1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/InlineAsm.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/Transforms/Utils/Local.h"
34 using namespace clang;
35 using namespace CodeGen;
36 
37 /***/
38 
39 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
40   switch (CC) {
41   default: return llvm::CallingConv::C;
42   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
43   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
44   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
45   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
46   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
47   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
48   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
49   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
50   // TODO: add support for CC_X86Pascal to llvm
51   }
52 }
53 
54 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
55 /// qualification.
56 /// FIXME: address space qualification?
57 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
58   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
59   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
60 }
61 
62 /// Returns the canonical formal type of the given C++ method.
63 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
64   return MD->getType()->getCanonicalTypeUnqualified()
65            .getAs<FunctionProtoType>();
66 }
67 
68 /// Returns the "extra-canonicalized" return type, which discards
69 /// qualifiers on the return type.  Codegen doesn't care about them,
70 /// and it makes ABI code a little easier to be able to assume that
71 /// all parameter and return types are top-level unqualified.
72 static CanQualType GetReturnType(QualType RetTy) {
73   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
74 }
75 
76 /// Arrange the argument and result information for a value of the given
77 /// unprototyped freestanding function type.
78 const CGFunctionInfo &
79 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
80   // When translating an unprototyped function type, always use a
81   // variadic type.
82   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
83                                  false, None, FTNP->getExtInfo(),
84                                  RequiredArgs(0));
85 }
86 
87 /// Arrange the LLVM function layout for a value of the given function
88 /// type, on top of any implicit parameters already stored.  Use the
89 /// given ExtInfo instead of the ExtInfo from the function type.
90 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
91                                                      bool IsInstanceMethod,
92                                        SmallVectorImpl<CanQualType> &prefix,
93                                              CanQual<FunctionProtoType> FTP,
94                                               FunctionType::ExtInfo extInfo) {
95   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
96   // FIXME: Kill copy.
97   for (unsigned i = 0, e = FTP->getNumParams(); i != e; ++i)
98     prefix.push_back(FTP->getParamType(i));
99   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
100   return CGT.arrangeLLVMFunctionInfo(resultType, IsInstanceMethod, prefix,
101                                      extInfo, required);
102 }
103 
104 /// Arrange the argument and result information for a free function (i.e.
105 /// not a C++ or ObjC instance method) of the given type.
106 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
107                                       SmallVectorImpl<CanQualType> &prefix,
108                                             CanQual<FunctionProtoType> FTP) {
109   return arrangeLLVMFunctionInfo(CGT, false, prefix, FTP, FTP->getExtInfo());
110 }
111 
112 /// Arrange the argument and result information for a free function (i.e.
113 /// not a C++ or ObjC instance method) of the given type.
114 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
115                                       SmallVectorImpl<CanQualType> &prefix,
116                                             CanQual<FunctionProtoType> FTP) {
117   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
118   return arrangeLLVMFunctionInfo(CGT, true, prefix, FTP, extInfo);
119 }
120 
121 /// Arrange the argument and result information for a value of the
122 /// given freestanding function type.
123 const CGFunctionInfo &
124 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
125   SmallVector<CanQualType, 16> argTypes;
126   return ::arrangeFreeFunctionType(*this, argTypes, FTP);
127 }
128 
129 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
130   // Set the appropriate calling convention for the Function.
131   if (D->hasAttr<StdCallAttr>())
132     return CC_X86StdCall;
133 
134   if (D->hasAttr<FastCallAttr>())
135     return CC_X86FastCall;
136 
137   if (D->hasAttr<ThisCallAttr>())
138     return CC_X86ThisCall;
139 
140   if (D->hasAttr<PascalAttr>())
141     return CC_X86Pascal;
142 
143   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
144     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
145 
146   if (D->hasAttr<PnaclCallAttr>())
147     return CC_PnaclCall;
148 
149   if (D->hasAttr<IntelOclBiccAttr>())
150     return CC_IntelOclBicc;
151 
152   if (D->hasAttr<MSABIAttr>())
153     return IsWindows ? CC_C : CC_X86_64Win64;
154 
155   if (D->hasAttr<SysVABIAttr>())
156     return IsWindows ? CC_X86_64SysV : CC_C;
157 
158   return CC_C;
159 }
160 
161 static bool isAAPCSVFP(const CGFunctionInfo &FI, const TargetInfo &Target) {
162   switch (FI.getEffectiveCallingConvention()) {
163   case llvm::CallingConv::C:
164     switch (Target.getTriple().getEnvironment()) {
165     case llvm::Triple::EABIHF:
166     case llvm::Triple::GNUEABIHF:
167       return true;
168     default:
169       return false;
170     }
171   case llvm::CallingConv::ARM_AAPCS_VFP:
172     return true;
173   default:
174     return false;
175   }
176 }
177 
178 /// Arrange the argument and result information for a call to an
179 /// unknown C++ non-static member function of the given abstract type.
180 /// (Zero value of RD means we don't have any meaningful "this" argument type,
181 ///  so fall back to a generic pointer type).
182 /// The member function must be an ordinary function, i.e. not a
183 /// constructor or destructor.
184 const CGFunctionInfo &
185 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
186                                    const FunctionProtoType *FTP) {
187   SmallVector<CanQualType, 16> argTypes;
188 
189   // Add the 'this' pointer.
190   if (RD)
191     argTypes.push_back(GetThisType(Context, RD));
192   else
193     argTypes.push_back(Context.VoidPtrTy);
194 
195   return ::arrangeCXXMethodType(*this, argTypes,
196               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
197 }
198 
199 /// Arrange the argument and result information for a declaration or
200 /// definition of the given C++ non-static member function.  The
201 /// member function must be an ordinary function, i.e. not a
202 /// constructor or destructor.
203 const CGFunctionInfo &
204 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
205   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
206   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
207 
208   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
209 
210   if (MD->isInstance()) {
211     // The abstract case is perfectly fine.
212     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
213     return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
214   }
215 
216   return arrangeFreeFunctionType(prototype);
217 }
218 
219 /// Arrange the argument and result information for a declaration
220 /// or definition to the given constructor variant.
221 const CGFunctionInfo &
222 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
223                                                CXXCtorType ctorKind) {
224   SmallVector<CanQualType, 16> argTypes;
225   argTypes.push_back(GetThisType(Context, D->getParent()));
226 
227   GlobalDecl GD(D, ctorKind);
228   CanQualType resultType =
229     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
230 
231   CanQual<FunctionProtoType> FTP = GetFormalType(D);
232 
233   // Add the formal parameters.
234   for (unsigned i = 0, e = FTP->getNumParams(); i != e; ++i)
235     argTypes.push_back(FTP->getParamType(i));
236 
237   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
238 
239   RequiredArgs required =
240       (D->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
241 
242   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
243   return arrangeLLVMFunctionInfo(resultType, true, argTypes, extInfo, required);
244 }
245 
246 /// Arrange a call to a C++ method, passing the given arguments.
247 const CGFunctionInfo &
248 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
249                                         const CXXConstructorDecl *D,
250                                         CXXCtorType CtorKind,
251                                         unsigned ExtraArgs) {
252   // FIXME: Kill copy.
253   SmallVector<CanQualType, 16> ArgTypes;
254   for (CallArgList::const_iterator i = args.begin(), e = args.end(); i != e;
255        ++i)
256     ArgTypes.push_back(Context.getCanonicalParamType(i->Ty));
257 
258   CanQual<FunctionProtoType> FPT = GetFormalType(D);
259   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
260   GlobalDecl GD(D, CtorKind);
261   CanQualType ResultType =
262       TheCXXABI.HasThisReturn(GD) ? ArgTypes.front() : Context.VoidTy;
263 
264   FunctionType::ExtInfo Info = FPT->getExtInfo();
265   return arrangeLLVMFunctionInfo(ResultType, true, ArgTypes, Info, Required);
266 }
267 
268 /// Arrange the argument and result information for a declaration,
269 /// definition, or call to the given destructor variant.  It so
270 /// happens that all three cases produce the same information.
271 const CGFunctionInfo &
272 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
273                                    CXXDtorType dtorKind) {
274   SmallVector<CanQualType, 2> argTypes;
275   argTypes.push_back(GetThisType(Context, D->getParent()));
276 
277   GlobalDecl GD(D, dtorKind);
278   CanQualType resultType =
279     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
280 
281   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
282 
283   CanQual<FunctionProtoType> FTP = GetFormalType(D);
284   assert(FTP->getNumParams() == 0 && "dtor with formal parameters");
285   assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
286 
287   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
288   return arrangeLLVMFunctionInfo(resultType, true, argTypes, extInfo,
289                                  RequiredArgs::All);
290 }
291 
292 /// Arrange the argument and result information for the declaration or
293 /// definition of the given function.
294 const CGFunctionInfo &
295 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
296   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
297     if (MD->isInstance())
298       return arrangeCXXMethodDeclaration(MD);
299 
300   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
301 
302   assert(isa<FunctionType>(FTy));
303 
304   // When declaring a function without a prototype, always use a
305   // non-variadic type.
306   if (isa<FunctionNoProtoType>(FTy)) {
307     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
308     return arrangeLLVMFunctionInfo(noProto->getReturnType(), false, None,
309                                    noProto->getExtInfo(), RequiredArgs::All);
310   }
311 
312   assert(isa<FunctionProtoType>(FTy));
313   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
314 }
315 
316 /// Arrange the argument and result information for the declaration or
317 /// definition of an Objective-C method.
318 const CGFunctionInfo &
319 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
320   // It happens that this is the same as a call with no optional
321   // arguments, except also using the formal 'self' type.
322   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
323 }
324 
325 /// Arrange the argument and result information for the function type
326 /// through which to perform a send to the given Objective-C method,
327 /// using the given receiver type.  The receiver type is not always
328 /// the 'self' type of the method or even an Objective-C pointer type.
329 /// This is *not* the right method for actually performing such a
330 /// message send, due to the possibility of optional arguments.
331 const CGFunctionInfo &
332 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
333                                               QualType receiverType) {
334   SmallVector<CanQualType, 16> argTys;
335   argTys.push_back(Context.getCanonicalParamType(receiverType));
336   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
337   // FIXME: Kill copy?
338   for (const auto *I : MD->params()) {
339     argTys.push_back(Context.getCanonicalParamType(I->getType()));
340   }
341 
342   FunctionType::ExtInfo einfo;
343   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
344   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
345 
346   if (getContext().getLangOpts().ObjCAutoRefCount &&
347       MD->hasAttr<NSReturnsRetainedAttr>())
348     einfo = einfo.withProducesResult(true);
349 
350   RequiredArgs required =
351     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
352 
353   return arrangeLLVMFunctionInfo(GetReturnType(MD->getReturnType()), false,
354                                  argTys, einfo, required);
355 }
356 
357 const CGFunctionInfo &
358 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
359   // FIXME: Do we need to handle ObjCMethodDecl?
360   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
361 
362   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
363     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
364 
365   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
366     return arrangeCXXDestructor(DD, GD.getDtorType());
367 
368   return arrangeFunctionDeclaration(FD);
369 }
370 
371 /// Arrange a call as unto a free function, except possibly with an
372 /// additional number of formal parameters considered required.
373 static const CGFunctionInfo &
374 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
375                             CodeGenModule &CGM,
376                             const CallArgList &args,
377                             const FunctionType *fnType,
378                             unsigned numExtraRequiredArgs) {
379   assert(args.size() >= numExtraRequiredArgs);
380 
381   // In most cases, there are no optional arguments.
382   RequiredArgs required = RequiredArgs::All;
383 
384   // If we have a variadic prototype, the required arguments are the
385   // extra prefix plus the arguments in the prototype.
386   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
387     if (proto->isVariadic())
388       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
389 
390   // If we don't have a prototype at all, but we're supposed to
391   // explicitly use the variadic convention for unprototyped calls,
392   // treat all of the arguments as required but preserve the nominal
393   // possibility of variadics.
394   } else if (CGM.getTargetCodeGenInfo()
395                 .isNoProtoCallVariadic(args,
396                                        cast<FunctionNoProtoType>(fnType))) {
397     required = RequiredArgs(args.size());
398   }
399 
400   return CGT.arrangeFreeFunctionCall(fnType->getReturnType(), args,
401                                      fnType->getExtInfo(), required);
402 }
403 
404 /// Figure out the rules for calling a function with the given formal
405 /// type using the given arguments.  The arguments are necessary
406 /// because the function might be unprototyped, in which case it's
407 /// target-dependent in crazy ways.
408 const CGFunctionInfo &
409 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
410                                       const FunctionType *fnType) {
411   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 0);
412 }
413 
414 /// A block function call is essentially a free-function call with an
415 /// extra implicit argument.
416 const CGFunctionInfo &
417 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
418                                        const FunctionType *fnType) {
419   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1);
420 }
421 
422 const CGFunctionInfo &
423 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
424                                       const CallArgList &args,
425                                       FunctionType::ExtInfo info,
426                                       RequiredArgs required) {
427   // FIXME: Kill copy.
