1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "clang/Frontend/CodeGenOptions.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_Win64: return llvm::CallingConv::Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 63 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 64 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 65 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 66 case CC_Swift: return llvm::CallingConv::Swift; 67 } 68 } 69 70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 71 /// qualification. 72 /// FIXME: address space qualification? 73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 74 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 75 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 76 } 77 78 /// Returns the canonical formal type of the given C++ method. 79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 80 return MD->getType()->getCanonicalTypeUnqualified() 81 .getAs<FunctionProtoType>(); 82 } 83 84 /// Returns the "extra-canonicalized" return type, which discards 85 /// qualifiers on the return type. Codegen doesn't care about them, 86 /// and it makes ABI code a little easier to be able to assume that 87 /// all parameter and return types are top-level unqualified. 88 static CanQualType GetReturnType(QualType RetTy) { 89 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 90 } 91 92 /// Arrange the argument and result information for a value of the given 93 /// unprototyped freestanding function type. 94 const CGFunctionInfo & 95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 96 // When translating an unprototyped function type, always use a 97 // variadic type. 98 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 99 /*instanceMethod=*/false, 100 /*chainCall=*/false, None, 101 FTNP->getExtInfo(), {}, RequiredArgs(0)); 102 } 103 104 static void addExtParameterInfosForCall( 105 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 106 const FunctionProtoType *proto, 107 unsigned prefixArgs, 108 unsigned totalArgs) { 109 assert(proto->hasExtParameterInfos()); 110 assert(paramInfos.size() <= prefixArgs); 111 assert(proto->getNumParams() + prefixArgs <= totalArgs); 112 113 paramInfos.reserve(totalArgs); 114 115 // Add default infos for any prefix args that don't already have infos. 116 paramInfos.resize(prefixArgs); 117 118 // Add infos for the prototype. 119 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 120 paramInfos.push_back(ParamInfo); 121 // pass_object_size params have no parameter info. 122 if (ParamInfo.hasPassObjectSize()) 123 paramInfos.emplace_back(); 124 } 125 126 assert(paramInfos.size() <= totalArgs && 127 "Did we forget to insert pass_object_size args?"); 128 // Add default infos for the variadic and/or suffix arguments. 129 paramInfos.resize(totalArgs); 130 } 131 132 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 133 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 134 static void appendParameterTypes(const CodeGenTypes &CGT, 135 SmallVectorImpl<CanQualType> &prefix, 136 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 137 CanQual<FunctionProtoType> FPT) { 138 // Fast path: don't touch param info if we don't need to. 139 if (!FPT->hasExtParameterInfos()) { 140 assert(paramInfos.empty() && 141 "We have paramInfos, but the prototype doesn't?"); 142 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 143 return; 144 } 145 146 unsigned PrefixSize = prefix.size(); 147 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 148 // parameters; the only thing that can change this is the presence of 149 // pass_object_size. So, we preallocate for the common case. 150 prefix.reserve(prefix.size() + FPT->getNumParams()); 151 152 auto ExtInfos = FPT->getExtParameterInfos(); 153 assert(ExtInfos.size() == FPT->getNumParams()); 154 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 155 prefix.push_back(FPT->getParamType(I)); 156 if (ExtInfos[I].hasPassObjectSize()) 157 prefix.push_back(CGT.getContext().getSizeType()); 158 } 159 160 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 161 prefix.size()); 162 } 163 164 /// Arrange the LLVM function layout for a value of the given function 165 /// type, on top of any implicit parameters already stored. 166 static const CGFunctionInfo & 167 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 168 SmallVectorImpl<CanQualType> &prefix, 169 CanQual<FunctionProtoType> FTP, 170 const FunctionDecl *FD) { 171 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 172 RequiredArgs Required = 173 RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD); 174 // FIXME: Kill copy. 175 appendParameterTypes(CGT, prefix, paramInfos, FTP); 176 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 177 178 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 179 /*chainCall=*/false, prefix, 180 FTP->getExtInfo(), paramInfos, 181 Required); 182 } 183 184 /// Arrange the argument and result information for a value of the 185 /// given freestanding function type. 186 const CGFunctionInfo & 187 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 188 const FunctionDecl *FD) { 189 SmallVector<CanQualType, 16> argTypes; 190 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 191 FTP, FD); 192 } 193 194 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 195 // Set the appropriate calling convention for the Function. 196 if (D->hasAttr<StdCallAttr>()) 197 return CC_X86StdCall; 198 199 if (D->hasAttr<FastCallAttr>()) 200 return CC_X86FastCall; 201 202 if (D->hasAttr<RegCallAttr>()) 203 return CC_X86RegCall; 204 205 if (D->hasAttr<ThisCallAttr>()) 206 return CC_X86ThisCall; 207 208 if (D->hasAttr<VectorCallAttr>()) 209 return CC_X86VectorCall; 210 211 if (D->hasAttr<PascalAttr>()) 212 return CC_X86Pascal; 213 214 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 215 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 216 217 if (D->hasAttr<IntelOclBiccAttr>()) 218 return CC_IntelOclBicc; 219 220 if (D->hasAttr<MSABIAttr>()) 221 return IsWindows ? CC_C : CC_Win64; 222 223 if (D->hasAttr<SysVABIAttr>()) 224 return IsWindows ? CC_X86_64SysV : CC_C; 225 226 if (D->hasAttr<PreserveMostAttr>()) 227 return CC_PreserveMost; 228 229 if (D->hasAttr<PreserveAllAttr>()) 230 return CC_PreserveAll; 231 232 return CC_C; 233 } 234 235 /// Arrange the argument and result information for a call to an 236 /// unknown C++ non-static member function of the given abstract type. 237 /// (Zero value of RD means we don't have any meaningful "this" argument type, 238 /// so fall back to a generic pointer type). 239 /// The member function must be an ordinary function, i.e. not a 240 /// constructor or destructor. 241 const CGFunctionInfo & 242 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 243 const FunctionProtoType *FTP, 244 const CXXMethodDecl *MD) { 245 SmallVector<CanQualType, 16> argTypes; 246 247 // Add the 'this' pointer. 248 if (RD) 249 argTypes.push_back(GetThisType(Context, RD)); 250 else 251 argTypes.push_back(Context.VoidPtrTy); 252 253 return ::arrangeLLVMFunctionInfo( 254 *this, true, argTypes, 255 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 256 } 257 258 /// Arrange the argument and result information for a declaration or 259 /// definition of the given C++ non-static member function. The 260 /// member function must be an ordinary function, i.e. not a 261 /// constructor or destructor. 262 const CGFunctionInfo & 263 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 264 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 265 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 266 267 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 268 269 if (MD->isInstance()) { 270 // The abstract case is perfectly fine. 271 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 272 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 273 } 274 275 return arrangeFreeFunctionType(prototype, MD); 276 } 277 278 bool CodeGenTypes::inheritingCtorHasParams( 279 const InheritedConstructor &Inherited, CXXCtorType Type) { 280 // Parameters are unnecessary if we're constructing a base class subobject 281 // and the inherited constructor lives in a virtual base. 282 return Type == Ctor_Complete || 283 !Inherited.getShadowDecl()->constructsVirtualBase() || 284 !Target.getCXXABI().hasConstructorVariants(); 285 } 286 287 const CGFunctionInfo & 288 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 289 StructorType Type) { 290 291 SmallVector<CanQualType, 16> argTypes; 292 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 293 argTypes.push_back(GetThisType(Context, MD->getParent())); 294 295 bool PassParams = true; 296 297 GlobalDecl GD; 298 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 299 GD = GlobalDecl(CD, toCXXCtorType(Type)); 300 301 // A base class inheriting constructor doesn't get forwarded arguments 302 // needed to construct a virtual base (or base class thereof). 303 if (auto Inherited = CD->getInheritedConstructor()) 304 PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); 305 } else { 306 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 307 GD = GlobalDecl(DD, toCXXDtorType(Type)); 308 } 309 310 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 311 312 // Add the formal parameters. 313 if (PassParams) 314 appendParameterTypes(*this, argTypes, paramInfos, FTP); 315 316 CGCXXABI::AddedStructorArgs AddedArgs = 317 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 318 if (!paramInfos.empty()) { 319 // Note: prefix implies after the first param. 320 if (AddedArgs.Prefix) 321 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 322 FunctionProtoType::ExtParameterInfo{}); 323 if (AddedArgs.Suffix) 324 paramInfos.append(AddedArgs.Suffix, 325 FunctionProtoType::ExtParameterInfo{}); 326 } 327 328 RequiredArgs required = 329 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 330 : RequiredArgs::All); 331 332 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 333 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 334 ? argTypes.front() 335 : TheCXXABI.hasMostDerivedReturn(GD) 336 ? CGM.getContext().VoidPtrTy 337 : Context.VoidTy; 338 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 339 /*chainCall=*/false, argTypes, extInfo, 340 paramInfos, required); 341 } 342 343 static SmallVector<CanQualType, 16> 344 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 345 SmallVector<CanQualType, 16> argTypes; 346 for (auto &arg : args) 347 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 348 return argTypes; 349 } 350 351 static SmallVector<CanQualType, 16> 352 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 353 SmallVector<CanQualType, 16> argTypes; 354 for (auto &arg : args) 355 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 356 return argTypes; 357 } 358 359 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 360 getExtParameterInfosForCall(const FunctionProtoType *proto, 361 unsigned prefixArgs, unsigned totalArgs) { 362 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 363 if (proto->hasExtParameterInfos()) { 364 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 365 } 366 return result; 367 } 368 369 /// Arrange a call to a C++ method, passing the given arguments. 370 /// 371 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 372 /// parameter. 373 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 374 /// args. 375 /// PassProtoArgs indicates whether `args` has args for the parameters in the 376 /// given CXXConstructorDecl. 377 const CGFunctionInfo & 378 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 379 const CXXConstructorDecl *D, 380 CXXCtorType CtorKind, 381 unsigned ExtraPrefixArgs, 382 unsigned ExtraSuffixArgs, 383 bool PassProtoArgs) { 384 // FIXME: Kill copy. 385 SmallVector<CanQualType, 16> ArgTypes; 386 for (const auto &Arg : args) 387 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 388 389 // +1 for implicit this, which should always be args[0]. 390 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 391 392 CanQual<FunctionProtoType> FPT = GetFormalType(D); 393 RequiredArgs Required = 394 RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D); 395 GlobalDecl GD(D, CtorKind); 396 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 397 ? ArgTypes.front() 398 : TheCXXABI.hasMostDerivedReturn(GD) 399 ? CGM.getContext().VoidPtrTy 400 : Context.VoidTy; 401 402 FunctionType::ExtInfo Info = FPT->getExtInfo(); 403 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 404 // If the prototype args are elided, we should only have ABI-specific args, 405 // which never have param info. 406 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 407 // ABI-specific suffix arguments are treated the same as variadic arguments. 408 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 409 ArgTypes.size()); 410 } 411 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 412 /*chainCall=*/false, ArgTypes, Info, 413 ParamInfos, Required); 414 } 415 416 /// Arrange the argument and result information for the declaration or 417 /// definition of the given function. 418 const CGFunctionInfo & 419 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 420 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 421 if (MD->isInstance()) 422 return arrangeCXXMethodDeclaration(MD); 423 424 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 425 426 assert(isa<FunctionType>(FTy)); 427 428 // When declaring a function without a prototype, always use a 429 // non-variadic type. 430 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 431 return arrangeLLVMFunctionInfo( 432 noProto->getReturnType(), /*instanceMethod=*/false, 433 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 434 } 435 436 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD); 437 } 438 439 /// Arrange the argument and result information for the declaration or 440 /// definition of an Objective-C method. 441 const CGFunctionInfo & 442 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 443 // It happens that this is the same as a call with no optional 444 // arguments, except also using the formal 'self' type. 445 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 446 } 447 448 /// Arrange the argument and result information for the function type 449 /// through which to perform a send to the given Objective-C method, 450 /// using the given receiver type. The receiver type is not always 451 /// the 'self' type of the method or even an Objective-C pointer type. 452 /// This is *not* the right method for actually performing such a 453 /// message send, due to the possibility of optional arguments. 454 const CGFunctionInfo & 455 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 456 QualType receiverType) { 457 SmallVector<CanQualType, 16> argTys; 458 argTys.push_back(Context.getCanonicalParamType(receiverType)); 459 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 460 // FIXME: Kill copy? 461 for (const auto *I : MD->parameters()) { 462 argTys.push_back(Context.getCanonicalParamType(I->getType())); 463 } 464 465 FunctionType::ExtInfo einfo; 466 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 467 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 468 469 if (getContext().getLangOpts().ObjCAutoRefCount && 470 MD->hasAttr<NSReturnsRetainedAttr>()) 471 einfo = einfo.withProducesResult(true); 472 473 RequiredArgs required = 474 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 475 476 return arrangeLLVMFunctionInfo( 477 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 478 /*chainCall=*/false, argTys, einfo, {}, required); 479 } 480 481 const CGFunctionInfo & 482 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 483 const CallArgList &args) { 484 auto argTypes = getArgTypesForCall(Context, args); 485 FunctionType::ExtInfo einfo; 486 487 return arrangeLLVMFunctionInfo( 488 GetReturnType(returnType), /*instanceMethod=*/false, 489 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 490 } 491 492 const CGFunctionInfo & 493 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 494 // FIXME: Do we need to handle ObjCMethodDecl? 495 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 496 497 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 498 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 499 500 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 501 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 502 503 return arrangeFunctionDeclaration(FD); 504 } 505 506 /// Arrange a thunk that takes 'this' as the first parameter followed by 507 /// varargs. Return a void pointer, regardless of the actual return type. 508 /// The body of the thunk will end in a musttail call to a function of the 509 /// correct type, and the caller will bitcast the function to the correct 510 /// prototype. 511 const CGFunctionInfo & 512 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) { 513 assert(MD->isVirtual() && "only virtual memptrs have thunks"); 514 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 515 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 516 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 517 /*chainCall=*/false, ArgTys, 518 FTP->getExtInfo(), {}, RequiredArgs(1)); 519 } 520 521 const CGFunctionInfo & 522 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 523 CXXCtorType CT) { 524 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 525 526 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 527 SmallVector<CanQualType, 2> ArgTys; 528 const CXXRecordDecl *RD = CD->getParent(); 529 ArgTys.push_back(GetThisType(Context, RD)); 530 if (CT == Ctor_CopyingClosure) 531 ArgTys.push_back(*FTP->param_type_begin()); 532 if (RD->getNumVBases() > 0) 533 ArgTys.push_back(Context.IntTy); 534 CallingConv CC = Context.getDefaultCallingConvention( 535 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 536 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 537 /*chainCall=*/false, ArgTys, 538 FunctionType::ExtInfo(CC), {}, 539 RequiredArgs::All); 540 } 541 542 /// Arrange a call as unto a free function, except possibly with an 543 /// additional number of formal parameters considered required. 544 static const CGFunctionInfo & 545 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 546 CodeGenModule &CGM, 547 const CallArgList &args, 548 const FunctionType *fnType, 549 unsigned numExtraRequiredArgs, 550 bool chainCall) { 551 assert(args.size() >= numExtraRequiredArgs); 552 553 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 554 555 // In most cases, there are no optional arguments. 556 RequiredArgs required = RequiredArgs::All; 557 558 // If we have a variadic prototype, the required arguments are the 559 // extra prefix plus the arguments in the prototype. 560 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 561 if (proto->isVariadic()) 562 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 563 564 if (proto->hasExtParameterInfos()) 565 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 566 args.size()); 567 568 // If we don't have a prototype at all, but we're supposed to 569 // explicitly use the variadic convention for unprototyped calls, 570 // treat all of the arguments as required but preserve the nominal 571 // possibility of variadics. 572 } else if (CGM.getTargetCodeGenInfo() 573 .isNoProtoCallVariadic(args, 574 cast<FunctionNoProtoType>(fnType))) { 575 required = RequiredArgs(args.size()); 576 } 577 578 // FIXME: Kill copy. 579 SmallVector<CanQualType, 16> argTypes; 580 for (const auto &arg : args) 581 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 582 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 583 /*instanceMethod=*/false, chainCall, 584 argTypes, fnType->getExtInfo(), paramInfos, 585 required); 586 } 587 588 /// Figure out the rules for calling a function with the given formal 589 /// type using the given arguments. The arguments are necessary 590 /// because the function might be unprototyped, in which case it's 591 /// target-dependent in crazy ways. 592 const CGFunctionInfo & 593 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 594 const FunctionType *fnType, 595 bool chainCall) { 596 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 597 chainCall ? 