1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/CodeGen/CGFunctionInfo.h"
30 #include "clang/CodeGen/SwiftCallingConv.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_Win64: return llvm::CallingConv::Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
63   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
64   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
65   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
66   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
67   case CC_Swift: return llvm::CallingConv::Swift;
68   }
69 }
70 
71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
72 /// qualification.
73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD,
74                                const CXXMethodDecl *MD) {
75   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
76   if (MD)
77     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getType().getAddressSpace());
78   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
79 }
80 
81 /// Returns the canonical formal type of the given C++ method.
82 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
83   return MD->getType()->getCanonicalTypeUnqualified()
84            .getAs<FunctionProtoType>();
85 }
86 
87 /// Returns the "extra-canonicalized" return type, which discards
88 /// qualifiers on the return type.  Codegen doesn't care about them,
89 /// and it makes ABI code a little easier to be able to assume that
90 /// all parameter and return types are top-level unqualified.
91 static CanQualType GetReturnType(QualType RetTy) {
92   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
93 }
94 
95 /// Arrange the argument and result information for a value of the given
96 /// unprototyped freestanding function type.
97 const CGFunctionInfo &
98 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
99   // When translating an unprototyped function type, always use a
100   // variadic type.
101   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
102                                  /*instanceMethod=*/false,
103                                  /*chainCall=*/false, None,
104                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
105 }
106 
107 static void addExtParameterInfosForCall(
108          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
109                                         const FunctionProtoType *proto,
110                                         unsigned prefixArgs,
111                                         unsigned totalArgs) {
112   assert(proto->hasExtParameterInfos());
113   assert(paramInfos.size() <= prefixArgs);
114   assert(proto->getNumParams() + prefixArgs <= totalArgs);
115 
116   paramInfos.reserve(totalArgs);
117 
118   // Add default infos for any prefix args that don't already have infos.
119   paramInfos.resize(prefixArgs);
120 
121   // Add infos for the prototype.
122   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
123     paramInfos.push_back(ParamInfo);
124     // pass_object_size params have no parameter info.
125     if (ParamInfo.hasPassObjectSize())
126       paramInfos.emplace_back();
127   }
128 
129   assert(paramInfos.size() <= totalArgs &&
130          "Did we forget to insert pass_object_size args?");
131   // Add default infos for the variadic and/or suffix arguments.
132   paramInfos.resize(totalArgs);
133 }
134 
135 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
136 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
137 static void appendParameterTypes(const CodeGenTypes &CGT,
138                                  SmallVectorImpl<CanQualType> &prefix,
139               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
140                                  CanQual<FunctionProtoType> FPT) {
141   // Fast path: don't touch param info if we don't need to.
142   if (!FPT->hasExtParameterInfos()) {
143     assert(paramInfos.empty() &&
144            "We have paramInfos, but the prototype doesn't?");
145     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
146     return;
147   }
148 
149   unsigned PrefixSize = prefix.size();
150   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
151   // parameters; the only thing that can change this is the presence of
152   // pass_object_size. So, we preallocate for the common case.
153   prefix.reserve(prefix.size() + FPT->getNumParams());
154 
155   auto ExtInfos = FPT->getExtParameterInfos();
156   assert(ExtInfos.size() == FPT->getNumParams());
157   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
158     prefix.push_back(FPT->getParamType(I));
159     if (ExtInfos[I].hasPassObjectSize())
160       prefix.push_back(CGT.getContext().getSizeType());
161   }
162 
163   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
164                               prefix.size());
165 }
166 
167 /// Arrange the LLVM function layout for a value of the given function
168 /// type, on top of any implicit parameters already stored.
169 static const CGFunctionInfo &
170 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
171                         SmallVectorImpl<CanQualType> &prefix,
172                         CanQual<FunctionProtoType> FTP,
173                         const FunctionDecl *FD) {
174   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
175   RequiredArgs Required =
176       RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD);
177   // FIXME: Kill copy.
178   appendParameterTypes(CGT, prefix, paramInfos, FTP);
179   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
180 
181   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
182                                      /*chainCall=*/false, prefix,
183                                      FTP->getExtInfo(), paramInfos,
184                                      Required);
185 }
186 
187 /// Arrange the argument and result information for a value of the
188 /// given freestanding function type.
189 const CGFunctionInfo &
190 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
191                                       const FunctionDecl *FD) {
192   SmallVector<CanQualType, 16> argTypes;
193   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
194                                    FTP, FD);
195 }
196 
197 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
198   // Set the appropriate calling convention for the Function.
199   if (D->hasAttr<StdCallAttr>())
200     return CC_X86StdCall;
201 
202   if (D->hasAttr<FastCallAttr>())
203     return CC_X86FastCall;
204 
205   if (D->hasAttr<RegCallAttr>())
206     return CC_X86RegCall;
207 
208   if (D->hasAttr<ThisCallAttr>())
209     return CC_X86ThisCall;
210 
211   if (D->hasAttr<VectorCallAttr>())
212     return CC_X86VectorCall;
213 
214   if (D->hasAttr<PascalAttr>())
215     return CC_X86Pascal;
216 
217   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
218     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
219 
220   if (D->hasAttr<AArch64VectorPcsAttr>())
221     return CC_AArch64VectorCall;
222 
223   if (D->hasAttr<IntelOclBiccAttr>())
224     return CC_IntelOclBicc;
225 
226   if (D->hasAttr<MSABIAttr>())
227     return IsWindows ? CC_C : CC_Win64;
228 
229   if (D->hasAttr<SysVABIAttr>())
230     return IsWindows ? CC_X86_64SysV : CC_C;
231 
232   if (D->hasAttr<PreserveMostAttr>())
233     return CC_PreserveMost;
234 
235   if (D->hasAttr<PreserveAllAttr>())
236     return CC_PreserveAll;
237 
238   return CC_C;
239 }
240 
241 /// Arrange the argument and result information for a call to an
242 /// unknown C++ non-static member function of the given abstract type.
243 /// (Zero value of RD means we don't have any meaningful "this" argument type,
244 ///  so fall back to a generic pointer type).
245 /// The member function must be an ordinary function, i.e. not a
246 /// constructor or destructor.
247 const CGFunctionInfo &
248 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
249                                    const FunctionProtoType *FTP,
250                                    const CXXMethodDecl *MD) {
251   SmallVector<CanQualType, 16> argTypes;
252 
253   // Add the 'this' pointer.
254   if (RD)
255     argTypes.push_back(GetThisType(Context, RD, MD));
256   else
257     argTypes.push_back(Context.VoidPtrTy);
258 
259   return ::arrangeLLVMFunctionInfo(
260       *this, true, argTypes,
261       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
262 }
263 
264 /// Set calling convention for CUDA/HIP kernel.
265 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
266                                            const FunctionDecl *FD) {
267   if (FD->hasAttr<CUDAGlobalAttr>()) {
268     const FunctionType *FT = FTy->getAs<FunctionType>();
269     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
270     FTy = FT->getCanonicalTypeUnqualified();
271   }
272 }
273 
274 /// Arrange the argument and result information for a declaration or
275 /// definition of the given C++ non-static member function.  The
276 /// member function must be an ordinary function, i.e. not a
277 /// constructor or destructor.
278 const CGFunctionInfo &
279 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
280   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
281   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
282 
283   CanQualType FT = GetFormalType(MD).getAs<Type>();
284   setCUDAKernelCallingConvention(FT, CGM, MD);
285   auto prototype = FT.getAs<FunctionProtoType>();
286 
287   if (MD->isInstance()) {
288     // The abstract case is perfectly fine.
289     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
290     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
291   }
292 
293   return arrangeFreeFunctionType(prototype, MD);
294 }
295 
296 bool CodeGenTypes::inheritingCtorHasParams(
297     const InheritedConstructor &Inherited, CXXCtorType Type) {
298   // Parameters are unnecessary if we're constructing a base class subobject
299   // and the inherited constructor lives in a virtual base.
300   return Type == Ctor_Complete ||
301          !Inherited.getShadowDecl()->constructsVirtualBase() ||
302          !Target.getCXXABI().hasConstructorVariants();
303   }
304 
305 const CGFunctionInfo &
306 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
307                                             StructorType Type) {
308 
309   SmallVector<CanQualType, 16> argTypes;
310   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
311   argTypes.push_back(GetThisType(Context, MD->getParent(), MD));
312 
313   bool PassParams = true;
314 
315   GlobalDecl GD;
316   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
317     GD = GlobalDecl(CD, toCXXCtorType(Type));
318 
319     // A base class inheriting constructor doesn't get forwarded arguments
320     // needed to construct a virtual base (or base class thereof).
321     if (auto Inherited = CD->getInheritedConstructor())
322       PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
323   } else {
324     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
325     GD = GlobalDecl(DD, toCXXDtorType(Type));
326   }
327 
328   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
329 
330   // Add the formal parameters.
331   if (PassParams)
332     appendParameterTypes(*this, argTypes, paramInfos, FTP);
333 
334   CGCXXABI::AddedStructorArgs AddedArgs =
335       TheCXXABI.buildStructorSignature(MD, Type, argTypes);
336   if (!paramInfos.empty()) {
337     // Note: prefix implies after the first param.
338     if (AddedArgs.Prefix)
339       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
340                         FunctionProtoType::ExtParameterInfo{});
341     if (AddedArgs.Suffix)
342       paramInfos.append(AddedArgs.Suffix,
343                         FunctionProtoType::ExtParameterInfo{});
344   }
345 
346   RequiredArgs required =
347       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
348                                       : RequiredArgs::All);
349 
350   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
351   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
352                                ? argTypes.front()
353                                : TheCXXABI.hasMostDerivedReturn(GD)
354                                      ? CGM.getContext().VoidPtrTy
355                                      : Context.VoidTy;
356   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
357                                  /*chainCall=*/false, argTypes, extInfo,
358                                  paramInfos, required);
359 }
360 
361 static SmallVector<CanQualType, 16>
362 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
363   SmallVector<CanQualType, 16> argTypes;
364   for (auto &arg : args)
365     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
366   return argTypes;
367 }
368 
369 static SmallVector<CanQualType, 16>
370 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
371   SmallVector<CanQualType, 16> argTypes;
372   for (auto &arg : args)
373     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
374   return argTypes;
375 }
376 
377 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
378 getExtParameterInfosForCall(const FunctionProtoType *proto,
379                             unsigned prefixArgs, unsigned totalArgs) {
380   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
381   if (proto->hasExtParameterInfos()) {
382     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
383   }
384   return result;
385 }
386 
387 /// Arrange a call to a C++ method, passing the given arguments.
388 ///
389 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
390 /// parameter.
391 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
392 /// args.
393 /// PassProtoArgs indicates whether `args` has args for the parameters in the
394 /// given CXXConstructorDecl.
395 const CGFunctionInfo &
396 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
397                                         const CXXConstructorDecl *D,
398                                         CXXCtorType CtorKind,
399                                         unsigned ExtraPrefixArgs,
400                                         unsigned ExtraSuffixArgs,
401                                         bool PassProtoArgs) {
402   // FIXME: Kill copy.
403   SmallVector<CanQualType, 16> ArgTypes;
404   for (const auto &Arg : args)
405     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
406 
407   // +1 for implicit this, which should always be args[0].
408   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
409 
410   CanQual<FunctionProtoType> FPT = GetFormalType(D);
411   RequiredArgs Required =
412       RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D);
413   GlobalDecl GD(D, CtorKind);
414   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
415                                ? ArgTypes.front()
416                                : TheCXXABI.hasMostDerivedReturn(GD)
417                                      ? CGM.getContext().VoidPtrTy
418                                      : Context.VoidTy;
419 
420   FunctionType::ExtInfo Info = FPT->getExtInfo();
421   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
422   // If the prototype args are elided, we should only have ABI-specific args,
423   // which never have param info.
424   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
425     // ABI-specific suffix arguments are treated the same as variadic arguments.
426     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
427                                 ArgTypes.size());
428   }
429   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
430                                  /*chainCall=*/false, ArgTypes, Info,
431                                  ParamInfos, Required);
432 }
433 
434 /// Arrange the argument and result information for the declaration or
435 /// definition of the given function.
436 const CGFunctionInfo &
437 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
438   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
439     if (MD->isInstance())
440       return arrangeCXXMethodDeclaration(MD);
441 
442   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
443 
444   assert(isa<FunctionType>(FTy));
445   setCUDAKernelCallingConvention(FTy, CGM, FD);
446 
447   // When declaring a function without a prototype, always use a
448   // non-variadic type.
449   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
450     return arrangeLLVMFunctionInfo(
451         noProto->getReturnType(), /*instanceMethod=*/false,
452         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
453   }
454 
455   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD);
456 }
457 
458 /// Arrange the argument and result information for the declaration or
459 /// definition of an Objective-C method.
460 const CGFunctionInfo &
461 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
462   // It happens that this is the same as a call with no optional
463   // arguments, except also using the formal 'self' type.
464   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
465 }
466 
467 /// Arrange the argument and result information for the function type
468 /// through which to perform a send to the given Objective-C method,
469 /// using the given receiver type.  The receiver type is not always
470 /// the 'self' type of the method or even an Objective-C pointer type.
471 /// This is *not* the right method for actually performing such a
472 /// message send, due to the possibility of optional arguments.
473 const CGFunctionInfo &
474 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
475                                               QualType receiverType) {
476   SmallVector<CanQualType, 16> argTys;
477   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
478   argTys.push_back(Context.getCanonicalParamType(receiverType));
479   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
480   // FIXME: Kill copy?
481   for (const auto *I : MD->parameters()) {
482     argTys.push_back(Context.getCanonicalParamType(I->getType()));
483     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
484         I->hasAttr<NoEscapeAttr>());
485     extParamInfos.push_back(extParamInfo);
486   }
487 
488   FunctionType::ExtInfo einfo;
489   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
490   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
491 
492   if (getContext().getLangOpts().ObjCAutoRefCount &&
493       MD->hasAttr<NSReturnsRetainedAttr>())
494     einfo = einfo.withProducesResult(true);
495 
496   RequiredArgs required =
497     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
498 
499   return arrangeLLVMFunctionInfo(
500       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
501       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
502 }
503 
504 const CGFunctionInfo &
505 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
506                                                  const CallArgList &args) {
507   auto argTypes = getArgTypesForCall(Context, args);
508   FunctionType::ExtInfo einfo;
509 
510   return arrangeLLVMFunctionInfo(
511       GetReturnType(returnType), /*instanceMethod=*/false,
512       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
513 }
514 
515 const CGFunctionInfo &
516 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
517   // FIXME: Do we need to handle ObjCMethodDecl?
518   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
519 
520   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
521     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
522 
523   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
524     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
525 
526   return arrangeFunctionDeclaration(FD);
527 }
528 
529 /// Arrange a thunk that takes 'this' as the first parameter followed by
530 /// varargs.  Return a void pointer, regardless of the actual return type.
531 /// The body of the thunk will end in a musttail call to a function of the
532 /// correct type, and the caller will bitcast the function to the correct
533 /// prototype.
534 const CGFunctionInfo &
535 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
536   assert(MD->isVirtual() && "only methods have thunks");
537   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
538   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent(), MD) };
539   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
540                                  /*chainCall=*/false, ArgTys,
541                                  FTP->getExtInfo(), {}, RequiredArgs(1));
542 }
543 
544 const CGFunctionInfo &
545 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
546                                    CXXCtorType CT) {
547   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
548 
549   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
550   SmallVector<CanQualType, 2> ArgTys;
551   const CXXRecordDecl *RD = CD->getParent();
552   ArgTys.push_back(GetThisType(Context, RD, CD));
553   if (CT == Ctor_CopyingClosure)
554     ArgTys.push_back(*FTP->param_type_begin());
555   if (RD->getNumVBases() > 0)
556     ArgTys.push_back(Context.IntTy);
557   CallingConv CC = Context.getDefaultCallingConvention(
558       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
559   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
560                                  /*chainCall=*/false, ArgTys,
561                                  FunctionType::ExtInfo(CC), {},
562                                  RequiredArgs::All);
563 }
564 
565 /// Arrange a call as unto a free function, except possibly with an
566 /// additional number of formal parameters considered required.
567 static const CGFunctionInfo &
568 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
569                             CodeGenModule &CGM,
570                             const CallArgList &args,
571                             const FunctionType *fnType,
572                             unsigned numExtraRequiredArgs,
573                             bool chainCall) {
574   assert(args.size() >= numExtraRequiredArgs);
575 
576   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
577 
578   // In most cases, there are no optional arguments.
579   RequiredArgs required = RequiredArgs::All;
580 
581   // If we have a variadic prototype, the required arguments are the
582   // extra prefix plus the arguments in the prototype.
583   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
584     if (proto->isVariadic())
585       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
586 
587     if (proto->hasExtParameterInfos())
588       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
589                                   args.size());
590 
591   // If we don't have a prototype at all, but we're supposed to
592   // explicitly use the variadic convention for unprototyped calls,
593   // treat all of the arguments as required but preserve the nominal
594   // possibility of variadics.
595   } else if (CGM.getTargetCodeGenInfo()
596                 .isNoProtoCallVariadic(args,
597                                        cast<FunctionNoProtoType>(fnType))) {
598     required = RequiredArgs(args.size());
599   }
600 
601   // FIXME: Kill copy.
602   SmallVector<CanQualType, 16> argTypes;
603   for (const auto &arg : args)
604     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
605   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
606                                      /*instanceMethod=*/false, chainCall,
607                                      argTypes, fnType->getExtInfo(), paramInfos,
608                                      required);
609 }
610 
611 /// Figure out the rules for calling a function with the given formal
612 /// type using the given arguments.  The arguments are necessary
613 /// because the function might be unprototyped, in which case it's
614 /// target-dependent in crazy ways.
