1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_Win64: return llvm::CallingConv::Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
63   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
64   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
65   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
66   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
67   case CC_Swift: return llvm::CallingConv::Swift;
68   }
69 }
70 
71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
72 /// qualification. Either or both of RD and MD may be null. A null RD indicates
73 /// that there is no meaningful 'this' type, and a null MD can occur when
74 /// calling a method pointer.
75 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
76                                          const CXXMethodDecl *MD) {
77   QualType RecTy;
78   if (RD)
79     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
80   else
81     RecTy = Context.VoidTy;
82 
83   if (MD)
84     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
85   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
86 }
87 
88 /// Returns the canonical formal type of the given C++ method.
89 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
90   return MD->getType()->getCanonicalTypeUnqualified()
91            .getAs<FunctionProtoType>();
92 }
93 
94 /// Returns the "extra-canonicalized" return type, which discards
95 /// qualifiers on the return type.  Codegen doesn't care about them,
96 /// and it makes ABI code a little easier to be able to assume that
97 /// all parameter and return types are top-level unqualified.
98 static CanQualType GetReturnType(QualType RetTy) {
99   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
100 }
101 
102 /// Arrange the argument and result information for a value of the given
103 /// unprototyped freestanding function type.
104 const CGFunctionInfo &
105 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
106   // When translating an unprototyped function type, always use a
107   // variadic type.
108   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
109                                  /*instanceMethod=*/false,
110                                  /*chainCall=*/false, None,
111                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
112 }
113 
114 static void addExtParameterInfosForCall(
115          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
116                                         const FunctionProtoType *proto,
117                                         unsigned prefixArgs,
118                                         unsigned totalArgs) {
119   assert(proto->hasExtParameterInfos());
120   assert(paramInfos.size() <= prefixArgs);
121   assert(proto->getNumParams() + prefixArgs <= totalArgs);
122 
123   paramInfos.reserve(totalArgs);
124 
125   // Add default infos for any prefix args that don't already have infos.
126   paramInfos.resize(prefixArgs);
127 
128   // Add infos for the prototype.
129   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
130     paramInfos.push_back(ParamInfo);
131     // pass_object_size params have no parameter info.
132     if (ParamInfo.hasPassObjectSize())
133       paramInfos.emplace_back();
134   }
135 
136   assert(paramInfos.size() <= totalArgs &&
137          "Did we forget to insert pass_object_size args?");
138   // Add default infos for the variadic and/or suffix arguments.
139   paramInfos.resize(totalArgs);
140 }
141 
142 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
143 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
144 static void appendParameterTypes(const CodeGenTypes &CGT,
145                                  SmallVectorImpl<CanQualType> &prefix,
146               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
147                                  CanQual<FunctionProtoType> FPT) {
148   // Fast path: don't touch param info if we don't need to.
149   if (!FPT->hasExtParameterInfos()) {
150     assert(paramInfos.empty() &&
151            "We have paramInfos, but the prototype doesn't?");
152     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
153     return;
154   }
155 
156   unsigned PrefixSize = prefix.size();
157   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
158   // parameters; the only thing that can change this is the presence of
159   // pass_object_size. So, we preallocate for the common case.
160   prefix.reserve(prefix.size() + FPT->getNumParams());
161 
162   auto ExtInfos = FPT->getExtParameterInfos();
163   assert(ExtInfos.size() == FPT->getNumParams());
164   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
165     prefix.push_back(FPT->getParamType(I));
166     if (ExtInfos[I].hasPassObjectSize())
167       prefix.push_back(CGT.getContext().getSizeType());
168   }
169 
170   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
171                               prefix.size());
172 }
173 
174 /// Arrange the LLVM function layout for a value of the given function
175 /// type, on top of any implicit parameters already stored.
176 static const CGFunctionInfo &
177 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
178                         SmallVectorImpl<CanQualType> &prefix,
179                         CanQual<FunctionProtoType> FTP) {
180   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
181   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
182   // FIXME: Kill copy.
183   appendParameterTypes(CGT, prefix, paramInfos, FTP);
184   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
185 
186   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
187                                      /*chainCall=*/false, prefix,
188                                      FTP->getExtInfo(), paramInfos,
189                                      Required);
190 }
191 
192 /// Arrange the argument and result information for a value of the
193 /// given freestanding function type.
194 const CGFunctionInfo &
195 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
196   SmallVector<CanQualType, 16> argTypes;
197   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
198                                    FTP);
199 }
200 
201 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
202   // Set the appropriate calling convention for the Function.
203   if (D->hasAttr<StdCallAttr>())
204     return CC_X86StdCall;
205 
206   if (D->hasAttr<FastCallAttr>())
207     return CC_X86FastCall;
208 
209   if (D->hasAttr<RegCallAttr>())
210     return CC_X86RegCall;
211 
212   if (D->hasAttr<ThisCallAttr>())
213     return CC_X86ThisCall;
214 
215   if (D->hasAttr<VectorCallAttr>())
216     return CC_X86VectorCall;
217 
218   if (D->hasAttr<PascalAttr>())
219     return CC_X86Pascal;
220 
221   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
222     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
223 
224   if (D->hasAttr<AArch64VectorPcsAttr>())
225     return CC_AArch64VectorCall;
226 
227   if (D->hasAttr<IntelOclBiccAttr>())
228     return CC_IntelOclBicc;
229 
230   if (D->hasAttr<MSABIAttr>())
231     return IsWindows ? CC_C : CC_Win64;
232 
233   if (D->hasAttr<SysVABIAttr>())
234     return IsWindows ? CC_X86_64SysV : CC_C;
235 
236   if (D->hasAttr<PreserveMostAttr>())
237     return CC_PreserveMost;
238 
239   if (D->hasAttr<PreserveAllAttr>())
240     return CC_PreserveAll;
241 
242   return CC_C;
243 }
244 
245 /// Arrange the argument and result information for a call to an
246 /// unknown C++ non-static member function of the given abstract type.
247 /// (A null RD means we don't have any meaningful "this" argument type,
248 ///  so fall back to a generic pointer type).
249 /// The member function must be an ordinary function, i.e. not a
250 /// constructor or destructor.
251 const CGFunctionInfo &
252 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
253                                    const FunctionProtoType *FTP,
254                                    const CXXMethodDecl *MD) {
255   SmallVector<CanQualType, 16> argTypes;
256 
257   // Add the 'this' pointer.
258   argTypes.push_back(DeriveThisType(RD, MD));
259 
260   return ::arrangeLLVMFunctionInfo(
261       *this, true, argTypes,
262       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
263 }
264 
265 /// Set calling convention for CUDA/HIP kernel.
266 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
267                                            const FunctionDecl *FD) {
268   if (FD->hasAttr<CUDAGlobalAttr>()) {
269     const FunctionType *FT = FTy->getAs<FunctionType>();
270     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
271     FTy = FT->getCanonicalTypeUnqualified();
272   }
273 }
274 
275 /// Arrange the argument and result information for a declaration or
276 /// definition of the given C++ non-static member function.  The
277 /// member function must be an ordinary function, i.e. not a
278 /// constructor or destructor.
279 const CGFunctionInfo &
280 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
281   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
282   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
283 
284   CanQualType FT = GetFormalType(MD).getAs<Type>();
285   setCUDAKernelCallingConvention(FT, CGM, MD);
286   auto prototype = FT.getAs<FunctionProtoType>();
287 
288   if (MD->isInstance()) {
289     // The abstract case is perfectly fine.
290     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
291     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
292   }
293 
294   return arrangeFreeFunctionType(prototype);
295 }
296 
297 bool CodeGenTypes::inheritingCtorHasParams(
298     const InheritedConstructor &Inherited, CXXCtorType Type) {
299   // Parameters are unnecessary if we're constructing a base class subobject
300   // and the inherited constructor lives in a virtual base.
301   return Type == Ctor_Complete ||
302          !Inherited.getShadowDecl()->constructsVirtualBase() ||
303          !Target.getCXXABI().hasConstructorVariants();
304 }
305 
306 const CGFunctionInfo &
307 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
308   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
309 
310   SmallVector<CanQualType, 16> argTypes;
311   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
312   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
313 
314   bool PassParams = true;
315 
316   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
317     // A base class inheriting constructor doesn't get forwarded arguments
318     // needed to construct a virtual base (or base class thereof).
319     if (auto Inherited = CD->getInheritedConstructor())
320       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
321   }
322 
323   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
324 
325   // Add the formal parameters.
326   if (PassParams)
327     appendParameterTypes(*this, argTypes, paramInfos, FTP);
328 
329   CGCXXABI::AddedStructorArgCounts AddedArgs =
330       TheCXXABI.buildStructorSignature(GD, argTypes);
331   if (!paramInfos.empty()) {
332     // Note: prefix implies after the first param.
333     if (AddedArgs.Prefix)
334       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
335                         FunctionProtoType::ExtParameterInfo{});
336     if (AddedArgs.Suffix)
337       paramInfos.append(AddedArgs.Suffix,
338                         FunctionProtoType::ExtParameterInfo{});
339   }
340 
341   RequiredArgs required =
342       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
343                                       : RequiredArgs::All);
344 
345   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
346   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
347                                ? argTypes.front()
348                                : TheCXXABI.hasMostDerivedReturn(GD)
349                                      ? CGM.getContext().VoidPtrTy
350                                      : Context.VoidTy;
351   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
352                                  /*chainCall=*/false, argTypes, extInfo,
353                                  paramInfos, required);
354 }
355 
356 static SmallVector<CanQualType, 16>
357 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
358   SmallVector<CanQualType, 16> argTypes;
359   for (auto &arg : args)
360     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
361   return argTypes;
362 }
363 
364 static SmallVector<CanQualType, 16>
365 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
366   SmallVector<CanQualType, 16> argTypes;
367   for (auto &arg : args)
368     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
369   return argTypes;
370 }
371 
372 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
373 getExtParameterInfosForCall(const FunctionProtoType *proto,
374                             unsigned prefixArgs, unsigned totalArgs) {
375   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
376   if (proto->hasExtParameterInfos()) {
377     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
378   }
379   return result;
380 }
381 
382 /// Arrange a call to a C++ method, passing the given arguments.
383 ///
384 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
385 /// parameter.
386 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
387 /// args.
388 /// PassProtoArgs indicates whether `args` has args for the parameters in the
389 /// given CXXConstructorDecl.
390 const CGFunctionInfo &
391 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
392                                         const CXXConstructorDecl *D,
393                                         CXXCtorType CtorKind,
394                                         unsigned ExtraPrefixArgs,
395                                         unsigned ExtraSuffixArgs,
396                                         bool PassProtoArgs) {
397   // FIXME: Kill copy.
398   SmallVector<CanQualType, 16> ArgTypes;
399   for (const auto &Arg : args)
400     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
401 
402   // +1 for implicit this, which should always be args[0].
403   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
404 
405   CanQual<FunctionProtoType> FPT = GetFormalType(D);
406   RequiredArgs Required = PassProtoArgs
407                               ? RequiredArgs::forPrototypePlus(
408                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
409                               : RequiredArgs::All;
410 
411   GlobalDecl GD(D, CtorKind);
412   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
413                                ? ArgTypes.front()
414                                : TheCXXABI.hasMostDerivedReturn(GD)
415                                      ? CGM.getContext().VoidPtrTy
416                                      : Context.VoidTy;
417 
418   FunctionType::ExtInfo Info = FPT->getExtInfo();
419   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
420   // If the prototype args are elided, we should only have ABI-specific args,
421   // which never have param info.
422   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
423     // ABI-specific suffix arguments are treated the same as variadic arguments.
424     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
425                                 ArgTypes.size());
426   }
427   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
428                                  /*chainCall=*/false, ArgTypes, Info,
429                                  ParamInfos, Required);
430 }
431 
432 /// Arrange the argument and result information for the declaration or
433 /// definition of the given function.
434 const CGFunctionInfo &
435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
436   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
437     if (MD->isInstance())
438       return arrangeCXXMethodDeclaration(MD);
439 
440   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
441 
442   assert(isa<FunctionType>(FTy));
443   setCUDAKernelCallingConvention(FTy, CGM, FD);
444 
445   // When declaring a function without a prototype, always use a
446   // non-variadic type.
447   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
448     return arrangeLLVMFunctionInfo(
449         noProto->getReturnType(), /*instanceMethod=*/false,
450         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
451   }
452 
453   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
454 }
455 
456 /// Arrange the argument and result information for the declaration or
457 /// definition of an Objective-C method.
458 const CGFunctionInfo &
459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
460   // It happens that this is the same as a call with no optional
461   // arguments, except also using the formal 'self' type.
462   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
463 }
464 
465 /// Arrange the argument and result information for the function type
466 /// through which to perform a send to the given Objective-C method,
467 /// using the given receiver type.  The receiver type is not always
468 /// the 'self' type of the method or even an Objective-C pointer type.
469 /// This is *not* the right method for actually performing such a
470 /// message send, due to the possibility of optional arguments.
471 const CGFunctionInfo &
472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
473                                               QualType receiverType) {
474   SmallVector<CanQualType, 16> argTys;
475   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
476   argTys.push_back(Context.getCanonicalParamType(receiverType));
477   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
478   // FIXME: Kill copy?
479   for (const auto *I : MD->parameters()) {
480     argTys.push_back(Context.getCanonicalParamType(I->getType()));
481     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
482         I->hasAttr<NoEscapeAttr>());
483     extParamInfos.push_back(extParamInfo);
484   }
485 
486   FunctionType::ExtInfo einfo;
487   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
488   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
489 
490   if (getContext().getLangOpts().ObjCAutoRefCount &&
491       MD->hasAttr<NSReturnsRetainedAttr>())
492     einfo = einfo.withProducesResult(true);
493 
494   RequiredArgs required =
495     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
496 
497   return arrangeLLVMFunctionInfo(
498       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
499       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
500 }
501 
502 const CGFunctionInfo &
503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
504                                                  const CallArgList &args) {
505   auto argTypes = getArgTypesForCall(Context, args);
506   FunctionType::ExtInfo einfo;
507 
508   return arrangeLLVMFunctionInfo(
509       GetReturnType(returnType), /*instanceMethod=*/false,
510       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
511 }
512 
513 const CGFunctionInfo &
514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
515   // FIXME: Do we need to handle ObjCMethodDecl?
516   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
517 
518   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
519       isa<CXXDestructorDecl>(GD.getDecl()))
520     return arrangeCXXStructorDeclaration(GD);
521 
522   return arrangeFunctionDeclaration(FD);
523 }
524 
525 /// Arrange a thunk that takes 'this' as the first parameter followed by
526 /// varargs.  Return a void pointer, regardless of the actual return type.
527 /// The body of the thunk will end in a musttail call to a function of the
528 /// correct type, and the caller will bitcast the function to the correct
529 /// prototype.
530 const CGFunctionInfo &
531 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
532   assert(MD->isVirtual() && "only methods have thunks");
533   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
534   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
535   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
536                                  /*chainCall=*/false, ArgTys,
537                                  FTP->getExtInfo(), {}, RequiredArgs(1));
538 }
539 
540 const CGFunctionInfo &
541 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
542                                    CXXCtorType CT) {
543   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
544 
545   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
546   SmallVector<CanQualType, 2> ArgTys;
547   const CXXRecordDecl *RD = CD->getParent();
548   ArgTys.push_back(DeriveThisType(RD, CD));
549   if (CT == Ctor_CopyingClosure)
550     ArgTys.push_back(*FTP->param_type_begin());
551   if (RD->getNumVBases() > 0)
552     ArgTys.push_back(Context.IntTy);
553   CallingConv CC = Context.getDefaultCallingConvention(
554       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
555   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
556                                  /*chainCall=*/false, ArgTys,
557                                  FunctionType::ExtInfo(CC), {},
558                                  RequiredArgs::All);
559 }
560 
561 /// Arrange a call as unto a free function, except possibly with an
562 /// additional number of formal parameters considered required.
563 static const CGFunctionInfo &
564 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
565                             CodeGenModule &CGM,
566                             const CallArgList &args,
567                             const FunctionType *fnType,
568                             unsigned numExtraRequiredArgs,
569                             bool chainCall) {
570   assert(args.size() >= numExtraRequiredArgs);
571 
572   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
573 
574   // In most cases, there are no optional arguments.
575   RequiredArgs required = RequiredArgs::All;
576 
577   // If we have a variadic prototype, the required arguments are the
578   // extra prefix plus the arguments in the prototype.
579   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
580     if (proto->isVariadic())
581       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
582 
583     if (proto->hasExtParameterInfos())
584       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
585                                   args.size());
586 
587   // If we don't have a prototype at all, but we're supposed to
588   // explicitly use the variadic convention for unprototyped calls,
589   // treat all of the arguments as required but preserve the nominal
590   // possibility of variadics.
591   } else if (CGM.getTargetCodeGenInfo()
592                 .isNoProtoCallVariadic(args,
593                                        cast<FunctionNoProtoType>(fnType))) {
594     required = RequiredArgs(args.size());
595   }
596 
597   // FIXME: Kill copy.
598   SmallVector<CanQualType, 16> argTypes;
599   for (const auto &arg : args)
600     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
601   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
602                                      /*instanceMethod=*/false, chainCall,
603                                      argTypes, fnType->getExtInfo(), paramInfos,
604                                      required);
605 }
606 
607 /// Figure out the rules for calling a function with the given formal
608 /// type using the given arguments.  The arguments are necessary
609 /// because the function might be unprototyped, in which case it's
610 /// target-dependent in crazy ways.
611 const CGFunctionInfo &
612 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
613                                       const FunctionType *fnType,
614                                       bool chainCall) {
615   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
616                                      chainCall ? 1 : 0, chainCall);
617 }
618 
619 /// A block function is essentially a free function with an
620 /// extra implicit argument.
621 const CGFunctionInfo &
622 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
623                                        const FunctionType *fnType) {
624   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
625                                      /*chainCall=*/false);
626 }
627 
628 const CGFunctionInfo &
629 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
630                                               const FunctionArgList &params) {
631   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
632   auto argTypes = getArgTypesForDeclaration(Context, params);
633 
634   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
635                                  /*instanceMethod*/ false, /*chainCall*/ false,
636                                  argTypes, proto->getExtInfo(), paramInfos,
637                                  RequiredArgs::forPrototypePlus(proto, 1));
638 }
639 
640 const CGFunctionInfo &
641 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
642                                          const CallArgList &args) {
643   // FIXME: Kill copy.
644   SmallVector<CanQualType, 16> argTypes;
645   for (const auto &Arg : args)
646     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
647   return arrangeLLVMFunctionInfo(
648       GetReturnType(resultType), /*instanceMethod=*/false,
649       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
650       /*paramInfos=*/ {}, RequiredArgs::All);
651 }
652 
653 const CGFunctionInfo &
654 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
655                                                 const FunctionArgList &args) {
656   auto argTypes = getArgTypesForDeclaration(Context, args);
657 
658   return arrangeLLVMFunctionInfo(
659       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
660       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
661 }
662 
663 const CGFunctionInfo &
664 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
665                                               ArrayRef<CanQualType> argTypes) {
666   return arrangeLLVMFunctionInfo(
667       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
668       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
669 }
670 
671 /// Arrange a call to a C++ method, passing the given arguments.
672 ///
673 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
674 /// does not count `this`.
675 const CGFunctionInfo &
676 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
677                                    const FunctionProtoType *proto,
678                                    RequiredArgs required,
679                                    unsigned numPrefixArgs) {
680   assert(numPrefixArgs + 1 <= args.size() &&
681          "Emitting a call with less args than the required prefix?");
682   // Add one to account for `this`. It's a bit awkward here, but we don't count
683   // `this` in similar places elsewhere.
684   auto paramInfos =
685     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
686 
687   // FIXME: Kill copy.
