1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/Basic/TargetBuiltins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_Win64: return llvm::CallingConv::Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 63 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 64 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 65 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 66 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 67 case CC_Swift: return llvm::CallingConv::Swift; 68 } 69 } 70 71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 72 /// qualification. Either or both of RD and MD may be null. A null RD indicates 73 /// that there is no meaningful 'this' type, and a null MD can occur when 74 /// calling a method pointer. 75 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 76 const CXXMethodDecl *MD) { 77 QualType RecTy; 78 if (RD) 79 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 80 else 81 RecTy = Context.VoidTy; 82 83 if (MD) 84 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 85 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 86 } 87 88 /// Returns the canonical formal type of the given C++ method. 89 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 90 return MD->getType()->getCanonicalTypeUnqualified() 91 .getAs<FunctionProtoType>(); 92 } 93 94 /// Returns the "extra-canonicalized" return type, which discards 95 /// qualifiers on the return type. Codegen doesn't care about them, 96 /// and it makes ABI code a little easier to be able to assume that 97 /// all parameter and return types are top-level unqualified. 98 static CanQualType GetReturnType(QualType RetTy) { 99 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 100 } 101 102 /// Arrange the argument and result information for a value of the given 103 /// unprototyped freestanding function type. 104 const CGFunctionInfo & 105 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 106 // When translating an unprototyped function type, always use a 107 // variadic type. 108 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 109 /*instanceMethod=*/false, 110 /*chainCall=*/false, None, 111 FTNP->getExtInfo(), {}, RequiredArgs(0)); 112 } 113 114 static void addExtParameterInfosForCall( 115 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 116 const FunctionProtoType *proto, 117 unsigned prefixArgs, 118 unsigned totalArgs) { 119 assert(proto->hasExtParameterInfos()); 120 assert(paramInfos.size() <= prefixArgs); 121 assert(proto->getNumParams() + prefixArgs <= totalArgs); 122 123 paramInfos.reserve(totalArgs); 124 125 // Add default infos for any prefix args that don't already have infos. 126 paramInfos.resize(prefixArgs); 127 128 // Add infos for the prototype. 129 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 130 paramInfos.push_back(ParamInfo); 131 // pass_object_size params have no parameter info. 132 if (ParamInfo.hasPassObjectSize()) 133 paramInfos.emplace_back(); 134 } 135 136 assert(paramInfos.size() <= totalArgs && 137 "Did we forget to insert pass_object_size args?"); 138 // Add default infos for the variadic and/or suffix arguments. 139 paramInfos.resize(totalArgs); 140 } 141 142 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 143 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 144 static void appendParameterTypes(const CodeGenTypes &CGT, 145 SmallVectorImpl<CanQualType> &prefix, 146 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 147 CanQual<FunctionProtoType> FPT) { 148 // Fast path: don't touch param info if we don't need to. 149 if (!FPT->hasExtParameterInfos()) { 150 assert(paramInfos.empty() && 151 "We have paramInfos, but the prototype doesn't?"); 152 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 153 return; 154 } 155 156 unsigned PrefixSize = prefix.size(); 157 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 158 // parameters; the only thing that can change this is the presence of 159 // pass_object_size. So, we preallocate for the common case. 160 prefix.reserve(prefix.size() + FPT->getNumParams()); 161 162 auto ExtInfos = FPT->getExtParameterInfos(); 163 assert(ExtInfos.size() == FPT->getNumParams()); 164 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 165 prefix.push_back(FPT->getParamType(I)); 166 if (ExtInfos[I].hasPassObjectSize()) 167 prefix.push_back(CGT.getContext().getSizeType()); 168 } 169 170 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 171 prefix.size()); 172 } 173 174 /// Arrange the LLVM function layout for a value of the given function 175 /// type, on top of any implicit parameters already stored. 176 static const CGFunctionInfo & 177 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 178 SmallVectorImpl<CanQualType> &prefix, 179 CanQual<FunctionProtoType> FTP) { 180 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 181 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 182 // FIXME: Kill copy. 183 appendParameterTypes(CGT, prefix, paramInfos, FTP); 184 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 185 186 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 187 /*chainCall=*/false, prefix, 188 FTP->getExtInfo(), paramInfos, 189 Required); 190 } 191 192 /// Arrange the argument and result information for a value of the 193 /// given freestanding function type. 194 const CGFunctionInfo & 195 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 196 SmallVector<CanQualType, 16> argTypes; 197 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 198 FTP); 199 } 200 201 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 202 // Set the appropriate calling convention for the Function. 203 if (D->hasAttr<StdCallAttr>()) 204 return CC_X86StdCall; 205 206 if (D->hasAttr<FastCallAttr>()) 207 return CC_X86FastCall; 208 209 if (D->hasAttr<RegCallAttr>()) 210 return CC_X86RegCall; 211 212 if (D->hasAttr<ThisCallAttr>()) 213 return CC_X86ThisCall; 214 215 if (D->hasAttr<VectorCallAttr>()) 216 return CC_X86VectorCall; 217 218 if (D->hasAttr<PascalAttr>()) 219 return CC_X86Pascal; 220 221 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 222 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 223 224 if (D->hasAttr<AArch64VectorPcsAttr>()) 225 return CC_AArch64VectorCall; 226 227 if (D->hasAttr<IntelOclBiccAttr>()) 228 return CC_IntelOclBicc; 229 230 if (D->hasAttr<MSABIAttr>()) 231 return IsWindows ? CC_C : CC_Win64; 232 233 if (D->hasAttr<SysVABIAttr>()) 234 return IsWindows ? CC_X86_64SysV : CC_C; 235 236 if (D->hasAttr<PreserveMostAttr>()) 237 return CC_PreserveMost; 238 239 if (D->hasAttr<PreserveAllAttr>()) 240 return CC_PreserveAll; 241 242 return CC_C; 243 } 244 245 /// Arrange the argument and result information for a call to an 246 /// unknown C++ non-static member function of the given abstract type. 247 /// (A null RD means we don't have any meaningful "this" argument type, 248 /// so fall back to a generic pointer type). 249 /// The member function must be an ordinary function, i.e. not a 250 /// constructor or destructor. 251 const CGFunctionInfo & 252 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 253 const FunctionProtoType *FTP, 254 const CXXMethodDecl *MD) { 255 SmallVector<CanQualType, 16> argTypes; 256 257 // Add the 'this' pointer. 258 argTypes.push_back(DeriveThisType(RD, MD)); 259 260 return ::arrangeLLVMFunctionInfo( 261 *this, true, argTypes, 262 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 263 } 264 265 /// Set calling convention for CUDA/HIP kernel. 266 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 267 const FunctionDecl *FD) { 268 if (FD->hasAttr<CUDAGlobalAttr>()) { 269 const FunctionType *FT = FTy->getAs<FunctionType>(); 270 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 271 FTy = FT->getCanonicalTypeUnqualified(); 272 } 273 } 274 275 /// Arrange the argument and result information for a declaration or 276 /// definition of the given C++ non-static member function. The 277 /// member function must be an ordinary function, i.e. not a 278 /// constructor or destructor. 279 const CGFunctionInfo & 280 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 281 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 282 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 283 284 CanQualType FT = GetFormalType(MD).getAs<Type>(); 285 setCUDAKernelCallingConvention(FT, CGM, MD); 286 auto prototype = FT.getAs<FunctionProtoType>(); 287 288 if (MD->isInstance()) { 289 // The abstract case is perfectly fine. 290 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 291 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 292 } 293 294 return arrangeFreeFunctionType(prototype); 295 } 296 297 bool CodeGenTypes::inheritingCtorHasParams( 298 const InheritedConstructor &Inherited, CXXCtorType Type) { 299 // Parameters are unnecessary if we're constructing a base class subobject 300 // and the inherited constructor lives in a virtual base. 301 return Type == Ctor_Complete || 302 !Inherited.getShadowDecl()->constructsVirtualBase() || 303 !Target.getCXXABI().hasConstructorVariants(); 304 } 305 306 const CGFunctionInfo & 307 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 308 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 309 310 SmallVector<CanQualType, 16> argTypes; 311 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 312 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 313 314 bool PassParams = true; 315 316 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 317 // A base class inheriting constructor doesn't get forwarded arguments 318 // needed to construct a virtual base (or base class thereof). 319 if (auto Inherited = CD->getInheritedConstructor()) 320 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 321 } 322 323 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 324 325 // Add the formal parameters. 326 if (PassParams) 327 appendParameterTypes(*this, argTypes, paramInfos, FTP); 328 329 CGCXXABI::AddedStructorArgCounts AddedArgs = 330 TheCXXABI.buildStructorSignature(GD, argTypes); 331 if (!paramInfos.empty()) { 332 // Note: prefix implies after the first param. 333 if (AddedArgs.Prefix) 334 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 335 FunctionProtoType::ExtParameterInfo{}); 336 if (AddedArgs.Suffix) 337 paramInfos.append(AddedArgs.Suffix, 338 FunctionProtoType::ExtParameterInfo{}); 339 } 340 341 RequiredArgs required = 342 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 343 : RequiredArgs::All); 344 345 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 346 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 347 ? argTypes.front() 348 : TheCXXABI.hasMostDerivedReturn(GD) 349 ? CGM.getContext().VoidPtrTy 350 : Context.VoidTy; 351 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 352 /*chainCall=*/false, argTypes, extInfo, 353 paramInfos, required); 354 } 355 356 static SmallVector<CanQualType, 16> 357 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 358 SmallVector<CanQualType, 16> argTypes; 359 for (auto &arg : args) 360 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 361 return argTypes; 362 } 363 364 static SmallVector<CanQualType, 16> 365 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 366 SmallVector<CanQualType, 16> argTypes; 367 for (auto &arg : args) 368 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 369 return argTypes; 370 } 371 372 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 373 getExtParameterInfosForCall(const FunctionProtoType *proto, 374 unsigned prefixArgs, unsigned totalArgs) { 375 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 376 if (proto->hasExtParameterInfos()) { 377 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 378 } 379 return result; 380 } 381 382 /// Arrange a call to a C++ method, passing the given arguments. 383 /// 384 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 385 /// parameter. 386 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 387 /// args. 388 /// PassProtoArgs indicates whether `args` has args for the parameters in the 389 /// given CXXConstructorDecl. 390 const CGFunctionInfo & 391 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 392 const CXXConstructorDecl *D, 393 CXXCtorType CtorKind, 394 unsigned ExtraPrefixArgs, 395 unsigned ExtraSuffixArgs, 396 bool PassProtoArgs) { 397 // FIXME: Kill copy. 398 SmallVector<CanQualType, 16> ArgTypes; 399 for (const auto &Arg : args) 400 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 401 402 // +1 for implicit this, which should always be args[0]. 403 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 404 405 CanQual<FunctionProtoType> FPT = GetFormalType(D); 406 RequiredArgs Required = PassProtoArgs 407 ? RequiredArgs::forPrototypePlus( 408 FPT, TotalPrefixArgs + ExtraSuffixArgs) 409 : RequiredArgs::All; 410 411 GlobalDecl GD(D, CtorKind); 412 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 413 ? ArgTypes.front() 414 : TheCXXABI.hasMostDerivedReturn(GD) 415 ? CGM.getContext().VoidPtrTy 416 : Context.VoidTy; 417 418 FunctionType::ExtInfo Info = FPT->getExtInfo(); 419 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 420 // If the prototype args are elided, we should only have ABI-specific args, 421 // which never have param info. 422 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 423 // ABI-specific suffix arguments are treated the same as variadic arguments. 424 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 425 ArgTypes.size()); 426 } 427 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 428 /*chainCall=*/false, ArgTypes, Info, 429 ParamInfos, Required); 430 } 431 432 /// Arrange the argument and result information for the declaration or 433 /// definition of the given function. 434 const CGFunctionInfo & 435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 436 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 437 if (MD->isInstance()) 438 return arrangeCXXMethodDeclaration(MD); 439 440 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 441 442 assert(isa<FunctionType>(FTy)); 443 setCUDAKernelCallingConvention(FTy, CGM, FD); 444 445 // When declaring a function without a prototype, always use a 446 // non-variadic type. 447 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 448 return arrangeLLVMFunctionInfo( 449 noProto->getReturnType(), /*instanceMethod=*/false, 450 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 451 } 452 453 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 454 } 455 456 /// Arrange the argument and result information for the declaration or 457 /// definition of an Objective-C method. 458 const CGFunctionInfo & 459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 460 // It happens that this is the same as a call with no optional 461 // arguments, except also using the formal 'self' type. 462 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 463 } 464 465 /// Arrange the argument and result information for the function type 466 /// through which to perform a send to the given Objective-C method, 467 /// using the given receiver type. The receiver type is not always 468 /// the 'self' type of the method or even an Objective-C pointer type. 469 /// This is *not* the right method for actually performing such a 470 /// message send, due to the possibility of optional arguments. 471 const CGFunctionInfo & 472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 473 QualType receiverType) { 474 SmallVector<CanQualType, 16> argTys; 475 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 476 argTys.push_back(Context.getCanonicalParamType(receiverType)); 477 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 478 // FIXME: Kill copy? 479 for (const auto *I : MD->parameters()) { 480 argTys.push_back(Context.getCanonicalParamType(I->getType())); 481 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 482 I->hasAttr<NoEscapeAttr>()); 483 extParamInfos.push_back(extParamInfo); 484 } 485 486 FunctionType::ExtInfo einfo; 487 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 488 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 489 490 if (getContext().getLangOpts().ObjCAutoRefCount && 491 MD->hasAttr<NSReturnsRetainedAttr>()) 492 einfo = einfo.withProducesResult(true); 493 494 RequiredArgs required = 495 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 496 497 return arrangeLLVMFunctionInfo( 498 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 499 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 500 } 501 502 const CGFunctionInfo & 503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 504 const CallArgList &args) { 505 auto argTypes = getArgTypesForCall(Context, args); 506 FunctionType::ExtInfo einfo; 507 508 return arrangeLLVMFunctionInfo( 509 GetReturnType(returnType), /*instanceMethod=*/false, 510 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 511 } 512 513 const CGFunctionInfo & 514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 515 // FIXME: Do we need to handle ObjCMethodDecl? 516 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 517 518 if (isa<CXXConstructorDecl>(GD.getDecl()) || 519 isa<CXXDestructorDecl>(GD.getDecl())) 520 return arrangeCXXStructorDeclaration(GD); 521 522 return arrangeFunctionDeclaration(FD); 523 } 524 525 /// Arrange a thunk that takes 'this' as the first parameter followed by 526 /// varargs. Return a void pointer, regardless of the actual return type. 527 /// The body of the thunk will end in a musttail call to a function of the 528 /// correct type, and the caller will bitcast the function to the correct 529 /// prototype. 530 const CGFunctionInfo & 531 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 532 assert(MD->isVirtual() && "only methods have thunks"); 533 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 534 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 535 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 536 /*chainCall=*/false, ArgTys, 537 FTP->getExtInfo(), {}, RequiredArgs(1)); 538 } 539 540 const CGFunctionInfo & 541 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 542 CXXCtorType CT) { 543 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 544 545 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 546 SmallVector<CanQualType, 2> ArgTys; 547 const CXXRecordDecl *RD = CD->getParent(); 548 ArgTys.push_back(DeriveThisType(RD, CD)); 549 if (CT == Ctor_CopyingClosure) 550 ArgTys.push_back(*FTP->param_type_begin()); 551 if (RD->getNumVBases() > 0) 552 ArgTys.push_back(Context.IntTy); 553 CallingConv CC = Context.getDefaultCallingConvention( 554 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 555 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 556 /*chainCall=*/false, ArgTys, 557 FunctionType::ExtInfo(CC), {}, 558 RequiredArgs::All); 559 } 560 561 /// Arrange a call as unto a free function, except possibly with an 562 /// additional number of formal parameters considered required. 563 static const CGFunctionInfo & 564 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 565 CodeGenModule &CGM, 566 const CallArgList &args, 567 const FunctionType *fnType, 568 unsigned numExtraRequiredArgs, 569 bool chainCall) { 570 assert(args.size() >= numExtraRequiredArgs); 571 572 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 573 574 // In most cases, there are no optional arguments. 575 RequiredArgs required = RequiredArgs::All; 576 577 // If we have a variadic prototype, the required arguments are the 578 // extra prefix plus the arguments in the prototype. 579 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 580 if (proto->isVariadic()) 581 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 582 583 if (proto->hasExtParameterInfos()) 584 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 585 args.size()); 586 587 // If we don't have a prototype at all, but we're supposed to 588 // explicitly use the variadic convention for unprototyped calls, 589 // treat all of the arguments as required but preserve the nominal 590 // possibility of variadics. 591 } else if (CGM.getTargetCodeGenInfo() 592 .isNoProtoCallVariadic(args, 593 cast<FunctionNoProtoType>(fnType))) { 594 required = RequiredArgs(args.size()); 595 } 596 597 // FIXME: Kill copy. 598 SmallVector<CanQualType, 16> argTypes; 599 for (const auto &arg : args) 600 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 601 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 602 /*instanceMethod=*/false, chainCall, 603 argTypes, fnType->getExtInfo(), paramInfos, 604 required); 605 } 606 607 /// Figure out the rules for calling a function with the given formal 608 /// type using the given arguments. The arguments are necessary 609 /// because the function might be unprototyped, in which case it's 610 /// target-dependent in crazy ways. 611 const CGFunctionInfo & 612 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 613 const FunctionType *fnType, 614 bool chainCall) { 615 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 616 chainCall ? 1 : 0, chainCall); 617 } 618 619 /// A block function is essentially a free function with an 620 /// extra implicit argument. 621 const CGFunctionInfo & 622 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 623 const FunctionType *fnType) { 624 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 625 /*chainCall=*/false); 626 } 627 628 const CGFunctionInfo & 629 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 630 const FunctionArgList ¶ms) { 631 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 632 auto argTypes = getArgTypesForDeclaration(Context, params); 633 634 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 635 /*instanceMethod*/ false, /*chainCall*/ false, 636 argTypes, proto->getExtInfo(), paramInfos, 637 RequiredArgs::forPrototypePlus(proto, 1)); 638 } 639 640 const CGFunctionInfo & 641 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 642 const CallArgList &args) { 643 // FIXME: Kill copy. 644 SmallVector<CanQualType, 16> argTypes; 645 for (const auto &Arg : args) 646 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 647 return arrangeLLVMFunctionInfo( 648 GetReturnType(resultType), /*instanceMethod=*/false, 649 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 650 /*paramInfos=*/ {}, RequiredArgs::All); 651 } 652 653 const CGFunctionInfo & 654 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 655 const FunctionArgList &args) { 656 auto argTypes = getArgTypesForDeclaration(Context, args); 657 658 return arrangeLLVMFunctionInfo( 659 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 660 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 661 } 662 663 const CGFunctionInfo & 664 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 665 ArrayRef<CanQualType> argTypes) { 666 return arrangeLLVMFunctionInfo( 667 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 668 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 669 } 670 671 /// Arrange a call to a C++ method, passing the given arguments. 672 /// 673 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 674 /// does not count `this`. 675 const CGFunctionInfo & 676 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 677 const FunctionProtoType *proto, 678 RequiredArgs required, 679 unsigned numPrefixArgs) { 680 assert(numPrefixArgs + 1 <= args.size() && 681 "Emitting a call with less args than the required prefix?"); 682 // Add one to account for `this`. It's a bit awkward here, but we don't count 683 // `this` in similar places elsewhere. 