1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/MC/SubtargetFeature.h"
31 #include "llvm/Support/CallSite.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 /***/
37 
38 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
39   switch (CC) {
40   default: return llvm::CallingConv::C;
41   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
42   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
43   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
44   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
45   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
46   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
47   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
48   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
49   // TODO: add support for CC_X86Pascal to llvm
50   }
51 }
52 
53 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
54 /// qualification.
55 /// FIXME: address space qualification?
56 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
57   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
58   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
59 }
60 
61 /// Returns the canonical formal type of the given C++ method.
62 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
63   return MD->getType()->getCanonicalTypeUnqualified()
64            .getAs<FunctionProtoType>();
65 }
66 
67 /// Returns the "extra-canonicalized" return type, which discards
68 /// qualifiers on the return type.  Codegen doesn't care about them,
69 /// and it makes ABI code a little easier to be able to assume that
70 /// all parameter and return types are top-level unqualified.
71 static CanQualType GetReturnType(QualType RetTy) {
72   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
73 }
74 
75 /// Arrange the argument and result information for a value of the given
76 /// unprototyped freestanding function type.
77 const CGFunctionInfo &
78 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
79   // When translating an unprototyped function type, always use a
80   // variadic type.
81   return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
82                                  None, FTNP->getExtInfo(), RequiredArgs(0));
83 }
84 
85 /// Arrange the LLVM function layout for a value of the given function
86 /// type, on top of any implicit parameters already stored.  Use the
87 /// given ExtInfo instead of the ExtInfo from the function type.
88 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
89                                        SmallVectorImpl<CanQualType> &prefix,
90                                              CanQual<FunctionProtoType> FTP,
91                                               FunctionType::ExtInfo extInfo) {
92   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
93   // FIXME: Kill copy.
94   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
95     prefix.push_back(FTP->getArgType(i));
96   CanQualType resultType = FTP->getResultType().getUnqualifiedType();
97   return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
98 }
99 
100 /// Arrange the argument and result information for a free function (i.e.
101 /// not a C++ or ObjC instance method) of the given type.
102 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
103                                       SmallVectorImpl<CanQualType> &prefix,
104                                             CanQual<FunctionProtoType> FTP) {
105   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
106 }
107 
108 /// Arrange the argument and result information for a free function (i.e.
109 /// not a C++ or ObjC instance method) of the given type.
110 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
111                                       SmallVectorImpl<CanQualType> &prefix,
112                                             CanQual<FunctionProtoType> FTP) {
113   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
114   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
115 }
116 
117 /// Arrange the argument and result information for a value of the
118 /// given freestanding function type.
119 const CGFunctionInfo &
120 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
121   SmallVector<CanQualType, 16> argTypes;
122   return ::arrangeFreeFunctionType(*this, argTypes, FTP);
123 }
124 
125 static CallingConv getCallingConventionForDecl(const Decl *D) {
126   // Set the appropriate calling convention for the Function.
127   if (D->hasAttr<StdCallAttr>())
128     return CC_X86StdCall;
129 
130   if (D->hasAttr<FastCallAttr>())
131     return CC_X86FastCall;
132 
133   if (D->hasAttr<ThisCallAttr>())
134     return CC_X86ThisCall;
135 
136   if (D->hasAttr<PascalAttr>())
137     return CC_X86Pascal;
138 
139   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
140     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
141 
142   if (D->hasAttr<PnaclCallAttr>())
143     return CC_PnaclCall;
144 
145   if (D->hasAttr<IntelOclBiccAttr>())
146     return CC_IntelOclBicc;
147 
148   return CC_C;
149 }
150 
151 /// Arrange the argument and result information for a call to an
152 /// unknown C++ non-static member function of the given abstract type.
153 /// (Zero value of RD means we don't have any meaningful "this" argument type,
154 ///  so fall back to a generic pointer type).
155 /// The member function must be an ordinary function, i.e. not a
156 /// constructor or destructor.
157 const CGFunctionInfo &
158 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
159                                    const FunctionProtoType *FTP) {
160   SmallVector<CanQualType, 16> argTypes;
161 
162   // Add the 'this' pointer.
163   if (RD)
164     argTypes.push_back(GetThisType(Context, RD));
165   else
166     argTypes.push_back(Context.VoidPtrTy);
167 
168   return ::arrangeCXXMethodType(*this, argTypes,
169               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
170 }
171 
172 /// Arrange the argument and result information for a declaration or
173 /// definition of the given C++ non-static member function.  The
174 /// member function must be an ordinary function, i.e. not a
175 /// constructor or destructor.
176 const CGFunctionInfo &
177 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
178   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
179   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
180 
181   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
182 
183   if (MD->isInstance()) {
184     // The abstract case is perfectly fine.
185     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
186     return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
187   }
188 
189   return arrangeFreeFunctionType(prototype);
190 }
191 
192 /// Arrange the argument and result information for a declaration
193 /// or definition to the given constructor variant.
194 const CGFunctionInfo &
195 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
196                                                CXXCtorType ctorKind) {
197   SmallVector<CanQualType, 16> argTypes;
198   argTypes.push_back(GetThisType(Context, D->getParent()));
199 
200   GlobalDecl GD(D, ctorKind);
201   CanQualType resultType =
202     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
203 
204   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
205 
206   CanQual<FunctionProtoType> FTP = GetFormalType(D);
207 
208   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
209 
210   // Add the formal parameters.
211   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
212     argTypes.push_back(FTP->getArgType(i));
213 
214   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
215   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
216 }
217 
218 /// Arrange the argument and result information for a declaration,
219 /// definition, or call to the given destructor variant.  It so
220 /// happens that all three cases produce the same information.
221 const CGFunctionInfo &
222 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
223                                    CXXDtorType dtorKind) {
224   SmallVector<CanQualType, 2> argTypes;
225   argTypes.push_back(GetThisType(Context, D->getParent()));
226 
227   GlobalDecl GD(D, dtorKind);
228   CanQualType resultType =
229     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
230 
231   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
232 
233   CanQual<FunctionProtoType> FTP = GetFormalType(D);
234   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
235   assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
236 
237   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
238   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
239                                  RequiredArgs::All);
240 }
241 
242 /// Arrange the argument and result information for the declaration or
243 /// definition of the given function.
244 const CGFunctionInfo &
245 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
246   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
247     if (MD->isInstance())
248       return arrangeCXXMethodDeclaration(MD);
249 
250   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
251 
252   assert(isa<FunctionType>(FTy));
253 
254   // When declaring a function without a prototype, always use a
255   // non-variadic type.
256   if (isa<FunctionNoProtoType>(FTy)) {
257     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
258     return arrangeLLVMFunctionInfo(noProto->getResultType(), None,
259                                    noProto->getExtInfo(), RequiredArgs::All);
260   }
261 
262   assert(isa<FunctionProtoType>(FTy));
263   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
264 }
265 
266 /// Arrange the argument and result information for the declaration or
267 /// definition of an Objective-C method.
268 const CGFunctionInfo &
269 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
270   // It happens that this is the same as a call with no optional
271   // arguments, except also using the formal 'self' type.
272   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
273 }
274 
275 /// Arrange the argument and result information for the function type
276 /// through which to perform a send to the given Objective-C method,
277 /// using the given receiver type.  The receiver type is not always
278 /// the 'self' type of the method or even an Objective-C pointer type.
279 /// This is *not* the right method for actually performing such a
280 /// message send, due to the possibility of optional arguments.
281 const CGFunctionInfo &
282 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
283                                               QualType receiverType) {
284   SmallVector<CanQualType, 16> argTys;
285   argTys.push_back(Context.getCanonicalParamType(receiverType));
286   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
287   // FIXME: Kill copy?
288   for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
289          e = MD->param_end(); i != e; ++i) {
290     argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
291   }
292 
293   FunctionType::ExtInfo einfo;
294   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
295 
296   if (getContext().getLangOpts().ObjCAutoRefCount &&
297       MD->hasAttr<NSReturnsRetainedAttr>())
298     einfo = einfo.withProducesResult(true);
299 
300   RequiredArgs required =
301     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
302 
303   return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
304                                  einfo, required);
305 }
306 
307 const CGFunctionInfo &
308 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
309   // FIXME: Do we need to handle ObjCMethodDecl?
310   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
311 
312   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
313     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
314 
315   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
316     return arrangeCXXDestructor(DD, GD.getDtorType());
317 
318   return arrangeFunctionDeclaration(FD);
319 }
320 
321 /// Arrange a call as unto a free function, except possibly with an
322 /// additional number of formal parameters considered required.
323 static const CGFunctionInfo &
324 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
325                             CodeGenModule &CGM,
326                             const CallArgList &args,
327                             const FunctionType *fnType,
328                             unsigned numExtraRequiredArgs) {
329   assert(args.size() >= numExtraRequiredArgs);
330 
331   // In most cases, there are no optional arguments.
332   RequiredArgs required = RequiredArgs::All;
333 
334   // If we have a variadic prototype, the required arguments are the
335   // extra prefix plus the arguments in the prototype.
336   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
337     if (proto->isVariadic())
338       required = RequiredArgs(proto->getNumArgs() + numExtraRequiredArgs);
339 
340   // If we don't have a prototype at all, but we're supposed to
341   // explicitly use the variadic convention for unprototyped calls,
342   // treat all of the arguments as required but preserve the nominal
343   // possibility of variadics.
344   } else if (CGM.getTargetCodeGenInfo()
345                 .isNoProtoCallVariadic(args,
346                                        cast<FunctionNoProtoType>(fnType))) {
347     required = RequiredArgs(args.size());
348   }
349 
350   return CGT.arrangeFreeFunctionCall(fnType->getResultType(), args,
351                                      fnType->getExtInfo(), required);
352 }
353 
354 /// Figure out the rules for calling a function with the given formal
355 /// type using the given arguments.  The arguments are necessary
356 /// because the function might be unprototyped, in which case it's
357 /// target-dependent in crazy ways.
358 const CGFunctionInfo &
359 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
360                                       const FunctionType *fnType) {
361   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 0);
362 }
363 
364 /// A block function call is essentially a free-function call with an
365 /// extra implicit argument.
366 const CGFunctionInfo &
367 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
368                                        const FunctionType *fnType) {
369   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1);
370 }
371 
372 const CGFunctionInfo &
373 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
374                                       const CallArgList &args,
375                                       FunctionType::ExtInfo info,
376                                       RequiredArgs required) {
377   // FIXME: Kill copy.
