1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "CGCXXABI.h" 17 #include "ABIInfo.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Frontend/CodeGenOptions.h" 25 #include "llvm/Attributes.h" 26 #include "llvm/Support/CallSite.h" 27 #include "llvm/Target/TargetData.h" 28 #include "llvm/InlineAsm.h" 29 #include "llvm/Transforms/Utils/Local.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 /***/ 34 35 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 36 switch (CC) { 37 default: return llvm::CallingConv::C; 38 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 39 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 40 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 41 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 42 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 43 // TODO: add support for CC_X86Pascal to llvm 44 } 45 } 46 47 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 48 /// qualification. 49 /// FIXME: address space qualification? 50 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 51 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 52 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 53 } 54 55 /// Returns the canonical formal type of the given C++ method. 56 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 57 return MD->getType()->getCanonicalTypeUnqualified() 58 .getAs<FunctionProtoType>(); 59 } 60 61 /// Returns the "extra-canonicalized" return type, which discards 62 /// qualifiers on the return type. Codegen doesn't care about them, 63 /// and it makes ABI code a little easier to be able to assume that 64 /// all parameter and return types are top-level unqualified. 65 static CanQualType GetReturnType(QualType RetTy) { 66 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 67 } 68 69 const CGFunctionInfo & 70 CodeGenTypes::getFunctionInfo(CanQual<FunctionNoProtoType> FTNP) { 71 return getFunctionInfo(FTNP->getResultType().getUnqualifiedType(), 72 SmallVector<CanQualType, 16>(), 73 FTNP->getExtInfo()); 74 } 75 76 /// \param Args - contains any initial parameters besides those 77 /// in the formal type 78 static const CGFunctionInfo &getFunctionInfo(CodeGenTypes &CGT, 79 SmallVectorImpl<CanQualType> &ArgTys, 80 CanQual<FunctionProtoType> FTP) { 81 // FIXME: Kill copy. 82 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 83 ArgTys.push_back(FTP->getArgType(i)); 84 CanQualType ResTy = FTP->getResultType().getUnqualifiedType(); 85 return CGT.getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo()); 86 } 87 88 const CGFunctionInfo & 89 CodeGenTypes::getFunctionInfo(CanQual<FunctionProtoType> FTP) { 90 SmallVector<CanQualType, 16> ArgTys; 91 return ::getFunctionInfo(*this, ArgTys, FTP); 92 } 93 94 static CallingConv getCallingConventionForDecl(const Decl *D) { 95 // Set the appropriate calling convention for the Function. 96 if (D->hasAttr<StdCallAttr>()) 97 return CC_X86StdCall; 98 99 if (D->hasAttr<FastCallAttr>()) 100 return CC_X86FastCall; 101 102 if (D->hasAttr<ThisCallAttr>()) 103 return CC_X86ThisCall; 104 105 if (D->hasAttr<PascalAttr>()) 106 return CC_X86Pascal; 107 108 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 109 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 110 111 return CC_C; 112 } 113 114 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXRecordDecl *RD, 115 const FunctionProtoType *FTP) { 116 SmallVector<CanQualType, 16> ArgTys; 117 118 // Add the 'this' pointer. 119 ArgTys.push_back(GetThisType(Context, RD)); 120 121 return ::getFunctionInfo(*this, ArgTys, 122 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 123 } 124 125 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXMethodDecl *MD) { 126 SmallVector<CanQualType, 16> ArgTys; 127 128 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!"); 129 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 130 131 // Add the 'this' pointer unless this is a static method. 132 if (MD->isInstance()) 133 ArgTys.push_back(GetThisType(Context, MD->getParent())); 134 135 return ::getFunctionInfo(*this, ArgTys, GetFormalType(MD)); 136 } 137 138 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXConstructorDecl *D, 139 CXXCtorType Type) { 140 SmallVector<CanQualType, 16> ArgTys; 141 ArgTys.push_back(GetThisType(Context, D->getParent())); 142 CanQualType ResTy = Context.VoidTy; 143 144 TheCXXABI.BuildConstructorSignature(D, Type, ResTy, ArgTys); 145 146 CanQual<FunctionProtoType> FTP = GetFormalType(D); 147 148 // Add the formal parameters. 149 for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i) 150 ArgTys.push_back(FTP->getArgType(i)); 151 152 return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo()); 153 } 154 155 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const CXXDestructorDecl *D, 156 CXXDtorType Type) { 157 SmallVector<CanQualType, 2> ArgTys; 158 ArgTys.push_back(GetThisType(Context, D->getParent())); 159 CanQualType ResTy = Context.VoidTy; 160 161 TheCXXABI.BuildDestructorSignature(D, Type, ResTy, ArgTys); 162 163 CanQual<FunctionProtoType> FTP = GetFormalType(D); 164 assert(FTP->getNumArgs() == 0 && "dtor with formal parameters"); 165 166 return getFunctionInfo(ResTy, ArgTys, FTP->getExtInfo()); 167 } 168 169 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const FunctionDecl *FD) { 170 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 171 if (MD->isInstance()) 172 return getFunctionInfo(MD); 173 174 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 175 assert(isa<FunctionType>(FTy)); 176 if (isa<FunctionNoProtoType>(FTy)) 177 return getFunctionInfo(FTy.getAs<FunctionNoProtoType>()); 178 assert(isa<FunctionProtoType>(FTy)); 179 return getFunctionInfo(FTy.getAs<FunctionProtoType>()); 180 } 181 182 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(const ObjCMethodDecl *MD) { 183 SmallVector<CanQualType, 16> ArgTys; 184 ArgTys.push_back(Context.getCanonicalParamType(MD->getSelfDecl()->getType())); 185 ArgTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 186 // FIXME: Kill copy? 187 for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(), 188 e = MD->param_end(); i != e; ++i) { 189 ArgTys.push_back(Context.getCanonicalParamType((*i)->getType())); 190 } 191 192 FunctionType::ExtInfo einfo; 193 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD)); 194 195 if (getContext().getLangOptions().ObjCAutoRefCount && 196 MD->hasAttr<NSReturnsRetainedAttr>()) 197 einfo = einfo.withProducesResult(true); 198 199 return getFunctionInfo(GetReturnType(MD->getResultType()), ArgTys, einfo); 200 } 201 202 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(GlobalDecl GD) { 203 // FIXME: Do we need to handle ObjCMethodDecl? 204 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 205 206 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 207 return getFunctionInfo(CD, GD.getCtorType()); 208 209 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 210 return getFunctionInfo(DD, GD.getDtorType()); 211 212 return getFunctionInfo(FD); 213 } 214 215 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, 216 const CallArgList &Args, 217 const FunctionType::ExtInfo &Info) { 218 // FIXME: Kill copy. 219 SmallVector<CanQualType, 16> ArgTys; 220 for (CallArgList::const_iterator i = Args.begin(), e = Args.end(); 221 i != e; ++i) 222 ArgTys.push_back(Context.getCanonicalParamType(i->Ty)); 223 return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info); 224 } 225 226 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(QualType ResTy, 227 const FunctionArgList &Args, 228 const FunctionType::ExtInfo &Info) { 229 // FIXME: Kill copy. 230 SmallVector<CanQualType, 16> ArgTys; 231 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 232 i != e; ++i) 233 ArgTys.push_back(Context.getCanonicalParamType((*i)->getType())); 234 return getFunctionInfo(GetReturnType(ResTy), ArgTys, Info); 235 } 236 237 const CGFunctionInfo &CodeGenTypes::getNullaryFunctionInfo() { 238 SmallVector<CanQualType, 1> args; 239 return getFunctionInfo(getContext().VoidTy, args, FunctionType::ExtInfo()); 240 } 241 242 const CGFunctionInfo &CodeGenTypes::getFunctionInfo(CanQualType ResTy, 243 const SmallVectorImpl<CanQualType> &ArgTys, 244 const FunctionType::ExtInfo &Info) { 245 #ifndef NDEBUG 246 for (SmallVectorImpl<CanQualType>::const_iterator 247 I = ArgTys.begin(), E = ArgTys.end(); I != E; ++I) 248 assert(I->isCanonicalAsParam()); 249 #endif 250 251 unsigned CC = ClangCallConvToLLVMCallConv(Info.getCC()); 252 253 // Lookup or create unique function info. 254 llvm::FoldingSetNodeID ID; 255 CGFunctionInfo::Profile(ID, Info, ResTy, ArgTys.begin(), ArgTys.end()); 256 257 void *InsertPos = 0; 258 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, InsertPos); 259 if (FI) 260 return *FI; 261 262 // Construct the function info. 263 FI = new CGFunctionInfo(CC, Info.getNoReturn(), Info.getProducesResult(), 264 Info.getHasRegParm(), Info.getRegParm(), ResTy, 265 ArgTys.data(), ArgTys.size()); 266 FunctionInfos.InsertNode(FI, InsertPos); 267 268 bool Inserted = FunctionsBeingProcessed.insert(FI); (void)Inserted; 269 assert(Inserted && "Recursively being processed?"); 270 271 // Compute ABI information. 