684 auto paramInfos = 685 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 686 687 // FIXME: Kill copy. 688 auto argTypes = getArgTypesForCall(Context, args); 689 690 FunctionType::ExtInfo info = proto->getExtInfo(); 691 return arrangeLLVMFunctionInfo( 692 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 693 /*chainCall=*/false, argTypes, info, paramInfos, required); 694 } 695 696 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 697 return arrangeLLVMFunctionInfo( 698 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 699 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 700 } 701 702 const CGFunctionInfo & 703 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 704 const CallArgList &args) { 705 assert(signature.arg_size() <= args.size()); 706 if (signature.arg_size() == args.size()) 707 return signature; 708 709 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 710 auto sigParamInfos = signature.getExtParameterInfos(); 711 if (!sigParamInfos.empty()) { 712 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 713 paramInfos.resize(args.size()); 714 } 715 716 auto argTypes = getArgTypesForCall(Context, args); 717 718 assert(signature.getRequiredArgs().allowsOptionalArgs()); 719 return arrangeLLVMFunctionInfo(signature.getReturnType(), 720 signature.isInstanceMethod(), 721 signature.isChainCall(), 722 argTypes, 723 signature.getExtInfo(), 724 paramInfos, 725 signature.getRequiredArgs()); 726 } 727 728 namespace clang { 729 namespace CodeGen { 730 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 731 } 732 } 733 734 /// Arrange the argument and result information for an abstract value 735 /// of a given function type. This is the method which all of the 736 /// above functions ultimately defer to. 737 const CGFunctionInfo & 738 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 739 bool instanceMethod, 740 bool chainCall, 741 ArrayRef<CanQualType> argTypes, 742 FunctionType::ExtInfo info, 743 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 744 RequiredArgs required) { 745 assert(llvm::all_of(argTypes, 746 [](CanQualType T) { return T.isCanonicalAsParam(); })); 747 748 // Lookup or create unique function info. 749 llvm::FoldingSetNodeID ID; 750 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 751 required, resultType, argTypes); 752 753 void *insertPos = nullptr; 754 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 755 if (FI) 756 return *FI; 757 758 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 759 760 // Construct the function info. We co-allocate the ArgInfos. 761 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 762 paramInfos, resultType, argTypes, required); 763 FunctionInfos.InsertNode(FI, insertPos); 764 765 bool inserted = FunctionsBeingProcessed.insert(FI).second; 766 (void)inserted; 767 assert(inserted && "Recursively being processed?"); 768 769 // Compute ABI information. 770 if (CC == llvm::CallingConv::SPIR_KERNEL) { 771 // Force target independent argument handling for the host visible 772 // kernel functions. 773 computeSPIRKernelABIInfo(CGM, *FI); 774 } else if (info.getCC() == CC_Swift) { 775 swiftcall::computeABIInfo(CGM, *FI); 776 } else { 777 getABIInfo().computeInfo(*FI); 778 } 779 780 // Loop over all of the computed argument and return value info. If any of 781 // them are direct or extend without a specified coerce type, specify the 782 // default now. 783 ABIArgInfo &retInfo = FI->getReturnInfo(); 784 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 785 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 786 787 for (auto &I : FI->arguments()) 788 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 789 I.info.setCoerceToType(ConvertType(I.type)); 790 791 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 792 assert(erased && "Not in set?"); 793 794 return *FI; 795 } 796 797 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 798 bool instanceMethod, 799 bool chainCall, 800 const FunctionType::ExtInfo &info, 801 ArrayRef<ExtParameterInfo> paramInfos, 802 CanQualType resultType, 803 ArrayRef<CanQualType> argTypes, 804 RequiredArgs required) { 805 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 806 assert(!required.allowsOptionalArgs() || 807 required.getNumRequiredArgs() <= argTypes.size()); 808 809 void *buffer = 810 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 811 argTypes.size() + 1, paramInfos.size())); 812 813 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 814 FI->CallingConvention = llvmCC; 815 FI->EffectiveCallingConvention = llvmCC; 816 FI->ASTCallingConvention = info.getCC(); 817 FI->InstanceMethod = instanceMethod; 818 FI->ChainCall = chainCall; 819 FI->CmseNSCall = info.getCmseNSCall(); 820 FI->NoReturn = info.getNoReturn(); 821 FI->ReturnsRetained = info.getProducesResult(); 822 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 823 FI->NoCfCheck = info.getNoCfCheck(); 824 FI->Required = required; 825 FI->HasRegParm = info.getHasRegParm(); 826 FI->RegParm = info.getRegParm(); 827 FI->ArgStruct = nullptr; 828 FI->ArgStructAlign = 0; 829 FI->NumArgs = argTypes.size(); 830 FI->HasExtParameterInfos = !paramInfos.empty(); 831 FI->getArgsBuffer()[0].type = resultType; 832 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 833 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 834 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 835 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 836 return FI; 837 } 838 839 /***/ 840 841 namespace { 842 // ABIArgInfo::Expand implementation. 843 844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 845 struct TypeExpansion { 846 enum TypeExpansionKind { 847 // Elements of constant arrays are expanded recursively. 848 TEK_ConstantArray, 849 // Record fields are expanded recursively (but if record is a union, only 850 // the field with the largest size is expanded). 851 TEK_Record, 852 // For complex types, real and imaginary parts are expanded recursively. 853 TEK_Complex, 854 // All other types are not expandable. 855 TEK_None 856 }; 857 858 const TypeExpansionKind Kind; 859 860 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 861 virtual ~TypeExpansion() {} 862 }; 863 864 struct ConstantArrayExpansion : TypeExpansion { 865 QualType EltTy; 866 uint64_t NumElts; 867 868 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 869 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 870 static bool classof(const TypeExpansion *TE) { 871 return TE->Kind == TEK_ConstantArray; 872 } 873 }; 874 875 struct RecordExpansion : TypeExpansion { 876 SmallVector<const CXXBaseSpecifier *, 1> Bases; 877 878 SmallVector<const FieldDecl *, 1> Fields; 879 880 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 881 SmallVector<const FieldDecl *, 1> &&Fields) 882 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 883 Fields(std::move(Fields)) {} 884 static bool classof(const TypeExpansion *TE) { 885 return TE->Kind == TEK_Record; 886 } 887 }; 888 889 struct ComplexExpansion : TypeExpansion { 890 QualType EltTy; 891 892 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 893 static bool classof(const TypeExpansion *TE) { 894 return TE->Kind == TEK_Complex; 895 } 896 }; 897 898 struct NoExpansion : TypeExpansion { 899 NoExpansion() : TypeExpansion(TEK_None) {} 900 static bool classof(const TypeExpansion *TE) { 901 return TE->Kind == TEK_None; 902 } 903 }; 904 } // namespace 905 906 static std::unique_ptr<TypeExpansion> 907 getTypeExpansion(QualType Ty, const ASTContext &Context) { 908 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 909 return std::make_unique<ConstantArrayExpansion>( 910 AT->getElementType(), AT->getSize().getZExtValue()); 911 } 912 if (const RecordType *RT = Ty->getAs<RecordType>()) { 913 SmallVector<const CXXBaseSpecifier *, 1> Bases; 914 SmallVector<const FieldDecl *, 1> Fields; 915 const RecordDecl *RD = RT->getDecl(); 916 assert(!RD->hasFlexibleArrayMember() && 917 "Cannot expand structure with flexible array."); 918 if (RD->isUnion()) { 919 // Unions can be here only in degenerative cases - all the fields are same 920 // after flattening. Thus we have to use the "largest" field. 921 const FieldDecl *LargestFD = nullptr; 922 CharUnits UnionSize = CharUnits::Zero(); 923 924 for (const auto *FD : RD->fields()) { 925 if (FD->isZeroLengthBitField(Context)) 926 continue; 927 assert(!FD->isBitField() && 928 "Cannot expand structure with bit-field members."); 929 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 930 if (UnionSize < FieldSize) { 931 UnionSize = FieldSize; 932 LargestFD = FD; 933 } 934 } 935 if (LargestFD) 936 Fields.push_back(LargestFD); 937 } else { 938 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 939 assert(!CXXRD->isDynamicClass() && 940 "cannot expand vtable pointers in dynamic classes"); 941 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 942 Bases.push_back(&BS); 943 } 944 945 for (const auto *FD : RD->fields()) { 946 if (FD->isZeroLengthBitField(Context)) 947 continue; 948 assert(!FD->isBitField() && 949 "Cannot expand structure with bit-field members."); 950 Fields.push_back(FD); 951 } 952 } 953 return std::make_unique<RecordExpansion>(std::move(Bases), 954 std::move(Fields)); 955 } 956 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 957 return std::make_unique<ComplexExpansion>(CT->getElementType()); 958 } 959 return std::make_unique<NoExpansion>(); 960 } 961 962 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 963 auto Exp = getTypeExpansion(Ty, Context); 964 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 965 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 966 } 967 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 968 int Res = 0; 969 for (auto BS : RExp->Bases) 970 Res += getExpansionSize(BS->getType(), Context); 971 for (auto FD : RExp->Fields) 972 Res += getExpansionSize(FD->getType(), Context); 973 return Res; 974 } 975 if (isa<ComplexExpansion>(Exp.get())) 976 return 2; 977 assert(isa<NoExpansion>(Exp.get())); 978 return 1; 979 } 980 981 void 982 CodeGenTypes::getExpandedTypes(QualType Ty, 983 SmallVectorImpl<llvm::Type *>::iterator &TI) { 984 auto Exp = getTypeExpansion(Ty, Context); 985 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 986 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 987 getExpandedTypes(CAExp->EltTy, TI); 988 } 989 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 990 for (auto BS : RExp->Bases) 991 getExpandedTypes(BS->getType(), TI); 992 for (auto FD : RExp->Fields) 993 getExpandedTypes(FD->getType(), TI); 994 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 995 llvm::Type *EltTy = ConvertType(CExp->EltTy); 996 *TI++ = EltTy; 997 *TI++ = EltTy; 998 } else { 999 assert(isa<NoExpansion>(Exp.get())); 1000 *TI++ = ConvertType(Ty); 1001 } 1002 } 1003 1004 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1005 ConstantArrayExpansion *CAE, 1006 Address BaseAddr, 1007 llvm::function_ref<void(Address)> Fn) { 1008 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1009 CharUnits EltAlign = 1010 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1011 1012 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1013 llvm::Value *EltAddr = 1014 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1015 Fn(Address(EltAddr, EltAlign)); 1016 } 1017 } 1018 1019 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1020 llvm::Function::arg_iterator &AI) { 1021 assert(LV.isSimple() && 1022 "Unexpected non-simple lvalue during struct expansion."); 1023 1024 auto Exp = getTypeExpansion(Ty, getContext()); 1025 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1026 forConstantArrayExpansion( 1027 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1028 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1029 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1030 }); 1031 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1032 Address This = LV.getAddress(*this); 1033 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1034 // Perform a single step derived-to-base conversion. 1035 Address Base = 1036 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1037 /*NullCheckValue=*/false, SourceLocation()); 1038 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1039 1040 // Recurse onto bases. 1041 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1042 } 1043 for (auto FD : RExp->Fields) { 1044 // FIXME: What are the right qualifiers here? 1045 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1046 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1047 } 1048 } else if (isa<ComplexExpansion>(Exp.get())) { 1049 auto realValue = &*AI++; 1050 auto imagValue = &*AI++; 1051 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1052 } else { 1053 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1054 // primitive store. 1055 assert(isa<NoExpansion>(Exp.get())); 1056 if (LV.isBitField()) 1057 EmitStoreThroughLValue(RValue::get(&*AI++), LV); 1058 else 1059 EmitStoreOfScalar(&*AI++, LV); 1060 } 1061 } 1062 1063 void CodeGenFunction::ExpandTypeToArgs( 1064 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1065 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1066 auto Exp = getTypeExpansion(Ty, getContext()); 1067 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1068 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1069 : Arg.getKnownRValue().getAggregateAddress(); 1070 forConstantArrayExpansion( 1071 *this, CAExp, Addr, [&](Address EltAddr) { 1072 CallArg EltArg = CallArg( 1073 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1074 CAExp->EltTy); 1075 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1076 IRCallArgPos); 1077 }); 1078 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1079 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1080 : Arg.getKnownRValue().getAggregateAddress(); 1081 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1082 // Perform a single step derived-to-base conversion. 1083 Address Base = 1084 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1085 /*NullCheckValue=*/false, SourceLocation()); 1086 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1087 1088 // Recurse onto bases. 1089 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1090 IRCallArgPos); 1091 } 1092 1093 LValue LV = MakeAddrLValue(This, Ty); 1094 for (auto FD : RExp->Fields) { 1095 CallArg FldArg = 1096 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1097 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1098 IRCallArgPos); 1099 } 1100 } else if (isa<ComplexExpansion>(Exp.get())) { 1101 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1102 IRCallArgs[IRCallArgPos++] = CV.first; 1103 IRCallArgs[IRCallArgPos++] = CV.second; 1104 } else { 1105 assert(isa<NoExpansion>(Exp.get())); 1106 auto RV = Arg.getKnownRValue(); 1107 assert(RV.isScalar() && 1108 "Unexpected non-scalar rvalue during struct expansion."); 1109 1110 // Insert a bitcast as needed. 1111 llvm::Value *V = RV.getScalarVal(); 1112 if (IRCallArgPos < IRFuncTy->getNumParams() && 1113 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1114 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1115 1116 IRCallArgs[IRCallArgPos++] = V; 1117 } 1118 } 1119 1120 /// Create a temporary allocation for the purposes of coercion. 1121 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1122 CharUnits MinAlign, 1123 const Twine &Name = "tmp") { 1124 // Don't use an alignment that's worse than what LLVM would prefer. 1125 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1126 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1127 1128 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1129 } 1130 1131 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1132 /// accessing some number of bytes out of it, try to gep into the struct to get 1133 /// at its inner goodness. Dive as deep as possible without entering an element 1134 /// with an in-memory size smaller than DstSize. 1135 static Address 1136 EnterStructPointerForCoercedAccess(Address SrcPtr, 1137 llvm::StructType *SrcSTy, 1138 uint64_t DstSize, CodeGenFunction &CGF) { 1139 // We can't dive into a zero-element struct. 1140 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1141 1142 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1143 1144 // If the first elt is at least as large as what we're looking for, or if the 1145 // first element is the same size as the whole struct, we can enter it. The 1146 // comparison must be made on the store size and not the alloca size. Using 1147 // the alloca size may overstate the size of the load. 1148 uint64_t FirstEltSize = 1149 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1150 if (FirstEltSize < DstSize && 1151 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1152 return SrcPtr; 1153 1154 // GEP into the first element. 1155 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1156 1157 // If the first element is a struct, recurse. 1158 llvm::Type *SrcTy = SrcPtr.getElementType(); 1159 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1160 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1161 1162 return SrcPtr; 1163 } 1164 1165 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1166 /// are either integers or pointers. This does a truncation of the value if it 1167 /// is too large or a zero extension if it is too small. 1168 /// 1169 /// This behaves as if the value were coerced through memory, so on big-endian 1170 /// targets the high bits are preserved in a truncation, while little-endian 1171 /// targets preserve the low bits. 1172 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1173 llvm::Type *Ty, 1174 CodeGenFunction &CGF) { 1175 if (Val->getType() == Ty) 1176 return Val; 1177 1178 if (isa<llvm::PointerType>(Val->getType())) { 1179 // If this is Pointer->Pointer avoid conversion to and from int. 1180 if (isa<llvm::PointerType>(Ty)) 1181 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1182 1183 // Convert the pointer to an integer so we can play with its width. 1184 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1185 } 1186 1187 llvm::Type *DestIntTy = Ty; 1188 if (isa<llvm::PointerType>(DestIntTy)) 1189 DestIntTy = CGF.IntPtrTy; 1190 1191 if (Val->getType() != DestIntTy) { 1192 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1193 if (DL.isBigEndian()) { 1194 // Preserve the high bits on big-endian targets. 1195 // That is what memory coercion does. 1196 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1197 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1198 1199 if (SrcSize > DstSize) { 1200 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1201 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1202 } else { 1203 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1204 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1205 } 1206 } else { 1207 // Little-endian targets preserve the low bits. No shifts required. 1208 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1209 } 1210 } 1211 1212 if (isa<llvm::PointerType>(Ty)) 1213 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1214 return Val; 1215 } 1216 1217 1218 1219 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1220 /// a pointer to an object of type \arg Ty, known to be aligned to 1221 /// \arg SrcAlign bytes. 1222 /// 1223 /// This safely handles the case when the src type is smaller than the 1224 /// destination type; in this situation the values of bits which not 1225 /// present in the src are undefined. 1226 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1227 CodeGenFunction &CGF) { 1228 llvm::Type *SrcTy = Src.getElementType(); 1229 1230 // If SrcTy and Ty are the same, just do a load. 1231 if (SrcTy == Ty) 1232 return CGF.Builder.CreateLoad(Src); 1233 1234 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1235 1236 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1237 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1238 DstSize.getFixedSize(), CGF); 1239 SrcTy = Src.getElementType(); 1240 } 1241 1242 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1243 1244 // If the source and destination are integer or pointer types, just do an 1245 // extension or truncation to the desired type. 1246 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1247 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1248 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1249 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1250 } 1251 1252 // If load is legal, just bitcast the src pointer. 1253 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1254 SrcSize.getFixedSize() >= DstSize.getFixedSize()) { 1255 // Generally SrcSize is never greater than DstSize, since this means we are 1256 // losing bits. However, this can happen in cases where the structure has 1257 // additional padding, for example due to a user specified alignment. 1258 // 1259 // FIXME: Assert that we aren't truncating non-padding bits when have access 1260 // to that information. 1261 Src = CGF.Builder.CreateBitCast(Src, 1262 Ty->getPointerTo(Src.getAddressSpace())); 1263 return CGF.Builder.CreateLoad(Src); 1264 } 1265 1266 // Otherwise do coercion through memory. This is stupid, but simple. 1267 Address Tmp = 1268 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1269 CGF.Builder.CreateMemCpy( 1270 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(), 1271 Src.getAlignment().getAsAlign(), 1272 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize())); 1273 return CGF.Builder.CreateLoad(Tmp); 1274 } 1275 1276 // Function to store a first-class aggregate into memory. We prefer to 1277 // store the elements rather than the aggregate to be more friendly to 1278 // fast-isel. 1279 // FIXME: Do we need to recurse here? 1280 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1281 bool DestIsVolatile) { 1282 // Prefer scalar stores to first-class aggregate stores. 1283 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1284 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1285 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1286 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1287 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1288 } 1289 } else { 1290 Builder.CreateStore(Val, Dest, DestIsVolatile); 1291 } 1292 } 1293 1294 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1295 /// where the source and destination may have different types. The 1296 /// destination is known to be aligned to \arg DstAlign bytes. 1297 /// 1298 /// This safely handles the case when the src type is larger than the 1299 /// destination type; the upper bits of the src will be lost. 1300 static void CreateCoercedStore(llvm::Value *Src, 1301 Address Dst, 1302 bool DstIsVolatile, 1303 CodeGenFunction &CGF) { 1304 llvm::Type *SrcTy = Src->getType(); 1305 llvm::Type *DstTy = Dst.getElementType(); 1306 if (SrcTy == DstTy) { 1307 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1308 return; 1309 } 1310 1311 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1312 1313 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1314 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1315 SrcSize.getFixedSize(), CGF); 1316 DstTy = Dst.getElementType(); 1317 } 1318 1319 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1320 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1321 if (SrcPtrTy && DstPtrTy && 1322 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1323 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1324 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1325 return; 1326 } 1327 1328 // If the source and destination are integer or pointer types, just do an 1329 // extension or truncation to the desired type. 1330 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1331 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1332 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1333 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1334 return; 1335 } 1336 1337 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1338 1339 // If store is legal, just bitcast the src pointer. 