1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/Basic/CodeGenOptions.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 using namespace clang; 40 using namespace CodeGen; 41 42 /***/ 43 44 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 45 switch (CC) { 46 default: return llvm::CallingConv::C; 47 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 48 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 49 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 50 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 51 case CC_Win64: return llvm::CallingConv::Win64; 52 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 53 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 54 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 55 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 56 // TODO: Add support for __pascal to LLVM. 57 case CC_X86Pascal: return llvm::CallingConv::C; 58 // TODO: Add support for __vectorcall to LLVM. 59 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 60 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 61 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 62 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 63 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 64 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 65 case CC_Swift: return llvm::CallingConv::Swift; 66 } 67 } 68 69 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 70 /// qualification. Either or both of RD and MD may be null. A null RD indicates 71 /// that there is no meaningful 'this' type, and a null MD can occur when 72 /// calling a method pointer. 73 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 74 const CXXMethodDecl *MD) { 75 QualType RecTy; 76 if (RD) 77 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 78 else 79 RecTy = Context.VoidTy; 80 81 if (MD) 82 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 83 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 84 } 85 86 /// Returns the canonical formal type of the given C++ method. 87 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 88 return MD->getType()->getCanonicalTypeUnqualified() 89 .getAs<FunctionProtoType>(); 90 } 91 92 /// Returns the "extra-canonicalized" return type, which discards 93 /// qualifiers on the return type. Codegen doesn't care about them, 94 /// and it makes ABI code a little easier to be able to assume that 95 /// all parameter and return types are top-level unqualified. 96 static CanQualType GetReturnType(QualType RetTy) { 97 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 98 } 99 100 /// Arrange the argument and result information for a value of the given 101 /// unprototyped freestanding function type. 102 const CGFunctionInfo & 103 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 104 // When translating an unprototyped function type, always use a 105 // variadic type. 106 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 107 /*instanceMethod=*/false, 108 /*chainCall=*/false, None, 109 FTNP->getExtInfo(), {}, RequiredArgs(0)); 110 } 111 112 static void addExtParameterInfosForCall( 113 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 114 const FunctionProtoType *proto, 115 unsigned prefixArgs, 116 unsigned totalArgs) { 117 assert(proto->hasExtParameterInfos()); 118 assert(paramInfos.size() <= prefixArgs); 119 assert(proto->getNumParams() + prefixArgs <= totalArgs); 120 121 paramInfos.reserve(totalArgs); 122 123 // Add default infos for any prefix args that don't already have infos. 124 paramInfos.resize(prefixArgs); 125 126 // Add infos for the prototype. 127 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 128 paramInfos.push_back(ParamInfo); 129 // pass_object_size params have no parameter info. 130 if (ParamInfo.hasPassObjectSize()) 131 paramInfos.emplace_back(); 132 } 133 134 assert(paramInfos.size() <= totalArgs && 135 "Did we forget to insert pass_object_size args?"); 136 // Add default infos for the variadic and/or suffix arguments. 137 paramInfos.resize(totalArgs); 138 } 139 140 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 141 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 142 static void appendParameterTypes(const CodeGenTypes &CGT, 143 SmallVectorImpl<CanQualType> &prefix, 144 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 145 CanQual<FunctionProtoType> FPT) { 146 // Fast path: don't touch param info if we don't need to. 147 if (!FPT->hasExtParameterInfos()) { 148 assert(paramInfos.empty() && 149 "We have paramInfos, but the prototype doesn't?"); 150 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 151 return; 152 } 153 154 unsigned PrefixSize = prefix.size(); 155 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 156 // parameters; the only thing that can change this is the presence of 157 // pass_object_size. So, we preallocate for the common case. 158 prefix.reserve(prefix.size() + FPT->getNumParams()); 159 160 auto ExtInfos = FPT->getExtParameterInfos(); 161 assert(ExtInfos.size() == FPT->getNumParams()); 162 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 163 prefix.push_back(FPT->getParamType(I)); 164 if (ExtInfos[I].hasPassObjectSize()) 165 prefix.push_back(CGT.getContext().getSizeType()); 166 } 167 168 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 169 prefix.size()); 170 } 171 172 /// Arrange the LLVM function layout for a value of the given function 173 /// type, on top of any implicit parameters already stored. 174 static const CGFunctionInfo & 175 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 176 SmallVectorImpl<CanQualType> &prefix, 177 CanQual<FunctionProtoType> FTP) { 178 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 179 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 180 // FIXME: Kill copy. 181 appendParameterTypes(CGT, prefix, paramInfos, FTP); 182 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 183 184 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 185 /*chainCall=*/false, prefix, 186 FTP->getExtInfo(), paramInfos, 187 Required); 188 } 189 190 /// Arrange the argument and result information for a value of the 191 /// given freestanding function type. 192 const CGFunctionInfo & 193 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 194 SmallVector<CanQualType, 16> argTypes; 195 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 196 FTP); 197 } 198 199 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 200 // Set the appropriate calling convention for the Function. 201 if (D->hasAttr<StdCallAttr>()) 202 return CC_X86StdCall; 203 204 if (D->hasAttr<FastCallAttr>()) 205 return CC_X86FastCall; 206 207 if (D->hasAttr<RegCallAttr>()) 208 return CC_X86RegCall; 209 210 if (D->hasAttr<ThisCallAttr>()) 211 return CC_X86ThisCall; 212 213 if (D->hasAttr<VectorCallAttr>()) 214 return CC_X86VectorCall; 215 216 if (D->hasAttr<PascalAttr>()) 217 return CC_X86Pascal; 218 219 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 220 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 221 222 if (D->hasAttr<AArch64VectorPcsAttr>()) 223 return CC_AArch64VectorCall; 224 225 if (D->hasAttr<IntelOclBiccAttr>()) 226 return CC_IntelOclBicc; 227 228 if (D->hasAttr<MSABIAttr>()) 229 return IsWindows ? CC_C : CC_Win64; 230 231 if (D->hasAttr<SysVABIAttr>()) 232 return IsWindows ? CC_X86_64SysV : CC_C; 233 234 if (D->hasAttr<PreserveMostAttr>()) 235 return CC_PreserveMost; 236 237 if (D->hasAttr<PreserveAllAttr>()) 238 return CC_PreserveAll; 239 240 return CC_C; 241 } 242 243 /// Arrange the argument and result information for a call to an 244 /// unknown C++ non-static member function of the given abstract type. 245 /// (A null RD means we don't have any meaningful "this" argument type, 246 /// so fall back to a generic pointer type). 247 /// The member function must be an ordinary function, i.e. not a 248 /// constructor or destructor. 249 const CGFunctionInfo & 250 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 251 const FunctionProtoType *FTP, 252 const CXXMethodDecl *MD) { 253 SmallVector<CanQualType, 16> argTypes; 254 255 // Add the 'this' pointer. 256 argTypes.push_back(DeriveThisType(RD, MD)); 257 258 return ::arrangeLLVMFunctionInfo( 259 *this, true, argTypes, 260 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 261 } 262 263 /// Set calling convention for CUDA/HIP kernel. 264 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 265 const FunctionDecl *FD) { 266 if (FD->hasAttr<CUDAGlobalAttr>()) { 267 const FunctionType *FT = FTy->getAs<FunctionType>(); 268 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 269 FTy = FT->getCanonicalTypeUnqualified(); 270 } 271 } 272 273 /// Arrange the argument and result information for a declaration or 274 /// definition of the given C++ non-static member function. The 275 /// member function must be an ordinary function, i.e. not a 276 /// constructor or destructor. 277 const CGFunctionInfo & 278 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 279 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 280 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 281 282 CanQualType FT = GetFormalType(MD).getAs<Type>(); 283 setCUDAKernelCallingConvention(FT, CGM, MD); 284 auto prototype = FT.getAs<FunctionProtoType>(); 285 286 if (MD->isInstance()) { 287 // The abstract case is perfectly fine. 288 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 289 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 290 } 291 292 return arrangeFreeFunctionType(prototype); 293 } 294 295 bool CodeGenTypes::inheritingCtorHasParams( 296 const InheritedConstructor &Inherited, CXXCtorType Type) { 297 // Parameters are unnecessary if we're constructing a base class subobject 298 // and the inherited constructor lives in a virtual base. 299 return Type == Ctor_Complete || 300 !Inherited.getShadowDecl()->constructsVirtualBase() || 301 !Target.getCXXABI().hasConstructorVariants(); 302 } 303 304 const CGFunctionInfo & 305 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 306 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 307 308 SmallVector<CanQualType, 16> argTypes; 309 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 310 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 311 312 bool PassParams = true; 313 314 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 315 // A base class inheriting constructor doesn't get forwarded arguments 316 // needed to construct a virtual base (or base class thereof). 317 if (auto Inherited = CD->getInheritedConstructor()) 318 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 319 } 320 321 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 322 323 // Add the formal parameters. 324 if (PassParams) 325 appendParameterTypes(*this, argTypes, paramInfos, FTP); 326 327 CGCXXABI::AddedStructorArgs AddedArgs = 328 TheCXXABI.buildStructorSignature(GD, argTypes); 329 if (!paramInfos.empty()) { 330 // Note: prefix implies after the first param. 331 if (AddedArgs.Prefix) 332 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 333 FunctionProtoType::ExtParameterInfo{}); 334 if (AddedArgs.Suffix) 335 paramInfos.append(AddedArgs.Suffix, 336 FunctionProtoType::ExtParameterInfo{}); 337 } 338 339 RequiredArgs required = 340 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 341 : RequiredArgs::All); 342 343 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 344 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 345 ? argTypes.front() 346 : TheCXXABI.hasMostDerivedReturn(GD) 347 ? CGM.getContext().VoidPtrTy 348 : Context.VoidTy; 349 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 350 /*chainCall=*/false, argTypes, extInfo, 351 paramInfos, required); 352 } 353 354 static SmallVector<CanQualType, 16> 355 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 356 SmallVector<CanQualType, 16> argTypes; 357 for (auto &arg : args) 358 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 359 return argTypes; 360 } 361 362 static SmallVector<CanQualType, 16> 363 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 364 SmallVector<CanQualType, 16> argTypes; 365 for (auto &arg : args) 366 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 367 return argTypes; 368 } 369 370 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 371 getExtParameterInfosForCall(const FunctionProtoType *proto, 372 unsigned prefixArgs, unsigned totalArgs) { 373 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 374 if (proto->hasExtParameterInfos()) { 375 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 376 } 377 return result; 378 } 379 380 /// Arrange a call to a C++ method, passing the given arguments. 381 /// 382 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 383 /// parameter. 384 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 385 /// args. 386 /// PassProtoArgs indicates whether `args` has args for the parameters in the 387 /// given CXXConstructorDecl. 388 const CGFunctionInfo & 389 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 390 const CXXConstructorDecl *D, 391 CXXCtorType CtorKind, 392 unsigned ExtraPrefixArgs, 393 unsigned ExtraSuffixArgs, 394 bool PassProtoArgs) { 395 // FIXME: Kill copy. 396 SmallVector<CanQualType, 16> ArgTypes; 397 for (const auto &Arg : args) 398 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 399 400 // +1 for implicit this, which should always be args[0]. 401 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 402 403 CanQual<FunctionProtoType> FPT = GetFormalType(D); 404 RequiredArgs Required = PassProtoArgs 405 ? RequiredArgs::forPrototypePlus( 406 FPT, TotalPrefixArgs + ExtraSuffixArgs) 407 : RequiredArgs::All; 408 409 GlobalDecl GD(D, CtorKind); 410 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 411 ? ArgTypes.front() 412 : TheCXXABI.hasMostDerivedReturn(GD) 413 ? CGM.getContext().VoidPtrTy 414 : Context.VoidTy; 415 416 FunctionType::ExtInfo Info = FPT->getExtInfo(); 417 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 418 // If the prototype args are elided, we should only have ABI-specific args, 419 // which never have param info. 420 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 421 // ABI-specific suffix arguments are treated the same as variadic arguments. 422 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 423 ArgTypes.size()); 424 } 425 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 426 /*chainCall=*/false, ArgTypes, Info, 427 ParamInfos, Required); 428 } 429 430 /// Arrange the argument and result information for the declaration or 431 /// definition of the given function. 432 const CGFunctionInfo & 433 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 434 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 435 if (MD->isInstance()) 436 return arrangeCXXMethodDeclaration(MD); 437 438 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 439 440 assert(isa<FunctionType>(FTy)); 441 setCUDAKernelCallingConvention(FTy, CGM, FD); 442 443 // When declaring a function without a prototype, always use a 444 // non-variadic type. 445 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 446 return arrangeLLVMFunctionInfo( 447 noProto->getReturnType(), /*instanceMethod=*/false, 448 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 449 } 450 451 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 452 } 453 454 /// Arrange the argument and result information for the declaration or 455 /// definition of an Objective-C method. 456 const CGFunctionInfo & 457 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 458 // It happens that this is the same as a call with no optional 459 // arguments, except also using the formal 'self' type. 460 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 461 } 462 463 /// Arrange the argument and result information for the function type 464 /// through which to perform a send to the given Objective-C method, 465 /// using the given receiver type. The receiver type is not always 466 /// the 'self' type of the method or even an Objective-C pointer type. 467 /// This is *not* the right method for actually performing such a 468 /// message send, due to the possibility of optional arguments. 469 const CGFunctionInfo & 470 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 471 QualType receiverType) { 472 SmallVector<CanQualType, 16> argTys; 473 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 474 argTys.push_back(Context.getCanonicalParamType(receiverType)); 475 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 476 // FIXME: Kill copy? 477 for (const auto *I : MD->parameters()) { 478 argTys.push_back(Context.getCanonicalParamType(I->getType())); 479 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 480 I->hasAttr<NoEscapeAttr>()); 481 extParamInfos.push_back(extParamInfo); 482 } 483 484 FunctionType::ExtInfo einfo; 485 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 486 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 487 488 if (getContext().getLangOpts().ObjCAutoRefCount && 489 MD->hasAttr<NSReturnsRetainedAttr>()) 490 einfo = einfo.withProducesResult(true); 491 492 RequiredArgs required = 493 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 494 495 return arrangeLLVMFunctionInfo( 496 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 497 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 498 } 499 500 const CGFunctionInfo & 501 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 502 const CallArgList &args) { 503 auto argTypes = getArgTypesForCall(Context, args); 504 FunctionType::ExtInfo einfo; 505 506 return arrangeLLVMFunctionInfo( 507 GetReturnType(returnType), /*instanceMethod=*/false, 508 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 509 } 510 511 const CGFunctionInfo & 512 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 513 // FIXME: Do we need to handle ObjCMethodDecl? 514 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 515 516 if (isa<CXXConstructorDecl>(GD.getDecl()) || 517 isa<CXXDestructorDecl>(GD.getDecl())) 518 return arrangeCXXStructorDeclaration(GD); 519 520 return arrangeFunctionDeclaration(FD); 521 } 522 523 /// Arrange a thunk that takes 'this' as the first parameter followed by 524 /// varargs. Return a void pointer, regardless of the actual return type. 525 /// The body of the thunk will end in a musttail call to a function of the 526 /// correct type, and the caller will bitcast the function to the correct 527 /// prototype. 528 const CGFunctionInfo & 529 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 530 assert(MD->isVirtual() && "only methods have thunks"); 531 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 532 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 533 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 534 /*chainCall=*/false, ArgTys, 535 FTP->getExtInfo(), {}, RequiredArgs(1)); 536 } 537 538 const CGFunctionInfo & 539 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 540 CXXCtorType CT) { 541 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 542 543 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 544 SmallVector<CanQualType, 2> ArgTys; 545 const CXXRecordDecl *RD = CD->getParent(); 546 ArgTys.push_back(DeriveThisType(RD, CD)); 547 if (CT == Ctor_CopyingClosure) 548 ArgTys.push_back(*FTP->param_type_begin()); 549 if (RD->getNumVBases() > 0) 550 ArgTys.push_back(Context.IntTy); 551 CallingConv CC = Context.getDefaultCallingConvention( 552 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 553 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 554 /*chainCall=*/false, ArgTys, 555 FunctionType::ExtInfo(CC), {}, 556 RequiredArgs::All); 557 } 558 559 /// Arrange a call as unto a free function, except possibly with an 560 /// additional number of formal parameters considered required. 561 static const CGFunctionInfo & 562 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 563 CodeGenModule &CGM, 564 const CallArgList &args, 565 const FunctionType *fnType, 566 unsigned numExtraRequiredArgs, 567 bool chainCall) { 568 assert(args.size() >= numExtraRequiredArgs); 569 570 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 571 572 // In most cases, there are no optional arguments. 573 RequiredArgs required = RequiredArgs::All; 574 575 // If we have a variadic prototype, the required arguments are the 576 // extra prefix plus the arguments in the prototype. 577 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 578 if (proto->isVariadic()) 579 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 580 581 if (proto->hasExtParameterInfos()) 582 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 583 args.size()); 584 585 // If we don't have a prototype at all, but we're supposed to 586 // explicitly use the variadic convention for unprototyped calls, 587 // treat all of the arguments as required but preserve the nominal 588 // possibility of variadics. 