428   SmallVector<CanQualType, 16> argTypes;
429   for (CallArgList::const_iterator i = args.begin(), e = args.end();
430        i != e; ++i)
431     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
432   return arrangeLLVMFunctionInfo(GetReturnType(resultType), false, argTypes,
433                                  info, required);
434 }
435 
436 /// Arrange a call to a C++ method, passing the given arguments.
437 const CGFunctionInfo &
438 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
439                                    const FunctionProtoType *FPT,
440                                    RequiredArgs required) {
441   // FIXME: Kill copy.
442   SmallVector<CanQualType, 16> argTypes;
443   for (CallArgList::const_iterator i = args.begin(), e = args.end();
444        i != e; ++i)
445     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
446 
447   FunctionType::ExtInfo info = FPT->getExtInfo();
448   return arrangeLLVMFunctionInfo(GetReturnType(FPT->getReturnType()), true,
449                                  argTypes, info, required);
450 }
451 
452 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
453     QualType resultType, const FunctionArgList &args,
454     const FunctionType::ExtInfo &info, bool isVariadic) {
455   // FIXME: Kill copy.
456   SmallVector<CanQualType, 16> argTypes;
457   for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
458        i != e; ++i)
459     argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
460 
461   RequiredArgs required =
462     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
463   return arrangeLLVMFunctionInfo(GetReturnType(resultType), false, argTypes, info,
464                                  required);
465 }
466 
467 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
468   return arrangeLLVMFunctionInfo(getContext().VoidTy, false, None,
469                                  FunctionType::ExtInfo(), RequiredArgs::All);
470 }
471 
472 /// Arrange the argument and result information for an abstract value
473 /// of a given function type.  This is the method which all of the
474 /// above functions ultimately defer to.
475 const CGFunctionInfo &
476 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
477                                       bool IsInstanceMethod,
478                                       ArrayRef<CanQualType> argTypes,
479                                       FunctionType::ExtInfo info,
480                                       RequiredArgs required) {
481 #ifndef NDEBUG
482   for (ArrayRef<CanQualType>::const_iterator
483          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
484     assert(I->isCanonicalAsParam());
485 #endif
486 
487   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
488 
489   // Lookup or create unique function info.
490   llvm::FoldingSetNodeID ID;
491   CGFunctionInfo::Profile(ID, IsInstanceMethod, info, required, resultType,
492                           argTypes);
493 
494   void *insertPos = nullptr;
495   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
496   if (FI)
497     return *FI;
498 
499   // Construct the function info.  We co-allocate the ArgInfos.
500   FI = CGFunctionInfo::create(CC, IsInstanceMethod, info, resultType, argTypes,
501                               required);
502   FunctionInfos.InsertNode(FI, insertPos);
503 
504   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
505   assert(inserted && "Recursively being processed?");
506 
507   // Compute ABI information.
508   getABIInfo().computeInfo(*FI);
509 
510   // Loop over all of the computed argument and return value info.  If any of
511   // them are direct or extend without a specified coerce type, specify the
512   // default now.
513   ABIArgInfo &retInfo = FI->getReturnInfo();
514   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
515     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
516 
517   for (auto &I : FI->arguments())
518     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
519       I.info.setCoerceToType(ConvertType(I.type));
520 
521   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
522   assert(erased && "Not in set?");
523 
524   return *FI;
525 }
526 
527 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
528                                        bool IsInstanceMethod,
529                                        const FunctionType::ExtInfo &info,
530                                        CanQualType resultType,
531                                        ArrayRef<CanQualType> argTypes,
532                                        RequiredArgs required) {
533   void *buffer = operator new(sizeof(CGFunctionInfo) +
534                               sizeof(ArgInfo) * (argTypes.size() + 1));
535   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
536   FI->CallingConvention = llvmCC;
537   FI->EffectiveCallingConvention = llvmCC;
538   FI->ASTCallingConvention = info.getCC();
539   FI->InstanceMethod = IsInstanceMethod;
540   FI->NoReturn = info.getNoReturn();
541   FI->ReturnsRetained = info.getProducesResult();
542   FI->Required = required;
543   FI->HasRegParm = info.getHasRegParm();
544   FI->RegParm = info.getRegParm();
545   FI->ArgStruct = nullptr;
546   FI->NumArgs = argTypes.size();
547   FI->getArgsBuffer()[0].type = resultType;
548   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
549     FI->getArgsBuffer()[i + 1].type = argTypes[i];
550   return FI;
551 }
552 
553 /***/
554 
555 void CodeGenTypes::GetExpandedTypes(QualType type,
556                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
557   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
558     uint64_t NumElts = AT->getSize().getZExtValue();
559     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
560       GetExpandedTypes(AT->getElementType(), expandedTypes);
561   } else if (const RecordType *RT = type->getAs<RecordType>()) {
562     const RecordDecl *RD = RT->getDecl();
563     assert(!RD->hasFlexibleArrayMember() &&
564            "Cannot expand structure with flexible array.");
565     if (RD->isUnion()) {
566       // Unions can be here only in degenerative cases - all the fields are same
567       // after flattening. Thus we have to use the "largest" field.
568       const FieldDecl *LargestFD = nullptr;
569       CharUnits UnionSize = CharUnits::Zero();
570 
571       for (const auto *FD : RD->fields()) {
572         assert(!FD->isBitField() &&
573                "Cannot expand structure with bit-field members.");
574         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
575         if (UnionSize < FieldSize) {
576           UnionSize = FieldSize;
577           LargestFD = FD;
578         }
579       }
580       if (LargestFD)
581         GetExpandedTypes(LargestFD->getType(), expandedTypes);
582     } else {
583       for (const auto *I : RD->fields()) {
584         assert(!I->isBitField() &&
585                "Cannot expand structure with bit-field members.");
586         GetExpandedTypes(I->getType(), expandedTypes);
587       }
588     }
589   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
590     llvm::Type *EltTy = ConvertType(CT->getElementType());
591     expandedTypes.push_back(EltTy);
592     expandedTypes.push_back(EltTy);
593   } else
594     expandedTypes.push_back(ConvertType(type));
595 }
596 
597 llvm::Function::arg_iterator
598 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
599                                     llvm::Function::arg_iterator AI) {
600   assert(LV.isSimple() &&
601          "Unexpected non-simple lvalue during struct expansion.");
602 
603   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
604     unsigned NumElts = AT->getSize().getZExtValue();
605     QualType EltTy = AT->getElementType();
606     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
607       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
608       LValue LV = MakeAddrLValue(EltAddr, EltTy);
609       AI = ExpandTypeFromArgs(EltTy, LV, AI);
610     }
611   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
612     RecordDecl *RD = RT->getDecl();
613     if (RD->isUnion()) {
614       // Unions can be here only in degenerative cases - all the fields are same
615       // after flattening. Thus we have to use the "largest" field.
616       const FieldDecl *LargestFD = nullptr;
617       CharUnits UnionSize = CharUnits::Zero();
618 
619       for (const auto *FD : RD->fields()) {
620         assert(!FD->isBitField() &&
621                "Cannot expand structure with bit-field members.");
622         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
623         if (UnionSize < FieldSize) {
624           UnionSize = FieldSize;
625           LargestFD = FD;
626         }
627       }
628       if (LargestFD) {
629         // FIXME: What are the right qualifiers here?
630         LValue SubLV = EmitLValueForField(LV, LargestFD);
631         AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
632       }
633     } else {
634       for (const auto *FD : RD->fields()) {
635         QualType FT = FD->getType();
636 
637         // FIXME: What are the right qualifiers here?
638         LValue SubLV = EmitLValueForField(LV, FD);
639         AI = ExpandTypeFromArgs(FT, SubLV, AI);
640       }
641     }
642   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
643     QualType EltTy = CT->getElementType();
644     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
645     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
646     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
647     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
648   } else {
649     EmitStoreThroughLValue(RValue::get(AI), LV);
650     ++AI;
651   }
652 
653   return AI;
654 }
655 
656 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
657 /// accessing some number of bytes out of it, try to gep into the struct to get
658 /// at its inner goodness.  Dive as deep as possible without entering an element
659 /// with an in-memory size smaller than DstSize.
660 static llvm::Value *
661 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
662                                    llvm::StructType *SrcSTy,
663                                    uint64_t DstSize, CodeGenFunction &CGF) {
664   // We can't dive into a zero-element struct.
665   if (SrcSTy->getNumElements() == 0) return SrcPtr;
666 
667   llvm::Type *FirstElt = SrcSTy->getElementType(0);
668 
669   // If the first elt is at least as large as what we're looking for, or if the
670   // first element is the same size as the whole struct, we can enter it.
671   uint64_t FirstEltSize =
672     CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
673   if (FirstEltSize < DstSize &&
674       FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
675     return SrcPtr;
676 
677   // GEP into the first element.
678   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
679 
680   // If the first element is a struct, recurse.
681   llvm::Type *SrcTy =
682     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
683   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
684     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
685 
686   return SrcPtr;
687 }
688 
689 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
690 /// are either integers or pointers.  This does a truncation of the value if it
691 /// is too large or a zero extension if it is too small.
692 ///
693 /// This behaves as if the value were coerced through memory, so on big-endian
694 /// targets the high bits are preserved in a truncation, while little-endian
695 /// targets preserve the low bits.
696 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
697                                              llvm::Type *Ty,
698                                              CodeGenFunction &CGF) {
699   if (Val->getType() == Ty)
700     return Val;
701 
702   if (isa<llvm::PointerType>(Val->getType())) {
703     // If this is Pointer->Pointer avoid conversion to and from int.
704     if (isa<llvm::PointerType>(Ty))
705       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
706 
707     // Convert the pointer to an integer so we can play with its width.
708     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
709   }
710 
711   llvm::Type *DestIntTy = Ty;
712   if (isa<llvm::PointerType>(DestIntTy))
713     DestIntTy = CGF.IntPtrTy;
714 
715   if (Val->getType() != DestIntTy) {
716     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
717     if (DL.isBigEndian()) {
718       // Preserve the high bits on big-endian targets.
719       // That is what memory coercion does.
720       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
721       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
722 
723       if (SrcSize > DstSize) {
724         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
725         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
726       } else {
727         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
728         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
729       }
730     } else {
731       // Little-endian targets preserve the low bits. No shifts required.
732       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
733     }
734   }
735 
736   if (isa<llvm::PointerType>(Ty))
737     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
738   return Val;
739 }
740 
741 
742 
743 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
744 /// a pointer to an object of type \arg Ty.
745 ///
746 /// This safely handles the case when the src type is smaller than the
747 /// destination type; in this situation the values of bits which not
748 /// present in the src are undefined.
749 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
750                                       llvm::Type *Ty,
751                                       CodeGenFunction &CGF) {
752   llvm::Type *SrcTy =
753     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
754 
755   // If SrcTy and Ty are the same, just do a load.
756   if (SrcTy == Ty)
757     return CGF.Builder.CreateLoad(SrcPtr);
758 
759   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
760 
761   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
762     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
763     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
764   }
765 
766   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
767 
768   // If the source and destination are integer or pointer types, just do an
769   // extension or truncation to the desired type.
770   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
771       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
772     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
773     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
774   }
775 
776   // If load is legal, just bitcast the src pointer.
777   if (SrcSize >= DstSize) {
778     // Generally SrcSize is never greater than DstSize, since this means we are
779     // losing bits. However, this can happen in cases where the structure has
780     // additional padding, for example due to a user specified alignment.
781     //
782     // FIXME: Assert that we aren't truncating non-padding bits when have access
783     // to that information.
784     llvm::Value *Casted =
785       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
786     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
787     // FIXME: Use better alignment / avoid requiring aligned load.
788     Load->setAlignment(1);
789     return Load;
790   }
791 
792   // Otherwise do coercion through memory. This is stupid, but
793   // simple.
794   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
795   llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
796   llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
797   llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
798   // FIXME: Use better alignment.
799   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
800       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
801       1, false);
802   return CGF.Builder.CreateLoad(Tmp);
803 }
804 
805 // Function to store a first-class aggregate into memory.  We prefer to
806 // store the elements rather than the aggregate to be more friendly to
807 // fast-isel.
808 // FIXME: Do we need to recurse here?
809 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
810                           llvm::Value *DestPtr, bool DestIsVolatile,
811                           bool LowAlignment) {
812   // Prefer scalar stores to first-class aggregate stores.
813   if (llvm::StructType *STy =
814         dyn_cast<llvm::StructType>(Val->getType())) {
815     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
816       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
817       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
818       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
819                                                     DestIsVolatile);
820       if (LowAlignment)
821         SI->setAlignment(1);
822     }
823   } else {
824     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
825     if (LowAlignment)
826       SI->setAlignment(1);
827   }
828 }
829 
830 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
831 /// where the source and destination may have different types.
832 ///
833 /// This safely handles the case when the src type is larger than the
834 /// destination type; the upper bits of the src will be lost.