1340 if (isa<llvm::ScalableVectorType>(SrcTy) || 1341 isa<llvm::ScalableVectorType>(DstTy) || 1342 SrcSize.getFixedSize() <= DstSize.getFixedSize()) { 1343 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1344 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1345 } else { 1346 // Otherwise do coercion through memory. This is stupid, but 1347 // simple. 1348 1349 // Generally SrcSize is never greater than DstSize, since this means we are 1350 // losing bits. However, this can happen in cases where the structure has 1351 // additional padding, for example due to a user specified alignment. 1352 // 1353 // FIXME: Assert that we aren't truncating non-padding bits when have access 1354 // to that information. 1355 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1356 CGF.Builder.CreateStore(Src, Tmp); 1357 CGF.Builder.CreateMemCpy( 1358 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1359 Tmp.getAlignment().getAsAlign(), 1360 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize())); 1361 } 1362 } 1363 1364 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1365 const ABIArgInfo &info) { 1366 if (unsigned offset = info.getDirectOffset()) { 1367 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1368 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1369 CharUnits::fromQuantity(offset)); 1370 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1371 } 1372 return addr; 1373 } 1374 1375 namespace { 1376 1377 /// Encapsulates information about the way function arguments from 1378 /// CGFunctionInfo should be passed to actual LLVM IR function. 1379 class ClangToLLVMArgMapping { 1380 static const unsigned InvalidIndex = ~0U; 1381 unsigned InallocaArgNo; 1382 unsigned SRetArgNo; 1383 unsigned TotalIRArgs; 1384 1385 /// Arguments of LLVM IR function corresponding to single Clang argument. 1386 struct IRArgs { 1387 unsigned PaddingArgIndex; 1388 // Argument is expanded to IR arguments at positions 1389 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1390 unsigned FirstArgIndex; 1391 unsigned NumberOfArgs; 1392 1393 IRArgs() 1394 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1395 NumberOfArgs(0) {} 1396 }; 1397 1398 SmallVector<IRArgs, 8> ArgInfo; 1399 1400 public: 1401 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1402 bool OnlyRequiredArgs = false) 1403 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1404 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1405 construct(Context, FI, OnlyRequiredArgs); 1406 } 1407 1408 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1409 unsigned getInallocaArgNo() const { 1410 assert(hasInallocaArg()); 1411 return InallocaArgNo; 1412 } 1413 1414 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1415 unsigned getSRetArgNo() const { 1416 assert(hasSRetArg()); 1417 return SRetArgNo; 1418 } 1419 1420 unsigned totalIRArgs() const { return TotalIRArgs; } 1421 1422 bool hasPaddingArg(unsigned ArgNo) const { 1423 assert(ArgNo < ArgInfo.size()); 1424 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1425 } 1426 unsigned getPaddingArgNo(unsigned ArgNo) const { 1427 assert(hasPaddingArg(ArgNo)); 1428 return ArgInfo[ArgNo].PaddingArgIndex; 1429 } 1430 1431 /// Returns index of first IR argument corresponding to ArgNo, and their 1432 /// quantity. 1433 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1434 assert(ArgNo < ArgInfo.size()); 1435 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1436 ArgInfo[ArgNo].NumberOfArgs); 1437 } 1438 1439 private: 1440 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1441 bool OnlyRequiredArgs); 1442 }; 1443 1444 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1445 const CGFunctionInfo &FI, 1446 bool OnlyRequiredArgs) { 1447 unsigned IRArgNo = 0; 1448 bool SwapThisWithSRet = false; 1449 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1450 1451 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1452 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1453 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1454 } 1455 1456 unsigned ArgNo = 0; 1457 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1458 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1459 ++I, ++ArgNo) { 1460 assert(I != FI.arg_end()); 1461 QualType ArgType = I->type; 1462 const ABIArgInfo &AI = I->info; 1463 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1464 auto &IRArgs = ArgInfo[ArgNo]; 1465 1466 if (AI.getPaddingType()) 1467 IRArgs.PaddingArgIndex = IRArgNo++; 1468 1469 switch (AI.getKind()) { 1470 case ABIArgInfo::Extend: 1471 case ABIArgInfo::Direct: { 1472 // FIXME: handle sseregparm someday... 1473 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1474 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1475 IRArgs.NumberOfArgs = STy->getNumElements(); 1476 } else { 1477 IRArgs.NumberOfArgs = 1; 1478 } 1479 break; 1480 } 1481 case ABIArgInfo::Indirect: 1482 case ABIArgInfo::IndirectAliased: 1483 IRArgs.NumberOfArgs = 1; 1484 break; 1485 case ABIArgInfo::Ignore: 1486 case ABIArgInfo::InAlloca: 1487 // ignore and inalloca doesn't have matching LLVM parameters. 1488 IRArgs.NumberOfArgs = 0; 1489 break; 1490 case ABIArgInfo::CoerceAndExpand: 1491 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1492 break; 1493 case ABIArgInfo::Expand: 1494 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1495 break; 1496 } 1497 1498 if (IRArgs.NumberOfArgs > 0) { 1499 IRArgs.FirstArgIndex = IRArgNo; 1500 IRArgNo += IRArgs.NumberOfArgs; 1501 } 1502 1503 // Skip over the sret parameter when it comes second. We already handled it 1504 // above. 1505 if (IRArgNo == 1 && SwapThisWithSRet) 1506 IRArgNo++; 1507 } 1508 assert(ArgNo == ArgInfo.size()); 1509 1510 if (FI.usesInAlloca()) 1511 InallocaArgNo = IRArgNo++; 1512 1513 TotalIRArgs = IRArgNo; 1514 } 1515 } // namespace 1516 1517 /***/ 1518 1519 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1520 const auto &RI = FI.getReturnInfo(); 1521 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1522 } 1523 1524 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1525 return ReturnTypeUsesSRet(FI) && 1526 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1527 } 1528 1529 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1530 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1531 switch (BT->getKind()) { 1532 default: 1533 return false; 1534 case BuiltinType::Float: 1535 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1536 case BuiltinType::Double: 1537 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1538 case BuiltinType::LongDouble: 1539 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1540 } 1541 } 1542 1543 return false; 1544 } 1545 1546 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1547 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1548 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1549 if (BT->getKind() == BuiltinType::LongDouble) 1550 return getTarget().useObjCFP2RetForComplexLongDouble(); 1551 } 1552 } 1553 1554 return false; 1555 } 1556 1557 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1558 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1559 return GetFunctionType(FI); 1560 } 1561 1562 llvm::FunctionType * 1563 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1564 1565 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1566 (void)Inserted; 1567 assert(Inserted && "Recursively being processed?"); 1568 1569 llvm::Type *resultType = nullptr; 1570 const ABIArgInfo &retAI = FI.getReturnInfo(); 1571 switch (retAI.getKind()) { 1572 case ABIArgInfo::Expand: 1573 case ABIArgInfo::IndirectAliased: 1574 llvm_unreachable("Invalid ABI kind for return argument"); 1575 1576 case ABIArgInfo::Extend: 1577 case ABIArgInfo::Direct: 1578 resultType = retAI.getCoerceToType(); 1579 break; 1580 1581 case ABIArgInfo::InAlloca: 1582 if (retAI.getInAllocaSRet()) { 1583 // sret things on win32 aren't void, they return the sret pointer. 1584 QualType ret = FI.getReturnType(); 1585 llvm::Type *ty = ConvertType(ret); 1586 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1587 resultType = llvm::PointerType::get(ty, addressSpace); 1588 } else { 1589 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1590 } 1591 break; 1592 1593 case ABIArgInfo::Indirect: 1594 case ABIArgInfo::Ignore: 1595 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1596 break; 1597 1598 case ABIArgInfo::CoerceAndExpand: 1599 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1600 break; 1601 } 1602 1603 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1604 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1605 1606 // Add type for sret argument. 1607 if (IRFunctionArgs.hasSRetArg()) { 1608 QualType Ret = FI.getReturnType(); 1609 llvm::Type *Ty = ConvertType(Ret); 1610 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1611 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1612 llvm::PointerType::get(Ty, AddressSpace); 1613 } 1614 1615 // Add type for inalloca argument. 1616 if (IRFunctionArgs.hasInallocaArg()) { 1617 auto ArgStruct = FI.getArgStruct(); 1618 assert(ArgStruct); 1619 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1620 } 1621 1622 // Add in all of the required arguments. 1623 unsigned ArgNo = 0; 1624 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1625 ie = it + FI.getNumRequiredArgs(); 1626 for (; it != ie; ++it, ++ArgNo) { 1627 const ABIArgInfo &ArgInfo = it->info; 1628 1629 // Insert a padding type to ensure proper alignment. 1630 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1631 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1632 ArgInfo.getPaddingType(); 1633 1634 unsigned FirstIRArg, NumIRArgs; 1635 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1636 1637 switch (ArgInfo.getKind()) { 1638 case ABIArgInfo::Ignore: 1639 case ABIArgInfo::InAlloca: 1640 assert(NumIRArgs == 0); 1641 break; 1642 1643 case ABIArgInfo::Indirect: { 1644 assert(NumIRArgs == 1); 1645 // indirect arguments are always on the stack, which is alloca addr space. 1646 llvm::Type *LTy = ConvertTypeForMem(it->type); 1647 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1648 CGM.getDataLayout().getAllocaAddrSpace()); 1649 break; 1650 } 1651 case ABIArgInfo::IndirectAliased: { 1652 assert(NumIRArgs == 1); 1653 llvm::Type *LTy = ConvertTypeForMem(it->type); 1654 ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace()); 1655 break; 1656 } 1657 case ABIArgInfo::Extend: 1658 case ABIArgInfo::Direct: { 1659 // Fast-isel and the optimizer generally like scalar values better than 1660 // FCAs, so we flatten them if this is safe to do for this argument. 1661 llvm::Type *argType = ArgInfo.getCoerceToType(); 1662 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1663 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1664 assert(NumIRArgs == st->getNumElements()); 1665 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1666 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1667 } else { 1668 assert(NumIRArgs == 1); 1669 ArgTypes[FirstIRArg] = argType; 1670 } 1671 break; 1672 } 1673 1674 case ABIArgInfo::CoerceAndExpand: { 1675 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1676 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1677 *ArgTypesIter++ = EltTy; 1678 } 1679 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1680 break; 1681 } 1682 1683 case ABIArgInfo::Expand: 1684 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1685 getExpandedTypes(it->type, ArgTypesIter); 1686 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1687 break; 1688 } 1689 } 1690 1691 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1692 assert(Erased && "Not in set?"); 1693 1694 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1695 } 1696 1697 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1698 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1699 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1700 1701 if (!isFuncTypeConvertible(FPT)) 1702 return llvm::StructType::get(getLLVMContext()); 1703 1704 return GetFunctionType(GD); 1705 } 1706 1707 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1708 llvm::AttrBuilder &FuncAttrs, 1709 const FunctionProtoType *FPT) { 1710 if (!FPT) 1711 return; 1712 1713 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1714 FPT->isNothrow()) 1715 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1716 } 1717 1718 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 1719 bool HasOptnone, 1720 bool AttrOnCallSite, 1721 llvm::AttrBuilder &FuncAttrs) { 1722 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1723 if (!HasOptnone) { 1724 if (CodeGenOpts.OptimizeSize) 1725 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1726 if (CodeGenOpts.OptimizeSize == 2) 1727 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1728 } 1729 1730 if (CodeGenOpts.DisableRedZone) 1731 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1732 if (CodeGenOpts.IndirectTlsSegRefs) 1733 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1734 if (CodeGenOpts.NoImplicitFloat) 1735 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1736 1737 if (AttrOnCallSite) { 1738 // Attributes that should go on the call site only. 1739 if (!CodeGenOpts.SimplifyLibCalls || 1740 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1741 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1742 if (!CodeGenOpts.TrapFuncName.empty()) 1743 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1744 } else { 1745 StringRef FpKind; 1746 switch (CodeGenOpts.getFramePointer()) { 1747 case CodeGenOptions::FramePointerKind::None: 1748 FpKind = "none"; 1749 break; 1750 case CodeGenOptions::FramePointerKind::NonLeaf: 1751 FpKind = "non-leaf"; 1752 break; 1753 case CodeGenOptions::FramePointerKind::All: 1754 FpKind = "all"; 1755 break; 1756 } 1757 FuncAttrs.addAttribute("frame-pointer", FpKind); 1758 1759 FuncAttrs.addAttribute("less-precise-fpmad", 1760 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1761 1762 if (CodeGenOpts.NullPointerIsValid) 1763 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1764 1765 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE()) 1766 FuncAttrs.addAttribute("denormal-fp-math", 1767 CodeGenOpts.FPDenormalMode.str()); 1768 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) { 1769 FuncAttrs.addAttribute( 1770 "denormal-fp-math-f32", 1771 CodeGenOpts.FP32DenormalMode.str()); 1772 } 1773 1774 FuncAttrs.addAttribute("no-trapping-math", 1775 llvm::toStringRef(LangOpts.getFPExceptionMode() == 1776 LangOptions::FPE_Ignore)); 1777 1778 // Strict (compliant) code is the default, so only add this attribute to 1779 // indicate that we are trying to workaround a problem case. 1780 if (!CodeGenOpts.StrictFloatCastOverflow) 1781 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1782 1783 // TODO: Are these all needed? 1784 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1785 FuncAttrs.addAttribute("no-infs-fp-math", 1786 llvm::toStringRef(LangOpts.NoHonorInfs)); 1787 FuncAttrs.addAttribute("no-nans-fp-math", 1788 llvm::toStringRef(LangOpts.NoHonorNaNs)); 1789 FuncAttrs.addAttribute("unsafe-fp-math", 1790 llvm::toStringRef(LangOpts.UnsafeFPMath)); 1791 FuncAttrs.addAttribute("use-soft-float", 1792 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1793 FuncAttrs.addAttribute("stack-protector-buffer-size", 1794 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1795 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1796 llvm::toStringRef(LangOpts.NoSignedZero)); 1797 1798 // TODO: Reciprocal estimate codegen options should apply to instructions? 1799 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1800 if (!Recips.empty()) 1801 FuncAttrs.addAttribute("reciprocal-estimates", 1802 llvm::join(Recips, ",")); 1803 1804 if (!CodeGenOpts.PreferVectorWidth.empty() && 1805 CodeGenOpts.PreferVectorWidth != "none") 1806 FuncAttrs.addAttribute("prefer-vector-width", 1807 CodeGenOpts.PreferVectorWidth); 1808 1809 if (CodeGenOpts.StackRealignment) 1810 FuncAttrs.addAttribute("stackrealign"); 1811 if (CodeGenOpts.Backchain) 1812 FuncAttrs.addAttribute("backchain"); 1813 if (CodeGenOpts.EnableSegmentedStacks) 1814 FuncAttrs.addAttribute("split-stack"); 1815 1816 if (CodeGenOpts.SpeculativeLoadHardening) 1817 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1818 } 1819 1820 if (getLangOpts().assumeFunctionsAreConvergent()) { 1821 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1822 // convergent (meaning, they may call an intrinsically convergent op, such 1823 // as __syncthreads() / barrier(), and so can't have certain optimizations 1824 // applied around them). LLVM will remove this attribute where it safely 1825 // can. 1826 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1827 } 1828 1829 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1830 // Exceptions aren't supported in CUDA device code. 1831 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1832 } 1833 1834 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1835 StringRef Var, Value; 1836 std::tie(Var, Value) = Attr.split('='); 1837 FuncAttrs.addAttribute(Var, Value); 1838 } 1839 } 1840 1841 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) { 1842 llvm::AttrBuilder FuncAttrs; 1843 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 1844 /* AttrOnCallSite = */ false, FuncAttrs); 1845 // TODO: call GetCPUAndFeaturesAttributes? 1846 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1847 } 1848 1849 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 1850 llvm::AttrBuilder &attrs) { 1851 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 1852 /*for call*/ false, attrs); 1853 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 1854 } 1855 1856 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 1857 const LangOptions &LangOpts, 1858 const NoBuiltinAttr *NBA = nullptr) { 1859 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 1860 SmallString<32> AttributeName; 1861 AttributeName += "no-builtin-"; 1862 AttributeName += BuiltinName; 1863 FuncAttrs.addAttribute(AttributeName); 1864 }; 1865 1866 // First, handle the language options passed through -fno-builtin. 1867 if (LangOpts.NoBuiltin) { 1868 // -fno-builtin disables them all. 1869 FuncAttrs.addAttribute("no-builtins"); 1870 return; 1871 } 1872 1873 // Then, add attributes for builtins specified through -fno-builtin-<name>. 1874 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 1875 1876 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 1877 // the source. 1878 if (!NBA) 1879 return; 1880 1881 // If there is a wildcard in the builtin names specified through the 1882 // attribute, disable them all. 1883 if (llvm::is_contained(NBA->builtinNames(), "*")) { 1884 FuncAttrs.addAttribute("no-builtins"); 1885 return; 1886 } 1887 1888 // And last, add the rest of the builtin names. 1889 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 1890 } 1891 1892 /// Construct the IR attribute list of a function or call. 1893 /// 1894 /// When adding an attribute, please consider where it should be handled: 1895 /// 1896 /// - getDefaultFunctionAttributes is for attributes that are essentially 1897 /// part of the global target configuration (but perhaps can be 1898 /// overridden on a per-function basis). Adding attributes there 1899 /// will cause them to also be set in frontends that build on Clang's 1900 /// target-configuration logic, as well as for code defined in library 1901 /// modules such as CUDA's libdevice. 1902 /// 1903 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 1904 /// and adds declaration-specific, convention-specific, and 1905 /// frontend-specific logic. The last is of particular importance: 1906 /// attributes that restrict how the frontend generates code must be 1907 /// added here rather than getDefaultFunctionAttributes. 1908 /// 1909 void CodeGenModule::ConstructAttributeList( 1910 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1911 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1912 llvm::AttrBuilder FuncAttrs; 1913 llvm::AttrBuilder RetAttrs; 1914 1915 // Collect function IR attributes from the CC lowering. 1916 // We'll collect the paramete and result attributes later. 1917 CallingConv = FI.getEffectiveCallingConvention(); 1918 if (FI.isNoReturn()) 1919 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1920 if (FI.isCmseNSCall()) 1921 FuncAttrs.addAttribute("cmse_nonsecure_call"); 1922 1923 // Collect function IR attributes from the callee prototype if we have one. 1924 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1925 CalleeInfo.getCalleeFunctionProtoType()); 1926 1927 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 1928 1929 bool HasOptnone = false; 1930 // The NoBuiltinAttr attached to the target FunctionDecl. 1931 const NoBuiltinAttr *NBA = nullptr; 1932 1933 // Collect function IR attributes based on declaration-specific 1934 // information. 1935 // FIXME: handle sseregparm someday... 1936 if (TargetDecl) { 1937 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1938 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1939 if (TargetDecl->hasAttr<NoThrowAttr>()) 1940 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1941 if (TargetDecl->hasAttr<NoReturnAttr>()) 1942 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1943 if (TargetDecl->hasAttr<ColdAttr>()) 1944 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1945 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1946 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1947 if (TargetDecl->hasAttr<ConvergentAttr>()) 1948 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1949 1950 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1951 AddAttributesFromFunctionProtoType( 1952 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1953 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 1954 // A sane operator new returns a non-aliasing pointer. 1955 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 1956 if (getCodeGenOpts().AssumeSaneOperatorNew && 1957 (Kind == OO_New || Kind == OO_Array_New)) 1958 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1959 } 1960 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1961 const bool IsVirtualCall = MD && MD->isVirtual(); 1962 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 1963 // virtual function. These attributes are not inherited by overloads. 1964 if (!(AttrOnCallSite && IsVirtualCall)) { 1965 if (Fn->isNoReturn()) 1966 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1967 NBA = Fn->getAttr<NoBuiltinAttr>(); 1968 } 1969 } 1970 1971 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1972 if (TargetDecl->hasAttr<ConstAttr>()) { 1973 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1974 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1975 } else if (TargetDecl->hasAttr<PureAttr>()) { 1976 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1977 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1978 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1979 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1980 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1981 } 1982 if (TargetDecl->hasAttr<RestrictAttr>()) 1983 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1984 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1985 !CodeGenOpts.NullPointerIsValid) 1986 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1987 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1988 FuncAttrs.addAttribute("no_caller_saved_registers"); 1989 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1990 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1991 1992 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1993 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1994 Optional<unsigned> NumElemsParam; 1995 if (AllocSize->getNumElemsParam().isValid()) 1996 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 1997 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 1998 NumElemsParam); 1999 } 2000 2001 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2002 if (getLangOpts().OpenCLVersion <= 120) { 2003 // OpenCL v1.2 Work groups are always uniform 2004 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2005 } else { 2006 // OpenCL v2.0 Work groups may be whether uniform or not. 2007 // '-cl-uniform-work-group-size' compile option gets a hint 2008 // to the compiler that the global work-size be a multiple of 2009 // the work-group size specified to clEnqueueNDRangeKernel 2010 // (i.e. work groups are uniform). 