1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_Win64: return llvm::CallingConv::Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
63   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
64   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
65   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
66   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
67   case CC_Swift: return llvm::CallingConv::Swift;
68   }
69 }
70 
71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
72 /// qualification. Either or both of RD and MD may be null. A null RD indicates
73 /// that there is no meaningful 'this' type, and a null MD can occur when
74 /// calling a method pointer.
75 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
76                                          const CXXMethodDecl *MD) {
77   QualType RecTy;
78   if (RD)
79     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
80   else
81     RecTy = Context.VoidTy;
82 
83   if (MD)
84     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
85   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
86 }
87 
88 /// Returns the canonical formal type of the given C++ method.
89 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
90   return MD->getType()->getCanonicalTypeUnqualified()
91            .getAs<FunctionProtoType>();
92 }
93 
94 /// Returns the "extra-canonicalized" return type, which discards
95 /// qualifiers on the return type.  Codegen doesn't care about them,
96 /// and it makes ABI code a little easier to be able to assume that
97 /// all parameter and return types are top-level unqualified.
98 static CanQualType GetReturnType(QualType RetTy) {
99   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
100 }
101 
102 /// Arrange the argument and result information for a value of the given
103 /// unprototyped freestanding function type.
104 const CGFunctionInfo &
105 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
106   // When translating an unprototyped function type, always use a
107   // variadic type.
108   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
109                                  /*instanceMethod=*/false,
110                                  /*chainCall=*/false, None,
111                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
112 }
113 
114 static void addExtParameterInfosForCall(
115          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
116                                         const FunctionProtoType *proto,
117                                         unsigned prefixArgs,
118                                         unsigned totalArgs) {
119   assert(proto->hasExtParameterInfos());
120   assert(paramInfos.size() <= prefixArgs);
121   assert(proto->getNumParams() + prefixArgs <= totalArgs);
122 
123   paramInfos.reserve(totalArgs);
124 
125   // Add default infos for any prefix args that don't already have infos.
126   paramInfos.resize(prefixArgs);
127 
128   // Add infos for the prototype.
129   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
130     paramInfos.push_back(ParamInfo);
131     // pass_object_size params have no parameter info.
132     if (ParamInfo.hasPassObjectSize())
133       paramInfos.emplace_back();
134   }
135 
136   assert(paramInfos.size() <= totalArgs &&
137          "Did we forget to insert pass_object_size args?");
138   // Add default infos for the variadic and/or suffix arguments.
139   paramInfos.resize(totalArgs);
140 }
141 
142 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
143 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
144 static void appendParameterTypes(const CodeGenTypes &CGT,
145                                  SmallVectorImpl<CanQualType> &prefix,
146               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
147                                  CanQual<FunctionProtoType> FPT) {
148   // Fast path: don't touch param info if we don't need to.
149   if (!FPT->hasExtParameterInfos()) {
150     assert(paramInfos.empty() &&
151            "We have paramInfos, but the prototype doesn't?");
152     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
153     return;
154   }
155 
156   unsigned PrefixSize = prefix.size();
157   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
158   // parameters; the only thing that can change this is the presence of
159   // pass_object_size. So, we preallocate for the common case.
160   prefix.reserve(prefix.size() + FPT->getNumParams());
161 
162   auto ExtInfos = FPT->getExtParameterInfos();
163   assert(ExtInfos.size() == FPT->getNumParams());
164   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
165     prefix.push_back(FPT->getParamType(I));
166     if (ExtInfos[I].hasPassObjectSize())
167       prefix.push_back(CGT.getContext().getSizeType());
168   }
169 
170   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
171                               prefix.size());
172 }
173 
174 /// Arrange the LLVM function layout for a value of the given function
175 /// type, on top of any implicit parameters already stored.
176 static const CGFunctionInfo &
177 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
178                         SmallVectorImpl<CanQualType> &prefix,
179                         CanQual<FunctionProtoType> FTP) {
180   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
181   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
182   // FIXME: Kill copy.
183   appendParameterTypes(CGT, prefix, paramInfos, FTP);
184   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
185 
186   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
187                                      /*chainCall=*/false, prefix,
188                                      FTP->getExtInfo(), paramInfos,
189                                      Required);
190 }
191 
192 /// Arrange the argument and result information for a value of the
193 /// given freestanding function type.
194 const CGFunctionInfo &
195 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
196   SmallVector<CanQualType, 16> argTypes;
197   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
198                                    FTP);
199 }
200 
201 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
202   // Set the appropriate calling convention for the Function.
203   if (D->hasAttr<StdCallAttr>())
204     return CC_X86StdCall;
205 
206   if (D->hasAttr<FastCallAttr>())
207     return CC_X86FastCall;
208 
209   if (D->hasAttr<RegCallAttr>())
210     return CC_X86RegCall;
211 
212   if (D->hasAttr<ThisCallAttr>())
213     return CC_X86ThisCall;
214 
215   if (D->hasAttr<VectorCallAttr>())
216     return CC_X86VectorCall;
217 
218   if (D->hasAttr<PascalAttr>())
219     return CC_X86Pascal;
220 
221   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
222     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
223 
224   if (D->hasAttr<AArch64VectorPcsAttr>())
225     return CC_AArch64VectorCall;
226 
227   if (D->hasAttr<IntelOclBiccAttr>())
228     return CC_IntelOclBicc;
229 
230   if (D->hasAttr<MSABIAttr>())
231     return IsWindows ? CC_C : CC_Win64;
232 
233   if (D->hasAttr<SysVABIAttr>())
234     return IsWindows ? CC_X86_64SysV : CC_C;
235 
236   if (D->hasAttr<PreserveMostAttr>())
237     return CC_PreserveMost;
238 
239   if (D->hasAttr<PreserveAllAttr>())
240     return CC_PreserveAll;
241 
242   return CC_C;
243 }
244 
245 /// Arrange the argument and result information for a call to an
246 /// unknown C++ non-static member function of the given abstract type.
247 /// (A null RD means we don't have any meaningful "this" argument type,
248 ///  so fall back to a generic pointer type).
249 /// The member function must be an ordinary function, i.e. not a
250 /// constructor or destructor.
251 const CGFunctionInfo &
252 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
253                                    const FunctionProtoType *FTP,
254                                    const CXXMethodDecl *MD) {
255   SmallVector<CanQualType, 16> argTypes;
256 
257   // Add the 'this' pointer.
258   argTypes.push_back(DeriveThisType(RD, MD));
259 
260   return ::arrangeLLVMFunctionInfo(
261       *this, true, argTypes,
262       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
263 }
264 
265 /// Set calling convention for CUDA/HIP kernel.
266 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
267                                            const FunctionDecl *FD) {
268   if (FD->hasAttr<CUDAGlobalAttr>()) {
269     const FunctionType *FT = FTy->getAs<FunctionType>();
270     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
271     FTy = FT->getCanonicalTypeUnqualified();
272   }
273 }
274 
275 /// Arrange the argument and result information for a declaration or
276 /// definition of the given C++ non-static member function.  The
277 /// member function must be an ordinary function, i.e. not a
278 /// constructor or destructor.
279 const CGFunctionInfo &
280 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
281   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
282   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
283 
284   CanQualType FT = GetFormalType(MD).getAs<Type>();
285   setCUDAKernelCallingConvention(FT, CGM, MD);
286   auto prototype = FT.getAs<FunctionProtoType>();
287 
288   if (MD->isInstance()) {
289     // The abstract case is perfectly fine.
290     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
291     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
292   }
293 
294   return arrangeFreeFunctionType(prototype);
295 }
296 
297 bool CodeGenTypes::inheritingCtorHasParams(
298     const InheritedConstructor &Inherited, CXXCtorType Type) {
299   // Parameters are unnecessary if we're constructing a base class subobject
300   // and the inherited constructor lives in a virtual base.
301   return Type == Ctor_Complete ||
302          !Inherited.getShadowDecl()->constructsVirtualBase() ||
303          !Target.getCXXABI().hasConstructorVariants();
304 }
305 
306 const CGFunctionInfo &
307 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
308   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
309 
310   SmallVector<CanQualType, 16> argTypes;
311   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
312   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
313 
314   bool PassParams = true;
315 
316   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
317     // A base class inheriting constructor doesn't get forwarded arguments
318     // needed to construct a virtual base (or base class thereof).
319     if (auto Inherited = CD->getInheritedConstructor())
320       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
321   }
322 
323   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
324 
325   // Add the formal parameters.
326   if (PassParams)
327     appendParameterTypes(*this, argTypes, paramInfos, FTP);
328 
329   CGCXXABI::AddedStructorArgCounts AddedArgs =
330       TheCXXABI.buildStructorSignature(GD, argTypes);
331   if (!paramInfos.empty()) {
332     // Note: prefix implies after the first param.
333     if (AddedArgs.Prefix)
334       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
335                         FunctionProtoType::ExtParameterInfo{});
336     if (AddedArgs.Suffix)
337       paramInfos.append(AddedArgs.Suffix,
338                         FunctionProtoType::ExtParameterInfo{});
339   }
340 
341   RequiredArgs required =
342       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
343                                       : RequiredArgs::All);
344 
345   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
346   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
347                                ? argTypes.front()
348                                : TheCXXABI.hasMostDerivedReturn(GD)
349                                      ? CGM.getContext().VoidPtrTy
350                                      : Context.VoidTy;
351   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
352                                  /*chainCall=*/false, argTypes, extInfo,
353                                  paramInfos, required);
354 }
355 
356 static SmallVector<CanQualType, 16>
357 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
358   SmallVector<CanQualType, 16> argTypes;
359   for (auto &arg : args)
360     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
361   return argTypes;
362 }
363 
364 static SmallVector<CanQualType, 16>
365 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
366   SmallVector<CanQualType, 16> argTypes;
367   for (auto &arg : args)
368     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
369   return argTypes;
370 }
371 
372 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
373 getExtParameterInfosForCall(const FunctionProtoType *proto,
374                             unsigned prefixArgs, unsigned totalArgs) {
375   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
376   if (proto->hasExtParameterInfos()) {
377     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
378   }
379   return result;
380 }
381 
382 /// Arrange a call to a C++ method, passing the given arguments.
383 ///
384 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
385 /// parameter.
386 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
387 /// args.
388 /// PassProtoArgs indicates whether `args` has args for the parameters in the
389 /// given CXXConstructorDecl.
390 const CGFunctionInfo &
391 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
392                                         const CXXConstructorDecl *D,
393                                         CXXCtorType CtorKind,
394                                         unsigned ExtraPrefixArgs,
395                                         unsigned ExtraSuffixArgs,
396                                         bool PassProtoArgs) {
397   // FIXME: Kill copy.
398   SmallVector<CanQualType, 16> ArgTypes;
399   for (const auto &Arg : args)
400     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
401 
402   // +1 for implicit this, which should always be args[0].
403   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
404 
405   CanQual<FunctionProtoType> FPT = GetFormalType(D);
406   RequiredArgs Required = PassProtoArgs
407                               ? RequiredArgs::forPrototypePlus(
408                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
409                               : RequiredArgs::All;
410 
411   GlobalDecl GD(D, CtorKind);
412   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
413                                ? ArgTypes.front()
414                                : TheCXXABI.hasMostDerivedReturn(GD)
415                                      ? CGM.getContext().VoidPtrTy
416                                      : Context.VoidTy;
417 
418   FunctionType::ExtInfo Info = FPT->getExtInfo();
419   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
420   // If the prototype args are elided, we should only have ABI-specific args,
421   // which never have param info.
422   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
423     // ABI-specific suffix arguments are treated the same as variadic arguments.
424     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
425                                 ArgTypes.size());
426   }
427   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
428                                  /*chainCall=*/false, ArgTypes, Info,
429                                  ParamInfos, Required);
430 }
431 
432 /// Arrange the argument and result information for the declaration or
433 /// definition of the given function.
434 const CGFunctionInfo &
435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
436   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
437     if (MD->isInstance())
438       return arrangeCXXMethodDeclaration(MD);
439 
440   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
441 
442   assert(isa<FunctionType>(FTy));
443   setCUDAKernelCallingConvention(FTy, CGM, FD);
444 
445   // When declaring a function without a prototype, always use a
446   // non-variadic type.
447   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
448     return arrangeLLVMFunctionInfo(
449         noProto->getReturnType(), /*instanceMethod=*/false,
450         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
451   }
452 
453   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
454 }
455 
456 /// Arrange the argument and result information for the declaration or
457 /// definition of an Objective-C method.
458 const CGFunctionInfo &
459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
460   // It happens that this is the same as a call with no optional
461   // arguments, except also using the formal 'self' type.
462   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
463 }
464 
465 /// Arrange the argument and result information for the function type
466 /// through which to perform a send to the given Objective-C method,
467 /// using the given receiver type.  The receiver type is not always
468 /// the 'self' type of the method or even an Objective-C pointer type.
469 /// This is *not* the right method for actually performing such a
470 /// message send, due to the possibility of optional arguments.
471 const CGFunctionInfo &
472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
473                                               QualType receiverType) {
474   SmallVector<CanQualType, 16> argTys;
475   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
476   argTys.push_back(Context.getCanonicalParamType(receiverType));
477   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
478   // FIXME: Kill copy?
479   for (const auto *I : MD->parameters()) {
480     argTys.push_back(Context.getCanonicalParamType(I->getType()));
481     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
482         I->hasAttr<NoEscapeAttr>());
483     extParamInfos.push_back(extParamInfo);
484   }
485 
486   FunctionType::ExtInfo einfo;
487   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
488   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
489 
490   if (getContext().getLangOpts().ObjCAutoRefCount &&
491       MD->hasAttr<NSReturnsRetainedAttr>())
492     einfo = einfo.withProducesResult(true);
493 
494   RequiredArgs required =
495     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
496 
497   return arrangeLLVMFunctionInfo(
498       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
499       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
500 }
501 
502 const CGFunctionInfo &
503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
504                                                  const CallArgList &args) {
505   auto argTypes = getArgTypesForCall(Context, args);
506   FunctionType::ExtInfo einfo;
507 
508   return arrangeLLVMFunctionInfo(
509       GetReturnType(returnType), /*instanceMethod=*/false,
510       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
511 }
512 
513 const CGFunctionInfo &
514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
515   // FIXME: Do we need to handle ObjCMethodDecl?
516   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
517 
518   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
519       isa<CXXDestructorDecl>(GD.getDecl()))
520     return arrangeCXXStructorDeclaration(GD);
521 
522   return arrangeFunctionDeclaration(FD);
523 }
524 
525 /// Arrange a thunk that takes 'this' as the first parameter followed by
526 /// varargs.  Return a void pointer, regardless of the actual return type.
527 /// The body of the thunk will end in a musttail call to a function of the
528 /// correct type, and the caller will bitcast the function to the correct
529 /// prototype.
530 const CGFunctionInfo &
531 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
532   assert(MD->isVirtual() && "only methods have thunks");
533   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
534   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
535   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
536                                  /*chainCall=*/false, ArgTys,
537                                  FTP->getExtInfo(), {}, RequiredArgs(1));
538 }
539 
540 const CGFunctionInfo &
541 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
542                                    CXXCtorType CT) {
543   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
544 
545   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
546   SmallVector<CanQualType, 2> ArgTys;
547   const CXXRecordDecl *RD = CD->getParent();
548   ArgTys.push_back(DeriveThisType(RD, CD));
549   if (CT == Ctor_CopyingClosure)
550     ArgTys.push_back(*FTP->param_type_begin());
551   if (RD->getNumVBases() > 0)
552     ArgTys.push_back(Context.IntTy);
553   CallingConv CC = Context.getDefaultCallingConvention(
554       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
555   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
556                                  /*chainCall=*/false, ArgTys,
557                                  FunctionType::ExtInfo(CC), {},
558                                  RequiredArgs::All);
559 }
560 
561 /// Arrange a call as unto a free function, except possibly with an
562 /// additional number of formal parameters considered required.
563 static const CGFunctionInfo &
564 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
565                             CodeGenModule &CGM,
566                             const CallArgList &args,
567                             const FunctionType *fnType,
568                             unsigned numExtraRequiredArgs,
569                             bool chainCall) {
570   assert(args.size() >= numExtraRequiredArgs);
571 
572   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
573 
574   // In most cases, there are no optional arguments.
575   RequiredArgs required = RequiredArgs::All;
576 
577   // If we have a variadic prototype, the required arguments are the
578   // extra prefix plus the arguments in the prototype.
579   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
580     if (proto->isVariadic())
581       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
582 
583     if (proto->hasExtParameterInfos())
584       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
585                                   args.size());
586 
587   // If we don't have a prototype at all, but we're supposed to
588   // explicitly use the variadic convention for unprototyped calls,
589   // treat all of the arguments as required but preserve the nominal
590   // possibility of variadics.
591   } else if (CGM.getTargetCodeGenInfo()
592                 .isNoProtoCallVariadic(args,
593                                        cast<FunctionNoProtoType>(fnType))) {
594     required = RequiredArgs(args.size());
595   }
596 
597   // FIXME: Kill copy.
598   SmallVector<CanQualType, 16> argTypes;
599   for (const auto &arg : args)
600     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
601   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
602                                      /*instanceMethod=*/false, chainCall,
603                                      argTypes, fnType->getExtInfo(), paramInfos,
604                                      required);
605 }
606 
607 /// Figure out the rules for calling a function with the given formal
608 /// type using the given arguments.  The arguments are necessary
609 /// because the function might be unprototyped, in which case it's
610 /// target-dependent in crazy ways.
611 const CGFunctionInfo &
612 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
613                                       const FunctionType *fnType,
614                                       bool chainCall) {
615   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
616                                      chainCall ? 1 : 0, chainCall);
617 }
618 
619 /// A block function is essentially a free function with an
620 /// extra implicit argument.
621 const CGFunctionInfo &
622 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
623                                        const FunctionType *fnType) {
624   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
625                                      /*chainCall=*/false);
626 }
627 
628 const CGFunctionInfo &
629 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
630                                               const FunctionArgList &params) {
631   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
632   auto argTypes = getArgTypesForDeclaration(Context, params);
633 
634   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
635                                  /*instanceMethod*/ false, /*chainCall*/ false,
636                                  argTypes, proto->getExtInfo(), paramInfos,
637                                  RequiredArgs::forPrototypePlus(proto, 1));
638 }
639 
640 const CGFunctionInfo &
641 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
642                                          const CallArgList &args) {
643   // FIXME: Kill copy.
644   SmallVector<CanQualType, 16> argTypes;
645   for (const auto &Arg : args)
646     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
647   return arrangeLLVMFunctionInfo(
648       GetReturnType(resultType), /*instanceMethod=*/false,
649       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
650       /*paramInfos=*/ {}, RequiredArgs::All);
651 }
652 
653 const CGFunctionInfo &
654 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
655                                                 const FunctionArgList &args) {
656   auto argTypes = getArgTypesForDeclaration(Context, args);
657 
658   return arrangeLLVMFunctionInfo(
659       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
660       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
661 }
662 
663 const CGFunctionInfo &
664 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
665                                               ArrayRef<CanQualType> argTypes) {
666   return arrangeLLVMFunctionInfo(
667       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
668       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
669 }
670 
671 /// Arrange a call to a C++ method, passing the given arguments.
672 ///
673 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
674 /// does not count `this`.
675 const CGFunctionInfo &
676 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
677                                    const FunctionProtoType *proto,
678                                    RequiredArgs required,
679                                    unsigned numPrefixArgs) {
680   assert(numPrefixArgs + 1 <= args.size() &&
681          "Emitting a call with less args than the required prefix?");
682   // Add one to account for `this`. It's a bit awkward here, but we don't count
683   // `this` in similar places elsewhere.
684   auto paramInfos =
685     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
686 
687   // FIXME: Kill copy.
