1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "clang/Frontend/CodeGenOptions.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 52 case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64; 53 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 54 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 55 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 56 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 57 // TODO: Add support for __pascal to LLVM. 58 case CC_X86Pascal: return llvm::CallingConv::C; 59 // TODO: Add support for __vectorcall to LLVM. 60 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 61 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 62 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 63 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 64 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 65 case CC_Swift: return llvm::CallingConv::Swift; 66 } 67 } 68 69 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 70 /// qualification. 71 /// FIXME: address space qualification? 72 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 73 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 74 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 75 } 76 77 /// Returns the canonical formal type of the given C++ method. 78 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 79 return MD->getType()->getCanonicalTypeUnqualified() 80 .getAs<FunctionProtoType>(); 81 } 82 83 /// Returns the "extra-canonicalized" return type, which discards 84 /// qualifiers on the return type. Codegen doesn't care about them, 85 /// and it makes ABI code a little easier to be able to assume that 86 /// all parameter and return types are top-level unqualified. 87 static CanQualType GetReturnType(QualType RetTy) { 88 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 89 } 90 91 /// Arrange the argument and result information for a value of the given 92 /// unprototyped freestanding function type. 93 const CGFunctionInfo & 94 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 95 // When translating an unprototyped function type, always use a 96 // variadic type. 97 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 98 /*instanceMethod=*/false, 99 /*chainCall=*/false, None, 100 FTNP->getExtInfo(), {}, RequiredArgs(0)); 101 } 102 103 /// Adds the formal paramaters in FPT to the given prefix. If any parameter in 104 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 105 static void appendParameterTypes(const CodeGenTypes &CGT, 106 SmallVectorImpl<CanQualType> &prefix, 107 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 108 CanQual<FunctionProtoType> FPT, 109 const FunctionDecl *FD) { 110 // Fill out paramInfos. 111 if (FPT->hasExtParameterInfos() || !paramInfos.empty()) { 112 assert(paramInfos.size() <= prefix.size()); 113 auto protoParamInfos = FPT->getExtParameterInfos(); 114 paramInfos.reserve(prefix.size() + protoParamInfos.size()); 115 paramInfos.resize(prefix.size()); 116 paramInfos.append(protoParamInfos.begin(), protoParamInfos.end()); 117 } 118 119 // Fast path: unknown target. 120 if (FD == nullptr) { 121 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 122 return; 123 } 124 125 // In the vast majority cases, we'll have precisely FPT->getNumParams() 126 // parameters; the only thing that can change this is the presence of 127 // pass_object_size. So, we preallocate for the common case. 128 prefix.reserve(prefix.size() + FPT->getNumParams()); 129 130 assert(FD->getNumParams() == FPT->getNumParams()); 131 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 132 prefix.push_back(FPT->getParamType(I)); 133 if (FD->getParamDecl(I)->hasAttr<PassObjectSizeAttr>()) 134 prefix.push_back(CGT.getContext().getSizeType()); 135 } 136 } 137 138 /// Arrange the LLVM function layout for a value of the given function 139 /// type, on top of any implicit parameters already stored. 140 static const CGFunctionInfo & 141 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 142 SmallVectorImpl<CanQualType> &prefix, 143 CanQual<FunctionProtoType> FTP, 144 const FunctionDecl *FD) { 145 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 146 RequiredArgs Required = 147 RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD); 148 // FIXME: Kill copy. 149 appendParameterTypes(CGT, prefix, paramInfos, FTP, FD); 150 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 151 152 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 153 /*chainCall=*/false, prefix, 154 FTP->getExtInfo(), paramInfos, 155 Required); 156 } 157 158 /// Arrange the argument and result information for a value of the 159 /// given freestanding function type. 160 const CGFunctionInfo & 161 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 162 const FunctionDecl *FD) { 163 SmallVector<CanQualType, 16> argTypes; 164 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 165 FTP, FD); 166 } 167 168 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 169 // Set the appropriate calling convention for the Function. 170 if (D->hasAttr<StdCallAttr>()) 171 return CC_X86StdCall; 172 173 if (D->hasAttr<FastCallAttr>()) 174 return CC_X86FastCall; 175 176 if (D->hasAttr<ThisCallAttr>()) 177 return CC_X86ThisCall; 178 179 if (D->hasAttr<VectorCallAttr>()) 180 return CC_X86VectorCall; 181 182 if (D->hasAttr<PascalAttr>()) 183 return CC_X86Pascal; 184 185 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 186 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 187 188 if (D->hasAttr<IntelOclBiccAttr>()) 189 return CC_IntelOclBicc; 190 191 if (D->hasAttr<MSABIAttr>()) 192 return IsWindows ? CC_C : CC_X86_64Win64; 193 194 if (D->hasAttr<SysVABIAttr>()) 195 return IsWindows ? CC_X86_64SysV : CC_C; 196 197 if (D->hasAttr<PreserveMostAttr>()) 198 return CC_PreserveMost; 199 200 if (D->hasAttr<PreserveAllAttr>()) 201 return CC_PreserveAll; 202 203 return CC_C; 204 } 205 206 /// Arrange the argument and result information for a call to an 207 /// unknown C++ non-static member function of the given abstract type. 208 /// (Zero value of RD means we don't have any meaningful "this" argument type, 209 /// so fall back to a generic pointer type). 210 /// The member function must be an ordinary function, i.e. not a 211 /// constructor or destructor. 212 const CGFunctionInfo & 213 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 214 const FunctionProtoType *FTP, 215 const CXXMethodDecl *MD) { 216 SmallVector<CanQualType, 16> argTypes; 217 218 // Add the 'this' pointer. 219 if (RD) 220 argTypes.push_back(GetThisType(Context, RD)); 221 else 222 argTypes.push_back(Context.VoidPtrTy); 223 224 return ::arrangeLLVMFunctionInfo( 225 *this, true, argTypes, 226 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 227 } 228 229 /// Arrange the argument and result information for a declaration or 230 /// definition of the given C++ non-static member function. The 231 /// member function must be an ordinary function, i.e. not a 232 /// constructor or destructor. 233 const CGFunctionInfo & 234 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 235 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 236 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 237 238 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 239 240 if (MD->isInstance()) { 241 // The abstract case is perfectly fine. 242 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 243 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 244 } 245 246 return arrangeFreeFunctionType(prototype, MD); 247 } 248 249 bool CodeGenTypes::inheritingCtorHasParams( 250 const InheritedConstructor &Inherited, CXXCtorType Type) { 251 // Parameters are unnecessary if we're constructing a base class subobject 252 // and the inherited constructor lives in a virtual base. 253 return Type == Ctor_Complete || 254 !Inherited.getShadowDecl()->constructsVirtualBase() || 255 !Target.getCXXABI().hasConstructorVariants(); 256 } 257 258 const CGFunctionInfo & 259 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 260 StructorType Type) { 261 262 SmallVector<CanQualType, 16> argTypes; 263 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 264 argTypes.push_back(GetThisType(Context, MD->getParent())); 265 266 bool PassParams = true; 267 268 GlobalDecl GD; 269 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 270 GD = GlobalDecl(CD, toCXXCtorType(Type)); 271 272 // A base class inheriting constructor doesn't get forwarded arguments 273 // needed to construct a virtual base (or base class thereof). 274 if (auto Inherited = CD->getInheritedConstructor()) 275 PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); 276 } else { 277 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 278 GD = GlobalDecl(DD, toCXXDtorType(Type)); 279 } 280 281 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 282 283 // Add the formal parameters. 284 if (PassParams) 285 appendParameterTypes(*this, argTypes, paramInfos, FTP, MD); 286 287 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 288 289 RequiredArgs required = 290 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 291 : RequiredArgs::All); 292 293 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 294 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 295 ? argTypes.front() 296 : TheCXXABI.hasMostDerivedReturn(GD) 297 ? CGM.getContext().VoidPtrTy 298 : Context.VoidTy; 299 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 300 /*chainCall=*/false, argTypes, extInfo, 301 paramInfos, required); 302 } 303 304 static SmallVector<CanQualType, 16> 305 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 306 SmallVector<CanQualType, 16> argTypes; 307 for (auto &arg : args) 308 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 309 return argTypes; 310 } 311 312 static SmallVector<CanQualType, 16> 313 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 314 SmallVector<CanQualType, 16> argTypes; 315 for (auto &arg : args) 316 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 317 return argTypes; 318 } 319 320 static void addExtParameterInfosForCall( 321 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 322 const FunctionProtoType *proto, 323 unsigned prefixArgs, 324 unsigned totalArgs) { 325 assert(proto->hasExtParameterInfos()); 326 assert(paramInfos.size() <= prefixArgs); 327 assert(proto->getNumParams() + prefixArgs <= totalArgs); 328 329 // Add default infos for any prefix args that don't already have infos. 330 paramInfos.resize(prefixArgs); 331 332 // Add infos for the prototype. 333 auto protoInfos = proto->getExtParameterInfos(); 334 paramInfos.append(protoInfos.begin(), protoInfos.end()); 335 336 // Add default infos for the variadic arguments. 337 paramInfos.resize(totalArgs); 338 } 339 340 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 341 getExtParameterInfosForCall(const FunctionProtoType *proto, 342 unsigned prefixArgs, unsigned totalArgs) { 343 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 344 if (proto->hasExtParameterInfos()) { 345 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 346 } 347 return result; 348 } 349 350 /// Arrange a call to a C++ method, passing the given arguments. 351 const CGFunctionInfo & 352 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 353 const CXXConstructorDecl *D, 354 CXXCtorType CtorKind, 355 unsigned ExtraArgs) { 356 // FIXME: Kill copy. 357 SmallVector<CanQualType, 16> ArgTypes; 358 for (const auto &Arg : args) 359 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 360 361 CanQual<FunctionProtoType> FPT = GetFormalType(D); 362 RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs, D); 363 GlobalDecl GD(D, CtorKind); 364 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 365 ? ArgTypes.front() 366 : TheCXXABI.hasMostDerivedReturn(GD) 367 ? CGM.getContext().VoidPtrTy 368 : Context.VoidTy; 369 370 FunctionType::ExtInfo Info = FPT->getExtInfo(); 371 auto ParamInfos = getExtParameterInfosForCall(FPT.getTypePtr(), 1 + ExtraArgs, 372 ArgTypes.size()); 373 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 374 /*chainCall=*/false, ArgTypes, Info, 375 ParamInfos, Required); 376 } 377 378 /// Arrange the argument and result information for the declaration or 379 /// definition of the given function. 380 const CGFunctionInfo & 381 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 382 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 383 if (MD->isInstance()) 384 return arrangeCXXMethodDeclaration(MD); 385 386 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 387 388 assert(isa<FunctionType>(FTy)); 389 390 // When declaring a function without a prototype, always use a 391 // non-variadic type. 392 if (isa<FunctionNoProtoType>(FTy)) { 393 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 394 return arrangeLLVMFunctionInfo( 395 noProto->getReturnType(), /*instanceMethod=*/false, 396 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 397 } 398 399 assert(isa<FunctionProtoType>(FTy)); 400 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>(), FD); 401 } 402 403 /// Arrange the argument and result information for the declaration or 404 /// definition of an Objective-C method. 405 const CGFunctionInfo & 406 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 407 // It happens that this is the same as a call with no optional 408 // arguments, except also using the formal 'self' type. 409 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 410 } 411 412 /// Arrange the argument and result information for the function type 413 /// through which to perform a send to the given Objective-C method, 414 /// using the given receiver type. The receiver type is not always 415 /// the 'self' type of the method or even an Objective-C pointer type. 416 /// This is *not* the right method for actually performing such a 417 /// message send, due to the possibility of optional arguments. 418 const CGFunctionInfo & 419 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 420 QualType receiverType) { 421 SmallVector<CanQualType, 16> argTys; 422 argTys.push_back(Context.getCanonicalParamType(receiverType)); 423 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 424 // FIXME: Kill copy? 425 for (const auto *I : MD->parameters()) { 426 argTys.push_back(Context.getCanonicalParamType(I->getType())); 427 } 428 429 FunctionType::ExtInfo einfo; 430 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 431 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 432 433 if (getContext().getLangOpts().ObjCAutoRefCount && 434 MD->hasAttr<NSReturnsRetainedAttr>()) 435 einfo = einfo.withProducesResult(true); 436 437 RequiredArgs required = 438 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 439 440 return arrangeLLVMFunctionInfo( 441 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 442 /*chainCall=*/false, argTys, einfo, {}, required); 443 } 444 445 const CGFunctionInfo & 446 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 447 const CallArgList &args) { 448 auto argTypes = getArgTypesForCall(Context, args); 449 FunctionType::ExtInfo einfo; 450 451 return arrangeLLVMFunctionInfo( 452 GetReturnType(returnType), /*instanceMethod=*/false, 453 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 454 } 455 456 const CGFunctionInfo & 457 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 458 // FIXME: Do we need to handle ObjCMethodDecl? 459 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 460 461 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 462 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 463 464 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 465 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 466 467 return arrangeFunctionDeclaration(FD); 468 } 469 470 /// Arrange a thunk that takes 'this' as the first parameter followed by 471 /// varargs. Return a void pointer, regardless of the actual return type. 472 /// The body of the thunk will end in a musttail call to a function of the 473 /// correct type, and the caller will bitcast the function to the correct 474 /// prototype. 475 const CGFunctionInfo & 476 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) { 477 assert(MD->isVirtual() && "only virtual memptrs have thunks"); 478 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 479 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 480 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 481 /*chainCall=*/false, ArgTys, 482 FTP->getExtInfo(), {}, RequiredArgs(1)); 483 } 484 485 const CGFunctionInfo & 486 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 487 CXXCtorType CT) { 488 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 489 490 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 491 SmallVector<CanQualType, 2> ArgTys; 492 const CXXRecordDecl *RD = CD->getParent(); 493 ArgTys.push_back(GetThisType(Context, RD)); 494 if (CT == Ctor_CopyingClosure) 495 ArgTys.push_back(*FTP->param_type_begin()); 496 if (RD->getNumVBases() > 0) 497 ArgTys.push_back(Context.IntTy); 498 CallingConv CC = Context.getDefaultCallingConvention( 499 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 500 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 501 /*chainCall=*/false, ArgTys, 502 FunctionType::ExtInfo(CC), {}, 503 RequiredArgs::All); 504 } 505 506 /// Arrange a call as unto a free function, except possibly with an 507 /// additional number of formal parameters considered required. 508 static const CGFunctionInfo & 509 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 510 CodeGenModule &CGM, 511 const CallArgList &args, 512 const FunctionType *fnType, 513 unsigned numExtraRequiredArgs, 514 bool chainCall) { 515 assert(args.size() >= numExtraRequiredArgs); 516 517 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 518 519 // In most cases, there are no optional arguments. 520 RequiredArgs required = RequiredArgs::All; 521 522 // If we have a variadic prototype, the required arguments are the 523 // extra prefix plus the arguments in the prototype. 524 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 525 if (proto->isVariadic()) 526 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 527 528 if (proto->hasExtParameterInfos()) 529 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 530 args.size()); 531 532 // If we don't have a prototype at all, but we're supposed to 533 // explicitly use the variadic convention for unprototyped calls, 534 // treat all of the arguments as required but preserve the nominal 535 // possibility of variadics. 