835 static void CreateCoercedStore(llvm::Value *Src,
836                                llvm::Value *DstPtr,
837                                bool DstIsVolatile,
838                                CodeGenFunction &CGF) {
839   llvm::Type *SrcTy = Src->getType();
840   llvm::Type *DstTy =
841     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
842   if (SrcTy == DstTy) {
843     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
844     return;
845   }
846 
847   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
848 
849   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
850     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
851     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
852   }
853 
854   // If the source and destination are integer or pointer types, just do an
855   // extension or truncation to the desired type.
856   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
857       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
858     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
859     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
860     return;
861   }
862 
863   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
864 
865   // If store is legal, just bitcast the src pointer.
866   if (SrcSize <= DstSize) {
867     llvm::Value *Casted =
868       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
869     // FIXME: Use better alignment / avoid requiring aligned store.
870     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
871   } else {
872     // Otherwise do coercion through memory. This is stupid, but
873     // simple.
874 
875     // Generally SrcSize is never greater than DstSize, since this means we are
876     // losing bits. However, this can happen in cases where the structure has
877     // additional padding, for example due to a user specified alignment.
878     //
879     // FIXME: Assert that we aren't truncating non-padding bits when have access
880     // to that information.
881     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
882     CGF.Builder.CreateStore(Src, Tmp);
883     llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
884     llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
885     llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
886     // FIXME: Use better alignment.
887     CGF.Builder.CreateMemCpy(DstCasted, Casted,
888         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
889         1, false);
890   }
891 }
892 
893 /***/
894 
895 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
896   return FI.getReturnInfo().isIndirect();
897 }
898 
899 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
900   return ReturnTypeUsesSRet(FI) &&
901          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
902 }
903 
904 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
905   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
906     switch (BT->getKind()) {
907     default:
908       return false;
909     case BuiltinType::Float:
910       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
911     case BuiltinType::Double:
912       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
913     case BuiltinType::LongDouble:
914       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
915     }
916   }
917 
918   return false;
919 }
920 
921 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
922   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
923     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
924       if (BT->getKind() == BuiltinType::LongDouble)
925         return getTarget().useObjCFP2RetForComplexLongDouble();
926     }
927   }
928 
929   return false;
930 }
931 
932 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
933   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
934   return GetFunctionType(FI);
935 }
936 
937 llvm::FunctionType *
938 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
939 
940   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
941   assert(Inserted && "Recursively being processed?");
942 
943   bool SwapThisWithSRet = false;
944   SmallVector<llvm::Type*, 8> argTypes;
945   llvm::Type *resultType = nullptr;
946 
947   const ABIArgInfo &retAI = FI.getReturnInfo();
948   switch (retAI.getKind()) {
949   case ABIArgInfo::Expand:
950     llvm_unreachable("Invalid ABI kind for return argument");
951 
952   case ABIArgInfo::Extend:
953   case ABIArgInfo::Direct:
954     resultType = retAI.getCoerceToType();
955     break;
956 
957   case ABIArgInfo::InAlloca:
958     if (retAI.getInAllocaSRet()) {
959       // sret things on win32 aren't void, they return the sret pointer.
960       QualType ret = FI.getReturnType();
961       llvm::Type *ty = ConvertType(ret);
962       unsigned addressSpace = Context.getTargetAddressSpace(ret);
963       resultType = llvm::PointerType::get(ty, addressSpace);
964     } else {
965       resultType = llvm::Type::getVoidTy(getLLVMContext());
966     }
967     break;
968 
969   case ABIArgInfo::Indirect: {
970     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
971     resultType = llvm::Type::getVoidTy(getLLVMContext());
972 
973     QualType ret = FI.getReturnType();
974     llvm::Type *ty = ConvertType(ret);
975     unsigned addressSpace = Context.getTargetAddressSpace(ret);
976     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
977 
978     SwapThisWithSRet = retAI.isSRetAfterThis();
979     break;
980   }
981 
982   case ABIArgInfo::Ignore:
983     resultType = llvm::Type::getVoidTy(getLLVMContext());
984     break;
985   }
986 
987   // Add in all of the required arguments.
988   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
989   if (FI.isVariadic()) {
990     ie = it + FI.getRequiredArgs().getNumRequiredArgs();
991   } else {
992     ie = FI.arg_end();
993   }
994   for (; it != ie; ++it) {
995     const ABIArgInfo &argAI = it->info;
996 
997     // Insert a padding type to ensure proper alignment.
998     if (llvm::Type *PaddingType = argAI.getPaddingType())
999       argTypes.push_back(PaddingType);
1000 
1001     switch (argAI.getKind()) {
1002     case ABIArgInfo::Ignore:
1003     case ABIArgInfo::InAlloca:
1004       break;
1005 
1006     case ABIArgInfo::Indirect: {
1007       // indirect arguments are always on the stack, which is addr space #0.
1008       llvm::Type *LTy = ConvertTypeForMem(it->type);
1009       argTypes.push_back(LTy->getPointerTo());
1010       break;
1011     }
1012 
1013     case ABIArgInfo::Extend:
1014     case ABIArgInfo::Direct: {
1015       // If the coerce-to type is a first class aggregate, flatten it.  Either
1016       // way is semantically identical, but fast-isel and the optimizer
1017       // generally likes scalar values better than FCAs.
1018       // We cannot do this for functions using the AAPCS calling convention,
1019       // as structures are treated differently by that calling convention.
1020       llvm::Type *argType = argAI.getCoerceToType();
1021       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1022       if (st && !isAAPCSVFP(FI, getTarget())) {
1023         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1024           argTypes.push_back(st->getElementType(i));
1025       } else {
1026         argTypes.push_back(argType);
1027       }
1028       break;
1029     }
1030 
1031     case ABIArgInfo::Expand:
1032       GetExpandedTypes(it->type, argTypes);
1033       break;
1034     }
1035   }
1036 
1037   // Add the inalloca struct as the last parameter type.
1038   if (llvm::StructType *ArgStruct = FI.getArgStruct())
1039     argTypes.push_back(ArgStruct->getPointerTo());
1040 
1041   if (SwapThisWithSRet)
1042     std::swap(argTypes[0], argTypes[1]);
1043 
1044   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1045   assert(Erased && "Not in set?");
1046 
1047   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
1048 }
1049 
1050 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1051   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1052   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1053 
1054   if (!isFuncTypeConvertible(FPT))
1055     return llvm::StructType::get(getLLVMContext());
1056 
1057   const CGFunctionInfo *Info;
1058   if (isa<CXXDestructorDecl>(MD))
1059     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
1060   else
1061     Info = &arrangeCXXMethodDeclaration(MD);
1062   return GetFunctionType(*Info);
1063 }
1064 
1065 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1066                                            const Decl *TargetDecl,
1067                                            AttributeListType &PAL,
1068                                            unsigned &CallingConv,
1069                                            bool AttrOnCallSite) {
1070   llvm::AttrBuilder FuncAttrs;
1071   llvm::AttrBuilder RetAttrs;
1072 
1073   CallingConv = FI.getEffectiveCallingConvention();
1074 
1075   if (FI.isNoReturn())
1076     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1077 
1078   // FIXME: handle sseregparm someday...
1079   if (TargetDecl) {
1080     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1081       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1082     if (TargetDecl->hasAttr<NoThrowAttr>())
1083       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1084     if (TargetDecl->hasAttr<NoReturnAttr>())
1085       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1086     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1087       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1088 
1089     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1090       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1091       if (FPT && FPT->isNothrow(getContext()))
1092         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1093       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1094       // These attributes are not inherited by overloads.
1095       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1096       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1097         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1098     }
1099 
1100     // 'const' and 'pure' attribute functions are also nounwind.
1101     if (TargetDecl->hasAttr<ConstAttr>()) {
1102       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1103       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1104     } else if (TargetDecl->hasAttr<PureAttr>()) {
1105       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1106       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1107     }
1108     if (TargetDecl->hasAttr<MallocAttr>())
1109       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1110     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1111       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1112   }
1113 
1114   if (CodeGenOpts.OptimizeSize)
1115     FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1116   if (CodeGenOpts.OptimizeSize == 2)
1117     FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1118   if (CodeGenOpts.DisableRedZone)
1119     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1120   if (CodeGenOpts.NoImplicitFloat)
1121     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1122   if (CodeGenOpts.EnableSegmentedStacks &&
1123       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1124     FuncAttrs.addAttribute("split-stack");
1125 
1126   if (AttrOnCallSite) {
1127     // Attributes that should go on the call site only.
1128     if (!CodeGenOpts.SimplifyLibCalls)
1129       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1130   } else {
1131     // Attributes that should go on the function, but not the call site.
1132     if (!CodeGenOpts.DisableFPElim) {
1133       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1134     } else if (CodeGenOpts.OmitLeafFramePointer) {
1135       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1136       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1137     } else {
1138       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1139       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1140     }
1141 
1142     FuncAttrs.addAttribute("less-precise-fpmad",
1143                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1144     FuncAttrs.addAttribute("no-infs-fp-math",
1145                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1146     FuncAttrs.addAttribute("no-nans-fp-math",
1147                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1148     FuncAttrs.addAttribute("unsafe-fp-math",
1149                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1150     FuncAttrs.addAttribute("use-soft-float",
1151                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1152     FuncAttrs.addAttribute("stack-protector-buffer-size",
1153                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1154 
1155     if (!CodeGenOpts.StackRealignment)
1156       FuncAttrs.addAttribute("no-realign-stack");
1157   }
1158 
1159   QualType RetTy = FI.getReturnType();
1160   unsigned Index = 1;
1161   bool SwapThisWithSRet = false;
1162   const ABIArgInfo &RetAI = FI.getReturnInfo();
1163   switch (RetAI.getKind()) {
1164   case ABIArgInfo::Extend:
1165     if (RetTy->hasSignedIntegerRepresentation())
1166       RetAttrs.addAttribute(llvm::Attribute::SExt);
1167     else if (RetTy->hasUnsignedIntegerRepresentation())
1168       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1169     // FALL THROUGH
1170   case ABIArgInfo::Direct:
1171     if (RetAI.getInReg())
1172       RetAttrs.addAttribute(llvm::Attribute::InReg);
1173     break;
1174   case ABIArgInfo::Ignore:
1175     break;
1176 
1177   case ABIArgInfo::InAlloca: {
1178     // inalloca disables readnone and readonly
1179     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1180       .removeAttribute(llvm::Attribute::ReadNone);
1181     break;
1182   }
1183 
1184   case ABIArgInfo::Indirect: {
1185     llvm::AttrBuilder SRETAttrs;
1186     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1187     if (RetAI.getInReg())
1188       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1189     SwapThisWithSRet = RetAI.isSRetAfterThis();
1190     PAL.push_back(llvm::AttributeSet::get(
1191         getLLVMContext(), SwapThisWithSRet ? 2 : Index, SRETAttrs));
1192 
1193     if (!SwapThisWithSRet)
1194       ++Index;
1195     // sret disables readnone and readonly
1196     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1197       .removeAttribute(llvm::Attribute::ReadNone);
1198     break;
1199   }
1200 
1201   case ABIArgInfo::Expand:
1202     llvm_unreachable("Invalid ABI kind for return argument");
1203   }
1204 
1205   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1206     QualType PTy = RefTy->getPointeeType();
1207     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1208       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1209                                         .getQuantity());
1210     else if (getContext().getTargetAddressSpace(PTy) == 0)
1211       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1212   }
1213 
1214   if (RetAttrs.hasAttributes())
1215     PAL.push_back(llvm::
1216                   AttributeSet::get(getLLVMContext(),
1217                                     llvm::AttributeSet::ReturnIndex,
1218                                     RetAttrs));
1219 
1220   for (const auto &I : FI.arguments()) {
1221     QualType ParamType = I.type;
1222     const ABIArgInfo &AI = I.info;
1223     llvm::AttrBuilder Attrs;
1224 
1225     // Skip over the sret parameter when it comes second.  We already handled it
1226     // above.
1227     if (Index == 2 && SwapThisWithSRet)
1228       ++Index;
1229 
1230     if (AI.getPaddingType()) {
1231       if (AI.getPaddingInReg())
1232         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index,
1233                                               llvm::Attribute::InReg));
1234       // Increment Index if there is padding.
1235       ++Index;
1236     }
1237 
1238     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1239     // have the corresponding parameter variable.  It doesn't make
1240     // sense to do it here because parameters are so messed up.
1241     switch (AI.getKind()) {
1242     case ABIArgInfo::Extend:
1243       if (ParamType->isSignedIntegerOrEnumerationType())
1244         Attrs.addAttribute(llvm::Attribute::SExt);
1245       else if (ParamType->isUnsignedIntegerOrEnumerationType())
1246         Attrs.addAttribute(llvm::Attribute::ZExt);
1247       // FALL THROUGH
1248     case ABIArgInfo::Direct: {
1249       if (AI.getInReg())
1250         Attrs.addAttribute(llvm::Attribute::InReg);
1251 
1252       // FIXME: handle sseregparm someday...
