1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/Basic/CodeGenOptions.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/SwiftCallingConv.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 using namespace clang;
40 using namespace CodeGen;
41 
42 /***/
43 
44 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
45   switch (CC) {
46   default: return llvm::CallingConv::C;
47   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
48   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
49   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
50   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
51   case CC_Win64: return llvm::CallingConv::Win64;
52   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
53   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
54   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
55   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
56   // TODO: Add support for __pascal to LLVM.
57   case CC_X86Pascal: return llvm::CallingConv::C;
58   // TODO: Add support for __vectorcall to LLVM.
59   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
60   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
61   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
62   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
63   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
64   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
65   case CC_Swift: return llvm::CallingConv::Swift;
66   }
67 }
68 
69 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
70 /// qualification.
71 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD,
72                                const CXXMethodDecl *MD) {
73   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
74   if (MD)
75     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
76   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
77 }
78 
79 /// Returns the canonical formal type of the given C++ method.
80 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
81   return MD->getType()->getCanonicalTypeUnqualified()
82            .getAs<FunctionProtoType>();
83 }
84 
85 /// Returns the "extra-canonicalized" return type, which discards
86 /// qualifiers on the return type.  Codegen doesn't care about them,
87 /// and it makes ABI code a little easier to be able to assume that
88 /// all parameter and return types are top-level unqualified.
89 static CanQualType GetReturnType(QualType RetTy) {
90   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
91 }
92 
93 /// Arrange the argument and result information for a value of the given
94 /// unprototyped freestanding function type.
95 const CGFunctionInfo &
96 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
97   // When translating an unprototyped function type, always use a
98   // variadic type.
99   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
100                                  /*instanceMethod=*/false,
101                                  /*chainCall=*/false, None,
102                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
103 }
104 
105 static void addExtParameterInfosForCall(
106          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
107                                         const FunctionProtoType *proto,
108                                         unsigned prefixArgs,
109                                         unsigned totalArgs) {
110   assert(proto->hasExtParameterInfos());
111   assert(paramInfos.size() <= prefixArgs);
112   assert(proto->getNumParams() + prefixArgs <= totalArgs);
113 
114   paramInfos.reserve(totalArgs);
115 
116   // Add default infos for any prefix args that don't already have infos.
117   paramInfos.resize(prefixArgs);
118 
119   // Add infos for the prototype.
120   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
121     paramInfos.push_back(ParamInfo);
122     // pass_object_size params have no parameter info.
123     if (ParamInfo.hasPassObjectSize())
124       paramInfos.emplace_back();
125   }
126 
127   assert(paramInfos.size() <= totalArgs &&
128          "Did we forget to insert pass_object_size args?");
129   // Add default infos for the variadic and/or suffix arguments.
130   paramInfos.resize(totalArgs);
131 }
132 
133 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
134 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
135 static void appendParameterTypes(const CodeGenTypes &CGT,
136                                  SmallVectorImpl<CanQualType> &prefix,
137               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
138                                  CanQual<FunctionProtoType> FPT) {
139   // Fast path: don't touch param info if we don't need to.
140   if (!FPT->hasExtParameterInfos()) {
141     assert(paramInfos.empty() &&
142            "We have paramInfos, but the prototype doesn't?");
143     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
144     return;
145   }
146 
147   unsigned PrefixSize = prefix.size();
148   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
149   // parameters; the only thing that can change this is the presence of
150   // pass_object_size. So, we preallocate for the common case.
151   prefix.reserve(prefix.size() + FPT->getNumParams());
152 
153   auto ExtInfos = FPT->getExtParameterInfos();
154   assert(ExtInfos.size() == FPT->getNumParams());
155   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
156     prefix.push_back(FPT->getParamType(I));
157     if (ExtInfos[I].hasPassObjectSize())
158       prefix.push_back(CGT.getContext().getSizeType());
159   }
160 
161   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
162                               prefix.size());
163 }
164 
165 /// Arrange the LLVM function layout for a value of the given function
166 /// type, on top of any implicit parameters already stored.
167 static const CGFunctionInfo &
168 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
169                         SmallVectorImpl<CanQualType> &prefix,
170                         CanQual<FunctionProtoType> FTP,
171                         const FunctionDecl *FD) {
172   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
173   RequiredArgs Required =
174       RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD);
175   // FIXME: Kill copy.
176   appendParameterTypes(CGT, prefix, paramInfos, FTP);
177   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
178 
179   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
180                                      /*chainCall=*/false, prefix,
181                                      FTP->getExtInfo(), paramInfos,
182                                      Required);
183 }
184 
185 /// Arrange the argument and result information for a value of the
186 /// given freestanding function type.
187 const CGFunctionInfo &
188 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
189                                       const FunctionDecl *FD) {
190   SmallVector<CanQualType, 16> argTypes;
191   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
192                                    FTP, FD);
193 }
194 
195 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
196   // Set the appropriate calling convention for the Function.
197   if (D->hasAttr<StdCallAttr>())
198     return CC_X86StdCall;
199 
200   if (D->hasAttr<FastCallAttr>())
201     return CC_X86FastCall;
202 
203   if (D->hasAttr<RegCallAttr>())
204     return CC_X86RegCall;
205 
206   if (D->hasAttr<ThisCallAttr>())
207     return CC_X86ThisCall;
208 
209   if (D->hasAttr<VectorCallAttr>())
210     return CC_X86VectorCall;
211 
212   if (D->hasAttr<PascalAttr>())
213     return CC_X86Pascal;
214 
215   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
216     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
217 
218   if (D->hasAttr<AArch64VectorPcsAttr>())
219     return CC_AArch64VectorCall;
220 
221   if (D->hasAttr<IntelOclBiccAttr>())
222     return CC_IntelOclBicc;
223 
224   if (D->hasAttr<MSABIAttr>())
225     return IsWindows ? CC_C : CC_Win64;
226 
227   if (D->hasAttr<SysVABIAttr>())
228     return IsWindows ? CC_X86_64SysV : CC_C;
229 
230   if (D->hasAttr<PreserveMostAttr>())
231     return CC_PreserveMost;
232 
233   if (D->hasAttr<PreserveAllAttr>())
234     return CC_PreserveAll;
235 
236   return CC_C;
237 }
238 
239 /// Arrange the argument and result information for a call to an
240 /// unknown C++ non-static member function of the given abstract type.
241 /// (Zero value of RD means we don't have any meaningful "this" argument type,
242 ///  so fall back to a generic pointer type).
243 /// The member function must be an ordinary function, i.e. not a
244 /// constructor or destructor.
245 const CGFunctionInfo &
246 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
247                                    const FunctionProtoType *FTP,
248                                    const CXXMethodDecl *MD) {
249   SmallVector<CanQualType, 16> argTypes;
250 
251   // Add the 'this' pointer.
252   if (RD)
253     argTypes.push_back(GetThisType(Context, RD, MD));
254   else
255     argTypes.push_back(Context.VoidPtrTy);
256 
257   return ::arrangeLLVMFunctionInfo(
258       *this, true, argTypes,
259       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
260 }
261 
262 /// Set calling convention for CUDA/HIP kernel.
263 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
264                                            const FunctionDecl *FD) {
265   if (FD->hasAttr<CUDAGlobalAttr>()) {
266     const FunctionType *FT = FTy->getAs<FunctionType>();
267     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
268     FTy = FT->getCanonicalTypeUnqualified();
269   }
270 }
271 
272 /// Arrange the argument and result information for a declaration or
273 /// definition of the given C++ non-static member function.  The
274 /// member function must be an ordinary function, i.e. not a
275 /// constructor or destructor.
276 const CGFunctionInfo &
277 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
278   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
279   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
280 
281   CanQualType FT = GetFormalType(MD).getAs<Type>();
282   setCUDAKernelCallingConvention(FT, CGM, MD);
283   auto prototype = FT.getAs<FunctionProtoType>();
284 
285   if (MD->isInstance()) {
286     // The abstract case is perfectly fine.
287     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
288     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
289   }
290 
291   return arrangeFreeFunctionType(prototype, MD);
292 }
293 
294 bool CodeGenTypes::inheritingCtorHasParams(
295     const InheritedConstructor &Inherited, CXXCtorType Type) {
296   // Parameters are unnecessary if we're constructing a base class subobject
297   // and the inherited constructor lives in a virtual base.
298   return Type == Ctor_Complete ||
299          !Inherited.getShadowDecl()->constructsVirtualBase() ||
300          !Target.getCXXABI().hasConstructorVariants();
301   }
302 
303 const CGFunctionInfo &
304 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
305                                             StructorType Type) {
306 
307   SmallVector<CanQualType, 16> argTypes;
308   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
309   argTypes.push_back(GetThisType(Context, MD->getParent(), MD));
310 
311   bool PassParams = true;
312 
313   GlobalDecl GD;
314   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
315     GD = GlobalDecl(CD, toCXXCtorType(Type));
316 
317     // A base class inheriting constructor doesn't get forwarded arguments
318     // needed to construct a virtual base (or base class thereof).
319     if (auto Inherited = CD->getInheritedConstructor())
320       PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
321   } else {
322     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
323     GD = GlobalDecl(DD, toCXXDtorType(Type));
324   }
325 
326   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
327 
328   // Add the formal parameters.
329   if (PassParams)
330     appendParameterTypes(*this, argTypes, paramInfos, FTP);
331 
332   CGCXXABI::AddedStructorArgs AddedArgs =
333       TheCXXABI.buildStructorSignature(MD, Type, argTypes);
334   if (!paramInfos.empty()) {
335     // Note: prefix implies after the first param.
336     if (AddedArgs.Prefix)
337       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
338                         FunctionProtoType::ExtParameterInfo{});
339     if (AddedArgs.Suffix)
340       paramInfos.append(AddedArgs.Suffix,
341                         FunctionProtoType::ExtParameterInfo{});
342   }
343 
344   RequiredArgs required =
345       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
346                                       : RequiredArgs::All);
347 
348   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
349   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
350                                ? argTypes.front()
351                                : TheCXXABI.hasMostDerivedReturn(GD)
352                                      ? CGM.getContext().VoidPtrTy
353                                      : Context.VoidTy;
354   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
355                                  /*chainCall=*/false, argTypes, extInfo,
356                                  paramInfos, required);
357 }
358 
359 static SmallVector<CanQualType, 16>
360 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
361   SmallVector<CanQualType, 16> argTypes;
362   for (auto &arg : args)
363     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
364   return argTypes;
365 }
366 
367 static SmallVector<CanQualType, 16>
368 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
369   SmallVector<CanQualType, 16> argTypes;
370   for (auto &arg : args)
371     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
372   return argTypes;
373 }
374 
375 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
376 getExtParameterInfosForCall(const FunctionProtoType *proto,
377                             unsigned prefixArgs, unsigned totalArgs) {
378   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
379   if (proto->hasExtParameterInfos()) {
380     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
381   }
382   return result;
383 }
384 
385 /// Arrange a call to a C++ method, passing the given arguments.
386 ///
387 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
388 /// parameter.
389 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
390 /// args.
391 /// PassProtoArgs indicates whether `args` has args for the parameters in the
392 /// given CXXConstructorDecl.
393 const CGFunctionInfo &
394 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
395                                         const CXXConstructorDecl *D,
396                                         CXXCtorType CtorKind,
397                                         unsigned ExtraPrefixArgs,
398                                         unsigned ExtraSuffixArgs,
399                                         bool PassProtoArgs) {
400   // FIXME: Kill copy.
401   SmallVector<CanQualType, 16> ArgTypes;
402   for (const auto &Arg : args)
403     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
404 
405   // +1 for implicit this, which should always be args[0].
406   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
407 
408   CanQual<FunctionProtoType> FPT = GetFormalType(D);
409   RequiredArgs Required =
410       RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D);
411   GlobalDecl GD(D, CtorKind);
412   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
413                                ? ArgTypes.front()
414                                : TheCXXABI.hasMostDerivedReturn(GD)
415                                      ? CGM.getContext().VoidPtrTy
416                                      : Context.VoidTy;
417 
418   FunctionType::ExtInfo Info = FPT->getExtInfo();
419   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
420   // If the prototype args are elided, we should only have ABI-specific args,
421   // which never have param info.
422   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
423     // ABI-specific suffix arguments are treated the same as variadic arguments.
424     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
425                                 ArgTypes.size());
426   }
427   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
428                                  /*chainCall=*/false, ArgTypes, Info,
429                                  ParamInfos, Required);
430 }
431 
432 /// Arrange the argument and result information for the declaration or
433 /// definition of the given function.
434 const CGFunctionInfo &
435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
436   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
437     if (MD->isInstance())
438       return arrangeCXXMethodDeclaration(MD);
439 
440   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
441 
442   assert(isa<FunctionType>(FTy));
443   setCUDAKernelCallingConvention(FTy, CGM, FD);
444 
445   // When declaring a function without a prototype, always use a
446   // non-variadic type.
447   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
448     return arrangeLLVMFunctionInfo(
449         noProto->getReturnType(), /*instanceMethod=*/false,
450         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
451   }
452 
453   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD);
454 }
455 
456 /// Arrange the argument and result information for the declaration or
457 /// definition of an Objective-C method.
458 const CGFunctionInfo &
459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
460   // It happens that this is the same as a call with no optional
461   // arguments, except also using the formal 'self' type.
462   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
463 }
464 
465 /// Arrange the argument and result information for the function type
466 /// through which to perform a send to the given Objective-C method,
467 /// using the given receiver type.  The receiver type is not always
468 /// the 'self' type of the method or even an Objective-C pointer type.
469 /// This is *not* the right method for actually performing such a
470 /// message send, due to the possibility of optional arguments.
471 const CGFunctionInfo &
472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
473                                               QualType receiverType) {
474   SmallVector<CanQualType, 16> argTys;
475   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
476   argTys.push_back(Context.getCanonicalParamType(receiverType));
477   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
478   // FIXME: Kill copy?
479   for (const auto *I : MD->parameters()) {
480     argTys.push_back(Context.getCanonicalParamType(I->getType()));
481     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
482         I->hasAttr<NoEscapeAttr>());
483     extParamInfos.push_back(extParamInfo);
484   }
485 
486   FunctionType::ExtInfo einfo;
487   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
488   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
489 
490   if (getContext().getLangOpts().ObjCAutoRefCount &&
491       MD->hasAttr<NSReturnsRetainedAttr>())
492     einfo = einfo.withProducesResult(true);
493 
494   RequiredArgs required =
495     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
496 
497   return arrangeLLVMFunctionInfo(
498       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
499       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
500 }
501 
502 const CGFunctionInfo &
503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
504                                                  const CallArgList &args) {
505   auto argTypes = getArgTypesForCall(Context, args);
506   FunctionType::ExtInfo einfo;
507 
508   return arrangeLLVMFunctionInfo(
509       GetReturnType(returnType), /*instanceMethod=*/false,
510       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
511 }
512 
513 const CGFunctionInfo &
514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
515   // FIXME: Do we need to handle ObjCMethodDecl?
516   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
517 
518   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
519     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
520 
521   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
522     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
523 
524   return arrangeFunctionDeclaration(FD);
525 }
526 
527 /// Arrange a thunk that takes 'this' as the first parameter followed by
528 /// varargs.  Return a void pointer, regardless of the actual return type.
529 /// The body of the thunk will end in a musttail call to a function of the
530 /// correct type, and the caller will bitcast the function to the correct
531 /// prototype.
532 const CGFunctionInfo &
533 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
534   assert(MD->isVirtual() && "only methods have thunks");
535   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
536   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent(), MD) };
537   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
538                                  /*chainCall=*/false, ArgTys,
539                                  FTP->getExtInfo(), {}, RequiredArgs(1));
540 }
541 
542 const CGFunctionInfo &
543 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
544                                    CXXCtorType CT) {
545   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
546 
547   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
548   SmallVector<CanQualType, 2> ArgTys;
549   const CXXRecordDecl *RD = CD->getParent();
550   ArgTys.push_back(GetThisType(Context, RD, CD));
551   if (CT == Ctor_CopyingClosure)
552     ArgTys.push_back(*FTP->param_type_begin());
553   if (RD->getNumVBases() > 0)
554     ArgTys.push_back(Context.IntTy);
555   CallingConv CC = Context.getDefaultCallingConvention(
556       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
557   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
558                                  /*chainCall=*/false, ArgTys,
559                                  FunctionType::ExtInfo(CC), {},
560                                  RequiredArgs::All);
561 }
562 
563 /// Arrange a call as unto a free function, except possibly with an
564 /// additional number of formal parameters considered required.
565 static const CGFunctionInfo &
566 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
567                             CodeGenModule &CGM,
568                             const CallArgList &args,
569                             const FunctionType *fnType,
570                             unsigned numExtraRequiredArgs,
571                             bool chainCall) {
572   assert(args.size() >= numExtraRequiredArgs);
573 
574   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
575 
576   // In most cases, there are no optional arguments.
577   RequiredArgs required = RequiredArgs::All;
578 
579   // If we have a variadic prototype, the required arguments are the
580   // extra prefix plus the arguments in the prototype.
581   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
582     if (proto->isVariadic())
583       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
584 
585     if (proto->hasExtParameterInfos())
586       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
587                                   args.size());
588 
589   // If we don't have a prototype at all, but we're supposed to
590   // explicitly use the variadic convention for unprototyped calls,
591   // treat all of the arguments as required but preserve the nominal
592   // possibility of variadics.
593   } else if (CGM.getTargetCodeGenInfo()
594                 .isNoProtoCallVariadic(args,
595                                        cast<FunctionNoProtoType>(fnType))) {
596     required = RequiredArgs(args.size());
597   }
598 
599   // FIXME: Kill copy.
600   SmallVector<CanQualType, 16> argTypes;
601   for (const auto &arg : args)
602     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
603   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
604                                      /*instanceMethod=*/false, chainCall,
605                                      argTypes, fnType->getExtInfo(), paramInfos,
606                                      required);
607 }
608 
609 /// Figure out the rules for calling a function with the given formal
610 /// type using the given arguments.  The arguments are necessary
611 /// because the function might be unprototyped, in which case it's
612 /// target-dependent in crazy ways.
