1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "CGCXXABI.h"
17 #include "ABIInfo.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Attributes.h"
27 #include "llvm/Support/CallSite.h"
28 #include "llvm/Target/TargetData.h"
29 #include "llvm/InlineAsm.h"
30 #include "llvm/Transforms/Utils/Local.h"
31 using namespace clang;
32 using namespace CodeGen;
33 
34 /***/
35 
36 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
37   switch (CC) {
38   default: return llvm::CallingConv::C;
39   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
40   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
41   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
42   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
43   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
44   // TODO: add support for CC_X86Pascal to llvm
45   }
46 }
47 
48 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
49 /// qualification.
50 /// FIXME: address space qualification?
51 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
52   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
53   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
54 }
55 
56 /// Returns the canonical formal type of the given C++ method.
57 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
58   return MD->getType()->getCanonicalTypeUnqualified()
59            .getAs<FunctionProtoType>();
60 }
61 
62 /// Returns the "extra-canonicalized" return type, which discards
63 /// qualifiers on the return type.  Codegen doesn't care about them,
64 /// and it makes ABI code a little easier to be able to assume that
65 /// all parameter and return types are top-level unqualified.
66 static CanQualType GetReturnType(QualType RetTy) {
67   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
68 }
69 
70 /// Arrange the argument and result information for a value of the
71 /// given unprototyped function type.
72 const CGFunctionInfo &
73 CodeGenTypes::arrangeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
74   // When translating an unprototyped function type, always use a
75   // variadic type.
76   return arrangeFunctionType(FTNP->getResultType().getUnqualifiedType(),
77                              ArrayRef<CanQualType>(),
78                              FTNP->getExtInfo(),
79                              RequiredArgs(0));
80 }
81 
82 /// Arrange the argument and result information for a value of the
83 /// given function type, on top of any implicit parameters already
84 /// stored.
85 static const CGFunctionInfo &arrangeFunctionType(CodeGenTypes &CGT,
86                                   SmallVectorImpl<CanQualType> &argTypes,
87                                              CanQual<FunctionProtoType> FTP) {
88   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
89   // FIXME: Kill copy.
90   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
91     argTypes.push_back(FTP->getArgType(i));
92   CanQualType resultType = FTP->getResultType().getUnqualifiedType();
93   return CGT.arrangeFunctionType(resultType, argTypes,
94                                  FTP->getExtInfo(), required);
95 }
96 
97 /// Arrange the argument and result information for a value of the
98 /// given function type.
99 const CGFunctionInfo &
100 CodeGenTypes::arrangeFunctionType(CanQual<FunctionProtoType> FTP) {
101   SmallVector<CanQualType, 16> argTypes;
102   return ::arrangeFunctionType(*this, argTypes, FTP);
103 }
104 
105 static CallingConv getCallingConventionForDecl(const Decl *D) {
106   // Set the appropriate calling convention for the Function.
107   if (D->hasAttr<StdCallAttr>())
108     return CC_X86StdCall;
109 
110   if (D->hasAttr<FastCallAttr>())
111     return CC_X86FastCall;
112 
113   if (D->hasAttr<ThisCallAttr>())
114     return CC_X86ThisCall;
115 
116   if (D->hasAttr<PascalAttr>())
117     return CC_X86Pascal;
118 
119   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
120     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
121 
122   return CC_C;
123 }
124 
125 /// Arrange the argument and result information for a call to an
126 /// unknown C++ non-static member function of the given abstract type.
127 /// The member function must be an ordinary function, i.e. not a
128 /// constructor or destructor.
129 const CGFunctionInfo &
130 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
131                                    const FunctionProtoType *FTP) {
132   SmallVector<CanQualType, 16> argTypes;
133 
134   // Add the 'this' pointer.
135   argTypes.push_back(GetThisType(Context, RD));
136 
137   return ::arrangeFunctionType(*this, argTypes,
138               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
139 }
140 
141 /// Arrange the argument and result information for a declaration or
142 /// definition of the given C++ non-static member function.  The
143 /// member function must be an ordinary function, i.e. not a
144 /// constructor or destructor.
145 const CGFunctionInfo &
146 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
147   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
148   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
149 
150   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
151 
152   if (MD->isInstance()) {
153     // The abstract case is perfectly fine.
154     return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
155   }
156 
157   return arrangeFunctionType(prototype);
158 }
159 
160 /// Arrange the argument and result information for a declaration
161 /// or definition to the given constructor variant.
162 const CGFunctionInfo &
163 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
164                                                CXXCtorType ctorKind) {
165   SmallVector<CanQualType, 16> argTypes;
166   argTypes.push_back(GetThisType(Context, D->getParent()));
167   CanQualType resultType = Context.VoidTy;
168 
169   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
170 
171   CanQual<FunctionProtoType> FTP = GetFormalType(D);
172 
173   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
174 
175   // Add the formal parameters.
176   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
177     argTypes.push_back(FTP->getArgType(i));
178 
179   return arrangeFunctionType(resultType, argTypes, FTP->getExtInfo(), required);
180 }
181 
182 /// Arrange the argument and result information for a declaration,
183 /// definition, or call to the given destructor variant.  It so
184 /// happens that all three cases produce the same information.
185 const CGFunctionInfo &
186 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
187                                    CXXDtorType dtorKind) {
188   SmallVector<CanQualType, 2> argTypes;
189   argTypes.push_back(GetThisType(Context, D->getParent()));
190   CanQualType resultType = Context.VoidTy;
191 
192   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
193 
194   CanQual<FunctionProtoType> FTP = GetFormalType(D);
195   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
196 
197   return arrangeFunctionType(resultType, argTypes, FTP->getExtInfo(),
198                              RequiredArgs::All);
199 }
200 
201 /// Arrange the argument and result information for the declaration or
202 /// definition of the given function.
203 const CGFunctionInfo &
204 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
205   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
206     if (MD->isInstance())
207       return arrangeCXXMethodDeclaration(MD);
208 
209   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
210 
211   assert(isa<FunctionType>(FTy));
212 
213   // When declaring a function without a prototype, always use a
214   // non-variadic type.
215   if (isa<FunctionNoProtoType>(FTy)) {
216     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
217     return arrangeFunctionType(noProto->getResultType(),
218                                ArrayRef<CanQualType>(),
219                                noProto->getExtInfo(),
220                                RequiredArgs::All);
221   }
222 
223   assert(isa<FunctionProtoType>(FTy));
224   return arrangeFunctionType(FTy.getAs<FunctionProtoType>());
225 }
226 
227 /// Arrange the argument and result information for the declaration or
228 /// definition of an Objective-C method.
229 const CGFunctionInfo &
230 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
231   // It happens that this is the same as a call with no optional
232   // arguments, except also using the formal 'self' type.
233   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
234 }
235 
236 /// Arrange the argument and result information for the function type
237 /// through which to perform a send to the given Objective-C method,
238 /// using the given receiver type.  The receiver type is not always
239 /// the 'self' type of the method or even an Objective-C pointer type.
240 /// This is *not* the right method for actually performing such a
241 /// message send, due to the possibility of optional arguments.
242 const CGFunctionInfo &
243 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
244                                               QualType receiverType) {
245   SmallVector<CanQualType, 16> argTys;
246   argTys.push_back(Context.getCanonicalParamType(receiverType));
247   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
248   // FIXME: Kill copy?
249   for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
250          e = MD->param_end(); i != e; ++i) {
251     argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
252   }
253 
254   FunctionType::ExtInfo einfo;
255   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
256 
257   if (getContext().getLangOpts().ObjCAutoRefCount &&
258       MD->hasAttr<NSReturnsRetainedAttr>())
259     einfo = einfo.withProducesResult(true);
260 
261   RequiredArgs required =
262     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
263 
264   return arrangeFunctionType(GetReturnType(MD->getResultType()), argTys,
265                              einfo, required);
266 }
267 
268 const CGFunctionInfo &
269 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
270   // FIXME: Do we need to handle ObjCMethodDecl?
271   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
272 
273   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
274     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
275 
276   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
277     return arrangeCXXDestructor(DD, GD.getDtorType());
278 
279   return arrangeFunctionDeclaration(FD);
280 }
281 
282 /// Figure out the rules for calling a function with the given formal
283 /// type using the given arguments.  The arguments are necessary
284 /// because the function might be unprototyped, in which case it's
285 /// target-dependent in crazy ways.
286 const CGFunctionInfo &
287 CodeGenTypes::arrangeFunctionCall(const CallArgList &args,
288                                   const FunctionType *fnType) {
289   RequiredArgs required = RequiredArgs::All;
290   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
291     if (proto->isVariadic())
292       required = RequiredArgs(proto->getNumArgs());
293   } else if (CGM.getTargetCodeGenInfo()
294                .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
295     required = RequiredArgs(0);
296   }
297 
298   return arrangeFunctionCall(fnType->getResultType(), args,
299                              fnType->getExtInfo(), required);
300 }
301 
302 const CGFunctionInfo &
303 CodeGenTypes::arrangeFunctionCall(QualType resultType,
304                                   const CallArgList &args,
305                                   const FunctionType::ExtInfo &info,
306                                   RequiredArgs required) {
307   // FIXME: Kill copy.