536 } else if (CGM.getTargetCodeGenInfo() 537 .isNoProtoCallVariadic(args, 538 cast<FunctionNoProtoType>(fnType))) { 539 required = RequiredArgs(args.size()); 540 } 541 542 // FIXME: Kill copy. 543 SmallVector<CanQualType, 16> argTypes; 544 for (const auto &arg : args) 545 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 546 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 547 /*instanceMethod=*/false, chainCall, 548 argTypes, fnType->getExtInfo(), paramInfos, 549 required); 550 } 551 552 /// Figure out the rules for calling a function with the given formal 553 /// type using the given arguments. The arguments are necessary 554 /// because the function might be unprototyped, in which case it's 555 /// target-dependent in crazy ways. 556 const CGFunctionInfo & 557 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 558 const FunctionType *fnType, 559 bool chainCall) { 560 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 561 chainCall ? 1 : 0, chainCall); 562 } 563 564 /// A block function is essentially a free function with an 565 /// extra implicit argument. 566 const CGFunctionInfo & 567 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 568 const FunctionType *fnType) { 569 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 570 /*chainCall=*/false); 571 } 572 573 const CGFunctionInfo & 574 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 575 const FunctionArgList ¶ms) { 576 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 577 auto argTypes = getArgTypesForDeclaration(Context, params); 578 579 return arrangeLLVMFunctionInfo( 580 GetReturnType(proto->getReturnType()), 581 /*instanceMethod*/ false, /*chainCall*/ false, argTypes, 582 proto->getExtInfo(), paramInfos, 583 RequiredArgs::forPrototypePlus(proto, 1, nullptr)); 584 } 585 586 const CGFunctionInfo & 587 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 588 const CallArgList &args) { 589 // FIXME: Kill copy. 590 SmallVector<CanQualType, 16> argTypes; 591 for (const auto &Arg : args) 592 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 593 return arrangeLLVMFunctionInfo( 594 GetReturnType(resultType), /*instanceMethod=*/false, 595 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 596 /*paramInfos=*/ {}, RequiredArgs::All); 597 } 598 599 const CGFunctionInfo & 600 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 601 const FunctionArgList &args) { 602 auto argTypes = getArgTypesForDeclaration(Context, args); 603 604 return arrangeLLVMFunctionInfo( 605 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 606 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 607 } 608 609 const CGFunctionInfo & 610 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 611 ArrayRef<CanQualType> argTypes) { 612 return arrangeLLVMFunctionInfo( 613 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 614 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 615 } 616 617 /// Arrange a call to a C++ method, passing the given arguments. 618 const CGFunctionInfo & 619 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 620 const FunctionProtoType *proto, 621 RequiredArgs required) { 622 unsigned numRequiredArgs = 623 (proto->isVariadic() ? required.getNumRequiredArgs() : args.size()); 624 unsigned numPrefixArgs = numRequiredArgs - proto->getNumParams(); 625 auto paramInfos = 626 getExtParameterInfosForCall(proto, numPrefixArgs, args.size()); 627 628 // FIXME: Kill copy. 629 auto argTypes = getArgTypesForCall(Context, args); 630 631 FunctionType::ExtInfo info = proto->getExtInfo(); 632 return arrangeLLVMFunctionInfo( 633 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 634 /*chainCall=*/false, argTypes, info, paramInfos, required); 635 } 636 637 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 638 return arrangeLLVMFunctionInfo( 639 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 640 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 641 } 642 643 const CGFunctionInfo & 644 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 645 const CallArgList &args) { 646 assert(signature.arg_size() <= args.size()); 647 if (signature.arg_size() == args.size()) 648 return signature; 649 650 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 651 auto sigParamInfos = signature.getExtParameterInfos(); 652 if (!sigParamInfos.empty()) { 653 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 654 paramInfos.resize(args.size()); 655 } 656 657 auto argTypes = getArgTypesForCall(Context, args); 658 659 assert(signature.getRequiredArgs().allowsOptionalArgs()); 660 return arrangeLLVMFunctionInfo(signature.getReturnType(), 661 signature.isInstanceMethod(), 662 signature.isChainCall(), 663 argTypes, 664 signature.getExtInfo(), 665 paramInfos, 666 signature.getRequiredArgs()); 667 } 668 669 /// Arrange the argument and result information for an abstract value 670 /// of a given function type. This is the method which all of the 671 /// above functions ultimately defer to. 672 const CGFunctionInfo & 673 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 674 bool instanceMethod, 675 bool chainCall, 676 ArrayRef<CanQualType> argTypes, 677 FunctionType::ExtInfo info, 678 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 679 RequiredArgs required) { 680 assert(std::all_of(argTypes.begin(), argTypes.end(), 681 std::mem_fun_ref(&CanQualType::isCanonicalAsParam))); 682 683 // Lookup or create unique function info. 684 llvm::FoldingSetNodeID ID; 685 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 686 required, resultType, argTypes); 687 688 void *insertPos = nullptr; 689 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 690 if (FI) 691 return *FI; 692 693 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 694 695 // Construct the function info. We co-allocate the ArgInfos. 696 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 697 paramInfos, resultType, argTypes, required); 698 FunctionInfos.InsertNode(FI, insertPos); 699 700 bool inserted = FunctionsBeingProcessed.insert(FI).second; 701 (void)inserted; 702 assert(inserted && "Recursively being processed?"); 703 704 // Compute ABI information. 705 if (info.getCC() != CC_Swift) { 706 getABIInfo().computeInfo(*FI); 707 } else { 708 swiftcall::computeABIInfo(CGM, *FI); 709 } 710 711 // Loop over all of the computed argument and return value info. If any of 712 // them are direct or extend without a specified coerce type, specify the 713 // default now. 714 ABIArgInfo &retInfo = FI->getReturnInfo(); 715 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 716 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 717 718 for (auto &I : FI->arguments()) 719 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 720 I.info.setCoerceToType(ConvertType(I.type)); 721 722 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 723 assert(erased && "Not in set?"); 724 725 return *FI; 726 } 727 728 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 729 bool instanceMethod, 730 bool chainCall, 731 const FunctionType::ExtInfo &info, 732 ArrayRef<ExtParameterInfo> paramInfos, 733 CanQualType resultType, 734 ArrayRef<CanQualType> argTypes, 735 RequiredArgs required) { 736 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 737 738 void *buffer = 739 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 740 argTypes.size() + 1, paramInfos.size())); 741 742 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 743 FI->CallingConvention = llvmCC; 744 FI->EffectiveCallingConvention = llvmCC; 745 FI->ASTCallingConvention = info.getCC(); 746 FI->InstanceMethod = instanceMethod; 747 FI->ChainCall = chainCall; 748 FI->NoReturn = info.getNoReturn(); 749 FI->ReturnsRetained = info.getProducesResult(); 750 FI->Required = required; 751 FI->HasRegParm = info.getHasRegParm(); 752 FI->RegParm = info.getRegParm(); 753 FI->ArgStruct = nullptr; 754 FI->ArgStructAlign = 0; 755 FI->NumArgs = argTypes.size(); 756 FI->HasExtParameterInfos = !paramInfos.empty(); 757 FI->getArgsBuffer()[0].type = resultType; 758 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 759 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 760 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 761 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 762 return FI; 763 } 764 765 /***/ 766 767 namespace { 768 // ABIArgInfo::Expand implementation. 769 770 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 771 struct TypeExpansion { 772 enum TypeExpansionKind { 773 // Elements of constant arrays are expanded recursively. 774 TEK_ConstantArray, 775 // Record fields are expanded recursively (but if record is a union, only 776 // the field with the largest size is expanded). 777 TEK_Record, 778 // For complex types, real and imaginary parts are expanded recursively. 779 TEK_Complex, 780 // All other types are not expandable. 781 TEK_None 782 }; 783 784 const TypeExpansionKind Kind; 785 786 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 787 virtual ~TypeExpansion() {} 788 }; 789 790 struct ConstantArrayExpansion : TypeExpansion { 791 QualType EltTy; 792 uint64_t NumElts; 793 794 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 795 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 796 static bool classof(const TypeExpansion *TE) { 797 return TE->Kind == TEK_ConstantArray; 798 } 799 }; 800 801 struct RecordExpansion : TypeExpansion { 802 SmallVector<const CXXBaseSpecifier *, 1> Bases; 803 804 SmallVector<const FieldDecl *, 1> Fields; 805 806 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 807 SmallVector<const FieldDecl *, 1> &&Fields) 808 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 809 Fields(std::move(Fields)) {} 810 static bool classof(const TypeExpansion *TE) { 811 return TE->Kind == TEK_Record; 812 } 813 }; 814 815 struct ComplexExpansion : TypeExpansion { 816 QualType EltTy; 817 818 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 819 static bool classof(const TypeExpansion *TE) { 820 return TE->Kind == TEK_Complex; 821 } 822 }; 823 824 struct NoExpansion : TypeExpansion { 825 NoExpansion() : TypeExpansion(TEK_None) {} 826 static bool classof(const TypeExpansion *TE) { 827 return TE->Kind == TEK_None; 828 } 829 }; 830 } // namespace 831 832 static std::unique_ptr<TypeExpansion> 833 getTypeExpansion(QualType Ty, const ASTContext &Context) { 834 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 835 return llvm::make_unique<ConstantArrayExpansion>( 836 AT->getElementType(), AT->getSize().getZExtValue()); 837 } 838 if (const RecordType *RT = Ty->getAs<RecordType>()) { 839 SmallVector<const CXXBaseSpecifier *, 1> Bases; 840 SmallVector<const FieldDecl *, 1> Fields; 841 const RecordDecl *RD = RT->getDecl(); 842 assert(!RD->hasFlexibleArrayMember() && 843 "Cannot expand structure with flexible array."); 844 if (RD->isUnion()) { 845 // Unions can be here only in degenerative cases - all the fields are same 846 // after flattening. Thus we have to use the "largest" field. 847 const FieldDecl *LargestFD = nullptr; 848 CharUnits UnionSize = CharUnits::Zero(); 849 850 for (const auto *FD : RD->fields()) { 851 // Skip zero length bitfields. 852 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 853 continue; 854 assert(!FD->isBitField() && 855 "Cannot expand structure with bit-field members."); 856 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 857 if (UnionSize < FieldSize) { 858 UnionSize = FieldSize; 859 LargestFD = FD; 860 } 861 } 862 if (LargestFD) 863 Fields.push_back(LargestFD); 864 } else { 865 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 866 assert(!CXXRD->isDynamicClass() && 867 "cannot expand vtable pointers in dynamic classes"); 868 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 869 Bases.push_back(&BS); 870 } 871 872 for (const auto *FD : RD->fields()) { 873 // Skip zero length bitfields. 874 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 875 continue; 876 assert(!FD->isBitField() && 877 "Cannot expand structure with bit-field members."); 878 Fields.push_back(FD); 879 } 880 } 881 return llvm::make_unique<RecordExpansion>(std::move(Bases), 882 std::move(Fields)); 883 } 884 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 885 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 886 } 887 return llvm::make_unique<NoExpansion>(); 888 } 889 890 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 891 auto Exp = getTypeExpansion(Ty, Context); 892 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 893 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 894 } 895 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 896 int Res = 0; 897 for (auto BS : RExp->Bases) 898 Res += getExpansionSize(BS->getType(), Context); 899 for (auto FD : RExp->Fields) 900 Res += getExpansionSize(FD->getType(), Context); 901 return Res; 902 } 903 if (isa<ComplexExpansion>(Exp.get())) 904 return 2; 905 assert(isa<NoExpansion>(Exp.get())); 906 return 1; 907 } 908 909 void 910 CodeGenTypes::getExpandedTypes(QualType Ty, 911 SmallVectorImpl<llvm::Type *>::iterator &TI) { 912 auto Exp = getTypeExpansion(Ty, Context); 913 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 914 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 915 getExpandedTypes(CAExp->EltTy, TI); 916 } 917 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 918 for (auto BS : RExp->Bases) 919 getExpandedTypes(BS->getType(), TI); 920 for (auto FD : RExp->Fields) 921 getExpandedTypes(FD->getType(), TI); 922 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 923 llvm::Type *EltTy = ConvertType(CExp->EltTy); 924 *TI++ = EltTy; 925 *TI++ = EltTy; 926 } else { 927 assert(isa<NoExpansion>(Exp.get())); 928 *TI++ = ConvertType(Ty); 929 } 930 } 931 932 static void forConstantArrayExpansion(CodeGenFunction &CGF, 933 ConstantArrayExpansion *CAE, 934 Address BaseAddr, 935 llvm::function_ref<void(Address)> Fn) { 936 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 937 CharUnits EltAlign = 938 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 939 940 for (int i = 0, n = CAE->NumElts; i < n; i++) { 941 llvm::Value *EltAddr = 942 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 943 Fn(Address(EltAddr, EltAlign)); 944 } 945 } 946 947 void CodeGenFunction::ExpandTypeFromArgs( 948 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 949 assert(LV.isSimple() && 950 "Unexpected non-simple lvalue during struct expansion."); 951 952 auto Exp = getTypeExpansion(Ty, getContext()); 953 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 954 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 955 [&](Address EltAddr) { 956 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 957 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 958 }); 959 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 960 Address This = LV.getAddress(); 961 for (const CXXBaseSpecifier *BS : RExp->Bases) { 962 // Perform a single step derived-to-base conversion. 963 Address Base = 964 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 965 /*NullCheckValue=*/false, SourceLocation()); 966 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 967 968 // Recurse onto bases. 969 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 970 } 971 for (auto FD : RExp->Fields) { 972 // FIXME: What are the right qualifiers here? 973 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 974 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 975 } 976 } else if (isa<ComplexExpansion>(Exp.get())) { 977 auto realValue = *AI++; 978 auto imagValue = *AI++; 979 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 980 } else { 981 assert(isa<NoExpansion>(Exp.get())); 982 EmitStoreThroughLValue(RValue::get(*AI++), LV); 983 } 984 } 985 986 void CodeGenFunction::ExpandTypeToArgs( 987 QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 988 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 989 auto Exp = getTypeExpansion(Ty, getContext()); 990 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 991 forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(), 992 [&](Address EltAddr) { 993 RValue EltRV = 994 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()); 995 ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos); 996 }); 997 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 998 Address This = RV.getAggregateAddress(); 999 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1000 // Perform a single step derived-to-base conversion. 1001 Address Base = 1002 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1003 /*NullCheckValue=*/false, SourceLocation()); 1004 RValue BaseRV = RValue::getAggregate(Base); 1005 1006 // Recurse onto bases. 1007 ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs, 1008 IRCallArgPos); 1009 } 1010 1011 LValue LV = MakeAddrLValue(This, Ty); 1012 for (auto FD : RExp->Fields) { 1013 RValue FldRV = EmitRValueForField(LV, FD, SourceLocation()); 1014 ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs, 1015 IRCallArgPos); 1016 } 1017 } else if (isa<ComplexExpansion>(Exp.get())) { 1018 ComplexPairTy CV = RV.getComplexVal(); 1019 IRCallArgs[IRCallArgPos++] = CV.first; 1020 IRCallArgs[IRCallArgPos++] = CV.second; 1021 } else { 1022 assert(isa<NoExpansion>(Exp.get())); 1023 assert(RV.isScalar() && 1024 "Unexpected non-scalar rvalue during struct expansion."); 1025 1026 // Insert a bitcast as needed. 1027 llvm::Value *V = RV.getScalarVal(); 1028 if (IRCallArgPos < IRFuncTy->getNumParams() && 1029 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1030 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1031 1032 IRCallArgs[IRCallArgPos++] = V; 1033 } 1034 } 1035 1036 /// Create a temporary allocation for the purposes of coercion. 1037 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1038 CharUnits MinAlign) { 1039 // Don't use an alignment that's worse than what LLVM would prefer. 1040 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1041 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1042 1043 return CGF.CreateTempAlloca(Ty, Align); 1044 } 1045 1046 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1047 /// accessing some number of bytes out of it, try to gep into the struct to get 1048 /// at its inner goodness. Dive as deep as possible without entering an element 1049 /// with an in-memory size smaller than DstSize. 1050 static Address 1051 EnterStructPointerForCoercedAccess(Address SrcPtr, 1052 llvm::StructType *SrcSTy, 1053 uint64_t DstSize, CodeGenFunction &CGF) { 1054 // We can't dive into a zero-element struct. 1055 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1056 1057 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1058 1059 // If the first elt is at least as large as what we're looking for, or if the 1060 // first element is the same size as the whole struct, we can enter it. The 1061 // comparison must be made on the store size and not the alloca size. Using 1062 // the alloca size may overstate the size of the load. 1063 uint64_t FirstEltSize = 1064 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1065 if (FirstEltSize < DstSize && 1066 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1067 return SrcPtr; 1068 1069 // GEP into the first element. 1070 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 1071 1072 // If the first element is a struct, recurse. 