688   auto argTypes = getArgTypesForCall(Context, args);
689 
690   FunctionType::ExtInfo info = proto->getExtInfo();
691   return arrangeLLVMFunctionInfo(
692       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
693       /*chainCall=*/false, argTypes, info, paramInfos, required);
694 }
695 
696 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
697   return arrangeLLVMFunctionInfo(
698       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
699       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
700 }
701 
702 const CGFunctionInfo &
703 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
704                           const CallArgList &args) {
705   assert(signature.arg_size() <= args.size());
706   if (signature.arg_size() == args.size())
707     return signature;
708 
709   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
710   auto sigParamInfos = signature.getExtParameterInfos();
711   if (!sigParamInfos.empty()) {
712     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
713     paramInfos.resize(args.size());
714   }
715 
716   auto argTypes = getArgTypesForCall(Context, args);
717 
718   assert(signature.getRequiredArgs().allowsOptionalArgs());
719   return arrangeLLVMFunctionInfo(signature.getReturnType(),
720                                  signature.isInstanceMethod(),
721                                  signature.isChainCall(),
722                                  argTypes,
723                                  signature.getExtInfo(),
724                                  paramInfos,
725                                  signature.getRequiredArgs());
726 }
727 
728 namespace clang {
729 namespace CodeGen {
730 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
731 }
732 }
733 
734 /// Arrange the argument and result information for an abstract value
735 /// of a given function type.  This is the method which all of the
736 /// above functions ultimately defer to.
737 const CGFunctionInfo &
738 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
739                                       bool instanceMethod,
740                                       bool chainCall,
741                                       ArrayRef<CanQualType> argTypes,
742                                       FunctionType::ExtInfo info,
743                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
744                                       RequiredArgs required) {
745   assert(llvm::all_of(argTypes,
746                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
747 
748   // Lookup or create unique function info.
749   llvm::FoldingSetNodeID ID;
750   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
751                           required, resultType, argTypes);
752 
753   void *insertPos = nullptr;
754   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
755   if (FI)
756     return *FI;
757 
758   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
759 
760   // Construct the function info.  We co-allocate the ArgInfos.
761   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
762                               paramInfos, resultType, argTypes, required);
763   FunctionInfos.InsertNode(FI, insertPos);
764 
765   bool inserted = FunctionsBeingProcessed.insert(FI).second;
766   (void)inserted;
767   assert(inserted && "Recursively being processed?");
768 
769   // Compute ABI information.
770   if (CC == llvm::CallingConv::SPIR_KERNEL) {
771     // Force target independent argument handling for the host visible
772     // kernel functions.
773     computeSPIRKernelABIInfo(CGM, *FI);
774   } else if (info.getCC() == CC_Swift) {
775     swiftcall::computeABIInfo(CGM, *FI);
776   } else {
777     getABIInfo().computeInfo(*FI);
778   }
779 
780   // Loop over all of the computed argument and return value info.  If any of
781   // them are direct or extend without a specified coerce type, specify the
782   // default now.
783   ABIArgInfo &retInfo = FI->getReturnInfo();
784   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
785     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
786 
787   for (auto &I : FI->arguments())
788     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
789       I.info.setCoerceToType(ConvertType(I.type));
790 
791   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
792   assert(erased && "Not in set?");
793 
794   return *FI;
795 }
796 
797 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
798                                        bool instanceMethod,
799                                        bool chainCall,
800                                        const FunctionType::ExtInfo &info,
801                                        ArrayRef<ExtParameterInfo> paramInfos,
802                                        CanQualType resultType,
803                                        ArrayRef<CanQualType> argTypes,
804                                        RequiredArgs required) {
805   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
806   assert(!required.allowsOptionalArgs() ||
807          required.getNumRequiredArgs() <= argTypes.size());
808 
809   void *buffer =
810     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
811                                   argTypes.size() + 1, paramInfos.size()));
812 
813   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
814   FI->CallingConvention = llvmCC;
815   FI->EffectiveCallingConvention = llvmCC;
816   FI->ASTCallingConvention = info.getCC();
817   FI->InstanceMethod = instanceMethod;
818   FI->ChainCall = chainCall;
819   FI->CmseNSCall = info.getCmseNSCall();
820   FI->NoReturn = info.getNoReturn();
821   FI->ReturnsRetained = info.getProducesResult();
822   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
823   FI->NoCfCheck = info.getNoCfCheck();
824   FI->Required = required;
825   FI->HasRegParm = info.getHasRegParm();
826   FI->RegParm = info.getRegParm();
827   FI->ArgStruct = nullptr;
828   FI->ArgStructAlign = 0;
829   FI->NumArgs = argTypes.size();
830   FI->HasExtParameterInfos = !paramInfos.empty();
831   FI->getArgsBuffer()[0].type = resultType;
832   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
833     FI->getArgsBuffer()[i + 1].type = argTypes[i];
834   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
835     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
836   return FI;
837 }
838 
839 /***/
840 
841 namespace {
842 // ABIArgInfo::Expand implementation.
843 
844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
845 struct TypeExpansion {
846   enum TypeExpansionKind {
847     // Elements of constant arrays are expanded recursively.
848     TEK_ConstantArray,
849     // Record fields are expanded recursively (but if record is a union, only
850     // the field with the largest size is expanded).
851     TEK_Record,
852     // For complex types, real and imaginary parts are expanded recursively.
853     TEK_Complex,
854     // All other types are not expandable.
855     TEK_None
856   };
857 
858   const TypeExpansionKind Kind;
859 
860   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
861   virtual ~TypeExpansion() {}
862 };
863 
864 struct ConstantArrayExpansion : TypeExpansion {
865   QualType EltTy;
866   uint64_t NumElts;
867 
868   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
869       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
870   static bool classof(const TypeExpansion *TE) {
871     return TE->Kind == TEK_ConstantArray;
872   }
873 };
874 
875 struct RecordExpansion : TypeExpansion {
876   SmallVector<const CXXBaseSpecifier *, 1> Bases;
877 
878   SmallVector<const FieldDecl *, 1> Fields;
879 
880   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
881                   SmallVector<const FieldDecl *, 1> &&Fields)
882       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
883         Fields(std::move(Fields)) {}
884   static bool classof(const TypeExpansion *TE) {
885     return TE->Kind == TEK_Record;
886   }
887 };
888 
889 struct ComplexExpansion : TypeExpansion {
890   QualType EltTy;
891 
892   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
893   static bool classof(const TypeExpansion *TE) {
894     return TE->Kind == TEK_Complex;
895   }
896 };
897 
898 struct NoExpansion : TypeExpansion {
899   NoExpansion() : TypeExpansion(TEK_None) {}
900   static bool classof(const TypeExpansion *TE) {
901     return TE->Kind == TEK_None;
902   }
903 };
904 }  // namespace
905 
906 static std::unique_ptr<TypeExpansion>
907 getTypeExpansion(QualType Ty, const ASTContext &Context) {
908   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
909     return std::make_unique<ConstantArrayExpansion>(
910         AT->getElementType(), AT->getSize().getZExtValue());
911   }
912   if (const RecordType *RT = Ty->getAs<RecordType>()) {
913     SmallVector<const CXXBaseSpecifier *, 1> Bases;
914     SmallVector<const FieldDecl *, 1> Fields;
915     const RecordDecl *RD = RT->getDecl();
916     assert(!RD->hasFlexibleArrayMember() &&
917            "Cannot expand structure with flexible array.");
918     if (RD->isUnion()) {
919       // Unions can be here only in degenerative cases - all the fields are same
920       // after flattening. Thus we have to use the "largest" field.
921       const FieldDecl *LargestFD = nullptr;
922       CharUnits UnionSize = CharUnits::Zero();
923 
924       for (const auto *FD : RD->fields()) {
925         if (FD->isZeroLengthBitField(Context))
926           continue;
927         assert(!FD->isBitField() &&
928                "Cannot expand structure with bit-field members.");
929         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
930         if (UnionSize < FieldSize) {
931           UnionSize = FieldSize;
932           LargestFD = FD;
933         }
934       }
935       if (LargestFD)
936         Fields.push_back(LargestFD);
937     } else {
938       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
939         assert(!CXXRD->isDynamicClass() &&
940                "cannot expand vtable pointers in dynamic classes");
941         for (const CXXBaseSpecifier &BS : CXXRD->bases())
942           Bases.push_back(&BS);
943       }
944 
945       for (const auto *FD : RD->fields()) {
946         if (FD->isZeroLengthBitField(Context))
947           continue;
948         assert(!FD->isBitField() &&
949                "Cannot expand structure with bit-field members.");
950         Fields.push_back(FD);
951       }
952     }
953     return std::make_unique<RecordExpansion>(std::move(Bases),
954                                               std::move(Fields));
955   }
956   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
957     return std::make_unique<ComplexExpansion>(CT->getElementType());
958   }
959   return std::make_unique<NoExpansion>();
960 }
961 
962 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
963   auto Exp = getTypeExpansion(Ty, Context);
964   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
965     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
966   }
967   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
968     int Res = 0;
969     for (auto BS : RExp->Bases)
970       Res += getExpansionSize(BS->getType(), Context);
971     for (auto FD : RExp->Fields)
972       Res += getExpansionSize(FD->getType(), Context);
973     return Res;
974   }
975   if (isa<ComplexExpansion>(Exp.get()))
976     return 2;
977   assert(isa<NoExpansion>(Exp.get()));
978   return 1;
979 }
980 
981 void
982 CodeGenTypes::getExpandedTypes(QualType Ty,
983                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
984   auto Exp = getTypeExpansion(Ty, Context);
985   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
986     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
987       getExpandedTypes(CAExp->EltTy, TI);
988     }
989   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
990     for (auto BS : RExp->Bases)
991       getExpandedTypes(BS->getType(), TI);
992     for (auto FD : RExp->Fields)
993       getExpandedTypes(FD->getType(), TI);
994   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
995     llvm::Type *EltTy = ConvertType(CExp->EltTy);
996     *TI++ = EltTy;
997     *TI++ = EltTy;
998   } else {
999     assert(isa<NoExpansion>(Exp.get()));
1000     *TI++ = ConvertType(Ty);
1001   }
1002 }
1003 
1004 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1005                                       ConstantArrayExpansion *CAE,
1006                                       Address BaseAddr,
1007                                       llvm::function_ref<void(Address)> Fn) {
1008   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1009   CharUnits EltAlign =
1010     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1011 
1012   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1013     llvm::Value *EltAddr =
1014       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1015     Fn(Address(EltAddr, EltAlign));
1016   }
1017 }
1018 
1019 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1020                                          llvm::Function::arg_iterator &AI) {
1021   assert(LV.isSimple() &&
1022          "Unexpected non-simple lvalue during struct expansion.");
1023 
1024   auto Exp = getTypeExpansion(Ty, getContext());
1025   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1026     forConstantArrayExpansion(
1027         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1028           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1029           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1030         });
1031   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1032     Address This = LV.getAddress(*this);
1033     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1034       // Perform a single step derived-to-base conversion.
1035       Address Base =
1036           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1037                                 /*NullCheckValue=*/false, SourceLocation());
1038       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1039 
1040       // Recurse onto bases.
1041       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1042     }
1043     for (auto FD : RExp->Fields) {
1044       // FIXME: What are the right qualifiers here?
1045       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1046       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1047     }
1048   } else if (isa<ComplexExpansion>(Exp.get())) {
1049     auto realValue = &*AI++;
1050     auto imagValue = &*AI++;
1051     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1052   } else {
1053     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1054     // primitive store.
1055     assert(isa<NoExpansion>(Exp.get()));
1056     if (LV.isBitField())
1057       EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1058     else
1059       EmitStoreOfScalar(&*AI++, LV);
1060   }
1061 }
1062 
1063 void CodeGenFunction::ExpandTypeToArgs(
1064     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1065     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1066   auto Exp = getTypeExpansion(Ty, getContext());
1067   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1068     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1069                                    : Arg.getKnownRValue().getAggregateAddress();
1070     forConstantArrayExpansion(
1071         *this, CAExp, Addr, [&](Address EltAddr) {
1072           CallArg EltArg = CallArg(
1073               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1074               CAExp->EltTy);
1075           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1076                            IRCallArgPos);
1077         });
1078   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1079     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1080                                    : Arg.getKnownRValue().getAggregateAddress();
1081     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1082       // Perform a single step derived-to-base conversion.
1083       Address Base =
1084           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1085                                 /*NullCheckValue=*/false, SourceLocation());
1086       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1087 
1088       // Recurse onto bases.
1089       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1090                        IRCallArgPos);
1091     }
1092 
1093     LValue LV = MakeAddrLValue(This, Ty);
1094     for (auto FD : RExp->Fields) {
1095       CallArg FldArg =
1096           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1097       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1098                        IRCallArgPos);
1099     }
1100   } else if (isa<ComplexExpansion>(Exp.get())) {
1101     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1102     IRCallArgs[IRCallArgPos++] = CV.first;
1103     IRCallArgs[IRCallArgPos++] = CV.second;
1104   } else {
1105     assert(isa<NoExpansion>(Exp.get()));
1106     auto RV = Arg.getKnownRValue();
1107     assert(RV.isScalar() &&
1108            "Unexpected non-scalar rvalue during struct expansion.");
1109 
1110     // Insert a bitcast as needed.
1111     llvm::Value *V = RV.getScalarVal();
1112     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1113         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1114       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1115 
1116     IRCallArgs[IRCallArgPos++] = V;
1117   }
1118 }
1119 
1120 /// Create a temporary allocation for the purposes of coercion.
1121 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1122                                            CharUnits MinAlign) {
1123   // Don't use an alignment that's worse than what LLVM would prefer.
1124   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1125   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1126 
1127   return CGF.CreateTempAlloca(Ty, Align);
1128 }
1129 
1130 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1131 /// accessing some number of bytes out of it, try to gep into the struct to get
1132 /// at its inner goodness.  Dive as deep as possible without entering an element
1133 /// with an in-memory size smaller than DstSize.
1134 static Address
1135 EnterStructPointerForCoercedAccess(Address SrcPtr,
1136                                    llvm::StructType *SrcSTy,
1137                                    uint64_t DstSize, CodeGenFunction &CGF) {
1138   // We can't dive into a zero-element struct.
1139   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1140 
1141   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1142 
1143   // If the first elt is at least as large as what we're looking for, or if the
1144   // first element is the same size as the whole struct, we can enter it. The
1145   // comparison must be made on the store size and not the alloca size. Using
1146   // the alloca size may overstate the size of the load.
1147   uint64_t FirstEltSize =
1148     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1149   if (FirstEltSize < DstSize &&
1150       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1151     return SrcPtr;
1152 
1153   // GEP into the first element.
1154   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1155 
1156   // If the first element is a struct, recurse.
1157   llvm::Type *SrcTy = SrcPtr.getElementType();
1158   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1159     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1160 
1161   return SrcPtr;
1162 }
1163 
1164 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1165 /// are either integers or pointers.  This does a truncation of the value if it
1166 /// is too large or a zero extension if it is too small.
1167 ///
1168 /// This behaves as if the value were coerced through memory, so on big-endian
1169 /// targets the high bits are preserved in a truncation, while little-endian
1170 /// targets preserve the low bits.
1171 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1172                                              llvm::Type *Ty,
1173                                              CodeGenFunction &CGF) {
1174   if (Val->getType() == Ty)
1175     return Val;
1176 
1177   if (isa<llvm::PointerType>(Val->getType())) {
1178     // If this is Pointer->Pointer avoid conversion to and from int.
1179     if (isa<llvm::PointerType>(Ty))
1180       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1181 
1182     // Convert the pointer to an integer so we can play with its width.
1183     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1184   }
1185 
1186   llvm::Type *DestIntTy = Ty;
1187   if (isa<llvm::PointerType>(DestIntTy))
1188     DestIntTy = CGF.IntPtrTy;
1189 
1190   if (Val->getType() != DestIntTy) {
1191     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1192     if (DL.isBigEndian()) {
1193       // Preserve the high bits on big-endian targets.
1194       // That is what memory coercion does.
1195       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1196       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1197 
1198       if (SrcSize > DstSize) {
1199         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1200         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1201       } else {
1202         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1203         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1204       }
1205     } else {
1206       // Little-endian targets preserve the low bits. No shifts required.
1207       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1208     }
1209   }
1210 
1211   if (isa<llvm::PointerType>(Ty))
1212     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1213   return Val;
1214 }
1215 
1216 
1217 
1218 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1219 /// a pointer to an object of type \arg Ty, known to be aligned to
1220 /// \arg SrcAlign bytes.
1221 ///
1222 /// This safely handles the case when the src type is smaller than the
1223 /// destination type; in this situation the values of bits which not
1224 /// present in the src are undefined.
1225 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1226                                       CodeGenFunction &CGF) {
1227   llvm::Type *SrcTy = Src.getElementType();
1228 
1229   // If SrcTy and Ty are the same, just do a load.
1230   if (SrcTy == Ty)
1231     return CGF.Builder.CreateLoad(Src);
1232 
1233   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1234 
1235   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1236     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1237     SrcTy = Src.getElementType();
1238   }
1239 
1240   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1241 
1242   // If the source and destination are integer or pointer types, just do an
1243   // extension or truncation to the desired type.
1244   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1245       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1246     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1247     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1248   }
1249 
1250   // If load is legal, just bitcast the src pointer.
1251   if (SrcSize >= DstSize) {
1252     // Generally SrcSize is never greater than DstSize, since this means we are
1253     // losing bits. However, this can happen in cases where the structure has
1254     // additional padding, for example due to a user specified alignment.
1255     //
1256     // FIXME: Assert that we aren't truncating non-padding bits when have access
1257     // to that information.
1258     Src = CGF.Builder.CreateBitCast(Src,
1259                                     Ty->getPointerTo(Src.getAddressSpace()));
1260     return CGF.Builder.CreateLoad(Src);
1261   }
1262 
1263   // Otherwise do coercion through memory. This is stupid, but simple.
1264   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1265   CGF.Builder.CreateMemCpy(Tmp.getPointer(), Tmp.getAlignment().getAsAlign(),
1266                            Src.getPointer(), Src.getAlignment().getAsAlign(),
1267                            llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize));
1268   return CGF.Builder.CreateLoad(Tmp);
1269 }
1270 
1271 // Function to store a first-class aggregate into memory.  We prefer to
1272 // store the elements rather than the aggregate to be more friendly to
1273 // fast-isel.
1274 // FIXME: Do we need to recurse here?
1275 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1276                           Address Dest, bool DestIsVolatile) {
1277   // Prefer scalar stores to first-class aggregate stores.
1278   if (llvm::StructType *STy =
1279         dyn_cast<llvm::StructType>(Val->getType())) {
1280     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1281       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i);
1282       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1283       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1284     }
1285   } else {
1286     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1287   }
1288 }
1289 
1290 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1291 /// where the source and destination may have different types.  The
1292 /// destination is known to be aligned to \arg DstAlign bytes.
1293 ///
1294 /// This safely handles the case when the src type is larger than the
1295 /// destination type; the upper bits of the src will be lost.
1296 static void CreateCoercedStore(llvm::Value *Src,
1297                                Address Dst,
1298                                bool DstIsVolatile,
1299                                CodeGenFunction &CGF) {
1300   llvm::Type *SrcTy = Src->getType();
1301   llvm::Type *DstTy = Dst.getElementType();
1302   if (SrcTy == DstTy) {
1303     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1304     return;
1305   }
1306 
1307   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1308 
1309   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1310     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1311     DstTy = Dst.getElementType();
1312   }
1313 
1314   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1315   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1316   if (SrcPtrTy && DstPtrTy &&
1317       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1318     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1319     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1320     return;
1321   }
1322 
1323   // If the source and destination are integer or pointer types, just do an
1324   // extension or truncation to the desired type.
1325   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1326       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1327     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1328     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1329     return;
1330   }
1331 
1332   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1333 
1334   // If store is legal, just bitcast the src pointer.
1335   if (SrcSize <= DstSize) {
1336     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1337     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1338   } else {
1339     // Otherwise do coercion through memory. This is stupid, but
1340     // simple.
1341 
1342     // Generally SrcSize is never greater than DstSize, since this means we are
1343     // losing bits. However, this can happen in cases where the structure has
1344     // additional padding, for example due to a user specified alignment.
1345     //
1346     // FIXME: Assert that we aren't truncating non-padding bits when have access
1347     // to that information.