1 : 0, chainCall); 598 } 599 600 /// A block function is essentially a free function with an 601 /// extra implicit argument. 602 const CGFunctionInfo & 603 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 604 const FunctionType *fnType) { 605 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 606 /*chainCall=*/false); 607 } 608 609 const CGFunctionInfo & 610 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 611 const FunctionArgList ¶ms) { 612 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 613 auto argTypes = getArgTypesForDeclaration(Context, params); 614 615 return arrangeLLVMFunctionInfo( 616 GetReturnType(proto->getReturnType()), 617 /*instanceMethod*/ false, /*chainCall*/ false, argTypes, 618 proto->getExtInfo(), paramInfos, 619 RequiredArgs::forPrototypePlus(proto, 1, nullptr)); 620 } 621 622 const CGFunctionInfo & 623 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 624 const CallArgList &args) { 625 // FIXME: Kill copy. 626 SmallVector<CanQualType, 16> argTypes; 627 for (const auto &Arg : args) 628 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 629 return arrangeLLVMFunctionInfo( 630 GetReturnType(resultType), /*instanceMethod=*/false, 631 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 632 /*paramInfos=*/ {}, RequiredArgs::All); 633 } 634 635 const CGFunctionInfo & 636 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 637 const FunctionArgList &args) { 638 auto argTypes = getArgTypesForDeclaration(Context, args); 639 640 return arrangeLLVMFunctionInfo( 641 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 642 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 643 } 644 645 const CGFunctionInfo & 646 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 647 ArrayRef<CanQualType> argTypes) { 648 return arrangeLLVMFunctionInfo( 649 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 650 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 651 } 652 653 /// Arrange a call to a C++ method, passing the given arguments. 654 /// 655 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 656 /// does not count `this`. 657 const CGFunctionInfo & 658 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 659 const FunctionProtoType *proto, 660 RequiredArgs required, 661 unsigned numPrefixArgs) { 662 assert(numPrefixArgs + 1 <= args.size() && 663 "Emitting a call with less args than the required prefix?"); 664 // Add one to account for `this`. It's a bit awkward here, but we don't count 665 // `this` in similar places elsewhere. 666 auto paramInfos = 667 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 668 669 // FIXME: Kill copy. 670 auto argTypes = getArgTypesForCall(Context, args); 671 672 FunctionType::ExtInfo info = proto->getExtInfo(); 673 return arrangeLLVMFunctionInfo( 674 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 675 /*chainCall=*/false, argTypes, info, paramInfos, required); 676 } 677 678 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 679 return arrangeLLVMFunctionInfo( 680 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 681 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 682 } 683 684 const CGFunctionInfo & 685 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 686 const CallArgList &args) { 687 assert(signature.arg_size() <= args.size()); 688 if (signature.arg_size() == args.size()) 689 return signature; 690 691 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 692 auto sigParamInfos = signature.getExtParameterInfos(); 693 if (!sigParamInfos.empty()) { 694 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 695 paramInfos.resize(args.size()); 696 } 697 698 auto argTypes = getArgTypesForCall(Context, args); 699 700 assert(signature.getRequiredArgs().allowsOptionalArgs()); 701 return arrangeLLVMFunctionInfo(signature.getReturnType(), 702 signature.isInstanceMethod(), 703 signature.isChainCall(), 704 argTypes, 705 signature.getExtInfo(), 706 paramInfos, 707 signature.getRequiredArgs()); 708 } 709 710 namespace clang { 711 namespace CodeGen { 712 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 713 } 714 } 715 716 /// Arrange the argument and result information for an abstract value 717 /// of a given function type. This is the method which all of the 718 /// above functions ultimately defer to. 719 const CGFunctionInfo & 720 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 721 bool instanceMethod, 722 bool chainCall, 723 ArrayRef<CanQualType> argTypes, 724 FunctionType::ExtInfo info, 725 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 726 RequiredArgs required) { 727 assert(std::all_of(argTypes.begin(), argTypes.end(), 728 [](CanQualType T) { return T.isCanonicalAsParam(); })); 729 730 // Lookup or create unique function info. 731 llvm::FoldingSetNodeID ID; 732 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 733 required, resultType, argTypes); 734 735 void *insertPos = nullptr; 736 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 737 if (FI) 738 return *FI; 739 740 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 741 742 // Construct the function info. We co-allocate the ArgInfos. 743 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 744 paramInfos, resultType, argTypes, required); 745 FunctionInfos.InsertNode(FI, insertPos); 746 747 bool inserted = FunctionsBeingProcessed.insert(FI).second; 748 (void)inserted; 749 assert(inserted && "Recursively being processed?"); 750 751 // Compute ABI information. 752 if (CC == llvm::CallingConv::SPIR_KERNEL) { 753 // Force target independent argument handling for the host visible 754 // kernel functions. 755 computeSPIRKernelABIInfo(CGM, *FI); 756 } else if (info.getCC() == CC_Swift) { 757 swiftcall::computeABIInfo(CGM, *FI); 758 } else { 759 getABIInfo().computeInfo(*FI); 760 } 761 762 // Loop over all of the computed argument and return value info. If any of 763 // them are direct or extend without a specified coerce type, specify the 764 // default now. 765 ABIArgInfo &retInfo = FI->getReturnInfo(); 766 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 767 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 768 769 for (auto &I : FI->arguments()) 770 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 771 I.info.setCoerceToType(ConvertType(I.type)); 772 773 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 774 assert(erased && "Not in set?"); 775 776 return *FI; 777 } 778 779 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 780 bool instanceMethod, 781 bool chainCall, 782 const FunctionType::ExtInfo &info, 783 ArrayRef<ExtParameterInfo> paramInfos, 784 CanQualType resultType, 785 ArrayRef<CanQualType> argTypes, 786 RequiredArgs required) { 787 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 788 789 void *buffer = 790 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 791 argTypes.size() + 1, paramInfos.size())); 792 793 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 794 FI->CallingConvention = llvmCC; 795 FI->EffectiveCallingConvention = llvmCC; 796 FI->ASTCallingConvention = info.getCC(); 797 FI->InstanceMethod = instanceMethod; 798 FI->ChainCall = chainCall; 799 FI->NoReturn = info.getNoReturn(); 800 FI->ReturnsRetained = info.getProducesResult(); 801 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 802 FI->Required = required; 803 FI->HasRegParm = info.getHasRegParm(); 804 FI->RegParm = info.getRegParm(); 805 FI->ArgStruct = nullptr; 806 FI->ArgStructAlign = 0; 807 FI->NumArgs = argTypes.size(); 808 FI->HasExtParameterInfos = !paramInfos.empty(); 809 FI->getArgsBuffer()[0].type = resultType; 810 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 811 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 812 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 813 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 814 return FI; 815 } 816 817 /***/ 818 819 namespace { 820 // ABIArgInfo::Expand implementation. 821 822 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 823 struct TypeExpansion { 824 enum TypeExpansionKind { 825 // Elements of constant arrays are expanded recursively. 826 TEK_ConstantArray, 827 // Record fields are expanded recursively (but if record is a union, only 828 // the field with the largest size is expanded). 829 TEK_Record, 830 // For complex types, real and imaginary parts are expanded recursively. 831 TEK_Complex, 832 // All other types are not expandable. 833 TEK_None 834 }; 835 836 const TypeExpansionKind Kind; 837 838 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 839 virtual ~TypeExpansion() {} 840 }; 841 842 struct ConstantArrayExpansion : TypeExpansion { 843 QualType EltTy; 844 uint64_t NumElts; 845 846 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 847 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 848 static bool classof(const TypeExpansion *TE) { 849 return TE->Kind == TEK_ConstantArray; 850 } 851 }; 852 853 struct RecordExpansion : TypeExpansion { 854 SmallVector<const CXXBaseSpecifier *, 1> Bases; 855 856 SmallVector<const FieldDecl *, 1> Fields; 857 858 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 859 SmallVector<const FieldDecl *, 1> &&Fields) 860 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 861 Fields(std::move(Fields)) {} 862 static bool classof(const TypeExpansion *TE) { 863 return TE->Kind == TEK_Record; 864 } 865 }; 866 867 struct ComplexExpansion : TypeExpansion { 868 QualType EltTy; 869 870 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 871 static bool classof(const TypeExpansion *TE) { 872 return TE->Kind == TEK_Complex; 873 } 874 }; 875 876 struct NoExpansion : TypeExpansion { 877 NoExpansion() : TypeExpansion(TEK_None) {} 878 static bool classof(const TypeExpansion *TE) { 879 return TE->Kind == TEK_None; 880 } 881 }; 882 } // namespace 883 884 static std::unique_ptr<TypeExpansion> 885 getTypeExpansion(QualType Ty, const ASTContext &Context) { 886 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 887 return llvm::make_unique<ConstantArrayExpansion>( 888 AT->getElementType(), AT->getSize().getZExtValue()); 889 } 890 if (const RecordType *RT = Ty->getAs<RecordType>()) { 891 SmallVector<const CXXBaseSpecifier *, 1> Bases; 892 SmallVector<const FieldDecl *, 1> Fields; 893 const RecordDecl *RD = RT->getDecl(); 894 assert(!RD->hasFlexibleArrayMember() && 895 "Cannot expand structure with flexible array."); 896 if (RD->isUnion()) { 897 // Unions can be here only in degenerative cases - all the fields are same 898 // after flattening. Thus we have to use the "largest" field. 899 const FieldDecl *LargestFD = nullptr; 900 CharUnits UnionSize = CharUnits::Zero(); 901 902 for (const auto *FD : RD->fields()) { 903 // Skip zero length bitfields. 904 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 905 continue; 906 assert(!FD->isBitField() && 907 "Cannot expand structure with bit-field members."); 908 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 909 if (UnionSize < FieldSize) { 910 UnionSize = FieldSize; 911 LargestFD = FD; 912 } 913 } 914 if (LargestFD) 915 Fields.push_back(LargestFD); 916 } else { 917 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 918 assert(!CXXRD->isDynamicClass() && 919 "cannot expand vtable pointers in dynamic classes"); 920 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 921 Bases.push_back(&BS); 922 } 923 924 for (const auto *FD : RD->fields()) { 925 // Skip zero length bitfields. 926 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 927 continue; 928 assert(!FD->isBitField() && 929 "Cannot expand structure with bit-field members."); 930 Fields.push_back(FD); 931 } 932 } 933 return llvm::make_unique<RecordExpansion>(std::move(Bases), 934 std::move(Fields)); 935 } 936 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 937 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 938 } 939 return llvm::make_unique<NoExpansion>(); 940 } 941 942 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 943 auto Exp = getTypeExpansion(Ty, Context); 944 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 945 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 946 } 947 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 948 int Res = 0; 949 for (auto BS : RExp->Bases) 950 Res += getExpansionSize(BS->getType(), Context); 951 for (auto FD : RExp->Fields) 952 Res += getExpansionSize(FD->getType(), Context); 953 return Res; 954 } 955 if (isa<ComplexExpansion>(Exp.get())) 956 return 2; 957 assert(isa<NoExpansion>(Exp.get())); 958 return 1; 959 } 960 961 void 962 CodeGenTypes::getExpandedTypes(QualType Ty, 963 SmallVectorImpl<llvm::Type *>::iterator &TI) { 964 auto Exp = getTypeExpansion(Ty, Context); 965 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 966 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 967 getExpandedTypes(CAExp->EltTy, TI); 968 } 969 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 970 for (auto BS : RExp->Bases) 971 getExpandedTypes(BS->getType(), TI); 972 for (auto FD : RExp->Fields) 973 getExpandedTypes(FD->getType(), TI); 974 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 975 llvm::Type *EltTy = ConvertType(CExp->EltTy); 976 *TI++ = EltTy; 977 *TI++ = EltTy; 978 } else { 979 assert(isa<NoExpansion>(Exp.get())); 980 *TI++ = ConvertType(Ty); 981 } 982 } 983 984 static void forConstantArrayExpansion(CodeGenFunction &CGF, 985 ConstantArrayExpansion *CAE, 986 Address BaseAddr, 987 llvm::function_ref<void(Address)> Fn) { 988 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 989 CharUnits EltAlign = 990 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 991 992 for (int i = 0, n = CAE->NumElts; i < n; i++) { 993 llvm::Value *EltAddr = 994 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 995 Fn(Address(EltAddr, EltAlign)); 996 } 997 } 998 999 void CodeGenFunction::ExpandTypeFromArgs( 1000 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 1001 assert(LV.isSimple() && 1002 "Unexpected non-simple lvalue during struct expansion."); 1003 1004 auto Exp = getTypeExpansion(Ty, getContext()); 1005 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1006 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 1007 [&](Address EltAddr) { 1008 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1009 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1010 }); 1011 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1012 Address This = LV.getAddress(); 1013 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1014 // Perform a single step derived-to-base conversion. 1015 Address Base = 1016 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1017 /*NullCheckValue=*/false, SourceLocation()); 1018 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1019 1020 // Recurse onto bases. 1021 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1022 } 1023 for (auto FD : RExp->Fields) { 1024 // FIXME: What are the right qualifiers here? 1025 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1026 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1027 } 1028 } else if (isa<ComplexExpansion>(Exp.get())) { 1029 auto realValue = *AI++; 1030 auto imagValue = *AI++; 1031 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1032 } else { 1033 assert(isa<NoExpansion>(Exp.get())); 1034 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1035 } 1036 } 1037 1038 void CodeGenFunction::ExpandTypeToArgs( 1039 QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 1040 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1041 auto Exp = getTypeExpansion(Ty, getContext()); 1042 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1043 forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(), 1044 [&](Address EltAddr) { 1045 RValue EltRV = 1046 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()); 1047 ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos); 1048 }); 1049 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1050 Address This = RV.getAggregateAddress(); 1051 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1052 // Perform a single step derived-to-base conversion. 1053 Address Base = 1054 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1055 /*NullCheckValue=*/false, SourceLocation()); 1056 RValue BaseRV = RValue::getAggregate(Base); 1057 1058 // Recurse onto bases. 1059 ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs, 1060 IRCallArgPos); 1061 } 1062 1063 LValue LV = MakeAddrLValue(This, Ty); 1064 for (auto FD : RExp->Fields) { 1065 RValue FldRV = EmitRValueForField(LV, FD, SourceLocation()); 1066 ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs, 1067 IRCallArgPos); 1068 } 1069 } else if (isa<ComplexExpansion>(Exp.get())) { 1070 ComplexPairTy CV = RV.getComplexVal(); 1071 IRCallArgs[IRCallArgPos++] = CV.first; 1072 IRCallArgs[IRCallArgPos++] = CV.second; 1073 } else { 1074 assert(isa<NoExpansion>(Exp.get())); 1075 assert(RV.isScalar() && 1076 "Unexpected non-scalar rvalue during struct expansion."); 1077 1078 // Insert a bitcast as needed. 1079 llvm::Value *V = RV.getScalarVal(); 1080 if (IRCallArgPos < IRFuncTy->getNumParams() && 1081 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1082 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1083 1084 IRCallArgs[IRCallArgPos++] = V; 1085 } 1086 } 1087 1088 /// Create a temporary allocation for the purposes of coercion. 1089 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1090 CharUnits MinAlign) { 1091 // Don't use an alignment that's worse than what LLVM would prefer. 1092 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1093 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1094 1095 return CGF.CreateTempAlloca(Ty, Align); 1096 } 1097 1098 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1099 /// accessing some number of bytes out of it, try to gep into the struct to get 1100 /// at its inner goodness. Dive as deep as possible without entering an element 1101 /// with an in-memory size smaller than DstSize. 1102 static Address 1103 EnterStructPointerForCoercedAccess(Address SrcPtr, 1104 llvm::StructType *SrcSTy, 1105 uint64_t DstSize, CodeGenFunction &CGF) { 1106 // We can't dive into a zero-element struct. 1107 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1108 1109 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1110 1111 // If the first elt is at least as large as what we're looking for, or if the 1112 // first element is the same size as the whole struct, we can enter it. The 1113 // comparison must be made on the store size and not the alloca size. Using 1114 // the alloca size may overstate the size of the load. 1115 uint64_t FirstEltSize = 1116 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1117 if (FirstEltSize < DstSize && 1118 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1119 return SrcPtr; 1120 1121 // GEP into the first element. 1122 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 1123 1124 // If the first element is a struct, recurse. 1125 llvm::Type *SrcTy = SrcPtr.getElementType(); 1126 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1127 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1128 1129 return SrcPtr; 1130 } 1131 1132 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1133 /// are either integers or pointers. This does a truncation of the value if it 1134 /// is too large or a zero extension if it is too small. 1135 /// 1136 /// This behaves as if the value were coerced through memory, so on big-endian 1137 /// targets the high bits are preserved in a truncation, while little-endian 1138 /// targets preserve the low bits. 1139 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1140 llvm::Type *Ty, 1141 CodeGenFunction &CGF) { 1142 if (Val->getType() == Ty) 1143 return Val; 1144 1145 if (isa<llvm::PointerType>(Val->getType())) { 1146 // If this is Pointer->Pointer avoid conversion to and from int. 1147 if (isa<llvm::PointerType>(Ty)) 1148 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1149 1150 // Convert the pointer to an integer so we can play with its width. 