615 const CGFunctionInfo &
616 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
617                                       const FunctionType *fnType,
618                                       bool chainCall) {
619   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
620                                      chainCall ? 1 : 0, chainCall);
621 }
622 
623 /// A block function is essentially a free function with an
624 /// extra implicit argument.
625 const CGFunctionInfo &
626 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
627                                        const FunctionType *fnType) {
628   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
629                                      /*chainCall=*/false);
630 }
631 
632 const CGFunctionInfo &
633 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
634                                               const FunctionArgList &params) {
635   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
636   auto argTypes = getArgTypesForDeclaration(Context, params);
637 
638   return arrangeLLVMFunctionInfo(
639       GetReturnType(proto->getReturnType()),
640       /*instanceMethod*/ false, /*chainCall*/ false, argTypes,
641       proto->getExtInfo(), paramInfos,
642       RequiredArgs::forPrototypePlus(proto, 1, nullptr));
643 }
644 
645 const CGFunctionInfo &
646 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
647                                          const CallArgList &args) {
648   // FIXME: Kill copy.
649   SmallVector<CanQualType, 16> argTypes;
650   for (const auto &Arg : args)
651     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
652   return arrangeLLVMFunctionInfo(
653       GetReturnType(resultType), /*instanceMethod=*/false,
654       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
655       /*paramInfos=*/ {}, RequiredArgs::All);
656 }
657 
658 const CGFunctionInfo &
659 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
660                                                 const FunctionArgList &args) {
661   auto argTypes = getArgTypesForDeclaration(Context, args);
662 
663   return arrangeLLVMFunctionInfo(
664       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
665       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
666 }
667 
668 const CGFunctionInfo &
669 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
670                                               ArrayRef<CanQualType> argTypes) {
671   return arrangeLLVMFunctionInfo(
672       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
673       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
674 }
675 
676 /// Arrange a call to a C++ method, passing the given arguments.
677 ///
678 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
679 /// does not count `this`.
680 const CGFunctionInfo &
681 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
682                                    const FunctionProtoType *proto,
683                                    RequiredArgs required,
684                                    unsigned numPrefixArgs) {
685   assert(numPrefixArgs + 1 <= args.size() &&
686          "Emitting a call with less args than the required prefix?");
687   // Add one to account for `this`. It's a bit awkward here, but we don't count
688   // `this` in similar places elsewhere.
689   auto paramInfos =
690     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
691 
692   // FIXME: Kill copy.
693   auto argTypes = getArgTypesForCall(Context, args);
694 
695   FunctionType::ExtInfo info = proto->getExtInfo();
696   return arrangeLLVMFunctionInfo(
697       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
698       /*chainCall=*/false, argTypes, info, paramInfos, required);
699 }
700 
701 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
702   return arrangeLLVMFunctionInfo(
703       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
704       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
705 }
706 
707 const CGFunctionInfo &
708 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
709                           const CallArgList &args) {
710   assert(signature.arg_size() <= args.size());
711   if (signature.arg_size() == args.size())
712     return signature;
713 
714   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
715   auto sigParamInfos = signature.getExtParameterInfos();
716   if (!sigParamInfos.empty()) {
717     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
718     paramInfos.resize(args.size());
719   }
720 
721   auto argTypes = getArgTypesForCall(Context, args);
722 
723   assert(signature.getRequiredArgs().allowsOptionalArgs());
724   return arrangeLLVMFunctionInfo(signature.getReturnType(),
725                                  signature.isInstanceMethod(),
726                                  signature.isChainCall(),
727                                  argTypes,
728                                  signature.getExtInfo(),
729                                  paramInfos,
730                                  signature.getRequiredArgs());
731 }
732 
733 namespace clang {
734 namespace CodeGen {
735 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
736 }
737 }
738 
739 /// Arrange the argument and result information for an abstract value
740 /// of a given function type.  This is the method which all of the
741 /// above functions ultimately defer to.
742 const CGFunctionInfo &
743 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
744                                       bool instanceMethod,
745                                       bool chainCall,
746                                       ArrayRef<CanQualType> argTypes,
747                                       FunctionType::ExtInfo info,
748                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
749                                       RequiredArgs required) {
750   assert(llvm::all_of(argTypes,
751                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
752 
753   // Lookup or create unique function info.
754   llvm::FoldingSetNodeID ID;
755   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
756                           required, resultType, argTypes);
757 
758   void *insertPos = nullptr;
759   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
760   if (FI)
761     return *FI;
762 
763   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
764 
765   // Construct the function info.  We co-allocate the ArgInfos.
766   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
767                               paramInfos, resultType, argTypes, required);
768   FunctionInfos.InsertNode(FI, insertPos);
769 
770   bool inserted = FunctionsBeingProcessed.insert(FI).second;
771   (void)inserted;
772   assert(inserted && "Recursively being processed?");
773 
774   // Compute ABI information.
775   if (CC == llvm::CallingConv::SPIR_KERNEL) {
776     // Force target independent argument handling for the host visible
777     // kernel functions.
778     computeSPIRKernelABIInfo(CGM, *FI);
779   } else if (info.getCC() == CC_Swift) {
780     swiftcall::computeABIInfo(CGM, *FI);
781   } else {
782     getABIInfo().computeInfo(*FI);
783   }
784 
785   // Loop over all of the computed argument and return value info.  If any of
786   // them are direct or extend without a specified coerce type, specify the
787   // default now.
788   ABIArgInfo &retInfo = FI->getReturnInfo();
789   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
790     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
791 
792   for (auto &I : FI->arguments())
793     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
794       I.info.setCoerceToType(ConvertType(I.type));
795 
796   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
797   assert(erased && "Not in set?");
798 
799   return *FI;
800 }
801 
802 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
803                                        bool instanceMethod,
804                                        bool chainCall,
805                                        const FunctionType::ExtInfo &info,
806                                        ArrayRef<ExtParameterInfo> paramInfos,
807                                        CanQualType resultType,
808                                        ArrayRef<CanQualType> argTypes,
809                                        RequiredArgs required) {
810   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
811 
812   void *buffer =
813     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
814                                   argTypes.size() + 1, paramInfos.size()));
815 
816   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
817   FI->CallingConvention = llvmCC;
818   FI->EffectiveCallingConvention = llvmCC;
819   FI->ASTCallingConvention = info.getCC();
820   FI->InstanceMethod = instanceMethod;
821   FI->ChainCall = chainCall;
822   FI->NoReturn = info.getNoReturn();
823   FI->ReturnsRetained = info.getProducesResult();
824   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
825   FI->NoCfCheck = info.getNoCfCheck();
826   FI->Required = required;
827   FI->HasRegParm = info.getHasRegParm();
828   FI->RegParm = info.getRegParm();
829   FI->ArgStruct = nullptr;
830   FI->ArgStructAlign = 0;
831   FI->NumArgs = argTypes.size();
832   FI->HasExtParameterInfos = !paramInfos.empty();
833   FI->getArgsBuffer()[0].type = resultType;
834   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
835     FI->getArgsBuffer()[i + 1].type = argTypes[i];
836   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
837     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
838   return FI;
839 }
840 
841 /***/
842 
843 namespace {
844 // ABIArgInfo::Expand implementation.
845 
846 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
847 struct TypeExpansion {
848   enum TypeExpansionKind {
849     // Elements of constant arrays are expanded recursively.
850     TEK_ConstantArray,
851     // Record fields are expanded recursively (but if record is a union, only
852     // the field with the largest size is expanded).
853     TEK_Record,
854     // For complex types, real and imaginary parts are expanded recursively.
855     TEK_Complex,
856     // All other types are not expandable.
857     TEK_None
858   };
859 
860   const TypeExpansionKind Kind;
861 
862   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
863   virtual ~TypeExpansion() {}
864 };
865 
866 struct ConstantArrayExpansion : TypeExpansion {
867   QualType EltTy;
868   uint64_t NumElts;
869 
870   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
871       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
872   static bool classof(const TypeExpansion *TE) {
873     return TE->Kind == TEK_ConstantArray;
874   }
875 };
876 
877 struct RecordExpansion : TypeExpansion {
878   SmallVector<const CXXBaseSpecifier *, 1> Bases;
879 
880   SmallVector<const FieldDecl *, 1> Fields;
881 
882   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
883                   SmallVector<const FieldDecl *, 1> &&Fields)
884       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
885         Fields(std::move(Fields)) {}
886   static bool classof(const TypeExpansion *TE) {
887     return TE->Kind == TEK_Record;
888   }
889 };
890 
891 struct ComplexExpansion : TypeExpansion {
892   QualType EltTy;
893 
894   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
895   static bool classof(const TypeExpansion *TE) {
896     return TE->Kind == TEK_Complex;
897   }
898 };
899 
900 struct NoExpansion : TypeExpansion {
901   NoExpansion() : TypeExpansion(TEK_None) {}
902   static bool classof(const TypeExpansion *TE) {
903     return TE->Kind == TEK_None;
904   }
905 };
906 }  // namespace
907 
908 static std::unique_ptr<TypeExpansion>
909 getTypeExpansion(QualType Ty, const ASTContext &Context) {
910   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
911     return llvm::make_unique<ConstantArrayExpansion>(
912         AT->getElementType(), AT->getSize().getZExtValue());
913   }
914   if (const RecordType *RT = Ty->getAs<RecordType>()) {
915     SmallVector<const CXXBaseSpecifier *, 1> Bases;
916     SmallVector<const FieldDecl *, 1> Fields;
917     const RecordDecl *RD = RT->getDecl();
918     assert(!RD->hasFlexibleArrayMember() &&
919            "Cannot expand structure with flexible array.");
920     if (RD->isUnion()) {
921       // Unions can be here only in degenerative cases - all the fields are same
922       // after flattening. Thus we have to use the "largest" field.
923       const FieldDecl *LargestFD = nullptr;
924       CharUnits UnionSize = CharUnits::Zero();
925 
926       for (const auto *FD : RD->fields()) {
927         if (FD->isZeroLengthBitField(Context))
928           continue;
929         assert(!FD->isBitField() &&
930                "Cannot expand structure with bit-field members.");
931         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
932         if (UnionSize < FieldSize) {
933           UnionSize = FieldSize;
934           LargestFD = FD;
935         }
936       }
937       if (LargestFD)
938         Fields.push_back(LargestFD);
939     } else {
940       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
941         assert(!CXXRD->isDynamicClass() &&
942                "cannot expand vtable pointers in dynamic classes");
943         for (const CXXBaseSpecifier &BS : CXXRD->bases())
944           Bases.push_back(&BS);
945       }
946 
947       for (const auto *FD : RD->fields()) {
948         if (FD->isZeroLengthBitField(Context))
949           continue;
950         assert(!FD->isBitField() &&
951                "Cannot expand structure with bit-field members.");
952         Fields.push_back(FD);
953       }
954     }
955     return llvm::make_unique<RecordExpansion>(std::move(Bases),
956                                               std::move(Fields));
957   }
958   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
959     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
960   }
961   return llvm::make_unique<NoExpansion>();
962 }
963 
964 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
965   auto Exp = getTypeExpansion(Ty, Context);
966   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
967     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
968   }
969   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
970     int Res = 0;
971     for (auto BS : RExp->Bases)
972       Res += getExpansionSize(BS->getType(), Context);
973     for (auto FD : RExp->Fields)
974       Res += getExpansionSize(FD->getType(), Context);
975     return Res;
976   }
977   if (isa<ComplexExpansion>(Exp.get()))
978     return 2;
979   assert(isa<NoExpansion>(Exp.get()));
980   return 1;
981 }
982 
983 void
984 CodeGenTypes::getExpandedTypes(QualType Ty,
985                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
986   auto Exp = getTypeExpansion(Ty, Context);
987   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
988     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
989       getExpandedTypes(CAExp->EltTy, TI);
990     }
991   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
992     for (auto BS : RExp->Bases)
993       getExpandedTypes(BS->getType(), TI);
994     for (auto FD : RExp->Fields)
995       getExpandedTypes(FD->getType(), TI);
996   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
997     llvm::Type *EltTy = ConvertType(CExp->EltTy);
998     *TI++ = EltTy;
999     *TI++ = EltTy;
1000   } else {
1001     assert(isa<NoExpansion>(Exp.get()));
1002     *TI++ = ConvertType(Ty);
1003   }
1004 }
1005 
1006 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1007                                       ConstantArrayExpansion *CAE,
1008                                       Address BaseAddr,
1009                                       llvm::function_ref<void(Address)> Fn) {
1010   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1011   CharUnits EltAlign =
1012     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1013 
1014   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1015     llvm::Value *EltAddr =
1016       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1017     Fn(Address(EltAddr, EltAlign));
1018   }
1019 }
1020 
1021 void CodeGenFunction::ExpandTypeFromArgs(
1022     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1023   assert(LV.isSimple() &&
1024          "Unexpected non-simple lvalue during struct expansion.");
1025 
1026   auto Exp = getTypeExpansion(Ty, getContext());
1027   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1028     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
1029                               [&](Address EltAddr) {
1030       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1031       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1032     });
1033   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1034     Address This = LV.getAddress();
1035     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1036       // Perform a single step derived-to-base conversion.
1037       Address Base =
1038           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1039                                 /*NullCheckValue=*/false, SourceLocation());
1040       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1041 
1042       // Recurse onto bases.
1043       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1044     }
1045     for (auto FD : RExp->Fields) {
1046       // FIXME: What are the right qualifiers here?
1047       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1048       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1049     }
1050   } else if (isa<ComplexExpansion>(Exp.get())) {
1051     auto realValue = *AI++;
1052     auto imagValue = *AI++;
1053     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1054   } else {
1055     assert(isa<NoExpansion>(Exp.get()));
1056     EmitStoreThroughLValue(RValue::get(*AI++), LV);
1057   }
1058 }
1059 
1060 void CodeGenFunction::ExpandTypeToArgs(
1061     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1062     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1063   auto Exp = getTypeExpansion(Ty, getContext());
1064   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1065     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1066                                    : Arg.getKnownRValue().getAggregateAddress();
1067     forConstantArrayExpansion(
1068         *this, CAExp, Addr, [&](Address EltAddr) {
1069           CallArg EltArg = CallArg(
1070               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1071               CAExp->EltTy);
1072           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1073                            IRCallArgPos);
1074         });
1075   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1076     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1077                                    : Arg.getKnownRValue().getAggregateAddress();
1078     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1079       // Perform a single step derived-to-base conversion.
1080       Address Base =
1081           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1082                                 /*NullCheckValue=*/false, SourceLocation());
1083       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1084 
1085       // Recurse onto bases.
1086       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1087                        IRCallArgPos);
1088     }
1089 
1090     LValue LV = MakeAddrLValue(This, Ty);
1091     for (auto FD : RExp->Fields) {
1092       CallArg FldArg =
1093           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1094       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1095                        IRCallArgPos);
1096     }
1097   } else if (isa<ComplexExpansion>(Exp.get())) {
1098     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1099     IRCallArgs[IRCallArgPos++] = CV.first;
1100     IRCallArgs[IRCallArgPos++] = CV.second;
1101   } else {
1102     assert(isa<NoExpansion>(Exp.get()));
1103     auto RV = Arg.getKnownRValue();
1104     assert(RV.isScalar() &&
1105            "Unexpected non-scalar rvalue during struct expansion.");
1106 
1107     // Insert a bitcast as needed.
1108     llvm::Value *V = RV.getScalarVal();
1109     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1110         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1111       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1112 
1113     IRCallArgs[IRCallArgPos++] = V;
1114   }
1115 }
1116 
1117 /// Create a temporary allocation for the purposes of coercion.
1118 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1119                                            CharUnits MinAlign) {
1120   // Don't use an alignment that's worse than what LLVM would prefer.
1121   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1122   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1123 
1124   return CGF.CreateTempAlloca(Ty, Align);
1125 }
1126 
1127 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1128 /// accessing some number of bytes out of it, try to gep into the struct to get
1129 /// at its inner goodness.  Dive as deep as possible without entering an element
1130 /// with an in-memory size smaller than DstSize.
1131 static Address
1132 EnterStructPointerForCoercedAccess(Address SrcPtr,
1133                                    llvm::StructType *SrcSTy,
1134                                    uint64_t DstSize, CodeGenFunction &CGF) {
1135   // We can't dive into a zero-element struct.
1136   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1137 
1138   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1139 
1140   // If the first elt is at least as large as what we're looking for, or if the
1141   // first element is the same size as the whole struct, we can enter it. The
1142   // comparison must be made on the store size and not the alloca size. Using
1143   // the alloca size may overstate the size of the load.
1144   uint64_t FirstEltSize =
1145     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1146   if (FirstEltSize < DstSize &&
1147       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1148     return SrcPtr;
1149 
1150   // GEP into the first element.
1151   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
1152 
1153   // If the first element is a struct, recurse.
1154   llvm::Type *SrcTy = SrcPtr.getElementType();
1155   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1156     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1157 
1158   return SrcPtr;
1159 }
1160 
1161 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1162 /// are either integers or pointers.  This does a truncation of the value if it
1163 /// is too large or a zero extension if it is too small.
1164 ///
1165 /// This behaves as if the value were coerced through memory, so on big-endian
1166 /// targets the high bits are preserved in a truncation, while little-endian
1167 /// targets preserve the low bits.
1168 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1169                                              llvm::Type *Ty,
1170                                              CodeGenFunction &CGF) {
1171   if (Val->getType() == Ty)
1172     return Val;
1173 
1174   if (isa<llvm::PointerType>(Val->getType())) {
1175     // If this is Pointer->Pointer avoid conversion to and from int.
1176     if (isa<llvm::PointerType>(Ty))
1177       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1178 
1179     // Convert the pointer to an integer so we can play with its width.
1180     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1181   }
1182 
1183   llvm::Type *DestIntTy = Ty;
1184   if (isa<llvm::PointerType>(DestIntTy))
1185     DestIntTy = CGF.IntPtrTy;
1186 
1187   if (Val->getType() != DestIntTy) {
1188     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1189     if (DL.isBigEndian()) {
1190       // Preserve the high bits on big-endian targets.