272 getABIInfo().computeInfo(*FI); 273 274 // Loop over all of the computed argument and return value info. If any of 275 // them are direct or extend without a specified coerce type, specify the 276 // default now. 277 ABIArgInfo &RetInfo = FI->getReturnInfo(); 278 if (RetInfo.canHaveCoerceToType() && RetInfo.getCoerceToType() == 0) 279 RetInfo.setCoerceToType(ConvertType(FI->getReturnType())); 280 281 for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end(); 282 I != E; ++I) 283 if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0) 284 I->info.setCoerceToType(ConvertType(I->type)); 285 286 bool Erased = FunctionsBeingProcessed.erase(FI); (void)Erased; 287 assert(Erased && "Not in set?"); 288 289 return *FI; 290 } 291 292 CGFunctionInfo::CGFunctionInfo(unsigned _CallingConvention, 293 bool _NoReturn, bool returnsRetained, 294 bool _HasRegParm, unsigned _RegParm, 295 CanQualType ResTy, 296 const CanQualType *ArgTys, 297 unsigned NumArgTys) 298 : CallingConvention(_CallingConvention), 299 EffectiveCallingConvention(_CallingConvention), 300 NoReturn(_NoReturn), ReturnsRetained(returnsRetained), 301 HasRegParm(_HasRegParm), RegParm(_RegParm) 302 { 303 NumArgs = NumArgTys; 304 305 // FIXME: Coallocate with the CGFunctionInfo object. 306 Args = new ArgInfo[1 + NumArgTys]; 307 Args[0].type = ResTy; 308 for (unsigned i = 0; i != NumArgTys; ++i) 309 Args[1 + i].type = ArgTys[i]; 310 } 311 312 /***/ 313 314 void CodeGenTypes::GetExpandedTypes(QualType type, 315 SmallVectorImpl<llvm::Type*> &expandedTypes) { 316 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) { 317 uint64_t NumElts = AT->getSize().getZExtValue(); 318 for (uint64_t Elt = 0; Elt < NumElts; ++Elt) 319 GetExpandedTypes(AT->getElementType(), expandedTypes); 320 } else if (const RecordType *RT = type->getAsStructureType()) { 321 const RecordDecl *RD = RT->getDecl(); 322 assert(!RD->hasFlexibleArrayMember() && 323 "Cannot expand structure with flexible array."); 324 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 325 i != e; ++i) { 326 const FieldDecl *FD = *i; 327 assert(!FD->isBitField() && 328 "Cannot expand structure with bit-field members."); 329 GetExpandedTypes(FD->getType(), expandedTypes); 330 } 331 } else if (const ComplexType *CT = type->getAs<ComplexType>()) { 332 llvm::Type *EltTy = ConvertType(CT->getElementType()); 333 expandedTypes.push_back(EltTy); 334 expandedTypes.push_back(EltTy); 335 } else 336 expandedTypes.push_back(ConvertType(type)); 337 } 338 339 llvm::Function::arg_iterator 340 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 341 llvm::Function::arg_iterator AI) { 342 assert(LV.isSimple() && 343 "Unexpected non-simple lvalue during struct expansion."); 344 llvm::Value *Addr = LV.getAddress(); 345 346 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 347 unsigned NumElts = AT->getSize().getZExtValue(); 348 QualType EltTy = AT->getElementType(); 349 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 350 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt); 351 LValue LV = MakeAddrLValue(EltAddr, EltTy); 352 AI = ExpandTypeFromArgs(EltTy, LV, AI); 353 } 354 } else if (const RecordType *RT = Ty->getAsStructureType()) { 355 RecordDecl *RD = RT->getDecl(); 356 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 357 i != e; ++i) { 358 FieldDecl *FD = *i; 359 QualType FT = FD->getType(); 360 361 // FIXME: What are the right qualifiers here? 362 LValue LV = EmitLValueForField(Addr, FD, 0); 363 AI = ExpandTypeFromArgs(FT, LV, AI); 364 } 365 } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 366 QualType EltTy = CT->getElementType(); 367 llvm::Value *RealAddr = Builder.CreateStructGEP(Addr, 0, "real"); 368 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy)); 369 llvm::Value *ImagAddr = Builder.CreateStructGEP(Addr, 1, "imag"); 370 EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy)); 371 } else { 372 EmitStoreThroughLValue(RValue::get(AI), LV); 373 ++AI; 374 } 375 376 return AI; 377 } 378 379 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 380 /// accessing some number of bytes out of it, try to gep into the struct to get 381 /// at its inner goodness. Dive as deep as possible without entering an element 382 /// with an in-memory size smaller than DstSize. 383 static llvm::Value * 384 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr, 385 llvm::StructType *SrcSTy, 386 uint64_t DstSize, CodeGenFunction &CGF) { 387 // We can't dive into a zero-element struct. 388 if (SrcSTy->getNumElements() == 0) return SrcPtr; 389 390 llvm::Type *FirstElt = SrcSTy->getElementType(0); 391 392 // If the first elt is at least as large as what we're looking for, or if the 393 // first element is the same size as the whole struct, we can enter it. 394 uint64_t FirstEltSize = 395 CGF.CGM.getTargetData().getTypeAllocSize(FirstElt); 396 if (FirstEltSize < DstSize && 397 FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy)) 398 return SrcPtr; 399 400 // GEP into the first element. 401 SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive"); 402 403 // If the first element is a struct, recurse. 404 llvm::Type *SrcTy = 405 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 406 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 407 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 408 409 return SrcPtr; 410 } 411 412 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 413 /// are either integers or pointers. This does a truncation of the value if it 414 /// is too large or a zero extension if it is too small. 415 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 416 llvm::Type *Ty, 417 CodeGenFunction &CGF) { 418 if (Val->getType() == Ty) 419 return Val; 420 421 if (isa<llvm::PointerType>(Val->getType())) { 422 // If this is Pointer->Pointer avoid conversion to and from int. 423 if (isa<llvm::PointerType>(Ty)) 424 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 425 426 // Convert the pointer to an integer so we can play with its width. 427 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 428 } 429 430 llvm::Type *DestIntTy = Ty; 431 if (isa<llvm::PointerType>(DestIntTy)) 432 DestIntTy = CGF.IntPtrTy; 433 434 if (Val->getType() != DestIntTy) 435 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 436 437 if (isa<llvm::PointerType>(Ty)) 438 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 439 return Val; 440 } 441 442 443 444 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 445 /// a pointer to an object of type \arg Ty. 446 /// 447 /// This safely handles the case when the src type is smaller than the 448 /// destination type; in this situation the values of bits which not 449 /// present in the src are undefined. 450 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr, 451 llvm::Type *Ty, 452 CodeGenFunction &CGF) { 453 llvm::Type *SrcTy = 454 cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 455 456 // If SrcTy and Ty are the same, just do a load. 457 if (SrcTy == Ty) 458 return CGF.Builder.CreateLoad(SrcPtr); 459 460 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty); 461 462 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 463 SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 464 SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType(); 465 } 466 467 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); 468 469 // If the source and destination are integer or pointer types, just do an 470 // extension or truncation to the desired type. 471 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 472 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 473 llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr); 474 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 475 } 476 477 // If load is legal, just bitcast the src pointer. 478 if (SrcSize >= DstSize) { 479 // Generally SrcSize is never greater than DstSize, since this means we are 480 // losing bits. However, this can happen in cases where the structure has 481 // additional padding, for example due to a user specified alignment. 482 // 483 // FIXME: Assert that we aren't truncating non-padding bits when have access 484 // to that information. 485 llvm::Value *Casted = 486 CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty)); 487 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 488 // FIXME: Use better alignment / avoid requiring aligned load. 489 Load->setAlignment(1); 490 return Load; 491 } 492 493 // Otherwise do coercion through memory. This is stupid, but 494 // simple. 495 llvm::Value *Tmp = CGF.CreateTempAlloca(Ty); 496 llvm::Value *Casted = 497 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy)); 498 llvm::StoreInst *Store = 499 CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted); 500 // FIXME: Use better alignment / avoid requiring aligned store. 