1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/TargetBuiltins.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/CodeGen/CGFunctionInfo.h" 30 #include "clang/CodeGen/SwiftCallingConv.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_Win64: return llvm::CallingConv::Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 63 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 64 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 65 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 66 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 67 case CC_Swift: return llvm::CallingConv::Swift; 68 } 69 } 70 71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 72 /// qualification. 73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD, 74 const CXXMethodDecl *MD) { 75 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 76 if (MD) 77 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getType().getAddressSpace()); 78 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 79 } 80 81 /// Returns the canonical formal type of the given C++ method. 82 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 83 return MD->getType()->getCanonicalTypeUnqualified() 84 .getAs<FunctionProtoType>(); 85 } 86 87 /// Returns the "extra-canonicalized" return type, which discards 88 /// qualifiers on the return type. Codegen doesn't care about them, 89 /// and it makes ABI code a little easier to be able to assume that 90 /// all parameter and return types are top-level unqualified. 91 static CanQualType GetReturnType(QualType RetTy) { 92 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 93 } 94 95 /// Arrange the argument and result information for a value of the given 96 /// unprototyped freestanding function type. 97 const CGFunctionInfo & 98 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 99 // When translating an unprototyped function type, always use a 100 // variadic type. 101 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 102 /*instanceMethod=*/false, 103 /*chainCall=*/false, None, 104 FTNP->getExtInfo(), {}, RequiredArgs(0)); 105 } 106 107 static void addExtParameterInfosForCall( 108 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 109 const FunctionProtoType *proto, 110 unsigned prefixArgs, 111 unsigned totalArgs) { 112 assert(proto->hasExtParameterInfos()); 113 assert(paramInfos.size() <= prefixArgs); 114 assert(proto->getNumParams() + prefixArgs <= totalArgs); 115 116 paramInfos.reserve(totalArgs); 117 118 // Add default infos for any prefix args that don't already have infos. 119 paramInfos.resize(prefixArgs); 120 121 // Add infos for the prototype. 122 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 123 paramInfos.push_back(ParamInfo); 124 // pass_object_size params have no parameter info. 125 if (ParamInfo.hasPassObjectSize()) 126 paramInfos.emplace_back(); 127 } 128 129 assert(paramInfos.size() <= totalArgs && 130 "Did we forget to insert pass_object_size args?"); 131 // Add default infos for the variadic and/or suffix arguments. 132 paramInfos.resize(totalArgs); 133 } 134 135 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 136 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 137 static void appendParameterTypes(const CodeGenTypes &CGT, 138 SmallVectorImpl<CanQualType> &prefix, 139 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 140 CanQual<FunctionProtoType> FPT) { 141 // Fast path: don't touch param info if we don't need to. 142 if (!FPT->hasExtParameterInfos()) { 143 assert(paramInfos.empty() && 144 "We have paramInfos, but the prototype doesn't?"); 145 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 146 return; 147 } 148 149 unsigned PrefixSize = prefix.size(); 150 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 151 // parameters; the only thing that can change this is the presence of 152 // pass_object_size. So, we preallocate for the common case. 153 prefix.reserve(prefix.size() + FPT->getNumParams()); 154 155 auto ExtInfos = FPT->getExtParameterInfos(); 156 assert(ExtInfos.size() == FPT->getNumParams()); 157 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 158 prefix.push_back(FPT->getParamType(I)); 159 if (ExtInfos[I].hasPassObjectSize()) 160 prefix.push_back(CGT.getContext().getSizeType()); 161 } 162 163 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 164 prefix.size()); 165 } 166 167 /// Arrange the LLVM function layout for a value of the given function 168 /// type, on top of any implicit parameters already stored. 169 static const CGFunctionInfo & 170 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 171 SmallVectorImpl<CanQualType> &prefix, 172 CanQual<FunctionProtoType> FTP, 173 const FunctionDecl *FD) { 174 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 175 RequiredArgs Required = 176 RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD); 177 // FIXME: Kill copy. 178 appendParameterTypes(CGT, prefix, paramInfos, FTP); 179 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 180 181 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 182 /*chainCall=*/false, prefix, 183 FTP->getExtInfo(), paramInfos, 184 Required); 185 } 186 187 /// Arrange the argument and result information for a value of the 188 /// given freestanding function type. 189 const CGFunctionInfo & 190 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 191 const FunctionDecl *FD) { 192 SmallVector<CanQualType, 16> argTypes; 193 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 194 FTP, FD); 195 } 196 197 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 198 // Set the appropriate calling convention for the Function. 199 if (D->hasAttr<StdCallAttr>()) 200 return CC_X86StdCall; 201 202 if (D->hasAttr<FastCallAttr>()) 203 return CC_X86FastCall; 204 205 if (D->hasAttr<RegCallAttr>()) 206 return CC_X86RegCall; 207 208 if (D->hasAttr<ThisCallAttr>()) 209 return CC_X86ThisCall; 210 211 if (D->hasAttr<VectorCallAttr>()) 212 return CC_X86VectorCall; 213 214 if (D->hasAttr<PascalAttr>()) 215 return CC_X86Pascal; 216 217 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 218 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 219 220 if (D->hasAttr<AArch64VectorPcsAttr>()) 221 return CC_AArch64VectorCall; 222 223 if (D->hasAttr<IntelOclBiccAttr>()) 224 return CC_IntelOclBicc; 225 226 if (D->hasAttr<MSABIAttr>()) 227 return IsWindows ? CC_C : CC_Win64; 228 229 if (D->hasAttr<SysVABIAttr>()) 230 return IsWindows ? CC_X86_64SysV : CC_C; 231 232 if (D->hasAttr<PreserveMostAttr>()) 233 return CC_PreserveMost; 234 235 if (D->hasAttr<PreserveAllAttr>()) 236 return CC_PreserveAll; 237 238 return CC_C; 239 } 240 241 /// Arrange the argument and result information for a call to an 242 /// unknown C++ non-static member function of the given abstract type. 243 /// (Zero value of RD means we don't have any meaningful "this" argument type, 244 /// so fall back to a generic pointer type). 245 /// The member function must be an ordinary function, i.e. not a 246 /// constructor or destructor. 247 const CGFunctionInfo & 248 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 249 const FunctionProtoType *FTP, 250 const CXXMethodDecl *MD) { 251 SmallVector<CanQualType, 16> argTypes; 252 253 // Add the 'this' pointer. 254 if (RD) 255 argTypes.push_back(GetThisType(Context, RD, MD)); 256 else 257 argTypes.push_back(Context.VoidPtrTy); 258 259 return ::arrangeLLVMFunctionInfo( 260 *this, true, argTypes, 261 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 262 } 263 264 /// Set calling convention for CUDA/HIP kernel. 265 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 266 const FunctionDecl *FD) { 267 if (FD->hasAttr<CUDAGlobalAttr>()) { 268 const FunctionType *FT = FTy->getAs<FunctionType>(); 269 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 270 FTy = FT->getCanonicalTypeUnqualified(); 271 } 272 } 273 274 /// Arrange the argument and result information for a declaration or 275 /// definition of the given C++ non-static member function. The 276 /// member function must be an ordinary function, i.e. not a 277 /// constructor or destructor. 278 const CGFunctionInfo & 279 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 280 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 281 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 282 283 CanQualType FT = GetFormalType(MD).getAs<Type>(); 284 setCUDAKernelCallingConvention(FT, CGM, MD); 285 auto prototype = FT.getAs<FunctionProtoType>(); 286 287 if (MD->isInstance()) { 288 // The abstract case is perfectly fine. 289 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 290 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 291 } 292 293 return arrangeFreeFunctionType(prototype, MD); 294 } 295 296 bool CodeGenTypes::inheritingCtorHasParams( 297 const InheritedConstructor &Inherited, CXXCtorType Type) { 298 // Parameters are unnecessary if we're constructing a base class subobject 299 // and the inherited constructor lives in a virtual base. 300 return Type == Ctor_Complete || 301 !Inherited.getShadowDecl()->constructsVirtualBase() || 302 !Target.getCXXABI().hasConstructorVariants(); 303 } 304 305 const CGFunctionInfo & 306 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 307 StructorType Type) { 308 309 SmallVector<CanQualType, 16> argTypes; 310 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 311 argTypes.push_back(GetThisType(Context, MD->getParent(), MD)); 312 313 bool PassParams = true; 314 315 GlobalDecl GD; 316 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 317 GD = GlobalDecl(CD, toCXXCtorType(Type)); 318 319 // A base class inheriting constructor doesn't get forwarded arguments 320 // needed to construct a virtual base (or base class thereof). 321 if (auto Inherited = CD->getInheritedConstructor()) 322 PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); 323 } else { 324 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 325 GD = GlobalDecl(DD, toCXXDtorType(Type)); 326 } 327 328 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 329 330 // Add the formal parameters. 331 if (PassParams) 332 appendParameterTypes(*this, argTypes, paramInfos, FTP); 333 334 CGCXXABI::AddedStructorArgs AddedArgs = 335 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 336 if (!paramInfos.empty()) { 337 // Note: prefix implies after the first param. 338 if (AddedArgs.Prefix) 339 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 340 FunctionProtoType::ExtParameterInfo{}); 341 if (AddedArgs.Suffix) 342 paramInfos.append(AddedArgs.Suffix, 343 FunctionProtoType::ExtParameterInfo{}); 344 } 345 346 RequiredArgs required = 347 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 348 : RequiredArgs::All); 349 350 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 351 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 352 ? argTypes.front() 353 : TheCXXABI.hasMostDerivedReturn(GD) 354 ? CGM.getContext().VoidPtrTy 355 : Context.VoidTy; 356 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 357 /*chainCall=*/false, argTypes, extInfo, 358 paramInfos, required); 359 } 360 361 static SmallVector<CanQualType, 16> 362 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 363 SmallVector<CanQualType, 16> argTypes; 364 for (auto &arg : args) 365 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 366 return argTypes; 367 } 368 369 static SmallVector<CanQualType, 16> 370 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 371 SmallVector<CanQualType, 16> argTypes; 372 for (auto &arg : args) 373 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 374 return argTypes; 375 } 376 377 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 378 getExtParameterInfosForCall(const FunctionProtoType *proto, 379 unsigned prefixArgs, unsigned totalArgs) { 380 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 381 if (proto->hasExtParameterInfos()) { 382 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 383 } 384 return result; 385 } 386 387 /// Arrange a call to a C++ method, passing the given arguments. 388 /// 389 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 390 /// parameter. 391 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 392 /// args. 393 /// PassProtoArgs indicates whether `args` has args for the parameters in the 394 /// given CXXConstructorDecl. 395 const CGFunctionInfo & 396 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 397 const CXXConstructorDecl *D, 398 CXXCtorType CtorKind, 399 unsigned ExtraPrefixArgs, 400 unsigned ExtraSuffixArgs, 401 bool PassProtoArgs) { 402 // FIXME: Kill copy. 403 SmallVector<CanQualType, 16> ArgTypes; 404 for (const auto &Arg : args) 405 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 406 407 // +1 for implicit this, which should always be args[0]. 408 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 409 410 CanQual<FunctionProtoType> FPT = GetFormalType(D); 411 RequiredArgs Required = 412 RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D); 413 GlobalDecl GD(D, CtorKind); 414 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 415 ? ArgTypes.front() 416 : TheCXXABI.hasMostDerivedReturn(GD) 417 ? CGM.getContext().VoidPtrTy 418 : Context.VoidTy; 419 420 FunctionType::ExtInfo Info = FPT->getExtInfo(); 421 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 422 // If the prototype args are elided, we should only have ABI-specific args, 423 // which never have param info. 424 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 425 // ABI-specific suffix arguments are treated the same as variadic arguments. 426 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 427 ArgTypes.size()); 428 } 429 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 430 /*chainCall=*/false, ArgTypes, Info, 431 ParamInfos, Required); 432 } 433 434 /// Arrange the argument and result information for the declaration or 435 /// definition of the given function. 436 const CGFunctionInfo & 437 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 438 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 439 if (MD->isInstance()) 440 return arrangeCXXMethodDeclaration(MD); 441 442 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 443 444 assert(isa<FunctionType>(FTy)); 445 setCUDAKernelCallingConvention(FTy, CGM, FD); 446 447 // When declaring a function without a prototype, always use a 448 // non-variadic type. 449 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 450 return arrangeLLVMFunctionInfo( 451 noProto->getReturnType(), /*instanceMethod=*/false, 452 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 453 } 454 455 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD); 456 } 457 458 /// Arrange the argument and result information for the declaration or 459 /// definition of an Objective-C method. 460 const CGFunctionInfo & 461 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 462 // It happens that this is the same as a call with no optional 463 // arguments, except also using the formal 'self' type. 464 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 465 } 466 467 /// Arrange the argument and result information for the function type 468 /// through which to perform a send to the given Objective-C method, 469 /// using the given receiver type. The receiver type is not always 470 /// the 'self' type of the method or even an Objective-C pointer type. 471 /// This is *not* the right method for actually performing such a 472 /// message send, due to the possibility of optional arguments. 473 const CGFunctionInfo & 474 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 475 QualType receiverType) { 476 SmallVector<CanQualType, 16> argTys; 477 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 478 argTys.push_back(Context.getCanonicalParamType(receiverType)); 479 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 480 // FIXME: Kill copy? 481 for (const auto *I : MD->parameters()) { 482 argTys.push_back(Context.getCanonicalParamType(I->getType())); 483 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 484 I->hasAttr<NoEscapeAttr>()); 485 extParamInfos.push_back(extParamInfo); 486 } 487 488 FunctionType::ExtInfo einfo; 489 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 490 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 491 492 if (getContext().getLangOpts().ObjCAutoRefCount && 493 MD->hasAttr<NSReturnsRetainedAttr>()) 494 einfo = einfo.withProducesResult(true); 495 496 RequiredArgs required = 497 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 498 499 return arrangeLLVMFunctionInfo( 500 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 501 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 502 } 503 504 const CGFunctionInfo & 505 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 506 const CallArgList &args) { 507 auto argTypes = getArgTypesForCall(Context, args); 508 FunctionType::ExtInfo einfo; 509 510 return arrangeLLVMFunctionInfo( 511 GetReturnType(returnType), /*instanceMethod=*/false, 512 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 513 } 514 515 const CGFunctionInfo & 516 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 517 // FIXME: Do we need to handle ObjCMethodDecl? 518 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 519 520 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 521 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 522 523 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 524 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 525 526 return arrangeFunctionDeclaration(FD); 527 } 528 529 /// Arrange a thunk that takes 'this' as the first parameter followed by 530 /// varargs. Return a void pointer, regardless of the actual return type. 531 /// The body of the thunk will end in a musttail call to a function of the 532 /// correct type, and the caller will bitcast the function to the correct 533 /// prototype. 534 const CGFunctionInfo & 535 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 536 assert(MD->isVirtual() && "only methods have thunks"); 537 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 538 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent(), MD) }; 539 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 540 /*chainCall=*/false, ArgTys, 541 FTP->getExtInfo(), {}, RequiredArgs(1)); 542 } 543 544 const CGFunctionInfo & 545 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 546 CXXCtorType CT) { 547 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 548 549 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 550 SmallVector<CanQualType, 2> ArgTys; 551 const CXXRecordDecl *RD = CD->getParent(); 552 ArgTys.push_back(GetThisType(Context, RD, CD)); 553 if (CT == Ctor_CopyingClosure) 554 ArgTys.push_back(*FTP->param_type_begin()); 555 if (RD->getNumVBases() > 0) 556 ArgTys.push_back(Context.IntTy); 557 CallingConv CC = Context.getDefaultCallingConvention( 558 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 559 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 560 /*chainCall=*/false, ArgTys, 561 FunctionType::ExtInfo(CC), {}, 562 RequiredArgs::All); 563 } 564 565 /// Arrange a call as unto a free function, except possibly with an 566 /// additional number of formal parameters considered required. 567 static const CGFunctionInfo & 568 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 569 CodeGenModule &CGM, 570 const CallArgList &args, 571 const FunctionType *fnType, 572 unsigned numExtraRequiredArgs, 573 bool chainCall) { 574 assert(args.size() >= numExtraRequiredArgs); 575 576 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 577 578 // In most cases, there are no optional arguments. 579 RequiredArgs required = RequiredArgs::All; 580 581 // If we have a variadic prototype, the required arguments are the 582 // extra prefix plus the arguments in the prototype. 583 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 584 if (proto->isVariadic()) 585 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 586 587 if (proto->hasExtParameterInfos()) 588 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 589 args.size()); 590 591 // If we don't have a prototype at all, but we're supposed to 592 // explicitly use the variadic convention for unprototyped calls, 593 // treat all of the arguments as required but preserve the nominal 594 // possibility of variadics. 595 } else if (CGM.getTargetCodeGenInfo() 596 .isNoProtoCallVariadic(args, 597 cast<FunctionNoProtoType>(fnType))) { 598 required = RequiredArgs(args.size()); 599 } 600 601 // FIXME: Kill copy. 602 SmallVector<CanQualType, 16> argTypes; 603 for (const auto &arg : args) 604 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 605 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 606 /*instanceMethod=*/false, chainCall, 607 argTypes, fnType->getExtInfo(), paramInfos, 608 required); 609 } 610 611 /// Figure out the rules for calling a function with the given formal 612 /// type using the given arguments. The arguments are necessary 613 /// because the function might be unprototyped, in which case it's 614 /// target-dependent in crazy ways. 615 const CGFunctionInfo & 616 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 617 const FunctionType *fnType, 618 bool chainCall) { 619 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 620 chainCall ? 