1191       // That is what memory coercion does.
1192       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1193       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1194 
1195       if (SrcSize > DstSize) {
1196         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1197         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1198       } else {
1199         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1200         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1201       }
1202     } else {
1203       // Little-endian targets preserve the low bits. No shifts required.
1204       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1205     }
1206   }
1207 
1208   if (isa<llvm::PointerType>(Ty))
1209     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1210   return Val;
1211 }
1212 
1213 
1214 
1215 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1216 /// a pointer to an object of type \arg Ty, known to be aligned to
1217 /// \arg SrcAlign bytes.
1218 ///
1219 /// This safely handles the case when the src type is smaller than the
1220 /// destination type; in this situation the values of bits which not
1221 /// present in the src are undefined.
1222 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1223                                       CodeGenFunction &CGF) {
1224   llvm::Type *SrcTy = Src.getElementType();
1225 
1226   // If SrcTy and Ty are the same, just do a load.
1227   if (SrcTy == Ty)
1228     return CGF.Builder.CreateLoad(Src);
1229 
1230   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1231 
1232   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1233     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1234     SrcTy = Src.getType()->getElementType();
1235   }
1236 
1237   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1238 
1239   // If the source and destination are integer or pointer types, just do an
1240   // extension or truncation to the desired type.
1241   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1242       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1243     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1244     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1245   }
1246 
1247   // If load is legal, just bitcast the src pointer.
1248   if (SrcSize >= DstSize) {
1249     // Generally SrcSize is never greater than DstSize, since this means we are
1250     // losing bits. However, this can happen in cases where the structure has
1251     // additional padding, for example due to a user specified alignment.
1252     //
1253     // FIXME: Assert that we aren't truncating non-padding bits when have access
1254     // to that information.
1255     Src = CGF.Builder.CreateBitCast(Src,
1256                                     Ty->getPointerTo(Src.getAddressSpace()));
1257     return CGF.Builder.CreateLoad(Src);
1258   }
1259 
1260   // Otherwise do coercion through memory. This is stupid, but simple.
1261   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1262   Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1263   Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty);
1264   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1265       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1266       false);
1267   return CGF.Builder.CreateLoad(Tmp);
1268 }
1269 
1270 // Function to store a first-class aggregate into memory.  We prefer to
1271 // store the elements rather than the aggregate to be more friendly to
1272 // fast-isel.
1273 // FIXME: Do we need to recurse here?
1274 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1275                           Address Dest, bool DestIsVolatile) {
1276   // Prefer scalar stores to first-class aggregate stores.
1277   if (llvm::StructType *STy =
1278         dyn_cast<llvm::StructType>(Val->getType())) {
1279     const llvm::StructLayout *Layout =
1280       CGF.CGM.getDataLayout().getStructLayout(STy);
1281 
1282     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1283       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1284       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1285       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1286       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1287     }
1288   } else {
1289     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1290   }
1291 }
1292 
1293 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1294 /// where the source and destination may have different types.  The
1295 /// destination is known to be aligned to \arg DstAlign bytes.
1296 ///
1297 /// This safely handles the case when the src type is larger than the
1298 /// destination type; the upper bits of the src will be lost.
1299 static void CreateCoercedStore(llvm::Value *Src,
1300                                Address Dst,
1301                                bool DstIsVolatile,
1302                                CodeGenFunction &CGF) {
1303   llvm::Type *SrcTy = Src->getType();
1304   llvm::Type *DstTy = Dst.getType()->getElementType();
1305   if (SrcTy == DstTy) {
1306     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1307     return;
1308   }
1309 
1310   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1311 
1312   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1313     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1314     DstTy = Dst.getType()->getElementType();
1315   }
1316 
1317   // If the source and destination are integer or pointer types, just do an
1318   // extension or truncation to the desired type.
1319   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1320       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1321     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1322     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1323     return;
1324   }
1325 
1326   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1327 
1328   // If store is legal, just bitcast the src pointer.
1329   if (SrcSize <= DstSize) {
1330     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1331     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1332   } else {
1333     // Otherwise do coercion through memory. This is stupid, but
1334     // simple.
1335 
1336     // Generally SrcSize is never greater than DstSize, since this means we are
1337     // losing bits. However, this can happen in cases where the structure has
1338     // additional padding, for example due to a user specified alignment.
1339     //
1340     // FIXME: Assert that we aren't truncating non-padding bits when have access
1341     // to that information.
1342     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1343     CGF.Builder.CreateStore(Src, Tmp);
1344     Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1345     Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty);
1346     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1347         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1348         false);
1349   }
1350 }
1351 
1352 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1353                                    const ABIArgInfo &info) {
1354   if (unsigned offset = info.getDirectOffset()) {
1355     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1356     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1357                                              CharUnits::fromQuantity(offset));
1358     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1359   }
1360   return addr;
1361 }
1362 
1363 namespace {
1364 
1365 /// Encapsulates information about the way function arguments from
1366 /// CGFunctionInfo should be passed to actual LLVM IR function.
1367 class ClangToLLVMArgMapping {
1368   static const unsigned InvalidIndex = ~0U;
1369   unsigned InallocaArgNo;
1370   unsigned SRetArgNo;
1371   unsigned TotalIRArgs;
1372 
1373   /// Arguments of LLVM IR function corresponding to single Clang argument.
1374   struct IRArgs {
1375     unsigned PaddingArgIndex;
1376     // Argument is expanded to IR arguments at positions
1377     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1378     unsigned FirstArgIndex;
1379     unsigned NumberOfArgs;
1380 
1381     IRArgs()
1382         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1383           NumberOfArgs(0) {}
1384   };
1385 
1386   SmallVector<IRArgs, 8> ArgInfo;
1387 
1388 public:
1389   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1390                         bool OnlyRequiredArgs = false)
1391       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1392         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1393     construct(Context, FI, OnlyRequiredArgs);
1394   }
1395 
1396   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1397   unsigned getInallocaArgNo() const {
1398     assert(hasInallocaArg());
1399     return InallocaArgNo;
1400   }
1401 
1402   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1403   unsigned getSRetArgNo() const {
1404     assert(hasSRetArg());
1405     return SRetArgNo;
1406   }
1407 
1408   unsigned totalIRArgs() const { return TotalIRArgs; }
1409 
1410   bool hasPaddingArg(unsigned ArgNo) const {
1411     assert(ArgNo < ArgInfo.size());
1412     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1413   }
1414   unsigned getPaddingArgNo(unsigned ArgNo) const {
1415     assert(hasPaddingArg(ArgNo));
1416     return ArgInfo[ArgNo].PaddingArgIndex;
1417   }
1418 
1419   /// Returns index of first IR argument corresponding to ArgNo, and their
1420   /// quantity.
1421   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1422     assert(ArgNo < ArgInfo.size());
1423     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1424                           ArgInfo[ArgNo].NumberOfArgs);
1425   }
1426 
1427 private:
1428   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1429                  bool OnlyRequiredArgs);
1430 };
1431 
1432 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1433                                       const CGFunctionInfo &FI,
1434                                       bool OnlyRequiredArgs) {
1435   unsigned IRArgNo = 0;
1436   bool SwapThisWithSRet = false;
1437   const ABIArgInfo &RetAI = FI.getReturnInfo();
1438 
1439   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1440     SwapThisWithSRet = RetAI.isSRetAfterThis();
1441     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1442   }
1443 
1444   unsigned ArgNo = 0;
1445   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1446   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1447        ++I, ++ArgNo) {
1448     assert(I != FI.arg_end());
1449     QualType ArgType = I->type;
1450     const ABIArgInfo &AI = I->info;
1451     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1452     auto &IRArgs = ArgInfo[ArgNo];
1453 
1454     if (AI.getPaddingType())
1455       IRArgs.PaddingArgIndex = IRArgNo++;
1456 
1457     switch (AI.getKind()) {
1458     case ABIArgInfo::Extend:
1459     case ABIArgInfo::Direct: {
1460       // FIXME: handle sseregparm someday...
1461       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1462       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1463         IRArgs.NumberOfArgs = STy->getNumElements();
1464       } else {
1465         IRArgs.NumberOfArgs = 1;
1466       }
1467       break;
1468     }
1469     case ABIArgInfo::Indirect:
1470       IRArgs.NumberOfArgs = 1;
1471       break;
1472     case ABIArgInfo::Ignore:
1473     case ABIArgInfo::InAlloca:
1474       // ignore and inalloca doesn't have matching LLVM parameters.
1475       IRArgs.NumberOfArgs = 0;
1476       break;
1477     case ABIArgInfo::CoerceAndExpand:
1478       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1479       break;
1480     case ABIArgInfo::Expand:
1481       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1482       break;
1483     }
1484 
1485     if (IRArgs.NumberOfArgs > 0) {
1486       IRArgs.FirstArgIndex = IRArgNo;
1487       IRArgNo += IRArgs.NumberOfArgs;
1488     }
1489 
1490     // Skip over the sret parameter when it comes second.  We already handled it
1491     // above.
1492     if (IRArgNo == 1 && SwapThisWithSRet)
1493       IRArgNo++;
1494   }
1495   assert(ArgNo == ArgInfo.size());
1496 
1497   if (FI.usesInAlloca())
1498     InallocaArgNo = IRArgNo++;
1499 
1500   TotalIRArgs = IRArgNo;
1501 }
1502 }  // namespace
1503 
1504 /***/
1505 
1506 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1507   const auto &RI = FI.getReturnInfo();
1508   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1509 }
1510 
1511 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1512   return ReturnTypeUsesSRet(FI) &&
1513          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1514 }
1515 
1516 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1517   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1518     switch (BT->getKind()) {
1519     default:
1520       return false;
1521     case BuiltinType::Float:
1522       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1523     case BuiltinType::Double:
1524       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1525     case BuiltinType::LongDouble:
1526       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1527     }
1528   }
1529 
1530   return false;
1531 }
1532 
1533 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1534   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1535     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1536       if (BT->getKind() == BuiltinType::LongDouble)
1537         return getTarget().useObjCFP2RetForComplexLongDouble();
1538     }
1539   }
1540 
1541   return false;
1542 }
1543 
1544 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1545   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1546   return GetFunctionType(FI);
1547 }
1548 
1549 llvm::FunctionType *
1550 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1551 
1552   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1553   (void)Inserted;
1554   assert(Inserted && "Recursively being processed?");
1555 
1556   llvm::Type *resultType = nullptr;
1557   const ABIArgInfo &retAI = FI.getReturnInfo();
1558   switch (retAI.getKind()) {
1559   case ABIArgInfo::Expand:
1560     llvm_unreachable("Invalid ABI kind for return argument");
1561 
1562   case ABIArgInfo::Extend:
1563   case ABIArgInfo::Direct:
1564     resultType = retAI.getCoerceToType();
1565     break;
1566 
1567   case ABIArgInfo::InAlloca:
1568     if (retAI.getInAllocaSRet()) {
1569       // sret things on win32 aren't void, they return the sret pointer.
1570       QualType ret = FI.getReturnType();
1571       llvm::Type *ty = ConvertType(ret);
1572       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1573       resultType = llvm::PointerType::get(ty, addressSpace);
1574     } else {
1575       resultType = llvm::Type::getVoidTy(getLLVMContext());
1576     }
1577     break;
1578 
1579   case ABIArgInfo::Indirect:
1580   case ABIArgInfo::Ignore:
1581     resultType = llvm::Type::getVoidTy(getLLVMContext());
1582     break;
1583 
1584   case ABIArgInfo::CoerceAndExpand:
1585     resultType = retAI.getUnpaddedCoerceAndExpandType();
1586     break;
1587   }
1588 
1589   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1590   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1591 
1592   // Add type for sret argument.
1593   if (IRFunctionArgs.hasSRetArg()) {
1594     QualType Ret = FI.getReturnType();
1595     llvm::Type *Ty = ConvertType(Ret);
1596     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1597     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1598         llvm::PointerType::get(Ty, AddressSpace);
1599   }
1600 
1601   // Add type for inalloca argument.
1602   if (IRFunctionArgs.hasInallocaArg()) {
1603     auto ArgStruct = FI.getArgStruct();
1604     assert(ArgStruct);
1605     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1606   }
1607 
1608   // Add in all of the required arguments.
1609   unsigned ArgNo = 0;
1610   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1611                                      ie = it + FI.getNumRequiredArgs();
1612   for (; it != ie; ++it, ++ArgNo) {
1613     const ABIArgInfo &ArgInfo = it->info;
1614 
1615     // Insert a padding type to ensure proper alignment.
1616     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1617       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1618           ArgInfo.getPaddingType();
1619 
1620     unsigned FirstIRArg, NumIRArgs;
1621     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1622 
1623     switch (ArgInfo.getKind()) {
1624     case ABIArgInfo::Ignore:
1625     case ABIArgInfo::InAlloca:
1626       assert(NumIRArgs == 0);
1627       break;
1628 
1629     case ABIArgInfo::Indirect: {
1630       assert(NumIRArgs == 1);
1631       // indirect arguments are always on the stack, which is alloca addr space.
1632       llvm::Type *LTy = ConvertTypeForMem(it->type);
1633       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1634           CGM.getDataLayout().getAllocaAddrSpace());
1635       break;
1636     }
1637 
1638     case ABIArgInfo::Extend:
1639     case ABIArgInfo::Direct: {
1640       // Fast-isel and the optimizer generally like scalar values better than
1641       // FCAs, so we flatten them if this is safe to do for this argument.
1642       llvm::Type *argType = ArgInfo.getCoerceToType();
1643       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1644       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1645         assert(NumIRArgs == st->getNumElements());
1646         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1647           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1648       } else {
1649         assert(NumIRArgs == 1);
1650         ArgTypes[FirstIRArg] = argType;
1651       }
1652       break;
1653     }
1654 
1655     case ABIArgInfo::CoerceAndExpand: {
1656       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1657       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1658         *ArgTypesIter++ = EltTy;
1659       }
1660       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1661       break;
1662     }
1663 
1664     case ABIArgInfo::Expand:
1665       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1666       getExpandedTypes(it->type, ArgTypesIter);
1667       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1668       break;
1669     }
1670   }
1671 
1672   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1673   assert(Erased && "Not in set?");
1674 
1675   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1676 }
1677 
1678 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1679   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1680   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1681 
1682   if (!isFuncTypeConvertible(FPT))
1683     return llvm::StructType::get(getLLVMContext());
1684 
1685   const CGFunctionInfo *Info;
1686   if (isa<CXXDestructorDecl>(MD))
1687     Info =
1688         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1689   else
1690     Info = &arrangeCXXMethodDeclaration(MD);
1691   return GetFunctionType(*Info);
1692 }
1693 
1694 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1695                                                llvm::AttrBuilder &FuncAttrs,
1696                                                const FunctionProtoType *FPT) {
1697   if (!FPT)
1698     return;
1699 
1700   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1701       FPT->isNothrow())
1702     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1703 }
1704 
1705 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1706                                                bool AttrOnCallSite,
1707                                                llvm::AttrBuilder &FuncAttrs) {
1708   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1709   if (!HasOptnone) {
1710     if (CodeGenOpts.OptimizeSize)
1711       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1712     if (CodeGenOpts.OptimizeSize == 2)
1713       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1714   }
1715 
1716   if (CodeGenOpts.DisableRedZone)
1717     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1718   if (CodeGenOpts.IndirectTlsSegRefs)
1719     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1720   if (CodeGenOpts.NoImplicitFloat)
1721     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1722 
1723   if (AttrOnCallSite) {
1724     // Attributes that should go on the call site only.
1725     if (!CodeGenOpts.SimplifyLibCalls ||
1726         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1727       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1728     if (!CodeGenOpts.TrapFuncName.empty())
1729       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1730   } else {
1731     // Attributes that should go on the function, but not the call site.
1732     if (!CodeGenOpts.DisableFPElim) {
1733       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1734     } else if (CodeGenOpts.OmitLeafFramePointer) {
1735       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1736       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1737     } else {
1738       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1739       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1740     }
1741 
1742     FuncAttrs.addAttribute("less-precise-fpmad",
1743                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1744 
1745     if (CodeGenOpts.NullPointerIsValid)
1746       FuncAttrs.addAttribute("null-pointer-is-valid", "true");
1747     if (!CodeGenOpts.FPDenormalMode.empty())
1748       FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
1749 
1750     FuncAttrs.addAttribute("no-trapping-math",
1751                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1752 
1753     // Strict (compliant) code is the default, so only add this attribute to
1754     // indicate that we are trying to workaround a problem case.
1755     if (!CodeGenOpts.StrictFloatCastOverflow)
1756       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1757 
1758     // TODO: Are these all needed?
1759     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1760     FuncAttrs.addAttribute("no-infs-fp-math",
1761                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1762     FuncAttrs.addAttribute("no-nans-fp-math",
1763                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1764     FuncAttrs.addAttribute("unsafe-fp-math",
1765                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1766     FuncAttrs.addAttribute("use-soft-float",
1767                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1768     FuncAttrs.addAttribute("stack-protector-buffer-size",
1769                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1770     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1771                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1772     FuncAttrs.addAttribute(
1773         "correctly-rounded-divide-sqrt-fp-math",
1774         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1775 
1776     if (getLangOpts().OpenCL)
1777       FuncAttrs.addAttribute("denorms-are-zero",
1778                              llvm::toStringRef(CodeGenOpts.FlushDenorm));
1779 
1780     // TODO: Reciprocal estimate codegen options should apply to instructions?
