1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "CGCXXABI.h"
17 #include "ABIInfo.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/Attributes.h"
26 #include "llvm/Support/CallSite.h"
27 #include "llvm/Target/TargetData.h"
28 #include "llvm/InlineAsm.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 using namespace clang;
31 using namespace CodeGen;
32 
33 /***/
34 
35 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
36   switch (CC) {
37   default: return llvm::CallingConv::C;
38   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
39   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
40   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
41   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
42   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
43   // TODO: add support for CC_X86Pascal to llvm
44   }
45 }
46 
47 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
48 /// qualification.
49 /// FIXME: address space qualification?
50 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
51   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
52   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
53 }
54 
55 /// Returns the canonical formal type of the given C++ method.
56 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
57   return MD->getType()->getCanonicalTypeUnqualified()
58            .getAs<FunctionProtoType>();
59 }
60 
61 /// Returns the "extra-canonicalized" return type, which discards
62 /// qualifiers on the return type.  Codegen doesn't care about them,
63 /// and it makes ABI code a little easier to be able to assume that
64 /// all parameter and return types are top-level unqualified.
65 static CanQualType GetReturnType(QualType RetTy) {
66   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
67 }
68 
69 const CGFunctionInfo &
70 CodeGenTypes::getFunctionInfo(CanQual<FunctionNoProtoType> FTNP) {
71   return getFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
72                          SmallVector<CanQualType, 16>(),
73                          FTNP->getExtInfo());
74 }
75 
76 /// \param Args - contains any initial parameters besides those
77 ///   in the formal type
78 static const CGFunctionInfo &getFunctionInfo(CodeGenTypes &CGT,
79                                   SmallVectorImpl<CanQualType> &ArgTys,
80                                              CanQual<FunctionProtoType> FTP) {
81   // FIXME: Kill copy.
82   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
83     ArgTys.push_back(FTP->getArgType(i));
84   CanQualType ResTy = FTP->getResultType().getUnqualifiedType();
85   return CGT.getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
86 }
87 
88 const CGFunctionInfo &
89 CodeGenTypes::getFunctionInfo(CanQual<FunctionProtoType> FTP) {
90   SmallVector<CanQualType, 16> ArgTys;
91   return ::getFunctionInfo(*this, ArgTys, FTP);
92 }
93 
94 static CallingConv getCallingConventionForDecl(const Decl *D) {
95   // Set the appropriate calling convention for the Function.
96   if (D->hasAttr<StdCallAttr>())
97     return CC_X86StdCall;
98 
99   if (D->hasAttr<FastCallAttr>())
100     return CC_X86FastCall;
101 
102   if (D->hasAttr<ThisCallAttr>())
103     return CC_X86ThisCall;
104 
105   if (D->hasAttr<PascalAttr>())
106     return CC_X86Pascal;
107 
108   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
109     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
110 
111   return CC_C;
112 }
113 
114 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXRecordDecl *RD,
115                                                  const FunctionProtoType *FTP) {
116   SmallVector<CanQualType, 16> ArgTys;
117 
118   // Add the 'this' pointer.
119   ArgTys.push_back(GetThisType(Context, RD));
120 
121   return ::getFunctionInfo(*this, ArgTys,
122               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
123 }
124 
125 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) {
126   SmallVector<CanQualType, 16> ArgTys;
127 
128   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
129   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
130 
131   // Add the 'this' pointer unless this is a static method.
132   if (MD->isInstance())
133     ArgTys.push_back(GetThisType(Context, MD->getParent()));
134 
135   return ::getFunctionInfo(*this, ArgTys, GetFormalType(MD));
136 }
137 
138 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXConstructorDecl *D,
139                                                     CXXCtorType Type) {
140   SmallVector<CanQualType, 16> ArgTys;
141   ArgTys.push_back(GetThisType(Context, D->getParent()));
142   CanQualType ResTy = Context.VoidTy;
143 
144   TheCXXABI.BuildConstructorSignature(D, Type, ResTy, ArgTys);
145 
146   CanQual<FunctionProtoType> FTP = GetFormalType(D);
147 
148   // Add the formal parameters.
149   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
150     ArgTys.push_back(FTP->getArgType(i));
151 
152   return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
153 }
154 
155 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXDestructorDecl *D,
156                                                     CXXDtorType Type) {
157   SmallVector<CanQualType, 2> ArgTys;
158   ArgTys.push_back(GetThisType(Context, D->getParent()));
159   CanQualType ResTy = Context.VoidTy;
160 
161   TheCXXABI.BuildDestructorSignature(D, Type, ResTy, ArgTys);
162 
163   CanQual<FunctionProtoType> FTP = GetFormalType(D);
164   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
165 
166   return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo());
167 }
168 
169 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) {
170   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
171     if (MD->isInstance())
172       return getFunctionInfo(MD);
173 
174   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
175   assert(isa<FunctionType>(FTy));
176   if (isa<FunctionNoProtoType>(FTy))
177     return getFunctionInfo(FTy.getAs<FunctionNoProtoType>());
178   assert(isa<FunctionProtoType>(FTy));
179   return getFunctionInfo(FTy.getAs<FunctionProtoType>());
180 }
181 
182 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) {
183   SmallVector<CanQualType, 16> ArgTys;
184   ArgTys.push_back(Context.getCanonicalParamType(MD->getSelfDecl()->getType()));
185   ArgTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
186   // FIXME: Kill copy?
187   for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
188          e = MD->param_end(); i != e; ++i) {
189     ArgTys.push_back(Context.getCanonicalParamType((*i)->getType()));
190   }
191 
192   FunctionType::ExtInfo einfo;
193   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
194 
195   if (getContext().getLangOptions().ObjCAutoRefCount &&
196       MD->hasAttr<NSReturnsRetainedAttr>())
197     einfo = einfo.withProducesResult(true);
198 
199   return getFunctionInfo(GetReturnType(MD->getResultType()), ArgTys, einfo);
200 }
201 
202 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(GlobalDecl GD) {
203   // FIXME: Do we need to handle ObjCMethodDecl?
204   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
205 
206   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
207     return getFunctionInfo(CD, GD.getCtorType());
208 
209   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
210     return getFunctionInfo(DD, GD.getDtorType());
211 
212   return getFunctionInfo(FD);
213 }
214 
215 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
216                                                     const CallArgList &Args,
217                                             const FunctionType::ExtInfo &Info) {
218   // FIXME: Kill copy.
219   SmallVector<CanQualType, 16> ArgTys;
220   for (CallArgList::const_iterator i = Args.begin(), e = Args.end();
221        i != e; ++i)
222     ArgTys.push_back(Context.getCanonicalParamType(i->Ty));
223   return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info);
224 }
225 
226 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy,
227                                                     const FunctionArgList &Args,
228                                             const FunctionType::ExtInfo &Info) {
229   // FIXME: Kill copy.
230   SmallVector<CanQualType, 16> ArgTys;
231   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
232        i != e; ++i)
233     ArgTys.push_back(Context.getCanonicalParamType((*i)->getType()));
234   return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info);
235 }
236 
237 const CGFunctionInfo &CodeGenTypes::getNullaryFunctionInfo() {
238   SmallVector<CanQualType, 1> args;
239   return getFunctionInfo(getContext().VoidTy, args, FunctionType::ExtInfo());
240 }
241 
242 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(CanQualType ResTy,
243                            const SmallVectorImpl<CanQualType> &ArgTys,
244                                             const FunctionType::ExtInfo &Info) {
245 #ifndef NDEBUG
246   for (SmallVectorImpl<CanQualType>::const_iterator
247          I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I)
248     assert(I->isCanonicalAsParam());
249 #endif
250 
251   unsigned CC = ClangCallConvToLLVMCallConv(Info.getCC());
252 
253   // Lookup or create unique function info.
254   llvm::FoldingSetNodeID ID;
255   CGFunctionInfo::Profile(ID, Info, ResTy, ArgTys.begin(), ArgTys.end());
256 
257   void *InsertPos = 0;
258   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos);
259   if (FI)
260     return *FI;
261 
262   // Construct the function info.
263   FI = new CGFunctionInfo(CC, Info.getNoReturn(), Info.getProducesResult(),
264                           Info.getHasRegParm(), Info.getRegParm(), ResTy,
265                           ArgTys.data(), ArgTys.size());
266   FunctionInfos.InsertNode(FI, InsertPos);
267 
268   bool Inserted = FunctionsBeingProcessed.insert(FI); (void)Inserted;
269   assert(Inserted && "Recursively being processed?");
270 
271   // Compute ABI information.