589 } else if (CGM.getTargetCodeGenInfo() 590 .isNoProtoCallVariadic(args, 591 cast<FunctionNoProtoType>(fnType))) { 592 required = RequiredArgs(args.size()); 593 } 594 595 // FIXME: Kill copy. 596 SmallVector<CanQualType, 16> argTypes; 597 for (const auto &arg : args) 598 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 599 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 600 /*instanceMethod=*/false, chainCall, 601 argTypes, fnType->getExtInfo(), paramInfos, 602 required); 603 } 604 605 /// Figure out the rules for calling a function with the given formal 606 /// type using the given arguments. The arguments are necessary 607 /// because the function might be unprototyped, in which case it's 608 /// target-dependent in crazy ways. 609 const CGFunctionInfo & 610 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 611 const FunctionType *fnType, 612 bool chainCall) { 613 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 614 chainCall ? 1 : 0, chainCall); 615 } 616 617 /// A block function is essentially a free function with an 618 /// extra implicit argument. 619 const CGFunctionInfo & 620 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 621 const FunctionType *fnType) { 622 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 623 /*chainCall=*/false); 624 } 625 626 const CGFunctionInfo & 627 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 628 const FunctionArgList ¶ms) { 629 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 630 auto argTypes = getArgTypesForDeclaration(Context, params); 631 632 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 633 /*instanceMethod*/ false, /*chainCall*/ false, 634 argTypes, proto->getExtInfo(), paramInfos, 635 RequiredArgs::forPrototypePlus(proto, 1)); 636 } 637 638 const CGFunctionInfo & 639 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 640 const CallArgList &args) { 641 // FIXME: Kill copy. 642 SmallVector<CanQualType, 16> argTypes; 643 for (const auto &Arg : args) 644 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 645 return arrangeLLVMFunctionInfo( 646 GetReturnType(resultType), /*instanceMethod=*/false, 647 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 648 /*paramInfos=*/ {}, RequiredArgs::All); 649 } 650 651 const CGFunctionInfo & 652 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 653 const FunctionArgList &args) { 654 auto argTypes = getArgTypesForDeclaration(Context, args); 655 656 return arrangeLLVMFunctionInfo( 657 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 658 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 659 } 660 661 const CGFunctionInfo & 662 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 663 ArrayRef<CanQualType> argTypes) { 664 return arrangeLLVMFunctionInfo( 665 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 666 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 667 } 668 669 /// Arrange a call to a C++ method, passing the given arguments. 670 /// 671 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 672 /// does not count `this`. 673 const CGFunctionInfo & 674 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 675 const FunctionProtoType *proto, 676 RequiredArgs required, 677 unsigned numPrefixArgs) { 678 assert(numPrefixArgs + 1 <= args.size() && 679 "Emitting a call with less args than the required prefix?"); 680 // Add one to account for `this`. It's a bit awkward here, but we don't count 681 // `this` in similar places elsewhere. 682 auto paramInfos = 683 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 684 685 // FIXME: Kill copy. 686 auto argTypes = getArgTypesForCall(Context, args); 687 688 FunctionType::ExtInfo info = proto->getExtInfo(); 689 return arrangeLLVMFunctionInfo( 690 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 691 /*chainCall=*/false, argTypes, info, paramInfos, required); 692 } 693 694 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 695 return arrangeLLVMFunctionInfo( 696 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 697 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 698 } 699 700 const CGFunctionInfo & 701 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 702 const CallArgList &args) { 703 assert(signature.arg_size() <= args.size()); 704 if (signature.arg_size() == args.size()) 705 return signature; 706 707 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 708 auto sigParamInfos = signature.getExtParameterInfos(); 709 if (!sigParamInfos.empty()) { 710 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 711 paramInfos.resize(args.size()); 712 } 713 714 auto argTypes = getArgTypesForCall(Context, args); 715 716 assert(signature.getRequiredArgs().allowsOptionalArgs()); 717 return arrangeLLVMFunctionInfo(signature.getReturnType(), 718 signature.isInstanceMethod(), 719 signature.isChainCall(), 720 argTypes, 721 signature.getExtInfo(), 722 paramInfos, 723 signature.getRequiredArgs()); 724 } 725 726 namespace clang { 727 namespace CodeGen { 728 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 729 } 730 } 731 732 /// Arrange the argument and result information for an abstract value 733 /// of a given function type. This is the method which all of the 734 /// above functions ultimately defer to. 735 const CGFunctionInfo & 736 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 737 bool instanceMethod, 738 bool chainCall, 739 ArrayRef<CanQualType> argTypes, 740 FunctionType::ExtInfo info, 741 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 742 RequiredArgs required) { 743 assert(llvm::all_of(argTypes, 744 [](CanQualType T) { return T.isCanonicalAsParam(); })); 745 746 // Lookup or create unique function info. 747 llvm::FoldingSetNodeID ID; 748 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 749 required, resultType, argTypes); 750 751 void *insertPos = nullptr; 752 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 753 if (FI) 754 return *FI; 755 756 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 757 758 // Construct the function info. We co-allocate the ArgInfos. 759 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 760 paramInfos, resultType, argTypes, required); 761 FunctionInfos.InsertNode(FI, insertPos); 762 763 bool inserted = FunctionsBeingProcessed.insert(FI).second; 764 (void)inserted; 765 assert(inserted && "Recursively being processed?"); 766 767 // Compute ABI information. 768 if (CC == llvm::CallingConv::SPIR_KERNEL) { 769 // Force target independent argument handling for the host visible 770 // kernel functions. 771 computeSPIRKernelABIInfo(CGM, *FI); 772 } else if (info.getCC() == CC_Swift) { 773 swiftcall::computeABIInfo(CGM, *FI); 774 } else { 775 getABIInfo().computeInfo(*FI); 776 } 777 778 // Loop over all of the computed argument and return value info. If any of 779 // them are direct or extend without a specified coerce type, specify the 780 // default now. 781 ABIArgInfo &retInfo = FI->getReturnInfo(); 782 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 783 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 784 785 for (auto &I : FI->arguments()) 786 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 787 I.info.setCoerceToType(ConvertType(I.type)); 788 789 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 790 assert(erased && "Not in set?"); 791 792 return *FI; 793 } 794 795 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 796 bool instanceMethod, 797 bool chainCall, 798 const FunctionType::ExtInfo &info, 799 ArrayRef<ExtParameterInfo> paramInfos, 800 CanQualType resultType, 801 ArrayRef<CanQualType> argTypes, 802 RequiredArgs required) { 803 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 804 assert(!required.allowsOptionalArgs() || 805 required.getNumRequiredArgs() <= argTypes.size()); 806 807 void *buffer = 808 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 809 argTypes.size() + 1, paramInfos.size())); 810 811 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 812 FI->CallingConvention = llvmCC; 813 FI->EffectiveCallingConvention = llvmCC; 814 FI->ASTCallingConvention = info.getCC(); 815 FI->InstanceMethod = instanceMethod; 816 FI->ChainCall = chainCall; 817 FI->NoReturn = info.getNoReturn(); 818 FI->ReturnsRetained = info.getProducesResult(); 819 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 820 FI->NoCfCheck = info.getNoCfCheck(); 821 FI->Required = required; 822 FI->HasRegParm = info.getHasRegParm(); 823 FI->RegParm = info.getRegParm(); 824 FI->ArgStruct = nullptr; 825 FI->ArgStructAlign = 0; 826 FI->NumArgs = argTypes.size(); 827 FI->HasExtParameterInfos = !paramInfos.empty(); 828 FI->getArgsBuffer()[0].type = resultType; 829 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 830 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 831 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 832 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 833 return FI; 834 } 835 836 /***/ 837 838 namespace { 839 // ABIArgInfo::Expand implementation. 840 841 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 842 struct TypeExpansion { 843 enum TypeExpansionKind { 844 // Elements of constant arrays are expanded recursively. 845 TEK_ConstantArray, 846 // Record fields are expanded recursively (but if record is a union, only 847 // the field with the largest size is expanded). 848 TEK_Record, 849 // For complex types, real and imaginary parts are expanded recursively. 850 TEK_Complex, 851 // All other types are not expandable. 852 TEK_None 853 }; 854 855 const TypeExpansionKind Kind; 856 857 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 858 virtual ~TypeExpansion() {} 859 }; 860 861 struct ConstantArrayExpansion : TypeExpansion { 862 QualType EltTy; 863 uint64_t NumElts; 864 865 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 866 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 867 static bool classof(const TypeExpansion *TE) { 868 return TE->Kind == TEK_ConstantArray; 869 } 870 }; 871 872 struct RecordExpansion : TypeExpansion { 873 SmallVector<const CXXBaseSpecifier *, 1> Bases; 874 875 SmallVector<const FieldDecl *, 1> Fields; 876 877 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 878 SmallVector<const FieldDecl *, 1> &&Fields) 879 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 880 Fields(std::move(Fields)) {} 881 static bool classof(const TypeExpansion *TE) { 882 return TE->Kind == TEK_Record; 883 } 884 }; 885 886 struct ComplexExpansion : TypeExpansion { 887 QualType EltTy; 888 889 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 890 static bool classof(const TypeExpansion *TE) { 891 return TE->Kind == TEK_Complex; 892 } 893 }; 894 895 struct NoExpansion : TypeExpansion { 896 NoExpansion() : TypeExpansion(TEK_None) {} 897 static bool classof(const TypeExpansion *TE) { 898 return TE->Kind == TEK_None; 899 } 900 }; 901 } // namespace 902 903 static std::unique_ptr<TypeExpansion> 904 getTypeExpansion(QualType Ty, const ASTContext &Context) { 905 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 906 return std::make_unique<ConstantArrayExpansion>( 907 AT->getElementType(), AT->getSize().getZExtValue()); 908 } 909 if (const RecordType *RT = Ty->getAs<RecordType>()) { 910 SmallVector<const CXXBaseSpecifier *, 1> Bases; 911 SmallVector<const FieldDecl *, 1> Fields; 912 const RecordDecl *RD = RT->getDecl(); 913 assert(!RD->hasFlexibleArrayMember() && 914 "Cannot expand structure with flexible array."); 915 if (RD->isUnion()) { 916 // Unions can be here only in degenerative cases - all the fields are same 917 // after flattening. Thus we have to use the "largest" field. 918 const FieldDecl *LargestFD = nullptr; 919 CharUnits UnionSize = CharUnits::Zero(); 920 921 for (const auto *FD : RD->fields()) { 922 if (FD->isZeroLengthBitField(Context)) 923 continue; 924 assert(!FD->isBitField() && 925 "Cannot expand structure with bit-field members."); 926 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 927 if (UnionSize < FieldSize) { 928 UnionSize = FieldSize; 929 LargestFD = FD; 930 } 931 } 932 if (LargestFD) 933 Fields.push_back(LargestFD); 934 } else { 935 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 936 assert(!CXXRD->isDynamicClass() && 937 "cannot expand vtable pointers in dynamic classes"); 938 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 939 Bases.push_back(&BS); 940 } 941 942 for (const auto *FD : RD->fields()) { 943 if (FD->isZeroLengthBitField(Context)) 944 continue; 945 assert(!FD->isBitField() && 946 "Cannot expand structure with bit-field members."); 947 Fields.push_back(FD); 948 } 949 } 950 return std::make_unique<RecordExpansion>(std::move(Bases), 951 std::move(Fields)); 952 } 953 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 954 return std::make_unique<ComplexExpansion>(CT->getElementType()); 955 } 956 return std::make_unique<NoExpansion>(); 957 } 958 959 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 960 auto Exp = getTypeExpansion(Ty, Context); 961 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 962 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 963 } 964 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 965 int Res = 0; 966 for (auto BS : RExp->Bases) 967 Res += getExpansionSize(BS->getType(), Context); 968 for (auto FD : RExp->Fields) 969 Res += getExpansionSize(FD->getType(), Context); 970 return Res; 971 } 972 if (isa<ComplexExpansion>(Exp.get())) 973 return 2; 974 assert(isa<NoExpansion>(Exp.get())); 975 return 1; 976 } 977 978 void 979 CodeGenTypes::getExpandedTypes(QualType Ty, 980 SmallVectorImpl<llvm::Type *>::iterator &TI) { 981 auto Exp = getTypeExpansion(Ty, Context); 982 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 983 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 984 getExpandedTypes(CAExp->EltTy, TI); 985 } 986 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 987 for (auto BS : RExp->Bases) 988 getExpandedTypes(BS->getType(), TI); 989 for (auto FD : RExp->Fields) 990 getExpandedTypes(FD->getType(), TI); 991 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 992 llvm::Type *EltTy = ConvertType(CExp->EltTy); 993 *TI++ = EltTy; 994 *TI++ = EltTy; 995 } else { 996 assert(isa<NoExpansion>(Exp.get())); 997 *TI++ = ConvertType(Ty); 998 } 999 } 1000 1001 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1002 ConstantArrayExpansion *CAE, 1003 Address BaseAddr, 1004 llvm::function_ref<void(Address)> Fn) { 1005 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1006 CharUnits EltAlign = 1007 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1008 1009 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1010 llvm::Value *EltAddr = 1011 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1012 Fn(Address(EltAddr, EltAlign)); 1013 } 1014 } 1015 1016 void CodeGenFunction::ExpandTypeFromArgs( 1017 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 1018 assert(LV.isSimple() && 1019 "Unexpected non-simple lvalue during struct expansion."); 1020 1021 auto Exp = getTypeExpansion(Ty, getContext()); 1022 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1023 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 1024 [&](Address EltAddr) { 1025 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1026 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1027 }); 1028 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1029 Address This = LV.getAddress(); 1030 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1031 // Perform a single step derived-to-base conversion. 1032 Address Base = 1033 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1034 /*NullCheckValue=*/false, SourceLocation()); 1035 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1036 1037 // Recurse onto bases. 1038 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1039 } 1040 for (auto FD : RExp->Fields) { 1041 // FIXME: What are the right qualifiers here? 1042 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1043 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1044 } 1045 } else if (isa<ComplexExpansion>(Exp.get())) { 1046 auto realValue = *AI++; 1047 auto imagValue = *AI++; 1048 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1049 } else { 1050 assert(isa<NoExpansion>(Exp.get())); 1051 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1052 } 1053 } 1054 1055 void CodeGenFunction::ExpandTypeToArgs( 1056 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1057 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1058 auto Exp = getTypeExpansion(Ty, getContext()); 1059 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1060 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1061 : Arg.getKnownRValue().getAggregateAddress(); 1062 forConstantArrayExpansion( 1063 *this, CAExp, Addr, [&](Address EltAddr) { 1064 CallArg EltArg = CallArg( 1065 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1066 CAExp->EltTy); 1067 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1068 IRCallArgPos); 1069 }); 1070 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1071 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1072 : Arg.getKnownRValue().getAggregateAddress(); 1073 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1074 // Perform a single step derived-to-base conversion. 1075 Address Base = 1076 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1077 /*NullCheckValue=*/false, SourceLocation()); 1078 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1079 1080 // Recurse onto bases. 1081 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1082 IRCallArgPos); 1083 } 1084 1085 LValue LV = MakeAddrLValue(This, Ty); 1086 for (auto FD : RExp->Fields) { 1087 CallArg FldArg = 1088 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1089 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1090 IRCallArgPos); 1091 } 1092 } else if (isa<ComplexExpansion>(Exp.get())) { 1093 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1094 IRCallArgs[IRCallArgPos++] = CV.first; 1095 IRCallArgs[IRCallArgPos++] = CV.second; 1096 } else { 1097 assert(isa<NoExpansion>(Exp.get())); 1098 auto RV = Arg.getKnownRValue(); 1099 assert(RV.isScalar() && 1100 "Unexpected non-scalar rvalue during struct expansion."); 1101 1102 // Insert a bitcast as needed. 1103 llvm::Value *V = RV.getScalarVal(); 1104 if (IRCallArgPos < IRFuncTy->getNumParams() && 1105 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1106 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1107 1108 IRCallArgs[IRCallArgPos++] = V; 1109 } 1110 } 1111 1112 /// Create a temporary allocation for the purposes of coercion. 1113 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1114 CharUnits MinAlign) { 1115 // Don't use an alignment that's worse than what LLVM would prefer. 1116 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1117 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1118 1119 return CGF.CreateTempAlloca(Ty, Align); 1120 } 1121 1122 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1123 /// accessing some number of bytes out of it, try to gep into the struct to get 1124 /// at its inner goodness. Dive as deep as possible without entering an element 1125 /// with an in-memory size smaller than DstSize. 1126 static Address 1127 EnterStructPointerForCoercedAccess(Address SrcPtr, 1128 llvm::StructType *SrcSTy, 1129 uint64_t DstSize, CodeGenFunction &CGF) { 1130 // We can't dive into a zero-element struct. 1131 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1132 1133 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1134 1135 // If the first elt is at least as large as what we're looking for, or if the 1136 // first element is the same size as the whole struct, we can enter it. The 1137 // comparison must be made on the store size and not the alloca size. Using 1138 // the alloca size may overstate the size of the load. 1139 uint64_t FirstEltSize = 1140 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1141 if (FirstEltSize < DstSize && 1142 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1143 return SrcPtr; 1144 1145 // GEP into the first element. 1146 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1147 1148 // If the first element is a struct, recurse. 1149 llvm::Type *SrcTy = SrcPtr.getElementType(); 1150 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1151 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1152 1153 return SrcPtr; 1154 } 1155 1156 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1157 /// are either integers or pointers. This does a truncation of the value if it 1158 /// is too large or a zero extension if it is too small. 1159 /// 1160 /// This behaves as if the value were coerced through memory, so on big-endian 1161 /// targets the high bits are preserved in a truncation, while little-endian 1162 /// targets preserve the low bits. 1163 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1164 llvm::Type *Ty, 1165 CodeGenFunction &CGF) { 1166 if (Val->getType() == Ty) 1167 return Val; 1168 1169 if (isa<llvm::PointerType>(Val->getType())) { 1170 // If this is Pointer->Pointer avoid conversion to and from int. 1171 if (isa<llvm::PointerType>(Ty)) 1172 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1173 1174 // Convert the pointer to an integer so we can play with its width. 1175 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1176 } 1177 1178 llvm::Type *DestIntTy = Ty; 1179 if (isa<llvm::PointerType>(DestIntTy)) 1180 DestIntTy = CGF.IntPtrTy; 1181 1182 if (Val->getType() != DestIntTy) { 1183 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1184 if (DL.isBigEndian()) { 1185 // Preserve the high bits on big-endian targets. 