1151 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1152 } 1153 1154 llvm::Type *DestIntTy = Ty; 1155 if (isa<llvm::PointerType>(DestIntTy)) 1156 DestIntTy = CGF.IntPtrTy; 1157 1158 if (Val->getType() != DestIntTy) { 1159 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1160 if (DL.isBigEndian()) { 1161 // Preserve the high bits on big-endian targets. 1162 // That is what memory coercion does. 1163 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1164 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1165 1166 if (SrcSize > DstSize) { 1167 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1168 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1169 } else { 1170 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1171 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1172 } 1173 } else { 1174 // Little-endian targets preserve the low bits. No shifts required. 1175 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1176 } 1177 } 1178 1179 if (isa<llvm::PointerType>(Ty)) 1180 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1181 return Val; 1182 } 1183 1184 1185 1186 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1187 /// a pointer to an object of type \arg Ty, known to be aligned to 1188 /// \arg SrcAlign bytes. 1189 /// 1190 /// This safely handles the case when the src type is smaller than the 1191 /// destination type; in this situation the values of bits which not 1192 /// present in the src are undefined. 1193 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1194 CodeGenFunction &CGF) { 1195 llvm::Type *SrcTy = Src.getElementType(); 1196 1197 // If SrcTy and Ty are the same, just do a load. 1198 if (SrcTy == Ty) 1199 return CGF.Builder.CreateLoad(Src); 1200 1201 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1202 1203 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1204 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1205 SrcTy = Src.getType()->getElementType(); 1206 } 1207 1208 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1209 1210 // If the source and destination are integer or pointer types, just do an 1211 // extension or truncation to the desired type. 1212 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1213 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1214 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1215 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1216 } 1217 1218 // If load is legal, just bitcast the src pointer. 1219 if (SrcSize >= DstSize) { 1220 // Generally SrcSize is never greater than DstSize, since this means we are 1221 // losing bits. However, this can happen in cases where the structure has 1222 // additional padding, for example due to a user specified alignment. 1223 // 1224 // FIXME: Assert that we aren't truncating non-padding bits when have access 1225 // to that information. 1226 Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty)); 1227 return CGF.Builder.CreateLoad(Src); 1228 } 1229 1230 // Otherwise do coercion through memory. This is stupid, but simple. 1231 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1232 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1233 Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy); 1234 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1235 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1236 false); 1237 return CGF.Builder.CreateLoad(Tmp); 1238 } 1239 1240 // Function to store a first-class aggregate into memory. We prefer to 1241 // store the elements rather than the aggregate to be more friendly to 1242 // fast-isel. 1243 // FIXME: Do we need to recurse here? 1244 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1245 Address Dest, bool DestIsVolatile) { 1246 // Prefer scalar stores to first-class aggregate stores. 1247 if (llvm::StructType *STy = 1248 dyn_cast<llvm::StructType>(Val->getType())) { 1249 const llvm::StructLayout *Layout = 1250 CGF.CGM.getDataLayout().getStructLayout(STy); 1251 1252 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1253 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1254 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1255 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1256 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1257 } 1258 } else { 1259 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1260 } 1261 } 1262 1263 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1264 /// where the source and destination may have different types. The 1265 /// destination is known to be aligned to \arg DstAlign bytes. 1266 /// 1267 /// This safely handles the case when the src type is larger than the 1268 /// destination type; the upper bits of the src will be lost. 1269 static void CreateCoercedStore(llvm::Value *Src, 1270 Address Dst, 1271 bool DstIsVolatile, 1272 CodeGenFunction &CGF) { 1273 llvm::Type *SrcTy = Src->getType(); 1274 llvm::Type *DstTy = Dst.getType()->getElementType(); 1275 if (SrcTy == DstTy) { 1276 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1277 return; 1278 } 1279 1280 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1281 1282 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1283 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1284 DstTy = Dst.getType()->getElementType(); 1285 } 1286 1287 // If the source and destination are integer or pointer types, just do an 1288 // extension or truncation to the desired type. 1289 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1290 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1291 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1292 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1293 return; 1294 } 1295 1296 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1297 1298 // If store is legal, just bitcast the src pointer. 1299 if (SrcSize <= DstSize) { 1300 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1301 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1302 } else { 1303 // Otherwise do coercion through memory. This is stupid, but 1304 // simple. 1305 1306 // Generally SrcSize is never greater than DstSize, since this means we are 1307 // losing bits. However, this can happen in cases where the structure has 1308 // additional padding, for example due to a user specified alignment. 1309 // 1310 // FIXME: Assert that we aren't truncating non-padding bits when have access 1311 // to that information. 1312 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1313 CGF.Builder.CreateStore(Src, Tmp); 1314 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1315 Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy); 1316 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1317 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1318 false); 1319 } 1320 } 1321 1322 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1323 const ABIArgInfo &info) { 1324 if (unsigned offset = info.getDirectOffset()) { 1325 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1326 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1327 CharUnits::fromQuantity(offset)); 1328 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1329 } 1330 return addr; 1331 } 1332 1333 namespace { 1334 1335 /// Encapsulates information about the way function arguments from 1336 /// CGFunctionInfo should be passed to actual LLVM IR function. 1337 class ClangToLLVMArgMapping { 1338 static const unsigned InvalidIndex = ~0U; 1339 unsigned InallocaArgNo; 1340 unsigned SRetArgNo; 1341 unsigned TotalIRArgs; 1342 1343 /// Arguments of LLVM IR function corresponding to single Clang argument. 1344 struct IRArgs { 1345 unsigned PaddingArgIndex; 1346 // Argument is expanded to IR arguments at positions 1347 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1348 unsigned FirstArgIndex; 1349 unsigned NumberOfArgs; 1350 1351 IRArgs() 1352 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1353 NumberOfArgs(0) {} 1354 }; 1355 1356 SmallVector<IRArgs, 8> ArgInfo; 1357 1358 public: 1359 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1360 bool OnlyRequiredArgs = false) 1361 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1362 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1363 construct(Context, FI, OnlyRequiredArgs); 1364 } 1365 1366 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1367 unsigned getInallocaArgNo() const { 1368 assert(hasInallocaArg()); 1369 return InallocaArgNo; 1370 } 1371 1372 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1373 unsigned getSRetArgNo() const { 1374 assert(hasSRetArg()); 1375 return SRetArgNo; 1376 } 1377 1378 unsigned totalIRArgs() const { return TotalIRArgs; } 1379 1380 bool hasPaddingArg(unsigned ArgNo) const { 1381 assert(ArgNo < ArgInfo.size()); 1382 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1383 } 1384 unsigned getPaddingArgNo(unsigned ArgNo) const { 1385 assert(hasPaddingArg(ArgNo)); 1386 return ArgInfo[ArgNo].PaddingArgIndex; 1387 } 1388 1389 /// Returns index of first IR argument corresponding to ArgNo, and their 1390 /// quantity. 1391 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1392 assert(ArgNo < ArgInfo.size()); 1393 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1394 ArgInfo[ArgNo].NumberOfArgs); 1395 } 1396 1397 private: 1398 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1399 bool OnlyRequiredArgs); 1400 }; 1401 1402 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1403 const CGFunctionInfo &FI, 1404 bool OnlyRequiredArgs) { 1405 unsigned IRArgNo = 0; 1406 bool SwapThisWithSRet = false; 1407 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1408 1409 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1410 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1411 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1412 } 1413 1414 unsigned ArgNo = 0; 1415 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1416 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1417 ++I, ++ArgNo) { 1418 assert(I != FI.arg_end()); 1419 QualType ArgType = I->type; 1420 const ABIArgInfo &AI = I->info; 1421 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1422 auto &IRArgs = ArgInfo[ArgNo]; 1423 1424 if (AI.getPaddingType()) 1425 IRArgs.PaddingArgIndex = IRArgNo++; 1426 1427 switch (AI.getKind()) { 1428 case ABIArgInfo::Extend: 1429 case ABIArgInfo::Direct: { 1430 // FIXME: handle sseregparm someday... 1431 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1432 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1433 IRArgs.NumberOfArgs = STy->getNumElements(); 1434 } else { 1435 IRArgs.NumberOfArgs = 1; 1436 } 1437 break; 1438 } 1439 case ABIArgInfo::Indirect: 1440 IRArgs.NumberOfArgs = 1; 1441 break; 1442 case ABIArgInfo::Ignore: 1443 case ABIArgInfo::InAlloca: 1444 // ignore and inalloca doesn't have matching LLVM parameters. 1445 IRArgs.NumberOfArgs = 0; 1446 break; 1447 case ABIArgInfo::CoerceAndExpand: 1448 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1449 break; 1450 case ABIArgInfo::Expand: 1451 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1452 break; 1453 } 1454 1455 if (IRArgs.NumberOfArgs > 0) { 1456 IRArgs.FirstArgIndex = IRArgNo; 1457 IRArgNo += IRArgs.NumberOfArgs; 1458 } 1459 1460 // Skip over the sret parameter when it comes second. We already handled it 1461 // above. 1462 if (IRArgNo == 1 && SwapThisWithSRet) 1463 IRArgNo++; 1464 } 1465 assert(ArgNo == ArgInfo.size()); 1466 1467 if (FI.usesInAlloca()) 1468 InallocaArgNo = IRArgNo++; 1469 1470 TotalIRArgs = IRArgNo; 1471 } 1472 } // namespace 1473 1474 /***/ 1475 1476 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1477 return FI.getReturnInfo().isIndirect(); 1478 } 1479 1480 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1481 return ReturnTypeUsesSRet(FI) && 1482 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1483 } 1484 1485 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1486 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1487 switch (BT->getKind()) { 1488 default: 1489 return false; 1490 case BuiltinType::Float: 1491 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1492 case BuiltinType::Double: 1493 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1494 case BuiltinType::LongDouble: 1495 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1496 } 1497 } 1498 1499 return false; 1500 } 1501 1502 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1503 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1504 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1505 if (BT->getKind() == BuiltinType::LongDouble) 1506 return getTarget().useObjCFP2RetForComplexLongDouble(); 1507 } 1508 } 1509 1510 return false; 1511 } 1512 1513 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1514 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1515 return GetFunctionType(FI); 1516 } 1517 1518 llvm::FunctionType * 1519 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1520 1521 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1522 (void)Inserted; 1523 assert(Inserted && "Recursively being processed?"); 1524 1525 llvm::Type *resultType = nullptr; 1526 const ABIArgInfo &retAI = FI.getReturnInfo(); 1527 switch (retAI.getKind()) { 1528 case ABIArgInfo::Expand: 1529 llvm_unreachable("Invalid ABI kind for return argument"); 1530 1531 case ABIArgInfo::Extend: 1532 case ABIArgInfo::Direct: 1533 resultType = retAI.getCoerceToType(); 1534 break; 1535 1536 case ABIArgInfo::InAlloca: 1537 if (retAI.getInAllocaSRet()) { 1538 // sret things on win32 aren't void, they return the sret pointer. 1539 QualType ret = FI.getReturnType(); 1540 llvm::Type *ty = ConvertType(ret); 1541 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1542 resultType = llvm::PointerType::get(ty, addressSpace); 1543 } else { 1544 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1545 } 1546 break; 1547 1548 case ABIArgInfo::Indirect: 1549 case ABIArgInfo::Ignore: 1550 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1551 break; 1552 1553 case ABIArgInfo::CoerceAndExpand: 1554 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1555 break; 1556 } 1557 1558 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1559 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1560 1561 // Add type for sret argument. 1562 if (IRFunctionArgs.hasSRetArg()) { 1563 QualType Ret = FI.getReturnType(); 1564 llvm::Type *Ty = ConvertType(Ret); 1565 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1566 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1567 llvm::PointerType::get(Ty, AddressSpace); 1568 } 1569 1570 // Add type for inalloca argument. 1571 if (IRFunctionArgs.hasInallocaArg()) { 1572 auto ArgStruct = FI.getArgStruct(); 1573 assert(ArgStruct); 1574 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1575 } 1576 1577 // Add in all of the required arguments. 1578 unsigned ArgNo = 0; 1579 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1580 ie = it + FI.getNumRequiredArgs(); 1581 for (; it != ie; ++it, ++ArgNo) { 1582 const ABIArgInfo &ArgInfo = it->info; 1583 1584 // Insert a padding type to ensure proper alignment. 1585 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1586 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1587 ArgInfo.getPaddingType(); 1588 1589 unsigned FirstIRArg, NumIRArgs; 1590 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1591 1592 switch (ArgInfo.getKind()) { 1593 case ABIArgInfo::Ignore: 1594 case ABIArgInfo::InAlloca: 1595 assert(NumIRArgs == 0); 1596 break; 1597 1598 case ABIArgInfo::Indirect: { 1599 assert(NumIRArgs == 1); 1600 // indirect arguments are always on the stack, which is alloca addr space. 1601 llvm::Type *LTy = ConvertTypeForMem(it->type); 1602 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1603 CGM.getDataLayout().getAllocaAddrSpace()); 1604 break; 1605 } 1606 1607 case ABIArgInfo::Extend: 1608 case ABIArgInfo::Direct: { 1609 // Fast-isel and the optimizer generally like scalar values better than 1610 // FCAs, so we flatten them if this is safe to do for this argument. 1611 llvm::Type *argType = ArgInfo.getCoerceToType(); 1612 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1613 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1614 assert(NumIRArgs == st->getNumElements()); 1615 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1616 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1617 } else { 1618 assert(NumIRArgs == 1); 1619 ArgTypes[FirstIRArg] = argType; 1620 } 1621 break; 1622 } 1623 1624 case ABIArgInfo::CoerceAndExpand: { 1625 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1626 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1627 *ArgTypesIter++ = EltTy; 1628 } 1629 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1630 break; 1631 } 1632 1633 case ABIArgInfo::Expand: 1634 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1635 getExpandedTypes(it->type, ArgTypesIter); 1636 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1637 break; 1638 } 1639 } 1640 1641 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1642 assert(Erased && "Not in set?"); 1643 1644 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1645 } 1646 1647 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1648 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1649 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1650 1651 if (!isFuncTypeConvertible(FPT)) 1652 return llvm::StructType::get(getLLVMContext()); 1653 1654 const CGFunctionInfo *Info; 1655 if (isa<CXXDestructorDecl>(MD)) 1656 Info = 1657 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1658 else 1659 Info = &arrangeCXXMethodDeclaration(MD); 1660 return GetFunctionType(*Info); 1661 } 1662 1663 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1664 llvm::AttrBuilder &FuncAttrs, 1665 const FunctionProtoType *FPT) { 1666 if (!FPT) 1667 return; 1668 1669 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1670 FPT->isNothrow(Ctx)) 1671 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1672 } 1673 1674 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1675 bool AttrOnCallSite, 1676 llvm::AttrBuilder &FuncAttrs) { 1677 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1678 if (!HasOptnone) { 1679 if (CodeGenOpts.OptimizeSize) 1680 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1681 if (CodeGenOpts.OptimizeSize == 2) 1682 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1683 } 1684 1685 if (CodeGenOpts.DisableRedZone) 1686 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1687 if (CodeGenOpts.NoImplicitFloat) 1688 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1689 1690 if (AttrOnCallSite) { 1691 // Attributes that should go on the call site only. 1692 if (!CodeGenOpts.SimplifyLibCalls || 1693 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1694 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1695 if (!CodeGenOpts.TrapFuncName.empty()) 1696 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1697 } else { 1698 // Attributes that should go on the function, but not the call site. 1699 if (!CodeGenOpts.DisableFPElim) { 1700 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1701 } else if (CodeGenOpts.OmitLeafFramePointer) { 1702 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1703 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1704 } else { 1705 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1706 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1707 } 1708 1709 FuncAttrs.addAttribute("less-precise-fpmad", 1710 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1711 1712 if (!CodeGenOpts.FPDenormalMode.empty()) 1713 FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); 1714 1715 FuncAttrs.addAttribute("no-trapping-math", 1716 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1717 1718 // TODO: Are these all needed? 