613 const CGFunctionInfo &
614 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
615                                       const FunctionType *fnType,
616                                       bool chainCall) {
617   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
618                                      chainCall ? 1 : 0, chainCall);
619 }
620 
621 /// A block function is essentially a free function with an
622 /// extra implicit argument.
623 const CGFunctionInfo &
624 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
625                                        const FunctionType *fnType) {
626   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
627                                      /*chainCall=*/false);
628 }
629 
630 const CGFunctionInfo &
631 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
632                                               const FunctionArgList &params) {
633   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
634   auto argTypes = getArgTypesForDeclaration(Context, params);
635 
636   return arrangeLLVMFunctionInfo(
637       GetReturnType(proto->getReturnType()),
638       /*instanceMethod*/ false, /*chainCall*/ false, argTypes,
639       proto->getExtInfo(), paramInfos,
640       RequiredArgs::forPrototypePlus(proto, 1, nullptr));
641 }
642 
643 const CGFunctionInfo &
644 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
645                                          const CallArgList &args) {
646   // FIXME: Kill copy.
647   SmallVector<CanQualType, 16> argTypes;
648   for (const auto &Arg : args)
649     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
650   return arrangeLLVMFunctionInfo(
651       GetReturnType(resultType), /*instanceMethod=*/false,
652       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
653       /*paramInfos=*/ {}, RequiredArgs::All);
654 }
655 
656 const CGFunctionInfo &
657 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
658                                                 const FunctionArgList &args) {
659   auto argTypes = getArgTypesForDeclaration(Context, args);
660 
661   return arrangeLLVMFunctionInfo(
662       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
663       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
664 }
665 
666 const CGFunctionInfo &
667 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
668                                               ArrayRef<CanQualType> argTypes) {
669   return arrangeLLVMFunctionInfo(
670       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
671       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
672 }
673 
674 /// Arrange a call to a C++ method, passing the given arguments.
675 ///
676 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
677 /// does not count `this`.
678 const CGFunctionInfo &
679 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
680                                    const FunctionProtoType *proto,
681                                    RequiredArgs required,
682                                    unsigned numPrefixArgs) {
683   assert(numPrefixArgs + 1 <= args.size() &&
684          "Emitting a call with less args than the required prefix?");
685   // Add one to account for `this`. It's a bit awkward here, but we don't count
686   // `this` in similar places elsewhere.
687   auto paramInfos =
688     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
689 
690   // FIXME: Kill copy.
691   auto argTypes = getArgTypesForCall(Context, args);
692 
693   FunctionType::ExtInfo info = proto->getExtInfo();
694   return arrangeLLVMFunctionInfo(
695       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
696       /*chainCall=*/false, argTypes, info, paramInfos, required);
697 }
698 
699 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
700   return arrangeLLVMFunctionInfo(
701       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
702       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
703 }
704 
705 const CGFunctionInfo &
706 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
707                           const CallArgList &args) {
708   assert(signature.arg_size() <= args.size());
709   if (signature.arg_size() == args.size())
710     return signature;
711 
712   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
713   auto sigParamInfos = signature.getExtParameterInfos();
714   if (!sigParamInfos.empty()) {
715     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
716     paramInfos.resize(args.size());
717   }
718 
719   auto argTypes = getArgTypesForCall(Context, args);
720 
721   assert(signature.getRequiredArgs().allowsOptionalArgs());
722   return arrangeLLVMFunctionInfo(signature.getReturnType(),
723                                  signature.isInstanceMethod(),
724                                  signature.isChainCall(),
725                                  argTypes,
726                                  signature.getExtInfo(),
727                                  paramInfos,
728                                  signature.getRequiredArgs());
729 }
730 
731 namespace clang {
732 namespace CodeGen {
733 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
734 }
735 }
736 
737 /// Arrange the argument and result information for an abstract value
738 /// of a given function type.  This is the method which all of the
739 /// above functions ultimately defer to.
740 const CGFunctionInfo &
741 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
742                                       bool instanceMethod,
743                                       bool chainCall,
744                                       ArrayRef<CanQualType> argTypes,
745                                       FunctionType::ExtInfo info,
746                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
747                                       RequiredArgs required) {
748   assert(llvm::all_of(argTypes,
749                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
750 
751   // Lookup or create unique function info.
752   llvm::FoldingSetNodeID ID;
753   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
754                           required, resultType, argTypes);
755 
756   void *insertPos = nullptr;
757   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
758   if (FI)
759     return *FI;
760 
761   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
762 
763   // Construct the function info.  We co-allocate the ArgInfos.
764   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
765                               paramInfos, resultType, argTypes, required);
766   FunctionInfos.InsertNode(FI, insertPos);
767 
768   bool inserted = FunctionsBeingProcessed.insert(FI).second;
769   (void)inserted;
770   assert(inserted && "Recursively being processed?");
771 
772   // Compute ABI information.
773   if (CC == llvm::CallingConv::SPIR_KERNEL) {
774     // Force target independent argument handling for the host visible
775     // kernel functions.
776     computeSPIRKernelABIInfo(CGM, *FI);
777   } else if (info.getCC() == CC_Swift) {
778     swiftcall::computeABIInfo(CGM, *FI);
779   } else {
780     getABIInfo().computeInfo(*FI);
781   }
782 
783   // Loop over all of the computed argument and return value info.  If any of
784   // them are direct or extend without a specified coerce type, specify the
785   // default now.
786   ABIArgInfo &retInfo = FI->getReturnInfo();
787   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
788     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
789 
790   for (auto &I : FI->arguments())
791     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
792       I.info.setCoerceToType(ConvertType(I.type));
793 
794   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
795   assert(erased && "Not in set?");
796 
797   return *FI;
798 }
799 
800 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
801                                        bool instanceMethod,
802                                        bool chainCall,
803                                        const FunctionType::ExtInfo &info,
804                                        ArrayRef<ExtParameterInfo> paramInfos,
805                                        CanQualType resultType,
806                                        ArrayRef<CanQualType> argTypes,
807                                        RequiredArgs required) {
808   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
809 
810   void *buffer =
811     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
812                                   argTypes.size() + 1, paramInfos.size()));
813 
814   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
815   FI->CallingConvention = llvmCC;
816   FI->EffectiveCallingConvention = llvmCC;
817   FI->ASTCallingConvention = info.getCC();
818   FI->InstanceMethod = instanceMethod;
819   FI->ChainCall = chainCall;
820   FI->NoReturn = info.getNoReturn();
821   FI->ReturnsRetained = info.getProducesResult();
822   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
823   FI->NoCfCheck = info.getNoCfCheck();
824   FI->Required = required;
825   FI->HasRegParm = info.getHasRegParm();
826   FI->RegParm = info.getRegParm();
827   FI->ArgStruct = nullptr;
828   FI->ArgStructAlign = 0;
829   FI->NumArgs = argTypes.size();
830   FI->HasExtParameterInfos = !paramInfos.empty();
831   FI->getArgsBuffer()[0].type = resultType;
832   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
833     FI->getArgsBuffer()[i + 1].type = argTypes[i];
834   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
835     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
836   return FI;
837 }
838 
839 /***/
840 
841 namespace {
842 // ABIArgInfo::Expand implementation.
843 
844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
845 struct TypeExpansion {
846   enum TypeExpansionKind {
847     // Elements of constant arrays are expanded recursively.
848     TEK_ConstantArray,
849     // Record fields are expanded recursively (but if record is a union, only
850     // the field with the largest size is expanded).
851     TEK_Record,
852     // For complex types, real and imaginary parts are expanded recursively.
853     TEK_Complex,
854     // All other types are not expandable.
855     TEK_None
856   };
857 
858   const TypeExpansionKind Kind;
859 
860   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
861   virtual ~TypeExpansion() {}
862 };
863 
864 struct ConstantArrayExpansion : TypeExpansion {
865   QualType EltTy;
866   uint64_t NumElts;
867 
868   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
869       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
870   static bool classof(const TypeExpansion *TE) {
871     return TE->Kind == TEK_ConstantArray;
872   }
873 };
874 
875 struct RecordExpansion : TypeExpansion {
876   SmallVector<const CXXBaseSpecifier *, 1> Bases;
877 
878   SmallVector<const FieldDecl *, 1> Fields;
879 
880   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
881                   SmallVector<const FieldDecl *, 1> &&Fields)
882       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
883         Fields(std::move(Fields)) {}
884   static bool classof(const TypeExpansion *TE) {
885     return TE->Kind == TEK_Record;
886   }
887 };
888 
889 struct ComplexExpansion : TypeExpansion {
890   QualType EltTy;
891 
892   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
893   static bool classof(const TypeExpansion *TE) {
894     return TE->Kind == TEK_Complex;
895   }
896 };
897 
898 struct NoExpansion : TypeExpansion {
899   NoExpansion() : TypeExpansion(TEK_None) {}
900   static bool classof(const TypeExpansion *TE) {
901     return TE->Kind == TEK_None;
902   }
903 };
904 }  // namespace
905 
906 static std::unique_ptr<TypeExpansion>
907 getTypeExpansion(QualType Ty, const ASTContext &Context) {
908   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
909     return llvm::make_unique<ConstantArrayExpansion>(
910         AT->getElementType(), AT->getSize().getZExtValue());
911   }
912   if (const RecordType *RT = Ty->getAs<RecordType>()) {
913     SmallVector<const CXXBaseSpecifier *, 1> Bases;
914     SmallVector<const FieldDecl *, 1> Fields;
915     const RecordDecl *RD = RT->getDecl();
916     assert(!RD->hasFlexibleArrayMember() &&
917            "Cannot expand structure with flexible array.");
918     if (RD->isUnion()) {
919       // Unions can be here only in degenerative cases - all the fields are same
920       // after flattening. Thus we have to use the "largest" field.
921       const FieldDecl *LargestFD = nullptr;
922       CharUnits UnionSize = CharUnits::Zero();
923 
924       for (const auto *FD : RD->fields()) {
925         if (FD->isZeroLengthBitField(Context))
926           continue;
927         assert(!FD->isBitField() &&
928                "Cannot expand structure with bit-field members.");
929         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
930         if (UnionSize < FieldSize) {
931           UnionSize = FieldSize;
932           LargestFD = FD;
933         }
934       }
935       if (LargestFD)
936         Fields.push_back(LargestFD);
937     } else {
938       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
939         assert(!CXXRD->isDynamicClass() &&
940                "cannot expand vtable pointers in dynamic classes");
941         for (const CXXBaseSpecifier &BS : CXXRD->bases())
942           Bases.push_back(&BS);
943       }
944 
945       for (const auto *FD : RD->fields()) {
946         if (FD->isZeroLengthBitField(Context))
947           continue;
948         assert(!FD->isBitField() &&
949                "Cannot expand structure with bit-field members.");
950         Fields.push_back(FD);
951       }
952     }
953     return llvm::make_unique<RecordExpansion>(std::move(Bases),
954                                               std::move(Fields));
955   }
956   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
957     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
958   }
959   return llvm::make_unique<NoExpansion>();
960 }
961 
962 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
963   auto Exp = getTypeExpansion(Ty, Context);
964   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
965     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
966   }
967   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
968     int Res = 0;
969     for (auto BS : RExp->Bases)
970       Res += getExpansionSize(BS->getType(), Context);
971     for (auto FD : RExp->Fields)
972       Res += getExpansionSize(FD->getType(), Context);
973     return Res;
974   }
975   if (isa<ComplexExpansion>(Exp.get()))
976     return 2;
977   assert(isa<NoExpansion>(Exp.get()));
978   return 1;
979 }
980 
981 void
982 CodeGenTypes::getExpandedTypes(QualType Ty,
983                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
984   auto Exp = getTypeExpansion(Ty, Context);
985   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
986     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
987       getExpandedTypes(CAExp->EltTy, TI);
988     }
989   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
990     for (auto BS : RExp->Bases)
991       getExpandedTypes(BS->getType(), TI);
992     for (auto FD : RExp->Fields)
993       getExpandedTypes(FD->getType(), TI);
994   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
995     llvm::Type *EltTy = ConvertType(CExp->EltTy);
996     *TI++ = EltTy;
997     *TI++ = EltTy;
998   } else {
999     assert(isa<NoExpansion>(Exp.get()));
1000     *TI++ = ConvertType(Ty);
1001   }
1002 }
1003 
1004 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1005                                       ConstantArrayExpansion *CAE,
1006                                       Address BaseAddr,
1007                                       llvm::function_ref<void(Address)> Fn) {
1008   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1009   CharUnits EltAlign =
1010     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1011 
1012   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1013     llvm::Value *EltAddr =
1014       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1015     Fn(Address(EltAddr, EltAlign));
1016   }
1017 }
1018 
1019 void CodeGenFunction::ExpandTypeFromArgs(
1020     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1021   assert(LV.isSimple() &&
1022          "Unexpected non-simple lvalue during struct expansion.");
1023 
1024   auto Exp = getTypeExpansion(Ty, getContext());
1025   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1026     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
1027                               [&](Address EltAddr) {
1028       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1029       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1030     });
1031   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1032     Address This = LV.getAddress();
1033     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1034       // Perform a single step derived-to-base conversion.
1035       Address Base =
1036           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1037                                 /*NullCheckValue=*/false, SourceLocation());
1038       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1039 
1040       // Recurse onto bases.
1041       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1042     }
1043     for (auto FD : RExp->Fields) {
1044       // FIXME: What are the right qualifiers here?
1045       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1046       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1047     }
1048   } else if (isa<ComplexExpansion>(Exp.get())) {
1049     auto realValue = *AI++;
1050     auto imagValue = *AI++;
1051     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1052   } else {
1053     assert(isa<NoExpansion>(Exp.get()));
1054     EmitStoreThroughLValue(RValue::get(*AI++), LV);
1055   }
1056 }
1057 
1058 void CodeGenFunction::ExpandTypeToArgs(
1059     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1060     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1061   auto Exp = getTypeExpansion(Ty, getContext());
1062   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1063     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1064                                    : Arg.getKnownRValue().getAggregateAddress();
1065     forConstantArrayExpansion(
1066         *this, CAExp, Addr, [&](Address EltAddr) {
1067           CallArg EltArg = CallArg(
1068               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1069               CAExp->EltTy);
1070           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1071                            IRCallArgPos);
1072         });
1073   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1074     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1075                                    : Arg.getKnownRValue().getAggregateAddress();
1076     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1077       // Perform a single step derived-to-base conversion.
1078       Address Base =
1079           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1080                                 /*NullCheckValue=*/false, SourceLocation());
1081       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1082 
1083       // Recurse onto bases.
1084       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1085                        IRCallArgPos);
1086     }
1087 
1088     LValue LV = MakeAddrLValue(This, Ty);
1089     for (auto FD : RExp->Fields) {
1090       CallArg FldArg =
1091           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1092       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1093                        IRCallArgPos);
1094     }
1095   } else if (isa<ComplexExpansion>(Exp.get())) {
1096     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1097     IRCallArgs[IRCallArgPos++] = CV.first;
1098     IRCallArgs[IRCallArgPos++] = CV.second;
1099   } else {
1100     assert(isa<NoExpansion>(Exp.get()));
1101     auto RV = Arg.getKnownRValue();
1102     assert(RV.isScalar() &&
1103            "Unexpected non-scalar rvalue during struct expansion.");
1104 
1105     // Insert a bitcast as needed.
1106     llvm::Value *V = RV.getScalarVal();
1107     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1108         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1109       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1110 
1111     IRCallArgs[IRCallArgPos++] = V;
1112   }
1113 }
1114 
1115 /// Create a temporary allocation for the purposes of coercion.
1116 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1117                                            CharUnits MinAlign) {
1118   // Don't use an alignment that's worse than what LLVM would prefer.
1119   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1120   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1121 
1122   return CGF.CreateTempAlloca(Ty, Align);
1123 }
1124 
1125 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1126 /// accessing some number of bytes out of it, try to gep into the struct to get
1127 /// at its inner goodness.  Dive as deep as possible without entering an element
1128 /// with an in-memory size smaller than DstSize.
1129 static Address
1130 EnterStructPointerForCoercedAccess(Address SrcPtr,
1131                                    llvm::StructType *SrcSTy,
1132                                    uint64_t DstSize, CodeGenFunction &CGF) {
1133   // We can't dive into a zero-element struct.
1134   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1135 
1136   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1137 
1138   // If the first elt is at least as large as what we're looking for, or if the
1139   // first element is the same size as the whole struct, we can enter it. The
1140   // comparison must be made on the store size and not the alloca size. Using
1141   // the alloca size may overstate the size of the load.
1142   uint64_t FirstEltSize =
1143     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1144   if (FirstEltSize < DstSize &&
1145       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1146     return SrcPtr;
1147 
1148   // GEP into the first element.
1149   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
1150 
1151   // If the first element is a struct, recurse.
1152   llvm::Type *SrcTy = SrcPtr.getElementType();
1153   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1154     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1155 
1156   return SrcPtr;
1157 }
1158 
1159 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1160 /// are either integers or pointers.  This does a truncation of the value if it
1161 /// is too large or a zero extension if it is too small.
1162 ///
1163 /// This behaves as if the value were coerced through memory, so on big-endian
1164 /// targets the high bits are preserved in a truncation, while little-endian
1165 /// targets preserve the low bits.
1166 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1167                                              llvm::Type *Ty,
1168                                              CodeGenFunction &CGF) {
1169   if (Val->getType() == Ty)
1170     return Val;
1171 
1172   if (isa<llvm::PointerType>(Val->getType())) {
1173     // If this is Pointer->Pointer avoid conversion to and from int.
1174     if (isa<llvm::PointerType>(Ty))
1175       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1176 
1177     // Convert the pointer to an integer so we can play with its width.