1253 
1254       llvm::StructType *STy =
1255           dyn_cast<llvm::StructType>(AI.getCoerceToType());
1256       if (!isAAPCSVFP(FI, getTarget()) && STy) {
1257         unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
1258         if (Attrs.hasAttributes())
1259           for (unsigned I = 0; I < Extra; ++I)
1260             PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I,
1261                                                   Attrs));
1262         Index += Extra;
1263       }
1264       break;
1265     }
1266     case ABIArgInfo::Indirect:
1267       if (AI.getInReg())
1268         Attrs.addAttribute(llvm::Attribute::InReg);
1269 
1270       if (AI.getIndirectByVal())
1271         Attrs.addAttribute(llvm::Attribute::ByVal);
1272 
1273       Attrs.addAlignmentAttr(AI.getIndirectAlign());
1274 
1275       // byval disables readnone and readonly.
1276       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1277         .removeAttribute(llvm::Attribute::ReadNone);
1278       break;
1279 
1280     case ABIArgInfo::Ignore:
1281       // Skip increment, no matching LLVM parameter.
1282       continue;
1283 
1284     case ABIArgInfo::InAlloca:
1285       // inalloca disables readnone and readonly.
1286       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1287           .removeAttribute(llvm::Attribute::ReadNone);
1288       // Skip increment, no matching LLVM parameter.
1289       continue;
1290 
1291     case ABIArgInfo::Expand: {
1292       SmallVector<llvm::Type*, 8> types;
1293       // FIXME: This is rather inefficient. Do we ever actually need to do
1294       // anything here? The result should be just reconstructed on the other
1295       // side, so extension should be a non-issue.
1296       getTypes().GetExpandedTypes(ParamType, types);
1297       Index += types.size();
1298       continue;
1299     }
1300     }
1301 
1302     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1303       QualType PTy = RefTy->getPointeeType();
1304       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1305         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1306                                        .getQuantity());
1307       else if (getContext().getTargetAddressSpace(PTy) == 0)
1308         Attrs.addAttribute(llvm::Attribute::NonNull);
1309     }
1310 
1311     if (Attrs.hasAttributes())
1312       PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1313     ++Index;
1314   }
1315 
1316   // Add the inalloca attribute to the trailing inalloca parameter if present.
1317   if (FI.usesInAlloca()) {
1318     llvm::AttrBuilder Attrs;
1319     Attrs.addAttribute(llvm::Attribute::InAlloca);
1320     PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1321   }
1322 
1323   if (FuncAttrs.hasAttributes())
1324     PAL.push_back(llvm::
1325                   AttributeSet::get(getLLVMContext(),
1326                                     llvm::AttributeSet::FunctionIndex,
1327                                     FuncAttrs));
1328 }
1329 
1330 /// An argument came in as a promoted argument; demote it back to its
1331 /// declared type.
1332 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1333                                          const VarDecl *var,
1334                                          llvm::Value *value) {
1335   llvm::Type *varType = CGF.ConvertType(var->getType());
1336 
1337   // This can happen with promotions that actually don't change the
1338   // underlying type, like the enum promotions.
1339   if (value->getType() == varType) return value;
1340 
1341   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1342          && "unexpected promotion type");
1343 
1344   if (isa<llvm::IntegerType>(varType))
1345     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1346 
1347   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1348 }
1349 
1350 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1351                                          llvm::Function *Fn,
1352                                          const FunctionArgList &Args) {
1353   // If this is an implicit-return-zero function, go ahead and
1354   // initialize the return value.  TODO: it might be nice to have
1355   // a more general mechanism for this that didn't require synthesized
1356   // return statements.
1357   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1358     if (FD->hasImplicitReturnZero()) {
1359       QualType RetTy = FD->getReturnType().getUnqualifiedType();
1360       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1361       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1362       Builder.CreateStore(Zero, ReturnValue);
1363     }
1364   }
1365 
1366   // FIXME: We no longer need the types from FunctionArgList; lift up and
1367   // simplify.
1368 
1369   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1370   llvm::Function::arg_iterator AI = Fn->arg_begin();
1371 
1372   // If we're using inalloca, all the memory arguments are GEPs off of the last
1373   // parameter, which is a pointer to the complete memory area.
1374   llvm::Value *ArgStruct = nullptr;
1375   if (FI.usesInAlloca()) {
1376     llvm::Function::arg_iterator EI = Fn->arg_end();
1377     --EI;
1378     ArgStruct = EI;
1379     assert(ArgStruct->getType() == FI.getArgStruct()->getPointerTo());
1380   }
1381 
1382   // Name the struct return parameter, which can come first or second.
1383   const ABIArgInfo &RetAI = FI.getReturnInfo();
1384   bool SwapThisWithSRet = false;
1385   if (RetAI.isIndirect()) {
1386     SwapThisWithSRet = RetAI.isSRetAfterThis();
1387     if (SwapThisWithSRet)
1388       ++AI;
1389     AI->setName("agg.result");
1390     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
1391                                         llvm::Attribute::NoAlias));
1392     if (SwapThisWithSRet)
1393       --AI;  // Go back to the beginning for 'this'.
1394     else
1395       ++AI;  // Skip the sret parameter.
1396   }
1397 
1398   // Get the function-level nonnull attribute if it exists.
1399   const NonNullAttr *NNAtt =
1400     CurCodeDecl ? CurCodeDecl->getAttr<NonNullAttr>() : nullptr;
1401 
1402   // Track if we received the parameter as a pointer (indirect, byval, or
1403   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
1404   // into a local alloca for us.
1405   enum ValOrPointer { HaveValue = 0, HavePointer = 1 };
1406   typedef llvm::PointerIntPair<llvm::Value *, 1> ValueAndIsPtr;
1407   SmallVector<ValueAndIsPtr, 16> ArgVals;
1408   ArgVals.reserve(Args.size());
1409 
1410   // Create a pointer value for every parameter declaration.  This usually
1411   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
1412   // any cleanups or do anything that might unwind.  We do that separately, so
1413   // we can push the cleanups in the correct order for the ABI.
1414   assert(FI.arg_size() == Args.size() &&
1415          "Mismatch between function signature & arguments.");
1416   unsigned ArgNo = 1;
1417   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1418   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1419        i != e; ++i, ++info_it, ++ArgNo) {
1420     const VarDecl *Arg = *i;
1421     QualType Ty = info_it->type;
1422     const ABIArgInfo &ArgI = info_it->info;
1423 
1424     bool isPromoted =
1425       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1426 
1427     // Skip the dummy padding argument.
1428     if (ArgI.getPaddingType())
1429       ++AI;
1430 
1431     switch (ArgI.getKind()) {
1432     case ABIArgInfo::InAlloca: {
1433       llvm::Value *V = Builder.CreateStructGEP(
1434           ArgStruct, ArgI.getInAllocaFieldIndex(), Arg->getName());
1435       ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1436       continue;  // Don't increment AI!
1437     }
1438 
1439     case ABIArgInfo::Indirect: {
1440       llvm::Value *V = AI;
1441 
1442       if (!hasScalarEvaluationKind(Ty)) {
1443         // Aggregates and complex variables are accessed by reference.  All we
1444         // need to do is realign the value, if requested
1445         if (ArgI.getIndirectRealign()) {
1446           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1447 
1448           // Copy from the incoming argument pointer to the temporary with the
1449           // appropriate alignment.
1450           //
1451           // FIXME: We should have a common utility for generating an aggregate
1452           // copy.
1453           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1454           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1455           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1456           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1457           Builder.CreateMemCpy(Dst,
1458                                Src,
1459                                llvm::ConstantInt::get(IntPtrTy,
1460                                                       Size.getQuantity()),
1461                                ArgI.getIndirectAlign(),
1462                                false);
1463           V = AlignedTemp;
1464         }
1465         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1466       } else {
1467         // Load scalar value from indirect argument.
1468         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1469         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty,
1470                              Arg->getLocStart());
1471 
1472         if (isPromoted)
1473           V = emitArgumentDemotion(*this, Arg, V);
1474         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1475       }
1476       break;
1477     }
1478 
1479     case ABIArgInfo::Extend:
1480     case ABIArgInfo::Direct: {
1481 
1482       // If we have the trivial case, handle it with no muss and fuss.
1483       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1484           ArgI.getCoerceToType() == ConvertType(Ty) &&
1485           ArgI.getDirectOffset() == 0) {
1486         assert(AI != Fn->arg_end() && "Argument mismatch!");
1487         llvm::Value *V = AI;
1488 
1489         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
1490           if ((NNAtt && NNAtt->isNonNull(PVD->getFunctionScopeIndex())) ||
1491               PVD->hasAttr<NonNullAttr>())
1492             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1493                                                 AI->getArgNo() + 1,
1494                                                 llvm::Attribute::NonNull));
1495 
1496           QualType OTy = PVD->getOriginalType();
1497           if (const auto *ArrTy =
1498               getContext().getAsConstantArrayType(OTy)) {
1499             // A C99 array parameter declaration with the static keyword also
1500             // indicates dereferenceability, and if the size is constant we can
1501             // use the dereferenceable attribute (which requires the size in
1502             // bytes).
1503             if (ArrTy->getSizeModifier() == ArrayType::Static) {
1504               QualType ETy = ArrTy->getElementType();
1505               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
1506               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
1507                   ArrSize) {
1508                 llvm::AttrBuilder Attrs;
1509                 Attrs.addDereferenceableAttr(
1510                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
1511                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1512                                                     AI->getArgNo() + 1, Attrs));
1513               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
1514                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1515                                                     AI->getArgNo() + 1,
1516                                                     llvm::Attribute::NonNull));
1517               }
1518             }
1519           } else if (const auto *ArrTy =
1520                      getContext().getAsVariableArrayType(OTy)) {
1521             // For C99 VLAs with the static keyword, we don't know the size so
1522             // we can't use the dereferenceable attribute, but in addrspace(0)
1523             // we know that it must be nonnull.
1524             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
1525                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
1526               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1527                                                   AI->getArgNo() + 1,
1528                                                   llvm::Attribute::NonNull));
1529           }
1530         }
1531 
1532         if (Arg->getType().isRestrictQualified())
1533           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1534                                               AI->getArgNo() + 1,
1535                                               llvm::Attribute::NoAlias));
1536 
1537         // Ensure the argument is the correct type.
1538         if (V->getType() != ArgI.getCoerceToType())
1539           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1540 
1541         if (isPromoted)
1542           V = emitArgumentDemotion(*this, Arg, V);
1543 
1544         if (const CXXMethodDecl *MD =
1545             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1546           if (MD->isVirtual() && Arg == CXXABIThisDecl)
1547             V = CGM.getCXXABI().
1548                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
1549         }
1550 
1551         // Because of merging of function types from multiple decls it is
1552         // possible for the type of an argument to not match the corresponding
1553         // type in the function type. Since we are codegening the callee
1554         // in here, add a cast to the argument type.
1555         llvm::Type *LTy = ConvertType(Arg->getType());
1556         if (V->getType() != LTy)
1557           V = Builder.CreateBitCast(V, LTy);
1558 
1559         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1560         break;
1561       }
1562 
1563       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1564 
1565       // The alignment we need to use is the max of the requested alignment for
1566       // the argument plus the alignment required by our access code below.
1567       unsigned AlignmentToUse =
1568         CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1569       AlignmentToUse = std::max(AlignmentToUse,
1570                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1571 
1572       Alloca->setAlignment(AlignmentToUse);
1573       llvm::Value *V = Alloca;
1574       llvm::Value *Ptr = V;    // Pointer to store into.
1575 
1576       // If the value is offset in memory, apply the offset now.
1577       if (unsigned Offs = ArgI.getDirectOffset()) {
1578         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1579         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1580         Ptr = Builder.CreateBitCast(Ptr,
1581                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1582       }
1583 
1584       // If the coerce-to type is a first class aggregate, we flatten it and
1585       // pass the elements. Either way is semantically identical, but fast-isel
1586       // and the optimizer generally likes scalar values better than FCAs.
1587       // We cannot do this for functions using the AAPCS calling convention,
1588       // as structures are treated differently by that calling convention.
1589       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1590       if (!isAAPCSVFP(FI, getTarget()) && STy && STy->getNumElements() > 1) {
1591         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1592         llvm::Type *DstTy =
1593           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1594         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1595 
1596         if (SrcSize <= DstSize) {
1597           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1598 
1599           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1600             assert(AI != Fn->arg_end() && "Argument mismatch!");
1601             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1602             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1603             Builder.CreateStore(AI++, EltPtr);
1604           }
1605         } else {
1606           llvm::AllocaInst *TempAlloca =
1607             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1608           TempAlloca->setAlignment(AlignmentToUse);
1609           llvm::Value *TempV = TempAlloca;
1610 
1611           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1612             assert(AI != Fn->arg_end() && "Argument mismatch!");
1613             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1614             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1615             Builder.CreateStore(AI++, EltPtr);
1616           }
1617 
1618           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1619         }
1620       } else {
1621         // Simple case, just do a coerced store of the argument into the alloca.
