArgPos == FirstIRArg + NumIRArgs);
4823 
4824       if (tempSize) {
4825         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4826       }
4827 
4828       break;
4829     }
4830 
4831     case ABIArgInfo::Expand: {
4832       unsigned IRArgPos = FirstIRArg;
4833       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4834       assert(IRArgPos == FirstIRArg + NumIRArgs);
4835       break;
4836     }
4837     }
4838   }
4839 
4840   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4841   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4842 
4843   // If we're using inalloca, set up that argument.
4844   if (ArgMemory.isValid()) {
4845     llvm::Value *Arg = ArgMemory.getPointer();
4846     if (CallInfo.isVariadic()) {
4847       // When passing non-POD arguments by value to variadic functions, we will
4848       // end up with a variadic prototype and an inalloca call site.  In such
4849       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4850       // the callee.
4851       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4852       CalleePtr =
4853           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4854     } else {
4855       llvm::Type *LastParamTy =
4856           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4857       if (Arg->getType() != LastParamTy) {
4858 #ifndef NDEBUG
4859         // Assert that these structs have equivalent element types.
4860         llvm::StructType *FullTy = CallInfo.getArgStruct();
4861         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4862             cast<llvm::PointerType>(LastParamTy)->getElementType());
4863         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4864         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4865                                                 DE = DeclaredTy->element_end(),
4866                                                 FI = FullTy->element_begin();
4867              DI != DE; ++DI, ++FI)
4868           assert(*DI == *FI);
4869 #endif
4870         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4871       }
4872     }
4873     assert(IRFunctionArgs.hasInallocaArg());
4874     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4875   }
4876 
4877   // 2. Prepare the function pointer.
4878 
4879   // If the callee is a bitcast of a non-variadic function to have a
4880   // variadic function pointer type, check to see if we can remove the
4881   // bitcast.  This comes up with unprototyped functions.
4882   //
4883   // This makes the IR nicer, but more importantly it ensures that we
4884   // can inline the function at -O0 if it is marked always_inline.
4885   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4886                                    llvm::Value *Ptr) -> llvm::Function * {
4887     if (!CalleeFT->isVarArg())
4888       return nullptr;
4889 
4890     // Get underlying value if it's a bitcast
4891     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4892       if (CE->getOpcode() == llvm::Instruction::BitCast)
4893         Ptr = CE->getOperand(0);
4894     }
4895 
4896     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4897     if (!OrigFn)
4898       return nullptr;
4899 
4900     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4901 
4902     // If the original type is variadic, or if any of the component types
4903     // disagree, we cannot remove the cast.
4904     if (OrigFT->isVarArg() ||
4905         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4906         OrigFT->getReturnType() != CalleeFT->getReturnType())
4907       return nullptr;
4908 
4909     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4910       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4911         return nullptr;
4912 
4913     return OrigFn;
4914   };
4915 
4916   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4917     CalleePtr = OrigFn;
4918     IRFuncTy = OrigFn->getFunctionType();
4919   }
4920 
4921   // 3. Perform the actual call.
4922 
4923   // Deactivate any cleanups that we're supposed to do immediately before
4924   // the call.
4925   if (!CallArgs.getCleanupsToDeactivate().empty())
4926     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4927 
4928   // Assert that the arguments we computed match up.  The IR verifier
4929   // will catch this, but this is a common enough source of problems
4930   // during IRGen changes that it's way better for debugging to catch
4931   // it ourselves here.
4932 #ifndef NDEBUG
4933   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4934   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4935     // Inalloca argument can have different type.
4936     if (IRFunctionArgs.hasInallocaArg() &&
4937         i == IRFunctionArgs.getInallocaArgNo())
4938       continue;
4939     if (i < IRFuncTy->getNumParams())
4940       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4941   }
4942 #endif
4943 
4944   // Update the largest vector width if any arguments have vector types.