1073 llvm::Type *SrcTy = SrcPtr.getElementType(); 1074 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1075 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1076 1077 return SrcPtr; 1078 } 1079 1080 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1081 /// are either integers or pointers. This does a truncation of the value if it 1082 /// is too large or a zero extension if it is too small. 1083 /// 1084 /// This behaves as if the value were coerced through memory, so on big-endian 1085 /// targets the high bits are preserved in a truncation, while little-endian 1086 /// targets preserve the low bits. 1087 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1088 llvm::Type *Ty, 1089 CodeGenFunction &CGF) { 1090 if (Val->getType() == Ty) 1091 return Val; 1092 1093 if (isa<llvm::PointerType>(Val->getType())) { 1094 // If this is Pointer->Pointer avoid conversion to and from int. 1095 if (isa<llvm::PointerType>(Ty)) 1096 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1097 1098 // Convert the pointer to an integer so we can play with its width. 1099 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1100 } 1101 1102 llvm::Type *DestIntTy = Ty; 1103 if (isa<llvm::PointerType>(DestIntTy)) 1104 DestIntTy = CGF.IntPtrTy; 1105 1106 if (Val->getType() != DestIntTy) { 1107 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1108 if (DL.isBigEndian()) { 1109 // Preserve the high bits on big-endian targets. 1110 // That is what memory coercion does. 1111 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1112 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1113 1114 if (SrcSize > DstSize) { 1115 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1116 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1117 } else { 1118 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1119 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1120 } 1121 } else { 1122 // Little-endian targets preserve the low bits. No shifts required. 1123 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1124 } 1125 } 1126 1127 if (isa<llvm::PointerType>(Ty)) 1128 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1129 return Val; 1130 } 1131 1132 1133 1134 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1135 /// a pointer to an object of type \arg Ty, known to be aligned to 1136 /// \arg SrcAlign bytes. 1137 /// 1138 /// This safely handles the case when the src type is smaller than the 1139 /// destination type; in this situation the values of bits which not 1140 /// present in the src are undefined. 1141 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1142 CodeGenFunction &CGF) { 1143 llvm::Type *SrcTy = Src.getElementType(); 1144 1145 // If SrcTy and Ty are the same, just do a load. 1146 if (SrcTy == Ty) 1147 return CGF.Builder.CreateLoad(Src); 1148 1149 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1150 1151 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1152 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1153 SrcTy = Src.getType()->getElementType(); 1154 } 1155 1156 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1157 1158 // If the source and destination are integer or pointer types, just do an 1159 // extension or truncation to the desired type. 1160 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1161 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1162 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1163 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1164 } 1165 1166 // If load is legal, just bitcast the src pointer. 1167 if (SrcSize >= DstSize) { 1168 // Generally SrcSize is never greater than DstSize, since this means we are 1169 // losing bits. However, this can happen in cases where the structure has 1170 // additional padding, for example due to a user specified alignment. 1171 // 1172 // FIXME: Assert that we aren't truncating non-padding bits when have access 1173 // to that information. 1174 Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty)); 1175 return CGF.Builder.CreateLoad(Src); 1176 } 1177 1178 // Otherwise do coercion through memory. This is stupid, but simple. 1179 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1180 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1181 Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy); 1182 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1183 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1184 false); 1185 return CGF.Builder.CreateLoad(Tmp); 1186 } 1187 1188 // Function to store a first-class aggregate into memory. We prefer to 1189 // store the elements rather than the aggregate to be more friendly to 1190 // fast-isel. 1191 // FIXME: Do we need to recurse here? 1192 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1193 Address Dest, bool DestIsVolatile) { 1194 // Prefer scalar stores to first-class aggregate stores. 1195 if (llvm::StructType *STy = 1196 dyn_cast<llvm::StructType>(Val->getType())) { 1197 const llvm::StructLayout *Layout = 1198 CGF.CGM.getDataLayout().getStructLayout(STy); 1199 1200 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1201 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1202 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1203 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1204 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1205 } 1206 } else { 1207 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1208 } 1209 } 1210 1211 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1212 /// where the source and destination may have different types. The 1213 /// destination is known to be aligned to \arg DstAlign bytes. 1214 /// 1215 /// This safely handles the case when the src type is larger than the 1216 /// destination type; the upper bits of the src will be lost. 1217 static void CreateCoercedStore(llvm::Value *Src, 1218 Address Dst, 1219 bool DstIsVolatile, 1220 CodeGenFunction &CGF) { 1221 llvm::Type *SrcTy = Src->getType(); 1222 llvm::Type *DstTy = Dst.getType()->getElementType(); 1223 if (SrcTy == DstTy) { 1224 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1225 return; 1226 } 1227 1228 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1229 1230 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1231 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1232 DstTy = Dst.getType()->getElementType(); 1233 } 1234 1235 // If the source and destination are integer or pointer types, just do an 1236 // extension or truncation to the desired type. 1237 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1238 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1239 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1240 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1241 return; 1242 } 1243 1244 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1245 1246 // If store is legal, just bitcast the src pointer. 1247 if (SrcSize <= DstSize) { 1248 Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy)); 1249 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1250 } else { 1251 // Otherwise do coercion through memory. This is stupid, but 1252 // simple. 1253 1254 // Generally SrcSize is never greater than DstSize, since this means we are 1255 // losing bits. However, this can happen in cases where the structure has 1256 // additional padding, for example due to a user specified alignment. 1257 // 1258 // FIXME: Assert that we aren't truncating non-padding bits when have access 1259 // to that information. 1260 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1261 CGF.Builder.CreateStore(Src, Tmp); 1262 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1263 Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy); 1264 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1265 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1266 false); 1267 } 1268 } 1269 1270 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1271 const ABIArgInfo &info) { 1272 if (unsigned offset = info.getDirectOffset()) { 1273 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1274 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1275 CharUnits::fromQuantity(offset)); 1276 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1277 } 1278 return addr; 1279 } 1280 1281 namespace { 1282 1283 /// Encapsulates information about the way function arguments from 1284 /// CGFunctionInfo should be passed to actual LLVM IR function. 1285 class ClangToLLVMArgMapping { 1286 static const unsigned InvalidIndex = ~0U; 1287 unsigned InallocaArgNo; 1288 unsigned SRetArgNo; 1289 unsigned TotalIRArgs; 1290 1291 /// Arguments of LLVM IR function corresponding to single Clang argument. 1292 struct IRArgs { 1293 unsigned PaddingArgIndex; 1294 // Argument is expanded to IR arguments at positions 1295 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1296 unsigned FirstArgIndex; 1297 unsigned NumberOfArgs; 1298 1299 IRArgs() 1300 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1301 NumberOfArgs(0) {} 1302 }; 1303 1304 SmallVector<IRArgs, 8> ArgInfo; 1305 1306 public: 1307 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1308 bool OnlyRequiredArgs = false) 1309 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1310 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1311 construct(Context, FI, OnlyRequiredArgs); 1312 } 1313 1314 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1315 unsigned getInallocaArgNo() const { 1316 assert(hasInallocaArg()); 1317 return InallocaArgNo; 1318 } 1319 1320 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1321 unsigned getSRetArgNo() const { 1322 assert(hasSRetArg()); 1323 return SRetArgNo; 1324 } 1325 1326 unsigned totalIRArgs() const { return TotalIRArgs; } 1327 1328 bool hasPaddingArg(unsigned ArgNo) const { 1329 assert(ArgNo < ArgInfo.size()); 1330 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1331 } 1332 unsigned getPaddingArgNo(unsigned ArgNo) const { 1333 assert(hasPaddingArg(ArgNo)); 1334 return ArgInfo[ArgNo].PaddingArgIndex; 1335 } 1336 1337 /// Returns index of first IR argument corresponding to ArgNo, and their 1338 /// quantity. 1339 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1340 assert(ArgNo < ArgInfo.size()); 1341 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1342 ArgInfo[ArgNo].NumberOfArgs); 1343 } 1344 1345 private: 1346 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1347 bool OnlyRequiredArgs); 1348 }; 1349 1350 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1351 const CGFunctionInfo &FI, 1352 bool OnlyRequiredArgs) { 1353 unsigned IRArgNo = 0; 1354 bool SwapThisWithSRet = false; 1355 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1356 1357 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1358 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1359 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1360 } 1361 1362 unsigned ArgNo = 0; 1363 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1364 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1365 ++I, ++ArgNo) { 1366 assert(I != FI.arg_end()); 1367 QualType ArgType = I->type; 1368 const ABIArgInfo &AI = I->info; 1369 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1370 auto &IRArgs = ArgInfo[ArgNo]; 1371 1372 if (AI.getPaddingType()) 1373 IRArgs.PaddingArgIndex = IRArgNo++; 1374 1375 switch (AI.getKind()) { 1376 case ABIArgInfo::Extend: 1377 case ABIArgInfo::Direct: { 1378 // FIXME: handle sseregparm someday... 1379 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1380 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1381 IRArgs.NumberOfArgs = STy->getNumElements(); 1382 } else { 1383 IRArgs.NumberOfArgs = 1; 1384 } 1385 break; 1386 } 1387 case ABIArgInfo::Indirect: 1388 IRArgs.NumberOfArgs = 1; 1389 break; 1390 case ABIArgInfo::Ignore: 1391 case ABIArgInfo::InAlloca: 1392 // ignore and inalloca doesn't have matching LLVM parameters. 1393 IRArgs.NumberOfArgs = 0; 1394 break; 1395 case ABIArgInfo::CoerceAndExpand: 1396 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1397 break; 1398 case ABIArgInfo::Expand: 1399 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1400 break; 1401 } 1402 1403 if (IRArgs.NumberOfArgs > 0) { 1404 IRArgs.FirstArgIndex = IRArgNo; 1405 IRArgNo += IRArgs.NumberOfArgs; 1406 } 1407 1408 // Skip over the sret parameter when it comes second. We already handled it 1409 // above. 1410 if (IRArgNo == 1 && SwapThisWithSRet) 1411 IRArgNo++; 1412 } 1413 assert(ArgNo == ArgInfo.size()); 1414 1415 if (FI.usesInAlloca()) 1416 InallocaArgNo = IRArgNo++; 1417 1418 TotalIRArgs = IRArgNo; 1419 } 1420 } // namespace 1421 1422 /***/ 1423 1424 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1425 return FI.getReturnInfo().isIndirect(); 1426 } 1427 1428 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1429 return ReturnTypeUsesSRet(FI) && 1430 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1431 } 1432 1433 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1434 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1435 switch (BT->getKind()) { 1436 default: 1437 return false; 1438 case BuiltinType::Float: 1439 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1440 case BuiltinType::Double: 1441 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1442 case BuiltinType::LongDouble: 1443 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1444 } 1445 } 1446 1447 return false; 1448 } 1449 1450 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1451 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1452 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1453 if (BT->getKind() == BuiltinType::LongDouble) 1454 return getTarget().useObjCFP2RetForComplexLongDouble(); 1455 } 1456 } 1457 1458 return false; 1459 } 1460 1461 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1462 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1463 return GetFunctionType(FI); 1464 } 1465 1466 llvm::FunctionType * 1467 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1468 1469 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1470 (void)Inserted; 1471 assert(Inserted && "Recursively being processed?"); 1472 1473 llvm::Type *resultType = nullptr; 1474 const ABIArgInfo &retAI = FI.getReturnInfo(); 1475 switch (retAI.getKind()) { 1476 case ABIArgInfo::Expand: 1477 llvm_unreachable("Invalid ABI kind for return argument"); 1478 1479 case ABIArgInfo::Extend: 1480 case ABIArgInfo::Direct: 1481 resultType = retAI.getCoerceToType(); 1482 break; 1483 1484 case ABIArgInfo::InAlloca: 1485 if (retAI.getInAllocaSRet()) { 1486 // sret things on win32 aren't void, they return the sret pointer. 1487 QualType ret = FI.getReturnType(); 1488 llvm::Type *ty = ConvertType(ret); 1489 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1490 resultType = llvm::PointerType::get(ty, addressSpace); 1491 } else { 1492 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1493 } 1494 break; 1495 1496 case ABIArgInfo::Indirect: 1497 case ABIArgInfo::Ignore: 1498 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1499 break; 1500 1501 case ABIArgInfo::CoerceAndExpand: 1502 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1503 break; 1504 } 1505 1506 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1507 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1508 1509 // Add type for sret argument. 1510 if (IRFunctionArgs.hasSRetArg()) { 1511 QualType Ret = FI.getReturnType(); 1512 llvm::Type *Ty = ConvertType(Ret); 1513 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1514 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1515 llvm::PointerType::get(Ty, AddressSpace); 1516 } 1517 1518 // Add type for inalloca argument. 1519 if (IRFunctionArgs.hasInallocaArg()) { 1520 auto ArgStruct = FI.getArgStruct(); 1521 assert(ArgStruct); 1522 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1523 } 1524 1525 // Add in all of the required arguments. 1526 unsigned ArgNo = 0; 1527 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1528 ie = it + FI.getNumRequiredArgs(); 1529 for (; it != ie; ++it, ++ArgNo) { 1530 const ABIArgInfo &ArgInfo = it->info; 1531 1532 // Insert a padding type to ensure proper alignment. 1533 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1534 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1535 ArgInfo.getPaddingType(); 1536 1537 unsigned FirstIRArg, NumIRArgs; 1538 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1539 1540 switch (ArgInfo.getKind()) { 1541 case ABIArgInfo::Ignore: 1542 case ABIArgInfo::InAlloca: 1543 assert(NumIRArgs == 0); 1544 break; 1545 1546 case ABIArgInfo::Indirect: { 1547 assert(NumIRArgs == 1); 1548 // indirect arguments are always on the stack, which is addr space #0. 1549 llvm::Type *LTy = ConvertTypeForMem(it->type); 1550 ArgTypes[FirstIRArg] = LTy->getPointerTo(); 1551 break; 1552 } 1553 1554 case ABIArgInfo::Extend: 1555 case ABIArgInfo::Direct: { 1556 // Fast-isel and the optimizer generally like scalar values better than 1557 // FCAs, so we flatten them if this is safe to do for this argument. 1558 llvm::Type *argType = ArgInfo.getCoerceToType(); 1559 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1560 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1561 assert(NumIRArgs == st->getNumElements()); 1562 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1563 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1564 } else { 1565 assert(NumIRArgs == 1); 1566 ArgTypes[FirstIRArg] = argType; 1567 } 1568 break; 1569 } 1570 1571 case ABIArgInfo::CoerceAndExpand: { 1572 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1573 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1574 *ArgTypesIter++ = EltTy; 1575 } 1576 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1577 break; 1578 } 1579 1580 case ABIArgInfo::Expand: 1581 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1582 getExpandedTypes(it->type, ArgTypesIter); 1583 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1584 break; 1585 } 1586 } 1587 1588 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1589 assert(Erased && "Not in set?"); 1590 1591 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1592 } 1593 1594 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1595 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1596 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1597 1598 if (!isFuncTypeConvertible(FPT)) 1599 return llvm::StructType::get(getLLVMContext()); 1600 1601 const CGFunctionInfo *Info; 1602 if (isa<CXXDestructorDecl>(MD)) 1603 Info = 1604 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1605 else 1606 Info = &arrangeCXXMethodDeclaration(MD); 1607 return GetFunctionType(*Info); 1608 } 1609 1610 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1611 llvm::AttrBuilder &FuncAttrs, 1612 const FunctionProtoType *FPT) { 1613 if (!FPT) 1614 return; 1615 1616 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1617 FPT->isNothrow(Ctx)) 1618 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1619 } 1620 1621 void CodeGenModule::ConstructAttributeList( 1622 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1623 AttributeListType &PAL, unsigned &CallingConv, bool AttrOnCallSite) { 1624 llvm::AttrBuilder FuncAttrs; 1625 llvm::AttrBuilder RetAttrs; 1626 bool HasOptnone = false; 1627 1628 CallingConv = FI.getEffectiveCallingConvention(); 1629 1630 if (FI.isNoReturn()) 1631 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1632 1633 // If we have information about the function prototype, we can learn 1634 // attributes form there. 