272   getABIInfo().computeInfo(*FI);
273 
274   // Loop over all of the computed argument and return value info.  If any of
275   // them are direct or extend without a specified coerce type, specify the
276   // default now.
277   ABIArgInfo &RetInfo = FI->getReturnInfo();
278   if (RetInfo.canHaveCoerceToType() && RetInfo.getCoerceToType() == 0)
279     RetInfo.setCoerceToType(ConvertType(FI->getReturnType()));
280 
281   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
282        I != E; ++I)
283     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
284       I->info.setCoerceToType(ConvertType(I->type));
285 
286   bool Erased = FunctionsBeingProcessed.erase(FI); (void)Erased;
287   assert(Erased && "Not in set?");
288 
289   return *FI;
290 }
291 
292 CGFunctionInfo::CGFunctionInfo(unsigned _CallingConvention,
293                                bool _NoReturn, bool returnsRetained,
294                                bool _HasRegParm, unsigned _RegParm,
295                                CanQualType ResTy,
296                                const CanQualType *ArgTys,
297                                unsigned NumArgTys)
298   : CallingConvention(_CallingConvention),
299     EffectiveCallingConvention(_CallingConvention),
300     NoReturn(_NoReturn), ReturnsRetained(returnsRetained),
301     HasRegParm(_HasRegParm), RegParm(_RegParm)
302 {
303   NumArgs = NumArgTys;
304 
305   // FIXME: Coallocate with the CGFunctionInfo object.
306   Args = new ArgInfo[1 + NumArgTys];
307   Args[0].type = ResTy;
308   for (unsigned i = 0; i != NumArgTys; ++i)
309     Args[1 + i].type = ArgTys[i];
310 }
311 
312 /***/
313 
314 void CodeGenTypes::GetExpandedTypes(QualType type,
315                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
316   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
317     uint64_t NumElts = AT->getSize().getZExtValue();
318     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
319       GetExpandedTypes(AT->getElementType(), expandedTypes);
320   } else if (const RecordType *RT = type->getAsStructureType()) {
321     const RecordDecl *RD = RT->getDecl();
322     assert(!RD->hasFlexibleArrayMember() &&
323            "Cannot expand structure with flexible array.");
324     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
325          i != e; ++i) {
326       const FieldDecl *FD = *i;
327       assert(!FD->isBitField() &&
328              "Cannot expand structure with bit-field members.");
329       GetExpandedTypes(FD->getType(), expandedTypes);
330     }
331   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
332     llvm::Type *EltTy = ConvertType(CT->getElementType());
333     expandedTypes.push_back(EltTy);
334     expandedTypes.push_back(EltTy);
335   } else
336     expandedTypes.push_back(ConvertType(type));
337 }
338 
339 llvm::Function::arg_iterator
340 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
341                                     llvm::Function::arg_iterator AI) {
342   assert(LV.isSimple() &&
343          "Unexpected non-simple lvalue during struct expansion.");
344   llvm::Value *Addr = LV.getAddress();
345 
346   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
347     unsigned NumElts = AT->getSize().getZExtValue();
348     QualType EltTy = AT->getElementType();
349     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
350       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
351       LValue LV = MakeAddrLValue(EltAddr, EltTy);
352       AI = ExpandTypeFromArgs(EltTy, LV, AI);
353     }
354   } else if (const RecordType *RT = Ty->getAsStructureType()) {
355     RecordDecl *RD = RT->getDecl();
356     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
357          i != e; ++i) {
358       FieldDecl *FD = *i;
359       QualType FT = FD->getType();
360 
361       // FIXME: What are the right qualifiers here?
362       LValue LV = EmitLValueForField(Addr, FD, 0);
363       AI = ExpandTypeFromArgs(FT, LV, AI);
364     }
365   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
366     QualType EltTy = CT->getElementType();
367     llvm::Value *RealAddr = Builder.CreateStructGEP(Addr, 0, "real");
368     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
369     llvm::Value *ImagAddr = Builder.CreateStructGEP(Addr, 1, "imag");
370     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
371   } else {
372     EmitStoreThroughLValue(RValue::get(AI), LV);
373     ++AI;
374   }
375 
376   return AI;
377 }
378 
379 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
380 /// accessing some number of bytes out of it, try to gep into the struct to get
381 /// at its inner goodness.  Dive as deep as possible without entering an element
382 /// with an in-memory size smaller than DstSize.
383 static llvm::Value *
384 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
385                                    llvm::StructType *SrcSTy,
386                                    uint64_t DstSize, CodeGenFunction &CGF) {
387   // We can't dive into a zero-element struct.
388   if (SrcSTy->getNumElements() == 0) return SrcPtr;
389 
390   llvm::Type *FirstElt = SrcSTy->getElementType(0);
391 
392   // If the first elt is at least as large as what we're looking for, or if the
393   // first element is the same size as the whole struct, we can enter it.
394   uint64_t FirstEltSize =
395     CGF.CGM.getTargetData().getTypeAllocSize(FirstElt);
396   if (FirstEltSize < DstSize &&
397       FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy))
398     return SrcPtr;
399 
400   // GEP into the first element.
401   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
402 
403   // If the first element is a struct, recurse.
404   llvm::Type *SrcTy =
405     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
406   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
407     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
408 
409   return SrcPtr;
410 }
411 
412 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
413 /// are either integers or pointers.  This does a truncation of the value if it
414 /// is too large or a zero extension if it is too small.
415 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
416                                              llvm::Type *Ty,
417                                              CodeGenFunction &CGF) {
418   if (Val->getType() == Ty)
419     return Val;
420 
421   if (isa<llvm::PointerType>(Val->getType())) {
422     // If this is Pointer->Pointer avoid conversion to and from int.
423     if (isa<llvm::PointerType>(Ty))
424       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
425 
426     // Convert the pointer to an integer so we can play with its width.
427     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
428   }
429 
430   llvm::Type *DestIntTy = Ty;
431   if (isa<llvm::PointerType>(DestIntTy))
432     DestIntTy = CGF.IntPtrTy;
433 
434   if (Val->getType() != DestIntTy)
435     Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
436 
437   if (isa<llvm::PointerType>(Ty))
438     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
439   return Val;
440 }
441 
442 
443 
444 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
445 /// a pointer to an object of type \arg Ty.
446 ///
447 /// This safely handles the case when the src type is smaller than the
448 /// destination type; in this situation the values of bits which not
449 /// present in the src are undefined.
450 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
451                                       llvm::Type *Ty,
452                                       CodeGenFunction &CGF) {
453   llvm::Type *SrcTy =
454     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
455 
456   // If SrcTy and Ty are the same, just do a load.
457   if (SrcTy == Ty)
458     return CGF.Builder.CreateLoad(SrcPtr);
459 
460   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
461 
462   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
463     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
464     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
465   }
466 
467   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
468 
469   // If the source and destination are integer or pointer types, just do an
470   // extension or truncation to the desired type.
471   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
472       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
473     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
474     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
475   }
476 
477   // If load is legal, just bitcast the src pointer.
478   if (SrcSize >= DstSize) {
479     // Generally SrcSize is never greater than DstSize, since this means we are
480     // losing bits. However, this can happen in cases where the structure has
481     // additional padding, for example due to a user specified alignment.
482     //
483     // FIXME: Assert that we aren't truncating non-padding bits when have access
484     // to that information.
485     llvm::Value *Casted =
486       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
487     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
488     // FIXME: Use better alignment / avoid requiring aligned load.
489     Load->setAlignment(1);
490     return Load;
491   }
492 
493   // Otherwise do coercion through memory. This is stupid, but
494   // simple.
495   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
496   llvm::Value *Casted =
497     CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
498   llvm::StoreInst *Store =
499     CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
500   // FIXME: Use better alignment / avoid requiring aligned store.
501   Store->setAlignment(1);
502   return CGF.Builder.CreateLoad(Tmp);
503 }
504 
505 // Function to store a first-class aggregate into memory.  We prefer to
506 // store the elements rather than the aggregate to be more friendly to
507 // fast-isel.
508 // FIXME: Do we need to recurse here?
509 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
510                           llvm::Value *DestPtr, bool DestIsVolatile,
511                           bool LowAlignment) {
512   // Prefer scalar stores to first-class aggregate stores.