501 Store->setAlignment(1); 502 return CGF.Builder.CreateLoad(Tmp); 503 } 504 505 // Function to store a first-class aggregate into memory. We prefer to 506 // store the elements rather than the aggregate to be more friendly to 507 // fast-isel. 508 // FIXME: Do we need to recurse here? 509 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 510 llvm::Value *DestPtr, bool DestIsVolatile, 511 bool LowAlignment) { 512 // Prefer scalar stores to first-class aggregate stores. 513 if (llvm::StructType *STy = 514 dyn_cast<llvm::StructType>(Val->getType())) { 515 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 516 llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i); 517 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 518 llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr, 519 DestIsVolatile); 520 if (LowAlignment) 521 SI->setAlignment(1); 522 } 523 } else { 524 CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile); 525 } 526 } 527 528 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 529 /// where the source and destination may have different types. 530 /// 531 /// This safely handles the case when the src type is larger than the 532 /// destination type; the upper bits of the src will be lost. 533 static void CreateCoercedStore(llvm::Value *Src, 534 llvm::Value *DstPtr, 535 bool DstIsVolatile, 536 CodeGenFunction &CGF) { 537 llvm::Type *SrcTy = Src->getType(); 538 llvm::Type *DstTy = 539 cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 540 if (SrcTy == DstTy) { 541 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 542 return; 543 } 544 545 uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy); 546 547 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 548 DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF); 549 DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType(); 550 } 551 552 // If the source and destination are integer or pointer types, just do an 553 // extension or truncation to the desired type. 554 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 555 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 556 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 557 CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile); 558 return; 559 } 560 561 uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy); 562 563 // If store is legal, just bitcast the src pointer. 564 if (SrcSize <= DstSize) { 565 llvm::Value *Casted = 566 CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy)); 567 // FIXME: Use better alignment / avoid requiring aligned store. 568 BuildAggStore(CGF, Src, Casted, DstIsVolatile, true); 569 } else { 570 // Otherwise do coercion through memory. This is stupid, but 571 // simple. 572 573 // Generally SrcSize is never greater than DstSize, since this means we are 574 // losing bits. However, this can happen in cases where the structure has 575 // additional padding, for example due to a user specified alignment. 576 // 577 // FIXME: Assert that we aren't truncating non-padding bits when have access 578 // to that information. 579 llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy); 580 CGF.Builder.CreateStore(Src, Tmp); 581 llvm::Value *Casted = 582 CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy)); 583 llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted); 584 // FIXME: Use better alignment / avoid requiring aligned load. 585 Load->setAlignment(1); 586 CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile); 587 } 588 } 589 590 /***/ 591 592 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 593 return FI.getReturnInfo().isIndirect(); 594 } 595 596 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 597 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 598 switch (BT->getKind()) { 599 default: 600 return false; 601 case BuiltinType::Float: 602 return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float); 603 case BuiltinType::Double: 604 return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double); 605 case BuiltinType::LongDouble: 606 return getContext().getTargetInfo().useObjCFPRetForRealType( 607 TargetInfo::LongDouble); 608 } 609 } 610 611 return false; 612 } 613 614 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 615 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 616 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 617 if (BT->getKind() == BuiltinType::LongDouble) 618 return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble(); 619 } 620 } 621 622 return false; 623 } 624 625 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 626 const CGFunctionInfo &FI = getFunctionInfo(GD); 627 628 // For definition purposes, don't consider a K&R function variadic. 629 bool Variadic = false; 630 if (const FunctionProtoType *FPT = 631 cast<FunctionDecl>(GD.getDecl())->getType()->getAs<FunctionProtoType>()) 632 Variadic = FPT->isVariadic(); 633 634 return GetFunctionType(FI, Variadic); 635 } 636 637 llvm::FunctionType * 638 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI, bool isVariadic) { 639 640 bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted; 641 assert(Inserted && "Recursively being processed?"); 642 643 SmallVector<llvm::Type*, 8> argTypes; 644 llvm::Type *resultType = 0; 645 646 const ABIArgInfo &retAI = FI.getReturnInfo(); 647 switch (retAI.getKind()) { 648 case ABIArgInfo::Expand: 649 llvm_unreachable("Invalid ABI kind for return argument"); 650 651 case ABIArgInfo::Extend: 652 case ABIArgInfo::Direct: 653 resultType = retAI.getCoerceToType(); 654 break; 655 656 case ABIArgInfo::Indirect: { 657 assert(!retAI.getIndirectAlign() && "Align unused on indirect return."); 658 resultType = llvm::Type::getVoidTy(getLLVMContext()); 659 660 QualType ret = FI.getReturnType(); 661 llvm::Type *ty = ConvertType(ret); 662 unsigned addressSpace = Context.getTargetAddressSpace(ret); 663 argTypes.push_back(llvm::PointerType::get(ty, addressSpace)); 664 break; 665 } 666 667 case ABIArgInfo::Ignore: 668 resultType = llvm::Type::getVoidTy(getLLVMContext()); 669 break; 670 } 671 672 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 673 ie = FI.arg_end(); it != ie; ++it) { 674 const ABIArgInfo &argAI = it->info; 675 676 switch (argAI.getKind()) { 677 case ABIArgInfo::Ignore: 678 break; 679 680 case ABIArgInfo::Indirect: { 681 // indirect arguments are always on the stack, which is addr space #0. 682 llvm::Type *LTy = ConvertTypeForMem(it->type); 683 argTypes.push_back(LTy->getPointerTo()); 684 break; 685 } 686 687 case ABIArgInfo::Extend: 688 case ABIArgInfo::Direct: { 689 // Insert a padding type to ensure proper alignment. 690 if (llvm::Type *PaddingType = argAI.getPaddingType()) 691 argTypes.push_back(PaddingType); 692 // If the coerce-to type is a first class aggregate, flatten it. Either 693 // way is semantically identical, but fast-isel and the optimizer 694 // generally likes scalar values better than FCAs. 695 llvm::Type *argType = argAI.getCoerceToType(); 696 if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) { 697 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 698 argTypes.push_back(st->getElementType(i)); 699 } else { 700 argTypes.push_back(argType); 701 } 702 break; 703 } 704 705 case ABIArgInfo::Expand: 706 GetExpandedTypes(it->type, argTypes); 707 break; 708 } 709 } 710 711 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 712 assert(Erased && "Not in set?"); 713 714 return llvm::FunctionType::get(resultType, argTypes, isVariadic); 715 } 716 717 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 718 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 719 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 720 721 if (!isFuncTypeConvertible(FPT)) 722 return llvm::StructType::get(getLLVMContext()); 723 724 const CGFunctionInfo *Info; 725 if (isa<CXXDestructorDecl>(MD)) 726 Info = &getFunctionInfo(cast<CXXDestructorDecl>(MD), GD.getDtorType()); 727 else 728 Info = &getFunctionInfo(MD); 729 return GetFunctionType(*Info, FPT->isVariadic()); 730 } 731 732 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 733 const Decl *TargetDecl, 734 AttributeListType &PAL, 735 unsigned &CallingConv) { 736 llvm::Attributes FuncAttrs; 737 llvm::Attributes RetAttrs; 738 739 CallingConv = FI.getEffectiveCallingConvention(); 740 741 if (FI.isNoReturn()) 742 FuncAttrs |= llvm::Attribute::NoReturn; 743 744 // FIXME: handle sseregparm someday... 745 if (TargetDecl) { 746 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 747 FuncAttrs |= llvm::Attribute::ReturnsTwice; 748 if (TargetDecl->hasAttr<NoThrowAttr>()) 749 FuncAttrs |= llvm::Attribute::NoUnwind; 750 else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 751 const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>(); 752 if (FPT && FPT->isNothrow(getContext())) 753 FuncAttrs |= llvm::Attribute::NoUnwind; 754 } 755 756 if (TargetDecl->hasAttr<NoReturnAttr>()) 757 FuncAttrs |= llvm::Attribute::NoReturn; 758 759 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 760 FuncAttrs |= llvm::Attribute::ReturnsTwice; 761 762 // 'const' and 'pure' attribute functions are also nounwind. 