1178     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1179   }
1180 
1181   llvm::Type *DestIntTy = Ty;
1182   if (isa<llvm::PointerType>(DestIntTy))
1183     DestIntTy = CGF.IntPtrTy;
1184 
1185   if (Val->getType() != DestIntTy) {
1186     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1187     if (DL.isBigEndian()) {
1188       // Preserve the high bits on big-endian targets.
1189       // That is what memory coercion does.
1190       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1191       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1192 
1193       if (SrcSize > DstSize) {
1194         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1195         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1196       } else {
1197         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1198         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1199       }
1200     } else {
1201       // Little-endian targets preserve the low bits. No shifts required.
1202       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1203     }
1204   }
1205 
1206   if (isa<llvm::PointerType>(Ty))
1207     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1208   return Val;
1209 }
1210 
1211 
1212 
1213 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1214 /// a pointer to an object of type \arg Ty, known to be aligned to
1215 /// \arg SrcAlign bytes.
1216 ///
1217 /// This safely handles the case when the src type is smaller than the
1218 /// destination type; in this situation the values of bits which not
1219 /// present in the src are undefined.
1220 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1221                                       CodeGenFunction &CGF) {
1222   llvm::Type *SrcTy = Src.getElementType();
1223 
1224   // If SrcTy and Ty are the same, just do a load.
1225   if (SrcTy == Ty)
1226     return CGF.Builder.CreateLoad(Src);
1227 
1228   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1229 
1230   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1231     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1232     SrcTy = Src.getType()->getElementType();
1233   }
1234 
1235   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1236 
1237   // If the source and destination are integer or pointer types, just do an
1238   // extension or truncation to the desired type.
1239   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1240       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1241     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1242     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1243   }
1244 
1245   // If load is legal, just bitcast the src pointer.
1246   if (SrcSize >= DstSize) {
1247     // Generally SrcSize is never greater than DstSize, since this means we are
1248     // losing bits. However, this can happen in cases where the structure has
1249     // additional padding, for example due to a user specified alignment.
1250     //
1251     // FIXME: Assert that we aren't truncating non-padding bits when have access
1252     // to that information.
1253     Src = CGF.Builder.CreateBitCast(Src,
1254                                     Ty->getPointerTo(Src.getAddressSpace()));
1255     return CGF.Builder.CreateLoad(Src);
1256   }
1257 
1258   // Otherwise do coercion through memory. This is stupid, but simple.
1259   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1260   Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1261   Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty);
1262   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1263       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1264       false);
1265   return CGF.Builder.CreateLoad(Tmp);
1266 }
1267 
1268 // Function to store a first-class aggregate into memory.  We prefer to
1269 // store the elements rather than the aggregate to be more friendly to
1270 // fast-isel.
1271 // FIXME: Do we need to recurse here?
1272 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1273                           Address Dest, bool DestIsVolatile) {
1274   // Prefer scalar stores to first-class aggregate stores.
1275   if (llvm::StructType *STy =
1276         dyn_cast<llvm::StructType>(Val->getType())) {
1277     const llvm::StructLayout *Layout =
1278       CGF.CGM.getDataLayout().getStructLayout(STy);
1279 
1280     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1281       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1282       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1283       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1284       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1285     }
1286   } else {
1287     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1288   }
1289 }
1290 
1291 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1292 /// where the source and destination may have different types.  The
1293 /// destination is known to be aligned to \arg DstAlign bytes.
1294 ///
1295 /// This safely handles the case when the src type is larger than the
1296 /// destination type; the upper bits of the src will be lost.
1297 static void CreateCoercedStore(llvm::Value *Src,
1298                                Address Dst,
1299                                bool DstIsVolatile,
1300                                CodeGenFunction &CGF) {
1301   llvm::Type *SrcTy = Src->getType();
1302   llvm::Type *DstTy = Dst.getType()->getElementType();
1303   if (SrcTy == DstTy) {
1304     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1305     return;
1306   }
1307 
1308   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1309 
1310   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1311     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1312     DstTy = Dst.getType()->getElementType();
1313   }
1314 
1315   // If the source and destination are integer or pointer types, just do an
1316   // extension or truncation to the desired type.
1317   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1318       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1319     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1320     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1321     return;
1322   }
1323 
1324   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1325 
1326   // If store is legal, just bitcast the src pointer.
1327   if (SrcSize <= DstSize) {
1328     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1329     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1330   } else {
1331     // Otherwise do coercion through memory. This is stupid, but
1332     // simple.
1333 
1334     // Generally SrcSize is never greater than DstSize, since this means we are
1335     // losing bits. However, this can happen in cases where the structure has
1336     // additional padding, for example due to a user specified alignment.
1337     //
1338     // FIXME: Assert that we aren't truncating non-padding bits when have access
1339     // to that information.
1340     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1341     CGF.Builder.CreateStore(Src, Tmp);
1342     Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1343     Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty);
1344     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1345         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1346         false);
1347   }
1348 }
1349 
1350 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1351                                    const ABIArgInfo &info) {
1352   if (unsigned offset = info.getDirectOffset()) {
1353     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1354     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1355                                              CharUnits::fromQuantity(offset));
1356     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1357   }
1358   return addr;
1359 }
1360 
1361 namespace {
1362 
1363 /// Encapsulates information about the way function arguments from
1364 /// CGFunctionInfo should be passed to actual LLVM IR function.
1365 class ClangToLLVMArgMapping {
1366   static const unsigned InvalidIndex = ~0U;
1367   unsigned InallocaArgNo;
1368   unsigned SRetArgNo;
1369   unsigned TotalIRArgs;
1370 
1371   /// Arguments of LLVM IR function corresponding to single Clang argument.
1372   struct IRArgs {
1373     unsigned PaddingArgIndex;
1374     // Argument is expanded to IR arguments at positions
1375     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1376     unsigned FirstArgIndex;
1377     unsigned NumberOfArgs;
1378 
1379     IRArgs()
1380         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1381           NumberOfArgs(0) {}
1382   };
1383 
1384   SmallVector<IRArgs, 8> ArgInfo;
1385 
1386 public:
1387   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1388                         bool OnlyRequiredArgs = false)
1389       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1390         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1391     construct(Context, FI, OnlyRequiredArgs);
1392   }
1393 
1394   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1395   unsigned getInallocaArgNo() const {
1396     assert(hasInallocaArg());
1397     return InallocaArgNo;
1398   }
1399 
1400   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1401   unsigned getSRetArgNo() const {
1402     assert(hasSRetArg());
1403     return SRetArgNo;
1404   }
1405 
1406   unsigned totalIRArgs() const { return TotalIRArgs; }
1407 
1408   bool hasPaddingArg(unsigned ArgNo) const {
1409     assert(ArgNo < ArgInfo.size());
1410     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1411   }
1412   unsigned getPaddingArgNo(unsigned ArgNo) const {
1413     assert(hasPaddingArg(ArgNo));
1414     return ArgInfo[ArgNo].PaddingArgIndex;
1415   }
1416 
1417   /// Returns index of first IR argument corresponding to ArgNo, and their
1418   /// quantity.
1419   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1420     assert(ArgNo < ArgInfo.size());
1421     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1422                           ArgInfo[ArgNo].NumberOfArgs);
1423   }
1424 
1425 private:
1426   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1427                  bool OnlyRequiredArgs);
1428 };
1429 
1430 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1431                                       const CGFunctionInfo &FI,
1432                                       bool OnlyRequiredArgs) {
1433   unsigned IRArgNo = 0;
1434   bool SwapThisWithSRet = false;
1435   const ABIArgInfo &RetAI = FI.getReturnInfo();
1436 
1437   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1438     SwapThisWithSRet = RetAI.isSRetAfterThis();
1439     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1440   }
1441 
1442   unsigned ArgNo = 0;
1443   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1444   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1445        ++I, ++ArgNo) {
1446     assert(I != FI.arg_end());
1447     QualType ArgType = I->type;
1448     const ABIArgInfo &AI = I->info;
1449     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1450     auto &IRArgs = ArgInfo[ArgNo];
1451 
1452     if (AI.getPaddingType())
1453       IRArgs.PaddingArgIndex = IRArgNo++;
1454 
1455     switch (AI.getKind()) {
1456     case ABIArgInfo::Extend:
1457     case ABIArgInfo::Direct: {
1458       // FIXME: handle sseregparm someday...
1459       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1460       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1461         IRArgs.NumberOfArgs = STy->getNumElements();
1462       } else {
1463         IRArgs.NumberOfArgs = 1;
1464       }
1465       break;
1466     }
1467     case ABIArgInfo::Indirect:
1468       IRArgs.NumberOfArgs = 1;
1469       break;
1470     case ABIArgInfo::Ignore:
1471     case ABIArgInfo::InAlloca:
1472       // ignore and inalloca doesn't have matching LLVM parameters.
1473       IRArgs.NumberOfArgs = 0;
1474       break;
1475     case ABIArgInfo::CoerceAndExpand:
1476       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1477       break;
1478     case ABIArgInfo::Expand:
1479       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1480       break;
1481     }
1482 
1483     if (IRArgs.NumberOfArgs > 0) {
1484       IRArgs.FirstArgIndex = IRArgNo;
1485       IRArgNo += IRArgs.NumberOfArgs;
1486     }
1487 
1488     // Skip over the sret parameter when it comes second.  We already handled it
1489     // above.
1490     if (IRArgNo == 1 && SwapThisWithSRet)
1491       IRArgNo++;
1492   }
1493   assert(ArgNo == ArgInfo.size());
1494 
1495   if (FI.usesInAlloca())
1496     InallocaArgNo = IRArgNo++;
1497 
1498   TotalIRArgs = IRArgNo;
1499 }
1500 }  // namespace
1501 
1502 /***/
1503 
1504 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1505   const auto &RI = FI.getReturnInfo();
1506   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1507 }
1508 
1509 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1510   return ReturnTypeUsesSRet(FI) &&
1511          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1512 }
1513 
1514 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1515   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1516     switch (BT->getKind()) {
1517     default:
1518       return false;
1519     case BuiltinType::Float:
1520       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1521     case BuiltinType::Double:
1522       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1523     case BuiltinType::LongDouble:
1524       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1525     }
1526   }
1527 
1528   return false;
1529 }
1530 
1531 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1532   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1533     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1534       if (BT->getKind() == BuiltinType::LongDouble)
1535         return getTarget().useObjCFP2RetForComplexLongDouble();
1536     }
1537   }
1538 
1539   return false;
1540 }
1541 
1542 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1543   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1544   return GetFunctionType(FI);
1545 }
1546 
1547 llvm::FunctionType *
1548 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1549 
1550   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1551   (void)Inserted;
1552   assert(Inserted && "Recursively being processed?");
1553 
1554   llvm::Type *resultType = nullptr;
1555   const ABIArgInfo &retAI = FI.getReturnInfo();
1556   switch (retAI.getKind()) {
1557   case ABIArgInfo::Expand:
1558     llvm_unreachable("Invalid ABI kind for return argument");
1559 
1560   case ABIArgInfo::Extend:
1561   case ABIArgInfo::Direct:
1562     resultType = retAI.getCoerceToType();
1563     break;
1564 
1565   case ABIArgInfo::InAlloca:
1566     if (retAI.getInAllocaSRet()) {
1567       // sret things on win32 aren't void, they return the sret pointer.
1568       QualType ret = FI.getReturnType();
1569       llvm::Type *ty = ConvertType(ret);
1570       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1571       resultType = llvm::PointerType::get(ty, addressSpace);
1572     } else {
1573       resultType = llvm::Type::getVoidTy(getLLVMContext());
1574     }
1575     break;
1576 
1577   case ABIArgInfo::Indirect:
1578   case ABIArgInfo::Ignore:
1579     resultType = llvm::Type::getVoidTy(getLLVMContext());
1580     break;
1581 
1582   case ABIArgInfo::CoerceAndExpand:
1583     resultType = retAI.getUnpaddedCoerceAndExpandType();
1584     break;
1585   }
1586 
1587   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1588   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1589 
1590   // Add type for sret argument.
1591   if (IRFunctionArgs.hasSRetArg()) {
1592     QualType Ret = FI.getReturnType();
1593     llvm::Type *Ty = ConvertType(Ret);
1594     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1595     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1596         llvm::PointerType::get(Ty, AddressSpace);
1597   }
1598 
1599   // Add type for inalloca argument.
1600   if (IRFunctionArgs.hasInallocaArg()) {
1601     auto ArgStruct = FI.getArgStruct();
1602     assert(ArgStruct);
1603     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1604   }
1605 
1606   // Add in all of the required arguments.
1607   unsigned ArgNo = 0;
1608   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1609                                      ie = it + FI.getNumRequiredArgs();
1610   for (; it != ie; ++it, ++ArgNo) {
1611     const ABIArgInfo &ArgInfo = it->info;
1612 
1613     // Insert a padding type to ensure proper alignment.
1614     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1615       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1616           ArgInfo.getPaddingType();
1617 
1618     unsigned FirstIRArg, NumIRArgs;
1619     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1620 
1621     switch (ArgInfo.getKind()) {
1622     case ABIArgInfo::Ignore:
1623     case ABIArgInfo::InAlloca:
1624       assert(NumIRArgs == 0);
1625       break;
1626 
1627     case ABIArgInfo::Indirect: {
1628       assert(NumIRArgs == 1);
1629       // indirect arguments are always on the stack, which is alloca addr space.
1630       llvm::Type *LTy = ConvertTypeForMem(it->type);
1631       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1632           CGM.getDataLayout().getAllocaAddrSpace());
1633       break;
1634     }
1635 
1636     case ABIArgInfo::Extend:
1637     case ABIArgInfo::Direct: {
1638       // Fast-isel and the optimizer generally like scalar values better than
1639       // FCAs, so we flatten them if this is safe to do for this argument.
1640       llvm::Type *argType = ArgInfo.getCoerceToType();
1641       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1642       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1643         assert(NumIRArgs == st->getNumElements());
1644         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1645           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1646       } else {
1647         assert(NumIRArgs == 1);
1648         ArgTypes[FirstIRArg] = argType;
1649       }
1650       break;
1651     }
1652 
1653     case ABIArgInfo::CoerceAndExpand: {
1654       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1655       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1656         *ArgTypesIter++ = EltTy;
1657       }
1658       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1659       break;
1660     }
1661 
1662     case ABIArgInfo::Expand:
1663       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1664       getExpandedTypes(it->type, ArgTypesIter);
1665       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1666       break;
1667     }
1668   }
1669 
1670   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1671   assert(Erased && "Not in set?");
1672 
1673   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1674 }
1675 
1676 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1677   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1678   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1679 
1680   if (!isFuncTypeConvertible(FPT))
1681     return llvm::StructType::get(getLLVMContext());
1682 
1683   const CGFunctionInfo *Info;
1684   if (isa<CXXDestructorDecl>(MD))
1685     Info =
1686         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1687   else
1688     Info = &arrangeCXXMethodDeclaration(MD);
1689   return GetFunctionType(*Info);
1690 }
1691 
1692 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1693                                                llvm::AttrBuilder &FuncAttrs,
1694                                                const FunctionProtoType *FPT) {
1695   if (!FPT)
1696     return;
1697 
1698   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1699       FPT->isNothrow())
1700     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1701 }
1702 
1703 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1704                                                bool AttrOnCallSite,
1705                                                llvm::AttrBuilder &FuncAttrs) {
1706   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1707   if (!HasOptnone) {
1708     if (CodeGenOpts.OptimizeSize)
1709       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1710     if (CodeGenOpts.OptimizeSize == 2)
1711       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1712   }
1713 
1714   if (CodeGenOpts.DisableRedZone)
1715     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1716   if (CodeGenOpts.IndirectTlsSegRefs)
1717     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1718   if (CodeGenOpts.NoImplicitFloat)
1719     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1720 
1721   if (AttrOnCallSite) {
1722     // Attributes that should go on the call site only.
1723     if (!CodeGenOpts.SimplifyLibCalls ||
1724         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1725       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1726     if (!CodeGenOpts.TrapFuncName.empty())
1727       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1728   } else {
1729     // Attributes that should go on the function, but not the call site.
1730     if (!CodeGenOpts.DisableFPElim) {
1731       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1732     } else if (CodeGenOpts.OmitLeafFramePointer) {
1733       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1734       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1735     } else {
1736       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1737       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1738     }
1739 
1740     FuncAttrs.addAttribute("less-precise-fpmad",
1741                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1742 
1743     if (CodeGenOpts.NullPointerIsValid)
1744       FuncAttrs.addAttribute("null-pointer-is-valid", "true");
1745     if (!CodeGenOpts.FPDenormalMode.empty())
1746       FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
1747 
1748     FuncAttrs.addAttribute("no-trapping-math",
1749                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1750 
1751     // Strict (compliant) code is the default, so only add this attribute to
1752     // indicate that we are trying to workaround a problem case.
1753     if (!CodeGenOpts.StrictFloatCastOverflow)
1754       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1755 
1756     // TODO: Are these all needed?
1757     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1758     FuncAttrs.addAttribute("no-infs-fp-math",
1759                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1760     FuncAttrs.addAttribute("no-nans-fp-math",
1761                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1762     FuncAttrs.addAttribute("unsafe-fp-math",
1763                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1764     FuncAttrs.addAttribute("use-soft-float",
1765                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1766     FuncAttrs.addAttribute("stack-protector-buffer-size",
1767                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1768     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1769                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1770     FuncAttrs.addAttribute(
1771         "correctly-rounded-divide-sqrt-fp-math",
1772         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1773 
1774     if (getLangOpts().OpenCL)
1775       FuncAttrs.addAttribute("denorms-are-zero",
1776                              llvm::toStringRef(CodeGenOpts.FlushDenorm));
1777 
1778     // TODO: Reciprocal estimate codegen options should apply to instructions?