513   if (llvm::StructType *STy =
514         dyn_cast<llvm::StructType>(Val->getType())) {
515     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
516       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
517       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
518       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
519                                                     DestIsVolatile);
520       if (LowAlignment)
521         SI->setAlignment(1);
522     }
523   } else {
524     CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
525   }
526 }
527 
528 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
529 /// where the source and destination may have different types.
530 ///
531 /// This safely handles the case when the src type is larger than the
532 /// destination type; the upper bits of the src will be lost.
533 static void CreateCoercedStore(llvm::Value *Src,
534                                llvm::Value *DstPtr,
535                                bool DstIsVolatile,
536                                CodeGenFunction &CGF) {
537   llvm::Type *SrcTy = Src->getType();
538   llvm::Type *DstTy =
539     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
540   if (SrcTy == DstTy) {
541     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
542     return;
543   }
544 
545   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
546 
547   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
548     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
549     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
550   }
551 
552   // If the source and destination are integer or pointer types, just do an
553   // extension or truncation to the desired type.
554   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
555       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
556     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
557     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
558     return;
559   }
560 
561   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
562 
563   // If store is legal, just bitcast the src pointer.
564   if (SrcSize <= DstSize) {
565     llvm::Value *Casted =
566       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
567     // FIXME: Use better alignment / avoid requiring aligned store.
568     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
569   } else {
570     // Otherwise do coercion through memory. This is stupid, but
571     // simple.
572 
573     // Generally SrcSize is never greater than DstSize, since this means we are
574     // losing bits. However, this can happen in cases where the structure has
575     // additional padding, for example due to a user specified alignment.
576     //
577     // FIXME: Assert that we aren't truncating non-padding bits when have access
578     // to that information.
579     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
580     CGF.Builder.CreateStore(Src, Tmp);
581     llvm::Value *Casted =
582       CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
583     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
584     // FIXME: Use better alignment / avoid requiring aligned load.
585     Load->setAlignment(1);
586     CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
587   }
588 }
589 
590 /***/
591 
592 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
593   return FI.getReturnInfo().isIndirect();
594 }
595 
596 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
597   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
598     switch (BT->getKind()) {
599     default:
600       return false;
601     case BuiltinType::Float:
602       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float);
603     case BuiltinType::Double:
604       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double);
605     case BuiltinType::LongDouble:
606       return getContext().getTargetInfo().useObjCFPRetForRealType(
607         TargetInfo::LongDouble);
608     }
609   }
610 
611   return false;
612 }
613 
614 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
615   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
616     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
617       if (BT->getKind() == BuiltinType::LongDouble)
618         return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble();
619     }
620   }
621 
622   return false;
623 }
624 
625 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
626   const CGFunctionInfo &FI = getFunctionInfo(GD);
627 
628   // For definition purposes, don't consider a K&R function variadic.
629   bool Variadic = false;
630   if (const FunctionProtoType *FPT =
631         cast<FunctionDecl>(GD.getDecl())->getType()->getAs<FunctionProtoType>())
632     Variadic = FPT->isVariadic();
633 
634   return GetFunctionType(FI, Variadic);
635 }
636 
637 llvm::FunctionType *
638 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool isVariadic) {
639 
640   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
641   assert(Inserted && "Recursively being processed?");
642 
643   SmallVector<llvm::Type*, 8> argTypes;
644   llvm::Type *resultType = 0;
645 
646   const ABIArgInfo &retAI = FI.getReturnInfo();
647   switch (retAI.getKind()) {
648   case ABIArgInfo::Expand:
649     llvm_unreachable("Invalid ABI kind for return argument");
650 
651   case ABIArgInfo::Extend:
652   case ABIArgInfo::Direct:
653     resultType = retAI.getCoerceToType();
654     break;
655 
656   case ABIArgInfo::Indirect: {
657     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
658     resultType = llvm::Type::getVoidTy(getLLVMContext());
659 
660     QualType ret = FI.getReturnType();
661     llvm::Type *ty = ConvertType(ret);
662     unsigned addressSpace = Context.getTargetAddressSpace(ret);
663     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
664     break;
665   }
666 
667   case ABIArgInfo::Ignore:
668     resultType = llvm::Type::getVoidTy(getLLVMContext());
669     break;
670   }
671 
672   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
673          ie = FI.arg_end(); it != ie; ++it) {
674     const ABIArgInfo &argAI = it->info;
675 
676     switch (argAI.getKind()) {
677     case ABIArgInfo::Ignore:
678       break;
679 
680     case ABIArgInfo::Indirect: {
681       // indirect arguments are always on the stack, which is addr space #0.
682       llvm::Type *LTy = ConvertTypeForMem(it->type);
683       argTypes.push_back(LTy->getPointerTo());
684       break;
685     }
686 
687     case ABIArgInfo::Extend:
688     case ABIArgInfo::Direct: {
689       // Insert a padding type to ensure proper alignment.
690       if (llvm::Type *PaddingType = argAI.getPaddingType())
691         argTypes.push_back(PaddingType);
692       // If the coerce-to type is a first class aggregate, flatten it.  Either
693       // way is semantically identical, but fast-isel and the optimizer
694       // generally likes scalar values better than FCAs.
695       llvm::Type *argType = argAI.getCoerceToType();
696       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
697         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
698           argTypes.push_back(st->getElementType(i));
699       } else {
700         argTypes.push_back(argType);
701       }
702       break;
703     }
704 
705     case ABIArgInfo::Expand:
706       GetExpandedTypes(it->type, argTypes);
707       break;
708     }
709   }
710 
711   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
712   assert(Erased && "Not in set?");
713 
714   return llvm::FunctionType::get(resultType, argTypes, isVariadic);
715 }
716 
717 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
718   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
719   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
720 
721   if (!isFuncTypeConvertible(FPT))
722     return llvm::StructType::get(getLLVMContext());
723 
724   const CGFunctionInfo *Info;
725   if (isa<CXXDestructorDecl>(MD))
726     Info = &getFunctionInfo(cast<CXXDestructorDecl>(MD), GD.getDtorType());
727   else
728     Info = &getFunctionInfo(MD);
729   return GetFunctionType(*Info, FPT->isVariadic());
730 }
731 
732 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
733                                            const Decl *TargetDecl,
734                                            AttributeListType &PAL,
735                                            unsigned &CallingConv) {
736   llvm::Attributes FuncAttrs;
737   llvm::Attributes RetAttrs;
738 
739   CallingConv = FI.getEffectiveCallingConvention();
740 
741   if (FI.isNoReturn())
742     FuncAttrs |= llvm::Attribute::NoReturn;
743 
744   // FIXME: handle sseregparm someday...
745   if (TargetDecl) {
746     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
747       FuncAttrs |= llvm::Attribute::ReturnsTwice;
748     if (TargetDecl->hasAttr<NoThrowAttr>())
749       FuncAttrs |= llvm::Attribute::NoUnwind;
750     else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
751       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
752       if (FPT && FPT->isNothrow(getContext()))
753         FuncAttrs |= llvm::Attribute::NoUnwind;
754     }
755 
756     if (TargetDecl->hasAttr<NoReturnAttr>())
757       FuncAttrs |= llvm::Attribute::NoReturn;
758 
759     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
760       FuncAttrs |= llvm::Attribute::ReturnsTwice;
761 
762     // 'const' and 'pure' attribute functions are also nounwind.