1186 // That is what memory coercion does. 1187 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1188 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1189 1190 if (SrcSize > DstSize) { 1191 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1192 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1193 } else { 1194 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1195 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1196 } 1197 } else { 1198 // Little-endian targets preserve the low bits. No shifts required. 1199 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1200 } 1201 } 1202 1203 if (isa<llvm::PointerType>(Ty)) 1204 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1205 return Val; 1206 } 1207 1208 1209 1210 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1211 /// a pointer to an object of type \arg Ty, known to be aligned to 1212 /// \arg SrcAlign bytes. 1213 /// 1214 /// This safely handles the case when the src type is smaller than the 1215 /// destination type; in this situation the values of bits which not 1216 /// present in the src are undefined. 1217 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1218 CodeGenFunction &CGF) { 1219 llvm::Type *SrcTy = Src.getElementType(); 1220 1221 // If SrcTy and Ty are the same, just do a load. 1222 if (SrcTy == Ty) 1223 return CGF.Builder.CreateLoad(Src); 1224 1225 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1226 1227 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1228 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1229 SrcTy = Src.getType()->getElementType(); 1230 } 1231 1232 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1233 1234 // If the source and destination are integer or pointer types, just do an 1235 // extension or truncation to the desired type. 1236 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1237 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1238 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1239 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1240 } 1241 1242 // If load is legal, just bitcast the src pointer. 1243 if (SrcSize >= DstSize) { 1244 // Generally SrcSize is never greater than DstSize, since this means we are 1245 // losing bits. However, this can happen in cases where the structure has 1246 // additional padding, for example due to a user specified alignment. 1247 // 1248 // FIXME: Assert that we aren't truncating non-padding bits when have access 1249 // to that information. 1250 Src = CGF.Builder.CreateBitCast(Src, 1251 Ty->getPointerTo(Src.getAddressSpace())); 1252 return CGF.Builder.CreateLoad(Src); 1253 } 1254 1255 // Otherwise do coercion through memory. This is stupid, but simple. 1256 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1257 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); 1258 Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty); 1259 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1260 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1261 false); 1262 return CGF.Builder.CreateLoad(Tmp); 1263 } 1264 1265 // Function to store a first-class aggregate into memory. We prefer to 1266 // store the elements rather than the aggregate to be more friendly to 1267 // fast-isel. 1268 // FIXME: Do we need to recurse here? 1269 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1270 Address Dest, bool DestIsVolatile) { 1271 // Prefer scalar stores to first-class aggregate stores. 1272 if (llvm::StructType *STy = 1273 dyn_cast<llvm::StructType>(Val->getType())) { 1274 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1275 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i); 1276 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1277 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1278 } 1279 } else { 1280 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1281 } 1282 } 1283 1284 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1285 /// where the source and destination may have different types. The 1286 /// destination is known to be aligned to \arg DstAlign bytes. 1287 /// 1288 /// This safely handles the case when the src type is larger than the 1289 /// destination type; the upper bits of the src will be lost. 1290 static void CreateCoercedStore(llvm::Value *Src, 1291 Address Dst, 1292 bool DstIsVolatile, 1293 CodeGenFunction &CGF) { 1294 llvm::Type *SrcTy = Src->getType(); 1295 llvm::Type *DstTy = Dst.getType()->getElementType(); 1296 if (SrcTy == DstTy) { 1297 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1298 return; 1299 } 1300 1301 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1302 1303 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1304 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1305 DstTy = Dst.getType()->getElementType(); 1306 } 1307 1308 // If the source and destination are integer or pointer types, just do an 1309 // extension or truncation to the desired type. 1310 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1311 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1312 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1313 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1314 return; 1315 } 1316 1317 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1318 1319 // If store is legal, just bitcast the src pointer. 1320 if (SrcSize <= DstSize) { 1321 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1322 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1323 } else { 1324 // Otherwise do coercion through memory. This is stupid, but 1325 // simple. 1326 1327 // Generally SrcSize is never greater than DstSize, since this means we are 1328 // losing bits. However, this can happen in cases where the structure has 1329 // additional padding, for example due to a user specified alignment. 1330 // 1331 // FIXME: Assert that we aren't truncating non-padding bits when have access 1332 // to that information. 1333 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1334 CGF.Builder.CreateStore(Src, Tmp); 1335 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); 1336 Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty); 1337 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1338 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1339 false); 1340 } 1341 } 1342 1343 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1344 const ABIArgInfo &info) { 1345 if (unsigned offset = info.getDirectOffset()) { 1346 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1347 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1348 CharUnits::fromQuantity(offset)); 1349 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1350 } 1351 return addr; 1352 } 1353 1354 namespace { 1355 1356 /// Encapsulates information about the way function arguments from 1357 /// CGFunctionInfo should be passed to actual LLVM IR function. 1358 class ClangToLLVMArgMapping { 1359 static const unsigned InvalidIndex = ~0U; 1360 unsigned InallocaArgNo; 1361 unsigned SRetArgNo; 1362 unsigned TotalIRArgs; 1363 1364 /// Arguments of LLVM IR function corresponding to single Clang argument. 1365 struct IRArgs { 1366 unsigned PaddingArgIndex; 1367 // Argument is expanded to IR arguments at positions 1368 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1369 unsigned FirstArgIndex; 1370 unsigned NumberOfArgs; 1371 1372 IRArgs() 1373 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1374 NumberOfArgs(0) {} 1375 }; 1376 1377 SmallVector<IRArgs, 8> ArgInfo; 1378 1379 public: 1380 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1381 bool OnlyRequiredArgs = false) 1382 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1383 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1384 construct(Context, FI, OnlyRequiredArgs); 1385 } 1386 1387 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1388 unsigned getInallocaArgNo() const { 1389 assert(hasInallocaArg()); 1390 return InallocaArgNo; 1391 } 1392 1393 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1394 unsigned getSRetArgNo() const { 1395 assert(hasSRetArg()); 1396 return SRetArgNo; 1397 } 1398 1399 unsigned totalIRArgs() const { return TotalIRArgs; } 1400 1401 bool hasPaddingArg(unsigned ArgNo) const { 1402 assert(ArgNo < ArgInfo.size()); 1403 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1404 } 1405 unsigned getPaddingArgNo(unsigned ArgNo) const { 1406 assert(hasPaddingArg(ArgNo)); 1407 return ArgInfo[ArgNo].PaddingArgIndex; 1408 } 1409 1410 /// Returns index of first IR argument corresponding to ArgNo, and their 1411 /// quantity. 1412 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1413 assert(ArgNo < ArgInfo.size()); 1414 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1415 ArgInfo[ArgNo].NumberOfArgs); 1416 } 1417 1418 private: 1419 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1420 bool OnlyRequiredArgs); 1421 }; 1422 1423 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1424 const CGFunctionInfo &FI, 1425 bool OnlyRequiredArgs) { 1426 unsigned IRArgNo = 0; 1427 bool SwapThisWithSRet = false; 1428 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1429 1430 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1431 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1432 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1433 } 1434 1435 unsigned ArgNo = 0; 1436 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1437 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1438 ++I, ++ArgNo) { 1439 assert(I != FI.arg_end()); 1440 QualType ArgType = I->type; 1441 const ABIArgInfo &AI = I->info; 1442 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1443 auto &IRArgs = ArgInfo[ArgNo]; 1444 1445 if (AI.getPaddingType()) 1446 IRArgs.PaddingArgIndex = IRArgNo++; 1447 1448 switch (AI.getKind()) { 1449 case ABIArgInfo::Extend: 1450 case ABIArgInfo::Direct: { 1451 // FIXME: handle sseregparm someday... 1452 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1453 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1454 IRArgs.NumberOfArgs = STy->getNumElements(); 1455 } else { 1456 IRArgs.NumberOfArgs = 1; 1457 } 1458 break; 1459 } 1460 case ABIArgInfo::Indirect: 1461 IRArgs.NumberOfArgs = 1; 1462 break; 1463 case ABIArgInfo::Ignore: 1464 case ABIArgInfo::InAlloca: 1465 // ignore and inalloca doesn't have matching LLVM parameters. 1466 IRArgs.NumberOfArgs = 0; 1467 break; 1468 case ABIArgInfo::CoerceAndExpand: 1469 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1470 break; 1471 case ABIArgInfo::Expand: 1472 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1473 break; 1474 } 1475 1476 if (IRArgs.NumberOfArgs > 0) { 1477 IRArgs.FirstArgIndex = IRArgNo; 1478 IRArgNo += IRArgs.NumberOfArgs; 1479 } 1480 1481 // Skip over the sret parameter when it comes second. We already handled it 1482 // above. 1483 if (IRArgNo == 1 && SwapThisWithSRet) 1484 IRArgNo++; 1485 } 1486 assert(ArgNo == ArgInfo.size()); 1487 1488 if (FI.usesInAlloca()) 1489 InallocaArgNo = IRArgNo++; 1490 1491 TotalIRArgs = IRArgNo; 1492 } 1493 } // namespace 1494 1495 /***/ 1496 1497 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1498 const auto &RI = FI.getReturnInfo(); 1499 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1500 } 1501 1502 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1503 return ReturnTypeUsesSRet(FI) && 1504 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1505 } 1506 1507 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1508 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1509 switch (BT->getKind()) { 1510 default: 1511 return false; 1512 case BuiltinType::Float: 1513 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1514 case BuiltinType::Double: 1515 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1516 case BuiltinType::LongDouble: 1517 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1518 } 1519 } 1520 1521 return false; 1522 } 1523 1524 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1525 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1526 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1527 if (BT->getKind() == BuiltinType::LongDouble) 1528 return getTarget().useObjCFP2RetForComplexLongDouble(); 1529 } 1530 } 1531 1532 return false; 1533 } 1534 1535 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1536 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1537 return GetFunctionType(FI); 1538 } 1539 1540 llvm::FunctionType * 1541 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1542 1543 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1544 (void)Inserted; 1545 assert(Inserted && "Recursively being processed?"); 1546 1547 llvm::Type *resultType = nullptr; 1548 const ABIArgInfo &retAI = FI.getReturnInfo(); 1549 switch (retAI.getKind()) { 1550 case ABIArgInfo::Expand: 1551 llvm_unreachable("Invalid ABI kind for return argument"); 1552 1553 case ABIArgInfo::Extend: 1554 case ABIArgInfo::Direct: 1555 resultType = retAI.getCoerceToType(); 1556 break; 1557 1558 case ABIArgInfo::InAlloca: 1559 if (retAI.getInAllocaSRet()) { 1560 // sret things on win32 aren't void, they return the sret pointer. 1561 QualType ret = FI.getReturnType(); 1562 llvm::Type *ty = ConvertType(ret); 1563 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1564 resultType = llvm::PointerType::get(ty, addressSpace); 1565 } else { 1566 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1567 } 1568 break; 1569 1570 case ABIArgInfo::Indirect: 1571 case ABIArgInfo::Ignore: 1572 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1573 break; 1574 1575 case ABIArgInfo::CoerceAndExpand: 1576 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1577 break; 1578 } 1579 1580 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1581 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1582 1583 // Add type for sret argument. 1584 if (IRFunctionArgs.hasSRetArg()) { 1585 QualType Ret = FI.getReturnType(); 1586 llvm::Type *Ty = ConvertType(Ret); 1587 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1588 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1589 llvm::PointerType::get(Ty, AddressSpace); 1590 } 1591 1592 // Add type for inalloca argument. 1593 if (IRFunctionArgs.hasInallocaArg()) { 1594 auto ArgStruct = FI.getArgStruct(); 1595 assert(ArgStruct); 1596 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1597 } 1598 1599 // Add in all of the required arguments. 1600 unsigned ArgNo = 0; 1601 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1602 ie = it + FI.getNumRequiredArgs(); 1603 for (; it != ie; ++it, ++ArgNo) { 1604 const ABIArgInfo &ArgInfo = it->info; 1605 1606 // Insert a padding type to ensure proper alignment. 1607 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1608 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1609 ArgInfo.getPaddingType(); 1610 1611 unsigned FirstIRArg, NumIRArgs; 1612 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1613 1614 switch (ArgInfo.getKind()) { 1615 case ABIArgInfo::Ignore: 1616 case ABIArgInfo::InAlloca: 1617 assert(NumIRArgs == 0); 1618 break; 1619 1620 case ABIArgInfo::Indirect: { 1621 assert(NumIRArgs == 1); 1622 // indirect arguments are always on the stack, which is alloca addr space. 1623 llvm::Type *LTy = ConvertTypeForMem(it->type); 1624 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1625 CGM.getDataLayout().getAllocaAddrSpace()); 1626 break; 1627 } 1628 1629 case ABIArgInfo::Extend: 1630 case ABIArgInfo::Direct: { 1631 // Fast-isel and the optimizer generally like scalar values better than 1632 // FCAs, so we flatten them if this is safe to do for this argument. 1633 llvm::Type *argType = ArgInfo.getCoerceToType(); 1634 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1635 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1636 assert(NumIRArgs == st->getNumElements()); 1637 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1638 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1639 } else { 1640 assert(NumIRArgs == 1); 1641 ArgTypes[FirstIRArg] = argType; 1642 } 1643 break; 1644 } 1645 1646 case ABIArgInfo::CoerceAndExpand: { 1647 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1648 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1649 *ArgTypesIter++ = EltTy; 1650 } 1651 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1652 break; 1653 } 1654 1655 case ABIArgInfo::Expand: 1656 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1657 getExpandedTypes(it->type, ArgTypesIter); 1658 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1659 break; 1660 } 1661 } 1662 1663 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1664 assert(Erased && "Not in set?"); 1665 1666 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1667 } 1668 1669 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1670 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1671 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1672 1673 if (!isFuncTypeConvertible(FPT)) 1674 return llvm::StructType::get(getLLVMContext()); 1675 1676 return GetFunctionType(GD); 1677 } 1678 1679 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1680 llvm::AttrBuilder &FuncAttrs, 1681 const FunctionProtoType *FPT) { 1682 if (!FPT) 1683 return; 1684 1685 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1686 FPT->isNothrow()) 1687 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1688 } 1689 1690 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1691 bool AttrOnCallSite, 1692 llvm::AttrBuilder &FuncAttrs) { 1693 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1694 if (!HasOptnone) { 1695 if (CodeGenOpts.OptimizeSize) 1696 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1697 if (CodeGenOpts.OptimizeSize == 2) 1698 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1699 } 1700 1701 if (CodeGenOpts.DisableRedZone) 1702 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1703 if (CodeGenOpts.IndirectTlsSegRefs) 1704 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1705 if (CodeGenOpts.NoImplicitFloat) 1706 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1707 1708 if (AttrOnCallSite) { 1709 // Attributes that should go on the call site only. 1710 if (!CodeGenOpts.SimplifyLibCalls || 1711 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1712 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1713 if (!CodeGenOpts.TrapFuncName.empty()) 1714 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1715 } else { 1716 StringRef FpKind; 1717 switch (CodeGenOpts.getFramePointer()) { 1718 case CodeGenOptions::FramePointerKind::None: 1719 FpKind = "none"; 1720 break; 1721 case CodeGenOptions::FramePointerKind::NonLeaf: 1722 FpKind = "non-leaf"; 1723 break; 1724 case CodeGenOptions::FramePointerKind::All: 1725 FpKind = "all"; 1726 break; 1727 } 1728 FuncAttrs.addAttribute("frame-pointer", FpKind); 1729 1730 FuncAttrs.addAttribute("less-precise-fpmad", 1731 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1732 1733 if (CodeGenOpts.NullPointerIsValid) 1734 FuncAttrs.addAttribute("null-pointer-is-valid", "true"); 1735 if (!CodeGenOpts.FPDenormalMode.empty()) 1736 FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); 1737 1738 FuncAttrs.addAttribute("no-trapping-math", 1739 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1740 1741 // Strict (compliant) code is the default, so only add this attribute to 1742 // indicate that we are trying to workaround a problem case. 1743 if (!CodeGenOpts.StrictFloatCastOverflow) 1744 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1745 1746 // TODO: Are these all needed? 1747 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1748 FuncAttrs.addAttribute("no-infs-fp-math", 1749 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1750 FuncAttrs.addAttribute("no-nans-fp-math", 1751 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1752 FuncAttrs.addAttribute("unsafe-fp-math", 1753 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1754 FuncAttrs.addAttribute("use-soft-float", 1755 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1756 FuncAttrs.addAttribute("stack-protector-buffer-size", 1757 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1758 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1759 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1760 FuncAttrs.addAttribute( 1761 "correctly-rounded-divide-sqrt-fp-math", 1762 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1763 1764 if (getLangOpts().OpenCL) 1765 FuncAttrs.addAttribute("denorms-are-zero", 1766 llvm::toStringRef(CodeGenOpts.FlushDenorm)); 1767 1768 // TODO: Reciprocal estimate codegen options should apply to instructions? 