763 if (TargetDecl->hasAttr<ConstAttr>()) { 764 FuncAttrs |= llvm::Attribute::ReadNone; 765 FuncAttrs |= llvm::Attribute::NoUnwind; 766 } else if (TargetDecl->hasAttr<PureAttr>()) { 767 FuncAttrs |= llvm::Attribute::ReadOnly; 768 FuncAttrs |= llvm::Attribute::NoUnwind; 769 } 770 if (TargetDecl->hasAttr<MallocAttr>()) 771 RetAttrs |= llvm::Attribute::NoAlias; 772 } 773 774 if (CodeGenOpts.OptimizeSize) 775 FuncAttrs |= llvm::Attribute::OptimizeForSize; 776 if (CodeGenOpts.DisableRedZone) 777 FuncAttrs |= llvm::Attribute::NoRedZone; 778 if (CodeGenOpts.NoImplicitFloat) 779 FuncAttrs |= llvm::Attribute::NoImplicitFloat; 780 781 QualType RetTy = FI.getReturnType(); 782 unsigned Index = 1; 783 const ABIArgInfo &RetAI = FI.getReturnInfo(); 784 switch (RetAI.getKind()) { 785 case ABIArgInfo::Extend: 786 if (RetTy->hasSignedIntegerRepresentation()) 787 RetAttrs |= llvm::Attribute::SExt; 788 else if (RetTy->hasUnsignedIntegerRepresentation()) 789 RetAttrs |= llvm::Attribute::ZExt; 790 break; 791 case ABIArgInfo::Direct: 792 case ABIArgInfo::Ignore: 793 break; 794 795 case ABIArgInfo::Indirect: 796 PAL.push_back(llvm::AttributeWithIndex::get(Index, 797 llvm::Attribute::StructRet)); 798 ++Index; 799 // sret disables readnone and readonly 800 FuncAttrs &= ~(llvm::Attribute::ReadOnly | 801 llvm::Attribute::ReadNone); 802 break; 803 804 case ABIArgInfo::Expand: 805 llvm_unreachable("Invalid ABI kind for return argument"); 806 } 807 808 if (RetAttrs) 809 PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs)); 810 811 // FIXME: RegParm should be reduced in case of global register variable. 812 signed RegParm; 813 if (FI.getHasRegParm()) 814 RegParm = FI.getRegParm(); 815 else 816 RegParm = CodeGenOpts.NumRegisterParameters; 817 818 unsigned PointerWidth = getContext().getTargetInfo().getPointerWidth(0); 819 for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 820 ie = FI.arg_end(); it != ie; ++it) { 821 QualType ParamType = it->type; 822 const ABIArgInfo &AI = it->info; 823 llvm::Attributes Attrs; 824 825 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 826 // have the corresponding parameter variable. It doesn't make 827 // sense to do it here because parameters are so messed up. 828 switch (AI.getKind()) { 829 case ABIArgInfo::Extend: 830 if (ParamType->isSignedIntegerOrEnumerationType()) 831 Attrs |= llvm::Attribute::SExt; 832 else if (ParamType->isUnsignedIntegerOrEnumerationType()) 833 Attrs |= llvm::Attribute::ZExt; 834 // FALL THROUGH 835 case ABIArgInfo::Direct: 836 if (RegParm > 0 && 837 (ParamType->isIntegerType() || ParamType->isPointerType() || 838 ParamType->isReferenceType())) { 839 RegParm -= 840 (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth; 841 if (RegParm >= 0) 842 Attrs |= llvm::Attribute::InReg; 843 } 844 // FIXME: handle sseregparm someday... 845 846 // Increment Index if there is padding. 847 Index += (AI.getPaddingType() != 0); 848 849 if (llvm::StructType *STy = 850 dyn_cast<llvm::StructType>(AI.getCoerceToType())) 851 Index += STy->getNumElements()-1; // 1 will be added below. 852 break; 853 854 case ABIArgInfo::Indirect: 855 if (AI.getIndirectByVal()) 856 Attrs |= llvm::Attribute::ByVal; 857 858 Attrs |= 859 llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign()); 860 // byval disables readnone and readonly. 861 FuncAttrs &= ~(llvm::Attribute::ReadOnly | 862 llvm::Attribute::ReadNone); 863 break; 864 865 case ABIArgInfo::Ignore: 866 // Skip increment, no matching LLVM parameter. 867 continue; 868 869 case ABIArgInfo::Expand: { 870 SmallVector<llvm::Type*, 8> types; 871 // FIXME: This is rather inefficient. Do we ever actually need to do 872 // anything here? The result should be just reconstructed on the other 873 // side, so extension should be a non-issue. 874 getTypes().GetExpandedTypes(ParamType, types); 875 Index += types.size(); 876 continue; 877 } 878 } 879 880 if (Attrs) 881 PAL.push_back(llvm::AttributeWithIndex::get(Index, Attrs)); 882 ++Index; 883 } 884 if (FuncAttrs) 885 PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs)); 886 } 887 888 /// An argument came in as a promoted argument; demote it back to its 889 /// declared type. 890 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 891 const VarDecl *var, 892 llvm::Value *value) { 893 llvm::Type *varType = CGF.ConvertType(var->getType()); 894 895 // This can happen with promotions that actually don't change the 896 // underlying type, like the enum promotions. 897 if (value->getType() == varType) return value; 898 899 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 900 && "unexpected promotion type"); 901 902 if (isa<llvm::IntegerType>(varType)) 903 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 904 905 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 906 } 907 908 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 909 llvm::Function *Fn, 910 const FunctionArgList &Args) { 911 // If this is an implicit-return-zero function, go ahead and 912 // initialize the return value. TODO: it might be nice to have 913 // a more general mechanism for this that didn't require synthesized 914 // return statements. 915 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 916 if (FD->hasImplicitReturnZero()) { 917 QualType RetTy = FD->getResultType().getUnqualifiedType(); 918 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 919 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 920 Builder.CreateStore(Zero, ReturnValue); 921 } 922 } 923 924 // FIXME: We no longer need the types from FunctionArgList; lift up and 925 // simplify. 926 927 // Emit allocs for param decls. Give the LLVM Argument nodes names. 928 llvm::Function::arg_iterator AI = Fn->arg_begin(); 929 930 // Name the struct return argument. 931 if (CGM.ReturnTypeUsesSRet(FI)) { 932 AI->setName("agg.result"); 933 AI->addAttr(llvm::Attribute::NoAlias); 934 ++AI; 935 } 936 937 assert(FI.arg_size() == Args.size() && 938 "Mismatch between function signature & arguments."); 939 unsigned ArgNo = 1; 940 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 941 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 942 i != e; ++i, ++info_it, ++ArgNo) { 943 const VarDecl *Arg = *i; 944 QualType Ty = info_it->type; 945 const ABIArgInfo &ArgI = info_it->info; 946 947 bool isPromoted = 948 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 949 950 switch (ArgI.getKind()) { 951 case ABIArgInfo::Indirect: { 952 llvm::Value *V = AI; 953 954 if (hasAggregateLLVMType(Ty)) { 955 // Aggregates and complex variables are accessed by reference. All we 956 // need to do is realign the value, if requested 957 if (ArgI.getIndirectRealign()) { 958 llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce"); 959 960 // Copy from the incoming argument pointer to the temporary with the 961 // appropriate alignment. 962 // 963 // FIXME: We should have a common utility for generating an aggregate 964 // copy. 965 llvm::Type *I8PtrTy = Builder.getInt8PtrTy(); 966 CharUnits Size = getContext().getTypeSizeInChars(Ty); 967 llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy); 968 llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy); 969 Builder.CreateMemCpy(Dst, 970 Src, 971 llvm::ConstantInt::get(IntPtrTy, 972 Size.getQuantity()), 973 ArgI.getIndirectAlign(), 974 false); 975 V = AlignedTemp; 976 } 977 } else { 978 // Load scalar value from indirect argument. 979 CharUnits Alignment = getContext().getTypeAlignInChars(Ty); 980 V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty); 981 982 if (isPromoted) 983 V = emitArgumentDemotion(*this, Arg, V); 984 } 985 EmitParmDecl(*Arg, V, ArgNo); 986 break; 987 } 988 989 case ABIArgInfo::Extend: 990 case ABIArgInfo::Direct: { 991 // Skip the dummy padding argument. 992 if (ArgI.getPaddingType()) 993 ++AI; 994 995 // If we have the trivial case, handle it with no muss and fuss. 996 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 997 ArgI.getCoerceToType() == ConvertType(Ty) && 998 ArgI.getDirectOffset() == 0) { 999 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1000 llvm::Value *V = AI; 1001 1002 if (Arg->getType().isRestrictQualified()) 1003 AI->addAttr(llvm::Attribute::NoAlias); 1004 1005 // Ensure the argument is the correct type. 1006 if (V->getType() != ArgI.getCoerceToType()) 1007 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 1008 1009 if (isPromoted) 1010 V = emitArgumentDemotion(*this, Arg, V); 1011 1012 EmitParmDecl(*Arg, V, ArgNo); 1013 break; 1014 } 1015 1016 llvm::AllocaInst *Alloca = CreateMemTemp(Ty, "coerce"); 1017 1018 // The alignment we need to use is the max of the requested alignment for 1019 // the argument plus the alignment required by our access code below. 