1622         assert(AI != Fn->arg_end() && "Argument mismatch!");
1623         AI->setName(Arg->getName() + ".coerce");
1624         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1625       }
1626 
1627 
1628       // Match to what EmitParmDecl is expecting for this type.
1629       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1630         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart());
1631         if (isPromoted)
1632           V = emitArgumentDemotion(*this, Arg, V);
1633         ArgVals.push_back(ValueAndIsPtr(V, HaveValue));
1634       } else {
1635         ArgVals.push_back(ValueAndIsPtr(V, HavePointer));
1636       }
1637       continue;  // Skip ++AI increment, already done.
1638     }
1639 
1640     case ABIArgInfo::Expand: {
1641       // If this structure was expanded into multiple arguments then
1642       // we need to create a temporary and reconstruct it from the
1643       // arguments.
1644       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1645       CharUnits Align = getContext().getDeclAlign(Arg);
1646       Alloca->setAlignment(Align.getQuantity());
1647       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1648       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1649       ArgVals.push_back(ValueAndIsPtr(Alloca, HavePointer));
1650 
1651       // Name the arguments used in expansion and increment AI.
1652       unsigned Index = 0;
1653       for (; AI != End; ++AI, ++Index)
1654         AI->setName(Arg->getName() + "." + Twine(Index));
1655       continue;
1656     }
1657 
1658     case ABIArgInfo::Ignore:
1659       // Initialize the local variable appropriately.
1660       if (!hasScalarEvaluationKind(Ty)) {
1661         ArgVals.push_back(ValueAndIsPtr(CreateMemTemp(Ty), HavePointer));
1662       } else {
1663         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
1664         ArgVals.push_back(ValueAndIsPtr(U, HaveValue));
1665       }
1666 
1667       // Skip increment, no matching LLVM parameter.
1668       continue;
1669     }
1670 
1671     ++AI;
1672 
1673     if (ArgNo == 1 && SwapThisWithSRet)
1674       ++AI;  // Skip the sret parameter.
1675   }
1676 
1677   if (FI.usesInAlloca())
1678     ++AI;
1679   assert(AI == Fn->arg_end() && "Argument mismatch!");
1680 
1681   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1682     for (int I = Args.size() - 1; I >= 0; --I)
1683       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
1684                    I + 1);
1685   } else {
1686     for (unsigned I = 0, E = Args.size(); I != E; ++I)
1687       EmitParmDecl(*Args[I], ArgVals[I].getPointer(), ArgVals[I].getInt(),
1688                    I + 1);
1689   }
1690 }
1691 
1692 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1693   while (insn->use_empty()) {
1694     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1695     if (!bitcast) return;
1696 
1697     // This is "safe" because we would have used a ConstantExpr otherwise.
1698     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1699     bitcast->eraseFromParent();
1700   }
1701 }
1702 
1703 /// Try to emit a fused autorelease of a return result.
1704 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1705                                                     llvm::Value *result) {
1706   // We must be immediately followed the cast.
1707   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1708   if (BB->empty()) return nullptr;
1709   if (&BB->back() != result) return nullptr;
1710 
1711   llvm::Type *resultType = result->getType();
1712 
1713   // result is in a BasicBlock and is therefore an Instruction.
1714   llvm::Instruction *generator = cast<llvm::Instruction>(result);
1715 
1716   SmallVector<llvm::Instruction*,4> insnsToKill;
1717 
1718   // Look for:
1719   //  %generator = bitcast %type1* %generator2 to %type2*
1720   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1721     // We would have emitted this as a constant if the operand weren't
1722     // an Instruction.
1723     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1724 
1725     // Require the generator to be immediately followed by the cast.
1726     if (generator->getNextNode() != bitcast)
1727       return nullptr;
1728 
1729     insnsToKill.push_back(bitcast);
1730   }
1731 
1732   // Look for:
1733   //   %generator = call i8* @objc_retain(i8* %originalResult)
1734   // or
1735   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1736   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1737   if (!call) return nullptr;
1738 
1739   bool doRetainAutorelease;
1740 
1741   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1742     doRetainAutorelease = true;
1743   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1744                                           .objc_retainAutoreleasedReturnValue) {
1745     doRetainAutorelease = false;
1746 
1747     // If we emitted an assembly marker for this call (and the
1748     // ARCEntrypoints field should have been set if so), go looking
1749     // for that call.  If we can't find it, we can't do this
1750     // optimization.  But it should always be the immediately previous
1751     // instruction, unless we needed bitcasts around the call.
1752     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1753       llvm::Instruction *prev = call->getPrevNode();
1754       assert(prev);
1755       if (isa<llvm::BitCastInst>(prev)) {
1756         prev = prev->getPrevNode();
1757         assert(prev);
1758       }
1759       assert(isa<llvm::CallInst>(prev));
1760       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1761                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1762       insnsToKill.push_back(prev);
1763     }
1764   } else {
1765     return nullptr;
1766   }
1767 
1768   result = call->getArgOperand(0);
1769   insnsToKill.push_back(call);
1770 
1771   // Keep killing bitcasts, for sanity.  Note that we no longer care
1772   // about precise ordering as long as there's exactly one use.
1773   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1774     if (!bitcast->hasOneUse()) break;
1775     insnsToKill.push_back(bitcast);
1776     result = bitcast->getOperand(0);
1777   }
1778 
1779   // Delete all the unnecessary instructions, from latest to earliest.
1780   for (SmallVectorImpl<llvm::Instruction*>::iterator
1781          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1782     (*i)->eraseFromParent();
1783 
1784   // Do the fused retain/autorelease if we were asked to.
1785   if (doRetainAutorelease)
1786     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1787 
1788   // Cast back to the result type.
1789   return CGF.Builder.CreateBitCast(result, resultType);
1790 }
1791 
1792 /// If this is a +1 of the value of an immutable 'self', remove it.
1793 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1794                                           llvm::Value *result) {
1795   // This is only applicable to a method with an immutable 'self'.
1796   const ObjCMethodDecl *method =
1797     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1798   if (!method) return nullptr;
1799   const VarDecl *self = method->getSelfDecl();
1800   if (!self->getType().isConstQualified()) return nullptr;
1801 
1802   // Look for a retain call.
1803   llvm::CallInst *retainCall =
1804     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1805   if (!retainCall ||
1806       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1807     return nullptr;
1808 
1809   // Look for an ordinary load of 'self'.
1810   llvm::Value *retainedValue = retainCall->getArgOperand(0);
1811   llvm::LoadInst *load =
1812     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1813   if (!load || load->isAtomic() || load->isVolatile() ||
1814       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1815     return nullptr;
1816 
1817   // Okay!  Burn it all down.  This relies for correctness on the
1818   // assumption that the retain is emitted as part of the return and
1819   // that thereafter everything is used "linearly".
1820   llvm::Type *resultType = result->getType();
1821   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1822   assert(retainCall->use_empty());
1823   retainCall->eraseFromParent();
1824   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1825 
1826   return CGF.Builder.CreateBitCast(load, resultType);
1827 }
1828 
1829 /// Emit an ARC autorelease of the result of a function.
1830 ///
1831 /// \return the value to actually return from the function
1832 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1833                                             llvm::Value *result) {
1834   // If we're returning 'self', kill the initial retain.  This is a
1835   // heuristic attempt to "encourage correctness" in the really unfortunate
1836   // case where we have a return of self during a dealloc and we desperately
1837   // need to avoid the possible autorelease.
1838   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1839     return self;
1840 
1841   // At -O0, try to emit a fused retain/autorelease.
1842   if (CGF.shouldUseFusedARCCalls())
1843     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1844       return fused;
1845 
1846   return CGF.EmitARCAutoreleaseReturnValue(result);
1847 }
1848 
1849 /// Heuristically search for a dominating store to the return-value slot.
1850 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1851   // If there are multiple uses of the return-value slot, just check
1852   // for something immediately preceding the IP.  Sometimes this can
1853   // happen with how we generate implicit-returns; it can also happen
1854   // with noreturn cleanups.
1855   if (!CGF.ReturnValue->hasOneUse()) {
1856     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1857     if (IP->empty()) return nullptr;
1858     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1859     if (!store) return nullptr;
1860     if (store->getPointerOperand() != CGF.ReturnValue) return nullptr;
1861     assert(!store->isAtomic() && !store->isVolatile()); // see below
1862     return store;
1863   }
1864 
1865   llvm::StoreInst *store =
1866     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->user_back());
1867   if (!store) return nullptr;
1868 
1869   // These aren't actually possible for non-coerced returns, and we
1870   // only care about non-coerced returns on this code path.
1871   assert(!store->isAtomic() && !store->isVolatile());
1872 
1873   // Now do a first-and-dirty dominance check: just walk up the
1874   // single-predecessors chain from the current insertion point.
1875   llvm::BasicBlock *StoreBB = store->getParent();
1876   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1877   while (IP != StoreBB) {
1878     if (!(IP = IP->getSinglePredecessor()))
1879       return nullptr;
1880   }
1881 
1882   // Okay, the store's basic block dominates the insertion point; we
1883   // can do our thing.
1884   return store;
1885 }
1886 
1887 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
1888                                          bool EmitRetDbgLoc,
1889                                          SourceLocation EndLoc) {
1890   // Functions with no result always return void.
1891   if (!ReturnValue) {
1892     Builder.CreateRetVoid();
1893     return;
1894   }
1895 
1896   llvm::DebugLoc RetDbgLoc;
1897   llvm::Value *RV = nullptr;
1898   QualType RetTy = FI.getReturnType();
1899   const ABIArgInfo &RetAI = FI.getReturnInfo();
1900 
1901   switch (RetAI.getKind()) {
1902   case ABIArgInfo::InAlloca:
1903     // Aggregrates get evaluated directly into the destination.  Sometimes we
1904     // need to return the sret value in a register, though.
1905     assert(hasAggregateEvaluationKind(RetTy));
1906     if (RetAI.getInAllocaSRet()) {
1907       llvm::Function::arg_iterator EI = CurFn->arg_end();
1908       --EI;
1909       llvm::Value *ArgStruct = EI;
1910       llvm::Value *SRet =
1911           Builder.CreateStructGEP(ArgStruct, RetAI.getInAllocaFieldIndex());
1912       RV = Builder.CreateLoad(SRet, "sret");
1913     }
1914     break;
1915 
1916   case ABIArgInfo::Indirect: {
1917     auto AI = CurFn->arg_begin();
1918     if (RetAI.isSRetAfterThis())
1919       ++AI;
1920     switch (getEvaluationKind(RetTy)) {
1921     case TEK_Complex: {
1922       ComplexPairTy RT =
1923         EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy),
1924                           EndLoc);
1925       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(AI, RetTy),
1926                          /*isInit*/ true);
1927       break;
1928     }
1929     case TEK_Aggregate:
1930       // Do nothing; aggregrates get evaluated directly into the destination.
1931       break;
1932     case TEK_Scalar:
1933       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
1934                         MakeNaturalAlignAddrLValue(AI, RetTy),
1935                         /*isInit*/ true);
1936       break;
1937     }
1938     break;
1939   }
1940 
1941   case ABIArgInfo::Extend:
1942   case ABIArgInfo::Direct:
1943     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1944         RetAI.getDirectOffset() == 0) {
1945       // The internal return value temp always will have pointer-to-return-type
1946       // type, just do a load.
1947 
1948       // If there is a dominating store to ReturnValue, we can elide
1949       // the load, zap the store, and usually zap the alloca.
1950       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1951         // Reuse the debug location from the store unless there is
1952         // cleanup code to be emitted between the store and return
1953         // instruction.
1954         if (EmitRetDbgLoc && !AutoreleaseResult)
1955           RetDbgLoc = SI->getDebugLoc();
1956         // Get the stored value and nuke the now-dead store.
1957         RV = SI->getValueOperand();
1958         SI->eraseFromParent();
1959 
1960         // If that was the only use of the return value, nuke it as well now.
1961         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1962           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1963           ReturnValue = nullptr;
1964         }
1965 
1966       // Otherwise, we have to do a simple load.
1967       } else {
1968         RV = Builder.CreateLoad(ReturnValue);
1969       }
1970     } else {
1971       llvm::Value *V = ReturnValue;
1972       // If the value is offset in memory, apply the offset now.
1973       if (unsigned Offs = RetAI.getDirectOffset()) {
1974         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1975         V = Builder.CreateConstGEP1_32(V, Offs);
1976         V = Builder.CreateBitCast(V,
1977                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1978       }
1979 
1980       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1981     }
1982 
1983     // In ARC, end functions that return a retainable type with a call
1984     // to objc_autoreleaseReturnValue.
