1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/Basic/CodeGenOptions.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 using namespace clang; 40 using namespace CodeGen; 41 42 /***/ 43 44 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 45 switch (CC) { 46 default: return llvm::CallingConv::C; 47 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 48 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 49 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 50 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 51 case CC_Win64: return llvm::CallingConv::Win64; 52 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 53 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 54 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 55 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 56 // TODO: Add support for __pascal to LLVM. 57 case CC_X86Pascal: return llvm::CallingConv::C; 58 // TODO: Add support for __vectorcall to LLVM. 59 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 60 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 61 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 62 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 63 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 64 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 65 case CC_Swift: return llvm::CallingConv::Swift; 66 } 67 } 68 69 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 70 /// qualification. 71 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD, 72 const CXXMethodDecl *MD) { 73 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 74 if (MD) 75 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 76 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 77 } 78 79 /// Returns the canonical formal type of the given C++ method. 80 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 81 return MD->getType()->getCanonicalTypeUnqualified() 82 .getAs<FunctionProtoType>(); 83 } 84 85 /// Returns the "extra-canonicalized" return type, which discards 86 /// qualifiers on the return type. Codegen doesn't care about them, 87 /// and it makes ABI code a little easier to be able to assume that 88 /// all parameter and return types are top-level unqualified. 89 static CanQualType GetReturnType(QualType RetTy) { 90 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 91 } 92 93 /// Arrange the argument and result information for a value of the given 94 /// unprototyped freestanding function type. 95 const CGFunctionInfo & 96 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 97 // When translating an unprototyped function type, always use a 98 // variadic type. 99 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 100 /*instanceMethod=*/false, 101 /*chainCall=*/false, None, 102 FTNP->getExtInfo(), {}, RequiredArgs(0)); 103 } 104 105 static void addExtParameterInfosForCall( 106 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 107 const FunctionProtoType *proto, 108 unsigned prefixArgs, 109 unsigned totalArgs) { 110 assert(proto->hasExtParameterInfos()); 111 assert(paramInfos.size() <= prefixArgs); 112 assert(proto->getNumParams() + prefixArgs <= totalArgs); 113 114 paramInfos.reserve(totalArgs); 115 116 // Add default infos for any prefix args that don't already have infos. 117 paramInfos.resize(prefixArgs); 118 119 // Add infos for the prototype. 120 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 121 paramInfos.push_back(ParamInfo); 122 // pass_object_size params have no parameter info. 123 if (ParamInfo.hasPassObjectSize()) 124 paramInfos.emplace_back(); 125 } 126 127 assert(paramInfos.size() <= totalArgs && 128 "Did we forget to insert pass_object_size args?"); 129 // Add default infos for the variadic and/or suffix arguments. 130 paramInfos.resize(totalArgs); 131 } 132 133 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 134 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 135 static void appendParameterTypes(const CodeGenTypes &CGT, 136 SmallVectorImpl<CanQualType> &prefix, 137 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 138 CanQual<FunctionProtoType> FPT) { 139 // Fast path: don't touch param info if we don't need to. 140 if (!FPT->hasExtParameterInfos()) { 141 assert(paramInfos.empty() && 142 "We have paramInfos, but the prototype doesn't?"); 143 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 144 return; 145 } 146 147 unsigned PrefixSize = prefix.size(); 148 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 149 // parameters; the only thing that can change this is the presence of 150 // pass_object_size. So, we preallocate for the common case. 151 prefix.reserve(prefix.size() + FPT->getNumParams()); 152 153 auto ExtInfos = FPT->getExtParameterInfos(); 154 assert(ExtInfos.size() == FPT->getNumParams()); 155 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 156 prefix.push_back(FPT->getParamType(I)); 157 if (ExtInfos[I].hasPassObjectSize()) 158 prefix.push_back(CGT.getContext().getSizeType()); 159 } 160 161 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 162 prefix.size()); 163 } 164 165 /// Arrange the LLVM function layout for a value of the given function 166 /// type, on top of any implicit parameters already stored. 