308   SmallVector<CanQualType, 16> argTypes;
309   for (CallArgList::const_iterator i = args.begin(), e = args.end();
310        i != e; ++i)
311     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
312   return arrangeFunctionType(GetReturnType(resultType), argTypes, info,
313                              required);
314 }
315 
316 const CGFunctionInfo &
317 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
318                                          const FunctionArgList &args,
319                                          const FunctionType::ExtInfo &info,
320                                          bool isVariadic) {
321   // FIXME: Kill copy.
322   SmallVector<CanQualType, 16> argTypes;
323   for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
324        i != e; ++i)
325     argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
326 
327   RequiredArgs required =
328     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
329   return arrangeFunctionType(GetReturnType(resultType), argTypes, info,
330                              required);
331 }
332 
333 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
334   return arrangeFunctionType(getContext().VoidTy, ArrayRef<CanQualType>(),
335                              FunctionType::ExtInfo(), RequiredArgs::All);
336 }
337 
338 /// Arrange the argument and result information for an abstract value
339 /// of a given function type.  This is the method which all of the
340 /// above functions ultimately defer to.
341 const CGFunctionInfo &
342 CodeGenTypes::arrangeFunctionType(CanQualType resultType,
343                                   ArrayRef<CanQualType> argTypes,
344                                   const FunctionType::ExtInfo &info,
345                                   RequiredArgs required) {
346 #ifndef NDEBUG
347   for (ArrayRef<CanQualType>::const_iterator
348          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
349     assert(I->isCanonicalAsParam());
350 #endif
351 
352   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
353 
354   // Lookup or create unique function info.
355   llvm::FoldingSetNodeID ID;
356   CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
357 
358   void *insertPos = 0;
359   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
360   if (FI)
361     return *FI;
362 
363   // Construct the function info.  We co-allocate the ArgInfos.
364   FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
365   FunctionInfos.InsertNode(FI, insertPos);
366 
367   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
368   assert(inserted && "Recursively being processed?");
369 
370   // Compute ABI information.
371   getABIInfo().computeInfo(*FI);
372 
373   // Loop over all of the computed argument and return value info.  If any of
374   // them are direct or extend without a specified coerce type, specify the
375   // default now.
376   ABIArgInfo &retInfo = FI->getReturnInfo();
377   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
378     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
379 
380   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
381        I != E; ++I)
382     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
383       I->info.setCoerceToType(ConvertType(I->type));
384 
385   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
386   assert(erased && "Not in set?");
387 
388   return *FI;
389 }
390 
391 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
392                                        const FunctionType::ExtInfo &info,
393                                        CanQualType resultType,
394                                        ArrayRef<CanQualType> argTypes,
395                                        RequiredArgs required) {
396   void *buffer = operator new(sizeof(CGFunctionInfo) +
397                               sizeof(ArgInfo) * (argTypes.size() + 1));
398   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
399   FI->CallingConvention = llvmCC;
400   FI->EffectiveCallingConvention = llvmCC;
401   FI->ASTCallingConvention = info.getCC();
402   FI->NoReturn = info.getNoReturn();
403   FI->ReturnsRetained = info.getProducesResult();
404   FI->Required = required;
405   FI->HasRegParm = info.getHasRegParm();
406   FI->RegParm = info.getRegParm();
407   FI->NumArgs = argTypes.size();
408   FI->getArgsBuffer()[0].type = resultType;
409   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
410     FI->getArgsBuffer()[i + 1].type = argTypes[i];
411   return FI;
412 }
413 
414 /***/
415 
416 void CodeGenTypes::GetExpandedTypes(QualType type,
417                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
418   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
419     uint64_t NumElts = AT->getSize().getZExtValue();
420     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
421       GetExpandedTypes(AT->getElementType(), expandedTypes);
422   } else if (const RecordType *RT = type->getAsStructureType()) {
423     const RecordDecl *RD = RT->getDecl();
424     assert(!RD->hasFlexibleArrayMember() &&
425            "Cannot expand structure with flexible array.");
426     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
427          i != e; ++i) {
428       const FieldDecl *FD = *i;
429       assert(!FD->isBitField() &&
430              "Cannot expand structure with bit-field members.");
431       GetExpandedTypes(FD->getType(), expandedTypes);
432     }
433   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
434     llvm::Type *EltTy = ConvertType(CT->getElementType());
435     expandedTypes.push_back(EltTy);
436     expandedTypes.push_back(EltTy);
437   } else
438     expandedTypes.push_back(ConvertType(type));
439 }
440 
441 llvm::Function::arg_iterator
442 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
443                                     llvm::Function::arg_iterator AI) {
444   assert(LV.isSimple() &&
445          "Unexpected non-simple lvalue during struct expansion.");
446   llvm::Value *Addr = LV.getAddress();
447 
448   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
449     unsigned NumElts = AT->getSize().getZExtValue();
450     QualType EltTy = AT->getElementType();
451     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
452       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
453       LValue LV = MakeAddrLValue(EltAddr, EltTy);
454       AI = ExpandTypeFromArgs(EltTy, LV, AI);
455     }
456   } else if (const RecordType *RT = Ty->getAsStructureType()) {
457     RecordDecl *RD = RT->getDecl();
458     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
459          i != e; ++i) {
460       FieldDecl *FD = *i;
461       QualType FT = FD->getType();
462 
463       // FIXME: What are the right qualifiers here?
464       LValue LV = EmitLValueForField(Addr, FD, 0);
465       AI = ExpandTypeFromArgs(FT, LV, AI);
466     }
467   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
468     QualType EltTy = CT->getElementType();
469     llvm::Value *RealAddr = Builder.CreateStructGEP(Addr, 0, "real");
470     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
471     llvm::Value *ImagAddr = Builder.CreateStructGEP(Addr, 1, "imag");
472     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
473   } else {
474     EmitStoreThroughLValue(RValue::get(AI), LV);
475     ++AI;
476   }
477 
478   return AI;
479 }
480 
481 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
482 /// accessing some number of bytes out of it, try to gep into the struct to get
483 /// at its inner goodness.  Dive as deep as possible without entering an element
484 /// with an in-memory size smaller than DstSize.
485 static llvm::Value *
486 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
487                                    llvm::StructType *SrcSTy,
488                                    uint64_t DstSize, CodeGenFunction &CGF) {
489   // We can't dive into a zero-element struct.
490   if (SrcSTy->getNumElements() == 0) return SrcPtr;
491 
492   llvm::Type *FirstElt = SrcSTy->getElementType(0);
493 
494   // If the first elt is at least as large as what we're looking for, or if the
495   // first element is the same size as the whole struct, we can enter it.
496   uint64_t FirstEltSize =
497     CGF.CGM.getTargetData().getTypeAllocSize(FirstElt);
498   if (FirstEltSize < DstSize &&
499       FirstEltSize < CGF.CGM.getTargetData().getTypeAllocSize(SrcSTy))
500     return SrcPtr;
501 
502   // GEP into the first element.
503   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
504 
505   // If the first element is a struct, recurse.
506   llvm::Type *SrcTy =
507     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
508   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
509     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
510 
511   return SrcPtr;
512 }
513 
514 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
515 /// are either integers or pointers.  This does a truncation of the value if it
516 /// is too large or a zero extension if it is too small.
517 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
518                                              llvm::Type *Ty,
519                                              CodeGenFunction &CGF) {
520   if (Val->getType() == Ty)
521     return Val;
522 
523   if (isa<llvm::PointerType>(Val->getType())) {
524     // If this is Pointer->Pointer avoid conversion to and from int.
525     if (isa<llvm::PointerType>(Ty))
526       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
527 
528     // Convert the pointer to an integer so we can play with its width.
529     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
530   }
531 
532   llvm::Type *DestIntTy = Ty;
533   if (isa<llvm::PointerType>(DestIntTy))
534     DestIntTy = CGF.IntPtrTy;
535 
536   if (Val->getType() != DestIntTy)
537     Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
538 
539   if (isa<llvm::PointerType>(Ty))
540     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
541   return Val;
542 }
543 
544 
545 
546 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
547 /// a pointer to an object of type \arg Ty.
548 ///
549 /// This safely handles the case when the src type is smaller than the
550 /// destination type; in this situation the values of bits which not
551 /// present in the src are undefined.
552 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
553                                       llvm::Type *Ty,
554                                       CodeGenFunction &CGF) {
555   llvm::Type *SrcTy =
556     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
557 
558   // If SrcTy and Ty are the same, just do a load.
559   if (SrcTy == Ty)
560     return CGF.Builder.CreateLoad(SrcPtr);
561 
562   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(Ty);
563 
564   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
565     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
566     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
567   }
568 
569   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
570 
571   // If the source and destination are integer or pointer types, just do an
572   // extension or truncation to the desired type.
573   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
574       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
575     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
576     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
577   }
578 
579   // If load is legal, just bitcast the src pointer.
580   if (SrcSize >= DstSize) {
581     // Generally SrcSize is never greater than DstSize, since this means we are
582     // losing bits. However, this can happen in cases where the structure has
583     // additional padding, for example due to a user specified alignment.
