1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/Basic/CodeGenOptions.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/SwiftCallingConv.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 using namespace clang;
40 using namespace CodeGen;
41 
42 /***/
43 
44 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
45   switch (CC) {
46   default: return llvm::CallingConv::C;
47   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
48   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
49   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
50   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
51   case CC_Win64: return llvm::CallingConv::Win64;
52   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
53   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
54   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
55   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
56   // TODO: Add support for __pascal to LLVM.
57   case CC_X86Pascal: return llvm::CallingConv::C;
58   // TODO: Add support for __vectorcall to LLVM.
59   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
60   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
61   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
62   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
63   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
64   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
65   case CC_Swift: return llvm::CallingConv::Swift;
66   }
67 }
68 
69 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
70 /// qualification. Either or both of RD and MD may be null. A null RD indicates
71 /// that there is no meaningful 'this' type, and a null MD can occur when
72 /// calling a method pointer.
73 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
74                                          const CXXMethodDecl *MD) {
75   QualType RecTy;
76   if (RD)
77     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
78   else
79     RecTy = Context.VoidTy;
80 
81   if (MD)
82     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
83   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
84 }
85 
86 /// Returns the canonical formal type of the given C++ method.
87 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
88   return MD->getType()->getCanonicalTypeUnqualified()
89            .getAs<FunctionProtoType>();
90 }
91 
92 /// Returns the "extra-canonicalized" return type, which discards
93 /// qualifiers on the return type.  Codegen doesn't care about them,
94 /// and it makes ABI code a little easier to be able to assume that
95 /// all parameter and return types are top-level unqualified.
96 static CanQualType GetReturnType(QualType RetTy) {
97   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
98 }
99 
100 /// Arrange the argument and result information for a value of the given
101 /// unprototyped freestanding function type.
102 const CGFunctionInfo &
103 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
104   // When translating an unprototyped function type, always use a
105   // variadic type.
106   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
107                                  /*instanceMethod=*/false,
108                                  /*chainCall=*/false, None,
109                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
110 }
111 
112 static void addExtParameterInfosForCall(
113          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
114                                         const FunctionProtoType *proto,
115                                         unsigned prefixArgs,
116                                         unsigned totalArgs) {
117   assert(proto->hasExtParameterInfos());
118   assert(paramInfos.size() <= prefixArgs);
119   assert(proto->getNumParams() + prefixArgs <= totalArgs);
120 
121   paramInfos.reserve(totalArgs);
122 
123   // Add default infos for any prefix args that don't already have infos.
124   paramInfos.resize(prefixArgs);
125 
126   // Add infos for the prototype.
127   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
128     paramInfos.push_back(ParamInfo);
129     // pass_object_size params have no parameter info.
130     if (ParamInfo.hasPassObjectSize())
131       paramInfos.emplace_back();
132   }
133 
134   assert(paramInfos.size() <= totalArgs &&
135          "Did we forget to insert pass_object_size args?");
136   // Add default infos for the variadic and/or suffix arguments.
137   paramInfos.resize(totalArgs);
138 }
139 
140 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
141 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
142 static void appendParameterTypes(const CodeGenTypes &CGT,
143                                  SmallVectorImpl<CanQualType> &prefix,
144               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
145                                  CanQual<FunctionProtoType> FPT) {
146   // Fast path: don't touch param info if we don't need to.
147   if (!FPT->hasExtParameterInfos()) {
148     assert(paramInfos.empty() &&
149            "We have paramInfos, but the prototype doesn't?");
150     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
151     return;
152   }
153 
154   unsigned PrefixSize = prefix.size();
155   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
156   // parameters; the only thing that can change this is the presence of
157   // pass_object_size. So, we preallocate for the common case.
158   prefix.reserve(prefix.size() + FPT->getNumParams());
159 
160   auto ExtInfos = FPT->getExtParameterInfos();
161   assert(ExtInfos.size() == FPT->getNumParams());
162   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
163     prefix.push_back(FPT->getParamType(I));
164     if (ExtInfos[I].hasPassObjectSize())
165       prefix.push_back(CGT.getContext().getSizeType());
166   }
167 
168   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
169                               prefix.size());
170 }
171 
172 /// Arrange the LLVM function layout for a value of the given function
173 /// type, on top of any implicit parameters already stored.
174 static const CGFunctionInfo &
175 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
176                         SmallVectorImpl<CanQualType> &prefix,
177                         CanQual<FunctionProtoType> FTP) {
178   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
179   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
180   // FIXME: Kill copy.
181   appendParameterTypes(CGT, prefix, paramInfos, FTP);
182   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
183 
184   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
185                                      /*chainCall=*/false, prefix,
186                                      FTP->getExtInfo(), paramInfos,
187                                      Required);
188 }
189 
190 /// Arrange the argument and result information for a value of the
191 /// given freestanding function type.
192 const CGFunctionInfo &
193 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
194   SmallVector<CanQualType, 16> argTypes;
195   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
196                                    FTP);
197 }
198 
199 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
200   // Set the appropriate calling convention for the Function.
201   if (D->hasAttr<StdCallAttr>())
202     return CC_X86StdCall;
203 
204   if (D->hasAttr<FastCallAttr>())
205     return CC_X86FastCall;
206 
207   if (D->hasAttr<RegCallAttr>())
208     return CC_X86RegCall;
209 
210   if (D->hasAttr<ThisCallAttr>())
211     return CC_X86ThisCall;
212 
213   if (D->hasAttr<VectorCallAttr>())
214     return CC_X86VectorCall;
215 
216   if (D->hasAttr<PascalAttr>())
217     return CC_X86Pascal;
218 
219   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
220     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
221 
222   if (D->hasAttr<AArch64VectorPcsAttr>())
223     return CC_AArch64VectorCall;
224 
225   if (D->hasAttr<IntelOclBiccAttr>())
226     return CC_IntelOclBicc;
227 
228   if (D->hasAttr<MSABIAttr>())
229     return IsWindows ? CC_C : CC_Win64;
230 
231   if (D->hasAttr<SysVABIAttr>())
232     return IsWindows ? CC_X86_64SysV : CC_C;
233 
234   if (D->hasAttr<PreserveMostAttr>())
235     return CC_PreserveMost;
236 
237   if (D->hasAttr<PreserveAllAttr>())
238     return CC_PreserveAll;
239 
240   return CC_C;
241 }
242 
243 /// Arrange the argument and result information for a call to an
244 /// unknown C++ non-static member function of the given abstract type.
245 /// (A null RD means we don't have any meaningful "this" argument type,
246 ///  so fall back to a generic pointer type).
247 /// The member function must be an ordinary function, i.e. not a
248 /// constructor or destructor.
249 const CGFunctionInfo &
250 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
251                                    const FunctionProtoType *FTP,
252                                    const CXXMethodDecl *MD) {
253   SmallVector<CanQualType, 16> argTypes;
254 
255   // Add the 'this' pointer.
256   argTypes.push_back(DeriveThisType(RD, MD));
257 
258   return ::arrangeLLVMFunctionInfo(
259       *this, true, argTypes,
260       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
261 }
262 
263 /// Set calling convention for CUDA/HIP kernel.
264 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
265                                            const FunctionDecl *FD) {
266   if (FD->hasAttr<CUDAGlobalAttr>()) {
267     const FunctionType *FT = FTy->getAs<FunctionType>();
268     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
269     FTy = FT->getCanonicalTypeUnqualified();
270   }
271 }
272 
273 /// Arrange the argument and result information for a declaration or
274 /// definition of the given C++ non-static member function.  The
275 /// member function must be an ordinary function, i.e. not a
276 /// constructor or destructor.
277 const CGFunctionInfo &
278 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
279   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
280   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
281 
282   CanQualType FT = GetFormalType(MD).getAs<Type>();
283   setCUDAKernelCallingConvention(FT, CGM, MD);
284   auto prototype = FT.getAs<FunctionProtoType>();
285 
286   if (MD->isInstance()) {
287     // The abstract case is perfectly fine.
288     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
289     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
290   }
291 
292   return arrangeFreeFunctionType(prototype);
293 }
294 
295 bool CodeGenTypes::inheritingCtorHasParams(
296     const InheritedConstructor &Inherited, CXXCtorType Type) {
297   // Parameters are unnecessary if we're constructing a base class subobject
298   // and the inherited constructor lives in a virtual base.
299   return Type == Ctor_Complete ||
300          !Inherited.getShadowDecl()->constructsVirtualBase() ||
301          !Target.getCXXABI().hasConstructorVariants();
302 }
303 
304 const CGFunctionInfo &
305 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
306   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
307 
308   SmallVector<CanQualType, 16> argTypes;
309   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
310   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
311 
312   bool PassParams = true;
313 
314   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
315     // A base class inheriting constructor doesn't get forwarded arguments
316     // needed to construct a virtual base (or base class thereof).
317     if (auto Inherited = CD->getInheritedConstructor())
318       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
319   }
320 
321   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
322 
323   // Add the formal parameters.
324   if (PassParams)
325     appendParameterTypes(*this, argTypes, paramInfos, FTP);
326 
327   CGCXXABI::AddedStructorArgs AddedArgs =
328       TheCXXABI.buildStructorSignature(GD, argTypes);
329   if (!paramInfos.empty()) {
330     // Note: prefix implies after the first param.
331     if (AddedArgs.Prefix)
332       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
333                         FunctionProtoType::ExtParameterInfo{});
334     if (AddedArgs.Suffix)
335       paramInfos.append(AddedArgs.Suffix,
336                         FunctionProtoType::ExtParameterInfo{});
337   }
338 
339   RequiredArgs required =
340       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
341                                       : RequiredArgs::All);
342 
343   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
344   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
345                                ? argTypes.front()
346                                : TheCXXABI.hasMostDerivedReturn(GD)
347                                      ? CGM.getContext().VoidPtrTy
348                                      : Context.VoidTy;
349   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
350                                  /*chainCall=*/false, argTypes, extInfo,
351                                  paramInfos, required);
352 }
353 
354 static SmallVector<CanQualType, 16>
355 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
356   SmallVector<CanQualType, 16> argTypes;
357   for (auto &arg : args)
358     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
359   return argTypes;
360 }
361 
362 static SmallVector<CanQualType, 16>
363 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
364   SmallVector<CanQualType, 16> argTypes;
365   for (auto &arg : args)
366     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
367   return argTypes;
368 }
369 
370 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
371 getExtParameterInfosForCall(const FunctionProtoType *proto,
372                             unsigned prefixArgs, unsigned totalArgs) {
373   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
374   if (proto->hasExtParameterInfos()) {
375     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
376   }
377   return result;
378 }
379 
380 /// Arrange a call to a C++ method, passing the given arguments.
381 ///
382 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
383 /// parameter.
384 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
385 /// args.
386 /// PassProtoArgs indicates whether `args` has args for the parameters in the
387 /// given CXXConstructorDecl.
388 const CGFunctionInfo &
389 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
390                                         const CXXConstructorDecl *D,
391                                         CXXCtorType CtorKind,
392                                         unsigned ExtraPrefixArgs,
393                                         unsigned ExtraSuffixArgs,
394                                         bool PassProtoArgs) {
395   // FIXME: Kill copy.
396   SmallVector<CanQualType, 16> ArgTypes;
397   for (const auto &Arg : args)
398     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
399 
400   // +1 for implicit this, which should always be args[0].
401   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
402 
403   CanQual<FunctionProtoType> FPT = GetFormalType(D);
404   RequiredArgs Required = PassProtoArgs
405                               ? RequiredArgs::forPrototypePlus(
406                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
407                               : RequiredArgs::All;
408 
409   GlobalDecl GD(D, CtorKind);
410   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
411                                ? ArgTypes.front()
412                                : TheCXXABI.hasMostDerivedReturn(GD)
413                                      ? CGM.getContext().VoidPtrTy
414                                      : Context.VoidTy;
415 
416   FunctionType::ExtInfo Info = FPT->getExtInfo();
417   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
418   // If the prototype args are elided, we should only have ABI-specific args,
419   // which never have param info.
420   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
421     // ABI-specific suffix arguments are treated the same as variadic arguments.
422     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
423                                 ArgTypes.size());
424   }
425   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
426                                  /*chainCall=*/false, ArgTypes, Info,
427                                  ParamInfos, Required);
428 }
429 
430 /// Arrange the argument and result information for the declaration or
431 /// definition of the given function.
432 const CGFunctionInfo &
433 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
434   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
435     if (MD->isInstance())
436       return arrangeCXXMethodDeclaration(MD);
437 
438   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
439 
440   assert(isa<FunctionType>(FTy));
441   setCUDAKernelCallingConvention(FTy, CGM, FD);
442 
443   // When declaring a function without a prototype, always use a
444   // non-variadic type.
445   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
446     return arrangeLLVMFunctionInfo(
447         noProto->getReturnType(), /*instanceMethod=*/false,
448         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
449   }
450 
451   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
452 }
453 
454 /// Arrange the argument and result information for the declaration or
455 /// definition of an Objective-C method.
456 const CGFunctionInfo &
457 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
458   // It happens that this is the same as a call with no optional
459   // arguments, except also using the formal 'self' type.
460   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
461 }
462 
463 /// Arrange the argument and result information for the function type
464 /// through which to perform a send to the given Objective-C method,
465 /// using the given receiver type.  The receiver type is not always
466 /// the 'self' type of the method or even an Objective-C pointer type.
467 /// This is *not* the right method for actually performing such a
468 /// message send, due to the possibility of optional arguments.
469 const CGFunctionInfo &
470 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
471                                               QualType receiverType) {
472   SmallVector<CanQualType, 16> argTys;
473   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
474   argTys.push_back(Context.getCanonicalParamType(receiverType));
475   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
476   // FIXME: Kill copy?
477   for (const auto *I : MD->parameters()) {
478     argTys.push_back(Context.getCanonicalParamType(I->getType()));
479     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
480         I->hasAttr<NoEscapeAttr>());
481     extParamInfos.push_back(extParamInfo);
482   }
483 
484   FunctionType::ExtInfo einfo;
485   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
486   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
487 
488   if (getContext().getLangOpts().ObjCAutoRefCount &&
489       MD->hasAttr<NSReturnsRetainedAttr>())
490     einfo = einfo.withProducesResult(true);
491 
492   RequiredArgs required =
493     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
494 
495   return arrangeLLVMFunctionInfo(
496       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
497       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
498 }
499 
500 const CGFunctionInfo &
501 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
502                                                  const CallArgList &args) {
503   auto argTypes = getArgTypesForCall(Context, args);
504   FunctionType::ExtInfo einfo;
505 
506   return arrangeLLVMFunctionInfo(
507       GetReturnType(returnType), /*instanceMethod=*/false,
508       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
509 }
510 
511 const CGFunctionInfo &
512 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
513   // FIXME: Do we need to handle ObjCMethodDecl?
514   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
515 
516   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
517       isa<CXXDestructorDecl>(GD.getDecl()))
518     return arrangeCXXStructorDeclaration(GD);
519 
520   return arrangeFunctionDeclaration(FD);
521 }
522 
523 /// Arrange a thunk that takes 'this' as the first parameter followed by
524 /// varargs.  Return a void pointer, regardless of the actual return type.
525 /// The body of the thunk will end in a musttail call to a function of the
526 /// correct type, and the caller will bitcast the function to the correct
527 /// prototype.
528 const CGFunctionInfo &
529 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
530   assert(MD->isVirtual() && "only methods have thunks");
531   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
532   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
533   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
534                                  /*chainCall=*/false, ArgTys,
535                                  FTP->getExtInfo(), {}, RequiredArgs(1));
536 }
537 
538 const CGFunctionInfo &
539 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
540                                    CXXCtorType CT) {
541   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
542 
543   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
544   SmallVector<CanQualType, 2> ArgTys;
545   const CXXRecordDecl *RD = CD->getParent();
546   ArgTys.push_back(DeriveThisType(RD, CD));
547   if (CT == Ctor_CopyingClosure)
548     ArgTys.push_back(*FTP->param_type_begin());
549   if (RD->getNumVBases() > 0)
550     ArgTys.push_back(Context.IntTy);
551   CallingConv CC = Context.getDefaultCallingConvention(
552       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
553   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
554                                  /*chainCall=*/false, ArgTys,
555                                  FunctionType::ExtInfo(CC), {},
556                                  RequiredArgs::All);
557 }
558 
559 /// Arrange a call as unto a free function, except possibly with an
560 /// additional number of formal parameters considered required.
561 static const CGFunctionInfo &
562 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
563                             CodeGenModule &CGM,
564                             const CallArgList &args,
565                             const FunctionType *fnType,
566                             unsigned numExtraRequiredArgs,
567                             bool chainCall) {
568   assert(args.size() >= numExtraRequiredArgs);
569 
570   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
571 
572   // In most cases, there are no optional arguments.
573   RequiredArgs required = RequiredArgs::All;
574 
575   // If we have a variadic prototype, the required arguments are the
576   // extra prefix plus the arguments in the prototype.
577   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
578     if (proto->isVariadic())
579       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
580 
581     if (proto->hasExtParameterInfos())
582       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
583                                   args.size());
584 
585   // If we don't have a prototype at all, but we're supposed to
586   // explicitly use the variadic convention for unprototyped calls,
587   // treat all of the arguments as required but preserve the nominal
588   // possibility of variadics.
589   } else if (CGM.getTargetCodeGenInfo()
590                 .isNoProtoCallVariadic(args,
591                                        cast<FunctionNoProtoType>(fnType))) {
592     required = RequiredArgs(args.size());
593   }
594 
595   // FIXME: Kill copy.
596   SmallVector<CanQualType, 16> argTypes;
597   for (const auto &arg : args)
598     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
599   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
600                                      /*instanceMethod=*/false, chainCall,
601                                      argTypes, fnType->getExtInfo(), paramInfos,
602                                      required);
603 }
604 
605 /// Figure out the rules for calling a function with the given formal
606 /// type using the given arguments.  The arguments are necessary
607 /// because the function might be unprototyped, in which case it's
608 /// target-dependent in crazy ways.
609 const CGFunctionInfo &
610 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
611                                       const FunctionType *fnType,
612                                       bool chainCall) {
613   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
614                                      chainCall ? 1 : 0, chainCall);
615 }
616 
617 /// A block function is essentially a free function with an
618 /// extra implicit argument.