2011 FuncAttrs.addAttribute("uniform-work-group-size", 2012 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 2013 } 2014 } 2015 } 2016 2017 // Attach "no-builtins" attributes to: 2018 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2019 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2020 // The attributes can come from: 2021 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2022 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2023 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2024 2025 // Collect function IR attributes based on global settiings. 2026 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2027 2028 // Override some default IR attributes based on declaration-specific 2029 // information. 2030 if (TargetDecl) { 2031 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2032 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2033 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2034 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2035 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2036 FuncAttrs.removeAttribute("split-stack"); 2037 2038 // Add NonLazyBind attribute to function declarations when -fno-plt 2039 // is used. 2040 // FIXME: what if we just haven't processed the function definition 2041 // yet, or if it's an external definition like C99 inline? 2042 if (CodeGenOpts.NoPLT) { 2043 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2044 if (!Fn->isDefined() && !AttrOnCallSite) { 2045 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2046 } 2047 } 2048 } 2049 } 2050 2051 // Collect non-call-site function IR attributes from declaration-specific 2052 // information. 2053 if (!AttrOnCallSite) { 2054 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2055 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2056 2057 // Whether tail calls are enabled. 2058 auto shouldDisableTailCalls = [&] { 2059 // Should this be honored in getDefaultFunctionAttributes? 2060 if (CodeGenOpts.DisableTailCalls) 2061 return true; 2062 2063 if (!TargetDecl) 2064 return false; 2065 2066 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2067 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2068 return true; 2069 2070 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2071 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2072 if (!BD->doesNotEscape()) 2073 return true; 2074 } 2075 2076 return false; 2077 }; 2078 FuncAttrs.addAttribute("disable-tail-calls", 2079 llvm::toStringRef(shouldDisableTailCalls())); 2080 2081 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2082 // handles these separately to set them based on the global defaults. 2083 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2084 } 2085 2086 // Collect attributes from arguments and return values. 2087 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2088 2089 QualType RetTy = FI.getReturnType(); 2090 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2091 switch (RetAI.getKind()) { 2092 case ABIArgInfo::Extend: 2093 if (RetAI.isSignExt()) 2094 RetAttrs.addAttribute(llvm::Attribute::SExt); 2095 else 2096 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2097 LLVM_FALLTHROUGH; 2098 case ABIArgInfo::Direct: 2099 if (RetAI.getInReg()) 2100 RetAttrs.addAttribute(llvm::Attribute::InReg); 2101 break; 2102 case ABIArgInfo::Ignore: 2103 break; 2104 2105 case ABIArgInfo::InAlloca: 2106 case ABIArgInfo::Indirect: { 2107 // inalloca and sret disable readnone and readonly 2108 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2109 .removeAttribute(llvm::Attribute::ReadNone); 2110 break; 2111 } 2112 2113 case ABIArgInfo::CoerceAndExpand: 2114 break; 2115 2116 case ABIArgInfo::Expand: 2117 case ABIArgInfo::IndirectAliased: 2118 llvm_unreachable("Invalid ABI kind for return argument"); 2119 } 2120 2121 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2122 QualType PTy = RefTy->getPointeeType(); 2123 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2124 RetAttrs.addDereferenceableAttr( 2125 getMinimumObjectSize(PTy).getQuantity()); 2126 if (getContext().getTargetAddressSpace(PTy) == 0 && 2127 !CodeGenOpts.NullPointerIsValid) 2128 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2129 if (PTy->isObjectType()) { 2130 llvm::Align Alignment = 2131 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2132 RetAttrs.addAlignmentAttr(Alignment); 2133 } 2134 } 2135 2136 bool hasUsedSRet = false; 2137 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2138 2139 // Attach attributes to sret. 2140 if (IRFunctionArgs.hasSRetArg()) { 2141 llvm::AttrBuilder SRETAttrs; 2142 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2143 hasUsedSRet = true; 2144 if (RetAI.getInReg()) 2145 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2146 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2147 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2148 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2149 } 2150 2151 // Attach attributes to inalloca argument. 2152 if (IRFunctionArgs.hasInallocaArg()) { 2153 llvm::AttrBuilder Attrs; 2154 Attrs.addAttribute(llvm::Attribute::InAlloca); 2155 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2156 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2157 } 2158 2159 // Apply `nonnull` and `dereferencable(N)` to the `this` argument. 2160 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2161 !FI.arg_begin()->type->isVoidPointerType()) { 2162 auto IRArgs = IRFunctionArgs.getIRArgs(0); 2163 2164 assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2165 2166 llvm::AttrBuilder Attrs; 2167 2168 if (!CodeGenOpts.NullPointerIsValid && 2169 getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2170 Attrs.addAttribute(llvm::Attribute::NonNull); 2171 } 2172 2173 Attrs.addDereferenceableAttr( 2174 getMinimumObjectSize( 2175 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2176 .getQuantity()); 2177 2178 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2179 } 2180 2181 unsigned ArgNo = 0; 2182 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2183 E = FI.arg_end(); 2184 I != E; ++I, ++ArgNo) { 2185 QualType ParamType = I->type; 2186 const ABIArgInfo &AI = I->info; 2187 llvm::AttrBuilder Attrs; 2188 2189 // Add attribute for padding argument, if necessary. 2190 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2191 if (AI.getPaddingInReg()) { 2192 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2193 llvm::AttributeSet::get( 2194 getLLVMContext(), 2195 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2196 } 2197 } 2198 2199 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2200 // have the corresponding parameter variable. It doesn't make 2201 // sense to do it here because parameters are so messed up. 2202 switch (AI.getKind()) { 2203 case ABIArgInfo::Extend: 2204 if (AI.isSignExt()) 2205 Attrs.addAttribute(llvm::Attribute::SExt); 2206 else 2207 Attrs.addAttribute(llvm::Attribute::ZExt); 2208 LLVM_FALLTHROUGH; 2209 case ABIArgInfo::Direct: 2210 if (ArgNo == 0 && FI.isChainCall()) 2211 Attrs.addAttribute(llvm::Attribute::Nest); 2212 else if (AI.getInReg()) 2213 Attrs.addAttribute(llvm::Attribute::InReg); 2214 break; 2215 2216 case ABIArgInfo::Indirect: { 2217 if (AI.getInReg()) 2218 Attrs.addAttribute(llvm::Attribute::InReg); 2219 2220 if (AI.getIndirectByVal()) 2221 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2222 2223 auto *Decl = ParamType->getAsRecordDecl(); 2224 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2225 Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs) 2226 // When calling the function, the pointer passed in will be the only 2227 // reference to the underlying object. Mark it accordingly. 2228 Attrs.addAttribute(llvm::Attribute::NoAlias); 2229 2230 // TODO: We could add the byref attribute if not byval, but it would 2231 // require updating many testcases. 2232 2233 CharUnits Align = AI.getIndirectAlign(); 2234 2235 // In a byval argument, it is important that the required 2236 // alignment of the type is honored, as LLVM might be creating a 2237 // *new* stack object, and needs to know what alignment to give 2238 // it. (Sometimes it can deduce a sensible alignment on its own, 2239 // but not if clang decides it must emit a packed struct, or the 2240 // user specifies increased alignment requirements.) 2241 // 2242 // This is different from indirect *not* byval, where the object 2243 // exists already, and the align attribute is purely 2244 // informative. 2245 assert(!Align.isZero()); 2246 2247 // For now, only add this when we have a byval argument. 2248 // TODO: be less lazy about updating test cases. 2249 if (AI.getIndirectByVal()) 2250 Attrs.addAlignmentAttr(Align.getQuantity()); 2251 2252 // byval disables readnone and readonly. 2253 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2254 .removeAttribute(llvm::Attribute::ReadNone); 2255 2256 break; 2257 } 2258 case ABIArgInfo::IndirectAliased: { 2259 CharUnits Align = AI.getIndirectAlign(); 2260 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2261 Attrs.addAlignmentAttr(Align.getQuantity()); 2262 break; 2263 } 2264 case ABIArgInfo::Ignore: 2265 case ABIArgInfo::Expand: 2266 case ABIArgInfo::CoerceAndExpand: 2267 break; 2268 2269 case ABIArgInfo::InAlloca: 2270 // inalloca disables readnone and readonly. 2271 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2272 .removeAttribute(llvm::Attribute::ReadNone); 2273 continue; 2274 } 2275 2276 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2277 QualType PTy = RefTy->getPointeeType(); 2278 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2279 Attrs.addDereferenceableAttr( 2280 getMinimumObjectSize(PTy).getQuantity()); 2281 if (getContext().getTargetAddressSpace(PTy) == 0 && 2282 !CodeGenOpts.NullPointerIsValid) 2283 Attrs.addAttribute(llvm::Attribute::NonNull); 2284 if (PTy->isObjectType()) { 2285 llvm::Align Alignment = 2286 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2287 Attrs.addAlignmentAttr(Alignment); 2288 } 2289 } 2290 2291 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2292 case ParameterABI::Ordinary: 2293 break; 2294 2295 case ParameterABI::SwiftIndirectResult: { 2296 // Add 'sret' if we haven't already used it for something, but 2297 // only if the result is void. 2298 if (!hasUsedSRet && RetTy->isVoidType()) { 2299 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2300 hasUsedSRet = true; 2301 } 2302 2303 // Add 'noalias' in either case. 2304 Attrs.addAttribute(llvm::Attribute::NoAlias); 2305 2306 // Add 'dereferenceable' and 'alignment'. 2307 auto PTy = ParamType->getPointeeType(); 2308 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2309 auto info = getContext().getTypeInfoInChars(PTy); 2310 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2311 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2312 } 2313 break; 2314 } 2315 2316 case ParameterABI::SwiftErrorResult: 2317 Attrs.addAttribute(llvm::Attribute::SwiftError); 2318 break; 2319 2320 case ParameterABI::SwiftContext: 2321 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2322 break; 2323 } 2324 2325 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2326 Attrs.addAttribute(llvm::Attribute::NoCapture); 2327 2328 if (Attrs.hasAttributes()) { 2329 unsigned FirstIRArg, NumIRArgs; 2330 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2331 for (unsigned i = 0; i < NumIRArgs; i++) 2332 ArgAttrs[FirstIRArg + i] = 2333 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2334 } 2335 } 2336 assert(ArgNo == FI.arg_size()); 2337 2338 AttrList = llvm::AttributeList::get( 2339 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2340 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2341 } 2342 2343 /// An argument came in as a promoted argument; demote it back to its 2344 /// declared type. 2345 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2346 const VarDecl *var, 2347 llvm::Value *value) { 2348 llvm::Type *varType = CGF.ConvertType(var->getType()); 2349 2350 // This can happen with promotions that actually don't change the 2351 // underlying type, like the enum promotions. 2352 if (value->getType() == varType) return value; 2353 2354 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2355 && "unexpected promotion type"); 2356 2357 if (isa<llvm::IntegerType>(varType)) 2358 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2359 2360 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2361 } 2362 2363 /// Returns the attribute (either parameter attribute, or function 2364 /// attribute), which declares argument ArgNo to be non-null. 2365 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2366 QualType ArgType, unsigned ArgNo) { 2367 // FIXME: __attribute__((nonnull)) can also be applied to: 2368 // - references to pointers, where the pointee is known to be 2369 // nonnull (apparently a Clang extension) 2370 // - transparent unions containing pointers 2371 // In the former case, LLVM IR cannot represent the constraint. In 2372 // the latter case, we have no guarantee that the transparent union 2373 // is in fact passed as a pointer. 2374 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2375 return nullptr; 2376 // First, check attribute on parameter itself. 2377 if (PVD) { 2378 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2379 return ParmNNAttr; 2380 } 2381 // Check function attributes. 2382 if (!FD) 2383 return nullptr; 2384 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2385 if (NNAttr->isNonNull(ArgNo)) 2386 return NNAttr; 2387 } 2388 return nullptr; 2389 } 2390 2391 namespace { 2392 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2393 Address Temp; 2394 Address Arg; 2395 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2396 void Emit(CodeGenFunction &CGF, Flags flags) override { 2397 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2398 CGF.Builder.CreateStore(errorValue, Arg); 2399 } 2400 }; 2401 } 2402 2403 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2404 llvm::Function *Fn, 2405 const FunctionArgList &Args) { 2406 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2407 // Naked functions don't have prologues. 2408 return; 2409 2410 // If this is an implicit-return-zero function, go ahead and 2411 // initialize the return value. TODO: it might be nice to have 2412 // a more general mechanism for this that didn't require synthesized 2413 // return statements. 2414 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2415 if (FD->hasImplicitReturnZero()) { 2416 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2417 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2418 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2419 Builder.CreateStore(Zero, ReturnValue); 2420 } 2421 } 2422 2423 // FIXME: We no longer need the types from FunctionArgList; lift up and 2424 // simplify. 2425 2426 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2427 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2428 2429 // If we're using inalloca, all the memory arguments are GEPs off of the last 2430 // parameter, which is a pointer to the complete memory area. 2431 Address ArgStruct = Address::invalid(); 2432 if (IRFunctionArgs.hasInallocaArg()) { 2433 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2434 FI.getArgStructAlignment()); 2435 2436 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2437 } 2438 2439 // Name the struct return parameter. 2440 if (IRFunctionArgs.hasSRetArg()) { 2441 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2442 AI->setName("agg.result"); 2443 AI->addAttr(llvm::Attribute::NoAlias); 2444 } 2445 2446 // Track if we received the parameter as a pointer (indirect, byval, or 2447 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2448 // into a local alloca for us. 2449 SmallVector<ParamValue, 16> ArgVals; 2450 ArgVals.reserve(Args.size()); 2451 2452 // Create a pointer value for every parameter declaration. This usually 2453 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2454 // any cleanups or do anything that might unwind. We do that separately, so 2455 // we can push the cleanups in the correct order for the ABI. 2456 assert(FI.arg_size() == Args.size() && 2457 "Mismatch between function signature & arguments."); 2458 unsigned ArgNo = 0; 2459 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2460 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2461 i != e; ++i, ++info_it, ++ArgNo) { 2462 const VarDecl *Arg = *i; 2463 const ABIArgInfo &ArgI = info_it->info; 2464 2465 bool isPromoted = 2466 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2467 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2468 // the parameter is promoted. In this case we convert to 2469 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2470 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2471 assert(hasScalarEvaluationKind(Ty) == 2472 hasScalarEvaluationKind(Arg->getType())); 2473 2474 unsigned FirstIRArg, NumIRArgs; 2475 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2476 2477 switch (ArgI.getKind()) { 2478 case ABIArgInfo::InAlloca: { 2479 assert(NumIRArgs == 0); 2480 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2481 Address V = 2482 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2483 if (ArgI.getInAllocaIndirect()) 2484 V = Address(Builder.CreateLoad(V), 2485 getContext().getTypeAlignInChars(Ty)); 2486 ArgVals.push_back(ParamValue::forIndirect(V)); 2487 break; 2488 } 2489 2490 case ABIArgInfo::Indirect: 2491 case ABIArgInfo::IndirectAliased: { 2492 assert(NumIRArgs == 1); 2493 Address ParamAddr = 2494 Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign()); 2495 2496 if (!hasScalarEvaluationKind(Ty)) { 2497 // Aggregates and complex variables are accessed by reference. All we 2498 // need to do is realign the value, if requested. Also, if the address 2499 // may be aliased, copy it to ensure that the parameter variable is 2500 // mutable and has a unique adress, as C requires. 2501 Address V = ParamAddr; 2502 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 2503 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2504 2505 // Copy from the incoming argument pointer to the temporary with the 2506 // appropriate alignment. 2507 // 2508 // FIXME: We should have a common utility for generating an aggregate 2509 // copy. 2510 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2511 Builder.CreateMemCpy( 2512 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 2513 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 2514 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 2515 V = AlignedTemp; 2516 } 2517 ArgVals.push_back(ParamValue::forIndirect(V)); 2518 } else { 2519 // Load scalar value from indirect argument. 2520 llvm::Value *V = 2521 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2522 2523 if (isPromoted) 2524 V = emitArgumentDemotion(*this, Arg, V); 2525 ArgVals.push_back(ParamValue::forDirect(V)); 2526 } 2527 break; 2528 } 2529 2530 case ABIArgInfo::Extend: 2531 case ABIArgInfo::Direct: { 2532 auto AI = Fn->getArg(FirstIRArg); 2533 llvm::Type *LTy = ConvertType(Arg->getType()); 2534 2535 // Prepare parameter attributes. So far, only attributes for pointer 2536 // parameters are prepared. See 2537 // http://llvm.org/docs/LangRef.html#paramattrs. 2538 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 2539 ArgI.getCoerceToType()->isPointerTy()) { 2540 assert(NumIRArgs == 1); 2541 2542 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2543 // Set `nonnull` attribute if any. 2544 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2545 PVD->getFunctionScopeIndex()) && 2546 !CGM.getCodeGenOpts().NullPointerIsValid) 2547 AI->addAttr(llvm::Attribute::NonNull); 2548 2549 QualType OTy = PVD->getOriginalType(); 2550 if (const auto *ArrTy = 2551 getContext().getAsConstantArrayType(OTy)) { 2552 // A C99 array parameter declaration with the static keyword also 2553 // indicates dereferenceability, and if the size is constant we can 2554 // use the dereferenceable attribute (which requires the size in 2555 // bytes). 2556 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2557 QualType ETy = ArrTy->getElementType(); 2558 llvm::Align Alignment = 2559 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2560 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2561 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2562 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2563 ArrSize) { 2564 llvm::AttrBuilder Attrs; 2565 Attrs.addDereferenceableAttr( 2566 getContext().getTypeSizeInChars(ETy).getQuantity() * 2567 ArrSize); 2568 AI->addAttrs(Attrs); 2569 } else if (getContext().getTargetInfo().getNullPointerValue( 2570 ETy.getAddressSpace()) == 0 && 2571 !CGM.getCodeGenOpts().NullPointerIsValid) { 2572 AI->addAttr(llvm::Attribute::NonNull); 2573 } 2574 } 2575 } else if (const auto *ArrTy = 2576 getContext().getAsVariableArrayType(OTy)) { 2577 // For C99 VLAs with the static keyword, we don't know the size so 2578 // we can't use the dereferenceable attribute, but in addrspace(0) 2579 // we know that it must be nonnull. 2580 if (ArrTy->getSizeModifier() == VariableArrayType::Static) { 2581 QualType ETy = ArrTy->getElementType(); 2582 llvm::Align Alignment = 2583 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2584 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2585 if (!getContext().getTargetAddressSpace(ETy) && 2586 !CGM.getCodeGenOpts().NullPointerIsValid) 2587 AI->addAttr(llvm::Attribute::NonNull); 2588 } 2589 } 2590 2591 // Set `align` attribute if any. 2592 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2593 if (!AVAttr) 2594 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2595 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2596 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2597 // If alignment-assumption sanitizer is enabled, we do *not* add 2598 // alignment attribute here, but emit normal alignment assumption, 2599 // so the UBSAN check could function. 2600 llvm::ConstantInt *AlignmentCI = 2601 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 2602 unsigned AlignmentInt = 2603 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 2604 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 2605 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 2606 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr( 2607 llvm::Align(AlignmentInt))); 2608 } 2609 } 2610 } 2611 2612 // Set 'noalias' if an argument type has the `restrict` qualifier. 2613 if (Arg->getType().isRestrictQualified()) 2614 AI->addAttr(llvm::Attribute::NoAlias); 2615 } 2616 2617 // Prepare the argument value. If we have the trivial case, handle it 2618 // with no muss and fuss. 2619 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2620 ArgI.getCoerceToType() == ConvertType(Ty) && 2621 ArgI.getDirectOffset() == 0) { 2622 assert(NumIRArgs == 1); 2623 2624 // LLVM expects swifterror parameters to be used in very restricted 2625 // ways. Copy the value into a less-restricted temporary. 