584     //
585     // FIXME: Assert that we aren't truncating non-padding bits when have access
586     // to that information.
587     llvm::Value *Casted =
588       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
589     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
590     // FIXME: Use better alignment / avoid requiring aligned load.
591     Load->setAlignment(1);
592     return Load;
593   }
594 
595   // Otherwise do coercion through memory. This is stupid, but
596   // simple.
597   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
598   llvm::Value *Casted =
599     CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(SrcTy));
600   llvm::StoreInst *Store =
601     CGF.Builder.CreateStore(CGF.Builder.CreateLoad(SrcPtr), Casted);
602   // FIXME: Use better alignment / avoid requiring aligned store.
603   Store->setAlignment(1);
604   return CGF.Builder.CreateLoad(Tmp);
605 }
606 
607 // Function to store a first-class aggregate into memory.  We prefer to
608 // store the elements rather than the aggregate to be more friendly to
609 // fast-isel.
610 // FIXME: Do we need to recurse here?
611 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
612                           llvm::Value *DestPtr, bool DestIsVolatile,
613                           bool LowAlignment) {
614   // Prefer scalar stores to first-class aggregate stores.
615   if (llvm::StructType *STy =
616         dyn_cast<llvm::StructType>(Val->getType())) {
617     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
618       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
619       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
620       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
621                                                     DestIsVolatile);
622       if (LowAlignment)
623         SI->setAlignment(1);
624     }
625   } else {
626     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
627     if (LowAlignment)
628       SI->setAlignment(1);
629   }
630 }
631 
632 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
633 /// where the source and destination may have different types.
634 ///
635 /// This safely handles the case when the src type is larger than the
636 /// destination type; the upper bits of the src will be lost.
637 static void CreateCoercedStore(llvm::Value *Src,
638                                llvm::Value *DstPtr,
639                                bool DstIsVolatile,
640                                CodeGenFunction &CGF) {
641   llvm::Type *SrcTy = Src->getType();
642   llvm::Type *DstTy =
643     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
644   if (SrcTy == DstTy) {
645     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
646     return;
647   }
648 
649   uint64_t SrcSize = CGF.CGM.getTargetData().getTypeAllocSize(SrcTy);
650 
651   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
652     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
653     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
654   }
655 
656   // If the source and destination are integer or pointer types, just do an
657   // extension or truncation to the desired type.
658   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
659       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
660     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
661     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
662     return;
663   }
664 
665   uint64_t DstSize = CGF.CGM.getTargetData().getTypeAllocSize(DstTy);
666 
667   // If store is legal, just bitcast the src pointer.
668   if (SrcSize <= DstSize) {
669     llvm::Value *Casted =
670       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
671     // FIXME: Use better alignment / avoid requiring aligned store.
672     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
673   } else {
674     // Otherwise do coercion through memory. This is stupid, but
675     // simple.
676 
677     // Generally SrcSize is never greater than DstSize, since this means we are
678     // losing bits. However, this can happen in cases where the structure has
679     // additional padding, for example due to a user specified alignment.
680     //
681     // FIXME: Assert that we aren't truncating non-padding bits when have access
682     // to that information.
683     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
684     CGF.Builder.CreateStore(Src, Tmp);
685     llvm::Value *Casted =
686       CGF.Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(DstTy));
687     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
688     // FIXME: Use better alignment / avoid requiring aligned load.
689     Load->setAlignment(1);
690     CGF.Builder.CreateStore(Load, DstPtr, DstIsVolatile);
691   }
692 }
693 
694 /***/
695 
696 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
697   return FI.getReturnInfo().isIndirect();
698 }
699 
700 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
701   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
702     switch (BT->getKind()) {
703     default:
704       return false;
705     case BuiltinType::Float:
706       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Float);
707     case BuiltinType::Double:
708       return getContext().getTargetInfo().useObjCFPRetForRealType(TargetInfo::Double);
709     case BuiltinType::LongDouble:
710       return getContext().getTargetInfo().useObjCFPRetForRealType(
711         TargetInfo::LongDouble);
712     }
713   }
714 
715   return false;
716 }
717 
718 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
719   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
720     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
721       if (BT->getKind() == BuiltinType::LongDouble)
722         return getContext().getTargetInfo().useObjCFP2RetForComplexLongDouble();
723     }
724   }
725 
726   return false;
727 }
728 
729 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
730   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
731   return GetFunctionType(FI);
732 }
733 
734 llvm::FunctionType *
735 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
736 
737   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
738   assert(Inserted && "Recursively being processed?");
739 
740   SmallVector<llvm::Type*, 8> argTypes;
741   llvm::Type *resultType = 0;
742 
743   const ABIArgInfo &retAI = FI.getReturnInfo();
744   switch (retAI.getKind()) {
745   case ABIArgInfo::Expand:
746     llvm_unreachable("Invalid ABI kind for return argument");
747 
748   case ABIArgInfo::Extend:
749   case ABIArgInfo::Direct:
750     resultType = retAI.getCoerceToType();
751     break;
752 
753   case ABIArgInfo::Indirect: {
754     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
755     resultType = llvm::Type::getVoidTy(getLLVMContext());
756 
757     QualType ret = FI.getReturnType();
758     llvm::Type *ty = ConvertType(ret);
759     unsigned addressSpace = Context.getTargetAddressSpace(ret);
760     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
761     break;
762   }
763 
764   case ABIArgInfo::Ignore:
765     resultType = llvm::Type::getVoidTy(getLLVMContext());
766     break;
767   }
768 
769   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
770          ie = FI.arg_end(); it != ie; ++it) {
771     const ABIArgInfo &argAI = it->info;
772 
773     switch (argAI.getKind()) {
774     case ABIArgInfo::Ignore:
775       break;
776 
777     case ABIArgInfo::Indirect: {
778       // indirect arguments are always on the stack, which is addr space #0.
779       llvm::Type *LTy = ConvertTypeForMem(it->type);
780       argTypes.push_back(LTy->getPointerTo());
781       break;
782     }
783 
784     case ABIArgInfo::Extend:
785     case ABIArgInfo::Direct: {
786       // Insert a padding type to ensure proper alignment.
787       if (llvm::Type *PaddingType = argAI.getPaddingType())
788         argTypes.push_back(PaddingType);
789       // If the coerce-to type is a first class aggregate, flatten it.  Either
790       // way is semantically identical, but fast-isel and the optimizer
791       // generally likes scalar values better than FCAs.
792       llvm::Type *argType = argAI.getCoerceToType();
793       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
794         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
795           argTypes.push_back(st->getElementType(i));
796       } else {
797         argTypes.push_back(argType);
798       }
799       break;
800     }
801 
802     case ABIArgInfo::Expand:
803       GetExpandedTypes(it->type, argTypes);
804       break;
805     }
806   }
807 
808   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
809   assert(Erased && "Not in set?");
810 
811   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
812 }
813 
814 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
815   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
816   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
817 
818   if (!isFuncTypeConvertible(FPT))
819     return llvm::StructType::get(getLLVMContext());
820 
821   const CGFunctionInfo *Info;
822   if (isa<CXXDestructorDecl>(MD))
823     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
824   else
825     Info = &arrangeCXXMethodDeclaration(MD);
826   return GetFunctionType(*Info);
827 }
828 
829 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
830                                            const Decl *TargetDecl,
831                                            AttributeListType &PAL,
832                                            unsigned &CallingConv) {
833   llvm::Attributes FuncAttrs;
834   llvm::Attributes RetAttrs;
835 
836   CallingConv = FI.getEffectiveCallingConvention();
837 
838   if (FI.isNoReturn())
839     FuncAttrs |= llvm::Attribute::NoReturn;
840 
841   // FIXME: handle sseregparm someday...
842   if (TargetDecl) {
843     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
844       FuncAttrs |= llvm::Attribute::ReturnsTwice;
845     if (TargetDecl->hasAttr<NoThrowAttr>())
846       FuncAttrs |= llvm::Attribute::NoUnwind;
847     else if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
848       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
849       if (FPT && FPT->isNothrow(getContext()))
850         FuncAttrs |= llvm::Attribute::NoUnwind;
851     }
852 
853     if (TargetDecl->hasAttr<NoReturnAttr>())
854       FuncAttrs |= llvm::Attribute::NoReturn;
855 
856     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
857       FuncAttrs |= llvm::Attribute::ReturnsTwice;
858 
859     // 'const' and 'pure' attribute functions are also nounwind.