1769 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1770 if (!Recips.empty()) 1771 FuncAttrs.addAttribute("reciprocal-estimates", 1772 llvm::join(Recips, ",")); 1773 1774 if (!CodeGenOpts.PreferVectorWidth.empty() && 1775 CodeGenOpts.PreferVectorWidth != "none") 1776 FuncAttrs.addAttribute("prefer-vector-width", 1777 CodeGenOpts.PreferVectorWidth); 1778 1779 if (CodeGenOpts.StackRealignment) 1780 FuncAttrs.addAttribute("stackrealign"); 1781 if (CodeGenOpts.Backchain) 1782 FuncAttrs.addAttribute("backchain"); 1783 1784 if (CodeGenOpts.SpeculativeLoadHardening) 1785 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1786 } 1787 1788 if (getLangOpts().assumeFunctionsAreConvergent()) { 1789 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1790 // convergent (meaning, they may call an intrinsically convergent op, such 1791 // as __syncthreads() / barrier(), and so can't have certain optimizations 1792 // applied around them). LLVM will remove this attribute where it safely 1793 // can. 1794 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1795 } 1796 1797 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1798 // Exceptions aren't supported in CUDA device code. 1799 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1800 1801 // Respect -fcuda-flush-denormals-to-zero. 1802 if (CodeGenOpts.FlushDenorm) 1803 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1804 } 1805 1806 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1807 StringRef Var, Value; 1808 std::tie(Var, Value) = Attr.split('='); 1809 FuncAttrs.addAttribute(Var, Value); 1810 } 1811 } 1812 1813 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1814 llvm::AttrBuilder FuncAttrs; 1815 ConstructDefaultFnAttrList(F.getName(), F.hasOptNone(), 1816 /* AttrOnCallSite = */ false, FuncAttrs); 1817 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1818 } 1819 1820 void CodeGenModule::ConstructAttributeList( 1821 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1822 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1823 llvm::AttrBuilder FuncAttrs; 1824 llvm::AttrBuilder RetAttrs; 1825 1826 CallingConv = FI.getEffectiveCallingConvention(); 1827 if (FI.isNoReturn()) 1828 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1829 1830 // If we have information about the function prototype, we can learn 1831 // attributes from there. 1832 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1833 CalleeInfo.getCalleeFunctionProtoType()); 1834 1835 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 1836 1837 bool HasOptnone = false; 1838 // FIXME: handle sseregparm someday... 1839 if (TargetDecl) { 1840 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1841 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1842 if (TargetDecl->hasAttr<NoThrowAttr>()) 1843 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1844 if (TargetDecl->hasAttr<NoReturnAttr>()) 1845 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1846 if (TargetDecl->hasAttr<ColdAttr>()) 1847 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1848 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1849 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1850 if (TargetDecl->hasAttr<ConvergentAttr>()) 1851 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1852 1853 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1854 AddAttributesFromFunctionProtoType( 1855 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1856 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1857 const bool IsVirtualCall = MD && MD->isVirtual(); 1858 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 1859 // virtual function. These attributes are not inherited by overloads. 1860 if (!(AttrOnCallSite && IsVirtualCall)) { 1861 if (Fn->isNoReturn()) 1862 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1863 1864 if (const auto *NBA = TargetDecl->getAttr<NoBuiltinAttr>()) { 1865 bool HasWildcard = llvm::is_contained(NBA->builtinNames(), "*"); 1866 if (HasWildcard) 1867 FuncAttrs.addAttribute("no-builtins"); 1868 else 1869 for (StringRef BuiltinName : NBA->builtinNames()) { 1870 SmallString<32> AttributeName; 1871 AttributeName += "no-builtin-"; 1872 AttributeName += BuiltinName; 1873 FuncAttrs.addAttribute(AttributeName); 1874 } 1875 } 1876 } 1877 } 1878 1879 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1880 if (TargetDecl->hasAttr<ConstAttr>()) { 1881 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1882 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1883 } else if (TargetDecl->hasAttr<PureAttr>()) { 1884 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1885 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1886 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1887 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1888 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1889 } 1890 if (TargetDecl->hasAttr<RestrictAttr>()) 1891 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1892 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1893 !CodeGenOpts.NullPointerIsValid) 1894 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1895 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1896 FuncAttrs.addAttribute("no_caller_saved_registers"); 1897 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1898 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1899 1900 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1901 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1902 Optional<unsigned> NumElemsParam; 1903 if (AllocSize->getNumElemsParam().isValid()) 1904 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 1905 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 1906 NumElemsParam); 1907 } 1908 } 1909 1910 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1911 1912 // This must run after constructing the default function attribute list 1913 // to ensure that the speculative load hardening attribute is removed 1914 // in the case where the -mspeculative-load-hardening flag was passed. 1915 if (TargetDecl) { 1916 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 1917 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 1918 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 1919 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1920 } 1921 1922 if (CodeGenOpts.EnableSegmentedStacks && 1923 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1924 FuncAttrs.addAttribute("split-stack"); 1925 1926 // Add NonLazyBind attribute to function declarations when -fno-plt 1927 // is used. 1928 if (TargetDecl && CodeGenOpts.NoPLT) { 1929 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1930 if (!Fn->isDefined() && !AttrOnCallSite) { 1931 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 1932 } 1933 } 1934 } 1935 1936 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) { 1937 if (getLangOpts().OpenCLVersion <= 120) { 1938 // OpenCL v1.2 Work groups are always uniform 1939 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 1940 } else { 1941 // OpenCL v2.0 Work groups may be whether uniform or not. 1942 // '-cl-uniform-work-group-size' compile option gets a hint 1943 // to the compiler that the global work-size be a multiple of 1944 // the work-group size specified to clEnqueueNDRangeKernel 1945 // (i.e. work groups are uniform). 1946 FuncAttrs.addAttribute("uniform-work-group-size", 1947 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 1948 } 1949 } 1950 1951 if (!AttrOnCallSite) { 1952 bool DisableTailCalls = false; 1953 1954 if (CodeGenOpts.DisableTailCalls) 1955 DisableTailCalls = true; 1956 else if (TargetDecl) { 1957 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 1958 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 1959 DisableTailCalls = true; 1960 else if (CodeGenOpts.NoEscapingBlockTailCalls) { 1961 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 1962 if (!BD->doesNotEscape()) 1963 DisableTailCalls = true; 1964 } 1965 } 1966 1967 FuncAttrs.addAttribute("disable-tail-calls", 1968 llvm::toStringRef(DisableTailCalls)); 1969 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 1970 } 1971 1972 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1973 1974 QualType RetTy = FI.getReturnType(); 1975 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1976 switch (RetAI.getKind()) { 1977 case ABIArgInfo::Extend: 1978 if (RetAI.isSignExt()) 1979 RetAttrs.addAttribute(llvm::Attribute::SExt); 1980 else 1981 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1982 LLVM_FALLTHROUGH; 1983 case ABIArgInfo::Direct: 1984 if (RetAI.getInReg()) 1985 RetAttrs.addAttribute(llvm::Attribute::InReg); 1986 break; 1987 case ABIArgInfo::Ignore: 1988 break; 1989 1990 case ABIArgInfo::InAlloca: 1991 case ABIArgInfo::Indirect: { 1992 // inalloca and sret disable readnone and readonly 1993 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1994 .removeAttribute(llvm::Attribute::ReadNone); 1995 break; 1996 } 1997 1998 case ABIArgInfo::CoerceAndExpand: 1999 break; 2000 2001 case ABIArgInfo::Expand: 2002 llvm_unreachable("Invalid ABI kind for return argument"); 2003 } 2004 2005 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2006 QualType PTy = RefTy->getPointeeType(); 2007 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2008 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2009 .getQuantity()); 2010 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2011 !CodeGenOpts.NullPointerIsValid) 2012 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2013 } 2014 2015 bool hasUsedSRet = false; 2016 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2017 2018 // Attach attributes to sret. 2019 if (IRFunctionArgs.hasSRetArg()) { 2020 llvm::AttrBuilder SRETAttrs; 2021 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 2022 hasUsedSRet = true; 2023 if (RetAI.getInReg()) 2024 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2025 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2026 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2027 } 2028 2029 // Attach attributes to inalloca argument. 2030 if (IRFunctionArgs.hasInallocaArg()) { 2031 llvm::AttrBuilder Attrs; 2032 Attrs.addAttribute(llvm::Attribute::InAlloca); 2033 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2034 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2035 } 2036 2037 unsigned ArgNo = 0; 2038 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2039 E = FI.arg_end(); 2040 I != E; ++I, ++ArgNo) { 2041 QualType ParamType = I->type; 2042 const ABIArgInfo &AI = I->info; 2043 llvm::AttrBuilder Attrs; 2044 2045 // Add attribute for padding argument, if necessary. 2046 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2047 if (AI.getPaddingInReg()) { 2048 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2049 llvm::AttributeSet::get( 2050 getLLVMContext(), 2051 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2052 } 2053 } 2054 2055 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2056 // have the corresponding parameter variable. It doesn't make 2057 // sense to do it here because parameters are so messed up. 2058 switch (AI.getKind()) { 2059 case ABIArgInfo::Extend: 2060 if (AI.isSignExt()) 2061 Attrs.addAttribute(llvm::Attribute::SExt); 2062 else 2063 Attrs.addAttribute(llvm::Attribute::ZExt); 2064 LLVM_FALLTHROUGH; 2065 case ABIArgInfo::Direct: 2066 if (ArgNo == 0 && FI.isChainCall()) 2067 Attrs.addAttribute(llvm::Attribute::Nest); 2068 else if (AI.getInReg()) 2069 Attrs.addAttribute(llvm::Attribute::InReg); 2070 break; 2071 2072 case ABIArgInfo::Indirect: { 2073 if (AI.getInReg()) 2074 Attrs.addAttribute(llvm::Attribute::InReg); 2075 2076 if (AI.getIndirectByVal()) 2077 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2078 2079 CharUnits Align = AI.getIndirectAlign(); 2080 2081 // In a byval argument, it is important that the required 2082 // alignment of the type is honored, as LLVM might be creating a 2083 // *new* stack object, and needs to know what alignment to give 2084 // it. (Sometimes it can deduce a sensible alignment on its own, 2085 // but not if clang decides it must emit a packed struct, or the 2086 // user specifies increased alignment requirements.) 2087 // 2088 // This is different from indirect *not* byval, where the object 2089 // exists already, and the align attribute is purely 2090 // informative. 2091 assert(!Align.isZero()); 2092 2093 // For now, only add this when we have a byval argument. 2094 // TODO: be less lazy about updating test cases. 2095 if (AI.getIndirectByVal()) 2096 Attrs.addAlignmentAttr(Align.getQuantity()); 2097 2098 // byval disables readnone and readonly. 2099 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2100 .removeAttribute(llvm::Attribute::ReadNone); 2101 break; 2102 } 2103 case ABIArgInfo::Ignore: 2104 case ABIArgInfo::Expand: 2105 case ABIArgInfo::CoerceAndExpand: 2106 break; 2107 2108 case ABIArgInfo::InAlloca: 2109 // inalloca disables readnone and readonly. 2110 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2111 .removeAttribute(llvm::Attribute::ReadNone); 2112 continue; 2113 } 2114 2115 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2116 QualType PTy = RefTy->getPointeeType(); 2117 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2118 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2119 .getQuantity()); 2120 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2121 !CodeGenOpts.NullPointerIsValid) 2122 Attrs.addAttribute(llvm::Attribute::NonNull); 2123 } 2124 2125 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2126 case ParameterABI::Ordinary: 2127 break; 2128 2129 case ParameterABI::SwiftIndirectResult: { 2130 // Add 'sret' if we haven't already used it for something, but 2131 // only if the result is void. 2132 if (!hasUsedSRet && RetTy->isVoidType()) { 2133 Attrs.addAttribute(llvm::Attribute::StructRet); 2134 hasUsedSRet = true; 2135 } 2136 2137 // Add 'noalias' in either case. 2138 Attrs.addAttribute(llvm::Attribute::NoAlias); 2139 2140 // Add 'dereferenceable' and 'alignment'. 2141 auto PTy = ParamType->getPointeeType(); 2142 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2143 auto info = getContext().getTypeInfoInChars(PTy); 2144 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2145 Attrs.addAttribute(llvm::Attribute::getWithAlignment( 2146 getLLVMContext(), info.second.getAsAlign())); 2147 } 2148 break; 2149 } 2150 2151 case ParameterABI::SwiftErrorResult: 2152 Attrs.addAttribute(llvm::Attribute::SwiftError); 2153 break; 2154 2155 case ParameterABI::SwiftContext: 2156 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2157 break; 2158 } 2159 2160 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2161 Attrs.addAttribute(llvm::Attribute::NoCapture); 2162 2163 if (Attrs.hasAttributes()) { 2164 unsigned FirstIRArg, NumIRArgs; 2165 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2166 for (unsigned i = 0; i < NumIRArgs; i++) 2167 ArgAttrs[FirstIRArg + i] = 2168 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2169 } 2170 } 2171 assert(ArgNo == FI.arg_size()); 2172 2173 AttrList = llvm::AttributeList::get( 2174 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2175 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2176 } 2177 2178 /// An argument came in as a promoted argument; demote it back to its 2179 /// declared type. 2180 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2181 const VarDecl *var, 2182 llvm::Value *value) { 2183 llvm::Type *varType = CGF.ConvertType(var->getType()); 2184 2185 // This can happen with promotions that actually don't change the 2186 // underlying type, like the enum promotions. 2187 if (value->getType() == varType) return value; 2188 2189 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2190 && "unexpected promotion type"); 2191 2192 if (isa<llvm::IntegerType>(varType)) 2193 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2194 2195 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2196 } 2197 2198 /// Returns the attribute (either parameter attribute, or function 2199 /// attribute), which declares argument ArgNo to be non-null. 2200 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2201 QualType ArgType, unsigned ArgNo) { 2202 // FIXME: __attribute__((nonnull)) can also be applied to: 2203 // - references to pointers, where the pointee is known to be 2204 // nonnull (apparently a Clang extension) 2205 // - transparent unions containing pointers 2206 // In the former case, LLVM IR cannot represent the constraint. In 2207 // the latter case, we have no guarantee that the transparent union 2208 // is in fact passed as a pointer. 2209 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2210 return nullptr; 2211 // First, check attribute on parameter itself. 2212 if (PVD) { 2213 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2214 return ParmNNAttr; 2215 } 2216 // Check function attributes. 2217 if (!FD) 2218 return nullptr; 2219 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2220 if (NNAttr->isNonNull(ArgNo)) 2221 return NNAttr; 2222 } 2223 return nullptr; 2224 } 2225 2226 namespace { 2227 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2228 Address Temp; 2229 Address Arg; 2230 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2231 void Emit(CodeGenFunction &CGF, Flags flags) override { 2232 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2233 CGF.Builder.CreateStore(errorValue, Arg); 2234 } 2235 }; 2236 } 2237 2238 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2239 llvm::Function *Fn, 2240 const FunctionArgList &Args) { 2241 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2242 // Naked functions don't have prologues. 2243 return; 2244 2245 // If this is an implicit-return-zero function, go ahead and 2246 // initialize the return value. TODO: it might be nice to have 2247 // a more general mechanism for this that didn't require synthesized 2248 // return statements. 2249 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2250 if (FD->hasImplicitReturnZero()) { 2251 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2252 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2253 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2254 Builder.CreateStore(Zero, ReturnValue); 2255 } 2256 } 2257 2258 // FIXME: We no longer need the types from FunctionArgList; lift up and 2259 // simplify. 2260 2261 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2262 // Flattened function arguments. 2263 SmallVector<llvm::Value *, 16> FnArgs; 2264 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2265 for (auto &Arg : Fn->args()) { 2266 FnArgs.push_back(&Arg); 2267 } 2268 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2269 2270 // If we're using inalloca, all the memory arguments are GEPs off of the last 2271 // parameter, which is a pointer to the complete memory area. 2272 Address ArgStruct = Address::invalid(); 2273 if (IRFunctionArgs.hasInallocaArg()) { 2274 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2275 FI.getArgStructAlignment()); 2276 2277 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2278 } 2279 2280 // Name the struct return parameter. 2281 if (IRFunctionArgs.hasSRetArg()) { 2282 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2283 AI->setName("agg.result"); 2284 AI->addAttr(llvm::Attribute::NoAlias); 2285 } 2286 2287 // Track if we received the parameter as a pointer (indirect, byval, or 2288 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2289 // into a local alloca for us. 2290 SmallVector<ParamValue, 16> ArgVals; 2291 ArgVals.reserve(Args.size()); 2292 2293 // Create a pointer value for every parameter declaration. This usually 2294 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2295 // any cleanups or do anything that might unwind. We do that separately, so 2296 // we can push the cleanups in the correct order for the ABI. 2297 assert(FI.arg_size() == Args.size() && 2298 "Mismatch between function signature & arguments."); 2299 unsigned ArgNo = 0; 2300 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2301 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2302 i != e; ++i, ++info_it, ++ArgNo) { 2303 const VarDecl *Arg = *i; 2304 const ABIArgInfo &ArgI = info_it->info; 2305 2306 bool isPromoted = 2307 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2308 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2309 // the parameter is promoted. In this case we convert to 2310 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2311 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2312 assert(hasScalarEvaluationKind(Ty) == 2313 hasScalarEvaluationKind(Arg->getType())); 2314 2315 unsigned FirstIRArg, NumIRArgs; 2316 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2317 2318 switch (ArgI.getKind()) { 2319 case ABIArgInfo::InAlloca: { 2320 assert(NumIRArgs == 0); 2321 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2322 Address V = 2323 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2324 ArgVals.push_back(ParamValue::forIndirect(V)); 2325 break; 2326 } 2327 2328 case ABIArgInfo::Indirect: { 2329 assert(NumIRArgs == 1); 2330 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2331 2332 if (!hasScalarEvaluationKind(Ty)) { 2333 // Aggregates and complex variables are accessed by reference. All we 2334 // need to do is realign the value, if requested. 2335 Address V = ParamAddr; 2336 if (ArgI.getIndirectRealign()) { 2337 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2338 2339 // Copy from the incoming argument pointer to the temporary with the 2340 // appropriate alignment. 