1779     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1780     if (!Recips.empty())
1781       FuncAttrs.addAttribute("reciprocal-estimates",
1782                              llvm::join(Recips, ","));
1783 
1784     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1785         CodeGenOpts.PreferVectorWidth != "none")
1786       FuncAttrs.addAttribute("prefer-vector-width",
1787                              CodeGenOpts.PreferVectorWidth);
1788 
1789     if (CodeGenOpts.StackRealignment)
1790       FuncAttrs.addAttribute("stackrealign");
1791     if (CodeGenOpts.Backchain)
1792       FuncAttrs.addAttribute("backchain");
1793 
1794     if (CodeGenOpts.SpeculativeLoadHardening)
1795       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1796   }
1797 
1798   if (getLangOpts().assumeFunctionsAreConvergent()) {
1799     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1800     // convergent (meaning, they may call an intrinsically convergent op, such
1801     // as __syncthreads() / barrier(), and so can't have certain optimizations
1802     // applied around them).  LLVM will remove this attribute where it safely
1803     // can.
1804     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1805   }
1806 
1807   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1808     // Exceptions aren't supported in CUDA device code.
1809     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1810 
1811     // Respect -fcuda-flush-denormals-to-zero.
1812     if (CodeGenOpts.FlushDenorm)
1813       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1814   }
1815 
1816   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1817     StringRef Var, Value;
1818     std::tie(Var, Value) = Attr.split('=');
1819     FuncAttrs.addAttribute(Var, Value);
1820   }
1821 }
1822 
1823 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1824   llvm::AttrBuilder FuncAttrs;
1825   ConstructDefaultFnAttrList(F.getName(),
1826                              F.hasFnAttribute(llvm::Attribute::OptimizeNone),
1827                              /* AttrOnCallsite = */ false, FuncAttrs);
1828   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1829 }
1830 
1831 void CodeGenModule::ConstructAttributeList(
1832     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1833     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1834   llvm::AttrBuilder FuncAttrs;
1835   llvm::AttrBuilder RetAttrs;
1836 
1837   CallingConv = FI.getEffectiveCallingConvention();
1838   if (FI.isNoReturn())
1839     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1840 
1841   // If we have information about the function prototype, we can learn
1842   // attributes from there.
1843   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1844                                      CalleeInfo.getCalleeFunctionProtoType());
1845 
1846   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1847 
1848   bool HasOptnone = false;
1849   // FIXME: handle sseregparm someday...
1850   if (TargetDecl) {
1851     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1852       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1853     if (TargetDecl->hasAttr<NoThrowAttr>())
1854       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1855     if (TargetDecl->hasAttr<NoReturnAttr>())
1856       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1857     if (TargetDecl->hasAttr<ColdAttr>())
1858       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1859     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1860       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1861     if (TargetDecl->hasAttr<ConvergentAttr>())
1862       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1863 
1864     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1865       AddAttributesFromFunctionProtoType(
1866           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1867       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1868       // These attributes are not inherited by overloads.
1869       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1870       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1871         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1872     }
1873 
1874     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1875     if (TargetDecl->hasAttr<ConstAttr>()) {
1876       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1877       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1878     } else if (TargetDecl->hasAttr<PureAttr>()) {
1879       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1880       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1881     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1882       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1883       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1884     }
1885     if (TargetDecl->hasAttr<RestrictAttr>())
1886       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1887     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1888         !CodeGenOpts.NullPointerIsValid)
1889       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1890     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1891       FuncAttrs.addAttribute("no_caller_saved_registers");
1892     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1893       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1894 
1895     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1896     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1897       Optional<unsigned> NumElemsParam;
1898       if (AllocSize->getNumElemsParam().isValid())
1899         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1900       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1901                                  NumElemsParam);
1902     }
1903   }
1904 
1905   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1906 
1907   // This must run after constructing the default function attribute list
1908   // to ensure that the speculative load hardening attribute is removed
1909   // in the case where the -mspeculative-load-hardening flag was passed.
1910   if (TargetDecl) {
1911     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
1912       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
1913     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
1914       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1915   }
1916 
1917   if (CodeGenOpts.EnableSegmentedStacks &&
1918       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1919     FuncAttrs.addAttribute("split-stack");
1920 
1921   // Add NonLazyBind attribute to function declarations when -fno-plt
1922   // is used.
1923   if (TargetDecl && CodeGenOpts.NoPLT) {
1924     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1925       if (!Fn->isDefined() && !AttrOnCallSite) {
1926         FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1927       }
1928     }
1929   }
1930 
1931   if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1932     if (getLangOpts().OpenCLVersion <= 120) {
1933       // OpenCL v1.2 Work groups are always uniform
1934       FuncAttrs.addAttribute("uniform-work-group-size", "true");
1935     } else {
1936       // OpenCL v2.0 Work groups may be whether uniform or not.
1937       // '-cl-uniform-work-group-size' compile option gets a hint
1938       // to the compiler that the global work-size be a multiple of
1939       // the work-group size specified to clEnqueueNDRangeKernel
1940       // (i.e. work groups are uniform).
1941       FuncAttrs.addAttribute("uniform-work-group-size",
1942                              llvm::toStringRef(CodeGenOpts.UniformWGSize));
1943     }
1944   }
1945 
1946   if (!AttrOnCallSite) {
1947     bool DisableTailCalls = false;
1948 
1949     if (CodeGenOpts.DisableTailCalls)
1950       DisableTailCalls = true;
1951     else if (TargetDecl) {
1952       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1953           TargetDecl->hasAttr<AnyX86InterruptAttr>())
1954         DisableTailCalls = true;
1955       else if (CodeGenOpts.NoEscapingBlockTailCalls) {
1956         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
1957           if (!BD->doesNotEscape())
1958             DisableTailCalls = true;
1959       }
1960     }
1961 
1962     FuncAttrs.addAttribute("disable-tail-calls",
1963                            llvm::toStringRef(DisableTailCalls));
1964     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
1965   }
1966 
1967   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1968 
1969   QualType RetTy = FI.getReturnType();
1970   const ABIArgInfo &RetAI = FI.getReturnInfo();
1971   switch (RetAI.getKind()) {
1972   case ABIArgInfo::Extend:
1973     if (RetAI.isSignExt())
1974       RetAttrs.addAttribute(llvm::Attribute::SExt);
1975     else
1976       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1977     LLVM_FALLTHROUGH;
1978   case ABIArgInfo::Direct:
1979     if (RetAI.getInReg())
1980       RetAttrs.addAttribute(llvm::Attribute::InReg);
1981     break;
1982   case ABIArgInfo::Ignore:
1983     break;
1984 
1985   case ABIArgInfo::InAlloca:
1986   case ABIArgInfo::Indirect: {
1987     // inalloca and sret disable readnone and readonly
1988     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1989       .removeAttribute(llvm::Attribute::ReadNone);
1990     break;
1991   }
1992 
1993   case ABIArgInfo::CoerceAndExpand:
1994     break;
1995 
1996   case ABIArgInfo::Expand:
1997     llvm_unreachable("Invalid ABI kind for return argument");
1998   }
1999 
2000   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2001     QualType PTy = RefTy->getPointeeType();
2002     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2003       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2004                                         .getQuantity());
2005     else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2006              !CodeGenOpts.NullPointerIsValid)
2007       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2008   }
2009 
2010   bool hasUsedSRet = false;
2011   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2012 
2013   // Attach attributes to sret.
2014   if (IRFunctionArgs.hasSRetArg()) {
2015     llvm::AttrBuilder SRETAttrs;
2016     if (!RetAI.getSuppressSRet())
2017       SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2018     hasUsedSRet = true;
2019     if (RetAI.getInReg())
2020       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2021     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2022         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2023   }
2024 
2025   // Attach attributes to inalloca argument.
2026   if (IRFunctionArgs.hasInallocaArg()) {
2027     llvm::AttrBuilder Attrs;
2028     Attrs.addAttribute(llvm::Attribute::InAlloca);
2029     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2030         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2031   }
2032 
2033   unsigned ArgNo = 0;
2034   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2035                                           E = FI.arg_end();
2036        I != E; ++I, ++ArgNo) {
2037     QualType ParamType = I->type;
2038     const ABIArgInfo &AI = I->info;
2039     llvm::AttrBuilder Attrs;
2040 
2041     // Add attribute for padding argument, if necessary.
2042     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2043       if (AI.getPaddingInReg()) {
2044         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2045             llvm::AttributeSet::get(
2046                 getLLVMContext(),
2047                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2048       }
2049     }
2050 
2051     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2052     // have the corresponding parameter variable.  It doesn't make
2053     // sense to do it here because parameters are so messed up.
2054     switch (AI.getKind()) {
2055     case ABIArgInfo::Extend:
2056       if (AI.isSignExt())
2057         Attrs.addAttribute(llvm::Attribute::SExt);
2058       else
2059         Attrs.addAttribute(llvm::Attribute::ZExt);
2060       LLVM_FALLTHROUGH;
2061     case ABIArgInfo::Direct:
2062       if (ArgNo == 0 && FI.isChainCall())
2063         Attrs.addAttribute(llvm::Attribute::Nest);
2064       else if (AI.getInReg())
2065         Attrs.addAttribute(llvm::Attribute::InReg);
2066       break;
2067 
2068     case ABIArgInfo::Indirect: {
2069       if (AI.getInReg())
2070         Attrs.addAttribute(llvm::Attribute::InReg);
2071 
2072       if (AI.getIndirectByVal())
2073         Attrs.addAttribute(llvm::Attribute::ByVal);
2074 
2075       CharUnits Align = AI.getIndirectAlign();
2076 
2077       // In a byval argument, it is important that the required
2078       // alignment of the type is honored, as LLVM might be creating a
2079       // *new* stack object, and needs to know what alignment to give
2080       // it. (Sometimes it can deduce a sensible alignment on its own,
2081       // but not if clang decides it must emit a packed struct, or the
2082       // user specifies increased alignment requirements.)
2083       //
2084       // This is different from indirect *not* byval, where the object
2085       // exists already, and the align attribute is purely
2086       // informative.
2087       assert(!Align.isZero());
2088 
2089       // For now, only add this when we have a byval argument.
2090       // TODO: be less lazy about updating test cases.
2091       if (AI.getIndirectByVal())
2092         Attrs.addAlignmentAttr(Align.getQuantity());
2093 
2094       // byval disables readnone and readonly.
2095       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2096         .removeAttribute(llvm::Attribute::ReadNone);
2097       break;
2098     }
2099     case ABIArgInfo::Ignore:
2100     case ABIArgInfo::Expand:
2101     case ABIArgInfo::CoerceAndExpand:
2102       break;
2103 
2104     case ABIArgInfo::InAlloca:
2105       // inalloca disables readnone and readonly.
2106       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2107           .removeAttribute(llvm::Attribute::ReadNone);
2108       continue;
2109     }
2110 
2111     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2112       QualType PTy = RefTy->getPointeeType();
2113       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2114         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2115                                        .getQuantity());
2116       else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2117                !CodeGenOpts.NullPointerIsValid)
2118         Attrs.addAttribute(llvm::Attribute::NonNull);
2119     }
2120 
2121     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2122     case ParameterABI::Ordinary:
2123       break;
2124 
2125     case ParameterABI::SwiftIndirectResult: {
2126       // Add 'sret' if we haven't already used it for something, but
2127       // only if the result is void.
2128       if (!hasUsedSRet && RetTy->isVoidType()) {
2129         Attrs.addAttribute(llvm::Attribute::StructRet);
2130         hasUsedSRet = true;
2131       }
2132 
2133       // Add 'noalias' in either case.
2134       Attrs.addAttribute(llvm::Attribute::NoAlias);
2135 
2136       // Add 'dereferenceable' and 'alignment'.
2137       auto PTy = ParamType->getPointeeType();
2138       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2139         auto info = getContext().getTypeInfoInChars(PTy);
2140         Attrs.addDereferenceableAttr(info.first.getQuantity());
2141         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
2142                                                  info.second.getQuantity()));
2143       }
2144       break;
2145     }
2146 
2147     case ParameterABI::SwiftErrorResult:
2148       Attrs.addAttribute(llvm::Attribute::SwiftError);
2149       break;
2150 
2151     case ParameterABI::SwiftContext:
2152       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2153       break;
2154     }
2155 
2156     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2157       Attrs.addAttribute(llvm::Attribute::NoCapture);
2158 
2159     if (Attrs.hasAttributes()) {
2160       unsigned FirstIRArg, NumIRArgs;
2161       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2162       for (unsigned i = 0; i < NumIRArgs; i++)
2163         ArgAttrs[FirstIRArg + i] =
2164             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2165     }
2166   }
2167   assert(ArgNo == FI.arg_size());
2168 
2169   AttrList = llvm::AttributeList::get(
2170       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2171       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2172 }
2173 
2174 /// An argument came in as a promoted argument; demote it back to its
2175 /// declared type.
2176 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2177                                          const VarDecl *var,
2178                                          llvm::Value *value) {
2179   llvm::Type *varType = CGF.ConvertType(var->getType());
2180 
2181   // This can happen with promotions that actually don't change the
2182   // underlying type, like the enum promotions.
2183   if (value->getType() == varType) return value;
2184 
2185   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2186          && "unexpected promotion type");
2187 
2188   if (isa<llvm::IntegerType>(varType))
2189     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2190 
2191   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2192 }
2193 
2194 /// Returns the attribute (either parameter attribute, or function
2195 /// attribute), which declares argument ArgNo to be non-null.
2196 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2197                                          QualType ArgType, unsigned ArgNo) {
2198   // FIXME: __attribute__((nonnull)) can also be applied to:
2199   //   - references to pointers, where the pointee is known to be
2200   //     nonnull (apparently a Clang extension)
2201   //   - transparent unions containing pointers
2202   // In the former case, LLVM IR cannot represent the constraint. In
2203   // the latter case, we have no guarantee that the transparent union
2204   // is in fact passed as a pointer.
2205   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2206     return nullptr;
2207   // First, check attribute on parameter itself.
2208   if (PVD) {
2209     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2210       return ParmNNAttr;
2211   }
2212   // Check function attributes.
2213   if (!FD)
2214     return nullptr;
2215   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2216     if (NNAttr->isNonNull(ArgNo))
2217       return NNAttr;
2218   }
2219   return nullptr;
2220 }
2221 
2222 namespace {
2223   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2224     Address Temp;
2225     Address Arg;
2226     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2227     void Emit(CodeGenFunction &CGF, Flags flags) override {
2228       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2229       CGF.Builder.CreateStore(errorValue, Arg);
2230     }
2231   };
2232 }
2233 
2234 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2235                                          llvm::Function *Fn,
2236                                          const FunctionArgList &Args) {
2237   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2238     // Naked functions don't have prologues.
2239     return;
2240 
2241   // If this is an implicit-return-zero function, go ahead and
2242   // initialize the return value.  TODO: it might be nice to have
2243   // a more general mechanism for this that didn't require synthesized
2244   // return statements.
2245   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2246     if (FD->hasImplicitReturnZero()) {
2247       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2248       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2249       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2250       Builder.CreateStore(Zero, ReturnValue);
2251     }
2252   }
2253 
2254   // FIXME: We no longer need the types from FunctionArgList; lift up and
2255   // simplify.
2256 
2257   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2258   // Flattened function arguments.
2259   SmallVector<llvm::Value *, 16> FnArgs;
2260   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2261   for (auto &Arg : Fn->args()) {
2262     FnArgs.push_back(&Arg);
2263   }
2264   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2265 
2266   // If we're using inalloca, all the memory arguments are GEPs off of the last
2267   // parameter, which is a pointer to the complete memory area.
2268   Address ArgStruct = Address::invalid();
2269   const llvm::StructLayout *ArgStructLayout = nullptr;
2270   if (IRFunctionArgs.hasInallocaArg()) {
2271     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
2272     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2273                         FI.getArgStructAlignment());
2274 
2275     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2276   }
2277 
2278   // Name the struct return parameter.
2279   if (IRFunctionArgs.hasSRetArg()) {
2280     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2281     AI->setName("agg.result");
2282     AI->addAttr(llvm::Attribute::NoAlias);
2283   }
2284 
2285   // Track if we received the parameter as a pointer (indirect, byval, or
2286   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2287   // into a local alloca for us.
2288   SmallVector<ParamValue, 16> ArgVals;
2289   ArgVals.reserve(Args.size());
2290 
2291   // Create a pointer value for every parameter declaration.  This usually
2292   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2293   // any cleanups or do anything that might unwind.  We do that separately, so
2294   // we can push the cleanups in the correct order for the ABI.
2295   assert(FI.arg_size() == Args.size() &&
2296          "Mismatch between function signature & arguments.");
2297   unsigned ArgNo = 0;
2298   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2299   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2300        i != e; ++i, ++info_it, ++ArgNo) {
2301     const VarDecl *Arg = *i;
2302     const ABIArgInfo &ArgI = info_it->info;
2303 
2304     bool isPromoted =
2305       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2306     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2307     // the parameter is promoted. In this case we convert to
2308     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2309     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2310     assert(hasScalarEvaluationKind(Ty) ==
2311            hasScalarEvaluationKind(Arg->getType()));
2312 
2313     unsigned FirstIRArg, NumIRArgs;
2314     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2315 
2316     switch (ArgI.getKind()) {
2317     case ABIArgInfo::InAlloca: {
2318       assert(NumIRArgs == 0);
2319       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2320       CharUnits FieldOffset =
2321         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
2322       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
2323                                           Arg->getName());
2324       ArgVals.push_back(ParamValue::forIndirect(V));
2325       break;
2326     }
2327 
2328     case ABIArgInfo::Indirect: {
2329       assert(NumIRArgs == 1);
2330       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2331 
2332       if (!hasScalarEvaluationKind(Ty)) {
2333         // Aggregates and complex variables are accessed by reference.  All we
2334         // need to do is realign the value, if requested.
2335         Address V = ParamAddr;
2336         if (ArgI.getIndirectRealign()) {
2337           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2338 
2339           // Copy from the incoming argument pointer to the temporary with the
2340           // appropriate alignment.
2341           //
2342           // FIXME: We should have a common utility for generating an aggregate
2343           // copy.
2344           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2345           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2346           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2347           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2348           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2349           V = AlignedTemp;
2350         }
2351         ArgVals.push_back(ParamValue::forIndirect(V));
2352       } else {
2353         // Load scalar value from indirect argument.