1635 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1636 CalleeInfo.getCalleeFunctionProtoType()); 1637 1638 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 1639 1640 bool HasAnyX86InterruptAttr = false; 1641 // FIXME: handle sseregparm someday... 1642 if (TargetDecl) { 1643 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1644 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1645 if (TargetDecl->hasAttr<NoThrowAttr>()) 1646 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1647 if (TargetDecl->hasAttr<NoReturnAttr>()) 1648 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1649 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1650 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1651 1652 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1653 AddAttributesFromFunctionProtoType( 1654 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1655 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1656 // These attributes are not inherited by overloads. 1657 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1658 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1659 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1660 } 1661 1662 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1663 if (TargetDecl->hasAttr<ConstAttr>()) { 1664 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1665 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1666 } else if (TargetDecl->hasAttr<PureAttr>()) { 1667 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1668 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1669 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1670 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1671 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1672 } 1673 if (TargetDecl->hasAttr<RestrictAttr>()) 1674 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1675 if (TargetDecl->hasAttr<ReturnsNonNullAttr>()) 1676 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1677 1678 HasAnyX86InterruptAttr = TargetDecl->hasAttr<AnyX86InterruptAttr>(); 1679 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1680 } 1681 1682 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1683 if (!HasOptnone) { 1684 if (CodeGenOpts.OptimizeSize) 1685 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1686 if (CodeGenOpts.OptimizeSize == 2) 1687 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1688 } 1689 1690 if (CodeGenOpts.DisableRedZone) 1691 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1692 if (CodeGenOpts.NoImplicitFloat) 1693 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1694 if (CodeGenOpts.EnableSegmentedStacks && 1695 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1696 FuncAttrs.addAttribute("split-stack"); 1697 1698 if (AttrOnCallSite) { 1699 // Attributes that should go on the call site only. 1700 if (!CodeGenOpts.SimplifyLibCalls || 1701 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1702 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1703 if (!CodeGenOpts.TrapFuncName.empty()) 1704 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1705 } else { 1706 // Attributes that should go on the function, but not the call site. 1707 if (!CodeGenOpts.DisableFPElim) { 1708 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1709 } else if (CodeGenOpts.OmitLeafFramePointer) { 1710 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1711 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1712 } else { 1713 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1714 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1715 } 1716 1717 bool DisableTailCalls = 1718 CodeGenOpts.DisableTailCalls || HasAnyX86InterruptAttr || 1719 (TargetDecl && TargetDecl->hasAttr<DisableTailCallsAttr>()); 1720 FuncAttrs.addAttribute( 1721 "disable-tail-calls", 1722 llvm::toStringRef(DisableTailCalls)); 1723 1724 FuncAttrs.addAttribute("less-precise-fpmad", 1725 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1726 1727 if (!CodeGenOpts.FPDenormalMode.empty()) 1728 FuncAttrs.addAttribute("denormal-fp-math", 1729 CodeGenOpts.FPDenormalMode); 1730 1731 FuncAttrs.addAttribute("no-trapping-math", 1732 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1733 1734 // TODO: Are these all needed? 1735 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1736 FuncAttrs.addAttribute("no-infs-fp-math", 1737 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1738 FuncAttrs.addAttribute("no-nans-fp-math", 1739 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1740 FuncAttrs.addAttribute("unsafe-fp-math", 1741 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1742 FuncAttrs.addAttribute("use-soft-float", 1743 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1744 FuncAttrs.addAttribute("stack-protector-buffer-size", 1745 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1746 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1747 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1748 FuncAttrs.addAttribute( 1749 "correctly-rounded-divide-sqrt-fp-math", 1750 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1751 1752 // TODO: Reciprocal estimate codegen options should apply to instructions? 1753 std::vector<std::string> &Recips = getTarget().getTargetOpts().Reciprocals; 1754 if (!Recips.empty()) 1755 FuncAttrs.addAttribute("reciprocal-estimates", 1756 llvm::join(Recips.begin(), Recips.end(), ",")); 1757 1758 if (CodeGenOpts.StackRealignment) 1759 FuncAttrs.addAttribute("stackrealign"); 1760 if (CodeGenOpts.Backchain) 1761 FuncAttrs.addAttribute("backchain"); 1762 1763 // Add target-cpu and target-features attributes to functions. If 1764 // we have a decl for the function and it has a target attribute then 1765 // parse that and add it to the feature set. 1766 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1767 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 1768 if (FD && FD->hasAttr<TargetAttr>()) { 1769 llvm::StringMap<bool> FeatureMap; 1770 getFunctionFeatureMap(FeatureMap, FD); 1771 1772 // Produce the canonical string for this set of features. 1773 std::vector<std::string> Features; 1774 for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(), 1775 ie = FeatureMap.end(); 1776 it != ie; ++it) 1777 Features.push_back((it->second ? "+" : "-") + it->first().str()); 1778 1779 // Now add the target-cpu and target-features to the function. 1780 // While we populated the feature map above, we still need to 1781 // get and parse the target attribute so we can get the cpu for 1782 // the function. 1783 const auto *TD = FD->getAttr<TargetAttr>(); 1784 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1785 if (ParsedAttr.second != "") 1786 TargetCPU = ParsedAttr.second; 1787 if (TargetCPU != "") 1788 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1789 if (!Features.empty()) { 1790 std::sort(Features.begin(), Features.end()); 1791 FuncAttrs.addAttribute( 1792 "target-features", 1793 llvm::join(Features.begin(), Features.end(), ",")); 1794 } 1795 } else { 1796 // Otherwise just add the existing target cpu and target features to the 1797 // function. 1798 std::vector<std::string> &Features = getTarget().getTargetOpts().Features; 1799 if (TargetCPU != "") 1800 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1801 if (!Features.empty()) { 1802 std::sort(Features.begin(), Features.end()); 1803 FuncAttrs.addAttribute( 1804 "target-features", 1805 llvm::join(Features.begin(), Features.end(), ",")); 1806 } 1807 } 1808 } 1809 1810 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1811 // Conservatively, mark all functions and calls in CUDA as convergent 1812 // (meaning, they may call an intrinsically convergent op, such as 1813 // __syncthreads(), and so can't have certain optimizations applied around 1814 // them). LLVM will remove this attribute where it safely can. 1815 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1816 1817 // Exceptions aren't supported in CUDA device code. 1818 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1819 1820 // Respect -fcuda-flush-denormals-to-zero. 1821 if (getLangOpts().CUDADeviceFlushDenormalsToZero) 1822 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1823 } 1824 1825 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1826 1827 QualType RetTy = FI.getReturnType(); 1828 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1829 switch (RetAI.getKind()) { 1830 case ABIArgInfo::Extend: 1831 if (RetTy->hasSignedIntegerRepresentation()) 1832 RetAttrs.addAttribute(llvm::Attribute::SExt); 1833 else if (RetTy->hasUnsignedIntegerRepresentation()) 1834 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1835 // FALL THROUGH 1836 case ABIArgInfo::Direct: 1837 if (RetAI.getInReg()) 1838 RetAttrs.addAttribute(llvm::Attribute::InReg); 1839 break; 1840 case ABIArgInfo::Ignore: 1841 break; 1842 1843 case ABIArgInfo::InAlloca: 1844 case ABIArgInfo::Indirect: { 1845 // inalloca and sret disable readnone and readonly 1846 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1847 .removeAttribute(llvm::Attribute::ReadNone); 1848 break; 1849 } 1850 1851 case ABIArgInfo::CoerceAndExpand: 1852 break; 1853 1854 case ABIArgInfo::Expand: 1855 llvm_unreachable("Invalid ABI kind for return argument"); 1856 } 1857 1858 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1859 QualType PTy = RefTy->getPointeeType(); 1860 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1861 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1862 .getQuantity()); 1863 else if (getContext().getTargetAddressSpace(PTy) == 0) 1864 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1865 } 1866 1867 // Attach return attributes. 1868 if (RetAttrs.hasAttributes()) { 1869 PAL.push_back(llvm::AttributeSet::get( 1870 getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs)); 1871 } 1872 1873 bool hasUsedSRet = false; 1874 1875 // Attach attributes to sret. 1876 if (IRFunctionArgs.hasSRetArg()) { 1877 llvm::AttrBuilder SRETAttrs; 1878 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1879 hasUsedSRet = true; 1880 if (RetAI.getInReg()) 1881 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1882 PAL.push_back(llvm::AttributeSet::get( 1883 getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs)); 1884 } 1885 1886 // Attach attributes to inalloca argument. 1887 if (IRFunctionArgs.hasInallocaArg()) { 1888 llvm::AttrBuilder Attrs; 1889 Attrs.addAttribute(llvm::Attribute::InAlloca); 1890 PAL.push_back(llvm::AttributeSet::get( 1891 getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs)); 1892 } 1893 1894 unsigned ArgNo = 0; 1895 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 1896 E = FI.arg_end(); 1897 I != E; ++I, ++ArgNo) { 1898 QualType ParamType = I->type; 1899 const ABIArgInfo &AI = I->info; 1900 llvm::AttrBuilder Attrs; 1901 1902 // Add attribute for padding argument, if necessary. 1903 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 1904 if (AI.getPaddingInReg()) 1905 PAL.push_back(llvm::AttributeSet::get( 1906 getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1, 1907 llvm::Attribute::InReg)); 1908 } 1909 1910 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1911 // have the corresponding parameter variable. It doesn't make 1912 // sense to do it here because parameters are so messed up. 1913 switch (AI.getKind()) { 1914 case ABIArgInfo::Extend: 1915 if (ParamType->isSignedIntegerOrEnumerationType()) 1916 Attrs.addAttribute(llvm::Attribute::SExt); 1917 else if (ParamType->isUnsignedIntegerOrEnumerationType()) { 1918 if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType)) 1919 Attrs.addAttribute(llvm::Attribute::SExt); 1920 else 1921 Attrs.addAttribute(llvm::Attribute::ZExt); 1922 } 1923 // FALL THROUGH 1924 case ABIArgInfo::Direct: 1925 if (ArgNo == 0 && FI.isChainCall()) 1926 Attrs.addAttribute(llvm::Attribute::Nest); 1927 else if (AI.getInReg()) 1928 Attrs.addAttribute(llvm::Attribute::InReg); 1929 break; 1930 1931 case ABIArgInfo::Indirect: { 1932 if (AI.getInReg()) 1933 Attrs.addAttribute(llvm::Attribute::InReg); 1934 1935 if (AI.getIndirectByVal()) 1936 Attrs.addAttribute(llvm::Attribute::ByVal); 1937 1938 CharUnits Align = AI.getIndirectAlign(); 1939 1940 // In a byval argument, it is important that the required 1941 // alignment of the type is honored, as LLVM might be creating a 1942 // *new* stack object, and needs to know what alignment to give 1943 // it. (Sometimes it can deduce a sensible alignment on its own, 1944 // but not if clang decides it must emit a packed struct, or the 1945 // user specifies increased alignment requirements.) 1946 // 1947 // This is different from indirect *not* byval, where the object 1948 // exists already, and the align attribute is purely 1949 // informative. 1950 assert(!Align.isZero()); 1951 1952 // For now, only add this when we have a byval argument. 1953 // TODO: be less lazy about updating test cases. 1954 if (AI.getIndirectByVal()) 1955 Attrs.addAlignmentAttr(Align.getQuantity()); 1956 1957 // byval disables readnone and readonly. 1958 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1959 .removeAttribute(llvm::Attribute::ReadNone); 1960 break; 1961 } 1962 case ABIArgInfo::Ignore: 1963 case ABIArgInfo::Expand: 1964 case ABIArgInfo::CoerceAndExpand: 1965 break; 1966 1967 case ABIArgInfo::InAlloca: 1968 // inalloca disables readnone and readonly. 1969 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1970 .removeAttribute(llvm::Attribute::ReadNone); 1971 continue; 1972 } 1973 1974 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 1975 QualType PTy = RefTy->getPointeeType(); 1976 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1977 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1978 .getQuantity()); 1979 else if (getContext().getTargetAddressSpace(PTy) == 0) 1980 Attrs.addAttribute(llvm::Attribute::NonNull); 1981 } 1982 1983 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 1984 case ParameterABI::Ordinary: 1985 break; 1986 1987 case ParameterABI::SwiftIndirectResult: { 1988 // Add 'sret' if we haven't already used it for something, but 1989 // only if the result is void. 1990 if (!hasUsedSRet && RetTy->isVoidType()) { 1991 Attrs.addAttribute(llvm::Attribute::StructRet); 1992 hasUsedSRet = true; 1993 } 1994 1995 // Add 'noalias' in either case. 1996 Attrs.addAttribute(llvm::Attribute::NoAlias); 1997 1998 // Add 'dereferenceable' and 'alignment'. 1999 auto PTy = ParamType->getPointeeType(); 2000 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2001 auto info = getContext().getTypeInfoInChars(PTy); 2002 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2003 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 2004 info.second.getQuantity())); 2005 } 2006 break; 2007 } 2008 2009 case ParameterABI::SwiftErrorResult: 2010 Attrs.addAttribute(llvm::Attribute::SwiftError); 2011 break; 2012 2013 case ParameterABI::SwiftContext: 2014 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2015 break; 2016 } 2017 2018 if (Attrs.hasAttributes()) { 2019 unsigned FirstIRArg, NumIRArgs; 2020 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2021 for (unsigned i = 0; i < NumIRArgs; i++) 2022 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), 2023 FirstIRArg + i + 1, Attrs)); 2024 } 2025 } 2026 assert(ArgNo == FI.arg_size()); 2027 2028 if (FuncAttrs.hasAttributes()) 2029 PAL.push_back(llvm:: 2030 AttributeSet::get(getLLVMContext(), 2031 llvm::AttributeSet::FunctionIndex, 2032 FuncAttrs)); 2033 } 2034 2035 /// An argument came in as a promoted argument; demote it back to its 2036 /// declared type. 2037 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2038 const VarDecl *var, 2039 llvm::Value *value) { 2040 llvm::Type *varType = CGF.ConvertType(var->getType()); 2041 2042 // This can happen with promotions that actually don't change the 2043 // underlying type, like the enum promotions. 2044 if (value->getType() == varType) return value; 2045 2046 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2047 && "unexpected promotion type"); 2048 2049 if (isa<llvm::IntegerType>(varType)) 2050 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2051 2052 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2053 } 2054 2055 /// Returns the attribute (either parameter attribute, or function 2056 /// attribute), which declares argument ArgNo to be non-null. 2057 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2058 QualType ArgType, unsigned ArgNo) { 2059 // FIXME: __attribute__((nonnull)) can also be applied to: 2060 // - references to pointers, where the pointee is known to be 2061 // nonnull (apparently a Clang extension) 2062 // - transparent unions containing pointers 2063 // In the former case, LLVM IR cannot represent the constraint. In 2064 // the latter case, we have no guarantee that the transparent union 2065 // is in fact passed as a pointer. 2066 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2067 return nullptr; 2068 // First, check attribute on parameter itself. 2069 if (PVD) { 2070 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2071 return ParmNNAttr; 2072 } 2073 // Check function attributes. 2074 if (!FD) 2075 return nullptr; 2076 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2077 if (NNAttr->isNonNull(ArgNo)) 2078 return NNAttr; 2079 } 2080 return nullptr; 2081 } 2082 2083 namespace { 2084 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2085 Address Temp; 2086 Address Arg; 2087 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2088 void Emit(CodeGenFunction &CGF, Flags flags) override { 2089 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2090 CGF.Builder.CreateStore(errorValue, Arg); 2091 } 2092 }; 2093 } 2094 2095 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2096 llvm::Function *Fn, 2097 const FunctionArgList &Args) { 2098 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2099 // Naked functions don't have prologues. 2100 return; 2101 2102 // If this is an implicit-return-zero function, go ahead and 2103 // initialize the return value. TODO: it might be nice to have 2104 // a more general mechanism for this that didn't require synthesized 2105 // return statements. 2106 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2107 if (FD->hasImplicitReturnZero()) { 2108 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2109 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2110 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2111 Builder.CreateStore(Zero, ReturnValue); 2112 } 2113 } 2114 2115 // FIXME: We no longer need the types from FunctionArgList; lift up and 2116 // simplify. 