860     if (TargetDecl->hasAttr<ConstAttr>()) {
861       FuncAttrs |= llvm::Attribute::ReadNone;
862       FuncAttrs |= llvm::Attribute::NoUnwind;
863     } else if (TargetDecl->hasAttr<PureAttr>()) {
864       FuncAttrs |= llvm::Attribute::ReadOnly;
865       FuncAttrs |= llvm::Attribute::NoUnwind;
866     }
867     if (TargetDecl->hasAttr<MallocAttr>())
868       RetAttrs |= llvm::Attribute::NoAlias;
869   }
870 
871   if (CodeGenOpts.OptimizeSize)
872     FuncAttrs |= llvm::Attribute::OptimizeForSize;
873   if (CodeGenOpts.DisableRedZone)
874     FuncAttrs |= llvm::Attribute::NoRedZone;
875   if (CodeGenOpts.NoImplicitFloat)
876     FuncAttrs |= llvm::Attribute::NoImplicitFloat;
877 
878   QualType RetTy = FI.getReturnType();
879   unsigned Index = 1;
880   const ABIArgInfo &RetAI = FI.getReturnInfo();
881   switch (RetAI.getKind()) {
882   case ABIArgInfo::Extend:
883    if (RetTy->hasSignedIntegerRepresentation())
884      RetAttrs |= llvm::Attribute::SExt;
885    else if (RetTy->hasUnsignedIntegerRepresentation())
886      RetAttrs |= llvm::Attribute::ZExt;
887     break;
888   case ABIArgInfo::Direct:
889   case ABIArgInfo::Ignore:
890     break;
891 
892   case ABIArgInfo::Indirect:
893     PAL.push_back(llvm::AttributeWithIndex::get(Index,
894                                                 llvm::Attribute::StructRet));
895     ++Index;
896     // sret disables readnone and readonly
897     FuncAttrs &= ~(llvm::Attribute::ReadOnly |
898                    llvm::Attribute::ReadNone);
899     break;
900 
901   case ABIArgInfo::Expand:
902     llvm_unreachable("Invalid ABI kind for return argument");
903   }
904 
905   if (RetAttrs)
906     PAL.push_back(llvm::AttributeWithIndex::get(0, RetAttrs));
907 
908   // FIXME: RegParm should be reduced in case of global register variable.
909   signed RegParm;
910   if (FI.getHasRegParm())
911     RegParm = FI.getRegParm();
912   else
913     RegParm = CodeGenOpts.NumRegisterParameters;
914 
915   unsigned PointerWidth = getContext().getTargetInfo().getPointerWidth(0);
916   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
917          ie = FI.arg_end(); it != ie; ++it) {
918     QualType ParamType = it->type;
919     const ABIArgInfo &AI = it->info;
920     llvm::Attributes Attrs;
921 
922     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
923     // have the corresponding parameter variable.  It doesn't make
924     // sense to do it here because parameters are so messed up.
925     switch (AI.getKind()) {
926     case ABIArgInfo::Extend:
927       if (ParamType->isSignedIntegerOrEnumerationType())
928         Attrs |= llvm::Attribute::SExt;
929       else if (ParamType->isUnsignedIntegerOrEnumerationType())
930         Attrs |= llvm::Attribute::ZExt;
931       // FALL THROUGH
932     case ABIArgInfo::Direct:
933       if (RegParm > 0 &&
934           (ParamType->isIntegerType() || ParamType->isPointerType() ||
935            ParamType->isReferenceType())) {
936         RegParm -=
937         (Context.getTypeSize(ParamType) + PointerWidth - 1) / PointerWidth;
938         if (RegParm >= 0)
939           Attrs |= llvm::Attribute::InReg;
940       }
941       // FIXME: handle sseregparm someday...
942 
943       // Increment Index if there is padding.
944       Index += (AI.getPaddingType() != 0);
945 
946       if (llvm::StructType *STy =
947             dyn_cast<llvm::StructType>(AI.getCoerceToType()))
948         Index += STy->getNumElements()-1;  // 1 will be added below.
949       break;
950 
951     case ABIArgInfo::Indirect:
952       if (AI.getIndirectByVal())
953         Attrs |= llvm::Attribute::ByVal;
954 
955       Attrs |=
956         llvm::Attribute::constructAlignmentFromInt(AI.getIndirectAlign());
957       // byval disables readnone and readonly.
958       FuncAttrs &= ~(llvm::Attribute::ReadOnly |
959                      llvm::Attribute::ReadNone);
960       break;
961 
962     case ABIArgInfo::Ignore:
963       // Skip increment, no matching LLVM parameter.
964       continue;
965 
966     case ABIArgInfo::Expand: {
967       SmallVector<llvm::Type*, 8> types;
968       // FIXME: This is rather inefficient. Do we ever actually need to do
969       // anything here? The result should be just reconstructed on the other
970       // side, so extension should be a non-issue.
971       getTypes().GetExpandedTypes(ParamType, types);
972       Index += types.size();
973       continue;
974     }
975     }
976 
977     if (Attrs)
978       PAL.push_back(llvm::AttributeWithIndex::get(Index, Attrs));
979     ++Index;
980   }
981   if (FuncAttrs)
982     PAL.push_back(llvm::AttributeWithIndex::get(~0, FuncAttrs));
983 }
984 
985 /// An argument came in as a promoted argument; demote it back to its
986 /// declared type.
987 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
988                                          const VarDecl *var,
989                                          llvm::Value *value) {
990   llvm::Type *varType = CGF.ConvertType(var->getType());
991 
992   // This can happen with promotions that actually don't change the
993   // underlying type, like the enum promotions.
994   if (value->getType() == varType) return value;
995 
996   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
997          && "unexpected promotion type");
998 
999   if (isa<llvm::IntegerType>(varType))
1000     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1001 
1002   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1003 }
1004 
1005 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1006                                          llvm::Function *Fn,
1007                                          const FunctionArgList &Args) {
1008   // If this is an implicit-return-zero function, go ahead and
1009   // initialize the return value.  TODO: it might be nice to have
1010   // a more general mechanism for this that didn't require synthesized
1011   // return statements.
1012   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
1013     if (FD->hasImplicitReturnZero()) {
1014       QualType RetTy = FD->getResultType().getUnqualifiedType();
1015       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1016       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1017       Builder.CreateStore(Zero, ReturnValue);
1018     }
1019   }
1020 
1021   // FIXME: We no longer need the types from FunctionArgList; lift up and
1022   // simplify.
1023 
1024   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1025   llvm::Function::arg_iterator AI = Fn->arg_begin();
1026 
1027   // Name the struct return argument.
1028   if (CGM.ReturnTypeUsesSRet(FI)) {
1029     AI->setName("agg.result");
1030     AI->addAttr(llvm::Attribute::NoAlias);
1031     ++AI;
1032   }
1033 
1034   assert(FI.arg_size() == Args.size() &&
1035          "Mismatch between function signature & arguments.");
1036   unsigned ArgNo = 1;
1037   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1038   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1039        i != e; ++i, ++info_it, ++ArgNo) {
1040     const VarDecl *Arg = *i;
1041     QualType Ty = info_it->type;
1042     const ABIArgInfo &ArgI = info_it->info;
1043 
1044     bool isPromoted =
1045       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1046 
1047     switch (ArgI.getKind()) {
1048     case ABIArgInfo::Indirect: {
1049       llvm::Value *V = AI;
1050 
1051       if (hasAggregateLLVMType(Ty)) {
1052         // Aggregates and complex variables are accessed by reference.  All we
1053         // need to do is realign the value, if requested
1054         if (ArgI.getIndirectRealign()) {
1055           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1056 
1057           // Copy from the incoming argument pointer to the temporary with the
1058           // appropriate alignment.
1059           //
1060           // FIXME: We should have a common utility for generating an aggregate
1061           // copy.
1062           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1063           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1064           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1065           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1066           Builder.CreateMemCpy(Dst,
1067                                Src,
1068                                llvm::ConstantInt::get(IntPtrTy,
1069                                                       Size.getQuantity()),
1070                                ArgI.getIndirectAlign(),
1071                                false);
1072           V = AlignedTemp;
1073         }
1074       } else {
1075         // Load scalar value from indirect argument.
1076         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1077         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
1078 
1079         if (isPromoted)
1080           V = emitArgumentDemotion(*this, Arg, V);
1081       }
1082       EmitParmDecl(*Arg, V, ArgNo);
1083       break;
1084     }
1085 
1086     case ABIArgInfo::Extend:
1087     case ABIArgInfo::Direct: {
1088       // Skip the dummy padding argument.
1089       if (ArgI.getPaddingType())
1090         ++AI;
1091 
1092       // If we have the trivial case, handle it with no muss and fuss.
1093       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1094           ArgI.getCoerceToType() == ConvertType(Ty) &&
1095           ArgI.getDirectOffset() == 0) {
1096         assert(AI != Fn->arg_end() && "Argument mismatch!");
1097         llvm::Value *V = AI;
1098 
1099         if (Arg->getType().isRestrictQualified())
1100           AI->addAttr(llvm::Attribute::NoAlias);
1101 
1102         // Ensure the argument is the correct type.
1103         if (V->getType() != ArgI.getCoerceToType())
1104           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1105 
1106         if (isPromoted)
1107           V = emitArgumentDemotion(*this, Arg, V);
1108 
1109         EmitParmDecl(*Arg, V, ArgNo);
1110         break;
1111       }
1112 
1113       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1114 
1115       // The alignment we need to use is the max of the requested alignment for
1116       // the argument plus the alignment required by our access code below.
1117       unsigned AlignmentToUse =
1118         CGM.getTargetData().getABITypeAlignment(ArgI.getCoerceToType());
1119       AlignmentToUse = std::max(AlignmentToUse,
1120                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1121 
1122       Alloca->setAlignment(AlignmentToUse);
1123       llvm::Value *V = Alloca;
1124       llvm::Value *Ptr = V;    // Pointer to store into.