2354         llvm::Value *V =
2355             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2356 
2357         if (isPromoted)
2358           V = emitArgumentDemotion(*this, Arg, V);
2359         ArgVals.push_back(ParamValue::forDirect(V));
2360       }
2361       break;
2362     }
2363 
2364     case ABIArgInfo::Extend:
2365     case ABIArgInfo::Direct: {
2366 
2367       // If we have the trivial case, handle it with no muss and fuss.
2368       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2369           ArgI.getCoerceToType() == ConvertType(Ty) &&
2370           ArgI.getDirectOffset() == 0) {
2371         assert(NumIRArgs == 1);
2372         llvm::Value *V = FnArgs[FirstIRArg];
2373         auto AI = cast<llvm::Argument>(V);
2374 
2375         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2376           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2377                              PVD->getFunctionScopeIndex()) &&
2378               !CGM.getCodeGenOpts().NullPointerIsValid)
2379             AI->addAttr(llvm::Attribute::NonNull);
2380 
2381           QualType OTy = PVD->getOriginalType();
2382           if (const auto *ArrTy =
2383               getContext().getAsConstantArrayType(OTy)) {
2384             // A C99 array parameter declaration with the static keyword also
2385             // indicates dereferenceability, and if the size is constant we can
2386             // use the dereferenceable attribute (which requires the size in
2387             // bytes).
2388             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2389               QualType ETy = ArrTy->getElementType();
2390               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2391               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2392                   ArrSize) {
2393                 llvm::AttrBuilder Attrs;
2394                 Attrs.addDereferenceableAttr(
2395                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2396                 AI->addAttrs(Attrs);
2397               } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
2398                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2399                 AI->addAttr(llvm::Attribute::NonNull);
2400               }
2401             }
2402           } else if (const auto *ArrTy =
2403                      getContext().getAsVariableArrayType(OTy)) {
2404             // For C99 VLAs with the static keyword, we don't know the size so
2405             // we can't use the dereferenceable attribute, but in addrspace(0)
2406             // we know that it must be nonnull.
2407             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2408                 !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2409                 !CGM.getCodeGenOpts().NullPointerIsValid)
2410               AI->addAttr(llvm::Attribute::NonNull);
2411           }
2412 
2413           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2414           if (!AVAttr)
2415             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2416               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2417           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2418             // If alignment-assumption sanitizer is enabled, we do *not* add
2419             // alignment attribute here, but emit normal alignment assumption,
2420             // so the UBSAN check could function.
2421             llvm::Value *AlignmentValue =
2422               EmitScalarExpr(AVAttr->getAlignment());
2423             llvm::ConstantInt *AlignmentCI =
2424               cast<llvm::ConstantInt>(AlignmentValue);
2425             unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
2426                                           +llvm::Value::MaximumAlignment);
2427             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2428           }
2429         }
2430 
2431         if (Arg->getType().isRestrictQualified())
2432           AI->addAttr(llvm::Attribute::NoAlias);
2433 
2434         // LLVM expects swifterror parameters to be used in very restricted
2435         // ways.  Copy the value into a less-restricted temporary.
2436         if (FI.getExtParameterInfo(ArgNo).getABI()
2437               == ParameterABI::SwiftErrorResult) {
2438           QualType pointeeTy = Ty->getPointeeType();
2439           assert(pointeeTy->isPointerType());
2440           Address temp =
2441             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2442           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2443           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2444           Builder.CreateStore(incomingErrorValue, temp);
2445           V = temp.getPointer();
2446 
2447           // Push a cleanup to copy the value back at the end of the function.
2448           // The convention does not guarantee that the value will be written
2449           // back if the function exits with an unwind exception.
2450           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2451         }
2452 
2453         // Ensure the argument is the correct type.
2454         if (V->getType() != ArgI.getCoerceToType())
2455           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2456 
2457         if (isPromoted)
2458           V = emitArgumentDemotion(*this, Arg, V);
2459 
2460         // Because of merging of function types from multiple decls it is
2461         // possible for the type of an argument to not match the corresponding
2462         // type in the function type. Since we are codegening the callee
2463         // in here, add a cast to the argument type.
2464         llvm::Type *LTy = ConvertType(Arg->getType());
2465         if (V->getType() != LTy)
2466           V = Builder.CreateBitCast(V, LTy);
2467 
2468         ArgVals.push_back(ParamValue::forDirect(V));
2469         break;
2470       }
2471 
2472       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2473                                      Arg->getName());
2474 
2475       // Pointer to store into.
2476       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2477 
2478       // Fast-isel and the optimizer generally like scalar values better than
2479       // FCAs, so we flatten them if this is safe to do for this argument.
2480       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2481       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2482           STy->getNumElements() > 1) {
2483         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2484         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2485         llvm::Type *DstTy = Ptr.getElementType();
2486         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2487 
2488         Address AddrToStoreInto = Address::invalid();
2489         if (SrcSize <= DstSize) {
2490           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2491         } else {
2492           AddrToStoreInto =
2493             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2494         }
2495 
2496         assert(STy->getNumElements() == NumIRArgs);
2497         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2498           auto AI = FnArgs[FirstIRArg + i];
2499           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2500           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2501           Address EltPtr =
2502             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2503           Builder.CreateStore(AI, EltPtr);
2504         }
2505 
2506         if (SrcSize > DstSize) {
2507           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2508         }
2509 
2510       } else {
2511         // Simple case, just do a coerced store of the argument into the alloca.
2512         assert(NumIRArgs == 1);
2513         auto AI = FnArgs[FirstIRArg];
2514         AI->setName(Arg->getName() + ".coerce");
2515         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2516       }
2517 
2518       // Match to what EmitParmDecl is expecting for this type.
2519       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2520         llvm::Value *V =
2521             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2522         if (isPromoted)
2523           V = emitArgumentDemotion(*this, Arg, V);
2524         ArgVals.push_back(ParamValue::forDirect(V));
2525       } else {
2526         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2527       }
2528       break;
2529     }
2530 
2531     case ABIArgInfo::CoerceAndExpand: {
2532       // Reconstruct into a temporary.
2533       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2534       ArgVals.push_back(ParamValue::forIndirect(alloca));
2535 
2536       auto coercionType = ArgI.getCoerceAndExpandType();
2537       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2538       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2539 
2540       unsigned argIndex = FirstIRArg;
2541       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2542         llvm::Type *eltType = coercionType->getElementType(i);
2543         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2544           continue;
2545 
2546         auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
2547         auto elt = FnArgs[argIndex++];
2548         Builder.CreateStore(elt, eltAddr);
2549       }
2550       assert(argIndex == FirstIRArg + NumIRArgs);
2551       break;
2552     }
2553 
2554     case ABIArgInfo::Expand: {
2555       // If this structure was expanded into multiple arguments then
2556       // we need to create a temporary and reconstruct it from the
2557       // arguments.
2558       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2559       LValue LV = MakeAddrLValue(Alloca, Ty);
2560       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2561 
2562       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2563       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2564       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2565       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2566         auto AI = FnArgs[FirstIRArg + i];
2567         AI->setName(Arg->getName() + "." + Twine(i));
2568       }
2569       break;
2570     }
2571 
2572     case ABIArgInfo::Ignore:
2573       assert(NumIRArgs == 0);
2574       // Initialize the local variable appropriately.
2575       if (!hasScalarEvaluationKind(Ty)) {
2576         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2577       } else {
2578         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2579         ArgVals.push_back(ParamValue::forDirect(U));
2580       }
2581       break;
2582     }
2583   }
2584 
2585   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2586     for (int I = Args.size() - 1; I >= 0; --I)
2587       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2588   } else {
2589     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2590       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2591   }
2592 }
2593 
2594 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2595   while (insn->use_empty()) {
2596     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2597     if (!bitcast) return;
2598 
2599     // This is "safe" because we would have used a ConstantExpr otherwise.
2600     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2601     bitcast->eraseFromParent();
2602   }
2603 }
2604 
2605 /// Try to emit a fused autorelease of a return result.
2606 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2607                                                     llvm::Value *result) {
2608   // We must be immediately followed the cast.
2609   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2610   if (BB->empty()) return nullptr;
2611   if (&BB->back() != result) return nullptr;
2612 
2613   llvm::Type *resultType = result->getType();
2614 
2615   // result is in a BasicBlock and is therefore an Instruction.
2616   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2617 
2618   SmallVector<llvm::Instruction *, 4> InstsToKill;
2619 
2620   // Look for:
2621   //  %generator = bitcast %type1* %generator2 to %type2*
2622   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2623     // We would have emitted this as a constant if the operand weren't
2624     // an Instruction.
2625     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2626 
2627     // Require the generator to be immediately followed by the cast.
2628     if (generator->getNextNode() != bitcast)
2629       return nullptr;
2630 
2631     InstsToKill.push_back(bitcast);
2632   }
2633 
2634   // Look for:
2635   //   %generator = call i8* @objc_retain(i8* %originalResult)
2636   // or
2637   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2638   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2639   if (!call) return nullptr;
2640 
2641   bool doRetainAutorelease;
2642 
2643   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2644     doRetainAutorelease = true;
2645   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2646                                           .objc_retainAutoreleasedReturnValue) {
2647     doRetainAutorelease = false;
2648 
2649     // If we emitted an assembly marker for this call (and the
2650     // ARCEntrypoints field should have been set if so), go looking
2651     // for that call.  If we can't find it, we can't do this
2652     // optimization.  But it should always be the immediately previous
2653     // instruction, unless we needed bitcasts around the call.
2654     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2655       llvm::Instruction *prev = call->getPrevNode();
2656       assert(prev);
2657       if (isa<llvm::BitCastInst>(prev)) {
2658         prev = prev->getPrevNode();
2659         assert(prev);
2660       }
2661       assert(isa<llvm::CallInst>(prev));
2662       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2663                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2664       InstsToKill.push_back(prev);
2665     }
2666   } else {
2667     return nullptr;
2668   }
2669 
2670   result = call->getArgOperand(0);
2671   InstsToKill.push_back(call);
2672 
2673   // Keep killing bitcasts, for sanity.  Note that we no longer care
2674   // about precise ordering as long as there's exactly one use.
2675   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2676     if (!bitcast->hasOneUse()) break;
2677     InstsToKill.push_back(bitcast);
2678     result = bitcast->getOperand(0);
2679   }
2680 
2681   // Delete all the unnecessary instructions, from latest to earliest.
2682   for (auto *I : InstsToKill)
2683     I->eraseFromParent();
2684 
2685   // Do the fused retain/autorelease if we were asked to.
2686   if (doRetainAutorelease)
2687     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2688 
2689   // Cast back to the result type.
2690   return CGF.Builder.CreateBitCast(result, resultType);
2691 }
2692 
2693 /// If this is a +1 of the value of an immutable 'self', remove it.
2694 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2695                                           llvm::Value *result) {
2696   // This is only applicable to a method with an immutable 'self'.
2697   const ObjCMethodDecl *method =
2698     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2699   if (!method) return nullptr;
2700   const VarDecl *self = method->getSelfDecl();
2701   if (!self->getType().isConstQualified()) return nullptr;
2702 
2703   // Look for a retain call.
2704   llvm::CallInst *retainCall =
2705     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2706   if (!retainCall ||
2707       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2708     return nullptr;
2709 
2710   // Look for an ordinary load of 'self'.
2711   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2712   llvm::LoadInst *load =
2713     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2714   if (!load || load->isAtomic() || load->isVolatile() ||
2715       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2716     return nullptr;
2717 
2718   // Okay!  Burn it all down.  This relies for correctness on the
2719   // assumption that the retain is emitted as part of the return and
2720   // that thereafter everything is used "linearly".
2721   llvm::Type *resultType = result->getType();
2722   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2723   assert(retainCall->use_empty());
2724   retainCall->eraseFromParent();
2725   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2726 
2727   return CGF.Builder.CreateBitCast(load, resultType);
2728 }
2729 
2730 /// Emit an ARC autorelease of the result of a function.
2731 ///
2732 /// \return the value to actually return from the function
2733 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2734                                             llvm::Value *result) {
2735   // If we're returning 'self', kill the initial retain.  This is a
2736   // heuristic attempt to "encourage correctness" in the really unfortunate
2737   // case where we have a return of self during a dealloc and we desperately
2738   // need to avoid the possible autorelease.
2739   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2740     return self;
2741 
2742   // At -O0, try to emit a fused retain/autorelease.
2743   if (CGF.shouldUseFusedARCCalls())
2744     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2745       return fused;
2746 
2747   return CGF.EmitARCAutoreleaseReturnValue(result);
2748 }
2749 
2750 /// Heuristically search for a dominating store to the return-value slot.
2751 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2752   // Check if a User is a store which pointerOperand is the ReturnValue.
2753   // We are looking for stores to the ReturnValue, not for stores of the
2754   // ReturnValue to some other location.
2755   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2756     auto *SI = dyn_cast<llvm::StoreInst>(U);
2757     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2758       return nullptr;
2759     // These aren't actually possible for non-coerced returns, and we
2760     // only care about non-coerced returns on this code path.
2761     assert(!SI->isAtomic() && !SI->isVolatile());
2762     return SI;
2763   };
2764   // If there are multiple uses of the return-value slot, just check
2765   // for something immediately preceding the IP.  Sometimes this can
2766   // happen with how we generate implicit-returns; it can also happen
2767   // with noreturn cleanups.
2768   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2769     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2770     if (IP->empty()) return nullptr;
2771     llvm::Instruction *I = &IP->back();
2772 
2773     // Skip lifetime markers
2774     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2775                                             IE = IP->rend();
2776          II != IE; ++II) {
2777       if (llvm::IntrinsicInst *Intrinsic =
2778               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2779         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2780           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2781           ++II;
2782           if (II == IE)
2783             break;
2784           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2785             continue;
2786         }
2787       }
2788       I = &*II;
2789       break;
2790     }
2791 
2792     return GetStoreIfValid(I);
2793   }
2794 
2795   llvm::StoreInst *store =
2796       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2797   if (!store) return nullptr;
2798 
2799   // Now do a first-and-dirty dominance check: just walk up the
2800   // single-predecessors chain from the current insertion point.
2801   llvm::BasicBlock *StoreBB = store->getParent();
2802   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2803   while (IP != StoreBB) {
2804     if (!(IP = IP->getSinglePredecessor()))
2805       return nullptr;
2806   }
2807 
2808   // Okay, the store's basic block dominates the insertion point; we
2809   // can do our thing.
2810   return store;
2811 }
2812 
2813 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2814                                          bool EmitRetDbgLoc,
2815                                          SourceLocation EndLoc) {
2816   if (FI.isNoReturn()) {
2817     // Noreturn functions don't return.
2818     EmitUnreachable(EndLoc);
2819     return;
2820   }
2821 
2822   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2823     // Naked functions don't have epilogues.
2824     Builder.CreateUnreachable();
2825     return;
2826   }
2827 
2828   // Functions with no result always return void.
2829   if (!ReturnValue.isValid()) {
2830     Builder.CreateRetVoid();
2831     return;
2832   }
2833 
2834   llvm::DebugLoc RetDbgLoc;
2835   llvm::Value *RV = nullptr;
2836   QualType RetTy = FI.getReturnType();
2837   const ABIArgInfo &RetAI = FI.getReturnInfo();
2838 
2839   switch (RetAI.getKind()) {
2840   case ABIArgInfo::InAlloca:
2841     // Aggregrates get evaluated directly into the destination.  Sometimes we
2842     // need to return the sret value in a register, though.
2843     assert(hasAggregateEvaluationKind(RetTy));
2844     if (RetAI.getInAllocaSRet()) {
2845       llvm::Function::arg_iterator EI = CurFn->arg_end();
2846       --EI;
2847       llvm::Value *ArgStruct = &*EI;
2848       llvm::Value *SRet = Builder.CreateStructGEP(
2849           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2850       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2851     }
2852     break;
2853 
2854   case ABIArgInfo::Indirect: {
2855     auto AI = CurFn->arg_begin();
2856     if (RetAI.isSRetAfterThis())
2857       ++AI;
2858     switch (getEvaluationKind(RetTy)) {
2859     case TEK_Complex: {
2860       ComplexPairTy RT =
2861         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2862       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2863                          /*isInit*/ true);
2864       break;
2865     }
2866     case TEK_Aggregate:
2867       // Do nothing; aggregrates get evaluated directly into the destination.
2868       break;
2869     case TEK_Scalar:
2870       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2871                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2872                         /*isInit*/ true);
2873       break;
2874     }
2875     break;
2876   }
2877 
2878   case ABIArgInfo::Extend:
2879   case ABIArgInfo::Direct:
2880     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2881         RetAI.getDirectOffset() == 0) {
2882       // The internal return value temp always will have pointer-to-return-type
2883       // type, just do a load.
2884 
2885       // If there is a dominating store to ReturnValue, we can elide
2886       // the load, zap the store, and usually zap the alloca.
2887       if (llvm::StoreInst *SI =
2888               findDominatingStoreToReturnValue(*this)) {
2889         // Reuse the debug location from the store unless there is
2890         // cleanup code to be emitted between the store and return
2891         // instruction.
2892         if (EmitRetDbgLoc && !AutoreleaseResult)
2893           RetDbgLoc = SI->getDebugLoc();
2894         // Get the stored value and nuke the now-dead store.
2895         RV = SI->getValueOperand();
2896         SI->eraseFromParent();
2897 
2898         // If that was the only use of the return value, nuke it as well now.
2899         auto returnValueInst = ReturnValue.getPointer();
2900         if (returnValueInst->use_empty()) {
2901           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2902             alloca->eraseFromParent();
2903             ReturnValue = Address::invalid();
2904           }
2905         }
2906 
2907       // Otherwise, we have to do a simple load.
2908       } else {
2909         RV = Builder.CreateLoad(ReturnValue);
2910       }
2911     } else {
2912       // If the value is offset in memory, apply the offset now.
2913       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2914 
2915       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2916     }
2917 
2918     // In ARC, end functions that return a retainable type with a call
2919     // to objc_autoreleaseReturnValue.