4945   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4946     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4947       LargestVectorWidth =
4948           std::max((uint64_t)LargestVectorWidth,
4949                    VT->getPrimitiveSizeInBits().getKnownMinSize());
4950   }
4951 
4952   // Compute the calling convention and attributes.
4953   unsigned CallingConv;
4954   llvm::AttributeList Attrs;
4955   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4956                              Callee.getAbstractInfo(), Attrs, CallingConv,
4957                              /*AttrOnCallSite=*/true);
4958 
4959   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4960     if (FD->hasAttr<StrictFPAttr>())
4961       // All calls within a strictfp function are marked strictfp
4962       Attrs =
4963         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4964                            llvm::Attribute::StrictFP);
4965 
4966   // Add call-site nomerge attribute if exists.
4967   if (InNoMergeAttributedStmt)
4968     Attrs =
4969       Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4970                          llvm::Attribute::NoMerge);
4971 
4972   // Apply some call-site-specific attributes.
4973   // TODO: work this into building the attribute set.
4974 
4975   // Apply always_inline to all calls within flatten functions.
4976   // FIXME: should this really take priority over __try, below?
4977   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4978       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
4979     Attrs =
4980         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4981                            llvm::Attribute::AlwaysInline);
4982   }
4983 
4984   // Disable inlining inside SEH __try blocks.
4985   if (isSEHTryScope()) {
4986     Attrs =
4987         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4988                            llvm::Attribute::NoInline);
4989   }
4990 
4991   // Decide whether to use a call or an invoke.
4992   bool CannotThrow;
4993   if (currentFunctionUsesSEHTry()) {
4994     // SEH cares about asynchronous exceptions, so everything can "throw."
4995     CannotThrow = false;
4996   } else if (isCleanupPadScope() &&
4997              EHPersonality::get(*this).isMSVCXXPersonality()) {
4998     // The MSVC++ personality will implicitly terminate the program if an
4999     // exception is thrown during a cleanup outside of a try/catch.
5000     // We don't need to model anything in IR to get this behavior.
5001     CannotThrow = true;
5002   } else {
5003     // Otherwise, nounwind call sites will never throw.
5004     CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind);
5005 
5006     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5007       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5008         CannotThrow = true;
5009   }
5010 
5011   // If we made a temporary, be sure to clean up after ourselves. Note that we
5012   // can't depend on being inside of an ExprWithCleanups, so we need to manually
5013   // pop this cleanup later on. Being eager about this is OK, since this
5014   // temporary is 'invisible' outside of the callee.
5015   if (UnusedReturnSizePtr)
5016     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5017                                          UnusedReturnSizePtr);
5018 
5019   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5020 
5021   SmallVector<llvm::OperandBundleDef, 1> BundleList =
5022       getBundlesForFunclet(CalleePtr);
5023 
5024   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5025     if (FD->hasAttr<StrictFPAttr>())
5026       // All calls within a strictfp function are marked strictfp
5027       Attrs =
5028         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5029                            llvm::Attribute::StrictFP);
5030 
5031   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5032   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5033 
5034   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5035   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5036 
5037   // Emit the actual call/invoke instruction.
5038   llvm::CallBase *CI;
5039   if (!InvokeDest) {
5040     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5041   } else {
5042     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5043     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5044                               BundleList);
5045     EmitBlock(Cont);
5046   }
5047   if (callOrInvoke)
5048     *callOrInvoke = CI;
5049 
5050   // If this is within a function that has the guard(nocf) attribute and is an
5051   // indirect call, add the "guard_nocf" attribute to this call to indicate that
5052   // Control Flow Guard checks should not be added, even if the call is inlined.
5053   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5054     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5055       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5056         Attrs = Attrs.addAttribute(
5057             getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
5058     }
5059   }
5060 
5061   // Apply the attributes and calling convention.
5062   CI->setAttributes(Attrs);
5063   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5064 
5065   // Apply various metadata.