1020 unsigned AlignmentToUse = 1021 CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType()); 1022 AlignmentToUse = std::max(AlignmentToUse, 1023 (unsigned)getContext().getDeclAlign(Arg).getQuantity()); 1024 1025 Alloca->setAlignment(AlignmentToUse); 1026 llvm::Value *V = Alloca; 1027 llvm::Value *Ptr = V; // Pointer to store into. 1028 1029 // If the value is offset in memory, apply the offset now. 1030 if (unsigned Offs = ArgI.getDirectOffset()) { 1031 Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy()); 1032 Ptr = Builder.CreateConstGEP1_32(Ptr, Offs); 1033 Ptr = Builder.CreateBitCast(Ptr, 1034 llvm::PointerType::getUnqual(ArgI.getCoerceToType())); 1035 } 1036 1037 // If the coerce-to type is a first class aggregate, we flatten it and 1038 // pass the elements. Either way is semantically identical, but fast-isel 1039 // and the optimizer generally likes scalar values better than FCAs. 1040 if (llvm::StructType *STy = 1041 dyn_cast<llvm::StructType>(ArgI.getCoerceToType())) { 1042 Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 1043 1044 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1045 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1046 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 1047 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i); 1048 Builder.CreateStore(AI++, EltPtr); 1049 } 1050 } else { 1051 // Simple case, just do a coerced store of the argument into the alloca. 1052 assert(AI != Fn->arg_end() && "Argument mismatch!"); 1053 AI->setName(Arg->getName() + ".coerce"); 1054 CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this); 1055 } 1056 1057 1058 // Match to what EmitParmDecl is expecting for this type. 1059 if (!CodeGenFunction::hasAggregateLLVMType(Ty)) { 1060 V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty); 1061 if (isPromoted) 1062 V = emitArgumentDemotion(*this, Arg, V); 1063 } 1064 EmitParmDecl(*Arg, V, ArgNo); 1065 continue; // Skip ++AI increment, already done. 1066 } 1067 1068 case ABIArgInfo::Expand: { 1069 // If this structure was expanded into multiple arguments then 1070 // we need to create a temporary and reconstruct it from the 1071 // arguments. 1072 llvm::AllocaInst *Alloca = CreateMemTemp(Ty); 1073 CharUnits Align = getContext().getDeclAlign(Arg); 1074 Alloca->setAlignment(Align.getQuantity()); 1075 LValue LV = MakeAddrLValue(Alloca, Ty, Align); 1076 llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI); 1077 EmitParmDecl(*Arg, Alloca, ArgNo); 1078 1079 // Name the arguments used in expansion and increment AI. 1080 unsigned Index = 0; 1081 for (; AI != End; ++AI, ++Index) 1082 AI->setName(Arg->getName() + "." + Twine(Index)); 1083 continue; 1084 } 1085 1086 case ABIArgInfo::Ignore: 1087 // Initialize the local variable appropriately. 1088 if (hasAggregateLLVMType(Ty)) 1089 EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo); 1090 else 1091 EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())), 1092 ArgNo); 1093 1094 // Skip increment, no matching LLVM parameter. 1095 continue; 1096 } 1097 1098 ++AI; 1099 } 1100 assert(AI == Fn->arg_end() && "Argument mismatch!"); 1101 } 1102 1103 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 1104 while (insn->use_empty()) { 1105 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 1106 if (!bitcast) return; 1107 1108 // This is "safe" because we would have used a ConstantExpr otherwise. 1109 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 1110 bitcast->eraseFromParent(); 1111 } 1112 } 1113 1114 /// Try to emit a fused autorelease of a return result. 1115 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 1116 llvm::Value *result) { 1117 // We must be immediately followed the cast. 1118 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 1119 if (BB->empty()) return 0; 1120 if (&BB->back() != result) return 0; 1121 1122 llvm::Type *resultType = result->getType(); 1123 1124 // result is in a BasicBlock and is therefore an Instruction. 1125 llvm::Instruction *generator = cast<llvm::Instruction>(result); 1126 1127 SmallVector<llvm::Instruction*,4> insnsToKill; 1128 1129 // Look for: 1130 // %generator = bitcast %type1* %generator2 to %type2* 1131 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 1132 // We would have emitted this as a constant if the operand weren't 1133 // an Instruction. 1134 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 1135 1136 // Require the generator to be immediately followed by the cast. 1137 if (generator->getNextNode() != bitcast) 1138 return 0; 1139 1140 insnsToKill.push_back(bitcast); 1141 } 1142 1143 // Look for: 1144 // %generator = call i8* @objc_retain(i8* %originalResult) 1145 // or 1146 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 1147 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 1148 if (!call) return 0; 1149 1150 bool doRetainAutorelease; 1151 1152 if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) { 1153 doRetainAutorelease = true; 1154 } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints() 1155 .objc_retainAutoreleasedReturnValue) { 1156 doRetainAutorelease = false; 1157 1158 // Look for an inline asm immediately preceding the call and kill it, too. 1159 llvm::Instruction *prev = call->getPrevNode(); 1160 if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev)) 1161 if (asmCall->getCalledValue() 1162 == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) 1163 insnsToKill.push_back(prev); 1164 } else { 1165 return 0; 1166 } 1167 1168 result = call->getArgOperand(0); 1169 insnsToKill.push_back(call); 1170 1171 // Keep killing bitcasts, for sanity. Note that we no longer care 1172 // about precise ordering as long as there's exactly one use. 1173 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 1174 if (!bitcast->hasOneUse()) break; 1175 insnsToKill.push_back(bitcast); 1176 result = bitcast->getOperand(0); 1177 } 1178 1179 // Delete all the unnecessary instructions, from latest to earliest. 1180 for (SmallVectorImpl<llvm::Instruction*>::iterator 1181 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 1182 (*i)->eraseFromParent(); 1183 1184 // Do the fused retain/autorelease if we were asked to. 1185 if (doRetainAutorelease) 1186 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 1187 1188 // Cast back to the result type. 1189 return CGF.Builder.CreateBitCast(result, resultType); 1190 } 1191 1192 /// If this is a +1 of the value of an immutable 'self', remove it. 1193 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 1194 llvm::Value *result) { 1195 // This is only applicable to a method with an immutable 'self'. 1196 const ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CGF.CurCodeDecl); 1197 if (!method) return 0; 1198 const VarDecl *self = method->getSelfDecl(); 1199 if (!self->getType().isConstQualified()) return 0; 1200 1201 // Look for a retain call. 1202 llvm::CallInst *retainCall = 1203 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 1204 if (!retainCall || 1205 retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain) 1206 return 0; 1207 1208 // Look for an ordinary load of 'self'. 1209 llvm::Value *retainedValue = retainCall->getArgOperand(0); 1210 llvm::LoadInst *load = 1211 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 1212 if (!load || load->isAtomic() || load->isVolatile() || 1213 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self)) 1214 return 0; 1215 1216 // Okay! Burn it all down. This relies for correctness on the 1217 // assumption that the retain is emitted as part of the return and 1218 // that thereafter everything is used "linearly". 1219 llvm::Type *resultType = result->getType(); 1220 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 1221 assert(retainCall->use_empty()); 1222 retainCall->eraseFromParent(); 1223 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 1224 1225 return CGF.Builder.CreateBitCast(load, resultType); 1226 } 1227 1228 /// Emit an ARC autorelease of the result of a function. 1229 /// 1230 /// \return the value to actually return from the function 1231 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 1232 llvm::Value *result) { 1233 // If we're returning 'self', kill the initial retain. This is a 1234 // heuristic attempt to "encourage correctness" in the really unfortunate 1235 // case where we have a return of self during a dealloc and we desperately 1236 // need to avoid the possible autorelease. 1237 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 1238 return self; 1239 1240 // At -O0, try to emit a fused retain/autorelease. 1241 if (CGF.shouldUseFusedARCCalls()) 1242 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 1243 return fused; 1244 1245 return CGF.EmitARCAutoreleaseReturnValue(result); 1246 } 1247 1248 /// Heuristically search for a dominating store to the return-value slot. 1249 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 1250 // If there are multiple uses of the return-value slot, just check 1251 // for something immediately preceding the IP. Sometimes this can 1252 // happen with how we generate implicit-returns; it can also happen 1253 // with noreturn cleanups. 