1781     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1782     if (!Recips.empty())
1783       FuncAttrs.addAttribute("reciprocal-estimates",
1784                              llvm::join(Recips, ","));
1785 
1786     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1787         CodeGenOpts.PreferVectorWidth != "none")
1788       FuncAttrs.addAttribute("prefer-vector-width",
1789                              CodeGenOpts.PreferVectorWidth);
1790 
1791     if (CodeGenOpts.StackRealignment)
1792       FuncAttrs.addAttribute("stackrealign");
1793     if (CodeGenOpts.Backchain)
1794       FuncAttrs.addAttribute("backchain");
1795 
1796     // FIXME: The interaction of this attribute with the SLH command line flag
1797     // has not been determined.
1798     if (CodeGenOpts.SpeculativeLoadHardening)
1799       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1800   }
1801 
1802   if (getLangOpts().assumeFunctionsAreConvergent()) {
1803     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1804     // convergent (meaning, they may call an intrinsically convergent op, such
1805     // as __syncthreads() / barrier(), and so can't have certain optimizations
1806     // applied around them).  LLVM will remove this attribute where it safely
1807     // can.
1808     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1809   }
1810 
1811   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1812     // Exceptions aren't supported in CUDA device code.
1813     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1814 
1815     // Respect -fcuda-flush-denormals-to-zero.
1816     if (CodeGenOpts.FlushDenorm)
1817       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1818   }
1819 
1820   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1821     StringRef Var, Value;
1822     std::tie(Var, Value) = Attr.split('=');
1823     FuncAttrs.addAttribute(Var, Value);
1824   }
1825 }
1826 
1827 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1828   llvm::AttrBuilder FuncAttrs;
1829   ConstructDefaultFnAttrList(F.getName(),
1830                              F.hasFnAttribute(llvm::Attribute::OptimizeNone),
1831                              /* AttrOnCallsite = */ false, FuncAttrs);
1832   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1833 }
1834 
1835 void CodeGenModule::ConstructAttributeList(
1836     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1837     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1838   llvm::AttrBuilder FuncAttrs;
1839   llvm::AttrBuilder RetAttrs;
1840 
1841   CallingConv = FI.getEffectiveCallingConvention();
1842   if (FI.isNoReturn())
1843     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1844 
1845   // If we have information about the function prototype, we can learn
1846   // attributes from there.
1847   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1848                                      CalleeInfo.getCalleeFunctionProtoType());
1849 
1850   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1851 
1852   bool HasOptnone = false;
1853   // FIXME: handle sseregparm someday...
1854   if (TargetDecl) {
1855     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1856       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1857     if (TargetDecl->hasAttr<NoThrowAttr>())
1858       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1859     if (TargetDecl->hasAttr<NoReturnAttr>())
1860       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1861     if (TargetDecl->hasAttr<ColdAttr>())
1862       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1863     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1864       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1865     if (TargetDecl->hasAttr<ConvergentAttr>())
1866       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1867     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
1868       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1869 
1870     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1871       AddAttributesFromFunctionProtoType(
1872           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1873       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1874       // These attributes are not inherited by overloads.
1875       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1876       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1877         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1878     }
1879 
1880     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1881     if (TargetDecl->hasAttr<ConstAttr>()) {
1882       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1883       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1884     } else if (TargetDecl->hasAttr<PureAttr>()) {
1885       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1886       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1887     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1888       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1889       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1890     }
1891     if (TargetDecl->hasAttr<RestrictAttr>())
1892       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1893     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1894         !CodeGenOpts.NullPointerIsValid)
1895       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1896     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1897       FuncAttrs.addAttribute("no_caller_saved_registers");
1898     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1899       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1900 
1901     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1902     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1903       Optional<unsigned> NumElemsParam;
1904       if (AllocSize->getNumElemsParam().isValid())
1905         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1906       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1907                                  NumElemsParam);
1908     }
1909   }
1910 
1911   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1912 
1913   if (CodeGenOpts.EnableSegmentedStacks &&
1914       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1915     FuncAttrs.addAttribute("split-stack");
1916 
1917   // Add NonLazyBind attribute to function declarations when -fno-plt
1918   // is used.
1919   if (TargetDecl && CodeGenOpts.NoPLT) {
1920     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1921       if (!Fn->isDefined() && !AttrOnCallSite) {
1922         FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1923       }
1924     }
1925   }
1926 
1927   if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1928     if (getLangOpts().OpenCLVersion <= 120) {
1929       // OpenCL v1.2 Work groups are always uniform
1930       FuncAttrs.addAttribute("uniform-work-group-size", "true");
1931     } else {
1932       // OpenCL v2.0 Work groups may be whether uniform or not.
1933       // '-cl-uniform-work-group-size' compile option gets a hint
1934       // to the compiler that the global work-size be a multiple of
1935       // the work-group size specified to clEnqueueNDRangeKernel
1936       // (i.e. work groups are uniform).
1937       FuncAttrs.addAttribute("uniform-work-group-size",
1938                              llvm::toStringRef(CodeGenOpts.UniformWGSize));
1939     }
1940   }
1941 
1942   if (!AttrOnCallSite) {
1943     bool DisableTailCalls = false;
1944 
1945     if (CodeGenOpts.DisableTailCalls)
1946       DisableTailCalls = true;
1947     else if (TargetDecl) {
1948       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1949           TargetDecl->hasAttr<AnyX86InterruptAttr>())
1950         DisableTailCalls = true;
1951       else if (CodeGenOpts.NoEscapingBlockTailCalls) {
1952         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
1953           if (!BD->doesNotEscape())
1954             DisableTailCalls = true;
1955       }
1956     }
1957 
1958     FuncAttrs.addAttribute("disable-tail-calls",
1959                            llvm::toStringRef(DisableTailCalls));
1960     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
1961   }
1962 
1963   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1964 
1965   QualType RetTy = FI.getReturnType();
1966   const ABIArgInfo &RetAI = FI.getReturnInfo();
1967   switch (RetAI.getKind()) {
1968   case ABIArgInfo::Extend:
1969     if (RetAI.isSignExt())
1970       RetAttrs.addAttribute(llvm::Attribute::SExt);
1971     else
1972       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1973     LLVM_FALLTHROUGH;
1974   case ABIArgInfo::Direct:
1975     if (RetAI.getInReg())
1976       RetAttrs.addAttribute(llvm::Attribute::InReg);
1977     break;
1978   case ABIArgInfo::Ignore:
1979     break;
1980 
1981   case ABIArgInfo::InAlloca:
1982   case ABIArgInfo::Indirect: {
1983     // inalloca and sret disable readnone and readonly
1984     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1985       .removeAttribute(llvm::Attribute::ReadNone);
1986     break;
1987   }
1988 
1989   case ABIArgInfo::CoerceAndExpand:
1990     break;
1991 
1992   case ABIArgInfo::Expand:
1993     llvm_unreachable("Invalid ABI kind for return argument");
1994   }
1995 
1996   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1997     QualType PTy = RefTy->getPointeeType();
1998     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1999       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2000                                         .getQuantity());
2001     else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2002              !CodeGenOpts.NullPointerIsValid)
2003       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2004   }
2005 
2006   bool hasUsedSRet = false;
2007   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2008 
2009   // Attach attributes to sret.
2010   if (IRFunctionArgs.hasSRetArg()) {
2011     llvm::AttrBuilder SRETAttrs;
2012     if (!RetAI.getSuppressSRet())
2013       SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2014     hasUsedSRet = true;
2015     if (RetAI.getInReg())
2016       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2017     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2018         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2019   }
2020 
2021   // Attach attributes to inalloca argument.
2022   if (IRFunctionArgs.hasInallocaArg()) {
2023     llvm::AttrBuilder Attrs;
2024     Attrs.addAttribute(llvm::Attribute::InAlloca);
2025     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2026         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2027   }
2028 
2029   unsigned ArgNo = 0;
2030   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2031                                           E = FI.arg_end();
2032        I != E; ++I, ++ArgNo) {
2033     QualType ParamType = I->type;
2034     const ABIArgInfo &AI = I->info;
2035     llvm::AttrBuilder Attrs;
2036 
2037     // Add attribute for padding argument, if necessary.
2038     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2039       if (AI.getPaddingInReg()) {
2040         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2041             llvm::AttributeSet::get(
2042                 getLLVMContext(),
2043                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2044       }
2045     }
2046 
2047     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2048     // have the corresponding parameter variable.  It doesn't make
2049     // sense to do it here because parameters are so messed up.
2050     switch (AI.getKind()) {
2051     case ABIArgInfo::Extend:
2052       if (AI.isSignExt())
2053         Attrs.addAttribute(llvm::Attribute::SExt);
2054       else
2055         Attrs.addAttribute(llvm::Attribute::ZExt);
2056       LLVM_FALLTHROUGH;
2057     case ABIArgInfo::Direct:
2058       if (ArgNo == 0 && FI.isChainCall())
2059         Attrs.addAttribute(llvm::Attribute::Nest);
2060       else if (AI.getInReg())
2061         Attrs.addAttribute(llvm::Attribute::InReg);
2062       break;
2063 
2064     case ABIArgInfo::Indirect: {
2065       if (AI.getInReg())
2066         Attrs.addAttribute(llvm::Attribute::InReg);
2067 
2068       if (AI.getIndirectByVal())
2069         Attrs.addAttribute(llvm::Attribute::ByVal);
2070 
2071       CharUnits Align = AI.getIndirectAlign();
2072 
2073       // In a byval argument, it is important that the required
2074       // alignment of the type is honored, as LLVM might be creating a
2075       // *new* stack object, and needs to know what alignment to give
2076       // it. (Sometimes it can deduce a sensible alignment on its own,
2077       // but not if clang decides it must emit a packed struct, or the
2078       // user specifies increased alignment requirements.)
2079       //
2080       // This is different from indirect *not* byval, where the object
2081       // exists already, and the align attribute is purely
2082       // informative.
2083       assert(!Align.isZero());
2084 
2085       // For now, only add this when we have a byval argument.
2086       // TODO: be less lazy about updating test cases.
2087       if (AI.getIndirectByVal())
2088         Attrs.addAlignmentAttr(Align.getQuantity());
2089 
2090       // byval disables readnone and readonly.
2091       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2092         .removeAttribute(llvm::Attribute::ReadNone);
2093       break;
2094     }
2095     case ABIArgInfo::Ignore:
2096     case ABIArgInfo::Expand:
2097     case ABIArgInfo::CoerceAndExpand:
2098       break;
2099 
2100     case ABIArgInfo::InAlloca:
2101       // inalloca disables readnone and readonly.
2102       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2103           .removeAttribute(llvm::Attribute::ReadNone);
2104       continue;
2105     }
2106 
2107     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2108       QualType PTy = RefTy->getPointeeType();
2109       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2110         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2111                                        .getQuantity());
2112       else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2113                !CodeGenOpts.NullPointerIsValid)
2114         Attrs.addAttribute(llvm::Attribute::NonNull);
2115     }
2116 
2117     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2118     case ParameterABI::Ordinary:
2119       break;
2120 
2121     case ParameterABI::SwiftIndirectResult: {
2122       // Add 'sret' if we haven't already used it for something, but
2123       // only if the result is void.
2124       if (!hasUsedSRet && RetTy->isVoidType()) {
2125         Attrs.addAttribute(llvm::Attribute::StructRet);
2126         hasUsedSRet = true;
2127       }
2128 
2129       // Add 'noalias' in either case.
2130       Attrs.addAttribute(llvm::Attribute::NoAlias);
2131 
2132       // Add 'dereferenceable' and 'alignment'.
2133       auto PTy = ParamType->getPointeeType();
2134       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2135         auto info = getContext().getTypeInfoInChars(PTy);
2136         Attrs.addDereferenceableAttr(info.first.getQuantity());
2137         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
2138                                                  info.second.getQuantity()));
2139       }
2140       break;
2141     }
2142 
2143     case ParameterABI::SwiftErrorResult:
2144       Attrs.addAttribute(llvm::Attribute::SwiftError);
2145       break;
2146 
2147     case ParameterABI::SwiftContext:
2148       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2149       break;
2150     }
2151 
2152     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2153       Attrs.addAttribute(llvm::Attribute::NoCapture);
2154 
2155     if (Attrs.hasAttributes()) {
2156       unsigned FirstIRArg, NumIRArgs;
2157       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2158       for (unsigned i = 0; i < NumIRArgs; i++)
2159         ArgAttrs[FirstIRArg + i] =
2160             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2161     }
2162   }
2163   assert(ArgNo == FI.arg_size());
2164 
2165   AttrList = llvm::AttributeList::get(
2166       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2167       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2168 }
2169 
2170 /// An argument came in as a promoted argument; demote it back to its
2171 /// declared type.
2172 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2173                                          const VarDecl *var,
2174                                          llvm::Value *value) {
2175   llvm::Type *varType = CGF.ConvertType(var->getType());
2176 
2177   // This can happen with promotions that actually don't change the
2178   // underlying type, like the enum promotions.
2179   if (value->getType() == varType) return value;
2180 
2181   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2182          && "unexpected promotion type");
2183 
2184   if (isa<llvm::IntegerType>(varType))
2185     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2186 
2187   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2188 }
2189 
2190 /// Returns the attribute (either parameter attribute, or function
2191 /// attribute), which declares argument ArgNo to be non-null.
2192 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2193                                          QualType ArgType, unsigned ArgNo) {
2194   // FIXME: __attribute__((nonnull)) can also be applied to:
2195   //   - references to pointers, where the pointee is known to be
2196   //     nonnull (apparently a Clang extension)
2197   //   - transparent unions containing pointers
2198   // In the former case, LLVM IR cannot represent the constraint. In
2199   // the latter case, we have no guarantee that the transparent union
2200   // is in fact passed as a pointer.
2201   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2202     return nullptr;
2203   // First, check attribute on parameter itself.
2204   if (PVD) {
2205     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2206       return ParmNNAttr;
2207   }
2208   // Check function attributes.
2209   if (!FD)
2210     return nullptr;
2211   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2212     if (NNAttr->isNonNull(ArgNo))
2213       return NNAttr;
2214   }
2215   return nullptr;
2216 }
2217 
2218 namespace {
2219   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2220     Address Temp;
2221     Address Arg;
2222     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2223     void Emit(CodeGenFunction &CGF, Flags flags) override {
2224       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2225       CGF.Builder.CreateStore(errorValue, Arg);
2226     }
2227   };
2228 }
2229 
2230 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2231                                          llvm::Function *Fn,
2232                                          const FunctionArgList &Args) {
2233   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2234     // Naked functions don't have prologues.
2235     return;
2236 
2237   // If this is an implicit-return-zero function, go ahead and
2238   // initialize the return value.  TODO: it might be nice to have
2239   // a more general mechanism for this that didn't require synthesized
2240   // return statements.
2241   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2242     if (FD->hasImplicitReturnZero()) {
2243       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2244       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2245       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2246       Builder.CreateStore(Zero, ReturnValue);
2247     }
2248   }
2249 
2250   // FIXME: We no longer need the types from FunctionArgList; lift up and
2251   // simplify.
2252 
2253   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2254   // Flattened function arguments.
2255   SmallVector<llvm::Value *, 16> FnArgs;
2256   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2257   for (auto &Arg : Fn->args()) {
2258     FnArgs.push_back(&Arg);
2259   }
2260   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2261 
2262   // If we're using inalloca, all the memory arguments are GEPs off of the last
2263   // parameter, which is a pointer to the complete memory area.
2264   Address ArgStruct = Address::invalid();
2265   const llvm::StructLayout *ArgStructLayout = nullptr;
2266   if (IRFunctionArgs.hasInallocaArg()) {
2267     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
2268     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2269                         FI.getArgStructAlignment());
2270 
2271     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2272   }
2273 
2274   // Name the struct return parameter.
2275   if (IRFunctionArgs.hasSRetArg()) {
2276     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2277     AI->setName("agg.result");
2278     AI->addAttr(llvm::Attribute::NoAlias);
2279   }
2280 
2281   // Track if we received the parameter as a pointer (indirect, byval, or
2282   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2283   // into a local alloca for us.
2284   SmallVector<ParamValue, 16> ArgVals;
2285   ArgVals.reserve(Args.size());
2286 
2287   // Create a pointer value for every parameter declaration.  This usually
2288   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2289   // any cleanups or do anything that might unwind.  We do that separately, so
2290   // we can push the cleanups in the correct order for the ABI.
2291   assert(FI.arg_size() == Args.size() &&
2292          "Mismatch between function signature & arguments.");
2293   unsigned ArgNo = 0;
2294   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2295   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2296        i != e; ++i, ++info_it, ++ArgNo) {
2297     const VarDecl *Arg = *i;
2298     const ABIArgInfo &ArgI = info_it->info;
2299 
2300     bool isPromoted =
2301       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2302     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2303     // the parameter is promoted. In this case we convert to
2304     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2305     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2306     assert(hasScalarEvaluationKind(Ty) ==
2307            hasScalarEvaluationKind(Arg->getType()));
2308 
2309     unsigned FirstIRArg, NumIRArgs;
2310     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2311 
2312     switch (ArgI.getKind()) {
2313     case ABIArgInfo::InAlloca: {
2314       assert(NumIRArgs == 0);
2315       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2316       CharUnits FieldOffset =
2317         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
2318       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
2319                                           Arg->getName());
2320       ArgVals.push_back(ParamValue::forIndirect(V));
2321       break;
2322     }
2323 
2324     case ABIArgInfo::Indirect: {
2325       assert(NumIRArgs == 1);
2326       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2327 
2328       if (!hasScalarEvaluationKind(Ty)) {
2329         // Aggregates and complex variables are accessed by reference.  All we
2330         // need to do is realign the value, if requested.
2331         Address V = ParamAddr;
2332         if (ArgI.getIndirectRealign()) {
2333           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2334 
2335           // Copy from the incoming argument pointer to the temporary with the
2336           // appropriate alignment.
2337           //
2338           // FIXME: We should have a common utility for generating an aggregate
2339           // copy.
2340           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2341           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2342           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2343           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2344           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2345           V = AlignedTemp;
2346         }
2347         ArgVals.push_back(ParamValue::forIndirect(V));
2348       } else {
2349         // Load scalar value from indirect argument.