2920     if (AutoreleaseResult) {
2921 #ifndef NDEBUG
2922       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2923       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2924       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2925       // CurCodeDecl or BlockInfo.
2926       QualType RT;
2927 
2928       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2929         RT = FD->getReturnType();
2930       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2931         RT = MD->getReturnType();
2932       else if (isa<BlockDecl>(CurCodeDecl))
2933         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2934       else
2935         llvm_unreachable("Unexpected function/method type");
2936 
2937       assert(getLangOpts().ObjCAutoRefCount &&
2938              !FI.isReturnsRetained() &&
2939              RT->isObjCRetainableType());
2940 #endif
2941       RV = emitAutoreleaseOfResult(*this, RV);
2942     }
2943 
2944     break;
2945 
2946   case ABIArgInfo::Ignore:
2947     break;
2948 
2949   case ABIArgInfo::CoerceAndExpand: {
2950     auto coercionType = RetAI.getCoerceAndExpandType();
2951     auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2952 
2953     // Load all of the coerced elements out into results.
2954     llvm::SmallVector<llvm::Value*, 4> results;
2955     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2956     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2957       auto coercedEltType = coercionType->getElementType(i);
2958       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2959         continue;
2960 
2961       auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
2962       auto elt = Builder.CreateLoad(eltAddr);
2963       results.push_back(elt);
2964     }
2965 
2966     // If we have one result, it's the single direct result type.
2967     if (results.size() == 1) {
2968       RV = results[0];
2969 
2970     // Otherwise, we need to make a first-class aggregate.
2971     } else {
2972       // Construct a return type that lacks padding elements.
2973       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2974 
2975       RV = llvm::UndefValue::get(returnType);
2976       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2977         RV = Builder.CreateInsertValue(RV, results[i], i);
2978       }
2979     }
2980     break;
2981   }
2982 
2983   case ABIArgInfo::Expand:
2984     llvm_unreachable("Invalid ABI kind for return argument");
2985   }
2986 
2987   llvm::Instruction *Ret;
2988   if (RV) {
2989     EmitReturnValueCheck(RV);
2990     Ret = Builder.CreateRet(RV);
2991   } else {
2992     Ret = Builder.CreateRetVoid();
2993   }
2994 
2995   if (RetDbgLoc)
2996     Ret->setDebugLoc(std::move(RetDbgLoc));
2997 }
2998 
2999 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3000   // A current decl may not be available when emitting vtable thunks.
3001   if (!CurCodeDecl)
3002     return;
3003 
3004   ReturnsNonNullAttr *RetNNAttr = nullptr;
3005   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3006     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3007 
3008   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3009     return;
3010 
3011   // Prefer the returns_nonnull attribute if it's present.
3012   SourceLocation AttrLoc;
3013   SanitizerMask CheckKind;
3014   SanitizerHandler Handler;
3015   if (RetNNAttr) {
3016     assert(!requiresReturnValueNullabilityCheck() &&
3017            "Cannot check nullability and the nonnull attribute");
3018     AttrLoc = RetNNAttr->getLocation();
3019     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3020     Handler = SanitizerHandler::NonnullReturn;
3021   } else {
3022     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3023       if (auto *TSI = DD->getTypeSourceInfo())
3024         if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
3025           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3026     CheckKind = SanitizerKind::NullabilityReturn;
3027     Handler = SanitizerHandler::NullabilityReturn;
3028   }
3029 
3030   SanitizerScope SanScope(this);
3031 
3032   // Make sure the "return" source location is valid. If we're checking a
3033   // nullability annotation, make sure the preconditions for the check are met.
3034   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3035   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3036   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3037   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3038   if (requiresReturnValueNullabilityCheck())
3039     CanNullCheck =
3040         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3041   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3042   EmitBlock(Check);
3043 
3044   // Now do the null check.
3045   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3046   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3047   llvm::Value *DynamicData[] = {SLocPtr};
3048   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3049 
3050   EmitBlock(NoCheck);
3051 
3052 #ifndef NDEBUG
3053   // The return location should not be used after the check has been emitted.
3054   ReturnLocation = Address::invalid();
3055 #endif
3056 }
3057 
3058 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3059   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3060   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3061 }
3062 
3063 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3064                                           QualType Ty) {
3065   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3066   // placeholders.
3067   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3068   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3069   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3070 
3071   // FIXME: When we generate this IR in one pass, we shouldn't need
3072   // this win32-specific alignment hack.
3073   CharUnits Align = CharUnits::fromQuantity(4);
3074   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3075 
3076   return AggValueSlot::forAddr(Address(Placeholder, Align),
3077                                Ty.getQualifiers(),
3078                                AggValueSlot::IsNotDestructed,
3079                                AggValueSlot::DoesNotNeedGCBarriers,
3080                                AggValueSlot::IsNotAliased,
3081                                AggValueSlot::DoesNotOverlap);
3082 }
3083 
3084 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3085                                           const VarDecl *param,
3086                                           SourceLocation loc) {
3087   // StartFunction converted the ABI-lowered parameter(s) into a
3088   // local alloca.  We need to turn that into an r-value suitable
3089   // for EmitCall.
3090   Address local = GetAddrOfLocalVar(param);
3091 
3092   QualType type = param->getType();
3093 
3094   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3095     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3096   }
3097 
3098   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3099   // but the argument needs to be the original pointer.
3100   if (type->isReferenceType()) {
3101     args.add(RValue::get(Builder.CreateLoad(local)), type);
3102 
3103   // In ARC, move out of consumed arguments so that the release cleanup
3104   // entered by StartFunction doesn't cause an over-release.  This isn't
3105   // optimal -O0 code generation, but it should get cleaned up when
3106   // optimization is enabled.  This also assumes that delegate calls are
3107   // performed exactly once for a set of arguments, but that should be safe.
3108   } else if (getLangOpts().ObjCAutoRefCount &&
3109              param->hasAttr<NSConsumedAttr>() &&
3110              type->isObjCRetainableType()) {
3111     llvm::Value *ptr = Builder.CreateLoad(local);
3112     auto null =
3113       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3114     Builder.CreateStore(null, local);
3115     args.add(RValue::get(ptr), type);
3116 
3117   // For the most part, we just need to load the alloca, except that
3118   // aggregate r-values are actually pointers to temporaries.
3119   } else {
3120     args.add(convertTempToRValue(local, type, loc), type);
3121   }
3122 
3123   // Deactivate the cleanup for the callee-destructed param that was pushed.
3124   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3125       type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3126       type.isDestructedType()) {
3127     EHScopeStack::stable_iterator cleanup =
3128         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3129     assert(cleanup.isValid() &&
3130            "cleanup for callee-destructed param not recorded");
3131     // This unreachable is a temporary marker which will be removed later.
3132     llvm::Instruction *isActive = Builder.CreateUnreachable();
3133     args.addArgCleanupDeactivation(cleanup, isActive);
3134   }
3135 }
3136 
3137 static bool isProvablyNull(llvm::Value *addr) {
3138   return isa<llvm::ConstantPointerNull>(addr);
3139 }
3140 
3141 /// Emit the actual writing-back of a writeback.
3142 static void emitWriteback(CodeGenFunction &CGF,
3143                           const CallArgList::Writeback &writeback) {
3144   const LValue &srcLV = writeback.Source;
3145   Address srcAddr = srcLV.getAddress();
3146   assert(!isProvablyNull(srcAddr.getPointer()) &&
3147          "shouldn't have writeback for provably null argument");
3148 
3149   llvm::BasicBlock *contBB = nullptr;
3150 
3151   // If the argument wasn't provably non-null, we need to null check
3152   // before doing the store.
3153   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3154                                               CGF.CGM.getDataLayout());
3155   if (!provablyNonNull) {
3156     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3157     contBB = CGF.createBasicBlock("icr.done");
3158 
3159     llvm::Value *isNull =
3160       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3161     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3162     CGF.EmitBlock(writebackBB);
3163   }
3164 
3165   // Load the value to writeback.
3166   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3167 
3168   // Cast it back, in case we're writing an id to a Foo* or something.
3169   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3170                                     "icr.writeback-cast");
3171 
3172   // Perform the writeback.
3173 
3174   // If we have a "to use" value, it's something we need to emit a use
3175   // of.  This has to be carefully threaded in: if it's done after the
3176   // release it's potentially undefined behavior (and the optimizer
3177   // will ignore it), and if it happens before the retain then the
3178   // optimizer could move the release there.
3179   if (writeback.ToUse) {
3180     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3181 
3182     // Retain the new value.  No need to block-copy here:  the block's
3183     // being passed up the stack.
3184     value = CGF.EmitARCRetainNonBlock(value);
3185 
3186     // Emit the intrinsic use here.
3187     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3188 
3189     // Load the old value (primitively).
3190     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3191 
3192     // Put the new value in place (primitively).
3193     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3194 
3195     // Release the old value.
3196     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3197 
3198   // Otherwise, we can just do a normal lvalue store.
3199   } else {
3200     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3201   }
3202 
3203   // Jump to the continuation block.
3204   if (!provablyNonNull)
3205     CGF.EmitBlock(contBB);
3206 }
3207 
3208 static void emitWritebacks(CodeGenFunction &CGF,
3209                            const CallArgList &args) {
3210   for (const auto &I : args.writebacks())
3211     emitWriteback(CGF, I);
3212 }
3213 
3214 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3215                                             const CallArgList &CallArgs) {
3216   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3217     CallArgs.getCleanupsToDeactivate();
3218   // Iterate in reverse to increase the likelihood of popping the cleanup.
3219   for (const auto &I : llvm::reverse(Cleanups)) {
3220     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3221     I.IsActiveIP->eraseFromParent();
3222   }
3223 }
3224 
3225 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3226   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3227     if (uop->getOpcode() == UO_AddrOf)
3228       return uop->getSubExpr();
3229   return nullptr;
3230 }
3231 
3232 /// Emit an argument that's being passed call-by-writeback.  That is,
3233 /// we are passing the address of an __autoreleased temporary; it
3234 /// might be copy-initialized with the current value of the given
3235 /// address, but it will definitely be copied out of after the call.
3236 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3237                              const ObjCIndirectCopyRestoreExpr *CRE) {
3238   LValue srcLV;
3239 
3240   // Make an optimistic effort to emit the address as an l-value.
3241   // This can fail if the argument expression is more complicated.
3242   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3243     srcLV = CGF.EmitLValue(lvExpr);
3244 
3245   // Otherwise, just emit it as a scalar.
3246   } else {
3247     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3248 
3249     QualType srcAddrType =
3250       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3251     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3252   }
3253   Address srcAddr = srcLV.getAddress();
3254 
3255   // The dest and src types don't necessarily match in LLVM terms
3256   // because of the crazy ObjC compatibility rules.
3257 
3258   llvm::PointerType *destType =
3259     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3260 
3261   // If the address is a constant null, just pass the appropriate null.
3262   if (isProvablyNull(srcAddr.getPointer())) {
3263     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3264              CRE->getType());
3265     return;
3266   }
3267 
3268   // Create the temporary.
3269   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3270                                       CGF.getPointerAlign(),
3271                                       "icr.temp");
3272   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3273   // and that cleanup will be conditional if we can't prove that the l-value
3274   // isn't null, so we need to register a dominating point so that the cleanups
3275   // system will make valid IR.
3276   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3277 
3278   // Zero-initialize it if we're not doing a copy-initialization.
3279   bool shouldCopy = CRE->shouldCopy();
3280   if (!shouldCopy) {
3281     llvm::Value *null =
3282       llvm::ConstantPointerNull::get(
3283         cast<llvm::PointerType>(destType->getElementType()));
3284     CGF.Builder.CreateStore(null, temp);
3285   }
3286 
3287   llvm::BasicBlock *contBB = nullptr;
3288   llvm::BasicBlock *originBB = nullptr;
3289 
3290   // If the address is *not* known to be non-null, we need to switch.
3291   llvm::Value *finalArgument;
3292 
3293   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3294                                               CGF.CGM.getDataLayout());
3295   if (provablyNonNull) {
3296     finalArgument = temp.getPointer();
3297   } else {
3298     llvm::Value *isNull =
3299       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3300 
3301     finalArgument = CGF.Builder.CreateSelect(isNull,
3302                                    llvm::ConstantPointerNull::get(destType),
3303                                              temp.getPointer(), "icr.argument");
3304 
3305     // If we need to copy, then the load has to be conditional, which
3306     // means we need control flow.
3307     if (shouldCopy) {
3308       originBB = CGF.Builder.GetInsertBlock();
3309       contBB = CGF.createBasicBlock("icr.cont");
3310       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3311       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3312       CGF.EmitBlock(copyBB);
3313       condEval.begin(CGF);
3314     }
3315   }
3316 
3317   llvm::Value *valueToUse = nullptr;
3318 
3319   // Perform a copy if necessary.
3320   if (shouldCopy) {
3321     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3322     assert(srcRV.isScalar());
3323 
3324     llvm::Value *src = srcRV.getScalarVal();
3325     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3326                                     "icr.cast");
3327 
3328     // Use an ordinary store, not a store-to-lvalue.
3329     CGF.Builder.CreateStore(src, temp);
3330 
3331     // If optimization is enabled, and the value was held in a
3332     // __strong variable, we need to tell the optimizer that this
3333     // value has to stay alive until we're doing the store back.
3334     // This is because the temporary is effectively unretained,
3335     // and so otherwise we can violate the high-level semantics.
3336     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3337         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3338       valueToUse = src;
3339     }
3340   }
3341 
3342   // Finish the control flow if we needed it.
3343   if (shouldCopy && !provablyNonNull) {
3344     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3345     CGF.EmitBlock(contBB);
3346 
3347     // Make a phi for the value to intrinsically use.
3348     if (valueToUse) {
3349       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3350                                                       "icr.to-use");
3351       phiToUse->addIncoming(valueToUse, copyBB);
3352       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3353                             originBB);
3354       valueToUse = phiToUse;
3355     }
3356 
3357     condEval.end(CGF);
3358   }
3359 
3360   args.addWriteback(srcLV, temp, valueToUse);
3361   args.add(RValue::get(finalArgument), CRE->getType());
3362 }
3363 
3364 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3365   assert(!StackBase);
3366 
3367   // Save the stack.
3368   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3369   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3370 }
3371 
3372 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3373   if (StackBase) {
3374     // Restore the stack after the call.
3375     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3376     CGF.Builder.CreateCall(F, StackBase);
3377   }
3378 }
3379 
3380 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3381                                           SourceLocation ArgLoc,
3382                                           AbstractCallee AC,
3383                                           unsigned ParmNum) {
3384   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3385                          SanOpts.has(SanitizerKind::NullabilityArg)))
3386     return;
3387 
3388   // The param decl may be missing in a variadic function.
3389   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3390   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3391 
3392   // Prefer the nonnull attribute if it's present.
3393   const NonNullAttr *NNAttr = nullptr;
3394   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3395     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3396 
3397   bool CanCheckNullability = false;
3398   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3399     auto Nullability = PVD->getType()->getNullability(getContext());
3400     CanCheckNullability = Nullability &&
3401                           *Nullability == NullabilityKind::NonNull &&
3402                           PVD->getTypeSourceInfo();
3403   }
3404 
3405   if (!NNAttr && !CanCheckNullability)
3406     return;
3407 
3408   SourceLocation AttrLoc;
3409   SanitizerMask CheckKind;
3410   SanitizerHandler Handler;
3411   if (NNAttr) {
3412     AttrLoc = NNAttr->getLocation();
3413     CheckKind = SanitizerKind::NonnullAttribute;
3414     Handler = SanitizerHandler::NonnullArg;
3415   } else {
3416     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3417     CheckKind = SanitizerKind::NullabilityArg;
3418     Handler = SanitizerHandler::NullabilityArg;
3419   }
3420 
3421   SanitizerScope SanScope(this);
3422   assert(RV.isScalar());
3423   llvm::Value *V = RV.getScalarVal();
3424   llvm::Value *Cond =
3425       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3426   llvm::Constant *StaticData[] = {
3427       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3428       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3429   };
3430   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3431 }
3432 
3433 void CodeGenFunction::EmitCallArgs(
3434     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3435     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3436     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3437   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3438 
3439   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3440   // because arguments are destroyed left to right in the callee. As a special
3441   // case, there are certain language constructs that require left-to-right
3442   // evaluation, and in those cases we consider the evaluation order requirement
3443   // to trump the "destruction order is reverse construction order" guarantee.
3444   bool LeftToRight =
3445       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3446           ? Order == EvaluationOrder::ForceLeftToRight
3447           : Order != EvaluationOrder::ForceRightToLeft;
3448 
3449   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3450                                          RValue EmittedArg) {
3451     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3452       return;
3453     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3454     if (PS == nullptr)
3455       return;
3456 
3457     const auto &Context = getContext();
3458     auto SizeTy = Context.getSizeType();
3459     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3460     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3461     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3462                                                      EmittedArg.getScalarVal(),
3463                                                      /*IsDynamic=*/false);
3464     Args.add(RValue::get(V), SizeTy);
3465     // If we're emitting args in reverse, be sure to do so with
3466     // pass_object_size, as well.
3467     if (!LeftToRight)
3468       std::swap(Args.back(), *(&Args.back() - 1));
3469   };
3470 
3471   // Insert a stack save if we're going to need any inalloca args.
3472   bool HasInAllocaArgs = false;
3473   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3474     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3475          I != E && !HasInAllocaArgs; ++I)
3476       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3477     if (HasInAllocaArgs) {
3478       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3479       Args.allocateArgumentMemory(*this);
3480     }
3481   }
3482 
3483   // Evaluate each argument in the appropriate order.
3484   size_t CallArgsStart = Args.size();
3485   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3486     unsigned Idx = LeftToRight ? I : E - I - 1;
3487     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3488     unsigned InitialArgSize = Args.size();
3489     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3490     // the argument and parameter match or the objc method is parameterized.