1348     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1349     CGF.Builder.CreateStore(Src, Tmp);
1350     CGF.Builder.CreateMemCpy(Dst.getPointer(), Dst.getAlignment().getAsAlign(),
1351                              Tmp.getPointer(), Tmp.getAlignment().getAsAlign(),
1352                              llvm::ConstantInt::get(CGF.IntPtrTy, DstSize));
1353   }
1354 }
1355 
1356 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1357                                    const ABIArgInfo &info) {
1358   if (unsigned offset = info.getDirectOffset()) {
1359     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1360     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1361                                              CharUnits::fromQuantity(offset));
1362     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1363   }
1364   return addr;
1365 }
1366 
1367 namespace {
1368 
1369 /// Encapsulates information about the way function arguments from
1370 /// CGFunctionInfo should be passed to actual LLVM IR function.
1371 class ClangToLLVMArgMapping {
1372   static const unsigned InvalidIndex = ~0U;
1373   unsigned InallocaArgNo;
1374   unsigned SRetArgNo;
1375   unsigned TotalIRArgs;
1376 
1377   /// Arguments of LLVM IR function corresponding to single Clang argument.
1378   struct IRArgs {
1379     unsigned PaddingArgIndex;
1380     // Argument is expanded to IR arguments at positions
1381     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1382     unsigned FirstArgIndex;
1383     unsigned NumberOfArgs;
1384 
1385     IRArgs()
1386         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1387           NumberOfArgs(0) {}
1388   };
1389 
1390   SmallVector<IRArgs, 8> ArgInfo;
1391 
1392 public:
1393   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1394                         bool OnlyRequiredArgs = false)
1395       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1396         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1397     construct(Context, FI, OnlyRequiredArgs);
1398   }
1399 
1400   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1401   unsigned getInallocaArgNo() const {
1402     assert(hasInallocaArg());
1403     return InallocaArgNo;
1404   }
1405 
1406   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1407   unsigned getSRetArgNo() const {
1408     assert(hasSRetArg());
1409     return SRetArgNo;
1410   }
1411 
1412   unsigned totalIRArgs() const { return TotalIRArgs; }
1413 
1414   bool hasPaddingArg(unsigned ArgNo) const {
1415     assert(ArgNo < ArgInfo.size());
1416     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1417   }
1418   unsigned getPaddingArgNo(unsigned ArgNo) const {
1419     assert(hasPaddingArg(ArgNo));
1420     return ArgInfo[ArgNo].PaddingArgIndex;
1421   }
1422 
1423   /// Returns index of first IR argument corresponding to ArgNo, and their
1424   /// quantity.
1425   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1426     assert(ArgNo < ArgInfo.size());
1427     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1428                           ArgInfo[ArgNo].NumberOfArgs);
1429   }
1430 
1431 private:
1432   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1433                  bool OnlyRequiredArgs);
1434 };
1435 
1436 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1437                                       const CGFunctionInfo &FI,
1438                                       bool OnlyRequiredArgs) {
1439   unsigned IRArgNo = 0;
1440   bool SwapThisWithSRet = false;
1441   const ABIArgInfo &RetAI = FI.getReturnInfo();
1442 
1443   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1444     SwapThisWithSRet = RetAI.isSRetAfterThis();
1445     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1446   }
1447 
1448   unsigned ArgNo = 0;
1449   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1450   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1451        ++I, ++ArgNo) {
1452     assert(I != FI.arg_end());
1453     QualType ArgType = I->type;
1454     const ABIArgInfo &AI = I->info;
1455     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1456     auto &IRArgs = ArgInfo[ArgNo];
1457 
1458     if (AI.getPaddingType())
1459       IRArgs.PaddingArgIndex = IRArgNo++;
1460 
1461     switch (AI.getKind()) {
1462     case ABIArgInfo::Extend:
1463     case ABIArgInfo::Direct: {
1464       // FIXME: handle sseregparm someday...
1465       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1466       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1467         IRArgs.NumberOfArgs = STy->getNumElements();
1468       } else {
1469         IRArgs.NumberOfArgs = 1;
1470       }
1471       break;
1472     }
1473     case ABIArgInfo::Indirect:
1474       IRArgs.NumberOfArgs = 1;
1475       break;
1476     case ABIArgInfo::Ignore:
1477     case ABIArgInfo::InAlloca:
1478       // ignore and inalloca doesn't have matching LLVM parameters.
1479       IRArgs.NumberOfArgs = 0;
1480       break;
1481     case ABIArgInfo::CoerceAndExpand:
1482       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1483       break;
1484     case ABIArgInfo::Expand:
1485       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1486       break;
1487     }
1488 
1489     if (IRArgs.NumberOfArgs > 0) {
1490       IRArgs.FirstArgIndex = IRArgNo;
1491       IRArgNo += IRArgs.NumberOfArgs;
1492     }
1493 
1494     // Skip over the sret parameter when it comes second.  We already handled it
1495     // above.
1496     if (IRArgNo == 1 && SwapThisWithSRet)
1497       IRArgNo++;
1498   }
1499   assert(ArgNo == ArgInfo.size());
1500 
1501   if (FI.usesInAlloca())
1502     InallocaArgNo = IRArgNo++;
1503 
1504   TotalIRArgs = IRArgNo;
1505 }
1506 }  // namespace
1507 
1508 /***/
1509 
1510 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1511   const auto &RI = FI.getReturnInfo();
1512   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1513 }
1514 
1515 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1516   return ReturnTypeUsesSRet(FI) &&
1517          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1518 }
1519 
1520 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1521   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1522     switch (BT->getKind()) {
1523     default:
1524       return false;
1525     case BuiltinType::Float:
1526       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1527     case BuiltinType::Double:
1528       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1529     case BuiltinType::LongDouble:
1530       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1531     }
1532   }
1533 
1534   return false;
1535 }
1536 
1537 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1538   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1539     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1540       if (BT->getKind() == BuiltinType::LongDouble)
1541         return getTarget().useObjCFP2RetForComplexLongDouble();
1542     }
1543   }
1544 
1545   return false;
1546 }
1547 
1548 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1549   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1550   return GetFunctionType(FI);
1551 }
1552 
1553 llvm::FunctionType *
1554 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1555 
1556   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1557   (void)Inserted;
1558   assert(Inserted && "Recursively being processed?");
1559 
1560   llvm::Type *resultType = nullptr;
1561   const ABIArgInfo &retAI = FI.getReturnInfo();
1562   switch (retAI.getKind()) {
1563   case ABIArgInfo::Expand:
1564     llvm_unreachable("Invalid ABI kind for return argument");
1565 
1566   case ABIArgInfo::Extend:
1567   case ABIArgInfo::Direct:
1568     resultType = retAI.getCoerceToType();
1569     break;
1570 
1571   case ABIArgInfo::InAlloca:
1572     if (retAI.getInAllocaSRet()) {
1573       // sret things on win32 aren't void, they return the sret pointer.
1574       QualType ret = FI.getReturnType();
1575       llvm::Type *ty = ConvertType(ret);
1576       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1577       resultType = llvm::PointerType::get(ty, addressSpace);
1578     } else {
1579       resultType = llvm::Type::getVoidTy(getLLVMContext());
1580     }
1581     break;
1582 
1583   case ABIArgInfo::Indirect:
1584   case ABIArgInfo::Ignore:
1585     resultType = llvm::Type::getVoidTy(getLLVMContext());
1586     break;
1587 
1588   case ABIArgInfo::CoerceAndExpand:
1589     resultType = retAI.getUnpaddedCoerceAndExpandType();
1590     break;
1591   }
1592 
1593   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1594   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1595 
1596   // Add type for sret argument.
1597   if (IRFunctionArgs.hasSRetArg()) {
1598     QualType Ret = FI.getReturnType();
1599     llvm::Type *Ty = ConvertType(Ret);
1600     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1601     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1602         llvm::PointerType::get(Ty, AddressSpace);
1603   }
1604 
1605   // Add type for inalloca argument.
1606   if (IRFunctionArgs.hasInallocaArg()) {
1607     auto ArgStruct = FI.getArgStruct();
1608     assert(ArgStruct);
1609     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1610   }
1611 
1612   // Add in all of the required arguments.
1613   unsigned ArgNo = 0;
1614   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1615                                      ie = it + FI.getNumRequiredArgs();
1616   for (; it != ie; ++it, ++ArgNo) {
1617     const ABIArgInfo &ArgInfo = it->info;
1618 
1619     // Insert a padding type to ensure proper alignment.
1620     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1621       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1622           ArgInfo.getPaddingType();
1623 
1624     unsigned FirstIRArg, NumIRArgs;
1625     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1626 
1627     switch (ArgInfo.getKind()) {
1628     case ABIArgInfo::Ignore:
1629     case ABIArgInfo::InAlloca:
1630       assert(NumIRArgs == 0);
1631       break;
1632 
1633     case ABIArgInfo::Indirect: {
1634       assert(NumIRArgs == 1);
1635       // indirect arguments are always on the stack, which is alloca addr space.
1636       llvm::Type *LTy = ConvertTypeForMem(it->type);
1637       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1638           CGM.getDataLayout().getAllocaAddrSpace());
1639       break;
1640     }
1641 
1642     case ABIArgInfo::Extend:
1643     case ABIArgInfo::Direct: {
1644       // Fast-isel and the optimizer generally like scalar values better than
1645       // FCAs, so we flatten them if this is safe to do for this argument.
1646       llvm::Type *argType = ArgInfo.getCoerceToType();
1647       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1648       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1649         assert(NumIRArgs == st->getNumElements());
1650         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1651           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1652       } else {
1653         assert(NumIRArgs == 1);
1654         ArgTypes[FirstIRArg] = argType;
1655       }
1656       break;
1657     }
1658 
1659     case ABIArgInfo::CoerceAndExpand: {
1660       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1661       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1662         *ArgTypesIter++ = EltTy;
1663       }
1664       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1665       break;
1666     }
1667 
1668     case ABIArgInfo::Expand:
1669       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1670       getExpandedTypes(it->type, ArgTypesIter);
1671       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1672       break;
1673     }
1674   }
1675 
1676   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1677   assert(Erased && "Not in set?");
1678 
1679   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1680 }
1681 
1682 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1683   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1684   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1685 
1686   if (!isFuncTypeConvertible(FPT))
1687     return llvm::StructType::get(getLLVMContext());
1688 
1689   return GetFunctionType(GD);
1690 }
1691 
1692 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1693                                                llvm::AttrBuilder &FuncAttrs,
1694                                                const FunctionProtoType *FPT) {
1695   if (!FPT)
1696     return;
1697 
1698   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1699       FPT->isNothrow())
1700     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1701 }
1702 
1703 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1704                                                  bool HasOptnone,
1705                                                  bool AttrOnCallSite,
1706                                                llvm::AttrBuilder &FuncAttrs) {
1707   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1708   if (!HasOptnone) {
1709     if (CodeGenOpts.OptimizeSize)
1710       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1711     if (CodeGenOpts.OptimizeSize == 2)
1712       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1713   }
1714 
1715   if (CodeGenOpts.DisableRedZone)
1716     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1717   if (CodeGenOpts.IndirectTlsSegRefs)
1718     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1719   if (CodeGenOpts.NoImplicitFloat)
1720     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1721 
1722   if (AttrOnCallSite) {
1723     // Attributes that should go on the call site only.
1724     if (!CodeGenOpts.SimplifyLibCalls ||
1725         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1726       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1727     if (!CodeGenOpts.TrapFuncName.empty())
1728       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1729   } else {
1730     StringRef FpKind;
1731     switch (CodeGenOpts.getFramePointer()) {
1732     case CodeGenOptions::FramePointerKind::None:
1733       FpKind = "none";
1734       break;
1735     case CodeGenOptions::FramePointerKind::NonLeaf:
1736       FpKind = "non-leaf";
1737       break;
1738     case CodeGenOptions::FramePointerKind::All:
1739       FpKind = "all";
1740       break;
1741     }
1742     FuncAttrs.addAttribute("frame-pointer", FpKind);
1743 
1744     FuncAttrs.addAttribute("less-precise-fpmad",
1745                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1746 
1747     if (CodeGenOpts.NullPointerIsValid)
1748       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1749 
1750     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1751       FuncAttrs.addAttribute("denormal-fp-math",
1752                              CodeGenOpts.FPDenormalMode.str());
1753     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1754       FuncAttrs.addAttribute(
1755           "denormal-fp-math-f32",
1756           CodeGenOpts.FP32DenormalMode.str());
1757     }
1758 
1759     FuncAttrs.addAttribute("no-trapping-math",
1760                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1761 
1762     // Strict (compliant) code is the default, so only add this attribute to
1763     // indicate that we are trying to workaround a problem case.
1764     if (!CodeGenOpts.StrictFloatCastOverflow)
1765       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1766 
1767     // TODO: Are these all needed?
1768     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1769     FuncAttrs.addAttribute("no-infs-fp-math",
1770                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1771     FuncAttrs.addAttribute("no-nans-fp-math",
1772                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1773     FuncAttrs.addAttribute("unsafe-fp-math",
1774                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1775     FuncAttrs.addAttribute("use-soft-float",
1776                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1777     FuncAttrs.addAttribute("stack-protector-buffer-size",
1778                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1779     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1780                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1781     FuncAttrs.addAttribute(
1782         "correctly-rounded-divide-sqrt-fp-math",
1783         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1784 
1785     // TODO: Reciprocal estimate codegen options should apply to instructions?
1786     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1787     if (!Recips.empty())
1788       FuncAttrs.addAttribute("reciprocal-estimates",
1789                              llvm::join(Recips, ","));
1790 
1791     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1792         CodeGenOpts.PreferVectorWidth != "none")
1793       FuncAttrs.addAttribute("prefer-vector-width",
1794                              CodeGenOpts.PreferVectorWidth);
1795 
1796     if (CodeGenOpts.StackRealignment)
1797       FuncAttrs.addAttribute("stackrealign");
1798     if (CodeGenOpts.Backchain)
1799       FuncAttrs.addAttribute("backchain");
1800     if (CodeGenOpts.EnableSegmentedStacks)
1801       FuncAttrs.addAttribute("split-stack");
1802 
1803     if (CodeGenOpts.SpeculativeLoadHardening)
1804       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1805   }
1806 
1807   if (getLangOpts().assumeFunctionsAreConvergent()) {
1808     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1809     // convergent (meaning, they may call an intrinsically convergent op, such
1810     // as __syncthreads() / barrier(), and so can't have certain optimizations
1811     // applied around them).  LLVM will remove this attribute where it safely
1812     // can.
1813     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1814   }
1815 
1816   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1817     // Exceptions aren't supported in CUDA device code.
1818     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1819   }
1820 
1821   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1822     StringRef Var, Value;
1823     std::tie(Var, Value) = Attr.split('=');
1824     FuncAttrs.addAttribute(Var, Value);
1825   }
1826 }
1827 
1828 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1829   llvm::AttrBuilder FuncAttrs;
1830   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1831                                /* AttrOnCallSite = */ false, FuncAttrs);
1832   // TODO: call GetCPUAndFeaturesAttributes?
1833   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1834 }
1835 
1836 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1837                                                    llvm::AttrBuilder &attrs) {
1838   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1839                                /*for call*/ false, attrs);
1840   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1841 }
1842 
1843 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1844                                    const LangOptions &LangOpts,
1845                                    const NoBuiltinAttr *NBA = nullptr) {
1846   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1847     SmallString<32> AttributeName;
1848     AttributeName += "no-builtin-";
1849     AttributeName += BuiltinName;
1850     FuncAttrs.addAttribute(AttributeName);
1851   };
1852 
1853   // First, handle the language options passed through -fno-builtin.
1854   if (LangOpts.NoBuiltin) {
1855     // -fno-builtin disables them all.
1856     FuncAttrs.addAttribute("no-builtins");
1857     return;
1858   }
1859 
1860   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1861   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1862 
1863   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1864   // the source.
1865   if (!NBA)
1866     return;
1867 
1868   // If there is a wildcard in the builtin names specified through the
1869   // attribute, disable them all.
1870   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1871     FuncAttrs.addAttribute("no-builtins");
1872     return;
1873   }
1874 
1875   // And last, add the rest of the builtin names.
1876   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1877 }
1878 
1879 /// Construct the IR attribute list of a function or call.
1880 ///
1881 /// When adding an attribute, please consider where it should be handled:
1882 ///
1883 ///   - getDefaultFunctionAttributes is for attributes that are essentially
1884 ///     part of the global target configuration (but perhaps can be
1885 ///     overridden on a per-function basis).  Adding attributes there
1886 ///     will cause them to also be set in frontends that build on Clang's
1887 ///     target-configuration logic, as well as for code defined in library
1888 ///     modules such as CUDA's libdevice.
1889 ///
1890 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
1891 ///     and adds declaration-specific, convention-specific, and
1892 ///     frontend-specific logic.  The last is of particular importance:
1893 ///     attributes that restrict how the frontend generates code must be
1894 ///     added here rather than getDefaultFunctionAttributes.
1895 ///
1896 void CodeGenModule::ConstructAttributeList(
1897     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1898     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1899   llvm::AttrBuilder FuncAttrs;
1900   llvm::AttrBuilder RetAttrs;
1901 
1902   // Collect function IR attributes from the CC lowering.
1903   // We'll collect the paramete and result attributes later.
1904   CallingConv = FI.getEffectiveCallingConvention();
1905   if (FI.isNoReturn())
1906     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1907   if (FI.isCmseNSCall())
1908     FuncAttrs.addAttribute("cmse_nonsecure_call");
1909 
1910   // Collect function IR attributes from the callee prototype if we have one.
1911   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1912                                      CalleeInfo.getCalleeFunctionProtoType());
1913 
1914   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1915 
1916   bool HasOptnone = false;
1917   // The NoBuiltinAttr attached to the target FunctionDecl.
1918   const NoBuiltinAttr *NBA = nullptr;
1919 
1920   // Collect function IR attributes based on declaration-specific
1921   // information.
1922   // FIXME: handle sseregparm someday...
1923   if (TargetDecl) {
1924     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1925       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1926     if (TargetDecl->hasAttr<NoThrowAttr>())
1927       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1928     if (TargetDecl->hasAttr<NoReturnAttr>())
1929       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1930     if (TargetDecl->hasAttr<ColdAttr>())
1931       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1932     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1933       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1934     if (TargetDecl->hasAttr<ConvergentAttr>())
1935       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1936 
1937     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1938       AddAttributesFromFunctionProtoType(
1939           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1940       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
1941         // A sane operator new returns a non-aliasing pointer.
1942         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
1943         if (getCodeGenOpts().AssumeSaneOperatorNew &&
1944             (Kind == OO_New || Kind == OO_Array_New))
1945           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1946       }
1947       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1948       const bool IsVirtualCall = MD && MD->isVirtual();
1949       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
1950       // virtual function. These attributes are not inherited by overloads.
1951       if (!(AttrOnCallSite && IsVirtualCall)) {
1952         if (Fn->isNoReturn())
1953           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1954         NBA = Fn->getAttr<NoBuiltinAttr>();
1955       }
1956     }
1957 
1958     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1959     if (TargetDecl->hasAttr<ConstAttr>()) {
1960       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1961       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1962     } else if (TargetDecl->hasAttr<PureAttr>()) {
1963       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1964       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1965     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1966       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1967       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1968     }
1969     if (TargetDecl->hasAttr<RestrictAttr>())
1970       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1971     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1972         !CodeGenOpts.NullPointerIsValid)
1973       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1974     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1975       FuncAttrs.addAttribute("no_caller_saved_registers");
1976     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1977       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1978 
1979     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1980     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1981       Optional<unsigned> NumElemsParam;
1982       if (AllocSize->getNumElemsParam().isValid())
1983         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1984       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1985                                  NumElemsParam);
1986     }
1987 
1988     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1989       if (getLangOpts().OpenCLVersion <= 120) {
1990         // OpenCL v1.2 Work groups are always uniform
1991         FuncAttrs.addAttribute("uniform-work-group-size", "true");
1992       } else {
1993         // OpenCL v2.0 Work groups may be whether uniform or not.
1994         // '-cl-uniform-work-group-size' compile option gets a hint
1995         // to the compiler that the global work-size be a multiple of
1996         // the work-group size specified to clEnqueueNDRangeKernel
1997         // (i.e. work groups are uniform).
1998         FuncAttrs.addAttribute("uniform-work-group-size",
1999                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2000       }
2001     }
2002   }
2003 
2004   // Attach "no-builtins" attributes to:
2005   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2006   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2007   // The attributes can come from:
2008   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2009   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2010   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2011 
2012   // Collect function IR attributes based on global settiings.