763     if (TargetDecl->hasAttr<ConstAttr>()) {
764       FuncAttrs |= llvm::Attribute::ReadNone;
765       FuncAttrs |= llvm::Attribute::NoUnwind;
766     } else if (TargetDecl->hasAttr<PureAttr>()) {
767       FuncAttrs |= llvm::Attribute::ReadOnly;
768       FuncAttrs |= llvm::Attribute::NoUnwind;
769     }
770     if (TargetDecl->hasAttr<MallocAttr>())
771       RetAttrs |= llvm::Attribute::NoAlias;
772   }
773 
774   if (CodeGenOpts.OptimizeSize)
775     FuncAttrs |= llvm::Attribute::OptimizeForSize;
776   if (CodeGenOpts.DisableRedZone)
777     FuncAttrs |= llvm::Attribute::NoRedZone;
778   if (CodeGenOpts.NoImplicitFloat)
779     FuncAttrs |= llvm::Attribute::NoImplicitFloat;
780 
781   QualType RetTy = FI.getReturnType();
782   unsigned Index = 1;
783   const ABIArgInfo &RetAI = FI.getReturnInfo();
784   switch (RetAI.getKind()) {
785   case ABIArgInfo::Extend:
786    if (RetTy->hasSignedIntegerRepresentation())
787      RetAttrs |= llvm::Attribute::SExt;
788    else if (RetTy->hasUnsignedIntegerRepresentation())
789      RetAttrs |= llvm::Attribute::ZExt;
790     break;
791   case ABIArgInfo::Direct:
792   case ABIArgInfo::Ignore:
793     break;
794 
795   case ABIArgInfo::Indirect:
796     PAL.push_back(llvm::AttributeWithIndex::get(Index,
797                                                 llvm::Attribute::StructRet));
798     ++Index;
799     // sret disables readnone and readonly
800     FuncAttrs &= ~(llvm::Attribute::ReadOnly |
801                    llvm::Attribute::ReadNone);
802     break;
803 
804   case ABIArgInfo::Expand:
805     llvm_unreachable("Invalid ABI kind for return argument");
806   }
807 
808   if (RetAttrs)
809     PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
810 
811   // FIXME: RegParm should be reduced in case of global register variable.
812   signed RegParm;
813   if (FI.getHasRegParm())
814     RegParm = FI.getRegParm();
815   else
816     RegParm = CodeGenOpts.NumRegisterParameters;
817 
818   unsigned PointerWidth = getContext().getTargetInfo().getPointerWidth(0);
819   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
820          ie = FI.arg_end(); it != ie; ++it) {
821     QualType ParamType = it->type;
822     const ABIArgInfo &AI = it->info;
823     llvm::Attributes Attrs;
824 
825     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
826     // have the corresponding parameter variable.  It doesn't make
827     // sense to do it here because parameters are so messed up.
828     switch (AI.getKind()) {
829     case ABIArgInfo::Extend:
830       if (ParamType->isSignedIntegerOrEnumerationType())
831         Attrs |= llvm::Attribute::SExt;
832       else if (ParamType->isUnsignedIntegerOrEnumerationType())
833         Attrs |= llvm::Attribute::ZExt;
834       // FALL THROUGH
835     case ABIArgInfo::Direct:
836       if (RegParm > 0 &&
837           (ParamType->isIntegerType() || ParamType->isPointerType() ||
838            ParamType->isReferenceType())) {
839         RegParm -=
840         (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
841         if (RegParm >= 0)
842           Attrs |= llvm::Attribute::InReg;
843       }
844       // FIXME: handle sseregparm someday...
845 
846       // Increment Index if there is padding.
847       Index += (AI.getPaddingType() != 0);
848 
849       if (llvm::StructType *STy =
850             dyn_cast<llvm::StructType>(AI.getCoerceToType()))
851         Index += STy->getNumElements()-1;  // 1 will be added below.
852       break;
853 
854     case ABIArgInfo::Indirect:
855       if (AI.getIndirectByVal())
856         Attrs |= llvm::Attribute::ByVal;
857 
858       Attrs |=
859         llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
860       // byval disables readnone and readonly.
861       FuncAttrs &= ~(llvm::Attribute::ReadOnly |
862                      llvm::Attribute::ReadNone);
863       break;
864 
865     case ABIArgInfo::Ignore:
866       // Skip increment, no matching LLVM parameter.
867       continue;
868 
869     case ABIArgInfo::Expand: {
870       SmallVector<llvm::Type*, 8> types;
871       // FIXME: This is rather inefficient. Do we ever actually need to do
872       // anything here? The result should be just reconstructed on the other
873       // side, so extension should be a non-issue.
874       getTypes().GetExpandedTypes(ParamType, types);
875       Index += types.size();
876       continue;
877     }
878     }
879 
880     if (Attrs)
881       PAL.push_back(llvm::AttributeWithIndex::get(Index, Attrs));
882     ++Index;
883   }
884   if (FuncAttrs)
885     PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
886 }
887 
888 /// An argument came in as a promoted argument; demote it back to its
889 /// declared type.
890 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
891                                          const VarDecl *var,
892                                          llvm::Value *value) {
893   llvm::Type *varType = CGF.ConvertType(var->getType());
894 
895   // This can happen with promotions that actually don't change the
896   // underlying type, like the enum promotions.
897   if (value->getType() == varType) return value;
898 
899   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
900          && "unexpected promotion type");
901 
902   if (isa<llvm::IntegerType>(varType))
903     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
904 
905   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
906 }
907 
908 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
909                                          llvm::Function *Fn,
910                                          const FunctionArgList &Args) {
911   // If this is an implicit-return-zero function, go ahead and
912   // initialize the return value.  TODO: it might be nice to have
913   // a more general mechanism for this that didn't require synthesized
914   // return statements.
915   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
916     if (FD->hasImplicitReturnZero()) {
917       QualType RetTy = FD->getResultType().getUnqualifiedType();
918       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
919       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
920       Builder.CreateStore(Zero, ReturnValue);
921     }
922   }
923 
924   // FIXME: We no longer need the types from FunctionArgList; lift up and
925   // simplify.
926 
927   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
928   llvm::Function::arg_iterator AI = Fn->arg_begin();
929 
930   // Name the struct return argument.
931   if (CGM.ReturnTypeUsesSRet(FI)) {
932     AI->setName("agg.result");
933     AI->addAttr(llvm::Attribute::NoAlias);
934     ++AI;
935   }
936 
937   assert(FI.arg_size() == Args.size() &&
938          "Mismatch between function signature & arguments.");
939   unsigned ArgNo = 1;
940   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
941   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
942        i != e; ++i, ++info_it, ++ArgNo) {
943     const VarDecl *Arg = *i;
944     QualType Ty = info_it->type;
945     const ABIArgInfo &ArgI = info_it->info;
946 
947     bool isPromoted =
948       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
949 
950     switch (ArgI.getKind()) {
951     case ABIArgInfo::Indirect: {
952       llvm::Value *V = AI;
953 
954       if (hasAggregateLLVMType(Ty)) {
955         // Aggregates and complex variables are accessed by reference.  All we
956         // need to do is realign the value, if requested
957         if (ArgI.getIndirectRealign()) {
958           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
959 
960           // Copy from the incoming argument pointer to the temporary with the
961           // appropriate alignment.
962           //
963           // FIXME: We should have a common utility for generating an aggregate
964           // copy.
965           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
966           CharUnits Size = getContext().getTypeSizeInChars(Ty);
967           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
968           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
969           Builder.CreateMemCpy(Dst,
970                                Src,
971                                llvm::ConstantInt::get(IntPtrTy,
972                                                       Size.getQuantity()),
973                                ArgI.getIndirectAlign(),
974                                false);
975           V = AlignedTemp;
976         }
977       } else {
978         // Load scalar value from indirect argument.
979         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
980         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
981 
982         if (isPromoted)
983           V = emitArgumentDemotion(*this, Arg, V);
984       }
985       EmitParmDecl(*Arg, V, ArgNo);
986       break;
987     }
988 
989     case ABIArgInfo::Extend:
990     case ABIArgInfo::Direct: {
991       // Skip the dummy padding argument.
992       if (ArgI.getPaddingType())
993         ++AI;
994 
995       // If we have the trivial case, handle it with no muss and fuss.
996       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
997           ArgI.getCoerceToType() == ConvertType(Ty) &&
998           ArgI.getDirectOffset() == 0) {
999         assert(AI != Fn->arg_end() && "Argument mismatch!");
1000         llvm::Value *V = AI;
1001 
1002         if (Arg->getType().isRestrictQualified())
1003           AI->addAttr(llvm::Attribute::NoAlias);
1004 
1005         // Ensure the argument is the correct type.
1006         if (V->getType() != ArgI.getCoerceToType())
1007           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1008 
1009         if (isPromoted)
1010           V = emitArgumentDemotion(*this, Arg, V);
1011 
1012         EmitParmDecl(*Arg, V, ArgNo);
1013         break;
1014       }
1015 
1016       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, "coerce");
1017 
1018       // The alignment we need to use is the max of the requested alignment for
1019       // the argument plus the alignment required by our access code below.
1020       unsigned AlignmentToUse =
1021         CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType());
1022       AlignmentToUse = std::max(AlignmentToUse,
1023                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1024 
1025       Alloca->setAlignment(AlignmentToUse);
1026       llvm::Value *V = Alloca;
1027       llvm::Value *Ptr = V;    // Pointer to store into.