1 : 0, chainCall); 621 } 622 623 /// A block function is essentially a free function with an 624 /// extra implicit argument. 625 const CGFunctionInfo & 626 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 627 const FunctionType *fnType) { 628 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 629 /*chainCall=*/false); 630 } 631 632 const CGFunctionInfo & 633 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 634 const FunctionArgList ¶ms) { 635 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 636 auto argTypes = getArgTypesForDeclaration(Context, params); 637 638 return arrangeLLVMFunctionInfo( 639 GetReturnType(proto->getReturnType()), 640 /*instanceMethod*/ false, /*chainCall*/ false, argTypes, 641 proto->getExtInfo(), paramInfos, 642 RequiredArgs::forPrototypePlus(proto, 1, nullptr)); 643 } 644 645 const CGFunctionInfo & 646 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 647 const CallArgList &args) { 648 // FIXME: Kill copy. 649 SmallVector<CanQualType, 16> argTypes; 650 for (const auto &Arg : args) 651 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 652 return arrangeLLVMFunctionInfo( 653 GetReturnType(resultType), /*instanceMethod=*/false, 654 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 655 /*paramInfos=*/ {}, RequiredArgs::All); 656 } 657 658 const CGFunctionInfo & 659 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 660 const FunctionArgList &args) { 661 auto argTypes = getArgTypesForDeclaration(Context, args); 662 663 return arrangeLLVMFunctionInfo( 664 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 665 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 666 } 667 668 const CGFunctionInfo & 669 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 670 ArrayRef<CanQualType> argTypes) { 671 return arrangeLLVMFunctionInfo( 672 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 673 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 674 } 675 676 /// Arrange a call to a C++ method, passing the given arguments. 677 /// 678 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 679 /// does not count `this`. 680 const CGFunctionInfo & 681 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 682 const FunctionProtoType *proto, 683 RequiredArgs required, 684 unsigned numPrefixArgs) { 685 assert(numPrefixArgs + 1 <= args.size() && 686 "Emitting a call with less args than the required prefix?"); 687 // Add one to account for `this`. It's a bit awkward here, but we don't count 688 // `this` in similar places elsewhere. 689 auto paramInfos = 690 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 691 692 // FIXME: Kill copy. 693 auto argTypes = getArgTypesForCall(Context, args); 694 695 FunctionType::ExtInfo info = proto->getExtInfo(); 696 return arrangeLLVMFunctionInfo( 697 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 698 /*chainCall=*/false, argTypes, info, paramInfos, required); 699 } 700 701 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 702 return arrangeLLVMFunctionInfo( 703 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 704 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 705 } 706 707 const CGFunctionInfo & 708 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 709 const CallArgList &args) { 710 assert(signature.arg_size() <= args.size()); 711 if (signature.arg_size() == args.size()) 712 return signature; 713 714 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 715 auto sigParamInfos = signature.getExtParameterInfos(); 716 if (!sigParamInfos.empty()) { 717 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 718 paramInfos.resize(args.size()); 719 } 720 721 auto argTypes = getArgTypesForCall(Context, args); 722 723 assert(signature.getRequiredArgs().allowsOptionalArgs()); 724 return arrangeLLVMFunctionInfo(signature.getReturnType(), 725 signature.isInstanceMethod(), 726 signature.isChainCall(), 727 argTypes, 728 signature.getExtInfo(), 729 paramInfos, 730 signature.getRequiredArgs()); 731 } 732 733 namespace clang { 734 namespace CodeGen { 735 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 736 } 737 } 738 739 /// Arrange the argument and result information for an abstract value 740 /// of a given function type. This is the method which all of the 741 /// above functions ultimately defer to. 742 const CGFunctionInfo & 743 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 744 bool instanceMethod, 745 bool chainCall, 746 ArrayRef<CanQualType> argTypes, 747 FunctionType::ExtInfo info, 748 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 749 RequiredArgs required) { 750 assert(llvm::all_of(argTypes, 751 [](CanQualType T) { return T.isCanonicalAsParam(); })); 752 753 // Lookup or create unique function info. 754 llvm::FoldingSetNodeID ID; 755 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 756 required, resultType, argTypes); 757 758 void *insertPos = nullptr; 759 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 760 if (FI) 761 return *FI; 762 763 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 764 765 // Construct the function info. We co-allocate the ArgInfos. 766 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 767 paramInfos, resultType, argTypes, required); 768 FunctionInfos.InsertNode(FI, insertPos); 769 770 bool inserted = FunctionsBeingProcessed.insert(FI).second; 771 (void)inserted; 772 assert(inserted && "Recursively being processed?"); 773 774 // Compute ABI information. 775 if (CC == llvm::CallingConv::SPIR_KERNEL) { 776 // Force target independent argument handling for the host visible 777 // kernel functions. 778 computeSPIRKernelABIInfo(CGM, *FI); 779 } else if (info.getCC() == CC_Swift) { 780 swiftcall::computeABIInfo(CGM, *FI); 781 } else { 782 getABIInfo().computeInfo(*FI); 783 } 784 785 // Loop over all of the computed argument and return value info. If any of 786 // them are direct or extend without a specified coerce type, specify the 787 // default now. 788 ABIArgInfo &retInfo = FI->getReturnInfo(); 789 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 790 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 791 792 for (auto &I : FI->arguments()) 793 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 794 I.info.setCoerceToType(ConvertType(I.type)); 795 796 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 797 assert(erased && "Not in set?"); 798 799 return *FI; 800 } 801 802 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 803 bool instanceMethod, 804 bool chainCall, 805 const FunctionType::ExtInfo &info, 806 ArrayRef<ExtParameterInfo> paramInfos, 807 CanQualType resultType, 808 ArrayRef<CanQualType> argTypes, 809 RequiredArgs required) { 810 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 811 812 void *buffer = 813 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 814 argTypes.size() + 1, paramInfos.size())); 815 816 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 817 FI->CallingConvention = llvmCC; 818 FI->EffectiveCallingConvention = llvmCC; 819 FI->ASTCallingConvention = info.getCC(); 820 FI->InstanceMethod = instanceMethod; 821 FI->ChainCall = chainCall; 822 FI->NoReturn = info.getNoReturn(); 823 FI->ReturnsRetained = info.getProducesResult(); 824 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 825 FI->NoCfCheck = info.getNoCfCheck(); 826 FI->Required = required; 827 FI->HasRegParm = info.getHasRegParm(); 828 FI->RegParm = info.getRegParm(); 829 FI->ArgStruct = nullptr; 830 FI->ArgStructAlign = 0; 831 FI->NumArgs = argTypes.size(); 832 FI->HasExtParameterInfos = !paramInfos.empty(); 833 FI->getArgsBuffer()[0].type = resultType; 834 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 835 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 836 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 837 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 838 return FI; 839 } 840 841 /***/ 842 843 namespace { 844 // ABIArgInfo::Expand implementation. 845 846 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 847 struct TypeExpansion { 848 enum TypeExpansionKind { 849 // Elements of constant arrays are expanded recursively. 850 TEK_ConstantArray, 851 // Record fields are expanded recursively (but if record is a union, only 852 // the field with the largest size is expanded). 853 TEK_Record, 854 // For complex types, real and imaginary parts are expanded recursively. 855 TEK_Complex, 856 // All other types are not expandable. 857 TEK_None 858 }; 859 860 const TypeExpansionKind Kind; 861 862 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 863 virtual ~TypeExpansion() {} 864 }; 865 866 struct ConstantArrayExpansion : TypeExpansion { 867 QualType EltTy; 868 uint64_t NumElts; 869 870 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 871 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 872 static bool classof(const TypeExpansion *TE) { 873 return TE->Kind == TEK_ConstantArray; 874 } 875 }; 876 877 struct RecordExpansion : TypeExpansion { 878 SmallVector<const CXXBaseSpecifier *, 1> Bases; 879 880 SmallVector<const FieldDecl *, 1> Fields; 881 882 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 883 SmallVector<const FieldDecl *, 1> &&Fields) 884 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 885 Fields(std::move(Fields)) {} 886 static bool classof(const TypeExpansion *TE) { 887 return TE->Kind == TEK_Record; 888 } 889 }; 890 891 struct ComplexExpansion : TypeExpansion { 892 QualType EltTy; 893 894 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 895 static bool classof(const TypeExpansion *TE) { 896 return TE->Kind == TEK_Complex; 897 } 898 }; 899 900 struct NoExpansion : TypeExpansion { 901 NoExpansion() : TypeExpansion(TEK_None) {} 902 static bool classof(const TypeExpansion *TE) { 903 return TE->Kind == TEK_None; 904 } 905 }; 906 } // namespace 907 908 static std::unique_ptr<TypeExpansion> 909 getTypeExpansion(QualType Ty, const ASTContext &Context) { 910 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 911 return llvm::make_unique<ConstantArrayExpansion>( 912 AT->getElementType(), AT->getSize().getZExtValue()); 913 } 914 if (const RecordType *RT = Ty->getAs<RecordType>()) { 915 SmallVector<const CXXBaseSpecifier *, 1> Bases; 916 SmallVector<const FieldDecl *, 1> Fields; 917 const RecordDecl *RD = RT->getDecl(); 918 assert(!RD->hasFlexibleArrayMember() && 919 "Cannot expand structure with flexible array."); 920 if (RD->isUnion()) { 921 // Unions can be here only in degenerative cases - all the fields are same 922 // after flattening. Thus we have to use the "largest" field. 923 const FieldDecl *LargestFD = nullptr; 924 CharUnits UnionSize = CharUnits::Zero(); 925 926 for (const auto *FD : RD->fields()) { 927 if (FD->isZeroLengthBitField(Context)) 928 continue; 929 assert(!FD->isBitField() && 930 "Cannot expand structure with bit-field members."); 931 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 932 if (UnionSize < FieldSize) { 933 UnionSize = FieldSize; 934 LargestFD = FD; 935 } 936 } 937 if (LargestFD) 938 Fields.push_back(LargestFD); 939 } else { 940 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 941 assert(!CXXRD->isDynamicClass() && 942 "cannot expand vtable pointers in dynamic classes"); 943 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 944 Bases.push_back(&BS); 945 } 946 947 for (const auto *FD : RD->fields()) { 948 if (FD->isZeroLengthBitField(Context)) 949 continue; 950 assert(!FD->isBitField() && 951 "Cannot expand structure with bit-field members."); 952 Fields.push_back(FD); 953 } 954 } 955 return llvm::make_unique<RecordExpansion>(std::move(Bases), 956 std::move(Fields)); 957 } 958 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 959 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 960 } 961 return llvm::make_unique<NoExpansion>(); 962 } 963 964 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 965 auto Exp = getTypeExpansion(Ty, Context); 966 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 967 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 968 } 969 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 970 int Res = 0; 971 for (auto BS : RExp->Bases) 972 Res += getExpansionSize(BS->getType(), Context); 973 for (auto FD : RExp->Fields) 974 Res += getExpansionSize(FD->getType(), Context); 975 return Res; 976 } 977 if (isa<ComplexExpansion>(Exp.get())) 978 return 2; 979 assert(isa<NoExpansion>(Exp.get())); 980 return 1; 981 } 982 983 void 984 CodeGenTypes::getExpandedTypes(QualType Ty, 985 SmallVectorImpl<llvm::Type *>::iterator &TI) { 986 auto Exp = getTypeExpansion(Ty, Context); 987 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 988 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 989 getExpandedTypes(CAExp->EltTy, TI); 990 } 991 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 992 for (auto BS : RExp->Bases) 993 getExpandedTypes(BS->getType(), TI); 994 for (auto FD : RExp->Fields) 995 getExpandedTypes(FD->getType(), TI); 996 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 997 llvm::Type *EltTy = ConvertType(CExp->EltTy); 998 *TI++ = EltTy; 999 *TI++ = EltTy; 1000 } else { 1001 assert(isa<NoExpansion>(Exp.get())); 1002 *TI++ = ConvertType(Ty); 1003 } 1004 } 1005 1006 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1007 ConstantArrayExpansion *CAE, 1008 Address BaseAddr, 1009 llvm::function_ref<void(Address)> Fn) { 1010 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1011 CharUnits EltAlign = 1012 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1013 1014 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1015 llvm::Value *EltAddr = 1016 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1017 Fn(Address(EltAddr, EltAlign)); 1018 } 1019 } 1020 1021 void CodeGenFunction::ExpandTypeFromArgs( 1022 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 1023 assert(LV.isSimple() && 1024 "Unexpected non-simple lvalue during struct expansion."); 1025 1026 auto Exp = getTypeExpansion(Ty, getContext()); 1027 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1028 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 1029 [&](Address EltAddr) { 1030 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1031 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1032 }); 1033 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1034 Address This = LV.getAddress(); 1035 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1036 // Perform a single step derived-to-base conversion. 1037 Address Base = 1038 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1039 /*NullCheckValue=*/false, SourceLocation()); 1040 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1041 1042 // Recurse onto bases. 1043 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1044 } 1045 for (auto FD : RExp->Fields) { 1046 // FIXME: What are the right qualifiers here? 1047 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1048 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1049 } 1050 } else if (isa<ComplexExpansion>(Exp.get())) { 1051 auto realValue = *AI++; 1052 auto imagValue = *AI++; 1053 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1054 } else { 1055 assert(isa<NoExpansion>(Exp.get())); 1056 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1057 } 1058 } 1059 1060 void CodeGenFunction::ExpandTypeToArgs( 1061 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1062 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1063 auto Exp = getTypeExpansion(Ty, getContext()); 1064 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1065 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1066 : Arg.getKnownRValue().getAggregateAddress(); 1067 forConstantArrayExpansion( 1068 *this, CAExp, Addr, [&](Address EltAddr) { 1069 CallArg EltArg = CallArg( 1070 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1071 CAExp->EltTy); 1072 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1073 IRCallArgPos); 1074 }); 1075 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1076 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1077 : Arg.getKnownRValue().getAggregateAddress(); 1078 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1079 // Perform a single step derived-to-base conversion. 1080 Address Base = 1081 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1082 /*NullCheckValue=*/false, SourceLocation()); 1083 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1084 1085 // Recurse onto bases. 1086 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1087 IRCallArgPos); 1088 } 1089 1090 LValue LV = MakeAddrLValue(This, Ty); 1091 for (auto FD : RExp->Fields) { 1092 CallArg FldArg = 1093 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1094 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1095 IRCallArgPos); 1096 } 1097 } else if (isa<ComplexExpansion>(Exp.get())) { 1098 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1099 IRCallArgs[IRCallArgPos++] = CV.first; 1100 IRCallArgs[IRCallArgPos++] = CV.second; 1101 } else { 1102 assert(isa<NoExpansion>(Exp.get())); 1103 auto RV = Arg.getKnownRValue(); 1104 assert(RV.isScalar() && 1105 "Unexpected non-scalar rvalue during struct expansion."); 1106 1107 // Insert a bitcast as needed. 1108 llvm::Value *V = RV.getScalarVal(); 1109 if (IRCallArgPos < IRFuncTy->getNumParams() && 1110 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1111 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1112 1113 IRCallArgs[IRCallArgPos++] = V; 1114 } 1115 } 1116 1117 /// Create a temporary allocation for the purposes of coercion. 1118 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1119 CharUnits MinAlign) { 1120 // Don't use an alignment that's worse than what LLVM would prefer. 1121 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1122 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1123 1124 return CGF.CreateTempAlloca(Ty, Align); 1125 } 1126 1127 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1128 /// accessing some number of bytes out of it, try to gep into the struct to get 1129 /// at its inner goodness. Dive as deep as possible without entering an element 1130 /// with an in-memory size smaller than DstSize. 1131 static Address 1132 EnterStructPointerForCoercedAccess(Address SrcPtr, 1133 llvm::StructType *SrcSTy, 1134 uint64_t DstSize, CodeGenFunction &CGF) { 1135 // We can't dive into a zero-element struct. 1136 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1137 1138 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1139 1140 // If the first elt is at least as large as what we're looking for, or if the 1141 // first element is the same size as the whole struct, we can enter it. The 1142 // comparison must be made on the store size and not the alloca size. Using 1143 // the alloca size may overstate the size of the load. 1144 uint64_t FirstEltSize = 1145 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1146 if (FirstEltSize < DstSize && 1147 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1148 return SrcPtr; 1149 1150 // GEP into the first element. 1151 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 1152 1153 // If the first element is a struct, recurse. 1154 llvm::Type *SrcTy = SrcPtr.getElementType(); 1155 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1156 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1157 1158 return SrcPtr; 1159 } 1160 1161 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1162 /// are either integers or pointers. This does a truncation of the value if it 1163 /// is too large or a zero extension if it is too small. 1164 /// 1165 /// This behaves as if the value were coerced through memory, so on big-endian 1166 /// targets the high bits are preserved in a truncation, while little-endian 1167 /// targets preserve the low bits. 1168 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1169 llvm::Type *Ty, 1170 CodeGenFunction &CGF) { 1171 if (Val->getType() == Ty) 1172 return Val; 1173 1174 if (isa<llvm::PointerType>(Val->getType())) { 1175 // If this is Pointer->Pointer avoid conversion to and from int. 1176 if (isa<llvm::PointerType>(Ty)) 1177 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1178 1179 // Convert the pointer to an integer so we can play with its width. 