619 const CGFunctionInfo &
620 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
621                                        const FunctionType *fnType) {
622   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
623                                      /*chainCall=*/false);
624 }
625 
626 const CGFunctionInfo &
627 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
628                                               const FunctionArgList &params) {
629   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
630   auto argTypes = getArgTypesForDeclaration(Context, params);
631 
632   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
633                                  /*instanceMethod*/ false, /*chainCall*/ false,
634                                  argTypes, proto->getExtInfo(), paramInfos,
635                                  RequiredArgs::forPrototypePlus(proto, 1));
636 }
637 
638 const CGFunctionInfo &
639 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
640                                          const CallArgList &args) {
641   // FIXME: Kill copy.
642   SmallVector<CanQualType, 16> argTypes;
643   for (const auto &Arg : args)
644     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
645   return arrangeLLVMFunctionInfo(
646       GetReturnType(resultType), /*instanceMethod=*/false,
647       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
648       /*paramInfos=*/ {}, RequiredArgs::All);
649 }
650 
651 const CGFunctionInfo &
652 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
653                                                 const FunctionArgList &args) {
654   auto argTypes = getArgTypesForDeclaration(Context, args);
655 
656   return arrangeLLVMFunctionInfo(
657       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
658       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
659 }
660 
661 const CGFunctionInfo &
662 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
663                                               ArrayRef<CanQualType> argTypes) {
664   return arrangeLLVMFunctionInfo(
665       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
666       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
667 }
668 
669 /// Arrange a call to a C++ method, passing the given arguments.
670 ///
671 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
672 /// does not count `this`.
673 const CGFunctionInfo &
674 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
675                                    const FunctionProtoType *proto,
676                                    RequiredArgs required,
677                                    unsigned numPrefixArgs) {
678   assert(numPrefixArgs + 1 <= args.size() &&
679          "Emitting a call with less args than the required prefix?");
680   // Add one to account for `this`. It's a bit awkward here, but we don't count
681   // `this` in similar places elsewhere.
682   auto paramInfos =
683     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
684 
685   // FIXME: Kill copy.
686   auto argTypes = getArgTypesForCall(Context, args);
687 
688   FunctionType::ExtInfo info = proto->getExtInfo();
689   return arrangeLLVMFunctionInfo(
690       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
691       /*chainCall=*/false, argTypes, info, paramInfos, required);
692 }
693 
694 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
695   return arrangeLLVMFunctionInfo(
696       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
697       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
698 }
699 
700 const CGFunctionInfo &
701 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
702                           const CallArgList &args) {
703   assert(signature.arg_size() <= args.size());
704   if (signature.arg_size() == args.size())
705     return signature;
706 
707   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
708   auto sigParamInfos = signature.getExtParameterInfos();
709   if (!sigParamInfos.empty()) {
710     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
711     paramInfos.resize(args.size());
712   }
713 
714   auto argTypes = getArgTypesForCall(Context, args);
715 
716   assert(signature.getRequiredArgs().allowsOptionalArgs());
717   return arrangeLLVMFunctionInfo(signature.getReturnType(),
718                                  signature.isInstanceMethod(),
719                                  signature.isChainCall(),
720                                  argTypes,
721                                  signature.getExtInfo(),
722                                  paramInfos,
723                                  signature.getRequiredArgs());
724 }
725 
726 namespace clang {
727 namespace CodeGen {
728 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
729 }
730 }
731 
732 /// Arrange the argument and result information for an abstract value
733 /// of a given function type.  This is the method which all of the
734 /// above functions ultimately defer to.
735 const CGFunctionInfo &
736 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
737                                       bool instanceMethod,
738                                       bool chainCall,
739                                       ArrayRef<CanQualType> argTypes,
740                                       FunctionType::ExtInfo info,
741                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
742                                       RequiredArgs required) {
743   assert(llvm::all_of(argTypes,
744                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
745 
746   // Lookup or create unique function info.
747   llvm::FoldingSetNodeID ID;
748   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
749                           required, resultType, argTypes);
750 
751   void *insertPos = nullptr;
752   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
753   if (FI)
754     return *FI;
755 
756   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
757 
758   // Construct the function info.  We co-allocate the ArgInfos.
759   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
760                               paramInfos, resultType, argTypes, required);
761   FunctionInfos.InsertNode(FI, insertPos);
762 
763   bool inserted = FunctionsBeingProcessed.insert(FI).second;
764   (void)inserted;
765   assert(inserted && "Recursively being processed?");
766 
767   // Compute ABI information.
768   if (CC == llvm::CallingConv::SPIR_KERNEL) {
769     // Force target independent argument handling for the host visible
770     // kernel functions.
771     computeSPIRKernelABIInfo(CGM, *FI);
772   } else if (info.getCC() == CC_Swift) {
773     swiftcall::computeABIInfo(CGM, *FI);
774   } else {
775     getABIInfo().computeInfo(*FI);
776   }
777 
778   // Loop over all of the computed argument and return value info.  If any of
779   // them are direct or extend without a specified coerce type, specify the
780   // default now.
781   ABIArgInfo &retInfo = FI->getReturnInfo();
782   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
783     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
784 
785   for (auto &I : FI->arguments())
786     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
787       I.info.setCoerceToType(ConvertType(I.type));
788 
789   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
790   assert(erased && "Not in set?");
791 
792   return *FI;
793 }
794 
795 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
796                                        bool instanceMethod,
797                                        bool chainCall,
798                                        const FunctionType::ExtInfo &info,
799                                        ArrayRef<ExtParameterInfo> paramInfos,
800                                        CanQualType resultType,
801                                        ArrayRef<CanQualType> argTypes,
802                                        RequiredArgs required) {
803   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
804   assert(!required.allowsOptionalArgs() ||
805          required.getNumRequiredArgs() <= argTypes.size());
806 
807   void *buffer =
808     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
809                                   argTypes.size() + 1, paramInfos.size()));
810 
811   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
812   FI->CallingConvention = llvmCC;
813   FI->EffectiveCallingConvention = llvmCC;
814   FI->ASTCallingConvention = info.getCC();
815   FI->InstanceMethod = instanceMethod;
816   FI->ChainCall = chainCall;
817   FI->NoReturn = info.getNoReturn();
818   FI->ReturnsRetained = info.getProducesResult();
819   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
820   FI->NoCfCheck = info.getNoCfCheck();
821   FI->Required = required;
822   FI->HasRegParm = info.getHasRegParm();
823   FI->RegParm = info.getRegParm();
824   FI->ArgStruct = nullptr;
825   FI->ArgStructAlign = 0;
826   FI->NumArgs = argTypes.size();
827   FI->HasExtParameterInfos = !paramInfos.empty();
828   FI->getArgsBuffer()[0].type = resultType;
829   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
830     FI->getArgsBuffer()[i + 1].type = argTypes[i];
831   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
832     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
833   return FI;
834 }
835 
836 /***/
837 
838 namespace {
839 // ABIArgInfo::Expand implementation.
840 
841 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
842 struct TypeExpansion {
843   enum TypeExpansionKind {
844     // Elements of constant arrays are expanded recursively.
845     TEK_ConstantArray,
846     // Record fields are expanded recursively (but if record is a union, only
847     // the field with the largest size is expanded).
848     TEK_Record,
849     // For complex types, real and imaginary parts are expanded recursively.
850     TEK_Complex,
851     // All other types are not expandable.
852     TEK_None
853   };
854 
855   const TypeExpansionKind Kind;
856 
857   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
858   virtual ~TypeExpansion() {}
859 };
860 
861 struct ConstantArrayExpansion : TypeExpansion {
862   QualType EltTy;
863   uint64_t NumElts;
864 
865   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
866       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
867   static bool classof(const TypeExpansion *TE) {
868     return TE->Kind == TEK_ConstantArray;
869   }
870 };
871 
872 struct RecordExpansion : TypeExpansion {
873   SmallVector<const CXXBaseSpecifier *, 1> Bases;
874 
875   SmallVector<const FieldDecl *, 1> Fields;
876 
877   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
878                   SmallVector<const FieldDecl *, 1> &&Fields)
879       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
880         Fields(std::move(Fields)) {}
881   static bool classof(const TypeExpansion *TE) {
882     return TE->Kind == TEK_Record;
883   }
884 };
885 
886 struct ComplexExpansion : TypeExpansion {
887   QualType EltTy;
888 
889   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
890   static bool classof(const TypeExpansion *TE) {
891     return TE->Kind == TEK_Complex;
892   }
893 };
894 
895 struct NoExpansion : TypeExpansion {
896   NoExpansion() : TypeExpansion(TEK_None) {}
897   static bool classof(const TypeExpansion *TE) {
898     return TE->Kind == TEK_None;
899   }
900 };
901 }  // namespace
902 
903 static std::unique_ptr<TypeExpansion>
904 getTypeExpansion(QualType Ty, const ASTContext &Context) {
905   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
906     return std::make_unique<ConstantArrayExpansion>(
907         AT->getElementType(), AT->getSize().getZExtValue());
908   }
909   if (const RecordType *RT = Ty->getAs<RecordType>()) {
910     SmallVector<const CXXBaseSpecifier *, 1> Bases;
911     SmallVector<const FieldDecl *, 1> Fields;
912     const RecordDecl *RD = RT->getDecl();
913     assert(!RD->hasFlexibleArrayMember() &&
914            "Cannot expand structure with flexible array.");
915     if (RD->isUnion()) {
916       // Unions can be here only in degenerative cases - all the fields are same
917       // after flattening. Thus we have to use the "largest" field.
918       const FieldDecl *LargestFD = nullptr;
919       CharUnits UnionSize = CharUnits::Zero();
920 
921       for (const auto *FD : RD->fields()) {
922         if (FD->isZeroLengthBitField(Context))
923           continue;
924         assert(!FD->isBitField() &&
925                "Cannot expand structure with bit-field members.");
926         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
927         if (UnionSize < FieldSize) {
928           UnionSize = FieldSize;
929           LargestFD = FD;
930         }
931       }
932       if (LargestFD)
933         Fields.push_back(LargestFD);
934     } else {
935       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
936         assert(!CXXRD->isDynamicClass() &&
937                "cannot expand vtable pointers in dynamic classes");
938         for (const CXXBaseSpecifier &BS : CXXRD->bases())
939           Bases.push_back(&BS);
940       }
941 
942       for (const auto *FD : RD->fields()) {
943         if (FD->isZeroLengthBitField(Context))
944           continue;
945         assert(!FD->isBitField() &&
946                "Cannot expand structure with bit-field members.");
947         Fields.push_back(FD);
948       }
949     }
950     return std::make_unique<RecordExpansion>(std::move(Bases),
951                                               std::move(Fields));
952   }
953   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
954     return std::make_unique<ComplexExpansion>(CT->getElementType());
955   }
956   return std::make_unique<NoExpansion>();
957 }
958 
959 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
960   auto Exp = getTypeExpansion(Ty, Context);
961   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
962     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
963   }
964   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
965     int Res = 0;
966     for (auto BS : RExp->Bases)
967       Res += getExpansionSize(BS->getType(), Context);
968     for (auto FD : RExp->Fields)
969       Res += getExpansionSize(FD->getType(), Context);
970     return Res;
971   }
972   if (isa<ComplexExpansion>(Exp.get()))
973     return 2;
974   assert(isa<NoExpansion>(Exp.get()));
975   return 1;
976 }
977 
978 void
979 CodeGenTypes::getExpandedTypes(QualType Ty,
980                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
981   auto Exp = getTypeExpansion(Ty, Context);
982   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
983     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
984       getExpandedTypes(CAExp->EltTy, TI);
985     }
986   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
987     for (auto BS : RExp->Bases)
988       getExpandedTypes(BS->getType(), TI);
989     for (auto FD : RExp->Fields)
990       getExpandedTypes(FD->getType(), TI);
991   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
992     llvm::Type *EltTy = ConvertType(CExp->EltTy);
993     *TI++ = EltTy;
994     *TI++ = EltTy;
995   } else {
996     assert(isa<NoExpansion>(Exp.get()));
997     *TI++ = ConvertType(Ty);
998   }
999 }
1000 
1001 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1002                                       ConstantArrayExpansion *CAE,
1003                                       Address BaseAddr,
1004                                       llvm::function_ref<void(Address)> Fn) {
1005   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1006   CharUnits EltAlign =
1007     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1008 
1009   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1010     llvm::Value *EltAddr =
1011       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1012     Fn(Address(EltAddr, EltAlign));
1013   }
1014 }
1015 
1016 void CodeGenFunction::ExpandTypeFromArgs(
1017     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1018   assert(LV.isSimple() &&
1019          "Unexpected non-simple lvalue during struct expansion.");
1020 
1021   auto Exp = getTypeExpansion(Ty, getContext());
1022   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1023     forConstantArrayExpansion(
1024         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1025           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1026           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1027         });
1028   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1029     Address This = LV.getAddress(*this);
1030     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1031       // Perform a single step derived-to-base conversion.
1032       Address Base =
1033           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1034                                 /*NullCheckValue=*/false, SourceLocation());
1035       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1036 
1037       // Recurse onto bases.
1038       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1039     }
1040     for (auto FD : RExp->Fields) {
1041       // FIXME: What are the right qualifiers here?
1042       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1043       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1044     }
1045   } else if (isa<ComplexExpansion>(Exp.get())) {
1046     auto realValue = *AI++;
1047     auto imagValue = *AI++;
1048     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1049   } else {
1050     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1051     // primitive store.
1052     assert(isa<NoExpansion>(Exp.get()));
1053     if (LV.isBitField())
1054       EmitStoreThroughLValue(RValue::get(*AI++), LV);
1055     else
1056       EmitStoreOfScalar(*AI++, LV);
1057   }
1058 }
1059 
1060 void CodeGenFunction::ExpandTypeToArgs(
1061     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1062     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1063   auto Exp = getTypeExpansion(Ty, getContext());
1064   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1065     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1066                                    : Arg.getKnownRValue().getAggregateAddress();
1067     forConstantArrayExpansion(
1068         *this, CAExp, Addr, [&](Address EltAddr) {
1069           CallArg EltArg = CallArg(
1070               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1071               CAExp->EltTy);
1072           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1073                            IRCallArgPos);
1074         });
1075   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1076     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1077                                    : Arg.getKnownRValue().getAggregateAddress();
1078     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1079       // Perform a single step derived-to-base conversion.
1080       Address Base =
1081           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1082                                 /*NullCheckValue=*/false, SourceLocation());
1083       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1084 
1085       // Recurse onto bases.
1086       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1087                        IRCallArgPos);
1088     }
1089 
1090     LValue LV = MakeAddrLValue(This, Ty);
1091     for (auto FD : RExp->Fields) {
1092       CallArg FldArg =
1093           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1094       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1095                        IRCallArgPos);
1096     }
1097   } else if (isa<ComplexExpansion>(Exp.get())) {
1098     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1099     IRCallArgs[IRCallArgPos++] = CV.first;
1100     IRCallArgs[IRCallArgPos++] = CV.second;
1101   } else {
1102     assert(isa<NoExpansion>(Exp.get()));
1103     auto RV = Arg.getKnownRValue();
1104     assert(RV.isScalar() &&
1105            "Unexpected non-scalar rvalue during struct expansion.");
1106 
1107     // Insert a bitcast as needed.
1108     llvm::Value *V = RV.getScalarVal();
1109     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1110         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1111       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1112 
1113     IRCallArgs[IRCallArgPos++] = V;
1114   }
1115 }
1116 
1117 /// Create a temporary allocation for the purposes of coercion.
1118 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1119                                            CharUnits MinAlign) {
1120   // Don't use an alignment that's worse than what LLVM would prefer.
1121   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1122   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1123 
1124   return CGF.CreateTempAlloca(Ty, Align);
1125 }
1126 
1127 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1128 /// accessing some number of bytes out of it, try to gep into the struct to get
1129 /// at its inner goodness.  Dive as deep as possible without entering an element
1130 /// with an in-memory size smaller than DstSize.
1131 static Address
1132 EnterStructPointerForCoercedAccess(Address SrcPtr,
1133                                    llvm::StructType *SrcSTy,
1134                                    uint64_t DstSize, CodeGenFunction &CGF) {
1135   // We can't dive into a zero-element struct.
1136   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1137 
1138   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1139 
1140   // If the first elt is at least as large as what we're looking for, or if the
1141   // first element is the same size as the whole struct, we can enter it. The
1142   // comparison must be made on the store size and not the alloca size. Using
1143   // the alloca size may overstate the size of the load.
1144   uint64_t FirstEltSize =
1145     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1146   if (FirstEltSize < DstSize &&
1147       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1148     return SrcPtr;
1149 
1150   // GEP into the first element.
1151   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1152 
1153   // If the first element is a struct, recurse.
1154   llvm::Type *SrcTy = SrcPtr.getElementType();
1155   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1156     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1157 
1158   return SrcPtr;
1159 }
1160 
1161 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1162 /// are either integers or pointers.  This does a truncation of the value if it
1163 /// is too large or a zero extension if it is too small.
1164 ///
1165 /// This behaves as if the value were coerced through memory, so on big-endian
1166 /// targets the high bits are preserved in a truncation, while little-endian
1167 /// targets preserve the low bits.
1168 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1169                                              llvm::Type *Ty,
1170                                              CodeGenFunction &CGF) {
1171   if (Val->getType() == Ty)
1172     return Val;
1173 
1174   if (isa<llvm::PointerType>(Val->getType())) {
1175     // If this is Pointer->Pointer avoid conversion to and from int.
1176     if (isa<llvm::PointerType>(Ty))
1177       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1178 
1179     // Convert the pointer to an integer so we can play with its width.
1180     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1181   }
1182 
1183   llvm::Type *DestIntTy = Ty;
1184   if (isa<llvm::PointerType>(DestIntTy))
1185     DestIntTy = CGF.IntPtrTy;
1186 
1187   if (Val->getType() != DestIntTy) {
1188     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1189     if (DL.isBigEndian()) {
1190       // Preserve the high bits on big-endian targets.
1191       // That is what memory coercion does.
1192       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1193       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1194 
1195       if (SrcSize > DstSize) {
1196         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1197         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1198       } else {
1199         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1200         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1201       }
1202     } else {
1203       // Little-endian targets preserve the low bits. No shifts required.