2117 2118 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2119 // Flattened function arguments. 2120 SmallVector<llvm::Value *, 16> FnArgs; 2121 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2122 for (auto &Arg : Fn->args()) { 2123 FnArgs.push_back(&Arg); 2124 } 2125 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2126 2127 // If we're using inalloca, all the memory arguments are GEPs off of the last 2128 // parameter, which is a pointer to the complete memory area. 2129 Address ArgStruct = Address::invalid(); 2130 const llvm::StructLayout *ArgStructLayout = nullptr; 2131 if (IRFunctionArgs.hasInallocaArg()) { 2132 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 2133 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2134 FI.getArgStructAlignment()); 2135 2136 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2137 } 2138 2139 // Name the struct return parameter. 2140 if (IRFunctionArgs.hasSRetArg()) { 2141 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2142 AI->setName("agg.result"); 2143 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1, 2144 llvm::Attribute::NoAlias)); 2145 } 2146 2147 // Track if we received the parameter as a pointer (indirect, byval, or 2148 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2149 // into a local alloca for us. 2150 SmallVector<ParamValue, 16> ArgVals; 2151 ArgVals.reserve(Args.size()); 2152 2153 // Create a pointer value for every parameter declaration. This usually 2154 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2155 // any cleanups or do anything that might unwind. We do that separately, so 2156 // we can push the cleanups in the correct order for the ABI. 2157 assert(FI.arg_size() == Args.size() && 2158 "Mismatch between function signature & arguments."); 2159 unsigned ArgNo = 0; 2160 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2161 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2162 i != e; ++i, ++info_it, ++ArgNo) { 2163 const VarDecl *Arg = *i; 2164 QualType Ty = info_it->type; 2165 const ABIArgInfo &ArgI = info_it->info; 2166 2167 bool isPromoted = 2168 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2169 2170 unsigned FirstIRArg, NumIRArgs; 2171 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2172 2173 switch (ArgI.getKind()) { 2174 case ABIArgInfo::InAlloca: { 2175 assert(NumIRArgs == 0); 2176 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2177 CharUnits FieldOffset = 2178 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 2179 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 2180 Arg->getName()); 2181 ArgVals.push_back(ParamValue::forIndirect(V)); 2182 break; 2183 } 2184 2185 case ABIArgInfo::Indirect: { 2186 assert(NumIRArgs == 1); 2187 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2188 2189 if (!hasScalarEvaluationKind(Ty)) { 2190 // Aggregates and complex variables are accessed by reference. All we 2191 // need to do is realign the value, if requested. 2192 Address V = ParamAddr; 2193 if (ArgI.getIndirectRealign()) { 2194 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2195 2196 // Copy from the incoming argument pointer to the temporary with the 2197 // appropriate alignment. 2198 // 2199 // FIXME: We should have a common utility for generating an aggregate 2200 // copy. 2201 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2202 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2203 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2204 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2205 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2206 V = AlignedTemp; 2207 } 2208 ArgVals.push_back(ParamValue::forIndirect(V)); 2209 } else { 2210 // Load scalar value from indirect argument. 2211 llvm::Value *V = 2212 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart()); 2213 2214 if (isPromoted) 2215 V = emitArgumentDemotion(*this, Arg, V); 2216 ArgVals.push_back(ParamValue::forDirect(V)); 2217 } 2218 break; 2219 } 2220 2221 case ABIArgInfo::Extend: 2222 case ABIArgInfo::Direct: { 2223 2224 // If we have the trivial case, handle it with no muss and fuss. 2225 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2226 ArgI.getCoerceToType() == ConvertType(Ty) && 2227 ArgI.getDirectOffset() == 0) { 2228 assert(NumIRArgs == 1); 2229 llvm::Value *V = FnArgs[FirstIRArg]; 2230 auto AI = cast<llvm::Argument>(V); 2231 2232 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2233 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2234 PVD->getFunctionScopeIndex())) 2235 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2236 AI->getArgNo() + 1, 2237 llvm::Attribute::NonNull)); 2238 2239 QualType OTy = PVD->getOriginalType(); 2240 if (const auto *ArrTy = 2241 getContext().getAsConstantArrayType(OTy)) { 2242 // A C99 array parameter declaration with the static keyword also 2243 // indicates dereferenceability, and if the size is constant we can 2244 // use the dereferenceable attribute (which requires the size in 2245 // bytes). 2246 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2247 QualType ETy = ArrTy->getElementType(); 2248 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2249 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2250 ArrSize) { 2251 llvm::AttrBuilder Attrs; 2252 Attrs.addDereferenceableAttr( 2253 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2254 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2255 AI->getArgNo() + 1, Attrs)); 2256 } else if (getContext().getTargetAddressSpace(ETy) == 0) { 2257 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2258 AI->getArgNo() + 1, 2259 llvm::Attribute::NonNull)); 2260 } 2261 } 2262 } else if (const auto *ArrTy = 2263 getContext().getAsVariableArrayType(OTy)) { 2264 // For C99 VLAs with the static keyword, we don't know the size so 2265 // we can't use the dereferenceable attribute, but in addrspace(0) 2266 // we know that it must be nonnull. 2267 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2268 !getContext().getTargetAddressSpace(ArrTy->getElementType())) 2269 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2270 AI->getArgNo() + 1, 2271 llvm::Attribute::NonNull)); 2272 } 2273 2274 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2275 if (!AVAttr) 2276 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2277 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2278 if (AVAttr) { 2279 llvm::Value *AlignmentValue = 2280 EmitScalarExpr(AVAttr->getAlignment()); 2281 llvm::ConstantInt *AlignmentCI = 2282 cast<llvm::ConstantInt>(AlignmentValue); 2283 unsigned Alignment = 2284 std::min((unsigned) AlignmentCI->getZExtValue(), 2285 +llvm::Value::MaximumAlignment); 2286 2287 llvm::AttrBuilder Attrs; 2288 Attrs.addAlignmentAttr(Alignment); 2289 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2290 AI->getArgNo() + 1, Attrs)); 2291 } 2292 } 2293 2294 if (Arg->getType().isRestrictQualified()) 2295 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2296 AI->getArgNo() + 1, 2297 llvm::Attribute::NoAlias)); 2298 2299 // LLVM expects swifterror parameters to be used in very restricted 2300 // ways. Copy the value into a less-restricted temporary. 2301 if (FI.getExtParameterInfo(ArgNo).getABI() 2302 == ParameterABI::SwiftErrorResult) { 2303 QualType pointeeTy = Ty->getPointeeType(); 2304 assert(pointeeTy->isPointerType()); 2305 Address temp = 2306 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2307 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2308 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2309 Builder.CreateStore(incomingErrorValue, temp); 2310 V = temp.getPointer(); 2311 2312 // Push a cleanup to copy the value back at the end of the function. 2313 // The convention does not guarantee that the value will be written 2314 // back if the function exits with an unwind exception. 2315 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2316 } 2317 2318 // Ensure the argument is the correct type. 2319 if (V->getType() != ArgI.getCoerceToType()) 2320 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2321 2322 if (isPromoted) 2323 V = emitArgumentDemotion(*this, Arg, V); 2324 2325 // Because of merging of function types from multiple decls it is 2326 // possible for the type of an argument to not match the corresponding 2327 // type in the function type. Since we are codegening the callee 2328 // in here, add a cast to the argument type. 2329 llvm::Type *LTy = ConvertType(Arg->getType()); 2330 if (V->getType() != LTy) 2331 V = Builder.CreateBitCast(V, LTy); 2332 2333 ArgVals.push_back(ParamValue::forDirect(V)); 2334 break; 2335 } 2336 2337 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2338 Arg->getName()); 2339 2340 // Pointer to store into. 2341 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2342 2343 // Fast-isel and the optimizer generally like scalar values better than 2344 // FCAs, so we flatten them if this is safe to do for this argument. 2345 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2346 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2347 STy->getNumElements() > 1) { 2348 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2349 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2350 llvm::Type *DstTy = Ptr.getElementType(); 2351 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2352 2353 Address AddrToStoreInto = Address::invalid(); 2354 if (SrcSize <= DstSize) { 2355 AddrToStoreInto = 2356 Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 2357 } else { 2358 AddrToStoreInto = 2359 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2360 } 2361 2362 assert(STy->getNumElements() == NumIRArgs); 2363 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2364 auto AI = FnArgs[FirstIRArg + i]; 2365 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2366 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2367 Address EltPtr = 2368 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2369 Builder.CreateStore(AI, EltPtr); 2370 } 2371 2372 if (SrcSize > DstSize) { 2373 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2374 } 2375 2376 } else { 2377 // Simple case, just do a coerced store of the argument into the alloca. 2378 assert(NumIRArgs == 1); 2379 auto AI = FnArgs[FirstIRArg]; 2380 AI->setName(Arg->getName() + ".coerce"); 2381 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2382 } 2383 2384 // Match to what EmitParmDecl is expecting for this type. 2385 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2386 llvm::Value *V = 2387 EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart()); 2388 if (isPromoted) 2389 V = emitArgumentDemotion(*this, Arg, V); 2390 ArgVals.push_back(ParamValue::forDirect(V)); 2391 } else { 2392 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2393 } 2394 break; 2395 } 2396 2397 case ABIArgInfo::CoerceAndExpand: { 2398 // Reconstruct into a temporary. 2399 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2400 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2401 2402 auto coercionType = ArgI.getCoerceAndExpandType(); 2403 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2404 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2405 2406 unsigned argIndex = FirstIRArg; 2407 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2408 llvm::Type *eltType = coercionType->getElementType(i); 2409 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2410 continue; 2411 2412 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); 2413 auto elt = FnArgs[argIndex++]; 2414 Builder.CreateStore(elt, eltAddr); 2415 } 2416 assert(argIndex == FirstIRArg + NumIRArgs); 2417 break; 2418 } 2419 2420 case ABIArgInfo::Expand: { 2421 // If this structure was expanded into multiple arguments then 2422 // we need to create a temporary and reconstruct it from the 2423 // arguments. 2424 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2425 LValue LV = MakeAddrLValue(Alloca, Ty); 2426 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2427 2428 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2429 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2430 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2431 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2432 auto AI = FnArgs[FirstIRArg + i]; 2433 AI->setName(Arg->getName() + "." + Twine(i)); 2434 } 2435 break; 2436 } 2437 2438 case ABIArgInfo::Ignore: 2439 assert(NumIRArgs == 0); 2440 // Initialize the local variable appropriately. 2441 if (!hasScalarEvaluationKind(Ty)) { 2442 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2443 } else { 2444 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2445 ArgVals.push_back(ParamValue::forDirect(U)); 2446 } 2447 break; 2448 } 2449 } 2450 2451 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2452 for (int I = Args.size() - 1; I >= 0; --I) 2453 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2454 } else { 2455 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2456 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2457 } 2458 } 2459 2460 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2461 while (insn->use_empty()) { 2462 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2463 if (!bitcast) return; 2464 2465 // This is "safe" because we would have used a ConstantExpr otherwise. 2466 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2467 bitcast->eraseFromParent(); 2468 } 2469 } 2470 2471 /// Try to emit a fused autorelease of a return result. 2472 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2473 llvm::Value *result) { 2474 // We must be immediately followed the cast. 2475 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2476 if (BB->empty()) return nullptr; 2477 if (&BB->back() != result) return nullptr; 2478 2479 llvm::Type *resultType = result->getType(); 2480 2481 // result is in a BasicBlock and is therefore an Instruction. 2482 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2483 2484 SmallVector<llvm::Instruction *, 4> InstsToKill; 2485 2486 // Look for: 2487 // %generator = bitcast %type1* %generator2 to %type2* 2488 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2489 // We would have emitted this as a constant if the operand weren't 2490 // an Instruction. 2491 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2492 2493 // Require the generator to be immediately followed by the cast. 2494 if (generator->getNextNode() != bitcast) 2495 return nullptr; 2496 2497 InstsToKill.push_back(bitcast); 2498 } 2499 2500 // Look for: 2501 // %generator = call i8* @objc_retain(i8* %originalResult) 2502 // or 2503 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2504 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2505 if (!call) return nullptr; 2506 2507 bool doRetainAutorelease; 2508 2509 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2510 doRetainAutorelease = true; 2511 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2512 .objc_retainAutoreleasedReturnValue) { 2513 doRetainAutorelease = false; 2514 2515 // If we emitted an assembly marker for this call (and the 2516 // ARCEntrypoints field should have been set if so), go looking 2517 // for that call. If we can't find it, we can't do this 2518 // optimization. But it should always be the immediately previous 2519 // instruction, unless we needed bitcasts around the call. 2520 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2521 llvm::Instruction *prev = call->getPrevNode(); 2522 assert(prev); 2523 if (isa<llvm::BitCastInst>(prev)) { 2524 prev = prev->getPrevNode(); 2525 assert(prev); 2526 } 2527 assert(isa<llvm::CallInst>(prev)); 2528 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2529 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2530 InstsToKill.push_back(prev); 2531 } 2532 } else { 2533 return nullptr; 2534 } 2535 2536 result = call->getArgOperand(0); 2537 InstsToKill.push_back(call); 2538 2539 // Keep killing bitcasts, for sanity. Note that we no longer care 2540 // about precise ordering as long as there's exactly one use. 2541 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2542 if (!bitcast->hasOneUse()) break; 2543 InstsToKill.push_back(bitcast); 2544 result = bitcast->getOperand(0); 2545 } 2546 2547 // Delete all the unnecessary instructions, from latest to earliest. 2548 for (auto *I : InstsToKill) 2549 I->eraseFromParent(); 2550 2551 // Do the fused retain/autorelease if we were asked to. 2552 if (doRetainAutorelease) 2553 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2554 2555 // Cast back to the result type. 2556 return CGF.Builder.CreateBitCast(result, resultType); 2557 } 2558 2559 /// If this is a +1 of the value of an immutable 'self', remove it. 2560 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2561 llvm::Value *result) { 2562 // This is only applicable to a method with an immutable 'self'. 2563 const ObjCMethodDecl *method = 2564 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2565 if (!method) return nullptr; 2566 const VarDecl *self = method->getSelfDecl(); 2567 if (!self->getType().isConstQualified()) return nullptr; 2568 2569 // Look for a retain call. 2570 llvm::CallInst *retainCall = 2571 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2572 if (!retainCall || 2573 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2574 return nullptr; 2575 2576 // Look for an ordinary load of 'self'. 2577 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2578 llvm::LoadInst *load = 2579 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2580 if (!load || load->isAtomic() || load->isVolatile() || 2581 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2582 return nullptr; 2583 2584 // Okay! Burn it all down. This relies for correctness on the 2585 // assumption that the retain is emitted as part of the return and 2586 // that thereafter everything is used "linearly". 2587 llvm::Type *resultType = result->getType(); 2588 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2589 assert(retainCall->use_empty()); 2590 retainCall->eraseFromParent(); 2591 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2592 2593 return CGF.Builder.CreateBitCast(load, resultType); 2594 } 2595 2596 /// Emit an ARC autorelease of the result of a function. 2597 /// 2598 /// \return the value to actually return from the function 2599 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2600 llvm::Value *result) { 2601 // If we're returning 'self', kill the initial retain. This is a 2602 // heuristic attempt to "encourage correctness" in the really unfortunate 2603 // case where we have a return of self during a dealloc and we desperately 2604 // need to avoid the possible autorelease. 2605 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2606 return self; 2607 2608 // At -O0, try to emit a fused retain/autorelease. 