688   auto argTypes = getArgTypesForCall(Context, args);
689 
690   FunctionType::ExtInfo info = proto->getExtInfo();
691   return arrangeLLVMFunctionInfo(
692       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
693       /*chainCall=*/false, argTypes, info, paramInfos, required);
694 }
695 
696 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
697   return arrangeLLVMFunctionInfo(
698       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
699       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
700 }
701 
702 const CGFunctionInfo &
703 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
704                           const CallArgList &args) {
705   assert(signature.arg_size() <= args.size());
706   if (signature.arg_size() == args.size())
707     return signature;
708 
709   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
710   auto sigParamInfos = signature.getExtParameterInfos();
711   if (!sigParamInfos.empty()) {
712     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
713     paramInfos.resize(args.size());
714   }
715 
716   auto argTypes = getArgTypesForCall(Context, args);
717 
718   assert(signature.getRequiredArgs().allowsOptionalArgs());
719   return arrangeLLVMFunctionInfo(signature.getReturnType(),
720                                  signature.isInstanceMethod(),
721                                  signature.isChainCall(),
722                                  argTypes,
723                                  signature.getExtInfo(),
724                                  paramInfos,
725                                  signature.getRequiredArgs());
726 }
727 
728 namespace clang {
729 namespace CodeGen {
730 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
731 }
732 }
733 
734 /// Arrange the argument and result information for an abstract value
735 /// of a given function type.  This is the method which all of the
736 /// above functions ultimately defer to.
737 const CGFunctionInfo &
738 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
739                                       bool instanceMethod,
740                                       bool chainCall,
741                                       ArrayRef<CanQualType> argTypes,
742                                       FunctionType::ExtInfo info,
743                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
744                                       RequiredArgs required) {
745   assert(llvm::all_of(argTypes,
746                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
747 
748   // Lookup or create unique function info.
749   llvm::FoldingSetNodeID ID;
750   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
751                           required, resultType, argTypes);
752 
753   void *insertPos = nullptr;
754   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
755   if (FI)
756     return *FI;
757 
758   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
759 
760   // Construct the function info.  We co-allocate the ArgInfos.
761   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
762                               paramInfos, resultType, argTypes, required);
763   FunctionInfos.InsertNode(FI, insertPos);
764 
765   bool inserted = FunctionsBeingProcessed.insert(FI).second;
766   (void)inserted;
767   assert(inserted && "Recursively being processed?");
768 
769   // Compute ABI information.
770   if (CC == llvm::CallingConv::SPIR_KERNEL) {
771     // Force target independent argument handling for the host visible
772     // kernel functions.
773     computeSPIRKernelABIInfo(CGM, *FI);
774   } else if (info.getCC() == CC_Swift) {
775     swiftcall::computeABIInfo(CGM, *FI);
776   } else {
777     getABIInfo().computeInfo(*FI);
778   }
779 
780   // Loop over all of the computed argument and return value info.  If any of
781   // them are direct or extend without a specified coerce type, specify the
782   // default now.
783   ABIArgInfo &retInfo = FI->getReturnInfo();
784   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
785     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
786 
787   for (auto &I : FI->arguments())
788     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
789       I.info.setCoerceToType(ConvertType(I.type));
790 
791   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
792   assert(erased && "Not in set?");
793 
794   return *FI;
795 }
796 
797 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
798                                        bool instanceMethod,
799                                        bool chainCall,
800                                        const FunctionType::ExtInfo &info,
801                                        ArrayRef<ExtParameterInfo> paramInfos,
802                                        CanQualType resultType,
803                                        ArrayRef<CanQualType> argTypes,
804                                        RequiredArgs required) {
805   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
806   assert(!required.allowsOptionalArgs() ||
807          required.getNumRequiredArgs() <= argTypes.size());
808 
809   void *buffer =
810     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
811                                   argTypes.size() + 1, paramInfos.size()));
812 
813   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
814   FI->CallingConvention = llvmCC;
815   FI->EffectiveCallingConvention = llvmCC;
816   FI->ASTCallingConvention = info.getCC();
817   FI->InstanceMethod = instanceMethod;
818   FI->ChainCall = chainCall;
819   FI->CmseNSCall = info.getCmseNSCall();
820   FI->NoReturn = info.getNoReturn();
821   FI->ReturnsRetained = info.getProducesResult();
822   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
823   FI->NoCfCheck = info.getNoCfCheck();
824   FI->Required = required;
825   FI->HasRegParm = info.getHasRegParm();
826   FI->RegParm = info.getRegParm();
827   FI->ArgStruct = nullptr;
828   FI->ArgStructAlign = 0;
829   FI->NumArgs = argTypes.size();
830   FI->HasExtParameterInfos = !paramInfos.empty();
831   FI->getArgsBuffer()[0].type = resultType;
832   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
833     FI->getArgsBuffer()[i + 1].type = argTypes[i];
834   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
835     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
836   return FI;
837 }
838 
839 /***/
840 
841 namespace {
842 // ABIArgInfo::Expand implementation.
843 
844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
845 struct TypeExpansion {
846   enum TypeExpansionKind {
847     // Elements of constant arrays are expanded recursively.
848     TEK_ConstantArray,
849     // Record fields are expanded recursively (but if record is a union, only
850     // the field with the largest size is expanded).
851     TEK_Record,
852     // For complex types, real and imaginary parts are expanded recursively.
853     TEK_Complex,
854     // All other types are not expandable.
855     TEK_None
856   };
857 
858   const TypeExpansionKind Kind;
859 
860   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
861   virtual ~TypeExpansion() {}
862 };
863 
864 struct ConstantArrayExpansion : TypeExpansion {
865   QualType EltTy;
866   uint64_t NumElts;
867 
868   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
869       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
870   static bool classof(const TypeExpansion *TE) {
871     return TE->Kind == TEK_ConstantArray;
872   }
873 };
874 
875 struct RecordExpansion : TypeExpansion {
876   SmallVector<const CXXBaseSpecifier *, 1> Bases;
877 
878   SmallVector<const FieldDecl *, 1> Fields;
879 
880   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
881                   SmallVector<const FieldDecl *, 1> &&Fields)
882       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
883         Fields(std::move(Fields)) {}
884   static bool classof(const TypeExpansion *TE) {
885     return TE->Kind == TEK_Record;
886   }
887 };
888 
889 struct ComplexExpansion : TypeExpansion {
890   QualType EltTy;
891 
892   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
893   static bool classof(const TypeExpansion *TE) {
894     return TE->Kind == TEK_Complex;
895   }
896 };
897 
898 struct NoExpansion : TypeExpansion {
899   NoExpansion() : TypeExpansion(TEK_None) {}
900   static bool classof(const TypeExpansion *TE) {
901     return TE->Kind == TEK_None;
902   }
903 };
904 }  // namespace
905 
906 static std::unique_ptr<TypeExpansion>
907 getTypeExpansion(QualType Ty, const ASTContext &Context) {
908   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
909     return std::make_unique<ConstantArrayExpansion>(
910         AT->getElementType(), AT->getSize().getZExtValue());
911   }
912   if (const RecordType *RT = Ty->getAs<RecordType>()) {
913     SmallVector<const CXXBaseSpecifier *, 1> Bases;
914     SmallVector<const FieldDecl *, 1> Fields;
915     const RecordDecl *RD = RT->getDecl();
916     assert(!RD->hasFlexibleArrayMember() &&
917            "Cannot expand structure with flexible array.");
918     if (RD->isUnion()) {
919       // Unions can be here only in degenerative cases - all the fields are same
920       // after flattening. Thus we have to use the "largest" field.
921       const FieldDecl *LargestFD = nullptr;
922       CharUnits UnionSize = CharUnits::Zero();
923 
924       for (const auto *FD : RD->fields()) {
925         if (FD->isZeroLengthBitField(Context))
926           continue;
927         assert(!FD->isBitField() &&
928                "Cannot expand structure with bit-field members.");
929         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
930         if (UnionSize < FieldSize) {
931           UnionSize = FieldSize;
932           LargestFD = FD;
933         }
934       }
935       if (LargestFD)
936         Fields.push_back(LargestFD);
937     } else {
938       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
939         assert(!CXXRD->isDynamicClass() &&
940                "cannot expand vtable pointers in dynamic classes");
941         for (const CXXBaseSpecifier &BS : CXXRD->bases())
942           Bases.push_back(&BS);
943       }
944 
945       for (const auto *FD : RD->fields()) {
946         if (FD->isZeroLengthBitField(Context))
947           continue;
948         assert(!FD->isBitField() &&
949                "Cannot expand structure with bit-field members.");
950         Fields.push_back(FD);
951       }
952     }
953     return std::make_unique<RecordExpansion>(std::move(Bases),
954                                               std::move(Fields));
955   }
956   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
957     return std::make_unique<ComplexExpansion>(CT->getElementType());
958   }
959   return std::make_unique<NoExpansion>();
960 }
961 
962 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
963   auto Exp = getTypeExpansion(Ty, Context);
964   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
965     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
966   }
967   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
968     int Res = 0;
969     for (auto BS : RExp->Bases)
970       Res += getExpansionSize(BS->getType(), Context);
971     for (auto FD : RExp->Fields)
972       Res += getExpansionSize(FD->getType(), Context);
973     return Res;
974   }
975   if (isa<ComplexExpansion>(Exp.get()))
976     return 2;
977   assert(isa<NoExpansion>(Exp.get()));
978   return 1;
979 }
980 
981 void
982 CodeGenTypes::getExpandedTypes(QualType Ty,
983                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
984   auto Exp = getTypeExpansion(Ty, Context);
985   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
986     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
987       getExpandedTypes(CAExp->EltTy, TI);
988     }
989   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
990     for (auto BS : RExp->Bases)
991       getExpandedTypes(BS->getType(), TI);
992     for (auto FD : RExp->Fields)
993       getExpandedTypes(FD->getType(), TI);
994   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
995     llvm::Type *EltTy = ConvertType(CExp->EltTy);
996     *TI++ = EltTy;
997     *TI++ = EltTy;
998   } else {
999     assert(isa<NoExpansion>(Exp.get()));
1000     *TI++ = ConvertType(Ty);
1001   }
1002 }
1003 
1004 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1005                                       ConstantArrayExpansion *CAE,
1006                                       Address BaseAddr,
1007                                       llvm::function_ref<void(Address)> Fn) {
1008   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1009   CharUnits EltAlign =
1010     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1011 
1012   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1013     llvm::Value *EltAddr =
1014       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1015     Fn(Address(EltAddr, EltAlign));
1016   }
1017 }
1018 
1019 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1020                                          llvm::Function::arg_iterator &AI) {
1021   assert(LV.isSimple() &&
1022          "Unexpected non-simple lvalue during struct expansion.");
1023 
1024   auto Exp = getTypeExpansion(Ty, getContext());
1025   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1026     forConstantArrayExpansion(
1027         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1028           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1029           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1030         });
1031   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1032     Address This = LV.getAddress(*this);
1033     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1034       // Perform a single step derived-to-base conversion.
1035       Address Base =
1036           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1037                                 /*NullCheckValue=*/false, SourceLocation());
1038       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1039 
1040       // Recurse onto bases.
1041       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1042     }
1043     for (auto FD : RExp->Fields) {
1044       // FIXME: What are the right qualifiers here?
1045       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1046       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1047     }
1048   } else if (isa<ComplexExpansion>(Exp.get())) {
1049     auto realValue = &*AI++;
1050     auto imagValue = &*AI++;
1051     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1052   } else {
1053     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1054     // primitive store.
1055     assert(isa<NoExpansion>(Exp.get()));
1056     if (LV.isBitField())
1057       EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1058     else
1059       EmitStoreOfScalar(&*AI++, LV);
1060   }
1061 }
1062 
1063 void CodeGenFunction::ExpandTypeToArgs(
1064     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1065     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1066   auto Exp = getTypeExpansion(Ty, getContext());
1067   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1068     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1069                                    : Arg.getKnownRValue().getAggregateAddress();
1070     forConstantArrayExpansion(
1071         *this, CAExp, Addr, [&](Address EltAddr) {
1072           CallArg EltArg = CallArg(
1073               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1074               CAExp->EltTy);
1075           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1076                            IRCallArgPos);
1077         });
1078   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1079     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1080                                    : Arg.getKnownRValue().getAggregateAddress();
1081     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1082       // Perform a single step derived-to-base conversion.
1083       Address Base =
1084           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1085                                 /*NullCheckValue=*/false, SourceLocation());
1086       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1087 
1088       // Recurse onto bases.
1089       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1090                        IRCallArgPos);
1091     }
1092 
1093     LValue LV = MakeAddrLValue(This, Ty);
1094     for (auto FD : RExp->Fields) {
1095       CallArg FldArg =
1096           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1097       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1098                        IRCallArgPos);
1099     }
1100   } else if (isa<ComplexExpansion>(Exp.get())) {
1101     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1102     IRCallArgs[IRCallArgPos++] = CV.first;
1103     IRCallArgs[IRCallArgPos++] = CV.second;
1104   } else {
1105     assert(isa<NoExpansion>(Exp.get()));
1106     auto RV = Arg.getKnownRValue();
1107     assert(RV.isScalar() &&
1108            "Unexpected non-scalar rvalue during struct expansion.");
1109 
1110     // Insert a bitcast as needed.
1111     llvm::Value *V = RV.getScalarVal();
1112     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1113         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1114       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1115 
1116     IRCallArgs[IRCallArgPos++] = V;
1117   }
1118 }
1119 
1120 /// Create a temporary allocation for the purposes of coercion.
1121 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1122                                            CharUnits MinAlign,
1123                                            const Twine &Name = "tmp") {
1124   // Don't use an alignment that's worse than what LLVM would prefer.
1125   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1126   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1127 
1128   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1129 }
1130 
1131 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1132 /// accessing some number of bytes out of it, try to gep into the struct to get
1133 /// at its inner goodness.  Dive as deep as possible without entering an element
1134 /// with an in-memory size smaller than DstSize.
1135 static Address
1136 EnterStructPointerForCoercedAccess(Address SrcPtr,
1137                                    llvm::StructType *SrcSTy,
1138                                    uint64_t DstSize, CodeGenFunction &CGF) {
1139   // We can't dive into a zero-element struct.
1140   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1141 
1142   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1143 
1144   // If the first elt is at least as large as what we're looking for, or if the
1145   // first element is the same size as the whole struct, we can enter it. The
1146   // comparison must be made on the store size and not the alloca size. Using
1147   // the alloca size may overstate the size of the load.
1148   uint64_t FirstEltSize =
1149     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1150   if (FirstEltSize < DstSize &&
1151       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1152     return SrcPtr;
1153 
1154   // GEP into the first element.
1155   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1156 
1157   // If the first element is a struct, recurse.
1158   llvm::Type *SrcTy = SrcPtr.getElementType();
1159   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1160     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1161 
1162   return SrcPtr;
1163 }
1164 
1165 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1166 /// are either integers or pointers.  This does a truncation of the value if it
1167 /// is too large or a zero extension if it is too small.
1168 ///
1169 /// This behaves as if the value were coerced through memory, so on big-endian
1170 /// targets the high bits are preserved in a truncation, while little-endian
1171 /// targets preserve the low bits.
1172 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1173                                              llvm::Type *Ty,
1174                                              CodeGenFunction &CGF) {
1175   if (Val->getType() == Ty)
1176     return Val;
1177 
1178   if (isa<llvm::PointerType>(Val->getType())) {
1179     // If this is Pointer->Pointer avoid conversion to and from int.
1180     if (isa<llvm::PointerType>(Ty))
1181       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1182 
1183     // Convert the pointer to an integer so we can play with its width.
1184     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1185   }
1186 
1187   llvm::Type *DestIntTy = Ty;
1188   if (isa<llvm::PointerType>(DestIntTy))
1189     DestIntTy = CGF.IntPtrTy;
1190 
1191   if (Val->getType() != DestIntTy) {
1192     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1193     if (DL.isBigEndian()) {
1194       // Preserve the high bits on big-endian targets.
1195       // That is what memory coercion does.
1196       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1197       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1198 
1199       if (SrcSize > DstSize) {
1200         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1201         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1202       } else {
1203         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1204         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1205       }
1206     } else {
1207       // Little-endian targets preserve the low bits. No shifts required.
1208       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1209     }
1210   }
1211 
1212   if (isa<llvm::PointerType>(Ty))
1213     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1214   return Val;
1215 }
1216 
1217 
1218 
1219 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1220 /// a pointer to an object of type \arg Ty, known to be aligned to
1221 /// \arg SrcAlign bytes.
1222 ///
1223 /// This safely handles the case when the src type is smaller than the
1224 /// destination type; in this situation the values of bits which not
1225 /// present in the src are undefined.
1226 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1227                                       CodeGenFunction &CGF) {
1228   llvm::Type *SrcTy = Src.getElementType();
1229 
1230   // If SrcTy and Ty are the same, just do a load.
1231   if (SrcTy == Ty)
1232     return CGF.Builder.CreateLoad(Src);
1233 
1234   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1235 
1236   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1237     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1238                                              DstSize.getFixedSize(), CGF);
1239     SrcTy = Src.getElementType();
1240   }
1241 
1242   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1243 
1244   // If the source and destination are integer or pointer types, just do an
1245   // extension or truncation to the desired type.
1246   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1247       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1248     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1249     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1250   }
1251 
1252   // If load is legal, just bitcast the src pointer.
1253   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1254       SrcSize.getFixedSize() >= DstSize.getFixedSize()) {
1255     // Generally SrcSize is never greater than DstSize, since this means we are
1256     // losing bits. However, this can happen in cases where the structure has
1257     // additional padding, for example due to a user specified alignment.
1258     //
1259     // FIXME: Assert that we aren't truncating non-padding bits when have access
1260     // to that information.
1261     Src = CGF.Builder.CreateBitCast(Src,
1262                                     Ty->getPointerTo(Src.getAddressSpace()));
1263     return CGF.Builder.CreateLoad(Src);
1264   }
1265 
1266   // Otherwise do coercion through memory. This is stupid, but simple.
1267   Address Tmp =
1268       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1269   CGF.Builder.CreateMemCpy(
1270       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1271       Src.getAlignment().getAsAlign(),
1272       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize()));
1273   return CGF.Builder.CreateLoad(Tmp);
1274 }
1275 
1276 // Function to store a first-class aggregate into memory.  We prefer to
1277 // store the elements rather than the aggregate to be more friendly to
1278 // fast-isel.
1279 // FIXME: Do we need to recurse here?
1280 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1281                                          bool DestIsVolatile) {
1282   // Prefer scalar stores to first-class aggregate stores.
1283   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1284     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1285       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1286       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1287       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1288     }
1289   } else {
1290     Builder.CreateStore(Val, Dest, DestIsVolatile);
1291   }
1292 }
1293 
1294 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1295 /// where the source and destination may have different types.  The
1296 /// destination is known to be aligned to \arg DstAlign bytes.
1297 ///
1298 /// This safely handles the case when the src type is larger than the
1299 /// destination type; the upper bits of the src will be lost.
1300 static void CreateCoercedStore(llvm::Value *Src,
1301                                Address Dst,
1302                                bool DstIsVolatile,
1303                                CodeGenFunction &CGF) {
1304   llvm::Type *SrcTy = Src->getType();
1305   llvm::Type *DstTy = Dst.getElementType();
1306   if (SrcTy == DstTy) {
1307     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1308     return;
1309   }
1310 
1311   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1312 
1313   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1314     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1315                                              SrcSize.getFixedSize(), CGF);
1316     DstTy = Dst.getElementType();
1317   }
1318 
1319   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1320   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1321   if (SrcPtrTy && DstPtrTy &&
1322       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1323     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1324     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1325     return;
1326   }
1327 
1328   // If the source and destination are integer or pointer types, just do an
1329   // extension or truncation to the desired type.
1330   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1331       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1332     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1333     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1334     return;
1335   }
1336 
1337   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1338 
1339   // If store is legal, just bitcast the src pointer.
1340   if (isa<llvm::ScalableVectorType>(SrcTy) ||
1341       isa<llvm::ScalableVectorType>(DstTy) ||
1342       SrcSize.getFixedSize() <= DstSize.getFixedSize()) {
1343     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1344     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1345   } else {
1346     // Otherwise do coercion through memory. This is stupid, but
1347     // simple.
1348 
1349     // Generally SrcSize is never greater than DstSize, since this means we are
1350     // losing bits. However, this can happen in cases where the structure has
1351     // additional padding, for example due to a user specified alignment.
1352     //
1353     // FIXME: Assert that we aren't truncating non-padding bits when have access
1354     // to that information.
1355     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1356     CGF.Builder.CreateStore(Src, Tmp);
1357     CGF.Builder.CreateMemCpy(
1358         Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1359         Tmp.getAlignment().getAsAlign(),
1360         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize()));
1361   }
1362 }
1363 
1364 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1365                                    const ABIArgInfo &info) {
1366   if (unsigned offset = info.getDirectOffset()) {
1367     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1368     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1369                                              CharUnits::fromQuantity(offset));
1370     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1371   }
1372   return addr;
1373 }
1374 
1375 namespace {
1376 
1377 /// Encapsulates information about the way function arguments from
1378 /// CGFunctionInfo should be passed to actual LLVM IR function.