2013   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2014 
2015   // Override some default IR attributes based on declaration-specific
2016   // information.
2017   if (TargetDecl) {
2018     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2019       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2020     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2021       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2022     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2023       FuncAttrs.removeAttribute("split-stack");
2024 
2025     // Add NonLazyBind attribute to function declarations when -fno-plt
2026     // is used.
2027     // FIXME: what if we just haven't processed the function definition
2028     // yet, or if it's an external definition like C99 inline?
2029     if (CodeGenOpts.NoPLT) {
2030       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2031         if (!Fn->isDefined() && !AttrOnCallSite) {
2032           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2033         }
2034       }
2035     }
2036   }
2037 
2038   // Collect non-call-site function IR attributes from declaration-specific
2039   // information.
2040   if (!AttrOnCallSite) {
2041     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2042       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2043 
2044     // Whether tail calls are enabled.
2045     auto shouldDisableTailCalls = [&] {
2046       // Should this be honored in getDefaultFunctionAttributes?
2047       if (CodeGenOpts.DisableTailCalls)
2048         return true;
2049 
2050       if (!TargetDecl)
2051         return false;
2052 
2053       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2054           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2055         return true;
2056 
2057       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2058         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2059           if (!BD->doesNotEscape())
2060             return true;
2061       }
2062 
2063       return false;
2064     };
2065     FuncAttrs.addAttribute("disable-tail-calls",
2066                            llvm::toStringRef(shouldDisableTailCalls()));
2067 
2068     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2069     // handles these separately to set them based on the global defaults.
2070     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2071   }
2072 
2073   // Collect attributes from arguments and return values.
2074   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2075 
2076   QualType RetTy = FI.getReturnType();
2077   const ABIArgInfo &RetAI = FI.getReturnInfo();
2078   switch (RetAI.getKind()) {
2079   case ABIArgInfo::Extend:
2080     if (RetAI.isSignExt())
2081       RetAttrs.addAttribute(llvm::Attribute::SExt);
2082     else
2083       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2084     LLVM_FALLTHROUGH;
2085   case ABIArgInfo::Direct:
2086     if (RetAI.getInReg())
2087       RetAttrs.addAttribute(llvm::Attribute::InReg);
2088     break;
2089   case ABIArgInfo::Ignore:
2090     break;
2091 
2092   case ABIArgInfo::InAlloca:
2093   case ABIArgInfo::Indirect: {
2094     // inalloca and sret disable readnone and readonly
2095     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2096       .removeAttribute(llvm::Attribute::ReadNone);
2097     break;
2098   }
2099 
2100   case ABIArgInfo::CoerceAndExpand:
2101     break;
2102 
2103   case ABIArgInfo::Expand:
2104     llvm_unreachable("Invalid ABI kind for return argument");
2105   }
2106 
2107   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2108     QualType PTy = RefTy->getPointeeType();
2109     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2110       RetAttrs.addDereferenceableAttr(
2111           getMinimumObjectSize(PTy).getQuantity());
2112     if (getContext().getTargetAddressSpace(PTy) == 0 &&
2113         !CodeGenOpts.NullPointerIsValid)
2114       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2115     if (PTy->isObjectType()) {
2116       llvm::Align Alignment =
2117           getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2118       RetAttrs.addAlignmentAttr(Alignment);
2119     }
2120   }
2121 
2122   bool hasUsedSRet = false;
2123   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2124 
2125   // Attach attributes to sret.
2126   if (IRFunctionArgs.hasSRetArg()) {
2127     llvm::AttrBuilder SRETAttrs;
2128     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2129     hasUsedSRet = true;
2130     if (RetAI.getInReg())
2131       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2132     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2133     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2134         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2135   }
2136 
2137   // Attach attributes to inalloca argument.
2138   if (IRFunctionArgs.hasInallocaArg()) {
2139     llvm::AttrBuilder Attrs;
2140     Attrs.addAttribute(llvm::Attribute::InAlloca);
2141     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2142         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2143   }
2144 
2145   unsigned ArgNo = 0;
2146   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2147                                           E = FI.arg_end();
2148        I != E; ++I, ++ArgNo) {
2149     QualType ParamType = I->type;
2150     const ABIArgInfo &AI = I->info;
2151     llvm::AttrBuilder Attrs;
2152 
2153     // Add attribute for padding argument, if necessary.
2154     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2155       if (AI.getPaddingInReg()) {
2156         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2157             llvm::AttributeSet::get(
2158                 getLLVMContext(),
2159                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2160       }
2161     }
2162 
2163     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2164     // have the corresponding parameter variable.  It doesn't make
2165     // sense to do it here because parameters are so messed up.
2166     switch (AI.getKind()) {
2167     case ABIArgInfo::Extend:
2168       if (AI.isSignExt())
2169         Attrs.addAttribute(llvm::Attribute::SExt);
2170       else
2171         Attrs.addAttribute(llvm::Attribute::ZExt);
2172       LLVM_FALLTHROUGH;
2173     case ABIArgInfo::Direct:
2174       if (ArgNo == 0 && FI.isChainCall())
2175         Attrs.addAttribute(llvm::Attribute::Nest);
2176       else if (AI.getInReg())
2177         Attrs.addAttribute(llvm::Attribute::InReg);
2178       break;
2179 
2180     case ABIArgInfo::Indirect: {
2181       if (AI.getInReg())
2182         Attrs.addAttribute(llvm::Attribute::InReg);
2183 
2184       if (AI.getIndirectByVal())
2185         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2186 
2187       CharUnits Align = AI.getIndirectAlign();
2188 
2189       // In a byval argument, it is important that the required
2190       // alignment of the type is honored, as LLVM might be creating a
2191       // *new* stack object, and needs to know what alignment to give
2192       // it. (Sometimes it can deduce a sensible alignment on its own,
2193       // but not if clang decides it must emit a packed struct, or the
2194       // user specifies increased alignment requirements.)
2195       //
2196       // This is different from indirect *not* byval, where the object
2197       // exists already, and the align attribute is purely
2198       // informative.
2199       assert(!Align.isZero());
2200 
2201       // For now, only add this when we have a byval argument.
2202       // TODO: be less lazy about updating test cases.
2203       if (AI.getIndirectByVal())
2204         Attrs.addAlignmentAttr(Align.getQuantity());
2205 
2206       // byval disables readnone and readonly.
2207       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2208         .removeAttribute(llvm::Attribute::ReadNone);
2209       break;
2210     }
2211     case ABIArgInfo::Ignore:
2212     case ABIArgInfo::Expand:
2213     case ABIArgInfo::CoerceAndExpand:
2214       break;
2215 
2216     case ABIArgInfo::InAlloca:
2217       // inalloca disables readnone and readonly.
2218       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2219           .removeAttribute(llvm::Attribute::ReadNone);
2220       continue;
2221     }
2222 
2223     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2224       QualType PTy = RefTy->getPointeeType();
2225       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2226         Attrs.addDereferenceableAttr(
2227             getMinimumObjectSize(PTy).getQuantity());
2228       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2229           !CodeGenOpts.NullPointerIsValid)
2230         Attrs.addAttribute(llvm::Attribute::NonNull);
2231       if (PTy->isObjectType()) {
2232         llvm::Align Alignment =
2233             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2234         Attrs.addAlignmentAttr(Alignment);
2235       }
2236     }
2237 
2238     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2239     case ParameterABI::Ordinary:
2240       break;
2241 
2242     case ParameterABI::SwiftIndirectResult: {
2243       // Add 'sret' if we haven't already used it for something, but
2244       // only if the result is void.
2245       if (!hasUsedSRet && RetTy->isVoidType()) {
2246         Attrs.addAttribute(llvm::Attribute::StructRet);
2247         hasUsedSRet = true;
2248       }
2249 
2250       // Add 'noalias' in either case.
2251       Attrs.addAttribute(llvm::Attribute::NoAlias);
2252 
2253       // Add 'dereferenceable' and 'alignment'.
2254       auto PTy = ParamType->getPointeeType();
2255       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2256         auto info = getContext().getTypeInfoInChars(PTy);
2257         Attrs.addDereferenceableAttr(info.first.getQuantity());
2258         Attrs.addAlignmentAttr(info.second.getAsAlign());
2259       }
2260       break;
2261     }
2262 
2263     case ParameterABI::SwiftErrorResult:
2264       Attrs.addAttribute(llvm::Attribute::SwiftError);
2265       break;
2266 
2267     case ParameterABI::SwiftContext:
2268       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2269       break;
2270     }
2271 
2272     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2273       Attrs.addAttribute(llvm::Attribute::NoCapture);
2274 
2275     if (Attrs.hasAttributes()) {
2276       unsigned FirstIRArg, NumIRArgs;
2277       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2278       for (unsigned i = 0; i < NumIRArgs; i++)
2279         ArgAttrs[FirstIRArg + i] =
2280             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2281     }
2282   }
2283   assert(ArgNo == FI.arg_size());
2284 
2285   AttrList = llvm::AttributeList::get(
2286       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2287       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2288 }
2289 
2290 /// An argument came in as a promoted argument; demote it back to its
2291 /// declared type.
2292 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2293                                          const VarDecl *var,
2294                                          llvm::Value *value) {
2295   llvm::Type *varType = CGF.ConvertType(var->getType());
2296 
2297   // This can happen with promotions that actually don't change the
2298   // underlying type, like the enum promotions.
2299   if (value->getType() == varType) return value;
2300 
2301   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2302          && "unexpected promotion type");
2303 
2304   if (isa<llvm::IntegerType>(varType))
2305     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2306 
2307   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2308 }
2309 
2310 /// Returns the attribute (either parameter attribute, or function
2311 /// attribute), which declares argument ArgNo to be non-null.
2312 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2313                                          QualType ArgType, unsigned ArgNo) {
2314   // FIXME: __attribute__((nonnull)) can also be applied to:
2315   //   - references to pointers, where the pointee is known to be
2316   //     nonnull (apparently a Clang extension)
2317   //   - transparent unions containing pointers
2318   // In the former case, LLVM IR cannot represent the constraint. In
2319   // the latter case, we have no guarantee that the transparent union
2320   // is in fact passed as a pointer.
2321   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2322     return nullptr;
2323   // First, check attribute on parameter itself.
2324   if (PVD) {
2325     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2326       return ParmNNAttr;
2327   }
2328   // Check function attributes.
2329   if (!FD)
2330     return nullptr;
2331   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2332     if (NNAttr->isNonNull(ArgNo))
2333       return NNAttr;
2334   }
2335   return nullptr;
2336 }
2337 
2338 namespace {
2339   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2340     Address Temp;
2341     Address Arg;
2342     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2343     void Emit(CodeGenFunction &CGF, Flags flags) override {
2344       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2345       CGF.Builder.CreateStore(errorValue, Arg);
2346     }
2347   };
2348 }
2349 
2350 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2351                                          llvm::Function *Fn,
2352                                          const FunctionArgList &Args) {
2353   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2354     // Naked functions don't have prologues.
2355     return;
2356 
2357   // If this is an implicit-return-zero function, go ahead and
2358   // initialize the return value.  TODO: it might be nice to have
2359   // a more general mechanism for this that didn't require synthesized
2360   // return statements.
2361   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2362     if (FD->hasImplicitReturnZero()) {
2363       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2364       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2365       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2366       Builder.CreateStore(Zero, ReturnValue);
2367     }
2368   }
2369 
2370   // FIXME: We no longer need the types from FunctionArgList; lift up and
2371   // simplify.
2372 
2373   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2374   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2375 
2376   // If we're using inalloca, all the memory arguments are GEPs off of the last
2377   // parameter, which is a pointer to the complete memory area.
2378   Address ArgStruct = Address::invalid();
2379   if (IRFunctionArgs.hasInallocaArg()) {
2380     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2381                         FI.getArgStructAlignment());
2382 
2383     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2384   }
2385 
2386   // Name the struct return parameter.
2387   if (IRFunctionArgs.hasSRetArg()) {
2388     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2389     AI->setName("agg.result");
2390     AI->addAttr(llvm::Attribute::NoAlias);
2391   }
2392 
2393   // Track if we received the parameter as a pointer (indirect, byval, or
2394   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2395   // into a local alloca for us.
2396   SmallVector<ParamValue, 16> ArgVals;
2397   ArgVals.reserve(Args.size());
2398 
2399   // Create a pointer value for every parameter declaration.  This usually
2400   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2401   // any cleanups or do anything that might unwind.  We do that separately, so
2402   // we can push the cleanups in the correct order for the ABI.
2403   assert(FI.arg_size() == Args.size() &&
2404          "Mismatch between function signature & arguments.");
2405   unsigned ArgNo = 0;
2406   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2407   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2408        i != e; ++i, ++info_it, ++ArgNo) {
2409     const VarDecl *Arg = *i;
2410     const ABIArgInfo &ArgI = info_it->info;
2411 
2412     bool isPromoted =
2413       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2414     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2415     // the parameter is promoted. In this case we convert to
2416     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2417     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2418     assert(hasScalarEvaluationKind(Ty) ==
2419            hasScalarEvaluationKind(Arg->getType()));
2420 
2421     unsigned FirstIRArg, NumIRArgs;
2422     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2423 
2424     switch (ArgI.getKind()) {
2425     case ABIArgInfo::InAlloca: {
2426       assert(NumIRArgs == 0);
2427       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2428       Address V =
2429           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2430       if (ArgI.getInAllocaIndirect())
2431         V = Address(Builder.CreateLoad(V),
2432                     getContext().getTypeAlignInChars(Ty));
2433       ArgVals.push_back(ParamValue::forIndirect(V));
2434       break;
2435     }
2436 
2437     case ABIArgInfo::Indirect: {
2438       assert(NumIRArgs == 1);
2439       Address ParamAddr =
2440           Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign());
2441 
2442       if (!hasScalarEvaluationKind(Ty)) {
2443         // Aggregates and complex variables are accessed by reference.  All we
2444         // need to do is realign the value, if requested.
2445         Address V = ParamAddr;
2446         if (ArgI.getIndirectRealign()) {
2447           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2448 
2449           // Copy from the incoming argument pointer to the temporary with the
2450           // appropriate alignment.
2451           //
2452           // FIXME: We should have a common utility for generating an aggregate
2453           // copy.
2454           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2455           Builder.CreateMemCpy(
2456               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2457               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2458               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2459           V = AlignedTemp;
2460         }
2461         ArgVals.push_back(ParamValue::forIndirect(V));
2462       } else {
2463         // Load scalar value from indirect argument.
2464         llvm::Value *V =
2465             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2466 
2467         if (isPromoted)
2468           V = emitArgumentDemotion(*this, Arg, V);
2469         ArgVals.push_back(ParamValue::forDirect(V));
2470       }
2471       break;
2472     }
2473 
2474     case ABIArgInfo::Extend:
2475     case ABIArgInfo::Direct: {
2476       auto AI = Fn->getArg(FirstIRArg);
2477       llvm::Type *LTy = ConvertType(Arg->getType());
2478 
2479       // Prepare parameter attributes. So far, only attributes for pointer
2480       // parameters are prepared. See
2481       // http://llvm.org/docs/LangRef.html#paramattrs.
2482       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2483           ArgI.getCoerceToType()->isPointerTy()) {
2484         assert(NumIRArgs == 1);
2485 
2486         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2487           // Set `nonnull` attribute if any.
2488           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2489                              PVD->getFunctionScopeIndex()) &&
2490               !CGM.getCodeGenOpts().NullPointerIsValid)
2491             AI->addAttr(llvm::Attribute::NonNull);
2492 
2493           QualType OTy = PVD->getOriginalType();
2494           if (const auto *ArrTy =
2495               getContext().getAsConstantArrayType(OTy)) {
2496             // A C99 array parameter declaration with the static keyword also
2497             // indicates dereferenceability, and if the size is constant we can
2498             // use the dereferenceable attribute (which requires the size in
2499             // bytes).
2500             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2501               QualType ETy = ArrTy->getElementType();
2502               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2503               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2504                   ArrSize) {
2505                 llvm::AttrBuilder Attrs;
2506                 Attrs.addDereferenceableAttr(
2507                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2508                 AI->addAttrs(Attrs);
2509               } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
2510                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2511                 AI->addAttr(llvm::Attribute::NonNull);
2512               }
2513             }
2514           } else if (const auto *ArrTy =
2515                      getContext().getAsVariableArrayType(OTy)) {
2516             // For C99 VLAs with the static keyword, we don't know the size so
2517             // we can't use the dereferenceable attribute, but in addrspace(0)
2518             // we know that it must be nonnull.
2519             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2520                 !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2521                 !CGM.getCodeGenOpts().NullPointerIsValid)
2522               AI->addAttr(llvm::Attribute::NonNull);
2523           }
2524 
2525           // Set `align` attribute if any.
2526           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2527           if (!AVAttr)
2528             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2529               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2530           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2531             // If alignment-assumption sanitizer is enabled, we do *not* add
2532             // alignment attribute here, but emit normal alignment assumption,
2533             // so the UBSAN check could function.
2534             llvm::ConstantInt *AlignmentCI =
2535                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2536             unsigned AlignmentInt =
2537                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2538             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2539               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2540               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(
2541                   llvm::Align(AlignmentInt)));
2542             }
2543           }
2544         }
2545 
2546         // Set 'noalias' if an argument type has the `restrict` qualifier.
2547         if (Arg->getType().isRestrictQualified())
2548           AI->addAttr(llvm::Attribute::NoAlias);
2549       }
2550 
2551       // Prepare the argument value. If we have the trivial case, handle it
2552       // with no muss and fuss.
2553       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2554           ArgI.getCoerceToType() == ConvertType(Ty) &&
2555           ArgI.getDirectOffset() == 0) {
2556         assert(NumIRArgs == 1);
2557 
2558         // LLVM expects swifterror parameters to be used in very restricted
2559         // ways.  Copy the value into a less-restricted temporary.
2560         llvm::Value *V = AI;
2561         if (FI.getExtParameterInfo(ArgNo).getABI()
2562               == ParameterABI::SwiftErrorResult) {
2563           QualType pointeeTy = Ty->getPointeeType();
2564           assert(pointeeTy->isPointerType());
2565           Address temp =
2566             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2567           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2568           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2569           Builder.CreateStore(incomingErrorValue, temp);
2570           V = temp.getPointer();
2571 
2572           // Push a cleanup to copy the value back at the end of the function.
2573           // The convention does not guarantee that the value will be written
2574           // back if the function exits with an unwind exception.
2575           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2576         }
2577 
2578         // Ensure the argument is the correct type.
2579         if (V->getType() != ArgI.getCoerceToType())
2580           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2581 
2582         if (isPromoted)
2583           V = emitArgumentDemotion(*this, Arg, V);
2584 
2585         // Because of merging of function types from multiple decls it is
2586         // possible for the type of an argument to not match the corresponding
2587         // type in the function type. Since we are codegening the callee
2588         // in here, add a cast to the argument type.
2589         llvm::Type *LTy = ConvertType(Arg->getType());
2590         if (V->getType() != LTy)
2591           V = Builder.CreateBitCast(V, LTy);
2592 
2593         ArgVals.push_back(ParamValue::forDirect(V));
2594         break;
2595       }
2596 
2597       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2598                                      Arg->getName());
2599 
2600       // Pointer to store into.
2601       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2602 
2603       // Fast-isel and the optimizer generally like scalar values better than
2604       // FCAs, so we flatten them if this is safe to do for this argument.
2605       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2606       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2607           STy->getNumElements() > 1) {
2608         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2609         llvm::Type *DstTy = Ptr.getElementType();
2610         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2611 
2612         Address AddrToStoreInto = Address::invalid();
2613         if (SrcSize <= DstSize) {
2614           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2615         } else {
2616           AddrToStoreInto =
2617             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2618         }
2619 
2620         assert(STy->getNumElements() == NumIRArgs);
2621         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2622           auto AI = Fn->getArg(FirstIRArg + i);
2623           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2624           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2625           Builder.CreateStore(AI, EltPtr);
2626         }
2627 
2628         if (SrcSize > DstSize) {
2629           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2630         }
2631 
2632       } else {
2633         // Simple case, just do a coerced store of the argument into the alloca.