1204       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1205     }
1206   }
1207 
1208   if (isa<llvm::PointerType>(Ty))
1209     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1210   return Val;
1211 }
1212 
1213 
1214 
1215 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1216 /// a pointer to an object of type \arg Ty, known to be aligned to
1217 /// \arg SrcAlign bytes.
1218 ///
1219 /// This safely handles the case when the src type is smaller than the
1220 /// destination type; in this situation the values of bits which not
1221 /// present in the src are undefined.
1222 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1223                                       CodeGenFunction &CGF) {
1224   llvm::Type *SrcTy = Src.getElementType();
1225 
1226   // If SrcTy and Ty are the same, just do a load.
1227   if (SrcTy == Ty)
1228     return CGF.Builder.CreateLoad(Src);
1229 
1230   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1231 
1232   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1233     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1234     SrcTy = Src.getType()->getElementType();
1235   }
1236 
1237   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1238 
1239   // If the source and destination are integer or pointer types, just do an
1240   // extension or truncation to the desired type.
1241   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1242       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1243     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1244     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1245   }
1246 
1247   // If load is legal, just bitcast the src pointer.
1248   if (SrcSize >= DstSize) {
1249     // Generally SrcSize is never greater than DstSize, since this means we are
1250     // losing bits. However, this can happen in cases where the structure has
1251     // additional padding, for example due to a user specified alignment.
1252     //
1253     // FIXME: Assert that we aren't truncating non-padding bits when have access
1254     // to that information.
1255     Src = CGF.Builder.CreateBitCast(Src,
1256                                     Ty->getPointerTo(Src.getAddressSpace()));
1257     return CGF.Builder.CreateLoad(Src);
1258   }
1259 
1260   // Otherwise do coercion through memory. This is stupid, but simple.
1261   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1262   Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1263   Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty);
1264   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1265       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1266       false);
1267   return CGF.Builder.CreateLoad(Tmp);
1268 }
1269 
1270 // Function to store a first-class aggregate into memory.  We prefer to
1271 // store the elements rather than the aggregate to be more friendly to
1272 // fast-isel.
1273 // FIXME: Do we need to recurse here?
1274 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1275                           Address Dest, bool DestIsVolatile) {
1276   // Prefer scalar stores to first-class aggregate stores.
1277   if (llvm::StructType *STy =
1278         dyn_cast<llvm::StructType>(Val->getType())) {
1279     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1280       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i);
1281       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1282       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1283     }
1284   } else {
1285     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1286   }
1287 }
1288 
1289 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1290 /// where the source and destination may have different types.  The
1291 /// destination is known to be aligned to \arg DstAlign bytes.
1292 ///
1293 /// This safely handles the case when the src type is larger than the
1294 /// destination type; the upper bits of the src will be lost.
1295 static void CreateCoercedStore(llvm::Value *Src,
1296                                Address Dst,
1297                                bool DstIsVolatile,
1298                                CodeGenFunction &CGF) {
1299   llvm::Type *SrcTy = Src->getType();
1300   llvm::Type *DstTy = Dst.getType()->getElementType();
1301   if (SrcTy == DstTy) {
1302     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1303     return;
1304   }
1305 
1306   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1307 
1308   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1309     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1310     DstTy = Dst.getType()->getElementType();
1311   }
1312 
1313   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1314   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1315   if (SrcPtrTy && DstPtrTy &&
1316       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1317     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1318     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1319     return;
1320   }
1321 
1322   // If the source and destination are integer or pointer types, just do an
1323   // extension or truncation to the desired type.
1324   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1325       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1326     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1327     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1328     return;
1329   }
1330 
1331   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1332 
1333   // If store is legal, just bitcast the src pointer.
1334   if (SrcSize <= DstSize) {
1335     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1336     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1337   } else {
1338     // Otherwise do coercion through memory. This is stupid, but
1339     // simple.
1340 
1341     // Generally SrcSize is never greater than DstSize, since this means we are
1342     // losing bits. However, this can happen in cases where the structure has
1343     // additional padding, for example due to a user specified alignment.
1344     //
1345     // FIXME: Assert that we aren't truncating non-padding bits when have access
1346     // to that information.
1347     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1348     CGF.Builder.CreateStore(Src, Tmp);
1349     Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1350     Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty);
1351     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1352         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1353         false);
1354   }
1355 }
1356 
1357 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1358                                    const ABIArgInfo &info) {
1359   if (unsigned offset = info.getDirectOffset()) {
1360     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1361     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1362                                              CharUnits::fromQuantity(offset));
1363     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1364   }
1365   return addr;
1366 }
1367 
1368 namespace {
1369 
1370 /// Encapsulates information about the way function arguments from
1371 /// CGFunctionInfo should be passed to actual LLVM IR function.
1372 class ClangToLLVMArgMapping {
1373   static const unsigned InvalidIndex = ~0U;
1374   unsigned InallocaArgNo;
1375   unsigned SRetArgNo;
1376   unsigned TotalIRArgs;
1377 
1378   /// Arguments of LLVM IR function corresponding to single Clang argument.
1379   struct IRArgs {
1380     unsigned PaddingArgIndex;
1381     // Argument is expanded to IR arguments at positions
1382     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1383     unsigned FirstArgIndex;
1384     unsigned NumberOfArgs;
1385 
1386     IRArgs()
1387         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1388           NumberOfArgs(0) {}
1389   };
1390 
1391   SmallVector<IRArgs, 8> ArgInfo;
1392 
1393 public:
1394   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1395                         bool OnlyRequiredArgs = false)
1396       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1397         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1398     construct(Context, FI, OnlyRequiredArgs);
1399   }
1400 
1401   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1402   unsigned getInallocaArgNo() const {
1403     assert(hasInallocaArg());
1404     return InallocaArgNo;
1405   }
1406 
1407   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1408   unsigned getSRetArgNo() const {
1409     assert(hasSRetArg());
1410     return SRetArgNo;
1411   }
1412 
1413   unsigned totalIRArgs() const { return TotalIRArgs; }
1414 
1415   bool hasPaddingArg(unsigned ArgNo) const {
1416     assert(ArgNo < ArgInfo.size());
1417     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1418   }
1419   unsigned getPaddingArgNo(unsigned ArgNo) const {
1420     assert(hasPaddingArg(ArgNo));
1421     return ArgInfo[ArgNo].PaddingArgIndex;
1422   }
1423 
1424   /// Returns index of first IR argument corresponding to ArgNo, and their
1425   /// quantity.
1426   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1427     assert(ArgNo < ArgInfo.size());
1428     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1429                           ArgInfo[ArgNo].NumberOfArgs);
1430   }
1431 
1432 private:
1433   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1434                  bool OnlyRequiredArgs);
1435 };
1436 
1437 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1438                                       const CGFunctionInfo &FI,
1439                                       bool OnlyRequiredArgs) {
1440   unsigned IRArgNo = 0;
1441   bool SwapThisWithSRet = false;
1442   const ABIArgInfo &RetAI = FI.getReturnInfo();
1443 
1444   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1445     SwapThisWithSRet = RetAI.isSRetAfterThis();
1446     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1447   }
1448 
1449   unsigned ArgNo = 0;
1450   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1451   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1452        ++I, ++ArgNo) {
1453     assert(I != FI.arg_end());
1454     QualType ArgType = I->type;
1455     const ABIArgInfo &AI = I->info;
1456     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1457     auto &IRArgs = ArgInfo[ArgNo];
1458 
1459     if (AI.getPaddingType())
1460       IRArgs.PaddingArgIndex = IRArgNo++;
1461 
1462     switch (AI.getKind()) {
1463     case ABIArgInfo::Extend:
1464     case ABIArgInfo::Direct: {
1465       // FIXME: handle sseregparm someday...
1466       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1467       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1468         IRArgs.NumberOfArgs = STy->getNumElements();
1469       } else {
1470         IRArgs.NumberOfArgs = 1;
1471       }
1472       break;
1473     }
1474     case ABIArgInfo::Indirect:
1475       IRArgs.NumberOfArgs = 1;
1476       break;
1477     case ABIArgInfo::Ignore:
1478     case ABIArgInfo::InAlloca:
1479       // ignore and inalloca doesn't have matching LLVM parameters.
1480       IRArgs.NumberOfArgs = 0;
1481       break;
1482     case ABIArgInfo::CoerceAndExpand:
1483       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1484       break;
1485     case ABIArgInfo::Expand:
1486       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1487       break;
1488     }
1489 
1490     if (IRArgs.NumberOfArgs > 0) {
1491       IRArgs.FirstArgIndex = IRArgNo;
1492       IRArgNo += IRArgs.NumberOfArgs;
1493     }
1494 
1495     // Skip over the sret parameter when it comes second.  We already handled it
1496     // above.
1497     if (IRArgNo == 1 && SwapThisWithSRet)
1498       IRArgNo++;
1499   }
1500   assert(ArgNo == ArgInfo.size());
1501 
1502   if (FI.usesInAlloca())
1503     InallocaArgNo = IRArgNo++;
1504 
1505   TotalIRArgs = IRArgNo;
1506 }
1507 }  // namespace
1508 
1509 /***/
1510 
1511 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1512   const auto &RI = FI.getReturnInfo();
1513   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1514 }
1515 
1516 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1517   return ReturnTypeUsesSRet(FI) &&
1518          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1519 }
1520 
1521 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1522   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1523     switch (BT->getKind()) {
1524     default:
1525       return false;
1526     case BuiltinType::Float:
1527       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1528     case BuiltinType::Double:
1529       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1530     case BuiltinType::LongDouble:
1531       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1532     }
1533   }
1534 
1535   return false;
1536 }
1537 
1538 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1539   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1540     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1541       if (BT->getKind() == BuiltinType::LongDouble)
1542         return getTarget().useObjCFP2RetForComplexLongDouble();
1543     }
1544   }
1545 
1546   return false;
1547 }
1548 
1549 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1550   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1551   return GetFunctionType(FI);
1552 }
1553 
1554 llvm::FunctionType *
1555 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1556 
1557   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1558   (void)Inserted;
1559   assert(Inserted && "Recursively being processed?");
1560 
1561   llvm::Type *resultType = nullptr;
1562   const ABIArgInfo &retAI = FI.getReturnInfo();
1563   switch (retAI.getKind()) {
1564   case ABIArgInfo::Expand:
1565     llvm_unreachable("Invalid ABI kind for return argument");
1566 
1567   case ABIArgInfo::Extend:
1568   case ABIArgInfo::Direct:
1569     resultType = retAI.getCoerceToType();
1570     break;
1571 
1572   case ABIArgInfo::InAlloca:
1573     if (retAI.getInAllocaSRet()) {
1574       // sret things on win32 aren't void, they return the sret pointer.
1575       QualType ret = FI.getReturnType();
1576       llvm::Type *ty = ConvertType(ret);
1577       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1578       resultType = llvm::PointerType::get(ty, addressSpace);
1579     } else {
1580       resultType = llvm::Type::getVoidTy(getLLVMContext());
1581     }
1582     break;
1583 
1584   case ABIArgInfo::Indirect:
1585   case ABIArgInfo::Ignore:
1586     resultType = llvm::Type::getVoidTy(getLLVMContext());
1587     break;
1588 
1589   case ABIArgInfo::CoerceAndExpand:
1590     resultType = retAI.getUnpaddedCoerceAndExpandType();
1591     break;
1592   }
1593 
1594   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1595   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1596 
1597   // Add type for sret argument.
1598   if (IRFunctionArgs.hasSRetArg()) {
1599     QualType Ret = FI.getReturnType();
1600     llvm::Type *Ty = ConvertType(Ret);
1601     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1602     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1603         llvm::PointerType::get(Ty, AddressSpace);
1604   }
1605 
1606   // Add type for inalloca argument.
1607   if (IRFunctionArgs.hasInallocaArg()) {
1608     auto ArgStruct = FI.getArgStruct();
1609     assert(ArgStruct);
1610     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1611   }
1612 
1613   // Add in all of the required arguments.
1614   unsigned ArgNo = 0;
1615   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1616                                      ie = it + FI.getNumRequiredArgs();
1617   for (; it != ie; ++it, ++ArgNo) {
1618     const ABIArgInfo &ArgInfo = it->info;
1619 
1620     // Insert a padding type to ensure proper alignment.
1621     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1622       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1623           ArgInfo.getPaddingType();
1624 
1625     unsigned FirstIRArg, NumIRArgs;
1626     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1627 
1628     switch (ArgInfo.getKind()) {
1629     case ABIArgInfo::Ignore:
1630     case ABIArgInfo::InAlloca:
1631       assert(NumIRArgs == 0);
1632       break;
1633 
1634     case ABIArgInfo::Indirect: {
1635       assert(NumIRArgs == 1);
1636       // indirect arguments are always on the stack, which is alloca addr space.
1637       llvm::Type *LTy = ConvertTypeForMem(it->type);
1638       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1639           CGM.getDataLayout().getAllocaAddrSpace());
1640       break;
1641     }
1642 
1643     case ABIArgInfo::Extend:
1644     case ABIArgInfo::Direct: {
1645       // Fast-isel and the optimizer generally like scalar values better than
1646       // FCAs, so we flatten them if this is safe to do for this argument.
1647       llvm::Type *argType = ArgInfo.getCoerceToType();
1648       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1649       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1650         assert(NumIRArgs == st->getNumElements());
1651         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1652           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1653       } else {
1654         assert(NumIRArgs == 1);
1655         ArgTypes[FirstIRArg] = argType;
1656       }
1657       break;
1658     }
1659 
1660     case ABIArgInfo::CoerceAndExpand: {
1661       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1662       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1663         *ArgTypesIter++ = EltTy;
1664       }
1665       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1666       break;
1667     }
1668 
1669     case ABIArgInfo::Expand:
1670       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1671       getExpandedTypes(it->type, ArgTypesIter);
1672       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1673       break;
1674     }
1675   }
1676 
1677   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1678   assert(Erased && "Not in set?");
1679 
1680   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1681 }
1682 
1683 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1684   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1685   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1686 
1687   if (!isFuncTypeConvertible(FPT))
1688     return llvm::StructType::get(getLLVMContext());
1689 
1690   return GetFunctionType(GD);
1691 }
1692 
1693 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1694                                                llvm::AttrBuilder &FuncAttrs,
1695                                                const FunctionProtoType *FPT) {
1696   if (!FPT)
1697     return;
1698 
1699   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1700       FPT->isNothrow())
1701     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1702 }
1703 
1704 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1705                                                bool AttrOnCallSite,
1706                                                llvm::AttrBuilder &FuncAttrs) {
1707   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1708   if (!HasOptnone) {
1709     if (CodeGenOpts.OptimizeSize)
1710       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1711     if (CodeGenOpts.OptimizeSize == 2)
1712       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1713   }
1714 
1715   if (CodeGenOpts.DisableRedZone)
1716     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1717   if (CodeGenOpts.IndirectTlsSegRefs)
1718     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1719   if (CodeGenOpts.NoImplicitFloat)
1720     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1721 
1722   if (AttrOnCallSite) {
1723     // Attributes that should go on the call site only.
1724     if (!CodeGenOpts.SimplifyLibCalls ||
1725         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1726       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1727     if (!CodeGenOpts.TrapFuncName.empty())
1728       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1729   } else {
1730     StringRef FpKind;
1731     switch (CodeGenOpts.getFramePointer()) {
1732     case CodeGenOptions::FramePointerKind::None:
1733       FpKind = "none";
1734       break;
1735     case CodeGenOptions::FramePointerKind::NonLeaf:
1736       FpKind = "non-leaf";
1737       break;
1738     case CodeGenOptions::FramePointerKind::All:
1739       FpKind = "all";
1740       break;
1741     }
1742     FuncAttrs.addAttribute("frame-pointer", FpKind);
1743 
1744     FuncAttrs.addAttribute("less-precise-fpmad",
1745                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1746 
1747     if (CodeGenOpts.NullPointerIsValid)
1748       FuncAttrs.addAttribute("null-pointer-is-valid", "true");
1749     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::Invalid)
1750       FuncAttrs.addAttribute("denormal-fp-math",
1751                              llvm::denormalModeName(CodeGenOpts.FPDenormalMode));
1752 
1753     FuncAttrs.addAttribute("no-trapping-math",
1754                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1755 
1756     // Strict (compliant) code is the default, so only add this attribute to
1757     // indicate that we are trying to workaround a problem case.
1758     if (!CodeGenOpts.StrictFloatCastOverflow)
1759       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1760 
1761     // TODO: Are these all needed?
1762     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1763     FuncAttrs.addAttribute("no-infs-fp-math",
1764                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1765     FuncAttrs.addAttribute("no-nans-fp-math",
1766                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1767     FuncAttrs.addAttribute("unsafe-fp-math",
1768                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1769     FuncAttrs.addAttribute("use-soft-float",
1770                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1771     FuncAttrs.addAttribute("stack-protector-buffer-size",
1772                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1773     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1774                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1775     FuncAttrs.addAttribute(
1776         "correctly-rounded-divide-sqrt-fp-math",
1777         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1778 
1779     if (getLangOpts().OpenCL)
1780       FuncAttrs.addAttribute("denorms-are-zero",
1781                              llvm::toStringRef(CodeGenOpts.FlushDenorm));
1782 
1783     // TODO: Reciprocal estimate codegen options should apply to instructions?
1784     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1785     if (!Recips.empty())
1786       FuncAttrs.addAttribute("reciprocal-estimates",
1787                              llvm::join(Recips, ","));
1788 
1789     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1790         CodeGenOpts.PreferVectorWidth != "none")
1791       FuncAttrs.addAttribute("prefer-vector-width",
1792                              CodeGenOpts.PreferVectorWidth);
1793 
1794     if (CodeGenOpts.StackRealignment)
1795       FuncAttrs.addAttribute("stackrealign");
1796     if (CodeGenOpts.Backchain)
1797       FuncAttrs.addAttribute("backchain");
1798 
1799     if (CodeGenOpts.SpeculativeLoadHardening)
1800       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1801   }
1802 
1803   if (getLangOpts().assumeFunctionsAreConvergent()) {
1804     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1805     // convergent (meaning, they may call an intrinsically convergent op, such
1806     // as __syncthreads() / barrier(), and so can't have certain optimizations
1807     // applied around them).  LLVM will remove this attribute where it safely
1808     // can.
1809     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1810   }
1811 
1812   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1813     // Exceptions aren't supported in CUDA device code.