1028 
1029       // If the value is offset in memory, apply the offset now.
1030       if (unsigned Offs = ArgI.getDirectOffset()) {
1031         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1032         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1033         Ptr = Builder.CreateBitCast(Ptr,
1034                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1035       }
1036 
1037       // If the coerce-to type is a first class aggregate, we flatten it and
1038       // pass the elements. Either way is semantically identical, but fast-isel
1039       // and the optimizer generally likes scalar values better than FCAs.
1040       if (llvm::StructType *STy =
1041             dyn_cast<llvm::StructType>(ArgI.getCoerceToType())) {
1042         Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1043 
1044         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1045           assert(AI != Fn->arg_end() && "Argument mismatch!");
1046           AI->setName(Arg->getName() + ".coerce" + Twine(i));
1047           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1048           Builder.CreateStore(AI++, EltPtr);
1049         }
1050       } else {
1051         // Simple case, just do a coerced store of the argument into the alloca.
1052         assert(AI != Fn->arg_end() && "Argument mismatch!");
1053         AI->setName(Arg->getName() + ".coerce");
1054         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1055       }
1056 
1057 
1058       // Match to what EmitParmDecl is expecting for this type.
1059       if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1060         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1061         if (isPromoted)
1062           V = emitArgumentDemotion(*this, Arg, V);
1063       }
1064       EmitParmDecl(*Arg, V, ArgNo);
1065       continue;  // Skip ++AI increment, already done.
1066     }
1067 
1068     case ABIArgInfo::Expand: {
1069       // If this structure was expanded into multiple arguments then
1070       // we need to create a temporary and reconstruct it from the
1071       // arguments.
1072       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1073       CharUnits Align = getContext().getDeclAlign(Arg);
1074       Alloca->setAlignment(Align.getQuantity());
1075       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1076       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1077       EmitParmDecl(*Arg, Alloca, ArgNo);
1078 
1079       // Name the arguments used in expansion and increment AI.
1080       unsigned Index = 0;
1081       for (; AI != End; ++AI, ++Index)
1082         AI->setName(Arg->getName() + "." + Twine(Index));
1083       continue;
1084     }
1085 
1086     case ABIArgInfo::Ignore:
1087       // Initialize the local variable appropriately.
1088       if (hasAggregateLLVMType(Ty))
1089         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1090       else
1091         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1092                      ArgNo);
1093 
1094       // Skip increment, no matching LLVM parameter.
1095       continue;
1096     }
1097 
1098     ++AI;
1099   }
1100   assert(AI == Fn->arg_end() && "Argument mismatch!");
1101 }
1102 
1103 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1104   while (insn->use_empty()) {
1105     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1106     if (!bitcast) return;
1107 
1108     // This is "safe" because we would have used a ConstantExpr otherwise.
1109     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1110     bitcast->eraseFromParent();
1111   }
1112 }
1113 
1114 /// Try to emit a fused autorelease of a return result.
1115 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1116                                                     llvm::Value *result) {
1117   // We must be immediately followed the cast.
1118   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1119   if (BB->empty()) return 0;
1120   if (&BB->back() != result) return 0;
1121 
1122   llvm::Type *resultType = result->getType();
1123 
1124   // result is in a BasicBlock and is therefore an Instruction.
1125   llvm::Instruction *generator = cast<llvm::Instruction>(result);
1126 
1127   SmallVector<llvm::Instruction*,4> insnsToKill;
1128 
1129   // Look for:
1130   //  %generator = bitcast %type1* %generator2 to %type2*
1131   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1132     // We would have emitted this as a constant if the operand weren't
1133     // an Instruction.
1134     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1135 
1136     // Require the generator to be immediately followed by the cast.
1137     if (generator->getNextNode() != bitcast)
1138       return 0;
1139 
1140     insnsToKill.push_back(bitcast);
1141   }
1142 
1143   // Look for:
1144   //   %generator = call i8* @objc_retain(i8* %originalResult)
1145   // or
1146   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1147   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1148   if (!call) return 0;
1149 
1150   bool doRetainAutorelease;
1151 
1152   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1153     doRetainAutorelease = true;
1154   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1155                                           .objc_retainAutoreleasedReturnValue) {
1156     doRetainAutorelease = false;
1157 
1158     // Look for an inline asm immediately preceding the call and kill it, too.
1159     llvm::Instruction *prev = call->getPrevNode();
1160     if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev))
1161       if (asmCall->getCalledValue()
1162             == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker)
1163         insnsToKill.push_back(prev);
1164   } else {
1165     return 0;
1166   }
1167 
1168   result = call->getArgOperand(0);
1169   insnsToKill.push_back(call);
1170 
1171   // Keep killing bitcasts, for sanity.  Note that we no longer care
1172   // about precise ordering as long as there's exactly one use.
1173   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1174     if (!bitcast->hasOneUse()) break;
1175     insnsToKill.push_back(bitcast);
1176     result = bitcast->getOperand(0);
1177   }
1178 
1179   // Delete all the unnecessary instructions, from latest to earliest.
1180   for (SmallVectorImpl<llvm::Instruction*>::iterator
1181          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1182     (*i)->eraseFromParent();
1183 
1184   // Do the fused retain/autorelease if we were asked to.
1185   if (doRetainAutorelease)
1186     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1187 
1188   // Cast back to the result type.
1189   return CGF.Builder.CreateBitCast(result, resultType);
1190 }
1191 
1192 /// If this is a +1 of the value of an immutable 'self', remove it.
1193 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1194                                           llvm::Value *result) {
1195   // This is only applicable to a method with an immutable 'self'.
1196   const ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CGF.CurCodeDecl);
1197   if (!method) return 0;
1198   const VarDecl *self = method->getSelfDecl();
1199   if (!self->getType().isConstQualified()) return 0;
1200 
1201   // Look for a retain call.
1202   llvm::CallInst *retainCall =
1203     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1204   if (!retainCall ||
1205       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1206     return 0;
1207 
1208   // Look for an ordinary load of 'self'.
1209   llvm::Value *retainedValue = retainCall->getArgOperand(0);
1210   llvm::LoadInst *load =
1211     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1212   if (!load || load->isAtomic() || load->isVolatile() ||
1213       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1214     return 0;
1215 
1216   // Okay!  Burn it all down.  This relies for correctness on the
1217   // assumption that the retain is emitted as part of the return and
1218   // that thereafter everything is used "linearly".
1219   llvm::Type *resultType = result->getType();
1220   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1221   assert(retainCall->use_empty());
1222   retainCall->eraseFromParent();
1223   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1224 
1225   return CGF.Builder.CreateBitCast(load, resultType);
1226 }
1227 
1228 /// Emit an ARC autorelease of the result of a function.
1229 ///
1230 /// \return the value to actually return from the function
1231 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1232                                             llvm::Value *result) {
1233   // If we're returning 'self', kill the initial retain.  This is a
1234   // heuristic attempt to "encourage correctness" in the really unfortunate
1235   // case where we have a return of self during a dealloc and we desperately
1236   // need to avoid the possible autorelease.
1237   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1238     return self;
1239 
1240   // At -O0, try to emit a fused retain/autorelease.
1241   if (CGF.shouldUseFusedARCCalls())
1242     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1243       return fused;
1244 
1245   return CGF.EmitARCAutoreleaseReturnValue(result);
1246 }
1247 
1248 /// Heuristically search for a dominating store to the return-value slot.
1249 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1250   // If there are multiple uses of the return-value slot, just check
1251   // for something immediately preceding the IP.  Sometimes this can
1252   // happen with how we generate implicit-returns; it can also happen
1253   // with noreturn cleanups.
1254   if (!CGF.ReturnValue->hasOneUse()) {
1255     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1256     if (IP->empty()) return 0;
1257     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1258     if (!store) return 0;
1259     if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1260     assert(!store->isAtomic() && !store->isVolatile()); // see below
1261     return store;
1262   }
1263 
1264   llvm::StoreInst *store =
1265     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1266   if (!store) return 0;
1267 
1268   // These aren't actually possible for non-coerced returns, and we
1269   // only care about non-coerced returns on this code path.
1270   assert(!store->isAtomic() && !store->isVolatile());
1271 
1272   // Now do a first-and-dirty dominance check: just walk up the
1273   // single-predecessors chain from the current insertion point.