1125 
1126       // If the value is offset in memory, apply the offset now.
1127       if (unsigned Offs = ArgI.getDirectOffset()) {
1128         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1129         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1130         Ptr = Builder.CreateBitCast(Ptr,
1131                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1132       }
1133 
1134       // If the coerce-to type is a first class aggregate, we flatten it and
1135       // pass the elements. Either way is semantically identical, but fast-isel
1136       // and the optimizer generally likes scalar values better than FCAs.
1137       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1138       if (STy && STy->getNumElements() > 1) {
1139         uint64_t SrcSize = CGM.getTargetData().getTypeAllocSize(STy);
1140         llvm::Type *DstTy =
1141           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1142         uint64_t DstSize = CGM.getTargetData().getTypeAllocSize(DstTy);
1143 
1144         if (SrcSize <= DstSize) {
1145           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1146 
1147           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1148             assert(AI != Fn->arg_end() && "Argument mismatch!");
1149             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1150             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1151             Builder.CreateStore(AI++, EltPtr);
1152           }
1153         } else {
1154           llvm::AllocaInst *TempAlloca =
1155             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1156           TempAlloca->setAlignment(AlignmentToUse);
1157           llvm::Value *TempV = TempAlloca;
1158 
1159           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1160             assert(AI != Fn->arg_end() && "Argument mismatch!");
1161             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1162             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1163             Builder.CreateStore(AI++, EltPtr);
1164           }
1165 
1166           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1167         }
1168       } else {
1169         // Simple case, just do a coerced store of the argument into the alloca.
1170         assert(AI != Fn->arg_end() && "Argument mismatch!");
1171         AI->setName(Arg->getName() + ".coerce");
1172         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1173       }
1174 
1175 
1176       // Match to what EmitParmDecl is expecting for this type.
1177       if (!CodeGenFunction::hasAggregateLLVMType(Ty)) {
1178         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1179         if (isPromoted)
1180           V = emitArgumentDemotion(*this, Arg, V);
1181       }
1182       EmitParmDecl(*Arg, V, ArgNo);
1183       continue;  // Skip ++AI increment, already done.
1184     }
1185 
1186     case ABIArgInfo::Expand: {
1187       // If this structure was expanded into multiple arguments then
1188       // we need to create a temporary and reconstruct it from the
1189       // arguments.
1190       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1191       CharUnits Align = getContext().getDeclAlign(Arg);
1192       Alloca->setAlignment(Align.getQuantity());
1193       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1194       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1195       EmitParmDecl(*Arg, Alloca, ArgNo);
1196 
1197       // Name the arguments used in expansion and increment AI.
1198       unsigned Index = 0;
1199       for (; AI != End; ++AI, ++Index)
1200         AI->setName(Arg->getName() + "." + Twine(Index));
1201       continue;
1202     }
1203 
1204     case ABIArgInfo::Ignore:
1205       // Initialize the local variable appropriately.
1206       if (hasAggregateLLVMType(Ty))
1207         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1208       else
1209         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1210                      ArgNo);
1211 
1212       // Skip increment, no matching LLVM parameter.
1213       continue;
1214     }
1215 
1216     ++AI;
1217   }
1218   assert(AI == Fn->arg_end() && "Argument mismatch!");
1219 }
1220 
1221 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1222   while (insn->use_empty()) {
1223     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1224     if (!bitcast) return;
1225 
1226     // This is "safe" because we would have used a ConstantExpr otherwise.
1227     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1228     bitcast->eraseFromParent();
1229   }
1230 }
1231 
1232 /// Try to emit a fused autorelease of a return result.
1233 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1234                                                     llvm::Value *result) {
1235   // We must be immediately followed the cast.
1236   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1237   if (BB->empty()) return 0;
1238   if (&BB->back() != result) return 0;
1239 
1240   llvm::Type *resultType = result->getType();
1241 
1242   // result is in a BasicBlock and is therefore an Instruction.
1243   llvm::Instruction *generator = cast<llvm::Instruction>(result);
1244 
1245   SmallVector<llvm::Instruction*,4> insnsToKill;
1246 
1247   // Look for:
1248   //  %generator = bitcast %type1* %generator2 to %type2*
1249   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1250     // We would have emitted this as a constant if the operand weren't
1251     // an Instruction.
1252     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1253 
1254     // Require the generator to be immediately followed by the cast.
1255     if (generator->getNextNode() != bitcast)
1256       return 0;
1257 
1258     insnsToKill.push_back(bitcast);
1259   }
1260 
1261   // Look for:
1262   //   %generator = call i8* @objc_retain(i8* %originalResult)
1263   // or
1264   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1265   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1266   if (!call) return 0;
1267 
1268   bool doRetainAutorelease;
1269 
1270   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1271     doRetainAutorelease = true;
1272   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1273                                           .objc_retainAutoreleasedReturnValue) {
1274     doRetainAutorelease = false;
1275 
1276     // Look for an inline asm immediately preceding the call and kill it, too.
1277     llvm::Instruction *prev = call->getPrevNode();
1278     if (llvm::CallInst *asmCall = dyn_cast_or_null<llvm::CallInst>(prev))
1279       if (asmCall->getCalledValue()
1280             == CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker)
1281         insnsToKill.push_back(prev);
1282   } else {
1283     return 0;
1284   }
1285 
1286   result = call->getArgOperand(0);
1287   insnsToKill.push_back(call);
1288 
1289   // Keep killing bitcasts, for sanity.  Note that we no longer care
1290   // about precise ordering as long as there's exactly one use.
1291   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1292     if (!bitcast->hasOneUse()) break;
1293     insnsToKill.push_back(bitcast);
1294     result = bitcast->getOperand(0);
1295   }
1296 
1297   // Delete all the unnecessary instructions, from latest to earliest.
1298   for (SmallVectorImpl<llvm::Instruction*>::iterator
1299          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1300     (*i)->eraseFromParent();
1301 
1302   // Do the fused retain/autorelease if we were asked to.
1303   if (doRetainAutorelease)
1304     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1305 
1306   // Cast back to the result type.
1307   return CGF.Builder.CreateBitCast(result, resultType);
1308 }
1309 
1310 /// If this is a +1 of the value of an immutable 'self', remove it.
1311 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1312                                           llvm::Value *result) {
1313   // This is only applicable to a method with an immutable 'self'.
1314   const ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(CGF.CurCodeDecl);
1315   if (!method) return 0;
1316   const VarDecl *self = method->getSelfDecl();
1317   if (!self->getType().isConstQualified()) return 0;
1318 
1319   // Look for a retain call.
1320   llvm::CallInst *retainCall =
1321     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1322   if (!retainCall ||
1323       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1324     return 0;
1325 
1326   // Look for an ordinary load of 'self'.
1327   llvm::Value *retainedValue = retainCall->getArgOperand(0);
1328   llvm::LoadInst *load =
1329     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1330   if (!load || load->isAtomic() || load->isVolatile() ||
1331       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1332     return 0;
1333 
1334   // Okay!  Burn it all down.  This relies for correctness on the
1335   // assumption that the retain is emitted as part of the return and
1336   // that thereafter everything is used "linearly".
1337   llvm::Type *resultType = result->getType();
1338   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1339   assert(retainCall->use_empty());
1340   retainCall->eraseFromParent();
1341   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1342 
1343   return CGF.Builder.CreateBitCast(load, resultType);
1344 }
1345 
1346 /// Emit an ARC autorelease of the result of a function.
1347 ///
1348 /// \return the value to actually return from the function
1349 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1350                                             llvm::Value *result) {
1351   // If we're returning 'self', kill the initial retain.  This is a
1352   // heuristic attempt to "encourage correctness" in the really unfortunate
1353   // case where we have a return of self during a dealloc and we desperately
1354   // need to avoid the possible autorelease.
1355   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1356     return self;
1357 
1358   // At -O0, try to emit a fused retain/autorelease.
1359   if (CGF.shouldUseFusedARCCalls())
1360     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1361       return fused;
1362 
1363   return CGF.EmitARCAutoreleaseReturnValue(result);
1364 }
1365 
1366 /// Heuristically search for a dominating store to the return-value slot.
1367 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1368   // If there are multiple uses of the return-value slot, just check
1369   // for something immediately preceding the IP.  Sometimes this can
1370   // happen with how we generate implicit-returns; it can also happen
1371   // with noreturn cleanups.
1372   if (!CGF.ReturnValue->hasOneUse()) {
1373     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1374     if (IP->empty()) return 0;
1375     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1376     if (!store) return 0;
1377     if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1378     assert(!store->isAtomic() && !store->isVolatile()); // see below
1379     return store;
1380   }
1381 
1382   llvm::StoreInst *store =
1383     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1384   if (!store) return 0;
1385 
1386   // These aren't actually possible for non-coerced returns, and we
1387   // only care about non-coerced returns on this code path.
1388   assert(!store->isAtomic() && !store->isVolatile());
1389 
1390   // Now do a first-and-dirty dominance check: just walk up the
1391   // single-predecessors chain from the current insertion point.