2350         llvm::Value *V =
2351             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2352 
2353         if (isPromoted)
2354           V = emitArgumentDemotion(*this, Arg, V);
2355         ArgVals.push_back(ParamValue::forDirect(V));
2356       }
2357       break;
2358     }
2359 
2360     case ABIArgInfo::Extend:
2361     case ABIArgInfo::Direct: {
2362 
2363       // If we have the trivial case, handle it with no muss and fuss.
2364       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2365           ArgI.getCoerceToType() == ConvertType(Ty) &&
2366           ArgI.getDirectOffset() == 0) {
2367         assert(NumIRArgs == 1);
2368         llvm::Value *V = FnArgs[FirstIRArg];
2369         auto AI = cast<llvm::Argument>(V);
2370 
2371         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2372           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2373                              PVD->getFunctionScopeIndex()) &&
2374               !CGM.getCodeGenOpts().NullPointerIsValid)
2375             AI->addAttr(llvm::Attribute::NonNull);
2376 
2377           QualType OTy = PVD->getOriginalType();
2378           if (const auto *ArrTy =
2379               getContext().getAsConstantArrayType(OTy)) {
2380             // A C99 array parameter declaration with the static keyword also
2381             // indicates dereferenceability, and if the size is constant we can
2382             // use the dereferenceable attribute (which requires the size in
2383             // bytes).
2384             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2385               QualType ETy = ArrTy->getElementType();
2386               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2387               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2388                   ArrSize) {
2389                 llvm::AttrBuilder Attrs;
2390                 Attrs.addDereferenceableAttr(
2391                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2392                 AI->addAttrs(Attrs);
2393               } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
2394                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2395                 AI->addAttr(llvm::Attribute::NonNull);
2396               }
2397             }
2398           } else if (const auto *ArrTy =
2399                      getContext().getAsVariableArrayType(OTy)) {
2400             // For C99 VLAs with the static keyword, we don't know the size so
2401             // we can't use the dereferenceable attribute, but in addrspace(0)
2402             // we know that it must be nonnull.
2403             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2404                 !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2405                 !CGM.getCodeGenOpts().NullPointerIsValid)
2406               AI->addAttr(llvm::Attribute::NonNull);
2407           }
2408 
2409           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2410           if (!AVAttr)
2411             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2412               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2413           if (AVAttr) {
2414             llvm::Value *AlignmentValue =
2415               EmitScalarExpr(AVAttr->getAlignment());
2416             llvm::ConstantInt *AlignmentCI =
2417               cast<llvm::ConstantInt>(AlignmentValue);
2418             unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
2419                                           +llvm::Value::MaximumAlignment);
2420             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2421           }
2422         }
2423 
2424         if (Arg->getType().isRestrictQualified())
2425           AI->addAttr(llvm::Attribute::NoAlias);
2426 
2427         // LLVM expects swifterror parameters to be used in very restricted
2428         // ways.  Copy the value into a less-restricted temporary.
2429         if (FI.getExtParameterInfo(ArgNo).getABI()
2430               == ParameterABI::SwiftErrorResult) {
2431           QualType pointeeTy = Ty->getPointeeType();
2432           assert(pointeeTy->isPointerType());
2433           Address temp =
2434             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2435           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2436           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2437           Builder.CreateStore(incomingErrorValue, temp);
2438           V = temp.getPointer();
2439 
2440           // Push a cleanup to copy the value back at the end of the function.
2441           // The convention does not guarantee that the value will be written
2442           // back if the function exits with an unwind exception.
2443           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2444         }
2445 
2446         // Ensure the argument is the correct type.
2447         if (V->getType() != ArgI.getCoerceToType())
2448           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2449 
2450         if (isPromoted)
2451           V = emitArgumentDemotion(*this, Arg, V);
2452 
2453         // Because of merging of function types from multiple decls it is
2454         // possible for the type of an argument to not match the corresponding
2455         // type in the function type. Since we are codegening the callee
2456         // in here, add a cast to the argument type.
2457         llvm::Type *LTy = ConvertType(Arg->getType());
2458         if (V->getType() != LTy)
2459           V = Builder.CreateBitCast(V, LTy);
2460 
2461         ArgVals.push_back(ParamValue::forDirect(V));
2462         break;
2463       }
2464 
2465       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2466                                      Arg->getName());
2467 
2468       // Pointer to store into.
2469       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2470 
2471       // Fast-isel and the optimizer generally like scalar values better than
2472       // FCAs, so we flatten them if this is safe to do for this argument.
2473       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2474       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2475           STy->getNumElements() > 1) {
2476         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2477         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2478         llvm::Type *DstTy = Ptr.getElementType();
2479         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2480 
2481         Address AddrToStoreInto = Address::invalid();
2482         if (SrcSize <= DstSize) {
2483           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2484         } else {
2485           AddrToStoreInto =
2486             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2487         }
2488 
2489         assert(STy->getNumElements() == NumIRArgs);
2490         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2491           auto AI = FnArgs[FirstIRArg + i];
2492           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2493           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2494           Address EltPtr =
2495             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2496           Builder.CreateStore(AI, EltPtr);
2497         }
2498 
2499         if (SrcSize > DstSize) {
2500           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2501         }
2502 
2503       } else {
2504         // Simple case, just do a coerced store of the argument into the alloca.
2505         assert(NumIRArgs == 1);
2506         auto AI = FnArgs[FirstIRArg];
2507         AI->setName(Arg->getName() + ".coerce");
2508         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2509       }
2510 
2511       // Match to what EmitParmDecl is expecting for this type.
2512       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2513         llvm::Value *V =
2514             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2515         if (isPromoted)
2516           V = emitArgumentDemotion(*this, Arg, V);
2517         ArgVals.push_back(ParamValue::forDirect(V));
2518       } else {
2519         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2520       }
2521       break;
2522     }
2523 
2524     case ABIArgInfo::CoerceAndExpand: {
2525       // Reconstruct into a temporary.
2526       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2527       ArgVals.push_back(ParamValue::forIndirect(alloca));
2528 
2529       auto coercionType = ArgI.getCoerceAndExpandType();
2530       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2531       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2532 
2533       unsigned argIndex = FirstIRArg;
2534       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2535         llvm::Type *eltType = coercionType->getElementType(i);
2536         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2537           continue;
2538 
2539         auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
2540         auto elt = FnArgs[argIndex++];
2541         Builder.CreateStore(elt, eltAddr);
2542       }
2543       assert(argIndex == FirstIRArg + NumIRArgs);
2544       break;
2545     }
2546 
2547     case ABIArgInfo::Expand: {
2548       // If this structure was expanded into multiple arguments then
2549       // we need to create a temporary and reconstruct it from the
2550       // arguments.
2551       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2552       LValue LV = MakeAddrLValue(Alloca, Ty);
2553       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2554 
2555       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2556       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2557       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2558       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2559         auto AI = FnArgs[FirstIRArg + i];
2560         AI->setName(Arg->getName() + "." + Twine(i));
2561       }
2562       break;
2563     }
2564 
2565     case ABIArgInfo::Ignore:
2566       assert(NumIRArgs == 0);
2567       // Initialize the local variable appropriately.
2568       if (!hasScalarEvaluationKind(Ty)) {
2569         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2570       } else {
2571         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2572         ArgVals.push_back(ParamValue::forDirect(U));
2573       }
2574       break;
2575     }
2576   }
2577 
2578   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2579     for (int I = Args.size() - 1; I >= 0; --I)
2580       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2581   } else {
2582     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2583       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2584   }
2585 }
2586 
2587 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2588   while (insn->use_empty()) {
2589     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2590     if (!bitcast) return;
2591 
2592     // This is "safe" because we would have used a ConstantExpr otherwise.
2593     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2594     bitcast->eraseFromParent();
2595   }
2596 }
2597 
2598 /// Try to emit a fused autorelease of a return result.
2599 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2600                                                     llvm::Value *result) {
2601   // We must be immediately followed the cast.
2602   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2603   if (BB->empty()) return nullptr;
2604   if (&BB->back() != result) return nullptr;
2605 
2606   llvm::Type *resultType = result->getType();
2607 
2608   // result is in a BasicBlock and is therefore an Instruction.
2609   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2610 
2611   SmallVector<llvm::Instruction *, 4> InstsToKill;
2612 
2613   // Look for:
2614   //  %generator = bitcast %type1* %generator2 to %type2*
2615   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2616     // We would have emitted this as a constant if the operand weren't
2617     // an Instruction.
2618     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2619 
2620     // Require the generator to be immediately followed by the cast.
2621     if (generator->getNextNode() != bitcast)
2622       return nullptr;
2623 
2624     InstsToKill.push_back(bitcast);
2625   }
2626 
2627   // Look for:
2628   //   %generator = call i8* @objc_retain(i8* %originalResult)
2629   // or
2630   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2631   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2632   if (!call) return nullptr;
2633 
2634   bool doRetainAutorelease;
2635 
2636   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2637     doRetainAutorelease = true;
2638   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2639                                           .objc_retainAutoreleasedReturnValue) {
2640     doRetainAutorelease = false;
2641 
2642     // If we emitted an assembly marker for this call (and the
2643     // ARCEntrypoints field should have been set if so), go looking
2644     // for that call.  If we can't find it, we can't do this
2645     // optimization.  But it should always be the immediately previous
2646     // instruction, unless we needed bitcasts around the call.
2647     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2648       llvm::Instruction *prev = call->getPrevNode();
2649       assert(prev);
2650       if (isa<llvm::BitCastInst>(prev)) {
2651         prev = prev->getPrevNode();
2652         assert(prev);
2653       }
2654       assert(isa<llvm::CallInst>(prev));
2655       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2656                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2657       InstsToKill.push_back(prev);
2658     }
2659   } else {
2660     return nullptr;
2661   }
2662 
2663   result = call->getArgOperand(0);
2664   InstsToKill.push_back(call);
2665 
2666   // Keep killing bitcasts, for sanity.  Note that we no longer care
2667   // about precise ordering as long as there's exactly one use.
2668   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2669     if (!bitcast->hasOneUse()) break;
2670     InstsToKill.push_back(bitcast);
2671     result = bitcast->getOperand(0);
2672   }
2673 
2674   // Delete all the unnecessary instructions, from latest to earliest.
2675   for (auto *I : InstsToKill)
2676     I->eraseFromParent();
2677 
2678   // Do the fused retain/autorelease if we were asked to.
2679   if (doRetainAutorelease)
2680     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2681 
2682   // Cast back to the result type.
2683   return CGF.Builder.CreateBitCast(result, resultType);
2684 }
2685 
2686 /// If this is a +1 of the value of an immutable 'self', remove it.
2687 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2688                                           llvm::Value *result) {
2689   // This is only applicable to a method with an immutable 'self'.
2690   const ObjCMethodDecl *method =
2691     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2692   if (!method) return nullptr;
2693   const VarDecl *self = method->getSelfDecl();
2694   if (!self->getType().isConstQualified()) return nullptr;
2695 
2696   // Look for a retain call.
2697   llvm::CallInst *retainCall =
2698     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2699   if (!retainCall ||
2700       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2701     return nullptr;
2702 
2703   // Look for an ordinary load of 'self'.
2704   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2705   llvm::LoadInst *load =
2706     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2707   if (!load || load->isAtomic() || load->isVolatile() ||
2708       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2709     return nullptr;
2710 
2711   // Okay!  Burn it all down.  This relies for correctness on the
2712   // assumption that the retain is emitted as part of the return and
2713   // that thereafter everything is used "linearly".
2714   llvm::Type *resultType = result->getType();
2715   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2716   assert(retainCall->use_empty());
2717   retainCall->eraseFromParent();
2718   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2719 
2720   return CGF.Builder.CreateBitCast(load, resultType);
2721 }
2722 
2723 /// Emit an ARC autorelease of the result of a function.
2724 ///
2725 /// \return the value to actually return from the function
2726 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2727                                             llvm::Value *result) {
2728   // If we're returning 'self', kill the initial retain.  This is a
2729   // heuristic attempt to "encourage correctness" in the really unfortunate
2730   // case where we have a return of self during a dealloc and we desperately
2731   // need to avoid the possible autorelease.
2732   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2733     return self;
2734 
2735   // At -O0, try to emit a fused retain/autorelease.
2736   if (CGF.shouldUseFusedARCCalls())
2737     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2738       return fused;
2739 
2740   return CGF.EmitARCAutoreleaseReturnValue(result);
2741 }
2742 
2743 /// Heuristically search for a dominating store to the return-value slot.
2744 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2745   // Check if a User is a store which pointerOperand is the ReturnValue.
2746   // We are looking for stores to the ReturnValue, not for stores of the
2747   // ReturnValue to some other location.
2748   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2749     auto *SI = dyn_cast<llvm::StoreInst>(U);
2750     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2751       return nullptr;
2752     // These aren't actually possible for non-coerced returns, and we
2753     // only care about non-coerced returns on this code path.
2754     assert(!SI->isAtomic() && !SI->isVolatile());
2755     return SI;
2756   };
2757   // If there are multiple uses of the return-value slot, just check
2758   // for something immediately preceding the IP.  Sometimes this can
2759   // happen with how we generate implicit-returns; it can also happen
2760   // with noreturn cleanups.
2761   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2762     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2763     if (IP->empty()) return nullptr;
2764     llvm::Instruction *I = &IP->back();
2765 
2766     // Skip lifetime markers
2767     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2768                                             IE = IP->rend();
2769          II != IE; ++II) {
2770       if (llvm::IntrinsicInst *Intrinsic =
2771               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2772         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2773           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2774           ++II;
2775           if (II == IE)
2776             break;
2777           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2778             continue;
2779         }
2780       }
2781       I = &*II;
2782       break;
2783     }
2784 
2785     return GetStoreIfValid(I);
2786   }
2787 
2788   llvm::StoreInst *store =
2789       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2790   if (!store) return nullptr;
2791 
2792   // Now do a first-and-dirty dominance check: just walk up the
2793   // single-predecessors chain from the current insertion point.
2794   llvm::BasicBlock *StoreBB = store->getParent();
2795   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2796   while (IP != StoreBB) {
2797     if (!(IP = IP->getSinglePredecessor()))
2798       return nullptr;
2799   }
2800 
2801   // Okay, the store's basic block dominates the insertion point; we
2802   // can do our thing.
2803   return store;
2804 }
2805 
2806 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2807                                          bool EmitRetDbgLoc,
2808                                          SourceLocation EndLoc) {
2809   if (FI.isNoReturn()) {
2810     // Noreturn functions don't return.
2811     EmitUnreachable(EndLoc);
2812     return;
2813   }
2814 
2815   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2816     // Naked functions don't have epilogues.
2817     Builder.CreateUnreachable();
2818     return;
2819   }
2820 
2821   // Functions with no result always return void.
2822   if (!ReturnValue.isValid()) {
2823     Builder.CreateRetVoid();
2824     return;
2825   }
2826 
2827   llvm::DebugLoc RetDbgLoc;
2828   llvm::Value *RV = nullptr;
2829   QualType RetTy = FI.getReturnType();
2830   const ABIArgInfo &RetAI = FI.getReturnInfo();
2831 
2832   switch (RetAI.getKind()) {
2833   case ABIArgInfo::InAlloca:
2834     // Aggregrates get evaluated directly into the destination.  Sometimes we
2835     // need to return the sret value in a register, though.
2836     assert(hasAggregateEvaluationKind(RetTy));
2837     if (RetAI.getInAllocaSRet()) {
2838       llvm::Function::arg_iterator EI = CurFn->arg_end();
2839       --EI;
2840       llvm::Value *ArgStruct = &*EI;
2841       llvm::Value *SRet = Builder.CreateStructGEP(
2842           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2843       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2844     }
2845     break;
2846 
2847   case ABIArgInfo::Indirect: {
2848     auto AI = CurFn->arg_begin();
2849     if (RetAI.isSRetAfterThis())
2850       ++AI;
2851     switch (getEvaluationKind(RetTy)) {
2852     case TEK_Complex: {
2853       ComplexPairTy RT =
2854         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2855       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2856                          /*isInit*/ true);
2857       break;
2858     }
2859     case TEK_Aggregate:
2860       // Do nothing; aggregrates get evaluated directly into the destination.
2861       break;
2862     case TEK_Scalar:
2863       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2864                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2865                         /*isInit*/ true);
2866       break;
2867     }
2868     break;
2869   }
2870 
2871   case ABIArgInfo::Extend:
2872   case ABIArgInfo::Direct:
2873     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2874         RetAI.getDirectOffset() == 0) {
2875       // The internal return value temp always will have pointer-to-return-type
2876       // type, just do a load.
2877 
2878       // If there is a dominating store to ReturnValue, we can elide
2879       // the load, zap the store, and usually zap the alloca.
2880       if (llvm::StoreInst *SI =
2881               findDominatingStoreToReturnValue(*this)) {
2882         // Reuse the debug location from the store unless there is
2883         // cleanup code to be emitted between the store and return
2884         // instruction.
2885         if (EmitRetDbgLoc && !AutoreleaseResult)
2886           RetDbgLoc = SI->getDebugLoc();
2887         // Get the stored value and nuke the now-dead store.
2888         RV = SI->getValueOperand();
2889         SI->eraseFromParent();
2890 
2891         // If that was the only use of the return value, nuke it as well now.
2892         auto returnValueInst = ReturnValue.getPointer();
2893         if (returnValueInst->use_empty()) {
2894           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2895             alloca->eraseFromParent();
2896             ReturnValue = Address::invalid();
2897           }
2898         }
2899 
2900       // Otherwise, we have to do a simple load.
2901       } else {
2902         RV = Builder.CreateLoad(ReturnValue);
2903       }
2904     } else {
2905       // If the value is offset in memory, apply the offset now.
2906       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2907 
2908       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2909     }
2910 
2911     // In ARC, end functions that return a retainable type with a call
2912     // to objc_autoreleaseReturnValue.