1180 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1181 } 1182 1183 llvm::Type *DestIntTy = Ty; 1184 if (isa<llvm::PointerType>(DestIntTy)) 1185 DestIntTy = CGF.IntPtrTy; 1186 1187 if (Val->getType() != DestIntTy) { 1188 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1189 if (DL.isBigEndian()) { 1190 // Preserve the high bits on big-endian targets. 1191 // That is what memory coercion does. 1192 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1193 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1194 1195 if (SrcSize > DstSize) { 1196 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1197 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1198 } else { 1199 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1200 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1201 } 1202 } else { 1203 // Little-endian targets preserve the low bits. No shifts required. 1204 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1205 } 1206 } 1207 1208 if (isa<llvm::PointerType>(Ty)) 1209 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1210 return Val; 1211 } 1212 1213 1214 1215 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1216 /// a pointer to an object of type \arg Ty, known to be aligned to 1217 /// \arg SrcAlign bytes. 1218 /// 1219 /// This safely handles the case when the src type is smaller than the 1220 /// destination type; in this situation the values of bits which not 1221 /// present in the src are undefined. 1222 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1223 CodeGenFunction &CGF) { 1224 llvm::Type *SrcTy = Src.getElementType(); 1225 1226 // If SrcTy and Ty are the same, just do a load. 1227 if (SrcTy == Ty) 1228 return CGF.Builder.CreateLoad(Src); 1229 1230 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1231 1232 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1233 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1234 SrcTy = Src.getType()->getElementType(); 1235 } 1236 1237 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1238 1239 // If the source and destination are integer or pointer types, just do an 1240 // extension or truncation to the desired type. 1241 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1242 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1243 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1244 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1245 } 1246 1247 // If load is legal, just bitcast the src pointer. 1248 if (SrcSize >= DstSize) { 1249 // Generally SrcSize is never greater than DstSize, since this means we are 1250 // losing bits. However, this can happen in cases where the structure has 1251 // additional padding, for example due to a user specified alignment. 1252 // 1253 // FIXME: Assert that we aren't truncating non-padding bits when have access 1254 // to that information. 1255 Src = CGF.Builder.CreateBitCast(Src, 1256 Ty->getPointerTo(Src.getAddressSpace())); 1257 return CGF.Builder.CreateLoad(Src); 1258 } 1259 1260 // Otherwise do coercion through memory. This is stupid, but simple. 1261 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1262 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); 1263 Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty); 1264 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1265 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1266 false); 1267 return CGF.Builder.CreateLoad(Tmp); 1268 } 1269 1270 // Function to store a first-class aggregate into memory. We prefer to 1271 // store the elements rather than the aggregate to be more friendly to 1272 // fast-isel. 1273 // FIXME: Do we need to recurse here? 1274 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1275 Address Dest, bool DestIsVolatile) { 1276 // Prefer scalar stores to first-class aggregate stores. 1277 if (llvm::StructType *STy = 1278 dyn_cast<llvm::StructType>(Val->getType())) { 1279 const llvm::StructLayout *Layout = 1280 CGF.CGM.getDataLayout().getStructLayout(STy); 1281 1282 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1283 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1284 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1285 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1286 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1287 } 1288 } else { 1289 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1290 } 1291 } 1292 1293 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1294 /// where the source and destination may have different types. The 1295 /// destination is known to be aligned to \arg DstAlign bytes. 1296 /// 1297 /// This safely handles the case when the src type is larger than the 1298 /// destination type; the upper bits of the src will be lost. 1299 static void CreateCoercedStore(llvm::Value *Src, 1300 Address Dst, 1301 bool DstIsVolatile, 1302 CodeGenFunction &CGF) { 1303 llvm::Type *SrcTy = Src->getType(); 1304 llvm::Type *DstTy = Dst.getType()->getElementType(); 1305 if (SrcTy == DstTy) { 1306 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1307 return; 1308 } 1309 1310 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1311 1312 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1313 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1314 DstTy = Dst.getType()->getElementType(); 1315 } 1316 1317 // If the source and destination are integer or pointer types, just do an 1318 // extension or truncation to the desired type. 1319 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1320 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1321 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1322 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1323 return; 1324 } 1325 1326 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1327 1328 // If store is legal, just bitcast the src pointer. 1329 if (SrcSize <= DstSize) { 1330 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1331 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1332 } else { 1333 // Otherwise do coercion through memory. This is stupid, but 1334 // simple. 1335 1336 // Generally SrcSize is never greater than DstSize, since this means we are 1337 // losing bits. However, this can happen in cases where the structure has 1338 // additional padding, for example due to a user specified alignment. 1339 // 1340 // FIXME: Assert that we aren't truncating non-padding bits when have access 1341 // to that information. 1342 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1343 CGF.Builder.CreateStore(Src, Tmp); 1344 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); 1345 Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty); 1346 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1347 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1348 false); 1349 } 1350 } 1351 1352 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1353 const ABIArgInfo &info) { 1354 if (unsigned offset = info.getDirectOffset()) { 1355 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1356 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1357 CharUnits::fromQuantity(offset)); 1358 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1359 } 1360 return addr; 1361 } 1362 1363 namespace { 1364 1365 /// Encapsulates information about the way function arguments from 1366 /// CGFunctionInfo should be passed to actual LLVM IR function. 1367 class ClangToLLVMArgMapping { 1368 static const unsigned InvalidIndex = ~0U; 1369 unsigned InallocaArgNo; 1370 unsigned SRetArgNo; 1371 unsigned TotalIRArgs; 1372 1373 /// Arguments of LLVM IR function corresponding to single Clang argument. 1374 struct IRArgs { 1375 unsigned PaddingArgIndex; 1376 // Argument is expanded to IR arguments at positions 1377 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1378 unsigned FirstArgIndex; 1379 unsigned NumberOfArgs; 1380 1381 IRArgs() 1382 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1383 NumberOfArgs(0) {} 1384 }; 1385 1386 SmallVector<IRArgs, 8> ArgInfo; 1387 1388 public: 1389 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1390 bool OnlyRequiredArgs = false) 1391 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1392 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1393 construct(Context, FI, OnlyRequiredArgs); 1394 } 1395 1396 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1397 unsigned getInallocaArgNo() const { 1398 assert(hasInallocaArg()); 1399 return InallocaArgNo; 1400 } 1401 1402 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1403 unsigned getSRetArgNo() const { 1404 assert(hasSRetArg()); 1405 return SRetArgNo; 1406 } 1407 1408 unsigned totalIRArgs() const { return TotalIRArgs; } 1409 1410 bool hasPaddingArg(unsigned ArgNo) const { 1411 assert(ArgNo < ArgInfo.size()); 1412 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1413 } 1414 unsigned getPaddingArgNo(unsigned ArgNo) const { 1415 assert(hasPaddingArg(ArgNo)); 1416 return ArgInfo[ArgNo].PaddingArgIndex; 1417 } 1418 1419 /// Returns index of first IR argument corresponding to ArgNo, and their 1420 /// quantity. 1421 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1422 assert(ArgNo < ArgInfo.size()); 1423 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1424 ArgInfo[ArgNo].NumberOfArgs); 1425 } 1426 1427 private: 1428 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1429 bool OnlyRequiredArgs); 1430 }; 1431 1432 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1433 const CGFunctionInfo &FI, 1434 bool OnlyRequiredArgs) { 1435 unsigned IRArgNo = 0; 1436 bool SwapThisWithSRet = false; 1437 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1438 1439 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1440 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1441 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1442 } 1443 1444 unsigned ArgNo = 0; 1445 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1446 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1447 ++I, ++ArgNo) { 1448 assert(I != FI.arg_end()); 1449 QualType ArgType = I->type; 1450 const ABIArgInfo &AI = I->info; 1451 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1452 auto &IRArgs = ArgInfo[ArgNo]; 1453 1454 if (AI.getPaddingType()) 1455 IRArgs.PaddingArgIndex = IRArgNo++; 1456 1457 switch (AI.getKind()) { 1458 case ABIArgInfo::Extend: 1459 case ABIArgInfo::Direct: { 1460 // FIXME: handle sseregparm someday... 1461 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1462 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1463 IRArgs.NumberOfArgs = STy->getNumElements(); 1464 } else { 1465 IRArgs.NumberOfArgs = 1; 1466 } 1467 break; 1468 } 1469 case ABIArgInfo::Indirect: 1470 IRArgs.NumberOfArgs = 1; 1471 break; 1472 case ABIArgInfo::Ignore: 1473 case ABIArgInfo::InAlloca: 1474 // ignore and inalloca doesn't have matching LLVM parameters. 1475 IRArgs.NumberOfArgs = 0; 1476 break; 1477 case ABIArgInfo::CoerceAndExpand: 1478 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1479 break; 1480 case ABIArgInfo::Expand: 1481 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1482 break; 1483 } 1484 1485 if (IRArgs.NumberOfArgs > 0) { 1486 IRArgs.FirstArgIndex = IRArgNo; 1487 IRArgNo += IRArgs.NumberOfArgs; 1488 } 1489 1490 // Skip over the sret parameter when it comes second. We already handled it 1491 // above. 1492 if (IRArgNo == 1 && SwapThisWithSRet) 1493 IRArgNo++; 1494 } 1495 assert(ArgNo == ArgInfo.size()); 1496 1497 if (FI.usesInAlloca()) 1498 InallocaArgNo = IRArgNo++; 1499 1500 TotalIRArgs = IRArgNo; 1501 } 1502 } // namespace 1503 1504 /***/ 1505 1506 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1507 const auto &RI = FI.getReturnInfo(); 1508 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1509 } 1510 1511 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1512 return ReturnTypeUsesSRet(FI) && 1513 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1514 } 1515 1516 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1517 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1518 switch (BT->getKind()) { 1519 default: 1520 return false; 1521 case BuiltinType::Float: 1522 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1523 case BuiltinType::Double: 1524 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1525 case BuiltinType::LongDouble: 1526 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1527 } 1528 } 1529 1530 return false; 1531 } 1532 1533 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1534 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1535 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1536 if (BT->getKind() == BuiltinType::LongDouble) 1537 return getTarget().useObjCFP2RetForComplexLongDouble(); 1538 } 1539 } 1540 1541 return false; 1542 } 1543 1544 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1545 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1546 return GetFunctionType(FI); 1547 } 1548 1549 llvm::FunctionType * 1550 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1551 1552 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1553 (void)Inserted; 1554 assert(Inserted && "Recursively being processed?"); 1555 1556 llvm::Type *resultType = nullptr; 1557 const ABIArgInfo &retAI = FI.getReturnInfo(); 1558 switch (retAI.getKind()) { 1559 case ABIArgInfo::Expand: 1560 llvm_unreachable("Invalid ABI kind for return argument"); 1561 1562 case ABIArgInfo::Extend: 1563 case ABIArgInfo::Direct: 1564 resultType = retAI.getCoerceToType(); 1565 break; 1566 1567 case ABIArgInfo::InAlloca: 1568 if (retAI.getInAllocaSRet()) { 1569 // sret things on win32 aren't void, they return the sret pointer. 1570 QualType ret = FI.getReturnType(); 1571 llvm::Type *ty = ConvertType(ret); 1572 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1573 resultType = llvm::PointerType::get(ty, addressSpace); 1574 } else { 1575 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1576 } 1577 break; 1578 1579 case ABIArgInfo::Indirect: 1580 case ABIArgInfo::Ignore: 1581 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1582 break; 1583 1584 case ABIArgInfo::CoerceAndExpand: 1585 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1586 break; 1587 } 1588 1589 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1590 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1591 1592 // Add type for sret argument. 1593 if (IRFunctionArgs.hasSRetArg()) { 1594 QualType Ret = FI.getReturnType(); 1595 llvm::Type *Ty = ConvertType(Ret); 1596 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1597 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1598 llvm::PointerType::get(Ty, AddressSpace); 1599 } 1600 1601 // Add type for inalloca argument. 1602 if (IRFunctionArgs.hasInallocaArg()) { 1603 auto ArgStruct = FI.getArgStruct(); 1604 assert(ArgStruct); 1605 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1606 } 1607 1608 // Add in all of the required arguments. 1609 unsigned ArgNo = 0; 1610 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1611 ie = it + FI.getNumRequiredArgs(); 1612 for (; it != ie; ++it, ++ArgNo) { 1613 const ABIArgInfo &ArgInfo = it->info; 1614 1615 // Insert a padding type to ensure proper alignment. 1616 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1617 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1618 ArgInfo.getPaddingType(); 1619 1620 unsigned FirstIRArg, NumIRArgs; 1621 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1622 1623 switch (ArgInfo.getKind()) { 1624 case ABIArgInfo::Ignore: 1625 case ABIArgInfo::InAlloca: 1626 assert(NumIRArgs == 0); 1627 break; 1628 1629 case ABIArgInfo::Indirect: { 1630 assert(NumIRArgs == 1); 1631 // indirect arguments are always on the stack, which is alloca addr space. 1632 llvm::Type *LTy = ConvertTypeForMem(it->type); 1633 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1634 CGM.getDataLayout().getAllocaAddrSpace()); 1635 break; 1636 } 1637 1638 case ABIArgInfo::Extend: 1639 case ABIArgInfo::Direct: { 1640 // Fast-isel and the optimizer generally like scalar values better than 1641 // FCAs, so we flatten them if this is safe to do for this argument. 1642 llvm::Type *argType = ArgInfo.getCoerceToType(); 1643 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1644 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1645 assert(NumIRArgs == st->getNumElements()); 1646 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1647 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1648 } else { 1649 assert(NumIRArgs == 1); 1650 ArgTypes[FirstIRArg] = argType; 1651 } 1652 break; 1653 } 1654 1655 case ABIArgInfo::CoerceAndExpand: { 1656 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1657 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1658 *ArgTypesIter++ = EltTy; 1659 } 1660 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1661 break; 1662 } 1663 1664 case ABIArgInfo::Expand: 1665 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1666 getExpandedTypes(it->type, ArgTypesIter); 1667 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1668 break; 1669 } 1670 } 1671 1672 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1673 assert(Erased && "Not in set?"); 1674 1675 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1676 } 1677 1678 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1679 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1680 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1681 1682 if (!isFuncTypeConvertible(FPT)) 1683 return llvm::StructType::get(getLLVMContext()); 1684 1685 const CGFunctionInfo *Info; 1686 if (isa<CXXDestructorDecl>(MD)) 1687 Info = 1688 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1689 else 1690 Info = &arrangeCXXMethodDeclaration(MD); 1691 return GetFunctionType(*Info); 1692 } 1693 1694 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1695 llvm::AttrBuilder &FuncAttrs, 1696 const FunctionProtoType *FPT) { 1697 if (!FPT) 1698 return; 1699 1700 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1701 FPT->isNothrow()) 1702 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1703 } 1704 1705 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1706 bool AttrOnCallSite, 1707 llvm::AttrBuilder &FuncAttrs) { 1708 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1709 if (!HasOptnone) { 1710 if (CodeGenOpts.OptimizeSize) 1711 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1712 if (CodeGenOpts.OptimizeSize == 2) 1713 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1714 } 1715 1716 if (CodeGenOpts.DisableRedZone) 1717 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1718 if (CodeGenOpts.IndirectTlsSegRefs) 1719 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1720 if (CodeGenOpts.NoImplicitFloat) 1721 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1722 1723 if (AttrOnCallSite) { 1724 // Attributes that should go on the call site only. 1725 if (!CodeGenOpts.SimplifyLibCalls || 1726 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1727 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1728 if (!CodeGenOpts.TrapFuncName.empty()) 1729 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1730 } else { 1731 // Attributes that should go on the function, but not the call site. 1732 if (!CodeGenOpts.DisableFPElim) { 1733 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1734 } else if (CodeGenOpts.OmitLeafFramePointer) { 1735 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1736 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1737 } else { 1738 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1739 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1740 } 1741 1742 FuncAttrs.addAttribute("less-precise-fpmad", 1743 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1744 1745 if (CodeGenOpts.NullPointerIsValid) 1746 FuncAttrs.addAttribute("null-pointer-is-valid", "true"); 1747 if (!CodeGenOpts.FPDenormalMode.empty()) 1748 FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); 1749 1750 FuncAttrs.addAttribute("no-trapping-math", 1751 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1752 1753 // Strict (compliant) code is the default, so only add this attribute to 1754 // indicate that we are trying to workaround a problem case. 1755 if (!CodeGenOpts.StrictFloatCastOverflow) 1756 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1757 1758 // TODO: Are these all needed? 1759 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1760 FuncAttrs.addAttribute("no-infs-fp-math", 1761 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1762 FuncAttrs.addAttribute("no-nans-fp-math", 1763 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1764 FuncAttrs.addAttribute("unsafe-fp-math", 1765 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1766 FuncAttrs.addAttribute("use-soft-float", 1767 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1768 FuncAttrs.addAttribute("stack-protector-buffer-size", 1769 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1770 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1771 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1772 FuncAttrs.addAttribute( 1773 "correctly-rounded-divide-sqrt-fp-math", 1774 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1775 1776 if (getLangOpts().OpenCL) 1777 FuncAttrs.addAttribute("denorms-are-zero", 1778 llvm::toStringRef(CodeGenOpts.FlushDenorm)); 1779 1780 // TODO: Reciprocal estimate codegen options should apply to instructions? 