1392   llvm::BasicBlock *StoreBB = store->getParent();
1393   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1394   while (IP != StoreBB) {
1395     if (!(IP = IP->getSinglePredecessor()))
1396       return 0;
1397   }
1398 
1399   // Okay, the store's basic block dominates the insertion point; we
1400   // can do our thing.
1401   return store;
1402 }
1403 
1404 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI) {
1405   // Functions with no result always return void.
1406   if (ReturnValue == 0) {
1407     Builder.CreateRetVoid();
1408     return;
1409   }
1410 
1411   llvm::DebugLoc RetDbgLoc;
1412   llvm::Value *RV = 0;
1413   QualType RetTy = FI.getReturnType();
1414   const ABIArgInfo &RetAI = FI.getReturnInfo();
1415 
1416   switch (RetAI.getKind()) {
1417   case ABIArgInfo::Indirect: {
1418     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
1419     if (RetTy->isAnyComplexType()) {
1420       ComplexPairTy RT = LoadComplexFromAddr(ReturnValue, false);
1421       StoreComplexToAddr(RT, CurFn->arg_begin(), false);
1422     } else if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
1423       // Do nothing; aggregrates get evaluated directly into the destination.
1424     } else {
1425       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), CurFn->arg_begin(),
1426                         false, Alignment, RetTy);
1427     }
1428     break;
1429   }
1430 
1431   case ABIArgInfo::Extend:
1432   case ABIArgInfo::Direct:
1433     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1434         RetAI.getDirectOffset() == 0) {
1435       // The internal return value temp always will have pointer-to-return-type
1436       // type, just do a load.
1437 
1438       // If there is a dominating store to ReturnValue, we can elide
1439       // the load, zap the store, and usually zap the alloca.
1440       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1441         // Get the stored value and nuke the now-dead store.
1442         RetDbgLoc = SI->getDebugLoc();
1443         RV = SI->getValueOperand();
1444         SI->eraseFromParent();
1445 
1446         // If that was the only use of the return value, nuke it as well now.
1447         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1448           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1449           ReturnValue = 0;
1450         }
1451 
1452       // Otherwise, we have to do a simple load.
1453       } else {
1454         RV = Builder.CreateLoad(ReturnValue);
1455       }
1456     } else {
1457       llvm::Value *V = ReturnValue;
1458       // If the value is offset in memory, apply the offset now.
1459       if (unsigned Offs = RetAI.getDirectOffset()) {
1460         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1461         V = Builder.CreateConstGEP1_32(V, Offs);
1462         V = Builder.CreateBitCast(V,
1463                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1464       }
1465 
1466       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1467     }
1468 
1469     // In ARC, end functions that return a retainable type with a call
1470     // to objc_autoreleaseReturnValue.
1471     if (AutoreleaseResult) {
1472       assert(getLangOpts().ObjCAutoRefCount &&
1473              !FI.isReturnsRetained() &&
1474              RetTy->isObjCRetainableType());
1475       RV = emitAutoreleaseOfResult(*this, RV);
1476     }
1477 
1478     break;
1479 
1480   case ABIArgInfo::Ignore:
1481     break;
1482 
1483   case ABIArgInfo::Expand:
1484     llvm_unreachable("Invalid ABI kind for return argument");
1485   }
1486 
1487   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1488   if (!RetDbgLoc.isUnknown())
1489     Ret->setDebugLoc(RetDbgLoc);
1490 }
1491 
1492 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1493                                           const VarDecl *param) {
1494   // StartFunction converted the ABI-lowered parameter(s) into a
1495   // local alloca.  We need to turn that into an r-value suitable
1496   // for EmitCall.
1497   llvm::Value *local = GetAddrOfLocalVar(param);
1498 
1499   QualType type = param->getType();
1500 
1501   // For the most part, we just need to load the alloca, except:
1502   // 1) aggregate r-values are actually pointers to temporaries, and
1503   // 2) references to aggregates are pointers directly to the aggregate.
1504   // I don't know why references to non-aggregates are different here.
1505   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1506     if (hasAggregateLLVMType(ref->getPointeeType()))
1507       return args.add(RValue::getAggregate(local), type);
1508 
1509     // Locals which are references to scalars are represented
1510     // with allocas holding the pointer.
1511     return args.add(RValue::get(Builder.CreateLoad(local)), type);
1512   }
1513 
1514   if (type->isAnyComplexType()) {
1515     ComplexPairTy complex = LoadComplexFromAddr(local, /*volatile*/ false);
1516     return args.add(RValue::getComplex(complex), type);
1517   }
1518 
1519   if (hasAggregateLLVMType(type))
1520     return args.add(RValue::getAggregate(local), type);
1521 
1522   unsigned alignment = getContext().getDeclAlign(param).getQuantity();
1523   llvm::Value *value = EmitLoadOfScalar(local, false, alignment, type);
1524   return args.add(RValue::get(value), type);
1525 }
1526 
1527 static bool isProvablyNull(llvm::Value *addr) {
1528   return isa<llvm::ConstantPointerNull>(addr);
1529 }
1530 
1531 static bool isProvablyNonNull(llvm::Value *addr) {
1532   return isa<llvm::AllocaInst>(addr);
1533 }
1534 
1535 /// Emit the actual writing-back of a writeback.
1536 static void emitWriteback(CodeGenFunction &CGF,
1537                           const CallArgList::Writeback &writeback) {
1538   llvm::Value *srcAddr = writeback.Address;
1539   assert(!isProvablyNull(srcAddr) &&
1540          "shouldn't have writeback for provably null argument");
1541 
1542   llvm::BasicBlock *contBB = 0;
1543 
1544   // If the argument wasn't provably non-null, we need to null check
1545   // before doing the store.
1546   bool provablyNonNull = isProvablyNonNull(srcAddr);
1547   if (!provablyNonNull) {
1548     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1549     contBB = CGF.createBasicBlock("icr.done");
1550 
1551     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1552     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1553     CGF.EmitBlock(writebackBB);
1554   }
1555 
1556   // Load the value to writeback.
1557   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1558 
1559   // Cast it back, in case we're writing an id to a Foo* or something.
1560   value = CGF.Builder.CreateBitCast(value,
1561                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1562                             "icr.writeback-cast");
1563 
1564   // Perform the writeback.
1565   QualType srcAddrType = writeback.AddressType;
1566   CGF.EmitStoreThroughLValue(RValue::get(value),
1567                              CGF.MakeAddrLValue(srcAddr, srcAddrType));
1568 
1569   // Jump to the continuation block.
1570   if (!provablyNonNull)
1571     CGF.EmitBlock(contBB);
1572 }
1573 
1574 static void emitWritebacks(CodeGenFunction &CGF,
1575                            const CallArgList &args) {
1576   for (CallArgList::writeback_iterator
1577          i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1578     emitWriteback(CGF, *i);
1579 }
1580 
1581 /// Emit an argument that's being passed call-by-writeback.  That is,
1582 /// we are passing the address of
1583 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1584                              const ObjCIndirectCopyRestoreExpr *CRE) {
1585   llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1586 
1587   // The dest and src types don't necessarily match in LLVM terms
1588   // because of the crazy ObjC compatibility rules.
1589 
1590   llvm::PointerType *destType =
1591     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1592 
1593   // If the address is a constant null, just pass the appropriate null.
1594   if (isProvablyNull(srcAddr)) {
1595     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1596              CRE->getType());
1597     return;
1598   }
1599 
1600   QualType srcAddrType =
1601     CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1602 
1603   // Create the temporary.
1604   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1605                                            "icr.temp");
1606 
1607   // Zero-initialize it if we're not doing a copy-initialization.
1608   bool shouldCopy = CRE->shouldCopy();
1609   if (!shouldCopy) {
1610     llvm::Value *null =
1611       llvm::ConstantPointerNull::get(
1612         cast<llvm::PointerType>(destType->getElementType()));
1613     CGF.Builder.CreateStore(null, temp);
1614   }
1615 
1616   llvm::BasicBlock *contBB = 0;
1617 
1618   // If the address is *not* known to be non-null, we need to switch.
1619   llvm::Value *finalArgument;
1620 
1621   bool provablyNonNull = isProvablyNonNull(srcAddr);
1622   if (provablyNonNull) {
1623     finalArgument = temp;
1624   } else {
1625     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1626 
1627     finalArgument = CGF.Builder.CreateSelect(isNull,
1628                                    llvm::ConstantPointerNull::get(destType),
1629                                              temp, "icr.argument");
1630 
1631     // If we need to copy, then the load has to be conditional, which
1632     // means we need control flow.
1633     if (shouldCopy) {
1634       contBB = CGF.createBasicBlock("icr.cont");
1635       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1636       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1637       CGF.EmitBlock(copyBB);
1638     }
1639   }
1640 
1641   // Perform a copy if necessary.
1642   if (shouldCopy) {
1643     LValue srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
1644     RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1645     assert(srcRV.isScalar());
1646 
1647     llvm::Value *src = srcRV.getScalarVal();
1648     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1649                                     "icr.cast");
1650 
1651     // Use an ordinary store, not a store-to-lvalue.