1274   llvm::BasicBlock *StoreBB = store->getParent();
1275   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1276   while (IP != StoreBB) {
1277     if (!(IP = IP->getSinglePredecessor()))
1278       return 0;
1279   }
1280 
1281   // Okay, the store's basic block dominates the insertion point; we
1282   // can do our thing.
1283   return store;
1284 }
1285 
1286 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
1287   // Functions with no result always return void.
1288   if (ReturnValue == 0) {
1289     Builder.CreateRetVoid();
1290     return;
1291   }
1292 
1293   llvm::DebugLoc RetDbgLoc;
1294   llvm::Value *RV = 0;
1295   QualType RetTy = FI.getReturnType();
1296   const ABIArgInfo &RetAI = FI.getReturnInfo();
1297 
1298   switch (RetAI.getKind()) {
1299   case ABIArgInfo::Indirect: {
1300     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1301     if (RetTy->isAnyComplexType()) {
1302       ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
1303       StoreComplexToAddr(RT, CurFn->arg_begin(), false);
1304     } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1305       // Do nothing; aggregrates get evaluated directly into the destination.
1306     } else {
1307       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
1308                         false, Alignment, RetTy);
1309     }
1310     break;
1311   }
1312 
1313   case ABIArgInfo::Extend:
1314   case ABIArgInfo::Direct:
1315     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1316         RetAI.getDirectOffset() == 0) {
1317       // The internal return value temp always will have pointer-to-return-type
1318       // type, just do a load.
1319 
1320       // If there is a dominating store to ReturnValue, we can elide
1321       // the load, zap the store, and usually zap the alloca.
1322       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1323         // Get the stored value and nuke the now-dead store.
1324         RetDbgLoc = SI->getDebugLoc();
1325         RV = SI->getValueOperand();
1326         SI->eraseFromParent();
1327 
1328         // If that was the only use of the return value, nuke it as well now.
1329         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1330           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1331           ReturnValue = 0;
1332         }
1333 
1334       // Otherwise, we have to do a simple load.
1335       } else {
1336         RV = Builder.CreateLoad(ReturnValue);
1337       }
1338     } else {
1339       llvm::Value *V = ReturnValue;
1340       // If the value is offset in memory, apply the offset now.
1341       if (unsigned Offs = RetAI.getDirectOffset()) {
1342         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1343         V = Builder.CreateConstGEP1_32(V, Offs);
1344         V = Builder.CreateBitCast(V,
1345                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1346       }
1347 
1348       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1349     }
1350 
1351     // In ARC, end functions that return a retainable type with a call
1352     // to objc_autoreleaseReturnValue.
1353     if (AutoreleaseResult) {
1354       assert(getLangOptions().ObjCAutoRefCount &&
1355              !FI.isReturnsRetained() &&
1356              RetTy->isObjCRetainableType());
1357       RV = emitAutoreleaseOfResult(*this, RV);
1358     }
1359 
1360     break;
1361 
1362   case ABIArgInfo::Ignore:
1363     break;
1364 
1365   case ABIArgInfo::Expand:
1366     llvm_unreachable("Invalid ABI kind for return argument");
1367   }
1368 
1369   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1370   if (!RetDbgLoc.isUnknown())
1371     Ret->setDebugLoc(RetDbgLoc);
1372 }
1373 
1374 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1375                                           const VarDecl *param) {
1376   // StartFunction converted the ABI-lowered parameter(s) into a
1377   // local alloca.  We need to turn that into an r-value suitable
1378   // for EmitCall.
1379   llvm::Value *local = GetAddrOfLocalVar(param);
1380 
1381   QualType type = param->getType();
1382 
1383   // For the most part, we just need to load the alloca, except:
1384   // 1) aggregate r-values are actually pointers to temporaries, and
1385   // 2) references to aggregates are pointers directly to the aggregate.
1386   // I don't know why references to non-aggregates are different here.
1387   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1388     if (hasAggregateLLVMType(ref->getPointeeType()))
1389       return args.add(RValue::getAggregate(local), type);
1390 
1391     // Locals which are references to scalars are represented
1392     // with allocas holding the pointer.
1393     return args.add(RValue::get(Builder.CreateLoad(local)), type);
1394   }
1395 
1396   if (type->isAnyComplexType()) {
1397     ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false);
1398     return args.add(RValue::getComplex(complex), type);
1399   }
1400 
1401   if (hasAggregateLLVMType(type))
1402     return args.add(RValue::getAggregate(local), type);
1403 
1404   unsigned alignment = getContext().getDeclAlign(param).getQuantity();
1405   llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type);
1406   return args.add(RValue::get(value), type);
1407 }
1408 
1409 static bool isProvablyNull(llvm::Value *addr) {
1410   return isa<llvm::ConstantPointerNull>(addr);
1411 }
1412 
1413 static bool isProvablyNonNull(llvm::Value *addr) {
1414   return isa<llvm::AllocaInst>(addr);
1415 }
1416 
1417 /// Emit the actual writing-back of a writeback.
1418 static void emitWriteback(CodeGenFunction &CGF,
1419                           const CallArgList::Writeback &writeback) {
1420   llvm::Value *srcAddr = writeback.Address;
1421   assert(!isProvablyNull(srcAddr) &&
1422          "shouldn't have writeback for provably null argument");
1423 
1424   llvm::BasicBlock *contBB = 0;
1425 
1426   // If the argument wasn't provably non-null, we need to null check
1427   // before doing the store.
1428   bool provablyNonNull = isProvablyNonNull(srcAddr);
1429   if (!provablyNonNull) {
1430     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1431     contBB = CGF.createBasicBlock("icr.done");
1432 
1433     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1434     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1435     CGF.EmitBlock(writebackBB);
1436   }
1437 
1438   // Load the value to writeback.
1439   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1440 
1441   // Cast it back, in case we're writing an id to a Foo* or something.
1442   value = CGF.Builder.CreateBitCast(value,
1443                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1444                             "icr.writeback-cast");
1445 
1446   // Perform the writeback.
1447   QualType srcAddrType = writeback.AddressType;
1448   CGF.EmitStoreThroughLValue(RValue::get(value),
1449                              CGF.MakeAddrLValue(srcAddr, srcAddrType));
1450 
1451   // Jump to the continuation block.
1452   if (!provablyNonNull)
1453     CGF.EmitBlock(contBB);
1454 }
1455 
1456 static void emitWritebacks(CodeGenFunction &CGF,
1457                            const CallArgList &args) {
1458   for (CallArgList::writeback_iterator
1459          i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1460     emitWriteback(CGF, *i);
1461 }
1462 
1463 /// Emit an argument that's being passed call-by-writeback.  That is,
1464 /// we are passing the address of
1465 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1466                              const ObjCIndirectCopyRestoreExpr *CRE) {
1467   llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1468 
1469   // The dest and src types don't necessarily match in LLVM terms
1470   // because of the crazy ObjC compatibility rules.
1471 
1472   llvm::PointerType *destType =
1473     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1474 
1475   // If the address is a constant null, just pass the appropriate null.
1476   if (isProvablyNull(srcAddr)) {
1477     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1478              CRE->getType());
1479     return;
1480   }
1481 
1482   QualType srcAddrType =
1483     CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1484 
1485   // Create the temporary.
1486   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1487                                            "icr.temp");
1488 
1489   // Zero-initialize it if we're not doing a copy-initialization.
1490   bool shouldCopy = CRE->shouldCopy();
1491   if (!shouldCopy) {
1492     llvm::Value *null =
1493       llvm::ConstantPointerNull::get(
1494         cast<llvm::PointerType>(destType->getElementType()));
1495     CGF.Builder.CreateStore(null, temp);
1496   }
1497 
1498   llvm::BasicBlock *contBB = 0;
1499 
1500   // If the address is *not* known to be non-null, we need to switch.
1501   llvm::Value *finalArgument;
1502 
1503   bool provablyNonNull = isProvablyNonNull(srcAddr);
1504   if (provablyNonNull) {
1505     finalArgument = temp;
1506   } else {
1507     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1508 
1509     finalArgument = CGF.Builder.CreateSelect(isNull,
1510                                    llvm::ConstantPointerNull::get(destType),
1511                                              temp, "icr.argument");
1512 
1513     // If we need to copy, then the load has to be conditional, which
1514     // means we need control flow.
1515     if (shouldCopy) {
1516       contBB = CGF.createBasicBlock("icr.cont");
1517       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1518       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1519       CGF.EmitBlock(copyBB);
1520     }
1521   }
1522 
1523   // Perform a copy if necessary.