2634         assert(NumIRArgs == 1);
2635         auto AI = Fn->getArg(FirstIRArg);
2636         AI->setName(Arg->getName() + ".coerce");
2637         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2638       }
2639 
2640       // Match to what EmitParmDecl is expecting for this type.
2641       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2642         llvm::Value *V =
2643             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2644         if (isPromoted)
2645           V = emitArgumentDemotion(*this, Arg, V);
2646         ArgVals.push_back(ParamValue::forDirect(V));
2647       } else {
2648         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2649       }
2650       break;
2651     }
2652 
2653     case ABIArgInfo::CoerceAndExpand: {
2654       // Reconstruct into a temporary.
2655       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2656       ArgVals.push_back(ParamValue::forIndirect(alloca));
2657 
2658       auto coercionType = ArgI.getCoerceAndExpandType();
2659       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2660 
2661       unsigned argIndex = FirstIRArg;
2662       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2663         llvm::Type *eltType = coercionType->getElementType(i);
2664         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2665           continue;
2666 
2667         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2668         auto elt = Fn->getArg(argIndex++);
2669         Builder.CreateStore(elt, eltAddr);
2670       }
2671       assert(argIndex == FirstIRArg + NumIRArgs);
2672       break;
2673     }
2674 
2675     case ABIArgInfo::Expand: {
2676       // If this structure was expanded into multiple arguments then
2677       // we need to create a temporary and reconstruct it from the
2678       // arguments.
2679       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2680       LValue LV = MakeAddrLValue(Alloca, Ty);
2681       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2682 
2683       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2684       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2685       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2686       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2687         auto AI = Fn->getArg(FirstIRArg + i);
2688         AI->setName(Arg->getName() + "." + Twine(i));
2689       }
2690       break;
2691     }
2692 
2693     case ABIArgInfo::Ignore:
2694       assert(NumIRArgs == 0);
2695       // Initialize the local variable appropriately.
2696       if (!hasScalarEvaluationKind(Ty)) {
2697         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2698       } else {
2699         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2700         ArgVals.push_back(ParamValue::forDirect(U));
2701       }
2702       break;
2703     }
2704   }
2705 
2706   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2707     for (int I = Args.size() - 1; I >= 0; --I)
2708       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2709   } else {
2710     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2711       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2712   }
2713 }
2714 
2715 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2716   while (insn->use_empty()) {
2717     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2718     if (!bitcast) return;
2719 
2720     // This is "safe" because we would have used a ConstantExpr otherwise.
2721     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2722     bitcast->eraseFromParent();
2723   }
2724 }
2725 
2726 /// Try to emit a fused autorelease of a return result.
2727 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2728                                                     llvm::Value *result) {
2729   // We must be immediately followed the cast.
2730   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2731   if (BB->empty()) return nullptr;
2732   if (&BB->back() != result) return nullptr;
2733 
2734   llvm::Type *resultType = result->getType();
2735 
2736   // result is in a BasicBlock and is therefore an Instruction.
2737   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2738 
2739   SmallVector<llvm::Instruction *, 4> InstsToKill;
2740 
2741   // Look for:
2742   //  %generator = bitcast %type1* %generator2 to %type2*
2743   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2744     // We would have emitted this as a constant if the operand weren't
2745     // an Instruction.
2746     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2747 
2748     // Require the generator to be immediately followed by the cast.
2749     if (generator->getNextNode() != bitcast)
2750       return nullptr;
2751 
2752     InstsToKill.push_back(bitcast);
2753   }
2754 
2755   // Look for:
2756   //   %generator = call i8* @objc_retain(i8* %originalResult)
2757   // or
2758   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2759   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2760   if (!call) return nullptr;
2761 
2762   bool doRetainAutorelease;
2763 
2764   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2765     doRetainAutorelease = true;
2766   } else if (call->getCalledOperand() ==
2767              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
2768     doRetainAutorelease = false;
2769 
2770     // If we emitted an assembly marker for this call (and the
2771     // ARCEntrypoints field should have been set if so), go looking
2772     // for that call.  If we can't find it, we can't do this
2773     // optimization.  But it should always be the immediately previous
2774     // instruction, unless we needed bitcasts around the call.
2775     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2776       llvm::Instruction *prev = call->getPrevNode();
2777       assert(prev);
2778       if (isa<llvm::BitCastInst>(prev)) {
2779         prev = prev->getPrevNode();
2780         assert(prev);
2781       }
2782       assert(isa<llvm::CallInst>(prev));
2783       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
2784              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2785       InstsToKill.push_back(prev);
2786     }
2787   } else {
2788     return nullptr;
2789   }
2790 
2791   result = call->getArgOperand(0);
2792   InstsToKill.push_back(call);
2793 
2794   // Keep killing bitcasts, for sanity.  Note that we no longer care
2795   // about precise ordering as long as there's exactly one use.
2796   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2797     if (!bitcast->hasOneUse()) break;
2798     InstsToKill.push_back(bitcast);
2799     result = bitcast->getOperand(0);
2800   }
2801 
2802   // Delete all the unnecessary instructions, from latest to earliest.
2803   for (auto *I : InstsToKill)
2804     I->eraseFromParent();
2805 
2806   // Do the fused retain/autorelease if we were asked to.
2807   if (doRetainAutorelease)
2808     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2809 
2810   // Cast back to the result type.
2811   return CGF.Builder.CreateBitCast(result, resultType);
2812 }
2813 
2814 /// If this is a +1 of the value of an immutable 'self', remove it.
2815 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2816                                           llvm::Value *result) {
2817   // This is only applicable to a method with an immutable 'self'.
2818   const ObjCMethodDecl *method =
2819     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2820   if (!method) return nullptr;
2821   const VarDecl *self = method->getSelfDecl();
2822   if (!self->getType().isConstQualified()) return nullptr;
2823 
2824   // Look for a retain call.
2825   llvm::CallInst *retainCall =
2826     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2827   if (!retainCall || retainCall->getCalledOperand() !=
2828                          CGF.CGM.getObjCEntrypoints().objc_retain)
2829     return nullptr;
2830 
2831   // Look for an ordinary load of 'self'.
2832   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2833   llvm::LoadInst *load =
2834     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2835   if (!load || load->isAtomic() || load->isVolatile() ||
2836       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2837     return nullptr;
2838 
2839   // Okay!  Burn it all down.  This relies for correctness on the
2840   // assumption that the retain is emitted as part of the return and
2841   // that thereafter everything is used "linearly".
2842   llvm::Type *resultType = result->getType();
2843   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2844   assert(retainCall->use_empty());
2845   retainCall->eraseFromParent();
2846   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2847 
2848   return CGF.Builder.CreateBitCast(load, resultType);
2849 }
2850 
2851 /// Emit an ARC autorelease of the result of a function.
2852 ///
2853 /// \return the value to actually return from the function
2854 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2855                                             llvm::Value *result) {
2856   // If we're returning 'self', kill the initial retain.  This is a
2857   // heuristic attempt to "encourage correctness" in the really unfortunate
2858   // case where we have a return of self during a dealloc and we desperately
2859   // need to avoid the possible autorelease.
2860   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2861     return self;
2862 
2863   // At -O0, try to emit a fused retain/autorelease.
2864   if (CGF.shouldUseFusedARCCalls())
2865     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2866       return fused;
2867 
2868   return CGF.EmitARCAutoreleaseReturnValue(result);
2869 }
2870 
2871 /// Heuristically search for a dominating store to the return-value slot.
2872 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2873   // Check if a User is a store which pointerOperand is the ReturnValue.
2874   // We are looking for stores to the ReturnValue, not for stores of the
2875   // ReturnValue to some other location.
2876   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2877     auto *SI = dyn_cast<llvm::StoreInst>(U);
2878     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2879       return nullptr;
2880     // These aren't actually possible for non-coerced returns, and we
2881     // only care about non-coerced returns on this code path.
2882     assert(!SI->isAtomic() && !SI->isVolatile());
2883     return SI;
2884   };
2885   // If there are multiple uses of the return-value slot, just check
2886   // for something immediately preceding the IP.  Sometimes this can
2887   // happen with how we generate implicit-returns; it can also happen
2888   // with noreturn cleanups.
2889   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2890     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2891     if (IP->empty()) return nullptr;
2892     llvm::Instruction *I = &IP->back();
2893 
2894     // Skip lifetime markers
2895     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2896                                             IE = IP->rend();
2897          II != IE; ++II) {
2898       if (llvm::IntrinsicInst *Intrinsic =
2899               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2900         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2901           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2902           ++II;
2903           if (II == IE)
2904             break;
2905           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2906             continue;
2907         }
2908       }
2909       I = &*II;
2910       break;
2911     }
2912 
2913     return GetStoreIfValid(I);
2914   }
2915 
2916   llvm::StoreInst *store =
2917       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2918   if (!store) return nullptr;
2919 
2920   // Now do a first-and-dirty dominance check: just walk up the
2921   // single-predecessors chain from the current insertion point.
2922   llvm::BasicBlock *StoreBB = store->getParent();
2923   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2924   while (IP != StoreBB) {
2925     if (!(IP = IP->getSinglePredecessor()))
2926       return nullptr;
2927   }
2928 
2929   // Okay, the store's basic block dominates the insertion point; we
2930   // can do our thing.
2931   return store;
2932 }
2933 
2934 // Helper functions for EmitCMSEClearRecord
2935 
2936 // Set the bits corresponding to a field having width `BitWidth` and located at
2937 // offset `BitOffset` (from the least significant bit) within a storage unit of
2938 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
2939 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
2940 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
2941                         int BitWidth, int CharWidth) {
2942   assert(CharWidth <= 64);
2943   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
2944 
2945   int Pos = 0;
2946   if (BitOffset >= CharWidth) {
2947     Pos += BitOffset / CharWidth;
2948     BitOffset = BitOffset % CharWidth;
2949   }
2950 
2951   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
2952   if (BitOffset + BitWidth >= CharWidth) {
2953     Bits[Pos++] |= (Used << BitOffset) & Used;
2954     BitWidth -= CharWidth - BitOffset;
2955     BitOffset = 0;
2956   }
2957 
2958   while (BitWidth >= CharWidth) {
2959     Bits[Pos++] = Used;
2960     BitWidth -= CharWidth;
2961   }
2962 
2963   if (BitWidth > 0)
2964     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
2965 }
2966 
2967 // Set the bits corresponding to a field having width `BitWidth` and located at
2968 // offset `BitOffset` (from the least significant bit) within a storage unit of
2969 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
2970 // `Bits` corresponds to one target byte. Use target endian layout.
2971 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
2972                         int StorageSize, int BitOffset, int BitWidth,
2973                         int CharWidth, bool BigEndian) {
2974 
2975   SmallVector<uint64_t, 8> TmpBits(StorageSize);
2976   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
2977 
2978   if (BigEndian)
2979     std::reverse(TmpBits.begin(), TmpBits.end());
2980 
2981   for (uint64_t V : TmpBits)
2982     Bits[StorageOffset++] |= V;
2983 }
2984 
2985 static void setUsedBits(CodeGenModule &, QualType, int,
2986                         SmallVectorImpl<uint64_t> &);
2987 
2988 // Set the bits in `Bits`, which correspond to the value representations of
2989 // the actual members of the record type `RTy`. Note that this function does
2990 // not handle base classes, virtual tables, etc, since they cannot happen in
2991 // CMSE function arguments or return. The bit mask corresponds to the target
2992 // memory layout, i.e. it's endian dependent.
2993 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
2994                         SmallVectorImpl<uint64_t> &Bits) {
2995   ASTContext &Context = CGM.getContext();
2996   int CharWidth = Context.getCharWidth();
2997   const RecordDecl *RD = RTy->getDecl()->getDefinition();
2998   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
2999   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3000 
3001   int Idx = 0;
3002   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3003     const FieldDecl *F = *I;
3004 
3005     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3006         F->getType()->isIncompleteArrayType())
3007       continue;
3008 
3009     if (F->isBitField()) {
3010       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3011       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3012                   BFI.StorageSize / CharWidth, BFI.Offset,
3013                   BFI.Size, CharWidth,
3014                   CGM.getDataLayout().isBigEndian());
3015       continue;
3016     }
3017 
3018     setUsedBits(CGM, F->getType(),
3019                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3020   }
3021 }
3022 
3023 // Set the bits in `Bits`, which correspond to the value representations of
3024 // the elements of an array type `ATy`.
3025 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3026                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3027   const ASTContext &Context = CGM.getContext();
3028 
3029   QualType ETy = Context.getBaseElementType(ATy);
3030   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3031   SmallVector<uint64_t, 4> TmpBits(Size);
3032   setUsedBits(CGM, ETy, 0, TmpBits);
3033 
3034   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3035     auto Src = TmpBits.begin();
3036     auto Dst = Bits.begin() + Offset + I * Size;
3037     for (int J = 0; J < Size; ++J)
3038       *Dst++ |= *Src++;
3039   }
3040 }
3041 
3042 // Set the bits in `Bits`, which correspond to the value representations of
3043 // the type `QTy`.
3044 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3045                         SmallVectorImpl<uint64_t> &Bits) {
3046   if (const auto *RTy = QTy->getAs<RecordType>())
3047     return setUsedBits(CGM, RTy, Offset, Bits);
3048 
3049   ASTContext &Context = CGM.getContext();
3050   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3051     return setUsedBits(CGM, ATy, Offset, Bits);
3052 
3053   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3054   if (Size <= 0)
3055     return;
3056 
3057   std::fill_n(Bits.begin() + Offset, Size,
3058               (uint64_t(1) << Context.getCharWidth()) - 1);
3059 }
3060 
3061 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3062                                    int Pos, int Size, int CharWidth,
3063                                    bool BigEndian) {
3064   assert(Size > 0);
3065   uint64_t Mask = 0;
3066   if (BigEndian) {
3067     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3068          ++P)
3069       Mask = (Mask << CharWidth) | *P;
3070   } else {
3071     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3072     do
3073       Mask = (Mask << CharWidth) | *--P;
3074     while (P != End);
3075   }
3076   return Mask;
3077 }
3078 
3079 // Emit code to clear the bits in a record, which aren't a part of any user
3080 // declared member, when the record is a function return.
3081 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3082                                                   llvm::IntegerType *ITy,
3083                                                   QualType QTy) {
3084   assert(Src->getType() == ITy);
3085   assert(ITy->getScalarSizeInBits() <= 64);
3086 
3087   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3088   int Size = DataLayout.getTypeStoreSize(ITy);
3089   SmallVector<uint64_t, 4> Bits(Size);
3090   setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits);
3091 
3092   int CharWidth = CGM.getContext().getCharWidth();
3093   uint64_t Mask =
3094       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3095 
3096   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3097 }
3098 
3099 // Emit code to clear the bits in a record, which aren't a part of any user
3100 // declared member, when the record is a function argument.
3101 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3102                                                   llvm::ArrayType *ATy,
3103                                                   QualType QTy) {
3104   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3105   int Size = DataLayout.getTypeStoreSize(ATy);
3106   SmallVector<uint64_t, 16> Bits(Size);
3107   setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits);
3108 
3109   // Clear each element of the LLVM array.
3110   int CharWidth = CGM.getContext().getCharWidth();
3111   int CharsPerElt =
3112       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3113   int MaskIndex = 0;
3114   llvm::Value *R = llvm::UndefValue::get(ATy);
3115   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3116     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3117                                        DataLayout.isBigEndian());
3118     MaskIndex += CharsPerElt;
3119     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3120     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3121     R = Builder.CreateInsertValue(R, T1, I);
3122   }
3123 
3124   return R;
3125 }
3126 
3127 // Emit code to clear the padding bits when returning or passing as an argument
3128 // a 16-bit floating-point value.
3129 llvm::Value *CodeGenFunction::EmitCMSEClearFP16(llvm::Value *Src) {
3130   llvm::Type *RetTy = Src->getType();
3131   assert(RetTy->isFloatTy() ||
3132          (RetTy->isIntegerTy() && RetTy->getIntegerBitWidth() == 32));
3133   if (RetTy->isFloatTy()) {
3134     llvm::Value *T0 = Builder.CreateBitCast(Src, Builder.getIntNTy(32));
3135     llvm::Value *T1 = Builder.CreateAnd(T0, 0xffff, "cmse.clear");
3136     return Builder.CreateBitCast(T1, RetTy);
3137   }
3138   return Builder.CreateAnd(Src, 0xffff, "cmse.clear");
3139 }
3140 
3141 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3142                                          bool EmitRetDbgLoc,
3143                                          SourceLocation EndLoc) {
3144   if (FI.isNoReturn()) {
3145     // Noreturn functions don't return.
3146     EmitUnreachable(EndLoc);
3147     return;
3148   }
3149 
3150   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3151     // Naked functions don't have epilogues.
3152     Builder.CreateUnreachable();
3153     return;
3154   }
3155 
3156   // Functions with no result always return void.
3157   if (!ReturnValue.isValid()) {
3158     Builder.CreateRetVoid();
3159     return;
3160   }
3161 
3162   llvm::DebugLoc RetDbgLoc;
3163   llvm::Value *RV = nullptr;
3164   QualType RetTy = FI.getReturnType();
3165   const ABIArgInfo &RetAI = FI.getReturnInfo();
3166 
3167   switch (RetAI.getKind()) {
3168   case ABIArgInfo::InAlloca:
3169     // Aggregrates get evaluated directly into the destination.  Sometimes we
3170     // need to return the sret value in a register, though.
3171     assert(hasAggregateEvaluationKind(RetTy));
3172     if (RetAI.getInAllocaSRet()) {
3173       llvm::Function::arg_iterator EI = CurFn->arg_end();
3174       --EI;
3175       llvm::Value *ArgStruct = &*EI;
3176       llvm::Value *SRet = Builder.CreateStructGEP(
3177           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
3178       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
3179     }
3180     break;
3181 
3182   case ABIArgInfo::Indirect: {
3183     auto AI = CurFn->arg_begin();
3184     if (RetAI.isSRetAfterThis())
3185       ++AI;
3186     switch (getEvaluationKind(RetTy)) {
3187     case TEK_Complex: {
3188       ComplexPairTy RT =
3189         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3190       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3191                          /*isInit*/ true);
3192       break;
3193     }
3194     case TEK_Aggregate:
3195       // Do nothing; aggregrates get evaluated directly into the destination.
3196       break;
3197     case TEK_Scalar:
3198       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
3199                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
3200                         /*isInit*/ true);
3201       break;
3202     }
3203     break;
3204   }
3205 
3206   case ABIArgInfo::Extend:
3207   case ABIArgInfo::Direct:
3208     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3209         RetAI.getDirectOffset() == 0) {
3210       // The internal return value temp always will have pointer-to-return-type
3211       // type, just do a load.
3212 
3213       // If there is a dominating store to ReturnValue, we can elide
3214       // the load, zap the store, and usually zap the alloca.
3215       if (llvm::StoreInst *SI =
3216               findDominatingStoreToReturnValue(*this)) {
3217         // Reuse the debug location from the store unless there is
3218         // cleanup code to be emitted between the store and return
3219         // instruction.
3220         if (EmitRetDbgLoc && !AutoreleaseResult)
3221           RetDbgLoc = SI->getDebugLoc();
3222         // Get the stored value and nuke the now-dead store.
3223         RV = SI->getValueOperand();
3224         SI->eraseFromParent();
3225 
3226       // Otherwise, we have to do a simple load.
3227       } else {
3228         RV = Builder.CreateLoad(ReturnValue);
3229       }
3230     } else {
3231       // If the value is offset in memory, apply the offset now.
3232       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3233 
3234       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3235     }
3236 
3237     // In ARC, end functions that return a retainable type with a call
3238     // to objc_autoreleaseReturnValue.
3239     if (AutoreleaseResult) {
3240 #ifndef NDEBUG
3241       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3242       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3243       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3244       // CurCodeDecl or BlockInfo.