378   SmallVector<CanQualType, 16> argTypes;
379   for (CallArgList::const_iterator i = args.begin(), e = args.end();
380        i != e; ++i)
381     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
382   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
383                                  required);
384 }
385 
386 /// Arrange a call to a C++ method, passing the given arguments.
387 const CGFunctionInfo &
388 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
389                                    const FunctionProtoType *FPT,
390                                    RequiredArgs required) {
391   // FIXME: Kill copy.
392   SmallVector<CanQualType, 16> argTypes;
393   for (CallArgList::const_iterator i = args.begin(), e = args.end();
394        i != e; ++i)
395     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
396 
397   FunctionType::ExtInfo info = FPT->getExtInfo();
398   return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
399                                  argTypes, info, required);
400 }
401 
402 const CGFunctionInfo &
403 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
404                                          const FunctionArgList &args,
405                                          const FunctionType::ExtInfo &info,
406                                          bool isVariadic) {
407   // FIXME: Kill copy.
408   SmallVector<CanQualType, 16> argTypes;
409   for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
410        i != e; ++i)
411     argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
412 
413   RequiredArgs required =
414     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
415   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
416                                  required);
417 }
418 
419 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
420   return arrangeLLVMFunctionInfo(getContext().VoidTy, None,
421                                  FunctionType::ExtInfo(), RequiredArgs::All);
422 }
423 
424 /// Arrange the argument and result information for an abstract value
425 /// of a given function type.  This is the method which all of the
426 /// above functions ultimately defer to.
427 const CGFunctionInfo &
428 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
429                                       ArrayRef<CanQualType> argTypes,
430                                       FunctionType::ExtInfo info,
431                                       RequiredArgs required) {
432 #ifndef NDEBUG
433   for (ArrayRef<CanQualType>::const_iterator
434          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
435     assert(I->isCanonicalAsParam());
436 #endif
437 
438   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
439 
440   // Lookup or create unique function info.
441   llvm::FoldingSetNodeID ID;
442   CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
443 
444   void *insertPos = 0;
445   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
446   if (FI)
447     return *FI;
448 
449   // Construct the function info.  We co-allocate the ArgInfos.
450   FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
451   FunctionInfos.InsertNode(FI, insertPos);
452 
453   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
454   assert(inserted && "Recursively being processed?");
455 
456   // Compute ABI information.
457   getABIInfo().computeInfo(*FI);
458 
459   // Loop over all of the computed argument and return value info.  If any of
460   // them are direct or extend without a specified coerce type, specify the
461   // default now.
462   ABIArgInfo &retInfo = FI->getReturnInfo();
463   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
464     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
465 
466   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
467        I != E; ++I)
468     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
469       I->info.setCoerceToType(ConvertType(I->type));
470 
471   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
472   assert(erased && "Not in set?");
473 
474   return *FI;
475 }
476 
477 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
478                                        const FunctionType::ExtInfo &info,
479                                        CanQualType resultType,
480                                        ArrayRef<CanQualType> argTypes,
481                                        RequiredArgs required) {
482   void *buffer = operator new(sizeof(CGFunctionInfo) +
483                               sizeof(ArgInfo) * (argTypes.size() + 1));
484   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
485   FI->CallingConvention = llvmCC;
486   FI->EffectiveCallingConvention = llvmCC;
487   FI->ASTCallingConvention = info.getCC();
488   FI->NoReturn = info.getNoReturn();
489   FI->ReturnsRetained = info.getProducesResult();
490   FI->Required = required;
491   FI->HasRegParm = info.getHasRegParm();
492   FI->RegParm = info.getRegParm();
493   FI->NumArgs = argTypes.size();
494   FI->getArgsBuffer()[0].type = resultType;
495   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
496     FI->getArgsBuffer()[i + 1].type = argTypes[i];
497   return FI;
498 }
499 
500 /***/
501 
502 void CodeGenTypes::GetExpandedTypes(QualType type,
503                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
504   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
505     uint64_t NumElts = AT->getSize().getZExtValue();
506     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
507       GetExpandedTypes(AT->getElementType(), expandedTypes);
508   } else if (const RecordType *RT = type->getAs<RecordType>()) {
509     const RecordDecl *RD = RT->getDecl();
510     assert(!RD->hasFlexibleArrayMember() &&
511            "Cannot expand structure with flexible array.");
512     if (RD->isUnion()) {
513       // Unions can be here only in degenerative cases - all the fields are same
514       // after flattening. Thus we have to use the "largest" field.
515       const FieldDecl *LargestFD = 0;
516       CharUnits UnionSize = CharUnits::Zero();
517 
518       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
519            i != e; ++i) {
520         const FieldDecl *FD = *i;
521         assert(!FD->isBitField() &&
522                "Cannot expand structure with bit-field members.");
523         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
524         if (UnionSize < FieldSize) {
525           UnionSize = FieldSize;
526           LargestFD = FD;
527         }
528       }
529       if (LargestFD)
530         GetExpandedTypes(LargestFD->getType(), expandedTypes);
531     } else {
532       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
533            i != e; ++i) {
534         assert(!i->isBitField() &&
535                "Cannot expand structure with bit-field members.");
536         GetExpandedTypes(i->getType(), expandedTypes);
537       }
538     }
539   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
540     llvm::Type *EltTy = ConvertType(CT->getElementType());
541     expandedTypes.push_back(EltTy);
542     expandedTypes.push_back(EltTy);
543   } else
544     expandedTypes.push_back(ConvertType(type));
545 }
546 
547 llvm::Function::arg_iterator
548 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
549                                     llvm::Function::arg_iterator AI) {
550   assert(LV.isSimple() &&
551          "Unexpected non-simple lvalue during struct expansion.");
552 
553   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
554     unsigned NumElts = AT->getSize().getZExtValue();
555     QualType EltTy = AT->getElementType();
556     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
557       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
558       LValue LV = MakeAddrLValue(EltAddr, EltTy);
559       AI = ExpandTypeFromArgs(EltTy, LV, AI);
560     }
561   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
562     RecordDecl *RD = RT->getDecl();
563     if (RD->isUnion()) {
564       // Unions can be here only in degenerative cases - all the fields are same
565       // after flattening. Thus we have to use the "largest" field.
566       const FieldDecl *LargestFD = 0;
567       CharUnits UnionSize = CharUnits::Zero();
568 
569       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
570            i != e; ++i) {
571         const FieldDecl *FD = *i;
572         assert(!FD->isBitField() &&
573                "Cannot expand structure with bit-field members.");
574         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
575         if (UnionSize < FieldSize) {
576           UnionSize = FieldSize;
577           LargestFD = FD;
578         }
579       }
580       if (LargestFD) {
581         // FIXME: What are the right qualifiers here?
582         LValue SubLV = EmitLValueForField(LV, LargestFD);
583         AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
584       }
585     } else {
586       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
587            i != e; ++i) {
588         FieldDecl *FD = *i;
589         QualType FT = FD->getType();
590 
591         // FIXME: What are the right qualifiers here?
592         LValue SubLV = EmitLValueForField(LV, FD);
593         AI = ExpandTypeFromArgs(FT, SubLV, AI);
594       }
595     }
596   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
597     QualType EltTy = CT->getElementType();
598     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
599     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
600     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
601     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
602   } else {
603     EmitStoreThroughLValue(RValue::get(AI), LV);
604     ++AI;
605   }
606 
607   return AI;
608 }
609 
610 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
611 /// accessing some number of bytes out of it, try to gep into the struct to get
612 /// at its inner goodness.  Dive as deep as possible without entering an element
613 /// with an in-memory size smaller than DstSize.
614 static llvm::Value *
615 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
616                                    llvm::StructType *SrcSTy,
617                                    uint64_t DstSize, CodeGenFunction &CGF) {
618   // We can't dive into a zero-element struct.
619   if (SrcSTy->getNumElements() == 0) return SrcPtr;
620 
621   llvm::Type *FirstElt = SrcSTy->getElementType(0);
622 
623   // If the first elt is at least as large as what we're looking for, or if the
624   // first element is the same size as the whole struct, we can enter it.
625   uint64_t FirstEltSize =
626     CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
627   if (FirstEltSize < DstSize &&
628       FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
629     return SrcPtr;
630 
631   // GEP into the first element.
632   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
633 
634   // If the first element is a struct, recurse.
635   llvm::Type *SrcTy =
636     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
637   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
638     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
639 
640   return SrcPtr;
641 }
642 
643 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
644 /// are either integers or pointers.  This does a truncation of the value if it
645 /// is too large or a zero extension if it is too small.
646 ///
647 /// This behaves as if the value were coerced through memory, so on big-endian
648 /// targets the high bits are preserved in a truncation, while little-endian
649 /// targets preserve the low bits.
650 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
651                                              llvm::Type *Ty,
652                                              CodeGenFunction &CGF) {
653   if (Val->getType() == Ty)
654     return Val;
655 
656   if (isa<llvm::PointerType>(Val->getType())) {
657     // If this is Pointer->Pointer avoid conversion to and from int.
658     if (isa<llvm::PointerType>(Ty))
659       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
660 
661     // Convert the pointer to an integer so we can play with its width.
662     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
663   }
664 
665   llvm::Type *DestIntTy = Ty;
666   if (isa<llvm::PointerType>(DestIntTy))
667     DestIntTy = CGF.IntPtrTy;
668 
669   if (Val->getType() != DestIntTy) {
670     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
671     if (DL.isBigEndian()) {
672       // Preserve the high bits on big-endian targets.
673       // That is what memory coercion does.
674       uint64_t SrcSize = DL.getTypeAllocSizeInBits(Val->getType());
675       uint64_t DstSize = DL.getTypeAllocSizeInBits(DestIntTy);
676       if (SrcSize > DstSize) {
677         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
678         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
679       } else {
680         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
681         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
682       }
683     } else {
684       // Little-endian targets preserve the low bits. No shifts required.
685       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
686     }
687   }
688 
689   if (isa<llvm::PointerType>(Ty))
690     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
691   return Val;
692 }
693 
694 
695 
696 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
697 /// a pointer to an object of type \arg Ty.
698 ///
699 /// This safely handles the case when the src type is smaller than the
700 /// destination type; in this situation the values of bits which not
701 /// present in the src are undefined.