5066 
5067   if (!CI->getType()->isVoidTy())
5068     CI->setName("call");
5069 
5070   // Update largest vector width from the return type.
5071   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
5072     LargestVectorWidth =
5073         std::max((uint64_t)LargestVectorWidth,
5074                  VT->getPrimitiveSizeInBits().getKnownMinSize());
5075 
5076   // Insert instrumentation or attach profile metadata at indirect call sites.
5077   // For more details, see the comment before the definition of
5078   // IPVK_IndirectCallTarget in InstrProfData.inc.
5079   if (!CI->getCalledFunction())
5080     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5081                      CI, CalleePtr);
5082 
5083   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5084   // optimizer it can aggressively ignore unwind edges.
5085   if (CGM.getLangOpts().ObjCAutoRefCount)
5086     AddObjCARCExceptionMetadata(CI);
5087 
5088   // Suppress tail calls if requested.
5089   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5090     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5091       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5092   }
5093 
5094   // Add metadata for calls to MSAllocator functions
5095   if (getDebugInfo() && TargetDecl &&
5096       TargetDecl->hasAttr<MSAllocatorAttr>())
5097     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5098 
5099   // 4. Finish the call.
5100 
5101   // If the call doesn't return, finish the basic block and clear the
5102   // insertion point; this allows the rest of IRGen to discard
5103   // unreachable code.
5104   if (CI->doesNotReturn()) {
5105     if (UnusedReturnSizePtr)
5106       PopCleanupBlock();
5107 
5108     // Strip away the noreturn attribute to better diagnose unreachable UB.
5109     if (SanOpts.has(SanitizerKind::Unreachable)) {
5110       // Also remove from function since CallBase::hasFnAttr additionally checks
5111       // attributes of the called function.
5112       if (auto *F = CI->getCalledFunction())
5113         F->removeFnAttr(llvm::Attribute::NoReturn);
5114       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
5115                           llvm::Attribute::NoReturn);
5116 
5117       // Avoid incompatibility with ASan which relies on the `noreturn`
5118       // attribute to insert handler calls.
5119       if (SanOpts.hasOneOf(SanitizerKind::Address |
5120                            SanitizerKind::KernelAddress)) {
5121         SanitizerScope SanScope(this);
5122         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5123         Builder.SetInsertPoint(CI);
5124         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5125         llvm::FunctionCallee Fn =
5126             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5127         EmitNounwindRuntimeCall(Fn);
5128       }
5129     }
5130 
5131     EmitUnreachable(Loc);
5132     Builder.ClearInsertionPoint();
5133 
5134     // FIXME: For now, emit a dummy basic block because expr emitters in
5135     // generally are not ready to handle emitting expressions at unreachable
5136     // points.
5137     EnsureInsertPoint();
5138 
5139     // Return a reasonable RValue.
5140     return GetUndefRValue(RetTy);
5141   }
5142 
5143   // Perform the swifterror writeback.
5144   if (swiftErrorTemp.isValid()) {
5145     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5146     Builder.CreateStore(errorResult, swiftErrorArg);
5147   }
5148 
5149   // Emit any call-associated writebacks immediately.  Arguably this
5150   // should happen after any return-value munging.
5151   if (CallArgs.hasWritebacks())
5152     emitWritebacks(*this, CallArgs);
5153 
5154   // The stack cleanup for inalloca arguments has to run out of the normal
5155   // lexical order, so deactivate it and run it manually here.
5156   CallArgs.freeArgumentMemory(*this);
5157 
5158   // Extract the return value.