1781 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1782 if (!Recips.empty()) 1783 FuncAttrs.addAttribute("reciprocal-estimates", 1784 llvm::join(Recips, ",")); 1785 1786 if (!CodeGenOpts.PreferVectorWidth.empty() && 1787 CodeGenOpts.PreferVectorWidth != "none") 1788 FuncAttrs.addAttribute("prefer-vector-width", 1789 CodeGenOpts.PreferVectorWidth); 1790 1791 if (CodeGenOpts.StackRealignment) 1792 FuncAttrs.addAttribute("stackrealign"); 1793 if (CodeGenOpts.Backchain) 1794 FuncAttrs.addAttribute("backchain"); 1795 1796 // FIXME: The interaction of this attribute with the SLH command line flag 1797 // has not been determined. 1798 if (CodeGenOpts.SpeculativeLoadHardening) 1799 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1800 } 1801 1802 if (getLangOpts().assumeFunctionsAreConvergent()) { 1803 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1804 // convergent (meaning, they may call an intrinsically convergent op, such 1805 // as __syncthreads() / barrier(), and so can't have certain optimizations 1806 // applied around them). LLVM will remove this attribute where it safely 1807 // can. 1808 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1809 } 1810 1811 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1812 // Exceptions aren't supported in CUDA device code. 1813 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1814 1815 // Respect -fcuda-flush-denormals-to-zero. 1816 if (CodeGenOpts.FlushDenorm) 1817 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1818 } 1819 1820 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1821 StringRef Var, Value; 1822 std::tie(Var, Value) = Attr.split('='); 1823 FuncAttrs.addAttribute(Var, Value); 1824 } 1825 } 1826 1827 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1828 llvm::AttrBuilder FuncAttrs; 1829 ConstructDefaultFnAttrList(F.getName(), 1830 F.hasFnAttribute(llvm::Attribute::OptimizeNone), 1831 /* AttrOnCallsite = */ false, FuncAttrs); 1832 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1833 } 1834 1835 void CodeGenModule::ConstructAttributeList( 1836 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1837 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1838 llvm::AttrBuilder FuncAttrs; 1839 llvm::AttrBuilder RetAttrs; 1840 1841 CallingConv = FI.getEffectiveCallingConvention(); 1842 if (FI.isNoReturn()) 1843 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1844 1845 // If we have information about the function prototype, we can learn 1846 // attributes from there. 1847 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1848 CalleeInfo.getCalleeFunctionProtoType()); 1849 1850 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 1851 1852 bool HasOptnone = false; 1853 // FIXME: handle sseregparm someday... 1854 if (TargetDecl) { 1855 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1856 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1857 if (TargetDecl->hasAttr<NoThrowAttr>()) 1858 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1859 if (TargetDecl->hasAttr<NoReturnAttr>()) 1860 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1861 if (TargetDecl->hasAttr<ColdAttr>()) 1862 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1863 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1864 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1865 if (TargetDecl->hasAttr<ConvergentAttr>()) 1866 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1867 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 1868 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1869 1870 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1871 AddAttributesFromFunctionProtoType( 1872 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1873 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1874 // These attributes are not inherited by overloads. 1875 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1876 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1877 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1878 } 1879 1880 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1881 if (TargetDecl->hasAttr<ConstAttr>()) { 1882 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1883 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1884 } else if (TargetDecl->hasAttr<PureAttr>()) { 1885 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1886 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1887 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1888 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1889 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1890 } 1891 if (TargetDecl->hasAttr<RestrictAttr>()) 1892 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1893 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1894 !CodeGenOpts.NullPointerIsValid) 1895 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1896 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1897 FuncAttrs.addAttribute("no_caller_saved_registers"); 1898 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1899 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1900 1901 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1902 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1903 Optional<unsigned> NumElemsParam; 1904 if (AllocSize->getNumElemsParam().isValid()) 1905 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 1906 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 1907 NumElemsParam); 1908 } 1909 } 1910 1911 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1912 1913 if (CodeGenOpts.EnableSegmentedStacks && 1914 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1915 FuncAttrs.addAttribute("split-stack"); 1916 1917 // Add NonLazyBind attribute to function declarations when -fno-plt 1918 // is used. 1919 if (TargetDecl && CodeGenOpts.NoPLT) { 1920 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1921 if (!Fn->isDefined() && !AttrOnCallSite) { 1922 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 1923 } 1924 } 1925 } 1926 1927 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) { 1928 if (getLangOpts().OpenCLVersion <= 120) { 1929 // OpenCL v1.2 Work groups are always uniform 1930 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 1931 } else { 1932 // OpenCL v2.0 Work groups may be whether uniform or not. 1933 // '-cl-uniform-work-group-size' compile option gets a hint 1934 // to the compiler that the global work-size be a multiple of 1935 // the work-group size specified to clEnqueueNDRangeKernel 1936 // (i.e. work groups are uniform). 1937 FuncAttrs.addAttribute("uniform-work-group-size", 1938 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 1939 } 1940 } 1941 1942 if (!AttrOnCallSite) { 1943 bool DisableTailCalls = false; 1944 1945 if (CodeGenOpts.DisableTailCalls) 1946 DisableTailCalls = true; 1947 else if (TargetDecl) { 1948 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 1949 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 1950 DisableTailCalls = true; 1951 else if (CodeGenOpts.NoEscapingBlockTailCalls) { 1952 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 1953 if (!BD->doesNotEscape()) 1954 DisableTailCalls = true; 1955 } 1956 } 1957 1958 FuncAttrs.addAttribute("disable-tail-calls", 1959 llvm::toStringRef(DisableTailCalls)); 1960 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 1961 } 1962 1963 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1964 1965 QualType RetTy = FI.getReturnType(); 1966 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1967 switch (RetAI.getKind()) { 1968 case ABIArgInfo::Extend: 1969 if (RetAI.isSignExt()) 1970 RetAttrs.addAttribute(llvm::Attribute::SExt); 1971 else 1972 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1973 LLVM_FALLTHROUGH; 1974 case ABIArgInfo::Direct: 1975 if (RetAI.getInReg()) 1976 RetAttrs.addAttribute(llvm::Attribute::InReg); 1977 break; 1978 case ABIArgInfo::Ignore: 1979 break; 1980 1981 case ABIArgInfo::InAlloca: 1982 case ABIArgInfo::Indirect: { 1983 // inalloca and sret disable readnone and readonly 1984 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1985 .removeAttribute(llvm::Attribute::ReadNone); 1986 break; 1987 } 1988 1989 case ABIArgInfo::CoerceAndExpand: 1990 break; 1991 1992 case ABIArgInfo::Expand: 1993 llvm_unreachable("Invalid ABI kind for return argument"); 1994 } 1995 1996 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1997 QualType PTy = RefTy->getPointeeType(); 1998 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1999 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2000 .getQuantity()); 2001 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2002 !CodeGenOpts.NullPointerIsValid) 2003 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2004 } 2005 2006 bool hasUsedSRet = false; 2007 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2008 2009 // Attach attributes to sret. 2010 if (IRFunctionArgs.hasSRetArg()) { 2011 llvm::AttrBuilder SRETAttrs; 2012 if (!RetAI.getSuppressSRet()) 2013 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 2014 hasUsedSRet = true; 2015 if (RetAI.getInReg()) 2016 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2017 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2018 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2019 } 2020 2021 // Attach attributes to inalloca argument. 2022 if (IRFunctionArgs.hasInallocaArg()) { 2023 llvm::AttrBuilder Attrs; 2024 Attrs.addAttribute(llvm::Attribute::InAlloca); 2025 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2026 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2027 } 2028 2029 unsigned ArgNo = 0; 2030 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2031 E = FI.arg_end(); 2032 I != E; ++I, ++ArgNo) { 2033 QualType ParamType = I->type; 2034 const ABIArgInfo &AI = I->info; 2035 llvm::AttrBuilder Attrs; 2036 2037 // Add attribute for padding argument, if necessary. 2038 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2039 if (AI.getPaddingInReg()) { 2040 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2041 llvm::AttributeSet::get( 2042 getLLVMContext(), 2043 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2044 } 2045 } 2046 2047 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2048 // have the corresponding parameter variable. It doesn't make 2049 // sense to do it here because parameters are so messed up. 2050 switch (AI.getKind()) { 2051 case ABIArgInfo::Extend: 2052 if (AI.isSignExt()) 2053 Attrs.addAttribute(llvm::Attribute::SExt); 2054 else 2055 Attrs.addAttribute(llvm::Attribute::ZExt); 2056 LLVM_FALLTHROUGH; 2057 case ABIArgInfo::Direct: 2058 if (ArgNo == 0 && FI.isChainCall()) 2059 Attrs.addAttribute(llvm::Attribute::Nest); 2060 else if (AI.getInReg()) 2061 Attrs.addAttribute(llvm::Attribute::InReg); 2062 break; 2063 2064 case ABIArgInfo::Indirect: { 2065 if (AI.getInReg()) 2066 Attrs.addAttribute(llvm::Attribute::InReg); 2067 2068 if (AI.getIndirectByVal()) 2069 Attrs.addAttribute(llvm::Attribute::ByVal); 2070 2071 CharUnits Align = AI.getIndirectAlign(); 2072 2073 // In a byval argument, it is important that the required 2074 // alignment of the type is honored, as LLVM might be creating a 2075 // *new* stack object, and needs to know what alignment to give 2076 // it. (Sometimes it can deduce a sensible alignment on its own, 2077 // but not if clang decides it must emit a packed struct, or the 2078 // user specifies increased alignment requirements.) 2079 // 2080 // This is different from indirect *not* byval, where the object 2081 // exists already, and the align attribute is purely 2082 // informative. 2083 assert(!Align.isZero()); 2084 2085 // For now, only add this when we have a byval argument. 2086 // TODO: be less lazy about updating test cases. 2087 if (AI.getIndirectByVal()) 2088 Attrs.addAlignmentAttr(Align.getQuantity()); 2089 2090 // byval disables readnone and readonly. 2091 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2092 .removeAttribute(llvm::Attribute::ReadNone); 2093 break; 2094 } 2095 case ABIArgInfo::Ignore: 2096 case ABIArgInfo::Expand: 2097 case ABIArgInfo::CoerceAndExpand: 2098 break; 2099 2100 case ABIArgInfo::InAlloca: 2101 // inalloca disables readnone and readonly. 2102 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2103 .removeAttribute(llvm::Attribute::ReadNone); 2104 continue; 2105 } 2106 2107 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2108 QualType PTy = RefTy->getPointeeType(); 2109 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2110 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2111 .getQuantity()); 2112 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2113 !CodeGenOpts.NullPointerIsValid) 2114 Attrs.addAttribute(llvm::Attribute::NonNull); 2115 } 2116 2117 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2118 case ParameterABI::Ordinary: 2119 break; 2120 2121 case ParameterABI::SwiftIndirectResult: { 2122 // Add 'sret' if we haven't already used it for something, but 2123 // only if the result is void. 2124 if (!hasUsedSRet && RetTy->isVoidType()) { 2125 Attrs.addAttribute(llvm::Attribute::StructRet); 2126 hasUsedSRet = true; 2127 } 2128 2129 // Add 'noalias' in either case. 2130 Attrs.addAttribute(llvm::Attribute::NoAlias); 2131 2132 // Add 'dereferenceable' and 'alignment'. 2133 auto PTy = ParamType->getPointeeType(); 2134 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2135 auto info = getContext().getTypeInfoInChars(PTy); 2136 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2137 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 2138 info.second.getQuantity())); 2139 } 2140 break; 2141 } 2142 2143 case ParameterABI::SwiftErrorResult: 2144 Attrs.addAttribute(llvm::Attribute::SwiftError); 2145 break; 2146 2147 case ParameterABI::SwiftContext: 2148 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2149 break; 2150 } 2151 2152 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2153 Attrs.addAttribute(llvm::Attribute::NoCapture); 2154 2155 if (Attrs.hasAttributes()) { 2156 unsigned FirstIRArg, NumIRArgs; 2157 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2158 for (unsigned i = 0; i < NumIRArgs; i++) 2159 ArgAttrs[FirstIRArg + i] = 2160 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2161 } 2162 } 2163 assert(ArgNo == FI.arg_size()); 2164 2165 AttrList = llvm::AttributeList::get( 2166 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2167 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2168 } 2169 2170 /// An argument came in as a promoted argument; demote it back to its 2171 /// declared type. 2172 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2173 const VarDecl *var, 2174 llvm::Value *value) { 2175 llvm::Type *varType = CGF.ConvertType(var->getType()); 2176 2177 // This can happen with promotions that actually don't change the 2178 // underlying type, like the enum promotions. 2179 if (value->getType() == varType) return value; 2180 2181 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2182 && "unexpected promotion type"); 2183 2184 if (isa<llvm::IntegerType>(varType)) 2185 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2186 2187 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2188 } 2189 2190 /// Returns the attribute (either parameter attribute, or function 2191 /// attribute), which declares argument ArgNo to be non-null. 2192 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2193 QualType ArgType, unsigned ArgNo) { 2194 // FIXME: __attribute__((nonnull)) can also be applied to: 2195 // - references to pointers, where the pointee is known to be 2196 // nonnull (apparently a Clang extension) 2197 // - transparent unions containing pointers 2198 // In the former case, LLVM IR cannot represent the constraint. In 2199 // the latter case, we have no guarantee that the transparent union 2200 // is in fact passed as a pointer. 2201 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2202 return nullptr; 2203 // First, check attribute on parameter itself. 2204 if (PVD) { 2205 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2206 return ParmNNAttr; 2207 } 2208 // Check function attributes. 2209 if (!FD) 2210 return nullptr; 2211 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2212 if (NNAttr->isNonNull(ArgNo)) 2213 return NNAttr; 2214 } 2215 return nullptr; 2216 } 2217 2218 namespace { 2219 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2220 Address Temp; 2221 Address Arg; 2222 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2223 void Emit(CodeGenFunction &CGF, Flags flags) override { 2224 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2225 CGF.Builder.CreateStore(errorValue, Arg); 2226 } 2227 }; 2228 } 2229 2230 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2231 llvm::Function *Fn, 2232 const FunctionArgList &Args) { 2233 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2234 // Naked functions don't have prologues. 2235 return; 2236 2237 // If this is an implicit-return-zero function, go ahead and 2238 // initialize the return value. TODO: it might be nice to have 2239 // a more general mechanism for this that didn't require synthesized 2240 // return statements. 2241 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2242 if (FD->hasImplicitReturnZero()) { 2243 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2244 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2245 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2246 Builder.CreateStore(Zero, ReturnValue); 2247 } 2248 } 2249 2250 // FIXME: We no longer need the types from FunctionArgList; lift up and 2251 // simplify. 2252 2253 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2254 // Flattened function arguments. 2255 SmallVector<llvm::Value *, 16> FnArgs; 2256 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2257 for (auto &Arg : Fn->args()) { 2258 FnArgs.push_back(&Arg); 2259 } 2260 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2261 2262 // If we're using inalloca, all the memory arguments are GEPs off of the last 2263 // parameter, which is a pointer to the complete memory area. 2264 Address ArgStruct = Address::invalid(); 2265 const llvm::StructLayout *ArgStructLayout = nullptr; 2266 if (IRFunctionArgs.hasInallocaArg()) { 2267 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 2268 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2269 FI.getArgStructAlignment()); 2270 2271 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2272 } 2273 2274 // Name the struct return parameter. 2275 if (IRFunctionArgs.hasSRetArg()) { 2276 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2277 AI->setName("agg.result"); 2278 AI->addAttr(llvm::Attribute::NoAlias); 2279 } 2280 2281 // Track if we received the parameter as a pointer (indirect, byval, or 2282 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2283 // into a local alloca for us. 2284 SmallVector<ParamValue, 16> ArgVals; 2285 ArgVals.reserve(Args.size()); 2286 2287 // Create a pointer value for every parameter declaration. This usually 2288 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2289 // any cleanups or do anything that might unwind. We do that separately, so 2290 // we can push the cleanups in the correct order for the ABI. 2291 assert(FI.arg_size() == Args.size() && 2292 "Mismatch between function signature & arguments."); 2293 unsigned ArgNo = 0; 2294 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2295 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2296 i != e; ++i, ++info_it, ++ArgNo) { 2297 const VarDecl *Arg = *i; 2298 const ABIArgInfo &ArgI = info_it->info; 2299 2300 bool isPromoted = 2301 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2302 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2303 // the parameter is promoted. In this case we convert to 2304 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2305 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2306 assert(hasScalarEvaluationKind(Ty) == 2307 hasScalarEvaluationKind(Arg->getType())); 2308 2309 unsigned FirstIRArg, NumIRArgs; 2310 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2311 2312 switch (ArgI.getKind()) { 2313 case ABIArgInfo::InAlloca: { 2314 assert(NumIRArgs == 0); 2315 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2316 CharUnits FieldOffset = 2317 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 2318 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 2319 Arg->getName()); 2320 ArgVals.push_back(ParamValue::forIndirect(V)); 2321 break; 2322 } 2323 2324 case ABIArgInfo::Indirect: { 2325 assert(NumIRArgs == 1); 2326 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2327 2328 if (!hasScalarEvaluationKind(Ty)) { 2329 // Aggregates and complex variables are accessed by reference. All we 2330 // need to do is realign the value, if requested. 