702 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
703                                       llvm::Type *Ty,
704                                       CodeGenFunction &CGF) {
705   llvm::Type *SrcTy =
706     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
707 
708   // If SrcTy and Ty are the same, just do a load.
709   if (SrcTy == Ty)
710     return CGF.Builder.CreateLoad(SrcPtr);
711 
712   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
713 
714   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
715     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
716     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
717   }
718 
719   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
720 
721   // If the source and destination are integer or pointer types, just do an
722   // extension or truncation to the desired type.
723   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
724       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
725     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
726     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
727   }
728 
729   // If load is legal, just bitcast the src pointer.
730   if (SrcSize >= DstSize) {
731     // Generally SrcSize is never greater than DstSize, since this means we are
732     // losing bits. However, this can happen in cases where the structure has
733     // additional padding, for example due to a user specified alignment.
734     //
735     // FIXME: Assert that we aren't truncating non-padding bits when have access
736     // to that information.
737     llvm::Value *Casted =
738       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
739     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
740     // FIXME: Use better alignment / avoid requiring aligned load.
741     Load->setAlignment(1);
742     return Load;
743   }
744 
745   // Otherwise do coercion through memory. This is stupid, but
746   // simple.
747   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
748   llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
749   llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
750   llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
751   // FIXME: Use better alignment.
752   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
753       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
754       1, false);
755   return CGF.Builder.CreateLoad(Tmp);
756 }
757 
758 // Function to store a first-class aggregate into memory.  We prefer to
759 // store the elements rather than the aggregate to be more friendly to
760 // fast-isel.
761 // FIXME: Do we need to recurse here?
762 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
763                           llvm::Value *DestPtr, bool DestIsVolatile,
764                           bool LowAlignment) {
765   // Prefer scalar stores to first-class aggregate stores.
766   if (llvm::StructType *STy =
767         dyn_cast<llvm::StructType>(Val->getType())) {
768     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
769       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
770       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
771       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
772                                                     DestIsVolatile);
773       if (LowAlignment)
774         SI->setAlignment(1);
775     }
776   } else {
777     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
778     if (LowAlignment)
779       SI->setAlignment(1);
780   }
781 }
782 
783 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
784 /// where the source and destination may have different types.
785 ///
786 /// This safely handles the case when the src type is larger than the
787 /// destination type; the upper bits of the src will be lost.
788 static void CreateCoercedStore(llvm::Value *Src,
789                                llvm::Value *DstPtr,
790                                bool DstIsVolatile,
791                                CodeGenFunction &CGF) {
792   llvm::Type *SrcTy = Src->getType();
793   llvm::Type *DstTy =
794     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
795   if (SrcTy == DstTy) {
796     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
797     return;
798   }
799 
800   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
801 
802   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
803     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
804     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
805   }
806 
807   // If the source and destination are integer or pointer types, just do an
808   // extension or truncation to the desired type.
809   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
810       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
811     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
812     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
813     return;
814   }
815 
816   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
817 
818   // If store is legal, just bitcast the src pointer.
819   if (SrcSize <= DstSize) {
820     llvm::Value *Casted =
821       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
822     // FIXME: Use better alignment / avoid requiring aligned store.
823     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
824   } else {
825     // Otherwise do coercion through memory. This is stupid, but
826     // simple.
827 
828     // Generally SrcSize is never greater than DstSize, since this means we are
829     // losing bits. However, this can happen in cases where the structure has
830     // additional padding, for example due to a user specified alignment.
831     //
832     // FIXME: Assert that we aren't truncating non-padding bits when have access
833     // to that information.
834     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
835     CGF.Builder.CreateStore(Src, Tmp);
836     llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
837     llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
838     llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
839     // FIXME: Use better alignment.
840     CGF.Builder.CreateMemCpy(DstCasted, Casted,
841         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
842         1, false);
843   }
844 }
845 
846 /***/
847 
848 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
849   return FI.getReturnInfo().isIndirect();
850 }
851 
852 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
853   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
854     switch (BT->getKind()) {
855     default:
856       return false;
857     case BuiltinType::Float:
858       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
859     case BuiltinType::Double:
860       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
861     case BuiltinType::LongDouble:
862       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
863     }
864   }
865 
866   return false;
867 }
868 
869 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
870   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
871     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
872       if (BT->getKind() == BuiltinType::LongDouble)
873         return getTarget().useObjCFP2RetForComplexLongDouble();
874     }
875   }
876 
877   return false;
878 }
879 
880 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
881   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
882   return GetFunctionType(FI);
883 }
884 
885 llvm::FunctionType *
886 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
887 
888   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
889   assert(Inserted && "Recursively being processed?");
890 
891   SmallVector<llvm::Type*, 8> argTypes;
892   llvm::Type *resultType = 0;
893 
894   const ABIArgInfo &retAI = FI.getReturnInfo();
895   switch (retAI.getKind()) {
896   case ABIArgInfo::Expand:
897     llvm_unreachable("Invalid ABI kind for return argument");
898 
899   case ABIArgInfo::Extend:
900   case ABIArgInfo::Direct:
901     resultType = retAI.getCoerceToType();
902     break;
903 
904   case ABIArgInfo::Indirect: {
905     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
906     resultType = llvm::Type::getVoidTy(getLLVMContext());
907 
908     QualType ret = FI.getReturnType();
909     llvm::Type *ty = ConvertType(ret);
910     unsigned addressSpace = Context.getTargetAddressSpace(ret);
911     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
912     break;
913   }
914 
915   case ABIArgInfo::Ignore:
916     resultType = llvm::Type::getVoidTy(getLLVMContext());
917     break;
918   }
919 
920   // Add in all of the required arguments.
921   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
922   if (FI.isVariadic()) {
923     ie = it + FI.getRequiredArgs().getNumRequiredArgs();
924   } else {
925     ie = FI.arg_end();
926   }
927   for (; it != ie; ++it) {
928     const ABIArgInfo &argAI = it->info;
929 
930     // Insert a padding type to ensure proper alignment.
931     if (llvm::Type *PaddingType = argAI.getPaddingType())
932       argTypes.push_back(PaddingType);
933 
934     switch (argAI.getKind()) {
935     case ABIArgInfo::Ignore:
936       break;
937 
938     case ABIArgInfo::Indirect: {
939       // indirect arguments are always on the stack, which is addr space #0.
940       llvm::Type *LTy = ConvertTypeForMem(it->type);
941       argTypes.push_back(LTy->getPointerTo());
942       break;
943     }
944 
945     case ABIArgInfo::Extend:
946     case ABIArgInfo::Direct: {
947       // If the coerce-to type is a first class aggregate, flatten it.  Either
948       // way is semantically identical, but fast-isel and the optimizer
949       // generally likes scalar values better than FCAs.
950       llvm::Type *argType = argAI.getCoerceToType();
951       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
952         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
953           argTypes.push_back(st->getElementType(i));
954       } else {
955         argTypes.push_back(argType);
956       }
957       break;
958     }
959 
960     case ABIArgInfo::Expand:
961       GetExpandedTypes(it->type, argTypes);
962       break;
963     }
964   }
965 
966   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
967   assert(Erased && "Not in set?");
968 
969   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
970 }
971 
972 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
973   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
974   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
975 
976   if (!isFuncTypeConvertible(FPT))
977     return llvm::StructType::get(getLLVMContext());
978 
979   const CGFunctionInfo *Info;
980   if (isa<CXXDestructorDecl>(MD))
981     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
982   else
983     Info = &arrangeCXXMethodDeclaration(MD);
984   return GetFunctionType(*Info);
985 }
986 
987 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
988                                            const Decl *TargetDecl,
989                                            AttributeListType &PAL,
990                                            unsigned &CallingConv,
991                                            bool AttrOnCallSite) {
992   llvm::AttrBuilder FuncAttrs;
993   llvm::AttrBuilder RetAttrs;
994 
995   CallingConv = FI.getEffectiveCallingConvention();
996 
997   if (FI.isNoReturn())
998     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
999 
1000   // FIXME: handle sseregparm someday...
1001   if (TargetDecl) {
1002     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1003       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1004     if (TargetDecl->hasAttr<NoThrowAttr>())
1005       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1006     if (TargetDecl->hasAttr<NoReturnAttr>())
1007       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1008 
1009     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1010       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1011       if (FPT && FPT->isNothrow(getContext()))
1012         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1013       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1014       // These attributes are not inherited by overloads.
1015       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1016       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1017         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1018     }
1019 
1020     // 'const' and 'pure' attribute functions are also nounwind.
1021     if (TargetDecl->hasAttr<ConstAttr>()) {
1022       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1023       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1024     } else if (TargetDecl->hasAttr<PureAttr>()) {
1025       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1026       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1027     }
1028     if (TargetDecl->hasAttr<MallocAttr>())
1029       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1030   }
1031 
1032   if (CodeGenOpts.OptimizeSize)
1033     FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1034   if (CodeGenOpts.OptimizeSize == 2)
1035     FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1036   if (CodeGenOpts.DisableRedZone)
1037     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1038   if (CodeGenOpts.NoImplicitFloat)
1039     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1040 
1041   if (AttrOnCallSite) {
1042     // Attributes that should go on the call site only.
1043     if (!CodeGenOpts.SimplifyLibCalls)
1044       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1045   } else {
1046     // Attributes that should go on the function, but not the call site.