5159   RValue Ret = [&] {
5160     switch (RetAI.getKind()) {
5161     case ABIArgInfo::CoerceAndExpand: {
5162       auto coercionType = RetAI.getCoerceAndExpandType();
5163 
5164       Address addr = SRetPtr;
5165       addr = Builder.CreateElementBitCast(addr, coercionType);
5166 
5167       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5168       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5169 
5170       unsigned unpaddedIndex = 0;
5171       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5172         llvm::Type *eltType = coercionType->getElementType(i);
5173         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5174         Address eltAddr = Builder.CreateStructGEP(addr, i);
5175         llvm::Value *elt = CI;
5176         if (requiresExtract)
5177           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5178         else
5179           assert(unpaddedIndex == 0);
5180         Builder.CreateStore(elt, eltAddr);
5181       }
5182       // FALLTHROUGH
5183       LLVM_FALLTHROUGH;
5184     }
5185 
5186     case ABIArgInfo::InAlloca:
5187     case ABIArgInfo::Indirect: {
5188       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5189       if (UnusedReturnSizePtr)
5190         PopCleanupBlock();
5191       return ret;
5192     }
5193 
5194     case ABIArgInfo::Ignore:
5195       // If we are ignoring an argument that had a result, make sure to
5196       // construct the appropriate return value for our caller.
5197       return GetUndefRValue(RetTy);
5198 
5199     case ABIArgInfo::Extend:
5200     case ABIArgInfo::Direct: {
5201       llvm::Type *RetIRTy = ConvertType(RetTy);
5202       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5203         switch (getEvaluationKind(RetTy)) {
5204         case TEK_Complex: {
5205           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5206           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5207           return RValue::getComplex(std::make_pair(Real, Imag));
5208         }
5209         case TEK_Aggregate: {
5210           Address DestPtr = ReturnValue.getValue();
5211           bool DestIsVolatile = ReturnValue.isVolatile();
5212 
5213           if (!DestPtr.isValid()) {
5214             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5215             DestIsVolatile = false;
5216           }
5217           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5218           return RValue::getAggregate(DestPtr);
5219         }
5220         case TEK_Scalar: {
5221           // If the argument doesn't match, perform a bitcast to coerce it.  This
5222           // can happen due to trivial type mismatches.
5223           llvm::Value *V = CI;
5224           if (V->getType() != RetIRTy)
5225             V = Builder.CreateBitCast(V, RetIRTy);
5226           return RValue::get(V);
5227         }
5228         }
5229         llvm_unreachable("bad evaluation kind");
5230       }
5231 
5232       Address DestPtr = ReturnValue.getValue();
5233       bool DestIsVolatile = ReturnValue.isVolatile();
5234 
5235       if (!DestPtr.isValid()) {
5236         DestPtr = CreateMemTemp(RetTy, "coerce");
5237         DestIsVolatile = false;
5238       }
5239 
5240       // If the value is offset in memory, apply the offset now.
5241       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5242       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5243 
5244       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5245     }
5246 
5247     case ABIArgInfo::Expand:
5248     case ABIArgInfo::IndirectAliased:
5249       llvm_unreachable("Invalid ABI kind for return argument");
5250     }
5251 
5252     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5253   } ();
5254 
5255   // Emit the assume_aligned check on the return value.
5256   if (Ret.isScalar() && TargetDecl) {
5257     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5258     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5259   }
5260 
5261   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5262   // we can't use the full cleanup mechanism.
5263   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5264     LifetimeEnd.Emit(*this, /*Flags=*/{});
5265 
5266   if (!ReturnValue.isExternallyDestructed() &&
5267       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5268     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5269                 RetTy);
5270 
5271   return Ret;
5272 }
5273 
5274 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5275   if (isVirtual()) {
5276     const CallExpr *CE = getVirtualCallExpr();
5277     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5278         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5279         CE ? CE->getBeginLoc() : SourceLocation());
5280   }
5281 
5282   return *this;
5283 }
5284 
5285 /* VarArg handling */
5286 
5287 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5288   VAListAddr = VE->isMicrosoftABI()
5289                  ? EmitMSVAListRef(VE->getSubExpr())
5290                  : EmitVAListRef(VE->getSubExpr());
5291   QualType Ty = VE->getType();
5292   if (VE->isMicrosoftABI())
5293     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5294   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5295 }
5296