2341 // 2342 // FIXME: We should have a common utility for generating an aggregate 2343 // copy. 2344 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2345 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2346 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2347 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2348 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2349 V = AlignedTemp; 2350 } 2351 ArgVals.push_back(ParamValue::forIndirect(V)); 2352 } else { 2353 // Load scalar value from indirect argument. 2354 llvm::Value *V = 2355 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2356 2357 if (isPromoted) 2358 V = emitArgumentDemotion(*this, Arg, V); 2359 ArgVals.push_back(ParamValue::forDirect(V)); 2360 } 2361 break; 2362 } 2363 2364 case ABIArgInfo::Extend: 2365 case ABIArgInfo::Direct: { 2366 2367 // If we have the trivial case, handle it with no muss and fuss. 2368 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2369 ArgI.getCoerceToType() == ConvertType(Ty) && 2370 ArgI.getDirectOffset() == 0) { 2371 assert(NumIRArgs == 1); 2372 llvm::Value *V = FnArgs[FirstIRArg]; 2373 auto AI = cast<llvm::Argument>(V); 2374 2375 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2376 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2377 PVD->getFunctionScopeIndex()) && 2378 !CGM.getCodeGenOpts().NullPointerIsValid) 2379 AI->addAttr(llvm::Attribute::NonNull); 2380 2381 QualType OTy = PVD->getOriginalType(); 2382 if (const auto *ArrTy = 2383 getContext().getAsConstantArrayType(OTy)) { 2384 // A C99 array parameter declaration with the static keyword also 2385 // indicates dereferenceability, and if the size is constant we can 2386 // use the dereferenceable attribute (which requires the size in 2387 // bytes). 2388 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2389 QualType ETy = ArrTy->getElementType(); 2390 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2391 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2392 ArrSize) { 2393 llvm::AttrBuilder Attrs; 2394 Attrs.addDereferenceableAttr( 2395 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2396 AI->addAttrs(Attrs); 2397 } else if (getContext().getTargetAddressSpace(ETy) == 0 && 2398 !CGM.getCodeGenOpts().NullPointerIsValid) { 2399 AI->addAttr(llvm::Attribute::NonNull); 2400 } 2401 } 2402 } else if (const auto *ArrTy = 2403 getContext().getAsVariableArrayType(OTy)) { 2404 // For C99 VLAs with the static keyword, we don't know the size so 2405 // we can't use the dereferenceable attribute, but in addrspace(0) 2406 // we know that it must be nonnull. 2407 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2408 !getContext().getTargetAddressSpace(ArrTy->getElementType()) && 2409 !CGM.getCodeGenOpts().NullPointerIsValid) 2410 AI->addAttr(llvm::Attribute::NonNull); 2411 } 2412 2413 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2414 if (!AVAttr) 2415 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2416 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2417 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2418 // If alignment-assumption sanitizer is enabled, we do *not* add 2419 // alignment attribute here, but emit normal alignment assumption, 2420 // so the UBSAN check could function. 2421 llvm::Value *AlignmentValue = 2422 EmitScalarExpr(AVAttr->getAlignment()); 2423 llvm::ConstantInt *AlignmentCI = 2424 cast<llvm::ConstantInt>(AlignmentValue); 2425 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), 2426 +llvm::Value::MaximumAlignment); 2427 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2428 } 2429 } 2430 2431 if (Arg->getType().isRestrictQualified()) 2432 AI->addAttr(llvm::Attribute::NoAlias); 2433 2434 // LLVM expects swifterror parameters to be used in very restricted 2435 // ways. Copy the value into a less-restricted temporary. 2436 if (FI.getExtParameterInfo(ArgNo).getABI() 2437 == ParameterABI::SwiftErrorResult) { 2438 QualType pointeeTy = Ty->getPointeeType(); 2439 assert(pointeeTy->isPointerType()); 2440 Address temp = 2441 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2442 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2443 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2444 Builder.CreateStore(incomingErrorValue, temp); 2445 V = temp.getPointer(); 2446 2447 // Push a cleanup to copy the value back at the end of the function. 2448 // The convention does not guarantee that the value will be written 2449 // back if the function exits with an unwind exception. 2450 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2451 } 2452 2453 // Ensure the argument is the correct type. 2454 if (V->getType() != ArgI.getCoerceToType()) 2455 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2456 2457 if (isPromoted) 2458 V = emitArgumentDemotion(*this, Arg, V); 2459 2460 // Because of merging of function types from multiple decls it is 2461 // possible for the type of an argument to not match the corresponding 2462 // type in the function type. Since we are codegening the callee 2463 // in here, add a cast to the argument type. 2464 llvm::Type *LTy = ConvertType(Arg->getType()); 2465 if (V->getType() != LTy) 2466 V = Builder.CreateBitCast(V, LTy); 2467 2468 ArgVals.push_back(ParamValue::forDirect(V)); 2469 break; 2470 } 2471 2472 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2473 Arg->getName()); 2474 2475 // Pointer to store into. 2476 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2477 2478 // Fast-isel and the optimizer generally like scalar values better than 2479 // FCAs, so we flatten them if this is safe to do for this argument. 2480 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2481 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2482 STy->getNumElements() > 1) { 2483 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2484 llvm::Type *DstTy = Ptr.getElementType(); 2485 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2486 2487 Address AddrToStoreInto = Address::invalid(); 2488 if (SrcSize <= DstSize) { 2489 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2490 } else { 2491 AddrToStoreInto = 2492 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2493 } 2494 2495 assert(STy->getNumElements() == NumIRArgs); 2496 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2497 auto AI = FnArgs[FirstIRArg + i]; 2498 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2499 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2500 Builder.CreateStore(AI, EltPtr); 2501 } 2502 2503 if (SrcSize > DstSize) { 2504 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2505 } 2506 2507 } else { 2508 // Simple case, just do a coerced store of the argument into the alloca. 2509 assert(NumIRArgs == 1); 2510 auto AI = FnArgs[FirstIRArg]; 2511 AI->setName(Arg->getName() + ".coerce"); 2512 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 2513 } 2514 2515 // Match to what EmitParmDecl is expecting for this type. 2516 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2517 llvm::Value *V = 2518 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2519 if (isPromoted) 2520 V = emitArgumentDemotion(*this, Arg, V); 2521 ArgVals.push_back(ParamValue::forDirect(V)); 2522 } else { 2523 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2524 } 2525 break; 2526 } 2527 2528 case ABIArgInfo::CoerceAndExpand: { 2529 // Reconstruct into a temporary. 2530 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2531 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2532 2533 auto coercionType = ArgI.getCoerceAndExpandType(); 2534 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2535 2536 unsigned argIndex = FirstIRArg; 2537 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2538 llvm::Type *eltType = coercionType->getElementType(i); 2539 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2540 continue; 2541 2542 auto eltAddr = Builder.CreateStructGEP(alloca, i); 2543 auto elt = FnArgs[argIndex++]; 2544 Builder.CreateStore(elt, eltAddr); 2545 } 2546 assert(argIndex == FirstIRArg + NumIRArgs); 2547 break; 2548 } 2549 2550 case ABIArgInfo::Expand: { 2551 // If this structure was expanded into multiple arguments then 2552 // we need to create a temporary and reconstruct it from the 2553 // arguments. 2554 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2555 LValue LV = MakeAddrLValue(Alloca, Ty); 2556 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2557 2558 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2559 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2560 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2561 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2562 auto AI = FnArgs[FirstIRArg + i]; 2563 AI->setName(Arg->getName() + "." + Twine(i)); 2564 } 2565 break; 2566 } 2567 2568 case ABIArgInfo::Ignore: 2569 assert(NumIRArgs == 0); 2570 // Initialize the local variable appropriately. 2571 if (!hasScalarEvaluationKind(Ty)) { 2572 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2573 } else { 2574 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2575 ArgVals.push_back(ParamValue::forDirect(U)); 2576 } 2577 break; 2578 } 2579 } 2580 2581 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2582 for (int I = Args.size() - 1; I >= 0; --I) 2583 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2584 } else { 2585 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2586 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2587 } 2588 } 2589 2590 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2591 while (insn->use_empty()) { 2592 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2593 if (!bitcast) return; 2594 2595 // This is "safe" because we would have used a ConstantExpr otherwise. 2596 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2597 bitcast->eraseFromParent(); 2598 } 2599 } 2600 2601 /// Try to emit a fused autorelease of a return result. 2602 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2603 llvm::Value *result) { 2604 // We must be immediately followed the cast. 2605 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2606 if (BB->empty()) return nullptr; 2607 if (&BB->back() != result) return nullptr; 2608 2609 llvm::Type *resultType = result->getType(); 2610 2611 // result is in a BasicBlock and is therefore an Instruction. 2612 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2613 2614 SmallVector<llvm::Instruction *, 4> InstsToKill; 2615 2616 // Look for: 2617 // %generator = bitcast %type1* %generator2 to %type2* 2618 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2619 // We would have emitted this as a constant if the operand weren't 2620 // an Instruction. 2621 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2622 2623 // Require the generator to be immediately followed by the cast. 2624 if (generator->getNextNode() != bitcast) 2625 return nullptr; 2626 2627 InstsToKill.push_back(bitcast); 2628 } 2629 2630 // Look for: 2631 // %generator = call i8* @objc_retain(i8* %originalResult) 2632 // or 2633 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2634 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2635 if (!call) return nullptr; 2636 2637 bool doRetainAutorelease; 2638 2639 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2640 doRetainAutorelease = true; 2641 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2642 .objc_retainAutoreleasedReturnValue) { 2643 doRetainAutorelease = false; 2644 2645 // If we emitted an assembly marker for this call (and the 2646 // ARCEntrypoints field should have been set if so), go looking 2647 // for that call. If we can't find it, we can't do this 2648 // optimization. But it should always be the immediately previous 2649 // instruction, unless we needed bitcasts around the call. 2650 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2651 llvm::Instruction *prev = call->getPrevNode(); 2652 assert(prev); 2653 if (isa<llvm::BitCastInst>(prev)) { 2654 prev = prev->getPrevNode(); 2655 assert(prev); 2656 } 2657 assert(isa<llvm::CallInst>(prev)); 2658 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2659 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2660 InstsToKill.push_back(prev); 2661 } 2662 } else { 2663 return nullptr; 2664 } 2665 2666 result = call->getArgOperand(0); 2667 InstsToKill.push_back(call); 2668 2669 // Keep killing bitcasts, for sanity. Note that we no longer care 2670 // about precise ordering as long as there's exactly one use. 2671 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2672 if (!bitcast->hasOneUse()) break; 2673 InstsToKill.push_back(bitcast); 2674 result = bitcast->getOperand(0); 2675 } 2676 2677 // Delete all the unnecessary instructions, from latest to earliest. 2678 for (auto *I : InstsToKill) 2679 I->eraseFromParent(); 2680 2681 // Do the fused retain/autorelease if we were asked to. 2682 if (doRetainAutorelease) 2683 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2684 2685 // Cast back to the result type. 2686 return CGF.Builder.CreateBitCast(result, resultType); 2687 } 2688 2689 /// If this is a +1 of the value of an immutable 'self', remove it. 2690 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2691 llvm::Value *result) { 2692 // This is only applicable to a method with an immutable 'self'. 2693 const ObjCMethodDecl *method = 2694 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2695 if (!method) return nullptr; 2696 const VarDecl *self = method->getSelfDecl(); 2697 if (!self->getType().isConstQualified()) return nullptr; 2698 2699 // Look for a retain call. 2700 llvm::CallInst *retainCall = 2701 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2702 if (!retainCall || 2703 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2704 return nullptr; 2705 2706 // Look for an ordinary load of 'self'. 2707 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2708 llvm::LoadInst *load = 2709 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2710 if (!load || load->isAtomic() || load->isVolatile() || 2711 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2712 return nullptr; 2713 2714 // Okay! Burn it all down. This relies for correctness on the 2715 // assumption that the retain is emitted as part of the return and 2716 // that thereafter everything is used "linearly". 2717 llvm::Type *resultType = result->getType(); 2718 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2719 assert(retainCall->use_empty()); 2720 retainCall->eraseFromParent(); 2721 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2722 2723 return CGF.Builder.CreateBitCast(load, resultType); 2724 } 2725 2726 /// Emit an ARC autorelease of the result of a function. 2727 /// 2728 /// \return the value to actually return from the function 2729 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2730 llvm::Value *result) { 2731 // If we're returning 'self', kill the initial retain. This is a 2732 // heuristic attempt to "encourage correctness" in the really unfortunate 2733 // case where we have a return of self during a dealloc and we desperately 2734 // need to avoid the possible autorelease. 2735 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2736 return self; 2737 2738 // At -O0, try to emit a fused retain/autorelease. 2739 if (CGF.shouldUseFusedARCCalls()) 2740 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2741 return fused; 2742 2743 return CGF.EmitARCAutoreleaseReturnValue(result); 2744 } 2745 2746 /// Heuristically search for a dominating store to the return-value slot. 2747 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2748 // Check if a User is a store which pointerOperand is the ReturnValue. 2749 // We are looking for stores to the ReturnValue, not for stores of the 2750 // ReturnValue to some other location. 2751 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2752 auto *SI = dyn_cast<llvm::StoreInst>(U); 2753 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2754 return nullptr; 2755 // These aren't actually possible for non-coerced returns, and we 2756 // only care about non-coerced returns on this code path. 2757 assert(!SI->isAtomic() && !SI->isVolatile()); 2758 return SI; 2759 }; 2760 // If there are multiple uses of the return-value slot, just check 2761 // for something immediately preceding the IP. Sometimes this can 2762 // happen with how we generate implicit-returns; it can also happen 2763 // with noreturn cleanups. 2764 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2765 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2766 if (IP->empty()) return nullptr; 2767 llvm::Instruction *I = &IP->back(); 2768 2769 // Skip lifetime markers 2770 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2771 IE = IP->rend(); 2772 II != IE; ++II) { 2773 if (llvm::IntrinsicInst *Intrinsic = 2774 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2775 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2776 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2777 ++II; 2778 if (II == IE) 2779 break; 2780 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2781 continue; 2782 } 2783 } 2784 I = &*II; 2785 break; 2786 } 2787 2788 return GetStoreIfValid(I); 2789 } 2790 2791 llvm::StoreInst *store = 2792 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2793 if (!store) return nullptr; 2794 2795 // Now do a first-and-dirty dominance check: just walk up the 2796 // single-predecessors chain from the current insertion point. 2797 llvm::BasicBlock *StoreBB = store->getParent(); 2798 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2799 while (IP != StoreBB) { 2800 if (!(IP = IP->getSinglePredecessor())) 2801 return nullptr; 2802 } 2803 2804 // Okay, the store's basic block dominates the insertion point; we 2805 // can do our thing. 2806 return store; 2807 } 2808 2809 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2810 bool EmitRetDbgLoc, 2811 SourceLocation EndLoc) { 2812 if (FI.isNoReturn()) { 2813 // Noreturn functions don't return. 2814 EmitUnreachable(EndLoc); 2815 return; 2816 } 2817 2818 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2819 // Naked functions don't have epilogues. 2820 Builder.CreateUnreachable(); 2821 return; 2822 } 2823 2824 // Functions with no result always return void. 2825 if (!ReturnValue.isValid()) { 2826 Builder.CreateRetVoid(); 2827 return; 2828 } 2829 2830 llvm::DebugLoc RetDbgLoc; 2831 llvm::Value *RV = nullptr; 2832 QualType RetTy = FI.getReturnType(); 2833 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2834 2835 switch (RetAI.getKind()) { 2836 case ABIArgInfo::InAlloca: 2837 // Aggregrates get evaluated directly into the destination. Sometimes we 2838 // need to return the sret value in a register, though. 2839 assert(hasAggregateEvaluationKind(RetTy)); 2840 if (RetAI.getInAllocaSRet()) { 2841 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2842 --EI; 2843 llvm::Value *ArgStruct = &*EI; 2844 llvm::Value *SRet = Builder.CreateStructGEP( 2845 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2846 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2847 } 2848 break; 2849 2850 case ABIArgInfo::Indirect: { 2851 auto AI = CurFn->arg_begin(); 2852 if (RetAI.isSRetAfterThis()) 2853 ++AI; 2854 switch (getEvaluationKind(RetTy)) { 2855 case TEK_Complex: { 2856 ComplexPairTy RT = 2857 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2858 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2859 /*isInit*/ true); 2860 break; 2861 } 2862 case TEK_Aggregate: 2863 // Do nothing; aggregrates get evaluated directly into the destination. 2864 break; 2865 case TEK_Scalar: 2866 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2867 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2868 /*isInit*/ true); 2869 break; 2870 } 2871 break; 2872 } 2873 2874 case ABIArgInfo::Extend: 2875 case ABIArgInfo::Direct: 2876 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2877 RetAI.getDirectOffset() == 0) { 2878 // The internal return value temp always will have pointer-to-return-type 2879 // type, just do a load. 2880 2881 // If there is a dominating store to ReturnValue, we can elide 2882 // the load, zap the store, and usually zap the alloca. 2883 if (llvm::StoreInst *SI = 2884 findDominatingStoreToReturnValue(*this)) { 2885 // Reuse the debug location from the store unless there is 2886 // cleanup code to be emitted between the store and return 2887 // instruction. 2888 if (EmitRetDbgLoc && !AutoreleaseResult) 2889 RetDbgLoc = SI->getDebugLoc(); 2890 // Get the stored value and nuke the now-dead store. 2891 RV = SI->getValueOperand(); 2892 SI->eraseFromParent(); 2893 2894 // Otherwise, we have to do a simple load. 2895 } else { 2896 RV = Builder.CreateLoad(ReturnValue); 2897 } 2898 } else { 2899 // If the value is offset in memory, apply the offset now. 2900 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2901 2902 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2903 } 2904 2905 // In ARC, end functions that return a retainable type with a call 2906 // to objc_autoreleaseReturnValue. 2907 if (AutoreleaseResult) { 2908 #ifndef NDEBUG 2909 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2910 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2911 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2912 // CurCodeDecl or BlockInfo. 