1047     if (!CodeGenOpts.DisableFPElim) {
1048       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1049     } else if (CodeGenOpts.OmitLeafFramePointer) {
1050       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1051       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1052     } else {
1053       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1054       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1055     }
1056 
1057     FuncAttrs.addAttribute("less-precise-fpmad",
1058                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1059     FuncAttrs.addAttribute("no-infs-fp-math",
1060                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1061     FuncAttrs.addAttribute("no-nans-fp-math",
1062                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1063     FuncAttrs.addAttribute("unsafe-fp-math",
1064                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1065     FuncAttrs.addAttribute("use-soft-float",
1066                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1067     FuncAttrs.addAttribute("stack-protector-buffer-size",
1068                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1069 
1070     if (!CodeGenOpts.StackRealignment)
1071       FuncAttrs.addAttribute("no-realign-stack");
1072   }
1073 
1074   QualType RetTy = FI.getReturnType();
1075   unsigned Index = 1;
1076   const ABIArgInfo &RetAI = FI.getReturnInfo();
1077   switch (RetAI.getKind()) {
1078   case ABIArgInfo::Extend:
1079     if (RetTy->hasSignedIntegerRepresentation())
1080       RetAttrs.addAttribute(llvm::Attribute::SExt);
1081     else if (RetTy->hasUnsignedIntegerRepresentation())
1082       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1083     // FALL THROUGH
1084   case ABIArgInfo::Direct:
1085     if (RetAI.getInReg())
1086       RetAttrs.addAttribute(llvm::Attribute::InReg);
1087     break;
1088   case ABIArgInfo::Ignore:
1089     break;
1090 
1091   case ABIArgInfo::Indirect: {
1092     llvm::AttrBuilder SRETAttrs;
1093     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1094     if (RetAI.getInReg())
1095       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1096     PAL.push_back(llvm::
1097                   AttributeSet::get(getLLVMContext(), Index, SRETAttrs));
1098 
1099     ++Index;
1100     // sret disables readnone and readonly
1101     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1102       .removeAttribute(llvm::Attribute::ReadNone);
1103     break;
1104   }
1105 
1106   case ABIArgInfo::Expand:
1107     llvm_unreachable("Invalid ABI kind for return argument");
1108   }
1109 
1110   if (RetAttrs.hasAttributes())
1111     PAL.push_back(llvm::
1112                   AttributeSet::get(getLLVMContext(),
1113                                     llvm::AttributeSet::ReturnIndex,
1114                                     RetAttrs));
1115 
1116   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1117          ie = FI.arg_end(); it != ie; ++it) {
1118     QualType ParamType = it->type;
1119     const ABIArgInfo &AI = it->info;
1120     llvm::AttrBuilder Attrs;
1121 
1122     if (AI.getPaddingType()) {
1123       if (AI.getPaddingInReg())
1124         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index,
1125                                               llvm::Attribute::InReg));
1126       // Increment Index if there is padding.
1127       ++Index;
1128     }
1129 
1130     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1131     // have the corresponding parameter variable.  It doesn't make
1132     // sense to do it here because parameters are so messed up.
1133     switch (AI.getKind()) {
1134     case ABIArgInfo::Extend:
1135       if (ParamType->isSignedIntegerOrEnumerationType())
1136         Attrs.addAttribute(llvm::Attribute::SExt);
1137       else if (ParamType->isUnsignedIntegerOrEnumerationType())
1138         Attrs.addAttribute(llvm::Attribute::ZExt);
1139       // FALL THROUGH
1140     case ABIArgInfo::Direct:
1141       if (AI.getInReg())
1142         Attrs.addAttribute(llvm::Attribute::InReg);
1143 
1144       // FIXME: handle sseregparm someday...
1145 
1146       if (llvm::StructType *STy =
1147           dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
1148         unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
1149         if (Attrs.hasAttributes())
1150           for (unsigned I = 0; I < Extra; ++I)
1151             PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I,
1152                                                   Attrs));
1153         Index += Extra;
1154       }
1155       break;
1156 
1157     case ABIArgInfo::Indirect:
1158       if (AI.getInReg())
1159         Attrs.addAttribute(llvm::Attribute::InReg);
1160 
1161       if (AI.getIndirectByVal())
1162         Attrs.addAttribute(llvm::Attribute::ByVal);
1163 
1164       Attrs.addAlignmentAttr(AI.getIndirectAlign());
1165 
1166       // byval disables readnone and readonly.
1167       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1168         .removeAttribute(llvm::Attribute::ReadNone);
1169       break;
1170 
1171     case ABIArgInfo::Ignore:
1172       // Skip increment, no matching LLVM parameter.
1173       continue;
1174 
1175     case ABIArgInfo::Expand: {
1176       SmallVector<llvm::Type*, 8> types;
1177       // FIXME: This is rather inefficient. Do we ever actually need to do
1178       // anything here? The result should be just reconstructed on the other
1179       // side, so extension should be a non-issue.
1180       getTypes().GetExpandedTypes(ParamType, types);
1181       Index += types.size();
1182       continue;
1183     }
1184     }
1185 
1186     if (Attrs.hasAttributes())
1187       PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1188     ++Index;
1189   }
1190   if (FuncAttrs.hasAttributes())
1191     PAL.push_back(llvm::
1192                   AttributeSet::get(getLLVMContext(),
1193                                     llvm::AttributeSet::FunctionIndex,
1194                                     FuncAttrs));
1195 }
1196 
1197 /// An argument came in as a promoted argument; demote it back to its
1198 /// declared type.
1199 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1200                                          const VarDecl *var,
1201                                          llvm::Value *value) {
1202   llvm::Type *varType = CGF.ConvertType(var->getType());
1203 
1204   // This can happen with promotions that actually don't change the
1205   // underlying type, like the enum promotions.
1206   if (value->getType() == varType) return value;
1207 
1208   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1209          && "unexpected promotion type");
1210 
1211   if (isa<llvm::IntegerType>(varType))
1212     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1213 
1214   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1215 }
1216 
1217 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1218                                          llvm::Function *Fn,
1219                                          const FunctionArgList &Args) {
1220   // If this is an implicit-return-zero function, go ahead and
1221   // initialize the return value.  TODO: it might be nice to have
1222   // a more general mechanism for this that didn't require synthesized
1223   // return statements.
1224   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1225     if (FD->hasImplicitReturnZero()) {
1226       QualType RetTy = FD->getResultType().getUnqualifiedType();
1227       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1228       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1229       Builder.CreateStore(Zero, ReturnValue);
1230     }
1231   }
1232 
1233   // FIXME: We no longer need the types from FunctionArgList; lift up and
1234   // simplify.
1235 
1236   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1237   llvm::Function::arg_iterator AI = Fn->arg_begin();
1238 
1239   // Name the struct return argument.
1240   if (CGM.ReturnTypeUsesSRet(FI)) {
1241     AI->setName("agg.result");
1242     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1243                                         AI->getArgNo() + 1,
1244                                         llvm::Attribute::NoAlias));
1245     ++AI;
1246   }
1247 
1248   assert(FI.arg_size() == Args.size() &&
1249          "Mismatch between function signature & arguments.");
1250   unsigned ArgNo = 1;
1251   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1252   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1253        i != e; ++i, ++info_it, ++ArgNo) {
1254     const VarDecl *Arg = *i;
1255     QualType Ty = info_it->type;
1256     const ABIArgInfo &ArgI = info_it->info;
1257 
1258     bool isPromoted =
1259       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1260 
1261     // Skip the dummy padding argument.
1262     if (ArgI.getPaddingType())
1263       ++AI;
1264 
1265     switch (ArgI.getKind()) {
1266     case ABIArgInfo::Indirect: {
1267       llvm::Value *V = AI;
1268 
1269       if (!hasScalarEvaluationKind(Ty)) {
1270         // Aggregates and complex variables are accessed by reference.  All we
1271         // need to do is realign the value, if requested
1272         if (ArgI.getIndirectRealign()) {
1273           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1274 
1275           // Copy from the incoming argument pointer to the temporary with the
1276           // appropriate alignment.
1277           //
1278           // FIXME: We should have a common utility for generating an aggregate
1279           // copy.
1280           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1281           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1282           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1283           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1284           Builder.CreateMemCpy(Dst,
1285                                Src,
1286                                llvm::ConstantInt::get(IntPtrTy,
1287                                                       Size.getQuantity()),
1288                                ArgI.getIndirectAlign(),
1289                                false);
1290           V = AlignedTemp;
1291         }
1292       } else {
1293         // Load scalar value from indirect argument.
1294         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1295         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty,
1296                              Arg->getLocStart());
1297 
1298         if (isPromoted)
1299           V = emitArgumentDemotion(*this, Arg, V);
1300       }
1301       EmitParmDecl(*Arg, V, ArgNo);
1302       break;
1303     }
1304 
1305     case ABIArgInfo::Extend:
1306     case ABIArgInfo::Direct: {
1307 
1308       // If we have the trivial case, handle it with no muss and fuss.
1309       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1310           ArgI.getCoerceToType() == ConvertType(Ty) &&
1311           ArgI.getDirectOffset() == 0) {
1312         assert(AI != Fn->arg_end() && "Argument mismatch!");
1313         llvm::Value *V = AI;
1314 
1315         if (Arg->getType().isRestrictQualified())
1316           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1317                                               AI->getArgNo() + 1,
1318                                               llvm::Attribute::NoAlias));
1319 
1320         // Ensure the argument is the correct type.
1321         if (V->getType() != ArgI.getCoerceToType())
1322           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1323 
1324         if (isPromoted)
1325           V = emitArgumentDemotion(*this, Arg, V);
1326 
1327         if (const CXXMethodDecl *MD =
1328             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1329           if (MD->isVirtual() && Arg == CXXABIThisDecl)
1330             V = CGM.getCXXABI().
1331                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
1332         }
1333 
1334         // Because of merging of function types from multiple decls it is
1335         // possible for the type of an argument to not match the corresponding
1336         // type in the function type. Since we are codegening the callee
1337         // in here, add a cast to the argument type.
1338         llvm::Type *LTy = ConvertType(Arg->getType());
1339         if (V->getType() != LTy)
1340           V = Builder.CreateBitCast(V, LTy);
1341 
1342         EmitParmDecl(*Arg, V, ArgNo);
1343         break;
1344       }
1345 
1346       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1347 
1348       // The alignment we need to use is the max of the requested alignment for
1349       // the argument plus the alignment required by our access code below.
1350       unsigned AlignmentToUse =
1351         CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1352       AlignmentToUse = std::max(AlignmentToUse,
1353                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1354 
1355       Alloca->setAlignment(AlignmentToUse);
1356       llvm::Value *V = Alloca;
1357       llvm::Value *Ptr = V;    // Pointer to store into.
1358 
1359       // If the value is offset in memory, apply the offset now.
1360       if (unsigned Offs = ArgI.getDirectOffset()) {
1361         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1362         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1363         Ptr = Builder.CreateBitCast(Ptr,
1364                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1365       }
1366 
1367       // If the coerce-to type is a first class aggregate, we flatten it and
1368       // pass the elements. Either way is semantically identical, but fast-isel
1369       // and the optimizer generally likes scalar values better than FCAs.