1379 class ClangToLLVMArgMapping {
1380   static const unsigned InvalidIndex = ~0U;
1381   unsigned InallocaArgNo;
1382   unsigned SRetArgNo;
1383   unsigned TotalIRArgs;
1384 
1385   /// Arguments of LLVM IR function corresponding to single Clang argument.
1386   struct IRArgs {
1387     unsigned PaddingArgIndex;
1388     // Argument is expanded to IR arguments at positions
1389     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1390     unsigned FirstArgIndex;
1391     unsigned NumberOfArgs;
1392 
1393     IRArgs()
1394         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1395           NumberOfArgs(0) {}
1396   };
1397 
1398   SmallVector<IRArgs, 8> ArgInfo;
1399 
1400 public:
1401   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1402                         bool OnlyRequiredArgs = false)
1403       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1404         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1405     construct(Context, FI, OnlyRequiredArgs);
1406   }
1407 
1408   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1409   unsigned getInallocaArgNo() const {
1410     assert(hasInallocaArg());
1411     return InallocaArgNo;
1412   }
1413 
1414   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1415   unsigned getSRetArgNo() const {
1416     assert(hasSRetArg());
1417     return SRetArgNo;
1418   }
1419 
1420   unsigned totalIRArgs() const { return TotalIRArgs; }
1421 
1422   bool hasPaddingArg(unsigned ArgNo) const {
1423     assert(ArgNo < ArgInfo.size());
1424     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1425   }
1426   unsigned getPaddingArgNo(unsigned ArgNo) const {
1427     assert(hasPaddingArg(ArgNo));
1428     return ArgInfo[ArgNo].PaddingArgIndex;
1429   }
1430 
1431   /// Returns index of first IR argument corresponding to ArgNo, and their
1432   /// quantity.
1433   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1434     assert(ArgNo < ArgInfo.size());
1435     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1436                           ArgInfo[ArgNo].NumberOfArgs);
1437   }
1438 
1439 private:
1440   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1441                  bool OnlyRequiredArgs);
1442 };
1443 
1444 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1445                                       const CGFunctionInfo &FI,
1446                                       bool OnlyRequiredArgs) {
1447   unsigned IRArgNo = 0;
1448   bool SwapThisWithSRet = false;
1449   const ABIArgInfo &RetAI = FI.getReturnInfo();
1450 
1451   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1452     SwapThisWithSRet = RetAI.isSRetAfterThis();
1453     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1454   }
1455 
1456   unsigned ArgNo = 0;
1457   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1458   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1459        ++I, ++ArgNo) {
1460     assert(I != FI.arg_end());
1461     QualType ArgType = I->type;
1462     const ABIArgInfo &AI = I->info;
1463     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1464     auto &IRArgs = ArgInfo[ArgNo];
1465 
1466     if (AI.getPaddingType())
1467       IRArgs.PaddingArgIndex = IRArgNo++;
1468 
1469     switch (AI.getKind()) {
1470     case ABIArgInfo::Extend:
1471     case ABIArgInfo::Direct: {
1472       // FIXME: handle sseregparm someday...
1473       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1474       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1475         IRArgs.NumberOfArgs = STy->getNumElements();
1476       } else {
1477         IRArgs.NumberOfArgs = 1;
1478       }
1479       break;
1480     }
1481     case ABIArgInfo::Indirect:
1482     case ABIArgInfo::IndirectAliased:
1483       IRArgs.NumberOfArgs = 1;
1484       break;
1485     case ABIArgInfo::Ignore:
1486     case ABIArgInfo::InAlloca:
1487       // ignore and inalloca doesn't have matching LLVM parameters.
1488       IRArgs.NumberOfArgs = 0;
1489       break;
1490     case ABIArgInfo::CoerceAndExpand:
1491       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1492       break;
1493     case ABIArgInfo::Expand:
1494       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1495       break;
1496     }
1497 
1498     if (IRArgs.NumberOfArgs > 0) {
1499       IRArgs.FirstArgIndex = IRArgNo;
1500       IRArgNo += IRArgs.NumberOfArgs;
1501     }
1502 
1503     // Skip over the sret parameter when it comes second.  We already handled it
1504     // above.
1505     if (IRArgNo == 1 && SwapThisWithSRet)
1506       IRArgNo++;
1507   }
1508   assert(ArgNo == ArgInfo.size());
1509 
1510   if (FI.usesInAlloca())
1511     InallocaArgNo = IRArgNo++;
1512 
1513   TotalIRArgs = IRArgNo;
1514 }
1515 }  // namespace
1516 
1517 /***/
1518 
1519 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1520   const auto &RI = FI.getReturnInfo();
1521   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1522 }
1523 
1524 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1525   return ReturnTypeUsesSRet(FI) &&
1526          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1527 }
1528 
1529 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1530   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1531     switch (BT->getKind()) {
1532     default:
1533       return false;
1534     case BuiltinType::Float:
1535       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1536     case BuiltinType::Double:
1537       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1538     case BuiltinType::LongDouble:
1539       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1540     }
1541   }
1542 
1543   return false;
1544 }
1545 
1546 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1547   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1548     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1549       if (BT->getKind() == BuiltinType::LongDouble)
1550         return getTarget().useObjCFP2RetForComplexLongDouble();
1551     }
1552   }
1553 
1554   return false;
1555 }
1556 
1557 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1558   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1559   return GetFunctionType(FI);
1560 }
1561 
1562 llvm::FunctionType *
1563 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1564 
1565   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1566   (void)Inserted;
1567   assert(Inserted && "Recursively being processed?");
1568 
1569   llvm::Type *resultType = nullptr;
1570   const ABIArgInfo &retAI = FI.getReturnInfo();
1571   switch (retAI.getKind()) {
1572   case ABIArgInfo::Expand:
1573   case ABIArgInfo::IndirectAliased:
1574     llvm_unreachable("Invalid ABI kind for return argument");
1575 
1576   case ABIArgInfo::Extend:
1577   case ABIArgInfo::Direct:
1578     resultType = retAI.getCoerceToType();
1579     break;
1580 
1581   case ABIArgInfo::InAlloca:
1582     if (retAI.getInAllocaSRet()) {
1583       // sret things on win32 aren't void, they return the sret pointer.
1584       QualType ret = FI.getReturnType();
1585       llvm::Type *ty = ConvertType(ret);
1586       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1587       resultType = llvm::PointerType::get(ty, addressSpace);
1588     } else {
1589       resultType = llvm::Type::getVoidTy(getLLVMContext());
1590     }
1591     break;
1592 
1593   case ABIArgInfo::Indirect:
1594   case ABIArgInfo::Ignore:
1595     resultType = llvm::Type::getVoidTy(getLLVMContext());
1596     break;
1597 
1598   case ABIArgInfo::CoerceAndExpand:
1599     resultType = retAI.getUnpaddedCoerceAndExpandType();
1600     break;
1601   }
1602 
1603   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1604   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1605 
1606   // Add type for sret argument.
1607   if (IRFunctionArgs.hasSRetArg()) {
1608     QualType Ret = FI.getReturnType();
1609     llvm::Type *Ty = ConvertType(Ret);
1610     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1611     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1612         llvm::PointerType::get(Ty, AddressSpace);
1613   }
1614 
1615   // Add type for inalloca argument.
1616   if (IRFunctionArgs.hasInallocaArg()) {
1617     auto ArgStruct = FI.getArgStruct();
1618     assert(ArgStruct);
1619     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1620   }
1621 
1622   // Add in all of the required arguments.
1623   unsigned ArgNo = 0;
1624   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1625                                      ie = it + FI.getNumRequiredArgs();
1626   for (; it != ie; ++it, ++ArgNo) {
1627     const ABIArgInfo &ArgInfo = it->info;
1628 
1629     // Insert a padding type to ensure proper alignment.
1630     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1631       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1632           ArgInfo.getPaddingType();
1633 
1634     unsigned FirstIRArg, NumIRArgs;
1635     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1636 
1637     switch (ArgInfo.getKind()) {
1638     case ABIArgInfo::Ignore:
1639     case ABIArgInfo::InAlloca:
1640       assert(NumIRArgs == 0);
1641       break;
1642 
1643     case ABIArgInfo::Indirect: {
1644       assert(NumIRArgs == 1);
1645       // indirect arguments are always on the stack, which is alloca addr space.
1646       llvm::Type *LTy = ConvertTypeForMem(it->type);
1647       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1648           CGM.getDataLayout().getAllocaAddrSpace());
1649       break;
1650     }
1651     case ABIArgInfo::IndirectAliased: {
1652       assert(NumIRArgs == 1);
1653       llvm::Type *LTy = ConvertTypeForMem(it->type);
1654       ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1655       break;
1656     }
1657     case ABIArgInfo::Extend:
1658     case ABIArgInfo::Direct: {
1659       // Fast-isel and the optimizer generally like scalar values better than
1660       // FCAs, so we flatten them if this is safe to do for this argument.
1661       llvm::Type *argType = ArgInfo.getCoerceToType();
1662       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1663       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1664         assert(NumIRArgs == st->getNumElements());
1665         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1666           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1667       } else {
1668         assert(NumIRArgs == 1);
1669         ArgTypes[FirstIRArg] = argType;
1670       }
1671       break;
1672     }
1673 
1674     case ABIArgInfo::CoerceAndExpand: {
1675       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1676       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1677         *ArgTypesIter++ = EltTy;
1678       }
1679       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1680       break;
1681     }
1682 
1683     case ABIArgInfo::Expand:
1684       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1685       getExpandedTypes(it->type, ArgTypesIter);
1686       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1687       break;
1688     }
1689   }
1690 
1691   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1692   assert(Erased && "Not in set?");
1693 
1694   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1695 }
1696 
1697 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1698   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1699   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1700 
1701   if (!isFuncTypeConvertible(FPT))
1702     return llvm::StructType::get(getLLVMContext());
1703 
1704   return GetFunctionType(GD);
1705 }
1706 
1707 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1708                                                llvm::AttrBuilder &FuncAttrs,
1709                                                const FunctionProtoType *FPT) {
1710   if (!FPT)
1711     return;
1712 
1713   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1714       FPT->isNothrow())
1715     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1716 }
1717 
1718 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1719                                                  bool HasOptnone,
1720                                                  bool AttrOnCallSite,
1721                                                llvm::AttrBuilder &FuncAttrs) {
1722   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1723   if (!HasOptnone) {
1724     if (CodeGenOpts.OptimizeSize)
1725       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1726     if (CodeGenOpts.OptimizeSize == 2)
1727       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1728   }
1729 
1730   if (CodeGenOpts.DisableRedZone)
1731     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1732   if (CodeGenOpts.IndirectTlsSegRefs)
1733     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1734   if (CodeGenOpts.NoImplicitFloat)
1735     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1736 
1737   if (AttrOnCallSite) {
1738     // Attributes that should go on the call site only.
1739     if (!CodeGenOpts.SimplifyLibCalls ||
1740         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1741       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1742     if (!CodeGenOpts.TrapFuncName.empty())
1743       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1744   } else {
1745     StringRef FpKind;
1746     switch (CodeGenOpts.getFramePointer()) {
1747     case CodeGenOptions::FramePointerKind::None:
1748       FpKind = "none";
1749       break;
1750     case CodeGenOptions::FramePointerKind::NonLeaf:
1751       FpKind = "non-leaf";
1752       break;
1753     case CodeGenOptions::FramePointerKind::All:
1754       FpKind = "all";
1755       break;
1756     }
1757     FuncAttrs.addAttribute("frame-pointer", FpKind);
1758 
1759     FuncAttrs.addAttribute("less-precise-fpmad",
1760                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1761 
1762     if (CodeGenOpts.NullPointerIsValid)
1763       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1764 
1765     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1766       FuncAttrs.addAttribute("denormal-fp-math",
1767                              CodeGenOpts.FPDenormalMode.str());
1768     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1769       FuncAttrs.addAttribute(
1770           "denormal-fp-math-f32",
1771           CodeGenOpts.FP32DenormalMode.str());
1772     }
1773 
1774     FuncAttrs.addAttribute("no-trapping-math",
1775                            llvm::toStringRef(LangOpts.getFPExceptionMode() ==
1776                                              LangOptions::FPE_Ignore));
1777 
1778     // Strict (compliant) code is the default, so only add this attribute to
1779     // indicate that we are trying to workaround a problem case.
1780     if (!CodeGenOpts.StrictFloatCastOverflow)
1781       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1782 
1783     // TODO: Are these all needed?
1784     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1785     FuncAttrs.addAttribute("no-infs-fp-math",
1786                            llvm::toStringRef(LangOpts.NoHonorInfs));
1787     FuncAttrs.addAttribute("no-nans-fp-math",
1788                            llvm::toStringRef(LangOpts.NoHonorNaNs));
1789     FuncAttrs.addAttribute("unsafe-fp-math",
1790                            llvm::toStringRef(LangOpts.UnsafeFPMath));
1791     FuncAttrs.addAttribute("use-soft-float",
1792                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1793     FuncAttrs.addAttribute("stack-protector-buffer-size",
1794                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1795     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1796                            llvm::toStringRef(LangOpts.NoSignedZero));
1797 
1798     // TODO: Reciprocal estimate codegen options should apply to instructions?
1799     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1800     if (!Recips.empty())
1801       FuncAttrs.addAttribute("reciprocal-estimates",
1802                              llvm::join(Recips, ","));
1803 
1804     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1805         CodeGenOpts.PreferVectorWidth != "none")
1806       FuncAttrs.addAttribute("prefer-vector-width",
1807                              CodeGenOpts.PreferVectorWidth);
1808 
1809     if (CodeGenOpts.StackRealignment)
1810       FuncAttrs.addAttribute("stackrealign");
1811     if (CodeGenOpts.Backchain)
1812       FuncAttrs.addAttribute("backchain");
1813     if (CodeGenOpts.EnableSegmentedStacks)
1814       FuncAttrs.addAttribute("split-stack");
1815 
1816     if (CodeGenOpts.SpeculativeLoadHardening)
1817       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1818   }
1819 
1820   if (getLangOpts().assumeFunctionsAreConvergent()) {
1821     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1822     // convergent (meaning, they may call an intrinsically convergent op, such
1823     // as __syncthreads() / barrier(), and so can't have certain optimizations
1824     // applied around them).  LLVM will remove this attribute where it safely
1825     // can.
1826     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1827   }
1828 
1829   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1830     // Exceptions aren't supported in CUDA device code.
1831     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1832   }
1833 
1834   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1835     StringRef Var, Value;
1836     std::tie(Var, Value) = Attr.split('=');
1837     FuncAttrs.addAttribute(Var, Value);
1838   }
1839 }
1840 
1841 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1842   llvm::AttrBuilder FuncAttrs;
1843   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1844                                /* AttrOnCallSite = */ false, FuncAttrs);
1845   // TODO: call GetCPUAndFeaturesAttributes?
1846   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1847 }
1848 
1849 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1850                                                    llvm::AttrBuilder &attrs) {
1851   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1852                                /*for call*/ false, attrs);
1853   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1854 }
1855 
1856 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1857                                    const LangOptions &LangOpts,
1858                                    const NoBuiltinAttr *NBA = nullptr) {
1859   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1860     SmallString<32> AttributeName;
1861     AttributeName += "no-builtin-";
1862     AttributeName += BuiltinName;
1863     FuncAttrs.addAttribute(AttributeName);
1864   };
1865 
1866   // First, handle the language options passed through -fno-builtin.
1867   if (LangOpts.NoBuiltin) {
1868     // -fno-builtin disables them all.
1869     FuncAttrs.addAttribute("no-builtins");
1870     return;
1871   }
1872 
1873   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1874   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1875 
1876   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1877   // the source.
1878   if (!NBA)
1879     return;
1880 
1881   // If there is a wildcard in the builtin names specified through the
1882   // attribute, disable them all.
1883   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1884     FuncAttrs.addAttribute("no-builtins");
1885     return;
1886   }
1887 
1888   // And last, add the rest of the builtin names.
1889   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1890 }
1891 
1892 /// Construct the IR attribute list of a function or call.
1893 ///
1894 /// When adding an attribute, please consider where it should be handled:
1895 ///
1896 ///   - getDefaultFunctionAttributes is for attributes that are essentially
1897 ///     part of the global target configuration (but perhaps can be
1898 ///     overridden on a per-function basis).  Adding attributes there
1899 ///     will cause them to also be set in frontends that build on Clang's
1900 ///     target-configuration logic, as well as for code defined in library
1901 ///     modules such as CUDA's libdevice.
1902 ///
1903 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
1904 ///     and adds declaration-specific, convention-specific, and
1905 ///     frontend-specific logic.  The last is of particular importance:
1906 ///     attributes that restrict how the frontend generates code must be
1907 ///     added here rather than getDefaultFunctionAttributes.
1908 ///
1909 void CodeGenModule::ConstructAttributeList(
1910     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1911     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1912   llvm::AttrBuilder FuncAttrs;
1913   llvm::AttrBuilder RetAttrs;
1914 
1915   // Collect function IR attributes from the CC lowering.
1916   // We'll collect the paramete and result attributes later.
1917   CallingConv = FI.getEffectiveCallingConvention();
1918   if (FI.isNoReturn())
1919     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1920   if (FI.isCmseNSCall())
1921     FuncAttrs.addAttribute("cmse_nonsecure_call");
1922 
1923   // Collect function IR attributes from the callee prototype if we have one.
1924   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1925                                      CalleeInfo.getCalleeFunctionProtoType());
1926 
1927   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1928 
1929   bool HasOptnone = false;
1930   // The NoBuiltinAttr attached to the target FunctionDecl.
1931   const NoBuiltinAttr *NBA = nullptr;
1932 
1933   // Collect function IR attributes based on declaration-specific
1934   // information.
1935   // FIXME: handle sseregparm someday...
1936   if (TargetDecl) {
1937     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1938       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1939     if (TargetDecl->hasAttr<NoThrowAttr>())
1940       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1941     if (TargetDecl->hasAttr<NoReturnAttr>())
1942       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1943     if (TargetDecl->hasAttr<ColdAttr>())
1944       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1945     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1946       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1947     if (TargetDecl->hasAttr<ConvergentAttr>())
1948       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1949 
1950     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1951       AddAttributesFromFunctionProtoType(
1952           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1953       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
1954         // A sane operator new returns a non-aliasing pointer.
1955         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
1956         if (getCodeGenOpts().AssumeSaneOperatorNew &&
1957             (Kind == OO_New || Kind == OO_Array_New))
1958           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1959       }
1960       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1961       const bool IsVirtualCall = MD && MD->isVirtual();
1962       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
1963       // virtual function. These attributes are not inherited by overloads.
1964       if (!(AttrOnCallSite && IsVirtualCall)) {
1965         if (Fn->isNoReturn())
1966           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1967         NBA = Fn->getAttr<NoBuiltinAttr>();
1968       }
1969     }
1970 
1971     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1972     if (TargetDecl->hasAttr<ConstAttr>()) {
1973       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1974       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1975     } else if (TargetDecl->hasAttr<PureAttr>()) {
1976       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1977       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1978     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1979       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1980       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1981     }
1982     if (TargetDecl->hasAttr<RestrictAttr>())
1983       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1984     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1985         !CodeGenOpts.NullPointerIsValid)
1986       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1987     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1988       FuncAttrs.addAttribute("no_caller_saved_registers");
1989     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1990       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1991 
1992     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1993     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1994       Optional<unsigned> NumElemsParam;
1995       if (AllocSize->getNumElemsParam().isValid())
1996         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1997       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1998                                  NumElemsParam);
1999     }
2000 
2001     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2002       if (getLangOpts().OpenCLVersion <= 120) {
2003         // OpenCL v1.2 Work groups are always uniform
2004         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2005       } else {
2006         // OpenCL v2.0 Work groups may be whether uniform or not.
2007         // '-cl-uniform-work-group-size' compile option gets a hint
2008         // to the compiler that the global work-size be a multiple of
2009         // the work-group size specified to clEnqueueNDRangeKernel
2010         // (i.e. work groups are uniform).