1652     CGF.Builder.CreateStore(src, temp);
1653   }
1654 
1655   // Finish the control flow if we needed it.
1656   if (shouldCopy && !provablyNonNull)
1657     CGF.EmitBlock(contBB);
1658 
1659   args.addWriteback(srcAddr, srcAddrType, temp);
1660   args.add(RValue::get(finalArgument), CRE->getType());
1661 }
1662 
1663 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
1664                                   QualType type) {
1665   if (const ObjCIndirectCopyRestoreExpr *CRE
1666         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
1667     assert(getContext().getLangOpts().ObjCAutoRefCount);
1668     assert(getContext().hasSameType(E->getType(), type));
1669     return emitWritebackArg(*this, args, CRE);
1670   }
1671 
1672   assert(type->isReferenceType() == E->isGLValue() &&
1673          "reference binding to unmaterialized r-value!");
1674 
1675   if (E->isGLValue()) {
1676     assert(E->getObjectKind() == OK_Ordinary);
1677     return args.add(EmitReferenceBindingToExpr(E, /*InitializedDecl=*/0),
1678                     type);
1679   }
1680 
1681   if (hasAggregateLLVMType(type) && !E->getType()->isAnyComplexType() &&
1682       isa<ImplicitCastExpr>(E) &&
1683       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
1684     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
1685     assert(L.isSimple());
1686     args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
1687     return;
1688   }
1689 
1690   args.add(EmitAnyExprToTemp(E), type);
1691 }
1692 
1693 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1694 // optimizer it can aggressively ignore unwind edges.
1695 void
1696 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
1697   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1698       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
1699     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
1700                       CGM.getNoObjCARCExceptionsMetadata());
1701 }
1702 
1703 /// Emits a call or invoke instruction to the given function, depending
1704 /// on the current state of the EH stack.
1705 llvm::CallSite
1706 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1707                                   ArrayRef<llvm::Value *> Args,
1708                                   const Twine &Name) {
1709   llvm::BasicBlock *InvokeDest = getInvokeDest();
1710 
1711   llvm::Instruction *Inst;
1712   if (!InvokeDest)
1713     Inst = Builder.CreateCall(Callee, Args, Name);
1714   else {
1715     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
1716     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
1717     EmitBlock(ContBB);
1718   }
1719 
1720   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
1721   // optimizer it can aggressively ignore unwind edges.
1722   if (CGM.getLangOpts().ObjCAutoRefCount)
1723     AddObjCARCExceptionMetadata(Inst);
1724 
1725   return Inst;
1726 }
1727 
1728 llvm::CallSite
1729 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
1730                                   const Twine &Name) {
1731   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
1732 }
1733 
1734 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
1735                             llvm::FunctionType *FTy) {
1736   if (ArgNo < FTy->getNumParams())
1737     assert(Elt->getType() == FTy->getParamType(ArgNo));
1738   else
1739     assert(FTy->isVarArg());
1740   ++ArgNo;
1741 }
1742 
1743 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
1744                                        SmallVector<llvm::Value*,16> &Args,
1745                                        llvm::FunctionType *IRFuncTy) {
1746   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1747     unsigned NumElts = AT->getSize().getZExtValue();
1748     QualType EltTy = AT->getElementType();
1749     llvm::Value *Addr = RV.getAggregateAddr();
1750     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
1751       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
1752       LValue LV = MakeAddrLValue(EltAddr, EltTy);
1753       RValue EltRV;
1754       if (EltTy->isAnyComplexType())
1755         // FIXME: Volatile?
1756         EltRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false));
1757       else if (CodeGenFunction::hasAggregateLLVMType(EltTy))
1758         EltRV = LV.asAggregateRValue();
1759       else
1760         EltRV = EmitLoadOfLValue(LV);
1761       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
1762     }
1763   } else if (const RecordType *RT = Ty->getAsStructureType()) {
1764     RecordDecl *RD = RT->getDecl();
1765     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
1766     llvm::Value *Addr = RV.getAggregateAddr();
1767     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
1768          i != e; ++i) {
1769       FieldDecl *FD = *i;
1770       QualType FT = FD->getType();
1771 
1772       // FIXME: What are the right qualifiers here?
1773       LValue LV = EmitLValueForField(Addr, FD, 0);
1774       RValue FldRV;
1775       if (FT->isAnyComplexType())
1776         // FIXME: Volatile?
1777         FldRV = RValue::getComplex(LoadComplexFromAddr(LV.getAddress(), false));
1778       else if (CodeGenFunction::hasAggregateLLVMType(FT))
1779         FldRV = LV.asAggregateRValue();
1780       else
1781         FldRV = EmitLoadOfLValue(LV);
1782       ExpandTypeToArgs(FT, FldRV, Args, IRFuncTy);
1783     }
1784   } else if (Ty->isAnyComplexType()) {
1785     ComplexPairTy CV = RV.getComplexVal();
1786     Args.push_back(CV.first);
1787     Args.push_back(CV.second);
1788   } else {
1789     assert(RV.isScalar() &&
1790            "Unexpected non-scalar rvalue during struct expansion.");
1791 
1792     // Insert a bitcast as needed.
1793     llvm::Value *V = RV.getScalarVal();
1794     if (Args.size() < IRFuncTy->getNumParams() &&
1795         V->getType() != IRFuncTy->getParamType(Args.size()))
1796       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
1797 
1798     Args.push_back(V);
1799   }
1800 }
1801 
1802 
1803 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
1804                                  llvm::Value *Callee,
1805                                  ReturnValueSlot ReturnValue,
1806                                  const CallArgList &CallArgs,
1807                                  const Decl *TargetDecl,
1808                                  llvm::Instruction **callOrInvoke) {
1809   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
1810   SmallVector<llvm::Value*, 16> Args;
1811 
1812   // Handle struct-return functions by passing a pointer to the
1813   // location that we would like to return into.
1814   QualType RetTy = CallInfo.getReturnType();
1815   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
1816 
1817   // IRArgNo - Keep track of the argument number in the callee we're looking at.
1818   unsigned IRArgNo = 0;
1819   llvm::FunctionType *IRFuncTy =
1820     cast<llvm::FunctionType>(
1821                   cast<llvm::PointerType>(Callee->getType())->getElementType());
1822 
1823   // If the call returns a temporary with struct return, create a temporary
1824   // alloca to hold the result, unless one is given to us.
1825   if (CGM.ReturnTypeUsesSRet(CallInfo)) {
1826     llvm::Value *Value = ReturnValue.getValue();
1827     if (!Value)
1828       Value = CreateMemTemp(RetTy);
1829     Args.push_back(Value);
1830     checkArgMatches(Value, IRArgNo, IRFuncTy);
1831   }
1832 
1833   assert(CallInfo.arg_size() == CallArgs.size() &&
1834          "Mismatch between function signature & arguments.");
1835   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
1836   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
1837        I != E; ++I, ++info_it) {
1838     const ABIArgInfo &ArgInfo = info_it->info;
1839     RValue RV = I->RV;
1840 
1841     unsigned TypeAlign =
1842       getContext().getTypeAlignInChars(I->Ty).getQuantity();
1843     switch (ArgInfo.getKind()) {
1844     case ABIArgInfo::Indirect: {
1845       if (RV.isScalar() || RV.isComplex()) {
1846         // Make a temporary alloca to pass the argument.
1847         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1848         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
1849           AI->setAlignment(ArgInfo.getIndirectAlign());
1850         Args.push_back(AI);
1851 
1852         if (RV.isScalar())
1853           EmitStoreOfScalar(RV.getScalarVal(), Args.back(), false,
1854                             TypeAlign, I->Ty);
1855         else
1856           StoreComplexToAddr(RV.getComplexVal(), Args.back(), false);
1857 
1858         // Validate argument match.
1859         checkArgMatches(AI, IRArgNo, IRFuncTy);
1860       } else {
1861         // We want to avoid creating an unnecessary temporary+copy here;
1862         // however, we need one in two cases:
1863         // 1. If the argument is not byval, and we are required to copy the
1864         //    source.  (This case doesn't occur on any common architecture.)
1865         // 2. If the argument is byval, RV is not sufficiently aligned, and
1866         //    we cannot force it to be sufficiently aligned.
1867         llvm::Value *Addr = RV.getAggregateAddr();
1868         unsigned Align = ArgInfo.getIndirectAlign();
1869         const llvm::TargetData *TD = &CGM.getTargetData();
1870         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
1871             (ArgInfo.getIndirectByVal() && TypeAlign < Align &&
1872              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align)) {
1873           // Create an aligned temporary, and copy to it.
1874           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
1875           if (Align > AI->getAlignment())
1876             AI->setAlignment(Align);
1877           Args.push_back(AI);
1878           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
1879 
1880           // Validate argument match.
1881           checkArgMatches(AI, IRArgNo, IRFuncTy);
1882         } else {
1883           // Skip the extra memcpy call.
1884           Args.push_back(Addr);
1885 
1886           // Validate argument match.
1887           checkArgMatches(Addr, IRArgNo, IRFuncTy);
1888         }
1889       }
1890       break;
1891     }
1892 
1893     case ABIArgInfo::Ignore:
1894       break;
1895 
1896     case ABIArgInfo::Extend:
1897     case ABIArgInfo::Direct: {
1898       // Insert a padding argument to ensure proper alignment.