1985     if (AutoreleaseResult) {
1986       assert(getLangOpts().ObjCAutoRefCount &&
1987              !FI.isReturnsRetained() &&
1988              RetTy->isObjCRetainableType());
1989       RV = emitAutoreleaseOfResult(*this, RV);
1990     }
1991 
1992     break;
1993 
1994   case ABIArgInfo::Ignore:
1995     break;
1996 
1997   case ABIArgInfo::Expand:
1998     llvm_unreachable("Invalid ABI kind for return argument");
1999   }
2000 
2001   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
2002   if (!RetDbgLoc.isUnknown())
2003     Ret->setDebugLoc(RetDbgLoc);
2004 }
2005 
2006 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2007   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2008   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2009 }
2010 
2011 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, QualType Ty) {
2012   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2013   // placeholders.
2014   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2015   llvm::Value *Placeholder =
2016       llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
2017   Placeholder = CGF.Builder.CreateLoad(Placeholder);
2018   return AggValueSlot::forAddr(Placeholder, CharUnits::Zero(),
2019                                Ty.getQualifiers(),
2020                                AggValueSlot::IsNotDestructed,
2021                                AggValueSlot::DoesNotNeedGCBarriers,
2022                                AggValueSlot::IsNotAliased);
2023 }
2024 
2025 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2026                                           const VarDecl *param,
2027                                           SourceLocation loc) {
2028   // StartFunction converted the ABI-lowered parameter(s) into a
2029   // local alloca.  We need to turn that into an r-value suitable
2030   // for EmitCall.
2031   llvm::Value *local = GetAddrOfLocalVar(param);
2032 
2033   QualType type = param->getType();
2034 
2035   // For the most part, we just need to load the alloca, except:
2036   // 1) aggregate r-values are actually pointers to temporaries, and
2037   // 2) references to non-scalars are pointers directly to the aggregate.
2038   // I don't know why references to scalars are different here.
2039   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
2040     if (!hasScalarEvaluationKind(ref->getPointeeType()))
2041       return args.add(RValue::getAggregate(local), type);
2042 
2043     // Locals which are references to scalars are represented
2044     // with allocas holding the pointer.
2045     return args.add(RValue::get(Builder.CreateLoad(local)), type);
2046   }
2047 
2048   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2049          "cannot emit delegate call arguments for inalloca arguments!");
2050 
2051   args.add(convertTempToRValue(local, type, loc), type);
2052 }
2053 
2054 static bool isProvablyNull(llvm::Value *addr) {
2055   return isa<llvm::ConstantPointerNull>(addr);
2056 }
2057 
2058 static bool isProvablyNonNull(llvm::Value *addr) {
2059   return isa<llvm::AllocaInst>(addr);
2060 }
2061 
2062 /// Emit the actual writing-back of a writeback.
2063 static void emitWriteback(CodeGenFunction &CGF,
2064                           const CallArgList::Writeback &writeback) {
2065   const LValue &srcLV = writeback.Source;
2066   llvm::Value *srcAddr = srcLV.getAddress();
2067   assert(!isProvablyNull(srcAddr) &&
2068          "shouldn't have writeback for provably null argument");
2069 
2070   llvm::BasicBlock *contBB = nullptr;
2071 
2072   // If the argument wasn't provably non-null, we need to null check
2073   // before doing the store.
2074   bool provablyNonNull = isProvablyNonNull(srcAddr);
2075   if (!provablyNonNull) {
2076     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2077     contBB = CGF.createBasicBlock("icr.done");
2078 
2079     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2080     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2081     CGF.EmitBlock(writebackBB);
2082   }
2083 
2084   // Load the value to writeback.
2085   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2086 
2087   // Cast it back, in case we're writing an id to a Foo* or something.
2088   value = CGF.Builder.CreateBitCast(value,
2089                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
2090                             "icr.writeback-cast");
2091 
2092   // Perform the writeback.
2093 
2094   // If we have a "to use" value, it's something we need to emit a use
2095   // of.  This has to be carefully threaded in: if it's done after the
2096   // release it's potentially undefined behavior (and the optimizer
2097   // will ignore it), and if it happens before the retain then the
2098   // optimizer could move the release there.
2099   if (writeback.ToUse) {
2100     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2101 
2102     // Retain the new value.  No need to block-copy here:  the block's
2103     // being passed up the stack.
2104     value = CGF.EmitARCRetainNonBlock(value);
2105 
2106     // Emit the intrinsic use here.
2107     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2108 
2109     // Load the old value (primitively).
2110     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2111 
2112     // Put the new value in place (primitively).
2113     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2114 
2115     // Release the old value.
2116     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2117 
2118   // Otherwise, we can just do a normal lvalue store.
2119   } else {
2120     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2121   }
2122 
2123   // Jump to the continuation block.
2124   if (!provablyNonNull)
2125     CGF.EmitBlock(contBB);
2126 }
2127 
2128 static void emitWritebacks(CodeGenFunction &CGF,
2129                            const CallArgList &args) {
2130   for (const auto &I : args.writebacks())
2131     emitWriteback(CGF, I);
2132 }
2133 
2134 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2135                                             const CallArgList &CallArgs) {
2136   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2137   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2138     CallArgs.getCleanupsToDeactivate();
2139   // Iterate in reverse to increase the likelihood of popping the cleanup.
2140   for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
2141          I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
2142     CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
2143     I->IsActiveIP->eraseFromParent();
2144   }
2145 }
2146 
2147 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2148   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2149     if (uop->getOpcode() == UO_AddrOf)
2150       return uop->getSubExpr();
2151   return nullptr;
2152 }
2153 
2154 /// Emit an argument that's being passed call-by-writeback.  That is,
2155 /// we are passing the address of
2156 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2157                              const ObjCIndirectCopyRestoreExpr *CRE) {
2158   LValue srcLV;
2159 
2160   // Make an optimistic effort to emit the address as an l-value.
2161   // This can fail if the the argument expression is more complicated.
2162   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2163     srcLV = CGF.EmitLValue(lvExpr);
2164 
2165   // Otherwise, just emit it as a scalar.
2166   } else {
2167     llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
2168 
2169     QualType srcAddrType =
2170       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
2171     srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
2172   }
2173   llvm::Value *srcAddr = srcLV.getAddress();
2174 
2175   // The dest and src types don't necessarily match in LLVM terms
2176   // because of the crazy ObjC compatibility rules.
2177 
2178   llvm::PointerType *destType =
2179     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
2180 
2181   // If the address is a constant null, just pass the appropriate null.
2182   if (isProvablyNull(srcAddr)) {
2183     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
2184              CRE->getType());
2185     return;
2186   }
2187 
2188   // Create the temporary.
2189   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
2190                                            "icr.temp");
2191   // Loading an l-value can introduce a cleanup if the l-value is __weak,
2192   // and that cleanup will be conditional if we can't prove that the l-value
2193   // isn't null, so we need to register a dominating point so that the cleanups
2194   // system will make valid IR.
2195   CodeGenFunction::ConditionalEvaluation condEval(CGF);
2196 
2197   // Zero-initialize it if we're not doing a copy-initialization.
2198   bool shouldCopy = CRE->shouldCopy();
2199   if (!shouldCopy) {
2200     llvm::Value *null =
2201       llvm::ConstantPointerNull::get(
2202         cast<llvm::PointerType>(destType->getElementType()));
2203     CGF.Builder.CreateStore(null, temp);
2204   }
2205 
2206   llvm::BasicBlock *contBB = nullptr;
2207   llvm::BasicBlock *originBB = nullptr;
2208 
2209   // If the address is *not* known to be non-null, we need to switch.
2210   llvm::Value *finalArgument;
2211 
2212   bool provablyNonNull = isProvablyNonNull(srcAddr);
2213   if (provablyNonNull) {
2214     finalArgument = temp;
2215   } else {
2216     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
2217 
2218     finalArgument = CGF.Builder.CreateSelect(isNull,
2219                                    llvm::ConstantPointerNull::get(destType),
2220                                              temp, "icr.argument");
2221 
2222     // If we need to copy, then the load has to be conditional, which
2223     // means we need control flow.
2224     if (shouldCopy) {
2225       originBB = CGF.Builder.GetInsertBlock();
2226       contBB = CGF.createBasicBlock("icr.cont");
2227       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
2228       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
2229       CGF.EmitBlock(copyBB);
2230       condEval.begin(CGF);
2231     }
2232   }
2233 
2234   llvm::Value *valueToUse = nullptr;
2235 
2236   // Perform a copy if necessary.
2237   if (shouldCopy) {
2238     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
2239     assert(srcRV.isScalar());
2240 
2241     llvm::Value *src = srcRV.getScalarVal();
2242     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
2243                                     "icr.cast");
2244 
2245     // Use an ordinary store, not a store-to-lvalue.
2246     CGF.Builder.CreateStore(src, temp);
2247 
2248     // If optimization is enabled, and the value was held in a
2249     // __strong variable, we need to tell the optimizer that this
2250     // value has to stay alive until we're doing the store back.
2251     // This is because the temporary is effectively unretained,
2252     // and so otherwise we can violate the high-level semantics.
2253     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2254         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
2255       valueToUse = src;
2256     }
2257   }
2258 
2259   // Finish the control flow if we needed it.
2260   if (shouldCopy && !provablyNonNull) {
2261     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
2262     CGF.EmitBlock(contBB);
2263 
2264     // Make a phi for the value to intrinsically use.
2265     if (valueToUse) {
2266       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2267                                                       "icr.to-use");
2268       phiToUse->addIncoming(valueToUse, copyBB);
2269       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2270                             originBB);
2271       valueToUse = phiToUse;
2272     }
2273 
2274     condEval.end(CGF);
2275   }
2276 
2277   args.addWriteback(srcLV, temp, valueToUse);
2278   args.add(RValue::get(finalArgument), CRE->getType());
2279 }
2280 
2281 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
2282   assert(!StackBase && !StackCleanup.isValid());
2283 
2284   // Save the stack.
2285   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
2286   StackBase = CGF.Builder.CreateCall(F, "inalloca.save");
2287 
2288   // Control gets really tied up in landing pads, so we have to spill the
2289   // stacksave to an alloca to avoid violating SSA form.
2290   // TODO: This is dead if we never emit the cleanup.  We should create the
2291   // alloca and store lazily on the first cleanup emission.
2292   StackBaseMem = CGF.CreateTempAlloca(CGF.Int8PtrTy, "inalloca.spmem");
2293   CGF.Builder.CreateStore(StackBase, StackBaseMem);
2294   CGF.pushStackRestore(EHCleanup, StackBaseMem);
2295   StackCleanup = CGF.EHStack.getInnermostEHScope();
2296   assert(StackCleanup.isValid());
2297 }
2298 
2299 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
2300   if (StackBase) {
2301     CGF.DeactivateCleanupBlock(StackCleanup, StackBase);
2302     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
2303     // We could load StackBase from StackBaseMem, but in the non-exceptional
2304     // case we can skip it.
2305     CGF.Builder.CreateCall(F, StackBase);
2306   }
2307 }
2308 
2309 void CodeGenFunction::EmitCallArgs(CallArgList &Args,
2310                                    ArrayRef<QualType> ArgTypes,
2311                                    CallExpr::const_arg_iterator ArgBeg,
2312                                    CallExpr::const_arg_iterator ArgEnd,
2313                                    bool ForceColumnInfo) {
2314   CGDebugInfo *DI = getDebugInfo();
2315   SourceLocation CallLoc;
2316   if (DI) CallLoc = DI->getLocation();
2317 
2318   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
2319   // because arguments are destroyed left to right in the callee.
2320   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2321     // Insert a stack save if we're going to need any inalloca args.
2322     bool HasInAllocaArgs = false;
2323     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
2324          I != E && !HasInAllocaArgs; ++I)
2325       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
2326     if (HasInAllocaArgs) {
2327       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2328       Args.allocateArgumentMemory(*this);
2329     }
2330 
2331     // Evaluate each argument.
2332     size_t CallArgsStart = Args.size();
2333     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
2334       CallExpr::const_arg_iterator Arg = ArgBeg + I;
2335       EmitCallArg(Args, *Arg, ArgTypes[I]);
2336       // Restore the debug location.
2337       if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
2338     }
2339 
2340     // Un-reverse the arguments we just evaluated so they match up with the LLVM
2341     // IR function.
2342     std::reverse(Args.begin() + CallArgsStart, Args.end());
2343     return;
2344   }
2345 
2346   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
2347     CallExpr::const_arg_iterator Arg = ArgBeg + I;
2348     assert(Arg != ArgEnd);
2349     EmitCallArg(Args, *Arg, ArgTypes[I]);
2350     // Restore the debug location.