3491     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3492             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3493                                                 ArgTypes[Idx]) ||
3494             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3495              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3496            "Argument and parameter types don't match");
3497     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3498     // In particular, we depend on it being the last arg in Args, and the
3499     // objectsize bits depend on there only being one arg if !LeftToRight.
3500     assert(InitialArgSize + 1 == Args.size() &&
3501            "The code below depends on only adding one arg per EmitCallArg");
3502     (void)InitialArgSize;
3503     // Since pointer argument are never emitted as LValue, it is safe to emit
3504     // non-null argument check for r-value only.
3505     if (!Args.back().hasLValue()) {
3506       RValue RVArg = Args.back().getKnownRValue();
3507       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3508                           ParamsToSkip + Idx);
3509       // @llvm.objectsize should never have side-effects and shouldn't need
3510       // destruction/cleanups, so we can safely "emit" it after its arg,
3511       // regardless of right-to-leftness
3512       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3513     }
3514   }
3515 
3516   if (!LeftToRight) {
3517     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3518     // IR function.
3519     std::reverse(Args.begin() + CallArgsStart, Args.end());
3520   }
3521 }
3522 
3523 namespace {
3524 
3525 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3526   DestroyUnpassedArg(Address Addr, QualType Ty)
3527       : Addr(Addr), Ty(Ty) {}
3528 
3529   Address Addr;
3530   QualType Ty;
3531 
3532   void Emit(CodeGenFunction &CGF, Flags flags) override {
3533     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3534     if (DtorKind == QualType::DK_cxx_destructor) {
3535       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3536       assert(!Dtor->isTrivial());
3537       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3538                                 /*Delegating=*/false, Addr);
3539     } else {
3540       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3541     }
3542   }
3543 };
3544 
3545 struct DisableDebugLocationUpdates {
3546   CodeGenFunction &CGF;
3547   bool disabledDebugInfo;
3548   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3549     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3550       CGF.disableDebugInfo();
3551   }
3552   ~DisableDebugLocationUpdates() {
3553     if (disabledDebugInfo)
3554       CGF.enableDebugInfo();
3555   }
3556 };
3557 
3558 } // end anonymous namespace
3559 
3560 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3561   if (!HasLV)
3562     return RV;
3563   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3564   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3565                         LV.isVolatile());
3566   IsUsed = true;
3567   return RValue::getAggregate(Copy.getAddress());
3568 }
3569 
3570 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3571   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3572   if (!HasLV && RV.isScalar())
3573     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true);
3574   else if (!HasLV && RV.isComplex())
3575     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3576   else {
3577     auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress();
3578     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3579     // We assume that call args are never copied into subobjects.
3580     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3581                           HasLV ? LV.isVolatileQualified()
3582                                 : RV.isVolatileQualified());
3583   }
3584   IsUsed = true;
3585 }
3586 
3587 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3588                                   QualType type) {
3589   DisableDebugLocationUpdates Dis(*this, E);
3590   if (const ObjCIndirectCopyRestoreExpr *CRE
3591         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3592     assert(getLangOpts().ObjCAutoRefCount);
3593     return emitWritebackArg(*this, args, CRE);
3594   }
3595 
3596   assert(type->isReferenceType() == E->isGLValue() &&
3597          "reference binding to unmaterialized r-value!");
3598 
3599   if (E->isGLValue()) {
3600     assert(E->getObjectKind() == OK_Ordinary);
3601     return args.add(EmitReferenceBindingToExpr(E), type);
3602   }
3603 
3604   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3605 
3606   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3607   // However, we still have to push an EH-only cleanup in case we unwind before
3608   // we make it to the call.
3609   if (HasAggregateEvalKind &&
3610       type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3611     // If we're using inalloca, use the argument memory.  Otherwise, use a
3612     // temporary.
3613     AggValueSlot Slot;
3614     if (args.isUsingInAlloca())
3615       Slot = createPlaceholderSlot(*this, type);
3616     else
3617       Slot = CreateAggTemp(type, "agg.tmp");
3618 
3619     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3620     if (const auto *RD = type->getAsCXXRecordDecl())
3621       DestroyedInCallee = RD->hasNonTrivialDestructor();
3622     else
3623       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3624 
3625     if (DestroyedInCallee)
3626       Slot.setExternallyDestructed();
3627 
3628     EmitAggExpr(E, Slot);
3629     RValue RV = Slot.asRValue();
3630     args.add(RV, type);
3631 
3632     if (DestroyedInCallee && NeedsEHCleanup) {
3633       // Create a no-op GEP between the placeholder and the cleanup so we can
3634       // RAUW it successfully.  It also serves as a marker of the first
3635       // instruction where the cleanup is active.
3636       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3637                                               type);
3638       // This unreachable is a temporary marker which will be removed later.
3639       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3640       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3641     }
3642     return;
3643   }
3644 
3645   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3646       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3647     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3648     assert(L.isSimple());
3649     args.addUncopiedAggregate(L, type);
3650     return;
3651   }
3652 
3653   args.add(EmitAnyExprToTemp(E), type);
3654 }
3655 
3656 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3657   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3658   // implicitly widens null pointer constants that are arguments to varargs
3659   // functions to pointer-sized ints.
3660   if (!getTarget().getTriple().isOSWindows())
3661     return Arg->getType();
3662 
3663   if (Arg->getType()->isIntegerType() &&
3664       getContext().getTypeSize(Arg->getType()) <
3665           getContext().getTargetInfo().getPointerWidth(0) &&
3666       Arg->isNullPointerConstant(getContext(),
3667                                  Expr::NPC_ValueDependentIsNotNull)) {
3668     return getContext().getIntPtrType();
3669   }
3670 
3671   return Arg->getType();
3672 }
3673 
3674 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3675 // optimizer it can aggressively ignore unwind edges.
3676 void
3677 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3678   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3679       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3680     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3681                       CGM.getNoObjCARCExceptionsMetadata());
3682 }
3683 
3684 /// Emits a call to the given no-arguments nounwind runtime function.
3685 llvm::CallInst *
3686 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3687                                          const llvm::Twine &name) {
3688   return EmitNounwindRuntimeCall(callee, None, name);
3689 }
3690 
3691 /// Emits a call to the given nounwind runtime function.
3692 llvm::CallInst *
3693 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3694                                          ArrayRef<llvm::Value*> args,
3695                                          const llvm::Twine &name) {
3696   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3697   call->setDoesNotThrow();
3698   return call;
3699 }
3700 
3701 /// Emits a simple call (never an invoke) to the given no-arguments
3702 /// runtime function.
3703 llvm::CallInst *
3704 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3705                                  const llvm::Twine &name) {
3706   return EmitRuntimeCall(callee, None, name);
3707 }
3708 
3709 // Calls which may throw must have operand bundles indicating which funclet
3710 // they are nested within.
3711 SmallVector<llvm::OperandBundleDef, 1>
3712 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3713   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3714   // There is no need for a funclet operand bundle if we aren't inside a
3715   // funclet.
3716   if (!CurrentFuncletPad)
3717     return BundleList;
3718 
3719   // Skip intrinsics which cannot throw.
3720   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3721   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3722     return BundleList;
3723 
3724   BundleList.emplace_back("funclet", CurrentFuncletPad);
3725   return BundleList;
3726 }
3727 
3728 /// Emits a simple call (never an invoke) to the given runtime function.
3729 llvm::CallInst *
3730 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3731                                  ArrayRef<llvm::Value*> args,
3732                                  const llvm::Twine &name) {
3733   llvm::CallInst *call =
3734       Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name);
3735   call->setCallingConv(getRuntimeCC());
3736   return call;
3737 }
3738 
3739 /// Emits a call or invoke to the given noreturn runtime function.
3740 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3741                                                ArrayRef<llvm::Value*> args) {
3742   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3743       getBundlesForFunclet(callee);
3744 
3745   if (getInvokeDest()) {
3746     llvm::InvokeInst *invoke =
3747       Builder.CreateInvoke(callee,
3748                            getUnreachableBlock(),
3749                            getInvokeDest(),
3750                            args,
3751                            BundleList);
3752     invoke->setDoesNotReturn();
3753     invoke->setCallingConv(getRuntimeCC());
3754   } else {
3755     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3756     call->setDoesNotReturn();
3757     call->setCallingConv(getRuntimeCC());
3758     Builder.CreateUnreachable();
3759   }
3760 }
3761 
3762 /// Emits a call or invoke instruction to the given nullary runtime function.
3763 llvm::CallBase *CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3764                                                          const Twine &name) {
3765   return EmitRuntimeCallOrInvoke(callee, None, name);
3766 }
3767 
3768 /// Emits a call or invoke instruction to the given runtime function.
3769 llvm::CallBase *CodeGenFunction::EmitRuntimeCallOrInvoke(
3770     llvm::Value *callee, ArrayRef<llvm::Value *> args, const Twine &name) {
3771   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
3772   call->setCallingConv(getRuntimeCC());
3773   return call;
3774 }
3775 
3776 /// Emits a call or invoke instruction to the given function, depending
3777 /// on the current state of the EH stack.
3778 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3779                                                   ArrayRef<llvm::Value *> Args,
3780                                                   const Twine &Name) {
3781   llvm::BasicBlock *InvokeDest = getInvokeDest();
3782   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3783       getBundlesForFunclet(Callee);
3784 
3785   llvm::CallBase *Inst;
3786   if (!InvokeDest)
3787     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3788   else {
3789     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3790     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3791                                 Name);
3792     EmitBlock(ContBB);
3793   }
3794 
3795   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3796   // optimizer it can aggressively ignore unwind edges.
3797   if (CGM.getLangOpts().ObjCAutoRefCount)
3798     AddObjCARCExceptionMetadata(Inst);
3799 
3800   return Inst;
3801 }
3802 
3803 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3804                                                   llvm::Value *New) {
3805   DeferredReplacements.push_back(std::make_pair(Old, New));
3806 }
3807 
3808 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3809                                  const CGCallee &Callee,
3810                                  ReturnValueSlot ReturnValue,
3811                                  const CallArgList &CallArgs,
3812                                  llvm::CallBase **callOrInvoke,
3813                                  SourceLocation Loc) {
3814   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3815 
3816   assert(Callee.isOrdinary() || Callee.isVirtual());
3817 
3818   // Handle struct-return functions by passing a pointer to the
3819   // location that we would like to return into.
3820   QualType RetTy = CallInfo.getReturnType();
3821   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3822 
3823   llvm::FunctionType *IRFuncTy = Callee.getFunctionType();
3824 
3825   // 1. Set up the arguments.
3826 
3827   // If we're using inalloca, insert the allocation after the stack save.
3828   // FIXME: Do this earlier rather than hacking it in here!
3829   Address ArgMemory = Address::invalid();
3830   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3831   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3832     const llvm::DataLayout &DL = CGM.getDataLayout();
3833     ArgMemoryLayout = DL.getStructLayout(ArgStruct);
3834     llvm::Instruction *IP = CallArgs.getStackBase();
3835     llvm::AllocaInst *AI;
3836     if (IP) {
3837       IP = IP->getNextNode();
3838       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3839                                 "argmem", IP);
3840     } else {
3841       AI = CreateTempAlloca(ArgStruct, "argmem");
3842     }
3843     auto Align = CallInfo.getArgStructAlignment();
3844     AI->setAlignment(Align.getQuantity());
3845     AI->setUsedWithInAlloca(true);
3846     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3847     ArgMemory = Address(AI, Align);
3848   }
3849 
3850   // Helper function to drill into the inalloca allocation.
3851   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3852     auto FieldOffset =
3853       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3854     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3855   };
3856 
3857   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3858   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3859 
3860   // If the call returns a temporary with struct return, create a temporary
3861   // alloca to hold the result, unless one is given to us.
3862   Address SRetPtr = Address::invalid();
3863   Address SRetAlloca = Address::invalid();
3864   llvm::Value *UnusedReturnSizePtr = nullptr;
3865   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3866     if (!ReturnValue.isNull()) {
3867       SRetPtr = ReturnValue.getValue();
3868     } else {
3869       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
3870       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3871         uint64_t size =
3872             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3873         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
3874       }
3875     }
3876     if (IRFunctionArgs.hasSRetArg()) {
3877       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3878     } else if (RetAI.isInAlloca()) {
3879       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3880       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3881     }
3882   }
3883 
3884   Address swiftErrorTemp = Address::invalid();
3885   Address swiftErrorArg = Address::invalid();
3886 
3887   // Translate all of the arguments as necessary to match the IR lowering.
3888   assert(CallInfo.arg_size() == CallArgs.size() &&
3889          "Mismatch between function signature & arguments.");
3890   unsigned ArgNo = 0;
3891   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3892   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3893        I != E; ++I, ++info_it, ++ArgNo) {
3894     const ABIArgInfo &ArgInfo = info_it->info;
3895 
3896     // Insert a padding argument to ensure proper alignment.
3897     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3898       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3899           llvm::UndefValue::get(ArgInfo.getPaddingType());
3900 
3901     unsigned FirstIRArg, NumIRArgs;
3902     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3903 
3904     switch (ArgInfo.getKind()) {
3905     case ABIArgInfo::InAlloca: {
3906       assert(NumIRArgs == 0);
3907       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3908       if (I->isAggregate()) {
3909         // Replace the placeholder with the appropriate argument slot GEP.
3910         Address Addr = I->hasLValue()
3911                            ? I->getKnownLValue().getAddress()
3912                            : I->getKnownRValue().getAggregateAddress();
3913         llvm::Instruction *Placeholder =
3914             cast<llvm::Instruction>(Addr.getPointer());
3915         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3916         Builder.SetInsertPoint(Placeholder);
3917         Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3918         Builder.restoreIP(IP);
3919         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3920       } else {
3921         // Store the RValue into the argument struct.
3922         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3923         unsigned AS = Addr.getType()->getPointerAddressSpace();
3924         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3925         // There are some cases where a trivial bitcast is not avoidable.  The
3926         // definition of a type later in a translation unit may change it's type
3927         // from {}* to (%struct.foo*)*.
3928         if (Addr.getType() != MemType)
3929           Addr = Builder.CreateBitCast(Addr, MemType);
3930         I->copyInto(*this, Addr);
3931       }
3932       break;
3933     }
3934 
3935     case ABIArgInfo::Indirect: {
3936       assert(NumIRArgs == 1);
3937       if (!I->isAggregate()) {
3938         // Make a temporary alloca to pass the argument.
3939         Address Addr = CreateMemTempWithoutCast(
3940             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
3941         IRCallArgs[FirstIRArg] = Addr.getPointer();
3942 
3943         I->copyInto(*this, Addr);
3944       } else {
3945         // We want to avoid creating an unnecessary temporary+copy here;
3946         // however, we need one in three cases:
3947         // 1. If the argument is not byval, and we are required to copy the
3948         //    source.  (This case doesn't occur on any common architecture.)
3949         // 2. If the argument is byval, RV is not sufficiently aligned, and
3950         //    we cannot force it to be sufficiently aligned.
3951         // 3. If the argument is byval, but RV is not located in default
3952         //    or alloca address space.
3953         Address Addr = I->hasLValue()
3954                            ? I->getKnownLValue().getAddress()
3955                            : I->getKnownRValue().getAggregateAddress();
3956         llvm::Value *V = Addr.getPointer();
3957         CharUnits Align = ArgInfo.getIndirectAlign();
3958         const llvm::DataLayout *TD = &CGM.getDataLayout();
3959 
3960         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
3961                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
3962                     TD->getAllocaAddrSpace()) &&
3963                "indirect argument must be in alloca address space");
3964 
3965         bool NeedCopy = false;
3966 
3967         if (Addr.getAlignment() < Align &&
3968             llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
3969                 Align.getQuantity()) {
3970           NeedCopy = true;
3971         } else if (I->hasLValue()) {
3972           auto LV = I->getKnownLValue();
3973           auto AS = LV.getAddressSpace();
3974 
3975           if ((!ArgInfo.getIndirectByVal() &&
3976                (LV.getAlignment() >=
3977                 getContext().getTypeAlignInChars(I->Ty)))) {
3978             NeedCopy = true;
3979           }
3980           if (!getLangOpts().OpenCL) {
3981             if ((ArgInfo.getIndirectByVal() &&
3982                 (AS != LangAS::Default &&
3983                  AS != CGM.getASTAllocaAddressSpace()))) {
3984               NeedCopy = true;
3985             }
3986           }
3987           // For OpenCL even if RV is located in default or alloca address space
3988           // we don't want to perform address space cast for it.
3989           else if ((ArgInfo.getIndirectByVal() &&
3990                     Addr.getType()->getAddressSpace() != IRFuncTy->
3991                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
3992             NeedCopy = true;
3993           }
3994         }
3995 
3996         if (NeedCopy) {
3997           // Create an aligned temporary, and copy to it.
3998           Address AI = CreateMemTempWithoutCast(
3999               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4000           IRCallArgs[FirstIRArg] = AI.getPointer();
4001           I->copyInto(*this, AI);
4002         } else {
4003           // Skip the extra memcpy call.
4004           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4005               CGM.getDataLayout().getAllocaAddrSpace());
4006           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4007               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4008               true);
4009         }
4010       }
4011       break;
4012     }
4013 
4014     case ABIArgInfo::Ignore:
4015       assert(NumIRArgs == 0);
4016       break;
4017 
4018     case ABIArgInfo::Extend:
4019     case ABIArgInfo::Direct: {
4020       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4021           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4022           ArgInfo.getDirectOffset() == 0) {
4023         assert(NumIRArgs == 1);
4024         llvm::Value *V;
4025         if (!I->isAggregate())
4026           V = I->getKnownRValue().getScalarVal();
4027         else
4028           V = Builder.CreateLoad(
4029               I->hasLValue() ? I->getKnownLValue().getAddress()
4030                              : I->getKnownRValue().getAggregateAddress());
4031 
4032         // Implement swifterror by copying into a new swifterror argument.
4033         // We'll write back in the normal path out of the call.