2011         FuncAttrs.addAttribute("uniform-work-group-size",
2012                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2013       }
2014     }
2015   }
2016 
2017   // Attach "no-builtins" attributes to:
2018   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2019   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2020   // The attributes can come from:
2021   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2022   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2023   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2024 
2025   // Collect function IR attributes based on global settiings.
2026   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2027 
2028   // Override some default IR attributes based on declaration-specific
2029   // information.
2030   if (TargetDecl) {
2031     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2032       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2033     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2034       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2035     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2036       FuncAttrs.removeAttribute("split-stack");
2037 
2038     // Add NonLazyBind attribute to function declarations when -fno-plt
2039     // is used.
2040     // FIXME: what if we just haven't processed the function definition
2041     // yet, or if it's an external definition like C99 inline?
2042     if (CodeGenOpts.NoPLT) {
2043       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2044         if (!Fn->isDefined() && !AttrOnCallSite) {
2045           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2046         }
2047       }
2048     }
2049   }
2050 
2051   // Collect non-call-site function IR attributes from declaration-specific
2052   // information.
2053   if (!AttrOnCallSite) {
2054     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2055       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2056 
2057     // Whether tail calls are enabled.
2058     auto shouldDisableTailCalls = [&] {
2059       // Should this be honored in getDefaultFunctionAttributes?
2060       if (CodeGenOpts.DisableTailCalls)
2061         return true;
2062 
2063       if (!TargetDecl)
2064         return false;
2065 
2066       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2067           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2068         return true;
2069 
2070       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2071         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2072           if (!BD->doesNotEscape())
2073             return true;
2074       }
2075 
2076       return false;
2077     };
2078     FuncAttrs.addAttribute("disable-tail-calls",
2079                            llvm::toStringRef(shouldDisableTailCalls()));
2080 
2081     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2082     // handles these separately to set them based on the global defaults.
2083     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2084   }
2085 
2086   // Collect attributes from arguments and return values.
2087   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2088 
2089   QualType RetTy = FI.getReturnType();
2090   const ABIArgInfo &RetAI = FI.getReturnInfo();
2091   switch (RetAI.getKind()) {
2092   case ABIArgInfo::Extend:
2093     if (RetAI.isSignExt())
2094       RetAttrs.addAttribute(llvm::Attribute::SExt);
2095     else
2096       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2097     LLVM_FALLTHROUGH;
2098   case ABIArgInfo::Direct:
2099     if (RetAI.getInReg())
2100       RetAttrs.addAttribute(llvm::Attribute::InReg);
2101     break;
2102   case ABIArgInfo::Ignore:
2103     break;
2104 
2105   case ABIArgInfo::InAlloca:
2106   case ABIArgInfo::Indirect: {
2107     // inalloca and sret disable readnone and readonly
2108     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2109       .removeAttribute(llvm::Attribute::ReadNone);
2110     break;
2111   }
2112 
2113   case ABIArgInfo::CoerceAndExpand:
2114     break;
2115 
2116   case ABIArgInfo::Expand:
2117   case ABIArgInfo::IndirectAliased:
2118     llvm_unreachable("Invalid ABI kind for return argument");
2119   }
2120 
2121   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2122     QualType PTy = RefTy->getPointeeType();
2123     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2124       RetAttrs.addDereferenceableAttr(
2125           getMinimumObjectSize(PTy).getQuantity());
2126     if (getContext().getTargetAddressSpace(PTy) == 0 &&
2127         !CodeGenOpts.NullPointerIsValid)
2128       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2129     if (PTy->isObjectType()) {
2130       llvm::Align Alignment =
2131           getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2132       RetAttrs.addAlignmentAttr(Alignment);
2133     }
2134   }
2135 
2136   bool hasUsedSRet = false;
2137   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2138 
2139   // Attach attributes to sret.
2140   if (IRFunctionArgs.hasSRetArg()) {
2141     llvm::AttrBuilder SRETAttrs;
2142     SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2143     hasUsedSRet = true;
2144     if (RetAI.getInReg())
2145       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2146     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2147     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2148         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2149   }
2150 
2151   // Attach attributes to inalloca argument.
2152   if (IRFunctionArgs.hasInallocaArg()) {
2153     llvm::AttrBuilder Attrs;
2154     Attrs.addAttribute(llvm::Attribute::InAlloca);
2155     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2156         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2157   }
2158 
2159   // Apply `nonnull` and `dereferencable(N)` to the `this` argument.
2160   if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2161       !FI.arg_begin()->type->isVoidPointerType()) {
2162     auto IRArgs = IRFunctionArgs.getIRArgs(0);
2163 
2164     assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2165 
2166     llvm::AttrBuilder Attrs;
2167 
2168     if (!CodeGenOpts.NullPointerIsValid &&
2169         getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2170       Attrs.addAttribute(llvm::Attribute::NonNull);
2171     }
2172 
2173     Attrs.addDereferenceableAttr(
2174         getMinimumObjectSize(
2175             FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2176             .getQuantity());
2177 
2178     ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2179   }
2180 
2181   unsigned ArgNo = 0;
2182   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2183                                           E = FI.arg_end();
2184        I != E; ++I, ++ArgNo) {
2185     QualType ParamType = I->type;
2186     const ABIArgInfo &AI = I->info;
2187     llvm::AttrBuilder Attrs;
2188 
2189     // Add attribute for padding argument, if necessary.
2190     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2191       if (AI.getPaddingInReg()) {
2192         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2193             llvm::AttributeSet::get(
2194                 getLLVMContext(),
2195                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2196       }
2197     }
2198 
2199     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2200     // have the corresponding parameter variable.  It doesn't make
2201     // sense to do it here because parameters are so messed up.
2202     switch (AI.getKind()) {
2203     case ABIArgInfo::Extend:
2204       if (AI.isSignExt())
2205         Attrs.addAttribute(llvm::Attribute::SExt);
2206       else
2207         Attrs.addAttribute(llvm::Attribute::ZExt);
2208       LLVM_FALLTHROUGH;
2209     case ABIArgInfo::Direct:
2210       if (ArgNo == 0 && FI.isChainCall())
2211         Attrs.addAttribute(llvm::Attribute::Nest);
2212       else if (AI.getInReg())
2213         Attrs.addAttribute(llvm::Attribute::InReg);
2214       break;
2215 
2216     case ABIArgInfo::Indirect: {
2217       if (AI.getInReg())
2218         Attrs.addAttribute(llvm::Attribute::InReg);
2219 
2220       if (AI.getIndirectByVal())
2221         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2222 
2223       auto *Decl = ParamType->getAsRecordDecl();
2224       if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2225           Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
2226         // When calling the function, the pointer passed in will be the only
2227         // reference to the underlying object. Mark it accordingly.
2228         Attrs.addAttribute(llvm::Attribute::NoAlias);
2229 
2230       // TODO: We could add the byref attribute if not byval, but it would
2231       // require updating many testcases.
2232 
2233       CharUnits Align = AI.getIndirectAlign();
2234 
2235       // In a byval argument, it is important that the required
2236       // alignment of the type is honored, as LLVM might be creating a
2237       // *new* stack object, and needs to know what alignment to give
2238       // it. (Sometimes it can deduce a sensible alignment on its own,
2239       // but not if clang decides it must emit a packed struct, or the
2240       // user specifies increased alignment requirements.)
2241       //
2242       // This is different from indirect *not* byval, where the object
2243       // exists already, and the align attribute is purely
2244       // informative.
2245       assert(!Align.isZero());
2246 
2247       // For now, only add this when we have a byval argument.
2248       // TODO: be less lazy about updating test cases.
2249       if (AI.getIndirectByVal())
2250         Attrs.addAlignmentAttr(Align.getQuantity());
2251 
2252       // byval disables readnone and readonly.
2253       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2254         .removeAttribute(llvm::Attribute::ReadNone);
2255 
2256       break;
2257     }
2258     case ABIArgInfo::IndirectAliased: {
2259       CharUnits Align = AI.getIndirectAlign();
2260       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2261       Attrs.addAlignmentAttr(Align.getQuantity());
2262       break;
2263     }
2264     case ABIArgInfo::Ignore:
2265     case ABIArgInfo::Expand:
2266     case ABIArgInfo::CoerceAndExpand:
2267       break;
2268 
2269     case ABIArgInfo::InAlloca:
2270       // inalloca disables readnone and readonly.
2271       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2272           .removeAttribute(llvm::Attribute::ReadNone);
2273       continue;
2274     }
2275 
2276     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2277       QualType PTy = RefTy->getPointeeType();
2278       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2279         Attrs.addDereferenceableAttr(
2280             getMinimumObjectSize(PTy).getQuantity());
2281       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2282           !CodeGenOpts.NullPointerIsValid)
2283         Attrs.addAttribute(llvm::Attribute::NonNull);
2284       if (PTy->isObjectType()) {
2285         llvm::Align Alignment =
2286             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2287         Attrs.addAlignmentAttr(Alignment);
2288       }
2289     }
2290 
2291     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2292     case ParameterABI::Ordinary:
2293       break;
2294 
2295     case ParameterABI::SwiftIndirectResult: {
2296       // Add 'sret' if we haven't already used it for something, but
2297       // only if the result is void.
2298       if (!hasUsedSRet && RetTy->isVoidType()) {
2299         Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2300         hasUsedSRet = true;
2301       }
2302 
2303       // Add 'noalias' in either case.
2304       Attrs.addAttribute(llvm::Attribute::NoAlias);
2305 
2306       // Add 'dereferenceable' and 'alignment'.
2307       auto PTy = ParamType->getPointeeType();
2308       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2309         auto info = getContext().getTypeInfoInChars(PTy);
2310         Attrs.addDereferenceableAttr(info.Width.getQuantity());
2311         Attrs.addAlignmentAttr(info.Align.getAsAlign());
2312       }
2313       break;
2314     }
2315 
2316     case ParameterABI::SwiftErrorResult:
2317       Attrs.addAttribute(llvm::Attribute::SwiftError);
2318       break;
2319 
2320     case ParameterABI::SwiftContext:
2321       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2322       break;
2323     }
2324 
2325     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2326       Attrs.addAttribute(llvm::Attribute::NoCapture);
2327 
2328     if (Attrs.hasAttributes()) {
2329       unsigned FirstIRArg, NumIRArgs;
2330       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2331       for (unsigned i = 0; i < NumIRArgs; i++)
2332         ArgAttrs[FirstIRArg + i] =
2333             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2334     }
2335   }
2336   assert(ArgNo == FI.arg_size());
2337 
2338   AttrList = llvm::AttributeList::get(
2339       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2340       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2341 }
2342 
2343 /// An argument came in as a promoted argument; demote it back to its
2344 /// declared type.
2345 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2346                                          const VarDecl *var,
2347                                          llvm::Value *value) {
2348   llvm::Type *varType = CGF.ConvertType(var->getType());
2349 
2350   // This can happen with promotions that actually don't change the
2351   // underlying type, like the enum promotions.
2352   if (value->getType() == varType) return value;
2353 
2354   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2355          && "unexpected promotion type");
2356 
2357   if (isa<llvm::IntegerType>(varType))
2358     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2359 
2360   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2361 }
2362 
2363 /// Returns the attribute (either parameter attribute, or function
2364 /// attribute), which declares argument ArgNo to be non-null.
2365 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2366                                          QualType ArgType, unsigned ArgNo) {
2367   // FIXME: __attribute__((nonnull)) can also be applied to:
2368   //   - references to pointers, where the pointee is known to be
2369   //     nonnull (apparently a Clang extension)
2370   //   - transparent unions containing pointers
2371   // In the former case, LLVM IR cannot represent the constraint. In
2372   // the latter case, we have no guarantee that the transparent union
2373   // is in fact passed as a pointer.
2374   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2375     return nullptr;
2376   // First, check attribute on parameter itself.
2377   if (PVD) {
2378     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2379       return ParmNNAttr;
2380   }
2381   // Check function attributes.
2382   if (!FD)
2383     return nullptr;
2384   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2385     if (NNAttr->isNonNull(ArgNo))
2386       return NNAttr;
2387   }
2388   return nullptr;
2389 }
2390 
2391 namespace {
2392   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2393     Address Temp;
2394     Address Arg;
2395     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2396     void Emit(CodeGenFunction &CGF, Flags flags) override {
2397       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2398       CGF.Builder.CreateStore(errorValue, Arg);
2399     }
2400   };
2401 }
2402 
2403 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2404                                          llvm::Function *Fn,
2405                                          const FunctionArgList &Args) {
2406   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2407     // Naked functions don't have prologues.
2408     return;
2409 
2410   // If this is an implicit-return-zero function, go ahead and
2411   // initialize the return value.  TODO: it might be nice to have
2412   // a more general mechanism for this that didn't require synthesized
2413   // return statements.
2414   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2415     if (FD->hasImplicitReturnZero()) {
2416       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2417       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2418       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2419       Builder.CreateStore(Zero, ReturnValue);
2420     }
2421   }
2422 
2423   // FIXME: We no longer need the types from FunctionArgList; lift up and
2424   // simplify.
2425 
2426   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2427   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2428 
2429   // If we're using inalloca, all the memory arguments are GEPs off of the last
2430   // parameter, which is a pointer to the complete memory area.
2431   Address ArgStruct = Address::invalid();
2432   if (IRFunctionArgs.hasInallocaArg()) {
2433     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2434                         FI.getArgStructAlignment());
2435 
2436     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2437   }
2438 
2439   // Name the struct return parameter.
2440   if (IRFunctionArgs.hasSRetArg()) {
2441     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2442     AI->setName("agg.result");
2443     AI->addAttr(llvm::Attribute::NoAlias);
2444   }
2445 
2446   // Track if we received the parameter as a pointer (indirect, byval, or
2447   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2448   // into a local alloca for us.
2449   SmallVector<ParamValue, 16> ArgVals;
2450   ArgVals.reserve(Args.size());
2451 
2452   // Create a pointer value for every parameter declaration.  This usually
2453   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2454   // any cleanups or do anything that might unwind.  We do that separately, so
2455   // we can push the cleanups in the correct order for the ABI.
2456   assert(FI.arg_size() == Args.size() &&
2457          "Mismatch between function signature & arguments.");
2458   unsigned ArgNo = 0;
2459   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2460   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2461        i != e; ++i, ++info_it, ++ArgNo) {
2462     const VarDecl *Arg = *i;
2463     const ABIArgInfo &ArgI = info_it->info;
2464 
2465     bool isPromoted =
2466       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2467     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2468     // the parameter is promoted. In this case we convert to
2469     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2470     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2471     assert(hasScalarEvaluationKind(Ty) ==
2472            hasScalarEvaluationKind(Arg->getType()));
2473 
2474     unsigned FirstIRArg, NumIRArgs;
2475     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2476 
2477     switch (ArgI.getKind()) {
2478     case ABIArgInfo::InAlloca: {
2479       assert(NumIRArgs == 0);
2480       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2481       Address V =
2482           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2483       if (ArgI.getInAllocaIndirect())
2484         V = Address(Builder.CreateLoad(V),
2485                     getContext().getTypeAlignInChars(Ty));
2486       ArgVals.push_back(ParamValue::forIndirect(V));
2487       break;
2488     }
2489 
2490     case ABIArgInfo::Indirect:
2491     case ABIArgInfo::IndirectAliased: {
2492       assert(NumIRArgs == 1);
2493       Address ParamAddr =
2494           Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign());
2495 
2496       if (!hasScalarEvaluationKind(Ty)) {
2497         // Aggregates and complex variables are accessed by reference. All we
2498         // need to do is realign the value, if requested. Also, if the address
2499         // may be aliased, copy it to ensure that the parameter variable is
2500         // mutable and has a unique adress, as C requires.
2501         Address V = ParamAddr;
2502         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2503           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2504 
2505           // Copy from the incoming argument pointer to the temporary with the
2506           // appropriate alignment.
2507           //
2508           // FIXME: We should have a common utility for generating an aggregate
2509           // copy.
2510           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2511           Builder.CreateMemCpy(
2512               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2513               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2514               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2515           V = AlignedTemp;
2516         }
2517         ArgVals.push_back(ParamValue::forIndirect(V));
2518       } else {
2519         // Load scalar value from indirect argument.
2520         llvm::Value *V =
2521             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2522 
2523         if (isPromoted)
2524           V = emitArgumentDemotion(*this, Arg, V);
2525         ArgVals.push_back(ParamValue::forDirect(V));
2526       }
2527       break;
2528     }
2529 
2530     case ABIArgInfo::Extend:
2531     case ABIArgInfo::Direct: {
2532       auto AI = Fn->getArg(FirstIRArg);
2533       llvm::Type *LTy = ConvertType(Arg->getType());
2534 
2535       // Prepare parameter attributes. So far, only attributes for pointer
2536       // parameters are prepared. See
2537       // http://llvm.org/docs/LangRef.html#paramattrs.
2538       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2539           ArgI.getCoerceToType()->isPointerTy()) {
2540         assert(NumIRArgs == 1);
2541 
2542         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2543           // Set `nonnull` attribute if any.
2544           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2545                              PVD->getFunctionScopeIndex()) &&
2546               !CGM.getCodeGenOpts().NullPointerIsValid)
2547             AI->addAttr(llvm::Attribute::NonNull);
2548 
2549           QualType OTy = PVD->getOriginalType();
2550           if (const auto *ArrTy =
2551               getContext().getAsConstantArrayType(OTy)) {
2552             // A C99 array parameter declaration with the static keyword also
2553             // indicates dereferenceability, and if the size is constant we can
2554             // use the dereferenceable attribute (which requires the size in
2555             // bytes).
2556             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2557               QualType ETy = ArrTy->getElementType();
2558               llvm::Align Alignment =
2559                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2560               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2561               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2562               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2563                   ArrSize) {
2564                 llvm::AttrBuilder Attrs;
2565                 Attrs.addDereferenceableAttr(
2566                     getContext().getTypeSizeInChars(ETy).getQuantity() *
2567                     ArrSize);
2568                 AI->addAttrs(Attrs);
2569               } else if (getContext().getTargetInfo().getNullPointerValue(
2570                              ETy.getAddressSpace()) == 0 &&
2571                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2572                 AI->addAttr(llvm::Attribute::NonNull);
2573               }
2574             }
2575           } else if (const auto *ArrTy =
2576                      getContext().getAsVariableArrayType(OTy)) {
2577             // For C99 VLAs with the static keyword, we don't know the size so
2578             // we can't use the dereferenceable attribute, but in addrspace(0)
2579             // we know that it must be nonnull.
2580             if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2581               QualType ETy = ArrTy->getElementType();
2582               llvm::Align Alignment =
2583                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2584               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2585               if (!getContext().getTargetAddressSpace(ETy) &&
2586                   !CGM.getCodeGenOpts().NullPointerIsValid)
2587                 AI->addAttr(llvm::Attribute::NonNull);
2588             }
2589           }
2590 
2591           // Set `align` attribute if any.
2592           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2593           if (!AVAttr)
2594             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2595               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2596           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2597             // If alignment-assumption sanitizer is enabled, we do *not* add
2598             // alignment attribute here, but emit normal alignment assumption,
2599             // so the UBSAN check could function.
2600             llvm::ConstantInt *AlignmentCI =
2601                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2602             unsigned AlignmentInt =
2603                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2604             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2605               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2606               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(
2607                   llvm::Align(AlignmentInt)));
2608             }
2609           }
2610         }
2611 
2612         // Set 'noalias' if an argument type has the `restrict` qualifier.
2613         if (Arg->getType().isRestrictQualified())
2614           AI->addAttr(llvm::Attribute::NoAlias);
2615       }
2616 
2617       // Prepare the argument value. If we have the trivial case, handle it
2618       // with no muss and fuss.
2619       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2620           ArgI.getCoerceToType() == ConvertType(Ty) &&
2621           ArgI.getDirectOffset() == 0) {
2622         assert(NumIRArgs == 1);
2623 
2624         // LLVM expects swifterror parameters to be used in very restricted
2625         // ways.  Copy the value into a less-restricted temporary.
2626         llvm::Value *V = AI;
2627         if (FI.getExtParameterInfo(ArgNo).getABI()
2628               == ParameterABI::SwiftErrorResult) {
2629           QualType pointeeTy = Ty->getPointeeType();
2630           assert(pointeeTy->isPointerType());
2631           Address temp =
2632             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2633           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2634           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2635           Builder.CreateStore(incomingErrorValue, temp);
2636           V = temp.getPointer();
2637 
2638           // Push a cleanup to copy the value back at the end of the function.