167 static const CGFunctionInfo & 168 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 169 SmallVectorImpl<CanQualType> &prefix, 170 CanQual<FunctionProtoType> FTP, 171 const FunctionDecl *FD) { 172 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 173 RequiredArgs Required = 174 RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD); 175 // FIXME: Kill copy. 176 appendParameterTypes(CGT, prefix, paramInfos, FTP); 177 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 178 179 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 180 /*chainCall=*/false, prefix, 181 FTP->getExtInfo(), paramInfos, 182 Required); 183 } 184 185 /// Arrange the argument and result information for a value of the 186 /// given freestanding function type. 187 const CGFunctionInfo & 188 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 189 const FunctionDecl *FD) { 190 SmallVector<CanQualType, 16> argTypes; 191 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 192 FTP, FD); 193 } 194 195 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 196 // Set the appropriate calling convention for the Function. 197 if (D->hasAttr<StdCallAttr>()) 198 return CC_X86StdCall; 199 200 if (D->hasAttr<FastCallAttr>()) 201 return CC_X86FastCall; 202 203 if (D->hasAttr<RegCallAttr>()) 204 return CC_X86RegCall; 205 206 if (D->hasAttr<ThisCallAttr>()) 207 return CC_X86ThisCall; 208 209 if (D->hasAttr<VectorCallAttr>()) 210 return CC_X86VectorCall; 211 212 if (D->hasAttr<PascalAttr>()) 213 return CC_X86Pascal; 214 215 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 216 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 217 218 if (D->hasAttr<AArch64VectorPcsAttr>()) 219 return CC_AArch64VectorCall; 220 221 if (D->hasAttr<IntelOclBiccAttr>()) 222 return CC_IntelOclBicc; 223 224 if (D->hasAttr<MSABIAttr>()) 225 return IsWindows ? CC_C : CC_Win64; 226 227 if (D->hasAttr<SysVABIAttr>()) 228 return IsWindows ? CC_X86_64SysV : CC_C; 229 230 if (D->hasAttr<PreserveMostAttr>()) 231 return CC_PreserveMost; 232 233 if (D->hasAttr<PreserveAllAttr>()) 234 return CC_PreserveAll; 235 236 return CC_C; 237 } 238 239 /// Arrange the argument and result information for a call to an 240 /// unknown C++ non-static member function of the given abstract type. 241 /// (Zero value of RD means we don't have any meaningful "this" argument type, 242 /// so fall back to a generic pointer type). 243 /// The member function must be an ordinary function, i.e. not a 244 /// constructor or destructor. 245 const CGFunctionInfo & 246 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 247 const FunctionProtoType *FTP, 248 const CXXMethodDecl *MD) { 249 SmallVector<CanQualType, 16> argTypes; 250 251 // Add the 'this' pointer. 252 if (RD) 253 argTypes.push_back(GetThisType(Context, RD, MD)); 254 else 255 argTypes.push_back(Context.VoidPtrTy); 256 257 return ::arrangeLLVMFunctionInfo( 258 *this, true, argTypes, 259 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 260 } 261 262 /// Set calling convention for CUDA/HIP kernel. 263 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 264 const FunctionDecl *FD) { 265 if (FD->hasAttr<CUDAGlobalAttr>()) { 266 const FunctionType *FT = FTy->getAs<FunctionType>(); 267 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 268 FTy = FT->getCanonicalTypeUnqualified(); 269 } 270 } 271 272 /// Arrange the argument and result information for a declaration or 273 /// definition of the given C++ non-static member function. The 274 /// member function must be an ordinary function, i.e. not a 275 /// constructor or destructor. 276 const CGFunctionInfo & 277 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 278 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 279 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 280 281 CanQualType FT = GetFormalType(MD).getAs<Type>(); 282 setCUDAKernelCallingConvention(FT, CGM, MD); 283 auto prototype = FT.getAs<FunctionProtoType>(); 284 285 if (MD->isInstance()) { 286 // The abstract case is perfectly fine. 287 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 288 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 289 } 290 291 return arrangeFreeFunctionType(prototype, MD); 292 } 293 294 bool CodeGenTypes::inheritingCtorHasParams( 295 const InheritedConstructor &Inherited, CXXCtorType Type) { 296 // Parameters are unnecessary if we're constructing a base class subobject 297 // and the inherited constructor lives in a virtual base. 298 return Type == Ctor_Complete || 299 !Inherited.getShadowDecl()->constructsVirtualBase() || 300 !Target.getCXXABI().hasConstructorVariants(); 301 } 302 303 const CGFunctionInfo & 304 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 305 StructorType Type) { 306 307 SmallVector<CanQualType, 16> argTypes; 308 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 309 argTypes.push_back(GetThisType(Context, MD->getParent(), MD)); 310 311 bool PassParams = true; 312 313 GlobalDecl GD; 314 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 315 GD = GlobalDecl(CD, toCXXCtorType(Type)); 316 317 // A base class inheriting constructor doesn't get forwarded arguments 318 // needed to construct a virtual base (or base class thereof). 319 if (auto Inherited = CD->getInheritedConstructor()) 320 PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); 321 } else { 322 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 323 GD = GlobalDecl(DD, toCXXDtorType(Type)); 324 } 325 326 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 327 328 // Add the formal parameters. 