1719 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1720 FuncAttrs.addAttribute("no-infs-fp-math", 1721 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1722 FuncAttrs.addAttribute("no-nans-fp-math", 1723 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1724 FuncAttrs.addAttribute("unsafe-fp-math", 1725 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1726 FuncAttrs.addAttribute("use-soft-float", 1727 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1728 FuncAttrs.addAttribute("stack-protector-buffer-size", 1729 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1730 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1731 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1732 FuncAttrs.addAttribute( 1733 "correctly-rounded-divide-sqrt-fp-math", 1734 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1735 1736 // TODO: Reciprocal estimate codegen options should apply to instructions? 1737 std::vector<std::string> &Recips = getTarget().getTargetOpts().Reciprocals; 1738 if (!Recips.empty()) 1739 FuncAttrs.addAttribute("reciprocal-estimates", 1740 llvm::join(Recips.begin(), Recips.end(), ",")); 1741 1742 if (CodeGenOpts.StackRealignment) 1743 FuncAttrs.addAttribute("stackrealign"); 1744 if (CodeGenOpts.Backchain) 1745 FuncAttrs.addAttribute("backchain"); 1746 } 1747 1748 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1749 // Conservatively, mark all functions and calls in CUDA as convergent 1750 // (meaning, they may call an intrinsically convergent op, such as 1751 // __syncthreads(), and so can't have certain optimizations applied around 1752 // them). LLVM will remove this attribute where it safely can. 1753 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1754 1755 // Exceptions aren't supported in CUDA device code. 1756 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1757 1758 // Respect -fcuda-flush-denormals-to-zero. 1759 if (getLangOpts().CUDADeviceFlushDenormalsToZero) 1760 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1761 } 1762 } 1763 1764 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1765 llvm::AttrBuilder FuncAttrs; 1766 ConstructDefaultFnAttrList(F.getName(), 1767 F.hasFnAttribute(llvm::Attribute::OptimizeNone), 1768 /* AttrOnCallsite = */ false, FuncAttrs); 1769 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1770 } 1771 1772 void CodeGenModule::ConstructAttributeList( 1773 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1774 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1775 llvm::AttrBuilder FuncAttrs; 1776 llvm::AttrBuilder RetAttrs; 1777 1778 CallingConv = FI.getEffectiveCallingConvention(); 1779 if (FI.isNoReturn()) 1780 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1781 1782 // If we have information about the function prototype, we can learn 1783 // attributes form there. 1784 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1785 CalleeInfo.getCalleeFunctionProtoType()); 1786 1787 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 1788 1789 bool HasOptnone = false; 1790 // FIXME: handle sseregparm someday... 1791 if (TargetDecl) { 1792 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1793 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1794 if (TargetDecl->hasAttr<NoThrowAttr>()) 1795 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1796 if (TargetDecl->hasAttr<NoReturnAttr>()) 1797 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1798 if (TargetDecl->hasAttr<ColdAttr>()) 1799 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1800 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1801 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1802 if (TargetDecl->hasAttr<ConvergentAttr>()) 1803 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1804 1805 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1806 AddAttributesFromFunctionProtoType( 1807 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1808 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1809 // These attributes are not inherited by overloads. 1810 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1811 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1812 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1813 } 1814 1815 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1816 if (TargetDecl->hasAttr<ConstAttr>()) { 1817 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1818 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1819 } else if (TargetDecl->hasAttr<PureAttr>()) { 1820 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1821 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1822 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1823 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1824 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1825 } 1826 if (TargetDecl->hasAttr<RestrictAttr>()) 1827 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1828 if (TargetDecl->hasAttr<ReturnsNonNullAttr>()) 1829 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1830 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1831 FuncAttrs.addAttribute("no_caller_saved_registers"); 1832 1833 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1834 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1835 Optional<unsigned> NumElemsParam; 1836 // alloc_size args are base-1, 0 means not present. 1837 if (unsigned N = AllocSize->getNumElemsParam()) 1838 NumElemsParam = N - 1; 1839 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam() - 1, 1840 NumElemsParam); 1841 } 1842 } 1843 1844 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1845 1846 if (CodeGenOpts.EnableSegmentedStacks && 1847 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1848 FuncAttrs.addAttribute("split-stack"); 1849 1850 if (!AttrOnCallSite) { 1851 bool DisableTailCalls = 1852 CodeGenOpts.DisableTailCalls || 1853 (TargetDecl && (TargetDecl->hasAttr<DisableTailCallsAttr>() || 1854 TargetDecl->hasAttr<AnyX86InterruptAttr>())); 1855 FuncAttrs.addAttribute("disable-tail-calls", 1856 llvm::toStringRef(DisableTailCalls)); 1857 1858 // Add target-cpu and target-features attributes to functions. If 1859 // we have a decl for the function and it has a target attribute then 1860 // parse that and add it to the feature set. 1861 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1862 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 1863 if (FD && FD->hasAttr<TargetAttr>()) { 1864 llvm::StringMap<bool> FeatureMap; 1865 getFunctionFeatureMap(FeatureMap, FD); 1866 1867 // Produce the canonical string for this set of features. 1868 std::vector<std::string> Features; 1869 for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(), 1870 ie = FeatureMap.end(); 1871 it != ie; ++it) 1872 Features.push_back((it->second ? "+" : "-") + it->first().str()); 1873 1874 // Now add the target-cpu and target-features to the function. 1875 // While we populated the feature map above, we still need to 1876 // get and parse the target attribute so we can get the cpu for 1877 // the function. 1878 const auto *TD = FD->getAttr<TargetAttr>(); 1879 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1880 if (ParsedAttr.Architecture != "") 1881 TargetCPU = ParsedAttr.Architecture; 1882 if (TargetCPU != "") 1883 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1884 if (!Features.empty()) { 1885 std::sort(Features.begin(), Features.end()); 1886 FuncAttrs.addAttribute( 1887 "target-features", 1888 llvm::join(Features.begin(), Features.end(), ",")); 1889 } 1890 } else { 1891 // Otherwise just add the existing target cpu and target features to the 1892 // function. 1893 std::vector<std::string> &Features = getTarget().getTargetOpts().Features; 1894 if (TargetCPU != "") 1895 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1896 if (!Features.empty()) { 1897 std::sort(Features.begin(), Features.end()); 1898 FuncAttrs.addAttribute( 1899 "target-features", 1900 llvm::join(Features.begin(), Features.end(), ",")); 1901 } 1902 } 1903 } 1904 1905 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1906 1907 QualType RetTy = FI.getReturnType(); 1908 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1909 switch (RetAI.getKind()) { 1910 case ABIArgInfo::Extend: 1911 if (RetTy->hasSignedIntegerRepresentation()) 1912 RetAttrs.addAttribute(llvm::Attribute::SExt); 1913 else if (RetTy->hasUnsignedIntegerRepresentation()) 1914 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1915 // FALL THROUGH 1916 case ABIArgInfo::Direct: 1917 if (RetAI.getInReg()) 1918 RetAttrs.addAttribute(llvm::Attribute::InReg); 1919 break; 1920 case ABIArgInfo::Ignore: 1921 break; 1922 1923 case ABIArgInfo::InAlloca: 1924 case ABIArgInfo::Indirect: { 1925 // inalloca and sret disable readnone and readonly 1926 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1927 .removeAttribute(llvm::Attribute::ReadNone); 1928 break; 1929 } 1930 1931 case ABIArgInfo::CoerceAndExpand: 1932 break; 1933 1934 case ABIArgInfo::Expand: 1935 llvm_unreachable("Invalid ABI kind for return argument"); 1936 } 1937 1938 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1939 QualType PTy = RefTy->getPointeeType(); 1940 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1941 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1942 .getQuantity()); 1943 else if (getContext().getTargetAddressSpace(PTy) == 0) 1944 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1945 } 1946 1947 bool hasUsedSRet = false; 1948 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 1949 1950 // Attach attributes to sret. 1951 if (IRFunctionArgs.hasSRetArg()) { 1952 llvm::AttrBuilder SRETAttrs; 1953 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1954 hasUsedSRet = true; 1955 if (RetAI.getInReg()) 1956 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1957 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 1958 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 1959 } 1960 1961 // Attach attributes to inalloca argument. 1962 if (IRFunctionArgs.hasInallocaArg()) { 1963 llvm::AttrBuilder Attrs; 1964 Attrs.addAttribute(llvm::Attribute::InAlloca); 1965 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 1966 llvm::AttributeSet::get(getLLVMContext(), Attrs); 1967 } 1968 1969 unsigned ArgNo = 0; 1970 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 1971 E = FI.arg_end(); 1972 I != E; ++I, ++ArgNo) { 1973 QualType ParamType = I->type; 1974 const ABIArgInfo &AI = I->info; 1975 llvm::AttrBuilder Attrs; 1976 1977 // Add attribute for padding argument, if necessary. 1978 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 1979 if (AI.getPaddingInReg()) { 1980 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1981 llvm::AttributeSet::get( 1982 getLLVMContext(), 1983 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 1984 } 1985 } 1986 1987 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1988 // have the corresponding parameter variable. It doesn't make 1989 // sense to do it here because parameters are so messed up. 1990 switch (AI.getKind()) { 1991 case ABIArgInfo::Extend: 1992 if (ParamType->isSignedIntegerOrEnumerationType()) 1993 Attrs.addAttribute(llvm::Attribute::SExt); 1994 else if (ParamType->isUnsignedIntegerOrEnumerationType()) { 1995 if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType)) 1996 Attrs.addAttribute(llvm::Attribute::SExt); 1997 else 1998 Attrs.addAttribute(llvm::Attribute::ZExt); 1999 } 2000 // FALL THROUGH 2001 case ABIArgInfo::Direct: 2002 if (ArgNo == 0 && FI.isChainCall()) 2003 Attrs.addAttribute(llvm::Attribute::Nest); 2004 else if (AI.getInReg()) 2005 Attrs.addAttribute(llvm::Attribute::InReg); 2006 break; 2007 2008 case ABIArgInfo::Indirect: { 2009 if (AI.getInReg()) 2010 Attrs.addAttribute(llvm::Attribute::InReg); 2011 2012 if (AI.getIndirectByVal()) 2013 Attrs.addAttribute(llvm::Attribute::ByVal); 2014 2015 CharUnits Align = AI.getIndirectAlign(); 2016 2017 // In a byval argument, it is important that the required 2018 // alignment of the type is honored, as LLVM might be creating a 2019 // *new* stack object, and needs to know what alignment to give 2020 // it. (Sometimes it can deduce a sensible alignment on its own, 2021 // but not if clang decides it must emit a packed struct, or the 2022 // user specifies increased alignment requirements.) 2023 // 2024 // This is different from indirect *not* byval, where the object 2025 // exists already, and the align attribute is purely 2026 // informative. 2027 assert(!Align.isZero()); 2028 2029 // For now, only add this when we have a byval argument. 2030 // TODO: be less lazy about updating test cases. 2031 if (AI.getIndirectByVal()) 2032 Attrs.addAlignmentAttr(Align.getQuantity()); 2033 2034 // byval disables readnone and readonly. 2035 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2036 .removeAttribute(llvm::Attribute::ReadNone); 2037 break; 2038 } 2039 case ABIArgInfo::Ignore: 2040 case ABIArgInfo::Expand: 2041 case ABIArgInfo::CoerceAndExpand: 2042 break; 2043 2044 case ABIArgInfo::InAlloca: 2045 // inalloca disables readnone and readonly. 2046 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2047 .removeAttribute(llvm::Attribute::ReadNone); 2048 continue; 2049 } 2050 2051 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2052 QualType PTy = RefTy->getPointeeType(); 2053 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2054 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2055 .getQuantity()); 2056 else if (getContext().getTargetAddressSpace(PTy) == 0) 2057 Attrs.addAttribute(llvm::Attribute::NonNull); 2058 } 2059 2060 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2061 case ParameterABI::Ordinary: 2062 break; 2063 2064 case ParameterABI::SwiftIndirectResult: { 2065 // Add 'sret' if we haven't already used it for something, but 2066 // only if the result is void. 2067 if (!hasUsedSRet && RetTy->isVoidType()) { 2068 Attrs.addAttribute(llvm::Attribute::StructRet); 2069 hasUsedSRet = true; 2070 } 2071 2072 // Add 'noalias' in either case. 2073 Attrs.addAttribute(llvm::Attribute::NoAlias); 2074 2075 // Add 'dereferenceable' and 'alignment'. 2076 auto PTy = ParamType->getPointeeType(); 2077 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2078 auto info = getContext().getTypeInfoInChars(PTy); 2079 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2080 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 2081 info.second.getQuantity())); 2082 } 2083 break; 2084 } 2085 2086 case ParameterABI::SwiftErrorResult: 2087 Attrs.addAttribute(llvm::Attribute::SwiftError); 2088 break; 2089 2090 case ParameterABI::SwiftContext: 2091 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2092 break; 2093 } 2094 2095 if (Attrs.hasAttributes()) { 2096 unsigned FirstIRArg, NumIRArgs; 2097 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2098 for (unsigned i = 0; i < NumIRArgs; i++) 2099 ArgAttrs[FirstIRArg + i] = 2100 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2101 } 2102 } 2103 assert(ArgNo == FI.arg_size()); 2104 2105 AttrList = llvm::AttributeList::get( 2106 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2107 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2108 } 2109 2110 /// An argument came in as a promoted argument; demote it back to its 2111 /// declared type. 2112 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2113 const VarDecl *var, 2114 llvm::Value *value) { 2115 llvm::Type *varType = CGF.ConvertType(var->getType()); 2116 2117 // This can happen with promotions that actually don't change the 2118 // underlying type, like the enum promotions. 2119 if (value->getType() == varType) return value; 2120 2121 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2122 && "unexpected promotion type"); 2123 2124 if (isa<llvm::IntegerType>(varType)) 2125 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2126 2127 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2128 } 2129 2130 /// Returns the attribute (either parameter attribute, or function 2131 /// attribute), which declares argument ArgNo to be non-null. 2132 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2133 QualType ArgType, unsigned ArgNo) { 2134 // FIXME: __attribute__((nonnull)) can also be applied to: 2135 // - references to pointers, where the pointee is known to be 2136 // nonnull (apparently a Clang extension) 2137 // - transparent unions containing pointers 2138 // In the former case, LLVM IR cannot represent the constraint. In 2139 // the latter case, we have no guarantee that the transparent union 2140 // is in fact passed as a pointer. 2141 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2142 return nullptr; 2143 // First, check attribute on parameter itself. 2144 if (PVD) { 2145 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2146 return ParmNNAttr; 2147 } 2148 // Check function attributes. 2149 if (!FD) 2150 return nullptr; 2151 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2152 if (NNAttr->isNonNull(ArgNo)) 2153 return NNAttr; 2154 } 2155 return nullptr; 2156 } 2157 2158 namespace { 2159 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2160 Address Temp; 2161 Address Arg; 2162 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2163 void Emit(CodeGenFunction &CGF, Flags flags) override { 2164 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2165 CGF.Builder.CreateStore(errorValue, Arg); 2166 } 2167 }; 2168 } 2169 2170 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2171 llvm::Function *Fn, 2172 const FunctionArgList &Args) { 2173 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2174 // Naked functions don't have prologues. 2175 return; 2176 2177 // If this is an implicit-return-zero function, go ahead and 2178 // initialize the return value. TODO: it might be nice to have 2179 // a more general mechanism for this that didn't require synthesized 2180 // return statements. 2181 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2182 if (FD->hasImplicitReturnZero()) { 2183 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2184 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2185 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2186 Builder.CreateStore(Zero, ReturnValue); 2187 } 2188 } 2189 2190 // FIXME: We no longer need the types from FunctionArgList; lift up and 2191 // simplify. 2192 2193 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2194 // Flattened function arguments. 2195 SmallVector<llvm::Value *, 16> FnArgs; 2196 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2197 for (auto &Arg : Fn->args()) { 2198 FnArgs.push_back(&Arg); 2199 } 2200 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2201 2202 // If we're using inalloca, all the memory arguments are GEPs off of the last 2203 // parameter, which is a pointer to the complete memory area. 2204 Address ArgStruct = Address::invalid(); 2205 const llvm::StructLayout *ArgStructLayout = nullptr; 2206 if (IRFunctionArgs.hasInallocaArg()) { 2207 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 2208 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2209 FI.getArgStructAlignment()); 2210 2211 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2212 } 2213 2214 // Name the struct return parameter. 