2626 llvm::Value *V = AI; 2627 if (FI.getExtParameterInfo(ArgNo).getABI() 2628 == ParameterABI::SwiftErrorResult) { 2629 QualType pointeeTy = Ty->getPointeeType(); 2630 assert(pointeeTy->isPointerType()); 2631 Address temp = 2632 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2633 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2634 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2635 Builder.CreateStore(incomingErrorValue, temp); 2636 V = temp.getPointer(); 2637 2638 // Push a cleanup to copy the value back at the end of the function. 2639 // The convention does not guarantee that the value will be written 2640 // back if the function exits with an unwind exception. 2641 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2642 } 2643 2644 // Ensure the argument is the correct type. 2645 if (V->getType() != ArgI.getCoerceToType()) 2646 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2647 2648 if (isPromoted) 2649 V = emitArgumentDemotion(*this, Arg, V); 2650 2651 // Because of merging of function types from multiple decls it is 2652 // possible for the type of an argument to not match the corresponding 2653 // type in the function type. Since we are codegening the callee 2654 // in here, add a cast to the argument type. 2655 llvm::Type *LTy = ConvertType(Arg->getType()); 2656 if (V->getType() != LTy) 2657 V = Builder.CreateBitCast(V, LTy); 2658 2659 ArgVals.push_back(ParamValue::forDirect(V)); 2660 break; 2661 } 2662 2663 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2664 Arg->getName()); 2665 2666 // Pointer to store into. 2667 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2668 2669 // Fast-isel and the optimizer generally like scalar values better than 2670 // FCAs, so we flatten them if this is safe to do for this argument. 2671 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2672 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2673 STy->getNumElements() > 1) { 2674 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2675 llvm::Type *DstTy = Ptr.getElementType(); 2676 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2677 2678 Address AddrToStoreInto = Address::invalid(); 2679 if (SrcSize <= DstSize) { 2680 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2681 } else { 2682 AddrToStoreInto = 2683 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2684 } 2685 2686 assert(STy->getNumElements() == NumIRArgs); 2687 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2688 auto AI = Fn->getArg(FirstIRArg + i); 2689 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2690 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2691 Builder.CreateStore(AI, EltPtr); 2692 } 2693 2694 if (SrcSize > DstSize) { 2695 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2696 } 2697 2698 } else { 2699 // Simple case, just do a coerced store of the argument into the alloca. 2700 assert(NumIRArgs == 1); 2701 auto AI = Fn->getArg(FirstIRArg); 2702 AI->setName(Arg->getName() + ".coerce"); 2703 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 2704 } 2705 2706 // Match to what EmitParmDecl is expecting for this type. 2707 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2708 llvm::Value *V = 2709 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2710 if (isPromoted) 2711 V = emitArgumentDemotion(*this, Arg, V); 2712 ArgVals.push_back(ParamValue::forDirect(V)); 2713 } else { 2714 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2715 } 2716 break; 2717 } 2718 2719 case ABIArgInfo::CoerceAndExpand: { 2720 // Reconstruct into a temporary. 2721 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2722 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2723 2724 auto coercionType = ArgI.getCoerceAndExpandType(); 2725 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2726 2727 unsigned argIndex = FirstIRArg; 2728 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2729 llvm::Type *eltType = coercionType->getElementType(i); 2730 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2731 continue; 2732 2733 auto eltAddr = Builder.CreateStructGEP(alloca, i); 2734 auto elt = Fn->getArg(argIndex++); 2735 Builder.CreateStore(elt, eltAddr); 2736 } 2737 assert(argIndex == FirstIRArg + NumIRArgs); 2738 break; 2739 } 2740 2741 case ABIArgInfo::Expand: { 2742 // If this structure was expanded into multiple arguments then 2743 // we need to create a temporary and reconstruct it from the 2744 // arguments. 2745 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2746 LValue LV = MakeAddrLValue(Alloca, Ty); 2747 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2748 2749 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 2750 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2751 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 2752 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2753 auto AI = Fn->getArg(FirstIRArg + i); 2754 AI->setName(Arg->getName() + "." + Twine(i)); 2755 } 2756 break; 2757 } 2758 2759 case ABIArgInfo::Ignore: 2760 assert(NumIRArgs == 0); 2761 // Initialize the local variable appropriately. 2762 if (!hasScalarEvaluationKind(Ty)) { 2763 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2764 } else { 2765 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2766 ArgVals.push_back(ParamValue::forDirect(U)); 2767 } 2768 break; 2769 } 2770 } 2771 2772 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2773 for (int I = Args.size() - 1; I >= 0; --I) 2774 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2775 } else { 2776 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2777 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2778 } 2779 } 2780 2781 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2782 while (insn->use_empty()) { 2783 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2784 if (!bitcast) return; 2785 2786 // This is "safe" because we would have used a ConstantExpr otherwise. 2787 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2788 bitcast->eraseFromParent(); 2789 } 2790 } 2791 2792 /// Try to emit a fused autorelease of a return result. 2793 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2794 llvm::Value *result) { 2795 // We must be immediately followed the cast. 2796 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2797 if (BB->empty()) return nullptr; 2798 if (&BB->back() != result) return nullptr; 2799 2800 llvm::Type *resultType = result->getType(); 2801 2802 // result is in a BasicBlock and is therefore an Instruction. 2803 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2804 2805 SmallVector<llvm::Instruction *, 4> InstsToKill; 2806 2807 // Look for: 2808 // %generator = bitcast %type1* %generator2 to %type2* 2809 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2810 // We would have emitted this as a constant if the operand weren't 2811 // an Instruction. 2812 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2813 2814 // Require the generator to be immediately followed by the cast. 2815 if (generator->getNextNode() != bitcast) 2816 return nullptr; 2817 2818 InstsToKill.push_back(bitcast); 2819 } 2820 2821 // Look for: 2822 // %generator = call i8* @objc_retain(i8* %originalResult) 2823 // or 2824 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2825 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2826 if (!call) return nullptr; 2827 2828 bool doRetainAutorelease; 2829 2830 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2831 doRetainAutorelease = true; 2832 } else if (call->getCalledOperand() == 2833 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 2834 doRetainAutorelease = false; 2835 2836 // If we emitted an assembly marker for this call (and the 2837 // ARCEntrypoints field should have been set if so), go looking 2838 // for that call. If we can't find it, we can't do this 2839 // optimization. But it should always be the immediately previous 2840 // instruction, unless we needed bitcasts around the call. 2841 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2842 llvm::Instruction *prev = call->getPrevNode(); 2843 assert(prev); 2844 if (isa<llvm::BitCastInst>(prev)) { 2845 prev = prev->getPrevNode(); 2846 assert(prev); 2847 } 2848 assert(isa<llvm::CallInst>(prev)); 2849 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 2850 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2851 InstsToKill.push_back(prev); 2852 } 2853 } else { 2854 return nullptr; 2855 } 2856 2857 result = call->getArgOperand(0); 2858 InstsToKill.push_back(call); 2859 2860 // Keep killing bitcasts, for sanity. Note that we no longer care 2861 // about precise ordering as long as there's exactly one use. 2862 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2863 if (!bitcast->hasOneUse()) break; 2864 InstsToKill.push_back(bitcast); 2865 result = bitcast->getOperand(0); 2866 } 2867 2868 // Delete all the unnecessary instructions, from latest to earliest. 2869 for (auto *I : InstsToKill) 2870 I->eraseFromParent(); 2871 2872 // Do the fused retain/autorelease if we were asked to. 2873 if (doRetainAutorelease) 2874 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2875 2876 // Cast back to the result type. 2877 return CGF.Builder.CreateBitCast(result, resultType); 2878 } 2879 2880 /// If this is a +1 of the value of an immutable 'self', remove it. 2881 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2882 llvm::Value *result) { 2883 // This is only applicable to a method with an immutable 'self'. 2884 const ObjCMethodDecl *method = 2885 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2886 if (!method) return nullptr; 2887 const VarDecl *self = method->getSelfDecl(); 2888 if (!self->getType().isConstQualified()) return nullptr; 2889 2890 // Look for a retain call. 2891 llvm::CallInst *retainCall = 2892 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2893 if (!retainCall || retainCall->getCalledOperand() != 2894 CGF.CGM.getObjCEntrypoints().objc_retain) 2895 return nullptr; 2896 2897 // Look for an ordinary load of 'self'. 2898 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2899 llvm::LoadInst *load = 2900 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2901 if (!load || load->isAtomic() || load->isVolatile() || 2902 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2903 return nullptr; 2904 2905 // Okay! Burn it all down. This relies for correctness on the 2906 // assumption that the retain is emitted as part of the return and 2907 // that thereafter everything is used "linearly". 2908 llvm::Type *resultType = result->getType(); 2909 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2910 assert(retainCall->use_empty()); 2911 retainCall->eraseFromParent(); 2912 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2913 2914 return CGF.Builder.CreateBitCast(load, resultType); 2915 } 2916 2917 /// Emit an ARC autorelease of the result of a function. 2918 /// 2919 /// \return the value to actually return from the function 2920 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2921 llvm::Value *result) { 2922 // If we're returning 'self', kill the initial retain. This is a 2923 // heuristic attempt to "encourage correctness" in the really unfortunate 2924 // case where we have a return of self during a dealloc and we desperately 2925 // need to avoid the possible autorelease. 2926 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2927 return self; 2928 2929 // At -O0, try to emit a fused retain/autorelease. 2930 if (CGF.shouldUseFusedARCCalls()) 2931 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2932 return fused; 2933 2934 return CGF.EmitARCAutoreleaseReturnValue(result); 2935 } 2936 2937 /// Heuristically search for a dominating store to the return-value slot. 2938 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2939 // Check if a User is a store which pointerOperand is the ReturnValue. 2940 // We are looking for stores to the ReturnValue, not for stores of the 2941 // ReturnValue to some other location. 2942 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2943 auto *SI = dyn_cast<llvm::StoreInst>(U); 2944 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2945 return nullptr; 2946 // These aren't actually possible for non-coerced returns, and we 2947 // only care about non-coerced returns on this code path. 2948 assert(!SI->isAtomic() && !SI->isVolatile()); 2949 return SI; 2950 }; 2951 // If there are multiple uses of the return-value slot, just check 2952 // for something immediately preceding the IP. Sometimes this can 2953 // happen with how we generate implicit-returns; it can also happen 2954 // with noreturn cleanups. 2955 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2956 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2957 if (IP->empty()) return nullptr; 2958 llvm::Instruction *I = &IP->back(); 2959 2960 // Skip lifetime markers 2961 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2962 IE = IP->rend(); 2963 II != IE; ++II) { 2964 if (llvm::IntrinsicInst *Intrinsic = 2965 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2966 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2967 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2968 ++II; 2969 if (II == IE) 2970 break; 2971 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2972 continue; 2973 } 2974 } 2975 I = &*II; 2976 break; 2977 } 2978 2979 return GetStoreIfValid(I); 2980 } 2981 2982 llvm::StoreInst *store = 2983 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2984 if (!store) return nullptr; 2985 2986 // Now do a first-and-dirty dominance check: just walk up the 2987 // single-predecessors chain from the current insertion point. 2988 llvm::BasicBlock *StoreBB = store->getParent(); 2989 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2990 while (IP != StoreBB) { 2991 if (!(IP = IP->getSinglePredecessor())) 2992 return nullptr; 2993 } 2994 2995 // Okay, the store's basic block dominates the insertion point; we 2996 // can do our thing. 2997 return store; 2998 } 2999 3000 // Helper functions for EmitCMSEClearRecord 3001 3002 // Set the bits corresponding to a field having width `BitWidth` and located at 3003 // offset `BitOffset` (from the least significant bit) within a storage unit of 3004 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 3005 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 3006 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 3007 int BitWidth, int CharWidth) { 3008 assert(CharWidth <= 64); 3009 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 3010 3011 int Pos = 0; 3012 if (BitOffset >= CharWidth) { 3013 Pos += BitOffset / CharWidth; 3014 BitOffset = BitOffset % CharWidth; 3015 } 3016 3017 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 3018 if (BitOffset + BitWidth >= CharWidth) { 3019 Bits[Pos++] |= (Used << BitOffset) & Used; 3020 BitWidth -= CharWidth - BitOffset; 3021 BitOffset = 0; 3022 } 3023 3024 while (BitWidth >= CharWidth) { 3025 Bits[Pos++] = Used; 3026 BitWidth -= CharWidth; 3027 } 3028 3029 if (BitWidth > 0) 3030 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3031 } 3032 3033 // Set the bits corresponding to a field having width `BitWidth` and located at 3034 // offset `BitOffset` (from the least significant bit) within a storage unit of 3035 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3036 // `Bits` corresponds to one target byte. Use target endian layout. 3037 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3038 int StorageSize, int BitOffset, int BitWidth, 3039 int CharWidth, bool BigEndian) { 3040 3041 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3042 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3043 3044 if (BigEndian) 3045 std::reverse(TmpBits.begin(), TmpBits.end()); 3046 3047 for (uint64_t V : TmpBits) 3048 Bits[StorageOffset++] |= V; 3049 } 3050 3051 static void setUsedBits(CodeGenModule &, QualType, int, 3052 SmallVectorImpl<uint64_t> &); 3053 3054 // Set the bits in `Bits`, which correspond to the value representations of 3055 // the actual members of the record type `RTy`. Note that this function does 3056 // not handle base classes, virtual tables, etc, since they cannot happen in 3057 // CMSE function arguments or return. The bit mask corresponds to the target 3058 // memory layout, i.e. it's endian dependent. 3059 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3060 SmallVectorImpl<uint64_t> &Bits) { 3061 ASTContext &Context = CGM.getContext(); 3062 int CharWidth = Context.getCharWidth(); 3063 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3064 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3065 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3066 3067 int Idx = 0; 3068 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3069 const FieldDecl *F = *I; 3070 3071 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3072 F->getType()->isIncompleteArrayType()) 3073 continue; 3074 3075 if (F->isBitField()) { 3076 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3077 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3078 BFI.StorageSize / CharWidth, BFI.Offset, 3079 BFI.Size, CharWidth, 3080 CGM.getDataLayout().isBigEndian()); 3081 continue; 3082 } 3083 3084 setUsedBits(CGM, F->getType(), 3085 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3086 } 3087 } 3088 3089 // Set the bits in `Bits`, which correspond to the value representations of 3090 // the elements of an array type `ATy`. 3091 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3092 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3093 const ASTContext &Context = CGM.getContext(); 3094 3095 QualType ETy = Context.getBaseElementType(ATy); 3096 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3097 SmallVector<uint64_t, 4> TmpBits(Size); 3098 setUsedBits(CGM, ETy, 0, TmpBits); 3099 3100 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3101 auto Src = TmpBits.begin(); 3102 auto Dst = Bits.begin() + Offset + I * Size; 3103 for (int J = 0; J < Size; ++J) 3104 *Dst++ |= *Src++; 3105 } 3106 } 3107 3108 // Set the bits in `Bits`, which correspond to the value representations of 3109 // the type `QTy`. 3110 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3111 SmallVectorImpl<uint64_t> &Bits) { 3112 if (const auto *RTy = QTy->getAs<RecordType>()) 3113 return setUsedBits(CGM, RTy, Offset, Bits); 3114 3115 ASTContext &Context = CGM.getContext(); 3116 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3117 return setUsedBits(CGM, ATy, Offset, Bits); 3118 3119 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3120 if (Size <= 0) 3121 return; 3122 3123 std::fill_n(Bits.begin() + Offset, Size, 3124 (uint64_t(1) << Context.getCharWidth()) - 1); 3125 } 3126 3127 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3128 int Pos, int Size, int CharWidth, 3129 bool BigEndian) { 3130 assert(Size > 0); 3131 uint64_t Mask = 0; 3132 if (BigEndian) { 3133 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3134 ++P) 3135 Mask = (Mask << CharWidth) | *P; 3136 } else { 3137 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3138 do 3139 Mask = (Mask << CharWidth) | *--P; 3140 while (P != End); 3141 } 3142 return Mask; 3143 } 3144 3145 // Emit code to clear the bits in a record, which aren't a part of any user 3146 // declared member, when the record is a function return. 3147 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3148 llvm::IntegerType *ITy, 3149 QualType QTy) { 3150 assert(Src->getType() == ITy); 3151 assert(ITy->getScalarSizeInBits() <= 64); 3152 3153 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3154 int Size = DataLayout.getTypeStoreSize(ITy); 3155 SmallVector<uint64_t, 4> Bits(Size); 3156 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3157 3158 int CharWidth = CGM.getContext().getCharWidth(); 3159 uint64_t Mask = 3160 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3161 3162 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3163 } 3164 3165 // Emit code to clear the bits in a record, which aren't a part of any user 3166 // declared member, when the record is a function argument. 3167 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3168 llvm::ArrayType *ATy, 3169 QualType QTy) { 3170 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3171 int Size = DataLayout.getTypeStoreSize(ATy); 3172 SmallVector<uint64_t, 16> Bits(Size); 3173 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3174 3175 // Clear each element of the LLVM array. 3176 int CharWidth = CGM.getContext().getCharWidth(); 3177 int CharsPerElt = 3178 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3179 int MaskIndex = 0; 3180 llvm::Value *R = llvm::UndefValue::get(ATy); 3181 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3182 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3183 DataLayout.isBigEndian()); 3184 MaskIndex += CharsPerElt; 3185 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3186 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3187 R = Builder.CreateInsertValue(R, T1, I); 3188 } 3189 3190 return R; 3191 } 3192 3193 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3194 bool EmitRetDbgLoc, 3195 SourceLocation EndLoc) { 3196 if (FI.isNoReturn()) { 3197 // Noreturn functions don't return. 3198 EmitUnreachable(EndLoc); 3199 return; 3200 } 3201 3202 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3203 // Naked functions don't have epilogues. 3204 Builder.CreateUnreachable(); 3205 return; 3206 } 3207 3208 // Functions with no result always return void. 3209 if (!ReturnValue.isValid()) { 3210 Builder.CreateRetVoid(); 3211 return; 3212 } 3213 3214 llvm::DebugLoc RetDbgLoc; 3215 llvm::Value *RV = nullptr; 3216 QualType RetTy = FI.getReturnType(); 3217 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3218 3219 switch (RetAI.getKind()) { 3220 case ABIArgInfo::InAlloca: 3221 // Aggregrates get evaluated directly into the destination. Sometimes we 3222 // need to return the sret value in a register, though. 3223 assert(hasAggregateEvaluationKind(RetTy)); 3224 if (RetAI.getInAllocaSRet()) { 3225 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3226 --EI; 3227 llvm::Value *ArgStruct = &*EI; 3228 llvm::Value *SRet = Builder.CreateStructGEP( 3229 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 3230 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 3231 } 3232 break; 3233 3234 case ABIArgInfo::Indirect: { 3235 auto AI = CurFn->arg_begin(); 3236 if (RetAI.isSRetAfterThis()) 3237 ++AI; 3238 switch (getEvaluationKind(RetTy)) { 3239 case TEK_Complex: { 3240 ComplexPairTy RT = 3241 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3242 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3243 /*isInit*/ true); 3244 break; 3245 } 3246 case TEK_Aggregate: 3247 // Do nothing; aggregrates get evaluated directly into the destination. 3248 break; 3249 case TEK_Scalar: 3250 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 3251 MakeNaturalAlignAddrLValue(&*AI, RetTy), 3252 /*isInit*/ true); 3253 break; 3254 } 3255 break; 3256 } 3257 3258 case ABIArgInfo::Extend: 3259 case ABIArgInfo::Direct: 3260 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3261 RetAI.getDirectOffset() == 0) { 3262 // The internal return value temp always will have pointer-to-return-type 3263 // type, just do a load. 3264 3265 // If there is a dominating store to ReturnValue, we can elide 3266 // the load, zap the store, and usually zap the alloca. 3267 if (llvm::StoreInst *SI = 3268 findDominatingStoreToReturnValue(*this)) { 3269 // Reuse the debug location from the store unless there is 3270 // cleanup code to be emitted between the store and return 3271 // instruction. 3272 if (EmitRetDbgLoc && !AutoreleaseResult) 3273 RetDbgLoc = SI->getDebugLoc(); 3274 // Get the stored value and nuke the now-dead store. 