4034         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4035               == ParameterABI::SwiftErrorResult) {
4036           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4037 
4038           QualType pointeeTy = I->Ty->getPointeeType();
4039           swiftErrorArg =
4040             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4041 
4042           swiftErrorTemp =
4043             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4044           V = swiftErrorTemp.getPointer();
4045           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4046 
4047           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4048           Builder.CreateStore(errorValue, swiftErrorTemp);
4049         }
4050 
4051         // We might have to widen integers, but we should never truncate.
4052         if (ArgInfo.getCoerceToType() != V->getType() &&
4053             V->getType()->isIntegerTy())
4054           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4055 
4056         // If the argument doesn't match, perform a bitcast to coerce it.  This
4057         // can happen due to trivial type mismatches.
4058         if (FirstIRArg < IRFuncTy->getNumParams() &&
4059             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4060           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4061 
4062         IRCallArgs[FirstIRArg] = V;
4063         break;
4064       }
4065 
4066       // FIXME: Avoid the conversion through memory if possible.
4067       Address Src = Address::invalid();
4068       if (!I->isAggregate()) {
4069         Src = CreateMemTemp(I->Ty, "coerce");
4070         I->copyInto(*this, Src);
4071       } else {
4072         Src = I->hasLValue() ? I->getKnownLValue().getAddress()
4073                              : I->getKnownRValue().getAggregateAddress();
4074       }
4075 
4076       // If the value is offset in memory, apply the offset now.
4077       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4078 
4079       // Fast-isel and the optimizer generally like scalar values better than
4080       // FCAs, so we flatten them if this is safe to do for this argument.
4081       llvm::StructType *STy =
4082             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4083       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4084         llvm::Type *SrcTy = Src.getType()->getElementType();
4085         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4086         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4087 
4088         // If the source type is smaller than the destination type of the
4089         // coerce-to logic, copy the source value into a temp alloca the size
4090         // of the destination type to allow loading all of it. The bits past
4091         // the source value are left undef.
4092         if (SrcSize < DstSize) {
4093           Address TempAlloca
4094             = CreateTempAlloca(STy, Src.getAlignment(),
4095                                Src.getName() + ".coerce");
4096           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4097           Src = TempAlloca;
4098         } else {
4099           Src = Builder.CreateBitCast(Src,
4100                                       STy->getPointerTo(Src.getAddressSpace()));
4101         }
4102 
4103         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
4104         assert(NumIRArgs == STy->getNumElements());
4105         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4106           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
4107           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
4108           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4109           IRCallArgs[FirstIRArg + i] = LI;
4110         }
4111       } else {
4112         // In the simple case, just pass the coerced loaded value.
4113         assert(NumIRArgs == 1);
4114         IRCallArgs[FirstIRArg] =
4115           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4116       }
4117 
4118       break;
4119     }
4120 
4121     case ABIArgInfo::CoerceAndExpand: {
4122       auto coercionType = ArgInfo.getCoerceAndExpandType();
4123       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4124 
4125       llvm::Value *tempSize = nullptr;
4126       Address addr = Address::invalid();
4127       Address AllocaAddr = Address::invalid();
4128       if (I->isAggregate()) {
4129         addr = I->hasLValue() ? I->getKnownLValue().getAddress()
4130                               : I->getKnownRValue().getAggregateAddress();
4131 
4132       } else {
4133         RValue RV = I->getKnownRValue();
4134         assert(RV.isScalar()); // complex should always just be direct
4135 
4136         llvm::Type *scalarType = RV.getScalarVal()->getType();
4137         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4138         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4139 
4140         // Materialize to a temporary.
4141         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
4142                                 CharUnits::fromQuantity(std::max(
4143                                     layout->getAlignment(), scalarAlign)),
4144                                 "tmp",
4145                                 /*ArraySize=*/nullptr, &AllocaAddr);
4146         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4147 
4148         Builder.CreateStore(RV.getScalarVal(), addr);
4149       }
4150 
4151       addr = Builder.CreateElementBitCast(addr, coercionType);
4152 
4153       unsigned IRArgPos = FirstIRArg;
4154       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4155         llvm::Type *eltType = coercionType->getElementType(i);
4156         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4157         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4158         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4159         IRCallArgs[IRArgPos++] = elt;
4160       }
4161       assert(IRArgPos == FirstIRArg + NumIRArgs);
4162 
4163       if (tempSize) {
4164         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4165       }
4166 
4167       break;
4168     }
4169 
4170     case ABIArgInfo::Expand:
4171       unsigned IRArgPos = FirstIRArg;
4172       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4173       assert(IRArgPos == FirstIRArg + NumIRArgs);
4174       break;
4175     }
4176   }
4177 
4178   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4179   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4180 
4181   // If we're using inalloca, set up that argument.
4182   if (ArgMemory.isValid()) {
4183     llvm::Value *Arg = ArgMemory.getPointer();
4184     if (CallInfo.isVariadic()) {
4185       // When passing non-POD arguments by value to variadic functions, we will
4186       // end up with a variadic prototype and an inalloca call site.  In such
4187       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4188       // the callee.
4189       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4190       auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS);
4191       CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy);
4192     } else {
4193       llvm::Type *LastParamTy =
4194           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4195       if (Arg->getType() != LastParamTy) {
4196 #ifndef NDEBUG
4197         // Assert that these structs have equivalent element types.
4198         llvm::StructType *FullTy = CallInfo.getArgStruct();
4199         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4200             cast<llvm::PointerType>(LastParamTy)->getElementType());
4201         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4202         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4203                                                 DE = DeclaredTy->element_end(),
4204                                                 FI = FullTy->element_begin();
4205              DI != DE; ++DI, ++FI)
4206           assert(*DI == *FI);
4207 #endif
4208         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4209       }
4210     }
4211     assert(IRFunctionArgs.hasInallocaArg());
4212     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4213   }
4214 
4215   // 2. Prepare the function pointer.
4216 
4217   // If the callee is a bitcast of a non-variadic function to have a
4218   // variadic function pointer type, check to see if we can remove the
4219   // bitcast.  This comes up with unprototyped functions.
4220   //
4221   // This makes the IR nicer, but more importantly it ensures that we
4222   // can inline the function at -O0 if it is marked always_inline.
4223   auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* {
4224     llvm::FunctionType *CalleeFT =
4225       cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType());
4226     if (!CalleeFT->isVarArg())
4227       return Ptr;
4228 
4229     llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr);
4230     if (!CE || CE->getOpcode() != llvm::Instruction::BitCast)
4231       return Ptr;
4232 
4233     llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0));
4234     if (!OrigFn)
4235       return Ptr;
4236 
4237     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4238 
4239     // If the original type is variadic, or if any of the component types
4240     // disagree, we cannot remove the cast.
4241     if (OrigFT->isVarArg() ||
4242         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4243         OrigFT->getReturnType() != CalleeFT->getReturnType())
4244       return Ptr;
4245 
4246     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4247       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4248         return Ptr;
4249 
4250     return OrigFn;
4251   };
4252   CalleePtr = simplifyVariadicCallee(CalleePtr);
4253 
4254   // 3. Perform the actual call.
4255 
4256   // Deactivate any cleanups that we're supposed to do immediately before
4257   // the call.
4258   if (!CallArgs.getCleanupsToDeactivate().empty())
4259     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4260 
4261   // Assert that the arguments we computed match up.  The IR verifier
4262   // will catch this, but this is a common enough source of problems
4263   // during IRGen changes that it's way better for debugging to catch
4264   // it ourselves here.
4265 #ifndef NDEBUG
4266   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4267   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4268     // Inalloca argument can have different type.
4269     if (IRFunctionArgs.hasInallocaArg() &&
4270         i == IRFunctionArgs.getInallocaArgNo())
4271       continue;
4272     if (i < IRFuncTy->getNumParams())
4273       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4274   }
4275 #endif
4276 
4277   // Update the largest vector width if any arguments have vector types.
4278   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4279     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4280       LargestVectorWidth = std::max(LargestVectorWidth,
4281                                     VT->getPrimitiveSizeInBits());
4282   }
4283 
4284   // Compute the calling convention and attributes.
4285   unsigned CallingConv;
4286   llvm::AttributeList Attrs;
4287   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4288                              Callee.getAbstractInfo(), Attrs, CallingConv,
4289                              /*AttrOnCallSite=*/true);
4290 
4291   // Apply some call-site-specific attributes.
4292   // TODO: work this into building the attribute set.
4293 
4294   // Apply always_inline to all calls within flatten functions.
4295   // FIXME: should this really take priority over __try, below?
4296   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4297       !(Callee.getAbstractInfo().getCalleeDecl().getDecl() &&
4298         Callee.getAbstractInfo()
4299             .getCalleeDecl()
4300             .getDecl()
4301             ->hasAttr<NoInlineAttr>())) {
4302     Attrs =
4303         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4304                            llvm::Attribute::AlwaysInline);
4305   }
4306 
4307   // Disable inlining inside SEH __try blocks.
4308   if (isSEHTryScope()) {
4309     Attrs =
4310         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4311                            llvm::Attribute::NoInline);
4312   }
4313 
4314   // Decide whether to use a call or an invoke.
4315   bool CannotThrow;
4316   if (currentFunctionUsesSEHTry()) {
4317     // SEH cares about asynchronous exceptions, so everything can "throw."
4318     CannotThrow = false;
4319   } else if (isCleanupPadScope() &&
4320              EHPersonality::get(*this).isMSVCXXPersonality()) {
4321     // The MSVC++ personality will implicitly terminate the program if an
4322     // exception is thrown during a cleanup outside of a try/catch.
4323     // We don't need to model anything in IR to get this behavior.
4324     CannotThrow = true;
4325   } else {
4326     // Otherwise, nounwind call sites will never throw.
4327     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4328                                      llvm::Attribute::NoUnwind);
4329   }
4330 
4331   // If we made a temporary, be sure to clean up after ourselves. Note that we
4332   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4333   // pop this cleanup later on. Being eager about this is OK, since this
4334   // temporary is 'invisible' outside of the callee.
4335   if (UnusedReturnSizePtr)
4336     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4337                                          UnusedReturnSizePtr);
4338 
4339   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4340 
4341   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4342       getBundlesForFunclet(CalleePtr);
4343 
4344   // Emit the actual call/invoke instruction.
4345   llvm::CallBase *CI;
4346   if (!InvokeDest) {
4347     CI = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList);
4348   } else {
4349     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4350     CI = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs,
4351                               BundleList);
4352     EmitBlock(Cont);
4353   }
4354   if (callOrInvoke)
4355     *callOrInvoke = CI;
4356 
4357   // Apply the attributes and calling convention.
4358   CI->setAttributes(Attrs);
4359   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4360 
4361   // Apply various metadata.
4362 
4363   if (!CI->getType()->isVoidTy())
4364     CI->setName("call");
4365 
4366   // Update largest vector width from the return type.
4367   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4368     LargestVectorWidth = std::max(LargestVectorWidth,
4369                                   VT->getPrimitiveSizeInBits());
4370 
4371   // Insert instrumentation or attach profile metadata at indirect call sites.
4372   // For more details, see the comment before the definition of
4373   // IPVK_IndirectCallTarget in InstrProfData.inc.
4374   if (!CI->getCalledFunction())
4375     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4376                      CI, CalleePtr);
4377 
4378   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4379   // optimizer it can aggressively ignore unwind edges.
4380   if (CGM.getLangOpts().ObjCAutoRefCount)
4381     AddObjCARCExceptionMetadata(CI);
4382 
4383   // Suppress tail calls if requested.
4384   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4385     const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4386     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4387       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4388   }
4389 
4390   // 4. Finish the call.
4391 
4392   // If the call doesn't return, finish the basic block and clear the
4393   // insertion point; this allows the rest of IRGen to discard
4394   // unreachable code.
4395   if (CI->doesNotReturn()) {
4396     if (UnusedReturnSizePtr)
4397       PopCleanupBlock();
4398 
4399     // Strip away the noreturn attribute to better diagnose unreachable UB.
4400     if (SanOpts.has(SanitizerKind::Unreachable)) {
4401       // Also remove from function since CI->hasFnAttr(..) also checks attributes
4402       // of the called function.
4403       if (auto *F = CI->getCalledFunction())
4404         F->removeFnAttr(llvm::Attribute::NoReturn);
4405       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
4406                           llvm::Attribute::NoReturn);
4407 
4408       // Avoid incompatibility with ASan which relies on the `noreturn`
4409       // attribute to insert handler calls.
4410       if (SanOpts.has(SanitizerKind::Address)) {
4411         SanitizerScope SanScope(this);
4412         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
4413         Builder.SetInsertPoint(CI);
4414         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
4415         auto *Fn = CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
4416         EmitNounwindRuntimeCall(Fn);
4417       }
4418     }
4419 
4420     EmitUnreachable(Loc);
4421     Builder.ClearInsertionPoint();
4422 
4423     // FIXME: For now, emit a dummy basic block because expr emitters in
4424     // generally are not ready to handle emitting expressions at unreachable
4425     // points.
4426     EnsureInsertPoint();
4427 
4428     // Return a reasonable RValue.
4429     return GetUndefRValue(RetTy);
4430   }
4431 
4432   // Perform the swifterror writeback.
4433   if (swiftErrorTemp.isValid()) {
4434     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4435     Builder.CreateStore(errorResult, swiftErrorArg);
4436   }
4437 
4438   // Emit any call-associated writebacks immediately.  Arguably this
4439   // should happen after any return-value munging.
4440   if (CallArgs.hasWritebacks())
4441     emitWritebacks(*this, CallArgs);
4442 
4443   // The stack cleanup for inalloca arguments has to run out of the normal
4444   // lexical order, so deactivate it and run it manually here.
4445   CallArgs.freeArgumentMemory(*this);
4446 
4447   // Extract the return value.
4448   RValue Ret = [&] {
4449     switch (RetAI.getKind()) {
4450     case ABIArgInfo::CoerceAndExpand: {
4451       auto coercionType = RetAI.getCoerceAndExpandType();
4452       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4453 
4454       Address addr = SRetPtr;
4455       addr = Builder.CreateElementBitCast(addr, coercionType);
4456 
4457       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4458       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4459 
4460       unsigned unpaddedIndex = 0;
4461       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4462         llvm::Type *eltType = coercionType->getElementType(i);
4463         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4464         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4465         llvm::Value *elt = CI;
4466         if (requiresExtract)
4467           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4468         else
4469           assert(unpaddedIndex == 0);
4470         Builder.CreateStore(elt, eltAddr);
4471       }
4472       // FALLTHROUGH
4473       LLVM_FALLTHROUGH;
4474     }
4475 
4476     case ABIArgInfo::InAlloca:
4477     case ABIArgInfo::Indirect: {
4478       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4479       if (UnusedReturnSizePtr)
4480         PopCleanupBlock();
4481       return ret;
4482     }
4483 
4484     case ABIArgInfo::Ignore:
4485       // If we are ignoring an argument that had a result, make sure to
4486       // construct the appropriate return value for our caller.
4487       return GetUndefRValue(RetTy);
4488 
4489     case ABIArgInfo::Extend:
4490     case ABIArgInfo::Direct: {
4491       llvm::Type *RetIRTy = ConvertType(RetTy);
4492       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4493         switch (getEvaluationKind(RetTy)) {
4494         case TEK_Complex: {
4495           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4496           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4497           return RValue::getComplex(std::make_pair(Real, Imag));
4498         }
4499         case TEK_Aggregate: {
4500           Address DestPtr = ReturnValue.getValue();
4501           bool DestIsVolatile = ReturnValue.isVolatile();
4502 
4503           if (!DestPtr.isValid()) {
4504             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4505             DestIsVolatile = false;
4506           }
4507           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4508           return RValue::getAggregate(DestPtr);
4509         }
4510         case TEK_Scalar: {
4511           // If the argument doesn't match, perform a bitcast to coerce it.  This
4512           // can happen due to trivial type mismatches.
4513           llvm::Value *V = CI;
4514           if (V->getType() != RetIRTy)
4515             V = Builder.CreateBitCast(V, RetIRTy);
4516           return RValue::get(V);
4517         }
4518         }
4519         llvm_unreachable("bad evaluation kind");
4520       }
4521 
4522       Address DestPtr = ReturnValue.getValue();
4523       bool DestIsVolatile = ReturnValue.isVolatile();
4524 
4525       if (!DestPtr.isValid()) {
4526         DestPtr = CreateMemTemp(RetTy, "coerce");
4527         DestIsVolatile = false;
4528       }
4529 
4530       // If the value is offset in memory, apply the offset now.
4531       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4532       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4533 
4534       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4535     }
4536 
4537     case ABIArgInfo::Expand:
4538       llvm_unreachable("Invalid ABI kind for return argument");
4539     }
4540 
4541     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4542   } ();
4543 
4544   // Emit the assume_aligned check on the return value.
4545   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4546   if (Ret.isScalar() && TargetDecl) {
4547     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4548       llvm::Value *OffsetValue = nullptr;
4549       if (const auto *Offset = AA->getOffset())
4550         OffsetValue = EmitScalarExpr(Offset);
4551 
4552       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4553       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4554       EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4555                               AlignmentCI->getZExtValue(), OffsetValue);
4556     } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4557       llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()]
4558                                       .getRValue(*this)
4559                                       .getScalarVal();
4560       EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4561                               AlignmentVal);
4562     }
4563   }
4564 
4565   return Ret;
4566 }
4567 
4568 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
4569   if (isVirtual()) {
4570     const CallExpr *CE = getVirtualCallExpr();
4571     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
4572         CGF, getVirtualMethodDecl(), getThisAddress(), getFunctionType(),
4573         CE ? CE->getBeginLoc() : SourceLocation());
4574   }
4575 
4576   return *this;
4577 }
4578 
4579 /* VarArg handling */
4580 
4581 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4582   VAListAddr = VE->isMicrosoftABI()
4583                  ? EmitMSVAListRef(VE->getSubExpr())
4584                  : EmitVAListRef(VE->getSubExpr());
4585   QualType Ty = VE->getType();
4586   if (VE->isMicrosoftABI())
4587     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4588   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4589 }
4590