2215 if (IRFunctionArgs.hasSRetArg()) { 2216 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2217 AI->setName("agg.result"); 2218 AI->addAttr(llvm::Attribute::NoAlias); 2219 } 2220 2221 // Track if we received the parameter as a pointer (indirect, byval, or 2222 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2223 // into a local alloca for us. 2224 SmallVector<ParamValue, 16> ArgVals; 2225 ArgVals.reserve(Args.size()); 2226 2227 // Create a pointer value for every parameter declaration. This usually 2228 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2229 // any cleanups or do anything that might unwind. We do that separately, so 2230 // we can push the cleanups in the correct order for the ABI. 2231 assert(FI.arg_size() == Args.size() && 2232 "Mismatch between function signature & arguments."); 2233 unsigned ArgNo = 0; 2234 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2235 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2236 i != e; ++i, ++info_it, ++ArgNo) { 2237 const VarDecl *Arg = *i; 2238 QualType Ty = info_it->type; 2239 const ABIArgInfo &ArgI = info_it->info; 2240 2241 bool isPromoted = 2242 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2243 2244 unsigned FirstIRArg, NumIRArgs; 2245 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2246 2247 switch (ArgI.getKind()) { 2248 case ABIArgInfo::InAlloca: { 2249 assert(NumIRArgs == 0); 2250 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2251 CharUnits FieldOffset = 2252 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 2253 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 2254 Arg->getName()); 2255 ArgVals.push_back(ParamValue::forIndirect(V)); 2256 break; 2257 } 2258 2259 case ABIArgInfo::Indirect: { 2260 assert(NumIRArgs == 1); 2261 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2262 2263 if (!hasScalarEvaluationKind(Ty)) { 2264 // Aggregates and complex variables are accessed by reference. All we 2265 // need to do is realign the value, if requested. 2266 Address V = ParamAddr; 2267 if (ArgI.getIndirectRealign()) { 2268 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2269 2270 // Copy from the incoming argument pointer to the temporary with the 2271 // appropriate alignment. 2272 // 2273 // FIXME: We should have a common utility for generating an aggregate 2274 // copy. 2275 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2276 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2277 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2278 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2279 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2280 V = AlignedTemp; 2281 } 2282 ArgVals.push_back(ParamValue::forIndirect(V)); 2283 } else { 2284 // Load scalar value from indirect argument. 2285 llvm::Value *V = 2286 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart()); 2287 2288 if (isPromoted) 2289 V = emitArgumentDemotion(*this, Arg, V); 2290 ArgVals.push_back(ParamValue::forDirect(V)); 2291 } 2292 break; 2293 } 2294 2295 case ABIArgInfo::Extend: 2296 case ABIArgInfo::Direct: { 2297 2298 // If we have the trivial case, handle it with no muss and fuss. 2299 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2300 ArgI.getCoerceToType() == ConvertType(Ty) && 2301 ArgI.getDirectOffset() == 0) { 2302 assert(NumIRArgs == 1); 2303 llvm::Value *V = FnArgs[FirstIRArg]; 2304 auto AI = cast<llvm::Argument>(V); 2305 2306 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2307 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2308 PVD->getFunctionScopeIndex())) 2309 AI->addAttr(llvm::Attribute::NonNull); 2310 2311 QualType OTy = PVD->getOriginalType(); 2312 if (const auto *ArrTy = 2313 getContext().getAsConstantArrayType(OTy)) { 2314 // A C99 array parameter declaration with the static keyword also 2315 // indicates dereferenceability, and if the size is constant we can 2316 // use the dereferenceable attribute (which requires the size in 2317 // bytes). 2318 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2319 QualType ETy = ArrTy->getElementType(); 2320 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2321 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2322 ArrSize) { 2323 llvm::AttrBuilder Attrs; 2324 Attrs.addDereferenceableAttr( 2325 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2326 AI->addAttrs(Attrs); 2327 } else if (getContext().getTargetAddressSpace(ETy) == 0) { 2328 AI->addAttr(llvm::Attribute::NonNull); 2329 } 2330 } 2331 } else if (const auto *ArrTy = 2332 getContext().getAsVariableArrayType(OTy)) { 2333 // For C99 VLAs with the static keyword, we don't know the size so 2334 // we can't use the dereferenceable attribute, but in addrspace(0) 2335 // we know that it must be nonnull. 2336 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2337 !getContext().getTargetAddressSpace(ArrTy->getElementType())) 2338 AI->addAttr(llvm::Attribute::NonNull); 2339 } 2340 2341 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2342 if (!AVAttr) 2343 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2344 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2345 if (AVAttr) { 2346 llvm::Value *AlignmentValue = 2347 EmitScalarExpr(AVAttr->getAlignment()); 2348 llvm::ConstantInt *AlignmentCI = 2349 cast<llvm::ConstantInt>(AlignmentValue); 2350 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), 2351 +llvm::Value::MaximumAlignment); 2352 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2353 } 2354 } 2355 2356 if (Arg->getType().isRestrictQualified()) 2357 AI->addAttr(llvm::Attribute::NoAlias); 2358 2359 // LLVM expects swifterror parameters to be used in very restricted 2360 // ways. Copy the value into a less-restricted temporary. 2361 if (FI.getExtParameterInfo(ArgNo).getABI() 2362 == ParameterABI::SwiftErrorResult) { 2363 QualType pointeeTy = Ty->getPointeeType(); 2364 assert(pointeeTy->isPointerType()); 2365 Address temp = 2366 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2367 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2368 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2369 Builder.CreateStore(incomingErrorValue, temp); 2370 V = temp.getPointer(); 2371 2372 // Push a cleanup to copy the value back at the end of the function. 2373 // The convention does not guarantee that the value will be written 2374 // back if the function exits with an unwind exception. 2375 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2376 } 2377 2378 // Ensure the argument is the correct type. 2379 if (V->getType() != ArgI.getCoerceToType()) 2380 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2381 2382 if (isPromoted) 2383 V = emitArgumentDemotion(*this, Arg, V); 2384 2385 // Because of merging of function types from multiple decls it is 2386 // possible for the type of an argument to not match the corresponding 2387 // type in the function type. Since we are codegening the callee 2388 // in here, add a cast to the argument type. 2389 llvm::Type *LTy = ConvertType(Arg->getType()); 2390 if (V->getType() != LTy) 2391 V = Builder.CreateBitCast(V, LTy); 2392 2393 ArgVals.push_back(ParamValue::forDirect(V)); 2394 break; 2395 } 2396 2397 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2398 Arg->getName()); 2399 2400 // Pointer to store into. 2401 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2402 2403 // Fast-isel and the optimizer generally like scalar values better than 2404 // FCAs, so we flatten them if this is safe to do for this argument. 2405 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2406 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2407 STy->getNumElements() > 1) { 2408 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2409 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2410 llvm::Type *DstTy = Ptr.getElementType(); 2411 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2412 2413 Address AddrToStoreInto = Address::invalid(); 2414 if (SrcSize <= DstSize) { 2415 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2416 } else { 2417 AddrToStoreInto = 2418 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2419 } 2420 2421 assert(STy->getNumElements() == NumIRArgs); 2422 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2423 auto AI = FnArgs[FirstIRArg + i]; 2424 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2425 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2426 Address EltPtr = 2427 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2428 Builder.CreateStore(AI, EltPtr); 2429 } 2430 2431 if (SrcSize > DstSize) { 2432 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2433 } 2434 2435 } else { 2436 // Simple case, just do a coerced store of the argument into the alloca. 2437 assert(NumIRArgs == 1); 2438 auto AI = FnArgs[FirstIRArg]; 2439 AI->setName(Arg->getName() + ".coerce"); 2440 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2441 } 2442 2443 // Match to what EmitParmDecl is expecting for this type. 2444 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2445 llvm::Value *V = 2446 EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart()); 2447 if (isPromoted) 2448 V = emitArgumentDemotion(*this, Arg, V); 2449 ArgVals.push_back(ParamValue::forDirect(V)); 2450 } else { 2451 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2452 } 2453 break; 2454 } 2455 2456 case ABIArgInfo::CoerceAndExpand: { 2457 // Reconstruct into a temporary. 2458 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2459 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2460 2461 auto coercionType = ArgI.getCoerceAndExpandType(); 2462 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2463 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2464 2465 unsigned argIndex = FirstIRArg; 2466 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2467 llvm::Type *eltType = coercionType->getElementType(i); 2468 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2469 continue; 2470 2471 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); 2472 auto elt = FnArgs[argIndex++]; 2473 Builder.CreateStore(elt, eltAddr); 2474 } 2475 assert(argIndex == FirstIRArg + NumIRArgs); 2476 break; 2477 } 2478 2479 case ABIArgInfo::Expand: { 2480 // If this structure was expanded into multiple arguments then 2481 // we need to create a temporary and reconstruct it from the 2482 // arguments. 2483 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2484 LValue LV = MakeAddrLValue(Alloca, Ty); 2485 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2486 2487 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2488 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2489 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2490 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2491 auto AI = FnArgs[FirstIRArg + i]; 2492 AI->setName(Arg->getName() + "." + Twine(i)); 2493 } 2494 break; 2495 } 2496 2497 case ABIArgInfo::Ignore: 2498 assert(NumIRArgs == 0); 2499 // Initialize the local variable appropriately. 2500 if (!hasScalarEvaluationKind(Ty)) { 2501 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2502 } else { 2503 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2504 ArgVals.push_back(ParamValue::forDirect(U)); 2505 } 2506 break; 2507 } 2508 } 2509 2510 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2511 for (int I = Args.size() - 1; I >= 0; --I) 2512 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2513 } else { 2514 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2515 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2516 } 2517 } 2518 2519 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2520 while (insn->use_empty()) { 2521 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2522 if (!bitcast) return; 2523 2524 // This is "safe" because we would have used a ConstantExpr otherwise. 2525 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2526 bitcast->eraseFromParent(); 2527 } 2528 } 2529 2530 /// Try to emit a fused autorelease of a return result. 2531 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2532 llvm::Value *result) { 2533 // We must be immediately followed the cast. 2534 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2535 if (BB->empty()) return nullptr; 2536 if (&BB->back() != result) return nullptr; 2537 2538 llvm::Type *resultType = result->getType(); 2539 2540 // result is in a BasicBlock and is therefore an Instruction. 2541 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2542 2543 SmallVector<llvm::Instruction *, 4> InstsToKill; 2544 2545 // Look for: 2546 // %generator = bitcast %type1* %generator2 to %type2* 2547 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2548 // We would have emitted this as a constant if the operand weren't 2549 // an Instruction. 2550 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2551 2552 // Require the generator to be immediately followed by the cast. 2553 if (generator->getNextNode() != bitcast) 2554 return nullptr; 2555 2556 InstsToKill.push_back(bitcast); 2557 } 2558 2559 // Look for: 2560 // %generator = call i8* @objc_retain(i8* %originalResult) 2561 // or 2562 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2563 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2564 if (!call) return nullptr; 2565 2566 bool doRetainAutorelease; 2567 2568 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2569 doRetainAutorelease = true; 2570 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2571 .objc_retainAutoreleasedReturnValue) { 2572 doRetainAutorelease = false; 2573 2574 // If we emitted an assembly marker for this call (and the 2575 // ARCEntrypoints field should have been set if so), go looking 2576 // for that call. If we can't find it, we can't do this 2577 // optimization. But it should always be the immediately previous 2578 // instruction, unless we needed bitcasts around the call. 2579 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2580 llvm::Instruction *prev = call->getPrevNode(); 2581 assert(prev); 2582 if (isa<llvm::BitCastInst>(prev)) { 2583 prev = prev->getPrevNode(); 2584 assert(prev); 2585 } 2586 assert(isa<llvm::CallInst>(prev)); 2587 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2588 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2589 InstsToKill.push_back(prev); 2590 } 2591 } else { 2592 return nullptr; 2593 } 2594 2595 result = call->getArgOperand(0); 2596 InstsToKill.push_back(call); 2597 2598 // Keep killing bitcasts, for sanity. Note that we no longer care 2599 // about precise ordering as long as there's exactly one use. 2600 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2601 if (!bitcast->hasOneUse()) break; 2602 InstsToKill.push_back(bitcast); 2603 result = bitcast->getOperand(0); 2604 } 2605 2606 // Delete all the unnecessary instructions, from latest to earliest. 2607 for (auto *I : InstsToKill) 2608 I->eraseFromParent(); 2609 2610 // Do the fused retain/autorelease if we were asked to. 2611 if (doRetainAutorelease) 2612 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2613 2614 // Cast back to the result type. 2615 return CGF.Builder.CreateBitCast(result, resultType); 2616 } 2617 2618 /// If this is a +1 of the value of an immutable 'self', remove it. 2619 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2620 llvm::Value *result) { 2621 // This is only applicable to a method with an immutable 'self'. 2622 const ObjCMethodDecl *method = 2623 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2624 if (!method) return nullptr; 2625 const VarDecl *self = method->getSelfDecl(); 2626 if (!self->getType().isConstQualified()) return nullptr; 2627 2628 // Look for a retain call. 2629 llvm::CallInst *retainCall = 2630 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2631 if (!retainCall || 2632 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2633 return nullptr; 2634 2635 // Look for an ordinary load of 'self'. 2636 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2637 llvm::LoadInst *load = 2638 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2639 if (!load || load->isAtomic() || load->isVolatile() || 2640 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2641 return nullptr; 2642 2643 // Okay! Burn it all down. This relies for correctness on the 2644 // assumption that the retain is emitted as part of the return and 2645 // that thereafter everything is used "linearly". 2646 llvm::Type *resultType = result->getType(); 2647 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2648 assert(retainCall->use_empty()); 2649 retainCall->eraseFromParent(); 2650 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2651 2652 return CGF.Builder.CreateBitCast(load, resultType); 2653 } 2654 2655 /// Emit an ARC autorelease of the result of a function. 2656 /// 2657 /// \return the value to actually return from the function 2658 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2659 llvm::Value *result) { 2660 // If we're returning 'self', kill the initial retain. This is a 2661 // heuristic attempt to "encourage correctness" in the really unfortunate 2662 // case where we have a return of self during a dealloc and we desperately 2663 // need to avoid the possible autorelease. 2664 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2665 return self; 2666 2667 // At -O0, try to emit a fused retain/autorelease. 2668 if (CGF.shouldUseFusedARCCalls()) 2669 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2670 return fused; 2671 2672 return CGF.EmitARCAutoreleaseReturnValue(result); 2673 } 2674 2675 /// Heuristically search for a dominating store to the return-value slot. 2676 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2677 // Check if a User is a store which pointerOperand is the ReturnValue. 2678 // We are looking for stores to the ReturnValue, not for stores of the 2679 // ReturnValue to some other location. 2680 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2681 auto *SI = dyn_cast<llvm::StoreInst>(U); 2682 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2683 return nullptr; 2684 // These aren't actually possible for non-coerced returns, and we 2685 // only care about non-coerced returns on this code path. 2686 assert(!SI->isAtomic() && !SI->isVolatile()); 2687 return SI; 2688 }; 2689 // If there are multiple uses of the return-value slot, just check 2690 // for something immediately preceding the IP. Sometimes this can 2691 // happen with how we generate implicit-returns; it can also happen 2692 // with noreturn cleanups. 2693 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2694 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2695 if (IP->empty()) return nullptr; 2696 llvm::Instruction *I = &IP->back(); 2697 2698 // Skip lifetime markers 2699 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2700 IE = IP->rend(); 2701 II != IE; ++II) { 2702 if (llvm::IntrinsicInst *Intrinsic = 2703 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2704 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2705 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2706 ++II; 2707 if (II == IE) 2708 break; 2709 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2710 continue; 2711 } 2712 } 2713 I = &*II; 2714 break; 2715 } 2716 2717 return GetStoreIfValid(I); 2718 } 2719 2720 llvm::StoreInst *store = 2721 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2722 if (!store) return nullptr; 2723 2724 // Now do a first-and-dirty dominance check: just walk up the 2725 // single-predecessors chain from the current insertion point. 2726 llvm::BasicBlock *StoreBB = store->getParent(); 2727 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2728 while (IP != StoreBB) { 2729 if (!(IP = IP->getSinglePredecessor())) 2730 return nullptr; 2731 } 2732 2733 // Okay, the store's basic block dominates the insertion point; we 2734 // can do our thing. 2735 return store; 2736 } 2737 2738 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2739 bool EmitRetDbgLoc, 2740 SourceLocation EndLoc) { 2741 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2742 // Naked functions don't have epilogues. 2743 Builder.CreateUnreachable(); 2744 return; 2745 } 2746 2747 // Functions with no result always return void. 2748 if (!ReturnValue.isValid()) { 2749 Builder.CreateRetVoid(); 2750 return; 2751 } 2752 2753 llvm::DebugLoc RetDbgLoc; 2754 llvm::Value *RV = nullptr; 2755 QualType RetTy = FI.getReturnType(); 2756 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2757 2758 switch (RetAI.getKind()) { 2759 case ABIArgInfo::InAlloca: 2760 // Aggregrates get evaluated directly into the destination. Sometimes we 2761 // need to return the sret value in a register, though. 