1814     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1815 
1816     // Respect -fcuda-flush-denormals-to-zero.
1817     if (CodeGenOpts.FlushDenorm)
1818       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1819   }
1820 
1821   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1822     StringRef Var, Value;
1823     std::tie(Var, Value) = Attr.split('=');
1824     FuncAttrs.addAttribute(Var, Value);
1825   }
1826 }
1827 
1828 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1829   llvm::AttrBuilder FuncAttrs;
1830   ConstructDefaultFnAttrList(F.getName(), F.hasOptNone(),
1831                              /* AttrOnCallSite = */ false, FuncAttrs);
1832   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1833 }
1834 
1835 void CodeGenModule::ConstructAttributeList(
1836     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1837     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1838   llvm::AttrBuilder FuncAttrs;
1839   llvm::AttrBuilder RetAttrs;
1840 
1841   CallingConv = FI.getEffectiveCallingConvention();
1842   if (FI.isNoReturn())
1843     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1844 
1845   // If we have information about the function prototype, we can learn
1846   // attributes from there.
1847   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1848                                      CalleeInfo.getCalleeFunctionProtoType());
1849 
1850   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1851 
1852   bool HasOptnone = false;
1853   // FIXME: handle sseregparm someday...
1854   if (TargetDecl) {
1855     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1856       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1857     if (TargetDecl->hasAttr<NoThrowAttr>())
1858       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1859     if (TargetDecl->hasAttr<NoReturnAttr>())
1860       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1861     if (TargetDecl->hasAttr<ColdAttr>())
1862       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1863     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1864       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1865     if (TargetDecl->hasAttr<ConvergentAttr>())
1866       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1867 
1868     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1869       AddAttributesFromFunctionProtoType(
1870           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1871       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1872       const bool IsVirtualCall = MD && MD->isVirtual();
1873       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
1874       // virtual function. These attributes are not inherited by overloads.
1875       if (!(AttrOnCallSite && IsVirtualCall)) {
1876         if (Fn->isNoReturn())
1877           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1878 
1879         if (const auto *NBA = TargetDecl->getAttr<NoBuiltinAttr>()) {
1880           bool HasWildcard = llvm::is_contained(NBA->builtinNames(), "*");
1881           if (HasWildcard)
1882             FuncAttrs.addAttribute("no-builtins");
1883           else
1884             for (StringRef BuiltinName : NBA->builtinNames()) {
1885               SmallString<32> AttributeName;
1886               AttributeName += "no-builtin-";
1887               AttributeName += BuiltinName;
1888               FuncAttrs.addAttribute(AttributeName);
1889             }
1890         }
1891       }
1892     }
1893 
1894     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1895     if (TargetDecl->hasAttr<ConstAttr>()) {
1896       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1897       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1898     } else if (TargetDecl->hasAttr<PureAttr>()) {
1899       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1900       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1901     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1902       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1903       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1904     }
1905     if (TargetDecl->hasAttr<RestrictAttr>())
1906       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1907     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1908         !CodeGenOpts.NullPointerIsValid)
1909       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1910     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1911       FuncAttrs.addAttribute("no_caller_saved_registers");
1912     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1913       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1914 
1915     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1916     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1917       Optional<unsigned> NumElemsParam;
1918       if (AllocSize->getNumElemsParam().isValid())
1919         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1920       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1921                                  NumElemsParam);
1922     }
1923   }
1924 
1925   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1926 
1927   // This must run after constructing the default function attribute list
1928   // to ensure that the speculative load hardening attribute is removed
1929   // in the case where the -mspeculative-load-hardening flag was passed.
1930   if (TargetDecl) {
1931     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
1932       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
1933     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
1934       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1935   }
1936 
1937   if (CodeGenOpts.EnableSegmentedStacks &&
1938       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1939     FuncAttrs.addAttribute("split-stack");
1940 
1941   // Add NonLazyBind attribute to function declarations when -fno-plt
1942   // is used.
1943   if (TargetDecl && CodeGenOpts.NoPLT) {
1944     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1945       if (!Fn->isDefined() && !AttrOnCallSite) {
1946         FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1947       }
1948     }
1949   }
1950 
1951   if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1952     if (getLangOpts().OpenCLVersion <= 120) {
1953       // OpenCL v1.2 Work groups are always uniform
1954       FuncAttrs.addAttribute("uniform-work-group-size", "true");
1955     } else {
1956       // OpenCL v2.0 Work groups may be whether uniform or not.
1957       // '-cl-uniform-work-group-size' compile option gets a hint
1958       // to the compiler that the global work-size be a multiple of
1959       // the work-group size specified to clEnqueueNDRangeKernel
1960       // (i.e. work groups are uniform).
1961       FuncAttrs.addAttribute("uniform-work-group-size",
1962                              llvm::toStringRef(CodeGenOpts.UniformWGSize));
1963     }
1964   }
1965 
1966   if (!AttrOnCallSite) {
1967     bool DisableTailCalls = false;
1968 
1969     if (CodeGenOpts.DisableTailCalls)
1970       DisableTailCalls = true;
1971     else if (TargetDecl) {
1972       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1973           TargetDecl->hasAttr<AnyX86InterruptAttr>())
1974         DisableTailCalls = true;
1975       else if (CodeGenOpts.NoEscapingBlockTailCalls) {
1976         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
1977           if (!BD->doesNotEscape())
1978             DisableTailCalls = true;
1979       }
1980     }
1981 
1982     FuncAttrs.addAttribute("disable-tail-calls",
1983                            llvm::toStringRef(DisableTailCalls));
1984     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
1985   }
1986 
1987   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1988 
1989   QualType RetTy = FI.getReturnType();
1990   const ABIArgInfo &RetAI = FI.getReturnInfo();
1991   switch (RetAI.getKind()) {
1992   case ABIArgInfo::Extend:
1993     if (RetAI.isSignExt())
1994       RetAttrs.addAttribute(llvm::Attribute::SExt);
1995     else
1996       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1997     LLVM_FALLTHROUGH;
1998   case ABIArgInfo::Direct:
1999     if (RetAI.getInReg())
2000       RetAttrs.addAttribute(llvm::Attribute::InReg);
2001     break;
2002   case ABIArgInfo::Ignore:
2003     break;
2004 
2005   case ABIArgInfo::InAlloca:
2006   case ABIArgInfo::Indirect: {
2007     // inalloca and sret disable readnone and readonly
2008     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2009       .removeAttribute(llvm::Attribute::ReadNone);
2010     break;
2011   }
2012 
2013   case ABIArgInfo::CoerceAndExpand:
2014     break;
2015 
2016   case ABIArgInfo::Expand:
2017     llvm_unreachable("Invalid ABI kind for return argument");
2018   }
2019 
2020   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2021     QualType PTy = RefTy->getPointeeType();
2022     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2023       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2024                                         .getQuantity());
2025     else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2026              !CodeGenOpts.NullPointerIsValid)
2027       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2028   }
2029 
2030   bool hasUsedSRet = false;
2031   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2032 
2033   // Attach attributes to sret.
2034   if (IRFunctionArgs.hasSRetArg()) {
2035     llvm::AttrBuilder SRETAttrs;
2036     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2037     hasUsedSRet = true;
2038     if (RetAI.getInReg())
2039       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2040     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2041         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2042   }
2043 
2044   // Attach attributes to inalloca argument.
2045   if (IRFunctionArgs.hasInallocaArg()) {
2046     llvm::AttrBuilder Attrs;
2047     Attrs.addAttribute(llvm::Attribute::InAlloca);
2048     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2049         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2050   }
2051 
2052   unsigned ArgNo = 0;
2053   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2054                                           E = FI.arg_end();
2055        I != E; ++I, ++ArgNo) {
2056     QualType ParamType = I->type;
2057     const ABIArgInfo &AI = I->info;
2058     llvm::AttrBuilder Attrs;
2059 
2060     // Add attribute for padding argument, if necessary.
2061     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2062       if (AI.getPaddingInReg()) {
2063         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2064             llvm::AttributeSet::get(
2065                 getLLVMContext(),
2066                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2067       }
2068     }
2069 
2070     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2071     // have the corresponding parameter variable.  It doesn't make
2072     // sense to do it here because parameters are so messed up.
2073     switch (AI.getKind()) {
2074     case ABIArgInfo::Extend:
2075       if (AI.isSignExt())
2076         Attrs.addAttribute(llvm::Attribute::SExt);
2077       else
2078         Attrs.addAttribute(llvm::Attribute::ZExt);
2079       LLVM_FALLTHROUGH;
2080     case ABIArgInfo::Direct:
2081       if (ArgNo == 0 && FI.isChainCall())
2082         Attrs.addAttribute(llvm::Attribute::Nest);
2083       else if (AI.getInReg())
2084         Attrs.addAttribute(llvm::Attribute::InReg);
2085       break;
2086 
2087     case ABIArgInfo::Indirect: {
2088       if (AI.getInReg())
2089         Attrs.addAttribute(llvm::Attribute::InReg);
2090 
2091       if (AI.getIndirectByVal())
2092         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2093 
2094       CharUnits Align = AI.getIndirectAlign();
2095 
2096       // In a byval argument, it is important that the required
2097       // alignment of the type is honored, as LLVM might be creating a
2098       // *new* stack object, and needs to know what alignment to give
2099       // it. (Sometimes it can deduce a sensible alignment on its own,
2100       // but not if clang decides it must emit a packed struct, or the
2101       // user specifies increased alignment requirements.)
2102       //
2103       // This is different from indirect *not* byval, where the object
2104       // exists already, and the align attribute is purely
2105       // informative.
2106       assert(!Align.isZero());
2107 
2108       // For now, only add this when we have a byval argument.
2109       // TODO: be less lazy about updating test cases.
2110       if (AI.getIndirectByVal())
2111         Attrs.addAlignmentAttr(Align.getQuantity());
2112 
2113       // byval disables readnone and readonly.
2114       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2115         .removeAttribute(llvm::Attribute::ReadNone);
2116       break;
2117     }
2118     case ABIArgInfo::Ignore:
2119     case ABIArgInfo::Expand:
2120     case ABIArgInfo::CoerceAndExpand:
2121       break;
2122 
2123     case ABIArgInfo::InAlloca:
2124       // inalloca disables readnone and readonly.
2125       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2126           .removeAttribute(llvm::Attribute::ReadNone);
2127       continue;
2128     }
2129 
2130     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2131       QualType PTy = RefTy->getPointeeType();
2132       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2133         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2134                                        .getQuantity());
2135       else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2136                !CodeGenOpts.NullPointerIsValid)
2137         Attrs.addAttribute(llvm::Attribute::NonNull);
2138     }
2139 
2140     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2141     case ParameterABI::Ordinary:
2142       break;
2143 
2144     case ParameterABI::SwiftIndirectResult: {
2145       // Add 'sret' if we haven't already used it for something, but
2146       // only if the result is void.
2147       if (!hasUsedSRet && RetTy->isVoidType()) {
2148         Attrs.addAttribute(llvm::Attribute::StructRet);
2149         hasUsedSRet = true;
2150       }
2151 
2152       // Add 'noalias' in either case.
2153       Attrs.addAttribute(llvm::Attribute::NoAlias);
2154 
2155       // Add 'dereferenceable' and 'alignment'.
2156       auto PTy = ParamType->getPointeeType();
2157       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2158         auto info = getContext().getTypeInfoInChars(PTy);
2159         Attrs.addDereferenceableAttr(info.first.getQuantity());
2160         Attrs.addAttribute(llvm::Attribute::getWithAlignment(
2161             getLLVMContext(), info.second.getAsAlign()));
2162       }
2163       break;
2164     }
2165 
2166     case ParameterABI::SwiftErrorResult:
2167       Attrs.addAttribute(llvm::Attribute::SwiftError);
2168       break;
2169 
2170     case ParameterABI::SwiftContext:
2171       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2172       break;
2173     }
2174 
2175     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2176       Attrs.addAttribute(llvm::Attribute::NoCapture);
2177 
2178     if (Attrs.hasAttributes()) {
2179       unsigned FirstIRArg, NumIRArgs;
2180       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2181       for (unsigned i = 0; i < NumIRArgs; i++)
2182         ArgAttrs[FirstIRArg + i] =
2183             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2184     }
2185   }
2186   assert(ArgNo == FI.arg_size());
2187 
2188   AttrList = llvm::AttributeList::get(
2189       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2190       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2191 }
2192 
2193 /// An argument came in as a promoted argument; demote it back to its
2194 /// declared type.
2195 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2196                                          const VarDecl *var,
2197                                          llvm::Value *value) {
2198   llvm::Type *varType = CGF.ConvertType(var->getType());
2199 
2200   // This can happen with promotions that actually don't change the
2201   // underlying type, like the enum promotions.
2202   if (value->getType() == varType) return value;
2203 
2204   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2205          && "unexpected promotion type");
2206 
2207   if (isa<llvm::IntegerType>(varType))
2208     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2209 
2210   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2211 }
2212 
2213 /// Returns the attribute (either parameter attribute, or function
2214 /// attribute), which declares argument ArgNo to be non-null.
2215 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2216                                          QualType ArgType, unsigned ArgNo) {
2217   // FIXME: __attribute__((nonnull)) can also be applied to:
2218   //   - references to pointers, where the pointee is known to be
2219   //     nonnull (apparently a Clang extension)
2220   //   - transparent unions containing pointers
2221   // In the former case, LLVM IR cannot represent the constraint. In
2222   // the latter case, we have no guarantee that the transparent union
2223   // is in fact passed as a pointer.
2224   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2225     return nullptr;
2226   // First, check attribute on parameter itself.
2227   if (PVD) {
2228     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2229       return ParmNNAttr;
2230   }
2231   // Check function attributes.
2232   if (!FD)
2233     return nullptr;
2234   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2235     if (NNAttr->isNonNull(ArgNo))
2236       return NNAttr;
2237   }
2238   return nullptr;
2239 }
2240 
2241 namespace {
2242   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2243     Address Temp;
2244     Address Arg;
2245     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2246     void Emit(CodeGenFunction &CGF, Flags flags) override {
2247       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2248       CGF.Builder.CreateStore(errorValue, Arg);
2249     }
2250   };
2251 }
2252 
2253 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2254                                          llvm::Function *Fn,
2255                                          const FunctionArgList &Args) {
2256   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2257     // Naked functions don't have prologues.
2258     return;
2259 
2260   // If this is an implicit-return-zero function, go ahead and
2261   // initialize the return value.  TODO: it might be nice to have
2262   // a more general mechanism for this that didn't require synthesized
2263   // return statements.
2264   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2265     if (FD->hasImplicitReturnZero()) {
2266       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2267       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2268       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2269       Builder.CreateStore(Zero, ReturnValue);
2270     }
2271   }
2272 
2273   // FIXME: We no longer need the types from FunctionArgList; lift up and
2274   // simplify.
2275 
2276   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2277   // Flattened function arguments.
2278   SmallVector<llvm::Value *, 16> FnArgs;
2279   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2280   for (auto &Arg : Fn->args()) {
2281     FnArgs.push_back(&Arg);
2282   }
2283   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2284 
2285   // If we're using inalloca, all the memory arguments are GEPs off of the last
2286   // parameter, which is a pointer to the complete memory area.
2287   Address ArgStruct = Address::invalid();
2288   if (IRFunctionArgs.hasInallocaArg()) {
2289     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2290                         FI.getArgStructAlignment());
2291 
2292     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2293   }
2294 
2295   // Name the struct return parameter.
2296   if (IRFunctionArgs.hasSRetArg()) {
2297     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2298     AI->setName("agg.result");
2299     AI->addAttr(llvm::Attribute::NoAlias);
2300   }
2301 
2302   // Track if we received the parameter as a pointer (indirect, byval, or
2303   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2304   // into a local alloca for us.
2305   SmallVector<ParamValue, 16> ArgVals;
2306   ArgVals.reserve(Args.size());
2307 
2308   // Create a pointer value for every parameter declaration.  This usually
2309   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2310   // any cleanups or do anything that might unwind.  We do that separately, so
2311   // we can push the cleanups in the correct order for the ABI.
2312   assert(FI.arg_size() == Args.size() &&
2313          "Mismatch between function signature & arguments.");
2314   unsigned ArgNo = 0;
2315   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2316   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2317        i != e; ++i, ++info_it, ++ArgNo) {
2318     const VarDecl *Arg = *i;
2319     const ABIArgInfo &ArgI = info_it->info;
2320 
2321     bool isPromoted =
2322       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2323     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2324     // the parameter is promoted. In this case we convert to
2325     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2326     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2327     assert(hasScalarEvaluationKind(Ty) ==
2328            hasScalarEvaluationKind(Arg->getType()));
2329 
2330     unsigned FirstIRArg, NumIRArgs;
2331     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2332 
2333     switch (ArgI.getKind()) {
2334     case ABIArgInfo::InAlloca: {
2335       assert(NumIRArgs == 0);
2336       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2337       Address V =
2338           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2339       ArgVals.push_back(ParamValue::forIndirect(V));
2340       break;
2341     }
2342 
2343     case ABIArgInfo::Indirect: {
2344       assert(NumIRArgs == 1);
2345       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2346 
2347       if (!hasScalarEvaluationKind(Ty)) {
2348         // Aggregates and complex variables are accessed by reference.  All we
2349         // need to do is realign the value, if requested.
2350         Address V = ParamAddr;
2351         if (ArgI.getIndirectRealign()) {
2352           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2353 
2354           // Copy from the incoming argument pointer to the temporary with the
2355           // appropriate alignment.
2356           //
2357           // FIXME: We should have a common utility for generating an aggregate
2358           // copy.
2359           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2360           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2361           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2362           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2363           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2364           V = AlignedTemp;
2365         }
2366         ArgVals.push_back(ParamValue::forIndirect(V));
2367       } else {
2368         // Load scalar value from indirect argument.
2369         llvm::Value *V =
2370             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2371 
2372         if (isPromoted)
2373           V = emitArgumentDemotion(*this, Arg, V);
2374         ArgVals.push_back(ParamValue::forDirect(V));
2375       }
2376       break;
2377     }
2378 
2379     case ABIArgInfo::Extend:
2380     case ABIArgInfo::Direct: {
2381 
2382       // If we have the trivial case, handle it with no muss and fuss.