2351     if (DI) DI->EmitLocation(Builder, CallLoc, ForceColumnInfo);
2352   }
2353 }
2354 
2355 namespace {
2356 
2357 struct DestroyUnpassedArg : EHScopeStack::Cleanup {
2358   DestroyUnpassedArg(llvm::Value *Addr, QualType Ty)
2359       : Addr(Addr), Ty(Ty) {}
2360 
2361   llvm::Value *Addr;
2362   QualType Ty;
2363 
2364   void Emit(CodeGenFunction &CGF, Flags flags) override {
2365     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
2366     assert(!Dtor->isTrivial());
2367     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
2368                               /*Delegating=*/false, Addr);
2369   }
2370 };
2371 
2372 }
2373 
2374 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2375                                   QualType type) {
2376   if (const ObjCIndirectCopyRestoreExpr *CRE
2377         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2378     assert(getLangOpts().ObjCAutoRefCount);
2379     assert(getContext().hasSameType(E->getType(), type));
2380     return emitWritebackArg(*this, args, CRE);
2381   }
2382 
2383   assert(type->isReferenceType() == E->isGLValue() &&
2384          "reference binding to unmaterialized r-value!");
2385 
2386   if (E->isGLValue()) {
2387     assert(E->getObjectKind() == OK_Ordinary);
2388     return args.add(EmitReferenceBindingToExpr(E), type);
2389   }
2390 
2391   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2392 
2393   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2394   // However, we still have to push an EH-only cleanup in case we unwind before
2395   // we make it to the call.
2396   if (HasAggregateEvalKind &&
2397       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2398     // If we're using inalloca, use the argument memory.  Otherwise, use a
2399     // temporary.
2400     AggValueSlot Slot;
2401     if (args.isUsingInAlloca())
2402       Slot = createPlaceholderSlot(*this, type);
2403     else
2404       Slot = CreateAggTemp(type, "agg.tmp");
2405 
2406     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2407     bool DestroyedInCallee =
2408         RD && RD->hasNonTrivialDestructor() &&
2409         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
2410     if (DestroyedInCallee)
2411       Slot.setExternallyDestructed();
2412 
2413     EmitAggExpr(E, Slot);
2414     RValue RV = Slot.asRValue();
2415     args.add(RV, type);
2416 
2417     if (DestroyedInCallee) {
2418       // Create a no-op GEP between the placeholder and the cleanup so we can
2419       // RAUW it successfully.  It also serves as a marker of the first
2420       // instruction where the cleanup is active.
2421       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddr(), type);
2422       // This unreachable is a temporary marker which will be removed later.
2423       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2424       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2425     }
2426     return;
2427   }
2428 
2429   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2430       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2431     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2432     assert(L.isSimple());
2433     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2434       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2435     } else {
2436       // We can't represent a misaligned lvalue in the CallArgList, so copy
2437       // to an aligned temporary now.
2438       llvm::Value *tmp = CreateMemTemp(type);
2439       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2440                         L.getAlignment());
2441       args.add(RValue::getAggregate(tmp), type);
2442     }
2443     return;
2444   }
2445 
2446   args.add(EmitAnyExprToTemp(E), type);
2447 }
2448 
2449 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2450 // optimizer it can aggressively ignore unwind edges.
2451 void
2452 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2453   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2454       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2455     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2456                       CGM.getNoObjCARCExceptionsMetadata());
2457 }
2458 
2459 /// Emits a call to the given no-arguments nounwind runtime function.
2460 llvm::CallInst *
2461 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2462                                          const llvm::Twine &name) {
2463   return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2464 }
2465 
2466 /// Emits a call to the given nounwind runtime function.
2467 llvm::CallInst *
2468 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2469                                          ArrayRef<llvm::Value*> args,
2470                                          const llvm::Twine &name) {
2471   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2472   call->setDoesNotThrow();
2473   return call;
2474 }
2475 
2476 /// Emits a simple call (never an invoke) to the given no-arguments
2477 /// runtime function.
2478 llvm::CallInst *
2479 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2480                                  const llvm::Twine &name) {
2481   return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2482 }
2483 
2484 /// Emits a simple call (never an invoke) to the given runtime
2485 /// function.
2486 llvm::CallInst *
2487 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2488                                  ArrayRef<llvm::Value*> args,
2489                                  const llvm::Twine &name) {
2490   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2491   call->setCallingConv(getRuntimeCC());
2492   return call;
2493 }
2494 
2495 /// Emits a call or invoke to the given noreturn runtime function.
2496 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2497                                                ArrayRef<llvm::Value*> args) {
2498   if (getInvokeDest()) {
2499     llvm::InvokeInst *invoke =
2500       Builder.CreateInvoke(callee,
2501                            getUnreachableBlock(),
2502                            getInvokeDest(),
2503                            args);
2504     invoke->setDoesNotReturn();
2505     invoke->setCallingConv(getRuntimeCC());
2506   } else {
2507     llvm::CallInst *call = Builder.CreateCall(callee, args);
2508     call->setDoesNotReturn();
2509     call->setCallingConv(getRuntimeCC());
2510     Builder.CreateUnreachable();
2511   }
2512   PGO.setCurrentRegionUnreachable();
2513 }
2514 
2515 /// Emits a call or invoke instruction to the given nullary runtime
2516 /// function.
2517 llvm::CallSite
2518 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2519                                          const Twine &name) {
2520   return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
2521 }
2522 
2523 /// Emits a call or invoke instruction to the given runtime function.
2524 llvm::CallSite
2525 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2526                                          ArrayRef<llvm::Value*> args,
2527                                          const Twine &name) {
2528   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2529   callSite.setCallingConv(getRuntimeCC());
2530   return callSite;
2531 }
2532 
2533 llvm::CallSite
2534 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2535                                   const Twine &Name) {
2536   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
2537 }
2538 
2539 /// Emits a call or invoke instruction to the given function, depending
2540 /// on the current state of the EH stack.
2541 llvm::CallSite
2542 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2543                                   ArrayRef<llvm::Value *> Args,
2544                                   const Twine &Name) {
2545   llvm::BasicBlock *InvokeDest = getInvokeDest();
2546 
2547   llvm::Instruction *Inst;
2548   if (!InvokeDest)
2549     Inst = Builder.CreateCall(Callee, Args, Name);
2550   else {
2551     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2552     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2553     EmitBlock(ContBB);
2554   }
2555 
2556   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2557   // optimizer it can aggressively ignore unwind edges.
2558   if (CGM.getLangOpts().ObjCAutoRefCount)
2559     AddObjCARCExceptionMetadata(Inst);
2560 
2561   return Inst;
2562 }
2563 
2564 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
2565                             llvm::FunctionType *FTy) {
2566   if (ArgNo < FTy->getNumParams())
2567     assert(Elt->getType() == FTy->getParamType(ArgNo));
2568   else
2569     assert(FTy->isVarArg());
2570   ++ArgNo;
2571 }
2572 
2573 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
2574                                        SmallVectorImpl<llvm::Value *> &Args,
2575                                        llvm::FunctionType *IRFuncTy) {
2576   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2577     unsigned NumElts = AT->getSize().getZExtValue();
2578     QualType EltTy = AT->getElementType();
2579     llvm::Value *Addr = RV.getAggregateAddr();
2580     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2581       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
2582       RValue EltRV = convertTempToRValue(EltAddr, EltTy, SourceLocation());
2583       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
2584     }
2585   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2586     RecordDecl *RD = RT->getDecl();
2587     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
2588     LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
2589 
2590     if (RD->isUnion()) {
2591       const FieldDecl *LargestFD = nullptr;
2592       CharUnits UnionSize = CharUnits::Zero();
2593 
2594       for (const auto *FD : RD->fields()) {
2595         assert(!FD->isBitField() &&
2596                "Cannot expand structure with bit-field members.");
2597         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
2598         if (UnionSize < FieldSize) {
2599           UnionSize = FieldSize;
2600           LargestFD = FD;
2601         }
2602       }
2603       if (LargestFD) {
2604         RValue FldRV = EmitRValueForField(LV, LargestFD, SourceLocation());
2605         ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
2606       }
2607     } else {
2608       for (const auto *FD : RD->fields()) {
2609         RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
2610         ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
2611       }
2612     }
2613   } else if (Ty->isAnyComplexType()) {
2614     ComplexPairTy CV = RV.getComplexVal();
2615     Args.push_back(CV.first);
2616     Args.push_back(CV.second);
2617   } else {
2618     assert(RV.isScalar() &&
2619            "Unexpected non-scalar rvalue during struct expansion.");
2620 
2621     // Insert a bitcast as needed.
2622     llvm::Value *V = RV.getScalarVal();
2623     if (Args.size() < IRFuncTy->getNumParams() &&
2624         V->getType() != IRFuncTy->getParamType(Args.size()))
2625       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
2626 
2627     Args.push_back(V);
2628   }
2629 }
2630 
2631 /// \brief Store a non-aggregate value to an address to initialize it.  For
2632 /// initialization, a non-atomic store will be used.
2633 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
2634                                         LValue Dst) {
2635   if (Src.isScalar())
2636     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
2637   else
2638     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
2639 }
2640 
2641 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
2642                                                   llvm::Value *New) {
2643   DeferredReplacements.push_back(std::make_pair(Old, New));
2644 }
2645 
2646 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
2647                                  llvm::Value *Callee,
2648                                  ReturnValueSlot ReturnValue,
2649                                  const CallArgList &CallArgs,
2650                                  const Decl *TargetDecl,
2651                                  llvm::Instruction **callOrInvoke) {
2652   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
2653   SmallVector<llvm::Value*, 16> Args;
2654 
2655   // Handle struct-return functions by passing a pointer to the
2656   // location that we would like to return into.
2657   QualType RetTy = CallInfo.getReturnType();
2658   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
2659 
2660   // IRArgNo - Keep track of the argument number in the callee we're looking at.
2661   unsigned IRArgNo = 0;
2662   llvm::FunctionType *IRFuncTy =
2663     cast<llvm::FunctionType>(
2664                   cast<llvm::PointerType>(Callee->getType())->getElementType());
2665 
2666   // If we're using inalloca, insert the allocation after the stack save.
2667   // FIXME: Do this earlier rather than hacking it in here!
2668   llvm::Value *ArgMemory = nullptr;
2669   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
2670     llvm::Instruction *IP = CallArgs.getStackBase();
2671     llvm::AllocaInst *AI;
2672     if (IP) {
2673       IP = IP->getNextNode();
2674       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
2675     } else {
2676       AI = CreateTempAlloca(ArgStruct, "argmem");
2677     }
2678     AI->setUsedWithInAlloca(true);
2679     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
2680     ArgMemory = AI;
2681   }
2682 
2683   // If the call returns a temporary with struct return, create a temporary
2684   // alloca to hold the result, unless one is given to us.
2685   llvm::Value *SRetPtr = nullptr;
2686   bool SwapThisWithSRet = false;
2687   if (RetAI.isIndirect() || RetAI.isInAlloca()) {
2688     SRetPtr = ReturnValue.getValue();
2689     if (!SRetPtr)
2690       SRetPtr = CreateMemTemp(RetTy);
2691     if (RetAI.isIndirect()) {
2692       Args.push_back(SRetPtr);
2693       SwapThisWithSRet = RetAI.isSRetAfterThis();
2694       if (SwapThisWithSRet)
2695         IRArgNo = 1;
2696       checkArgMatches(SRetPtr, IRArgNo, IRFuncTy);
2697       if (SwapThisWithSRet)
2698         IRArgNo = 0;
2699     } else {
2700       llvm::Value *Addr =
2701           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
2702       Builder.CreateStore(SRetPtr, Addr);
2703     }
2704   }
2705 
2706   assert(CallInfo.arg_size() == CallArgs.size() &&
2707          "Mismatch between function signature & arguments.");
2708   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
2709   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
2710        I != E; ++I, ++info_it) {
2711     const ABIArgInfo &ArgInfo = info_it->info;
2712     RValue RV = I->RV;
2713 
2714     // Skip 'sret' if it came second.
2715     if (IRArgNo == 1 && SwapThisWithSRet)
2716       ++IRArgNo;
2717 
2718     CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
2719 
2720     // Insert a padding argument to ensure proper alignment.
2721     if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2722       Args.push_back(llvm::UndefValue::get(PaddingType));
2723       ++IRArgNo;
2724     }
2725 
2726     switch (ArgInfo.getKind()) {
2727     case ABIArgInfo::InAlloca: {
2728       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2729       if (RV.isAggregate()) {
2730         // Replace the placeholder with the appropriate argument slot GEP.
2731         llvm::Instruction *Placeholder =
2732             cast<llvm::Instruction>(RV.getAggregateAddr());
2733         CGBuilderTy::InsertPoint IP = Builder.saveIP();
2734         Builder.SetInsertPoint(Placeholder);
2735         llvm::Value *Addr = Builder.CreateStructGEP(
2736             ArgMemory, ArgInfo.getInAllocaFieldIndex());
2737         Builder.restoreIP(IP);
2738         deferPlaceholderReplacement(Placeholder, Addr);
2739       } else {
2740         // Store the RValue into the argument struct.
2741         llvm::Value *Addr =
2742             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
2743         unsigned AS = Addr->getType()->getPointerAddressSpace();
2744         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
2745         // There are some cases where a trivial bitcast is not avoidable.  The
2746         // definition of a type later in a translation unit may change it's type
2747         // from {}* to (%struct.foo*)*.