3275 RV = SI->getValueOperand(); 3276 SI->eraseFromParent(); 3277 3278 // Otherwise, we have to do a simple load. 3279 } else { 3280 RV = Builder.CreateLoad(ReturnValue); 3281 } 3282 } else { 3283 // If the value is offset in memory, apply the offset now. 3284 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3285 3286 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3287 } 3288 3289 // In ARC, end functions that return a retainable type with a call 3290 // to objc_autoreleaseReturnValue. 3291 if (AutoreleaseResult) { 3292 #ifndef NDEBUG 3293 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3294 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3295 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3296 // CurCodeDecl or BlockInfo. 3297 QualType RT; 3298 3299 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3300 RT = FD->getReturnType(); 3301 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3302 RT = MD->getReturnType(); 3303 else if (isa<BlockDecl>(CurCodeDecl)) 3304 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3305 else 3306 llvm_unreachable("Unexpected function/method type"); 3307 3308 assert(getLangOpts().ObjCAutoRefCount && 3309 !FI.isReturnsRetained() && 3310 RT->isObjCRetainableType()); 3311 #endif 3312 RV = emitAutoreleaseOfResult(*this, RV); 3313 } 3314 3315 break; 3316 3317 case ABIArgInfo::Ignore: 3318 break; 3319 3320 case ABIArgInfo::CoerceAndExpand: { 3321 auto coercionType = RetAI.getCoerceAndExpandType(); 3322 3323 // Load all of the coerced elements out into results. 3324 llvm::SmallVector<llvm::Value*, 4> results; 3325 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 3326 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3327 auto coercedEltType = coercionType->getElementType(i); 3328 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3329 continue; 3330 3331 auto eltAddr = Builder.CreateStructGEP(addr, i); 3332 auto elt = Builder.CreateLoad(eltAddr); 3333 results.push_back(elt); 3334 } 3335 3336 // If we have one result, it's the single direct result type. 3337 if (results.size() == 1) { 3338 RV = results[0]; 3339 3340 // Otherwise, we need to make a first-class aggregate. 3341 } else { 3342 // Construct a return type that lacks padding elements. 3343 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3344 3345 RV = llvm::UndefValue::get(returnType); 3346 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3347 RV = Builder.CreateInsertValue(RV, results[i], i); 3348 } 3349 } 3350 break; 3351 } 3352 case ABIArgInfo::Expand: 3353 case ABIArgInfo::IndirectAliased: 3354 llvm_unreachable("Invalid ABI kind for return argument"); 3355 } 3356 3357 llvm::Instruction *Ret; 3358 if (RV) { 3359 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3360 // For certain return types, clear padding bits, as they may reveal 3361 // sensitive information. 3362 // Small struct/union types are passed as integers. 3363 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3364 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3365 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3366 } 3367 EmitReturnValueCheck(RV); 3368 Ret = Builder.CreateRet(RV); 3369 } else { 3370 Ret = Builder.CreateRetVoid(); 3371 } 3372 3373 if (RetDbgLoc) 3374 Ret->setDebugLoc(std::move(RetDbgLoc)); 3375 } 3376 3377 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3378 // A current decl may not be available when emitting vtable thunks. 3379 if (!CurCodeDecl) 3380 return; 3381 3382 // If the return block isn't reachable, neither is this check, so don't emit 3383 // it. 3384 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3385 return; 3386 3387 ReturnsNonNullAttr *RetNNAttr = nullptr; 3388 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3389 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3390 3391 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3392 return; 3393 3394 // Prefer the returns_nonnull attribute if it's present. 3395 SourceLocation AttrLoc; 3396 SanitizerMask CheckKind; 3397 SanitizerHandler Handler; 3398 if (RetNNAttr) { 3399 assert(!requiresReturnValueNullabilityCheck() && 3400 "Cannot check nullability and the nonnull attribute"); 3401 AttrLoc = RetNNAttr->getLocation(); 3402 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3403 Handler = SanitizerHandler::NonnullReturn; 3404 } else { 3405 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3406 if (auto *TSI = DD->getTypeSourceInfo()) 3407 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3408 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3409 CheckKind = SanitizerKind::NullabilityReturn; 3410 Handler = SanitizerHandler::NullabilityReturn; 3411 } 3412 3413 SanitizerScope SanScope(this); 3414 3415 // Make sure the "return" source location is valid. If we're checking a 3416 // nullability annotation, make sure the preconditions for the check are met. 3417 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3418 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3419 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3420 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3421 if (requiresReturnValueNullabilityCheck()) 3422 CanNullCheck = 3423 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3424 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3425 EmitBlock(Check); 3426 3427 // Now do the null check. 3428 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3429 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3430 llvm::Value *DynamicData[] = {SLocPtr}; 3431 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3432 3433 EmitBlock(NoCheck); 3434 3435 #ifndef NDEBUG 3436 // The return location should not be used after the check has been emitted. 3437 ReturnLocation = Address::invalid(); 3438 #endif 3439 } 3440 3441 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3442 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3443 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3444 } 3445 3446 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3447 QualType Ty) { 3448 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3449 // placeholders. 3450 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3451 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3452 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3453 3454 // FIXME: When we generate this IR in one pass, we shouldn't need 3455 // this win32-specific alignment hack. 3456 CharUnits Align = CharUnits::fromQuantity(4); 3457 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3458 3459 return AggValueSlot::forAddr(Address(Placeholder, Align), 3460 Ty.getQualifiers(), 3461 AggValueSlot::IsNotDestructed, 3462 AggValueSlot::DoesNotNeedGCBarriers, 3463 AggValueSlot::IsNotAliased, 3464 AggValueSlot::DoesNotOverlap); 3465 } 3466 3467 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3468 const VarDecl *param, 3469 SourceLocation loc) { 3470 // StartFunction converted the ABI-lowered parameter(s) into a 3471 // local alloca. We need to turn that into an r-value suitable 3472 // for EmitCall. 3473 Address local = GetAddrOfLocalVar(param); 3474 3475 QualType type = param->getType(); 3476 3477 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3478 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3479 } 3480 3481 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3482 // but the argument needs to be the original pointer. 3483 if (type->isReferenceType()) { 3484 args.add(RValue::get(Builder.CreateLoad(local)), type); 3485 3486 // In ARC, move out of consumed arguments so that the release cleanup 3487 // entered by StartFunction doesn't cause an over-release. This isn't 3488 // optimal -O0 code generation, but it should get cleaned up when 3489 // optimization is enabled. This also assumes that delegate calls are 3490 // performed exactly once for a set of arguments, but that should be safe. 3491 } else if (getLangOpts().ObjCAutoRefCount && 3492 param->hasAttr<NSConsumedAttr>() && 3493 type->isObjCRetainableType()) { 3494 llvm::Value *ptr = Builder.CreateLoad(local); 3495 auto null = 3496 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3497 Builder.CreateStore(null, local); 3498 args.add(RValue::get(ptr), type); 3499 3500 // For the most part, we just need to load the alloca, except that 3501 // aggregate r-values are actually pointers to temporaries. 3502 } else { 3503 args.add(convertTempToRValue(local, type, loc), type); 3504 } 3505 3506 // Deactivate the cleanup for the callee-destructed param that was pushed. 3507 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3508 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3509 param->needsDestruction(getContext())) { 3510 EHScopeStack::stable_iterator cleanup = 3511 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3512 assert(cleanup.isValid() && 3513 "cleanup for callee-destructed param not recorded"); 3514 // This unreachable is a temporary marker which will be removed later. 3515 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3516 args.addArgCleanupDeactivation(cleanup, isActive); 3517 } 3518 } 3519 3520 static bool isProvablyNull(llvm::Value *addr) { 3521 return isa<llvm::ConstantPointerNull>(addr); 3522 } 3523 3524 /// Emit the actual writing-back of a writeback. 3525 static void emitWriteback(CodeGenFunction &CGF, 3526 const CallArgList::Writeback &writeback) { 3527 const LValue &srcLV = writeback.Source; 3528 Address srcAddr = srcLV.getAddress(CGF); 3529 assert(!isProvablyNull(srcAddr.getPointer()) && 3530 "shouldn't have writeback for provably null argument"); 3531 3532 llvm::BasicBlock *contBB = nullptr; 3533 3534 // If the argument wasn't provably non-null, we need to null check 3535 // before doing the store. 3536 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3537 CGF.CGM.getDataLayout()); 3538 if (!provablyNonNull) { 3539 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3540 contBB = CGF.createBasicBlock("icr.done"); 3541 3542 llvm::Value *isNull = 3543 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3544 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3545 CGF.EmitBlock(writebackBB); 3546 } 3547 3548 // Load the value to writeback. 3549 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3550 3551 // Cast it back, in case we're writing an id to a Foo* or something. 3552 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3553 "icr.writeback-cast"); 3554 3555 // Perform the writeback. 3556 3557 // If we have a "to use" value, it's something we need to emit a use 3558 // of. This has to be carefully threaded in: if it's done after the 3559 // release it's potentially undefined behavior (and the optimizer 3560 // will ignore it), and if it happens before the retain then the 3561 // optimizer could move the release there. 3562 if (writeback.ToUse) { 3563 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3564 3565 // Retain the new value. No need to block-copy here: the block's 3566 // being passed up the stack. 3567 value = CGF.EmitARCRetainNonBlock(value); 3568 3569 // Emit the intrinsic use here. 3570 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3571 3572 // Load the old value (primitively). 3573 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3574 3575 // Put the new value in place (primitively). 3576 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3577 3578 // Release the old value. 3579 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3580 3581 // Otherwise, we can just do a normal lvalue store. 3582 } else { 3583 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3584 } 3585 3586 // Jump to the continuation block. 3587 if (!provablyNonNull) 3588 CGF.EmitBlock(contBB); 3589 } 3590 3591 static void emitWritebacks(CodeGenFunction &CGF, 3592 const CallArgList &args) { 3593 for (const auto &I : args.writebacks()) 3594 emitWriteback(CGF, I); 3595 } 3596 3597 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3598 const CallArgList &CallArgs) { 3599 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3600 CallArgs.getCleanupsToDeactivate(); 3601 // Iterate in reverse to increase the likelihood of popping the cleanup. 3602 for (const auto &I : llvm::reverse(Cleanups)) { 3603 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3604 I.IsActiveIP->eraseFromParent(); 3605 } 3606 } 3607 3608 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3609 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3610 if (uop->getOpcode() == UO_AddrOf) 3611 return uop->getSubExpr(); 3612 return nullptr; 3613 } 3614 3615 /// Emit an argument that's being passed call-by-writeback. That is, 3616 /// we are passing the address of an __autoreleased temporary; it 3617 /// might be copy-initialized with the current value of the given 3618 /// address, but it will definitely be copied out of after the call. 3619 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3620 const ObjCIndirectCopyRestoreExpr *CRE) { 3621 LValue srcLV; 3622 3623 // Make an optimistic effort to emit the address as an l-value. 3624 // This can fail if the argument expression is more complicated. 3625 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3626 srcLV = CGF.EmitLValue(lvExpr); 3627 3628 // Otherwise, just emit it as a scalar. 3629 } else { 3630 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3631 3632 QualType srcAddrType = 3633 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3634 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3635 } 3636 Address srcAddr = srcLV.getAddress(CGF); 3637 3638 // The dest and src types don't necessarily match in LLVM terms 3639 // because of the crazy ObjC compatibility rules. 3640 3641 llvm::PointerType *destType = 3642 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3643 3644 // If the address is a constant null, just pass the appropriate null. 3645 if (isProvablyNull(srcAddr.getPointer())) { 3646 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3647 CRE->getType()); 3648 return; 3649 } 3650 3651 // Create the temporary. 3652 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3653 CGF.getPointerAlign(), 3654 "icr.temp"); 3655 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3656 // and that cleanup will be conditional if we can't prove that the l-value 3657 // isn't null, so we need to register a dominating point so that the cleanups 3658 // system will make valid IR. 3659 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3660 3661 // Zero-initialize it if we're not doing a copy-initialization. 3662 bool shouldCopy = CRE->shouldCopy(); 3663 if (!shouldCopy) { 3664 llvm::Value *null = 3665 llvm::ConstantPointerNull::get( 3666 cast<llvm::PointerType>(destType->getElementType())); 3667 CGF.Builder.CreateStore(null, temp); 3668 } 3669 3670 llvm::BasicBlock *contBB = nullptr; 3671 llvm::BasicBlock *originBB = nullptr; 3672 3673 // If the address is *not* known to be non-null, we need to switch. 3674 llvm::Value *finalArgument; 3675 3676 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3677 CGF.CGM.getDataLayout()); 3678 if (provablyNonNull) { 3679 finalArgument = temp.getPointer(); 3680 } else { 3681 llvm::Value *isNull = 3682 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3683 3684 finalArgument = CGF.Builder.CreateSelect(isNull, 3685 llvm::ConstantPointerNull::get(destType), 3686 temp.getPointer(), "icr.argument"); 3687 3688 // If we need to copy, then the load has to be conditional, which 3689 // means we need control flow. 3690 if (shouldCopy) { 3691 originBB = CGF.Builder.GetInsertBlock(); 3692 contBB = CGF.createBasicBlock("icr.cont"); 3693 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3694 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3695 CGF.EmitBlock(copyBB); 3696 condEval.begin(CGF); 3697 } 3698 } 3699 3700 llvm::Value *valueToUse = nullptr; 3701 3702 // Perform a copy if necessary. 3703 if (shouldCopy) { 3704 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3705 assert(srcRV.isScalar()); 3706 3707 llvm::Value *src = srcRV.getScalarVal(); 3708 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3709 "icr.cast"); 3710 3711 // Use an ordinary store, not a store-to-lvalue. 3712 CGF.Builder.CreateStore(src, temp); 3713 3714 // If optimization is enabled, and the value was held in a 3715 // __strong variable, we need to tell the optimizer that this 3716 // value has to stay alive until we're doing the store back. 3717 // This is because the temporary is effectively unretained, 3718 // and so otherwise we can violate the high-level semantics. 3719 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3720 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3721 valueToUse = src; 3722 } 3723 } 3724 3725 // Finish the control flow if we needed it. 3726 if (shouldCopy && !provablyNonNull) { 3727 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3728 CGF.EmitBlock(contBB); 3729 3730 // Make a phi for the value to intrinsically use. 3731 if (valueToUse) { 3732 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3733 "icr.to-use"); 3734 phiToUse->addIncoming(valueToUse, copyBB); 3735 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3736 originBB); 3737 valueToUse = phiToUse; 3738 } 3739 3740 condEval.end(CGF); 3741 } 3742 3743 args.addWriteback(srcLV, temp, valueToUse); 3744 args.add(RValue::get(finalArgument), CRE->getType()); 3745 } 3746 3747 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3748 assert(!StackBase); 3749 3750 // Save the stack. 3751 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3752 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3753 } 3754 3755 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3756 if (StackBase) { 3757 // Restore the stack after the call. 3758 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3759 CGF.Builder.CreateCall(F, StackBase); 3760 } 3761 } 3762 3763 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3764 SourceLocation ArgLoc, 3765 AbstractCallee AC, 3766 unsigned ParmNum) { 3767 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3768 SanOpts.has(SanitizerKind::NullabilityArg))) 3769 return; 3770 3771 // The param decl may be missing in a variadic function. 3772 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3773 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3774 3775 // Prefer the nonnull attribute if it's present. 3776 const NonNullAttr *NNAttr = nullptr; 3777 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3778 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3779 3780 bool CanCheckNullability = false; 3781 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3782 auto Nullability = PVD->getType()->getNullability(getContext()); 3783 CanCheckNullability = Nullability && 3784 *Nullability == NullabilityKind::NonNull && 3785 PVD->getTypeSourceInfo(); 3786 } 3787 3788 if (!NNAttr && !CanCheckNullability) 3789 return; 3790 3791 SourceLocation AttrLoc; 3792 SanitizerMask CheckKind; 3793 SanitizerHandler Handler; 3794 if (NNAttr) { 3795 AttrLoc = NNAttr->getLocation(); 3796 CheckKind = SanitizerKind::NonnullAttribute; 3797 Handler = SanitizerHandler::NonnullArg; 3798 } else { 3799 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3800 CheckKind = SanitizerKind::NullabilityArg; 3801 Handler = SanitizerHandler::NullabilityArg; 3802 } 3803 3804 SanitizerScope SanScope(this); 3805 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 3806 llvm::Constant *StaticData[] = { 3807 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3808 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3809 }; 3810 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3811 } 3812 3813 void CodeGenFunction::EmitCallArgs( 3814 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3815 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3816 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3817 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3818 3819 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3820 // because arguments are destroyed left to right in the callee. As a special 3821 // case, there are certain language constructs that require left-to-right 3822 // evaluation, and in those cases we consider the evaluation order requirement 3823 // to trump the "destruction order is reverse construction order" guarantee. 3824 bool LeftToRight = 3825 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3826 ? Order == EvaluationOrder::ForceLeftToRight 3827 : Order != EvaluationOrder::ForceRightToLeft; 3828 3829 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3830 RValue EmittedArg) { 3831 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3832 return; 3833 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3834 if (PS == nullptr) 3835 return; 3836 3837 const auto &Context = getContext(); 3838 auto SizeTy = Context.getSizeType(); 3839 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3840 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3841 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3842 EmittedArg.getScalarVal(), 3843 PS->isDynamic()); 3844 Args.add(RValue::get(V), SizeTy); 3845 // If we're emitting args in reverse, be sure to do so with 3846 // pass_object_size, as well. 3847 if (!LeftToRight) 3848 std::swap(Args.back(), *(&Args.back() - 1)); 3849 }; 3850 3851 // Insert a stack save if we're going to need any inalloca args. 3852 bool HasInAllocaArgs = false; 3853 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3854 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3855 I != E && !HasInAllocaArgs; ++I) 3856 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3857 if (HasInAllocaArgs) { 3858 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3859 Args.allocateArgumentMemory(*this); 3860 } 3861 } 3862 3863 // Evaluate each argument in the appropriate order. 3864 size_t CallArgsStart = Args.size(); 3865 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3866 unsigned Idx = LeftToRight ? I : E - I - 1; 3867 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3868 unsigned InitialArgSize = Args.size(); 3869 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3870 // the argument and parameter match or the objc method is parameterized. 3871 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3872 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3873 ArgTypes[Idx]) || 3874 (isa<ObjCMethodDecl>(AC.getDecl()) && 3875 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3876 "Argument and parameter types don't match"); 3877 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3878 // In particular, we depend on it being the last arg in Args, and the 3879 // objectsize bits depend on there only being one arg if !LeftToRight. 3880 assert(InitialArgSize + 1 == Args.size() && 3881 "The code below depends on only adding one arg per EmitCallArg"); 3882 (void)InitialArgSize; 3883 // Since pointer argument are never emitted as LValue, it is safe to emit 3884 // non-null argument check for r-value only. 3885 if (!Args.back().hasLValue()) { 3886 RValue RVArg = Args.back().getKnownRValue(); 3887 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3888 ParamsToSkip + Idx); 3889 // @llvm.objectsize should never have side-effects and shouldn't need 3890 // destruction/cleanups, so we can safely "emit" it after its arg, 3891 // regardless of right-to-leftness 3892 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3893 } 3894 } 3895 3896 if (!LeftToRight) { 3897 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3898 // IR function. 