2913 QualType RT; 2914 2915 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2916 RT = FD->getReturnType(); 2917 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2918 RT = MD->getReturnType(); 2919 else if (isa<BlockDecl>(CurCodeDecl)) 2920 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2921 else 2922 llvm_unreachable("Unexpected function/method type"); 2923 2924 assert(getLangOpts().ObjCAutoRefCount && 2925 !FI.isReturnsRetained() && 2926 RT->isObjCRetainableType()); 2927 #endif 2928 RV = emitAutoreleaseOfResult(*this, RV); 2929 } 2930 2931 break; 2932 2933 case ABIArgInfo::Ignore: 2934 break; 2935 2936 case ABIArgInfo::CoerceAndExpand: { 2937 auto coercionType = RetAI.getCoerceAndExpandType(); 2938 2939 // Load all of the coerced elements out into results. 2940 llvm::SmallVector<llvm::Value*, 4> results; 2941 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2942 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2943 auto coercedEltType = coercionType->getElementType(i); 2944 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2945 continue; 2946 2947 auto eltAddr = Builder.CreateStructGEP(addr, i); 2948 auto elt = Builder.CreateLoad(eltAddr); 2949 results.push_back(elt); 2950 } 2951 2952 // If we have one result, it's the single direct result type. 2953 if (results.size() == 1) { 2954 RV = results[0]; 2955 2956 // Otherwise, we need to make a first-class aggregate. 2957 } else { 2958 // Construct a return type that lacks padding elements. 2959 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2960 2961 RV = llvm::UndefValue::get(returnType); 2962 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2963 RV = Builder.CreateInsertValue(RV, results[i], i); 2964 } 2965 } 2966 break; 2967 } 2968 2969 case ABIArgInfo::Expand: 2970 llvm_unreachable("Invalid ABI kind for return argument"); 2971 } 2972 2973 llvm::Instruction *Ret; 2974 if (RV) { 2975 EmitReturnValueCheck(RV); 2976 Ret = Builder.CreateRet(RV); 2977 } else { 2978 Ret = Builder.CreateRetVoid(); 2979 } 2980 2981 if (RetDbgLoc) 2982 Ret->setDebugLoc(std::move(RetDbgLoc)); 2983 } 2984 2985 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 2986 // A current decl may not be available when emitting vtable thunks. 2987 if (!CurCodeDecl) 2988 return; 2989 2990 ReturnsNonNullAttr *RetNNAttr = nullptr; 2991 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 2992 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 2993 2994 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 2995 return; 2996 2997 // Prefer the returns_nonnull attribute if it's present. 2998 SourceLocation AttrLoc; 2999 SanitizerMask CheckKind; 3000 SanitizerHandler Handler; 3001 if (RetNNAttr) { 3002 assert(!requiresReturnValueNullabilityCheck() && 3003 "Cannot check nullability and the nonnull attribute"); 3004 AttrLoc = RetNNAttr->getLocation(); 3005 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3006 Handler = SanitizerHandler::NonnullReturn; 3007 } else { 3008 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3009 if (auto *TSI = DD->getTypeSourceInfo()) 3010 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) 3011 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3012 CheckKind = SanitizerKind::NullabilityReturn; 3013 Handler = SanitizerHandler::NullabilityReturn; 3014 } 3015 3016 SanitizerScope SanScope(this); 3017 3018 // Make sure the "return" source location is valid. If we're checking a 3019 // nullability annotation, make sure the preconditions for the check are met. 3020 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3021 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3022 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3023 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3024 if (requiresReturnValueNullabilityCheck()) 3025 CanNullCheck = 3026 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3027 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3028 EmitBlock(Check); 3029 3030 // Now do the null check. 3031 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3032 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3033 llvm::Value *DynamicData[] = {SLocPtr}; 3034 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3035 3036 EmitBlock(NoCheck); 3037 3038 #ifndef NDEBUG 3039 // The return location should not be used after the check has been emitted. 3040 ReturnLocation = Address::invalid(); 3041 #endif 3042 } 3043 3044 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3045 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3046 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3047 } 3048 3049 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3050 QualType Ty) { 3051 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3052 // placeholders. 3053 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3054 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3055 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3056 3057 // FIXME: When we generate this IR in one pass, we shouldn't need 3058 // this win32-specific alignment hack. 3059 CharUnits Align = CharUnits::fromQuantity(4); 3060 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3061 3062 return AggValueSlot::forAddr(Address(Placeholder, Align), 3063 Ty.getQualifiers(), 3064 AggValueSlot::IsNotDestructed, 3065 AggValueSlot::DoesNotNeedGCBarriers, 3066 AggValueSlot::IsNotAliased, 3067 AggValueSlot::DoesNotOverlap); 3068 } 3069 3070 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3071 const VarDecl *param, 3072 SourceLocation loc) { 3073 // StartFunction converted the ABI-lowered parameter(s) into a 3074 // local alloca. We need to turn that into an r-value suitable 3075 // for EmitCall. 3076 Address local = GetAddrOfLocalVar(param); 3077 3078 QualType type = param->getType(); 3079 3080 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3081 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3082 } 3083 3084 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3085 // but the argument needs to be the original pointer. 3086 if (type->isReferenceType()) { 3087 args.add(RValue::get(Builder.CreateLoad(local)), type); 3088 3089 // In ARC, move out of consumed arguments so that the release cleanup 3090 // entered by StartFunction doesn't cause an over-release. This isn't 3091 // optimal -O0 code generation, but it should get cleaned up when 3092 // optimization is enabled. This also assumes that delegate calls are 3093 // performed exactly once for a set of arguments, but that should be safe. 3094 } else if (getLangOpts().ObjCAutoRefCount && 3095 param->hasAttr<NSConsumedAttr>() && 3096 type->isObjCRetainableType()) { 3097 llvm::Value *ptr = Builder.CreateLoad(local); 3098 auto null = 3099 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3100 Builder.CreateStore(null, local); 3101 args.add(RValue::get(ptr), type); 3102 3103 // For the most part, we just need to load the alloca, except that 3104 // aggregate r-values are actually pointers to temporaries. 3105 } else { 3106 args.add(convertTempToRValue(local, type, loc), type); 3107 } 3108 3109 // Deactivate the cleanup for the callee-destructed param that was pushed. 3110 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3111 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3112 param->needsDestruction(getContext())) { 3113 EHScopeStack::stable_iterator cleanup = 3114 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3115 assert(cleanup.isValid() && 3116 "cleanup for callee-destructed param not recorded"); 3117 // This unreachable is a temporary marker which will be removed later. 3118 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3119 args.addArgCleanupDeactivation(cleanup, isActive); 3120 } 3121 } 3122 3123 static bool isProvablyNull(llvm::Value *addr) { 3124 return isa<llvm::ConstantPointerNull>(addr); 3125 } 3126 3127 /// Emit the actual writing-back of a writeback. 3128 static void emitWriteback(CodeGenFunction &CGF, 3129 const CallArgList::Writeback &writeback) { 3130 const LValue &srcLV = writeback.Source; 3131 Address srcAddr = srcLV.getAddress(); 3132 assert(!isProvablyNull(srcAddr.getPointer()) && 3133 "shouldn't have writeback for provably null argument"); 3134 3135 llvm::BasicBlock *contBB = nullptr; 3136 3137 // If the argument wasn't provably non-null, we need to null check 3138 // before doing the store. 3139 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3140 CGF.CGM.getDataLayout()); 3141 if (!provablyNonNull) { 3142 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3143 contBB = CGF.createBasicBlock("icr.done"); 3144 3145 llvm::Value *isNull = 3146 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3147 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3148 CGF.EmitBlock(writebackBB); 3149 } 3150 3151 // Load the value to writeback. 3152 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3153 3154 // Cast it back, in case we're writing an id to a Foo* or something. 3155 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3156 "icr.writeback-cast"); 3157 3158 // Perform the writeback. 3159 3160 // If we have a "to use" value, it's something we need to emit a use 3161 // of. This has to be carefully threaded in: if it's done after the 3162 // release it's potentially undefined behavior (and the optimizer 3163 // will ignore it), and if it happens before the retain then the 3164 // optimizer could move the release there. 3165 if (writeback.ToUse) { 3166 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3167 3168 // Retain the new value. No need to block-copy here: the block's 3169 // being passed up the stack. 3170 value = CGF.EmitARCRetainNonBlock(value); 3171 3172 // Emit the intrinsic use here. 3173 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3174 3175 // Load the old value (primitively). 3176 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3177 3178 // Put the new value in place (primitively). 3179 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3180 3181 // Release the old value. 3182 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3183 3184 // Otherwise, we can just do a normal lvalue store. 3185 } else { 3186 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3187 } 3188 3189 // Jump to the continuation block. 3190 if (!provablyNonNull) 3191 CGF.EmitBlock(contBB); 3192 } 3193 3194 static void emitWritebacks(CodeGenFunction &CGF, 3195 const CallArgList &args) { 3196 for (const auto &I : args.writebacks()) 3197 emitWriteback(CGF, I); 3198 } 3199 3200 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3201 const CallArgList &CallArgs) { 3202 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3203 CallArgs.getCleanupsToDeactivate(); 3204 // Iterate in reverse to increase the likelihood of popping the cleanup. 3205 for (const auto &I : llvm::reverse(Cleanups)) { 3206 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3207 I.IsActiveIP->eraseFromParent(); 3208 } 3209 } 3210 3211 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3212 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3213 if (uop->getOpcode() == UO_AddrOf) 3214 return uop->getSubExpr(); 3215 return nullptr; 3216 } 3217 3218 /// Emit an argument that's being passed call-by-writeback. That is, 3219 /// we are passing the address of an __autoreleased temporary; it 3220 /// might be copy-initialized with the current value of the given 3221 /// address, but it will definitely be copied out of after the call. 3222 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3223 const ObjCIndirectCopyRestoreExpr *CRE) { 3224 LValue srcLV; 3225 3226 // Make an optimistic effort to emit the address as an l-value. 3227 // This can fail if the argument expression is more complicated. 3228 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3229 srcLV = CGF.EmitLValue(lvExpr); 3230 3231 // Otherwise, just emit it as a scalar. 3232 } else { 3233 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3234 3235 QualType srcAddrType = 3236 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3237 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3238 } 3239 Address srcAddr = srcLV.getAddress(); 3240 3241 // The dest and src types don't necessarily match in LLVM terms 3242 // because of the crazy ObjC compatibility rules. 3243 3244 llvm::PointerType *destType = 3245 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3246 3247 // If the address is a constant null, just pass the appropriate null. 3248 if (isProvablyNull(srcAddr.getPointer())) { 3249 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3250 CRE->getType()); 3251 return; 3252 } 3253 3254 // Create the temporary. 3255 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3256 CGF.getPointerAlign(), 3257 "icr.temp"); 3258 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3259 // and that cleanup will be conditional if we can't prove that the l-value 3260 // isn't null, so we need to register a dominating point so that the cleanups 3261 // system will make valid IR. 3262 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3263 3264 // Zero-initialize it if we're not doing a copy-initialization. 3265 bool shouldCopy = CRE->shouldCopy(); 3266 if (!shouldCopy) { 3267 llvm::Value *null = 3268 llvm::ConstantPointerNull::get( 3269 cast<llvm::PointerType>(destType->getElementType())); 3270 CGF.Builder.CreateStore(null, temp); 3271 } 3272 3273 llvm::BasicBlock *contBB = nullptr; 3274 llvm::BasicBlock *originBB = nullptr; 3275 3276 // If the address is *not* known to be non-null, we need to switch. 3277 llvm::Value *finalArgument; 3278 3279 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3280 CGF.CGM.getDataLayout()); 3281 if (provablyNonNull) { 3282 finalArgument = temp.getPointer(); 3283 } else { 3284 llvm::Value *isNull = 3285 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3286 3287 finalArgument = CGF.Builder.CreateSelect(isNull, 3288 llvm::ConstantPointerNull::get(destType), 3289 temp.getPointer(), "icr.argument"); 3290 3291 // If we need to copy, then the load has to be conditional, which 3292 // means we need control flow. 3293 if (shouldCopy) { 3294 originBB = CGF.Builder.GetInsertBlock(); 3295 contBB = CGF.createBasicBlock("icr.cont"); 3296 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3297 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3298 CGF.EmitBlock(copyBB); 3299 condEval.begin(CGF); 3300 } 3301 } 3302 3303 llvm::Value *valueToUse = nullptr; 3304 3305 // Perform a copy if necessary. 3306 if (shouldCopy) { 3307 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3308 assert(srcRV.isScalar()); 3309 3310 llvm::Value *src = srcRV.getScalarVal(); 3311 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3312 "icr.cast"); 3313 3314 // Use an ordinary store, not a store-to-lvalue. 3315 CGF.Builder.CreateStore(src, temp); 3316 3317 // If optimization is enabled, and the value was held in a 3318 // __strong variable, we need to tell the optimizer that this 3319 // value has to stay alive until we're doing the store back. 3320 // This is because the temporary is effectively unretained, 3321 // and so otherwise we can violate the high-level semantics. 3322 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3323 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3324 valueToUse = src; 3325 } 3326 } 3327 3328 // Finish the control flow if we needed it. 3329 if (shouldCopy && !provablyNonNull) { 3330 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3331 CGF.EmitBlock(contBB); 3332 3333 // Make a phi for the value to intrinsically use. 3334 if (valueToUse) { 3335 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3336 "icr.to-use"); 3337 phiToUse->addIncoming(valueToUse, copyBB); 3338 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3339 originBB); 3340 valueToUse = phiToUse; 3341 } 3342 3343 condEval.end(CGF); 3344 } 3345 3346 args.addWriteback(srcLV, temp, valueToUse); 3347 args.add(RValue::get(finalArgument), CRE->getType()); 3348 } 3349 3350 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3351 assert(!StackBase); 3352 3353 // Save the stack. 3354 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3355 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3356 } 3357 3358 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3359 if (StackBase) { 3360 // Restore the stack after the call. 3361 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3362 CGF.Builder.CreateCall(F, StackBase); 3363 } 3364 } 3365 3366 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3367 SourceLocation ArgLoc, 3368 AbstractCallee AC, 3369 unsigned ParmNum) { 3370 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3371 SanOpts.has(SanitizerKind::NullabilityArg))) 3372 return; 3373 3374 // The param decl may be missing in a variadic function. 3375 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3376 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3377 3378 // Prefer the nonnull attribute if it's present. 3379 const NonNullAttr *NNAttr = nullptr; 3380 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3381 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3382 3383 bool CanCheckNullability = false; 3384 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3385 auto Nullability = PVD->getType()->getNullability(getContext()); 3386 CanCheckNullability = Nullability && 3387 *Nullability == NullabilityKind::NonNull && 3388 PVD->getTypeSourceInfo(); 3389 } 3390 3391 if (!NNAttr && !CanCheckNullability) 3392 return; 3393 3394 SourceLocation AttrLoc; 3395 SanitizerMask CheckKind; 3396 SanitizerHandler Handler; 3397 if (NNAttr) { 3398 AttrLoc = NNAttr->getLocation(); 3399 CheckKind = SanitizerKind::NonnullAttribute; 3400 Handler = SanitizerHandler::NonnullArg; 3401 } else { 3402 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3403 CheckKind = SanitizerKind::NullabilityArg; 3404 Handler = SanitizerHandler::NullabilityArg; 3405 } 3406 3407 SanitizerScope SanScope(this); 3408 assert(RV.isScalar()); 3409 llvm::Value *V = RV.getScalarVal(); 3410 llvm::Value *Cond = 3411 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3412 llvm::Constant *StaticData[] = { 3413 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3414 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3415 }; 3416 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3417 } 3418 3419 void CodeGenFunction::EmitCallArgs( 3420 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3421 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3422 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3423 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3424 3425 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3426 // because arguments are destroyed left to right in the callee. As a special 3427 // case, there are certain language constructs that require left-to-right 3428 // evaluation, and in those cases we consider the evaluation order requirement 3429 // to trump the "destruction order is reverse construction order" guarantee. 3430 bool LeftToRight = 3431 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3432 ? Order == EvaluationOrder::ForceLeftToRight 3433 : Order != EvaluationOrder::ForceRightToLeft; 3434 3435 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3436 RValue EmittedArg) { 3437 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3438 return; 3439 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3440 if (PS == nullptr) 3441 return; 3442 3443 const auto &Context = getContext(); 3444 auto SizeTy = Context.getSizeType(); 3445 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3446 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3447 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3448 EmittedArg.getScalarVal(), 3449 PS->isDynamic()); 3450 Args.add(RValue::get(V), SizeTy); 3451 // If we're emitting args in reverse, be sure to do so with 3452 // pass_object_size, as well. 3453 if (!LeftToRight) 3454 std::swap(Args.back(), *(&Args.back() - 1)); 3455 }; 3456 3457 // Insert a stack save if we're going to need any inalloca args. 3458 bool HasInAllocaArgs = false; 3459 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3460 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3461 I != E && !HasInAllocaArgs; ++I) 3462 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3463 if (HasInAllocaArgs) { 3464 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3465 Args.allocateArgumentMemory(*this); 3466 } 3467 } 3468 3469 // Evaluate each argument in the appropriate order. 3470 size_t CallArgsStart = Args.size(); 3471 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3472 unsigned Idx = LeftToRight ? I : E - I - 1; 3473 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3474 unsigned InitialArgSize = Args.size(); 3475 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3476 // the argument and parameter match or the objc method is parameterized. 3477 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3478 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3479 ArgTypes[Idx]) || 3480 (isa<ObjCMethodDecl>(AC.getDecl()) && 3481 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3482 "Argument and parameter types don't match"); 3483 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3484 // In particular, we depend on it being the last arg in Args, and the 3485 // objectsize bits depend on there only being one arg if !LeftToRight. 