329 if (PassParams) 330 appendParameterTypes(*this, argTypes, paramInfos, FTP); 331 332 CGCXXABI::AddedStructorArgs AddedArgs = 333 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 334 if (!paramInfos.empty()) { 335 // Note: prefix implies after the first param. 336 if (AddedArgs.Prefix) 337 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 338 FunctionProtoType::ExtParameterInfo{}); 339 if (AddedArgs.Suffix) 340 paramInfos.append(AddedArgs.Suffix, 341 FunctionProtoType::ExtParameterInfo{}); 342 } 343 344 RequiredArgs required = 345 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 346 : RequiredArgs::All); 347 348 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 349 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 350 ? argTypes.front() 351 : TheCXXABI.hasMostDerivedReturn(GD) 352 ? CGM.getContext().VoidPtrTy 353 : Context.VoidTy; 354 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 355 /*chainCall=*/false, argTypes, extInfo, 356 paramInfos, required); 357 } 358 359 static SmallVector<CanQualType, 16> 360 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 361 SmallVector<CanQualType, 16> argTypes; 362 for (auto &arg : args) 363 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 364 return argTypes; 365 } 366 367 static SmallVector<CanQualType, 16> 368 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 369 SmallVector<CanQualType, 16> argTypes; 370 for (auto &arg : args) 371 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 372 return argTypes; 373 } 374 375 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 376 getExtParameterInfosForCall(const FunctionProtoType *proto, 377 unsigned prefixArgs, unsigned totalArgs) { 378 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 379 if (proto->hasExtParameterInfos()) { 380 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 381 } 382 return result; 383 } 384 385 /// Arrange a call to a C++ method, passing the given arguments. 386 /// 387 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 388 /// parameter. 389 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 390 /// args. 391 /// PassProtoArgs indicates whether `args` has args for the parameters in the 392 /// given CXXConstructorDecl. 393 const CGFunctionInfo & 394 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 395 const CXXConstructorDecl *D, 396 CXXCtorType CtorKind, 397 unsigned ExtraPrefixArgs, 398 unsigned ExtraSuffixArgs, 399 bool PassProtoArgs) { 400 // FIXME: Kill copy. 401 SmallVector<CanQualType, 16> ArgTypes; 402 for (const auto &Arg : args) 403 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 404 405 // +1 for implicit this, which should always be args[0]. 406 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 407 408 CanQual<FunctionProtoType> FPT = GetFormalType(D); 409 RequiredArgs Required = 410 RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D); 411 GlobalDecl GD(D, CtorKind); 412 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 413 ? ArgTypes.front() 414 : TheCXXABI.hasMostDerivedReturn(GD) 415 ? CGM.getContext().VoidPtrTy 416 : Context.VoidTy; 417 418 FunctionType::ExtInfo Info = FPT->getExtInfo(); 419 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 420 // If the prototype args are elided, we should only have ABI-specific args, 421 // which never have param info. 422 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 423 // ABI-specific suffix arguments are treated the same as variadic arguments. 424 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 425 ArgTypes.size()); 426 } 427 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 428 /*chainCall=*/false, ArgTypes, Info, 429 ParamInfos, Required); 430 } 431 432 /// Arrange the argument and result information for the declaration or 433 /// definition of the given function. 434 const CGFunctionInfo & 435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 436 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 437 if (MD->isInstance()) 438 return arrangeCXXMethodDeclaration(MD); 439 440 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 441 442 assert(isa<FunctionType>(FTy)); 443 setCUDAKernelCallingConvention(FTy, CGM, FD); 444 445 // When declaring a function without a prototype, always use a 446 // non-variadic type. 447 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 448 return arrangeLLVMFunctionInfo( 449 noProto->getReturnType(), /*instanceMethod=*/false, 450 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 451 } 452 453 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD); 454 } 455 456 /// Arrange the argument and result information for the declaration or 457 /// definition of an Objective-C method. 458 const CGFunctionInfo & 459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 460 // It happens that this is the same as a call with no optional 461 // arguments, except also using the formal 'self' type. 462 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 463 } 464 465 /// Arrange the argument and result information for the function type 466 /// through which to perform a send to the given Objective-C method, 467 /// using the given receiver type. The receiver type is not always 468 /// the 'self' type of the method or even an Objective-C pointer type. 469 /// This is *not* the right method for actually performing such a 470 /// message send, due to the possibility of optional arguments. 