2762 assert(hasAggregateEvaluationKind(RetTy)); 2763 if (RetAI.getInAllocaSRet()) { 2764 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2765 --EI; 2766 llvm::Value *ArgStruct = &*EI; 2767 llvm::Value *SRet = Builder.CreateStructGEP( 2768 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2769 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2770 } 2771 break; 2772 2773 case ABIArgInfo::Indirect: { 2774 auto AI = CurFn->arg_begin(); 2775 if (RetAI.isSRetAfterThis()) 2776 ++AI; 2777 switch (getEvaluationKind(RetTy)) { 2778 case TEK_Complex: { 2779 ComplexPairTy RT = 2780 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2781 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2782 /*isInit*/ true); 2783 break; 2784 } 2785 case TEK_Aggregate: 2786 // Do nothing; aggregrates get evaluated directly into the destination. 2787 break; 2788 case TEK_Scalar: 2789 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2790 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2791 /*isInit*/ true); 2792 break; 2793 } 2794 break; 2795 } 2796 2797 case ABIArgInfo::Extend: 2798 case ABIArgInfo::Direct: 2799 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2800 RetAI.getDirectOffset() == 0) { 2801 // The internal return value temp always will have pointer-to-return-type 2802 // type, just do a load. 2803 2804 // If there is a dominating store to ReturnValue, we can elide 2805 // the load, zap the store, and usually zap the alloca. 2806 if (llvm::StoreInst *SI = 2807 findDominatingStoreToReturnValue(*this)) { 2808 // Reuse the debug location from the store unless there is 2809 // cleanup code to be emitted between the store and return 2810 // instruction. 2811 if (EmitRetDbgLoc && !AutoreleaseResult) 2812 RetDbgLoc = SI->getDebugLoc(); 2813 // Get the stored value and nuke the now-dead store. 2814 RV = SI->getValueOperand(); 2815 SI->eraseFromParent(); 2816 2817 // If that was the only use of the return value, nuke it as well now. 2818 auto returnValueInst = ReturnValue.getPointer(); 2819 if (returnValueInst->use_empty()) { 2820 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2821 alloca->eraseFromParent(); 2822 ReturnValue = Address::invalid(); 2823 } 2824 } 2825 2826 // Otherwise, we have to do a simple load. 2827 } else { 2828 RV = Builder.CreateLoad(ReturnValue); 2829 } 2830 } else { 2831 // If the value is offset in memory, apply the offset now. 2832 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2833 2834 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2835 } 2836 2837 // In ARC, end functions that return a retainable type with a call 2838 // to objc_autoreleaseReturnValue. 2839 if (AutoreleaseResult) { 2840 #ifndef NDEBUG 2841 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2842 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2843 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2844 // CurCodeDecl or BlockInfo. 2845 QualType RT; 2846 2847 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2848 RT = FD->getReturnType(); 2849 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2850 RT = MD->getReturnType(); 2851 else if (isa<BlockDecl>(CurCodeDecl)) 2852 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2853 else 2854 llvm_unreachable("Unexpected function/method type"); 2855 2856 assert(getLangOpts().ObjCAutoRefCount && 2857 !FI.isReturnsRetained() && 2858 RT->isObjCRetainableType()); 2859 #endif 2860 RV = emitAutoreleaseOfResult(*this, RV); 2861 } 2862 2863 break; 2864 2865 case ABIArgInfo::Ignore: 2866 break; 2867 2868 case ABIArgInfo::CoerceAndExpand: { 2869 auto coercionType = RetAI.getCoerceAndExpandType(); 2870 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2871 2872 // Load all of the coerced elements out into results. 2873 llvm::SmallVector<llvm::Value*, 4> results; 2874 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2875 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2876 auto coercedEltType = coercionType->getElementType(i); 2877 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2878 continue; 2879 2880 auto eltAddr = Builder.CreateStructGEP(addr, i, layout); 2881 auto elt = Builder.CreateLoad(eltAddr); 2882 results.push_back(elt); 2883 } 2884 2885 // If we have one result, it's the single direct result type. 2886 if (results.size() == 1) { 2887 RV = results[0]; 2888 2889 // Otherwise, we need to make a first-class aggregate. 2890 } else { 2891 // Construct a return type that lacks padding elements. 2892 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2893 2894 RV = llvm::UndefValue::get(returnType); 2895 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2896 RV = Builder.CreateInsertValue(RV, results[i], i); 2897 } 2898 } 2899 break; 2900 } 2901 2902 case ABIArgInfo::Expand: 2903 llvm_unreachable("Invalid ABI kind for return argument"); 2904 } 2905 2906 llvm::Instruction *Ret; 2907 if (RV) { 2908 EmitReturnValueCheck(RV); 2909 Ret = Builder.CreateRet(RV); 2910 } else { 2911 Ret = Builder.CreateRetVoid(); 2912 } 2913 2914 if (RetDbgLoc) 2915 Ret->setDebugLoc(std::move(RetDbgLoc)); 2916 } 2917 2918 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 2919 // A current decl may not be available when emitting vtable thunks. 2920 if (!CurCodeDecl) 2921 return; 2922 2923 ReturnsNonNullAttr *RetNNAttr = nullptr; 2924 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 2925 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 2926 2927 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 2928 return; 2929 2930 // Prefer the returns_nonnull attribute if it's present. 2931 SourceLocation AttrLoc; 2932 SanitizerMask CheckKind; 2933 SanitizerHandler Handler; 2934 if (RetNNAttr) { 2935 assert(!requiresReturnValueNullabilityCheck() && 2936 "Cannot check nullability and the nonnull attribute"); 2937 AttrLoc = RetNNAttr->getLocation(); 2938 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 2939 Handler = SanitizerHandler::NonnullReturn; 2940 } else { 2941 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 2942 if (auto *TSI = DD->getTypeSourceInfo()) 2943 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) 2944 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 2945 CheckKind = SanitizerKind::NullabilityReturn; 2946 Handler = SanitizerHandler::NullabilityReturn; 2947 } 2948 2949 SanitizerScope SanScope(this); 2950 2951 // Make sure the "return" source location is valid. If we're checking a 2952 // nullability annotation, make sure the preconditions for the check are met. 2953 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 2954 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 2955 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 2956 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 2957 if (requiresReturnValueNullabilityCheck()) 2958 CanNullCheck = 2959 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 2960 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 2961 EmitBlock(Check); 2962 2963 // Now do the null check. 2964 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 2965 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 2966 llvm::Value *DynamicData[] = {SLocPtr}; 2967 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 2968 2969 EmitBlock(NoCheck); 2970 2971 #ifndef NDEBUG 2972 // The return location should not be used after the check has been emitted. 2973 ReturnLocation = Address::invalid(); 2974 #endif 2975 } 2976 2977 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 2978 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2979 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 2980 } 2981 2982 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 2983 QualType Ty) { 2984 // FIXME: Generate IR in one pass, rather than going back and fixing up these 2985 // placeholders. 2986 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 2987 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 2988 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 2989 2990 // FIXME: When we generate this IR in one pass, we shouldn't need 2991 // this win32-specific alignment hack. 2992 CharUnits Align = CharUnits::fromQuantity(4); 2993 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 2994 2995 return AggValueSlot::forAddr(Address(Placeholder, Align), 2996 Ty.getQualifiers(), 2997 AggValueSlot::IsNotDestructed, 2998 AggValueSlot::DoesNotNeedGCBarriers, 2999 AggValueSlot::IsNotAliased); 3000 } 3001 3002 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3003 const VarDecl *param, 3004 SourceLocation loc) { 3005 // StartFunction converted the ABI-lowered parameter(s) into a 3006 // local alloca. We need to turn that into an r-value suitable 3007 // for EmitCall. 3008 Address local = GetAddrOfLocalVar(param); 3009 3010 QualType type = param->getType(); 3011 3012 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 3013 "cannot emit delegate call arguments for inalloca arguments!"); 3014 3015 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3016 // but the argument needs to be the original pointer. 3017 if (type->isReferenceType()) { 3018 args.add(RValue::get(Builder.CreateLoad(local)), type); 3019 3020 // In ARC, move out of consumed arguments so that the release cleanup 3021 // entered by StartFunction doesn't cause an over-release. This isn't 3022 // optimal -O0 code generation, but it should get cleaned up when 3023 // optimization is enabled. This also assumes that delegate calls are 3024 // performed exactly once for a set of arguments, but that should be safe. 3025 } else if (getLangOpts().ObjCAutoRefCount && 3026 param->hasAttr<NSConsumedAttr>() && 3027 type->isObjCRetainableType()) { 3028 llvm::Value *ptr = Builder.CreateLoad(local); 3029 auto null = 3030 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3031 Builder.CreateStore(null, local); 3032 args.add(RValue::get(ptr), type); 3033 3034 // For the most part, we just need to load the alloca, except that 3035 // aggregate r-values are actually pointers to temporaries. 3036 } else { 3037 args.add(convertTempToRValue(local, type, loc), type); 3038 } 3039 } 3040 3041 static bool isProvablyNull(llvm::Value *addr) { 3042 return isa<llvm::ConstantPointerNull>(addr); 3043 } 3044 3045 /// Emit the actual writing-back of a writeback. 3046 static void emitWriteback(CodeGenFunction &CGF, 3047 const CallArgList::Writeback &writeback) { 3048 const LValue &srcLV = writeback.Source; 3049 Address srcAddr = srcLV.getAddress(); 3050 assert(!isProvablyNull(srcAddr.getPointer()) && 3051 "shouldn't have writeback for provably null argument"); 3052 3053 llvm::BasicBlock *contBB = nullptr; 3054 3055 // If the argument wasn't provably non-null, we need to null check 3056 // before doing the store. 3057 bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer()); 3058 if (!provablyNonNull) { 3059 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3060 contBB = CGF.createBasicBlock("icr.done"); 3061 3062 llvm::Value *isNull = 3063 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3064 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3065 CGF.EmitBlock(writebackBB); 3066 } 3067 3068 // Load the value to writeback. 3069 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3070 3071 // Cast it back, in case we're writing an id to a Foo* or something. 3072 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3073 "icr.writeback-cast"); 3074 3075 // Perform the writeback. 3076 3077 // If we have a "to use" value, it's something we need to emit a use 3078 // of. This has to be carefully threaded in: if it's done after the 3079 // release it's potentially undefined behavior (and the optimizer 3080 // will ignore it), and if it happens before the retain then the 3081 // optimizer could move the release there. 3082 if (writeback.ToUse) { 3083 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3084 3085 // Retain the new value. No need to block-copy here: the block's 3086 // being passed up the stack. 3087 value = CGF.EmitARCRetainNonBlock(value); 3088 3089 // Emit the intrinsic use here. 3090 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3091 3092 // Load the old value (primitively). 3093 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3094 3095 // Put the new value in place (primitively). 3096 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3097 3098 // Release the old value. 3099 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3100 3101 // Otherwise, we can just do a normal lvalue store. 3102 } else { 3103 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3104 } 3105 3106 // Jump to the continuation block. 3107 if (!provablyNonNull) 3108 CGF.EmitBlock(contBB); 3109 } 3110 3111 static void emitWritebacks(CodeGenFunction &CGF, 3112 const CallArgList &args) { 3113 for (const auto &I : args.writebacks()) 3114 emitWriteback(CGF, I); 3115 } 3116 3117 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3118 const CallArgList &CallArgs) { 3119 assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()); 3120 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3121 CallArgs.getCleanupsToDeactivate(); 3122 // Iterate in reverse to increase the likelihood of popping the cleanup. 3123 for (const auto &I : llvm::reverse(Cleanups)) { 3124 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3125 I.IsActiveIP->eraseFromParent(); 3126 } 3127 } 3128 3129 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3130 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3131 if (uop->getOpcode() == UO_AddrOf) 3132 return uop->getSubExpr(); 3133 return nullptr; 3134 } 3135 3136 /// Emit an argument that's being passed call-by-writeback. That is, 3137 /// we are passing the address of an __autoreleased temporary; it 3138 /// might be copy-initialized with the current value of the given 3139 /// address, but it will definitely be copied out of after the call. 3140 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3141 const ObjCIndirectCopyRestoreExpr *CRE) { 3142 LValue srcLV; 3143 3144 // Make an optimistic effort to emit the address as an l-value. 3145 // This can fail if the argument expression is more complicated. 3146 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3147 srcLV = CGF.EmitLValue(lvExpr); 3148 3149 // Otherwise, just emit it as a scalar. 3150 } else { 3151 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3152 3153 QualType srcAddrType = 3154 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3155 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3156 } 3157 Address srcAddr = srcLV.getAddress(); 3158 3159 // The dest and src types don't necessarily match in LLVM terms 3160 // because of the crazy ObjC compatibility rules. 3161 3162 llvm::PointerType *destType = 3163 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3164 3165 // If the address is a constant null, just pass the appropriate null. 3166 if (isProvablyNull(srcAddr.getPointer())) { 3167 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3168 CRE->getType()); 3169 return; 3170 } 3171 3172 // Create the temporary. 3173 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3174 CGF.getPointerAlign(), 3175 "icr.temp"); 3176 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3177 // and that cleanup will be conditional if we can't prove that the l-value 3178 // isn't null, so we need to register a dominating point so that the cleanups 3179 // system will make valid IR. 3180 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3181 3182 // Zero-initialize it if we're not doing a copy-initialization. 3183 bool shouldCopy = CRE->shouldCopy(); 3184 if (!shouldCopy) { 3185 llvm::Value *null = 3186 llvm::ConstantPointerNull::get( 3187 cast<llvm::PointerType>(destType->getElementType())); 3188 CGF.Builder.CreateStore(null, temp); 3189 } 3190 3191 llvm::BasicBlock *contBB = nullptr; 3192 llvm::BasicBlock *originBB = nullptr; 3193 3194 // If the address is *not* known to be non-null, we need to switch. 3195 llvm::Value *finalArgument; 3196 3197 bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer()); 3198 if (provablyNonNull) { 3199 finalArgument = temp.getPointer(); 3200 } else { 3201 llvm::Value *isNull = 3202 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3203 3204 finalArgument = CGF.Builder.CreateSelect(isNull, 3205 llvm::ConstantPointerNull::get(destType), 3206 temp.getPointer(), "icr.argument"); 3207 3208 // If we need to copy, then the load has to be conditional, which 3209 // means we need control flow. 3210 if (shouldCopy) { 3211 originBB = CGF.Builder.GetInsertBlock(); 3212 contBB = CGF.createBasicBlock("icr.cont"); 3213 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3214 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3215 CGF.EmitBlock(copyBB); 3216 condEval.begin(CGF); 3217 } 3218 } 3219 3220 llvm::Value *valueToUse = nullptr; 3221 3222 // Perform a copy if necessary. 3223 if (shouldCopy) { 3224 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3225 assert(srcRV.isScalar()); 3226 3227 llvm::Value *src = srcRV.getScalarVal(); 3228 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3229 "icr.cast"); 3230 3231 // Use an ordinary store, not a store-to-lvalue. 3232 CGF.Builder.CreateStore(src, temp); 3233 3234 // If optimization is enabled, and the value was held in a 3235 // __strong variable, we need to tell the optimizer that this 3236 // value has to stay alive until we're doing the store back. 3237 // This is because the temporary is effectively unretained, 3238 // and so otherwise we can violate the high-level semantics. 3239 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3240 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3241 valueToUse = src; 3242 } 3243 } 3244 3245 // Finish the control flow if we needed it. 3246 if (shouldCopy && !provablyNonNull) { 3247 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3248 CGF.EmitBlock(contBB); 3249 3250 // Make a phi for the value to intrinsically use. 3251 if (valueToUse) { 3252 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3253 "icr.to-use"); 3254 phiToUse->addIncoming(valueToUse, copyBB); 3255 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3256 originBB); 3257 valueToUse = phiToUse; 3258 } 3259 3260 condEval.end(CGF); 3261 } 3262 3263 args.addWriteback(srcLV, temp, valueToUse); 3264 args.add(RValue::get(finalArgument), CRE->getType()); 3265 } 3266 3267 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3268 assert(!StackBase); 3269 3270 // Save the stack. 3271 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3272 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3273 } 3274 3275 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3276 if (StackBase) { 3277 // Restore the stack after the call. 3278 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3279 CGF.Builder.CreateCall(F, StackBase); 3280 } 3281 } 3282 3283 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3284 SourceLocation ArgLoc, 3285 AbstractCallee AC, 3286 unsigned ParmNum) { 3287 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3288 SanOpts.has(SanitizerKind::NullabilityArg))) 3289 return; 3290 3291 // The param decl may be missing in a variadic function. 3292 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3293 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3294 3295 // Prefer the nonnull attribute if it's present. 