2639           // The convention does not guarantee that the value will be written
2640           // back if the function exits with an unwind exception.
2641           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2642         }
2643 
2644         // Ensure the argument is the correct type.
2645         if (V->getType() != ArgI.getCoerceToType())
2646           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2647 
2648         if (isPromoted)
2649           V = emitArgumentDemotion(*this, Arg, V);
2650 
2651         // Because of merging of function types from multiple decls it is
2652         // possible for the type of an argument to not match the corresponding
2653         // type in the function type. Since we are codegening the callee
2654         // in here, add a cast to the argument type.
2655         llvm::Type *LTy = ConvertType(Arg->getType());
2656         if (V->getType() != LTy)
2657           V = Builder.CreateBitCast(V, LTy);
2658 
2659         ArgVals.push_back(ParamValue::forDirect(V));
2660         break;
2661       }
2662 
2663       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2664                                      Arg->getName());
2665 
2666       // Pointer to store into.
2667       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2668 
2669       // Fast-isel and the optimizer generally like scalar values better than
2670       // FCAs, so we flatten them if this is safe to do for this argument.
2671       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2672       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2673           STy->getNumElements() > 1) {
2674         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2675         llvm::Type *DstTy = Ptr.getElementType();
2676         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2677 
2678         Address AddrToStoreInto = Address::invalid();
2679         if (SrcSize <= DstSize) {
2680           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2681         } else {
2682           AddrToStoreInto =
2683             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2684         }
2685 
2686         assert(STy->getNumElements() == NumIRArgs);
2687         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2688           auto AI = Fn->getArg(FirstIRArg + i);
2689           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2690           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2691           Builder.CreateStore(AI, EltPtr);
2692         }
2693 
2694         if (SrcSize > DstSize) {
2695           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2696         }
2697 
2698       } else {
2699         // Simple case, just do a coerced store of the argument into the alloca.
2700         assert(NumIRArgs == 1);
2701         auto AI = Fn->getArg(FirstIRArg);
2702         AI->setName(Arg->getName() + ".coerce");
2703         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2704       }
2705 
2706       // Match to what EmitParmDecl is expecting for this type.
2707       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2708         llvm::Value *V =
2709             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2710         if (isPromoted)
2711           V = emitArgumentDemotion(*this, Arg, V);
2712         ArgVals.push_back(ParamValue::forDirect(V));
2713       } else {
2714         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2715       }
2716       break;
2717     }
2718 
2719     case ABIArgInfo::CoerceAndExpand: {
2720       // Reconstruct into a temporary.
2721       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2722       ArgVals.push_back(ParamValue::forIndirect(alloca));
2723 
2724       auto coercionType = ArgI.getCoerceAndExpandType();
2725       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2726 
2727       unsigned argIndex = FirstIRArg;
2728       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2729         llvm::Type *eltType = coercionType->getElementType(i);
2730         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2731           continue;
2732 
2733         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2734         auto elt = Fn->getArg(argIndex++);
2735         Builder.CreateStore(elt, eltAddr);
2736       }
2737       assert(argIndex == FirstIRArg + NumIRArgs);
2738       break;
2739     }
2740 
2741     case ABIArgInfo::Expand: {
2742       // If this structure was expanded into multiple arguments then
2743       // we need to create a temporary and reconstruct it from the
2744       // arguments.
2745       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2746       LValue LV = MakeAddrLValue(Alloca, Ty);
2747       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2748 
2749       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2750       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2751       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2752       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2753         auto AI = Fn->getArg(FirstIRArg + i);
2754         AI->setName(Arg->getName() + "." + Twine(i));
2755       }
2756       break;
2757     }
2758 
2759     case ABIArgInfo::Ignore:
2760       assert(NumIRArgs == 0);
2761       // Initialize the local variable appropriately.
2762       if (!hasScalarEvaluationKind(Ty)) {
2763         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2764       } else {
2765         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2766         ArgVals.push_back(ParamValue::forDirect(U));
2767       }
2768       break;
2769     }
2770   }
2771 
2772   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2773     for (int I = Args.size() - 1; I >= 0; --I)
2774       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2775   } else {
2776     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2777       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2778   }
2779 }
2780 
2781 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2782   while (insn->use_empty()) {
2783     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2784     if (!bitcast) return;
2785 
2786     // This is "safe" because we would have used a ConstantExpr otherwise.
2787     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2788     bitcast->eraseFromParent();
2789   }
2790 }
2791 
2792 /// Try to emit a fused autorelease of a return result.
2793 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2794                                                     llvm::Value *result) {
2795   // We must be immediately followed the cast.
2796   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2797   if (BB->empty()) return nullptr;
2798   if (&BB->back() != result) return nullptr;
2799 
2800   llvm::Type *resultType = result->getType();
2801 
2802   // result is in a BasicBlock and is therefore an Instruction.
2803   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2804 
2805   SmallVector<llvm::Instruction *, 4> InstsToKill;
2806 
2807   // Look for:
2808   //  %generator = bitcast %type1* %generator2 to %type2*
2809   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2810     // We would have emitted this as a constant if the operand weren't
2811     // an Instruction.
2812     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2813 
2814     // Require the generator to be immediately followed by the cast.
2815     if (generator->getNextNode() != bitcast)
2816       return nullptr;
2817 
2818     InstsToKill.push_back(bitcast);
2819   }
2820 
2821   // Look for:
2822   //   %generator = call i8* @objc_retain(i8* %originalResult)
2823   // or
2824   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2825   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2826   if (!call) return nullptr;
2827 
2828   bool doRetainAutorelease;
2829 
2830   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2831     doRetainAutorelease = true;
2832   } else if (call->getCalledOperand() ==
2833              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
2834     doRetainAutorelease = false;
2835 
2836     // If we emitted an assembly marker for this call (and the
2837     // ARCEntrypoints field should have been set if so), go looking
2838     // for that call.  If we can't find it, we can't do this
2839     // optimization.  But it should always be the immediately previous
2840     // instruction, unless we needed bitcasts around the call.
2841     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2842       llvm::Instruction *prev = call->getPrevNode();
2843       assert(prev);
2844       if (isa<llvm::BitCastInst>(prev)) {
2845         prev = prev->getPrevNode();
2846         assert(prev);
2847       }
2848       assert(isa<llvm::CallInst>(prev));
2849       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
2850              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2851       InstsToKill.push_back(prev);
2852     }
2853   } else {
2854     return nullptr;
2855   }
2856 
2857   result = call->getArgOperand(0);
2858   InstsToKill.push_back(call);
2859 
2860   // Keep killing bitcasts, for sanity.  Note that we no longer care
2861   // about precise ordering as long as there's exactly one use.
2862   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2863     if (!bitcast->hasOneUse()) break;
2864     InstsToKill.push_back(bitcast);
2865     result = bitcast->getOperand(0);
2866   }
2867 
2868   // Delete all the unnecessary instructions, from latest to earliest.
2869   for (auto *I : InstsToKill)
2870     I->eraseFromParent();
2871 
2872   // Do the fused retain/autorelease if we were asked to.
2873   if (doRetainAutorelease)
2874     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2875 
2876   // Cast back to the result type.
2877   return CGF.Builder.CreateBitCast(result, resultType);
2878 }
2879 
2880 /// If this is a +1 of the value of an immutable 'self', remove it.
2881 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2882                                           llvm::Value *result) {
2883   // This is only applicable to a method with an immutable 'self'.
2884   const ObjCMethodDecl *method =
2885     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2886   if (!method) return nullptr;
2887   const VarDecl *self = method->getSelfDecl();
2888   if (!self->getType().isConstQualified()) return nullptr;
2889 
2890   // Look for a retain call.
2891   llvm::CallInst *retainCall =
2892     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2893   if (!retainCall || retainCall->getCalledOperand() !=
2894                          CGF.CGM.getObjCEntrypoints().objc_retain)
2895     return nullptr;
2896 
2897   // Look for an ordinary load of 'self'.
2898   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2899   llvm::LoadInst *load =
2900     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2901   if (!load || load->isAtomic() || load->isVolatile() ||
2902       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2903     return nullptr;
2904 
2905   // Okay!  Burn it all down.  This relies for correctness on the
2906   // assumption that the retain is emitted as part of the return and
2907   // that thereafter everything is used "linearly".
2908   llvm::Type *resultType = result->getType();
2909   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2910   assert(retainCall->use_empty());
2911   retainCall->eraseFromParent();
2912   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2913 
2914   return CGF.Builder.CreateBitCast(load, resultType);
2915 }
2916 
2917 /// Emit an ARC autorelease of the result of a function.
2918 ///
2919 /// \return the value to actually return from the function
2920 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2921                                             llvm::Value *result) {
2922   // If we're returning 'self', kill the initial retain.  This is a
2923   // heuristic attempt to "encourage correctness" in the really unfortunate
2924   // case where we have a return of self during a dealloc and we desperately
2925   // need to avoid the possible autorelease.
2926   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2927     return self;
2928 
2929   // At -O0, try to emit a fused retain/autorelease.
2930   if (CGF.shouldUseFusedARCCalls())
2931     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2932       return fused;
2933 
2934   return CGF.EmitARCAutoreleaseReturnValue(result);
2935 }
2936 
2937 /// Heuristically search for a dominating store to the return-value slot.
2938 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2939   // Check if a User is a store which pointerOperand is the ReturnValue.
2940   // We are looking for stores to the ReturnValue, not for stores of the
2941   // ReturnValue to some other location.
2942   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2943     auto *SI = dyn_cast<llvm::StoreInst>(U);
2944     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2945       return nullptr;
2946     // These aren't actually possible for non-coerced returns, and we
2947     // only care about non-coerced returns on this code path.
2948     assert(!SI->isAtomic() && !SI->isVolatile());
2949     return SI;
2950   };
2951   // If there are multiple uses of the return-value slot, just check
2952   // for something immediately preceding the IP.  Sometimes this can
2953   // happen with how we generate implicit-returns; it can also happen
2954   // with noreturn cleanups.
2955   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2956     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2957     if (IP->empty()) return nullptr;
2958     llvm::Instruction *I = &IP->back();
2959 
2960     // Skip lifetime markers
2961     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2962                                             IE = IP->rend();
2963          II != IE; ++II) {
2964       if (llvm::IntrinsicInst *Intrinsic =
2965               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2966         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2967           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2968           ++II;
2969           if (II == IE)
2970             break;
2971           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2972             continue;
2973         }
2974       }
2975       I = &*II;
2976       break;
2977     }
2978 
2979     return GetStoreIfValid(I);
2980   }
2981 
2982   llvm::StoreInst *store =
2983       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2984   if (!store) return nullptr;
2985 
2986   // Now do a first-and-dirty dominance check: just walk up the
2987   // single-predecessors chain from the current insertion point.
2988   llvm::BasicBlock *StoreBB = store->getParent();
2989   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2990   while (IP != StoreBB) {
2991     if (!(IP = IP->getSinglePredecessor()))
2992       return nullptr;
2993   }
2994 
2995   // Okay, the store's basic block dominates the insertion point; we
2996   // can do our thing.
2997   return store;
2998 }
2999 
3000 // Helper functions for EmitCMSEClearRecord
3001 
3002 // Set the bits corresponding to a field having width `BitWidth` and located at
3003 // offset `BitOffset` (from the least significant bit) within a storage unit of
3004 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3005 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3006 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3007                         int BitWidth, int CharWidth) {
3008   assert(CharWidth <= 64);
3009   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3010 
3011   int Pos = 0;
3012   if (BitOffset >= CharWidth) {
3013     Pos += BitOffset / CharWidth;
3014     BitOffset = BitOffset % CharWidth;
3015   }
3016 
3017   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3018   if (BitOffset + BitWidth >= CharWidth) {
3019     Bits[Pos++] |= (Used << BitOffset) & Used;
3020     BitWidth -= CharWidth - BitOffset;
3021     BitOffset = 0;
3022   }
3023 
3024   while (BitWidth >= CharWidth) {
3025     Bits[Pos++] = Used;
3026     BitWidth -= CharWidth;
3027   }
3028 
3029   if (BitWidth > 0)
3030     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3031 }
3032 
3033 // Set the bits corresponding to a field having width `BitWidth` and located at
3034 // offset `BitOffset` (from the least significant bit) within a storage unit of
3035 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3036 // `Bits` corresponds to one target byte. Use target endian layout.
3037 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3038                         int StorageSize, int BitOffset, int BitWidth,
3039                         int CharWidth, bool BigEndian) {
3040 
3041   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3042   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3043 
3044   if (BigEndian)
3045     std::reverse(TmpBits.begin(), TmpBits.end());
3046 
3047   for (uint64_t V : TmpBits)
3048     Bits[StorageOffset++] |= V;
3049 }
3050 
3051 static void setUsedBits(CodeGenModule &, QualType, int,
3052                         SmallVectorImpl<uint64_t> &);
3053 
3054 // Set the bits in `Bits`, which correspond to the value representations of
3055 // the actual members of the record type `RTy`. Note that this function does
3056 // not handle base classes, virtual tables, etc, since they cannot happen in
3057 // CMSE function arguments or return. The bit mask corresponds to the target
3058 // memory layout, i.e. it's endian dependent.
3059 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3060                         SmallVectorImpl<uint64_t> &Bits) {
3061   ASTContext &Context = CGM.getContext();
3062   int CharWidth = Context.getCharWidth();
3063   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3064   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3065   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3066 
3067   int Idx = 0;
3068   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3069     const FieldDecl *F = *I;
3070 
3071     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3072         F->getType()->isIncompleteArrayType())
3073       continue;
3074 
3075     if (F->isBitField()) {
3076       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3077       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3078                   BFI.StorageSize / CharWidth, BFI.Offset,
3079                   BFI.Size, CharWidth,
3080                   CGM.getDataLayout().isBigEndian());
3081       continue;
3082     }
3083 
3084     setUsedBits(CGM, F->getType(),
3085                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3086   }
3087 }
3088 
3089 // Set the bits in `Bits`, which correspond to the value representations of
3090 // the elements of an array type `ATy`.
3091 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3092                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3093   const ASTContext &Context = CGM.getContext();
3094 
3095   QualType ETy = Context.getBaseElementType(ATy);
3096   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3097   SmallVector<uint64_t, 4> TmpBits(Size);
3098   setUsedBits(CGM, ETy, 0, TmpBits);
3099 
3100   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3101     auto Src = TmpBits.begin();
3102     auto Dst = Bits.begin() + Offset + I * Size;
3103     for (int J = 0; J < Size; ++J)
3104       *Dst++ |= *Src++;
3105   }
3106 }
3107 
3108 // Set the bits in `Bits`, which correspond to the value representations of
3109 // the type `QTy`.
3110 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3111                         SmallVectorImpl<uint64_t> &Bits) {
3112   if (const auto *RTy = QTy->getAs<RecordType>())
3113     return setUsedBits(CGM, RTy, Offset, Bits);
3114 
3115   ASTContext &Context = CGM.getContext();
3116   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3117     return setUsedBits(CGM, ATy, Offset, Bits);
3118 
3119   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3120   if (Size <= 0)
3121     return;
3122 
3123   std::fill_n(Bits.begin() + Offset, Size,
3124               (uint64_t(1) << Context.getCharWidth()) - 1);
3125 }
3126 
3127 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3128                                    int Pos, int Size, int CharWidth,
3129                                    bool BigEndian) {
3130   assert(Size > 0);
3131   uint64_t Mask = 0;
3132   if (BigEndian) {
3133     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3134          ++P)
3135       Mask = (Mask << CharWidth) | *P;
3136   } else {
3137     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3138     do
3139       Mask = (Mask << CharWidth) | *--P;
3140     while (P != End);
3141   }
3142   return Mask;
3143 }
3144 
3145 // Emit code to clear the bits in a record, which aren't a part of any user
3146 // declared member, when the record is a function return.
3147 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3148                                                   llvm::IntegerType *ITy,
3149                                                   QualType QTy) {
3150   assert(Src->getType() == ITy);
3151   assert(ITy->getScalarSizeInBits() <= 64);
3152 
3153   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3154   int Size = DataLayout.getTypeStoreSize(ITy);
3155   SmallVector<uint64_t, 4> Bits(Size);
3156   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3157 
3158   int CharWidth = CGM.getContext().getCharWidth();
3159   uint64_t Mask =
3160       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3161 
3162   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3163 }
3164 
3165 // Emit code to clear the bits in a record, which aren't a part of any user
3166 // declared member, when the record is a function argument.
3167 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3168                                                   llvm::ArrayType *ATy,
3169                                                   QualType QTy) {
3170   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3171   int Size = DataLayout.getTypeStoreSize(ATy);
3172   SmallVector<uint64_t, 16> Bits(Size);
3173   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3174 
3175   // Clear each element of the LLVM array.
3176   int CharWidth = CGM.getContext().getCharWidth();
3177   int CharsPerElt =
3178       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3179   int MaskIndex = 0;
3180   llvm::Value *R = llvm::UndefValue::get(ATy);
3181   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3182     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3183                                        DataLayout.isBigEndian());
3184     MaskIndex += CharsPerElt;
3185     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3186     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3187     R = Builder.CreateInsertValue(R, T1, I);
3188   }
3189 
3190   return R;
3191 }
3192 
3193 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3194                                          bool EmitRetDbgLoc,
3195                                          SourceLocation EndLoc) {
3196   if (FI.isNoReturn()) {
3197     // Noreturn functions don't return.
3198     EmitUnreachable(EndLoc);
3199     return;
3200   }
3201 
3202   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3203     // Naked functions don't have epilogues.
3204     Builder.CreateUnreachable();
3205     return;
3206   }
3207 
3208   // Functions with no result always return void.
3209   if (!ReturnValue.isValid()) {
3210     Builder.CreateRetVoid();
3211     return;
3212   }
3213 
3214   llvm::DebugLoc RetDbgLoc;
3215   llvm::Value *RV = nullptr;
3216   QualType RetTy = FI.getReturnType();
3217   const ABIArgInfo &RetAI = FI.getReturnInfo();
3218 
3219   switch (RetAI.getKind()) {
3220   case ABIArgInfo::InAlloca:
3221     // Aggregrates get evaluated directly into the destination.  Sometimes we
3222     // need to return the sret value in a register, though.
3223     assert(hasAggregateEvaluationKind(RetTy));
3224     if (RetAI.getInAllocaSRet()) {
3225       llvm::Function::arg_iterator EI = CurFn->arg_end();
3226       --EI;
3227       llvm::Value *ArgStruct = &*EI;
3228       llvm::Value *SRet = Builder.CreateStructGEP(
3229           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
3230       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
3231     }
3232     break;
3233 
3234   case ABIArgInfo::Indirect: {
3235     auto AI = CurFn->arg_begin();
3236     if (RetAI.isSRetAfterThis())
3237       ++AI;
3238     switch (getEvaluationKind(RetTy)) {
3239     case TEK_Complex: {
3240       ComplexPairTy RT =
3241         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3242       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3243                          /*isInit*/ true);
3244       break;
3245     }
3246     case TEK_Aggregate:
3247       // Do nothing; aggregrates get evaluated directly into the destination.
3248       break;
3249     case TEK_Scalar:
3250       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
3251                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
3252                         /*isInit*/ true);
3253       break;
3254     }
3255     break;
3256   }
3257 
3258   case ABIArgInfo::Extend:
3259   case ABIArgInfo::Direct:
3260     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3261         RetAI.getDirectOffset() == 0) {
3262       // The internal return value temp always will have pointer-to-return-type
3263       // type, just do a load.
3264 
3265       // If there is a dominating store to ReturnValue, we can elide
3266       // the load, zap the store, and usually zap the alloca.
3267       if (llvm::StoreInst *SI =
3268               findDominatingStoreToReturnValue(*this)) {
3269         // Reuse the debug location from the store unless there is
3270         // cleanup code to be emitted between the store and return
3271         // instruction.
3272         if (EmitRetDbgLoc && !AutoreleaseResult)
3273           RetDbgLoc = SI->getDebugLoc();
3274         // Get the stored value and nuke the now-dead store.
3275         RV = SI->getValueOperand();
3276         SI->eraseFromParent();
3277 
3278       // Otherwise, we have to do a simple load.
3279       } else {
3280         RV = Builder.CreateLoad(ReturnValue);
3281       }
3282     } else {
3283       // If the value is offset in memory, apply the offset now.