2383       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2384           ArgI.getCoerceToType() == ConvertType(Ty) &&
2385           ArgI.getDirectOffset() == 0) {
2386         assert(NumIRArgs == 1);
2387         llvm::Value *V = FnArgs[FirstIRArg];
2388         auto AI = cast<llvm::Argument>(V);
2389 
2390         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2391           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2392                              PVD->getFunctionScopeIndex()) &&
2393               !CGM.getCodeGenOpts().NullPointerIsValid)
2394             AI->addAttr(llvm::Attribute::NonNull);
2395 
2396           QualType OTy = PVD->getOriginalType();
2397           if (const auto *ArrTy =
2398               getContext().getAsConstantArrayType(OTy)) {
2399             // A C99 array parameter declaration with the static keyword also
2400             // indicates dereferenceability, and if the size is constant we can
2401             // use the dereferenceable attribute (which requires the size in
2402             // bytes).
2403             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2404               QualType ETy = ArrTy->getElementType();
2405               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2406               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2407                   ArrSize) {
2408                 llvm::AttrBuilder Attrs;
2409                 Attrs.addDereferenceableAttr(
2410                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2411                 AI->addAttrs(Attrs);
2412               } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
2413                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2414                 AI->addAttr(llvm::Attribute::NonNull);
2415               }
2416             }
2417           } else if (const auto *ArrTy =
2418                      getContext().getAsVariableArrayType(OTy)) {
2419             // For C99 VLAs with the static keyword, we don't know the size so
2420             // we can't use the dereferenceable attribute, but in addrspace(0)
2421             // we know that it must be nonnull.
2422             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2423                 !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2424                 !CGM.getCodeGenOpts().NullPointerIsValid)
2425               AI->addAttr(llvm::Attribute::NonNull);
2426           }
2427 
2428           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2429           if (!AVAttr)
2430             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2431               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2432           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2433             // If alignment-assumption sanitizer is enabled, we do *not* add
2434             // alignment attribute here, but emit normal alignment assumption,
2435             // so the UBSAN check could function.
2436             llvm::Value *AlignmentValue =
2437               EmitScalarExpr(AVAttr->getAlignment());
2438             llvm::ConstantInt *AlignmentCI =
2439               cast<llvm::ConstantInt>(AlignmentValue);
2440             unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
2441                                           +llvm::Value::MaximumAlignment);
2442             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2443           }
2444         }
2445 
2446         if (Arg->getType().isRestrictQualified())
2447           AI->addAttr(llvm::Attribute::NoAlias);
2448 
2449         // LLVM expects swifterror parameters to be used in very restricted
2450         // ways.  Copy the value into a less-restricted temporary.
2451         if (FI.getExtParameterInfo(ArgNo).getABI()
2452               == ParameterABI::SwiftErrorResult) {
2453           QualType pointeeTy = Ty->getPointeeType();
2454           assert(pointeeTy->isPointerType());
2455           Address temp =
2456             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2457           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2458           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2459           Builder.CreateStore(incomingErrorValue, temp);
2460           V = temp.getPointer();
2461 
2462           // Push a cleanup to copy the value back at the end of the function.
2463           // The convention does not guarantee that the value will be written
2464           // back if the function exits with an unwind exception.
2465           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2466         }
2467 
2468         // Ensure the argument is the correct type.
2469         if (V->getType() != ArgI.getCoerceToType())
2470           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2471 
2472         if (isPromoted)
2473           V = emitArgumentDemotion(*this, Arg, V);
2474 
2475         // Because of merging of function types from multiple decls it is
2476         // possible for the type of an argument to not match the corresponding
2477         // type in the function type. Since we are codegening the callee
2478         // in here, add a cast to the argument type.
2479         llvm::Type *LTy = ConvertType(Arg->getType());
2480         if (V->getType() != LTy)
2481           V = Builder.CreateBitCast(V, LTy);
2482 
2483         ArgVals.push_back(ParamValue::forDirect(V));
2484         break;
2485       }
2486 
2487       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2488                                      Arg->getName());
2489 
2490       // Pointer to store into.
2491       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2492 
2493       // Fast-isel and the optimizer generally like scalar values better than
2494       // FCAs, so we flatten them if this is safe to do for this argument.
2495       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2496       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2497           STy->getNumElements() > 1) {
2498         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2499         llvm::Type *DstTy = Ptr.getElementType();
2500         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2501 
2502         Address AddrToStoreInto = Address::invalid();
2503         if (SrcSize <= DstSize) {
2504           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2505         } else {
2506           AddrToStoreInto =
2507             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2508         }
2509 
2510         assert(STy->getNumElements() == NumIRArgs);
2511         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2512           auto AI = FnArgs[FirstIRArg + i];
2513           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2514           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2515           Builder.CreateStore(AI, EltPtr);
2516         }
2517 
2518         if (SrcSize > DstSize) {
2519           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2520         }
2521 
2522       } else {
2523         // Simple case, just do a coerced store of the argument into the alloca.
2524         assert(NumIRArgs == 1);
2525         auto AI = FnArgs[FirstIRArg];
2526         AI->setName(Arg->getName() + ".coerce");
2527         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2528       }
2529 
2530       // Match to what EmitParmDecl is expecting for this type.
2531       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2532         llvm::Value *V =
2533             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2534         if (isPromoted)
2535           V = emitArgumentDemotion(*this, Arg, V);
2536         ArgVals.push_back(ParamValue::forDirect(V));
2537       } else {
2538         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2539       }
2540       break;
2541     }
2542 
2543     case ABIArgInfo::CoerceAndExpand: {
2544       // Reconstruct into a temporary.
2545       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2546       ArgVals.push_back(ParamValue::forIndirect(alloca));
2547 
2548       auto coercionType = ArgI.getCoerceAndExpandType();
2549       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2550 
2551       unsigned argIndex = FirstIRArg;
2552       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2553         llvm::Type *eltType = coercionType->getElementType(i);
2554         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2555           continue;
2556 
2557         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2558         auto elt = FnArgs[argIndex++];
2559         Builder.CreateStore(elt, eltAddr);
2560       }
2561       assert(argIndex == FirstIRArg + NumIRArgs);
2562       break;
2563     }
2564 
2565     case ABIArgInfo::Expand: {
2566       // If this structure was expanded into multiple arguments then
2567       // we need to create a temporary and reconstruct it from the
2568       // arguments.
2569       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2570       LValue LV = MakeAddrLValue(Alloca, Ty);
2571       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2572 
2573       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2574       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2575       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2576       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2577         auto AI = FnArgs[FirstIRArg + i];
2578         AI->setName(Arg->getName() + "." + Twine(i));
2579       }
2580       break;
2581     }
2582 
2583     case ABIArgInfo::Ignore:
2584       assert(NumIRArgs == 0);
2585       // Initialize the local variable appropriately.
2586       if (!hasScalarEvaluationKind(Ty)) {
2587         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2588       } else {
2589         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2590         ArgVals.push_back(ParamValue::forDirect(U));
2591       }
2592       break;
2593     }
2594   }
2595 
2596   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2597     for (int I = Args.size() - 1; I >= 0; --I)
2598       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2599   } else {
2600     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2601       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2602   }
2603 }
2604 
2605 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2606   while (insn->use_empty()) {
2607     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2608     if (!bitcast) return;
2609 
2610     // This is "safe" because we would have used a ConstantExpr otherwise.
2611     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2612     bitcast->eraseFromParent();
2613   }
2614 }
2615 
2616 /// Try to emit a fused autorelease of a return result.
2617 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2618                                                     llvm::Value *result) {
2619   // We must be immediately followed the cast.
2620   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2621   if (BB->empty()) return nullptr;
2622   if (&BB->back() != result) return nullptr;
2623 
2624   llvm::Type *resultType = result->getType();
2625 
2626   // result is in a BasicBlock and is therefore an Instruction.
2627   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2628 
2629   SmallVector<llvm::Instruction *, 4> InstsToKill;
2630 
2631   // Look for:
2632   //  %generator = bitcast %type1* %generator2 to %type2*
2633   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2634     // We would have emitted this as a constant if the operand weren't
2635     // an Instruction.
2636     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2637 
2638     // Require the generator to be immediately followed by the cast.
2639     if (generator->getNextNode() != bitcast)
2640       return nullptr;
2641 
2642     InstsToKill.push_back(bitcast);
2643   }
2644 
2645   // Look for:
2646   //   %generator = call i8* @objc_retain(i8* %originalResult)
2647   // or
2648   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2649   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2650   if (!call) return nullptr;
2651 
2652   bool doRetainAutorelease;
2653 
2654   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2655     doRetainAutorelease = true;
2656   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2657                                           .objc_retainAutoreleasedReturnValue) {
2658     doRetainAutorelease = false;
2659 
2660     // If we emitted an assembly marker for this call (and the
2661     // ARCEntrypoints field should have been set if so), go looking
2662     // for that call.  If we can't find it, we can't do this
2663     // optimization.  But it should always be the immediately previous
2664     // instruction, unless we needed bitcasts around the call.
2665     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2666       llvm::Instruction *prev = call->getPrevNode();
2667       assert(prev);
2668       if (isa<llvm::BitCastInst>(prev)) {
2669         prev = prev->getPrevNode();
2670         assert(prev);
2671       }
2672       assert(isa<llvm::CallInst>(prev));
2673       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2674                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2675       InstsToKill.push_back(prev);
2676     }
2677   } else {
2678     return nullptr;
2679   }
2680 
2681   result = call->getArgOperand(0);
2682   InstsToKill.push_back(call);
2683 
2684   // Keep killing bitcasts, for sanity.  Note that we no longer care
2685   // about precise ordering as long as there's exactly one use.
2686   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2687     if (!bitcast->hasOneUse()) break;
2688     InstsToKill.push_back(bitcast);
2689     result = bitcast->getOperand(0);
2690   }
2691 
2692   // Delete all the unnecessary instructions, from latest to earliest.
2693   for (auto *I : InstsToKill)
2694     I->eraseFromParent();
2695 
2696   // Do the fused retain/autorelease if we were asked to.
2697   if (doRetainAutorelease)
2698     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2699 
2700   // Cast back to the result type.
2701   return CGF.Builder.CreateBitCast(result, resultType);
2702 }
2703 
2704 /// If this is a +1 of the value of an immutable 'self', remove it.
2705 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2706                                           llvm::Value *result) {
2707   // This is only applicable to a method with an immutable 'self'.
2708   const ObjCMethodDecl *method =
2709     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2710   if (!method) return nullptr;
2711   const VarDecl *self = method->getSelfDecl();
2712   if (!self->getType().isConstQualified()) return nullptr;
2713 
2714   // Look for a retain call.
2715   llvm::CallInst *retainCall =
2716     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2717   if (!retainCall ||
2718       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2719     return nullptr;
2720 
2721   // Look for an ordinary load of 'self'.
2722   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2723   llvm::LoadInst *load =
2724     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2725   if (!load || load->isAtomic() || load->isVolatile() ||
2726       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2727     return nullptr;
2728 
2729   // Okay!  Burn it all down.  This relies for correctness on the
2730   // assumption that the retain is emitted as part of the return and
2731   // that thereafter everything is used "linearly".
2732   llvm::Type *resultType = result->getType();
2733   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2734   assert(retainCall->use_empty());
2735   retainCall->eraseFromParent();
2736   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2737 
2738   return CGF.Builder.CreateBitCast(load, resultType);
2739 }
2740 
2741 /// Emit an ARC autorelease of the result of a function.
2742 ///
2743 /// \return the value to actually return from the function
2744 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2745                                             llvm::Value *result) {
2746   // If we're returning 'self', kill the initial retain.  This is a
2747   // heuristic attempt to "encourage correctness" in the really unfortunate
2748   // case where we have a return of self during a dealloc and we desperately
2749   // need to avoid the possible autorelease.
2750   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2751     return self;
2752 
2753   // At -O0, try to emit a fused retain/autorelease.
2754   if (CGF.shouldUseFusedARCCalls())
2755     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2756       return fused;
2757 
2758   return CGF.EmitARCAutoreleaseReturnValue(result);
2759 }
2760 
2761 /// Heuristically search for a dominating store to the return-value slot.
2762 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2763   // Check if a User is a store which pointerOperand is the ReturnValue.
2764   // We are looking for stores to the ReturnValue, not for stores of the
2765   // ReturnValue to some other location.
2766   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2767     auto *SI = dyn_cast<llvm::StoreInst>(U);
2768     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2769       return nullptr;
2770     // These aren't actually possible for non-coerced returns, and we
2771     // only care about non-coerced returns on this code path.
2772     assert(!SI->isAtomic() && !SI->isVolatile());
2773     return SI;
2774   };
2775   // If there are multiple uses of the return-value slot, just check
2776   // for something immediately preceding the IP.  Sometimes this can
2777   // happen with how we generate implicit-returns; it can also happen
2778   // with noreturn cleanups.
2779   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2780     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2781     if (IP->empty()) return nullptr;
2782     llvm::Instruction *I = &IP->back();
2783 
2784     // Skip lifetime markers
2785     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2786                                             IE = IP->rend();
2787          II != IE; ++II) {
2788       if (llvm::IntrinsicInst *Intrinsic =
2789               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2790         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2791           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2792           ++II;
2793           if (II == IE)
2794             break;
2795           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2796             continue;
2797         }
2798       }
2799       I = &*II;
2800       break;
2801     }
2802 
2803     return GetStoreIfValid(I);
2804   }
2805 
2806   llvm::StoreInst *store =
2807       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2808   if (!store) return nullptr;
2809 
2810   // Now do a first-and-dirty dominance check: just walk up the
2811   // single-predecessors chain from the current insertion point.
2812   llvm::BasicBlock *StoreBB = store->getParent();
2813   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2814   while (IP != StoreBB) {
2815     if (!(IP = IP->getSinglePredecessor()))
2816       return nullptr;
2817   }
2818 
2819   // Okay, the store's basic block dominates the insertion point; we
2820   // can do our thing.
2821   return store;
2822 }
2823 
2824 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2825                                          bool EmitRetDbgLoc,
2826                                          SourceLocation EndLoc) {
2827   if (FI.isNoReturn()) {
2828     // Noreturn functions don't return.
2829     EmitUnreachable(EndLoc);
2830     return;
2831   }
2832 
2833   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2834     // Naked functions don't have epilogues.
2835     Builder.CreateUnreachable();
2836     return;
2837   }
2838 
2839   // Functions with no result always return void.
2840   if (!ReturnValue.isValid()) {
2841     Builder.CreateRetVoid();
2842     return;
2843   }
2844 
2845   llvm::DebugLoc RetDbgLoc;
2846   llvm::Value *RV = nullptr;
2847   QualType RetTy = FI.getReturnType();
2848   const ABIArgInfo &RetAI = FI.getReturnInfo();
2849 
2850   switch (RetAI.getKind()) {
2851   case ABIArgInfo::InAlloca:
2852     // Aggregrates get evaluated directly into the destination.  Sometimes we
2853     // need to return the sret value in a register, though.
2854     assert(hasAggregateEvaluationKind(RetTy));
2855     if (RetAI.getInAllocaSRet()) {
2856       llvm::Function::arg_iterator EI = CurFn->arg_end();
2857       --EI;
2858       llvm::Value *ArgStruct = &*EI;
2859       llvm::Value *SRet = Builder.CreateStructGEP(
2860           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2861       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2862     }
2863     break;
2864 
2865   case ABIArgInfo::Indirect: {
2866     auto AI = CurFn->arg_begin();
2867     if (RetAI.isSRetAfterThis())
2868       ++AI;
2869     switch (getEvaluationKind(RetTy)) {
2870     case TEK_Complex: {
2871       ComplexPairTy RT =
2872         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2873       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2874                          /*isInit*/ true);
2875       break;
2876     }
2877     case TEK_Aggregate:
2878       // Do nothing; aggregrates get evaluated directly into the destination.
2879       break;
2880     case TEK_Scalar:
2881       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2882                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2883                         /*isInit*/ true);
2884       break;
2885     }
2886     break;
2887   }
2888 
2889   case ABIArgInfo::Extend:
2890   case ABIArgInfo::Direct:
2891     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2892         RetAI.getDirectOffset() == 0) {
2893       // The internal return value temp always will have pointer-to-return-type
2894       // type, just do a load.
2895 
2896       // If there is a dominating store to ReturnValue, we can elide
2897       // the load, zap the store, and usually zap the alloca.
2898       if (llvm::StoreInst *SI =
2899               findDominatingStoreToReturnValue(*this)) {
2900         // Reuse the debug location from the store unless there is
2901         // cleanup code to be emitted between the store and return
2902         // instruction.
2903         if (EmitRetDbgLoc && !AutoreleaseResult)
2904           RetDbgLoc = SI->getDebugLoc();
2905         // Get the stored value and nuke the now-dead store.
2906         RV = SI->getValueOperand();
2907         SI->eraseFromParent();
2908 
2909       // Otherwise, we have to do a simple load.
2910       } else {
2911         RV = Builder.CreateLoad(ReturnValue);
2912       }
2913     } else {
2914       // If the value is offset in memory, apply the offset now.
2915       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2916 
2917       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2918     }
2919 
2920     // In ARC, end functions that return a retainable type with a call
2921     // to objc_autoreleaseReturnValue.
2922     if (AutoreleaseResult) {
2923 #ifndef NDEBUG
2924       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2925       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2926       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2927       // CurCodeDecl or BlockInfo.
2928       QualType RT;
2929 
2930       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2931         RT = FD->getReturnType();
2932       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2933         RT = MD->getReturnType();
2934       else if (isa<BlockDecl>(CurCodeDecl))
2935         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2936       else
2937         llvm_unreachable("Unexpected function/method type");
2938 
2939       assert(getLangOpts().ObjCAutoRefCount &&
2940              !FI.isReturnsRetained() &&
2941              RT->isObjCRetainableType());
2942 #endif
2943       RV = emitAutoreleaseOfResult(*this, RV);
2944     }
2945 
2946     break;
2947 
2948   case ABIArgInfo::Ignore:
2949     break;
2950 
2951   case ABIArgInfo::CoerceAndExpand: {
2952     auto coercionType = RetAI.getCoerceAndExpandType();
2953 
2954     // Load all of the coerced elements out into results.