3899 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3900 } 3901 } 3902 3903 namespace { 3904 3905 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3906 DestroyUnpassedArg(Address Addr, QualType Ty) 3907 : Addr(Addr), Ty(Ty) {} 3908 3909 Address Addr; 3910 QualType Ty; 3911 3912 void Emit(CodeGenFunction &CGF, Flags flags) override { 3913 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3914 if (DtorKind == QualType::DK_cxx_destructor) { 3915 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3916 assert(!Dtor->isTrivial()); 3917 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3918 /*Delegating=*/false, Addr, Ty); 3919 } else { 3920 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3921 } 3922 } 3923 }; 3924 3925 struct DisableDebugLocationUpdates { 3926 CodeGenFunction &CGF; 3927 bool disabledDebugInfo; 3928 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3929 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3930 CGF.disableDebugInfo(); 3931 } 3932 ~DisableDebugLocationUpdates() { 3933 if (disabledDebugInfo) 3934 CGF.enableDebugInfo(); 3935 } 3936 }; 3937 3938 } // end anonymous namespace 3939 3940 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3941 if (!HasLV) 3942 return RV; 3943 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3944 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 3945 LV.isVolatile()); 3946 IsUsed = true; 3947 return RValue::getAggregate(Copy.getAddress(CGF)); 3948 } 3949 3950 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3951 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3952 if (!HasLV && RV.isScalar()) 3953 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 3954 else if (!HasLV && RV.isComplex()) 3955 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3956 else { 3957 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 3958 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3959 // We assume that call args are never copied into subobjects. 3960 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 3961 HasLV ? LV.isVolatileQualified() 3962 : RV.isVolatileQualified()); 3963 } 3964 IsUsed = true; 3965 } 3966 3967 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3968 QualType type) { 3969 DisableDebugLocationUpdates Dis(*this, E); 3970 if (const ObjCIndirectCopyRestoreExpr *CRE 3971 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3972 assert(getLangOpts().ObjCAutoRefCount); 3973 return emitWritebackArg(*this, args, CRE); 3974 } 3975 3976 assert(type->isReferenceType() == E->isGLValue() && 3977 "reference binding to unmaterialized r-value!"); 3978 3979 if (E->isGLValue()) { 3980 assert(E->getObjectKind() == OK_Ordinary); 3981 return args.add(EmitReferenceBindingToExpr(E), type); 3982 } 3983 3984 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3985 3986 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3987 // However, we still have to push an EH-only cleanup in case we unwind before 3988 // we make it to the call. 3989 if (HasAggregateEvalKind && 3990 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 3991 // If we're using inalloca, use the argument memory. Otherwise, use a 3992 // temporary. 3993 AggValueSlot Slot; 3994 if (args.isUsingInAlloca()) 3995 Slot = createPlaceholderSlot(*this, type); 3996 else 3997 Slot = CreateAggTemp(type, "agg.tmp"); 3998 3999 bool DestroyedInCallee = true, NeedsEHCleanup = true; 4000 if (const auto *RD = type->getAsCXXRecordDecl()) 4001 DestroyedInCallee = RD->hasNonTrivialDestructor(); 4002 else 4003 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 4004 4005 if (DestroyedInCallee) 4006 Slot.setExternallyDestructed(); 4007 4008 EmitAggExpr(E, Slot); 4009 RValue RV = Slot.asRValue(); 4010 args.add(RV, type); 4011 4012 if (DestroyedInCallee && NeedsEHCleanup) { 4013 // Create a no-op GEP between the placeholder and the cleanup so we can 4014 // RAUW it successfully. It also serves as a marker of the first 4015 // instruction where the cleanup is active. 4016 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 4017 type); 4018 // This unreachable is a temporary marker which will be removed later. 4019 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 4020 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 4021 } 4022 return; 4023 } 4024 4025 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4026 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 4027 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4028 assert(L.isSimple()); 4029 args.addUncopiedAggregate(L, type); 4030 return; 4031 } 4032 4033 args.add(EmitAnyExprToTemp(E), type); 4034 } 4035 4036 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4037 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4038 // implicitly widens null pointer constants that are arguments to varargs 4039 // functions to pointer-sized ints. 4040 if (!getTarget().getTriple().isOSWindows()) 4041 return Arg->getType(); 4042 4043 if (Arg->getType()->isIntegerType() && 4044 getContext().getTypeSize(Arg->getType()) < 4045 getContext().getTargetInfo().getPointerWidth(0) && 4046 Arg->isNullPointerConstant(getContext(), 4047 Expr::NPC_ValueDependentIsNotNull)) { 4048 return getContext().getIntPtrType(); 4049 } 4050 4051 return Arg->getType(); 4052 } 4053 4054 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4055 // optimizer it can aggressively ignore unwind edges. 4056 void 4057 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4058 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4059 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4060 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4061 CGM.getNoObjCARCExceptionsMetadata()); 4062 } 4063 4064 /// Emits a call to the given no-arguments nounwind runtime function. 4065 llvm::CallInst * 4066 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4067 const llvm::Twine &name) { 4068 return EmitNounwindRuntimeCall(callee, None, name); 4069 } 4070 4071 /// Emits a call to the given nounwind runtime function. 4072 llvm::CallInst * 4073 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4074 ArrayRef<llvm::Value *> args, 4075 const llvm::Twine &name) { 4076 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4077 call->setDoesNotThrow(); 4078 return call; 4079 } 4080 4081 /// Emits a simple call (never an invoke) to the given no-arguments 4082 /// runtime function. 4083 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4084 const llvm::Twine &name) { 4085 return EmitRuntimeCall(callee, None, name); 4086 } 4087 4088 // Calls which may throw must have operand bundles indicating which funclet 4089 // they are nested within. 4090 SmallVector<llvm::OperandBundleDef, 1> 4091 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4092 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4093 // There is no need for a funclet operand bundle if we aren't inside a 4094 // funclet. 4095 if (!CurrentFuncletPad) 4096 return BundleList; 4097 4098 // Skip intrinsics which cannot throw. 4099 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 4100 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 4101 return BundleList; 4102 4103 BundleList.emplace_back("funclet", CurrentFuncletPad); 4104 return BundleList; 4105 } 4106 4107 /// Emits a simple call (never an invoke) to the given runtime function. 4108 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4109 ArrayRef<llvm::Value *> args, 4110 const llvm::Twine &name) { 4111 llvm::CallInst *call = Builder.CreateCall( 4112 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4113 call->setCallingConv(getRuntimeCC()); 4114 return call; 4115 } 4116 4117 /// Emits a call or invoke to the given noreturn runtime function. 4118 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4119 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4120 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4121 getBundlesForFunclet(callee.getCallee()); 4122 4123 if (getInvokeDest()) { 4124 llvm::InvokeInst *invoke = 4125 Builder.CreateInvoke(callee, 4126 getUnreachableBlock(), 4127 getInvokeDest(), 4128 args, 4129 BundleList); 4130 invoke->setDoesNotReturn(); 4131 invoke->setCallingConv(getRuntimeCC()); 4132 } else { 4133 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4134 call->setDoesNotReturn(); 4135 call->setCallingConv(getRuntimeCC()); 4136 Builder.CreateUnreachable(); 4137 } 4138 } 4139 4140 /// Emits a call or invoke instruction to the given nullary runtime function. 4141 llvm::CallBase * 4142 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4143 const Twine &name) { 4144 return EmitRuntimeCallOrInvoke(callee, None, name); 4145 } 4146 4147 /// Emits a call or invoke instruction to the given runtime function. 4148 llvm::CallBase * 4149 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4150 ArrayRef<llvm::Value *> args, 4151 const Twine &name) { 4152 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4153 call->setCallingConv(getRuntimeCC()); 4154 return call; 4155 } 4156 4157 /// Emits a call or invoke instruction to the given function, depending 4158 /// on the current state of the EH stack. 4159 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4160 ArrayRef<llvm::Value *> Args, 4161 const Twine &Name) { 4162 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4163 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4164 getBundlesForFunclet(Callee.getCallee()); 4165 4166 llvm::CallBase *Inst; 4167 if (!InvokeDest) 4168 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4169 else { 4170 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4171 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4172 Name); 4173 EmitBlock(ContBB); 4174 } 4175 4176 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4177 // optimizer it can aggressively ignore unwind edges. 4178 if (CGM.getLangOpts().ObjCAutoRefCount) 4179 AddObjCARCExceptionMetadata(Inst); 4180 4181 return Inst; 4182 } 4183 4184 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4185 llvm::Value *New) { 4186 DeferredReplacements.push_back(std::make_pair(Old, New)); 4187 } 4188 4189 namespace { 4190 4191 /// Specify given \p NewAlign as the alignment of return value attribute. If 4192 /// such attribute already exists, re-set it to the maximal one of two options. 4193 LLVM_NODISCARD llvm::AttributeList 4194 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4195 const llvm::AttributeList &Attrs, 4196 llvm::Align NewAlign) { 4197 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4198 if (CurAlign >= NewAlign) 4199 return Attrs; 4200 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4201 return Attrs 4202 .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex, 4203 llvm::Attribute::AttrKind::Alignment) 4204 .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr); 4205 } 4206 4207 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4208 protected: 4209 CodeGenFunction &CGF; 4210 4211 /// We do nothing if this is, or becomes, nullptr. 4212 const AlignedAttrTy *AA = nullptr; 4213 4214 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4215 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4216 4217 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4218 : CGF(CGF_) { 4219 if (!FuncDecl) 4220 return; 4221 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4222 } 4223 4224 public: 4225 /// If we can, materialize the alignment as an attribute on return value. 4226 LLVM_NODISCARD llvm::AttributeList 4227 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4228 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4229 return Attrs; 4230 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4231 if (!AlignmentCI) 4232 return Attrs; 4233 // We may legitimately have non-power-of-2 alignment here. 4234 // If so, this is UB land, emit it via `@llvm.assume` instead. 4235 if (!AlignmentCI->getValue().isPowerOf2()) 4236 return Attrs; 4237 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4238 CGF.getLLVMContext(), Attrs, 4239 llvm::Align( 4240 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4241 AA = nullptr; // We're done. Disallow doing anything else. 4242 return NewAttrs; 4243 } 4244 4245 /// Emit alignment assumption. 4246 /// This is a general fallback that we take if either there is an offset, 4247 /// or the alignment is variable or we are sanitizing for alignment. 4248 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4249 if (!AA) 4250 return; 4251 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4252 AA->getLocation(), Alignment, OffsetCI); 4253 AA = nullptr; // We're done. Disallow doing anything else. 4254 } 4255 }; 4256 4257 /// Helper data structure to emit `AssumeAlignedAttr`. 4258 class AssumeAlignedAttrEmitter final 4259 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4260 public: 4261 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4262 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4263 if (!AA) 4264 return; 4265 // It is guaranteed that the alignment/offset are constants. 4266 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4267 if (Expr *Offset = AA->getOffset()) { 4268 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4269 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4270 OffsetCI = nullptr; 4271 } 4272 } 4273 }; 4274 4275 /// Helper data structure to emit `AllocAlignAttr`. 4276 class AllocAlignAttrEmitter final 4277 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4278 public: 4279 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4280 const CallArgList &CallArgs) 4281 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4282 if (!AA) 4283 return; 4284 // Alignment may or may not be a constant, and that is okay. 4285 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4286 .getRValue(CGF) 4287 .getScalarVal(); 4288 } 4289 }; 4290 4291 } // namespace 4292 4293 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4294 const CGCallee &Callee, 4295 ReturnValueSlot ReturnValue, 4296 const CallArgList &CallArgs, 4297 llvm::CallBase **callOrInvoke, 4298 SourceLocation Loc) { 4299 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4300 4301 assert(Callee.isOrdinary() || Callee.isVirtual()); 4302 4303 // Handle struct-return functions by passing a pointer to the 4304 // location that we would like to return into. 4305 QualType RetTy = CallInfo.getReturnType(); 4306 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4307 4308 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4309 4310 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4311 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 4312 // We can only guarantee that a function is called from the correct 4313 // context/function based on the appropriate target attributes, 4314 // so only check in the case where we have both always_inline and target 4315 // since otherwise we could be making a conditional call after a check for 4316 // the proper cpu features (and it won't cause code generation issues due to 4317 // function based code generation). 4318 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4319 TargetDecl->hasAttr<TargetAttr>()) 4320 checkTargetFeatures(Loc, FD); 4321 4322 // Some architectures (such as x86-64) have the ABI changed based on 4323 // attribute-target/features. Give them a chance to diagnose. 4324 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 4325 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs); 4326 } 4327 4328 #ifndef NDEBUG 4329 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 4330 // For an inalloca varargs function, we don't expect CallInfo to match the 4331 // function pointer's type, because the inalloca struct a will have extra 4332 // fields in it for the varargs parameters. Code later in this function 4333 // bitcasts the function pointer to the type derived from CallInfo. 4334 // 4335 // In other cases, we assert that the types match up (until pointers stop 4336 // having pointee types). 4337 llvm::Type *TypeFromVal; 4338 if (Callee.isVirtual()) 4339 TypeFromVal = Callee.getVirtualFunctionType(); 4340 else 4341 TypeFromVal = 4342 Callee.getFunctionPointer()->getType()->getPointerElementType(); 4343 assert(IRFuncTy == TypeFromVal); 4344 } 4345 #endif 4346 4347 // 1. Set up the arguments. 4348 4349 // If we're using inalloca, insert the allocation after the stack save. 4350 // FIXME: Do this earlier rather than hacking it in here! 4351 Address ArgMemory = Address::invalid(); 4352 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4353 const llvm::DataLayout &DL = CGM.getDataLayout(); 4354 llvm::Instruction *IP = CallArgs.getStackBase(); 4355 llvm::AllocaInst *AI; 4356 if (IP) { 4357 IP = IP->getNextNode(); 4358 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 4359 "argmem", IP); 4360 } else { 4361 AI = CreateTempAlloca(ArgStruct, "argmem"); 4362 } 4363 auto Align = CallInfo.getArgStructAlignment(); 4364 AI->setAlignment(Align.getAsAlign()); 4365 AI->setUsedWithInAlloca(true); 4366 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 4367 ArgMemory = Address(AI, Align); 4368 } 4369 4370 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 4371 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 4372 4373 // If the call returns a temporary with struct return, create a temporary 4374 // alloca to hold the result, unless one is given to us. 4375 Address SRetPtr = Address::invalid(); 4376 Address SRetAlloca = Address::invalid(); 4377 llvm::Value *UnusedReturnSizePtr = nullptr; 4378 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 4379 if (!ReturnValue.isNull()) { 4380 SRetPtr = ReturnValue.getValue(); 4381 } else { 4382 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 4383 if (HaveInsertPoint() && ReturnValue.isUnused()) { 4384 uint64_t size = 4385 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 4386 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 4387 } 4388 } 4389 if (IRFunctionArgs.hasSRetArg()) { 4390 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 4391 } else if (RetAI.isInAlloca()) { 4392 Address Addr = 4393 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 4394 Builder.CreateStore(SRetPtr.getPointer(), Addr); 4395 } 4396 } 4397 4398 Address swiftErrorTemp = Address::invalid(); 4399 Address swiftErrorArg = Address::invalid(); 4400 4401 // When passing arguments using temporary allocas, we need to add the 4402 // appropriate lifetime markers. This vector keeps track of all the lifetime 4403 // markers that need to be ended right after the call. 4404 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 4405 4406 // Translate all of the arguments as necessary to match the IR lowering. 4407 assert(CallInfo.arg_size() == CallArgs.size() && 4408 "Mismatch between function signature & arguments."); 4409 unsigned ArgNo = 0; 4410 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 4411 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 4412 I != E; ++I, ++info_it, ++ArgNo) { 4413 const ABIArgInfo &ArgInfo = info_it->info; 4414 4415 // Insert a padding argument to ensure proper alignment. 4416 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 4417 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 4418 llvm::UndefValue::get(ArgInfo.getPaddingType()); 4419 4420 unsigned FirstIRArg, NumIRArgs; 4421 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 4422 4423 switch (ArgInfo.getKind()) { 4424 case ABIArgInfo::InAlloca: { 4425 assert(NumIRArgs == 0); 4426 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 4427 if (I->isAggregate()) { 4428 Address Addr = I->hasLValue() 4429 ? I->getKnownLValue().getAddress(*this) 4430 : I->getKnownRValue().getAggregateAddress(); 4431 llvm::Instruction *Placeholder = 4432 cast<llvm::Instruction>(Addr.getPointer()); 4433 4434 if (!ArgInfo.getInAllocaIndirect()) { 4435 // Replace the placeholder with the appropriate argument slot GEP. 4436 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 4437 Builder.SetInsertPoint(Placeholder); 4438 Addr = Builder.CreateStructGEP(ArgMemory, 4439 ArgInfo.getInAllocaFieldIndex()); 4440 Builder.restoreIP(IP); 4441 } else { 4442 // For indirect things such as overaligned structs, replace the 4443 // placeholder with a regular aggregate temporary alloca. Store the 4444 // address of this alloca into the struct. 4445 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 4446 Address ArgSlot = Builder.CreateStructGEP( 4447 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4448 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4449 } 4450 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 4451 } else if (ArgInfo.getInAllocaIndirect()) { 4452 // Make a temporary alloca and store the address of it into the argument 4453 // struct. 4454 Address Addr = CreateMemTempWithoutCast( 4455 I->Ty, getContext().getTypeAlignInChars(I->Ty), 4456 "indirect-arg-temp"); 4457 I->copyInto(*this, Addr); 4458 Address ArgSlot = 4459 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4460 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4461 } else { 4462 // Store the RValue into the argument struct. 4463 Address Addr = 4464 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4465 unsigned AS = Addr.getType()->getPointerAddressSpace(); 4466 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 4467 // There are some cases where a trivial bitcast is not avoidable. The 4468 // definition of a type later in a translation unit may change it's type 4469 // from {}* to (%struct.foo*)*. 4470 if (Addr.getType() != MemType) 4471 Addr = Builder.CreateBitCast(Addr, MemType); 4472 I->copyInto(*this, Addr); 4473 } 4474 break; 4475 } 4476 4477 case ABIArgInfo::Indirect: 4478 case ABIArgInfo::IndirectAliased: { 4479 assert(NumIRArgs == 1); 4480 if (!I->isAggregate()) { 4481 // Make a temporary alloca to pass the argument. 4482 Address Addr = CreateMemTempWithoutCast( 4483 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 4484 IRCallArgs[FirstIRArg] = Addr.getPointer(); 4485 4486 I->copyInto(*this, Addr); 4487 } else { 4488 // We want to avoid creating an unnecessary temporary+copy here; 4489 // however, we need one in three cases: 4490 // 1. If the argument is not byval, and we are required to copy the 4491 // source. (This case doesn't occur on any common architecture.) 4492 // 2. If the argument is byval, RV is not sufficiently aligned, and 4493 // we cannot force it to be sufficiently aligned. 4494 // 3. If the argument is byval, but RV is not located in default 4495 // or alloca address space. 4496 Address Addr = I->hasLValue() 4497 ? I->getKnownLValue().getAddress(*this) 4498 : I->getKnownRValue().getAggregateAddress(); 4499 llvm::Value *V = Addr.getPointer(); 4500 CharUnits Align = ArgInfo.getIndirectAlign(); 4501 const llvm::DataLayout *TD = &CGM.getDataLayout(); 4502 4503 assert((FirstIRArg >= IRFuncTy->getNumParams() || 4504 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 4505 TD->getAllocaAddrSpace()) && 4506 "indirect argument must be in alloca address space"); 4507 4508 bool NeedCopy = false; 4509 4510 if (Addr.getAlignment() < Align && 4511 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 4512 Align.getAsAlign()) { 4513 NeedCopy = true; 4514 } else if (I->hasLValue()) { 4515 auto LV = I->getKnownLValue(); 4516 auto AS = LV.getAddressSpace(); 4517 4518 if (!ArgInfo.getIndirectByVal() || 4519 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4520 NeedCopy = true; 4521 } 4522 if (!getLangOpts().OpenCL) { 4523 if ((ArgInfo.getIndirectByVal() && 4524 (AS != LangAS::Default && 4525 AS != CGM.getASTAllocaAddressSpace()))) { 4526 NeedCopy = true; 4527 } 4528 } 4529 // For OpenCL even if RV is located in default or alloca address space 4530 // we don't want to perform address space cast for it. 4531 else if ((ArgInfo.getIndirectByVal() && 4532 Addr.getType()->getAddressSpace() != IRFuncTy-> 4533 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4534 NeedCopy = true; 4535 } 4536 } 4537 4538 if (NeedCopy) { 4539 // Create an aligned temporary, and copy to it. 4540 Address AI = CreateMemTempWithoutCast( 4541 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4542 IRCallArgs[FirstIRArg] = AI.getPointer(); 4543 4544 // Emit lifetime markers for the temporary alloca. 