1899       if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
1900         Args.push_back(llvm::UndefValue::get(PaddingType));
1901         ++IRArgNo;
1902       }
1903 
1904       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
1905           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
1906           ArgInfo.getDirectOffset() == 0) {
1907         llvm::Value *V;
1908         if (RV.isScalar())
1909           V = RV.getScalarVal();
1910         else
1911           V = Builder.CreateLoad(RV.getAggregateAddr());
1912 
1913         // If the argument doesn't match, perform a bitcast to coerce it.  This
1914         // can happen due to trivial type mismatches.
1915         if (IRArgNo < IRFuncTy->getNumParams() &&
1916             V->getType() != IRFuncTy->getParamType(IRArgNo))
1917           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
1918         Args.push_back(V);
1919 
1920         checkArgMatches(V, IRArgNo, IRFuncTy);
1921         break;
1922       }
1923 
1924       // FIXME: Avoid the conversion through memory if possible.
1925       llvm::Value *SrcPtr;
1926       if (RV.isScalar()) {
1927         SrcPtr = CreateMemTemp(I->Ty, "coerce");
1928         EmitStoreOfScalar(RV.getScalarVal(), SrcPtr, false, TypeAlign, I->Ty);
1929       } else if (RV.isComplex()) {
1930         SrcPtr = CreateMemTemp(I->Ty, "coerce");
1931         StoreComplexToAddr(RV.getComplexVal(), SrcPtr, false);
1932       } else
1933         SrcPtr = RV.getAggregateAddr();
1934 
1935       // If the value is offset in memory, apply the offset now.
1936       if (unsigned Offs = ArgInfo.getDirectOffset()) {
1937         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
1938         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
1939         SrcPtr = Builder.CreateBitCast(SrcPtr,
1940                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
1941 
1942       }
1943 
1944       // If the coerce-to type is a first class aggregate, we flatten it and
1945       // pass the elements. Either way is semantically identical, but fast-isel
1946       // and the optimizer generally likes scalar values better than FCAs.
1947       if (llvm::StructType *STy =
1948             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
1949         SrcPtr = Builder.CreateBitCast(SrcPtr,
1950                                        llvm::PointerType::getUnqual(STy));
1951         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1952           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
1953           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
1954           // We don't know what we're loading from.
1955           LI->setAlignment(1);
1956           Args.push_back(LI);
1957 
1958           // Validate argument match.
1959           checkArgMatches(LI, IRArgNo, IRFuncTy);
1960         }
1961       } else {
1962         // In the simple case, just pass the coerced loaded value.
1963         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
1964                                          *this));
1965 
1966         // Validate argument match.
1967         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
1968       }
1969 
1970       break;
1971     }
1972 
1973     case ABIArgInfo::Expand:
1974       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
1975       IRArgNo = Args.size();
1976       break;
1977     }
1978   }
1979 
1980   // If the callee is a bitcast of a function to a varargs pointer to function
1981   // type, check to see if we can remove the bitcast.  This handles some cases
1982   // with unprototyped functions.
1983   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
1984     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
1985       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
1986       llvm::FunctionType *CurFT =
1987         cast<llvm::FunctionType>(CurPT->getElementType());
1988       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
1989 
1990       if (CE->getOpcode() == llvm::Instruction::BitCast &&
1991           ActualFT->getReturnType() == CurFT->getReturnType() &&
1992           ActualFT->getNumParams() == CurFT->getNumParams() &&
1993           ActualFT->getNumParams() == Args.size() &&
1994           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
1995         bool ArgsMatch = true;
1996         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
1997           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
1998             ArgsMatch = false;
1999             break;
2000           }
2001 
2002         // Strip the cast if we can get away with it.  This is a nice cleanup,
2003         // but also allows us to inline the function at -O0 if it is marked
2004         // always_inline.
2005         if (ArgsMatch)
2006           Callee = CalleeF;
2007       }
2008     }
2009 
2010   unsigned CallingConv;
2011   CodeGen::AttributeListType AttributeList;
2012   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList, CallingConv);
2013   llvm::AttrListPtr Attrs = llvm::AttrListPtr::get(AttributeList.begin(),
2014                                                    AttributeList.end());
2015 
2016   llvm::BasicBlock *InvokeDest = 0;
2017   if (!(Attrs.getFnAttributes() & llvm::Attribute::NoUnwind))
2018     InvokeDest = getInvokeDest();
2019 
2020   llvm::CallSite CS;
2021   if (!InvokeDest) {
2022     CS = Builder.CreateCall(Callee, Args);
2023   } else {
2024     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2025     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2026     EmitBlock(Cont);
2027   }
2028   if (callOrInvoke)
2029     *callOrInvoke = CS.getInstruction();
2030 
2031   CS.setAttributes(Attrs);
2032   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2033 
2034   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2035   // optimizer it can aggressively ignore unwind edges.
2036   if (CGM.getLangOpts().ObjCAutoRefCount)
2037     AddObjCARCExceptionMetadata(CS.getInstruction());
2038 
2039   // If the call doesn't return, finish the basic block and clear the
2040   // insertion point; this allows the rest of IRgen to discard
2041   // unreachable code.
2042   if (CS.doesNotReturn()) {
2043     Builder.CreateUnreachable();
2044     Builder.ClearInsertionPoint();
2045 
2046     // FIXME: For now, emit a dummy basic block because expr emitters in
2047     // generally are not ready to handle emitting expressions at unreachable
2048     // points.
2049     EnsureInsertPoint();
2050 
2051     // Return a reasonable RValue.
2052     return GetUndefRValue(RetTy);
2053   }
2054 
2055   llvm::Instruction *CI = CS.getInstruction();
2056   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2057     CI->setName("call");
2058 
2059   // Emit any writebacks immediately.  Arguably this should happen
2060   // after any return-value munging.
2061   if (CallArgs.hasWritebacks())
2062     emitWritebacks(*this, CallArgs);
2063 
2064   switch (RetAI.getKind()) {
2065   case ABIArgInfo::Indirect: {
2066     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2067     if (RetTy->isAnyComplexType())
2068       return RValue::getComplex(LoadComplexFromAddr(Args[0], false));
2069     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2070       return RValue::getAggregate(Args[0]);
2071     return RValue::get(EmitLoadOfScalar(Args[0], false, Alignment, RetTy));
2072   }
2073 
2074   case ABIArgInfo::Ignore:
2075     // If we are ignoring an argument that had a result, make sure to
2076     // construct the appropriate return value for our caller.
2077     return GetUndefRValue(RetTy);
2078 
2079   case ABIArgInfo::Extend:
2080   case ABIArgInfo::Direct: {
2081     llvm::Type *RetIRTy = ConvertType(RetTy);
2082     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2083       if (RetTy->isAnyComplexType()) {
2084         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2085         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2086         return RValue::getComplex(std::make_pair(Real, Imag));
2087       }
2088       if (CodeGenFunction::hasAggregateLLVMType(RetTy)) {
2089         llvm::Value *DestPtr = ReturnValue.getValue();
2090         bool DestIsVolatile = ReturnValue.isVolatile();
2091 
2092         if (!DestPtr) {
2093           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2094           DestIsVolatile = false;
2095         }
2096         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2097         return RValue::getAggregate(DestPtr);
2098       }
2099 
2100       // If the argument doesn't match, perform a bitcast to coerce it.  This
2101       // can happen due to trivial type mismatches.
2102       llvm::Value *V = CI;
2103       if (V->getType() != RetIRTy)
2104         V = Builder.CreateBitCast(V, RetIRTy);
2105       return RValue::get(V);
2106     }
2107 
2108     llvm::Value *DestPtr = ReturnValue.getValue();
2109     bool DestIsVolatile = ReturnValue.isVolatile();
2110 
2111     if (!DestPtr) {
2112       DestPtr = CreateMemTemp(RetTy, "coerce");
2113       DestIsVolatile = false;
2114     }
2115 
2116     // If the value is offset in memory, apply the offset now.
2117     llvm::Value *StorePtr = DestPtr;
2118     if (unsigned Offs = RetAI.getDirectOffset()) {
2119       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2120       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2121       StorePtr = Builder.CreateBitCast(StorePtr,
2122                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2123     }
2124     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2125 
2126     unsigned Alignment = getContext().getTypeAlignInChars(RetTy).getQuantity();
2127     if (RetTy->isAnyComplexType())
2128       return RValue::getComplex(LoadComplexFromAddr(DestPtr, false));
2129     if (CodeGenFunction::hasAggregateLLVMType(RetTy))
2130       return RValue::getAggregate(DestPtr);
2131     return RValue::get(EmitLoadOfScalar(DestPtr, false, Alignment, RetTy));
2132   }
2133 
2134   case ABIArgInfo::Expand:
2135     llvm_unreachable("Invalid ABI kind for return argument");
2136   }
2137 
2138   llvm_unreachable("Unhandled ABIArgInfo::Kind");
2139 }
2140 
2141 /* VarArg handling */
2142 
2143 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2144   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2145 }
2146