3486 assert(InitialArgSize + 1 == Args.size() && 3487 "The code below depends on only adding one arg per EmitCallArg"); 3488 (void)InitialArgSize; 3489 // Since pointer argument are never emitted as LValue, it is safe to emit 3490 // non-null argument check for r-value only. 3491 if (!Args.back().hasLValue()) { 3492 RValue RVArg = Args.back().getKnownRValue(); 3493 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3494 ParamsToSkip + Idx); 3495 // @llvm.objectsize should never have side-effects and shouldn't need 3496 // destruction/cleanups, so we can safely "emit" it after its arg, 3497 // regardless of right-to-leftness 3498 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3499 } 3500 } 3501 3502 if (!LeftToRight) { 3503 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3504 // IR function. 3505 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3506 } 3507 } 3508 3509 namespace { 3510 3511 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3512 DestroyUnpassedArg(Address Addr, QualType Ty) 3513 : Addr(Addr), Ty(Ty) {} 3514 3515 Address Addr; 3516 QualType Ty; 3517 3518 void Emit(CodeGenFunction &CGF, Flags flags) override { 3519 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3520 if (DtorKind == QualType::DK_cxx_destructor) { 3521 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3522 assert(!Dtor->isTrivial()); 3523 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3524 /*Delegating=*/false, Addr, Ty); 3525 } else { 3526 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3527 } 3528 } 3529 }; 3530 3531 struct DisableDebugLocationUpdates { 3532 CodeGenFunction &CGF; 3533 bool disabledDebugInfo; 3534 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3535 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3536 CGF.disableDebugInfo(); 3537 } 3538 ~DisableDebugLocationUpdates() { 3539 if (disabledDebugInfo) 3540 CGF.enableDebugInfo(); 3541 } 3542 }; 3543 3544 } // end anonymous namespace 3545 3546 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3547 if (!HasLV) 3548 return RV; 3549 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3550 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 3551 LV.isVolatile()); 3552 IsUsed = true; 3553 return RValue::getAggregate(Copy.getAddress()); 3554 } 3555 3556 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3557 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3558 if (!HasLV && RV.isScalar()) 3559 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 3560 else if (!HasLV && RV.isComplex()) 3561 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3562 else { 3563 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); 3564 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3565 // We assume that call args are never copied into subobjects. 3566 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 3567 HasLV ? LV.isVolatileQualified() 3568 : RV.isVolatileQualified()); 3569 } 3570 IsUsed = true; 3571 } 3572 3573 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3574 QualType type) { 3575 DisableDebugLocationUpdates Dis(*this, E); 3576 if (const ObjCIndirectCopyRestoreExpr *CRE 3577 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3578 assert(getLangOpts().ObjCAutoRefCount); 3579 return emitWritebackArg(*this, args, CRE); 3580 } 3581 3582 assert(type->isReferenceType() == E->isGLValue() && 3583 "reference binding to unmaterialized r-value!"); 3584 3585 if (E->isGLValue()) { 3586 assert(E->getObjectKind() == OK_Ordinary); 3587 return args.add(EmitReferenceBindingToExpr(E), type); 3588 } 3589 3590 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3591 3592 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3593 // However, we still have to push an EH-only cleanup in case we unwind before 3594 // we make it to the call. 3595 if (HasAggregateEvalKind && 3596 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 3597 // If we're using inalloca, use the argument memory. Otherwise, use a 3598 // temporary. 3599 AggValueSlot Slot; 3600 if (args.isUsingInAlloca()) 3601 Slot = createPlaceholderSlot(*this, type); 3602 else 3603 Slot = CreateAggTemp(type, "agg.tmp"); 3604 3605 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3606 if (const auto *RD = type->getAsCXXRecordDecl()) 3607 DestroyedInCallee = RD->hasNonTrivialDestructor(); 3608 else 3609 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3610 3611 if (DestroyedInCallee) 3612 Slot.setExternallyDestructed(); 3613 3614 EmitAggExpr(E, Slot); 3615 RValue RV = Slot.asRValue(); 3616 args.add(RV, type); 3617 3618 if (DestroyedInCallee && NeedsEHCleanup) { 3619 // Create a no-op GEP between the placeholder and the cleanup so we can 3620 // RAUW it successfully. It also serves as a marker of the first 3621 // instruction where the cleanup is active. 3622 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3623 type); 3624 // This unreachable is a temporary marker which will be removed later. 3625 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3626 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3627 } 3628 return; 3629 } 3630 3631 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3632 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3633 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3634 assert(L.isSimple()); 3635 args.addUncopiedAggregate(L, type); 3636 return; 3637 } 3638 3639 args.add(EmitAnyExprToTemp(E), type); 3640 } 3641 3642 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3643 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3644 // implicitly widens null pointer constants that are arguments to varargs 3645 // functions to pointer-sized ints. 3646 if (!getTarget().getTriple().isOSWindows()) 3647 return Arg->getType(); 3648 3649 if (Arg->getType()->isIntegerType() && 3650 getContext().getTypeSize(Arg->getType()) < 3651 getContext().getTargetInfo().getPointerWidth(0) && 3652 Arg->isNullPointerConstant(getContext(), 3653 Expr::NPC_ValueDependentIsNotNull)) { 3654 return getContext().getIntPtrType(); 3655 } 3656 3657 return Arg->getType(); 3658 } 3659 3660 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3661 // optimizer it can aggressively ignore unwind edges. 3662 void 3663 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3664 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3665 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3666 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3667 CGM.getNoObjCARCExceptionsMetadata()); 3668 } 3669 3670 /// Emits a call to the given no-arguments nounwind runtime function. 3671 llvm::CallInst * 3672 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3673 const llvm::Twine &name) { 3674 return EmitNounwindRuntimeCall(callee, None, name); 3675 } 3676 3677 /// Emits a call to the given nounwind runtime function. 3678 llvm::CallInst * 3679 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3680 ArrayRef<llvm::Value *> args, 3681 const llvm::Twine &name) { 3682 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3683 call->setDoesNotThrow(); 3684 return call; 3685 } 3686 3687 /// Emits a simple call (never an invoke) to the given no-arguments 3688 /// runtime function. 3689 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 3690 const llvm::Twine &name) { 3691 return EmitRuntimeCall(callee, None, name); 3692 } 3693 3694 // Calls which may throw must have operand bundles indicating which funclet 3695 // they are nested within. 3696 SmallVector<llvm::OperandBundleDef, 1> 3697 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 3698 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3699 // There is no need for a funclet operand bundle if we aren't inside a 3700 // funclet. 3701 if (!CurrentFuncletPad) 3702 return BundleList; 3703 3704 // Skip intrinsics which cannot throw. 3705 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3706 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3707 return BundleList; 3708 3709 BundleList.emplace_back("funclet", CurrentFuncletPad); 3710 return BundleList; 3711 } 3712 3713 /// Emits a simple call (never an invoke) to the given runtime function. 3714 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 3715 ArrayRef<llvm::Value *> args, 3716 const llvm::Twine &name) { 3717 llvm::CallInst *call = Builder.CreateCall( 3718 callee, args, getBundlesForFunclet(callee.getCallee()), name); 3719 call->setCallingConv(getRuntimeCC()); 3720 return call; 3721 } 3722 3723 /// Emits a call or invoke to the given noreturn runtime function. 3724 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 3725 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 3726 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3727 getBundlesForFunclet(callee.getCallee()); 3728 3729 if (getInvokeDest()) { 3730 llvm::InvokeInst *invoke = 3731 Builder.CreateInvoke(callee, 3732 getUnreachableBlock(), 3733 getInvokeDest(), 3734 args, 3735 BundleList); 3736 invoke->setDoesNotReturn(); 3737 invoke->setCallingConv(getRuntimeCC()); 3738 } else { 3739 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3740 call->setDoesNotReturn(); 3741 call->setCallingConv(getRuntimeCC()); 3742 Builder.CreateUnreachable(); 3743 } 3744 } 3745 3746 /// Emits a call or invoke instruction to the given nullary runtime function. 3747 llvm::CallBase * 3748 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3749 const Twine &name) { 3750 return EmitRuntimeCallOrInvoke(callee, None, name); 3751 } 3752 3753 /// Emits a call or invoke instruction to the given runtime function. 3754 llvm::CallBase * 3755 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3756 ArrayRef<llvm::Value *> args, 3757 const Twine &name) { 3758 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 3759 call->setCallingConv(getRuntimeCC()); 3760 return call; 3761 } 3762 3763 /// Emits a call or invoke instruction to the given function, depending 3764 /// on the current state of the EH stack. 3765 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 3766 ArrayRef<llvm::Value *> Args, 3767 const Twine &Name) { 3768 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3769 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3770 getBundlesForFunclet(Callee.getCallee()); 3771 3772 llvm::CallBase *Inst; 3773 if (!InvokeDest) 3774 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3775 else { 3776 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3777 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3778 Name); 3779 EmitBlock(ContBB); 3780 } 3781 3782 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3783 // optimizer it can aggressively ignore unwind edges. 3784 if (CGM.getLangOpts().ObjCAutoRefCount) 3785 AddObjCARCExceptionMetadata(Inst); 3786 3787 return Inst; 3788 } 3789 3790 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3791 llvm::Value *New) { 3792 DeferredReplacements.push_back(std::make_pair(Old, New)); 3793 } 3794 3795 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3796 const CGCallee &Callee, 3797 ReturnValueSlot ReturnValue, 3798 const CallArgList &CallArgs, 3799 llvm::CallBase **callOrInvoke, 3800 SourceLocation Loc) { 3801 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3802 3803 assert(Callee.isOrdinary() || Callee.isVirtual()); 3804 3805 // Handle struct-return functions by passing a pointer to the 3806 // location that we would like to return into. 3807 QualType RetTy = CallInfo.getReturnType(); 3808 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3809 3810 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 3811 3812 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 3813 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) 3814 // We can only guarantee that a function is called from the correct 3815 // context/function based on the appropriate target attributes, 3816 // so only check in the case where we have both always_inline and target 3817 // since otherwise we could be making a conditional call after a check for 3818 // the proper cpu features (and it won't cause code generation issues due to 3819 // function based code generation). 3820 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 3821 TargetDecl->hasAttr<TargetAttr>()) 3822 checkTargetFeatures(Loc, FD); 3823 3824 #ifndef NDEBUG 3825 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 3826 // For an inalloca varargs function, we don't expect CallInfo to match the 3827 // function pointer's type, because the inalloca struct a will have extra 3828 // fields in it for the varargs parameters. Code later in this function 3829 // bitcasts the function pointer to the type derived from CallInfo. 3830 // 3831 // In other cases, we assert that the types match up (until pointers stop 3832 // having pointee types). 3833 llvm::Type *TypeFromVal; 3834 if (Callee.isVirtual()) 3835 TypeFromVal = Callee.getVirtualFunctionType(); 3836 else 3837 TypeFromVal = 3838 Callee.getFunctionPointer()->getType()->getPointerElementType(); 3839 assert(IRFuncTy == TypeFromVal); 3840 } 3841 #endif 3842 3843 // 1. Set up the arguments. 3844 3845 // If we're using inalloca, insert the allocation after the stack save. 3846 // FIXME: Do this earlier rather than hacking it in here! 3847 Address ArgMemory = Address::invalid(); 3848 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3849 const llvm::DataLayout &DL = CGM.getDataLayout(); 3850 llvm::Instruction *IP = CallArgs.getStackBase(); 3851 llvm::AllocaInst *AI; 3852 if (IP) { 3853 IP = IP->getNextNode(); 3854 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 3855 "argmem", IP); 3856 } else { 3857 AI = CreateTempAlloca(ArgStruct, "argmem"); 3858 } 3859 auto Align = CallInfo.getArgStructAlignment(); 3860 AI->setAlignment(Align.getAsAlign()); 3861 AI->setUsedWithInAlloca(true); 3862 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3863 ArgMemory = Address(AI, Align); 3864 } 3865 3866 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3867 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3868 3869 // If the call returns a temporary with struct return, create a temporary 3870 // alloca to hold the result, unless one is given to us. 3871 Address SRetPtr = Address::invalid(); 3872 Address SRetAlloca = Address::invalid(); 3873 llvm::Value *UnusedReturnSizePtr = nullptr; 3874 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3875 if (!ReturnValue.isNull()) { 3876 SRetPtr = ReturnValue.getValue(); 3877 } else { 3878 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 3879 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3880 uint64_t size = 3881 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3882 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 3883 } 3884 } 3885 if (IRFunctionArgs.hasSRetArg()) { 3886 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3887 } else if (RetAI.isInAlloca()) { 3888 Address Addr = 3889 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 3890 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3891 } 3892 } 3893 3894 Address swiftErrorTemp = Address::invalid(); 3895 Address swiftErrorArg = Address::invalid(); 3896 3897 // When passing arguments using temporary allocas, we need to add the 3898 // appropriate lifetime markers. This vector keeps track of all the lifetime 3899 // markers that need to be ended right after the call. 3900 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 3901 3902 // Translate all of the arguments as necessary to match the IR lowering. 3903 assert(CallInfo.arg_size() == CallArgs.size() && 3904 "Mismatch between function signature & arguments."); 3905 unsigned ArgNo = 0; 3906 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3907 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3908 I != E; ++I, ++info_it, ++ArgNo) { 3909 const ABIArgInfo &ArgInfo = info_it->info; 3910 3911 // Insert a padding argument to ensure proper alignment. 3912 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3913 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3914 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3915 3916 unsigned FirstIRArg, NumIRArgs; 3917 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3918 3919 switch (ArgInfo.getKind()) { 3920 case ABIArgInfo::InAlloca: { 3921 assert(NumIRArgs == 0); 3922 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3923 if (I->isAggregate()) { 3924 // Replace the placeholder with the appropriate argument slot GEP. 3925 Address Addr = I->hasLValue() 3926 ? I->getKnownLValue().getAddress() 3927 : I->getKnownRValue().getAggregateAddress(); 3928 llvm::Instruction *Placeholder = 3929 cast<llvm::Instruction>(Addr.getPointer()); 3930 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3931 Builder.SetInsertPoint(Placeholder); 3932 Addr = 3933 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 3934 Builder.restoreIP(IP); 3935 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3936 } else { 3937 // Store the RValue into the argument struct. 3938 Address Addr = 3939 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 3940 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3941 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3942 // There are some cases where a trivial bitcast is not avoidable. The 3943 // definition of a type later in a translation unit may change it's type 3944 // from {}* to (%struct.foo*)*. 3945 if (Addr.getType() != MemType) 3946 Addr = Builder.CreateBitCast(Addr, MemType); 3947 I->copyInto(*this, Addr); 3948 } 3949 break; 3950 } 3951 3952 case ABIArgInfo::Indirect: { 3953 assert(NumIRArgs == 1); 3954 if (!I->isAggregate()) { 3955 // Make a temporary alloca to pass the argument. 3956 Address Addr = CreateMemTempWithoutCast( 3957 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 3958 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3959 3960 I->copyInto(*this, Addr); 3961 } else { 3962 // We want to avoid creating an unnecessary temporary+copy here; 3963 // however, we need one in three cases: 3964 // 1. If the argument is not byval, and we are required to copy the 3965 // source. (This case doesn't occur on any common architecture.) 3966 // 2. If the argument is byval, RV is not sufficiently aligned, and 3967 // we cannot force it to be sufficiently aligned. 3968 // 3. If the argument is byval, but RV is not located in default 3969 // or alloca address space. 3970 Address Addr = I->hasLValue() 3971 ? I->getKnownLValue().getAddress() 3972 : I->getKnownRValue().getAggregateAddress(); 3973 llvm::Value *V = Addr.getPointer(); 3974 CharUnits Align = ArgInfo.getIndirectAlign(); 3975 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3976 3977 assert((FirstIRArg >= IRFuncTy->getNumParams() || 3978 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 3979 TD->getAllocaAddrSpace()) && 3980 "indirect argument must be in alloca address space"); 3981 3982 bool NeedCopy = false; 3983 3984 if (Addr.getAlignment() < Align && 3985 llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) < 3986 Align.getQuantity()) { 3987 NeedCopy = true; 3988 } else if (I->hasLValue()) { 3989 auto LV = I->getKnownLValue(); 3990 auto AS = LV.getAddressSpace(); 3991 3992 if ((!ArgInfo.getIndirectByVal() && 3993 (LV.getAlignment() >= 3994 getContext().getTypeAlignInChars(I->Ty)))) { 3995 NeedCopy = true; 3996 } 3997 if (!getLangOpts().OpenCL) { 3998 if ((ArgInfo.getIndirectByVal() && 3999 (AS != LangAS::Default && 4000 AS != CGM.getASTAllocaAddressSpace()))) { 4001 NeedCopy = true; 4002 } 4003 } 4004 // For OpenCL even if RV is located in default or alloca address space 4005 // we don't want to perform address space cast for it. 4006 else if ((ArgInfo.getIndirectByVal() && 4007 Addr.getType()->getAddressSpace() != IRFuncTy-> 4008 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4009 NeedCopy = true; 4010 } 4011 } 4012 4013 if (NeedCopy) { 4014 // Create an aligned temporary, and copy to it. 4015 Address AI = CreateMemTempWithoutCast( 4016 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4017 IRCallArgs[FirstIRArg] = AI.getPointer(); 4018 4019 // Emit lifetime markers for the temporary alloca. 4020 uint64_t ByvalTempElementSize = 4021 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4022 llvm::Value *LifetimeSize = 4023 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4024 4025 // Add cleanup code to emit the end lifetime marker after the call. 4026 if (LifetimeSize) // In case we disabled lifetime markers. 4027 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4028 4029 // Generate the copy. 4030 I->copyInto(*this, AI); 4031 } else { 4032 // Skip the extra memcpy call. 4033 auto *T = V->getType()->getPointerElementType()->getPointerTo( 4034 CGM.getDataLayout().getAllocaAddrSpace()); 4035 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4036 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4037 true); 4038 } 4039 } 4040 break; 4041 } 4042 4043 case ABIArgInfo::Ignore: 4044 assert(NumIRArgs == 0); 4045 break; 4046 4047 case ABIArgInfo::Extend: 4048 case ABIArgInfo::Direct: { 4049 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4050 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4051 ArgInfo.getDirectOffset() == 0) { 4052 assert(NumIRArgs == 1); 4053 llvm::Value *V; 4054 if (!I->isAggregate()) 4055 V = I->getKnownRValue().getScalarVal(); 4056 else 4057 V = Builder.CreateLoad( 4058 I->hasLValue() ? I->getKnownLValue().getAddress() 4059 : I->getKnownRValue().getAggregateAddress()); 4060 4061 // Implement swifterror by copying into a new swifterror argument. 