1370       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1371       if (STy && STy->getNumElements() > 1) {
1372         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1373         llvm::Type *DstTy =
1374           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1375         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1376 
1377         if (SrcSize <= DstSize) {
1378           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1379 
1380           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1381             assert(AI != Fn->arg_end() && "Argument mismatch!");
1382             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1383             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1384             Builder.CreateStore(AI++, EltPtr);
1385           }
1386         } else {
1387           llvm::AllocaInst *TempAlloca =
1388             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1389           TempAlloca->setAlignment(AlignmentToUse);
1390           llvm::Value *TempV = TempAlloca;
1391 
1392           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1393             assert(AI != Fn->arg_end() && "Argument mismatch!");
1394             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1395             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1396             Builder.CreateStore(AI++, EltPtr);
1397           }
1398 
1399           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1400         }
1401       } else {
1402         // Simple case, just do a coerced store of the argument into the alloca.
1403         assert(AI != Fn->arg_end() && "Argument mismatch!");
1404         AI->setName(Arg->getName() + ".coerce");
1405         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1406       }
1407 
1408 
1409       // Match to what EmitParmDecl is expecting for this type.
1410       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1411         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty, Arg->getLocStart());
1412         if (isPromoted)
1413           V = emitArgumentDemotion(*this, Arg, V);
1414       }
1415       EmitParmDecl(*Arg, V, ArgNo);
1416       continue;  // Skip ++AI increment, already done.
1417     }
1418 
1419     case ABIArgInfo::Expand: {
1420       // If this structure was expanded into multiple arguments then
1421       // we need to create a temporary and reconstruct it from the
1422       // arguments.
1423       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1424       CharUnits Align = getContext().getDeclAlign(Arg);
1425       Alloca->setAlignment(Align.getQuantity());
1426       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1427       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1428       EmitParmDecl(*Arg, Alloca, ArgNo);
1429 
1430       // Name the arguments used in expansion and increment AI.
1431       unsigned Index = 0;
1432       for (; AI != End; ++AI, ++Index)
1433         AI->setName(Arg->getName() + "." + Twine(Index));
1434       continue;
1435     }
1436 
1437     case ABIArgInfo::Ignore:
1438       // Initialize the local variable appropriately.
1439       if (!hasScalarEvaluationKind(Ty))
1440         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1441       else
1442         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1443                      ArgNo);
1444 
1445       // Skip increment, no matching LLVM parameter.
1446       continue;
1447     }
1448 
1449     ++AI;
1450   }
1451   assert(AI == Fn->arg_end() && "Argument mismatch!");
1452 }
1453 
1454 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1455   while (insn->use_empty()) {
1456     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1457     if (!bitcast) return;
1458 
1459     // This is "safe" because we would have used a ConstantExpr otherwise.
1460     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1461     bitcast->eraseFromParent();
1462   }
1463 }
1464 
1465 /// Try to emit a fused autorelease of a return result.
1466 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1467                                                     llvm::Value *result) {
1468   // We must be immediately followed the cast.
1469   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1470   if (BB->empty()) return 0;
1471   if (&BB->back() != result) return 0;
1472 
1473   llvm::Type *resultType = result->getType();
1474 
1475   // result is in a BasicBlock and is therefore an Instruction.
1476   llvm::Instruction *generator = cast<llvm::Instruction>(result);
1477 
1478   SmallVector<llvm::Instruction*,4> insnsToKill;
1479 
1480   // Look for:
1481   //  %generator = bitcast %type1* %generator2 to %type2*
1482   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1483     // We would have emitted this as a constant if the operand weren't
1484     // an Instruction.
1485     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1486 
1487     // Require the generator to be immediately followed by the cast.
1488     if (generator->getNextNode() != bitcast)
1489       return 0;
1490 
1491     insnsToKill.push_back(bitcast);
1492   }
1493 
1494   // Look for:
1495   //   %generator = call i8* @objc_retain(i8* %originalResult)
1496   // or
1497   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1498   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1499   if (!call) return 0;
1500 
1501   bool doRetainAutorelease;
1502 
1503   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1504     doRetainAutorelease = true;
1505   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1506                                           .objc_retainAutoreleasedReturnValue) {
1507     doRetainAutorelease = false;
1508 
1509     // If we emitted an assembly marker for this call (and the
1510     // ARCEntrypoints field should have been set if so), go looking
1511     // for that call.  If we can't find it, we can't do this
1512     // optimization.  But it should always be the immediately previous
1513     // instruction, unless we needed bitcasts around the call.
1514     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1515       llvm::Instruction *prev = call->getPrevNode();
1516       assert(prev);
1517       if (isa<llvm::BitCastInst>(prev)) {
1518         prev = prev->getPrevNode();
1519         assert(prev);
1520       }
1521       assert(isa<llvm::CallInst>(prev));
1522       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1523                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1524       insnsToKill.push_back(prev);
1525     }
1526   } else {
1527     return 0;
1528   }
1529 
1530   result = call->getArgOperand(0);
1531   insnsToKill.push_back(call);
1532 
1533   // Keep killing bitcasts, for sanity.  Note that we no longer care
1534   // about precise ordering as long as there's exactly one use.
1535   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1536     if (!bitcast->hasOneUse()) break;
1537     insnsToKill.push_back(bitcast);
1538     result = bitcast->getOperand(0);
1539   }
1540 
1541   // Delete all the unnecessary instructions, from latest to earliest.
1542   for (SmallVectorImpl<llvm::Instruction*>::iterator
1543          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1544     (*i)->eraseFromParent();
1545 
1546   // Do the fused retain/autorelease if we were asked to.
1547   if (doRetainAutorelease)
1548     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1549 
1550   // Cast back to the result type.
1551   return CGF.Builder.CreateBitCast(result, resultType);
1552 }
1553 
1554 /// If this is a +1 of the value of an immutable 'self', remove it.
1555 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1556                                           llvm::Value *result) {
1557   // This is only applicable to a method with an immutable 'self'.
1558   const ObjCMethodDecl *method =
1559     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1560   if (!method) return 0;
1561   const VarDecl *self = method->getSelfDecl();
1562   if (!self->getType().isConstQualified()) return 0;
1563 
1564   // Look for a retain call.
1565   llvm::CallInst *retainCall =
1566     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1567   if (!retainCall ||
1568       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1569     return 0;
1570 
1571   // Look for an ordinary load of 'self'.
1572   llvm::Value *retainedValue = retainCall->getArgOperand(0);
1573   llvm::LoadInst *load =
1574     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1575   if (!load || load->isAtomic() || load->isVolatile() ||
1576       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1577     return 0;
1578 
1579   // Okay!  Burn it all down.  This relies for correctness on the
1580   // assumption that the retain is emitted as part of the return and
1581   // that thereafter everything is used "linearly".
1582   llvm::Type *resultType = result->getType();
1583   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1584   assert(retainCall->use_empty());
1585   retainCall->eraseFromParent();
1586   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1587 
1588   return CGF.Builder.CreateBitCast(load, resultType);
1589 }
1590 
1591 /// Emit an ARC autorelease of the result of a function.
1592 ///
1593 /// \return the value to actually return from the function
1594 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1595                                             llvm::Value *result) {
1596   // If we're returning 'self', kill the initial retain.  This is a
1597   // heuristic attempt to "encourage correctness" in the really unfortunate
1598   // case where we have a return of self during a dealloc and we desperately
1599   // need to avoid the possible autorelease.
1600   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1601     return self;
1602 
1603   // At -O0, try to emit a fused retain/autorelease.
1604   if (CGF.shouldUseFusedARCCalls())
1605     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1606       return fused;
1607 
1608   return CGF.EmitARCAutoreleaseReturnValue(result);
1609 }
1610 
1611 /// Heuristically search for a dominating store to the return-value slot.
1612 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1613   // If there are multiple uses of the return-value slot, just check
1614   // for something immediately preceding the IP.  Sometimes this can
1615   // happen with how we generate implicit-returns; it can also happen
1616   // with noreturn cleanups.
1617   if (!CGF.ReturnValue->hasOneUse()) {
1618     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1619     if (IP->empty()) return 0;
1620     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1621     if (!store) return 0;
1622     if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1623     assert(!store->isAtomic() && !store->isVolatile()); // see below
1624     return store;
1625   }
1626 
1627   llvm::StoreInst *store =
1628     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1629   if (!store) return 0;
1630 
1631   // These aren't actually possible for non-coerced returns, and we
1632   // only care about non-coerced returns on this code path.
1633   assert(!store->isAtomic() && !store->isVolatile());
1634 
1635   // Now do a first-and-dirty dominance check: just walk up the
1636   // single-predecessors chain from the current insertion point.
1637   llvm::BasicBlock *StoreBB = store->getParent();
1638   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1639   while (IP != StoreBB) {
1640     if (!(IP = IP->getSinglePredecessor()))
1641       return 0;
1642   }
1643 
1644   // Okay, the store's basic block dominates the insertion point; we
1645   // can do our thing.
1646   return store;
1647 }
1648 
1649 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
1650                                          bool EmitRetDbgLoc,
1651                                          SourceLocation EndLoc) {
1652   // Functions with no result always return void.
1653   if (ReturnValue == 0) {
1654     Builder.CreateRetVoid();
1655     return;
1656   }
1657 
1658   llvm::DebugLoc RetDbgLoc;
1659   llvm::Value *RV = 0;
1660   QualType RetTy = FI.getReturnType();
1661   const ABIArgInfo &RetAI = FI.getReturnInfo();
1662 
1663   switch (RetAI.getKind()) {
1664   case ABIArgInfo::Indirect: {
1665     switch (getEvaluationKind(RetTy)) {
1666     case TEK_Complex: {
1667       ComplexPairTy RT =
1668         EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy),
1669                           EndLoc);
1670       EmitStoreOfComplex(RT,
1671                        MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1672                          /*isInit*/ true);
1673       break;
1674     }
1675     case TEK_Aggregate:
1676       // Do nothing; aggregrates get evaluated directly into the destination.
1677       break;
1678     case TEK_Scalar:
1679       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
1680                         MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1681                         /*isInit*/ true);
1682       break;
1683     }
1684     break;
1685   }
1686 
1687   case ABIArgInfo::Extend:
1688   case ABIArgInfo::Direct:
1689     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1690         RetAI.getDirectOffset() == 0) {
1691       // The internal return value temp always will have pointer-to-return-type
1692       // type, just do a load.
1693 
1694       // If there is a dominating store to ReturnValue, we can elide
1695       // the load, zap the store, and usually zap the alloca.
1696       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1697         // Reuse the debug location from the store unless there is
1698         // cleanup code to be emitted between the store and return
1699         // instruction.