3284       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3285 
3286       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3287     }
3288 
3289     // In ARC, end functions that return a retainable type with a call
3290     // to objc_autoreleaseReturnValue.
3291     if (AutoreleaseResult) {
3292 #ifndef NDEBUG
3293       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3294       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3295       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3296       // CurCodeDecl or BlockInfo.
3297       QualType RT;
3298 
3299       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3300         RT = FD->getReturnType();
3301       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3302         RT = MD->getReturnType();
3303       else if (isa<BlockDecl>(CurCodeDecl))
3304         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3305       else
3306         llvm_unreachable("Unexpected function/method type");
3307 
3308       assert(getLangOpts().ObjCAutoRefCount &&
3309              !FI.isReturnsRetained() &&
3310              RT->isObjCRetainableType());
3311 #endif
3312       RV = emitAutoreleaseOfResult(*this, RV);
3313     }
3314 
3315     break;
3316 
3317   case ABIArgInfo::Ignore:
3318     break;
3319 
3320   case ABIArgInfo::CoerceAndExpand: {
3321     auto coercionType = RetAI.getCoerceAndExpandType();
3322 
3323     // Load all of the coerced elements out into results.
3324     llvm::SmallVector<llvm::Value*, 4> results;
3325     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3326     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3327       auto coercedEltType = coercionType->getElementType(i);
3328       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3329         continue;
3330 
3331       auto eltAddr = Builder.CreateStructGEP(addr, i);
3332       auto elt = Builder.CreateLoad(eltAddr);
3333       results.push_back(elt);
3334     }
3335 
3336     // If we have one result, it's the single direct result type.
3337     if (results.size() == 1) {
3338       RV = results[0];
3339 
3340     // Otherwise, we need to make a first-class aggregate.
3341     } else {
3342       // Construct a return type that lacks padding elements.
3343       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3344 
3345       RV = llvm::UndefValue::get(returnType);
3346       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3347         RV = Builder.CreateInsertValue(RV, results[i], i);
3348       }
3349     }
3350     break;
3351   }
3352   case ABIArgInfo::Expand:
3353   case ABIArgInfo::IndirectAliased:
3354     llvm_unreachable("Invalid ABI kind for return argument");
3355   }
3356 
3357   llvm::Instruction *Ret;
3358   if (RV) {
3359     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3360       // For certain return types, clear padding bits, as they may reveal
3361       // sensitive information.
3362       // Small struct/union types are passed as integers.
3363       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3364       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3365         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3366     }
3367     EmitReturnValueCheck(RV);
3368     Ret = Builder.CreateRet(RV);
3369   } else {
3370     Ret = Builder.CreateRetVoid();
3371   }
3372 
3373   if (RetDbgLoc)
3374     Ret->setDebugLoc(std::move(RetDbgLoc));
3375 }
3376 
3377 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3378   // A current decl may not be available when emitting vtable thunks.
3379   if (!CurCodeDecl)
3380     return;
3381 
3382   // If the return block isn't reachable, neither is this check, so don't emit
3383   // it.
3384   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3385     return;
3386 
3387   ReturnsNonNullAttr *RetNNAttr = nullptr;
3388   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3389     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3390 
3391   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3392     return;
3393 
3394   // Prefer the returns_nonnull attribute if it's present.
3395   SourceLocation AttrLoc;
3396   SanitizerMask CheckKind;
3397   SanitizerHandler Handler;
3398   if (RetNNAttr) {
3399     assert(!requiresReturnValueNullabilityCheck() &&
3400            "Cannot check nullability and the nonnull attribute");
3401     AttrLoc = RetNNAttr->getLocation();
3402     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3403     Handler = SanitizerHandler::NonnullReturn;
3404   } else {
3405     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3406       if (auto *TSI = DD->getTypeSourceInfo())
3407         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3408           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3409     CheckKind = SanitizerKind::NullabilityReturn;
3410     Handler = SanitizerHandler::NullabilityReturn;
3411   }
3412 
3413   SanitizerScope SanScope(this);
3414 
3415   // Make sure the "return" source location is valid. If we're checking a
3416   // nullability annotation, make sure the preconditions for the check are met.
3417   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3418   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3419   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3420   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3421   if (requiresReturnValueNullabilityCheck())
3422     CanNullCheck =
3423         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3424   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3425   EmitBlock(Check);
3426 
3427   // Now do the null check.
3428   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3429   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3430   llvm::Value *DynamicData[] = {SLocPtr};
3431   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3432 
3433   EmitBlock(NoCheck);
3434 
3435 #ifndef NDEBUG
3436   // The return location should not be used after the check has been emitted.
3437   ReturnLocation = Address::invalid();
3438 #endif
3439 }
3440 
3441 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3442   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3443   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3444 }
3445 
3446 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3447                                           QualType Ty) {
3448   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3449   // placeholders.
3450   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3451   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3452   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3453 
3454   // FIXME: When we generate this IR in one pass, we shouldn't need
3455   // this win32-specific alignment hack.
3456   CharUnits Align = CharUnits::fromQuantity(4);
3457   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3458 
3459   return AggValueSlot::forAddr(Address(Placeholder, Align),
3460                                Ty.getQualifiers(),
3461                                AggValueSlot::IsNotDestructed,
3462                                AggValueSlot::DoesNotNeedGCBarriers,
3463                                AggValueSlot::IsNotAliased,
3464                                AggValueSlot::DoesNotOverlap);
3465 }
3466 
3467 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3468                                           const VarDecl *param,
3469                                           SourceLocation loc) {
3470   // StartFunction converted the ABI-lowered parameter(s) into a
3471   // local alloca.  We need to turn that into an r-value suitable
3472   // for EmitCall.
3473   Address local = GetAddrOfLocalVar(param);
3474 
3475   QualType type = param->getType();
3476 
3477   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3478     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3479   }
3480 
3481   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3482   // but the argument needs to be the original pointer.
3483   if (type->isReferenceType()) {
3484     args.add(RValue::get(Builder.CreateLoad(local)), type);
3485 
3486   // In ARC, move out of consumed arguments so that the release cleanup
3487   // entered by StartFunction doesn't cause an over-release.  This isn't
3488   // optimal -O0 code generation, but it should get cleaned up when
3489   // optimization is enabled.  This also assumes that delegate calls are
3490   // performed exactly once for a set of arguments, but that should be safe.
3491   } else if (getLangOpts().ObjCAutoRefCount &&
3492              param->hasAttr<NSConsumedAttr>() &&
3493              type->isObjCRetainableType()) {
3494     llvm::Value *ptr = Builder.CreateLoad(local);
3495     auto null =
3496       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3497     Builder.CreateStore(null, local);
3498     args.add(RValue::get(ptr), type);
3499 
3500   // For the most part, we just need to load the alloca, except that
3501   // aggregate r-values are actually pointers to temporaries.
3502   } else {
3503     args.add(convertTempToRValue(local, type, loc), type);
3504   }
3505 
3506   // Deactivate the cleanup for the callee-destructed param that was pushed.
3507   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3508       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3509       param->needsDestruction(getContext())) {
3510     EHScopeStack::stable_iterator cleanup =
3511         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3512     assert(cleanup.isValid() &&
3513            "cleanup for callee-destructed param not recorded");
3514     // This unreachable is a temporary marker which will be removed later.
3515     llvm::Instruction *isActive = Builder.CreateUnreachable();
3516     args.addArgCleanupDeactivation(cleanup, isActive);
3517   }
3518 }
3519 
3520 static bool isProvablyNull(llvm::Value *addr) {
3521   return isa<llvm::ConstantPointerNull>(addr);
3522 }
3523 
3524 /// Emit the actual writing-back of a writeback.
3525 static void emitWriteback(CodeGenFunction &CGF,
3526                           const CallArgList::Writeback &writeback) {
3527   const LValue &srcLV = writeback.Source;
3528   Address srcAddr = srcLV.getAddress(CGF);
3529   assert(!isProvablyNull(srcAddr.getPointer()) &&
3530          "shouldn't have writeback for provably null argument");
3531 
3532   llvm::BasicBlock *contBB = nullptr;
3533 
3534   // If the argument wasn't provably non-null, we need to null check
3535   // before doing the store.
3536   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3537                                               CGF.CGM.getDataLayout());
3538   if (!provablyNonNull) {
3539     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3540     contBB = CGF.createBasicBlock("icr.done");
3541 
3542     llvm::Value *isNull =
3543       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3544     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3545     CGF.EmitBlock(writebackBB);
3546   }
3547 
3548   // Load the value to writeback.
3549   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3550 
3551   // Cast it back, in case we're writing an id to a Foo* or something.
3552   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3553                                     "icr.writeback-cast");
3554 
3555   // Perform the writeback.
3556 
3557   // If we have a "to use" value, it's something we need to emit a use
3558   // of.  This has to be carefully threaded in: if it's done after the
3559   // release it's potentially undefined behavior (and the optimizer
3560   // will ignore it), and if it happens before the retain then the
3561   // optimizer could move the release there.
3562   if (writeback.ToUse) {
3563     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3564 
3565     // Retain the new value.  No need to block-copy here:  the block's
3566     // being passed up the stack.
3567     value = CGF.EmitARCRetainNonBlock(value);
3568 
3569     // Emit the intrinsic use here.
3570     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3571 
3572     // Load the old value (primitively).
3573     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3574 
3575     // Put the new value in place (primitively).
3576     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3577 
3578     // Release the old value.
3579     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3580 
3581   // Otherwise, we can just do a normal lvalue store.
3582   } else {
3583     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3584   }
3585 
3586   // Jump to the continuation block.
3587   if (!provablyNonNull)
3588     CGF.EmitBlock(contBB);
3589 }
3590 
3591 static void emitWritebacks(CodeGenFunction &CGF,
3592                            const CallArgList &args) {
3593   for (const auto &I : args.writebacks())
3594     emitWriteback(CGF, I);
3595 }
3596 
3597 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3598                                             const CallArgList &CallArgs) {
3599   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3600     CallArgs.getCleanupsToDeactivate();
3601   // Iterate in reverse to increase the likelihood of popping the cleanup.
3602   for (const auto &I : llvm::reverse(Cleanups)) {
3603     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3604     I.IsActiveIP->eraseFromParent();
3605   }
3606 }
3607 
3608 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3609   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3610     if (uop->getOpcode() == UO_AddrOf)
3611       return uop->getSubExpr();
3612   return nullptr;
3613 }
3614 
3615 /// Emit an argument that's being passed call-by-writeback.  That is,
3616 /// we are passing the address of an __autoreleased temporary; it
3617 /// might be copy-initialized with the current value of the given
3618 /// address, but it will definitely be copied out of after the call.
3619 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3620                              const ObjCIndirectCopyRestoreExpr *CRE) {
3621   LValue srcLV;
3622 
3623   // Make an optimistic effort to emit the address as an l-value.
3624   // This can fail if the argument expression is more complicated.
3625   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3626     srcLV = CGF.EmitLValue(lvExpr);
3627 
3628   // Otherwise, just emit it as a scalar.
3629   } else {
3630     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3631 
3632     QualType srcAddrType =
3633       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3634     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3635   }
3636   Address srcAddr = srcLV.getAddress(CGF);
3637 
3638   // The dest and src types don't necessarily match in LLVM terms
3639   // because of the crazy ObjC compatibility rules.
3640 
3641   llvm::PointerType *destType =
3642     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3643 
3644   // If the address is a constant null, just pass the appropriate null.
3645   if (isProvablyNull(srcAddr.getPointer())) {
3646     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3647              CRE->getType());
3648     return;
3649   }
3650 
3651   // Create the temporary.
3652   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3653                                       CGF.getPointerAlign(),
3654                                       "icr.temp");
3655   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3656   // and that cleanup will be conditional if we can't prove that the l-value
3657   // isn't null, so we need to register a dominating point so that the cleanups
3658   // system will make valid IR.
3659   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3660 
3661   // Zero-initialize it if we're not doing a copy-initialization.
3662   bool shouldCopy = CRE->shouldCopy();
3663   if (!shouldCopy) {
3664     llvm::Value *null =
3665       llvm::ConstantPointerNull::get(
3666         cast<llvm::PointerType>(destType->getElementType()));
3667     CGF.Builder.CreateStore(null, temp);
3668   }
3669 
3670   llvm::BasicBlock *contBB = nullptr;
3671   llvm::BasicBlock *originBB = nullptr;
3672 
3673   // If the address is *not* known to be non-null, we need to switch.
3674   llvm::Value *finalArgument;
3675 
3676   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3677                                               CGF.CGM.getDataLayout());
3678   if (provablyNonNull) {
3679     finalArgument = temp.getPointer();
3680   } else {
3681     llvm::Value *isNull =
3682       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3683 
3684     finalArgument = CGF.Builder.CreateSelect(isNull,
3685                                    llvm::ConstantPointerNull::get(destType),
3686                                              temp.getPointer(), "icr.argument");
3687 
3688     // If we need to copy, then the load has to be conditional, which
3689     // means we need control flow.
3690     if (shouldCopy) {
3691       originBB = CGF.Builder.GetInsertBlock();
3692       contBB = CGF.createBasicBlock("icr.cont");
3693       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3694       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3695       CGF.EmitBlock(copyBB);
3696       condEval.begin(CGF);
3697     }
3698   }
3699 
3700   llvm::Value *valueToUse = nullptr;
3701 
3702   // Perform a copy if necessary.
3703   if (shouldCopy) {
3704     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3705     assert(srcRV.isScalar());
3706 
3707     llvm::Value *src = srcRV.getScalarVal();
3708     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3709                                     "icr.cast");
3710 
3711     // Use an ordinary store, not a store-to-lvalue.
3712     CGF.Builder.CreateStore(src, temp);
3713 
3714     // If optimization is enabled, and the value was held in a
3715     // __strong variable, we need to tell the optimizer that this
3716     // value has to stay alive until we're doing the store back.
3717     // This is because the temporary is effectively unretained,
3718     // and so otherwise we can violate the high-level semantics.
3719     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3720         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3721       valueToUse = src;
3722     }
3723   }
3724 
3725   // Finish the control flow if we needed it.
3726   if (shouldCopy && !provablyNonNull) {
3727     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3728     CGF.EmitBlock(contBB);
3729 
3730     // Make a phi for the value to intrinsically use.
3731     if (valueToUse) {
3732       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3733                                                       "icr.to-use");
3734       phiToUse->addIncoming(valueToUse, copyBB);
3735       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3736                             originBB);
3737       valueToUse = phiToUse;
3738     }
3739 
3740     condEval.end(CGF);
3741   }
3742 
3743   args.addWriteback(srcLV, temp, valueToUse);
3744   args.add(RValue::get(finalArgument), CRE->getType());
3745 }
3746 
3747 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3748   assert(!StackBase);
3749 
3750   // Save the stack.
3751   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3752   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3753 }
3754 
3755 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3756   if (StackBase) {
3757     // Restore the stack after the call.
3758     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3759     CGF.Builder.CreateCall(F, StackBase);
3760   }
3761 }
3762 
3763 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3764                                           SourceLocation ArgLoc,
3765                                           AbstractCallee AC,
3766                                           unsigned ParmNum) {
3767   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3768                          SanOpts.has(SanitizerKind::NullabilityArg)))
3769     return;
3770 
3771   // The param decl may be missing in a variadic function.
3772   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3773   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3774 
3775   // Prefer the nonnull attribute if it's present.
3776   const NonNullAttr *NNAttr = nullptr;
3777   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3778     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3779 
3780   bool CanCheckNullability = false;
3781   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3782     auto Nullability = PVD->getType()->getNullability(getContext());
3783     CanCheckNullability = Nullability &&
3784                           *Nullability == NullabilityKind::NonNull &&
3785                           PVD->getTypeSourceInfo();
3786   }
3787 
3788   if (!NNAttr && !CanCheckNullability)
3789     return;
3790 
3791   SourceLocation AttrLoc;
3792   SanitizerMask CheckKind;
3793   SanitizerHandler Handler;
3794   if (NNAttr) {
3795     AttrLoc = NNAttr->getLocation();
3796     CheckKind = SanitizerKind::NonnullAttribute;
3797     Handler = SanitizerHandler::NonnullArg;
3798   } else {
3799     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3800     CheckKind = SanitizerKind::NullabilityArg;
3801     Handler = SanitizerHandler::NullabilityArg;
3802   }
3803 
3804   SanitizerScope SanScope(this);
3805   llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
3806   llvm::Constant *StaticData[] = {
3807       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3808       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3809   };
3810   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3811 }
3812 
3813 void CodeGenFunction::EmitCallArgs(
3814     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3815     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3816     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3817   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3818 
3819   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3820   // because arguments are destroyed left to right in the callee. As a special
3821   // case, there are certain language constructs that require left-to-right
3822   // evaluation, and in those cases we consider the evaluation order requirement
3823   // to trump the "destruction order is reverse construction order" guarantee.
3824   bool LeftToRight =
3825       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3826           ? Order == EvaluationOrder::ForceLeftToRight
3827           : Order != EvaluationOrder::ForceRightToLeft;
3828 
3829   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3830                                          RValue EmittedArg) {
3831     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3832       return;
3833     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3834     if (PS == nullptr)
3835       return;
3836 
3837     const auto &Context = getContext();
3838     auto SizeTy = Context.getSizeType();
3839     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3840     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3841     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3842                                                      EmittedArg.getScalarVal(),
3843                                                      PS->isDynamic());
3844     Args.add(RValue::get(V), SizeTy);
3845     // If we're emitting args in reverse, be sure to do so with
3846     // pass_object_size, as well.
3847     if (!LeftToRight)
3848       std::swap(Args.back(), *(&Args.back() - 1));
3849   };
3850 
3851   // Insert a stack save if we're going to need any inalloca args.
3852   bool HasInAllocaArgs = false;
3853   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3854     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3855          I != E && !HasInAllocaArgs; ++I)
3856       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3857     if (HasInAllocaArgs) {
3858       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3859       Args.allocateArgumentMemory(*this);
3860     }
3861   }
3862 
3863   // Evaluate each argument in the appropriate order.
3864   size_t CallArgsStart = Args.size();
3865   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3866     unsigned Idx = LeftToRight ? I : E - I - 1;
3867     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3868     unsigned InitialArgSize = Args.size();
3869     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3870     // the argument and parameter match or the objc method is parameterized.
3871     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3872             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3873                                                 ArgTypes[Idx]) ||
3874             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3875              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3876            "Argument and parameter types don't match");
3877     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3878     // In particular, we depend on it being the last arg in Args, and the
3879     // objectsize bits depend on there only being one arg if !LeftToRight.
3880     assert(InitialArgSize + 1 == Args.size() &&
3881            "The code below depends on only adding one arg per EmitCallArg");
3882     (void)InitialArgSize;
3883     // Since pointer argument are never emitted as LValue, it is safe to emit
3884     // non-null argument check for r-value only.
3885     if (!Args.back().hasLValue()) {
3886       RValue RVArg = Args.back().getKnownRValue();
3887       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3888                           ParamsToSkip + Idx);
3889       // @llvm.objectsize should never have side-effects and shouldn't need
3890       // destruction/cleanups, so we can safely "emit" it after its arg,
3891       // regardless of right-to-leftness
3892       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3893     }
3894   }
3895 
3896   if (!LeftToRight) {
3897     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3898     // IR function.
3899     std::reverse(Args.begin() + CallArgsStart, Args.end());
3900   }
3901 }
3902 
3903 namespace {
3904 
3905 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3906   DestroyUnpassedArg(Address Addr, QualType Ty)
3907       : Addr(Addr), Ty(Ty) {}
3908 
3909   Address Addr;
3910   QualType Ty;
3911 
3912   void Emit(CodeGenFunction &CGF, Flags flags) override {
3913     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3914     if (DtorKind == QualType::DK_cxx_destructor) {
3915       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3916       assert(!Dtor->isTrivial());
3917       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3918                                 /*Delegating=*/false, Addr, Ty);
3919     } else {
3920       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3921     }
3922   }
3923 };
3924 
3925 struct DisableDebugLocationUpdates {
3926   CodeGenFunction &CGF;
3927   bool disabledDebugInfo;
3928   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3929     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3930       CGF.disableDebugInfo();
3931   }
3932   ~DisableDebugLocationUpdates() {
3933     if (disabledDebugInfo)
3934       CGF.enableDebugInfo();
3935   }
3936 };
3937 
3938 } // end anonymous namespace
3939 
3940 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3941   if (!HasLV)
3942     return RV;
3943   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3944   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3945                         LV.isVolatile());
3946   IsUsed = true;
3947   return RValue::getAggregate(Copy.getAddress(CGF));
3948 }
3949 
3950 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3951   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3952   if (!HasLV && RV.isScalar())
3953     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
3954   else if (!HasLV && RV.isComplex())
3955     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3956   else {
3957     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
3958     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3959     // We assume that call args are never copied into subobjects.