2331 Address V = ParamAddr; 2332 if (ArgI.getIndirectRealign()) { 2333 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2334 2335 // Copy from the incoming argument pointer to the temporary with the 2336 // appropriate alignment. 2337 // 2338 // FIXME: We should have a common utility for generating an aggregate 2339 // copy. 2340 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2341 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2342 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2343 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2344 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2345 V = AlignedTemp; 2346 } 2347 ArgVals.push_back(ParamValue::forIndirect(V)); 2348 } else { 2349 // Load scalar value from indirect argument. 2350 llvm::Value *V = 2351 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2352 2353 if (isPromoted) 2354 V = emitArgumentDemotion(*this, Arg, V); 2355 ArgVals.push_back(ParamValue::forDirect(V)); 2356 } 2357 break; 2358 } 2359 2360 case ABIArgInfo::Extend: 2361 case ABIArgInfo::Direct: { 2362 2363 // If we have the trivial case, handle it with no muss and fuss. 2364 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2365 ArgI.getCoerceToType() == ConvertType(Ty) && 2366 ArgI.getDirectOffset() == 0) { 2367 assert(NumIRArgs == 1); 2368 llvm::Value *V = FnArgs[FirstIRArg]; 2369 auto AI = cast<llvm::Argument>(V); 2370 2371 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2372 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2373 PVD->getFunctionScopeIndex()) && 2374 !CGM.getCodeGenOpts().NullPointerIsValid) 2375 AI->addAttr(llvm::Attribute::NonNull); 2376 2377 QualType OTy = PVD->getOriginalType(); 2378 if (const auto *ArrTy = 2379 getContext().getAsConstantArrayType(OTy)) { 2380 // A C99 array parameter declaration with the static keyword also 2381 // indicates dereferenceability, and if the size is constant we can 2382 // use the dereferenceable attribute (which requires the size in 2383 // bytes). 2384 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2385 QualType ETy = ArrTy->getElementType(); 2386 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2387 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2388 ArrSize) { 2389 llvm::AttrBuilder Attrs; 2390 Attrs.addDereferenceableAttr( 2391 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2392 AI->addAttrs(Attrs); 2393 } else if (getContext().getTargetAddressSpace(ETy) == 0 && 2394 !CGM.getCodeGenOpts().NullPointerIsValid) { 2395 AI->addAttr(llvm::Attribute::NonNull); 2396 } 2397 } 2398 } else if (const auto *ArrTy = 2399 getContext().getAsVariableArrayType(OTy)) { 2400 // For C99 VLAs with the static keyword, we don't know the size so 2401 // we can't use the dereferenceable attribute, but in addrspace(0) 2402 // we know that it must be nonnull. 2403 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2404 !getContext().getTargetAddressSpace(ArrTy->getElementType()) && 2405 !CGM.getCodeGenOpts().NullPointerIsValid) 2406 AI->addAttr(llvm::Attribute::NonNull); 2407 } 2408 2409 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2410 if (!AVAttr) 2411 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2412 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2413 if (AVAttr) { 2414 llvm::Value *AlignmentValue = 2415 EmitScalarExpr(AVAttr->getAlignment()); 2416 llvm::ConstantInt *AlignmentCI = 2417 cast<llvm::ConstantInt>(AlignmentValue); 2418 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), 2419 +llvm::Value::MaximumAlignment); 2420 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2421 } 2422 } 2423 2424 if (Arg->getType().isRestrictQualified()) 2425 AI->addAttr(llvm::Attribute::NoAlias); 2426 2427 // LLVM expects swifterror parameters to be used in very restricted 2428 // ways. Copy the value into a less-restricted temporary. 2429 if (FI.getExtParameterInfo(ArgNo).getABI() 2430 == ParameterABI::SwiftErrorResult) { 2431 QualType pointeeTy = Ty->getPointeeType(); 2432 assert(pointeeTy->isPointerType()); 2433 Address temp = 2434 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2435 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2436 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2437 Builder.CreateStore(incomingErrorValue, temp); 2438 V = temp.getPointer(); 2439 2440 // Push a cleanup to copy the value back at the end of the function. 2441 // The convention does not guarantee that the value will be written 2442 // back if the function exits with an unwind exception. 2443 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2444 } 2445 2446 // Ensure the argument is the correct type. 2447 if (V->getType() != ArgI.getCoerceToType()) 2448 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2449 2450 if (isPromoted) 2451 V = emitArgumentDemotion(*this, Arg, V); 2452 2453 // Because of merging of function types from multiple decls it is 2454 // possible for the type of an argument to not match the corresponding 2455 // type in the function type. Since we are codegening the callee 2456 // in here, add a cast to the argument type. 2457 llvm::Type *LTy = ConvertType(Arg->getType()); 2458 if (V->getType() != LTy) 2459 V = Builder.CreateBitCast(V, LTy); 2460 2461 ArgVals.push_back(ParamValue::forDirect(V)); 2462 break; 2463 } 2464 2465 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2466 Arg->getName()); 2467 2468 // Pointer to store into. 2469 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2470 2471 // Fast-isel and the optimizer generally like scalar values better than 2472 // FCAs, so we flatten them if this is safe to do for this argument. 2473 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2474 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2475 STy->getNumElements() > 1) { 2476 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2477 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2478 llvm::Type *DstTy = Ptr.getElementType(); 2479 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2480 2481 Address AddrToStoreInto = Address::invalid(); 2482 if (SrcSize <= DstSize) { 2483 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2484 } else { 2485 AddrToStoreInto = 2486 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2487 } 2488 2489 assert(STy->getNumElements() == NumIRArgs); 2490 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2491 auto AI = FnArgs[FirstIRArg + i]; 2492 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2493 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2494 Address EltPtr = 2495 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2496 Builder.CreateStore(AI, EltPtr); 2497 } 2498 2499 if (SrcSize > DstSize) { 2500 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2501 } 2502 2503 } else { 2504 // Simple case, just do a coerced store of the argument into the alloca. 2505 assert(NumIRArgs == 1); 2506 auto AI = FnArgs[FirstIRArg]; 2507 AI->setName(Arg->getName() + ".coerce"); 2508 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2509 } 2510 2511 // Match to what EmitParmDecl is expecting for this type. 2512 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2513 llvm::Value *V = 2514 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2515 if (isPromoted) 2516 V = emitArgumentDemotion(*this, Arg, V); 2517 ArgVals.push_back(ParamValue::forDirect(V)); 2518 } else { 2519 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2520 } 2521 break; 2522 } 2523 2524 case ABIArgInfo::CoerceAndExpand: { 2525 // Reconstruct into a temporary. 2526 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2527 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2528 2529 auto coercionType = ArgI.getCoerceAndExpandType(); 2530 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2531 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2532 2533 unsigned argIndex = FirstIRArg; 2534 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2535 llvm::Type *eltType = coercionType->getElementType(i); 2536 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2537 continue; 2538 2539 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); 2540 auto elt = FnArgs[argIndex++]; 2541 Builder.CreateStore(elt, eltAddr); 2542 } 2543 assert(argIndex == FirstIRArg + NumIRArgs); 2544 break; 2545 } 2546 2547 case ABIArgInfo::Expand: { 2548 // If this structure was expanded into multiple arguments then 2549 // we need to create a temporary and reconstruct it from the 2550 // arguments. 2551 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2552 LValue LV = MakeAddrLValue(Alloca, Ty); 2553 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2554 2555 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2556 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2557 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2558 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2559 auto AI = FnArgs[FirstIRArg + i]; 2560 AI->setName(Arg->getName() + "." + Twine(i)); 2561 } 2562 break; 2563 } 2564 2565 case ABIArgInfo::Ignore: 2566 assert(NumIRArgs == 0); 2567 // Initialize the local variable appropriately. 2568 if (!hasScalarEvaluationKind(Ty)) { 2569 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2570 } else { 2571 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2572 ArgVals.push_back(ParamValue::forDirect(U)); 2573 } 2574 break; 2575 } 2576 } 2577 2578 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2579 for (int I = Args.size() - 1; I >= 0; --I) 2580 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2581 } else { 2582 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2583 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2584 } 2585 } 2586 2587 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2588 while (insn->use_empty()) { 2589 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2590 if (!bitcast) return; 2591 2592 // This is "safe" because we would have used a ConstantExpr otherwise. 2593 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2594 bitcast->eraseFromParent(); 2595 } 2596 } 2597 2598 /// Try to emit a fused autorelease of a return result. 2599 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2600 llvm::Value *result) { 2601 // We must be immediately followed the cast. 2602 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2603 if (BB->empty()) return nullptr; 2604 if (&BB->back() != result) return nullptr; 2605 2606 llvm::Type *resultType = result->getType(); 2607 2608 // result is in a BasicBlock and is therefore an Instruction. 2609 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2610 2611 SmallVector<llvm::Instruction *, 4> InstsToKill; 2612 2613 // Look for: 2614 // %generator = bitcast %type1* %generator2 to %type2* 2615 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2616 // We would have emitted this as a constant if the operand weren't 2617 // an Instruction. 2618 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2619 2620 // Require the generator to be immediately followed by the cast. 2621 if (generator->getNextNode() != bitcast) 2622 return nullptr; 2623 2624 InstsToKill.push_back(bitcast); 2625 } 2626 2627 // Look for: 2628 // %generator = call i8* @objc_retain(i8* %originalResult) 2629 // or 2630 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2631 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2632 if (!call) return nullptr; 2633 2634 bool doRetainAutorelease; 2635 2636 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2637 doRetainAutorelease = true; 2638 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2639 .objc_retainAutoreleasedReturnValue) { 2640 doRetainAutorelease = false; 2641 2642 // If we emitted an assembly marker for this call (and the 2643 // ARCEntrypoints field should have been set if so), go looking 2644 // for that call. If we can't find it, we can't do this 2645 // optimization. But it should always be the immediately previous 2646 // instruction, unless we needed bitcasts around the call. 2647 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2648 llvm::Instruction *prev = call->getPrevNode(); 2649 assert(prev); 2650 if (isa<llvm::BitCastInst>(prev)) { 2651 prev = prev->getPrevNode(); 2652 assert(prev); 2653 } 2654 assert(isa<llvm::CallInst>(prev)); 2655 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2656 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2657 InstsToKill.push_back(prev); 2658 } 2659 } else { 2660 return nullptr; 2661 } 2662 2663 result = call->getArgOperand(0); 2664 InstsToKill.push_back(call); 2665 2666 // Keep killing bitcasts, for sanity. Note that we no longer care 2667 // about precise ordering as long as there's exactly one use. 2668 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2669 if (!bitcast->hasOneUse()) break; 2670 InstsToKill.push_back(bitcast); 2671 result = bitcast->getOperand(0); 2672 } 2673 2674 // Delete all the unnecessary instructions, from latest to earliest. 2675 for (auto *I : InstsToKill) 2676 I->eraseFromParent(); 2677 2678 // Do the fused retain/autorelease if we were asked to. 2679 if (doRetainAutorelease) 2680 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2681 2682 // Cast back to the result type. 2683 return CGF.Builder.CreateBitCast(result, resultType); 2684 } 2685 2686 /// If this is a +1 of the value of an immutable 'self', remove it. 2687 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2688 llvm::Value *result) { 2689 // This is only applicable to a method with an immutable 'self'. 2690 const ObjCMethodDecl *method = 2691 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2692 if (!method) return nullptr; 2693 const VarDecl *self = method->getSelfDecl(); 2694 if (!self->getType().isConstQualified()) return nullptr; 2695 2696 // Look for a retain call. 2697 llvm::CallInst *retainCall = 2698 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2699 if (!retainCall || 2700 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2701 return nullptr; 2702 2703 // Look for an ordinary load of 'self'. 2704 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2705 llvm::LoadInst *load = 2706 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2707 if (!load || load->isAtomic() || load->isVolatile() || 2708 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2709 return nullptr; 2710 2711 // Okay! Burn it all down. This relies for correctness on the 2712 // assumption that the retain is emitted as part of the return and 2713 // that thereafter everything is used "linearly". 2714 llvm::Type *resultType = result->getType(); 2715 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2716 assert(retainCall->use_empty()); 2717 retainCall->eraseFromParent(); 2718 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2719 2720 return CGF.Builder.CreateBitCast(load, resultType); 2721 } 2722 2723 /// Emit an ARC autorelease of the result of a function. 2724 /// 2725 /// \return the value to actually return from the function 2726 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2727 llvm::Value *result) { 2728 // If we're returning 'self', kill the initial retain. This is a 2729 // heuristic attempt to "encourage correctness" in the really unfortunate 2730 // case where we have a return of self during a dealloc and we desperately 2731 // need to avoid the possible autorelease. 2732 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2733 return self; 2734 2735 // At -O0, try to emit a fused retain/autorelease. 2736 if (CGF.shouldUseFusedARCCalls()) 2737 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2738 return fused; 2739 2740 return CGF.EmitARCAutoreleaseReturnValue(result); 2741 } 2742 2743 /// Heuristically search for a dominating store to the return-value slot. 2744 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2745 // Check if a User is a store which pointerOperand is the ReturnValue. 2746 // We are looking for stores to the ReturnValue, not for stores of the 2747 // ReturnValue to some other location. 2748 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2749 auto *SI = dyn_cast<llvm::StoreInst>(U); 2750 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2751 return nullptr; 2752 // These aren't actually possible for non-coerced returns, and we 2753 // only care about non-coerced returns on this code path. 2754 assert(!SI->isAtomic() && !SI->isVolatile()); 2755 return SI; 2756 }; 2757 // If there are multiple uses of the return-value slot, just check 2758 // for something immediately preceding the IP. Sometimes this can 2759 // happen with how we generate implicit-returns; it can also happen 2760 // with noreturn cleanups. 2761 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2762 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2763 if (IP->empty()) return nullptr; 2764 llvm::Instruction *I = &IP->back(); 2765 2766 // Skip lifetime markers 2767 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2768 IE = IP->rend(); 2769 II != IE; ++II) { 2770 if (llvm::IntrinsicInst *Intrinsic = 2771 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2772 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2773 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2774 ++II; 2775 if (II == IE) 2776 break; 2777 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2778 continue; 2779 } 2780 } 2781 I = &*II; 2782 break; 2783 } 2784 2785 return GetStoreIfValid(I); 2786 } 2787 2788 llvm::StoreInst *store = 2789 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2790 if (!store) return nullptr; 2791 2792 // Now do a first-and-dirty dominance check: just walk up the 2793 // single-predecessors chain from the current insertion point. 2794 llvm::BasicBlock *StoreBB = store->getParent(); 2795 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2796 while (IP != StoreBB) { 2797 if (!(IP = IP->getSinglePredecessor())) 2798 return nullptr; 2799 } 2800 2801 // Okay, the store's basic block dominates the insertion point; we 2802 // can do our thing. 2803 return store; 2804 } 2805 2806 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2807 bool EmitRetDbgLoc, 2808 SourceLocation EndLoc) { 2809 if (FI.isNoReturn()) { 2810 // Noreturn functions don't return. 2811 EmitUnreachable(EndLoc); 2812 return; 2813 } 2814 2815 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2816 // Naked functions don't have epilogues. 2817 Builder.CreateUnreachable(); 2818 return; 2819 } 2820 2821 // Functions with no result always return void. 2822 if (!ReturnValue.isValid()) { 2823 Builder.CreateRetVoid(); 2824 return; 2825 } 2826 2827 llvm::DebugLoc RetDbgLoc; 2828 llvm::Value *RV = nullptr; 2829 QualType RetTy = FI.getReturnType(); 2830 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2831 2832 switch (RetAI.getKind()) { 2833 case ABIArgInfo::InAlloca: 2834 // Aggregrates get evaluated directly into the destination. Sometimes we 2835 // need to return the sret value in a register, though. 2836 assert(hasAggregateEvaluationKind(RetTy)); 2837 if (RetAI.getInAllocaSRet()) { 2838 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2839 --EI; 2840 llvm::Value *ArgStruct = &*EI; 2841 llvm::Value *SRet = Builder.CreateStructGEP( 2842 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2843 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2844 } 2845 break; 2846 2847 case ABIArgInfo::Indirect: { 2848 auto AI = CurFn->arg_begin(); 2849 if (RetAI.isSRetAfterThis()) 2850 ++AI; 2851 switch (getEvaluationKind(RetTy)) { 2852 case TEK_Complex: { 2853 ComplexPairTy RT = 2854 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2855 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2856 /*isInit*/ true); 2857 break; 2858 } 2859 case TEK_Aggregate: 2860 // Do nothing; aggregrates get evaluated directly into the destination. 2861 break; 2862 case TEK_Scalar: 2863 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2864 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2865 /*isInit*/ true); 2866 break; 2867 } 2868 break; 2869 } 2870 2871 case ABIArgInfo::Extend: 2872 case ABIArgInfo::Direct: 2873 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2874 RetAI.getDirectOffset() == 0) { 2875 // The internal return value temp always will have pointer-to-return-type 2876 // type, just do a load. 2877 2878 // If there is a dominating store to ReturnValue, we can elide 2879 // the load, zap the store, and usually zap the alloca. 