1700         if (EmitRetDbgLoc && !AutoreleaseResult)
1701           RetDbgLoc = SI->getDebugLoc();
1702         // Get the stored value and nuke the now-dead store.
1703         RV = SI->getValueOperand();
1704         SI->eraseFromParent();
1705 
1706         // If that was the only use of the return value, nuke it as well now.
1707         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1708           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1709           ReturnValue = 0;
1710         }
1711 
1712       // Otherwise, we have to do a simple load.
1713       } else {
1714         RV = Builder.CreateLoad(ReturnValue);
1715       }
1716     } else {
1717       llvm::Value *V = ReturnValue;
1718       // If the value is offset in memory, apply the offset now.
1719       if (unsigned Offs = RetAI.getDirectOffset()) {
1720         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1721         V = Builder.CreateConstGEP1_32(V, Offs);
1722         V = Builder.CreateBitCast(V,
1723                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1724       }
1725 
1726       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1727     }
1728 
1729     // In ARC, end functions that return a retainable type with a call
1730     // to objc_autoreleaseReturnValue.
1731     if (AutoreleaseResult) {
1732       assert(getLangOpts().ObjCAutoRefCount &&
1733              !FI.isReturnsRetained() &&
1734              RetTy->isObjCRetainableType());
1735       RV = emitAutoreleaseOfResult(*this, RV);
1736     }
1737 
1738     break;
1739 
1740   case ABIArgInfo::Ignore:
1741     break;
1742 
1743   case ABIArgInfo::Expand:
1744     llvm_unreachable("Invalid ABI kind for return argument");
1745   }
1746 
1747   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1748   if (!RetDbgLoc.isUnknown())
1749     Ret->setDebugLoc(RetDbgLoc);
1750 }
1751 
1752 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1753                                           const VarDecl *param,
1754                                           SourceLocation loc) {
1755   // StartFunction converted the ABI-lowered parameter(s) into a
1756   // local alloca.  We need to turn that into an r-value suitable
1757   // for EmitCall.
1758   llvm::Value *local = GetAddrOfLocalVar(param);
1759 
1760   QualType type = param->getType();
1761 
1762   // For the most part, we just need to load the alloca, except:
1763   // 1) aggregate r-values are actually pointers to temporaries, and
1764   // 2) references to non-scalars are pointers directly to the aggregate.
1765   // I don't know why references to scalars are different here.
1766   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1767     if (!hasScalarEvaluationKind(ref->getPointeeType()))
1768       return args.add(RValue::getAggregate(local), type);
1769 
1770     // Locals which are references to scalars are represented
1771     // with allocas holding the pointer.
1772     return args.add(RValue::get(Builder.CreateLoad(local)), type);
1773   }
1774 
1775   args.add(convertTempToRValue(local, type, loc), type);
1776 }
1777 
1778 static bool isProvablyNull(llvm::Value *addr) {
1779   return isa<llvm::ConstantPointerNull>(addr);
1780 }
1781 
1782 static bool isProvablyNonNull(llvm::Value *addr) {
1783   return isa<llvm::AllocaInst>(addr);
1784 }
1785 
1786 /// Emit the actual writing-back of a writeback.
1787 static void emitWriteback(CodeGenFunction &CGF,
1788                           const CallArgList::Writeback &writeback) {
1789   const LValue &srcLV = writeback.Source;
1790   llvm::Value *srcAddr = srcLV.getAddress();
1791   assert(!isProvablyNull(srcAddr) &&
1792          "shouldn't have writeback for provably null argument");
1793 
1794   llvm::BasicBlock *contBB = 0;
1795 
1796   // If the argument wasn't provably non-null, we need to null check
1797   // before doing the store.
1798   bool provablyNonNull = isProvablyNonNull(srcAddr);
1799   if (!provablyNonNull) {
1800     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1801     contBB = CGF.createBasicBlock("icr.done");
1802 
1803     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1804     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1805     CGF.EmitBlock(writebackBB);
1806   }
1807 
1808   // Load the value to writeback.
1809   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1810 
1811   // Cast it back, in case we're writing an id to a Foo* or something.
1812   value = CGF.Builder.CreateBitCast(value,
1813                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1814                             "icr.writeback-cast");
1815 
1816   // Perform the writeback.
1817 
1818   // If we have a "to use" value, it's something we need to emit a use
1819   // of.  This has to be carefully threaded in: if it's done after the
1820   // release it's potentially undefined behavior (and the optimizer
1821   // will ignore it), and if it happens before the retain then the
1822   // optimizer could move the release there.
1823   if (writeback.ToUse) {
1824     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
1825 
1826     // Retain the new value.  No need to block-copy here:  the block's
1827     // being passed up the stack.
1828     value = CGF.EmitARCRetainNonBlock(value);
1829 
1830     // Emit the intrinsic use here.
1831     CGF.EmitARCIntrinsicUse(writeback.ToUse);
1832 
1833     // Load the old value (primitively).
1834     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
1835 
1836     // Put the new value in place (primitively).
1837     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
1838 
1839     // Release the old value.
1840     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
1841 
1842   // Otherwise, we can just do a normal lvalue store.
1843   } else {
1844     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
1845   }
1846 
1847   // Jump to the continuation block.
1848   if (!provablyNonNull)
1849     CGF.EmitBlock(contBB);
1850 }
1851 
1852 static void emitWritebacks(CodeGenFunction &CGF,
1853                            const CallArgList &args) {
1854   for (CallArgList::writeback_iterator
1855          i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1856     emitWriteback(CGF, *i);
1857 }
1858 
1859 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
1860                                             const CallArgList &CallArgs) {
1861   assert(CGF.getTarget().getCXXABI().isArgumentDestroyedByCallee());
1862   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
1863     CallArgs.getCleanupsToDeactivate();
1864   // Iterate in reverse to increase the likelihood of popping the cleanup.
1865   for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
1866          I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
1867     CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
1868     I->IsActiveIP->eraseFromParent();
1869   }
1870 }
1871 
1872 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
1873   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
1874     if (uop->getOpcode() == UO_AddrOf)
1875       return uop->getSubExpr();
1876   return 0;
1877 }
1878 
1879 /// Emit an argument that's being passed call-by-writeback.  That is,
1880 /// we are passing the address of
1881 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1882                              const ObjCIndirectCopyRestoreExpr *CRE) {
1883   LValue srcLV;
1884 
1885   // Make an optimistic effort to emit the address as an l-value.
1886   // This can fail if the the argument expression is more complicated.
1887   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
1888     srcLV = CGF.EmitLValue(lvExpr);
1889 
1890   // Otherwise, just emit it as a scalar.
1891   } else {
1892     llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1893 
1894     QualType srcAddrType =
1895       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1896     srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
1897   }
1898   llvm::Value *srcAddr = srcLV.getAddress();
1899 
1900   // The dest and src types don't necessarily match in LLVM terms
1901   // because of the crazy ObjC compatibility rules.
1902 
1903   llvm::PointerType *destType =
1904     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1905 
1906   // If the address is a constant null, just pass the appropriate null.
1907   if (isProvablyNull(srcAddr)) {
1908     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1909              CRE->getType());
1910     return;
1911   }
1912 
1913   // Create the temporary.
1914   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1915                                            "icr.temp");
1916   // Loading an l-value can introduce a cleanup if the l-value is __weak,
1917   // and that cleanup will be conditional if we can't prove that the l-value
1918   // isn't null, so we need to register a dominating point so that the cleanups
1919   // system will make valid IR.
1920   CodeGenFunction::ConditionalEvaluation condEval(CGF);
1921 
1922   // Zero-initialize it if we're not doing a copy-initialization.
1923   bool shouldCopy = CRE->shouldCopy();
1924   if (!shouldCopy) {
1925     llvm::Value *null =
1926       llvm::ConstantPointerNull::get(
1927         cast<llvm::PointerType>(destType->getElementType()));
1928     CGF.Builder.CreateStore(null, temp);
1929   }
1930 
1931   llvm::BasicBlock *contBB = 0;
1932   llvm::BasicBlock *originBB = 0;
1933 
1934   // If the address is *not* known to be non-null, we need to switch.
1935   llvm::Value *finalArgument;
1936 
1937   bool provablyNonNull = isProvablyNonNull(srcAddr);
1938   if (provablyNonNull) {
1939     finalArgument = temp;
1940   } else {
1941     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1942 
1943     finalArgument = CGF.Builder.CreateSelect(isNull,
1944                                    llvm::ConstantPointerNull::get(destType),
1945                                              temp, "icr.argument");
1946 
1947     // If we need to copy, then the load has to be conditional, which
1948     // means we need control flow.
1949     if (shouldCopy) {
1950       originBB = CGF.Builder.GetInsertBlock();
1951       contBB = CGF.createBasicBlock("icr.cont");
1952       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1953       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1954       CGF.EmitBlock(copyBB);
1955       condEval.begin(CGF);
1956     }
1957   }
1958 
1959   llvm::Value *valueToUse = 0;
1960 
1961   // Perform a copy if necessary.
1962   if (shouldCopy) {
1963     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
1964     assert(srcRV.isScalar());
1965 
1966     llvm::Value *src = srcRV.getScalarVal();
1967     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1968                                     "icr.cast");
1969 
1970     // Use an ordinary store, not a store-to-lvalue.
1971     CGF.Builder.CreateStore(src, temp);
1972 
1973     // If optimization is enabled, and the value was held in a
1974     // __strong variable, we need to tell the optimizer that this
1975     // value has to stay alive until we're doing the store back.
1976     // This is because the temporary is effectively unretained,
1977     // and so otherwise we can violate the high-level semantics.
1978     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1979         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
1980       valueToUse = src;
1981     }
1982   }
1983 
1984   // Finish the control flow if we needed it.
1985   if (shouldCopy && !provablyNonNull) {
1986     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
1987     CGF.EmitBlock(contBB);
1988 
1989     // Make a phi for the value to intrinsically use.