4062 // We'll write back in the normal path out of the call. 4063 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4064 == ParameterABI::SwiftErrorResult) { 4065 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4066 4067 QualType pointeeTy = I->Ty->getPointeeType(); 4068 swiftErrorArg = 4069 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4070 4071 swiftErrorTemp = 4072 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4073 V = swiftErrorTemp.getPointer(); 4074 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4075 4076 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4077 Builder.CreateStore(errorValue, swiftErrorTemp); 4078 } 4079 4080 // We might have to widen integers, but we should never truncate. 4081 if (ArgInfo.getCoerceToType() != V->getType() && 4082 V->getType()->isIntegerTy()) 4083 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4084 4085 // If the argument doesn't match, perform a bitcast to coerce it. This 4086 // can happen due to trivial type mismatches. 4087 if (FirstIRArg < IRFuncTy->getNumParams() && 4088 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4089 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4090 4091 IRCallArgs[FirstIRArg] = V; 4092 break; 4093 } 4094 4095 // FIXME: Avoid the conversion through memory if possible. 4096 Address Src = Address::invalid(); 4097 if (!I->isAggregate()) { 4098 Src = CreateMemTemp(I->Ty, "coerce"); 4099 I->copyInto(*this, Src); 4100 } else { 4101 Src = I->hasLValue() ? I->getKnownLValue().getAddress() 4102 : I->getKnownRValue().getAggregateAddress(); 4103 } 4104 4105 // If the value is offset in memory, apply the offset now. 4106 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4107 4108 // Fast-isel and the optimizer generally like scalar values better than 4109 // FCAs, so we flatten them if this is safe to do for this argument. 4110 llvm::StructType *STy = 4111 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4112 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4113 llvm::Type *SrcTy = Src.getType()->getElementType(); 4114 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4115 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4116 4117 // If the source type is smaller than the destination type of the 4118 // coerce-to logic, copy the source value into a temp alloca the size 4119 // of the destination type to allow loading all of it. The bits past 4120 // the source value are left undef. 4121 if (SrcSize < DstSize) { 4122 Address TempAlloca 4123 = CreateTempAlloca(STy, Src.getAlignment(), 4124 Src.getName() + ".coerce"); 4125 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4126 Src = TempAlloca; 4127 } else { 4128 Src = Builder.CreateBitCast(Src, 4129 STy->getPointerTo(Src.getAddressSpace())); 4130 } 4131 4132 assert(NumIRArgs == STy->getNumElements()); 4133 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4134 Address EltPtr = Builder.CreateStructGEP(Src, i); 4135 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4136 IRCallArgs[FirstIRArg + i] = LI; 4137 } 4138 } else { 4139 // In the simple case, just pass the coerced loaded value. 4140 assert(NumIRArgs == 1); 4141 IRCallArgs[FirstIRArg] = 4142 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4143 } 4144 4145 break; 4146 } 4147 4148 case ABIArgInfo::CoerceAndExpand: { 4149 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4150 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4151 4152 llvm::Value *tempSize = nullptr; 4153 Address addr = Address::invalid(); 4154 Address AllocaAddr = Address::invalid(); 4155 if (I->isAggregate()) { 4156 addr = I->hasLValue() ? I->getKnownLValue().getAddress() 4157 : I->getKnownRValue().getAggregateAddress(); 4158 4159 } else { 4160 RValue RV = I->getKnownRValue(); 4161 assert(RV.isScalar()); // complex should always just be direct 4162 4163 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4164 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4165 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4166 4167 // Materialize to a temporary. 4168 addr = CreateTempAlloca( 4169 RV.getScalarVal()->getType(), 4170 CharUnits::fromQuantity(std::max( 4171 (unsigned)layout->getAlignment().value(), scalarAlign)), 4172 "tmp", 4173 /*ArraySize=*/nullptr, &AllocaAddr); 4174 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4175 4176 Builder.CreateStore(RV.getScalarVal(), addr); 4177 } 4178 4179 addr = Builder.CreateElementBitCast(addr, coercionType); 4180 4181 unsigned IRArgPos = FirstIRArg; 4182 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4183 llvm::Type *eltType = coercionType->getElementType(i); 4184 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4185 Address eltAddr = Builder.CreateStructGEP(addr, i); 4186 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4187 IRCallArgs[IRArgPos++] = elt; 4188 } 4189 assert(IRArgPos == FirstIRArg + NumIRArgs); 4190 4191 if (tempSize) { 4192 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4193 } 4194 4195 break; 4196 } 4197 4198 case ABIArgInfo::Expand: 4199 unsigned IRArgPos = FirstIRArg; 4200 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4201 assert(IRArgPos == FirstIRArg + NumIRArgs); 4202 break; 4203 } 4204 } 4205 4206 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4207 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4208 4209 // If we're using inalloca, set up that argument. 4210 if (ArgMemory.isValid()) { 4211 llvm::Value *Arg = ArgMemory.getPointer(); 4212 if (CallInfo.isVariadic()) { 4213 // When passing non-POD arguments by value to variadic functions, we will 4214 // end up with a variadic prototype and an inalloca call site. In such 4215 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4216 // the callee. 4217 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4218 CalleePtr = 4219 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 4220 } else { 4221 llvm::Type *LastParamTy = 4222 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4223 if (Arg->getType() != LastParamTy) { 4224 #ifndef NDEBUG 4225 // Assert that these structs have equivalent element types. 4226 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4227 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4228 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4229 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4230 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4231 DE = DeclaredTy->element_end(), 4232 FI = FullTy->element_begin(); 4233 DI != DE; ++DI, ++FI) 4234 assert(*DI == *FI); 4235 #endif 4236 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4237 } 4238 } 4239 assert(IRFunctionArgs.hasInallocaArg()); 4240 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4241 } 4242 4243 // 2. Prepare the function pointer. 4244 4245 // If the callee is a bitcast of a non-variadic function to have a 4246 // variadic function pointer type, check to see if we can remove the 4247 // bitcast. This comes up with unprototyped functions. 4248 // 4249 // This makes the IR nicer, but more importantly it ensures that we 4250 // can inline the function at -O0 if it is marked always_inline. 4251 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 4252 llvm::Value *Ptr) -> llvm::Function * { 4253 if (!CalleeFT->isVarArg()) 4254 return nullptr; 4255 4256 // Get underlying value if it's a bitcast 4257 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 4258 if (CE->getOpcode() == llvm::Instruction::BitCast) 4259 Ptr = CE->getOperand(0); 4260 } 4261 4262 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 4263 if (!OrigFn) 4264 return nullptr; 4265 4266 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4267 4268 // If the original type is variadic, or if any of the component types 4269 // disagree, we cannot remove the cast. 4270 if (OrigFT->isVarArg() || 4271 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4272 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4273 return nullptr; 4274 4275 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4276 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4277 return nullptr; 4278 4279 return OrigFn; 4280 }; 4281 4282 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 4283 CalleePtr = OrigFn; 4284 IRFuncTy = OrigFn->getFunctionType(); 4285 } 4286 4287 // 3. Perform the actual call. 4288 4289 // Deactivate any cleanups that we're supposed to do immediately before 4290 // the call. 4291 if (!CallArgs.getCleanupsToDeactivate().empty()) 4292 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4293 4294 // Assert that the arguments we computed match up. The IR verifier 4295 // will catch this, but this is a common enough source of problems 4296 // during IRGen changes that it's way better for debugging to catch 4297 // it ourselves here. 4298 #ifndef NDEBUG 4299 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4300 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4301 // Inalloca argument can have different type. 4302 if (IRFunctionArgs.hasInallocaArg() && 4303 i == IRFunctionArgs.getInallocaArgNo()) 4304 continue; 4305 if (i < IRFuncTy->getNumParams()) 4306 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4307 } 4308 #endif 4309 4310 // Update the largest vector width if any arguments have vector types. 4311 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4312 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 4313 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 4314 VT->getPrimitiveSizeInBits().getFixedSize()); 4315 } 4316 4317 // Compute the calling convention and attributes. 4318 unsigned CallingConv; 4319 llvm::AttributeList Attrs; 4320 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4321 Callee.getAbstractInfo(), Attrs, CallingConv, 4322 /*AttrOnCallSite=*/true); 4323 4324 // Apply some call-site-specific attributes. 4325 // TODO: work this into building the attribute set. 4326 4327 // Apply always_inline to all calls within flatten functions. 4328 // FIXME: should this really take priority over __try, below? 4329 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4330 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 4331 Attrs = 4332 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4333 llvm::Attribute::AlwaysInline); 4334 } 4335 4336 // Disable inlining inside SEH __try blocks. 4337 if (isSEHTryScope()) { 4338 Attrs = 4339 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4340 llvm::Attribute::NoInline); 4341 } 4342 4343 // Decide whether to use a call or an invoke. 4344 bool CannotThrow; 4345 if (currentFunctionUsesSEHTry()) { 4346 // SEH cares about asynchronous exceptions, so everything can "throw." 4347 CannotThrow = false; 4348 } else if (isCleanupPadScope() && 4349 EHPersonality::get(*this).isMSVCXXPersonality()) { 4350 // The MSVC++ personality will implicitly terminate the program if an 4351 // exception is thrown during a cleanup outside of a try/catch. 4352 // We don't need to model anything in IR to get this behavior. 4353 CannotThrow = true; 4354 } else { 4355 // Otherwise, nounwind call sites will never throw. 4356 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4357 llvm::Attribute::NoUnwind); 4358 } 4359 4360 // If we made a temporary, be sure to clean up after ourselves. Note that we 4361 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4362 // pop this cleanup later on. Being eager about this is OK, since this 4363 // temporary is 'invisible' outside of the callee. 4364 if (UnusedReturnSizePtr) 4365 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 4366 UnusedReturnSizePtr); 4367 4368 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4369 4370 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4371 getBundlesForFunclet(CalleePtr); 4372 4373 // Emit the actual call/invoke instruction. 4374 llvm::CallBase *CI; 4375 if (!InvokeDest) { 4376 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 4377 } else { 4378 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4379 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 4380 BundleList); 4381 EmitBlock(Cont); 4382 } 4383 if (callOrInvoke) 4384 *callOrInvoke = CI; 4385 4386 // Apply the attributes and calling convention. 4387 CI->setAttributes(Attrs); 4388 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4389 4390 // Apply various metadata. 4391 4392 if (!CI->getType()->isVoidTy()) 4393 CI->setName("call"); 4394 4395 // Update largest vector width from the return type. 4396 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 4397 LargestVectorWidth = std::max((uint64_t)LargestVectorWidth, 4398 VT->getPrimitiveSizeInBits().getFixedSize()); 4399 4400 // Insert instrumentation or attach profile metadata at indirect call sites. 4401 // For more details, see the comment before the definition of 4402 // IPVK_IndirectCallTarget in InstrProfData.inc. 4403 if (!CI->getCalledFunction()) 4404 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4405 CI, CalleePtr); 4406 4407 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4408 // optimizer it can aggressively ignore unwind edges. 4409 if (CGM.getLangOpts().ObjCAutoRefCount) 4410 AddObjCARCExceptionMetadata(CI); 4411 4412 // Suppress tail calls if requested. 4413 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4414 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4415 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4416 } 4417 4418 // Add metadata for calls to MSAllocator functions 4419 if (getDebugInfo() && TargetDecl && 4420 TargetDecl->hasAttr<MSAllocatorAttr>()) 4421 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy, Loc); 4422 4423 // 4. Finish the call. 4424 4425 // If the call doesn't return, finish the basic block and clear the 4426 // insertion point; this allows the rest of IRGen to discard 4427 // unreachable code. 4428 if (CI->doesNotReturn()) { 4429 if (UnusedReturnSizePtr) 4430 PopCleanupBlock(); 4431 4432 // Strip away the noreturn attribute to better diagnose unreachable UB. 4433 if (SanOpts.has(SanitizerKind::Unreachable)) { 4434 // Also remove from function since CallBase::hasFnAttr additionally checks 4435 // attributes of the called function. 4436 if (auto *F = CI->getCalledFunction()) 4437 F->removeFnAttr(llvm::Attribute::NoReturn); 4438 CI->removeAttribute(llvm::AttributeList::FunctionIndex, 4439 llvm::Attribute::NoReturn); 4440 4441 // Avoid incompatibility with ASan which relies on the `noreturn` 4442 // attribute to insert handler calls. 4443 if (SanOpts.hasOneOf(SanitizerKind::Address | 4444 SanitizerKind::KernelAddress)) { 4445 SanitizerScope SanScope(this); 4446 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 4447 Builder.SetInsertPoint(CI); 4448 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 4449 llvm::FunctionCallee Fn = 4450 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 4451 EmitNounwindRuntimeCall(Fn); 4452 } 4453 } 4454 4455 EmitUnreachable(Loc); 4456 Builder.ClearInsertionPoint(); 4457 4458 // FIXME: For now, emit a dummy basic block because expr emitters in 4459 // generally are not ready to handle emitting expressions at unreachable 4460 // points. 4461 EnsureInsertPoint(); 4462 4463 // Return a reasonable RValue. 4464 return GetUndefRValue(RetTy); 4465 } 4466 4467 // Perform the swifterror writeback. 4468 if (swiftErrorTemp.isValid()) { 4469 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4470 Builder.CreateStore(errorResult, swiftErrorArg); 4471 } 4472 4473 // Emit any call-associated writebacks immediately. Arguably this 4474 // should happen after any return-value munging. 4475 if (CallArgs.hasWritebacks()) 4476 emitWritebacks(*this, CallArgs); 4477 4478 // The stack cleanup for inalloca arguments has to run out of the normal 4479 // lexical order, so deactivate it and run it manually here. 4480 CallArgs.freeArgumentMemory(*this); 4481 4482 // Extract the return value. 4483 RValue Ret = [&] { 4484 switch (RetAI.getKind()) { 4485 case ABIArgInfo::CoerceAndExpand: { 4486 auto coercionType = RetAI.getCoerceAndExpandType(); 4487 4488 Address addr = SRetPtr; 4489 addr = Builder.CreateElementBitCast(addr, coercionType); 4490 4491 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4492 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4493 4494 unsigned unpaddedIndex = 0; 4495 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4496 llvm::Type *eltType = coercionType->getElementType(i); 4497 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4498 Address eltAddr = Builder.CreateStructGEP(addr, i); 4499 llvm::Value *elt = CI; 4500 if (requiresExtract) 4501 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4502 else 4503 assert(unpaddedIndex == 0); 4504 Builder.CreateStore(elt, eltAddr); 4505 } 4506 // FALLTHROUGH 4507 LLVM_FALLTHROUGH; 4508 } 4509 4510 case ABIArgInfo::InAlloca: 4511 case ABIArgInfo::Indirect: { 4512 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4513 if (UnusedReturnSizePtr) 4514 PopCleanupBlock(); 4515 return ret; 4516 } 4517 4518 case ABIArgInfo::Ignore: 4519 // If we are ignoring an argument that had a result, make sure to 4520 // construct the appropriate return value for our caller. 4521 return GetUndefRValue(RetTy); 4522 4523 case ABIArgInfo::Extend: 4524 case ABIArgInfo::Direct: { 4525 llvm::Type *RetIRTy = ConvertType(RetTy); 4526 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4527 switch (getEvaluationKind(RetTy)) { 4528 case TEK_Complex: { 4529 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4530 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4531 return RValue::getComplex(std::make_pair(Real, Imag)); 4532 } 4533 case TEK_Aggregate: { 4534 Address DestPtr = ReturnValue.getValue(); 4535 bool DestIsVolatile = ReturnValue.isVolatile(); 4536 4537 if (!DestPtr.isValid()) { 4538 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4539 DestIsVolatile = false; 4540 } 4541 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4542 return RValue::getAggregate(DestPtr); 4543 } 4544 case TEK_Scalar: { 4545 // If the argument doesn't match, perform a bitcast to coerce it. This 4546 // can happen due to trivial type mismatches. 4547 llvm::Value *V = CI; 4548 if (V->getType() != RetIRTy) 4549 V = Builder.CreateBitCast(V, RetIRTy); 4550 return RValue::get(V); 4551 } 4552 } 4553 llvm_unreachable("bad evaluation kind"); 4554 } 4555 4556 Address DestPtr = ReturnValue.getValue(); 4557 bool DestIsVolatile = ReturnValue.isVolatile(); 4558 4559 if (!DestPtr.isValid()) { 4560 DestPtr = CreateMemTemp(RetTy, "coerce"); 4561 DestIsVolatile = false; 4562 } 4563 4564 // If the value is offset in memory, apply the offset now. 4565 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4566 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4567 4568 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4569 } 4570 4571 case ABIArgInfo::Expand: 4572 llvm_unreachable("Invalid ABI kind for return argument"); 4573 } 4574 4575 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4576 } (); 4577 4578 // Emit the assume_aligned check on the return value. 4579 if (Ret.isScalar() && TargetDecl) { 4580 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4581 llvm::Value *OffsetValue = nullptr; 4582 if (const auto *Offset = AA->getOffset()) 4583 OffsetValue = EmitScalarExpr(Offset); 4584 4585 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4586 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4587 EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(), 4588 AlignmentCI, OffsetValue); 4589 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { 4590 llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()] 4591 .getRValue(*this) 4592 .getScalarVal(); 4593 EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(), 4594 AlignmentVal); 4595 } 4596 } 4597 4598 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 4599 // we can't use the full cleanup mechanism. 4600 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 4601 LifetimeEnd.Emit(*this, /*Flags=*/{}); 4602 4603 return Ret; 4604 } 4605 4606 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 4607 if (isVirtual()) { 4608 const CallExpr *CE = getVirtualCallExpr(); 4609 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 4610 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 4611 CE ? CE->getBeginLoc() : SourceLocation()); 4612 } 4613 4614 return *this; 4615 } 4616 4617 /* VarArg handling */ 4618 4619 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4620 VAListAddr = VE->isMicrosoftABI() 4621 ? EmitMSVAListRef(VE->getSubExpr()) 4622 : EmitVAListRef(VE->getSubExpr()); 4623 QualType Ty = VE->getType(); 4624 if (VE->isMicrosoftABI()) 4625 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4626 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4627 } 4628