1254 if (!CGF.ReturnValue->hasOneUse()) { 1255 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1256 if (IP->empty()) return 0; 1257 llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back()); 1258 if (!store) return 0; 1259 if (store->getPointerOperand() != CGF.ReturnValue) return 0; 1260 assert(!store->isAtomic() && !store->isVolatile()); // see below 1261 return store; 1262 } 1263 1264 llvm::StoreInst *store = 1265 dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back()); 1266 if (!store) return 0; 1267 1268 // These aren't actually possible for non-coerced returns, and we 1269 // only care about non-coerced returns on this code path. 1270 assert(!store->isAtomic() && !store->isVolatile()); 1271 1272 // Now do a first-and-dirty dominance check: just walk up the 1273 // single-predecessors chain from the current insertion point. 1274 llvm::BasicBlock *StoreBB = store->getParent(); 1275 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 1276 while (IP != StoreBB) { 1277 if (!(IP = IP->getSinglePredecessor())) 1278 return 0; 1279 } 1280 1281 // Okay, the store's basic block dominates the insertion point; we 1282 // can do our thing. 1283 return store; 1284 } 1285 1286 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) { 1287 // Functions with no result always return void. 1288 if (ReturnValue == 0) { 1289 Builder.CreateRetVoid(); 1290 return; 1291 } 1292 1293 llvm::DebugLoc RetDbgLoc; 1294 llvm::Value *RV = 0; 1295 QualType RetTy = FI.getReturnType(); 1296 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1297 1298 switch (RetAI.getKind()) { 1299 case ABIArgInfo::Indirect: { 1300 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 1301 if (RetTy->isAnyComplexType()) { 1302 ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false); 1303 StoreComplexToAddr(RT, CurFn->arg_begin(), false); 1304 } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 1305 // Do nothing; aggregrates get evaluated directly into the destination. 1306 } else { 1307 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(), 1308 false, Alignment, RetTy); 1309 } 1310 break; 1311 } 1312 1313 case ABIArgInfo::Extend: 1314 case ABIArgInfo::Direct: 1315 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 1316 RetAI.getDirectOffset() == 0) { 1317 // The internal return value temp always will have pointer-to-return-type 1318 // type, just do a load. 1319 1320 // If there is a dominating store to ReturnValue, we can elide 1321 // the load, zap the store, and usually zap the alloca. 1322 if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) { 1323 // Get the stored value and nuke the now-dead store. 1324 RetDbgLoc = SI->getDebugLoc(); 1325 RV = SI->getValueOperand(); 1326 SI->eraseFromParent(); 1327 1328 // If that was the only use of the return value, nuke it as well now. 1329 if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) { 1330 cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent(); 1331 ReturnValue = 0; 1332 } 1333 1334 // Otherwise, we have to do a simple load. 1335 } else { 1336 RV = Builder.CreateLoad(ReturnValue); 1337 } 1338 } else { 1339 llvm::Value *V = ReturnValue; 1340 // If the value is offset in memory, apply the offset now. 1341 if (unsigned Offs = RetAI.getDirectOffset()) { 1342 V = Builder.CreateBitCast(V, Builder.getInt8PtrTy()); 1343 V = Builder.CreateConstGEP1_32(V, Offs); 1344 V = Builder.CreateBitCast(V, 1345 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 1346 } 1347 1348 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 1349 } 1350 1351 // In ARC, end functions that return a retainable type with a call 1352 // to objc_autoreleaseReturnValue. 1353 if (AutoreleaseResult) { 1354 assert(getLangOptions().ObjCAutoRefCount && 1355 !FI.isReturnsRetained() && 1356 RetTy->isObjCRetainableType()); 1357 RV = emitAutoreleaseOfResult(*this, RV); 1358 } 1359 1360 break; 1361 1362 case ABIArgInfo::Ignore: 1363 break; 1364 1365 case ABIArgInfo::Expand: 1366 llvm_unreachable("Invalid ABI kind for return argument"); 1367 } 1368 1369 llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid(); 1370 if (!RetDbgLoc.isUnknown()) 1371 Ret->setDebugLoc(RetDbgLoc); 1372 } 1373 1374 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 1375 const VarDecl *param) { 1376 // StartFunction converted the ABI-lowered parameter(s) into a 1377 // local alloca. We need to turn that into an r-value suitable 1378 // for EmitCall. 1379 llvm::Value *local = GetAddrOfLocalVar(param); 1380 1381 QualType type = param->getType(); 1382 1383 // For the most part, we just need to load the alloca, except: 1384 // 1) aggregate r-values are actually pointers to temporaries, and 1385 // 2) references to aggregates are pointers directly to the aggregate. 1386 // I don't know why references to non-aggregates are different here. 1387 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 1388 if (hasAggregateLLVMType(ref->getPointeeType())) 1389 return args.add(RValue::getAggregate(local), type); 1390 1391 // Locals which are references to scalars are represented 1392 // with allocas holding the pointer. 1393 return args.add(RValue::get(Builder.CreateLoad(local)), type); 1394 } 1395 1396 if (type->isAnyComplexType()) { 1397 ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false); 1398 return args.add(RValue::getComplex(complex), type); 1399 } 1400 1401 if (hasAggregateLLVMType(type)) 1402 return args.add(RValue::getAggregate(local), type); 1403 1404 unsigned alignment = getContext().getDeclAlign(param).getQuantity(); 1405 llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type); 1406 return args.add(RValue::get(value), type); 1407 } 1408 1409 static bool isProvablyNull(llvm::Value *addr) { 1410 return isa<llvm::ConstantPointerNull>(addr); 1411 } 1412 1413 static bool isProvablyNonNull(llvm::Value *addr) { 1414 return isa<llvm::AllocaInst>(addr); 1415 } 1416 1417 /// Emit the actual writing-back of a writeback. 1418 static void emitWriteback(CodeGenFunction &CGF, 1419 const CallArgList::Writeback &writeback) { 1420 llvm::Value *srcAddr = writeback.Address; 1421 assert(!isProvablyNull(srcAddr) && 1422 "shouldn't have writeback for provably null argument"); 1423 1424 llvm::BasicBlock *contBB = 0; 1425 1426 // If the argument wasn't provably non-null, we need to null check 1427 // before doing the store. 1428 bool provablyNonNull = isProvablyNonNull(srcAddr); 1429 if (!provablyNonNull) { 1430 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 1431 contBB = CGF.createBasicBlock("icr.done"); 1432 1433 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1434 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 1435 CGF.EmitBlock(writebackBB); 1436 } 1437 1438 // Load the value to writeback. 1439 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 1440 1441 // Cast it back, in case we're writing an id to a Foo* or something. 1442 value = CGF.Builder.CreateBitCast(value, 1443 cast<llvm::PointerType>(srcAddr->getType())->getElementType(), 1444 "icr.writeback-cast"); 1445 1446 // Perform the writeback. 1447 QualType srcAddrType = writeback.AddressType; 1448 CGF.EmitStoreThroughLValue(RValue::get(value), 1449 CGF.MakeAddrLValue(srcAddr, srcAddrType)); 1450 1451 // Jump to the continuation block. 1452 if (!provablyNonNull) 1453 CGF.EmitBlock(contBB); 1454 } 1455 1456 static void emitWritebacks(CodeGenFunction &CGF, 1457 const CallArgList &args) { 1458 for (CallArgList::writeback_iterator 1459 i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i) 1460 emitWriteback(CGF, *i); 1461 } 1462 1463 /// Emit an argument that's being passed call-by-writeback. That is, 1464 /// we are passing the address of 1465 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 1466 const ObjCIndirectCopyRestoreExpr *CRE) { 1467 llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr()); 1468 1469 // The dest and src types don't necessarily match in LLVM terms 1470 // because of the crazy ObjC compatibility rules. 1471 1472 llvm::PointerType *destType = 1473 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 1474 1475 // If the address is a constant null, just pass the appropriate null. 1476 if (isProvablyNull(srcAddr)) { 1477 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 1478 CRE->getType()); 1479 return; 1480 } 1481 1482 QualType srcAddrType = 1483 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 1484 1485 // Create the temporary. 1486 llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(), 1487 "icr.temp"); 1488 1489 // Zero-initialize it if we're not doing a copy-initialization. 1490 bool shouldCopy = CRE->shouldCopy(); 1491 if (!shouldCopy) { 1492 llvm::Value *null = 1493 llvm::ConstantPointerNull::get( 1494 cast<llvm::PointerType>(destType->getElementType())); 1495 CGF.Builder.CreateStore(null, temp); 1496 } 1497 1498 llvm::BasicBlock *contBB = 0; 1499 1500 // If the address is *not* known to be non-null, we need to switch. 