2913     if (AutoreleaseResult) {
2914 #ifndef NDEBUG
2915       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2916       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2917       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2918       // CurCodeDecl or BlockInfo.
2919       QualType RT;
2920 
2921       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2922         RT = FD->getReturnType();
2923       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2924         RT = MD->getReturnType();
2925       else if (isa<BlockDecl>(CurCodeDecl))
2926         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2927       else
2928         llvm_unreachable("Unexpected function/method type");
2929 
2930       assert(getLangOpts().ObjCAutoRefCount &&
2931              !FI.isReturnsRetained() &&
2932              RT->isObjCRetainableType());
2933 #endif
2934       RV = emitAutoreleaseOfResult(*this, RV);
2935     }
2936 
2937     break;
2938 
2939   case ABIArgInfo::Ignore:
2940     break;
2941 
2942   case ABIArgInfo::CoerceAndExpand: {
2943     auto coercionType = RetAI.getCoerceAndExpandType();
2944     auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2945 
2946     // Load all of the coerced elements out into results.
2947     llvm::SmallVector<llvm::Value*, 4> results;
2948     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2949     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2950       auto coercedEltType = coercionType->getElementType(i);
2951       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2952         continue;
2953 
2954       auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
2955       auto elt = Builder.CreateLoad(eltAddr);
2956       results.push_back(elt);
2957     }
2958 
2959     // If we have one result, it's the single direct result type.
2960     if (results.size() == 1) {
2961       RV = results[0];
2962 
2963     // Otherwise, we need to make a first-class aggregate.
2964     } else {
2965       // Construct a return type that lacks padding elements.
2966       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2967 
2968       RV = llvm::UndefValue::get(returnType);
2969       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2970         RV = Builder.CreateInsertValue(RV, results[i], i);
2971       }
2972     }
2973     break;
2974   }
2975 
2976   case ABIArgInfo::Expand:
2977     llvm_unreachable("Invalid ABI kind for return argument");
2978   }
2979 
2980   llvm::Instruction *Ret;
2981   if (RV) {
2982     EmitReturnValueCheck(RV);
2983     Ret = Builder.CreateRet(RV);
2984   } else {
2985     Ret = Builder.CreateRetVoid();
2986   }
2987 
2988   if (RetDbgLoc)
2989     Ret->setDebugLoc(std::move(RetDbgLoc));
2990 }
2991 
2992 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
2993   // A current decl may not be available when emitting vtable thunks.
2994   if (!CurCodeDecl)
2995     return;
2996 
2997   ReturnsNonNullAttr *RetNNAttr = nullptr;
2998   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
2999     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3000 
3001   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3002     return;
3003 
3004   // Prefer the returns_nonnull attribute if it's present.
3005   SourceLocation AttrLoc;
3006   SanitizerMask CheckKind;
3007   SanitizerHandler Handler;
3008   if (RetNNAttr) {
3009     assert(!requiresReturnValueNullabilityCheck() &&
3010            "Cannot check nullability and the nonnull attribute");
3011     AttrLoc = RetNNAttr->getLocation();
3012     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3013     Handler = SanitizerHandler::NonnullReturn;
3014   } else {
3015     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3016       if (auto *TSI = DD->getTypeSourceInfo())
3017         if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
3018           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3019     CheckKind = SanitizerKind::NullabilityReturn;
3020     Handler = SanitizerHandler::NullabilityReturn;
3021   }
3022 
3023   SanitizerScope SanScope(this);
3024 
3025   // Make sure the "return" source location is valid. If we're checking a
3026   // nullability annotation, make sure the preconditions for the check are met.
3027   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3028   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3029   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3030   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3031   if (requiresReturnValueNullabilityCheck())
3032     CanNullCheck =
3033         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3034   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3035   EmitBlock(Check);
3036 
3037   // Now do the null check.
3038   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3039   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3040   llvm::Value *DynamicData[] = {SLocPtr};
3041   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3042 
3043   EmitBlock(NoCheck);
3044 
3045 #ifndef NDEBUG
3046   // The return location should not be used after the check has been emitted.
3047   ReturnLocation = Address::invalid();
3048 #endif
3049 }
3050 
3051 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3052   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3053   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3054 }
3055 
3056 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3057                                           QualType Ty) {
3058   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3059   // placeholders.
3060   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3061   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3062   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3063 
3064   // FIXME: When we generate this IR in one pass, we shouldn't need
3065   // this win32-specific alignment hack.
3066   CharUnits Align = CharUnits::fromQuantity(4);
3067   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3068 
3069   return AggValueSlot::forAddr(Address(Placeholder, Align),
3070                                Ty.getQualifiers(),
3071                                AggValueSlot::IsNotDestructed,
3072                                AggValueSlot::DoesNotNeedGCBarriers,
3073                                AggValueSlot::IsNotAliased,
3074                                AggValueSlot::DoesNotOverlap);
3075 }
3076 
3077 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3078                                           const VarDecl *param,
3079                                           SourceLocation loc) {
3080   // StartFunction converted the ABI-lowered parameter(s) into a
3081   // local alloca.  We need to turn that into an r-value suitable
3082   // for EmitCall.
3083   Address local = GetAddrOfLocalVar(param);
3084 
3085   QualType type = param->getType();
3086 
3087   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3088     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3089   }
3090 
3091   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3092   // but the argument needs to be the original pointer.
3093   if (type->isReferenceType()) {
3094     args.add(RValue::get(Builder.CreateLoad(local)), type);
3095 
3096   // In ARC, move out of consumed arguments so that the release cleanup
3097   // entered by StartFunction doesn't cause an over-release.  This isn't
3098   // optimal -O0 code generation, but it should get cleaned up when
3099   // optimization is enabled.  This also assumes that delegate calls are
3100   // performed exactly once for a set of arguments, but that should be safe.
3101   } else if (getLangOpts().ObjCAutoRefCount &&
3102              param->hasAttr<NSConsumedAttr>() &&
3103              type->isObjCRetainableType()) {
3104     llvm::Value *ptr = Builder.CreateLoad(local);
3105     auto null =
3106       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3107     Builder.CreateStore(null, local);
3108     args.add(RValue::get(ptr), type);
3109 
3110   // For the most part, we just need to load the alloca, except that
3111   // aggregate r-values are actually pointers to temporaries.
3112   } else {
3113     args.add(convertTempToRValue(local, type, loc), type);
3114   }
3115 
3116   // Deactivate the cleanup for the callee-destructed param that was pushed.
3117   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3118       type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3119       type.isDestructedType()) {
3120     EHScopeStack::stable_iterator cleanup =
3121         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3122     assert(cleanup.isValid() &&
3123            "cleanup for callee-destructed param not recorded");
3124     // This unreachable is a temporary marker which will be removed later.
3125     llvm::Instruction *isActive = Builder.CreateUnreachable();
3126     args.addArgCleanupDeactivation(cleanup, isActive);
3127   }
3128 }
3129 
3130 static bool isProvablyNull(llvm::Value *addr) {
3131   return isa<llvm::ConstantPointerNull>(addr);
3132 }
3133 
3134 /// Emit the actual writing-back of a writeback.
3135 static void emitWriteback(CodeGenFunction &CGF,
3136                           const CallArgList::Writeback &writeback) {
3137   const LValue &srcLV = writeback.Source;
3138   Address srcAddr = srcLV.getAddress();
3139   assert(!isProvablyNull(srcAddr.getPointer()) &&
3140          "shouldn't have writeback for provably null argument");
3141 
3142   llvm::BasicBlock *contBB = nullptr;
3143 
3144   // If the argument wasn't provably non-null, we need to null check
3145   // before doing the store.
3146   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3147                                               CGF.CGM.getDataLayout());
3148   if (!provablyNonNull) {
3149     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3150     contBB = CGF.createBasicBlock("icr.done");
3151 
3152     llvm::Value *isNull =
3153       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3154     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3155     CGF.EmitBlock(writebackBB);
3156   }
3157 
3158   // Load the value to writeback.
3159   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3160 
3161   // Cast it back, in case we're writing an id to a Foo* or something.
3162   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3163                                     "icr.writeback-cast");
3164 
3165   // Perform the writeback.
3166 
3167   // If we have a "to use" value, it's something we need to emit a use
3168   // of.  This has to be carefully threaded in: if it's done after the
3169   // release it's potentially undefined behavior (and the optimizer
3170   // will ignore it), and if it happens before the retain then the
3171   // optimizer could move the release there.
3172   if (writeback.ToUse) {
3173     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3174 
3175     // Retain the new value.  No need to block-copy here:  the block's
3176     // being passed up the stack.
3177     value = CGF.EmitARCRetainNonBlock(value);
3178 
3179     // Emit the intrinsic use here.
3180     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3181 
3182     // Load the old value (primitively).
3183     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3184 
3185     // Put the new value in place (primitively).
3186     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3187 
3188     // Release the old value.
3189     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3190 
3191   // Otherwise, we can just do a normal lvalue store.
3192   } else {
3193     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3194   }
3195 
3196   // Jump to the continuation block.
3197   if (!provablyNonNull)
3198     CGF.EmitBlock(contBB);
3199 }
3200 
3201 static void emitWritebacks(CodeGenFunction &CGF,
3202                            const CallArgList &args) {
3203   for (const auto &I : args.writebacks())
3204     emitWriteback(CGF, I);
3205 }
3206 
3207 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3208                                             const CallArgList &CallArgs) {
3209   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3210     CallArgs.getCleanupsToDeactivate();
3211   // Iterate in reverse to increase the likelihood of popping the cleanup.
3212   for (const auto &I : llvm::reverse(Cleanups)) {
3213     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3214     I.IsActiveIP->eraseFromParent();
3215   }
3216 }
3217 
3218 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3219   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3220     if (uop->getOpcode() == UO_AddrOf)
3221       return uop->getSubExpr();
3222   return nullptr;
3223 }
3224 
3225 /// Emit an argument that's being passed call-by-writeback.  That is,
3226 /// we are passing the address of an __autoreleased temporary; it
3227 /// might be copy-initialized with the current value of the given
3228 /// address, but it will definitely be copied out of after the call.
3229 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3230                              const ObjCIndirectCopyRestoreExpr *CRE) {
3231   LValue srcLV;
3232 
3233   // Make an optimistic effort to emit the address as an l-value.
3234   // This can fail if the argument expression is more complicated.
3235   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3236     srcLV = CGF.EmitLValue(lvExpr);
3237 
3238   // Otherwise, just emit it as a scalar.
3239   } else {
3240     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3241 
3242     QualType srcAddrType =
3243       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3244     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3245   }
3246   Address srcAddr = srcLV.getAddress();
3247 
3248   // The dest and src types don't necessarily match in LLVM terms
3249   // because of the crazy ObjC compatibility rules.
3250 
3251   llvm::PointerType *destType =
3252     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3253 
3254   // If the address is a constant null, just pass the appropriate null.
3255   if (isProvablyNull(srcAddr.getPointer())) {
3256     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3257              CRE->getType());
3258     return;
3259   }
3260 
3261   // Create the temporary.
3262   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3263                                       CGF.getPointerAlign(),
3264                                       "icr.temp");
3265   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3266   // and that cleanup will be conditional if we can't prove that the l-value
3267   // isn't null, so we need to register a dominating point so that the cleanups
3268   // system will make valid IR.
3269   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3270 
3271   // Zero-initialize it if we're not doing a copy-initialization.
3272   bool shouldCopy = CRE->shouldCopy();
3273   if (!shouldCopy) {
3274     llvm::Value *null =
3275       llvm::ConstantPointerNull::get(
3276         cast<llvm::PointerType>(destType->getElementType()));
3277     CGF.Builder.CreateStore(null, temp);
3278   }
3279 
3280   llvm::BasicBlock *contBB = nullptr;
3281   llvm::BasicBlock *originBB = nullptr;
3282 
3283   // If the address is *not* known to be non-null, we need to switch.
3284   llvm::Value *finalArgument;
3285 
3286   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3287                                               CGF.CGM.getDataLayout());
3288   if (provablyNonNull) {
3289     finalArgument = temp.getPointer();
3290   } else {
3291     llvm::Value *isNull =
3292       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3293 
3294     finalArgument = CGF.Builder.CreateSelect(isNull,
3295                                    llvm::ConstantPointerNull::get(destType),
3296                                              temp.getPointer(), "icr.argument");
3297 
3298     // If we need to copy, then the load has to be conditional, which
3299     // means we need control flow.
3300     if (shouldCopy) {
3301       originBB = CGF.Builder.GetInsertBlock();
3302       contBB = CGF.createBasicBlock("icr.cont");
3303       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3304       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3305       CGF.EmitBlock(copyBB);
3306       condEval.begin(CGF);
3307     }
3308   }
3309 
3310   llvm::Value *valueToUse = nullptr;
3311 
3312   // Perform a copy if necessary.
3313   if (shouldCopy) {
3314     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3315     assert(srcRV.isScalar());
3316 
3317     llvm::Value *src = srcRV.getScalarVal();
3318     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3319                                     "icr.cast");
3320 
3321     // Use an ordinary store, not a store-to-lvalue.
3322     CGF.Builder.CreateStore(src, temp);
3323 
3324     // If optimization is enabled, and the value was held in a
3325     // __strong variable, we need to tell the optimizer that this
3326     // value has to stay alive until we're doing the store back.
3327     // This is because the temporary is effectively unretained,
3328     // and so otherwise we can violate the high-level semantics.
3329     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3330         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3331       valueToUse = src;
3332     }
3333   }
3334 
3335   // Finish the control flow if we needed it.
3336   if (shouldCopy && !provablyNonNull) {
3337     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3338     CGF.EmitBlock(contBB);
3339 
3340     // Make a phi for the value to intrinsically use.
3341     if (valueToUse) {
3342       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3343                                                       "icr.to-use");
3344       phiToUse->addIncoming(valueToUse, copyBB);
3345       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3346                             originBB);
3347       valueToUse = phiToUse;
3348     }
3349 
3350     condEval.end(CGF);
3351   }
3352 
3353   args.addWriteback(srcLV, temp, valueToUse);
3354   args.add(RValue::get(finalArgument), CRE->getType());
3355 }
3356 
3357 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3358   assert(!StackBase);
3359 
3360   // Save the stack.
3361   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3362   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3363 }
3364 
3365 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3366   if (StackBase) {
3367     // Restore the stack after the call.
3368     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3369     CGF.Builder.CreateCall(F, StackBase);
3370   }
3371 }
3372 
3373 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3374                                           SourceLocation ArgLoc,
3375                                           AbstractCallee AC,
3376                                           unsigned ParmNum) {
3377   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3378                          SanOpts.has(SanitizerKind::NullabilityArg)))
3379     return;
3380 
3381   // The param decl may be missing in a variadic function.
3382   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3383   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3384 
3385   // Prefer the nonnull attribute if it's present.
3386   const NonNullAttr *NNAttr = nullptr;
3387   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3388     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3389 
3390   bool CanCheckNullability = false;
3391   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3392     auto Nullability = PVD->getType()->getNullability(getContext());
3393     CanCheckNullability = Nullability &&
3394                           *Nullability == NullabilityKind::NonNull &&
3395                           PVD->getTypeSourceInfo();
3396   }
3397 
3398   if (!NNAttr && !CanCheckNullability)
3399     return;
3400 
3401   SourceLocation AttrLoc;
3402   SanitizerMask CheckKind;
3403   SanitizerHandler Handler;
3404   if (NNAttr) {
3405     AttrLoc = NNAttr->getLocation();
3406     CheckKind = SanitizerKind::NonnullAttribute;
3407     Handler = SanitizerHandler::NonnullArg;
3408   } else {
3409     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3410     CheckKind = SanitizerKind::NullabilityArg;
3411     Handler = SanitizerHandler::NullabilityArg;
3412   }
3413 
3414   SanitizerScope SanScope(this);
3415   assert(RV.isScalar());
3416   llvm::Value *V = RV.getScalarVal();
3417   llvm::Value *Cond =
3418       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3419   llvm::Constant *StaticData[] = {
3420       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3421       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3422   };
3423   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3424 }
3425 
3426 void CodeGenFunction::EmitCallArgs(
3427     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3428     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3429     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3430   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3431 
3432   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3433   // because arguments are destroyed left to right in the callee. As a special
3434   // case, there are certain language constructs that require left-to-right
3435   // evaluation, and in those cases we consider the evaluation order requirement
3436   // to trump the "destruction order is reverse construction order" guarantee.
3437   bool LeftToRight =
3438       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3439           ? Order == EvaluationOrder::ForceLeftToRight
3440           : Order != EvaluationOrder::ForceRightToLeft;
3441 
3442   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3443                                          RValue EmittedArg) {
3444     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3445       return;
3446     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3447     if (PS == nullptr)
3448       return;
3449 
3450     const auto &Context = getContext();
3451     auto SizeTy = Context.getSizeType();
3452     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3453     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3454     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3455                                                      EmittedArg.getScalarVal());
3456     Args.add(RValue::get(V), SizeTy);
3457     // If we're emitting args in reverse, be sure to do so with
3458     // pass_object_size, as well.
3459     if (!LeftToRight)
3460       std::swap(Args.back(), *(&Args.back() - 1));
3461   };
3462 
3463   // Insert a stack save if we're going to need any inalloca args.
3464   bool HasInAllocaArgs = false;
3465   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3466     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3467          I != E && !HasInAllocaArgs; ++I)
3468       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3469     if (HasInAllocaArgs) {
3470       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3471       Args.allocateArgumentMemory(*this);
3472     }
3473   }
3474 
3475   // Evaluate each argument in the appropriate order.
3476   size_t CallArgsStart = Args.size();
3477   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3478     unsigned Idx = LeftToRight ? I : E - I - 1;
3479     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3480     unsigned InitialArgSize = Args.size();
3481     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3482     // the argument and parameter match or the objc method is parameterized.