2955     llvm::SmallVector<llvm::Value*, 4> results;
2956     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2957     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2958       auto coercedEltType = coercionType->getElementType(i);
2959       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2960         continue;
2961 
2962       auto eltAddr = Builder.CreateStructGEP(addr, i);
2963       auto elt = Builder.CreateLoad(eltAddr);
2964       results.push_back(elt);
2965     }
2966 
2967     // If we have one result, it's the single direct result type.
2968     if (results.size() == 1) {
2969       RV = results[0];
2970 
2971     // Otherwise, we need to make a first-class aggregate.
2972     } else {
2973       // Construct a return type that lacks padding elements.
2974       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2975 
2976       RV = llvm::UndefValue::get(returnType);
2977       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2978         RV = Builder.CreateInsertValue(RV, results[i], i);
2979       }
2980     }
2981     break;
2982   }
2983 
2984   case ABIArgInfo::Expand:
2985     llvm_unreachable("Invalid ABI kind for return argument");
2986   }
2987 
2988   llvm::Instruction *Ret;
2989   if (RV) {
2990     EmitReturnValueCheck(RV);
2991     Ret = Builder.CreateRet(RV);
2992   } else {
2993     Ret = Builder.CreateRetVoid();
2994   }
2995 
2996   if (RetDbgLoc)
2997     Ret->setDebugLoc(std::move(RetDbgLoc));
2998 }
2999 
3000 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3001   // A current decl may not be available when emitting vtable thunks.
3002   if (!CurCodeDecl)
3003     return;
3004 
3005   ReturnsNonNullAttr *RetNNAttr = nullptr;
3006   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3007     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3008 
3009   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3010     return;
3011 
3012   // Prefer the returns_nonnull attribute if it's present.
3013   SourceLocation AttrLoc;
3014   SanitizerMask CheckKind;
3015   SanitizerHandler Handler;
3016   if (RetNNAttr) {
3017     assert(!requiresReturnValueNullabilityCheck() &&
3018            "Cannot check nullability and the nonnull attribute");
3019     AttrLoc = RetNNAttr->getLocation();
3020     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3021     Handler = SanitizerHandler::NonnullReturn;
3022   } else {
3023     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3024       if (auto *TSI = DD->getTypeSourceInfo())
3025         if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
3026           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3027     CheckKind = SanitizerKind::NullabilityReturn;
3028     Handler = SanitizerHandler::NullabilityReturn;
3029   }
3030 
3031   SanitizerScope SanScope(this);
3032 
3033   // Make sure the "return" source location is valid. If we're checking a
3034   // nullability annotation, make sure the preconditions for the check are met.
3035   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3036   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3037   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3038   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3039   if (requiresReturnValueNullabilityCheck())
3040     CanNullCheck =
3041         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3042   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3043   EmitBlock(Check);
3044 
3045   // Now do the null check.
3046   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3047   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3048   llvm::Value *DynamicData[] = {SLocPtr};
3049   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3050 
3051   EmitBlock(NoCheck);
3052 
3053 #ifndef NDEBUG
3054   // The return location should not be used after the check has been emitted.
3055   ReturnLocation = Address::invalid();
3056 #endif
3057 }
3058 
3059 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3060   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3061   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3062 }
3063 
3064 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3065                                           QualType Ty) {
3066   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3067   // placeholders.
3068   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3069   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3070   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3071 
3072   // FIXME: When we generate this IR in one pass, we shouldn't need
3073   // this win32-specific alignment hack.
3074   CharUnits Align = CharUnits::fromQuantity(4);
3075   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3076 
3077   return AggValueSlot::forAddr(Address(Placeholder, Align),
3078                                Ty.getQualifiers(),
3079                                AggValueSlot::IsNotDestructed,
3080                                AggValueSlot::DoesNotNeedGCBarriers,
3081                                AggValueSlot::IsNotAliased,
3082                                AggValueSlot::DoesNotOverlap);
3083 }
3084 
3085 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3086                                           const VarDecl *param,
3087                                           SourceLocation loc) {
3088   // StartFunction converted the ABI-lowered parameter(s) into a
3089   // local alloca.  We need to turn that into an r-value suitable
3090   // for EmitCall.
3091   Address local = GetAddrOfLocalVar(param);
3092 
3093   QualType type = param->getType();
3094 
3095   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3096     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3097   }
3098 
3099   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3100   // but the argument needs to be the original pointer.
3101   if (type->isReferenceType()) {
3102     args.add(RValue::get(Builder.CreateLoad(local)), type);
3103 
3104   // In ARC, move out of consumed arguments so that the release cleanup
3105   // entered by StartFunction doesn't cause an over-release.  This isn't
3106   // optimal -O0 code generation, but it should get cleaned up when
3107   // optimization is enabled.  This also assumes that delegate calls are
3108   // performed exactly once for a set of arguments, but that should be safe.
3109   } else if (getLangOpts().ObjCAutoRefCount &&
3110              param->hasAttr<NSConsumedAttr>() &&
3111              type->isObjCRetainableType()) {
3112     llvm::Value *ptr = Builder.CreateLoad(local);
3113     auto null =
3114       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3115     Builder.CreateStore(null, local);
3116     args.add(RValue::get(ptr), type);
3117 
3118   // For the most part, we just need to load the alloca, except that
3119   // aggregate r-values are actually pointers to temporaries.
3120   } else {
3121     args.add(convertTempToRValue(local, type, loc), type);
3122   }
3123 
3124   // Deactivate the cleanup for the callee-destructed param that was pushed.
3125   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3126       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3127       param->needsDestruction(getContext())) {
3128     EHScopeStack::stable_iterator cleanup =
3129         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3130     assert(cleanup.isValid() &&
3131            "cleanup for callee-destructed param not recorded");
3132     // This unreachable is a temporary marker which will be removed later.
3133     llvm::Instruction *isActive = Builder.CreateUnreachable();
3134     args.addArgCleanupDeactivation(cleanup, isActive);
3135   }
3136 }
3137 
3138 static bool isProvablyNull(llvm::Value *addr) {
3139   return isa<llvm::ConstantPointerNull>(addr);
3140 }
3141 
3142 /// Emit the actual writing-back of a writeback.
3143 static void emitWriteback(CodeGenFunction &CGF,
3144                           const CallArgList::Writeback &writeback) {
3145   const LValue &srcLV = writeback.Source;
3146   Address srcAddr = srcLV.getAddress(CGF);
3147   assert(!isProvablyNull(srcAddr.getPointer()) &&
3148          "shouldn't have writeback for provably null argument");
3149 
3150   llvm::BasicBlock *contBB = nullptr;
3151 
3152   // If the argument wasn't provably non-null, we need to null check
3153   // before doing the store.
3154   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3155                                               CGF.CGM.getDataLayout());
3156   if (!provablyNonNull) {
3157     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3158     contBB = CGF.createBasicBlock("icr.done");
3159 
3160     llvm::Value *isNull =
3161       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3162     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3163     CGF.EmitBlock(writebackBB);
3164   }
3165 
3166   // Load the value to writeback.
3167   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3168 
3169   // Cast it back, in case we're writing an id to a Foo* or something.
3170   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3171                                     "icr.writeback-cast");
3172 
3173   // Perform the writeback.
3174 
3175   // If we have a "to use" value, it's something we need to emit a use
3176   // of.  This has to be carefully threaded in: if it's done after the
3177   // release it's potentially undefined behavior (and the optimizer
3178   // will ignore it), and if it happens before the retain then the
3179   // optimizer could move the release there.
3180   if (writeback.ToUse) {
3181     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3182 
3183     // Retain the new value.  No need to block-copy here:  the block's
3184     // being passed up the stack.
3185     value = CGF.EmitARCRetainNonBlock(value);
3186 
3187     // Emit the intrinsic use here.
3188     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3189 
3190     // Load the old value (primitively).
3191     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3192 
3193     // Put the new value in place (primitively).
3194     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3195 
3196     // Release the old value.
3197     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3198 
3199   // Otherwise, we can just do a normal lvalue store.
3200   } else {
3201     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3202   }
3203 
3204   // Jump to the continuation block.
3205   if (!provablyNonNull)
3206     CGF.EmitBlock(contBB);
3207 }
3208 
3209 static void emitWritebacks(CodeGenFunction &CGF,
3210                            const CallArgList &args) {
3211   for (const auto &I : args.writebacks())
3212     emitWriteback(CGF, I);
3213 }
3214 
3215 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3216                                             const CallArgList &CallArgs) {
3217   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3218     CallArgs.getCleanupsToDeactivate();
3219   // Iterate in reverse to increase the likelihood of popping the cleanup.
3220   for (const auto &I : llvm::reverse(Cleanups)) {
3221     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3222     I.IsActiveIP->eraseFromParent();
3223   }
3224 }
3225 
3226 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3227   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3228     if (uop->getOpcode() == UO_AddrOf)
3229       return uop->getSubExpr();
3230   return nullptr;
3231 }
3232 
3233 /// Emit an argument that's being passed call-by-writeback.  That is,
3234 /// we are passing the address of an __autoreleased temporary; it
3235 /// might be copy-initialized with the current value of the given
3236 /// address, but it will definitely be copied out of after the call.
3237 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3238                              const ObjCIndirectCopyRestoreExpr *CRE) {
3239   LValue srcLV;
3240 
3241   // Make an optimistic effort to emit the address as an l-value.
3242   // This can fail if the argument expression is more complicated.
3243   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3244     srcLV = CGF.EmitLValue(lvExpr);
3245 
3246   // Otherwise, just emit it as a scalar.
3247   } else {
3248     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3249 
3250     QualType srcAddrType =
3251       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3252     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3253   }
3254   Address srcAddr = srcLV.getAddress(CGF);
3255 
3256   // The dest and src types don't necessarily match in LLVM terms
3257   // because of the crazy ObjC compatibility rules.
3258 
3259   llvm::PointerType *destType =
3260     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3261 
3262   // If the address is a constant null, just pass the appropriate null.
3263   if (isProvablyNull(srcAddr.getPointer())) {
3264     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3265              CRE->getType());
3266     return;
3267   }
3268 
3269   // Create the temporary.
3270   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3271                                       CGF.getPointerAlign(),
3272                                       "icr.temp");
3273   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3274   // and that cleanup will be conditional if we can't prove that the l-value
3275   // isn't null, so we need to register a dominating point so that the cleanups
3276   // system will make valid IR.
3277   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3278 
3279   // Zero-initialize it if we're not doing a copy-initialization.
3280   bool shouldCopy = CRE->shouldCopy();
3281   if (!shouldCopy) {
3282     llvm::Value *null =
3283       llvm::ConstantPointerNull::get(
3284         cast<llvm::PointerType>(destType->getElementType()));
3285     CGF.Builder.CreateStore(null, temp);
3286   }
3287 
3288   llvm::BasicBlock *contBB = nullptr;
3289   llvm::BasicBlock *originBB = nullptr;
3290 
3291   // If the address is *not* known to be non-null, we need to switch.
3292   llvm::Value *finalArgument;
3293 
3294   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3295                                               CGF.CGM.getDataLayout());
3296   if (provablyNonNull) {
3297     finalArgument = temp.getPointer();
3298   } else {
3299     llvm::Value *isNull =
3300       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3301 
3302     finalArgument = CGF.Builder.CreateSelect(isNull,
3303                                    llvm::ConstantPointerNull::get(destType),
3304                                              temp.getPointer(), "icr.argument");
3305 
3306     // If we need to copy, then the load has to be conditional, which
3307     // means we need control flow.
3308     if (shouldCopy) {
3309       originBB = CGF.Builder.GetInsertBlock();
3310       contBB = CGF.createBasicBlock("icr.cont");
3311       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3312       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3313       CGF.EmitBlock(copyBB);
3314       condEval.begin(CGF);
3315     }
3316   }
3317 
3318   llvm::Value *valueToUse = nullptr;
3319 
3320   // Perform a copy if necessary.
3321   if (shouldCopy) {
3322     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3323     assert(srcRV.isScalar());
3324 
3325     llvm::Value *src = srcRV.getScalarVal();
3326     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3327                                     "icr.cast");
3328 
3329     // Use an ordinary store, not a store-to-lvalue.
3330     CGF.Builder.CreateStore(src, temp);
3331 
3332     // If optimization is enabled, and the value was held in a
3333     // __strong variable, we need to tell the optimizer that this
3334     // value has to stay alive until we're doing the store back.
3335     // This is because the temporary is effectively unretained,
3336     // and so otherwise we can violate the high-level semantics.
3337     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3338         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3339       valueToUse = src;
3340     }
3341   }
3342 
3343   // Finish the control flow if we needed it.
3344   if (shouldCopy && !provablyNonNull) {
3345     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3346     CGF.EmitBlock(contBB);
3347 
3348     // Make a phi for the value to intrinsically use.
3349     if (valueToUse) {
3350       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3351                                                       "icr.to-use");
3352       phiToUse->addIncoming(valueToUse, copyBB);
3353       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3354                             originBB);
3355       valueToUse = phiToUse;
3356     }
3357 
3358     condEval.end(CGF);
3359   }
3360 
3361   args.addWriteback(srcLV, temp, valueToUse);
3362   args.add(RValue::get(finalArgument), CRE->getType());
3363 }
3364 
3365 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3366   assert(!StackBase);
3367 
3368   // Save the stack.
3369   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3370   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3371 }
3372 
3373 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3374   if (StackBase) {
3375     // Restore the stack after the call.
3376     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3377     CGF.Builder.CreateCall(F, StackBase);
3378   }
3379 }
3380 
3381 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3382                                           SourceLocation ArgLoc,
3383                                           AbstractCallee AC,
3384                                           unsigned ParmNum) {
3385   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3386                          SanOpts.has(SanitizerKind::NullabilityArg)))
3387     return;
3388 
3389   // The param decl may be missing in a variadic function.
3390   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3391   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3392 
3393   // Prefer the nonnull attribute if it's present.
3394   const NonNullAttr *NNAttr = nullptr;
3395   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3396     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3397 
3398   bool CanCheckNullability = false;
3399   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3400     auto Nullability = PVD->getType()->getNullability(getContext());
3401     CanCheckNullability = Nullability &&
3402                           *Nullability == NullabilityKind::NonNull &&
3403                           PVD->getTypeSourceInfo();
3404   }
3405 
3406   if (!NNAttr && !CanCheckNullability)
3407     return;
3408 
3409   SourceLocation AttrLoc;
3410   SanitizerMask CheckKind;
3411   SanitizerHandler Handler;
3412   if (NNAttr) {
3413     AttrLoc = NNAttr->getLocation();
3414     CheckKind = SanitizerKind::NonnullAttribute;
3415     Handler = SanitizerHandler::NonnullArg;
3416   } else {
3417     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3418     CheckKind = SanitizerKind::NullabilityArg;
3419     Handler = SanitizerHandler::NullabilityArg;
3420   }
3421 
3422   SanitizerScope SanScope(this);
3423   assert(RV.isScalar());
3424   llvm::Value *V = RV.getScalarVal();
3425   llvm::Value *Cond =
3426       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3427   llvm::Constant *StaticData[] = {
3428       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3429       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3430   };
3431   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3432 }
3433 
3434 void CodeGenFunction::EmitCallArgs(
3435     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3436     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3437     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3438   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3439 
3440   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3441   // because arguments are destroyed left to right in the callee. As a special
3442   // case, there are certain language constructs that require left-to-right
3443   // evaluation, and in those cases we consider the evaluation order requirement
3444   // to trump the "destruction order is reverse construction order" guarantee.
3445   bool LeftToRight =
3446       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3447           ? Order == EvaluationOrder::ForceLeftToRight
3448           : Order != EvaluationOrder::ForceRightToLeft;
3449 
3450   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3451                                          RValue EmittedArg) {
3452     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3453       return;
3454     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3455     if (PS == nullptr)
3456       return;
3457 
3458     const auto &Context = getContext();
3459     auto SizeTy = Context.getSizeType();
3460     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3461     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3462     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3463                                                      EmittedArg.getScalarVal(),
3464                                                      PS->isDynamic());
3465     Args.add(RValue::get(V), SizeTy);
3466     // If we're emitting args in reverse, be sure to do so with
3467     // pass_object_size, as well.
3468     if (!LeftToRight)
3469       std::swap(Args.back(), *(&Args.back() - 1));
3470   };
3471 
3472   // Insert a stack save if we're going to need any inalloca args.
3473   bool HasInAllocaArgs = false;
3474   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3475     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3476          I != E && !HasInAllocaArgs; ++I)
3477       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3478     if (HasInAllocaArgs) {
3479       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3480       Args.allocateArgumentMemory(*this);
3481     }
3482   }
3483 
3484   // Evaluate each argument in the appropriate order.
3485   size_t CallArgsStart = Args.size();
3486   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3487     unsigned Idx = LeftToRight ? I : E - I - 1;
3488     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3489     unsigned InitialArgSize = Args.size();
3490     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3491     // the argument and parameter match or the objc method is parameterized.
3492     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3493             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3494                                                 ArgTypes[Idx]) ||
3495             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3496              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3497            "Argument and parameter types don't match");
3498     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3499     // In particular, we depend on it being the last arg in Args, and the
3500     // objectsize bits depend on there only being one arg if !LeftToRight.
3501     assert(InitialArgSize + 1 == Args.size() &&
3502            "The code below depends on only adding one arg per EmitCallArg");
3503     (void)InitialArgSize;
3504     // Since pointer argument are never emitted as LValue, it is safe to emit
3505     // non-null argument check for r-value only.
3506     if (!Args.back().hasLValue()) {
3507       RValue RVArg = Args.back().getKnownRValue();
3508       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3509                           ParamsToSkip + Idx);
3510       // @llvm.objectsize should never have side-effects and shouldn't need
3511       // destruction/cleanups, so we can safely "emit" it after its arg,
3512       // regardless of right-to-leftness
3513       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3514     }
3515   }
3516 
3517   if (!LeftToRight) {
3518     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3519     // IR function.