2609 if (CGF.shouldUseFusedARCCalls()) 2610 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2611 return fused; 2612 2613 return CGF.EmitARCAutoreleaseReturnValue(result); 2614 } 2615 2616 /// Heuristically search for a dominating store to the return-value slot. 2617 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2618 // Check if a User is a store which pointerOperand is the ReturnValue. 2619 // We are looking for stores to the ReturnValue, not for stores of the 2620 // ReturnValue to some other location. 2621 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2622 auto *SI = dyn_cast<llvm::StoreInst>(U); 2623 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2624 return nullptr; 2625 // These aren't actually possible for non-coerced returns, and we 2626 // only care about non-coerced returns on this code path. 2627 assert(!SI->isAtomic() && !SI->isVolatile()); 2628 return SI; 2629 }; 2630 // If there are multiple uses of the return-value slot, just check 2631 // for something immediately preceding the IP. Sometimes this can 2632 // happen with how we generate implicit-returns; it can also happen 2633 // with noreturn cleanups. 2634 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2635 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2636 if (IP->empty()) return nullptr; 2637 llvm::Instruction *I = &IP->back(); 2638 2639 // Skip lifetime markers 2640 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2641 IE = IP->rend(); 2642 II != IE; ++II) { 2643 if (llvm::IntrinsicInst *Intrinsic = 2644 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2645 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2646 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2647 ++II; 2648 if (II == IE) 2649 break; 2650 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2651 continue; 2652 } 2653 } 2654 I = &*II; 2655 break; 2656 } 2657 2658 return GetStoreIfValid(I); 2659 } 2660 2661 llvm::StoreInst *store = 2662 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2663 if (!store) return nullptr; 2664 2665 // Now do a first-and-dirty dominance check: just walk up the 2666 // single-predecessors chain from the current insertion point. 2667 llvm::BasicBlock *StoreBB = store->getParent(); 2668 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2669 while (IP != StoreBB) { 2670 if (!(IP = IP->getSinglePredecessor())) 2671 return nullptr; 2672 } 2673 2674 // Okay, the store's basic block dominates the insertion point; we 2675 // can do our thing. 2676 return store; 2677 } 2678 2679 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2680 bool EmitRetDbgLoc, 2681 SourceLocation EndLoc) { 2682 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2683 // Naked functions don't have epilogues. 2684 Builder.CreateUnreachable(); 2685 return; 2686 } 2687 2688 // Functions with no result always return void. 2689 if (!ReturnValue.isValid()) { 2690 Builder.CreateRetVoid(); 2691 return; 2692 } 2693 2694 llvm::DebugLoc RetDbgLoc; 2695 llvm::Value *RV = nullptr; 2696 QualType RetTy = FI.getReturnType(); 2697 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2698 2699 switch (RetAI.getKind()) { 2700 case ABIArgInfo::InAlloca: 2701 // Aggregrates get evaluated directly into the destination. Sometimes we 2702 // need to return the sret value in a register, though. 2703 assert(hasAggregateEvaluationKind(RetTy)); 2704 if (RetAI.getInAllocaSRet()) { 2705 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2706 --EI; 2707 llvm::Value *ArgStruct = &*EI; 2708 llvm::Value *SRet = Builder.CreateStructGEP( 2709 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2710 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2711 } 2712 break; 2713 2714 case ABIArgInfo::Indirect: { 2715 auto AI = CurFn->arg_begin(); 2716 if (RetAI.isSRetAfterThis()) 2717 ++AI; 2718 switch (getEvaluationKind(RetTy)) { 2719 case TEK_Complex: { 2720 ComplexPairTy RT = 2721 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2722 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2723 /*isInit*/ true); 2724 break; 2725 } 2726 case TEK_Aggregate: 2727 // Do nothing; aggregrates get evaluated directly into the destination. 2728 break; 2729 case TEK_Scalar: 2730 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2731 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2732 /*isInit*/ true); 2733 break; 2734 } 2735 break; 2736 } 2737 2738 case ABIArgInfo::Extend: 2739 case ABIArgInfo::Direct: 2740 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2741 RetAI.getDirectOffset() == 0) { 2742 // The internal return value temp always will have pointer-to-return-type 2743 // type, just do a load. 2744 2745 // If there is a dominating store to ReturnValue, we can elide 2746 // the load, zap the store, and usually zap the alloca. 2747 if (llvm::StoreInst *SI = 2748 findDominatingStoreToReturnValue(*this)) { 2749 // Reuse the debug location from the store unless there is 2750 // cleanup code to be emitted between the store and return 2751 // instruction. 2752 if (EmitRetDbgLoc && !AutoreleaseResult) 2753 RetDbgLoc = SI->getDebugLoc(); 2754 // Get the stored value and nuke the now-dead store. 2755 RV = SI->getValueOperand(); 2756 SI->eraseFromParent(); 2757 2758 // If that was the only use of the return value, nuke it as well now. 2759 auto returnValueInst = ReturnValue.getPointer(); 2760 if (returnValueInst->use_empty()) { 2761 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2762 alloca->eraseFromParent(); 2763 ReturnValue = Address::invalid(); 2764 } 2765 } 2766 2767 // Otherwise, we have to do a simple load. 2768 } else { 2769 RV = Builder.CreateLoad(ReturnValue); 2770 } 2771 } else { 2772 // If the value is offset in memory, apply the offset now. 2773 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2774 2775 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2776 } 2777 2778 // In ARC, end functions that return a retainable type with a call 2779 // to objc_autoreleaseReturnValue. 2780 if (AutoreleaseResult) { 2781 #ifndef NDEBUG 2782 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2783 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2784 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2785 // CurCodeDecl or BlockInfo. 2786 QualType RT; 2787 2788 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2789 RT = FD->getReturnType(); 2790 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2791 RT = MD->getReturnType(); 2792 else if (isa<BlockDecl>(CurCodeDecl)) 2793 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2794 else 2795 llvm_unreachable("Unexpected function/method type"); 2796 2797 assert(getLangOpts().ObjCAutoRefCount && 2798 !FI.isReturnsRetained() && 2799 RT->isObjCRetainableType()); 2800 #endif 2801 RV = emitAutoreleaseOfResult(*this, RV); 2802 } 2803 2804 break; 2805 2806 case ABIArgInfo::Ignore: 2807 break; 2808 2809 case ABIArgInfo::CoerceAndExpand: { 2810 auto coercionType = RetAI.getCoerceAndExpandType(); 2811 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2812 2813 // Load all of the coerced elements out into results. 2814 llvm::SmallVector<llvm::Value*, 4> results; 2815 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2816 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2817 auto coercedEltType = coercionType->getElementType(i); 2818 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2819 continue; 2820 2821 auto eltAddr = Builder.CreateStructGEP(addr, i, layout); 2822 auto elt = Builder.CreateLoad(eltAddr); 2823 results.push_back(elt); 2824 } 2825 2826 // If we have one result, it's the single direct result type. 2827 if (results.size() == 1) { 2828 RV = results[0]; 2829 2830 // Otherwise, we need to make a first-class aggregate. 2831 } else { 2832 // Construct a return type that lacks padding elements. 2833 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2834 2835 RV = llvm::UndefValue::get(returnType); 2836 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2837 RV = Builder.CreateInsertValue(RV, results[i], i); 2838 } 2839 } 2840 break; 2841 } 2842 2843 case ABIArgInfo::Expand: 2844 llvm_unreachable("Invalid ABI kind for return argument"); 2845 } 2846 2847 llvm::Instruction *Ret; 2848 if (RV) { 2849 if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) { 2850 if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) { 2851 SanitizerScope SanScope(this); 2852 llvm::Value *Cond = Builder.CreateICmpNE( 2853 RV, llvm::Constant::getNullValue(RV->getType())); 2854 llvm::Constant *StaticData[] = { 2855 EmitCheckSourceLocation(EndLoc), 2856 EmitCheckSourceLocation(RetNNAttr->getLocation()), 2857 }; 2858 EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute), 2859 "nonnull_return", StaticData, None); 2860 } 2861 } 2862 Ret = Builder.CreateRet(RV); 2863 } else { 2864 Ret = Builder.CreateRetVoid(); 2865 } 2866 2867 if (RetDbgLoc) 2868 Ret->setDebugLoc(std::move(RetDbgLoc)); 2869 } 2870 2871 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 2872 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2873 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 2874 } 2875 2876 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 2877 QualType Ty) { 2878 // FIXME: Generate IR in one pass, rather than going back and fixing up these 2879 // placeholders. 2880 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 2881 llvm::Value *Placeholder = 2882 llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo()); 2883 Placeholder = CGF.Builder.CreateDefaultAlignedLoad(Placeholder); 2884 2885 // FIXME: When we generate this IR in one pass, we shouldn't need 2886 // this win32-specific alignment hack. 2887 CharUnits Align = CharUnits::fromQuantity(4); 2888 2889 return AggValueSlot::forAddr(Address(Placeholder, Align), 2890 Ty.getQualifiers(), 2891 AggValueSlot::IsNotDestructed, 2892 AggValueSlot::DoesNotNeedGCBarriers, 2893 AggValueSlot::IsNotAliased); 2894 } 2895 2896 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 2897 const VarDecl *param, 2898 SourceLocation loc) { 2899 // StartFunction converted the ABI-lowered parameter(s) into a 2900 // local alloca. We need to turn that into an r-value suitable 2901 // for EmitCall. 2902 Address local = GetAddrOfLocalVar(param); 2903 2904 QualType type = param->getType(); 2905 2906 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 2907 "cannot emit delegate call arguments for inalloca arguments!"); 2908 2909 // For the most part, we just need to load the alloca, except that 2910 // aggregate r-values are actually pointers to temporaries. 2911 if (type->isReferenceType()) 2912 args.add(RValue::get(Builder.CreateLoad(local)), type); 2913 else 2914 args.add(convertTempToRValue(local, type, loc), type); 2915 } 2916 2917 static bool isProvablyNull(llvm::Value *addr) { 2918 return isa<llvm::ConstantPointerNull>(addr); 2919 } 2920 2921 /// Emit the actual writing-back of a writeback. 2922 static void emitWriteback(CodeGenFunction &CGF, 2923 const CallArgList::Writeback &writeback) { 2924 const LValue &srcLV = writeback.Source; 2925 Address srcAddr = srcLV.getAddress(); 2926 assert(!isProvablyNull(srcAddr.getPointer()) && 2927 "shouldn't have writeback for provably null argument"); 2928 2929 llvm::BasicBlock *contBB = nullptr; 2930 2931 // If the argument wasn't provably non-null, we need to null check 2932 // before doing the store. 2933 bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer()); 2934 if (!provablyNonNull) { 2935 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 2936 contBB = CGF.createBasicBlock("icr.done"); 2937 2938 llvm::Value *isNull = 2939 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 2940 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 2941 CGF.EmitBlock(writebackBB); 2942 } 2943 2944 // Load the value to writeback. 2945 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 2946 2947 // Cast it back, in case we're writing an id to a Foo* or something. 2948 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 2949 "icr.writeback-cast"); 2950 2951 // Perform the writeback. 2952 2953 // If we have a "to use" value, it's something we need to emit a use 2954 // of. This has to be carefully threaded in: if it's done after the 2955 // release it's potentially undefined behavior (and the optimizer 2956 // will ignore it), and if it happens before the retain then the 2957 // optimizer could move the release there. 2958 if (writeback.ToUse) { 2959 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 2960 2961 // Retain the new value. No need to block-copy here: the block's 2962 // being passed up the stack. 2963 value = CGF.EmitARCRetainNonBlock(value); 2964 2965 // Emit the intrinsic use here. 2966 CGF.EmitARCIntrinsicUse(writeback.ToUse); 2967 2968 // Load the old value (primitively). 2969 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 2970 2971 // Put the new value in place (primitively). 2972 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 2973 2974 // Release the old value. 2975 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 2976 2977 // Otherwise, we can just do a normal lvalue store. 2978 } else { 2979 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 2980 } 2981 2982 // Jump to the continuation block. 2983 if (!provablyNonNull) 2984 CGF.EmitBlock(contBB); 2985 } 2986 2987 static void emitWritebacks(CodeGenFunction &CGF, 2988 const CallArgList &args) { 2989 for (const auto &I : args.writebacks()) 2990 emitWriteback(CGF, I); 2991 } 2992 2993 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 2994 const CallArgList &CallArgs) { 2995 assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()); 2996 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 2997 CallArgs.getCleanupsToDeactivate(); 2998 // Iterate in reverse to increase the likelihood of popping the cleanup. 2999 for (const auto &I : llvm::reverse(Cleanups)) { 3000 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3001 I.IsActiveIP->eraseFromParent(); 3002 } 3003 } 3004 3005 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3006 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3007 if (uop->getOpcode() == UO_AddrOf) 3008 return uop->getSubExpr(); 3009 return nullptr; 3010 } 3011 3012 /// Emit an argument that's being passed call-by-writeback. That is, 3013 /// we are passing the address of an __autoreleased temporary; it 3014 /// might be copy-initialized with the current value of the given 3015 /// address, but it will definitely be copied out of after the call. 3016 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3017 const ObjCIndirectCopyRestoreExpr *CRE) { 3018 LValue srcLV; 3019 3020 // Make an optimistic effort to emit the address as an l-value. 3021 // This can fail if the argument expression is more complicated. 3022 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3023 srcLV = CGF.EmitLValue(lvExpr); 3024 3025 // Otherwise, just emit it as a scalar. 3026 } else { 3027 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3028 3029 QualType srcAddrType = 3030 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3031 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3032 } 3033 Address srcAddr = srcLV.getAddress(); 3034 3035 // The dest and src types don't necessarily match in LLVM terms 3036 // because of the crazy ObjC compatibility rules. 3037 3038 llvm::PointerType *destType = 3039 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3040 3041 // If the address is a constant null, just pass the appropriate null. 3042 if (isProvablyNull(srcAddr.getPointer())) { 3043 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3044 CRE->getType()); 3045 return; 3046 } 3047 3048 // Create the temporary. 3049 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3050 CGF.getPointerAlign(), 3051 "icr.temp"); 3052 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3053 // and that cleanup will be conditional if we can't prove that the l-value 3054 // isn't null, so we need to register a dominating point so that the cleanups 3055 // system will make valid IR. 3056 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3057 3058 // Zero-initialize it if we're not doing a copy-initialization. 3059 bool shouldCopy = CRE->shouldCopy(); 3060 if (!shouldCopy) { 3061 llvm::Value *null = 3062 llvm::ConstantPointerNull::get( 3063 cast<llvm::PointerType>(destType->getElementType())); 3064 CGF.Builder.CreateStore(null, temp); 3065 } 3066 3067 llvm::BasicBlock *contBB = nullptr; 3068 llvm::BasicBlock *originBB = nullptr; 3069 3070 // If the address is *not* known to be non-null, we need to switch. 3071 llvm::Value *finalArgument; 3072 3073 bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer()); 3074 if (provablyNonNull) { 3075 finalArgument = temp.getPointer(); 3076 } else { 3077 llvm::Value *isNull = 3078 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3079 3080 finalArgument = CGF.Builder.CreateSelect(isNull, 3081 llvm::ConstantPointerNull::get(destType), 3082 temp.getPointer(), "icr.argument"); 3083 3084 // If we need to copy, then the load has to be conditional, which 3085 // means we need control flow. 3086 if (shouldCopy) { 3087 originBB = CGF.Builder.GetInsertBlock(); 3088 contBB = CGF.createBasicBlock("icr.cont"); 3089 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3090 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3091 CGF.EmitBlock(copyBB); 3092 condEval.begin(CGF); 3093 } 3094 } 3095 3096 llvm::Value *valueToUse = nullptr; 3097 3098 // Perform a copy if necessary. 3099 if (shouldCopy) { 3100 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3101 assert(srcRV.isScalar()); 3102 3103 llvm::Value *src = srcRV.getScalarVal(); 3104 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3105 "icr.cast"); 3106 3107 // Use an ordinary store, not a store-to-lvalue. 3108 CGF.Builder.CreateStore(src, temp); 3109 3110 // If optimization is enabled, and the value was held in a 3111 // __strong variable, we need to tell the optimizer that this 3112 // value has to stay alive until we're doing the store back. 3113 // This is because the temporary is effectively unretained, 3114 // and so otherwise we can violate the high-level semantics. 3115 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3116 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3117 valueToUse = src; 3118 } 3119 } 3120 3121 // Finish the control flow if we needed it. 3122 if (shouldCopy && !provablyNonNull) { 3123 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3124 CGF.EmitBlock(contBB); 3125 3126 // Make a phi for the value to intrinsically use. 3127 if (valueToUse) { 3128 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3129 "icr.to-use"); 3130 phiToUse->addIncoming(valueToUse, copyBB); 3131 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3132 originBB); 3133 valueToUse = phiToUse; 3134 } 3135 3136 condEval.end(CGF); 3137 } 3138 3139 args.addWriteback(srcLV, temp, valueToUse); 3140 args.add(RValue::get(finalArgument), CRE->getType()); 3141 } 3142 3143 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3144 assert(!StackBase); 3145 3146 // Save the stack. 