3483     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3484             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3485                                                 ArgTypes[Idx]) ||
3486             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3487              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3488            "Argument and parameter types don't match");
3489     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3490     // In particular, we depend on it being the last arg in Args, and the
3491     // objectsize bits depend on there only being one arg if !LeftToRight.
3492     assert(InitialArgSize + 1 == Args.size() &&
3493            "The code below depends on only adding one arg per EmitCallArg");
3494     (void)InitialArgSize;
3495     // Since pointer argument are never emitted as LValue, it is safe to emit
3496     // non-null argument check for r-value only.
3497     if (!Args.back().hasLValue()) {
3498       RValue RVArg = Args.back().getKnownRValue();
3499       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3500                           ParamsToSkip + Idx);
3501       // @llvm.objectsize should never have side-effects and shouldn't need
3502       // destruction/cleanups, so we can safely "emit" it after its arg,
3503       // regardless of right-to-leftness
3504       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3505     }
3506   }
3507 
3508   if (!LeftToRight) {
3509     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3510     // IR function.
3511     std::reverse(Args.begin() + CallArgsStart, Args.end());
3512   }
3513 }
3514 
3515 namespace {
3516 
3517 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3518   DestroyUnpassedArg(Address Addr, QualType Ty)
3519       : Addr(Addr), Ty(Ty) {}
3520 
3521   Address Addr;
3522   QualType Ty;
3523 
3524   void Emit(CodeGenFunction &CGF, Flags flags) override {
3525     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3526     if (DtorKind == QualType::DK_cxx_destructor) {
3527       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3528       assert(!Dtor->isTrivial());
3529       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3530                                 /*Delegating=*/false, Addr);
3531     } else {
3532       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3533     }
3534   }
3535 };
3536 
3537 struct DisableDebugLocationUpdates {
3538   CodeGenFunction &CGF;
3539   bool disabledDebugInfo;
3540   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3541     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3542       CGF.disableDebugInfo();
3543   }
3544   ~DisableDebugLocationUpdates() {
3545     if (disabledDebugInfo)
3546       CGF.enableDebugInfo();
3547   }
3548 };
3549 
3550 } // end anonymous namespace
3551 
3552 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3553   if (!HasLV)
3554     return RV;
3555   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3556   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3557                         LV.isVolatile());
3558   IsUsed = true;
3559   return RValue::getAggregate(Copy.getAddress());
3560 }
3561 
3562 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3563   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3564   if (!HasLV && RV.isScalar())
3565     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true);
3566   else if (!HasLV && RV.isComplex())
3567     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3568   else {
3569     auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress();
3570     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3571     // We assume that call args are never copied into subobjects.
3572     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3573                           HasLV ? LV.isVolatileQualified()
3574                                 : RV.isVolatileQualified());
3575   }
3576   IsUsed = true;
3577 }
3578 
3579 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3580                                   QualType type) {
3581   DisableDebugLocationUpdates Dis(*this, E);
3582   if (const ObjCIndirectCopyRestoreExpr *CRE
3583         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3584     assert(getLangOpts().ObjCAutoRefCount);
3585     return emitWritebackArg(*this, args, CRE);
3586   }
3587 
3588   assert(type->isReferenceType() == E->isGLValue() &&
3589          "reference binding to unmaterialized r-value!");
3590 
3591   if (E->isGLValue()) {
3592     assert(E->getObjectKind() == OK_Ordinary);
3593     return args.add(EmitReferenceBindingToExpr(E), type);
3594   }
3595 
3596   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3597 
3598   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3599   // However, we still have to push an EH-only cleanup in case we unwind before
3600   // we make it to the call.
3601   if (HasAggregateEvalKind &&
3602       type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3603     // If we're using inalloca, use the argument memory.  Otherwise, use a
3604     // temporary.
3605     AggValueSlot Slot;
3606     if (args.isUsingInAlloca())
3607       Slot = createPlaceholderSlot(*this, type);
3608     else
3609       Slot = CreateAggTemp(type, "agg.tmp");
3610 
3611     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3612     if (const auto *RD = type->getAsCXXRecordDecl())
3613       DestroyedInCallee = RD->hasNonTrivialDestructor();
3614     else
3615       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3616 
3617     if (DestroyedInCallee)
3618       Slot.setExternallyDestructed();
3619 
3620     EmitAggExpr(E, Slot);
3621     RValue RV = Slot.asRValue();
3622     args.add(RV, type);
3623 
3624     if (DestroyedInCallee && NeedsEHCleanup) {
3625       // Create a no-op GEP between the placeholder and the cleanup so we can
3626       // RAUW it successfully.  It also serves as a marker of the first
3627       // instruction where the cleanup is active.
3628       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3629                                               type);
3630       // This unreachable is a temporary marker which will be removed later.
3631       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3632       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3633     }
3634     return;
3635   }
3636 
3637   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3638       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3639     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3640     assert(L.isSimple());
3641     args.addUncopiedAggregate(L, type);
3642     return;
3643   }
3644 
3645   args.add(EmitAnyExprToTemp(E), type);
3646 }
3647 
3648 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3649   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3650   // implicitly widens null pointer constants that are arguments to varargs
3651   // functions to pointer-sized ints.
3652   if (!getTarget().getTriple().isOSWindows())
3653     return Arg->getType();
3654 
3655   if (Arg->getType()->isIntegerType() &&
3656       getContext().getTypeSize(Arg->getType()) <
3657           getContext().getTargetInfo().getPointerWidth(0) &&
3658       Arg->isNullPointerConstant(getContext(),
3659                                  Expr::NPC_ValueDependentIsNotNull)) {
3660     return getContext().getIntPtrType();
3661   }
3662 
3663   return Arg->getType();
3664 }
3665 
3666 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3667 // optimizer it can aggressively ignore unwind edges.
3668 void
3669 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3670   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3671       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3672     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3673                       CGM.getNoObjCARCExceptionsMetadata());
3674 }
3675 
3676 /// Emits a call to the given no-arguments nounwind runtime function.
3677 llvm::CallInst *
3678 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3679                                          const llvm::Twine &name) {
3680   return EmitNounwindRuntimeCall(callee, None, name);
3681 }
3682 
3683 /// Emits a call to the given nounwind runtime function.
3684 llvm::CallInst *
3685 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3686                                          ArrayRef<llvm::Value*> args,
3687                                          const llvm::Twine &name) {
3688   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3689   call->setDoesNotThrow();
3690   return call;
3691 }
3692 
3693 /// Emits a simple call (never an invoke) to the given no-arguments
3694 /// runtime function.
3695 llvm::CallInst *
3696 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3697                                  const llvm::Twine &name) {
3698   return EmitRuntimeCall(callee, None, name);
3699 }
3700 
3701 // Calls which may throw must have operand bundles indicating which funclet
3702 // they are nested within.
3703 SmallVector<llvm::OperandBundleDef, 1>
3704 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3705   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3706   // There is no need for a funclet operand bundle if we aren't inside a
3707   // funclet.
3708   if (!CurrentFuncletPad)
3709     return BundleList;
3710 
3711   // Skip intrinsics which cannot throw.
3712   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3713   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3714     return BundleList;
3715 
3716   BundleList.emplace_back("funclet", CurrentFuncletPad);
3717   return BundleList;
3718 }
3719 
3720 /// Emits a simple call (never an invoke) to the given runtime function.
3721 llvm::CallInst *
3722 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3723                                  ArrayRef<llvm::Value*> args,
3724                                  const llvm::Twine &name) {
3725   llvm::CallInst *call =
3726       Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name);
3727   call->setCallingConv(getRuntimeCC());
3728   return call;
3729 }
3730 
3731 /// Emits a call or invoke to the given noreturn runtime function.
3732 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3733                                                ArrayRef<llvm::Value*> args) {
3734   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3735       getBundlesForFunclet(callee);
3736 
3737   if (getInvokeDest()) {
3738     llvm::InvokeInst *invoke =
3739       Builder.CreateInvoke(callee,
3740                            getUnreachableBlock(),
3741                            getInvokeDest(),
3742                            args,
3743                            BundleList);
3744     invoke->setDoesNotReturn();
3745     invoke->setCallingConv(getRuntimeCC());
3746   } else {
3747     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3748     call->setDoesNotReturn();
3749     call->setCallingConv(getRuntimeCC());
3750     Builder.CreateUnreachable();
3751   }
3752 }
3753 
3754 /// Emits a call or invoke instruction to the given nullary runtime function.
3755 llvm::CallSite
3756 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3757                                          const Twine &name) {
3758   return EmitRuntimeCallOrInvoke(callee, None, name);
3759 }
3760 
3761 /// Emits a call or invoke instruction to the given runtime function.
3762 llvm::CallSite
3763 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3764                                          ArrayRef<llvm::Value*> args,
3765                                          const Twine &name) {
3766   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3767   callSite.setCallingConv(getRuntimeCC());
3768   return callSite;
3769 }
3770 
3771 /// Emits a call or invoke instruction to the given function, depending
3772 /// on the current state of the EH stack.
3773 llvm::CallSite
3774 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3775                                   ArrayRef<llvm::Value *> Args,
3776                                   const Twine &Name) {
3777   llvm::BasicBlock *InvokeDest = getInvokeDest();
3778   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3779       getBundlesForFunclet(Callee);
3780 
3781   llvm::Instruction *Inst;
3782   if (!InvokeDest)
3783     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3784   else {
3785     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3786     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3787                                 Name);
3788     EmitBlock(ContBB);
3789   }
3790 
3791   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3792   // optimizer it can aggressively ignore unwind edges.
3793   if (CGM.getLangOpts().ObjCAutoRefCount)
3794     AddObjCARCExceptionMetadata(Inst);
3795 
3796   return llvm::CallSite(Inst);
3797 }
3798 
3799 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3800                                                   llvm::Value *New) {
3801   DeferredReplacements.push_back(std::make_pair(Old, New));
3802 }
3803 
3804 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3805                                  const CGCallee &Callee,
3806                                  ReturnValueSlot ReturnValue,
3807                                  const CallArgList &CallArgs,
3808                                  llvm::Instruction **callOrInvoke,
3809                                  SourceLocation Loc) {
3810   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3811 
3812   assert(Callee.isOrdinary() || Callee.isVirtual());
3813 
3814   // Handle struct-return functions by passing a pointer to the
3815   // location that we would like to return into.
3816   QualType RetTy = CallInfo.getReturnType();
3817   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3818 
3819   llvm::FunctionType *IRFuncTy = Callee.getFunctionType();
3820 
3821   // 1. Set up the arguments.
3822 
3823   // If we're using inalloca, insert the allocation after the stack save.
3824   // FIXME: Do this earlier rather than hacking it in here!
3825   Address ArgMemory = Address::invalid();
3826   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3827   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3828     const llvm::DataLayout &DL = CGM.getDataLayout();
3829     ArgMemoryLayout = DL.getStructLayout(ArgStruct);
3830     llvm::Instruction *IP = CallArgs.getStackBase();
3831     llvm::AllocaInst *AI;
3832     if (IP) {
3833       IP = IP->getNextNode();
3834       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3835                                 "argmem", IP);
3836     } else {
3837       AI = CreateTempAlloca(ArgStruct, "argmem");
3838     }
3839     auto Align = CallInfo.getArgStructAlignment();
3840     AI->setAlignment(Align.getQuantity());
3841     AI->setUsedWithInAlloca(true);
3842     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3843     ArgMemory = Address(AI, Align);
3844   }
3845 
3846   // Helper function to drill into the inalloca allocation.
3847   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3848     auto FieldOffset =
3849       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3850     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3851   };
3852 
3853   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3854   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3855 
3856   // If the call returns a temporary with struct return, create a temporary
3857   // alloca to hold the result, unless one is given to us.
3858   Address SRetPtr = Address::invalid();
3859   Address SRetAlloca = Address::invalid();
3860   llvm::Value *UnusedReturnSizePtr = nullptr;
3861   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3862     if (!ReturnValue.isNull()) {
3863       SRetPtr = ReturnValue.getValue();
3864     } else {
3865       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
3866       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3867         uint64_t size =
3868             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3869         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
3870       }
3871     }
3872     if (IRFunctionArgs.hasSRetArg()) {
3873       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3874     } else if (RetAI.isInAlloca()) {
3875       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3876       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3877     }
3878   }
3879 
3880   Address swiftErrorTemp = Address::invalid();
3881   Address swiftErrorArg = Address::invalid();
3882 
3883   // Translate all of the arguments as necessary to match the IR lowering.
3884   assert(CallInfo.arg_size() == CallArgs.size() &&
3885          "Mismatch between function signature & arguments.");
3886   unsigned ArgNo = 0;
3887   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3888   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3889        I != E; ++I, ++info_it, ++ArgNo) {
3890     const ABIArgInfo &ArgInfo = info_it->info;
3891 
3892     // Insert a padding argument to ensure proper alignment.
3893     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3894       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3895           llvm::UndefValue::get(ArgInfo.getPaddingType());
3896 
3897     unsigned FirstIRArg, NumIRArgs;
3898     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3899 
3900     switch (ArgInfo.getKind()) {
3901     case ABIArgInfo::InAlloca: {
3902       assert(NumIRArgs == 0);
3903       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3904       if (I->isAggregate()) {
3905         // Replace the placeholder with the appropriate argument slot GEP.
3906         Address Addr = I->hasLValue()
3907                            ? I->getKnownLValue().getAddress()
3908                            : I->getKnownRValue().getAggregateAddress();
3909         llvm::Instruction *Placeholder =
3910             cast<llvm::Instruction>(Addr.getPointer());
3911         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3912         Builder.SetInsertPoint(Placeholder);
3913         Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3914         Builder.restoreIP(IP);
3915         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3916       } else {
3917         // Store the RValue into the argument struct.
3918         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3919         unsigned AS = Addr.getType()->getPointerAddressSpace();
3920         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3921         // There are some cases where a trivial bitcast is not avoidable.  The
3922         // definition of a type later in a translation unit may change it's type
3923         // from {}* to (%struct.foo*)*.
3924         if (Addr.getType() != MemType)
3925           Addr = Builder.CreateBitCast(Addr, MemType);
3926         I->copyInto(*this, Addr);
3927       }
3928       break;
3929     }
3930 
3931     case ABIArgInfo::Indirect: {
3932       assert(NumIRArgs == 1);
3933       if (!I->isAggregate()) {
3934         // Make a temporary alloca to pass the argument.
3935         Address Addr = CreateMemTempWithoutCast(
3936             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
3937         IRCallArgs[FirstIRArg] = Addr.getPointer();
3938 
3939         I->copyInto(*this, Addr);
3940       } else {
3941         // We want to avoid creating an unnecessary temporary+copy here;
3942         // however, we need one in three cases:
3943         // 1. If the argument is not byval, and we are required to copy the
3944         //    source.  (This case doesn't occur on any common architecture.)
3945         // 2. If the argument is byval, RV is not sufficiently aligned, and
3946         //    we cannot force it to be sufficiently aligned.
3947         // 3. If the argument is byval, but RV is not located in default
3948         //    or alloca address space.
3949         Address Addr = I->hasLValue()
3950                            ? I->getKnownLValue().getAddress()
3951                            : I->getKnownRValue().getAggregateAddress();
3952         llvm::Value *V = Addr.getPointer();
3953         CharUnits Align = ArgInfo.getIndirectAlign();
3954         const llvm::DataLayout *TD = &CGM.getDataLayout();
3955 
3956         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
3957                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
3958                     TD->getAllocaAddrSpace()) &&
3959                "indirect argument must be in alloca address space");
3960 
3961         bool NeedCopy = false;
3962 
3963         if (Addr.getAlignment() < Align &&
3964             llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
3965                 Align.getQuantity()) {
3966           NeedCopy = true;
3967         } else if (I->hasLValue()) {
3968           auto LV = I->getKnownLValue();
3969           auto AS = LV.getAddressSpace();
3970 
3971           if ((!ArgInfo.getIndirectByVal() &&
3972                (LV.getAlignment() >=
3973                 getContext().getTypeAlignInChars(I->Ty)))) {
3974             NeedCopy = true;
3975           }
3976           if (!getLangOpts().OpenCL) {
3977             if ((ArgInfo.getIndirectByVal() &&
3978                 (AS != LangAS::Default &&
3979                  AS != CGM.getASTAllocaAddressSpace()))) {
3980               NeedCopy = true;
3981             }
3982           }
3983           // For OpenCL even if RV is located in default or alloca address space
3984           // we don't want to perform address space cast for it.
3985           else if ((ArgInfo.getIndirectByVal() &&
3986                     Addr.getType()->getAddressSpace() != IRFuncTy->
3987                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
3988             NeedCopy = true;
3989           }
3990         }
3991 
3992         if (NeedCopy) {
3993           // Create an aligned temporary, and copy to it.
3994           Address AI = CreateMemTempWithoutCast(
3995               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
3996           IRCallArgs[FirstIRArg] = AI.getPointer();
3997           I->copyInto(*this, AI);
3998         } else {
3999           // Skip the extra memcpy call.
4000           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4001               CGM.getDataLayout().getAllocaAddrSpace());
4002           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4003               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4004               true);
4005         }
4006       }
4007       break;
4008     }
4009 
4010     case ABIArgInfo::Ignore:
4011       assert(NumIRArgs == 0);
4012       break;
4013 
4014     case ABIArgInfo::Extend:
4015     case ABIArgInfo::Direct: {
4016       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4017           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4018           ArgInfo.getDirectOffset() == 0) {
4019         assert(NumIRArgs == 1);
4020         llvm::Value *V;
4021         if (!I->isAggregate())
4022           V = I->getKnownRValue().getScalarVal();
4023         else
4024           V = Builder.CreateLoad(
4025               I->hasLValue() ? I->getKnownLValue().getAddress()
4026                              : I->getKnownRValue().getAggregateAddress());
4027 
4028         // Implement swifterror by copying into a new swifterror argument.