1990     if (valueToUse) {
1991       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
1992                                                       "icr.to-use");
1993       phiToUse->addIncoming(valueToUse, copyBB);
1994       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
1995                             originBB);
1996       valueToUse = phiToUse;
1997     }
1998 
1999     condEval.end(CGF);
2000   }
2001 
2002   args.addWriteback(srcLV, temp, valueToUse);
2003   args.add(RValue::get(finalArgument), CRE->getType());
2004 }
2005 
2006 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2007                                   QualType type) {
2008   if (const ObjCIndirectCopyRestoreExpr *CRE
2009         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2010     assert(getLangOpts().ObjCAutoRefCount);
2011     assert(getContext().hasSameType(E->getType(), type));
2012     return emitWritebackArg(*this, args, CRE);
2013   }
2014 
2015   assert(type->isReferenceType() == E->isGLValue() &&
2016          "reference binding to unmaterialized r-value!");
2017 
2018   if (E->isGLValue()) {
2019     assert(E->getObjectKind() == OK_Ordinary);
2020     return args.add(EmitReferenceBindingToExpr(E), type);
2021   }
2022 
2023   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2024 
2025   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2026   // However, we still have to push an EH-only cleanup in case we unwind before
2027   // we make it to the call.
2028   if (HasAggregateEvalKind &&
2029       CGM.getTarget().getCXXABI().isArgumentDestroyedByCallee()) {
2030     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2031     if (RD && RD->hasNonTrivialDestructor()) {
2032       AggValueSlot Slot = CreateAggTemp(type, "agg.arg.tmp");
2033       Slot.setExternallyDestructed();
2034       EmitAggExpr(E, Slot);
2035       RValue RV = Slot.asRValue();
2036       args.add(RV, type);
2037 
2038       pushDestroy(EHCleanup, RV.getAggregateAddr(), type, destroyCXXObject,
2039                   /*useEHCleanupForArray*/ true);
2040       // This unreachable is a temporary marker which will be removed later.
2041       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2042       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2043       return;
2044     }
2045   }
2046 
2047   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2048       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2049     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2050     assert(L.isSimple());
2051     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2052       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2053     } else {
2054       // We can't represent a misaligned lvalue in the CallArgList, so copy
2055       // to an aligned temporary now.
2056       llvm::Value *tmp = CreateMemTemp(type);
2057       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2058                         L.getAlignment());
2059       args.add(RValue::getAggregate(tmp), type);
2060     }
2061     return;
2062   }
2063 
2064   args.add(EmitAnyExprToTemp(E), type);
2065 }
2066 
2067 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2068 // optimizer it can aggressively ignore unwind edges.
2069 void
2070 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2071   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2072       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2073     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2074                       CGM.getNoObjCARCExceptionsMetadata());
2075 }
2076 
2077 /// Emits a call to the given no-arguments nounwind runtime function.
2078 llvm::CallInst *
2079 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2080                                          const llvm::Twine &name) {
2081   return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2082 }
2083 
2084 /// Emits a call to the given nounwind runtime function.
2085 llvm::CallInst *
2086 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2087                                          ArrayRef<llvm::Value*> args,
2088                                          const llvm::Twine &name) {
2089   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2090   call->setDoesNotThrow();
2091   return call;
2092 }
2093 
2094 /// Emits a simple call (never an invoke) to the given no-arguments
2095 /// runtime function.
2096 llvm::CallInst *
2097 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2098                                  const llvm::Twine &name) {
2099   return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2100 }
2101 
2102 /// Emits a simple call (never an invoke) to the given runtime
2103 /// function.
2104 llvm::CallInst *
2105 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2106                                  ArrayRef<llvm::Value*> args,
2107                                  const llvm::Twine &name) {
2108   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2109   call->setCallingConv(getRuntimeCC());
2110   return call;
2111 }
2112 
2113 /// Emits a call or invoke to the given noreturn runtime function.
2114 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2115                                                ArrayRef<llvm::Value*> args) {
2116   if (getInvokeDest()) {
2117     llvm::InvokeInst *invoke =
2118       Builder.CreateInvoke(callee,
2119                            getUnreachableBlock(),
2120                            getInvokeDest(),
2121                            args);
2122     invoke->setDoesNotReturn();
2123     invoke->setCallingConv(getRuntimeCC());
2124   } else {
2125     llvm::CallInst *call = Builder.CreateCall(callee, args);
2126     call->setDoesNotReturn();
2127     call->setCallingConv(getRuntimeCC());
2128     Builder.CreateUnreachable();
2129   }
2130 }
2131 
2132 /// Emits a call or invoke instruction to the given nullary runtime
2133 /// function.
2134 llvm::CallSite
2135 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2136                                          const Twine &name) {
2137   return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
2138 }
2139 
2140 /// Emits a call or invoke instruction to the given runtime function.
2141 llvm::CallSite
2142 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2143                                          ArrayRef<llvm::Value*> args,
2144                                          const Twine &name) {
2145   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2146   callSite.setCallingConv(getRuntimeCC());
2147   return callSite;
2148 }
2149 
2150 llvm::CallSite
2151 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2152                                   const Twine &Name) {
2153   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
2154 }
2155 
2156 /// Emits a call or invoke instruction to the given function, depending
2157 /// on the current state of the EH stack.
2158 llvm::CallSite
2159 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2160                                   ArrayRef<llvm::Value *> Args,
2161                                   const Twine &Name) {
2162   llvm::BasicBlock *InvokeDest = getInvokeDest();
2163 
2164   llvm::Instruction *Inst;
2165   if (!InvokeDest)
2166     Inst = Builder.CreateCall(Callee, Args, Name);
2167   else {
2168     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2169     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2170     EmitBlock(ContBB);
2171   }
2172 
2173   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2174   // optimizer it can aggressively ignore unwind edges.
2175   if (CGM.getLangOpts().ObjCAutoRefCount)
2176     AddObjCARCExceptionMetadata(Inst);
2177 
2178   return Inst;
2179 }
2180 
2181 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
2182                             llvm::FunctionType *FTy) {
2183   if (ArgNo < FTy->getNumParams())
2184     assert(Elt->getType() == FTy->getParamType(ArgNo));
2185   else
2186     assert(FTy->isVarArg());
2187   ++ArgNo;
2188 }
2189 
2190 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
2191                                        SmallVectorImpl<llvm::Value *> &Args,
2192                                        llvm::FunctionType *IRFuncTy) {
2193   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2194     unsigned NumElts = AT->getSize().getZExtValue();
2195     QualType EltTy = AT->getElementType();
2196     llvm::Value *Addr = RV.getAggregateAddr();
2197     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2198       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
2199       RValue EltRV = convertTempToRValue(EltAddr, EltTy, SourceLocation());
2200       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
2201     }
2202   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2203     RecordDecl *RD = RT->getDecl();
2204     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
2205     LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
2206 
2207     if (RD->isUnion()) {
2208       const FieldDecl *LargestFD = 0;
2209       CharUnits UnionSize = CharUnits::Zero();
2210 
2211       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2212            i != e; ++i) {
2213         const FieldDecl *FD = *i;
2214         assert(!FD->isBitField() &&
2215                "Cannot expand structure with bit-field members.");
2216         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
2217         if (UnionSize < FieldSize) {
2218           UnionSize = FieldSize;
2219           LargestFD = FD;
2220         }
2221       }
2222       if (LargestFD) {
2223         RValue FldRV = EmitRValueForField(LV, LargestFD, SourceLocation());
2224         ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
2225       }
2226     } else {
2227       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2228            i != e; ++i) {
2229         FieldDecl *FD = *i;
2230 
2231         RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
2232         ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
2233       }
2234     }
2235   } else if (Ty->isAnyComplexType()) {
2236     ComplexPairTy CV = RV.getComplexVal();
2237     Args.push_back(CV.first);
2238     Args.push_back(CV.second);
2239   } else {
2240     assert(RV.isScalar() &&
2241            "Unexpected non-scalar rvalue during struct expansion.");
2242 
2243     // Insert a bitcast as needed.
2244     llvm::Value *V = RV.getScalarVal();
2245     if (Args.size() < IRFuncTy->getNumParams() &&
2246         V->getType() != IRFuncTy->getParamType(Args.size()))
2247       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
2248 
2249     Args.push_back(V);
2250   }
2251 }
2252 
2253 
2254 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
2255                                  llvm::Value *Callee,
2256                                  ReturnValueSlot ReturnValue,
2257                                  const CallArgList &CallArgs,
2258                                  const Decl *TargetDecl,
2259                                  llvm::Instruction **callOrInvoke) {
2260   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
2261   SmallVector<llvm::Value*, 16> Args;
2262 
2263   // Handle struct-return functions by passing a pointer to the
2264   // location that we would like to return into.
2265   QualType RetTy = CallInfo.getReturnType();
2266   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
2267 
2268   // IRArgNo - Keep track of the argument number in the callee we're looking at.
2269   unsigned IRArgNo = 0;
2270   llvm::FunctionType *IRFuncTy =
2271     cast<llvm::FunctionType>(
2272                   cast<llvm::PointerType>(Callee->getType())->getElementType());
2273 
2274   // If the call returns a temporary with struct return, create a temporary
2275   // alloca to hold the result, unless one is given to us.
2276   if (CGM.ReturnTypeUsesSRet(CallInfo)) {
2277     llvm::Value *Value = ReturnValue.getValue();
2278     if (!Value)
2279       Value = CreateMemTemp(RetTy);
2280     Args.push_back(Value);
2281     checkArgMatches(Value, IRArgNo, IRFuncTy);
2282   }
2283 
2284   assert(CallInfo.arg_size() == CallArgs.size() &&
2285          "Mismatch between function signature & arguments.");
2286   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
2287   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
2288        I != E; ++I, ++info_it) {
2289     const ABIArgInfo &ArgInfo = info_it->info;
2290     RValue RV = I->RV;
2291 
2292     CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
2293 
2294     // Insert a padding argument to ensure proper alignment.
2295     if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2296       Args.push_back(llvm::UndefValue::get(PaddingType));
2297       ++IRArgNo;
2298     }
2299 
2300     switch (ArgInfo.getKind()) {
2301     case ABIArgInfo::Indirect: {
2302       if (RV.isScalar() || RV.isComplex()) {
2303         // Make a temporary alloca to pass the argument.
2304         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2305         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
2306           AI->setAlignment(ArgInfo.getIndirectAlign());
2307         Args.push_back(AI);
2308 
2309         LValue argLV =
2310           MakeAddrLValue(Args.back(), I->Ty, TypeAlign);
2311 
2312         if (RV.isScalar())
2313           EmitStoreOfScalar(RV.getScalarVal(), argLV, /*init*/ true);
2314         else
2315           EmitStoreOfComplex(RV.getComplexVal(), argLV, /*init*/ true);
2316 
2317         // Validate argument match.