3147 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3148 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3149 } 3150 3151 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3152 if (StackBase) { 3153 // Restore the stack after the call. 3154 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3155 CGF.Builder.CreateCall(F, StackBase); 3156 } 3157 } 3158 3159 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3160 SourceLocation ArgLoc, 3161 const FunctionDecl *FD, 3162 unsigned ParmNum) { 3163 if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD) 3164 return; 3165 auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr; 3166 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3167 auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo); 3168 if (!NNAttr) 3169 return; 3170 SanitizerScope SanScope(this); 3171 assert(RV.isScalar()); 3172 llvm::Value *V = RV.getScalarVal(); 3173 llvm::Value *Cond = 3174 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3175 llvm::Constant *StaticData[] = { 3176 EmitCheckSourceLocation(ArgLoc), 3177 EmitCheckSourceLocation(NNAttr->getLocation()), 3178 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3179 }; 3180 EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute), 3181 "nonnull_arg", StaticData, None); 3182 } 3183 3184 void CodeGenFunction::EmitCallArgs( 3185 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3186 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3187 const FunctionDecl *CalleeDecl, unsigned ParamsToSkip, 3188 EvaluationOrder Order) { 3189 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3190 3191 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg) { 3192 if (CalleeDecl == nullptr || I >= CalleeDecl->getNumParams()) 3193 return; 3194 auto *PS = CalleeDecl->getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3195 if (PS == nullptr) 3196 return; 3197 3198 const auto &Context = getContext(); 3199 auto SizeTy = Context.getSizeType(); 3200 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3201 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T); 3202 Args.add(RValue::get(V), SizeTy); 3203 }; 3204 3205 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3206 // because arguments are destroyed left to right in the callee. As a special 3207 // case, there are certain language constructs that require left-to-right 3208 // evaluation, and in those cases we consider the evaluation order requirement 3209 // to trump the "destruction order is reverse construction order" guarantee. 3210 bool LeftToRight = 3211 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3212 ? Order == EvaluationOrder::ForceLeftToRight 3213 : Order != EvaluationOrder::ForceRightToLeft; 3214 3215 // Insert a stack save if we're going to need any inalloca args. 3216 bool HasInAllocaArgs = false; 3217 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3218 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3219 I != E && !HasInAllocaArgs; ++I) 3220 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3221 if (HasInAllocaArgs) { 3222 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3223 Args.allocateArgumentMemory(*this); 3224 } 3225 } 3226 3227 // Evaluate each argument in the appropriate order. 3228 size_t CallArgsStart = Args.size(); 3229 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3230 unsigned Idx = LeftToRight ? I : E - I - 1; 3231 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3232 if (!LeftToRight) MaybeEmitImplicitObjectSize(Idx, *Arg); 3233 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3234 EmitNonNullArgCheck(Args.back().RV, ArgTypes[Idx], (*Arg)->getExprLoc(), 3235 CalleeDecl, ParamsToSkip + Idx); 3236 if (LeftToRight) MaybeEmitImplicitObjectSize(Idx, *Arg); 3237 } 3238 3239 if (!LeftToRight) { 3240 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3241 // IR function. 3242 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3243 } 3244 } 3245 3246 namespace { 3247 3248 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3249 DestroyUnpassedArg(Address Addr, QualType Ty) 3250 : Addr(Addr), Ty(Ty) {} 3251 3252 Address Addr; 3253 QualType Ty; 3254 3255 void Emit(CodeGenFunction &CGF, Flags flags) override { 3256 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3257 assert(!Dtor->isTrivial()); 3258 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3259 /*Delegating=*/false, Addr); 3260 } 3261 }; 3262 3263 struct DisableDebugLocationUpdates { 3264 CodeGenFunction &CGF; 3265 bool disabledDebugInfo; 3266 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3267 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3268 CGF.disableDebugInfo(); 3269 } 3270 ~DisableDebugLocationUpdates() { 3271 if (disabledDebugInfo) 3272 CGF.enableDebugInfo(); 3273 } 3274 }; 3275 3276 } // end anonymous namespace 3277 3278 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3279 QualType type) { 3280 DisableDebugLocationUpdates Dis(*this, E); 3281 if (const ObjCIndirectCopyRestoreExpr *CRE 3282 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3283 assert(getLangOpts().ObjCAutoRefCount); 3284 assert(getContext().hasSameUnqualifiedType(E->getType(), type)); 3285 return emitWritebackArg(*this, args, CRE); 3286 } 3287 3288 assert(type->isReferenceType() == E->isGLValue() && 3289 "reference binding to unmaterialized r-value!"); 3290 3291 if (E->isGLValue()) { 3292 assert(E->getObjectKind() == OK_Ordinary); 3293 return args.add(EmitReferenceBindingToExpr(E), type); 3294 } 3295 3296 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3297 3298 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3299 // However, we still have to push an EH-only cleanup in case we unwind before 3300 // we make it to the call. 3301 if (HasAggregateEvalKind && 3302 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3303 // If we're using inalloca, use the argument memory. Otherwise, use a 3304 // temporary. 3305 AggValueSlot Slot; 3306 if (args.isUsingInAlloca()) 3307 Slot = createPlaceholderSlot(*this, type); 3308 else 3309 Slot = CreateAggTemp(type, "agg.tmp"); 3310 3311 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3312 bool DestroyedInCallee = 3313 RD && RD->hasNonTrivialDestructor() && 3314 CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default; 3315 if (DestroyedInCallee) 3316 Slot.setExternallyDestructed(); 3317 3318 EmitAggExpr(E, Slot); 3319 RValue RV = Slot.asRValue(); 3320 args.add(RV, type); 3321 3322 if (DestroyedInCallee) { 3323 // Create a no-op GEP between the placeholder and the cleanup so we can 3324 // RAUW it successfully. It also serves as a marker of the first 3325 // instruction where the cleanup is active. 3326 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3327 type); 3328 // This unreachable is a temporary marker which will be removed later. 3329 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3330 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3331 } 3332 return; 3333 } 3334 3335 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3336 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3337 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3338 assert(L.isSimple()); 3339 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 3340 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 3341 } else { 3342 // We can't represent a misaligned lvalue in the CallArgList, so copy 3343 // to an aligned temporary now. 3344 Address tmp = CreateMemTemp(type); 3345 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile()); 3346 args.add(RValue::getAggregate(tmp), type); 3347 } 3348 return; 3349 } 3350 3351 args.add(EmitAnyExprToTemp(E), type); 3352 } 3353 3354 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3355 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3356 // implicitly widens null pointer constants that are arguments to varargs 3357 // functions to pointer-sized ints. 3358 if (!getTarget().getTriple().isOSWindows()) 3359 return Arg->getType(); 3360 3361 if (Arg->getType()->isIntegerType() && 3362 getContext().getTypeSize(Arg->getType()) < 3363 getContext().getTargetInfo().getPointerWidth(0) && 3364 Arg->isNullPointerConstant(getContext(), 3365 Expr::NPC_ValueDependentIsNotNull)) { 3366 return getContext().getIntPtrType(); 3367 } 3368 3369 return Arg->getType(); 3370 } 3371 3372 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3373 // optimizer it can aggressively ignore unwind edges. 3374 void 3375 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3376 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3377 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3378 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3379 CGM.getNoObjCARCExceptionsMetadata()); 3380 } 3381 3382 /// Emits a call to the given no-arguments nounwind runtime function. 3383 llvm::CallInst * 3384 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3385 const llvm::Twine &name) { 3386 return EmitNounwindRuntimeCall(callee, None, name); 3387 } 3388 3389 /// Emits a call to the given nounwind runtime function. 3390 llvm::CallInst * 3391 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3392 ArrayRef<llvm::Value*> args, 3393 const llvm::Twine &name) { 3394 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3395 call->setDoesNotThrow(); 3396 return call; 3397 } 3398 3399 /// Emits a simple call (never an invoke) to the given no-arguments 3400 /// runtime function. 3401 llvm::CallInst * 3402 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3403 const llvm::Twine &name) { 3404 return EmitRuntimeCall(callee, None, name); 3405 } 3406 3407 // Calls which may throw must have operand bundles indicating which funclet 3408 // they are nested within. 3409 static void 3410 getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad, 3411 SmallVectorImpl<llvm::OperandBundleDef> &BundleList) { 3412 // There is no need for a funclet operand bundle if we aren't inside a 3413 // funclet. 3414 if (!CurrentFuncletPad) 3415 return; 3416 3417 // Skip intrinsics which cannot throw. 3418 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3419 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3420 return; 3421 3422 BundleList.emplace_back("funclet", CurrentFuncletPad); 3423 } 3424 3425 /// Emits a simple call (never an invoke) to the given runtime function. 3426 llvm::CallInst * 3427 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3428 ArrayRef<llvm::Value*> args, 3429 const llvm::Twine &name) { 3430 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3431 getBundlesForFunclet(callee, CurrentFuncletPad, BundleList); 3432 3433 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name); 3434 call->setCallingConv(getRuntimeCC()); 3435 return call; 3436 } 3437 3438 /// Emits a call or invoke to the given noreturn runtime function. 3439 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3440 ArrayRef<llvm::Value*> args) { 3441 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3442 getBundlesForFunclet(callee, CurrentFuncletPad, BundleList); 3443 3444 if (getInvokeDest()) { 3445 llvm::InvokeInst *invoke = 3446 Builder.CreateInvoke(callee, 3447 getUnreachableBlock(), 3448 getInvokeDest(), 3449 args, 3450 BundleList); 3451 invoke->setDoesNotReturn(); 3452 invoke->setCallingConv(getRuntimeCC()); 3453 } else { 3454 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3455 call->setDoesNotReturn(); 3456 call->setCallingConv(getRuntimeCC()); 3457 Builder.CreateUnreachable(); 3458 } 3459 } 3460 3461 /// Emits a call or invoke instruction to the given nullary runtime function. 3462 llvm::CallSite 3463 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3464 const Twine &name) { 3465 return EmitRuntimeCallOrInvoke(callee, None, name); 3466 } 3467 3468 /// Emits a call or invoke instruction to the given runtime function. 3469 llvm::CallSite 3470 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3471 ArrayRef<llvm::Value*> args, 3472 const Twine &name) { 3473 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3474 callSite.setCallingConv(getRuntimeCC()); 3475 return callSite; 3476 } 3477 3478 /// Emits a call or invoke instruction to the given function, depending 3479 /// on the current state of the EH stack. 3480 llvm::CallSite 3481 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3482 ArrayRef<llvm::Value *> Args, 3483 const Twine &Name) { 3484 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3485 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3486 getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList); 3487 3488 llvm::Instruction *Inst; 3489 if (!InvokeDest) 3490 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3491 else { 3492 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3493 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3494 Name); 3495 EmitBlock(ContBB); 3496 } 3497 3498 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3499 // optimizer it can aggressively ignore unwind edges. 3500 if (CGM.getLangOpts().ObjCAutoRefCount) 3501 AddObjCARCExceptionMetadata(Inst); 3502 3503 return llvm::CallSite(Inst); 3504 } 3505 3506 /// \brief Store a non-aggregate value to an address to initialize it. For 3507 /// initialization, a non-atomic store will be used. 3508 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src, 3509 LValue Dst) { 3510 if (Src.isScalar()) 3511 CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true); 3512 else 3513 CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true); 3514 } 3515 3516 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3517 llvm::Value *New) { 3518 DeferredReplacements.push_back(std::make_pair(Old, New)); 3519 } 3520 3521 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3522 llvm::Value *Callee, 3523 ReturnValueSlot ReturnValue, 3524 const CallArgList &CallArgs, 3525 CGCalleeInfo CalleeInfo, 3526 llvm::Instruction **callOrInvoke) { 3527 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3528 3529 // Handle struct-return functions by passing a pointer to the 3530 // location that we would like to return into. 3531 QualType RetTy = CallInfo.getReturnType(); 3532 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3533 3534 llvm::FunctionType *IRFuncTy = 3535 cast<llvm::FunctionType>( 3536 cast<llvm::PointerType>(Callee->getType())->getElementType()); 3537 3538 // If we're using inalloca, insert the allocation after the stack save. 3539 // FIXME: Do this earlier rather than hacking it in here! 3540 Address ArgMemory = Address::invalid(); 3541 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3542 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3543 ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct); 3544 llvm::Instruction *IP = CallArgs.getStackBase(); 3545 llvm::AllocaInst *AI; 3546 if (IP) { 3547 IP = IP->getNextNode(); 3548 AI = new llvm::AllocaInst(ArgStruct, "argmem", IP); 3549 } else { 3550 AI = CreateTempAlloca(ArgStruct, "argmem"); 3551 } 3552 auto Align = CallInfo.getArgStructAlignment(); 3553 AI->setAlignment(Align.getQuantity()); 3554 AI->setUsedWithInAlloca(true); 3555 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3556 ArgMemory = Address(AI, Align); 3557 } 3558 3559 // Helper function to drill into the inalloca allocation. 3560 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3561 auto FieldOffset = 3562 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3563 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3564 }; 3565 3566 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3567 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3568 3569 // If the call returns a temporary with struct return, create a temporary 3570 // alloca to hold the result, unless one is given to us. 3571 Address SRetPtr = Address::invalid(); 3572 size_t UnusedReturnSize = 0; 3573 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3574 if (!ReturnValue.isNull()) { 3575 SRetPtr = ReturnValue.getValue(); 3576 } else { 3577 SRetPtr = CreateMemTemp(RetTy); 3578 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3579 uint64_t size = 3580 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3581 if (EmitLifetimeStart(size, SRetPtr.getPointer())) 3582 UnusedReturnSize = size; 3583 } 3584 } 3585 if (IRFunctionArgs.hasSRetArg()) { 3586 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3587 } else if (RetAI.isInAlloca()) { 3588 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3589 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3590 } 3591 } 3592 3593 Address swiftErrorTemp = Address::invalid(); 3594 Address swiftErrorArg = Address::invalid(); 3595 3596 assert(CallInfo.arg_size() == CallArgs.size() && 3597 "Mismatch between function signature & arguments."); 3598 unsigned ArgNo = 0; 3599 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3600 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3601 I != E; ++I, ++info_it, ++ArgNo) { 3602 const ABIArgInfo &ArgInfo = info_it->info; 3603 RValue RV = I->RV; 3604 3605 // Insert a padding argument to ensure proper alignment. 3606 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3607 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3608 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3609 3610 unsigned FirstIRArg, NumIRArgs; 3611 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3612 3613 switch (ArgInfo.getKind()) { 3614 case ABIArgInfo::InAlloca: { 3615 assert(NumIRArgs == 0); 3616 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3617 if (RV.isAggregate()) { 3618 // Replace the placeholder with the appropriate argument slot GEP. 3619 llvm::Instruction *Placeholder = 3620 cast<llvm::Instruction>(RV.getAggregatePointer()); 3621 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3622 Builder.SetInsertPoint(Placeholder); 3623 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3624 Builder.restoreIP(IP); 3625 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3626 } else { 3627 // Store the RValue into the argument struct. 3628 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3629 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3630 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3631 // There are some cases where a trivial bitcast is not avoidable. The 3632 // definition of a type later in a translation unit may change it's type 3633 // from {}* to (%struct.foo*)*. 3634 if (Addr.getType() != MemType) 3635 Addr = Builder.CreateBitCast(Addr, MemType); 3636 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3637 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3638 } 3639 break; 3640 } 3641 3642 case ABIArgInfo::Indirect: { 3643 assert(NumIRArgs == 1); 3644 if (RV.isScalar() || RV.isComplex()) { 3645 // Make a temporary alloca to pass the argument. 