2880 if (llvm::StoreInst *SI = 2881 findDominatingStoreToReturnValue(*this)) { 2882 // Reuse the debug location from the store unless there is 2883 // cleanup code to be emitted between the store and return 2884 // instruction. 2885 if (EmitRetDbgLoc && !AutoreleaseResult) 2886 RetDbgLoc = SI->getDebugLoc(); 2887 // Get the stored value and nuke the now-dead store. 2888 RV = SI->getValueOperand(); 2889 SI->eraseFromParent(); 2890 2891 // If that was the only use of the return value, nuke it as well now. 2892 auto returnValueInst = ReturnValue.getPointer(); 2893 if (returnValueInst->use_empty()) { 2894 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2895 alloca->eraseFromParent(); 2896 ReturnValue = Address::invalid(); 2897 } 2898 } 2899 2900 // Otherwise, we have to do a simple load. 2901 } else { 2902 RV = Builder.CreateLoad(ReturnValue); 2903 } 2904 } else { 2905 // If the value is offset in memory, apply the offset now. 2906 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2907 2908 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2909 } 2910 2911 // In ARC, end functions that return a retainable type with a call 2912 // to objc_autoreleaseReturnValue. 2913 if (AutoreleaseResult) { 2914 #ifndef NDEBUG 2915 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2916 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2917 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2918 // CurCodeDecl or BlockInfo. 2919 QualType RT; 2920 2921 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2922 RT = FD->getReturnType(); 2923 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2924 RT = MD->getReturnType(); 2925 else if (isa<BlockDecl>(CurCodeDecl)) 2926 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2927 else 2928 llvm_unreachable("Unexpected function/method type"); 2929 2930 assert(getLangOpts().ObjCAutoRefCount && 2931 !FI.isReturnsRetained() && 2932 RT->isObjCRetainableType()); 2933 #endif 2934 RV = emitAutoreleaseOfResult(*this, RV); 2935 } 2936 2937 break; 2938 2939 case ABIArgInfo::Ignore: 2940 break; 2941 2942 case ABIArgInfo::CoerceAndExpand: { 2943 auto coercionType = RetAI.getCoerceAndExpandType(); 2944 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2945 2946 // Load all of the coerced elements out into results. 2947 llvm::SmallVector<llvm::Value*, 4> results; 2948 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2949 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2950 auto coercedEltType = coercionType->getElementType(i); 2951 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2952 continue; 2953 2954 auto eltAddr = Builder.CreateStructGEP(addr, i, layout); 2955 auto elt = Builder.CreateLoad(eltAddr); 2956 results.push_back(elt); 2957 } 2958 2959 // If we have one result, it's the single direct result type. 2960 if (results.size() == 1) { 2961 RV = results[0]; 2962 2963 // Otherwise, we need to make a first-class aggregate. 2964 } else { 2965 // Construct a return type that lacks padding elements. 2966 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2967 2968 RV = llvm::UndefValue::get(returnType); 2969 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2970 RV = Builder.CreateInsertValue(RV, results[i], i); 2971 } 2972 } 2973 break; 2974 } 2975 2976 case ABIArgInfo::Expand: 2977 llvm_unreachable("Invalid ABI kind for return argument"); 2978 } 2979 2980 llvm::Instruction *Ret; 2981 if (RV) { 2982 EmitReturnValueCheck(RV); 2983 Ret = Builder.CreateRet(RV); 2984 } else { 2985 Ret = Builder.CreateRetVoid(); 2986 } 2987 2988 if (RetDbgLoc) 2989 Ret->setDebugLoc(std::move(RetDbgLoc)); 2990 } 2991 2992 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 2993 // A current decl may not be available when emitting vtable thunks. 2994 if (!CurCodeDecl) 2995 return; 2996 2997 ReturnsNonNullAttr *RetNNAttr = nullptr; 2998 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 2999 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3000 3001 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3002 return; 3003 3004 // Prefer the returns_nonnull attribute if it's present. 3005 SourceLocation AttrLoc; 3006 SanitizerMask CheckKind; 3007 SanitizerHandler Handler; 3008 if (RetNNAttr) { 3009 assert(!requiresReturnValueNullabilityCheck() && 3010 "Cannot check nullability and the nonnull attribute"); 3011 AttrLoc = RetNNAttr->getLocation(); 3012 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3013 Handler = SanitizerHandler::NonnullReturn; 3014 } else { 3015 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3016 if (auto *TSI = DD->getTypeSourceInfo()) 3017 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) 3018 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3019 CheckKind = SanitizerKind::NullabilityReturn; 3020 Handler = SanitizerHandler::NullabilityReturn; 3021 } 3022 3023 SanitizerScope SanScope(this); 3024 3025 // Make sure the "return" source location is valid. If we're checking a 3026 // nullability annotation, make sure the preconditions for the check are met. 3027 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3028 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3029 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3030 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3031 if (requiresReturnValueNullabilityCheck()) 3032 CanNullCheck = 3033 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3034 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3035 EmitBlock(Check); 3036 3037 // Now do the null check. 3038 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3039 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3040 llvm::Value *DynamicData[] = {SLocPtr}; 3041 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3042 3043 EmitBlock(NoCheck); 3044 3045 #ifndef NDEBUG 3046 // The return location should not be used after the check has been emitted. 3047 ReturnLocation = Address::invalid(); 3048 #endif 3049 } 3050 3051 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3052 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3053 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3054 } 3055 3056 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3057 QualType Ty) { 3058 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3059 // placeholders. 3060 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3061 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3062 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3063 3064 // FIXME: When we generate this IR in one pass, we shouldn't need 3065 // this win32-specific alignment hack. 3066 CharUnits Align = CharUnits::fromQuantity(4); 3067 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3068 3069 return AggValueSlot::forAddr(Address(Placeholder, Align), 3070 Ty.getQualifiers(), 3071 AggValueSlot::IsNotDestructed, 3072 AggValueSlot::DoesNotNeedGCBarriers, 3073 AggValueSlot::IsNotAliased, 3074 AggValueSlot::DoesNotOverlap); 3075 } 3076 3077 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3078 const VarDecl *param, 3079 SourceLocation loc) { 3080 // StartFunction converted the ABI-lowered parameter(s) into a 3081 // local alloca. We need to turn that into an r-value suitable 3082 // for EmitCall. 3083 Address local = GetAddrOfLocalVar(param); 3084 3085 QualType type = param->getType(); 3086 3087 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3088 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3089 } 3090 3091 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3092 // but the argument needs to be the original pointer. 3093 if (type->isReferenceType()) { 3094 args.add(RValue::get(Builder.CreateLoad(local)), type); 3095 3096 // In ARC, move out of consumed arguments so that the release cleanup 3097 // entered by StartFunction doesn't cause an over-release. This isn't 3098 // optimal -O0 code generation, but it should get cleaned up when 3099 // optimization is enabled. This also assumes that delegate calls are 3100 // performed exactly once for a set of arguments, but that should be safe. 3101 } else if (getLangOpts().ObjCAutoRefCount && 3102 param->hasAttr<NSConsumedAttr>() && 3103 type->isObjCRetainableType()) { 3104 llvm::Value *ptr = Builder.CreateLoad(local); 3105 auto null = 3106 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3107 Builder.CreateStore(null, local); 3108 args.add(RValue::get(ptr), type); 3109 3110 // For the most part, we just need to load the alloca, except that 3111 // aggregate r-values are actually pointers to temporaries. 3112 } else { 3113 args.add(convertTempToRValue(local, type, loc), type); 3114 } 3115 3116 // Deactivate the cleanup for the callee-destructed param that was pushed. 3117 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3118 type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3119 type.isDestructedType()) { 3120 EHScopeStack::stable_iterator cleanup = 3121 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3122 assert(cleanup.isValid() && 3123 "cleanup for callee-destructed param not recorded"); 3124 // This unreachable is a temporary marker which will be removed later. 3125 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3126 args.addArgCleanupDeactivation(cleanup, isActive); 3127 } 3128 } 3129 3130 static bool isProvablyNull(llvm::Value *addr) { 3131 return isa<llvm::ConstantPointerNull>(addr); 3132 } 3133 3134 /// Emit the actual writing-back of a writeback. 3135 static void emitWriteback(CodeGenFunction &CGF, 3136 const CallArgList::Writeback &writeback) { 3137 const LValue &srcLV = writeback.Source; 3138 Address srcAddr = srcLV.getAddress(); 3139 assert(!isProvablyNull(srcAddr.getPointer()) && 3140 "shouldn't have writeback for provably null argument"); 3141 3142 llvm::BasicBlock *contBB = nullptr; 3143 3144 // If the argument wasn't provably non-null, we need to null check 3145 // before doing the store. 3146 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3147 CGF.CGM.getDataLayout()); 3148 if (!provablyNonNull) { 3149 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3150 contBB = CGF.createBasicBlock("icr.done"); 3151 3152 llvm::Value *isNull = 3153 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3154 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3155 CGF.EmitBlock(writebackBB); 3156 } 3157 3158 // Load the value to writeback. 3159 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3160 3161 // Cast it back, in case we're writing an id to a Foo* or something. 3162 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3163 "icr.writeback-cast"); 3164 3165 // Perform the writeback. 3166 3167 // If we have a "to use" value, it's something we need to emit a use 3168 // of. This has to be carefully threaded in: if it's done after the 3169 // release it's potentially undefined behavior (and the optimizer 3170 // will ignore it), and if it happens before the retain then the 3171 // optimizer could move the release there. 3172 if (writeback.ToUse) { 3173 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3174 3175 // Retain the new value. No need to block-copy here: the block's 3176 // being passed up the stack. 3177 value = CGF.EmitARCRetainNonBlock(value); 3178 3179 // Emit the intrinsic use here. 3180 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3181 3182 // Load the old value (primitively). 3183 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3184 3185 // Put the new value in place (primitively). 3186 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3187 3188 // Release the old value. 3189 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3190 3191 // Otherwise, we can just do a normal lvalue store. 3192 } else { 3193 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3194 } 3195 3196 // Jump to the continuation block. 3197 if (!provablyNonNull) 3198 CGF.EmitBlock(contBB); 3199 } 3200 3201 static void emitWritebacks(CodeGenFunction &CGF, 3202 const CallArgList &args) { 3203 for (const auto &I : args.writebacks()) 3204 emitWriteback(CGF, I); 3205 } 3206 3207 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3208 const CallArgList &CallArgs) { 3209 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3210 CallArgs.getCleanupsToDeactivate(); 3211 // Iterate in reverse to increase the likelihood of popping the cleanup. 3212 for (const auto &I : llvm::reverse(Cleanups)) { 3213 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3214 I.IsActiveIP->eraseFromParent(); 3215 } 3216 } 3217 3218 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3219 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3220 if (uop->getOpcode() == UO_AddrOf) 3221 return uop->getSubExpr(); 3222 return nullptr; 3223 } 3224 3225 /// Emit an argument that's being passed call-by-writeback. That is, 3226 /// we are passing the address of an __autoreleased temporary; it 3227 /// might be copy-initialized with the current value of the given 3228 /// address, but it will definitely be copied out of after the call. 3229 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3230 const ObjCIndirectCopyRestoreExpr *CRE) { 3231 LValue srcLV; 3232 3233 // Make an optimistic effort to emit the address as an l-value. 3234 // This can fail if the argument expression is more complicated. 3235 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3236 srcLV = CGF.EmitLValue(lvExpr); 3237 3238 // Otherwise, just emit it as a scalar. 3239 } else { 3240 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3241 3242 QualType srcAddrType = 3243 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3244 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3245 } 3246 Address srcAddr = srcLV.getAddress(); 3247 3248 // The dest and src types don't necessarily match in LLVM terms 3249 // because of the crazy ObjC compatibility rules. 3250 3251 llvm::PointerType *destType = 3252 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3253 3254 // If the address is a constant null, just pass the appropriate null. 3255 if (isProvablyNull(srcAddr.getPointer())) { 3256 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3257 CRE->getType()); 3258 return; 3259 } 3260 3261 // Create the temporary. 3262 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3263 CGF.getPointerAlign(), 3264 "icr.temp"); 3265 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3266 // and that cleanup will be conditional if we can't prove that the l-value 3267 // isn't null, so we need to register a dominating point so that the cleanups 3268 // system will make valid IR. 3269 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3270 3271 // Zero-initialize it if we're not doing a copy-initialization. 3272 bool shouldCopy = CRE->shouldCopy(); 3273 if (!shouldCopy) { 3274 llvm::Value *null = 3275 llvm::ConstantPointerNull::get( 3276 cast<llvm::PointerType>(destType->getElementType())); 3277 CGF.Builder.CreateStore(null, temp); 3278 } 3279 3280 llvm::BasicBlock *contBB = nullptr; 3281 llvm::BasicBlock *originBB = nullptr; 3282 3283 // If the address is *not* known to be non-null, we need to switch. 3284 llvm::Value *finalArgument; 3285 3286 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3287 CGF.CGM.getDataLayout()); 3288 if (provablyNonNull) { 3289 finalArgument = temp.getPointer(); 3290 } else { 3291 llvm::Value *isNull = 3292 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3293 3294 finalArgument = CGF.Builder.CreateSelect(isNull, 3295 llvm::ConstantPointerNull::get(destType), 3296 temp.getPointer(), "icr.argument"); 3297 3298 // If we need to copy, then the load has to be conditional, which 3299 // means we need control flow. 3300 if (shouldCopy) { 3301 originBB = CGF.Builder.GetInsertBlock(); 3302 contBB = CGF.createBasicBlock("icr.cont"); 3303 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3304 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3305 CGF.EmitBlock(copyBB); 3306 condEval.begin(CGF); 3307 } 3308 } 3309 3310 llvm::Value *valueToUse = nullptr; 3311 3312 // Perform a copy if necessary. 3313 if (shouldCopy) { 3314 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3315 assert(srcRV.isScalar()); 3316 3317 llvm::Value *src = srcRV.getScalarVal(); 3318 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3319 "icr.cast"); 3320 3321 // Use an ordinary store, not a store-to-lvalue. 3322 CGF.Builder.CreateStore(src, temp); 3323 3324 // If optimization is enabled, and the value was held in a 3325 // __strong variable, we need to tell the optimizer that this 3326 // value has to stay alive until we're doing the store back. 3327 // This is because the temporary is effectively unretained, 3328 // and so otherwise we can violate the high-level semantics. 3329 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3330 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3331 valueToUse = src; 3332 } 3333 } 3334 3335 // Finish the control flow if we needed it. 3336 if (shouldCopy && !provablyNonNull) { 3337 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3338 CGF.EmitBlock(contBB); 3339 3340 // Make a phi for the value to intrinsically use. 3341 if (valueToUse) { 3342 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3343 "icr.to-use"); 3344 phiToUse->addIncoming(valueToUse, copyBB); 3345 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3346 originBB); 3347 valueToUse = phiToUse; 3348 } 3349 3350 condEval.end(CGF); 3351 } 3352 3353 args.addWriteback(srcLV, temp, valueToUse); 3354 args.add(RValue::get(finalArgument), CRE->getType()); 3355 } 3356 3357 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3358 assert(!StackBase); 3359 3360 // Save the stack. 3361 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3362 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3363 } 3364 3365 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3366 if (StackBase) { 3367 // Restore the stack after the call. 3368 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3369 CGF.Builder.CreateCall(F, StackBase); 3370 } 3371 } 3372 3373 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3374 SourceLocation ArgLoc, 3375 AbstractCallee AC, 3376 unsigned ParmNum) { 3377 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3378 SanOpts.has(SanitizerKind::NullabilityArg))) 3379 return; 3380 3381 // The param decl may be missing in a variadic function. 3382 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3383 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3384 3385 // Prefer the nonnull attribute if it's present. 3386 const NonNullAttr *NNAttr = nullptr; 3387 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3388 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3389 3390 bool CanCheckNullability = false; 3391 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3392 auto Nullability = PVD->getType()->getNullability(getContext()); 3393 CanCheckNullability = Nullability && 3394 *Nullability == NullabilityKind::NonNull && 3395 PVD->getTypeSourceInfo(); 3396 } 3397 3398 if (!NNAttr && !CanCheckNullability) 3399 return; 3400 3401 SourceLocation AttrLoc; 3402 SanitizerMask CheckKind; 3403 SanitizerHandler Handler; 3404 if (NNAttr) { 3405 AttrLoc = NNAttr->getLocation(); 3406 CheckKind = SanitizerKind::NonnullAttribute; 3407 Handler = SanitizerHandler::NonnullArg; 3408 } else { 3409 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3410 CheckKind = SanitizerKind::NullabilityArg; 3411 Handler = SanitizerHandler::NullabilityArg; 3412 } 3413 3414 SanitizerScope SanScope(this); 3415 assert(RV.isScalar()); 3416 llvm::Value *V = RV.getScalarVal(); 3417 llvm::Value *Cond = 3418 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3419 llvm::Constant *StaticData[] = { 3420 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3421 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3422 }; 3423 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3424 } 3425 3426 void CodeGenFunction::EmitCallArgs( 3427 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3428 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3429 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3430 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3431 3432 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3433 // because arguments are destroyed left to right in the callee. As a special 3434 // case, there are certain language constructs that require left-to-right 3435 // evaluation, and in those cases we consider the evaluation order requirement 3436 // to trump the "destruction order is reverse construction order" guarantee. 