3520     std::reverse(Args.begin() + CallArgsStart, Args.end());
3521   }
3522 }
3523 
3524 namespace {
3525 
3526 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3527   DestroyUnpassedArg(Address Addr, QualType Ty)
3528       : Addr(Addr), Ty(Ty) {}
3529 
3530   Address Addr;
3531   QualType Ty;
3532 
3533   void Emit(CodeGenFunction &CGF, Flags flags) override {
3534     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3535     if (DtorKind == QualType::DK_cxx_destructor) {
3536       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3537       assert(!Dtor->isTrivial());
3538       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3539                                 /*Delegating=*/false, Addr, Ty);
3540     } else {
3541       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3542     }
3543   }
3544 };
3545 
3546 struct DisableDebugLocationUpdates {
3547   CodeGenFunction &CGF;
3548   bool disabledDebugInfo;
3549   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3550     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3551       CGF.disableDebugInfo();
3552   }
3553   ~DisableDebugLocationUpdates() {
3554     if (disabledDebugInfo)
3555       CGF.enableDebugInfo();
3556   }
3557 };
3558 
3559 } // end anonymous namespace
3560 
3561 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3562   if (!HasLV)
3563     return RV;
3564   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3565   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3566                         LV.isVolatile());
3567   IsUsed = true;
3568   return RValue::getAggregate(Copy.getAddress(CGF));
3569 }
3570 
3571 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3572   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3573   if (!HasLV && RV.isScalar())
3574     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
3575   else if (!HasLV && RV.isComplex())
3576     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3577   else {
3578     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
3579     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3580     // We assume that call args are never copied into subobjects.
3581     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3582                           HasLV ? LV.isVolatileQualified()
3583                                 : RV.isVolatileQualified());
3584   }
3585   IsUsed = true;
3586 }
3587 
3588 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3589                                   QualType type) {
3590   DisableDebugLocationUpdates Dis(*this, E);
3591   if (const ObjCIndirectCopyRestoreExpr *CRE
3592         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3593     assert(getLangOpts().ObjCAutoRefCount);
3594     return emitWritebackArg(*this, args, CRE);
3595   }
3596 
3597   assert(type->isReferenceType() == E->isGLValue() &&
3598          "reference binding to unmaterialized r-value!");
3599 
3600   if (E->isGLValue()) {
3601     assert(E->getObjectKind() == OK_Ordinary);
3602     return args.add(EmitReferenceBindingToExpr(E), type);
3603   }
3604 
3605   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3606 
3607   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3608   // However, we still have to push an EH-only cleanup in case we unwind before
3609   // we make it to the call.
3610   if (HasAggregateEvalKind &&
3611       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3612     // If we're using inalloca, use the argument memory.  Otherwise, use a
3613     // temporary.
3614     AggValueSlot Slot;
3615     if (args.isUsingInAlloca())
3616       Slot = createPlaceholderSlot(*this, type);
3617     else
3618       Slot = CreateAggTemp(type, "agg.tmp");
3619 
3620     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3621     if (const auto *RD = type->getAsCXXRecordDecl())
3622       DestroyedInCallee = RD->hasNonTrivialDestructor();
3623     else
3624       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3625 
3626     if (DestroyedInCallee)
3627       Slot.setExternallyDestructed();
3628 
3629     EmitAggExpr(E, Slot);
3630     RValue RV = Slot.asRValue();
3631     args.add(RV, type);
3632 
3633     if (DestroyedInCallee && NeedsEHCleanup) {
3634       // Create a no-op GEP between the placeholder and the cleanup so we can
3635       // RAUW it successfully.  It also serves as a marker of the first
3636       // instruction where the cleanup is active.
3637       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3638                                               type);
3639       // This unreachable is a temporary marker which will be removed later.
3640       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3641       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3642     }
3643     return;
3644   }
3645 
3646   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3647       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3648     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3649     assert(L.isSimple());
3650     args.addUncopiedAggregate(L, type);
3651     return;
3652   }
3653 
3654   args.add(EmitAnyExprToTemp(E), type);
3655 }
3656 
3657 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3658   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3659   // implicitly widens null pointer constants that are arguments to varargs
3660   // functions to pointer-sized ints.
3661   if (!getTarget().getTriple().isOSWindows())
3662     return Arg->getType();
3663 
3664   if (Arg->getType()->isIntegerType() &&
3665       getContext().getTypeSize(Arg->getType()) <
3666           getContext().getTargetInfo().getPointerWidth(0) &&
3667       Arg->isNullPointerConstant(getContext(),
3668                                  Expr::NPC_ValueDependentIsNotNull)) {
3669     return getContext().getIntPtrType();
3670   }
3671 
3672   return Arg->getType();
3673 }
3674 
3675 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3676 // optimizer it can aggressively ignore unwind edges.
3677 void
3678 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3679   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3680       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3681     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3682                       CGM.getNoObjCARCExceptionsMetadata());
3683 }
3684 
3685 /// Emits a call to the given no-arguments nounwind runtime function.
3686 llvm::CallInst *
3687 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3688                                          const llvm::Twine &name) {
3689   return EmitNounwindRuntimeCall(callee, None, name);
3690 }
3691 
3692 /// Emits a call to the given nounwind runtime function.
3693 llvm::CallInst *
3694 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3695                                          ArrayRef<llvm::Value *> args,
3696                                          const llvm::Twine &name) {
3697   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3698   call->setDoesNotThrow();
3699   return call;
3700 }
3701 
3702 /// Emits a simple call (never an invoke) to the given no-arguments
3703 /// runtime function.
3704 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
3705                                                  const llvm::Twine &name) {
3706   return EmitRuntimeCall(callee, None, name);
3707 }
3708 
3709 // Calls which may throw must have operand bundles indicating which funclet
3710 // they are nested within.
3711 SmallVector<llvm::OperandBundleDef, 1>
3712 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3713   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3714   // There is no need for a funclet operand bundle if we aren't inside a
3715   // funclet.
3716   if (!CurrentFuncletPad)
3717     return BundleList;
3718 
3719   // Skip intrinsics which cannot throw.
3720   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3721   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3722     return BundleList;
3723 
3724   BundleList.emplace_back("funclet", CurrentFuncletPad);
3725   return BundleList;
3726 }
3727 
3728 /// Emits a simple call (never an invoke) to the given runtime function.
3729 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
3730                                                  ArrayRef<llvm::Value *> args,
3731                                                  const llvm::Twine &name) {
3732   llvm::CallInst *call = Builder.CreateCall(
3733       callee, args, getBundlesForFunclet(callee.getCallee()), name);
3734   call->setCallingConv(getRuntimeCC());
3735   return call;
3736 }
3737 
3738 /// Emits a call or invoke to the given noreturn runtime function.
3739 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
3740     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
3741   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3742       getBundlesForFunclet(callee.getCallee());
3743 
3744   if (getInvokeDest()) {
3745     llvm::InvokeInst *invoke =
3746       Builder.CreateInvoke(callee,
3747                            getUnreachableBlock(),
3748                            getInvokeDest(),
3749                            args,
3750                            BundleList);
3751     invoke->setDoesNotReturn();
3752     invoke->setCallingConv(getRuntimeCC());
3753   } else {
3754     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3755     call->setDoesNotReturn();
3756     call->setCallingConv(getRuntimeCC());
3757     Builder.CreateUnreachable();
3758   }
3759 }
3760 
3761 /// Emits a call or invoke instruction to the given nullary runtime function.
3762 llvm::CallBase *
3763 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3764                                          const Twine &name) {
3765   return EmitRuntimeCallOrInvoke(callee, None, name);
3766 }
3767 
3768 /// Emits a call or invoke instruction to the given runtime function.
3769 llvm::CallBase *
3770 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3771                                          ArrayRef<llvm::Value *> args,
3772                                          const Twine &name) {
3773   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
3774   call->setCallingConv(getRuntimeCC());
3775   return call;
3776 }
3777 
3778 /// Emits a call or invoke instruction to the given function, depending
3779 /// on the current state of the EH stack.
3780 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
3781                                                   ArrayRef<llvm::Value *> Args,
3782                                                   const Twine &Name) {
3783   llvm::BasicBlock *InvokeDest = getInvokeDest();
3784   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3785       getBundlesForFunclet(Callee.getCallee());
3786 
3787   llvm::CallBase *Inst;
3788   if (!InvokeDest)
3789     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3790   else {
3791     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3792     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3793                                 Name);
3794     EmitBlock(ContBB);
3795   }
3796 
3797   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3798   // optimizer it can aggressively ignore unwind edges.
3799   if (CGM.getLangOpts().ObjCAutoRefCount)
3800     AddObjCARCExceptionMetadata(Inst);
3801 
3802   return Inst;
3803 }
3804 
3805 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3806                                                   llvm::Value *New) {
3807   DeferredReplacements.push_back(std::make_pair(Old, New));
3808 }
3809 
3810 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3811                                  const CGCallee &Callee,
3812                                  ReturnValueSlot ReturnValue,
3813                                  const CallArgList &CallArgs,
3814                                  llvm::CallBase **callOrInvoke,
3815                                  SourceLocation Loc) {
3816   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3817 
3818   assert(Callee.isOrdinary() || Callee.isVirtual());
3819 
3820   // Handle struct-return functions by passing a pointer to the
3821   // location that we would like to return into.
3822   QualType RetTy = CallInfo.getReturnType();
3823   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3824 
3825   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
3826 
3827   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
3828   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
3829     // We can only guarantee that a function is called from the correct
3830     // context/function based on the appropriate target attributes,
3831     // so only check in the case where we have both always_inline and target
3832     // since otherwise we could be making a conditional call after a check for
3833     // the proper cpu features (and it won't cause code generation issues due to
3834     // function based code generation).
3835     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
3836         TargetDecl->hasAttr<TargetAttr>())
3837       checkTargetFeatures(Loc, FD);
3838 
3839 #ifndef NDEBUG
3840   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
3841     // For an inalloca varargs function, we don't expect CallInfo to match the
3842     // function pointer's type, because the inalloca struct a will have extra
3843     // fields in it for the varargs parameters.  Code later in this function
3844     // bitcasts the function pointer to the type derived from CallInfo.
3845     //
3846     // In other cases, we assert that the types match up (until pointers stop
3847     // having pointee types).
3848     llvm::Type *TypeFromVal;
3849     if (Callee.isVirtual())
3850       TypeFromVal = Callee.getVirtualFunctionType();
3851     else
3852       TypeFromVal =
3853           Callee.getFunctionPointer()->getType()->getPointerElementType();
3854     assert(IRFuncTy == TypeFromVal);
3855   }
3856 #endif
3857 
3858   // 1. Set up the arguments.
3859 
3860   // If we're using inalloca, insert the allocation after the stack save.
3861   // FIXME: Do this earlier rather than hacking it in here!
3862   Address ArgMemory = Address::invalid();
3863   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3864     const llvm::DataLayout &DL = CGM.getDataLayout();
3865     llvm::Instruction *IP = CallArgs.getStackBase();
3866     llvm::AllocaInst *AI;
3867     if (IP) {
3868       IP = IP->getNextNode();
3869       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3870                                 "argmem", IP);
3871     } else {
3872       AI = CreateTempAlloca(ArgStruct, "argmem");
3873     }
3874     auto Align = CallInfo.getArgStructAlignment();
3875     AI->setAlignment(Align.getAsAlign());
3876     AI->setUsedWithInAlloca(true);
3877     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3878     ArgMemory = Address(AI, Align);
3879   }
3880 
3881   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3882   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3883 
3884   // If the call returns a temporary with struct return, create a temporary
3885   // alloca to hold the result, unless one is given to us.
3886   Address SRetPtr = Address::invalid();
3887   Address SRetAlloca = Address::invalid();
3888   llvm::Value *UnusedReturnSizePtr = nullptr;
3889   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3890     if (!ReturnValue.isNull()) {
3891       SRetPtr = ReturnValue.getValue();
3892     } else {
3893       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
3894       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3895         uint64_t size =
3896             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3897         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
3898       }
3899     }
3900     if (IRFunctionArgs.hasSRetArg()) {
3901       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3902     } else if (RetAI.isInAlloca()) {
3903       Address Addr =
3904           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
3905       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3906     }
3907   }
3908 
3909   Address swiftErrorTemp = Address::invalid();
3910   Address swiftErrorArg = Address::invalid();
3911 
3912   // When passing arguments using temporary allocas, we need to add the
3913   // appropriate lifetime markers. This vector keeps track of all the lifetime
3914   // markers that need to be ended right after the call.
3915   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
3916 
3917   // Translate all of the arguments as necessary to match the IR lowering.
3918   assert(CallInfo.arg_size() == CallArgs.size() &&
3919          "Mismatch between function signature & arguments.");
3920   unsigned ArgNo = 0;
3921   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3922   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3923        I != E; ++I, ++info_it, ++ArgNo) {
3924     const ABIArgInfo &ArgInfo = info_it->info;
3925 
3926     // Insert a padding argument to ensure proper alignment.
3927     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3928       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3929           llvm::UndefValue::get(ArgInfo.getPaddingType());
3930 
3931     unsigned FirstIRArg, NumIRArgs;
3932     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3933 
3934     switch (ArgInfo.getKind()) {
3935     case ABIArgInfo::InAlloca: {
3936       assert(NumIRArgs == 0);
3937       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3938       if (I->isAggregate()) {
3939         // Replace the placeholder with the appropriate argument slot GEP.
3940         Address Addr = I->hasLValue()
3941                            ? I->getKnownLValue().getAddress(*this)
3942                            : I->getKnownRValue().getAggregateAddress();
3943         llvm::Instruction *Placeholder =
3944             cast<llvm::Instruction>(Addr.getPointer());
3945         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3946         Builder.SetInsertPoint(Placeholder);
3947         Addr =
3948             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
3949         Builder.restoreIP(IP);
3950         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3951       } else {
3952         // Store the RValue into the argument struct.
3953         Address Addr =
3954             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
3955         unsigned AS = Addr.getType()->getPointerAddressSpace();
3956         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3957         // There are some cases where a trivial bitcast is not avoidable.  The
3958         // definition of a type later in a translation unit may change it's type
3959         // from {}* to (%struct.foo*)*.
3960         if (Addr.getType() != MemType)
3961           Addr = Builder.CreateBitCast(Addr, MemType);
3962         I->copyInto(*this, Addr);
3963       }
3964       break;
3965     }
3966 
3967     case ABIArgInfo::Indirect: {
3968       assert(NumIRArgs == 1);
3969       if (!I->isAggregate()) {
3970         // Make a temporary alloca to pass the argument.
3971         Address Addr = CreateMemTempWithoutCast(
3972             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
3973         IRCallArgs[FirstIRArg] = Addr.getPointer();
3974 
3975         I->copyInto(*this, Addr);
3976       } else {
3977         // We want to avoid creating an unnecessary temporary+copy here;
3978         // however, we need one in three cases:
3979         // 1. If the argument is not byval, and we are required to copy the
3980         //    source.  (This case doesn't occur on any common architecture.)
3981         // 2. If the argument is byval, RV is not sufficiently aligned, and
3982         //    we cannot force it to be sufficiently aligned.
3983         // 3. If the argument is byval, but RV is not located in default
3984         //    or alloca address space.
3985         Address Addr = I->hasLValue()
3986                            ? I->getKnownLValue().getAddress(*this)
3987                            : I->getKnownRValue().getAggregateAddress();
3988         llvm::Value *V = Addr.getPointer();
3989         CharUnits Align = ArgInfo.getIndirectAlign();
3990         const llvm::DataLayout *TD = &CGM.getDataLayout();
3991 
3992         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
3993                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
3994                     TD->getAllocaAddrSpace()) &&
3995                "indirect argument must be in alloca address space");
3996 
3997         bool NeedCopy = false;
3998 
3999         if (Addr.getAlignment() < Align &&
4000             llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
4001                 Align.getQuantity()) {
4002           NeedCopy = true;
4003         } else if (I->hasLValue()) {
4004           auto LV = I->getKnownLValue();
4005           auto AS = LV.getAddressSpace();
4006 
4007           if ((!ArgInfo.getIndirectByVal() &&
4008                (LV.getAlignment() >=
4009                 getContext().getTypeAlignInChars(I->Ty)))) {
4010             NeedCopy = true;
4011           }
4012           if (!getLangOpts().OpenCL) {
4013             if ((ArgInfo.getIndirectByVal() &&
4014                 (AS != LangAS::Default &&
4015                  AS != CGM.getASTAllocaAddressSpace()))) {
4016               NeedCopy = true;
4017             }
4018           }
4019           // For OpenCL even if RV is located in default or alloca address space
4020           // we don't want to perform address space cast for it.
4021           else if ((ArgInfo.getIndirectByVal() &&
4022                     Addr.getType()->getAddressSpace() != IRFuncTy->
4023                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4024             NeedCopy = true;
4025           }
4026         }
4027 
4028         if (NeedCopy) {
4029           // Create an aligned temporary, and copy to it.
4030           Address AI = CreateMemTempWithoutCast(
4031               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4032           IRCallArgs[FirstIRArg] = AI.getPointer();
4033 
4034           // Emit lifetime markers for the temporary alloca.
4035           uint64_t ByvalTempElementSize =
4036               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4037           llvm::Value *LifetimeSize =
4038               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4039 
4040           // Add cleanup code to emit the end lifetime marker after the call.
4041           if (LifetimeSize) // In case we disabled lifetime markers.
4042             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4043 
4044           // Generate the copy.
4045           I->copyInto(*this, AI);
4046         } else {
4047           // Skip the extra memcpy call.
4048           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4049               CGM.getDataLayout().getAllocaAddrSpace());
4050           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4051               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4052               true);
4053         }
4054       }
4055       break;
4056     }
4057 
4058     case ABIArgInfo::Ignore:
4059       assert(NumIRArgs == 0);
4060       break;
4061 
4062     case ABIArgInfo::Extend:
4063     case ABIArgInfo::Direct: {
4064       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4065           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4066           ArgInfo.getDirectOffset() == 0) {
4067         assert(NumIRArgs == 1);
4068         llvm::Value *V;
4069         if (!I->isAggregate())
4070           V = I->getKnownRValue().getScalarVal();
4071         else
4072           V = Builder.CreateLoad(
4073               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4074                              : I->getKnownRValue().getAggregateAddress());
4075 
4076         // Implement swifterror by copying into a new swifterror argument.
4077         // We'll write back in the normal path out of the call.
4078         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4079               == ParameterABI::SwiftErrorResult) {
4080           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4081 
4082           QualType pointeeTy = I->Ty->getPointeeType();
4083           swiftErrorArg =
4084             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4085 
4086           swiftErrorTemp =
4087             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4088           V = swiftErrorTemp.getPointer();
4089           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4090 
4091           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4092           Builder.CreateStore(errorValue, swiftErrorTemp);
4093         }
4094 
4095         // We might have to widen integers, but we should never truncate.