3960     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3961                           HasLV ? LV.isVolatileQualified()
3962                                 : RV.isVolatileQualified());
3963   }
3964   IsUsed = true;
3965 }
3966 
3967 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3968                                   QualType type) {
3969   DisableDebugLocationUpdates Dis(*this, E);
3970   if (const ObjCIndirectCopyRestoreExpr *CRE
3971         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3972     assert(getLangOpts().ObjCAutoRefCount);
3973     return emitWritebackArg(*this, args, CRE);
3974   }
3975 
3976   assert(type->isReferenceType() == E->isGLValue() &&
3977          "reference binding to unmaterialized r-value!");
3978 
3979   if (E->isGLValue()) {
3980     assert(E->getObjectKind() == OK_Ordinary);
3981     return args.add(EmitReferenceBindingToExpr(E), type);
3982   }
3983 
3984   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3985 
3986   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3987   // However, we still have to push an EH-only cleanup in case we unwind before
3988   // we make it to the call.
3989   if (HasAggregateEvalKind &&
3990       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3991     // If we're using inalloca, use the argument memory.  Otherwise, use a
3992     // temporary.
3993     AggValueSlot Slot;
3994     if (args.isUsingInAlloca())
3995       Slot = createPlaceholderSlot(*this, type);
3996     else
3997       Slot = CreateAggTemp(type, "agg.tmp");
3998 
3999     bool DestroyedInCallee = true, NeedsEHCleanup = true;
4000     if (const auto *RD = type->getAsCXXRecordDecl())
4001       DestroyedInCallee = RD->hasNonTrivialDestructor();
4002     else
4003       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4004 
4005     if (DestroyedInCallee)
4006       Slot.setExternallyDestructed();
4007 
4008     EmitAggExpr(E, Slot);
4009     RValue RV = Slot.asRValue();
4010     args.add(RV, type);
4011 
4012     if (DestroyedInCallee && NeedsEHCleanup) {
4013       // Create a no-op GEP between the placeholder and the cleanup so we can
4014       // RAUW it successfully.  It also serves as a marker of the first
4015       // instruction where the cleanup is active.
4016       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4017                                               type);
4018       // This unreachable is a temporary marker which will be removed later.
4019       llvm::Instruction *IsActive = Builder.CreateUnreachable();
4020       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
4021     }
4022     return;
4023   }
4024 
4025   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4026       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4027     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4028     assert(L.isSimple());
4029     args.addUncopiedAggregate(L, type);
4030     return;
4031   }
4032 
4033   args.add(EmitAnyExprToTemp(E), type);
4034 }
4035 
4036 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4037   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4038   // implicitly widens null pointer constants that are arguments to varargs
4039   // functions to pointer-sized ints.
4040   if (!getTarget().getTriple().isOSWindows())
4041     return Arg->getType();
4042 
4043   if (Arg->getType()->isIntegerType() &&
4044       getContext().getTypeSize(Arg->getType()) <
4045           getContext().getTargetInfo().getPointerWidth(0) &&
4046       Arg->isNullPointerConstant(getContext(),
4047                                  Expr::NPC_ValueDependentIsNotNull)) {
4048     return getContext().getIntPtrType();
4049   }
4050 
4051   return Arg->getType();
4052 }
4053 
4054 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4055 // optimizer it can aggressively ignore unwind edges.
4056 void
4057 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4058   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4059       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4060     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4061                       CGM.getNoObjCARCExceptionsMetadata());
4062 }
4063 
4064 /// Emits a call to the given no-arguments nounwind runtime function.
4065 llvm::CallInst *
4066 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4067                                          const llvm::Twine &name) {
4068   return EmitNounwindRuntimeCall(callee, None, name);
4069 }
4070 
4071 /// Emits a call to the given nounwind runtime function.
4072 llvm::CallInst *
4073 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4074                                          ArrayRef<llvm::Value *> args,
4075                                          const llvm::Twine &name) {
4076   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4077   call->setDoesNotThrow();
4078   return call;
4079 }
4080 
4081 /// Emits a simple call (never an invoke) to the given no-arguments
4082 /// runtime function.
4083 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4084                                                  const llvm::Twine &name) {
4085   return EmitRuntimeCall(callee, None, name);
4086 }
4087 
4088 // Calls which may throw must have operand bundles indicating which funclet
4089 // they are nested within.
4090 SmallVector<llvm::OperandBundleDef, 1>
4091 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4092   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4093   // There is no need for a funclet operand bundle if we aren't inside a
4094   // funclet.
4095   if (!CurrentFuncletPad)
4096     return BundleList;
4097 
4098   // Skip intrinsics which cannot throw.
4099   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4100   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4101     return BundleList;
4102 
4103   BundleList.emplace_back("funclet", CurrentFuncletPad);
4104   return BundleList;
4105 }
4106 
4107 /// Emits a simple call (never an invoke) to the given runtime function.
4108 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4109                                                  ArrayRef<llvm::Value *> args,
4110                                                  const llvm::Twine &name) {
4111   llvm::CallInst *call = Builder.CreateCall(
4112       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4113   call->setCallingConv(getRuntimeCC());
4114   return call;
4115 }
4116 
4117 /// Emits a call or invoke to the given noreturn runtime function.
4118 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4119     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4120   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4121       getBundlesForFunclet(callee.getCallee());
4122 
4123   if (getInvokeDest()) {
4124     llvm::InvokeInst *invoke =
4125       Builder.CreateInvoke(callee,
4126                            getUnreachableBlock(),
4127                            getInvokeDest(),
4128                            args,
4129                            BundleList);
4130     invoke->setDoesNotReturn();
4131     invoke->setCallingConv(getRuntimeCC());
4132   } else {
4133     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4134     call->setDoesNotReturn();
4135     call->setCallingConv(getRuntimeCC());
4136     Builder.CreateUnreachable();
4137   }
4138 }
4139 
4140 /// Emits a call or invoke instruction to the given nullary runtime function.
4141 llvm::CallBase *
4142 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4143                                          const Twine &name) {
4144   return EmitRuntimeCallOrInvoke(callee, None, name);
4145 }
4146 
4147 /// Emits a call or invoke instruction to the given runtime function.
4148 llvm::CallBase *
4149 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4150                                          ArrayRef<llvm::Value *> args,
4151                                          const Twine &name) {
4152   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4153   call->setCallingConv(getRuntimeCC());
4154   return call;
4155 }
4156 
4157 /// Emits a call or invoke instruction to the given function, depending
4158 /// on the current state of the EH stack.
4159 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4160                                                   ArrayRef<llvm::Value *> Args,
4161                                                   const Twine &Name) {
4162   llvm::BasicBlock *InvokeDest = getInvokeDest();
4163   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4164       getBundlesForFunclet(Callee.getCallee());
4165 
4166   llvm::CallBase *Inst;
4167   if (!InvokeDest)
4168     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4169   else {
4170     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4171     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4172                                 Name);
4173     EmitBlock(ContBB);
4174   }
4175 
4176   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4177   // optimizer it can aggressively ignore unwind edges.
4178   if (CGM.getLangOpts().ObjCAutoRefCount)
4179     AddObjCARCExceptionMetadata(Inst);
4180 
4181   return Inst;
4182 }
4183 
4184 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4185                                                   llvm::Value *New) {
4186   DeferredReplacements.push_back(std::make_pair(Old, New));
4187 }
4188 
4189 namespace {
4190 
4191 /// Specify given \p NewAlign as the alignment of return value attribute. If
4192 /// such attribute already exists, re-set it to the maximal one of two options.
4193 LLVM_NODISCARD llvm::AttributeList
4194 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4195                                 const llvm::AttributeList &Attrs,
4196                                 llvm::Align NewAlign) {
4197   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4198   if (CurAlign >= NewAlign)
4199     return Attrs;
4200   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4201   return Attrs
4202       .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex,
4203                        llvm::Attribute::AttrKind::Alignment)
4204       .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr);
4205 }
4206 
4207 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4208 protected:
4209   CodeGenFunction &CGF;
4210 
4211   /// We do nothing if this is, or becomes, nullptr.
4212   const AlignedAttrTy *AA = nullptr;
4213 
4214   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4215   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4216 
4217   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4218       : CGF(CGF_) {
4219     if (!FuncDecl)
4220       return;
4221     AA = FuncDecl->getAttr<AlignedAttrTy>();
4222   }
4223 
4224 public:
4225   /// If we can, materialize the alignment as an attribute on return value.
4226   LLVM_NODISCARD llvm::AttributeList
4227   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4228     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4229       return Attrs;
4230     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4231     if (!AlignmentCI)
4232       return Attrs;
4233     // We may legitimately have non-power-of-2 alignment here.
4234     // If so, this is UB land, emit it via `@llvm.assume` instead.
4235     if (!AlignmentCI->getValue().isPowerOf2())
4236       return Attrs;
4237     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4238         CGF.getLLVMContext(), Attrs,
4239         llvm::Align(
4240             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4241     AA = nullptr; // We're done. Disallow doing anything else.
4242     return NewAttrs;
4243   }
4244 
4245   /// Emit alignment assumption.
4246   /// This is a general fallback that we take if either there is an offset,
4247   /// or the alignment is variable or we are sanitizing for alignment.
4248   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4249     if (!AA)
4250       return;
4251     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4252                                 AA->getLocation(), Alignment, OffsetCI);
4253     AA = nullptr; // We're done. Disallow doing anything else.
4254   }
4255 };
4256 
4257 /// Helper data structure to emit `AssumeAlignedAttr`.
4258 class AssumeAlignedAttrEmitter final
4259     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4260 public:
4261   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4262       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4263     if (!AA)
4264       return;
4265     // It is guaranteed that the alignment/offset are constants.
4266     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4267     if (Expr *Offset = AA->getOffset()) {
4268       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4269       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4270         OffsetCI = nullptr;
4271     }
4272   }
4273 };
4274 
4275 /// Helper data structure to emit `AllocAlignAttr`.
4276 class AllocAlignAttrEmitter final
4277     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4278 public:
4279   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4280                         const CallArgList &CallArgs)
4281       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4282     if (!AA)
4283       return;
4284     // Alignment may or may not be a constant, and that is okay.
4285     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4286                     .getRValue(CGF)
4287                     .getScalarVal();
4288   }
4289 };
4290 
4291 } // namespace
4292 
4293 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4294                                  const CGCallee &Callee,
4295                                  ReturnValueSlot ReturnValue,
4296                                  const CallArgList &CallArgs,
4297                                  llvm::CallBase **callOrInvoke,
4298                                  SourceLocation Loc) {
4299   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4300 
4301   assert(Callee.isOrdinary() || Callee.isVirtual());
4302 
4303   // Handle struct-return functions by passing a pointer to the
4304   // location that we would like to return into.
4305   QualType RetTy = CallInfo.getReturnType();
4306   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4307 
4308   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4309 
4310   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4311   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4312     // We can only guarantee that a function is called from the correct
4313     // context/function based on the appropriate target attributes,
4314     // so only check in the case where we have both always_inline and target
4315     // since otherwise we could be making a conditional call after a check for
4316     // the proper cpu features (and it won't cause code generation issues due to
4317     // function based code generation).
4318     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4319         TargetDecl->hasAttr<TargetAttr>())
4320       checkTargetFeatures(Loc, FD);
4321 
4322     // Some architectures (such as x86-64) have the ABI changed based on
4323     // attribute-target/features. Give them a chance to diagnose.
4324     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4325         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4326   }
4327 
4328 #ifndef NDEBUG
4329   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4330     // For an inalloca varargs function, we don't expect CallInfo to match the
4331     // function pointer's type, because the inalloca struct a will have extra
4332     // fields in it for the varargs parameters.  Code later in this function
4333     // bitcasts the function pointer to the type derived from CallInfo.
4334     //
4335     // In other cases, we assert that the types match up (until pointers stop
4336     // having pointee types).
4337     llvm::Type *TypeFromVal;
4338     if (Callee.isVirtual())
4339       TypeFromVal = Callee.getVirtualFunctionType();
4340     else
4341       TypeFromVal =
4342           Callee.getFunctionPointer()->getType()->getPointerElementType();
4343     assert(IRFuncTy == TypeFromVal);
4344   }
4345 #endif
4346 
4347   // 1. Set up the arguments.
4348 
4349   // If we're using inalloca, insert the allocation after the stack save.
4350   // FIXME: Do this earlier rather than hacking it in here!
4351   Address ArgMemory = Address::invalid();
4352   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4353     const llvm::DataLayout &DL = CGM.getDataLayout();
4354     llvm::Instruction *IP = CallArgs.getStackBase();
4355     llvm::AllocaInst *AI;
4356     if (IP) {
4357       IP = IP->getNextNode();
4358       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4359                                 "argmem", IP);
4360     } else {
4361       AI = CreateTempAlloca(ArgStruct, "argmem");
4362     }
4363     auto Align = CallInfo.getArgStructAlignment();
4364     AI->setAlignment(Align.getAsAlign());
4365     AI->setUsedWithInAlloca(true);
4366     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4367     ArgMemory = Address(AI, Align);
4368   }
4369 
4370   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4371   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4372 
4373   // If the call returns a temporary with struct return, create a temporary
4374   // alloca to hold the result, unless one is given to us.
4375   Address SRetPtr = Address::invalid();
4376   Address SRetAlloca = Address::invalid();
4377   llvm::Value *UnusedReturnSizePtr = nullptr;
4378   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4379     if (!ReturnValue.isNull()) {
4380       SRetPtr = ReturnValue.getValue();
4381     } else {
4382       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4383       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4384         uint64_t size =
4385             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4386         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4387       }
4388     }
4389     if (IRFunctionArgs.hasSRetArg()) {
4390       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4391     } else if (RetAI.isInAlloca()) {
4392       Address Addr =
4393           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4394       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4395     }
4396   }
4397 
4398   Address swiftErrorTemp = Address::invalid();
4399   Address swiftErrorArg = Address::invalid();
4400 
4401   // When passing arguments using temporary allocas, we need to add the
4402   // appropriate lifetime markers. This vector keeps track of all the lifetime
4403   // markers that need to be ended right after the call.
4404   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4405 
4406   // Translate all of the arguments as necessary to match the IR lowering.
4407   assert(CallInfo.arg_size() == CallArgs.size() &&
4408          "Mismatch between function signature & arguments.");
4409   unsigned ArgNo = 0;
4410   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4411   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4412        I != E; ++I, ++info_it, ++ArgNo) {
4413     const ABIArgInfo &ArgInfo = info_it->info;
4414 
4415     // Insert a padding argument to ensure proper alignment.
4416     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4417       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4418           llvm::UndefValue::get(ArgInfo.getPaddingType());
4419 
4420     unsigned FirstIRArg, NumIRArgs;
4421     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4422 
4423     switch (ArgInfo.getKind()) {
4424     case ABIArgInfo::InAlloca: {
4425       assert(NumIRArgs == 0);
4426       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4427       if (I->isAggregate()) {
4428         Address Addr = I->hasLValue()
4429                            ? I->getKnownLValue().getAddress(*this)
4430                            : I->getKnownRValue().getAggregateAddress();
4431         llvm::Instruction *Placeholder =
4432             cast<llvm::Instruction>(Addr.getPointer());
4433 
4434         if (!ArgInfo.getInAllocaIndirect()) {
4435           // Replace the placeholder with the appropriate argument slot GEP.
4436           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4437           Builder.SetInsertPoint(Placeholder);
4438           Addr = Builder.CreateStructGEP(ArgMemory,
4439                                          ArgInfo.getInAllocaFieldIndex());
4440           Builder.restoreIP(IP);
4441         } else {
4442           // For indirect things such as overaligned structs, replace the
4443           // placeholder with a regular aggregate temporary alloca. Store the
4444           // address of this alloca into the struct.
4445           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4446           Address ArgSlot = Builder.CreateStructGEP(
4447               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4448           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4449         }
4450         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4451       } else if (ArgInfo.getInAllocaIndirect()) {
4452         // Make a temporary alloca and store the address of it into the argument
4453         // struct.
4454         Address Addr = CreateMemTempWithoutCast(
4455             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4456             "indirect-arg-temp");
4457         I->copyInto(*this, Addr);
4458         Address ArgSlot =
4459             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4460         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4461       } else {
4462         // Store the RValue into the argument struct.
4463         Address Addr =
4464             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4465         unsigned AS = Addr.getType()->getPointerAddressSpace();
4466         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4467         // There are some cases where a trivial bitcast is not avoidable.  The
4468         // definition of a type later in a translation unit may change it's type
4469         // from {}* to (%struct.foo*)*.
4470         if (Addr.getType() != MemType)
4471           Addr = Builder.CreateBitCast(Addr, MemType);
4472         I->copyInto(*this, Addr);
4473       }
4474       break;
4475     }
4476 
4477     case ABIArgInfo::Indirect:
4478     case ABIArgInfo::IndirectAliased: {
4479       assert(NumIRArgs == 1);
4480       if (!I->isAggregate()) {
4481         // Make a temporary alloca to pass the argument.
4482         Address Addr = CreateMemTempWithoutCast(
4483             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4484         IRCallArgs[FirstIRArg] = Addr.getPointer();
4485 
4486         I->copyInto(*this, Addr);
4487       } else {
4488         // We want to avoid creating an unnecessary temporary+copy here;
4489         // however, we need one in three cases:
4490         // 1. If the argument is not byval, and we are required to copy the
4491         //    source.  (This case doesn't occur on any common architecture.)
4492         // 2. If the argument is byval, RV is not sufficiently aligned, and
4493         //    we cannot force it to be sufficiently aligned.
4494         // 3. If the argument is byval, but RV is not located in default
4495         //    or alloca address space.
4496         Address Addr = I->hasLValue()
4497                            ? I->getKnownLValue().getAddress(*this)
4498                            : I->getKnownRValue().getAggregateAddress();
4499         llvm::Value *V = Addr.getPointer();
4500         CharUnits Align = ArgInfo.getIndirectAlign();
4501         const llvm::DataLayout *TD = &CGM.getDataLayout();
4502 
4503         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4504                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4505                     TD->getAllocaAddrSpace()) &&
4506                "indirect argument must be in alloca address space");
4507 
4508         bool NeedCopy = false;
4509 
4510         if (Addr.getAlignment() < Align &&
4511             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4512                 Align.getAsAlign()) {
4513           NeedCopy = true;
4514         } else if (I->hasLValue()) {
4515           auto LV = I->getKnownLValue();
4516           auto AS = LV.getAddressSpace();
4517 
4518           if (!ArgInfo.getIndirectByVal() ||
4519               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4520             NeedCopy = true;
4521           }
4522           if (!getLangOpts().OpenCL) {
4523             if ((ArgInfo.getIndirectByVal() &&
4524                 (AS != LangAS::Default &&
4525                  AS != CGM.getASTAllocaAddressSpace()))) {
4526               NeedCopy = true;
4527             }
4528           }
4529           // For OpenCL even if RV is located in default or alloca address space
4530           // we don't want to perform address space cast for it.
4531           else if ((ArgInfo.getIndirectByVal() &&
4532                     Addr.getType()->getAddressSpace() != IRFuncTy->
4533                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4534             NeedCopy = true;
4535           }
4536         }
4537 
4538         if (NeedCopy) {
4539           // Create an aligned temporary, and copy to it.
4540           Address AI = CreateMemTempWithoutCast(
4541               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4542           IRCallArgs[FirstIRArg] = AI.getPointer();
4543 
4544           // Emit lifetime markers for the temporary alloca.
4545           uint64_t ByvalTempElementSize =
4546               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4547           llvm::Value *LifetimeSize =
4548               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4549 
4550           // Add cleanup code to emit the end lifetime marker after the call.
4551           if (LifetimeSize) // In case we disabled lifetime markers.
4552             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4553 
4554           // Generate the copy.
4555           I->copyInto(*this, AI);
4556         } else {
4557           // Skip the extra memcpy call.