3437 bool LeftToRight = 3438 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3439 ? Order == EvaluationOrder::ForceLeftToRight 3440 : Order != EvaluationOrder::ForceRightToLeft; 3441 3442 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3443 RValue EmittedArg) { 3444 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3445 return; 3446 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3447 if (PS == nullptr) 3448 return; 3449 3450 const auto &Context = getContext(); 3451 auto SizeTy = Context.getSizeType(); 3452 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3453 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3454 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3455 EmittedArg.getScalarVal()); 3456 Args.add(RValue::get(V), SizeTy); 3457 // If we're emitting args in reverse, be sure to do so with 3458 // pass_object_size, as well. 3459 if (!LeftToRight) 3460 std::swap(Args.back(), *(&Args.back() - 1)); 3461 }; 3462 3463 // Insert a stack save if we're going to need any inalloca args. 3464 bool HasInAllocaArgs = false; 3465 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3466 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3467 I != E && !HasInAllocaArgs; ++I) 3468 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3469 if (HasInAllocaArgs) { 3470 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3471 Args.allocateArgumentMemory(*this); 3472 } 3473 } 3474 3475 // Evaluate each argument in the appropriate order. 3476 size_t CallArgsStart = Args.size(); 3477 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3478 unsigned Idx = LeftToRight ? I : E - I - 1; 3479 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3480 unsigned InitialArgSize = Args.size(); 3481 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3482 // the argument and parameter match or the objc method is parameterized. 3483 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3484 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3485 ArgTypes[Idx]) || 3486 (isa<ObjCMethodDecl>(AC.getDecl()) && 3487 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3488 "Argument and parameter types don't match"); 3489 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3490 // In particular, we depend on it being the last arg in Args, and the 3491 // objectsize bits depend on there only being one arg if !LeftToRight. 3492 assert(InitialArgSize + 1 == Args.size() && 3493 "The code below depends on only adding one arg per EmitCallArg"); 3494 (void)InitialArgSize; 3495 // Since pointer argument are never emitted as LValue, it is safe to emit 3496 // non-null argument check for r-value only. 3497 if (!Args.back().hasLValue()) { 3498 RValue RVArg = Args.back().getKnownRValue(); 3499 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3500 ParamsToSkip + Idx); 3501 // @llvm.objectsize should never have side-effects and shouldn't need 3502 // destruction/cleanups, so we can safely "emit" it after its arg, 3503 // regardless of right-to-leftness 3504 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3505 } 3506 } 3507 3508 if (!LeftToRight) { 3509 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3510 // IR function. 3511 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3512 } 3513 } 3514 3515 namespace { 3516 3517 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3518 DestroyUnpassedArg(Address Addr, QualType Ty) 3519 : Addr(Addr), Ty(Ty) {} 3520 3521 Address Addr; 3522 QualType Ty; 3523 3524 void Emit(CodeGenFunction &CGF, Flags flags) override { 3525 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3526 if (DtorKind == QualType::DK_cxx_destructor) { 3527 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3528 assert(!Dtor->isTrivial()); 3529 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3530 /*Delegating=*/false, Addr); 3531 } else { 3532 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3533 } 3534 } 3535 }; 3536 3537 struct DisableDebugLocationUpdates { 3538 CodeGenFunction &CGF; 3539 bool disabledDebugInfo; 3540 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3541 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3542 CGF.disableDebugInfo(); 3543 } 3544 ~DisableDebugLocationUpdates() { 3545 if (disabledDebugInfo) 3546 CGF.enableDebugInfo(); 3547 } 3548 }; 3549 3550 } // end anonymous namespace 3551 3552 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3553 if (!HasLV) 3554 return RV; 3555 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3556 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 3557 LV.isVolatile()); 3558 IsUsed = true; 3559 return RValue::getAggregate(Copy.getAddress()); 3560 } 3561 3562 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3563 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3564 if (!HasLV && RV.isScalar()) 3565 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true); 3566 else if (!HasLV && RV.isComplex()) 3567 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3568 else { 3569 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); 3570 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3571 // We assume that call args are never copied into subobjects. 3572 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 3573 HasLV ? LV.isVolatileQualified() 3574 : RV.isVolatileQualified()); 3575 } 3576 IsUsed = true; 3577 } 3578 3579 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3580 QualType type) { 3581 DisableDebugLocationUpdates Dis(*this, E); 3582 if (const ObjCIndirectCopyRestoreExpr *CRE 3583 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3584 assert(getLangOpts().ObjCAutoRefCount); 3585 return emitWritebackArg(*this, args, CRE); 3586 } 3587 3588 assert(type->isReferenceType() == E->isGLValue() && 3589 "reference binding to unmaterialized r-value!"); 3590 3591 if (E->isGLValue()) { 3592 assert(E->getObjectKind() == OK_Ordinary); 3593 return args.add(EmitReferenceBindingToExpr(E), type); 3594 } 3595 3596 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3597 3598 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3599 // However, we still have to push an EH-only cleanup in case we unwind before 3600 // we make it to the call. 3601 if (HasAggregateEvalKind && 3602 type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 3603 // If we're using inalloca, use the argument memory. Otherwise, use a 3604 // temporary. 3605 AggValueSlot Slot; 3606 if (args.isUsingInAlloca()) 3607 Slot = createPlaceholderSlot(*this, type); 3608 else 3609 Slot = CreateAggTemp(type, "agg.tmp"); 3610 3611 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3612 if (const auto *RD = type->getAsCXXRecordDecl()) 3613 DestroyedInCallee = RD->hasNonTrivialDestructor(); 3614 else 3615 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3616 3617 if (DestroyedInCallee) 3618 Slot.setExternallyDestructed(); 3619 3620 EmitAggExpr(E, Slot); 3621 RValue RV = Slot.asRValue(); 3622 args.add(RV, type); 3623 3624 if (DestroyedInCallee && NeedsEHCleanup) { 3625 // Create a no-op GEP between the placeholder and the cleanup so we can 3626 // RAUW it successfully. It also serves as a marker of the first 3627 // instruction where the cleanup is active. 3628 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3629 type); 3630 // This unreachable is a temporary marker which will be removed later. 3631 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3632 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3633 } 3634 return; 3635 } 3636 3637 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3638 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3639 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3640 assert(L.isSimple()); 3641 args.addUncopiedAggregate(L, type); 3642 return; 3643 } 3644 3645 args.add(EmitAnyExprToTemp(E), type); 3646 } 3647 3648 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3649 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3650 // implicitly widens null pointer constants that are arguments to varargs 3651 // functions to pointer-sized ints. 3652 if (!getTarget().getTriple().isOSWindows()) 3653 return Arg->getType(); 3654 3655 if (Arg->getType()->isIntegerType() && 3656 getContext().getTypeSize(Arg->getType()) < 3657 getContext().getTargetInfo().getPointerWidth(0) && 3658 Arg->isNullPointerConstant(getContext(), 3659 Expr::NPC_ValueDependentIsNotNull)) { 3660 return getContext().getIntPtrType(); 3661 } 3662 3663 return Arg->getType(); 3664 } 3665 3666 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3667 // optimizer it can aggressively ignore unwind edges. 3668 void 3669 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3670 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3671 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3672 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3673 CGM.getNoObjCARCExceptionsMetadata()); 3674 } 3675 3676 /// Emits a call to the given no-arguments nounwind runtime function. 3677 llvm::CallInst * 3678 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3679 const llvm::Twine &name) { 3680 return EmitNounwindRuntimeCall(callee, None, name); 3681 } 3682 3683 /// Emits a call to the given nounwind runtime function. 3684 llvm::CallInst * 3685 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3686 ArrayRef<llvm::Value*> args, 3687 const llvm::Twine &name) { 3688 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3689 call->setDoesNotThrow(); 3690 return call; 3691 } 3692 3693 /// Emits a simple call (never an invoke) to the given no-arguments 3694 /// runtime function. 3695 llvm::CallInst * 3696 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3697 const llvm::Twine &name) { 3698 return EmitRuntimeCall(callee, None, name); 3699 } 3700 3701 // Calls which may throw must have operand bundles indicating which funclet 3702 // they are nested within. 3703 SmallVector<llvm::OperandBundleDef, 1> 3704 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 3705 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3706 // There is no need for a funclet operand bundle if we aren't inside a 3707 // funclet. 3708 if (!CurrentFuncletPad) 3709 return BundleList; 3710 3711 // Skip intrinsics which cannot throw. 3712 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3713 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3714 return BundleList; 3715 3716 BundleList.emplace_back("funclet", CurrentFuncletPad); 3717 return BundleList; 3718 } 3719 3720 /// Emits a simple call (never an invoke) to the given runtime function. 3721 llvm::CallInst * 3722 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3723 ArrayRef<llvm::Value*> args, 3724 const llvm::Twine &name) { 3725 llvm::CallInst *call = 3726 Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name); 3727 call->setCallingConv(getRuntimeCC()); 3728 return call; 3729 } 3730 3731 /// Emits a call or invoke to the given noreturn runtime function. 3732 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3733 ArrayRef<llvm::Value*> args) { 3734 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3735 getBundlesForFunclet(callee); 3736 3737 if (getInvokeDest()) { 3738 llvm::InvokeInst *invoke = 3739 Builder.CreateInvoke(callee, 3740 getUnreachableBlock(), 3741 getInvokeDest(), 3742 args, 3743 BundleList); 3744 invoke->setDoesNotReturn(); 3745 invoke->setCallingConv(getRuntimeCC()); 3746 } else { 3747 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3748 call->setDoesNotReturn(); 3749 call->setCallingConv(getRuntimeCC()); 3750 Builder.CreateUnreachable(); 3751 } 3752 } 3753 3754 /// Emits a call or invoke instruction to the given nullary runtime function. 3755 llvm::CallSite 3756 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3757 const Twine &name) { 3758 return EmitRuntimeCallOrInvoke(callee, None, name); 3759 } 3760 3761 /// Emits a call or invoke instruction to the given runtime function. 3762 llvm::CallSite 3763 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3764 ArrayRef<llvm::Value*> args, 3765 const Twine &name) { 3766 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3767 callSite.setCallingConv(getRuntimeCC()); 3768 return callSite; 3769 } 3770 3771 /// Emits a call or invoke instruction to the given function, depending 3772 /// on the current state of the EH stack. 3773 llvm::CallSite 3774 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3775 ArrayRef<llvm::Value *> Args, 3776 const Twine &Name) { 3777 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3778 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3779 getBundlesForFunclet(Callee); 3780 3781 llvm::Instruction *Inst; 3782 if (!InvokeDest) 3783 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3784 else { 3785 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3786 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3787 Name); 3788 EmitBlock(ContBB); 3789 } 3790 3791 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3792 // optimizer it can aggressively ignore unwind edges. 3793 if (CGM.getLangOpts().ObjCAutoRefCount) 3794 AddObjCARCExceptionMetadata(Inst); 3795 3796 return llvm::CallSite(Inst); 3797 } 3798 3799 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3800 llvm::Value *New) { 3801 DeferredReplacements.push_back(std::make_pair(Old, New)); 3802 } 3803 3804 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3805 const CGCallee &Callee, 3806 ReturnValueSlot ReturnValue, 3807 const CallArgList &CallArgs, 3808 llvm::Instruction **callOrInvoke, 3809 SourceLocation Loc) { 3810 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3811 3812 assert(Callee.isOrdinary() || Callee.isVirtual()); 3813 3814 // Handle struct-return functions by passing a pointer to the 3815 // location that we would like to return into. 3816 QualType RetTy = CallInfo.getReturnType(); 3817 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3818 3819 llvm::FunctionType *IRFuncTy = Callee.getFunctionType(); 3820 3821 // 1. Set up the arguments. 3822 3823 // If we're using inalloca, insert the allocation after the stack save. 3824 // FIXME: Do this earlier rather than hacking it in here! 3825 Address ArgMemory = Address::invalid(); 3826 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3827 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3828 const llvm::DataLayout &DL = CGM.getDataLayout(); 3829 ArgMemoryLayout = DL.getStructLayout(ArgStruct); 3830 llvm::Instruction *IP = CallArgs.getStackBase(); 3831 llvm::AllocaInst *AI; 3832 if (IP) { 3833 IP = IP->getNextNode(); 3834 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 3835 "argmem", IP); 3836 } else { 3837 AI = CreateTempAlloca(ArgStruct, "argmem"); 3838 } 3839 auto Align = CallInfo.getArgStructAlignment(); 3840 AI->setAlignment(Align.getQuantity()); 3841 AI->setUsedWithInAlloca(true); 3842 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3843 ArgMemory = Address(AI, Align); 3844 } 3845 3846 // Helper function to drill into the inalloca allocation. 3847 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3848 auto FieldOffset = 3849 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3850 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3851 }; 3852 3853 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3854 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3855 3856 // If the call returns a temporary with struct return, create a temporary 3857 // alloca to hold the result, unless one is given to us. 3858 Address SRetPtr = Address::invalid(); 3859 Address SRetAlloca = Address::invalid(); 3860 llvm::Value *UnusedReturnSizePtr = nullptr; 3861 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3862 if (!ReturnValue.isNull()) { 3863 SRetPtr = ReturnValue.getValue(); 3864 } else { 3865 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 3866 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3867 uint64_t size = 3868 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3869 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 3870 } 3871 } 3872 if (IRFunctionArgs.hasSRetArg()) { 3873 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3874 } else if (RetAI.isInAlloca()) { 3875 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3876 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3877 } 3878 } 3879 3880 Address swiftErrorTemp = Address::invalid(); 3881 Address swiftErrorArg = Address::invalid(); 3882 3883 // Translate all of the arguments as necessary to match the IR lowering. 3884 assert(CallInfo.arg_size() == CallArgs.size() && 3885 "Mismatch between function signature & arguments."); 3886 unsigned ArgNo = 0; 3887 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3888 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3889 I != E; ++I, ++info_it, ++ArgNo) { 3890 const ABIArgInfo &ArgInfo = info_it->info; 3891 3892 // Insert a padding argument to ensure proper alignment. 3893 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3894 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3895 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3896 3897 unsigned FirstIRArg, NumIRArgs; 3898 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3899 3900 switch (ArgInfo.getKind()) { 3901 case ABIArgInfo::InAlloca: { 3902 assert(NumIRArgs == 0); 3903 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3904 if (I->isAggregate()) { 3905 // Replace the placeholder with the appropriate argument slot GEP. 3906 Address Addr = I->hasLValue() 3907 ? I->getKnownLValue().getAddress() 3908 : I->getKnownRValue().getAggregateAddress(); 3909 llvm::Instruction *Placeholder = 3910 cast<llvm::Instruction>(Addr.getPointer()); 3911 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3912 Builder.SetInsertPoint(Placeholder); 3913 Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3914 Builder.restoreIP(IP); 3915 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3916 } else { 3917 // Store the RValue into the argument struct. 3918 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3919 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3920 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3921 // There are some cases where a trivial bitcast is not avoidable. The 3922 // definition of a type later in a translation unit may change it's type 3923 // from {}* to (%struct.foo*)*. 3924 if (Addr.getType() != MemType) 3925 Addr = Builder.CreateBitCast(Addr, MemType); 3926 I->copyInto(*this, Addr); 3927 } 3928 break; 3929 } 3930 3931 case ABIArgInfo::Indirect: { 3932 assert(NumIRArgs == 1); 3933 if (!I->isAggregate()) { 3934 // Make a temporary alloca to pass the argument. 3935 Address Addr = CreateMemTempWithoutCast( 3936 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 3937 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3938 3939 I->copyInto(*this, Addr); 3940 } else { 3941 // We want to avoid creating an unnecessary temporary+copy here; 3942 // however, we need one in three cases: 3943 // 1. If the argument is not byval, and we are required to copy the 3944 // source. (This case doesn't occur on any common architecture.) 3945 // 2. If the argument is byval, RV is not sufficiently aligned, and 3946 // we cannot force it to be sufficiently aligned. 3947 // 3. If the argument is byval, but RV is not located in default 3948 // or alloca address space. 3949 Address Addr = I->hasLValue() 3950 ? I->getKnownLValue().getAddress() 3951 : I->getKnownRValue().getAggregateAddress(); 3952 llvm::Value *V = Addr.getPointer(); 3953 CharUnits Align = ArgInfo.getIndirectAlign(); 3954 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3955 3956 assert((FirstIRArg >= IRFuncTy->getNumParams() || 3957 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 3958 TD->getAllocaAddrSpace()) && 3959 "indirect argument must be in alloca address space"); 3960 3961 bool NeedCopy = false; 3962 3963 if (Addr.getAlignment() < Align && 3964 llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) < 3965 Align.getQuantity()) { 3966 NeedCopy = true; 3967 } else if (I->hasLValue()) { 3968 auto LV = I->getKnownLValue(); 3969 auto AS = LV.getAddressSpace(); 3970 3971 if ((!ArgInfo.getIndirectByVal() && 3972 (LV.getAlignment() >= 3973 getContext().getTypeAlignInChars(I->Ty)))) { 3974 NeedCopy = true; 3975 } 3976 if (!getLangOpts().OpenCL) { 3977 if ((ArgInfo.getIndirectByVal() && 3978 (AS != LangAS::Default && 3979 AS != CGM.getASTAllocaAddressSpace()))) { 3980 NeedCopy = true; 3981 } 3982 } 3983 // For OpenCL even if RV is located in default or alloca address space 3984 // we don't want to perform address space cast for it. 3985 else if ((ArgInfo.getIndirectByVal() && 3986 Addr.getType()->getAddressSpace() != IRFuncTy-> 3987 getParamType(FirstIRArg)->getPointerAddressSpace())) { 3988 NeedCopy = true; 3989 } 3990 } 3991 3992 if (NeedCopy) { 3993 // Create an aligned temporary, and copy to it. 3994 Address AI = CreateMemTempWithoutCast( 3995 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 3996 IRCallArgs[FirstIRArg] = AI.getPointer(); 3997 I->copyInto(*this, AI); 3998 } else { 3999 // Skip the extra memcpy call. 4000 auto *T = V->getType()->getPointerElementType()->getPointerTo( 4001 CGM.getDataLayout().getAllocaAddrSpace()); 4002 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4003 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4004 true); 4005 } 4006 } 4007 break; 4008 } 4009 4010 case ABIArgInfo::Ignore: 4011 assert(NumIRArgs == 0); 4012 break; 4013 4014 case ABIArgInfo::Extend: 4015 case ABIArgInfo::Direct: { 4016 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4017 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4018 ArgInfo.getDirectOffset() == 0) { 4019 assert(NumIRArgs == 1); 4020 llvm::Value *V; 4021 if (!I->isAggregate()) 4022 V = I->getKnownRValue().getScalarVal(); 4023 else 4024 V = Builder.CreateLoad( 4025 I->hasLValue() ? I->getKnownLValue().getAddress() 4026 : I->getKnownRValue().getAggregateAddress()); 4027 4028 // Implement swifterror by copying into a new swifterror argument. 