3296 const NonNullAttr *NNAttr = nullptr; 3297 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3298 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3299 3300 bool CanCheckNullability = false; 3301 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3302 auto Nullability = PVD->getType()->getNullability(getContext()); 3303 CanCheckNullability = Nullability && 3304 *Nullability == NullabilityKind::NonNull && 3305 PVD->getTypeSourceInfo(); 3306 } 3307 3308 if (!NNAttr && !CanCheckNullability) 3309 return; 3310 3311 SourceLocation AttrLoc; 3312 SanitizerMask CheckKind; 3313 SanitizerHandler Handler; 3314 if (NNAttr) { 3315 AttrLoc = NNAttr->getLocation(); 3316 CheckKind = SanitizerKind::NonnullAttribute; 3317 Handler = SanitizerHandler::NonnullArg; 3318 } else { 3319 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3320 CheckKind = SanitizerKind::NullabilityArg; 3321 Handler = SanitizerHandler::NullabilityArg; 3322 } 3323 3324 SanitizerScope SanScope(this); 3325 assert(RV.isScalar()); 3326 llvm::Value *V = RV.getScalarVal(); 3327 llvm::Value *Cond = 3328 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3329 llvm::Constant *StaticData[] = { 3330 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3331 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3332 }; 3333 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3334 } 3335 3336 void CodeGenFunction::EmitCallArgs( 3337 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3338 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3339 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3340 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3341 3342 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3343 // because arguments are destroyed left to right in the callee. As a special 3344 // case, there are certain language constructs that require left-to-right 3345 // evaluation, and in those cases we consider the evaluation order requirement 3346 // to trump the "destruction order is reverse construction order" guarantee. 3347 bool LeftToRight = 3348 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3349 ? Order == EvaluationOrder::ForceLeftToRight 3350 : Order != EvaluationOrder::ForceRightToLeft; 3351 3352 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3353 RValue EmittedArg) { 3354 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3355 return; 3356 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3357 if (PS == nullptr) 3358 return; 3359 3360 const auto &Context = getContext(); 3361 auto SizeTy = Context.getSizeType(); 3362 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3363 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3364 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3365 EmittedArg.getScalarVal()); 3366 Args.add(RValue::get(V), SizeTy); 3367 // If we're emitting args in reverse, be sure to do so with 3368 // pass_object_size, as well. 3369 if (!LeftToRight) 3370 std::swap(Args.back(), *(&Args.back() - 1)); 3371 }; 3372 3373 // Insert a stack save if we're going to need any inalloca args. 3374 bool HasInAllocaArgs = false; 3375 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3376 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3377 I != E && !HasInAllocaArgs; ++I) 3378 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3379 if (HasInAllocaArgs) { 3380 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3381 Args.allocateArgumentMemory(*this); 3382 } 3383 } 3384 3385 // Evaluate each argument in the appropriate order. 3386 size_t CallArgsStart = Args.size(); 3387 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3388 unsigned Idx = LeftToRight ? I : E - I - 1; 3389 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3390 unsigned InitialArgSize = Args.size(); 3391 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3392 // the argument and parameter match or the objc method is parameterized. 3393 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3394 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3395 ArgTypes[Idx]) || 3396 (isa<ObjCMethodDecl>(AC.getDecl()) && 3397 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3398 "Argument and parameter types don't match"); 3399 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3400 // In particular, we depend on it being the last arg in Args, and the 3401 // objectsize bits depend on there only being one arg if !LeftToRight. 3402 assert(InitialArgSize + 1 == Args.size() && 3403 "The code below depends on only adding one arg per EmitCallArg"); 3404 (void)InitialArgSize; 3405 RValue RVArg = Args.back().RV; 3406 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3407 ParamsToSkip + Idx); 3408 // @llvm.objectsize should never have side-effects and shouldn't need 3409 // destruction/cleanups, so we can safely "emit" it after its arg, 3410 // regardless of right-to-leftness 3411 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3412 } 3413 3414 if (!LeftToRight) { 3415 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3416 // IR function. 3417 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3418 } 3419 } 3420 3421 namespace { 3422 3423 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3424 DestroyUnpassedArg(Address Addr, QualType Ty) 3425 : Addr(Addr), Ty(Ty) {} 3426 3427 Address Addr; 3428 QualType Ty; 3429 3430 void Emit(CodeGenFunction &CGF, Flags flags) override { 3431 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3432 assert(!Dtor->isTrivial()); 3433 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3434 /*Delegating=*/false, Addr); 3435 } 3436 }; 3437 3438 struct DisableDebugLocationUpdates { 3439 CodeGenFunction &CGF; 3440 bool disabledDebugInfo; 3441 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3442 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3443 CGF.disableDebugInfo(); 3444 } 3445 ~DisableDebugLocationUpdates() { 3446 if (disabledDebugInfo) 3447 CGF.enableDebugInfo(); 3448 } 3449 }; 3450 3451 } // end anonymous namespace 3452 3453 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3454 QualType type) { 3455 DisableDebugLocationUpdates Dis(*this, E); 3456 if (const ObjCIndirectCopyRestoreExpr *CRE 3457 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3458 assert(getLangOpts().ObjCAutoRefCount); 3459 return emitWritebackArg(*this, args, CRE); 3460 } 3461 3462 assert(type->isReferenceType() == E->isGLValue() && 3463 "reference binding to unmaterialized r-value!"); 3464 3465 if (E->isGLValue()) { 3466 assert(E->getObjectKind() == OK_Ordinary); 3467 return args.add(EmitReferenceBindingToExpr(E), type); 3468 } 3469 3470 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3471 3472 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3473 // However, we still have to push an EH-only cleanup in case we unwind before 3474 // we make it to the call. 3475 if (HasAggregateEvalKind && 3476 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3477 // If we're using inalloca, use the argument memory. Otherwise, use a 3478 // temporary. 3479 AggValueSlot Slot; 3480 if (args.isUsingInAlloca()) 3481 Slot = createPlaceholderSlot(*this, type); 3482 else 3483 Slot = CreateAggTemp(type, "agg.tmp"); 3484 3485 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3486 bool DestroyedInCallee = 3487 RD && RD->hasNonTrivialDestructor() && 3488 CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default; 3489 if (DestroyedInCallee) 3490 Slot.setExternallyDestructed(); 3491 3492 EmitAggExpr(E, Slot); 3493 RValue RV = Slot.asRValue(); 3494 args.add(RV, type); 3495 3496 if (DestroyedInCallee) { 3497 // Create a no-op GEP between the placeholder and the cleanup so we can 3498 // RAUW it successfully. It also serves as a marker of the first 3499 // instruction where the cleanup is active. 3500 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3501 type); 3502 // This unreachable is a temporary marker which will be removed later. 3503 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3504 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3505 } 3506 return; 3507 } 3508 3509 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3510 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3511 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3512 assert(L.isSimple()); 3513 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 3514 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 3515 } else { 3516 // We can't represent a misaligned lvalue in the CallArgList, so copy 3517 // to an aligned temporary now. 3518 Address tmp = CreateMemTemp(type); 3519 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile()); 3520 args.add(RValue::getAggregate(tmp), type); 3521 } 3522 return; 3523 } 3524 3525 args.add(EmitAnyExprToTemp(E), type); 3526 } 3527 3528 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3529 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3530 // implicitly widens null pointer constants that are arguments to varargs 3531 // functions to pointer-sized ints. 3532 if (!getTarget().getTriple().isOSWindows()) 3533 return Arg->getType(); 3534 3535 if (Arg->getType()->isIntegerType() && 3536 getContext().getTypeSize(Arg->getType()) < 3537 getContext().getTargetInfo().getPointerWidth(0) && 3538 Arg->isNullPointerConstant(getContext(), 3539 Expr::NPC_ValueDependentIsNotNull)) { 3540 return getContext().getIntPtrType(); 3541 } 3542 3543 return Arg->getType(); 3544 } 3545 3546 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3547 // optimizer it can aggressively ignore unwind edges. 3548 void 3549 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3550 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3551 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3552 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3553 CGM.getNoObjCARCExceptionsMetadata()); 3554 } 3555 3556 /// Emits a call to the given no-arguments nounwind runtime function. 3557 llvm::CallInst * 3558 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3559 const llvm::Twine &name) { 3560 return EmitNounwindRuntimeCall(callee, None, name); 3561 } 3562 3563 /// Emits a call to the given nounwind runtime function. 3564 llvm::CallInst * 3565 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3566 ArrayRef<llvm::Value*> args, 3567 const llvm::Twine &name) { 3568 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3569 call->setDoesNotThrow(); 3570 return call; 3571 } 3572 3573 /// Emits a simple call (never an invoke) to the given no-arguments 3574 /// runtime function. 3575 llvm::CallInst * 3576 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3577 const llvm::Twine &name) { 3578 return EmitRuntimeCall(callee, None, name); 3579 } 3580 3581 // Calls which may throw must have operand bundles indicating which funclet 3582 // they are nested within. 3583 static void 3584 getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad, 3585 SmallVectorImpl<llvm::OperandBundleDef> &BundleList) { 3586 // There is no need for a funclet operand bundle if we aren't inside a 3587 // funclet. 3588 if (!CurrentFuncletPad) 3589 return; 3590 3591 // Skip intrinsics which cannot throw. 3592 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3593 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3594 return; 3595 3596 BundleList.emplace_back("funclet", CurrentFuncletPad); 3597 } 3598 3599 /// Emits a simple call (never an invoke) to the given runtime function. 3600 llvm::CallInst * 3601 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3602 ArrayRef<llvm::Value*> args, 3603 const llvm::Twine &name) { 3604 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3605 getBundlesForFunclet(callee, CurrentFuncletPad, BundleList); 3606 3607 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name); 3608 call->setCallingConv(getRuntimeCC()); 3609 return call; 3610 } 3611 3612 /// Emits a call or invoke to the given noreturn runtime function. 3613 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3614 ArrayRef<llvm::Value*> args) { 3615 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3616 getBundlesForFunclet(callee, CurrentFuncletPad, BundleList); 3617 3618 if (getInvokeDest()) { 3619 llvm::InvokeInst *invoke = 3620 Builder.CreateInvoke(callee, 3621 getUnreachableBlock(), 3622 getInvokeDest(), 3623 args, 3624 BundleList); 3625 invoke->setDoesNotReturn(); 3626 invoke->setCallingConv(getRuntimeCC()); 3627 } else { 3628 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3629 call->setDoesNotReturn(); 3630 call->setCallingConv(getRuntimeCC()); 3631 Builder.CreateUnreachable(); 3632 } 3633 } 3634 3635 /// Emits a call or invoke instruction to the given nullary runtime function. 3636 llvm::CallSite 3637 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3638 const Twine &name) { 3639 return EmitRuntimeCallOrInvoke(callee, None, name); 3640 } 3641 3642 /// Emits a call or invoke instruction to the given runtime function. 3643 llvm::CallSite 3644 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3645 ArrayRef<llvm::Value*> args, 3646 const Twine &name) { 3647 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3648 callSite.setCallingConv(getRuntimeCC()); 3649 return callSite; 3650 } 3651 3652 /// Emits a call or invoke instruction to the given function, depending 3653 /// on the current state of the EH stack. 3654 llvm::CallSite 3655 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3656 ArrayRef<llvm::Value *> Args, 3657 const Twine &Name) { 3658 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3659 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3660 getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList); 3661 3662 llvm::Instruction *Inst; 3663 if (!InvokeDest) 3664 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3665 else { 3666 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3667 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3668 Name); 3669 EmitBlock(ContBB); 3670 } 3671 3672 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3673 // optimizer it can aggressively ignore unwind edges. 3674 if (CGM.getLangOpts().ObjCAutoRefCount) 3675 AddObjCARCExceptionMetadata(Inst); 3676 3677 return llvm::CallSite(Inst); 3678 } 3679 3680 /// \brief Store a non-aggregate value to an address to initialize it. For 3681 /// initialization, a non-atomic store will be used. 3682 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src, 3683 LValue Dst) { 3684 if (Src.isScalar()) 3685 CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true); 3686 else 3687 CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true); 3688 } 3689 3690 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3691 llvm::Value *New) { 3692 DeferredReplacements.push_back(std::make_pair(Old, New)); 3693 } 3694 3695 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3696 const CGCallee &Callee, 3697 ReturnValueSlot ReturnValue, 3698 const CallArgList &CallArgs, 3699 llvm::Instruction **callOrInvoke) { 3700 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3701 3702 assert(Callee.isOrdinary()); 3703 3704 // Handle struct-return functions by passing a pointer to the 3705 // location that we would like to return into. 3706 QualType RetTy = CallInfo.getReturnType(); 3707 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3708 3709 llvm::FunctionType *IRFuncTy = Callee.getFunctionType(); 3710 3711 // 1. Set up the arguments. 3712 3713 // If we're using inalloca, insert the allocation after the stack save. 3714 // FIXME: Do this earlier rather than hacking it in here! 3715 Address ArgMemory = Address::invalid(); 3716 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3717 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3718 const llvm::DataLayout &DL = CGM.getDataLayout(); 3719 ArgMemoryLayout = DL.getStructLayout(ArgStruct); 3720 llvm::Instruction *IP = CallArgs.getStackBase(); 3721 llvm::AllocaInst *AI; 3722 if (IP) { 3723 IP = IP->getNextNode(); 3724 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 3725 "argmem", IP); 3726 } else { 3727 AI = CreateTempAlloca(ArgStruct, "argmem"); 3728 } 3729 auto Align = CallInfo.getArgStructAlignment(); 3730 AI->setAlignment(Align.getQuantity()); 3731 AI->setUsedWithInAlloca(true); 3732 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3733 ArgMemory = Address(AI, Align); 3734 } 3735 3736 // Helper function to drill into the inalloca allocation. 3737 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3738 auto FieldOffset = 3739 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3740 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3741 }; 3742 3743 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3744 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3745 3746 // If the call returns a temporary with struct return, create a temporary 3747 // alloca to hold the result, unless one is given to us. 3748 Address SRetPtr = Address::invalid(); 3749 size_t UnusedReturnSize = 0; 3750 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3751 if (!ReturnValue.isNull()) { 3752 SRetPtr = ReturnValue.getValue(); 3753 } else { 3754 SRetPtr = CreateMemTemp(RetTy); 3755 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3756 uint64_t size = 3757 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3758 if (EmitLifetimeStart(size, SRetPtr.getPointer())) 3759 UnusedReturnSize = size; 3760 } 3761 } 3762 if (IRFunctionArgs.hasSRetArg()) { 3763 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3764 } else if (RetAI.isInAlloca()) { 3765 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3766 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3767 } 3768 } 3769 3770 Address swiftErrorTemp = Address::invalid(); 3771 Address swiftErrorArg = Address::invalid(); 3772 3773 // Translate all of the arguments as necessary to match the IR lowering. 3774 assert(CallInfo.arg_size() == CallArgs.size() && 3775 "Mismatch between function signature & arguments."); 3776 unsigned ArgNo = 0; 3777 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3778 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3779 I != E; ++I, ++info_it, ++ArgNo) { 3780 const ABIArgInfo &ArgInfo = info_it->info; 3781 RValue RV = I->RV; 3782 3783 // Insert a padding argument to ensure proper alignment. 3784 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3785 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3786 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3787 3788 unsigned FirstIRArg, NumIRArgs; 3789 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3790 3791 switch (ArgInfo.getKind()) { 3792 case ABIArgInfo::InAlloca: { 3793 assert(NumIRArgs == 0); 3794 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3795 if (RV.isAggregate()) { 3796 // Replace the placeholder with the appropriate argument slot GEP. 3797 llvm::Instruction *Placeholder = 3798 cast<llvm::Instruction>(RV.getAggregatePointer()); 3799 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3800 Builder.SetInsertPoint(Placeholder); 3801 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3802 Builder.restoreIP(IP); 3803 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3804 } else { 3805 // Store the RValue into the argument struct. 3806 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3807 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3808 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3809 // There are some cases where a trivial bitcast is not avoidable. The 3810 // definition of a type later in a translation unit may change it's type 3811 // from {}* to (%struct.foo*)*. 3812 if (Addr.getType() != MemType) 3813 Addr = Builder.CreateBitCast(Addr, MemType); 3814 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3815 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3816 } 3817 break; 3818 } 3819 3820 case ABIArgInfo::Indirect: { 3821 assert(NumIRArgs == 1); 3822 if (RV.isScalar() || RV.isComplex()) { 3823 // Make a temporary alloca to pass the argument. 3824 Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(), 3825 "indirect-arg-temp", false); 3826 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3827 3828 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3829 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3830 } else { 3831 // We want to avoid creating an unnecessary temporary+copy here; 3832 // however, we need one in three cases: 3833 // 1. If the argument is not byval, and we are required to copy the 3834 // source. (This case doesn't occur on any common architecture.) 3835 // 2. If the argument is byval, RV is not sufficiently aligned, and 3836 // we cannot force it to be sufficiently aligned. 