1501 llvm::Value *finalArgument; 1502 1503 bool provablyNonNull = isProvablyNonNull(srcAddr); 1504 if (provablyNonNull) { 1505 finalArgument = temp; 1506 } else { 1507 llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull"); 1508 1509 finalArgument = CGF.Builder.CreateSelect(isNull, 1510 llvm::ConstantPointerNull::get(destType), 1511 temp, "icr.argument"); 1512 1513 // If we need to copy, then the load has to be conditional, which 1514 // means we need control flow. 1515 if (shouldCopy) { 1516 contBB = CGF.createBasicBlock("icr.cont"); 1517 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 1518 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 1519 CGF.EmitBlock(copyBB); 1520 } 1521 } 1522 1523 // Perform a copy if necessary. 1524 if (shouldCopy) { 1525 LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 1526 RValue srcRV = CGF.EmitLoadOfLValue(srcLV); 1527 assert(srcRV.isScalar()); 1528 1529 llvm::Value *src = srcRV.getScalarVal(); 1530 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 1531 "icr.cast"); 1532 1533 // Use an ordinary store, not a store-to-lvalue. 1534 CGF.Builder.CreateStore(src, temp); 1535 } 1536 1537 // Finish the control flow if we needed it. 1538 if (shouldCopy && !provablyNonNull) 1539 CGF.EmitBlock(contBB); 1540 1541 args.addWriteback(srcAddr, srcAddrType, temp); 1542 args.add(RValue::get(finalArgument), CRE->getType()); 1543 } 1544 1545 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 1546 QualType type) { 1547 if (const ObjCIndirectCopyRestoreExpr *CRE 1548 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 1549 assert(getContext().getLangOptions().ObjCAutoRefCount); 1550 assert(getContext().hasSameType(E->getType(), type)); 1551 return emitWritebackArg(*this, args, CRE); 1552 } 1553 1554 assert(type->isReferenceType() == E->isGLValue() && 1555 "reference binding to unmaterialized r-value!"); 1556 1557 if (E->isGLValue()) { 1558 assert(E->getObjectKind() == OK_Ordinary); 1559 return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0), 1560 type); 1561 } 1562 1563 if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() && 1564 isa<ImplicitCastExpr>(E) && 1565 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 1566 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 1567 assert(L.isSimple()); 1568 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 1569 return; 1570 } 1571 1572 args.add(EmitAnyExprToTemp(E), type); 1573 } 1574 1575 /// Emits a call or invoke instruction to the given function, depending 1576 /// on the current state of the EH stack. 1577 llvm::CallSite 1578 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 1579 ArrayRef<llvm::Value *> Args, 1580 const Twine &Name) { 1581 llvm::BasicBlock *InvokeDest = getInvokeDest(); 1582 if (!InvokeDest) 1583 return Builder.CreateCall(Callee, Args, Name); 1584 1585 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 1586 llvm::InvokeInst *Invoke = Builder.CreateInvoke(Callee, ContBB, InvokeDest, 1587 Args, Name); 1588 EmitBlock(ContBB); 1589 return Invoke; 1590 } 1591 1592 llvm::CallSite 1593 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 1594 const Twine &Name) { 1595 return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name); 1596 } 1597 1598 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo, 1599 llvm::FunctionType *FTy) { 1600 if (ArgNo < FTy->getNumParams()) 1601 assert(Elt->getType() == FTy->getParamType(ArgNo)); 1602 else 1603 assert(FTy->isVarArg()); 1604 ++ArgNo; 1605 } 1606 1607 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV, 1608 SmallVector<llvm::Value*,16> &Args, 1609 llvm::FunctionType *IRFuncTy) { 1610 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1611 unsigned NumElts = AT->getSize().getZExtValue(); 1612 QualType EltTy = AT->getElementType(); 1613 llvm::Value *Addr = RV.getAggregateAddr(); 1614 for (unsigned Elt = 0; Elt < NumElts; ++Elt) { 1615 llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt); 1616 LValue LV = MakeAddrLValue(EltAddr, EltTy); 1617 RValue EltRV; 1618 if (EltTy->isAnyComplexType()) 1619 // FIXME: Volatile? 1620 EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false)); 1621 else if (CodeGenFunction::hasAggregateLLVMType(EltTy)) 1622 EltRV = LV.asAggregateRValue(); 1623 else 1624 EltRV = EmitLoadOfLValue(LV); 1625 ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy); 1626 } 1627 } else if (const RecordType *RT = Ty->getAsStructureType()) { 1628 RecordDecl *RD = RT->getDecl(); 1629 assert(RV.isAggregate() && "Unexpected rvalue during struct expansion"); 1630 llvm::Value *Addr = RV.getAggregateAddr(); 1631 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 1632 i != e; ++i) { 1633 FieldDecl *FD = *i; 1634 QualType FT = FD->getType(); 1635 1636 // FIXME: What are the right qualifiers here? 1637 LValue LV = EmitLValueForField(Addr, FD, 0); 1638 RValue FldRV; 1639 if (FT->isAnyComplexType()) 1640 // FIXME: Volatile? 1641 FldRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false)); 1642 else if (CodeGenFunction::hasAggregateLLVMType(FT)) 1643 FldRV = LV.asAggregateRValue(); 1644 else 1645 FldRV = EmitLoadOfLValue(LV); 1646 ExpandTypeToArgs(FT, FldRV, Args, IRFuncTy); 1647 } 1648 } else if (Ty->isAnyComplexType()) { 1649 ComplexPairTy CV = RV.getComplexVal(); 1650 Args.push_back(CV.first); 1651 Args.push_back(CV.second); 1652 } else { 1653 assert(RV.isScalar() && 1654 "Unexpected non-scalar rvalue during struct expansion."); 1655 1656 // Insert a bitcast as needed. 1657 llvm::Value *V = RV.getScalarVal(); 1658 if (Args.size() < IRFuncTy->getNumParams() && 1659 V->getType() != IRFuncTy->getParamType(Args.size())) 1660 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size())); 1661 1662 Args.push_back(V); 1663 } 1664 } 1665 1666 1667 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 1668 llvm::Value *Callee, 1669 ReturnValueSlot ReturnValue, 1670 const CallArgList &CallArgs, 1671 const Decl *TargetDecl, 1672 llvm::Instruction **callOrInvoke) { 1673 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 1674 SmallVector<llvm::Value*, 16> Args; 1675 1676 // Handle struct-return functions by passing a pointer to the 1677 // location that we would like to return into. 1678 QualType RetTy = CallInfo.getReturnType(); 1679 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 1680 1681 // IRArgNo - Keep track of the argument number in the callee we're looking at. 1682 unsigned IRArgNo = 0; 1683 llvm::FunctionType *IRFuncTy = 1684 cast<llvm::FunctionType>( 1685 cast<llvm::PointerType>(Callee->getType())->getElementType()); 1686 1687 // If the call returns a temporary with struct return, create a temporary 1688 // alloca to hold the result, unless one is given to us. 1689 if (CGM.ReturnTypeUsesSRet(CallInfo)) { 1690 llvm::Value *Value = ReturnValue.getValue(); 1691 if (!Value) 1692 Value = CreateMemTemp(RetTy); 1693 Args.push_back(Value); 1694 checkArgMatches(Value, IRArgNo, IRFuncTy); 1695 } 1696 1697 assert(CallInfo.arg_size() == CallArgs.size() && 1698 "Mismatch between function signature & arguments."); 1699 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 1700 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 1701 I != E; ++I, ++info_it) { 1702 const ABIArgInfo &ArgInfo = info_it->info; 1703 RValue RV = I->RV; 1704 1705 unsigned TypeAlign = 1706 getContext().getTypeAlignInChars(I->Ty).getQuantity(); 1707 switch (ArgInfo.getKind()) { 1708 case ABIArgInfo::Indirect: { 1709 if (RV.isScalar() || RV.isComplex()) { 1710 // Make a temporary alloca to pass the argument. 1711 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 1712 if (ArgInfo.getIndirectAlign() > AI->getAlignment()) 1713 AI->setAlignment(ArgInfo.getIndirectAlign()); 1714 Args.push_back(AI); 1715 1716 if (RV.isScalar()) 1717 EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false, 1718 TypeAlign, I->Ty); 1719 else 1720 StoreComplexToAddr(RV.getComplexVal(), Args.back(), false); 1721 1722 // Validate argument match. 1723 checkArgMatches(AI, IRArgNo, IRFuncTy); 1724 } else { 1725 // We want to avoid creating an unnecessary temporary+copy here; 1726 // however, we need one in two cases: 1727 // 1. If the argument is not byval, and we are required to copy the 1728 // source. (This case doesn't occur on any common architecture.) 1729 // 2. If the argument is byval, RV is not sufficiently aligned, and 1730 // we cannot force it to be sufficiently aligned. 1731 llvm::Value *Addr = RV.getAggregateAddr(); 1732 unsigned Align = ArgInfo.getIndirectAlign(); 1733 const llvm::TargetData *TD = &CGM.getTargetData(); 1734 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 1735 (ArgInfo.getIndirectByVal() && TypeAlign < Align && 1736 llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) { 1737 // Create an aligned temporary, and copy to it. 1738 llvm::AllocaInst *AI = CreateMemTemp(I->Ty); 1739 if (Align > AI->getAlignment()) 1740 AI->setAlignment(Align); 1741 Args.push_back(AI); 1742 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 1743 1744 // Validate argument match. 1745 checkArgMatches(AI, IRArgNo, IRFuncTy); 1746 } else { 1747 // Skip the extra memcpy call. 1748 Args.push_back(Addr); 1749 1750 // Validate argument match. 