3245       QualType RT;
3246 
3247       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3248         RT = FD->getReturnType();
3249       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3250         RT = MD->getReturnType();
3251       else if (isa<BlockDecl>(CurCodeDecl))
3252         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3253       else
3254         llvm_unreachable("Unexpected function/method type");
3255 
3256       assert(getLangOpts().ObjCAutoRefCount &&
3257              !FI.isReturnsRetained() &&
3258              RT->isObjCRetainableType());
3259 #endif
3260       RV = emitAutoreleaseOfResult(*this, RV);
3261     }
3262 
3263     break;
3264 
3265   case ABIArgInfo::Ignore:
3266     break;
3267 
3268   case ABIArgInfo::CoerceAndExpand: {
3269     auto coercionType = RetAI.getCoerceAndExpandType();
3270 
3271     // Load all of the coerced elements out into results.
3272     llvm::SmallVector<llvm::Value*, 4> results;
3273     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3274     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3275       auto coercedEltType = coercionType->getElementType(i);
3276       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3277         continue;
3278 
3279       auto eltAddr = Builder.CreateStructGEP(addr, i);
3280       auto elt = Builder.CreateLoad(eltAddr);
3281       results.push_back(elt);
3282     }
3283 
3284     // If we have one result, it's the single direct result type.
3285     if (results.size() == 1) {
3286       RV = results[0];
3287 
3288     // Otherwise, we need to make a first-class aggregate.
3289     } else {
3290       // Construct a return type that lacks padding elements.
3291       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3292 
3293       RV = llvm::UndefValue::get(returnType);
3294       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3295         RV = Builder.CreateInsertValue(RV, results[i], i);
3296       }
3297     }
3298     break;
3299   }
3300 
3301   case ABIArgInfo::Expand:
3302     llvm_unreachable("Invalid ABI kind for return argument");
3303   }
3304 
3305   llvm::Instruction *Ret;
3306   if (RV) {
3307     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3308       // For certain return types, clear padding bits, as they may reveal
3309       // sensitive information.
3310       const Type *RTy = RetTy.getCanonicalType().getTypePtr();
3311       if (RTy->isFloat16Type() || RTy->isHalfType()) {
3312         // 16-bit floating-point types are passed in a 32-bit integer or float,
3313         // with unspecified upper bits.
3314         RV = EmitCMSEClearFP16(RV);
3315       } else {
3316         // Small struct/union types are passed as integers.
3317         auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3318         if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3319           RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3320       }
3321     }
3322     EmitReturnValueCheck(RV);
3323     Ret = Builder.CreateRet(RV);
3324   } else {
3325     Ret = Builder.CreateRetVoid();
3326   }
3327 
3328   if (RetDbgLoc)
3329     Ret->setDebugLoc(std::move(RetDbgLoc));
3330 }
3331 
3332 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3333   // A current decl may not be available when emitting vtable thunks.
3334   if (!CurCodeDecl)
3335     return;
3336 
3337   // If the return block isn't reachable, neither is this check, so don't emit
3338   // it.
3339   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3340     return;
3341 
3342   ReturnsNonNullAttr *RetNNAttr = nullptr;
3343   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3344     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3345 
3346   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3347     return;
3348 
3349   // Prefer the returns_nonnull attribute if it's present.
3350   SourceLocation AttrLoc;
3351   SanitizerMask CheckKind;
3352   SanitizerHandler Handler;
3353   if (RetNNAttr) {
3354     assert(!requiresReturnValueNullabilityCheck() &&
3355            "Cannot check nullability and the nonnull attribute");
3356     AttrLoc = RetNNAttr->getLocation();
3357     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3358     Handler = SanitizerHandler::NonnullReturn;
3359   } else {
3360     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3361       if (auto *TSI = DD->getTypeSourceInfo())
3362         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3363           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3364     CheckKind = SanitizerKind::NullabilityReturn;
3365     Handler = SanitizerHandler::NullabilityReturn;
3366   }
3367 
3368   SanitizerScope SanScope(this);
3369 
3370   // Make sure the "return" source location is valid. If we're checking a
3371   // nullability annotation, make sure the preconditions for the check are met.
3372   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3373   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3374   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3375   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3376   if (requiresReturnValueNullabilityCheck())
3377     CanNullCheck =
3378         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3379   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3380   EmitBlock(Check);
3381 
3382   // Now do the null check.
3383   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3384   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3385   llvm::Value *DynamicData[] = {SLocPtr};
3386   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3387 
3388   EmitBlock(NoCheck);
3389 
3390 #ifndef NDEBUG
3391   // The return location should not be used after the check has been emitted.
3392   ReturnLocation = Address::invalid();
3393 #endif
3394 }
3395 
3396 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3397   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3398   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3399 }
3400 
3401 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3402                                           QualType Ty) {
3403   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3404   // placeholders.
3405   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3406   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3407   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3408 
3409   // FIXME: When we generate this IR in one pass, we shouldn't need
3410   // this win32-specific alignment hack.
3411   CharUnits Align = CharUnits::fromQuantity(4);
3412   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3413 
3414   return AggValueSlot::forAddr(Address(Placeholder, Align),
3415                                Ty.getQualifiers(),
3416                                AggValueSlot::IsNotDestructed,
3417                                AggValueSlot::DoesNotNeedGCBarriers,
3418                                AggValueSlot::IsNotAliased,
3419                                AggValueSlot::DoesNotOverlap);
3420 }
3421 
3422 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3423                                           const VarDecl *param,
3424                                           SourceLocation loc) {
3425   // StartFunction converted the ABI-lowered parameter(s) into a
3426   // local alloca.  We need to turn that into an r-value suitable
3427   // for EmitCall.
3428   Address local = GetAddrOfLocalVar(param);
3429 
3430   QualType type = param->getType();
3431 
3432   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3433     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3434   }
3435 
3436   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3437   // but the argument needs to be the original pointer.
3438   if (type->isReferenceType()) {
3439     args.add(RValue::get(Builder.CreateLoad(local)), type);
3440 
3441   // In ARC, move out of consumed arguments so that the release cleanup
3442   // entered by StartFunction doesn't cause an over-release.  This isn't
3443   // optimal -O0 code generation, but it should get cleaned up when
3444   // optimization is enabled.  This also assumes that delegate calls are
3445   // performed exactly once for a set of arguments, but that should be safe.
3446   } else if (getLangOpts().ObjCAutoRefCount &&
3447              param->hasAttr<NSConsumedAttr>() &&
3448              type->isObjCRetainableType()) {
3449     llvm::Value *ptr = Builder.CreateLoad(local);
3450     auto null =
3451       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3452     Builder.CreateStore(null, local);
3453     args.add(RValue::get(ptr), type);
3454 
3455   // For the most part, we just need to load the alloca, except that
3456   // aggregate r-values are actually pointers to temporaries.
3457   } else {
3458     args.add(convertTempToRValue(local, type, loc), type);
3459   }
3460 
3461   // Deactivate the cleanup for the callee-destructed param that was pushed.
3462   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3463       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3464       param->needsDestruction(getContext())) {
3465     EHScopeStack::stable_iterator cleanup =
3466         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3467     assert(cleanup.isValid() &&
3468            "cleanup for callee-destructed param not recorded");
3469     // This unreachable is a temporary marker which will be removed later.
3470     llvm::Instruction *isActive = Builder.CreateUnreachable();
3471     args.addArgCleanupDeactivation(cleanup, isActive);
3472   }
3473 }
3474 
3475 static bool isProvablyNull(llvm::Value *addr) {
3476   return isa<llvm::ConstantPointerNull>(addr);
3477 }
3478 
3479 /// Emit the actual writing-back of a writeback.
3480 static void emitWriteback(CodeGenFunction &CGF,
3481                           const CallArgList::Writeback &writeback) {
3482   const LValue &srcLV = writeback.Source;
3483   Address srcAddr = srcLV.getAddress(CGF);
3484   assert(!isProvablyNull(srcAddr.getPointer()) &&
3485          "shouldn't have writeback for provably null argument");
3486 
3487   llvm::BasicBlock *contBB = nullptr;
3488 
3489   // If the argument wasn't provably non-null, we need to null check
3490   // before doing the store.
3491   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3492                                               CGF.CGM.getDataLayout());
3493   if (!provablyNonNull) {
3494     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3495     contBB = CGF.createBasicBlock("icr.done");
3496 
3497     llvm::Value *isNull =
3498       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3499     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3500     CGF.EmitBlock(writebackBB);
3501   }
3502 
3503   // Load the value to writeback.
3504   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3505 
3506   // Cast it back, in case we're writing an id to a Foo* or something.
3507   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3508                                     "icr.writeback-cast");
3509 
3510   // Perform the writeback.
3511 
3512   // If we have a "to use" value, it's something we need to emit a use
3513   // of.  This has to be carefully threaded in: if it's done after the
3514   // release it's potentially undefined behavior (and the optimizer
3515   // will ignore it), and if it happens before the retain then the
3516   // optimizer could move the release there.
3517   if (writeback.ToUse) {
3518     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3519 
3520     // Retain the new value.  No need to block-copy here:  the block's
3521     // being passed up the stack.
3522     value = CGF.EmitARCRetainNonBlock(value);
3523 
3524     // Emit the intrinsic use here.
3525     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3526 
3527     // Load the old value (primitively).
3528     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3529 
3530     // Put the new value in place (primitively).
3531     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3532 
3533     // Release the old value.
3534     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3535 
3536   // Otherwise, we can just do a normal lvalue store.
3537   } else {
3538     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3539   }
3540 
3541   // Jump to the continuation block.
3542   if (!provablyNonNull)
3543     CGF.EmitBlock(contBB);
3544 }
3545 
3546 static void emitWritebacks(CodeGenFunction &CGF,
3547                            const CallArgList &args) {
3548   for (const auto &I : args.writebacks())
3549     emitWriteback(CGF, I);
3550 }
3551 
3552 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3553                                             const CallArgList &CallArgs) {
3554   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3555     CallArgs.getCleanupsToDeactivate();
3556   // Iterate in reverse to increase the likelihood of popping the cleanup.
3557   for (const auto &I : llvm::reverse(Cleanups)) {
3558     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3559     I.IsActiveIP->eraseFromParent();
3560   }
3561 }
3562 
3563 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3564   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3565     if (uop->getOpcode() == UO_AddrOf)
3566       return uop->getSubExpr();
3567   return nullptr;
3568 }
3569 
3570 /// Emit an argument that's being passed call-by-writeback.  That is,
3571 /// we are passing the address of an __autoreleased temporary; it
3572 /// might be copy-initialized with the current value of the given
3573 /// address, but it will definitely be copied out of after the call.
3574 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3575                              const ObjCIndirectCopyRestoreExpr *CRE) {
3576   LValue srcLV;
3577 
3578   // Make an optimistic effort to emit the address as an l-value.
3579   // This can fail if the argument expression is more complicated.
3580   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3581     srcLV = CGF.EmitLValue(lvExpr);
3582 
3583   // Otherwise, just emit it as a scalar.
3584   } else {
3585     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3586 
3587     QualType srcAddrType =
3588       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3589     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3590   }
3591   Address srcAddr = srcLV.getAddress(CGF);
3592 
3593   // The dest and src types don't necessarily match in LLVM terms
3594   // because of the crazy ObjC compatibility rules.
3595 
3596   llvm::PointerType *destType =
3597     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3598 
3599   // If the address is a constant null, just pass the appropriate null.
3600   if (isProvablyNull(srcAddr.getPointer())) {
3601     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3602              CRE->getType());
3603     return;
3604   }
3605 
3606   // Create the temporary.
3607   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3608                                       CGF.getPointerAlign(),
3609                                       "icr.temp");
3610   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3611   // and that cleanup will be conditional if we can't prove that the l-value
3612   // isn't null, so we need to register a dominating point so that the cleanups
3613   // system will make valid IR.
3614   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3615 
3616   // Zero-initialize it if we're not doing a copy-initialization.
3617   bool shouldCopy = CRE->shouldCopy();
3618   if (!shouldCopy) {
3619     llvm::Value *null =
3620       llvm::ConstantPointerNull::get(
3621         cast<llvm::PointerType>(destType->getElementType()));
3622     CGF.Builder.CreateStore(null, temp);
3623   }
3624 
3625   llvm::BasicBlock *contBB = nullptr;
3626   llvm::BasicBlock *originBB = nullptr;
3627 
3628   // If the address is *not* known to be non-null, we need to switch.
3629   llvm::Value *finalArgument;
3630 
3631   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3632                                               CGF.CGM.getDataLayout());
3633   if (provablyNonNull) {
3634     finalArgument = temp.getPointer();
3635   } else {
3636     llvm::Value *isNull =
3637       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3638 
3639     finalArgument = CGF.Builder.CreateSelect(isNull,
3640                                    llvm::ConstantPointerNull::get(destType),
3641                                              temp.getPointer(), "icr.argument");
3642 
3643     // If we need to copy, then the load has to be conditional, which
3644     // means we need control flow.
3645     if (shouldCopy) {
3646       originBB = CGF.Builder.GetInsertBlock();
3647       contBB = CGF.createBasicBlock("icr.cont");
3648       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3649       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3650       CGF.EmitBlock(copyBB);
3651       condEval.begin(CGF);
3652     }
3653   }
3654 
3655   llvm::Value *valueToUse = nullptr;
3656 
3657   // Perform a copy if necessary.
3658   if (shouldCopy) {
3659     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3660     assert(srcRV.isScalar());
3661 
3662     llvm::Value *src = srcRV.getScalarVal();
3663     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3664                                     "icr.cast");
3665 
3666     // Use an ordinary store, not a store-to-lvalue.
3667     CGF.Builder.CreateStore(src, temp);
3668 
3669     // If optimization is enabled, and the value was held in a
3670     // __strong variable, we need to tell the optimizer that this
3671     // value has to stay alive until we're doing the store back.
3672     // This is because the temporary is effectively unretained,
3673     // and so otherwise we can violate the high-level semantics.
3674     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3675         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3676       valueToUse = src;
3677     }
3678   }
3679 
3680   // Finish the control flow if we needed it.
3681   if (shouldCopy && !provablyNonNull) {
3682     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3683     CGF.EmitBlock(contBB);
3684 
3685     // Make a phi for the value to intrinsically use.
3686     if (valueToUse) {
3687       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3688                                                       "icr.to-use");
3689       phiToUse->addIncoming(valueToUse, copyBB);
3690       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3691                             originBB);
3692       valueToUse = phiToUse;
3693     }
3694 
3695     condEval.end(CGF);
3696   }
3697 
3698   args.addWriteback(srcLV, temp, valueToUse);
3699   args.add(RValue::get(finalArgument), CRE->getType());
3700 }
3701 
3702 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3703   assert(!StackBase);
3704 
3705   // Save the stack.
3706   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3707   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3708 }
3709 
3710 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3711   if (StackBase) {
3712     // Restore the stack after the call.
3713     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3714     CGF.Builder.CreateCall(F, StackBase);
3715   }
3716 }
3717 
3718 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3719                                           SourceLocation ArgLoc,
3720                                           AbstractCallee AC,
3721                                           unsigned ParmNum) {
3722   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3723                          SanOpts.has(SanitizerKind::NullabilityArg)))
3724     return;
3725 
3726   // The param decl may be missing in a variadic function.
3727   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3728   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3729 
3730   // Prefer the nonnull attribute if it's present.
3731   const NonNullAttr *NNAttr = nullptr;
3732   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3733     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3734 
3735   bool CanCheckNullability = false;
3736   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3737     auto Nullability = PVD->getType()->getNullability(getContext());
3738     CanCheckNullability = Nullability &&
3739                           *Nullability == NullabilityKind::NonNull &&
3740                           PVD->getTypeSourceInfo();
3741   }
3742 
3743   if (!NNAttr && !CanCheckNullability)
3744     return;
3745 
3746   SourceLocation AttrLoc;
3747   SanitizerMask CheckKind;
3748   SanitizerHandler Handler;
3749   if (NNAttr) {
3750     AttrLoc = NNAttr->getLocation();
3751     CheckKind = SanitizerKind::NonnullAttribute;
3752     Handler = SanitizerHandler::NonnullArg;
3753   } else {
3754     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3755     CheckKind = SanitizerKind::NullabilityArg;
3756     Handler = SanitizerHandler::NullabilityArg;
3757   }
3758 
3759   SanitizerScope SanScope(this);
3760   assert(RV.isScalar());
3761   llvm::Value *V = RV.getScalarVal();
3762   llvm::Value *Cond =
3763       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3764   llvm::Constant *StaticData[] = {
3765       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3766       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3767   };
3768   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3769 }
3770 
3771 void CodeGenFunction::EmitCallArgs(
3772     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3773     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3774     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3775   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3776 
3777   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3778   // because arguments are destroyed left to right in the callee. As a special
3779   // case, there are certain language constructs that require left-to-right
3780   // evaluation, and in those cases we consider the evaluation order requirement
3781   // to trump the "destruction order is reverse construction order" guarantee.
3782   bool LeftToRight =
3783       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3784           ? Order == EvaluationOrder::ForceLeftToRight
3785           : Order != EvaluationOrder::ForceRightToLeft;
3786 
3787   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3788                                          RValue EmittedArg) {
3789     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3790       return;
3791     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3792     if (PS == nullptr)
3793       return;
3794 
3795     const auto &Context = getContext();
3796     auto SizeTy = Context.getSizeType();
3797     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3798     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3799     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3800                                                      EmittedArg.getScalarVal(),
3801                                                      PS->isDynamic());
3802     Args.add(RValue::get(V), SizeTy);
3803     // If we're emitting args in reverse, be sure to do so with
3804     // pass_object_size, as well.
3805     if (!LeftToRight)
3806       std::swap(Args.back(), *(&Args.back() - 1));
3807   };
3808 
3809   // Insert a stack save if we're going to need any inalloca args.
3810   bool HasInAllocaArgs = false;
3811   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3812     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3813          I != E && !HasInAllocaArgs; ++I)
3814       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3815     if (HasInAllocaArgs) {
3816       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3817       Args.allocateArgumentMemory(*this);
3818     }
3819   }
3820 
3821   // Evaluate each argument in the appropriate order.
3822   size_t CallArgsStart = Args.size();
3823   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3824     unsigned Idx = LeftToRight ? I : E - I - 1;
3825     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3826     unsigned InitialArgSize = Args.size();
3827     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3828     // the argument and parameter match or the objc method is parameterized.
3829     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3830             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3831                                                 ArgTypes[Idx]) ||
3832             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3833              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3834            "Argument and parameter types don't match");
3835     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3836     // In particular, we depend on it being the last arg in Args, and the
3837     // objectsize bits depend on there only being one arg if !LeftToRight.
3838     assert(InitialArgSize + 1 == Args.size() &&
3839            "The code below depends on only adding one arg per EmitCallArg");
3840     (void)InitialArgSize;
3841     // Since pointer argument are never emitted as LValue, it is safe to emit
3842     // non-null argument check for r-value only.
3843     if (!Args.back().hasLValue()) {
3844       RValue RVArg = Args.back().getKnownRValue();
3845       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3846                           ParamsToSkip + Idx);
3847       // @llvm.objectsize should never have side-effects and shouldn't need
3848       // destruction/cleanups, so we can safely "emit" it after its arg,
3849       // regardless of right-to-leftness
3850       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3851     }
3852   }
3853 
3854   if (!LeftToRight) {
3855     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3856     // IR function.
3857     std::reverse(Args.begin() + CallArgsStart, Args.end());
3858   }
3859 }
3860 
3861 namespace {
3862 
3863 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3864   DestroyUnpassedArg(Address Addr, QualType Ty)
3865       : Addr(Addr), Ty(Ty) {}
3866 
3867   Address Addr;
3868   QualType Ty;
3869 
3870   void Emit(CodeGenFunction &CGF, Flags flags) override {
3871     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3872     if (DtorKind == QualType::DK_cxx_destructor) {
3873       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3874       assert(!Dtor->isTrivial());
3875       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3876                                 /*Delegating=*/false, Addr, Ty);
3877     } else {
3878       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3879     }
3880   }
3881 };
3882 
3883 struct DisableDebugLocationUpdates {
3884   CodeGenFunction &CGF;
3885   bool disabledDebugInfo;
3886   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3887     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3888       CGF.disableDebugInfo();
3889   }
3890   ~DisableDebugLocationUpdates() {
3891     if (disabledDebugInfo)
3892       CGF.enableDebugInfo();
3893   }
3894 };
3895 
3896 } // end anonymous namespace
3897 
3898 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3899   if (!HasLV)
3900     return RV;
3901   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3902   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3903                         LV.isVolatile());
3904   IsUsed = true;
3905   return RValue::getAggregate(Copy.getAddress(CGF));
3906 }
3907 
3908 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3909   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3910   if (!HasLV && RV.isScalar())
3911     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
3912   else if (!HasLV && RV.isComplex())
3913     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3914   else {
3915     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
3916     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3917     // We assume that call args are never copied into subobjects.