2318         checkArgMatches(AI, IRArgNo, IRFuncTy);
2319       } else {
2320         // We want to avoid creating an unnecessary temporary+copy here;
2321         // however, we need one in three cases:
2322         // 1. If the argument is not byval, and we are required to copy the
2323         //    source.  (This case doesn't occur on any common architecture.)
2324         // 2. If the argument is byval, RV is not sufficiently aligned, and
2325         //    we cannot force it to be sufficiently aligned.
2326         // 3. If the argument is byval, but RV is located in an address space
2327         //    different than that of the argument (0).
2328         llvm::Value *Addr = RV.getAggregateAddr();
2329         unsigned Align = ArgInfo.getIndirectAlign();
2330         const llvm::DataLayout *TD = &CGM.getDataLayout();
2331         const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
2332         const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ?
2333           IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0);
2334         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
2335             (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
2336              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
2337              (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
2338           // Create an aligned temporary, and copy to it.
2339           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2340           if (Align > AI->getAlignment())
2341             AI->setAlignment(Align);
2342           Args.push_back(AI);
2343           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
2344 
2345           // Validate argument match.
2346           checkArgMatches(AI, IRArgNo, IRFuncTy);
2347         } else {
2348           // Skip the extra memcpy call.
2349           Args.push_back(Addr);
2350 
2351           // Validate argument match.
2352           checkArgMatches(Addr, IRArgNo, IRFuncTy);
2353         }
2354       }
2355       break;
2356     }
2357 
2358     case ABIArgInfo::Ignore:
2359       break;
2360 
2361     case ABIArgInfo::Extend:
2362     case ABIArgInfo::Direct: {
2363       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2364           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2365           ArgInfo.getDirectOffset() == 0) {
2366         llvm::Value *V;
2367         if (RV.isScalar())
2368           V = RV.getScalarVal();
2369         else
2370           V = Builder.CreateLoad(RV.getAggregateAddr());
2371 
2372         // If the argument doesn't match, perform a bitcast to coerce it.  This
2373         // can happen due to trivial type mismatches.
2374         if (IRArgNo < IRFuncTy->getNumParams() &&
2375             V->getType() != IRFuncTy->getParamType(IRArgNo))
2376           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2377         Args.push_back(V);
2378 
2379         checkArgMatches(V, IRArgNo, IRFuncTy);
2380         break;
2381       }
2382 
2383       // FIXME: Avoid the conversion through memory if possible.
2384       llvm::Value *SrcPtr;
2385       if (RV.isScalar() || RV.isComplex()) {
2386         SrcPtr = CreateMemTemp(I->Ty, "coerce");
2387         LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
2388         if (RV.isScalar()) {
2389           EmitStoreOfScalar(RV.getScalarVal(), SrcLV, /*init*/ true);
2390         } else {
2391           EmitStoreOfComplex(RV.getComplexVal(), SrcLV, /*init*/ true);
2392         }
2393       } else
2394         SrcPtr = RV.getAggregateAddr();
2395 
2396       // If the value is offset in memory, apply the offset now.
2397       if (unsigned Offs = ArgInfo.getDirectOffset()) {
2398         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2399         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2400         SrcPtr = Builder.CreateBitCast(SrcPtr,
2401                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2402 
2403       }
2404 
2405       // If the coerce-to type is a first class aggregate, we flatten it and
2406       // pass the elements. Either way is semantically identical, but fast-isel
2407       // and the optimizer generally likes scalar values better than FCAs.
2408       if (llvm::StructType *STy =
2409             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
2410         llvm::Type *SrcTy =
2411           cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
2412         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
2413         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
2414 
2415         // If the source type is smaller than the destination type of the
2416         // coerce-to logic, copy the source value into a temp alloca the size
2417         // of the destination type to allow loading all of it. The bits past
2418         // the source value are left undef.
2419         if (SrcSize < DstSize) {
2420           llvm::AllocaInst *TempAlloca
2421             = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
2422           Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
2423           SrcPtr = TempAlloca;
2424         } else {
2425           SrcPtr = Builder.CreateBitCast(SrcPtr,
2426                                          llvm::PointerType::getUnqual(STy));
2427         }
2428 
2429         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2430           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2431           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2432           // We don't know what we're loading from.
2433           LI->setAlignment(1);
2434           Args.push_back(LI);
2435 
2436           // Validate argument match.
2437           checkArgMatches(LI, IRArgNo, IRFuncTy);
2438         }
2439       } else {
2440         // In the simple case, just pass the coerced loaded value.
2441         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2442                                          *this));
2443 
2444         // Validate argument match.
2445         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2446       }
2447 
2448       break;
2449     }
2450 
2451     case ABIArgInfo::Expand:
2452       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2453       IRArgNo = Args.size();
2454       break;
2455     }
2456   }
2457 
2458   if (!CallArgs.getCleanupsToDeactivate().empty())
2459     deactivateArgCleanupsBeforeCall(*this, CallArgs);
2460 
2461   // If the callee is a bitcast of a function to a varargs pointer to function
2462   // type, check to see if we can remove the bitcast.  This handles some cases
2463   // with unprototyped functions.
2464   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2465     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2466       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2467       llvm::FunctionType *CurFT =
2468         cast<llvm::FunctionType>(CurPT->getElementType());
2469       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2470 
2471       if (CE->getOpcode() == llvm::Instruction::BitCast &&
2472           ActualFT->getReturnType() == CurFT->getReturnType() &&
2473           ActualFT->getNumParams() == CurFT->getNumParams() &&
2474           ActualFT->getNumParams() == Args.size() &&
2475           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2476         bool ArgsMatch = true;
2477         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2478           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2479             ArgsMatch = false;
2480             break;
2481           }
2482 
2483         // Strip the cast if we can get away with it.  This is a nice cleanup,
2484         // but also allows us to inline the function at -O0 if it is marked
2485         // always_inline.
2486         if (ArgsMatch)
2487           Callee = CalleeF;
2488       }
2489     }
2490 
2491   unsigned CallingConv;
2492   CodeGen::AttributeListType AttributeList;
2493   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
2494                              CallingConv, true);
2495   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
2496                                                      AttributeList);
2497 
2498   llvm::BasicBlock *InvokeDest = 0;
2499   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
2500                           llvm::Attribute::NoUnwind))
2501     InvokeDest = getInvokeDest();
2502 
2503   llvm::CallSite CS;
2504   if (!InvokeDest) {
2505     CS = Builder.CreateCall(Callee, Args);
2506   } else {
2507     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2508     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2509     EmitBlock(Cont);
2510   }
2511   if (callOrInvoke)
2512     *callOrInvoke = CS.getInstruction();
2513 
2514   CS.setAttributes(Attrs);
2515   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2516 
2517   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2518   // optimizer it can aggressively ignore unwind edges.
2519   if (CGM.getLangOpts().ObjCAutoRefCount)
2520     AddObjCARCExceptionMetadata(CS.getInstruction());
2521 
2522   // If the call doesn't return, finish the basic block and clear the
2523   // insertion point; this allows the rest of IRgen to discard
2524   // unreachable code.
2525   if (CS.doesNotReturn()) {
2526     Builder.CreateUnreachable();
2527     Builder.ClearInsertionPoint();
2528 
2529     // FIXME: For now, emit a dummy basic block because expr emitters in
2530     // generally are not ready to handle emitting expressions at unreachable
2531     // points.
2532     EnsureInsertPoint();
2533 
2534     // Return a reasonable RValue.
2535     return GetUndefRValue(RetTy);
2536   }
2537 
2538   llvm::Instruction *CI = CS.getInstruction();
2539   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2540     CI->setName("call");
2541 
2542   // Emit any writebacks immediately.  Arguably this should happen
2543   // after any return-value munging.
2544   if (CallArgs.hasWritebacks())
2545     emitWritebacks(*this, CallArgs);
2546 
2547   switch (RetAI.getKind()) {
2548   case ABIArgInfo::Indirect:
2549     return convertTempToRValue(Args[0], RetTy, SourceLocation());
2550 
2551   case ABIArgInfo::Ignore:
2552     // If we are ignoring an argument that had a result, make sure to
2553     // construct the appropriate return value for our caller.
2554     return GetUndefRValue(RetTy);
2555 
2556   case ABIArgInfo::Extend:
2557   case ABIArgInfo::Direct: {
2558     llvm::Type *RetIRTy = ConvertType(RetTy);
2559     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2560       switch (getEvaluationKind(RetTy)) {
2561       case TEK_Complex: {
2562         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2563         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2564         return RValue::getComplex(std::make_pair(Real, Imag));
2565       }
2566       case TEK_Aggregate: {
2567         llvm::Value *DestPtr = ReturnValue.getValue();
2568         bool DestIsVolatile = ReturnValue.isVolatile();
2569 
2570         if (!DestPtr) {
2571           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2572           DestIsVolatile = false;
2573         }
2574         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2575         return RValue::getAggregate(DestPtr);
2576       }
2577       case TEK_Scalar: {
2578         // If the argument doesn't match, perform a bitcast to coerce it.  This
2579         // can happen due to trivial type mismatches.
2580         llvm::Value *V = CI;
2581         if (V->getType() != RetIRTy)
2582           V = Builder.CreateBitCast(V, RetIRTy);
2583         return RValue::get(V);
2584       }
2585       }
2586       llvm_unreachable("bad evaluation kind");
2587     }
2588 
2589     llvm::Value *DestPtr = ReturnValue.getValue();
2590     bool DestIsVolatile = ReturnValue.isVolatile();
2591 
2592     if (!DestPtr) {
2593       DestPtr = CreateMemTemp(RetTy, "coerce");
2594       DestIsVolatile = false;
2595     }
2596 
2597     // If the value is offset in memory, apply the offset now.
2598     llvm::Value *StorePtr = DestPtr;
2599     if (unsigned Offs = RetAI.getDirectOffset()) {
2600       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2601       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2602       StorePtr = Builder.CreateBitCast(StorePtr,
2603                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2604     }
2605     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2606 
2607     return convertTempToRValue(DestPtr, RetTy, SourceLocation());
2608   }
2609 
2610   case ABIArgInfo::Expand:
2611     llvm_unreachable("Invalid ABI kind for return argument");
2612   }
2613 
2614   llvm_unreachable("Unhandled ABIArgInfo::Kind");
2615 }
2616 
2617 /* VarArg handling */
2618 
2619 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2620   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2621 }
2622