3646 Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3647 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3648 3649 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3650 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3651 } else { 3652 // We want to avoid creating an unnecessary temporary+copy here; 3653 // however, we need one in three cases: 3654 // 1. If the argument is not byval, and we are required to copy the 3655 // source. (This case doesn't occur on any common architecture.) 3656 // 2. If the argument is byval, RV is not sufficiently aligned, and 3657 // we cannot force it to be sufficiently aligned. 3658 // 3. If the argument is byval, but RV is located in an address space 3659 // different than that of the argument (0). 3660 Address Addr = RV.getAggregateAddress(); 3661 CharUnits Align = ArgInfo.getIndirectAlign(); 3662 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3663 const unsigned RVAddrSpace = Addr.getType()->getAddressSpace(); 3664 const unsigned ArgAddrSpace = 3665 (FirstIRArg < IRFuncTy->getNumParams() 3666 ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() 3667 : 0); 3668 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 3669 (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align && 3670 llvm::getOrEnforceKnownAlignment(Addr.getPointer(), 3671 Align.getQuantity(), *TD) 3672 < Align.getQuantity()) || 3673 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 3674 // Create an aligned temporary, and copy to it. 3675 Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3676 IRCallArgs[FirstIRArg] = AI.getPointer(); 3677 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 3678 } else { 3679 // Skip the extra memcpy call. 3680 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3681 } 3682 } 3683 break; 3684 } 3685 3686 case ABIArgInfo::Ignore: 3687 assert(NumIRArgs == 0); 3688 break; 3689 3690 case ABIArgInfo::Extend: 3691 case ABIArgInfo::Direct: { 3692 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3693 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3694 ArgInfo.getDirectOffset() == 0) { 3695 assert(NumIRArgs == 1); 3696 llvm::Value *V; 3697 if (RV.isScalar()) 3698 V = RV.getScalarVal(); 3699 else 3700 V = Builder.CreateLoad(RV.getAggregateAddress()); 3701 3702 // Implement swifterror by copying into a new swifterror argument. 3703 // We'll write back in the normal path out of the call. 3704 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 3705 == ParameterABI::SwiftErrorResult) { 3706 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 3707 3708 QualType pointeeTy = I->Ty->getPointeeType(); 3709 swiftErrorArg = 3710 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 3711 3712 swiftErrorTemp = 3713 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 3714 V = swiftErrorTemp.getPointer(); 3715 cast<llvm::AllocaInst>(V)->setSwiftError(true); 3716 3717 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 3718 Builder.CreateStore(errorValue, swiftErrorTemp); 3719 } 3720 3721 // We might have to widen integers, but we should never truncate. 3722 if (ArgInfo.getCoerceToType() != V->getType() && 3723 V->getType()->isIntegerTy()) 3724 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 3725 3726 // If the argument doesn't match, perform a bitcast to coerce it. This 3727 // can happen due to trivial type mismatches. 3728 if (FirstIRArg < IRFuncTy->getNumParams() && 3729 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 3730 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 3731 3732 IRCallArgs[FirstIRArg] = V; 3733 break; 3734 } 3735 3736 // FIXME: Avoid the conversion through memory if possible. 3737 Address Src = Address::invalid(); 3738 if (RV.isScalar() || RV.isComplex()) { 3739 Src = CreateMemTemp(I->Ty, "coerce"); 3740 LValue SrcLV = MakeAddrLValue(Src, I->Ty); 3741 EmitInitStoreOfNonAggregate(*this, RV, SrcLV); 3742 } else { 3743 Src = RV.getAggregateAddress(); 3744 } 3745 3746 // If the value is offset in memory, apply the offset now. 3747 Src = emitAddressAtOffset(*this, Src, ArgInfo); 3748 3749 // Fast-isel and the optimizer generally like scalar values better than 3750 // FCAs, so we flatten them if this is safe to do for this argument. 3751 llvm::StructType *STy = 3752 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 3753 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 3754 llvm::Type *SrcTy = Src.getType()->getElementType(); 3755 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 3756 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 3757 3758 // If the source type is smaller than the destination type of the 3759 // coerce-to logic, copy the source value into a temp alloca the size 3760 // of the destination type to allow loading all of it. The bits past 3761 // the source value are left undef. 3762 if (SrcSize < DstSize) { 3763 Address TempAlloca 3764 = CreateTempAlloca(STy, Src.getAlignment(), 3765 Src.getName() + ".coerce"); 3766 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 3767 Src = TempAlloca; 3768 } else { 3769 Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy)); 3770 } 3771 3772 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 3773 assert(NumIRArgs == STy->getNumElements()); 3774 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3775 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 3776 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 3777 llvm::Value *LI = Builder.CreateLoad(EltPtr); 3778 IRCallArgs[FirstIRArg + i] = LI; 3779 } 3780 } else { 3781 // In the simple case, just pass the coerced loaded value. 3782 assert(NumIRArgs == 1); 3783 IRCallArgs[FirstIRArg] = 3784 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 3785 } 3786 3787 break; 3788 } 3789 3790 case ABIArgInfo::CoerceAndExpand: { 3791 auto coercionType = ArgInfo.getCoerceAndExpandType(); 3792 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 3793 3794 llvm::Value *tempSize = nullptr; 3795 Address addr = Address::invalid(); 3796 if (RV.isAggregate()) { 3797 addr = RV.getAggregateAddress(); 3798 } else { 3799 assert(RV.isScalar()); // complex should always just be direct 3800 3801 llvm::Type *scalarType = RV.getScalarVal()->getType(); 3802 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 3803 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 3804 3805 tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize); 3806 3807 // Materialize to a temporary. 3808 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 3809 CharUnits::fromQuantity(std::max(layout->getAlignment(), 3810 scalarAlign))); 3811 EmitLifetimeStart(scalarSize, addr.getPointer()); 3812 3813 Builder.CreateStore(RV.getScalarVal(), addr); 3814 } 3815 3816 addr = Builder.CreateElementBitCast(addr, coercionType); 3817 3818 unsigned IRArgPos = FirstIRArg; 3819 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3820 llvm::Type *eltType = coercionType->getElementType(i); 3821 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 3822 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 3823 llvm::Value *elt = Builder.CreateLoad(eltAddr); 3824 IRCallArgs[IRArgPos++] = elt; 3825 } 3826 assert(IRArgPos == FirstIRArg + NumIRArgs); 3827 3828 if (tempSize) { 3829 EmitLifetimeEnd(tempSize, addr.getPointer()); 3830 } 3831 3832 break; 3833 } 3834 3835 case ABIArgInfo::Expand: 3836 unsigned IRArgPos = FirstIRArg; 3837 ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos); 3838 assert(IRArgPos == FirstIRArg + NumIRArgs); 3839 break; 3840 } 3841 } 3842 3843 if (ArgMemory.isValid()) { 3844 llvm::Value *Arg = ArgMemory.getPointer(); 3845 if (CallInfo.isVariadic()) { 3846 // When passing non-POD arguments by value to variadic functions, we will 3847 // end up with a variadic prototype and an inalloca call site. In such 3848 // cases, we can't do any parameter mismatch checks. Give up and bitcast 3849 // the callee. 3850 unsigned CalleeAS = 3851 cast<llvm::PointerType>(Callee->getType())->getAddressSpace(); 3852 Callee = Builder.CreateBitCast( 3853 Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS)); 3854 } else { 3855 llvm::Type *LastParamTy = 3856 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 3857 if (Arg->getType() != LastParamTy) { 3858 #ifndef NDEBUG 3859 // Assert that these structs have equivalent element types. 3860 llvm::StructType *FullTy = CallInfo.getArgStruct(); 3861 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 3862 cast<llvm::PointerType>(LastParamTy)->getElementType()); 3863 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 3864 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 3865 DE = DeclaredTy->element_end(), 3866 FI = FullTy->element_begin(); 3867 DI != DE; ++DI, ++FI) 3868 assert(*DI == *FI); 3869 #endif 3870 Arg = Builder.CreateBitCast(Arg, LastParamTy); 3871 } 3872 } 3873 assert(IRFunctionArgs.hasInallocaArg()); 3874 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 3875 } 3876 3877 if (!CallArgs.getCleanupsToDeactivate().empty()) 3878 deactivateArgCleanupsBeforeCall(*this, CallArgs); 3879 3880 // If the callee is a bitcast of a function to a varargs pointer to function 3881 // type, check to see if we can remove the bitcast. This handles some cases 3882 // with unprototyped functions. 3883 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 3884 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 3885 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 3886 llvm::FunctionType *CurFT = 3887 cast<llvm::FunctionType>(CurPT->getElementType()); 3888 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 3889 3890 if (CE->getOpcode() == llvm::Instruction::BitCast && 3891 ActualFT->getReturnType() == CurFT->getReturnType() && 3892 ActualFT->getNumParams() == CurFT->getNumParams() && 3893 ActualFT->getNumParams() == IRCallArgs.size() && 3894 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 3895 bool ArgsMatch = true; 3896 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 3897 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 3898 ArgsMatch = false; 3899 break; 3900 } 3901 3902 // Strip the cast if we can get away with it. This is a nice cleanup, 3903 // but also allows us to inline the function at -O0 if it is marked 3904 // always_inline. 3905 if (ArgsMatch) 3906 Callee = CalleeF; 3907 } 3908 } 3909 3910 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 3911 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 3912 // Inalloca argument can have different type. 3913 if (IRFunctionArgs.hasInallocaArg() && 3914 i == IRFunctionArgs.getInallocaArgNo()) 3915 continue; 3916 if (i < IRFuncTy->getNumParams()) 3917 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 3918 } 3919 3920 unsigned CallingConv; 3921 CodeGen::AttributeListType AttributeList; 3922 CGM.ConstructAttributeList(Callee->getName(), CallInfo, CalleeInfo, 3923 AttributeList, CallingConv, 3924 /*AttrOnCallSite=*/true); 3925 llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(), 3926 AttributeList); 3927 3928 bool CannotThrow; 3929 if (currentFunctionUsesSEHTry()) { 3930 // SEH cares about asynchronous exceptions, everything can "throw." 3931 CannotThrow = false; 3932 } else if (isCleanupPadScope() && 3933 EHPersonality::get(*this).isMSVCXXPersonality()) { 3934 // The MSVC++ personality will implicitly terminate the program if an 3935 // exception is thrown. An unwind edge cannot be reached. 3936 CannotThrow = true; 3937 } else { 3938 // Otherwise, nowunind callsites will never throw. 3939 CannotThrow = Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex, 3940 llvm::Attribute::NoUnwind); 3941 } 3942 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 3943 3944 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3945 getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList); 3946 3947 llvm::CallSite CS; 3948 if (!InvokeDest) { 3949 CS = Builder.CreateCall(Callee, IRCallArgs, BundleList); 3950 } else { 3951 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 3952 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs, 3953 BundleList); 3954 EmitBlock(Cont); 3955 } 3956 if (callOrInvoke) 3957 *callOrInvoke = CS.getInstruction(); 3958 3959 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 3960 !CS.hasFnAttr(llvm::Attribute::NoInline)) 3961 Attrs = 3962 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 3963 llvm::Attribute::AlwaysInline); 3964 3965 // Disable inlining inside SEH __try blocks. 3966 if (isSEHTryScope()) 3967 Attrs = 3968 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 3969 llvm::Attribute::NoInline); 3970 3971 CS.setAttributes(Attrs); 3972 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 3973 3974 // Insert instrumentation or attach profile metadata at indirect call sites. 3975 // For more details, see the comment before the definition of 3976 // IPVK_IndirectCallTarget in InstrProfData.inc. 3977 if (!CS.getCalledFunction()) 3978 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 3979 CS.getInstruction(), Callee); 3980 3981 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3982 // optimizer it can aggressively ignore unwind edges. 3983 if (CGM.getLangOpts().ObjCAutoRefCount) 3984 AddObjCARCExceptionMetadata(CS.getInstruction()); 3985 3986 // If the call doesn't return, finish the basic block and clear the 3987 // insertion point; this allows the rest of IRgen to discard 3988 // unreachable code. 3989 if (CS.doesNotReturn()) { 3990 if (UnusedReturnSize) 3991 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 3992 SRetPtr.getPointer()); 3993 3994 Builder.CreateUnreachable(); 3995 Builder.ClearInsertionPoint(); 3996 3997 // FIXME: For now, emit a dummy basic block because expr emitters in 3998 // generally are not ready to handle emitting expressions at unreachable 3999 // points. 4000 EnsureInsertPoint(); 4001 4002 // Return a reasonable RValue. 4003 return GetUndefRValue(RetTy); 4004 } 4005 4006 llvm::Instruction *CI = CS.getInstruction(); 4007 if (!CI->getType()->isVoidTy()) 4008 CI->setName("call"); 4009 4010 // Perform the swifterror writeback. 4011 if (swiftErrorTemp.isValid()) { 4012 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4013 Builder.CreateStore(errorResult, swiftErrorArg); 4014 } 4015 4016 // Emit any writebacks immediately. Arguably this should happen 4017 // after any return-value munging. 4018 if (CallArgs.hasWritebacks()) 4019 emitWritebacks(*this, CallArgs); 4020 4021 // The stack cleanup for inalloca arguments has to run out of the normal 4022 // lexical order, so deactivate it and run it manually here. 4023 CallArgs.freeArgumentMemory(*this); 4024 4025 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4026 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 4027 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4028 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4029 } 4030 4031 RValue Ret = [&] { 4032 switch (RetAI.getKind()) { 4033 case ABIArgInfo::CoerceAndExpand: { 4034 auto coercionType = RetAI.getCoerceAndExpandType(); 4035 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4036 4037 Address addr = SRetPtr; 4038 addr = Builder.CreateElementBitCast(addr, coercionType); 4039 4040 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4041 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4042 4043 unsigned unpaddedIndex = 0; 4044 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4045 llvm::Type *eltType = coercionType->getElementType(i); 4046 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4047 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4048 llvm::Value *elt = CI; 4049 if (requiresExtract) 4050 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4051 else 4052 assert(unpaddedIndex == 0); 4053 Builder.CreateStore(elt, eltAddr); 4054 } 4055 // FALLTHROUGH 4056 } 4057 4058 case ABIArgInfo::InAlloca: 4059 case ABIArgInfo::Indirect: { 4060 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4061 if (UnusedReturnSize) 4062 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 4063 SRetPtr.getPointer()); 4064 return ret; 4065 } 4066 4067 case ABIArgInfo::Ignore: 4068 // If we are ignoring an argument that had a result, make sure to 4069 // construct the appropriate return value for our caller. 4070 return GetUndefRValue(RetTy); 4071 4072 case ABIArgInfo::Extend: 4073 case ABIArgInfo::Direct: { 4074 llvm::Type *RetIRTy = ConvertType(RetTy); 4075 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4076 switch (getEvaluationKind(RetTy)) { 4077 case TEK_Complex: { 4078 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4079 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4080 return RValue::getComplex(std::make_pair(Real, Imag)); 4081 } 4082 case TEK_Aggregate: { 4083 Address DestPtr = ReturnValue.getValue(); 4084 bool DestIsVolatile = ReturnValue.isVolatile(); 4085 4086 if (!DestPtr.isValid()) { 4087 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4088 DestIsVolatile = false; 4089 } 4090 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4091 return RValue::getAggregate(DestPtr); 4092 } 4093 case TEK_Scalar: { 4094 // If the argument doesn't match, perform a bitcast to coerce it. This 4095 // can happen due to trivial type mismatches. 4096 llvm::Value *V = CI; 4097 if (V->getType() != RetIRTy) 4098 V = Builder.CreateBitCast(V, RetIRTy); 4099 return RValue::get(V); 4100 } 4101 } 4102 llvm_unreachable("bad evaluation kind"); 4103 } 4104 4105 Address DestPtr = ReturnValue.getValue(); 4106 bool DestIsVolatile = ReturnValue.isVolatile(); 4107 4108 if (!DestPtr.isValid()) { 4109 DestPtr = CreateMemTemp(RetTy, "coerce"); 4110 DestIsVolatile = false; 4111 } 4112 4113 // If the value is offset in memory, apply the offset now. 4114 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4115 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4116 4117 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4118 } 4119 4120 case ABIArgInfo::Expand: 4121 llvm_unreachable("Invalid ABI kind for return argument"); 4122 } 4123 4124 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4125 } (); 4126 4127 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 4128 4129 if (Ret.isScalar() && TargetDecl) { 4130 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4131 llvm::Value *OffsetValue = nullptr; 4132 if (const auto *Offset = AA->getOffset()) 4133 OffsetValue = EmitScalarExpr(Offset); 4134 4135 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4136 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4137 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 4138 OffsetValue); 4139 } 4140 } 4141 4142 return Ret; 4143 } 4144 4145 /* VarArg handling */ 4146 4147 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4148 VAListAddr = VE->isMicrosoftABI() 4149 ? EmitMSVAListRef(VE->getSubExpr()) 4150 : EmitVAListRef(VE->getSubExpr()); 4151 QualType Ty = VE->getType(); 4152 if (VE->isMicrosoftABI()) 4153 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4154 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4155 } 4156