3918     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3919                           HasLV ? LV.isVolatileQualified()
3920                                 : RV.isVolatileQualified());
3921   }
3922   IsUsed = true;
3923 }
3924 
3925 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3926                                   QualType type) {
3927   DisableDebugLocationUpdates Dis(*this, E);
3928   if (const ObjCIndirectCopyRestoreExpr *CRE
3929         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3930     assert(getLangOpts().ObjCAutoRefCount);
3931     return emitWritebackArg(*this, args, CRE);
3932   }
3933 
3934   assert(type->isReferenceType() == E->isGLValue() &&
3935          "reference binding to unmaterialized r-value!");
3936 
3937   if (E->isGLValue()) {
3938     assert(E->getObjectKind() == OK_Ordinary);
3939     return args.add(EmitReferenceBindingToExpr(E), type);
3940   }
3941 
3942   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3943 
3944   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3945   // However, we still have to push an EH-only cleanup in case we unwind before
3946   // we make it to the call.
3947   if (HasAggregateEvalKind &&
3948       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3949     // If we're using inalloca, use the argument memory.  Otherwise, use a
3950     // temporary.
3951     AggValueSlot Slot;
3952     if (args.isUsingInAlloca())
3953       Slot = createPlaceholderSlot(*this, type);
3954     else
3955       Slot = CreateAggTemp(type, "agg.tmp");
3956 
3957     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3958     if (const auto *RD = type->getAsCXXRecordDecl())
3959       DestroyedInCallee = RD->hasNonTrivialDestructor();
3960     else
3961       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3962 
3963     if (DestroyedInCallee)
3964       Slot.setExternallyDestructed();
3965 
3966     EmitAggExpr(E, Slot);
3967     RValue RV = Slot.asRValue();
3968     args.add(RV, type);
3969 
3970     if (DestroyedInCallee && NeedsEHCleanup) {
3971       // Create a no-op GEP between the placeholder and the cleanup so we can
3972       // RAUW it successfully.  It also serves as a marker of the first
3973       // instruction where the cleanup is active.
3974       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3975                                               type);
3976       // This unreachable is a temporary marker which will be removed later.
3977       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3978       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3979     }
3980     return;
3981   }
3982 
3983   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3984       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3985     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3986     assert(L.isSimple());
3987     args.addUncopiedAggregate(L, type);
3988     return;
3989   }
3990 
3991   args.add(EmitAnyExprToTemp(E), type);
3992 }
3993 
3994 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3995   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3996   // implicitly widens null pointer constants that are arguments to varargs
3997   // functions to pointer-sized ints.
3998   if (!getTarget().getTriple().isOSWindows())
3999     return Arg->getType();
4000 
4001   if (Arg->getType()->isIntegerType() &&
4002       getContext().getTypeSize(Arg->getType()) <
4003           getContext().getTargetInfo().getPointerWidth(0) &&
4004       Arg->isNullPointerConstant(getContext(),
4005                                  Expr::NPC_ValueDependentIsNotNull)) {
4006     return getContext().getIntPtrType();
4007   }
4008 
4009   return Arg->getType();
4010 }
4011 
4012 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4013 // optimizer it can aggressively ignore unwind edges.
4014 void
4015 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4016   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4017       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4018     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4019                       CGM.getNoObjCARCExceptionsMetadata());
4020 }
4021 
4022 /// Emits a call to the given no-arguments nounwind runtime function.
4023 llvm::CallInst *
4024 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4025                                          const llvm::Twine &name) {
4026   return EmitNounwindRuntimeCall(callee, None, name);
4027 }
4028 
4029 /// Emits a call to the given nounwind runtime function.
4030 llvm::CallInst *
4031 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4032                                          ArrayRef<llvm::Value *> args,
4033                                          const llvm::Twine &name) {
4034   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4035   call->setDoesNotThrow();
4036   return call;
4037 }
4038 
4039 /// Emits a simple call (never an invoke) to the given no-arguments
4040 /// runtime function.
4041 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4042                                                  const llvm::Twine &name) {
4043   return EmitRuntimeCall(callee, None, name);
4044 }
4045 
4046 // Calls which may throw must have operand bundles indicating which funclet
4047 // they are nested within.
4048 SmallVector<llvm::OperandBundleDef, 1>
4049 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4050   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4051   // There is no need for a funclet operand bundle if we aren't inside a
4052   // funclet.
4053   if (!CurrentFuncletPad)
4054     return BundleList;
4055 
4056   // Skip intrinsics which cannot throw.
4057   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4058   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4059     return BundleList;
4060 
4061   BundleList.emplace_back("funclet", CurrentFuncletPad);
4062   return BundleList;
4063 }
4064 
4065 /// Emits a simple call (never an invoke) to the given runtime function.
4066 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4067                                                  ArrayRef<llvm::Value *> args,
4068                                                  const llvm::Twine &name) {
4069   llvm::CallInst *call = Builder.CreateCall(
4070       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4071   call->setCallingConv(getRuntimeCC());
4072   return call;
4073 }
4074 
4075 /// Emits a call or invoke to the given noreturn runtime function.
4076 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4077     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4078   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4079       getBundlesForFunclet(callee.getCallee());
4080 
4081   if (getInvokeDest()) {
4082     llvm::InvokeInst *invoke =
4083       Builder.CreateInvoke(callee,
4084                            getUnreachableBlock(),
4085                            getInvokeDest(),
4086                            args,
4087                            BundleList);
4088     invoke->setDoesNotReturn();
4089     invoke->setCallingConv(getRuntimeCC());
4090   } else {
4091     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4092     call->setDoesNotReturn();
4093     call->setCallingConv(getRuntimeCC());
4094     Builder.CreateUnreachable();
4095   }
4096 }
4097 
4098 /// Emits a call or invoke instruction to the given nullary runtime function.
4099 llvm::CallBase *
4100 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4101                                          const Twine &name) {
4102   return EmitRuntimeCallOrInvoke(callee, None, name);
4103 }
4104 
4105 /// Emits a call or invoke instruction to the given runtime function.
4106 llvm::CallBase *
4107 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4108                                          ArrayRef<llvm::Value *> args,
4109                                          const Twine &name) {
4110   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4111   call->setCallingConv(getRuntimeCC());
4112   return call;
4113 }
4114 
4115 /// Emits a call or invoke instruction to the given function, depending
4116 /// on the current state of the EH stack.
4117 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4118                                                   ArrayRef<llvm::Value *> Args,
4119                                                   const Twine &Name) {
4120   llvm::BasicBlock *InvokeDest = getInvokeDest();
4121   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4122       getBundlesForFunclet(Callee.getCallee());
4123 
4124   llvm::CallBase *Inst;
4125   if (!InvokeDest)
4126     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4127   else {
4128     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4129     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4130                                 Name);
4131     EmitBlock(ContBB);
4132   }
4133 
4134   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4135   // optimizer it can aggressively ignore unwind edges.
4136   if (CGM.getLangOpts().ObjCAutoRefCount)
4137     AddObjCARCExceptionMetadata(Inst);
4138 
4139   return Inst;
4140 }
4141 
4142 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4143                                                   llvm::Value *New) {
4144   DeferredReplacements.push_back(std::make_pair(Old, New));
4145 }
4146 
4147 namespace {
4148 
4149 /// Specify given \p NewAlign as the alignment of return value attribute. If
4150 /// such attribute already exists, re-set it to the maximal one of two options.
4151 LLVM_NODISCARD llvm::AttributeList
4152 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4153                                 const llvm::AttributeList &Attrs,
4154                                 llvm::Align NewAlign) {
4155   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4156   if (CurAlign >= NewAlign)
4157     return Attrs;
4158   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4159   return Attrs
4160       .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex,
4161                        llvm::Attribute::AttrKind::Alignment)
4162       .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr);
4163 }
4164 
4165 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4166 protected:
4167   CodeGenFunction &CGF;
4168 
4169   /// We do nothing if this is, or becomes, nullptr.
4170   const AlignedAttrTy *AA = nullptr;
4171 
4172   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4173   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4174 
4175   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4176       : CGF(CGF_) {
4177     if (!FuncDecl)
4178       return;
4179     AA = FuncDecl->getAttr<AlignedAttrTy>();
4180   }
4181 
4182 public:
4183   /// If we can, materialize the alignment as an attribute on return value.
4184   LLVM_NODISCARD llvm::AttributeList
4185   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4186     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4187       return Attrs;
4188     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4189     if (!AlignmentCI)
4190       return Attrs;
4191     // We may legitimately have non-power-of-2 alignment here.
4192     // If so, this is UB land, emit it via `@llvm.assume` instead.
4193     if (!AlignmentCI->getValue().isPowerOf2())
4194       return Attrs;
4195     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4196         CGF.getLLVMContext(), Attrs,
4197         llvm::Align(
4198             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4199     AA = nullptr; // We're done. Disallow doing anything else.
4200     return NewAttrs;
4201   }
4202 
4203   /// Emit alignment assumption.
4204   /// This is a general fallback that we take if either there is an offset,
4205   /// or the alignment is variable or we are sanitizing for alignment.
4206   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4207     if (!AA)
4208       return;
4209     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4210                                 AA->getLocation(), Alignment, OffsetCI);
4211     AA = nullptr; // We're done. Disallow doing anything else.
4212   }
4213 };
4214 
4215 /// Helper data structure to emit `AssumeAlignedAttr`.
4216 class AssumeAlignedAttrEmitter final
4217     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4218 public:
4219   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4220       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4221     if (!AA)
4222       return;
4223     // It is guaranteed that the alignment/offset are constants.
4224     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4225     if (Expr *Offset = AA->getOffset()) {
4226       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4227       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4228         OffsetCI = nullptr;
4229     }
4230   }
4231 };
4232 
4233 /// Helper data structure to emit `AllocAlignAttr`.
4234 class AllocAlignAttrEmitter final
4235     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4236 public:
4237   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4238                         const CallArgList &CallArgs)
4239       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4240     if (!AA)
4241       return;
4242     // Alignment may or may not be a constant, and that is okay.
4243     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4244                     .getRValue(CGF)
4245                     .getScalarVal();
4246   }
4247 };
4248 
4249 } // namespace
4250 
4251 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4252                                  const CGCallee &Callee,
4253                                  ReturnValueSlot ReturnValue,
4254                                  const CallArgList &CallArgs,
4255                                  llvm::CallBase **callOrInvoke,
4256                                  SourceLocation Loc) {
4257   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4258 
4259   assert(Callee.isOrdinary() || Callee.isVirtual());
4260 
4261   // Handle struct-return functions by passing a pointer to the
4262   // location that we would like to return into.
4263   QualType RetTy = CallInfo.getReturnType();
4264   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4265 
4266   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4267 
4268   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4269   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
4270     // We can only guarantee that a function is called from the correct
4271     // context/function based on the appropriate target attributes,
4272     // so only check in the case where we have both always_inline and target
4273     // since otherwise we could be making a conditional call after a check for
4274     // the proper cpu features (and it won't cause code generation issues due to
4275     // function based code generation).
4276     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4277         TargetDecl->hasAttr<TargetAttr>())
4278       checkTargetFeatures(Loc, FD);
4279 
4280 #ifndef NDEBUG
4281   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4282     // For an inalloca varargs function, we don't expect CallInfo to match the
4283     // function pointer's type, because the inalloca struct a will have extra
4284     // fields in it for the varargs parameters.  Code later in this function
4285     // bitcasts the function pointer to the type derived from CallInfo.
4286     //
4287     // In other cases, we assert that the types match up (until pointers stop
4288     // having pointee types).
4289     llvm::Type *TypeFromVal;
4290     if (Callee.isVirtual())
4291       TypeFromVal = Callee.getVirtualFunctionType();
4292     else
4293       TypeFromVal =
4294           Callee.getFunctionPointer()->getType()->getPointerElementType();
4295     assert(IRFuncTy == TypeFromVal);
4296   }
4297 #endif
4298 
4299   // 1. Set up the arguments.
4300 
4301   // If we're using inalloca, insert the allocation after the stack save.
4302   // FIXME: Do this earlier rather than hacking it in here!
4303   Address ArgMemory = Address::invalid();
4304   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4305     const llvm::DataLayout &DL = CGM.getDataLayout();
4306     llvm::Instruction *IP = CallArgs.getStackBase();
4307     llvm::AllocaInst *AI;
4308     if (IP) {
4309       IP = IP->getNextNode();
4310       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4311                                 "argmem", IP);
4312     } else {
4313       AI = CreateTempAlloca(ArgStruct, "argmem");
4314     }
4315     auto Align = CallInfo.getArgStructAlignment();
4316     AI->setAlignment(Align.getAsAlign());
4317     AI->setUsedWithInAlloca(true);
4318     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4319     ArgMemory = Address(AI, Align);
4320   }
4321 
4322   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4323   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4324 
4325   // If the call returns a temporary with struct return, create a temporary
4326   // alloca to hold the result, unless one is given to us.
4327   Address SRetPtr = Address::invalid();
4328   Address SRetAlloca = Address::invalid();
4329   llvm::Value *UnusedReturnSizePtr = nullptr;
4330   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4331     if (!ReturnValue.isNull()) {
4332       SRetPtr = ReturnValue.getValue();
4333     } else {
4334       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4335       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4336         uint64_t size =
4337             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4338         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4339       }
4340     }
4341     if (IRFunctionArgs.hasSRetArg()) {
4342       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4343     } else if (RetAI.isInAlloca()) {
4344       Address Addr =
4345           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4346       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4347     }
4348   }
4349 
4350   Address swiftErrorTemp = Address::invalid();
4351   Address swiftErrorArg = Address::invalid();
4352 
4353   // When passing arguments using temporary allocas, we need to add the
4354   // appropriate lifetime markers. This vector keeps track of all the lifetime
4355   // markers that need to be ended right after the call.
4356   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4357 
4358   // Translate all of the arguments as necessary to match the IR lowering.
4359   assert(CallInfo.arg_size() == CallArgs.size() &&
4360          "Mismatch between function signature & arguments.");
4361   unsigned ArgNo = 0;
4362   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4363   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4364        I != E; ++I, ++info_it, ++ArgNo) {
4365     const ABIArgInfo &ArgInfo = info_it->info;
4366 
4367     // Insert a padding argument to ensure proper alignment.
4368     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4369       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4370           llvm::UndefValue::get(ArgInfo.getPaddingType());
4371 
4372     unsigned FirstIRArg, NumIRArgs;
4373     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4374 
4375     switch (ArgInfo.getKind()) {
4376     case ABIArgInfo::InAlloca: {
4377       assert(NumIRArgs == 0);
4378       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4379       if (I->isAggregate()) {
4380         Address Addr = I->hasLValue()
4381                            ? I->getKnownLValue().getAddress(*this)
4382                            : I->getKnownRValue().getAggregateAddress();
4383         llvm::Instruction *Placeholder =
4384             cast<llvm::Instruction>(Addr.getPointer());
4385 
4386         if (!ArgInfo.getInAllocaIndirect()) {
4387           // Replace the placeholder with the appropriate argument slot GEP.
4388           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4389           Builder.SetInsertPoint(Placeholder);
4390           Addr = Builder.CreateStructGEP(ArgMemory,
4391                                          ArgInfo.getInAllocaFieldIndex());
4392           Builder.restoreIP(IP);
4393         } else {
4394           // For indirect things such as overaligned structs, replace the
4395           // placeholder with a regular aggregate temporary alloca. Store the
4396           // address of this alloca into the struct.
4397           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4398           Address ArgSlot = Builder.CreateStructGEP(
4399               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4400           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4401         }
4402         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4403       } else if (ArgInfo.getInAllocaIndirect()) {
4404         // Make a temporary alloca and store the address of it into the argument
4405         // struct.
4406         Address Addr = CreateMemTempWithoutCast(
4407             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4408             "indirect-arg-temp");
4409         I->copyInto(*this, Addr);
4410         Address ArgSlot =
4411             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4412         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4413       } else {
4414         // Store the RValue into the argument struct.
4415         Address Addr =
4416             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4417         unsigned AS = Addr.getType()->getPointerAddressSpace();
4418         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4419         // There are some cases where a trivial bitcast is not avoidable.  The
4420         // definition of a type later in a translation unit may change it's type
4421         // from {}* to (%struct.foo*)*.
4422         if (Addr.getType() != MemType)
4423           Addr = Builder.CreateBitCast(Addr, MemType);
4424         I->copyInto(*this, Addr);
4425       }
4426       break;
4427     }
4428 
4429     case ABIArgInfo::Indirect: {
4430       assert(NumIRArgs == 1);
4431       if (!I->isAggregate()) {
4432         // Make a temporary alloca to pass the argument.
4433         Address Addr = CreateMemTempWithoutCast(
4434             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4435         IRCallArgs[FirstIRArg] = Addr.getPointer();
4436 
4437         I->copyInto(*this, Addr);
4438       } else {
4439         // We want to avoid creating an unnecessary temporary+copy here;
4440         // however, we need one in three cases:
4441         // 1. If the argument is not byval, and we are required to copy the
4442         //    source.  (This case doesn't occur on any common architecture.)
4443         // 2. If the argument is byval, RV is not sufficiently aligned, and
4444         //    we cannot force it to be sufficiently aligned.
4445         // 3. If the argument is byval, but RV is not located in default
4446         //    or alloca address space.
4447         Address Addr = I->hasLValue()
4448                            ? I->getKnownLValue().getAddress(*this)
4449                            : I->getKnownRValue().getAggregateAddress();
4450         llvm::Value *V = Addr.getPointer();
4451         CharUnits Align = ArgInfo.getIndirectAlign();
4452         const llvm::DataLayout *TD = &CGM.getDataLayout();
4453 
4454         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4455                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4456                     TD->getAllocaAddrSpace()) &&
4457                "indirect argument must be in alloca address space");
4458 
4459         bool NeedCopy = false;
4460 
4461         if (Addr.getAlignment() < Align &&
4462             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4463                 Align.getAsAlign()) {
4464           NeedCopy = true;
4465         } else if (I->hasLValue()) {
4466           auto LV = I->getKnownLValue();
4467           auto AS = LV.getAddressSpace();
4468 
4469           if (!ArgInfo.getIndirectByVal() ||
4470               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4471             NeedCopy = true;
4472           }
4473           if (!getLangOpts().OpenCL) {
4474             if ((ArgInfo.getIndirectByVal() &&
4475                 (AS != LangAS::Default &&
4476                  AS != CGM.getASTAllocaAddressSpace()))) {
4477               NeedCopy = true;
4478             }
4479           }
4480           // For OpenCL even if RV is located in default or alloca address space
4481           // we don't want to perform address space cast for it.
4482           else if ((ArgInfo.getIndirectByVal() &&
4483                     Addr.getType()->getAddressSpace() != IRFuncTy->
4484                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4485             NeedCopy = true;
4486           }
4487         }
4488 
4489         if (NeedCopy) {
4490           // Create an aligned temporary, and copy to it.
4491           Address AI = CreateMemTempWithoutCast(
4492               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4493           IRCallArgs[FirstIRArg] = AI.getPointer();
4494 
4495           // Emit lifetime markers for the temporary alloca.
4496           uint64_t ByvalTempElementSize =
4497               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4498           llvm::Value *LifetimeSize =
4499               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4500 
4501           // Add cleanup code to emit the end lifetime marker after the call.
4502           if (LifetimeSize) // In case we disabled lifetime markers.
4503             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4504 
4505           // Generate the copy.
4506           I->copyInto(*this, AI);
4507         } else {
4508           // Skip the extra memcpy call.