4558           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4559               CGM.getDataLayout().getAllocaAddrSpace());
4560           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4561               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4562               true);
4563         }
4564       }
4565       break;
4566     }
4567 
4568     case ABIArgInfo::Ignore:
4569       assert(NumIRArgs == 0);
4570       break;
4571 
4572     case ABIArgInfo::Extend:
4573     case ABIArgInfo::Direct: {
4574       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4575           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4576           ArgInfo.getDirectOffset() == 0) {
4577         assert(NumIRArgs == 1);
4578         llvm::Value *V;
4579         if (!I->isAggregate())
4580           V = I->getKnownRValue().getScalarVal();
4581         else
4582           V = Builder.CreateLoad(
4583               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4584                              : I->getKnownRValue().getAggregateAddress());
4585 
4586         // Implement swifterror by copying into a new swifterror argument.
4587         // We'll write back in the normal path out of the call.
4588         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4589               == ParameterABI::SwiftErrorResult) {
4590           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4591 
4592           QualType pointeeTy = I->Ty->getPointeeType();
4593           swiftErrorArg =
4594             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4595 
4596           swiftErrorTemp =
4597             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4598           V = swiftErrorTemp.getPointer();
4599           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4600 
4601           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4602           Builder.CreateStore(errorValue, swiftErrorTemp);
4603         }
4604 
4605         // We might have to widen integers, but we should never truncate.
4606         if (ArgInfo.getCoerceToType() != V->getType() &&
4607             V->getType()->isIntegerTy())
4608           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4609 
4610         // If the argument doesn't match, perform a bitcast to coerce it.  This
4611         // can happen due to trivial type mismatches.
4612         if (FirstIRArg < IRFuncTy->getNumParams() &&
4613             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4614           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4615 
4616         IRCallArgs[FirstIRArg] = V;
4617         break;
4618       }
4619 
4620       // FIXME: Avoid the conversion through memory if possible.
4621       Address Src = Address::invalid();
4622       if (!I->isAggregate()) {
4623         Src = CreateMemTemp(I->Ty, "coerce");
4624         I->copyInto(*this, Src);
4625       } else {
4626         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4627                              : I->getKnownRValue().getAggregateAddress();
4628       }
4629 
4630       // If the value is offset in memory, apply the offset now.
4631       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4632 
4633       // Fast-isel and the optimizer generally like scalar values better than
4634       // FCAs, so we flatten them if this is safe to do for this argument.
4635       llvm::StructType *STy =
4636             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4637       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4638         llvm::Type *SrcTy = Src.getElementType();
4639         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4640         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4641 
4642         // If the source type is smaller than the destination type of the
4643         // coerce-to logic, copy the source value into a temp alloca the size
4644         // of the destination type to allow loading all of it. The bits past
4645         // the source value are left undef.
4646         if (SrcSize < DstSize) {
4647           Address TempAlloca
4648             = CreateTempAlloca(STy, Src.getAlignment(),
4649                                Src.getName() + ".coerce");
4650           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4651           Src = TempAlloca;
4652         } else {
4653           Src = Builder.CreateBitCast(Src,
4654                                       STy->getPointerTo(Src.getAddressSpace()));
4655         }
4656 
4657         assert(NumIRArgs == STy->getNumElements());
4658         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4659           Address EltPtr = Builder.CreateStructGEP(Src, i);
4660           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4661           IRCallArgs[FirstIRArg + i] = LI;
4662         }
4663       } else {
4664         // In the simple case, just pass the coerced loaded value.
4665         assert(NumIRArgs == 1);
4666         llvm::Value *Load =
4667             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4668 
4669         if (CallInfo.isCmseNSCall()) {
4670           // For certain parameter types, clear padding bits, as they may reveal
4671           // sensitive information.
4672           // Small struct/union types are passed as integer arrays.
4673           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
4674           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
4675             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
4676         }
4677         IRCallArgs[FirstIRArg] = Load;
4678       }
4679 
4680       break;
4681     }
4682 
4683     case ABIArgInfo::CoerceAndExpand: {
4684       auto coercionType = ArgInfo.getCoerceAndExpandType();
4685       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4686 
4687       llvm::Value *tempSize = nullptr;
4688       Address addr = Address::invalid();
4689       Address AllocaAddr = Address::invalid();
4690       if (I->isAggregate()) {
4691         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4692                               : I->getKnownRValue().getAggregateAddress();
4693 
4694       } else {
4695         RValue RV = I->getKnownRValue();
4696         assert(RV.isScalar()); // complex should always just be direct
4697 
4698         llvm::Type *scalarType = RV.getScalarVal()->getType();
4699         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4700         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4701 
4702         // Materialize to a temporary.
4703         addr = CreateTempAlloca(
4704             RV.getScalarVal()->getType(),
4705             CharUnits::fromQuantity(std::max(
4706                 (unsigned)layout->getAlignment().value(), scalarAlign)),
4707             "tmp",
4708             /*ArraySize=*/nullptr, &AllocaAddr);
4709         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4710 
4711         Builder.CreateStore(RV.getScalarVal(), addr);
4712       }
4713 
4714       addr = Builder.CreateElementBitCast(addr, coercionType);
4715 
4716       unsigned IRArgPos = FirstIRArg;
4717       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4718         llvm::Type *eltType = coercionType->getElementType(i);
4719         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4720         Address eltAddr = Builder.CreateStructGEP(addr, i);
4721         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4722         IRCallArgs[IRArgPos++] = elt;
4723       }
4724       assert(IRArgPos == FirstIRArg + NumIRArgs);
4725 
4726       if (tempSize) {
4727         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4728       }
4729 
4730       break;
4731     }
4732 
4733     case ABIArgInfo::Expand: {
4734       unsigned IRArgPos = FirstIRArg;
4735       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4736       assert(IRArgPos == FirstIRArg + NumIRArgs);
4737       break;
4738     }
4739     }
4740   }
4741 
4742   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4743   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4744 
4745   // If we're using inalloca, set up that argument.
4746   if (ArgMemory.isValid()) {
4747     llvm::Value *Arg = ArgMemory.getPointer();
4748     if (CallInfo.isVariadic()) {
4749       // When passing non-POD arguments by value to variadic functions, we will
4750       // end up with a variadic prototype and an inalloca call site.  In such
4751       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4752       // the callee.
4753       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4754       CalleePtr =
4755           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4756     } else {
4757       llvm::Type *LastParamTy =
4758           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4759       if (Arg->getType() != LastParamTy) {
4760 #ifndef NDEBUG
4761         // Assert that these structs have equivalent element types.
4762         llvm::StructType *FullTy = CallInfo.getArgStruct();
4763         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4764             cast<llvm::PointerType>(LastParamTy)->getElementType());
4765         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4766         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4767                                                 DE = DeclaredTy->element_end(),
4768                                                 FI = FullTy->element_begin();
4769              DI != DE; ++DI, ++FI)
4770           assert(*DI == *FI);
4771 #endif
4772         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4773       }
4774     }
4775     assert(IRFunctionArgs.hasInallocaArg());
4776     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4777   }
4778 
4779   // 2. Prepare the function pointer.
4780 
4781   // If the callee is a bitcast of a non-variadic function to have a
4782   // variadic function pointer type, check to see if we can remove the
4783   // bitcast.  This comes up with unprototyped functions.
4784   //
4785   // This makes the IR nicer, but more importantly it ensures that we
4786   // can inline the function at -O0 if it is marked always_inline.
4787   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4788                                    llvm::Value *Ptr) -> llvm::Function * {
4789     if (!CalleeFT->isVarArg())
4790       return nullptr;
4791 
4792     // Get underlying value if it's a bitcast
4793     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4794       if (CE->getOpcode() == llvm::Instruction::BitCast)
4795         Ptr = CE->getOperand(0);
4796     }
4797 
4798     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4799     if (!OrigFn)
4800       return nullptr;
4801 
4802     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4803 
4804     // If the original type is variadic, or if any of the component types
4805     // disagree, we cannot remove the cast.
4806     if (OrigFT->isVarArg() ||
4807         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4808         OrigFT->getReturnType() != CalleeFT->getReturnType())
4809       return nullptr;
4810 
4811     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4812       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4813         return nullptr;
4814 
4815     return OrigFn;
4816   };
4817 
4818   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4819     CalleePtr = OrigFn;
4820     IRFuncTy = OrigFn->getFunctionType();
4821   }
4822 
4823   // 3. Perform the actual call.
4824 
4825   // Deactivate any cleanups that we're supposed to do immediately before
4826   // the call.
4827   if (!CallArgs.getCleanupsToDeactivate().empty())
4828     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4829 
4830   // Assert that the arguments we computed match up.  The IR verifier
4831   // will catch this, but this is a common enough source of problems
4832   // during IRGen changes that it's way better for debugging to catch
4833   // it ourselves here.
4834 #ifndef NDEBUG
4835   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4836   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4837     // Inalloca argument can have different type.
4838     if (IRFunctionArgs.hasInallocaArg() &&
4839         i == IRFunctionArgs.getInallocaArgNo())
4840       continue;
4841     if (i < IRFuncTy->getNumParams())
4842       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4843   }
4844 #endif
4845 
4846   // Update the largest vector width if any arguments have vector types.
4847   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4848     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4849       LargestVectorWidth =
4850           std::max((uint64_t)LargestVectorWidth,
4851                    VT->getPrimitiveSizeInBits().getKnownMinSize());
4852   }
4853 
4854   // Compute the calling convention and attributes.
4855   unsigned CallingConv;
4856   llvm::AttributeList Attrs;
4857   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4858                              Callee.getAbstractInfo(), Attrs, CallingConv,
4859                              /*AttrOnCallSite=*/true);
4860 
4861   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4862     if (FD->hasAttr<StrictFPAttr>())
4863       // All calls within a strictfp function are marked strictfp
4864       Attrs =
4865         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4866                            llvm::Attribute::StrictFP);
4867 
4868   // Add call-site nomerge attribute if exists.
4869   if (InNoMergeAttributedStmt)
4870     Attrs =
4871       Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4872                          llvm::Attribute::NoMerge);
4873 
4874   // Apply some call-site-specific attributes.
4875   // TODO: work this into building the attribute set.
4876 
4877   // Apply always_inline to all calls within flatten functions.
4878   // FIXME: should this really take priority over __try, below?
4879   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4880       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
4881     Attrs =
4882         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4883                            llvm::Attribute::AlwaysInline);
4884   }
4885 
4886   // Disable inlining inside SEH __try blocks.
4887   if (isSEHTryScope()) {
4888     Attrs =
4889         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4890                            llvm::Attribute::NoInline);
4891   }
4892 
4893   // Decide whether to use a call or an invoke.
4894   bool CannotThrow;
4895   if (currentFunctionUsesSEHTry()) {
4896     // SEH cares about asynchronous exceptions, so everything can "throw."
4897     CannotThrow = false;
4898   } else if (isCleanupPadScope() &&
4899              EHPersonality::get(*this).isMSVCXXPersonality()) {
4900     // The MSVC++ personality will implicitly terminate the program if an
4901     // exception is thrown during a cleanup outside of a try/catch.
4902     // We don't need to model anything in IR to get this behavior.
4903     CannotThrow = true;
4904   } else {
4905     // Otherwise, nounwind call sites will never throw.
4906     CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind);
4907 
4908     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
4909       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
4910         CannotThrow = true;
4911   }
4912 
4913   // If we made a temporary, be sure to clean up after ourselves. Note that we
4914   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4915   // pop this cleanup later on. Being eager about this is OK, since this
4916   // temporary is 'invisible' outside of the callee.
4917   if (UnusedReturnSizePtr)
4918     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4919                                          UnusedReturnSizePtr);
4920 
4921   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4922 
4923   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4924       getBundlesForFunclet(CalleePtr);
4925 
4926   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4927     if (FD->hasAttr<StrictFPAttr>())
4928       // All calls within a strictfp function are marked strictfp
4929       Attrs =
4930         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4931                            llvm::Attribute::StrictFP);
4932 
4933   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
4934   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4935 
4936   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
4937   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4938 
4939   // Emit the actual call/invoke instruction.
4940   llvm::CallBase *CI;
4941   if (!InvokeDest) {
4942     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
4943   } else {
4944     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4945     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
4946                               BundleList);
4947     EmitBlock(Cont);
4948   }
4949   if (callOrInvoke)
4950     *callOrInvoke = CI;
4951 
4952   // If this is within a function that has the guard(nocf) attribute and is an
4953   // indirect call, add the "guard_nocf" attribute to this call to indicate that
4954   // Control Flow Guard checks should not be added, even if the call is inlined.
4955   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
4956     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
4957       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
4958         Attrs = Attrs.addAttribute(
4959             getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
4960     }
4961   }
4962 
4963   // Apply the attributes and calling convention.
4964   CI->setAttributes(Attrs);
4965   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4966 
4967   // Apply various metadata.
4968 
4969   if (!CI->getType()->isVoidTy())
4970     CI->setName("call");
4971 
4972   // Update largest vector width from the return type.
4973   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4974     LargestVectorWidth =
4975         std::max((uint64_t)LargestVectorWidth,
4976                  VT->getPrimitiveSizeInBits().getKnownMinSize());
4977 
4978   // Insert instrumentation or attach profile metadata at indirect call sites.
4979   // For more details, see the comment before the definition of
4980   // IPVK_IndirectCallTarget in InstrProfData.inc.
4981   if (!CI->getCalledFunction())
4982     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4983                      CI, CalleePtr);
4984 
4985   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4986   // optimizer it can aggressively ignore unwind edges.
4987   if (CGM.getLangOpts().ObjCAutoRefCount)
4988     AddObjCARCExceptionMetadata(CI);
4989 
4990   // Suppress tail calls if requested.
4991   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4992     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4993       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4994   }
4995 
4996   // Add metadata for calls to MSAllocator functions
4997   if (getDebugInfo() && TargetDecl &&
4998       TargetDecl->hasAttr<MSAllocatorAttr>())
4999     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5000 
5001   // 4. Finish the call.
5002 
5003   // If the call doesn't return, finish the basic block and clear the
5004   // insertion point; this allows the rest of IRGen to discard
5005   // unreachable code.
5006   if (CI->doesNotReturn()) {
5007     if (UnusedReturnSizePtr)
5008       PopCleanupBlock();
5009 
5010     // Strip away the noreturn attribute to better diagnose unreachable UB.
5011     if (SanOpts.has(SanitizerKind::Unreachable)) {
5012       // Also remove from function since CallBase::hasFnAttr additionally checks
5013       // attributes of the called function.
5014       if (auto *F = CI->getCalledFunction())
5015         F->removeFnAttr(llvm::Attribute::NoReturn);
5016       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
5017                           llvm::Attribute::NoReturn);
5018 
5019       // Avoid incompatibility with ASan which relies on the `noreturn`
5020       // attribute to insert handler calls.
5021       if (SanOpts.hasOneOf(SanitizerKind::Address |
5022                            SanitizerKind::KernelAddress)) {
5023         SanitizerScope SanScope(this);
5024         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5025         Builder.SetInsertPoint(CI);
5026         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5027         llvm::FunctionCallee Fn =
5028             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5029         EmitNounwindRuntimeCall(Fn);
5030       }
5031     }
5032 
5033     EmitUnreachable(Loc);
5034     Builder.ClearInsertionPoint();
5035 
5036     // FIXME: For now, emit a dummy basic block because expr emitters in
5037     // generally are not ready to handle emitting expressions at unreachable
5038     // points.
5039     EnsureInsertPoint();
5040 
5041     // Return a reasonable RValue.
5042     return GetUndefRValue(RetTy);
5043   }
5044 
5045   // Perform the swifterror writeback.
5046   if (swiftErrorTemp.isValid()) {
5047     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5048     Builder.CreateStore(errorResult, swiftErrorArg);
5049   }
5050 
5051   // Emit any call-associated writebacks immediately.  Arguably this
5052   // should happen after any return-value munging.
5053   if (CallArgs.hasWritebacks())
5054     emitWritebacks(*this, CallArgs);
5055 
5056   // The stack cleanup for inalloca arguments has to run out of the normal
5057   // lexical order, so deactivate it and run it manually here.
5058   CallArgs.freeArgumentMemory(*this);
5059 
5060   // Extract the return value.
5061   RValue Ret = [&] {
5062     switch (RetAI.getKind()) {
5063     case ABIArgInfo::CoerceAndExpand: {
5064       auto coercionType = RetAI.getCoerceAndExpandType();
5065 
5066       Address addr = SRetPtr;
5067       addr = Builder.CreateElementBitCast(addr, coercionType);
5068 
5069       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5070       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5071 
5072       unsigned unpaddedIndex = 0;
5073       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5074         llvm::Type *eltType = coercionType->getElementType(i);
5075         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5076         Address eltAddr = Builder.CreateStructGEP(addr, i);
5077         llvm::Value *elt = CI;
5078         if (requiresExtract)
5079           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5080         else
5081           assert(unpaddedIndex == 0);
5082         Builder.CreateStore(elt, eltAddr);
5083       }
5084       // FALLTHROUGH
5085       LLVM_FALLTHROUGH;
5086     }
5087 
5088     case ABIArgInfo::InAlloca:
5089     case ABIArgInfo::Indirect: {
5090       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5091       if (UnusedReturnSizePtr)
5092         PopCleanupBlock();
5093       return ret;
5094     }
5095 
5096     case ABIArgInfo::Ignore:
5097       // If we are ignoring an argument that had a result, make sure to
5098       // construct the appropriate return value for our caller.
5099       return GetUndefRValue(RetTy);
5100 
5101     case ABIArgInfo::Extend:
5102     case ABIArgInfo::Direct: {
5103       llvm::Type *RetIRTy = ConvertType(RetTy);
5104       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5105         switch (getEvaluationKind(RetTy)) {
5106         case TEK_Complex: {
5107           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5108           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5109           return RValue::getComplex(std::make_pair(Real, Imag));
5110         }
5111         case TEK_Aggregate: {
5112           Address DestPtr = ReturnValue.getValue();
5113           bool DestIsVolatile = ReturnValue.isVolatile();
5114 
5115           if (!DestPtr.isValid()) {
5116             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5117             DestIsVolatile = false;
5118           }
5119           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5120           return RValue::getAggregate(DestPtr);
5121         }
5122         case TEK_Scalar: {
5123           // If the argument doesn't match, perform a bitcast to coerce it.  This
5124           // can happen due to trivial type mismatches.
5125           llvm::Value *V = CI;
5126           if (V->getType() != RetIRTy)
5127             V = Builder.CreateBitCast(V, RetIRTy);
5128           return RValue::get(V);
5129         }
5130         }
5131         llvm_unreachable("bad evaluation kind");
5132       }
5133 
5134       Address DestPtr = ReturnValue.getValue();
5135       bool DestIsVolatile = ReturnValue.isVolatile();
5136 
5137       if (!DestPtr.isValid()) {
5138         DestPtr = CreateMemTemp(RetTy, "coerce");
5139         DestIsVolatile = false;
5140       }
5141 
5142       // If the value is offset in memory, apply the offset now.
5143       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5144       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5145 
5146       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5147     }
5148 
5149     case ABIArgInfo::Expand:
5150     case ABIArgInfo::IndirectAliased:
5151       llvm_unreachable("Invalid ABI kind for return argument");
5152     }
5153 
5154     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5155   } ();
5156 
5157   // Emit the assume_aligned check on the return value.
5158   if (Ret.isScalar() && TargetDecl) {
5159     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5160     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5161   }
5162 
5163   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5164   // we can't use the full cleanup mechanism.
5165   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5166     LifetimeEnd.Emit(*this, /*Flags=*/{});
5167 
5168   if (!ReturnValue.isExternallyDestructed() &&
5169       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5170     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5171                 RetTy);
5172 
5173   return Ret;
5174 }
5175 
5176 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5177   if (isVirtual()) {
5178     const CallExpr *CE = getVirtualCallExpr();
5179     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5180         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5181         CE ? CE->getBeginLoc() : SourceLocation());
5182   }
5183 
5184   return *this;
5185 }
5186 
5187 /* VarArg handling */
5188 
5189 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5190   VAListAddr = VE->isMicrosoftABI()
5191                  ? EmitMSVAListRef(VE->getSubExpr())
5192                  : EmitVAListRef(VE->getSubExpr());
5193   QualType Ty = VE->getType();
5194   if (VE->isMicrosoftABI())
5195     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5196   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5197 }
5198