2748         if (Addr->getType() != MemType)
2749           Addr = Builder.CreateBitCast(Addr, MemType);
2750         LValue argLV = MakeAddrLValue(Addr, I->Ty, TypeAlign);
2751         EmitInitStoreOfNonAggregate(*this, RV, argLV);
2752       }
2753       break; // Don't increment IRArgNo!
2754     }
2755 
2756     case ABIArgInfo::Indirect: {
2757       if (RV.isScalar() || RV.isComplex()) {
2758         // Make a temporary alloca to pass the argument.
2759         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2760         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
2761           AI->setAlignment(ArgInfo.getIndirectAlign());
2762         Args.push_back(AI);
2763 
2764         LValue argLV = MakeAddrLValue(Args.back(), I->Ty, TypeAlign);
2765         EmitInitStoreOfNonAggregate(*this, RV, argLV);
2766 
2767         // Validate argument match.
2768         checkArgMatches(AI, IRArgNo, IRFuncTy);
2769       } else {
2770         // We want to avoid creating an unnecessary temporary+copy here;
2771         // however, we need one in three cases:
2772         // 1. If the argument is not byval, and we are required to copy the
2773         //    source.  (This case doesn't occur on any common architecture.)
2774         // 2. If the argument is byval, RV is not sufficiently aligned, and
2775         //    we cannot force it to be sufficiently aligned.
2776         // 3. If the argument is byval, but RV is located in an address space
2777         //    different than that of the argument (0).
2778         llvm::Value *Addr = RV.getAggregateAddr();
2779         unsigned Align = ArgInfo.getIndirectAlign();
2780         const llvm::DataLayout *TD = &CGM.getDataLayout();
2781         const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
2782         const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ?
2783           IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0);
2784         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
2785             (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
2786              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
2787              (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
2788           // Create an aligned temporary, and copy to it.
2789           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2790           if (Align > AI->getAlignment())
2791             AI->setAlignment(Align);
2792           Args.push_back(AI);
2793           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
2794 
2795           // Validate argument match.
2796           checkArgMatches(AI, IRArgNo, IRFuncTy);
2797         } else {
2798           // Skip the extra memcpy call.
2799           Args.push_back(Addr);
2800 
2801           // Validate argument match.
2802           checkArgMatches(Addr, IRArgNo, IRFuncTy);
2803         }
2804       }
2805       break;
2806     }
2807 
2808     case ABIArgInfo::Ignore:
2809       break;
2810 
2811     case ABIArgInfo::Extend:
2812     case ABIArgInfo::Direct: {
2813       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2814           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2815           ArgInfo.getDirectOffset() == 0) {
2816         llvm::Value *V;
2817         if (RV.isScalar())
2818           V = RV.getScalarVal();
2819         else
2820           V = Builder.CreateLoad(RV.getAggregateAddr());
2821 
2822         // If the argument doesn't match, perform a bitcast to coerce it.  This
2823         // can happen due to trivial type mismatches.
2824         if (IRArgNo < IRFuncTy->getNumParams() &&
2825             V->getType() != IRFuncTy->getParamType(IRArgNo))
2826           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2827         Args.push_back(V);
2828 
2829         checkArgMatches(V, IRArgNo, IRFuncTy);
2830         break;
2831       }
2832 
2833       // FIXME: Avoid the conversion through memory if possible.
2834       llvm::Value *SrcPtr;
2835       if (RV.isScalar() || RV.isComplex()) {
2836         SrcPtr = CreateMemTemp(I->Ty, "coerce");
2837         LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
2838         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
2839       } else
2840         SrcPtr = RV.getAggregateAddr();
2841 
2842       // If the value is offset in memory, apply the offset now.
2843       if (unsigned Offs = ArgInfo.getDirectOffset()) {
2844         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2845         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2846         SrcPtr = Builder.CreateBitCast(SrcPtr,
2847                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2848 
2849       }
2850 
2851       // If the coerce-to type is a first class aggregate, we flatten it and
2852       // pass the elements. Either way is semantically identical, but fast-isel
2853       // and the optimizer generally likes scalar values better than FCAs.
2854       // We cannot do this for functions using the AAPCS calling convention,
2855       // as structures are treated differently by that calling convention.
2856       llvm::StructType *STy =
2857             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
2858       if (STy && !isAAPCSVFP(CallInfo, getTarget())) {
2859         llvm::Type *SrcTy =
2860           cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
2861         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
2862         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
2863 
2864         // If the source type is smaller than the destination type of the
2865         // coerce-to logic, copy the source value into a temp alloca the size
2866         // of the destination type to allow loading all of it. The bits past
2867         // the source value are left undef.
2868         if (SrcSize < DstSize) {
2869           llvm::AllocaInst *TempAlloca
2870             = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
2871           Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
2872           SrcPtr = TempAlloca;
2873         } else {
2874           SrcPtr = Builder.CreateBitCast(SrcPtr,
2875                                          llvm::PointerType::getUnqual(STy));
2876         }
2877 
2878         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2879           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2880           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2881           // We don't know what we're loading from.
2882           LI->setAlignment(1);
2883           Args.push_back(LI);
2884 
2885           // Validate argument match.
2886           checkArgMatches(LI, IRArgNo, IRFuncTy);
2887         }
2888       } else {
2889         // In the simple case, just pass the coerced loaded value.
2890         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2891                                          *this));
2892 
2893         // Validate argument match.
2894         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2895       }
2896 
2897       break;
2898     }
2899 
2900     case ABIArgInfo::Expand:
2901       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2902       IRArgNo = Args.size();
2903       break;
2904     }
2905   }
2906 
2907   if (SwapThisWithSRet)
2908     std::swap(Args[0], Args[1]);
2909 
2910   if (ArgMemory) {
2911     llvm::Value *Arg = ArgMemory;
2912     if (CallInfo.isVariadic()) {
2913       // When passing non-POD arguments by value to variadic functions, we will
2914       // end up with a variadic prototype and an inalloca call site.  In such
2915       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
2916       // the callee.
2917       unsigned CalleeAS =
2918           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
2919       Callee = Builder.CreateBitCast(
2920           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
2921     } else {
2922       llvm::Type *LastParamTy =
2923           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
2924       if (Arg->getType() != LastParamTy) {
2925 #ifndef NDEBUG
2926         // Assert that these structs have equivalent element types.
2927         llvm::StructType *FullTy = CallInfo.getArgStruct();
2928         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
2929             cast<llvm::PointerType>(LastParamTy)->getElementType());
2930         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
2931         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
2932                                                 DE = DeclaredTy->element_end(),
2933                                                 FI = FullTy->element_begin();
2934              DI != DE; ++DI, ++FI)
2935           assert(*DI == *FI);
2936 #endif
2937         Arg = Builder.CreateBitCast(Arg, LastParamTy);
2938       }
2939     }
2940     Args.push_back(Arg);
2941   }
2942 
2943   if (!CallArgs.getCleanupsToDeactivate().empty())
2944     deactivateArgCleanupsBeforeCall(*this, CallArgs);
2945 
2946   // If the callee is a bitcast of a function to a varargs pointer to function
2947   // type, check to see if we can remove the bitcast.  This handles some cases
2948   // with unprototyped functions.
2949   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2950     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2951       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2952       llvm::FunctionType *CurFT =
2953         cast<llvm::FunctionType>(CurPT->getElementType());
2954       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2955 
2956       if (CE->getOpcode() == llvm::Instruction::BitCast &&
2957           ActualFT->getReturnType() == CurFT->getReturnType() &&
2958           ActualFT->getNumParams() == CurFT->getNumParams() &&
2959           ActualFT->getNumParams() == Args.size() &&
2960           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2961         bool ArgsMatch = true;
2962         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2963           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2964             ArgsMatch = false;
2965             break;
2966           }
2967 
2968         // Strip the cast if we can get away with it.  This is a nice cleanup,
2969         // but also allows us to inline the function at -O0 if it is marked
2970         // always_inline.
2971         if (ArgsMatch)
2972           Callee = CalleeF;
2973       }
2974     }
2975 
2976   unsigned CallingConv;
2977   CodeGen::AttributeListType AttributeList;
2978   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
2979                              CallingConv, true);
2980   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
2981                                                      AttributeList);
2982 
2983   llvm::BasicBlock *InvokeDest = nullptr;
2984   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
2985                           llvm::Attribute::NoUnwind))
2986     InvokeDest = getInvokeDest();
2987 
2988   llvm::CallSite CS;
2989   if (!InvokeDest) {
2990     CS = Builder.CreateCall(Callee, Args);
2991   } else {
2992     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2993     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2994     EmitBlock(Cont);
2995   }
2996   if (callOrInvoke)
2997     *callOrInvoke = CS.getInstruction();
2998 
2999   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
3000       !CS.hasFnAttr(llvm::Attribute::NoInline))
3001     Attrs =
3002         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3003                            llvm::Attribute::AlwaysInline);
3004 
3005   CS.setAttributes(Attrs);
3006   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
3007 
3008   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3009   // optimizer it can aggressively ignore unwind edges.
3010   if (CGM.getLangOpts().ObjCAutoRefCount)
3011     AddObjCARCExceptionMetadata(CS.getInstruction());
3012 
3013   // If the call doesn't return, finish the basic block and clear the
3014   // insertion point; this allows the rest of IRgen to discard
3015   // unreachable code.
3016   if (CS.doesNotReturn()) {
3017     Builder.CreateUnreachable();
3018     Builder.ClearInsertionPoint();
3019 
3020     // FIXME: For now, emit a dummy basic block because expr emitters in
3021     // generally are not ready to handle emitting expressions at unreachable
3022     // points.
3023     EnsureInsertPoint();
3024 
3025     // Return a reasonable RValue.
3026     return GetUndefRValue(RetTy);
3027   }
3028 
3029   llvm::Instruction *CI = CS.getInstruction();
3030   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
3031     CI->setName("call");
3032 
3033   // Emit any writebacks immediately.  Arguably this should happen
3034   // after any return-value munging.
3035   if (CallArgs.hasWritebacks())
3036     emitWritebacks(*this, CallArgs);
3037 
3038   // The stack cleanup for inalloca arguments has to run out of the normal
3039   // lexical order, so deactivate it and run it manually here.
3040   CallArgs.freeArgumentMemory(*this);
3041 
3042   switch (RetAI.getKind()) {
3043   case ABIArgInfo::InAlloca:
3044   case ABIArgInfo::Indirect:
3045     return convertTempToRValue(SRetPtr, RetTy, SourceLocation());
3046 
3047   case ABIArgInfo::Ignore:
3048     // If we are ignoring an argument that had a result, make sure to
3049     // construct the appropriate return value for our caller.
3050     return GetUndefRValue(RetTy);
3051 
3052   case ABIArgInfo::Extend:
3053   case ABIArgInfo::Direct: {
3054     llvm::Type *RetIRTy = ConvertType(RetTy);
3055     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
3056       switch (getEvaluationKind(RetTy)) {
3057       case TEK_Complex: {
3058         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
3059         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
3060         return RValue::getComplex(std::make_pair(Real, Imag));
3061       }
3062       case TEK_Aggregate: {
3063         llvm::Value *DestPtr = ReturnValue.getValue();
3064         bool DestIsVolatile = ReturnValue.isVolatile();
3065 
3066         if (!DestPtr) {
3067           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
3068           DestIsVolatile = false;
3069         }
3070         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
3071         return RValue::getAggregate(DestPtr);
3072       }
3073       case TEK_Scalar: {
3074         // If the argument doesn't match, perform a bitcast to coerce it.  This
3075         // can happen due to trivial type mismatches.
3076         llvm::Value *V = CI;
3077         if (V->getType() != RetIRTy)
3078           V = Builder.CreateBitCast(V, RetIRTy);
3079         return RValue::get(V);
3080       }
3081       }
3082       llvm_unreachable("bad evaluation kind");
3083     }
3084 
3085     llvm::Value *DestPtr = ReturnValue.getValue();
3086     bool DestIsVolatile = ReturnValue.isVolatile();
3087 
3088     if (!DestPtr) {
3089       DestPtr = CreateMemTemp(RetTy, "coerce");
3090       DestIsVolatile = false;
3091     }
3092 
3093     // If the value is offset in memory, apply the offset now.
3094     llvm::Value *StorePtr = DestPtr;
3095     if (unsigned Offs = RetAI.getDirectOffset()) {
3096       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
3097       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
3098       StorePtr = Builder.CreateBitCast(StorePtr,
3099                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
3100     }
3101     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
3102 
3103     return convertTempToRValue(DestPtr, RetTy, SourceLocation());
3104   }
3105 
3106   case ABIArgInfo::Expand:
3107     llvm_unreachable("Invalid ABI kind for return argument");
3108   }
3109 
3110   llvm_unreachable("Unhandled ABIArgInfo::Kind");
3111 }
3112 
3113 /* VarArg handling */
3114 
3115 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
3116   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
3117 }
3118