1524   if (shouldCopy) {
1525     LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
1526     RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1527     assert(srcRV.isScalar());
1528 
1529     llvm::Value *src = srcRV.getScalarVal();
1530     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1531                                     "icr.cast");
1532 
1533     // Use an ordinary store, not a store-to-lvalue.
1534     CGF.Builder.CreateStore(src, temp);
1535   }
1536 
1537   // Finish the control flow if we needed it.
1538   if (shouldCopy && !provablyNonNull)
1539     CGF.EmitBlock(contBB);
1540 
1541   args.addWriteback(srcAddr, srcAddrType, temp);
1542   args.add(RValue::get(finalArgument), CRE->getType());
1543 }
1544 
1545 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
1546                                   QualType type) {
1547   if (const ObjCIndirectCopyRestoreExpr *CRE
1548         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
1549     assert(getContext().getLangOptions().ObjCAutoRefCount);
1550     assert(getContext().hasSameType(E->getType(), type));
1551     return emitWritebackArg(*this, args, CRE);
1552   }
1553 
1554   assert(type->isReferenceType() == E->isGLValue() &&
1555          "reference binding to unmaterialized r-value!");
1556 
1557   if (E->isGLValue()) {
1558     assert(E->getObjectKind() == OK_Ordinary);
1559     return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
1560                     type);
1561   }
1562 
1563   if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() &&
1564       isa<ImplicitCastExpr>(E) &&
1565       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
1566     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
1567     assert(L.isSimple());
1568     args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
1569     return;
1570   }
1571 
1572   args.add(EmitAnyExprToTemp(E), type);
1573 }
1574 
1575 /// Emits a call or invoke instruction to the given function, depending
1576 /// on the current state of the EH stack.
1577 llvm::CallSite
1578 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1579                                   ArrayRef<llvm::Value *> Args,
1580                                   const Twine &Name) {
1581   llvm::BasicBlock *InvokeDest = getInvokeDest();
1582   if (!InvokeDest)
1583     return Builder.CreateCall(Callee, Args, Name);
1584 
1585   llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
1586   llvm::InvokeInst *Invoke = Builder.CreateInvoke(Callee, ContBB, InvokeDest,
1587                                                   Args, Name);
1588   EmitBlock(ContBB);
1589   return Invoke;
1590 }
1591 
1592 llvm::CallSite
1593 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1594                                   const Twine &Name) {
1595   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
1596 }
1597 
1598 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
1599                             llvm::FunctionType *FTy) {
1600   if (ArgNo < FTy->getNumParams())
1601     assert(Elt->getType() == FTy->getParamType(ArgNo));
1602   else
1603     assert(FTy->isVarArg());
1604   ++ArgNo;
1605 }
1606 
1607 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
1608                                        SmallVector<llvm::Value*,16> &Args,
1609                                        llvm::FunctionType *IRFuncTy) {
1610   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1611     unsigned NumElts = AT->getSize().getZExtValue();
1612     QualType EltTy = AT->getElementType();
1613     llvm::Value *Addr = RV.getAggregateAddr();
1614     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
1615       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
1616       LValue LV = MakeAddrLValue(EltAddr, EltTy);
1617       RValue EltRV;
1618       if (EltTy->isAnyComplexType())
1619         // FIXME: Volatile?
1620         EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false));
1621       else if (CodeGenFunction::hasAggregateLLVMType(EltTy))
1622         EltRV = LV.asAggregateRValue();
1623       else
1624         EltRV = EmitLoadOfLValue(LV);
1625       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
1626     }
1627   } else if (const RecordType *RT = Ty->getAsStructureType()) {
1628     RecordDecl *RD = RT->getDecl();
1629     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
1630     llvm::Value *Addr = RV.getAggregateAddr();
1631     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1632          i != e; ++i) {
1633       FieldDecl *FD = *i;
1634       QualType FT = FD->getType();
1635 
1636       // FIXME: What are the right qualifiers here?
1637       LValue LV = EmitLValueForField(Addr, FD, 0);
1638       RValue FldRV;
1639       if (FT->isAnyComplexType())
1640         // FIXME: Volatile?
1641         FldRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false));
1642       else if (CodeGenFunction::hasAggregateLLVMType(FT))
1643         FldRV = LV.asAggregateRValue();
1644       else
1645         FldRV = EmitLoadOfLValue(LV);
1646       ExpandTypeToArgs(FT, FldRV, Args, IRFuncTy);
1647     }
1648   } else if (Ty->isAnyComplexType()) {
1649     ComplexPairTy CV = RV.getComplexVal();
1650     Args.push_back(CV.first);
1651     Args.push_back(CV.second);
1652   } else {
1653     assert(RV.isScalar() &&
1654            "Unexpected non-scalar rvalue during struct expansion.");
1655 
1656     // Insert a bitcast as needed.
1657     llvm::Value *V = RV.getScalarVal();
1658     if (Args.size() < IRFuncTy->getNumParams() &&
1659         V->getType() != IRFuncTy->getParamType(Args.size()))
1660       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
1661 
1662     Args.push_back(V);
1663   }
1664 }
1665 
1666 
1667 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
1668                                  llvm::Value *Callee,
1669                                  ReturnValueSlot ReturnValue,
1670                                  const CallArgList &CallArgs,
1671                                  const Decl *TargetDecl,
1672                                  llvm::Instruction **callOrInvoke) {
1673   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
1674   SmallVector<llvm::Value*, 16> Args;
1675 
1676   // Handle struct-return functions by passing a pointer to the
1677   // location that we would like to return into.
1678   QualType RetTy = CallInfo.getReturnType();
1679   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
1680 
1681   // IRArgNo - Keep track of the argument number in the callee we're looking at.
1682   unsigned IRArgNo = 0;
1683   llvm::FunctionType *IRFuncTy =
1684     cast<llvm::FunctionType>(
1685                   cast<llvm::PointerType>(Callee->getType())->getElementType());
1686 
1687   // If the call returns a temporary with struct return, create a temporary
1688   // alloca to hold the result, unless one is given to us.
1689   if (CGM.ReturnTypeUsesSRet(CallInfo)) {
1690     llvm::Value *Value = ReturnValue.getValue();
1691     if (!Value)
1692       Value = CreateMemTemp(RetTy);
1693     Args.push_back(Value);
1694     checkArgMatches(Value, IRArgNo, IRFuncTy);
1695   }
1696 
1697   assert(CallInfo.arg_size() == CallArgs.size() &&
1698          "Mismatch between function signature & arguments.");
1699   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
1700   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
1701        I != E; ++I, ++info_it) {
1702     const ABIArgInfo &ArgInfo = info_it->info;
1703     RValue RV = I->RV;
1704 
1705     unsigned TypeAlign =
1706       getContext().getTypeAlignInChars(I->Ty).getQuantity();
1707     switch (ArgInfo.getKind()) {
1708     case ABIArgInfo::Indirect: {
1709       if (RV.isScalar() || RV.isComplex()) {
1710         // Make a temporary alloca to pass the argument.
1711         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1712         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
1713           AI->setAlignment(ArgInfo.getIndirectAlign());
1714         Args.push_back(AI);
1715 
1716         if (RV.isScalar())
1717           EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
1718                             TypeAlign, I->Ty);
1719         else
1720           StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
1721 
1722         // Validate argument match.
1723         checkArgMatches(AI, IRArgNo, IRFuncTy);
1724       } else {
1725         // We want to avoid creating an unnecessary temporary+copy here;
1726         // however, we need one in two cases:
1727         // 1. If the argument is not byval, and we are required to copy the
1728         //    source.  (This case doesn't occur on any common architecture.)
1729         // 2. If the argument is byval, RV is not sufficiently aligned, and
1730         //    we cannot force it to be sufficiently aligned.
1731         llvm::Value *Addr = RV.getAggregateAddr();
1732         unsigned Align = ArgInfo.getIndirectAlign();
1733         const llvm::TargetData *TD = &CGM.getTargetData();
1734         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
1735             (ArgInfo.getIndirectByVal() && TypeAlign < Align &&
1736              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) {
1737           // Create an aligned temporary, and copy to it.
1738           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1739           if (Align > AI->getAlignment())
1740             AI->setAlignment(Align);
1741           Args.push_back(AI);
1742           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
1743 
1744           // Validate argument match.
1745           checkArgMatches(AI, IRArgNo, IRFuncTy);
1746         } else {
1747           // Skip the extra memcpy call.