4029         // We'll write back in the normal path out of the call.
4030         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4031               == ParameterABI::SwiftErrorResult) {
4032           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4033 
4034           QualType pointeeTy = I->Ty->getPointeeType();
4035           swiftErrorArg =
4036             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4037 
4038           swiftErrorTemp =
4039             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4040           V = swiftErrorTemp.getPointer();
4041           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4042 
4043           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4044           Builder.CreateStore(errorValue, swiftErrorTemp);
4045         }
4046 
4047         // We might have to widen integers, but we should never truncate.
4048         if (ArgInfo.getCoerceToType() != V->getType() &&
4049             V->getType()->isIntegerTy())
4050           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4051 
4052         // If the argument doesn't match, perform a bitcast to coerce it.  This
4053         // can happen due to trivial type mismatches.
4054         if (FirstIRArg < IRFuncTy->getNumParams() &&
4055             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4056           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4057 
4058         IRCallArgs[FirstIRArg] = V;
4059         break;
4060       }
4061 
4062       // FIXME: Avoid the conversion through memory if possible.
4063       Address Src = Address::invalid();
4064       if (!I->isAggregate()) {
4065         Src = CreateMemTemp(I->Ty, "coerce");
4066         I->copyInto(*this, Src);
4067       } else {
4068         Src = I->hasLValue() ? I->getKnownLValue().getAddress()
4069                              : I->getKnownRValue().getAggregateAddress();
4070       }
4071 
4072       // If the value is offset in memory, apply the offset now.
4073       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4074 
4075       // Fast-isel and the optimizer generally like scalar values better than
4076       // FCAs, so we flatten them if this is safe to do for this argument.
4077       llvm::StructType *STy =
4078             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4079       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4080         llvm::Type *SrcTy = Src.getType()->getElementType();
4081         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4082         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4083 
4084         // If the source type is smaller than the destination type of the
4085         // coerce-to logic, copy the source value into a temp alloca the size
4086         // of the destination type to allow loading all of it. The bits past
4087         // the source value are left undef.
4088         if (SrcSize < DstSize) {
4089           Address TempAlloca
4090             = CreateTempAlloca(STy, Src.getAlignment(),
4091                                Src.getName() + ".coerce");
4092           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4093           Src = TempAlloca;
4094         } else {
4095           Src = Builder.CreateBitCast(Src,
4096                                       STy->getPointerTo(Src.getAddressSpace()));
4097         }
4098 
4099         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
4100         assert(NumIRArgs == STy->getNumElements());
4101         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4102           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
4103           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
4104           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4105           IRCallArgs[FirstIRArg + i] = LI;
4106         }
4107       } else {
4108         // In the simple case, just pass the coerced loaded value.
4109         assert(NumIRArgs == 1);
4110         IRCallArgs[FirstIRArg] =
4111           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4112       }
4113 
4114       break;
4115     }
4116 
4117     case ABIArgInfo::CoerceAndExpand: {
4118       auto coercionType = ArgInfo.getCoerceAndExpandType();
4119       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4120 
4121       llvm::Value *tempSize = nullptr;
4122       Address addr = Address::invalid();
4123       Address AllocaAddr = Address::invalid();
4124       if (I->isAggregate()) {
4125         addr = I->hasLValue() ? I->getKnownLValue().getAddress()
4126                               : I->getKnownRValue().getAggregateAddress();
4127 
4128       } else {
4129         RValue RV = I->getKnownRValue();
4130         assert(RV.isScalar()); // complex should always just be direct
4131 
4132         llvm::Type *scalarType = RV.getScalarVal()->getType();
4133         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4134         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4135 
4136         // Materialize to a temporary.
4137         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
4138                                 CharUnits::fromQuantity(std::max(
4139                                     layout->getAlignment(), scalarAlign)),
4140                                 "tmp",
4141                                 /*ArraySize=*/nullptr, &AllocaAddr);
4142         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4143 
4144         Builder.CreateStore(RV.getScalarVal(), addr);
4145       }
4146 
4147       addr = Builder.CreateElementBitCast(addr, coercionType);
4148 
4149       unsigned IRArgPos = FirstIRArg;
4150       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4151         llvm::Type *eltType = coercionType->getElementType(i);
4152         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4153         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4154         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4155         IRCallArgs[IRArgPos++] = elt;
4156       }
4157       assert(IRArgPos == FirstIRArg + NumIRArgs);
4158 
4159       if (tempSize) {
4160         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4161       }
4162 
4163       break;
4164     }
4165 
4166     case ABIArgInfo::Expand:
4167       unsigned IRArgPos = FirstIRArg;
4168       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4169       assert(IRArgPos == FirstIRArg + NumIRArgs);
4170       break;
4171     }
4172   }
4173 
4174   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4175   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4176 
4177   // If we're using inalloca, set up that argument.
4178   if (ArgMemory.isValid()) {
4179     llvm::Value *Arg = ArgMemory.getPointer();
4180     if (CallInfo.isVariadic()) {
4181       // When passing non-POD arguments by value to variadic functions, we will
4182       // end up with a variadic prototype and an inalloca call site.  In such
4183       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4184       // the callee.
4185       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4186       auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS);
4187       CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy);
4188     } else {
4189       llvm::Type *LastParamTy =
4190           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4191       if (Arg->getType() != LastParamTy) {
4192 #ifndef NDEBUG
4193         // Assert that these structs have equivalent element types.
4194         llvm::StructType *FullTy = CallInfo.getArgStruct();
4195         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4196             cast<llvm::PointerType>(LastParamTy)->getElementType());
4197         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4198         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4199                                                 DE = DeclaredTy->element_end(),
4200                                                 FI = FullTy->element_begin();
4201              DI != DE; ++DI, ++FI)
4202           assert(*DI == *FI);
4203 #endif
4204         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4205       }
4206     }
4207     assert(IRFunctionArgs.hasInallocaArg());
4208     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4209   }
4210 
4211   // 2. Prepare the function pointer.
4212 
4213   // If the callee is a bitcast of a non-variadic function to have a
4214   // variadic function pointer type, check to see if we can remove the
4215   // bitcast.  This comes up with unprototyped functions.
4216   //
4217   // This makes the IR nicer, but more importantly it ensures that we
4218   // can inline the function at -O0 if it is marked always_inline.
4219   auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* {
4220     llvm::FunctionType *CalleeFT =
4221       cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType());
4222     if (!CalleeFT->isVarArg())
4223       return Ptr;
4224 
4225     llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr);
4226     if (!CE || CE->getOpcode() != llvm::Instruction::BitCast)
4227       return Ptr;
4228 
4229     llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0));
4230     if (!OrigFn)
4231       return Ptr;
4232 
4233     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4234 
4235     // If the original type is variadic, or if any of the component types
4236     // disagree, we cannot remove the cast.
4237     if (OrigFT->isVarArg() ||
4238         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4239         OrigFT->getReturnType() != CalleeFT->getReturnType())
4240       return Ptr;
4241 
4242     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4243       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4244         return Ptr;
4245 
4246     return OrigFn;
4247   };
4248   CalleePtr = simplifyVariadicCallee(CalleePtr);
4249 
4250   // 3. Perform the actual call.
4251 
4252   // Deactivate any cleanups that we're supposed to do immediately before
4253   // the call.
4254   if (!CallArgs.getCleanupsToDeactivate().empty())
4255     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4256 
4257   // Assert that the arguments we computed match up.  The IR verifier
4258   // will catch this, but this is a common enough source of problems
4259   // during IRGen changes that it's way better for debugging to catch
4260   // it ourselves here.
4261 #ifndef NDEBUG
4262   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4263   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4264     // Inalloca argument can have different type.
4265     if (IRFunctionArgs.hasInallocaArg() &&
4266         i == IRFunctionArgs.getInallocaArgNo())
4267       continue;
4268     if (i < IRFuncTy->getNumParams())
4269       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4270   }
4271 #endif
4272 
4273   // Update the largest vector width if any arguments have vector types.
4274   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4275     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4276       LargestVectorWidth = std::max(LargestVectorWidth,
4277                                     VT->getPrimitiveSizeInBits());
4278   }
4279 
4280   // Compute the calling convention and attributes.
4281   unsigned CallingConv;
4282   llvm::AttributeList Attrs;
4283   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4284                              Callee.getAbstractInfo(), Attrs, CallingConv,
4285                              /*AttrOnCallSite=*/true);
4286 
4287   // Apply some call-site-specific attributes.
4288   // TODO: work this into building the attribute set.
4289 
4290   // Apply always_inline to all calls within flatten functions.
4291   // FIXME: should this really take priority over __try, below?
4292   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4293       !(Callee.getAbstractInfo().getCalleeDecl().getDecl() &&
4294         Callee.getAbstractInfo()
4295             .getCalleeDecl()
4296             .getDecl()
4297             ->hasAttr<NoInlineAttr>())) {
4298     Attrs =
4299         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4300                            llvm::Attribute::AlwaysInline);
4301   }
4302 
4303   // Disable inlining inside SEH __try blocks.
4304   if (isSEHTryScope()) {
4305     Attrs =
4306         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4307                            llvm::Attribute::NoInline);
4308   }
4309 
4310   // Decide whether to use a call or an invoke.
4311   bool CannotThrow;
4312   if (currentFunctionUsesSEHTry()) {
4313     // SEH cares about asynchronous exceptions, so everything can "throw."
4314     CannotThrow = false;
4315   } else if (isCleanupPadScope() &&
4316              EHPersonality::get(*this).isMSVCXXPersonality()) {
4317     // The MSVC++ personality will implicitly terminate the program if an
4318     // exception is thrown during a cleanup outside of a try/catch.
4319     // We don't need to model anything in IR to get this behavior.
4320     CannotThrow = true;
4321   } else {
4322     // Otherwise, nounwind call sites will never throw.
4323     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4324                                      llvm::Attribute::NoUnwind);
4325   }
4326 
4327   // If we made a temporary, be sure to clean up after ourselves. Note that we
4328   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4329   // pop this cleanup later on. Being eager about this is OK, since this
4330   // temporary is 'invisible' outside of the callee.
4331   if (UnusedReturnSizePtr)
4332     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4333                                          UnusedReturnSizePtr);
4334 
4335   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4336 
4337   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4338       getBundlesForFunclet(CalleePtr);
4339 
4340   // Emit the actual call/invoke instruction.
4341   llvm::CallSite CS;
4342   if (!InvokeDest) {
4343     CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList);
4344   } else {
4345     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4346     CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs,
4347                               BundleList);
4348     EmitBlock(Cont);
4349   }
4350   llvm::Instruction *CI = CS.getInstruction();
4351   if (callOrInvoke)
4352     *callOrInvoke = CI;
4353 
4354   // Apply the attributes and calling convention.
4355   CS.setAttributes(Attrs);
4356   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4357 
4358   // Apply various metadata.
4359 
4360   if (!CI->getType()->isVoidTy())
4361     CI->setName("call");
4362 
4363   // Update largest vector width from the return type.
4364   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4365     LargestVectorWidth = std::max(LargestVectorWidth,
4366                                   VT->getPrimitiveSizeInBits());
4367 
4368   // Insert instrumentation or attach profile metadata at indirect call sites.
4369   // For more details, see the comment before the definition of
4370   // IPVK_IndirectCallTarget in InstrProfData.inc.
4371   if (!CS.getCalledFunction())
4372     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4373                      CI, CalleePtr);
4374 
4375   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4376   // optimizer it can aggressively ignore unwind edges.
4377   if (CGM.getLangOpts().ObjCAutoRefCount)
4378     AddObjCARCExceptionMetadata(CI);
4379 
4380   // Suppress tail calls if requested.
4381   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4382     const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4383     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4384       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4385   }
4386 
4387   // 4. Finish the call.
4388 
4389   // If the call doesn't return, finish the basic block and clear the
4390   // insertion point; this allows the rest of IRGen to discard
4391   // unreachable code.
4392   if (CS.doesNotReturn()) {
4393     if (UnusedReturnSizePtr)
4394       PopCleanupBlock();
4395 
4396     // Strip away the noreturn attribute to better diagnose unreachable UB.
4397     if (SanOpts.has(SanitizerKind::Unreachable)) {
4398       if (auto *F = CS.getCalledFunction())
4399         F->removeFnAttr(llvm::Attribute::NoReturn);
4400       CS.removeAttribute(llvm::AttributeList::FunctionIndex,
4401                          llvm::Attribute::NoReturn);
4402     }
4403 
4404     EmitUnreachable(Loc);
4405     Builder.ClearInsertionPoint();
4406 
4407     // FIXME: For now, emit a dummy basic block because expr emitters in
4408     // generally are not ready to handle emitting expressions at unreachable
4409     // points.
4410     EnsureInsertPoint();
4411 
4412     // Return a reasonable RValue.
4413     return GetUndefRValue(RetTy);
4414   }
4415 
4416   // Perform the swifterror writeback.
4417   if (swiftErrorTemp.isValid()) {
4418     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4419     Builder.CreateStore(errorResult, swiftErrorArg);
4420   }
4421 
4422   // Emit any call-associated writebacks immediately.  Arguably this
4423   // should happen after any return-value munging.
4424   if (CallArgs.hasWritebacks())
4425     emitWritebacks(*this, CallArgs);
4426 
4427   // The stack cleanup for inalloca arguments has to run out of the normal
4428   // lexical order, so deactivate it and run it manually here.
4429   CallArgs.freeArgumentMemory(*this);
4430 
4431   // Extract the return value.
4432   RValue Ret = [&] {
4433     switch (RetAI.getKind()) {
4434     case ABIArgInfo::CoerceAndExpand: {
4435       auto coercionType = RetAI.getCoerceAndExpandType();
4436       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4437 
4438       Address addr = SRetPtr;
4439       addr = Builder.CreateElementBitCast(addr, coercionType);
4440 
4441       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4442       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4443 
4444       unsigned unpaddedIndex = 0;
4445       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4446         llvm::Type *eltType = coercionType->getElementType(i);
4447         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4448         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4449         llvm::Value *elt = CI;
4450         if (requiresExtract)
4451           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4452         else
4453           assert(unpaddedIndex == 0);
4454         Builder.CreateStore(elt, eltAddr);
4455       }
4456       // FALLTHROUGH
4457       LLVM_FALLTHROUGH;
4458     }
4459 
4460     case ABIArgInfo::InAlloca:
4461     case ABIArgInfo::Indirect: {
4462       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4463       if (UnusedReturnSizePtr)
4464         PopCleanupBlock();
4465       return ret;
4466     }
4467 
4468     case ABIArgInfo::Ignore:
4469       // If we are ignoring an argument that had a result, make sure to
4470       // construct the appropriate return value for our caller.
4471       return GetUndefRValue(RetTy);
4472 
4473     case ABIArgInfo::Extend:
4474     case ABIArgInfo::Direct: {
4475       llvm::Type *RetIRTy = ConvertType(RetTy);
4476       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4477         switch (getEvaluationKind(RetTy)) {
4478         case TEK_Complex: {
4479           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4480           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4481           return RValue::getComplex(std::make_pair(Real, Imag));
4482         }
4483         case TEK_Aggregate: {
4484           Address DestPtr = ReturnValue.getValue();
4485           bool DestIsVolatile = ReturnValue.isVolatile();
4486 
4487           if (!DestPtr.isValid()) {
4488             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4489             DestIsVolatile = false;
4490           }
4491           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4492           return RValue::getAggregate(DestPtr);
4493         }
4494         case TEK_Scalar: {
4495           // If the argument doesn't match, perform a bitcast to coerce it.  This
4496           // can happen due to trivial type mismatches.
4497           llvm::Value *V = CI;
4498           if (V->getType() != RetIRTy)
4499             V = Builder.CreateBitCast(V, RetIRTy);
4500           return RValue::get(V);
4501         }
4502         }
4503         llvm_unreachable("bad evaluation kind");
4504       }
4505 
4506       Address DestPtr = ReturnValue.getValue();
4507       bool DestIsVolatile = ReturnValue.isVolatile();
4508 
4509       if (!DestPtr.isValid()) {
4510         DestPtr = CreateMemTemp(RetTy, "coerce");
4511         DestIsVolatile = false;
4512       }
4513 
4514       // If the value is offset in memory, apply the offset now.
4515       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4516       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4517 
4518       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4519     }
4520 
4521     case ABIArgInfo::Expand:
4522       llvm_unreachable("Invalid ABI kind for return argument");
4523     }
4524 
4525     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4526   } ();
4527 
4528   // Emit the assume_aligned check on the return value.
4529   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4530   if (Ret.isScalar() && TargetDecl) {
4531     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4532       llvm::Value *OffsetValue = nullptr;
4533       if (const auto *Offset = AA->getOffset())
4534         OffsetValue = EmitScalarExpr(Offset);
4535 
4536       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4537       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4538       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
4539                               OffsetValue);
4540     } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4541       llvm::Value *ParamVal =
4542           CallArgs[AA->getParamIndex().getLLVMIndex()].getRValue(
4543               *this).getScalarVal();
4544       EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal);
4545     }
4546   }
4547 
4548   return Ret;
4549 }
4550 
4551 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
4552   if (isVirtual()) {
4553     const CallExpr *CE = getVirtualCallExpr();
4554     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
4555         CGF, getVirtualMethodDecl(), getThisAddress(), getFunctionType(),
4556         CE ? CE->getBeginLoc() : SourceLocation());
4557   }
4558 
4559   return *this;
4560 }
4561 
4562 /* VarArg handling */
4563 
4564 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4565   VAListAddr = VE->isMicrosoftABI()
4566                  ? EmitMSVAListRef(VE->getSubExpr())
4567                  : EmitVAListRef(VE->getSubExpr());
4568   QualType Ty = VE->getType();
4569   if (VE->isMicrosoftABI())
4570     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4571   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4572 }
4573