3837 // 3. If the argument is byval, but RV is located in an address space 3838 // different than that of the argument (0). 3839 Address Addr = RV.getAggregateAddress(); 3840 CharUnits Align = ArgInfo.getIndirectAlign(); 3841 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3842 const unsigned RVAddrSpace = Addr.getType()->getAddressSpace(); 3843 const unsigned ArgAddrSpace = 3844 (FirstIRArg < IRFuncTy->getNumParams() 3845 ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() 3846 : 0); 3847 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 3848 (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align && 3849 llvm::getOrEnforceKnownAlignment(Addr.getPointer(), 3850 Align.getQuantity(), *TD) 3851 < Align.getQuantity()) || 3852 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 3853 // Create an aligned temporary, and copy to it. 3854 Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(), 3855 "byval-temp", false); 3856 IRCallArgs[FirstIRArg] = AI.getPointer(); 3857 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 3858 } else { 3859 // Skip the extra memcpy call. 3860 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3861 } 3862 } 3863 break; 3864 } 3865 3866 case ABIArgInfo::Ignore: 3867 assert(NumIRArgs == 0); 3868 break; 3869 3870 case ABIArgInfo::Extend: 3871 case ABIArgInfo::Direct: { 3872 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3873 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3874 ArgInfo.getDirectOffset() == 0) { 3875 assert(NumIRArgs == 1); 3876 llvm::Value *V; 3877 if (RV.isScalar()) 3878 V = RV.getScalarVal(); 3879 else 3880 V = Builder.CreateLoad(RV.getAggregateAddress()); 3881 3882 // Implement swifterror by copying into a new swifterror argument. 3883 // We'll write back in the normal path out of the call. 3884 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 3885 == ParameterABI::SwiftErrorResult) { 3886 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 3887 3888 QualType pointeeTy = I->Ty->getPointeeType(); 3889 swiftErrorArg = 3890 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 3891 3892 swiftErrorTemp = 3893 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 3894 V = swiftErrorTemp.getPointer(); 3895 cast<llvm::AllocaInst>(V)->setSwiftError(true); 3896 3897 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 3898 Builder.CreateStore(errorValue, swiftErrorTemp); 3899 } 3900 3901 // We might have to widen integers, but we should never truncate. 3902 if (ArgInfo.getCoerceToType() != V->getType() && 3903 V->getType()->isIntegerTy()) 3904 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 3905 3906 // If the argument doesn't match, perform a bitcast to coerce it. This 3907 // can happen due to trivial type mismatches. 3908 if (FirstIRArg < IRFuncTy->getNumParams() && 3909 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 3910 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 3911 3912 IRCallArgs[FirstIRArg] = V; 3913 break; 3914 } 3915 3916 // FIXME: Avoid the conversion through memory if possible. 3917 Address Src = Address::invalid(); 3918 if (RV.isScalar() || RV.isComplex()) { 3919 Src = CreateMemTemp(I->Ty, "coerce"); 3920 LValue SrcLV = MakeAddrLValue(Src, I->Ty); 3921 EmitInitStoreOfNonAggregate(*this, RV, SrcLV); 3922 } else { 3923 Src = RV.getAggregateAddress(); 3924 } 3925 3926 // If the value is offset in memory, apply the offset now. 3927 Src = emitAddressAtOffset(*this, Src, ArgInfo); 3928 3929 // Fast-isel and the optimizer generally like scalar values better than 3930 // FCAs, so we flatten them if this is safe to do for this argument. 3931 llvm::StructType *STy = 3932 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 3933 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 3934 llvm::Type *SrcTy = Src.getType()->getElementType(); 3935 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 3936 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 3937 3938 // If the source type is smaller than the destination type of the 3939 // coerce-to logic, copy the source value into a temp alloca the size 3940 // of the destination type to allow loading all of it. The bits past 3941 // the source value are left undef. 3942 if (SrcSize < DstSize) { 3943 Address TempAlloca 3944 = CreateTempAlloca(STy, Src.getAlignment(), 3945 Src.getName() + ".coerce"); 3946 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 3947 Src = TempAlloca; 3948 } else { 3949 Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy)); 3950 } 3951 3952 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 3953 assert(NumIRArgs == STy->getNumElements()); 3954 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3955 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 3956 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 3957 llvm::Value *LI = Builder.CreateLoad(EltPtr); 3958 IRCallArgs[FirstIRArg + i] = LI; 3959 } 3960 } else { 3961 // In the simple case, just pass the coerced loaded value. 3962 assert(NumIRArgs == 1); 3963 IRCallArgs[FirstIRArg] = 3964 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 3965 } 3966 3967 break; 3968 } 3969 3970 case ABIArgInfo::CoerceAndExpand: { 3971 auto coercionType = ArgInfo.getCoerceAndExpandType(); 3972 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 3973 3974 llvm::Value *tempSize = nullptr; 3975 Address addr = Address::invalid(); 3976 if (RV.isAggregate()) { 3977 addr = RV.getAggregateAddress(); 3978 } else { 3979 assert(RV.isScalar()); // complex should always just be direct 3980 3981 llvm::Type *scalarType = RV.getScalarVal()->getType(); 3982 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 3983 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 3984 3985 tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize); 3986 3987 // Materialize to a temporary. 3988 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 3989 CharUnits::fromQuantity(std::max(layout->getAlignment(), 3990 scalarAlign))); 3991 EmitLifetimeStart(scalarSize, addr.getPointer()); 3992 3993 Builder.CreateStore(RV.getScalarVal(), addr); 3994 } 3995 3996 addr = Builder.CreateElementBitCast(addr, coercionType); 3997 3998 unsigned IRArgPos = FirstIRArg; 3999 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4000 llvm::Type *eltType = coercionType->getElementType(i); 4001 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4002 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4003 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4004 IRCallArgs[IRArgPos++] = elt; 4005 } 4006 assert(IRArgPos == FirstIRArg + NumIRArgs); 4007 4008 if (tempSize) { 4009 EmitLifetimeEnd(tempSize, addr.getPointer()); 4010 } 4011 4012 break; 4013 } 4014 4015 case ABIArgInfo::Expand: 4016 unsigned IRArgPos = FirstIRArg; 4017 ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos); 4018 assert(IRArgPos == FirstIRArg + NumIRArgs); 4019 break; 4020 } 4021 } 4022 4023 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4024 4025 // If we're using inalloca, set up that argument. 4026 if (ArgMemory.isValid()) { 4027 llvm::Value *Arg = ArgMemory.getPointer(); 4028 if (CallInfo.isVariadic()) { 4029 // When passing non-POD arguments by value to variadic functions, we will 4030 // end up with a variadic prototype and an inalloca call site. In such 4031 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4032 // the callee. 4033 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4034 auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS); 4035 CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy); 4036 } else { 4037 llvm::Type *LastParamTy = 4038 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4039 if (Arg->getType() != LastParamTy) { 4040 #ifndef NDEBUG 4041 // Assert that these structs have equivalent element types. 4042 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4043 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4044 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4045 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4046 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4047 DE = DeclaredTy->element_end(), 4048 FI = FullTy->element_begin(); 4049 DI != DE; ++DI, ++FI) 4050 assert(*DI == *FI); 4051 #endif 4052 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4053 } 4054 } 4055 assert(IRFunctionArgs.hasInallocaArg()); 4056 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4057 } 4058 4059 // 2. Prepare the function pointer. 4060 4061 // If the callee is a bitcast of a non-variadic function to have a 4062 // variadic function pointer type, check to see if we can remove the 4063 // bitcast. This comes up with unprototyped functions. 4064 // 4065 // This makes the IR nicer, but more importantly it ensures that we 4066 // can inline the function at -O0 if it is marked always_inline. 4067 auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* { 4068 llvm::FunctionType *CalleeFT = 4069 cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType()); 4070 if (!CalleeFT->isVarArg()) 4071 return Ptr; 4072 4073 llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr); 4074 if (!CE || CE->getOpcode() != llvm::Instruction::BitCast) 4075 return Ptr; 4076 4077 llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0)); 4078 if (!OrigFn) 4079 return Ptr; 4080 4081 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4082 4083 // If the original type is variadic, or if any of the component types 4084 // disagree, we cannot remove the cast. 4085 if (OrigFT->isVarArg() || 4086 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4087 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4088 return Ptr; 4089 4090 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4091 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4092 return Ptr; 4093 4094 return OrigFn; 4095 }; 4096 CalleePtr = simplifyVariadicCallee(CalleePtr); 4097 4098 // 3. Perform the actual call. 4099 4100 // Deactivate any cleanups that we're supposed to do immediately before 4101 // the call. 4102 if (!CallArgs.getCleanupsToDeactivate().empty()) 4103 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4104 4105 // Assert that the arguments we computed match up. The IR verifier 4106 // will catch this, but this is a common enough source of problems 4107 // during IRGen changes that it's way better for debugging to catch 4108 // it ourselves here. 4109 #ifndef NDEBUG 4110 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4111 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4112 // Inalloca argument can have different type. 4113 if (IRFunctionArgs.hasInallocaArg() && 4114 i == IRFunctionArgs.getInallocaArgNo()) 4115 continue; 4116 if (i < IRFuncTy->getNumParams()) 4117 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4118 } 4119 #endif 4120 4121 // Compute the calling convention and attributes. 4122 unsigned CallingConv; 4123 llvm::AttributeList Attrs; 4124 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4125 Callee.getAbstractInfo(), Attrs, CallingConv, 4126 /*AttrOnCallSite=*/true); 4127 4128 // Apply some call-site-specific attributes. 4129 // TODO: work this into building the attribute set. 4130 4131 // Apply always_inline to all calls within flatten functions. 4132 // FIXME: should this really take priority over __try, below? 4133 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4134 !(Callee.getAbstractInfo().getCalleeDecl() && 4135 Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) { 4136 Attrs = 4137 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4138 llvm::Attribute::AlwaysInline); 4139 } 4140 4141 // Disable inlining inside SEH __try blocks. 4142 if (isSEHTryScope()) { 4143 Attrs = 4144 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4145 llvm::Attribute::NoInline); 4146 } 4147 4148 // Decide whether to use a call or an invoke. 4149 bool CannotThrow; 4150 if (currentFunctionUsesSEHTry()) { 4151 // SEH cares about asynchronous exceptions, so everything can "throw." 4152 CannotThrow = false; 4153 } else if (isCleanupPadScope() && 4154 EHPersonality::get(*this).isMSVCXXPersonality()) { 4155 // The MSVC++ personality will implicitly terminate the program if an 4156 // exception is thrown during a cleanup outside of a try/catch. 4157 // We don't need to model anything in IR to get this behavior. 4158 CannotThrow = true; 4159 } else { 4160 // Otherwise, nounwind call sites will never throw. 4161 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4162 llvm::Attribute::NoUnwind); 4163 } 4164 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4165 4166 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4167 getBundlesForFunclet(CalleePtr, CurrentFuncletPad, BundleList); 4168 4169 // Emit the actual call/invoke instruction. 4170 llvm::CallSite CS; 4171 if (!InvokeDest) { 4172 CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList); 4173 } else { 4174 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4175 CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs, 4176 BundleList); 4177 EmitBlock(Cont); 4178 } 4179 llvm::Instruction *CI = CS.getInstruction(); 4180 if (callOrInvoke) 4181 *callOrInvoke = CI; 4182 4183 // Apply the attributes and calling convention. 4184 CS.setAttributes(Attrs); 4185 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4186 4187 // Apply various metadata. 4188 4189 if (!CI->getType()->isVoidTy()) 4190 CI->setName("call"); 4191 4192 // Insert instrumentation or attach profile metadata at indirect call sites. 4193 // For more details, see the comment before the definition of 4194 // IPVK_IndirectCallTarget in InstrProfData.inc. 4195 if (!CS.getCalledFunction()) 4196 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4197 CI, CalleePtr); 4198 4199 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4200 // optimizer it can aggressively ignore unwind edges. 4201 if (CGM.getLangOpts().ObjCAutoRefCount) 4202 AddObjCARCExceptionMetadata(CI); 4203 4204 // Suppress tail calls if requested. 4205 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4206 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4207 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4208 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4209 } 4210 4211 // 4. Finish the call. 4212 4213 // If the call doesn't return, finish the basic block and clear the 4214 // insertion point; this allows the rest of IRGen to discard 4215 // unreachable code. 4216 if (CS.doesNotReturn()) { 4217 if (UnusedReturnSize) 4218 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 4219 SRetPtr.getPointer()); 4220 4221 Builder.CreateUnreachable(); 4222 Builder.ClearInsertionPoint(); 4223 4224 // FIXME: For now, emit a dummy basic block because expr emitters in 4225 // generally are not ready to handle emitting expressions at unreachable 4226 // points. 4227 EnsureInsertPoint(); 4228 4229 // Return a reasonable RValue. 4230 return GetUndefRValue(RetTy); 4231 } 4232 4233 // Perform the swifterror writeback. 4234 if (swiftErrorTemp.isValid()) { 4235 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4236 Builder.CreateStore(errorResult, swiftErrorArg); 4237 } 4238 4239 // Emit any call-associated writebacks immediately. Arguably this 4240 // should happen after any return-value munging. 4241 if (CallArgs.hasWritebacks()) 4242 emitWritebacks(*this, CallArgs); 4243 4244 // The stack cleanup for inalloca arguments has to run out of the normal 4245 // lexical order, so deactivate it and run it manually here. 4246 CallArgs.freeArgumentMemory(*this); 4247 4248 // Extract the return value. 4249 RValue Ret = [&] { 4250 switch (RetAI.getKind()) { 4251 case ABIArgInfo::CoerceAndExpand: { 4252 auto coercionType = RetAI.getCoerceAndExpandType(); 4253 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4254 4255 Address addr = SRetPtr; 4256 addr = Builder.CreateElementBitCast(addr, coercionType); 4257 4258 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4259 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4260 4261 unsigned unpaddedIndex = 0; 4262 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4263 llvm::Type *eltType = coercionType->getElementType(i); 4264 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4265 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4266 llvm::Value *elt = CI; 4267 if (requiresExtract) 4268 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4269 else 4270 assert(unpaddedIndex == 0); 4271 Builder.CreateStore(elt, eltAddr); 4272 } 4273 // FALLTHROUGH 4274 LLVM_FALLTHROUGH; 4275 } 4276 4277 case ABIArgInfo::InAlloca: 4278 case ABIArgInfo::Indirect: { 4279 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4280 if (UnusedReturnSize) 4281 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 4282 SRetPtr.getPointer()); 4283 return ret; 4284 } 4285 4286 case ABIArgInfo::Ignore: 4287 // If we are ignoring an argument that had a result, make sure to 4288 // construct the appropriate return value for our caller. 4289 return GetUndefRValue(RetTy); 4290 4291 case ABIArgInfo::Extend: 4292 case ABIArgInfo::Direct: { 4293 llvm::Type *RetIRTy = ConvertType(RetTy); 4294 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4295 switch (getEvaluationKind(RetTy)) { 4296 case TEK_Complex: { 4297 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4298 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4299 return RValue::getComplex(std::make_pair(Real, Imag)); 4300 } 4301 case TEK_Aggregate: { 4302 Address DestPtr = ReturnValue.getValue(); 4303 bool DestIsVolatile = ReturnValue.isVolatile(); 4304 4305 if (!DestPtr.isValid()) { 4306 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4307 DestIsVolatile = false; 4308 } 4309 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4310 return RValue::getAggregate(DestPtr); 4311 } 4312 case TEK_Scalar: { 4313 // If the argument doesn't match, perform a bitcast to coerce it. This 4314 // can happen due to trivial type mismatches. 4315 llvm::Value *V = CI; 4316 if (V->getType() != RetIRTy) 4317 V = Builder.CreateBitCast(V, RetIRTy); 4318 return RValue::get(V); 4319 } 4320 } 4321 llvm_unreachable("bad evaluation kind"); 4322 } 4323 4324 Address DestPtr = ReturnValue.getValue(); 4325 bool DestIsVolatile = ReturnValue.isVolatile(); 4326 4327 if (!DestPtr.isValid()) { 4328 DestPtr = CreateMemTemp(RetTy, "coerce"); 4329 DestIsVolatile = false; 4330 } 4331 4332 // If the value is offset in memory, apply the offset now. 4333 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4334 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4335 4336 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4337 } 4338 4339 case ABIArgInfo::Expand: 4340 llvm_unreachable("Invalid ABI kind for return argument"); 4341 } 4342 4343 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4344 } (); 4345 4346 // Emit the assume_aligned check on the return value. 4347 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4348 if (Ret.isScalar() && TargetDecl) { 4349 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4350 llvm::Value *OffsetValue = nullptr; 4351 if (const auto *Offset = AA->getOffset()) 4352 OffsetValue = EmitScalarExpr(Offset); 4353 4354 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4355 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4356 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 4357 OffsetValue); 4358 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { 4359 llvm::Value *ParamVal = 4360 CallArgs[AA->getParamIndex() - 1].RV.getScalarVal(); 4361 EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal); 4362 } 4363 } 4364 4365 return Ret; 4366 } 4367 4368 /* VarArg handling */ 4369 4370 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4371 VAListAddr = VE->isMicrosoftABI() 4372 ? EmitMSVAListRef(VE->getSubExpr()) 4373 : EmitVAListRef(VE->getSubExpr()); 4374 QualType Ty = VE->getType(); 4375 if (VE->isMicrosoftABI()) 4376 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4377 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4378 } 4379