4545 uint64_t ByvalTempElementSize = 4546 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4547 llvm::Value *LifetimeSize = 4548 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4549 4550 // Add cleanup code to emit the end lifetime marker after the call. 4551 if (LifetimeSize) // In case we disabled lifetime markers. 4552 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4553 4554 // Generate the copy. 4555 I->copyInto(*this, AI); 4556 } else { 4557 // Skip the extra memcpy call. 4558 auto *T = V->getType()->getPointerElementType()->getPointerTo( 4559 CGM.getDataLayout().getAllocaAddrSpace()); 4560 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4561 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4562 true); 4563 } 4564 } 4565 break; 4566 } 4567 4568 case ABIArgInfo::Ignore: 4569 assert(NumIRArgs == 0); 4570 break; 4571 4572 case ABIArgInfo::Extend: 4573 case ABIArgInfo::Direct: { 4574 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4575 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4576 ArgInfo.getDirectOffset() == 0) { 4577 assert(NumIRArgs == 1); 4578 llvm::Value *V; 4579 if (!I->isAggregate()) 4580 V = I->getKnownRValue().getScalarVal(); 4581 else 4582 V = Builder.CreateLoad( 4583 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4584 : I->getKnownRValue().getAggregateAddress()); 4585 4586 // Implement swifterror by copying into a new swifterror argument. 4587 // We'll write back in the normal path out of the call. 4588 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4589 == ParameterABI::SwiftErrorResult) { 4590 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4591 4592 QualType pointeeTy = I->Ty->getPointeeType(); 4593 swiftErrorArg = 4594 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4595 4596 swiftErrorTemp = 4597 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4598 V = swiftErrorTemp.getPointer(); 4599 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4600 4601 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4602 Builder.CreateStore(errorValue, swiftErrorTemp); 4603 } 4604 4605 // We might have to widen integers, but we should never truncate. 4606 if (ArgInfo.getCoerceToType() != V->getType() && 4607 V->getType()->isIntegerTy()) 4608 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4609 4610 // If the argument doesn't match, perform a bitcast to coerce it. This 4611 // can happen due to trivial type mismatches. 4612 if (FirstIRArg < IRFuncTy->getNumParams() && 4613 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4614 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4615 4616 IRCallArgs[FirstIRArg] = V; 4617 break; 4618 } 4619 4620 // FIXME: Avoid the conversion through memory if possible. 4621 Address Src = Address::invalid(); 4622 if (!I->isAggregate()) { 4623 Src = CreateMemTemp(I->Ty, "coerce"); 4624 I->copyInto(*this, Src); 4625 } else { 4626 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4627 : I->getKnownRValue().getAggregateAddress(); 4628 } 4629 4630 // If the value is offset in memory, apply the offset now. 4631 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4632 4633 // Fast-isel and the optimizer generally like scalar values better than 4634 // FCAs, so we flatten them if this is safe to do for this argument. 4635 llvm::StructType *STy = 4636 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4637 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4638 llvm::Type *SrcTy = Src.getElementType(); 4639 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4640 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4641 4642 // If the source type is smaller than the destination type of the 4643 // coerce-to logic, copy the source value into a temp alloca the size 4644 // of the destination type to allow loading all of it. The bits past 4645 // the source value are left undef. 4646 if (SrcSize < DstSize) { 4647 Address TempAlloca 4648 = CreateTempAlloca(STy, Src.getAlignment(), 4649 Src.getName() + ".coerce"); 4650 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4651 Src = TempAlloca; 4652 } else { 4653 Src = Builder.CreateBitCast(Src, 4654 STy->getPointerTo(Src.getAddressSpace())); 4655 } 4656 4657 assert(NumIRArgs == STy->getNumElements()); 4658 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4659 Address EltPtr = Builder.CreateStructGEP(Src, i); 4660 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4661 IRCallArgs[FirstIRArg + i] = LI; 4662 } 4663 } else { 4664 // In the simple case, just pass the coerced loaded value. 4665 assert(NumIRArgs == 1); 4666 llvm::Value *Load = 4667 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4668 4669 if (CallInfo.isCmseNSCall()) { 4670 // For certain parameter types, clear padding bits, as they may reveal 4671 // sensitive information. 4672 // Small struct/union types are passed as integer arrays. 4673 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 4674 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 4675 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 4676 } 4677 IRCallArgs[FirstIRArg] = Load; 4678 } 4679 4680 break; 4681 } 4682 4683 case ABIArgInfo::CoerceAndExpand: { 4684 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4685 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4686 4687 llvm::Value *tempSize = nullptr; 4688 Address addr = Address::invalid(); 4689 Address AllocaAddr = Address::invalid(); 4690 if (I->isAggregate()) { 4691 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4692 : I->getKnownRValue().getAggregateAddress(); 4693 4694 } else { 4695 RValue RV = I->getKnownRValue(); 4696 assert(RV.isScalar()); // complex should always just be direct 4697 4698 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4699 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4700 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4701 4702 // Materialize to a temporary. 4703 addr = CreateTempAlloca( 4704 RV.getScalarVal()->getType(), 4705 CharUnits::fromQuantity(std::max( 4706 (unsigned)layout->getAlignment().value(), scalarAlign)), 4707 "tmp", 4708 /*ArraySize=*/nullptr, &AllocaAddr); 4709 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4710 4711 Builder.CreateStore(RV.getScalarVal(), addr); 4712 } 4713 4714 addr = Builder.CreateElementBitCast(addr, coercionType); 4715 4716 unsigned IRArgPos = FirstIRArg; 4717 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4718 llvm::Type *eltType = coercionType->getElementType(i); 4719 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4720 Address eltAddr = Builder.CreateStructGEP(addr, i); 4721 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4722 IRCallArgs[IRArgPos++] = elt; 4723 } 4724 assert(IRArgPos == FirstIRArg + NumIRArgs); 4725 4726 if (tempSize) { 4727 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4728 } 4729 4730 break; 4731 } 4732 4733 case ABIArgInfo::Expand: { 4734 unsigned IRArgPos = FirstIRArg; 4735 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4736 assert(IRArgPos == FirstIRArg + NumIRArgs); 4737 break; 4738 } 4739 } 4740 } 4741 4742 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4743 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4744 4745 // If we're using inalloca, set up that argument. 4746 if (ArgMemory.isValid()) { 4747 llvm::Value *Arg = ArgMemory.getPointer(); 4748 if (CallInfo.isVariadic()) { 4749 // When passing non-POD arguments by value to variadic functions, we will 4750 // end up with a variadic prototype and an inalloca call site. In such 4751 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4752 // the callee. 4753 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4754 CalleePtr = 4755 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 4756 } else { 4757 llvm::Type *LastParamTy = 4758 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4759 if (Arg->getType() != LastParamTy) { 4760 #ifndef NDEBUG 4761 // Assert that these structs have equivalent element types. 4762 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4763 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4764 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4765 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4766 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4767 DE = DeclaredTy->element_end(), 4768 FI = FullTy->element_begin(); 4769 DI != DE; ++DI, ++FI) 4770 assert(*DI == *FI); 4771 #endif 4772 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4773 } 4774 } 4775 assert(IRFunctionArgs.hasInallocaArg()); 4776 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4777 } 4778 4779 // 2. Prepare the function pointer. 4780 4781 // If the callee is a bitcast of a non-variadic function to have a 4782 // variadic function pointer type, check to see if we can remove the 4783 // bitcast. This comes up with unprototyped functions. 4784 // 4785 // This makes the IR nicer, but more importantly it ensures that we 4786 // can inline the function at -O0 if it is marked always_inline. 4787 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 4788 llvm::Value *Ptr) -> llvm::Function * { 4789 if (!CalleeFT->isVarArg()) 4790 return nullptr; 4791 4792 // Get underlying value if it's a bitcast 4793 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 4794 if (CE->getOpcode() == llvm::Instruction::BitCast) 4795 Ptr = CE->getOperand(0); 4796 } 4797 4798 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 4799 if (!OrigFn) 4800 return nullptr; 4801 4802 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4803 4804 // If the original type is variadic, or if any of the component types 4805 // disagree, we cannot remove the cast. 4806 if (OrigFT->isVarArg() || 4807 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4808 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4809 return nullptr; 4810 4811 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4812 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4813 return nullptr; 4814 4815 return OrigFn; 4816 }; 4817 4818 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 4819 CalleePtr = OrigFn; 4820 IRFuncTy = OrigFn->getFunctionType(); 4821 } 4822 4823 // 3. Perform the actual call. 4824 4825 // Deactivate any cleanups that we're supposed to do immediately before 4826 // the call. 4827 if (!CallArgs.getCleanupsToDeactivate().empty()) 4828 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4829 4830 // Assert that the arguments we computed match up. The IR verifier 4831 // will catch this, but this is a common enough source of problems 4832 // during IRGen changes that it's way better for debugging to catch 4833 // it ourselves here. 4834 #ifndef NDEBUG 4835 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4836 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4837 // Inalloca argument can have different type. 4838 if (IRFunctionArgs.hasInallocaArg() && 4839 i == IRFunctionArgs.getInallocaArgNo()) 4840 continue; 4841 if (i < IRFuncTy->getNumParams()) 4842 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4843 } 4844 #endif 4845 4846 // Update the largest vector width if any arguments have vector types. 4847 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4848 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 4849 LargestVectorWidth = 4850 std::max((uint64_t)LargestVectorWidth, 4851 VT->getPrimitiveSizeInBits().getKnownMinSize()); 4852 } 4853 4854 // Compute the calling convention and attributes. 4855 unsigned CallingConv; 4856 llvm::AttributeList Attrs; 4857 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4858 Callee.getAbstractInfo(), Attrs, CallingConv, 4859 /*AttrOnCallSite=*/true); 4860 4861 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 4862 if (FD->hasAttr<StrictFPAttr>()) 4863 // All calls within a strictfp function are marked strictfp 4864 Attrs = 4865 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4866 llvm::Attribute::StrictFP); 4867 4868 // Add call-site nomerge attribute if exists. 4869 if (InNoMergeAttributedStmt) 4870 Attrs = 4871 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4872 llvm::Attribute::NoMerge); 4873 4874 // Apply some call-site-specific attributes. 4875 // TODO: work this into building the attribute set. 4876 4877 // Apply always_inline to all calls within flatten functions. 4878 // FIXME: should this really take priority over __try, below? 4879 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4880 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 4881 Attrs = 4882 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4883 llvm::Attribute::AlwaysInline); 4884 } 4885 4886 // Disable inlining inside SEH __try blocks. 4887 if (isSEHTryScope()) { 4888 Attrs = 4889 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4890 llvm::Attribute::NoInline); 4891 } 4892 4893 // Decide whether to use a call or an invoke. 4894 bool CannotThrow; 4895 if (currentFunctionUsesSEHTry()) { 4896 // SEH cares about asynchronous exceptions, so everything can "throw." 4897 CannotThrow = false; 4898 } else if (isCleanupPadScope() && 4899 EHPersonality::get(*this).isMSVCXXPersonality()) { 4900 // The MSVC++ personality will implicitly terminate the program if an 4901 // exception is thrown during a cleanup outside of a try/catch. 4902 // We don't need to model anything in IR to get this behavior. 4903 CannotThrow = true; 4904 } else { 4905 // Otherwise, nounwind call sites will never throw. 4906 CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind); 4907 4908 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 4909 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 4910 CannotThrow = true; 4911 } 4912 4913 // If we made a temporary, be sure to clean up after ourselves. Note that we 4914 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4915 // pop this cleanup later on. Being eager about this is OK, since this 4916 // temporary is 'invisible' outside of the callee. 4917 if (UnusedReturnSizePtr) 4918 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 4919 UnusedReturnSizePtr); 4920 4921 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4922 4923 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4924 getBundlesForFunclet(CalleePtr); 4925 4926 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 4927 if (FD->hasAttr<StrictFPAttr>()) 4928 // All calls within a strictfp function are marked strictfp 4929 Attrs = 4930 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4931 llvm::Attribute::StrictFP); 4932 4933 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 4934 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 4935 4936 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 4937 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 4938 4939 // Emit the actual call/invoke instruction. 4940 llvm::CallBase *CI; 4941 if (!InvokeDest) { 4942 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 4943 } else { 4944 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4945 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 4946 BundleList); 4947 EmitBlock(Cont); 4948 } 4949 if (callOrInvoke) 4950 *callOrInvoke = CI; 4951 4952 // If this is within a function that has the guard(nocf) attribute and is an 4953 // indirect call, add the "guard_nocf" attribute to this call to indicate that 4954 // Control Flow Guard checks should not be added, even if the call is inlined. 4955 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 4956 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 4957 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 4958 Attrs = Attrs.addAttribute( 4959 getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf"); 4960 } 4961 } 4962 4963 // Apply the attributes and calling convention. 4964 CI->setAttributes(Attrs); 4965 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4966 4967 // Apply various metadata. 4968 4969 if (!CI->getType()->isVoidTy()) 4970 CI->setName("call"); 4971 4972 // Update largest vector width from the return type. 4973 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 4974 LargestVectorWidth = 4975 std::max((uint64_t)LargestVectorWidth, 4976 VT->getPrimitiveSizeInBits().getKnownMinSize()); 4977 4978 // Insert instrumentation or attach profile metadata at indirect call sites. 4979 // For more details, see the comment before the definition of 4980 // IPVK_IndirectCallTarget in InstrProfData.inc. 4981 if (!CI->getCalledFunction()) 4982 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4983 CI, CalleePtr); 4984 4985 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4986 // optimizer it can aggressively ignore unwind edges. 4987 if (CGM.getLangOpts().ObjCAutoRefCount) 4988 AddObjCARCExceptionMetadata(CI); 4989 4990 // Suppress tail calls if requested. 4991 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4992 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4993 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4994 } 4995 4996 // Add metadata for calls to MSAllocator functions 4997 if (getDebugInfo() && TargetDecl && 4998 TargetDecl->hasAttr<MSAllocatorAttr>()) 4999 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 5000 5001 // 4. Finish the call. 5002 5003 // If the call doesn't return, finish the basic block and clear the 5004 // insertion point; this allows the rest of IRGen to discard 5005 // unreachable code. 5006 if (CI->doesNotReturn()) { 5007 if (UnusedReturnSizePtr) 5008 PopCleanupBlock(); 5009 5010 // Strip away the noreturn attribute to better diagnose unreachable UB. 5011 if (SanOpts.has(SanitizerKind::Unreachable)) { 5012 // Also remove from function since CallBase::hasFnAttr additionally checks 5013 // attributes of the called function. 5014 if (auto *F = CI->getCalledFunction()) 5015 F->removeFnAttr(llvm::Attribute::NoReturn); 5016 CI->removeAttribute(llvm::AttributeList::FunctionIndex, 5017 llvm::Attribute::NoReturn); 5018 5019 // Avoid incompatibility with ASan which relies on the `noreturn` 5020 // attribute to insert handler calls. 5021 if (SanOpts.hasOneOf(SanitizerKind::Address | 5022 SanitizerKind::KernelAddress)) { 5023 SanitizerScope SanScope(this); 5024 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5025 Builder.SetInsertPoint(CI); 5026 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5027 llvm::FunctionCallee Fn = 5028 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5029 EmitNounwindRuntimeCall(Fn); 5030 } 5031 } 5032 5033 EmitUnreachable(Loc); 5034 Builder.ClearInsertionPoint(); 5035 5036 // FIXME: For now, emit a dummy basic block because expr emitters in 5037 // generally are not ready to handle emitting expressions at unreachable 5038 // points. 5039 EnsureInsertPoint(); 5040 5041 // Return a reasonable RValue. 5042 return GetUndefRValue(RetTy); 5043 } 5044 5045 // Perform the swifterror writeback. 5046 if (swiftErrorTemp.isValid()) { 5047 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5048 Builder.CreateStore(errorResult, swiftErrorArg); 5049 } 5050 5051 // Emit any call-associated writebacks immediately. Arguably this 5052 // should happen after any return-value munging. 5053 if (CallArgs.hasWritebacks()) 5054 emitWritebacks(*this, CallArgs); 5055 5056 // The stack cleanup for inalloca arguments has to run out of the normal 5057 // lexical order, so deactivate it and run it manually here. 5058 CallArgs.freeArgumentMemory(*this); 5059 5060 // Extract the return value. 5061 RValue Ret = [&] { 5062 switch (RetAI.getKind()) { 5063 case ABIArgInfo::CoerceAndExpand: { 5064 auto coercionType = RetAI.getCoerceAndExpandType(); 5065 5066 Address addr = SRetPtr; 5067 addr = Builder.CreateElementBitCast(addr, coercionType); 5068 5069 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5070 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5071 5072 unsigned unpaddedIndex = 0; 5073 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5074 llvm::Type *eltType = coercionType->getElementType(i); 5075 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5076 Address eltAddr = Builder.CreateStructGEP(addr, i); 5077 llvm::Value *elt = CI; 5078 if (requiresExtract) 5079 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5080 else 5081 assert(unpaddedIndex == 0); 5082 Builder.CreateStore(elt, eltAddr); 5083 } 5084 // FALLTHROUGH 5085 LLVM_FALLTHROUGH; 5086 } 5087 5088 case ABIArgInfo::InAlloca: 5089 case ABIArgInfo::Indirect: { 5090 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5091 if (UnusedReturnSizePtr) 5092 PopCleanupBlock(); 5093 return ret; 5094 } 5095 5096 case ABIArgInfo::Ignore: 5097 // If we are ignoring an argument that had a result, make sure to 5098 // construct the appropriate return value for our caller. 5099 return GetUndefRValue(RetTy); 5100 5101 case ABIArgInfo::Extend: 5102 case ABIArgInfo::Direct: { 5103 llvm::Type *RetIRTy = ConvertType(RetTy); 5104 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5105 switch (getEvaluationKind(RetTy)) { 5106 case TEK_Complex: { 5107 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5108 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5109 return RValue::getComplex(std::make_pair(Real, Imag)); 5110 } 5111 case TEK_Aggregate: { 5112 Address DestPtr = ReturnValue.getValue(); 5113 bool DestIsVolatile = ReturnValue.isVolatile(); 5114 5115 if (!DestPtr.isValid()) { 5116 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5117 DestIsVolatile = false; 5118 } 5119 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5120 return RValue::getAggregate(DestPtr); 5121 } 5122 case TEK_Scalar: { 5123 // If the argument doesn't match, perform a bitcast to coerce it. This 5124 // can happen due to trivial type mismatches. 5125 llvm::Value *V = CI; 5126 if (V->getType() != RetIRTy) 5127 V = Builder.CreateBitCast(V, RetIRTy); 5128 return RValue::get(V); 5129 } 5130 } 5131 llvm_unreachable("bad evaluation kind"); 5132 } 5133 5134 Address DestPtr = ReturnValue.getValue(); 5135 bool DestIsVolatile = ReturnValue.isVolatile(); 5136 5137 if (!DestPtr.isValid()) { 5138 DestPtr = CreateMemTemp(RetTy, "coerce"); 5139 DestIsVolatile = false; 5140 } 5141 5142 // If the value is offset in memory, apply the offset now. 5143 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5144 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5145 5146 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5147 } 5148 5149 case ABIArgInfo::Expand: 5150 case ABIArgInfo::IndirectAliased: 5151 llvm_unreachable("Invalid ABI kind for return argument"); 5152 } 5153 5154 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5155 } (); 5156 5157 // Emit the assume_aligned check on the return value. 5158 if (Ret.isScalar() && TargetDecl) { 5159 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5160 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5161 } 5162 5163 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5164 // we can't use the full cleanup mechanism. 5165 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5166 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5167 5168 if (!ReturnValue.isExternallyDestructed() && 5169 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5170 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5171 RetTy); 5172 5173 return Ret; 5174 } 5175 5176 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5177 if (isVirtual()) { 5178 const CallExpr *CE = getVirtualCallExpr(); 5179 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5180 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5181 CE ? CE->getBeginLoc() : SourceLocation()); 5182 } 5183 5184 return *this; 5185 } 5186 5187 /* VarArg handling */ 5188 5189 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5190 VAListAddr = VE->isMicrosoftABI() 5191 ? EmitMSVAListRef(VE->getSubExpr()) 5192 : EmitVAListRef(VE->getSubExpr()); 5193 QualType Ty = VE->getType(); 5194 if (VE->isMicrosoftABI()) 5195 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5196 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5197 } 5198