4029 // We'll write back in the normal path out of the call. 4030 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4031 == ParameterABI::SwiftErrorResult) { 4032 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4033 4034 QualType pointeeTy = I->Ty->getPointeeType(); 4035 swiftErrorArg = 4036 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4037 4038 swiftErrorTemp = 4039 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4040 V = swiftErrorTemp.getPointer(); 4041 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4042 4043 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4044 Builder.CreateStore(errorValue, swiftErrorTemp); 4045 } 4046 4047 // We might have to widen integers, but we should never truncate. 4048 if (ArgInfo.getCoerceToType() != V->getType() && 4049 V->getType()->isIntegerTy()) 4050 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4051 4052 // If the argument doesn't match, perform a bitcast to coerce it. This 4053 // can happen due to trivial type mismatches. 4054 if (FirstIRArg < IRFuncTy->getNumParams() && 4055 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4056 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4057 4058 IRCallArgs[FirstIRArg] = V; 4059 break; 4060 } 4061 4062 // FIXME: Avoid the conversion through memory if possible. 4063 Address Src = Address::invalid(); 4064 if (!I->isAggregate()) { 4065 Src = CreateMemTemp(I->Ty, "coerce"); 4066 I->copyInto(*this, Src); 4067 } else { 4068 Src = I->hasLValue() ? I->getKnownLValue().getAddress() 4069 : I->getKnownRValue().getAggregateAddress(); 4070 } 4071 4072 // If the value is offset in memory, apply the offset now. 4073 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4074 4075 // Fast-isel and the optimizer generally like scalar values better than 4076 // FCAs, so we flatten them if this is safe to do for this argument. 4077 llvm::StructType *STy = 4078 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4079 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4080 llvm::Type *SrcTy = Src.getType()->getElementType(); 4081 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4082 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4083 4084 // If the source type is smaller than the destination type of the 4085 // coerce-to logic, copy the source value into a temp alloca the size 4086 // of the destination type to allow loading all of it. The bits past 4087 // the source value are left undef. 4088 if (SrcSize < DstSize) { 4089 Address TempAlloca 4090 = CreateTempAlloca(STy, Src.getAlignment(), 4091 Src.getName() + ".coerce"); 4092 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4093 Src = TempAlloca; 4094 } else { 4095 Src = Builder.CreateBitCast(Src, 4096 STy->getPointerTo(Src.getAddressSpace())); 4097 } 4098 4099 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 4100 assert(NumIRArgs == STy->getNumElements()); 4101 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4102 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 4103 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 4104 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4105 IRCallArgs[FirstIRArg + i] = LI; 4106 } 4107 } else { 4108 // In the simple case, just pass the coerced loaded value. 4109 assert(NumIRArgs == 1); 4110 IRCallArgs[FirstIRArg] = 4111 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4112 } 4113 4114 break; 4115 } 4116 4117 case ABIArgInfo::CoerceAndExpand: { 4118 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4119 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4120 4121 llvm::Value *tempSize = nullptr; 4122 Address addr = Address::invalid(); 4123 Address AllocaAddr = Address::invalid(); 4124 if (I->isAggregate()) { 4125 addr = I->hasLValue() ? I->getKnownLValue().getAddress() 4126 : I->getKnownRValue().getAggregateAddress(); 4127 4128 } else { 4129 RValue RV = I->getKnownRValue(); 4130 assert(RV.isScalar()); // complex should always just be direct 4131 4132 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4133 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4134 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4135 4136 // Materialize to a temporary. 4137 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 4138 CharUnits::fromQuantity(std::max( 4139 layout->getAlignment(), scalarAlign)), 4140 "tmp", 4141 /*ArraySize=*/nullptr, &AllocaAddr); 4142 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4143 4144 Builder.CreateStore(RV.getScalarVal(), addr); 4145 } 4146 4147 addr = Builder.CreateElementBitCast(addr, coercionType); 4148 4149 unsigned IRArgPos = FirstIRArg; 4150 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4151 llvm::Type *eltType = coercionType->getElementType(i); 4152 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4153 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4154 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4155 IRCallArgs[IRArgPos++] = elt; 4156 } 4157 assert(IRArgPos == FirstIRArg + NumIRArgs); 4158 4159 if (tempSize) { 4160 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4161 } 4162 4163 break; 4164 } 4165 4166 case ABIArgInfo::Expand: 4167 unsigned IRArgPos = FirstIRArg; 4168 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4169 assert(IRArgPos == FirstIRArg + NumIRArgs); 4170 break; 4171 } 4172 } 4173 4174 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4175 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4176 4177 // If we're using inalloca, set up that argument. 4178 if (ArgMemory.isValid()) { 4179 llvm::Value *Arg = ArgMemory.getPointer(); 4180 if (CallInfo.isVariadic()) { 4181 // When passing non-POD arguments by value to variadic functions, we will 4182 // end up with a variadic prototype and an inalloca call site. In such 4183 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4184 // the callee. 4185 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4186 auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS); 4187 CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy); 4188 } else { 4189 llvm::Type *LastParamTy = 4190 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4191 if (Arg->getType() != LastParamTy) { 4192 #ifndef NDEBUG 4193 // Assert that these structs have equivalent element types. 4194 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4195 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4196 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4197 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4198 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4199 DE = DeclaredTy->element_end(), 4200 FI = FullTy->element_begin(); 4201 DI != DE; ++DI, ++FI) 4202 assert(*DI == *FI); 4203 #endif 4204 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4205 } 4206 } 4207 assert(IRFunctionArgs.hasInallocaArg()); 4208 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4209 } 4210 4211 // 2. Prepare the function pointer. 4212 4213 // If the callee is a bitcast of a non-variadic function to have a 4214 // variadic function pointer type, check to see if we can remove the 4215 // bitcast. This comes up with unprototyped functions. 4216 // 4217 // This makes the IR nicer, but more importantly it ensures that we 4218 // can inline the function at -O0 if it is marked always_inline. 4219 auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* { 4220 llvm::FunctionType *CalleeFT = 4221 cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType()); 4222 if (!CalleeFT->isVarArg()) 4223 return Ptr; 4224 4225 llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr); 4226 if (!CE || CE->getOpcode() != llvm::Instruction::BitCast) 4227 return Ptr; 4228 4229 llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0)); 4230 if (!OrigFn) 4231 return Ptr; 4232 4233 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4234 4235 // If the original type is variadic, or if any of the component types 4236 // disagree, we cannot remove the cast. 4237 if (OrigFT->isVarArg() || 4238 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4239 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4240 return Ptr; 4241 4242 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4243 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4244 return Ptr; 4245 4246 return OrigFn; 4247 }; 4248 CalleePtr = simplifyVariadicCallee(CalleePtr); 4249 4250 // 3. Perform the actual call. 4251 4252 // Deactivate any cleanups that we're supposed to do immediately before 4253 // the call. 4254 if (!CallArgs.getCleanupsToDeactivate().empty()) 4255 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4256 4257 // Assert that the arguments we computed match up. The IR verifier 4258 // will catch this, but this is a common enough source of problems 4259 // during IRGen changes that it's way better for debugging to catch 4260 // it ourselves here. 4261 #ifndef NDEBUG 4262 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4263 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4264 // Inalloca argument can have different type. 4265 if (IRFunctionArgs.hasInallocaArg() && 4266 i == IRFunctionArgs.getInallocaArgNo()) 4267 continue; 4268 if (i < IRFuncTy->getNumParams()) 4269 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4270 } 4271 #endif 4272 4273 // Update the largest vector width if any arguments have vector types. 4274 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4275 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 4276 LargestVectorWidth = std::max(LargestVectorWidth, 4277 VT->getPrimitiveSizeInBits()); 4278 } 4279 4280 // Compute the calling convention and attributes. 4281 unsigned CallingConv; 4282 llvm::AttributeList Attrs; 4283 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4284 Callee.getAbstractInfo(), Attrs, CallingConv, 4285 /*AttrOnCallSite=*/true); 4286 4287 // Apply some call-site-specific attributes. 4288 // TODO: work this into building the attribute set. 4289 4290 // Apply always_inline to all calls within flatten functions. 4291 // FIXME: should this really take priority over __try, below? 4292 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4293 !(Callee.getAbstractInfo().getCalleeDecl().getDecl() && 4294 Callee.getAbstractInfo() 4295 .getCalleeDecl() 4296 .getDecl() 4297 ->hasAttr<NoInlineAttr>())) { 4298 Attrs = 4299 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4300 llvm::Attribute::AlwaysInline); 4301 } 4302 4303 // Disable inlining inside SEH __try blocks. 4304 if (isSEHTryScope()) { 4305 Attrs = 4306 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4307 llvm::Attribute::NoInline); 4308 } 4309 4310 // Decide whether to use a call or an invoke. 4311 bool CannotThrow; 4312 if (currentFunctionUsesSEHTry()) { 4313 // SEH cares about asynchronous exceptions, so everything can "throw." 4314 CannotThrow = false; 4315 } else if (isCleanupPadScope() && 4316 EHPersonality::get(*this).isMSVCXXPersonality()) { 4317 // The MSVC++ personality will implicitly terminate the program if an 4318 // exception is thrown during a cleanup outside of a try/catch. 4319 // We don't need to model anything in IR to get this behavior. 4320 CannotThrow = true; 4321 } else { 4322 // Otherwise, nounwind call sites will never throw. 4323 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4324 llvm::Attribute::NoUnwind); 4325 } 4326 4327 // If we made a temporary, be sure to clean up after ourselves. Note that we 4328 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4329 // pop this cleanup later on. Being eager about this is OK, since this 4330 // temporary is 'invisible' outside of the callee. 4331 if (UnusedReturnSizePtr) 4332 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 4333 UnusedReturnSizePtr); 4334 4335 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4336 4337 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4338 getBundlesForFunclet(CalleePtr); 4339 4340 // Emit the actual call/invoke instruction. 4341 llvm::CallSite CS; 4342 if (!InvokeDest) { 4343 CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList); 4344 } else { 4345 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4346 CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs, 4347 BundleList); 4348 EmitBlock(Cont); 4349 } 4350 llvm::Instruction *CI = CS.getInstruction(); 4351 if (callOrInvoke) 4352 *callOrInvoke = CI; 4353 4354 // Apply the attributes and calling convention. 4355 CS.setAttributes(Attrs); 4356 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4357 4358 // Apply various metadata. 4359 4360 if (!CI->getType()->isVoidTy()) 4361 CI->setName("call"); 4362 4363 // Update largest vector width from the return type. 4364 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 4365 LargestVectorWidth = std::max(LargestVectorWidth, 4366 VT->getPrimitiveSizeInBits()); 4367 4368 // Insert instrumentation or attach profile metadata at indirect call sites. 4369 // For more details, see the comment before the definition of 4370 // IPVK_IndirectCallTarget in InstrProfData.inc. 4371 if (!CS.getCalledFunction()) 4372 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4373 CI, CalleePtr); 4374 4375 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4376 // optimizer it can aggressively ignore unwind edges. 4377 if (CGM.getLangOpts().ObjCAutoRefCount) 4378 AddObjCARCExceptionMetadata(CI); 4379 4380 // Suppress tail calls if requested. 4381 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4382 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4383 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4384 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4385 } 4386 4387 // 4. Finish the call. 4388 4389 // If the call doesn't return, finish the basic block and clear the 4390 // insertion point; this allows the rest of IRGen to discard 4391 // unreachable code. 4392 if (CS.doesNotReturn()) { 4393 if (UnusedReturnSizePtr) 4394 PopCleanupBlock(); 4395 4396 // Strip away the noreturn attribute to better diagnose unreachable UB. 4397 if (SanOpts.has(SanitizerKind::Unreachable)) { 4398 if (auto *F = CS.getCalledFunction()) 4399 F->removeFnAttr(llvm::Attribute::NoReturn); 4400 CS.removeAttribute(llvm::AttributeList::FunctionIndex, 4401 llvm::Attribute::NoReturn); 4402 } 4403 4404 EmitUnreachable(Loc); 4405 Builder.ClearInsertionPoint(); 4406 4407 // FIXME: For now, emit a dummy basic block because expr emitters in 4408 // generally are not ready to handle emitting expressions at unreachable 4409 // points. 4410 EnsureInsertPoint(); 4411 4412 // Return a reasonable RValue. 4413 return GetUndefRValue(RetTy); 4414 } 4415 4416 // Perform the swifterror writeback. 4417 if (swiftErrorTemp.isValid()) { 4418 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4419 Builder.CreateStore(errorResult, swiftErrorArg); 4420 } 4421 4422 // Emit any call-associated writebacks immediately. Arguably this 4423 // should happen after any return-value munging. 4424 if (CallArgs.hasWritebacks()) 4425 emitWritebacks(*this, CallArgs); 4426 4427 // The stack cleanup for inalloca arguments has to run out of the normal 4428 // lexical order, so deactivate it and run it manually here. 4429 CallArgs.freeArgumentMemory(*this); 4430 4431 // Extract the return value. 4432 RValue Ret = [&] { 4433 switch (RetAI.getKind()) { 4434 case ABIArgInfo::CoerceAndExpand: { 4435 auto coercionType = RetAI.getCoerceAndExpandType(); 4436 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4437 4438 Address addr = SRetPtr; 4439 addr = Builder.CreateElementBitCast(addr, coercionType); 4440 4441 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4442 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4443 4444 unsigned unpaddedIndex = 0; 4445 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4446 llvm::Type *eltType = coercionType->getElementType(i); 4447 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4448 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4449 llvm::Value *elt = CI; 4450 if (requiresExtract) 4451 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4452 else 4453 assert(unpaddedIndex == 0); 4454 Builder.CreateStore(elt, eltAddr); 4455 } 4456 // FALLTHROUGH 4457 LLVM_FALLTHROUGH; 4458 } 4459 4460 case ABIArgInfo::InAlloca: 4461 case ABIArgInfo::Indirect: { 4462 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4463 if (UnusedReturnSizePtr) 4464 PopCleanupBlock(); 4465 return ret; 4466 } 4467 4468 case ABIArgInfo::Ignore: 4469 // If we are ignoring an argument that had a result, make sure to 4470 // construct the appropriate return value for our caller. 4471 return GetUndefRValue(RetTy); 4472 4473 case ABIArgInfo::Extend: 4474 case ABIArgInfo::Direct: { 4475 llvm::Type *RetIRTy = ConvertType(RetTy); 4476 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4477 switch (getEvaluationKind(RetTy)) { 4478 case TEK_Complex: { 4479 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4480 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4481 return RValue::getComplex(std::make_pair(Real, Imag)); 4482 } 4483 case TEK_Aggregate: { 4484 Address DestPtr = ReturnValue.getValue(); 4485 bool DestIsVolatile = ReturnValue.isVolatile(); 4486 4487 if (!DestPtr.isValid()) { 4488 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4489 DestIsVolatile = false; 4490 } 4491 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4492 return RValue::getAggregate(DestPtr); 4493 } 4494 case TEK_Scalar: { 4495 // If the argument doesn't match, perform a bitcast to coerce it. This 4496 // can happen due to trivial type mismatches. 4497 llvm::Value *V = CI; 4498 if (V->getType() != RetIRTy) 4499 V = Builder.CreateBitCast(V, RetIRTy); 4500 return RValue::get(V); 4501 } 4502 } 4503 llvm_unreachable("bad evaluation kind"); 4504 } 4505 4506 Address DestPtr = ReturnValue.getValue(); 4507 bool DestIsVolatile = ReturnValue.isVolatile(); 4508 4509 if (!DestPtr.isValid()) { 4510 DestPtr = CreateMemTemp(RetTy, "coerce"); 4511 DestIsVolatile = false; 4512 } 4513 4514 // If the value is offset in memory, apply the offset now. 4515 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4516 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4517 4518 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4519 } 4520 4521 case ABIArgInfo::Expand: 4522 llvm_unreachable("Invalid ABI kind for return argument"); 4523 } 4524 4525 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4526 } (); 4527 4528 // Emit the assume_aligned check on the return value. 4529 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4530 if (Ret.isScalar() && TargetDecl) { 4531 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4532 llvm::Value *OffsetValue = nullptr; 4533 if (const auto *Offset = AA->getOffset()) 4534 OffsetValue = EmitScalarExpr(Offset); 4535 4536 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4537 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4538 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 4539 OffsetValue); 4540 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { 4541 llvm::Value *ParamVal = 4542 CallArgs[AA->getParamIndex().getLLVMIndex()].getRValue( 4543 *this).getScalarVal(); 4544 EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal); 4545 } 4546 } 4547 4548 return Ret; 4549 } 4550 4551 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 4552 if (isVirtual()) { 4553 const CallExpr *CE = getVirtualCallExpr(); 4554 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 4555 CGF, getVirtualMethodDecl(), getThisAddress(), getFunctionType(), 4556 CE ? CE->getBeginLoc() : SourceLocation()); 4557 } 4558 4559 return *this; 4560 } 4561 4562 /* VarArg handling */ 4563 4564 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4565 VAListAddr = VE->isMicrosoftABI() 4566 ? EmitMSVAListRef(VE->getSubExpr()) 4567 : EmitVAListRef(VE->getSubExpr()); 4568 QualType Ty = VE->getType(); 4569 if (VE->isMicrosoftABI()) 4570 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4571 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4572 } 4573