4509           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4510               CGM.getDataLayout().getAllocaAddrSpace());
4511           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4512               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4513               true);
4514         }
4515       }
4516       break;
4517     }
4518 
4519     case ABIArgInfo::Ignore:
4520       assert(NumIRArgs == 0);
4521       break;
4522 
4523     case ABIArgInfo::Extend:
4524     case ABIArgInfo::Direct: {
4525       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4526           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4527           ArgInfo.getDirectOffset() == 0) {
4528         assert(NumIRArgs == 1);
4529         llvm::Value *V;
4530         if (!I->isAggregate())
4531           V = I->getKnownRValue().getScalarVal();
4532         else
4533           V = Builder.CreateLoad(
4534               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4535                              : I->getKnownRValue().getAggregateAddress());
4536 
4537         // Implement swifterror by copying into a new swifterror argument.
4538         // We'll write back in the normal path out of the call.
4539         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4540               == ParameterABI::SwiftErrorResult) {
4541           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4542 
4543           QualType pointeeTy = I->Ty->getPointeeType();
4544           swiftErrorArg =
4545             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4546 
4547           swiftErrorTemp =
4548             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4549           V = swiftErrorTemp.getPointer();
4550           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4551 
4552           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4553           Builder.CreateStore(errorValue, swiftErrorTemp);
4554         }
4555 
4556         // We might have to widen integers, but we should never truncate.
4557         if (ArgInfo.getCoerceToType() != V->getType() &&
4558             V->getType()->isIntegerTy())
4559           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4560 
4561         // If the argument doesn't match, perform a bitcast to coerce it.  This
4562         // can happen due to trivial type mismatches.
4563         if (FirstIRArg < IRFuncTy->getNumParams() &&
4564             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4565           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4566 
4567         IRCallArgs[FirstIRArg] = V;
4568         break;
4569       }
4570 
4571       // FIXME: Avoid the conversion through memory if possible.
4572       Address Src = Address::invalid();
4573       if (!I->isAggregate()) {
4574         Src = CreateMemTemp(I->Ty, "coerce");
4575         I->copyInto(*this, Src);
4576       } else {
4577         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4578                              : I->getKnownRValue().getAggregateAddress();
4579       }
4580 
4581       // If the value is offset in memory, apply the offset now.
4582       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4583 
4584       // Fast-isel and the optimizer generally like scalar values better than
4585       // FCAs, so we flatten them if this is safe to do for this argument.
4586       llvm::StructType *STy =
4587             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4588       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4589         llvm::Type *SrcTy = Src.getElementType();
4590         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4591         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4592 
4593         // If the source type is smaller than the destination type of the
4594         // coerce-to logic, copy the source value into a temp alloca the size
4595         // of the destination type to allow loading all of it. The bits past
4596         // the source value are left undef.
4597         if (SrcSize < DstSize) {
4598           Address TempAlloca
4599             = CreateTempAlloca(STy, Src.getAlignment(),
4600                                Src.getName() + ".coerce");
4601           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4602           Src = TempAlloca;
4603         } else {
4604           Src = Builder.CreateBitCast(Src,
4605                                       STy->getPointerTo(Src.getAddressSpace()));
4606         }
4607 
4608         assert(NumIRArgs == STy->getNumElements());
4609         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4610           Address EltPtr = Builder.CreateStructGEP(Src, i);
4611           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4612           IRCallArgs[FirstIRArg + i] = LI;
4613         }
4614       } else {
4615         // In the simple case, just pass the coerced loaded value.
4616         assert(NumIRArgs == 1);
4617         llvm::Value *Load =
4618             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4619 
4620         if (CallInfo.isCmseNSCall()) {
4621           // For certain parameter types, clear padding bits, as they may reveal
4622           // sensitive information.
4623           const Type *PTy = I->Ty.getCanonicalType().getTypePtr();
4624           // 16-bit floating-point types are passed in a 32-bit integer or
4625           // float, with unspecified upper bits.
4626           if (PTy->isFloat16Type() || PTy->isHalfType()) {
4627             Load = EmitCMSEClearFP16(Load);
4628           } else {
4629             // Small struct/union types are passed as integer arrays.
4630             auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
4631             if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
4632               Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
4633           }
4634         }
4635         IRCallArgs[FirstIRArg] = Load;
4636       }
4637 
4638       break;
4639     }
4640 
4641     case ABIArgInfo::CoerceAndExpand: {
4642       auto coercionType = ArgInfo.getCoerceAndExpandType();
4643       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4644 
4645       llvm::Value *tempSize = nullptr;
4646       Address addr = Address::invalid();
4647       Address AllocaAddr = Address::invalid();
4648       if (I->isAggregate()) {
4649         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4650                               : I->getKnownRValue().getAggregateAddress();
4651 
4652       } else {
4653         RValue RV = I->getKnownRValue();
4654         assert(RV.isScalar()); // complex should always just be direct
4655 
4656         llvm::Type *scalarType = RV.getScalarVal()->getType();
4657         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4658         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4659 
4660         // Materialize to a temporary.
4661         addr = CreateTempAlloca(
4662             RV.getScalarVal()->getType(),
4663             CharUnits::fromQuantity(std::max(
4664                 (unsigned)layout->getAlignment().value(), scalarAlign)),
4665             "tmp",
4666             /*ArraySize=*/nullptr, &AllocaAddr);
4667         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4668 
4669         Builder.CreateStore(RV.getScalarVal(), addr);
4670       }
4671 
4672       addr = Builder.CreateElementBitCast(addr, coercionType);
4673 
4674       unsigned IRArgPos = FirstIRArg;
4675       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4676         llvm::Type *eltType = coercionType->getElementType(i);
4677         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4678         Address eltAddr = Builder.CreateStructGEP(addr, i);
4679         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4680         IRCallArgs[IRArgPos++] = elt;
4681       }
4682       assert(IRArgPos == FirstIRArg + NumIRArgs);
4683 
4684       if (tempSize) {
4685         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4686       }
4687 
4688       break;
4689     }
4690 
4691     case ABIArgInfo::Expand:
4692       unsigned IRArgPos = FirstIRArg;
4693       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4694       assert(IRArgPos == FirstIRArg + NumIRArgs);
4695       break;
4696     }
4697   }
4698 
4699   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4700   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4701 
4702   // If we're using inalloca, set up that argument.
4703   if (ArgMemory.isValid()) {
4704     llvm::Value *Arg = ArgMemory.getPointer();
4705     if (CallInfo.isVariadic()) {
4706       // When passing non-POD arguments by value to variadic functions, we will
4707       // end up with a variadic prototype and an inalloca call site.  In such
4708       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4709       // the callee.
4710       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4711       CalleePtr =
4712           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4713     } else {
4714       llvm::Type *LastParamTy =
4715           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4716       if (Arg->getType() != LastParamTy) {
4717 #ifndef NDEBUG
4718         // Assert that these structs have equivalent element types.
4719         llvm::StructType *FullTy = CallInfo.getArgStruct();
4720         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4721             cast<llvm::PointerType>(LastParamTy)->getElementType());
4722         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4723         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4724                                                 DE = DeclaredTy->element_end(),
4725                                                 FI = FullTy->element_begin();
4726              DI != DE; ++DI, ++FI)
4727           assert(*DI == *FI);
4728 #endif
4729         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4730       }
4731     }
4732     assert(IRFunctionArgs.hasInallocaArg());
4733     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4734   }
4735 
4736   // 2. Prepare the function pointer.
4737 
4738   // If the callee is a bitcast of a non-variadic function to have a
4739   // variadic function pointer type, check to see if we can remove the
4740   // bitcast.  This comes up with unprototyped functions.
4741   //
4742   // This makes the IR nicer, but more importantly it ensures that we
4743   // can inline the function at -O0 if it is marked always_inline.
4744   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4745                                    llvm::Value *Ptr) -> llvm::Function * {
4746     if (!CalleeFT->isVarArg())
4747       return nullptr;
4748 
4749     // Get underlying value if it's a bitcast
4750     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4751       if (CE->getOpcode() == llvm::Instruction::BitCast)
4752         Ptr = CE->getOperand(0);
4753     }
4754 
4755     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4756     if (!OrigFn)
4757       return nullptr;
4758 
4759     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4760 
4761     // If the original type is variadic, or if any of the component types
4762     // disagree, we cannot remove the cast.
4763     if (OrigFT->isVarArg() ||
4764         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4765         OrigFT->getReturnType() != CalleeFT->getReturnType())
4766       return nullptr;
4767 
4768     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4769       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4770         return nullptr;
4771 
4772     return OrigFn;
4773   };
4774 
4775   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4776     CalleePtr = OrigFn;
4777     IRFuncTy = OrigFn->getFunctionType();
4778   }
4779 
4780   // 3. Perform the actual call.
4781 
4782   // Deactivate any cleanups that we're supposed to do immediately before
4783   // the call.
4784   if (!CallArgs.getCleanupsToDeactivate().empty())
4785     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4786 
4787   // Assert that the arguments we computed match up.  The IR verifier
4788   // will catch this, but this is a common enough source of problems
4789   // during IRGen changes that it's way better for debugging to catch
4790   // it ourselves here.
4791 #ifndef NDEBUG
4792   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4793   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4794     // Inalloca argument can have different type.
4795     if (IRFunctionArgs.hasInallocaArg() &&
4796         i == IRFunctionArgs.getInallocaArgNo())
4797       continue;
4798     if (i < IRFuncTy->getNumParams())
4799       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4800   }
4801 #endif
4802 
4803   // Update the largest vector width if any arguments have vector types.
4804   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4805     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4806       LargestVectorWidth =
4807           std::max((uint64_t)LargestVectorWidth,
4808                    VT->getPrimitiveSizeInBits().getKnownMinSize());
4809   }
4810 
4811   // Compute the calling convention and attributes.
4812   unsigned CallingConv;
4813   llvm::AttributeList Attrs;
4814   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4815                              Callee.getAbstractInfo(), Attrs, CallingConv,
4816                              /*AttrOnCallSite=*/true);
4817 
4818   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4819     if (FD->usesFPIntrin())
4820       // All calls within a strictfp function are marked strictfp
4821       Attrs =
4822         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4823                            llvm::Attribute::StrictFP);
4824 
4825   // Apply some call-site-specific attributes.
4826   // TODO: work this into building the attribute set.
4827 
4828   // Apply always_inline to all calls within flatten functions.
4829   // FIXME: should this really take priority over __try, below?
4830   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4831       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
4832     Attrs =
4833         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4834                            llvm::Attribute::AlwaysInline);
4835   }
4836 
4837   // Disable inlining inside SEH __try blocks.
4838   if (isSEHTryScope()) {
4839     Attrs =
4840         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4841                            llvm::Attribute::NoInline);
4842   }
4843 
4844   // Decide whether to use a call or an invoke.
4845   bool CannotThrow;
4846   if (currentFunctionUsesSEHTry()) {
4847     // SEH cares about asynchronous exceptions, so everything can "throw."
4848     CannotThrow = false;
4849   } else if (isCleanupPadScope() &&
4850              EHPersonality::get(*this).isMSVCXXPersonality()) {
4851     // The MSVC++ personality will implicitly terminate the program if an
4852     // exception is thrown during a cleanup outside of a try/catch.
4853     // We don't need to model anything in IR to get this behavior.
4854     CannotThrow = true;
4855   } else {
4856     // Otherwise, nounwind call sites will never throw.
4857     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4858                                      llvm::Attribute::NoUnwind);
4859   }
4860 
4861   // If we made a temporary, be sure to clean up after ourselves. Note that we
4862   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4863   // pop this cleanup later on. Being eager about this is OK, since this
4864   // temporary is 'invisible' outside of the callee.
4865   if (UnusedReturnSizePtr)
4866     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4867                                          UnusedReturnSizePtr);
4868 
4869   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4870 
4871   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4872       getBundlesForFunclet(CalleePtr);
4873 
4874   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4875     if (FD->usesFPIntrin())
4876       // All calls within a strictfp function are marked strictfp
4877       Attrs =
4878         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4879                            llvm::Attribute::StrictFP);
4880 
4881   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
4882   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4883 
4884   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
4885   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4886 
4887   // Emit the actual call/invoke instruction.
4888   llvm::CallBase *CI;
4889   if (!InvokeDest) {
4890     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
4891   } else {
4892     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4893     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
4894                               BundleList);
4895     EmitBlock(Cont);
4896   }
4897   if (callOrInvoke)
4898     *callOrInvoke = CI;
4899 
4900   // If this is within a function that has the guard(nocf) attribute and is an
4901   // indirect call, add the "guard_nocf" attribute to this call to indicate that
4902   // Control Flow Guard checks should not be added, even if the call is inlined.
4903   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
4904     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
4905       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
4906         Attrs = Attrs.addAttribute(
4907             getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
4908     }
4909   }
4910 
4911   // Apply the attributes and calling convention.
4912   CI->setAttributes(Attrs);
4913   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4914 
4915   // Apply various metadata.
4916 
4917   if (!CI->getType()->isVoidTy())
4918     CI->setName("call");
4919 
4920   // Update largest vector width from the return type.
4921   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4922     LargestVectorWidth =
4923         std::max((uint64_t)LargestVectorWidth,
4924                  VT->getPrimitiveSizeInBits().getKnownMinSize());
4925 
4926   // Insert instrumentation or attach profile metadata at indirect call sites.
4927   // For more details, see the comment before the definition of
4928   // IPVK_IndirectCallTarget in InstrProfData.inc.
4929   if (!CI->getCalledFunction())
4930     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4931                      CI, CalleePtr);
4932 
4933   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4934   // optimizer it can aggressively ignore unwind edges.
4935   if (CGM.getLangOpts().ObjCAutoRefCount)
4936     AddObjCARCExceptionMetadata(CI);
4937 
4938   // Suppress tail calls if requested.
4939   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4940     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4941       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4942   }
4943 
4944   // Add metadata for calls to MSAllocator functions
4945   if (getDebugInfo() && TargetDecl &&
4946       TargetDecl->hasAttr<MSAllocatorAttr>())
4947     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy, Loc);
4948 
4949   // 4. Finish the call.
4950 
4951   // If the call doesn't return, finish the basic block and clear the
4952   // insertion point; this allows the rest of IRGen to discard
4953   // unreachable code.
4954   if (CI->doesNotReturn()) {
4955     if (UnusedReturnSizePtr)
4956       PopCleanupBlock();
4957 
4958     // Strip away the noreturn attribute to better diagnose unreachable UB.
4959     if (SanOpts.has(SanitizerKind::Unreachable)) {
4960       // Also remove from function since CallBase::hasFnAttr additionally checks
4961       // attributes of the called function.
4962       if (auto *F = CI->getCalledFunction())
4963         F->removeFnAttr(llvm::Attribute::NoReturn);
4964       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
4965                           llvm::Attribute::NoReturn);
4966 
4967       // Avoid incompatibility with ASan which relies on the `noreturn`
4968       // attribute to insert handler calls.
4969       if (SanOpts.hasOneOf(SanitizerKind::Address |
4970                            SanitizerKind::KernelAddress)) {
4971         SanitizerScope SanScope(this);
4972         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
4973         Builder.SetInsertPoint(CI);
4974         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
4975         llvm::FunctionCallee Fn =
4976             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
4977         EmitNounwindRuntimeCall(Fn);
4978       }
4979     }
4980 
4981     EmitUnreachable(Loc);
4982     Builder.ClearInsertionPoint();
4983 
4984     // FIXME: For now, emit a dummy basic block because expr emitters in
4985     // generally are not ready to handle emitting expressions at unreachable
4986     // points.
4987     EnsureInsertPoint();
4988 
4989     // Return a reasonable RValue.
4990     return GetUndefRValue(RetTy);
4991   }
4992 
4993   // Perform the swifterror writeback.
4994   if (swiftErrorTemp.isValid()) {
4995     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4996     Builder.CreateStore(errorResult, swiftErrorArg);
4997   }
4998 
4999   // Emit any call-associated writebacks immediately.  Arguably this
5000   // should happen after any return-value munging.
5001   if (CallArgs.hasWritebacks())
5002     emitWritebacks(*this, CallArgs);
5003 
5004   // The stack cleanup for inalloca arguments has to run out of the normal
5005   // lexical order, so deactivate it and run it manually here.
5006   CallArgs.freeArgumentMemory(*this);
5007 
5008   // Extract the return value.
5009   RValue Ret = [&] {
5010     switch (RetAI.getKind()) {
5011     case ABIArgInfo::CoerceAndExpand: {
5012       auto coercionType = RetAI.getCoerceAndExpandType();
5013 
5014       Address addr = SRetPtr;
5015       addr = Builder.CreateElementBitCast(addr, coercionType);
5016 
5017       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5018       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5019 
5020       unsigned unpaddedIndex = 0;
5021       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5022         llvm::Type *eltType = coercionType->getElementType(i);
5023         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5024         Address eltAddr = Builder.CreateStructGEP(addr, i);
5025         llvm::Value *elt = CI;
5026         if (requiresExtract)
5027           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5028         else
5029           assert(unpaddedIndex == 0);
5030         Builder.CreateStore(elt, eltAddr);
5031       }
5032       // FALLTHROUGH
5033       LLVM_FALLTHROUGH;
5034     }
5035 
5036     case ABIArgInfo::InAlloca:
5037     case ABIArgInfo::Indirect: {
5038       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5039       if (UnusedReturnSizePtr)
5040         PopCleanupBlock();
5041       return ret;
5042     }
5043 
5044     case ABIArgInfo::Ignore:
5045       // If we are ignoring an argument that had a result, make sure to
5046       // construct the appropriate return value for our caller.
5047       return GetUndefRValue(RetTy);
5048 
5049     case ABIArgInfo::Extend:
5050     case ABIArgInfo::Direct: {
5051       llvm::Type *RetIRTy = ConvertType(RetTy);
5052       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5053         switch (getEvaluationKind(RetTy)) {
5054         case TEK_Complex: {
5055           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5056           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5057           return RValue::getComplex(std::make_pair(Real, Imag));
5058         }
5059         case TEK_Aggregate: {
5060           Address DestPtr = ReturnValue.getValue();
5061           bool DestIsVolatile = ReturnValue.isVolatile();
5062 
5063           if (!DestPtr.isValid()) {
5064             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5065             DestIsVolatile = false;
5066           }
5067           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
5068           return RValue::getAggregate(DestPtr);
5069         }
5070         case TEK_Scalar: {
5071           // If the argument doesn't match, perform a bitcast to coerce it.  This
5072           // can happen due to trivial type mismatches.
5073           llvm::Value *V = CI;
5074           if (V->getType() != RetIRTy)
5075             V = Builder.CreateBitCast(V, RetIRTy);
5076           return RValue::get(V);
5077         }
5078         }
5079         llvm_unreachable("bad evaluation kind");
5080       }
5081 
5082       Address DestPtr = ReturnValue.getValue();
5083       bool DestIsVolatile = ReturnValue.isVolatile();
5084 
5085       if (!DestPtr.isValid()) {
5086         DestPtr = CreateMemTemp(RetTy, "coerce");
5087         DestIsVolatile = false;
5088       }
5089 
5090       // If the value is offset in memory, apply the offset now.
5091       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5092       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5093 
5094       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5095     }
5096 
5097     case ABIArgInfo::Expand:
5098       llvm_unreachable("Invalid ABI kind for return argument");
5099     }
5100 
5101     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5102   } ();
5103 
5104   // Emit the assume_aligned check on the return value.
5105   if (Ret.isScalar() && TargetDecl) {
5106     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5107     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5108   }
5109 
5110   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5111   // we can't use the full cleanup mechanism.
5112   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5113     LifetimeEnd.Emit(*this, /*Flags=*/{});
5114 
5115   if (!ReturnValue.isExternallyDestructed() &&
5116       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5117     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5118                 RetTy);
5119 
5120   return Ret;
5121 }
5122 
5123 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5124   if (isVirtual()) {
5125     const CallExpr *CE = getVirtualCallExpr();
5126     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5127         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5128         CE ? CE->getBeginLoc() : SourceLocation());
5129   }
5130 
5131   return *this;
5132 }
5133 
5134 /* VarArg handling */
5135 
5136 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5137   VAListAddr = VE->isMicrosoftABI()
5138                  ? EmitMSVAListRef(VE->getSubExpr())
5139                  : EmitVAListRef(VE->getSubExpr());
5140   QualType Ty = VE->getType();
5141   if (VE->isMicrosoftABI())
5142     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5143   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5144 }
5145