4096         if (ArgInfo.getCoerceToType() != V->getType() &&
4097             V->getType()->isIntegerTy())
4098           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4099 
4100         // If the argument doesn't match, perform a bitcast to coerce it.  This
4101         // can happen due to trivial type mismatches.
4102         if (FirstIRArg < IRFuncTy->getNumParams() &&
4103             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4104           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4105 
4106         IRCallArgs[FirstIRArg] = V;
4107         break;
4108       }
4109 
4110       // FIXME: Avoid the conversion through memory if possible.
4111       Address Src = Address::invalid();
4112       if (!I->isAggregate()) {
4113         Src = CreateMemTemp(I->Ty, "coerce");
4114         I->copyInto(*this, Src);
4115       } else {
4116         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4117                              : I->getKnownRValue().getAggregateAddress();
4118       }
4119 
4120       // If the value is offset in memory, apply the offset now.
4121       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4122 
4123       // Fast-isel and the optimizer generally like scalar values better than
4124       // FCAs, so we flatten them if this is safe to do for this argument.
4125       llvm::StructType *STy =
4126             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4127       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4128         llvm::Type *SrcTy = Src.getType()->getElementType();
4129         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4130         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4131 
4132         // If the source type is smaller than the destination type of the
4133         // coerce-to logic, copy the source value into a temp alloca the size
4134         // of the destination type to allow loading all of it. The bits past
4135         // the source value are left undef.
4136         if (SrcSize < DstSize) {
4137           Address TempAlloca
4138             = CreateTempAlloca(STy, Src.getAlignment(),
4139                                Src.getName() + ".coerce");
4140           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4141           Src = TempAlloca;
4142         } else {
4143           Src = Builder.CreateBitCast(Src,
4144                                       STy->getPointerTo(Src.getAddressSpace()));
4145         }
4146 
4147         assert(NumIRArgs == STy->getNumElements());
4148         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4149           Address EltPtr = Builder.CreateStructGEP(Src, i);
4150           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4151           IRCallArgs[FirstIRArg + i] = LI;
4152         }
4153       } else {
4154         // In the simple case, just pass the coerced loaded value.
4155         assert(NumIRArgs == 1);
4156         IRCallArgs[FirstIRArg] =
4157           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4158       }
4159 
4160       break;
4161     }
4162 
4163     case ABIArgInfo::CoerceAndExpand: {
4164       auto coercionType = ArgInfo.getCoerceAndExpandType();
4165       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4166 
4167       llvm::Value *tempSize = nullptr;
4168       Address addr = Address::invalid();
4169       Address AllocaAddr = Address::invalid();
4170       if (I->isAggregate()) {
4171         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4172                               : I->getKnownRValue().getAggregateAddress();
4173 
4174       } else {
4175         RValue RV = I->getKnownRValue();
4176         assert(RV.isScalar()); // complex should always just be direct
4177 
4178         llvm::Type *scalarType = RV.getScalarVal()->getType();
4179         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4180         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4181 
4182         // Materialize to a temporary.
4183         addr = CreateTempAlloca(
4184             RV.getScalarVal()->getType(),
4185             CharUnits::fromQuantity(std::max(
4186                 (unsigned)layout->getAlignment().value(), scalarAlign)),
4187             "tmp",
4188             /*ArraySize=*/nullptr, &AllocaAddr);
4189         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4190 
4191         Builder.CreateStore(RV.getScalarVal(), addr);
4192       }
4193 
4194       addr = Builder.CreateElementBitCast(addr, coercionType);
4195 
4196       unsigned IRArgPos = FirstIRArg;
4197       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4198         llvm::Type *eltType = coercionType->getElementType(i);
4199         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4200         Address eltAddr = Builder.CreateStructGEP(addr, i);
4201         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4202         IRCallArgs[IRArgPos++] = elt;
4203       }
4204       assert(IRArgPos == FirstIRArg + NumIRArgs);
4205 
4206       if (tempSize) {
4207         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4208       }
4209 
4210       break;
4211     }
4212 
4213     case ABIArgInfo::Expand:
4214       unsigned IRArgPos = FirstIRArg;
4215       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4216       assert(IRArgPos == FirstIRArg + NumIRArgs);
4217       break;
4218     }
4219   }
4220 
4221   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4222   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4223 
4224   // If we're using inalloca, set up that argument.
4225   if (ArgMemory.isValid()) {
4226     llvm::Value *Arg = ArgMemory.getPointer();
4227     if (CallInfo.isVariadic()) {
4228       // When passing non-POD arguments by value to variadic functions, we will
4229       // end up with a variadic prototype and an inalloca call site.  In such
4230       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4231       // the callee.
4232       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4233       CalleePtr =
4234           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4235     } else {
4236       llvm::Type *LastParamTy =
4237           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4238       if (Arg->getType() != LastParamTy) {
4239 #ifndef NDEBUG
4240         // Assert that these structs have equivalent element types.
4241         llvm::StructType *FullTy = CallInfo.getArgStruct();
4242         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4243             cast<llvm::PointerType>(LastParamTy)->getElementType());
4244         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4245         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4246                                                 DE = DeclaredTy->element_end(),
4247                                                 FI = FullTy->element_begin();
4248              DI != DE; ++DI, ++FI)
4249           assert(*DI == *FI);
4250 #endif
4251         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4252       }
4253     }
4254     assert(IRFunctionArgs.hasInallocaArg());
4255     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4256   }
4257 
4258   // 2. Prepare the function pointer.
4259 
4260   // If the callee is a bitcast of a non-variadic function to have a
4261   // variadic function pointer type, check to see if we can remove the
4262   // bitcast.  This comes up with unprototyped functions.
4263   //
4264   // This makes the IR nicer, but more importantly it ensures that we
4265   // can inline the function at -O0 if it is marked always_inline.
4266   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4267                                    llvm::Value *Ptr) -> llvm::Function * {
4268     if (!CalleeFT->isVarArg())
4269       return nullptr;
4270 
4271     // Get underlying value if it's a bitcast
4272     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4273       if (CE->getOpcode() == llvm::Instruction::BitCast)
4274         Ptr = CE->getOperand(0);
4275     }
4276 
4277     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4278     if (!OrigFn)
4279       return nullptr;
4280 
4281     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4282 
4283     // If the original type is variadic, or if any of the component types
4284     // disagree, we cannot remove the cast.
4285     if (OrigFT->isVarArg() ||
4286         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4287         OrigFT->getReturnType() != CalleeFT->getReturnType())
4288       return nullptr;
4289 
4290     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4291       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4292         return nullptr;
4293 
4294     return OrigFn;
4295   };
4296 
4297   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4298     CalleePtr = OrigFn;
4299     IRFuncTy = OrigFn->getFunctionType();
4300   }
4301 
4302   // 3. Perform the actual call.
4303 
4304   // Deactivate any cleanups that we're supposed to do immediately before
4305   // the call.
4306   if (!CallArgs.getCleanupsToDeactivate().empty())
4307     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4308 
4309   // Assert that the arguments we computed match up.  The IR verifier
4310   // will catch this, but this is a common enough source of problems
4311   // during IRGen changes that it's way better for debugging to catch
4312   // it ourselves here.
4313 #ifndef NDEBUG
4314   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4315   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4316     // Inalloca argument can have different type.
4317     if (IRFunctionArgs.hasInallocaArg() &&
4318         i == IRFunctionArgs.getInallocaArgNo())
4319       continue;
4320     if (i < IRFuncTy->getNumParams())
4321       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4322   }
4323 #endif
4324 
4325   // Update the largest vector width if any arguments have vector types.
4326   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4327     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4328       LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
4329                                    VT->getPrimitiveSizeInBits().getFixedSize());
4330   }
4331 
4332   // Compute the calling convention and attributes.
4333   unsigned CallingConv;
4334   llvm::AttributeList Attrs;
4335   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4336                              Callee.getAbstractInfo(), Attrs, CallingConv,
4337                              /*AttrOnCallSite=*/true);
4338 
4339   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4340     if (FD->usesFPIntrin())
4341       // All calls within a strictfp function are marked strictfp
4342       Attrs =
4343         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4344                            llvm::Attribute::StrictFP);
4345 
4346   // Apply some call-site-specific attributes.
4347   // TODO: work this into building the attribute set.
4348 
4349   // Apply always_inline to all calls within flatten functions.
4350   // FIXME: should this really take priority over __try, below?
4351   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4352       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
4353     Attrs =
4354         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4355                            llvm::Attribute::AlwaysInline);
4356   }
4357 
4358   // Disable inlining inside SEH __try blocks.
4359   if (isSEHTryScope()) {
4360     Attrs =
4361         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4362                            llvm::Attribute::NoInline);
4363   }
4364 
4365   // Decide whether to use a call or an invoke.
4366   bool CannotThrow;
4367   if (currentFunctionUsesSEHTry()) {
4368     // SEH cares about asynchronous exceptions, so everything can "throw."
4369     CannotThrow = false;
4370   } else if (isCleanupPadScope() &&
4371              EHPersonality::get(*this).isMSVCXXPersonality()) {
4372     // The MSVC++ personality will implicitly terminate the program if an
4373     // exception is thrown during a cleanup outside of a try/catch.
4374     // We don't need to model anything in IR to get this behavior.
4375     CannotThrow = true;
4376   } else {
4377     // Otherwise, nounwind call sites will never throw.
4378     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4379                                      llvm::Attribute::NoUnwind);
4380   }
4381 
4382   // If we made a temporary, be sure to clean up after ourselves. Note that we
4383   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4384   // pop this cleanup later on. Being eager about this is OK, since this
4385   // temporary is 'invisible' outside of the callee.
4386   if (UnusedReturnSizePtr)
4387     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4388                                          UnusedReturnSizePtr);
4389 
4390   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4391 
4392   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4393       getBundlesForFunclet(CalleePtr);
4394 
4395   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4396     if (FD->usesFPIntrin())
4397       // All calls within a strictfp function are marked strictfp
4398       Attrs =
4399         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4400                            llvm::Attribute::StrictFP);
4401 
4402   // Emit the actual call/invoke instruction.
4403   llvm::CallBase *CI;
4404   if (!InvokeDest) {
4405     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
4406   } else {
4407     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4408     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
4409                               BundleList);
4410     EmitBlock(Cont);
4411   }
4412   if (callOrInvoke)
4413     *callOrInvoke = CI;
4414 
4415   // Apply the attributes and calling convention.
4416   CI->setAttributes(Attrs);
4417   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4418 
4419   // Apply various metadata.
4420 
4421   if (!CI->getType()->isVoidTy())
4422     CI->setName("call");
4423 
4424   // Update largest vector width from the return type.
4425   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4426     LargestVectorWidth = std::max((uint64_t)LargestVectorWidth,
4427                                   VT->getPrimitiveSizeInBits().getFixedSize());
4428 
4429   // Insert instrumentation or attach profile metadata at indirect call sites.
4430   // For more details, see the comment before the definition of
4431   // IPVK_IndirectCallTarget in InstrProfData.inc.
4432   if (!CI->getCalledFunction())
4433     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4434                      CI, CalleePtr);
4435 
4436   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4437   // optimizer it can aggressively ignore unwind edges.
4438   if (CGM.getLangOpts().ObjCAutoRefCount)
4439     AddObjCARCExceptionMetadata(CI);
4440 
4441   // Suppress tail calls if requested.
4442   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4443     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4444       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4445   }
4446 
4447   // Add metadata for calls to MSAllocator functions
4448   if (getDebugInfo() && TargetDecl &&
4449       TargetDecl->hasAttr<MSAllocatorAttr>())
4450     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy, Loc);
4451 
4452   // 4. Finish the call.
4453 
4454   // If the call doesn't return, finish the basic block and clear the
4455   // insertion point; this allows the rest of IRGen to discard
4456   // unreachable code.
4457   if (CI->doesNotReturn()) {
4458     if (UnusedReturnSizePtr)
4459       PopCleanupBlock();
4460 
4461     // Strip away the noreturn attribute to better diagnose unreachable UB.
4462     if (SanOpts.has(SanitizerKind::Unreachable)) {
4463       // Also remove from function since CallBase::hasFnAttr additionally checks
4464       // attributes of the called function.
4465       if (auto *F = CI->getCalledFunction())
4466         F->removeFnAttr(llvm::Attribute::NoReturn);
4467       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
4468                           llvm::Attribute::NoReturn);
4469 
4470       // Avoid incompatibility with ASan which relies on the `noreturn`
4471       // attribute to insert handler calls.
4472       if (SanOpts.hasOneOf(SanitizerKind::Address |
4473                            SanitizerKind::KernelAddress)) {
4474         SanitizerScope SanScope(this);
4475         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
4476         Builder.SetInsertPoint(CI);
4477         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
4478         llvm::FunctionCallee Fn =
4479             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
4480         EmitNounwindRuntimeCall(Fn);
4481       }
4482     }
4483 
4484     EmitUnreachable(Loc);
4485     Builder.ClearInsertionPoint();
4486 
4487     // FIXME: For now, emit a dummy basic block because expr emitters in
4488     // generally are not ready to handle emitting expressions at unreachable
4489     // points.
4490     EnsureInsertPoint();
4491 
4492     // Return a reasonable RValue.
4493     return GetUndefRValue(RetTy);
4494   }
4495 
4496   // Perform the swifterror writeback.
4497   if (swiftErrorTemp.isValid()) {
4498     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4499     Builder.CreateStore(errorResult, swiftErrorArg);
4500   }
4501 
4502   // Emit any call-associated writebacks immediately.  Arguably this
4503   // should happen after any return-value munging.
4504   if (CallArgs.hasWritebacks())
4505     emitWritebacks(*this, CallArgs);
4506 
4507   // The stack cleanup for inalloca arguments has to run out of the normal
4508   // lexical order, so deactivate it and run it manually here.
4509   CallArgs.freeArgumentMemory(*this);
4510 
4511   // Extract the return value.
4512   RValue Ret = [&] {
4513     switch (RetAI.getKind()) {
4514     case ABIArgInfo::CoerceAndExpand: {
4515       auto coercionType = RetAI.getCoerceAndExpandType();
4516 
4517       Address addr = SRetPtr;
4518       addr = Builder.CreateElementBitCast(addr, coercionType);
4519 
4520       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4521       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4522 
4523       unsigned unpaddedIndex = 0;
4524       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4525         llvm::Type *eltType = coercionType->getElementType(i);
4526         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4527         Address eltAddr = Builder.CreateStructGEP(addr, i);
4528         llvm::Value *elt = CI;
4529         if (requiresExtract)
4530           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4531         else
4532           assert(unpaddedIndex == 0);
4533         Builder.CreateStore(elt, eltAddr);
4534       }
4535       // FALLTHROUGH
4536       LLVM_FALLTHROUGH;
4537     }
4538 
4539     case ABIArgInfo::InAlloca:
4540     case ABIArgInfo::Indirect: {
4541       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4542       if (UnusedReturnSizePtr)
4543         PopCleanupBlock();
4544       return ret;
4545     }
4546 
4547     case ABIArgInfo::Ignore:
4548       // If we are ignoring an argument that had a result, make sure to
4549       // construct the appropriate return value for our caller.
4550       return GetUndefRValue(RetTy);
4551 
4552     case ABIArgInfo::Extend:
4553     case ABIArgInfo::Direct: {
4554       llvm::Type *RetIRTy = ConvertType(RetTy);
4555       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4556         switch (getEvaluationKind(RetTy)) {
4557         case TEK_Complex: {
4558           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4559           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4560           return RValue::getComplex(std::make_pair(Real, Imag));
4561         }
4562         case TEK_Aggregate: {
4563           Address DestPtr = ReturnValue.getValue();
4564           bool DestIsVolatile = ReturnValue.isVolatile();
4565 
4566           if (!DestPtr.isValid()) {
4567             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4568             DestIsVolatile = false;
4569           }
4570           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4571           return RValue::getAggregate(DestPtr);
4572         }
4573         case TEK_Scalar: {
4574           // If the argument doesn't match, perform a bitcast to coerce it.  This
4575           // can happen due to trivial type mismatches.
4576           llvm::Value *V = CI;
4577           if (V->getType() != RetIRTy)
4578             V = Builder.CreateBitCast(V, RetIRTy);
4579           return RValue::get(V);
4580         }
4581         }
4582         llvm_unreachable("bad evaluation kind");
4583       }
4584 
4585       Address DestPtr = ReturnValue.getValue();
4586       bool DestIsVolatile = ReturnValue.isVolatile();
4587 
4588       if (!DestPtr.isValid()) {
4589         DestPtr = CreateMemTemp(RetTy, "coerce");
4590         DestIsVolatile = false;
4591       }
4592 
4593       // If the value is offset in memory, apply the offset now.
4594       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4595       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4596 
4597       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4598     }
4599 
4600     case ABIArgInfo::Expand:
4601       llvm_unreachable("Invalid ABI kind for return argument");
4602     }
4603 
4604     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4605   } ();
4606 
4607   // Emit the assume_aligned check on the return value.
4608   if (Ret.isScalar() && TargetDecl) {
4609     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4610       llvm::Value *OffsetValue = nullptr;
4611       if (const auto *Offset = AA->getOffset())
4612         OffsetValue = EmitScalarExpr(Offset);
4613 
4614       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4615       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4616       EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4617                               AlignmentCI, OffsetValue);
4618     } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4619       llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()]
4620                                       .getRValue(*this)
4621                                       .getScalarVal();
4622       EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4623                               AlignmentVal);
4624     }
4625   }
4626 
4627   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
4628   // we can't use the full cleanup mechanism.
4629   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
4630     LifetimeEnd.Emit(*this, /*Flags=*/{});
4631 
4632   return Ret;
4633 }
4634 
4635 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
4636   if (isVirtual()) {
4637     const CallExpr *CE = getVirtualCallExpr();
4638     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
4639         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
4640         CE ? CE->getBeginLoc() : SourceLocation());
4641   }
4642 
4643   return *this;
4644 }
4645 
4646 /* VarArg handling */
4647 
4648 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4649   VAListAddr = VE->isMicrosoftABI()
4650                  ? EmitMSVAListRef(VE->getSubExpr())
4651                  : EmitVAListRef(VE->getSubExpr());
4652   QualType Ty = VE->getType();
4653   if (VE->isMicrosoftABI())
4654     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4655   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4656 }
4657