1748           Args.push_back(Addr);
1749 
1750           // Validate argument match.
1751           checkArgMatches(Addr, IRArgNo, IRFuncTy);
1752         }
1753       }
1754       break;
1755     }
1756 
1757     case ABIArgInfo::Ignore:
1758       break;
1759 
1760     case ABIArgInfo::Extend:
1761     case ABIArgInfo::Direct: {
1762       // Insert a padding argument to ensure proper alignment.
1763       if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
1764         Args.push_back(llvm::UndefValue::get(PaddingType));
1765         ++IRArgNo;
1766       }
1767 
1768       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
1769           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
1770           ArgInfo.getDirectOffset() == 0) {
1771         llvm::Value *V;
1772         if (RV.isScalar())
1773           V = RV.getScalarVal();
1774         else
1775           V = Builder.CreateLoad(RV.getAggregateAddr());
1776 
1777         // If the argument doesn't match, perform a bitcast to coerce it.  This
1778         // can happen due to trivial type mismatches.
1779         if (IRArgNo < IRFuncTy->getNumParams() &&
1780             V->getType() != IRFuncTy->getParamType(IRArgNo))
1781           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
1782         Args.push_back(V);
1783 
1784         checkArgMatches(V, IRArgNo, IRFuncTy);
1785         break;
1786       }
1787 
1788       // FIXME: Avoid the conversion through memory if possible.
1789       llvm::Value *SrcPtr;
1790       if (RV.isScalar()) {
1791         SrcPtr = CreateMemTemp(I->Ty, "coerce");
1792         EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty);
1793       } else if (RV.isComplex()) {
1794         SrcPtr = CreateMemTemp(I->Ty, "coerce");
1795         StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
1796       } else
1797         SrcPtr = RV.getAggregateAddr();
1798 
1799       // If the value is offset in memory, apply the offset now.
1800       if (unsigned Offs = ArgInfo.getDirectOffset()) {
1801         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
1802         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
1803         SrcPtr = Builder.CreateBitCast(SrcPtr,
1804                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
1805 
1806       }
1807 
1808       // If the coerce-to type is a first class aggregate, we flatten it and
1809       // pass the elements. Either way is semantically identical, but fast-isel
1810       // and the optimizer generally likes scalar values better than FCAs.
1811       if (llvm::StructType *STy =
1812             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
1813         SrcPtr = Builder.CreateBitCast(SrcPtr,
1814                                        llvm::PointerType::getUnqual(STy));
1815         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1816           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
1817           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
1818           // We don't know what we're loading from.
1819           LI->setAlignment(1);
1820           Args.push_back(LI);
1821 
1822           // Validate argument match.
1823           checkArgMatches(LI, IRArgNo, IRFuncTy);
1824         }
1825       } else {
1826         // In the simple case, just pass the coerced loaded value.
1827         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
1828                                          *this));
1829 
1830         // Validate argument match.
1831         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
1832       }
1833 
1834       break;
1835     }
1836 
1837     case ABIArgInfo::Expand:
1838       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
1839       IRArgNo = Args.size();
1840       break;
1841     }
1842   }
1843 
1844   // If the callee is a bitcast of a function to a varargs pointer to function
1845   // type, check to see if we can remove the bitcast.  This handles some cases
1846   // with unprototyped functions.
1847   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
1848     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
1849       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
1850       llvm::FunctionType *CurFT =
1851         cast<llvm::FunctionType>(CurPT->getElementType());
1852       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
1853 
1854       if (CE->getOpcode() == llvm::Instruction::BitCast &&
1855           ActualFT->getReturnType() == CurFT->getReturnType() &&
1856           ActualFT->getNumParams() == CurFT->getNumParams() &&
1857           ActualFT->getNumParams() == Args.size() &&
1858           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
1859         bool ArgsMatch = true;
1860         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
1861           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
1862             ArgsMatch = false;
1863             break;
1864           }
1865 
1866         // Strip the cast if we can get away with it.  This is a nice cleanup,
1867         // but also allows us to inline the function at -O0 if it is marked
1868         // always_inline.
1869         if (ArgsMatch)
1870           Callee = CalleeF;
1871       }
1872     }
1873 
1874   unsigned CallingConv;
1875   CodeGen::AttributeListType AttributeList;
1876   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
1877   llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
1878                                                    AttributeList.end());
1879 
1880   llvm::BasicBlock *InvokeDest = 0;
1881   if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind))
1882     InvokeDest = getInvokeDest();
1883 
1884   llvm::CallSite CS;
1885   if (!InvokeDest) {
1886     CS = Builder.CreateCall(Callee, Args);
1887   } else {
1888     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
1889     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
1890     EmitBlock(Cont);
1891   }
1892   if (callOrInvoke)
1893     *callOrInvoke = CS.getInstruction();
1894 
1895   CS.setAttributes(Attrs);
1896   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
1897 
1898   // If the call doesn't return, finish the basic block and clear the
1899   // insertion point; this allows the rest of IRgen to discard
1900   // unreachable code.
1901   if (CS.doesNotReturn()) {
1902     Builder.CreateUnreachable();
1903     Builder.ClearInsertionPoint();
1904 
1905     // FIXME: For now, emit a dummy basic block because expr emitters in
1906     // generally are not ready to handle emitting expressions at unreachable
1907     // points.
1908     EnsureInsertPoint();
1909 
1910     // Return a reasonable RValue.
1911     return GetUndefRValue(RetTy);
1912   }
1913 
1914   llvm::Instruction *CI = CS.getInstruction();
1915   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
1916     CI->setName("call");
1917 
1918   // Emit any writebacks immediately.  Arguably this should happen
1919   // after any return-value munging.
1920   if (CallArgs.hasWritebacks())
1921     emitWritebacks(*this, CallArgs);
1922 
1923   switch (RetAI.getKind()) {
1924   case ABIArgInfo::Indirect: {
1925     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1926     if (RetTy->isAnyComplexType())
1927       return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
1928     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
1929       return RValue::getAggregate(Args[0]);
1930     return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
1931   }
1932 
1933   case ABIArgInfo::Ignore:
1934     // If we are ignoring an argument that had a result, make sure to
1935     // construct the appropriate return value for our caller.
1936     return GetUndefRValue(RetTy);
1937 
1938   case ABIArgInfo::Extend:
1939   case ABIArgInfo::Direct: {
1940     llvm::Type *RetIRTy = ConvertType(RetTy);
1941     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
1942       if (RetTy->isAnyComplexType()) {
1943         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
1944         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
1945         return RValue::getComplex(std::make_pair(Real, Imag));
1946       }
1947       if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1948         llvm::Value *DestPtr = ReturnValue.getValue();
1949         bool DestIsVolatile = ReturnValue.isVolatile();
1950 
1951         if (!DestPtr) {
1952           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
1953           DestIsVolatile = false;
1954         }
1955         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
1956         return RValue::getAggregate(DestPtr);
1957       }
1958 
1959       // If the argument doesn't match, perform a bitcast to coerce it.  This
1960       // can happen due to trivial type mismatches.
1961       llvm::Value *V = CI;
1962       if (V->getType() != RetIRTy)
1963         V = Builder.CreateBitCast(V, RetIRTy);
1964       return RValue::get(V);
1965     }
1966 
1967     llvm::Value *DestPtr = ReturnValue.getValue();
1968     bool DestIsVolatile = ReturnValue.isVolatile();
1969 
1970     if (!DestPtr) {
1971       DestPtr = CreateMemTemp(RetTy, "coerce");
1972       DestIsVolatile = false;
1973     }
1974 
1975     // If the value is offset in memory, apply the offset now.
1976     llvm::Value *StorePtr = DestPtr;
1977     if (unsigned Offs = RetAI.getDirectOffset()) {
1978       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
1979       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
1980       StorePtr = Builder.CreateBitCast(StorePtr,
1981                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1982     }
1983     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
1984 
1985     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1986     if (RetTy->isAnyComplexType())
1987       return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
1988     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
1989       return RValue::getAggregate(DestPtr);
1990     return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
1991   }
1992 
1993   case ABIArgInfo::Expand:
1994     llvm_unreachable("Invalid ABI kind for return argument");
1995   }
1996 
1997   llvm_unreachable("Unhandled ABIArgInfo::Kind");
1998 }
1999 
2000 /* VarArg handling */
2001 
2002 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2003   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2004 }
2005