1751 checkArgMatches(Addr, IRArgNo, IRFuncTy); 1752 } 1753 } 1754 break; 1755 } 1756 1757 case ABIArgInfo::Ignore: 1758 break; 1759 1760 case ABIArgInfo::Extend: 1761 case ABIArgInfo::Direct: { 1762 // Insert a padding argument to ensure proper alignment. 1763 if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) { 1764 Args.push_back(llvm::UndefValue::get(PaddingType)); 1765 ++IRArgNo; 1766 } 1767 1768 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 1769 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 1770 ArgInfo.getDirectOffset() == 0) { 1771 llvm::Value *V; 1772 if (RV.isScalar()) 1773 V = RV.getScalarVal(); 1774 else 1775 V = Builder.CreateLoad(RV.getAggregateAddr()); 1776 1777 // If the argument doesn't match, perform a bitcast to coerce it. This 1778 // can happen due to trivial type mismatches. 1779 if (IRArgNo < IRFuncTy->getNumParams() && 1780 V->getType() != IRFuncTy->getParamType(IRArgNo)) 1781 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo)); 1782 Args.push_back(V); 1783 1784 checkArgMatches(V, IRArgNo, IRFuncTy); 1785 break; 1786 } 1787 1788 // FIXME: Avoid the conversion through memory if possible. 1789 llvm::Value *SrcPtr; 1790 if (RV.isScalar()) { 1791 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 1792 EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty); 1793 } else if (RV.isComplex()) { 1794 SrcPtr = CreateMemTemp(I->Ty, "coerce"); 1795 StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false); 1796 } else 1797 SrcPtr = RV.getAggregateAddr(); 1798 1799 // If the value is offset in memory, apply the offset now. 1800 if (unsigned Offs = ArgInfo.getDirectOffset()) { 1801 SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy()); 1802 SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs); 1803 SrcPtr = Builder.CreateBitCast(SrcPtr, 1804 llvm::PointerType::getUnqual(ArgInfo.getCoerceToType())); 1805 1806 } 1807 1808 // If the coerce-to type is a first class aggregate, we flatten it and 1809 // pass the elements. Either way is semantically identical, but fast-isel 1810 // and the optimizer generally likes scalar values better than FCAs. 1811 if (llvm::StructType *STy = 1812 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) { 1813 SrcPtr = Builder.CreateBitCast(SrcPtr, 1814 llvm::PointerType::getUnqual(STy)); 1815 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1816 llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i); 1817 llvm::LoadInst *LI = Builder.CreateLoad(EltPtr); 1818 // We don't know what we're loading from. 1819 LI->setAlignment(1); 1820 Args.push_back(LI); 1821 1822 // Validate argument match. 1823 checkArgMatches(LI, IRArgNo, IRFuncTy); 1824 } 1825 } else { 1826 // In the simple case, just pass the coerced loaded value. 1827 Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(), 1828 *this)); 1829 1830 // Validate argument match. 1831 checkArgMatches(Args.back(), IRArgNo, IRFuncTy); 1832 } 1833 1834 break; 1835 } 1836 1837 case ABIArgInfo::Expand: 1838 ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy); 1839 IRArgNo = Args.size(); 1840 break; 1841 } 1842 } 1843 1844 // If the callee is a bitcast of a function to a varargs pointer to function 1845 // type, check to see if we can remove the bitcast. This handles some cases 1846 // with unprototyped functions. 1847 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 1848 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 1849 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 1850 llvm::FunctionType *CurFT = 1851 cast<llvm::FunctionType>(CurPT->getElementType()); 1852 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 1853 1854 if (CE->getOpcode() == llvm::Instruction::BitCast && 1855 ActualFT->getReturnType() == CurFT->getReturnType() && 1856 ActualFT->getNumParams() == CurFT->getNumParams() && 1857 ActualFT->getNumParams() == Args.size() && 1858 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 1859 bool ArgsMatch = true; 1860 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 1861 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 1862 ArgsMatch = false; 1863 break; 1864 } 1865 1866 // Strip the cast if we can get away with it. This is a nice cleanup, 1867 // but also allows us to inline the function at -O0 if it is marked 1868 // always_inline. 1869 if (ArgsMatch) 1870 Callee = CalleeF; 1871 } 1872 } 1873 1874 unsigned CallingConv; 1875 CodeGen::AttributeListType AttributeList; 1876 CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv); 1877 llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(), 1878 AttributeList.end()); 1879 1880 llvm::BasicBlock *InvokeDest = 0; 1881 if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind)) 1882 InvokeDest = getInvokeDest(); 1883 1884 llvm::CallSite CS; 1885 if (!InvokeDest) { 1886 CS = Builder.CreateCall(Callee, Args); 1887 } else { 1888 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 1889 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args); 1890 EmitBlock(Cont); 1891 } 1892 if (callOrInvoke) 1893 *callOrInvoke = CS.getInstruction(); 1894 1895 CS.setAttributes(Attrs); 1896 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1897 1898 // If the call doesn't return, finish the basic block and clear the 1899 // insertion point; this allows the rest of IRgen to discard 1900 // unreachable code. 1901 if (CS.doesNotReturn()) { 1902 Builder.CreateUnreachable(); 1903 Builder.ClearInsertionPoint(); 1904 1905 // FIXME: For now, emit a dummy basic block because expr emitters in 1906 // generally are not ready to handle emitting expressions at unreachable 1907 // points. 1908 EnsureInsertPoint(); 1909 1910 // Return a reasonable RValue. 1911 return GetUndefRValue(RetTy); 1912 } 1913 1914 llvm::Instruction *CI = CS.getInstruction(); 1915 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 1916 CI->setName("call"); 1917 1918 // Emit any writebacks immediately. Arguably this should happen 1919 // after any return-value munging. 1920 if (CallArgs.hasWritebacks()) 1921 emitWritebacks(*this, CallArgs); 1922 1923 switch (RetAI.getKind()) { 1924 case ABIArgInfo::Indirect: { 1925 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 1926 if (RetTy->isAnyComplexType()) 1927 return RValue::getComplex(LoadComplexFromAddr(Args[0], false)); 1928 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) 1929 return RValue::getAggregate(Args[0]); 1930 return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy)); 1931 } 1932 1933 case ABIArgInfo::Ignore: 1934 // If we are ignoring an argument that had a result, make sure to 1935 // construct the appropriate return value for our caller. 1936 return GetUndefRValue(RetTy); 1937 1938 case ABIArgInfo::Extend: 1939 case ABIArgInfo::Direct: { 1940 llvm::Type *RetIRTy = ConvertType(RetTy); 1941 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 1942 if (RetTy->isAnyComplexType()) { 1943 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 1944 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 1945 return RValue::getComplex(std::make_pair(Real, Imag)); 1946 } 1947 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) { 1948 llvm::Value *DestPtr = ReturnValue.getValue(); 1949 bool DestIsVolatile = ReturnValue.isVolatile(); 1950 1951 if (!DestPtr) { 1952 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 1953 DestIsVolatile = false; 1954 } 1955 BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false); 1956 return RValue::getAggregate(DestPtr); 1957 } 1958 1959 // If the argument doesn't match, perform a bitcast to coerce it. This 1960 // can happen due to trivial type mismatches. 1961 llvm::Value *V = CI; 1962 if (V->getType() != RetIRTy) 1963 V = Builder.CreateBitCast(V, RetIRTy); 1964 return RValue::get(V); 1965 } 1966 1967 llvm::Value *DestPtr = ReturnValue.getValue(); 1968 bool DestIsVolatile = ReturnValue.isVolatile(); 1969 1970 if (!DestPtr) { 1971 DestPtr = CreateMemTemp(RetTy, "coerce"); 1972 DestIsVolatile = false; 1973 } 1974 1975 // If the value is offset in memory, apply the offset now. 1976 llvm::Value *StorePtr = DestPtr; 1977 if (unsigned Offs = RetAI.getDirectOffset()) { 1978 StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy()); 1979 StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs); 1980 StorePtr = Builder.CreateBitCast(StorePtr, 1981 llvm::PointerType::getUnqual(RetAI.getCoerceToType())); 1982 } 1983 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 1984 1985 unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity(); 1986 if (RetTy->isAnyComplexType()) 1987 return RValue::getComplex(LoadComplexFromAddr(DestPtr, false)); 1988 if (CodeGenFunction::hasAggregateLLVMType(RetTy)) 1989 return RValue::getAggregate(DestPtr); 1990 return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy)); 1991 } 1992 1993 case ABIArgInfo::Expand: 1994 llvm_unreachable("Invalid ABI kind for return argument"); 1995 } 1996 1997 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 1998 } 1999 2000 /* VarArg handling */ 2001 2002 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) { 2003 return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this); 2004 } 2005