471 const CGFunctionInfo & 472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 473 QualType receiverType) { 474 SmallVector<CanQualType, 16> argTys; 475 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 476 argTys.push_back(Context.getCanonicalParamType(receiverType)); 477 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 478 // FIXME: Kill copy? 479 for (const auto *I : MD->parameters()) { 480 argTys.push_back(Context.getCanonicalParamType(I->getType())); 481 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 482 I->hasAttr<NoEscapeAttr>()); 483 extParamInfos.push_back(extParamInfo); 484 } 485 486 FunctionType::ExtInfo einfo; 487 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 488 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 489 490 if (getContext().getLangOpts().ObjCAutoRefCount && 491 MD->hasAttr<NSReturnsRetainedAttr>()) 492 einfo = einfo.withProducesResult(true); 493 494 RequiredArgs required = 495 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 496 497 return arrangeLLVMFunctionInfo( 498 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 499 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 500 } 501 502 const CGFunctionInfo & 503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 504 const CallArgList &args) { 505 auto argTypes = getArgTypesForCall(Context, args); 506 FunctionType::ExtInfo einfo; 507 508 return arrangeLLVMFunctionInfo( 509 GetReturnType(returnType), /*instanceMethod=*/false, 510 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 511 } 512 513 const CGFunctionInfo & 514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 515 // FIXME: Do we need to handle ObjCMethodDecl? 516 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 517 518 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 519 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 520 521 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 522 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 523 524 return arrangeFunctionDeclaration(FD); 525 } 526 527 /// Arrange a thunk that takes 'this' as the first parameter followed by 528 /// varargs. Return a void pointer, regardless of the actual return type. 529 /// The body of the thunk will end in a musttail call to a function of the 530 /// correct type, and the caller will bitcast the function to the correct 531 /// prototype. 532 const CGFunctionInfo & 533 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 534 assert(MD->isVirtual() && "only methods have thunks"); 535 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 536 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent(), MD) }; 537 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 538 /*chainCall=*/false, ArgTys, 539 FTP->getExtInfo(), {}, RequiredArgs(1)); 540 } 541 542 const CGFunctionInfo & 543 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 544 CXXCtorType CT) { 545 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 546 547 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 548 SmallVector<CanQualType, 2> ArgTys; 549 const CXXRecordDecl *RD = CD->getParent(); 550 ArgTys.push_back(GetThisType(Context, RD, CD)); 551 if (CT == Ctor_CopyingClosure) 552 ArgTys.push_back(*FTP->param_type_begin()); 553 if (RD->getNumVBases() > 0) 554 ArgTys.push_back(Context.IntTy); 555 CallingConv CC = Context.getDefaultCallingConvention( 556 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 557 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 558 /*chainCall=*/false, ArgTys, 559 FunctionType::ExtInfo(CC), {}, 560 RequiredArgs::All); 561 } 562 563 /// Arrange a call as unto a free function, except possibly with an 564 /// additional number of formal parameters considered required. 565 static const CGFunctionInfo & 566 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 567 CodeGenModule &CGM, 568 const CallArgList &args, 569 const FunctionType *fnType, 570 unsigned numExtraRequiredArgs, 571 bool chainCall) { 572 assert(args.size() >= numExtraRequiredArgs); 573 574 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 575 576 // In most cases, there are no optional arguments. 577 RequiredArgs required = RequiredArgs::All; 578 579 // If we have a variadic prototype, the required arguments are the 580 // extra prefix plus the arguments in the prototype. 581 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 582 if (proto->isVariadic()) 583 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 584 585 if (proto->hasExtParameterInfos()) 586 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 587 args.size()); 588 589 // If we don't have a prototype at all, but we're supposed to 590 // explicitly use the variadic convention for unprototyped calls, 591 // treat all of the arguments as required but preserve the nominal 592 // possibility of variadics. 593 } else if (CGM.getTargetCodeGenInfo() 594 .isNoProtoCallVariadic(args, 595 cast<FunctionNoProtoType>(fnType))) { 596 required = RequiredArgs(args.size()); 597 } 598 599 // FIXME: Kill copy. 600 SmallVector<CanQualType, 16> argTypes; 601 for (const auto &arg : args) 602 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 603 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 604 /*instanceMethod=*/false, chainCall, 605 argTypes, fnType->getExtInfo(), paramInfos, 606 required); 607 } 608 609 /// Figure out the rules for calling a function with the given formal 610 /// type using the given arguments. The arguments are necessary 611 /// because the function might be unprototyped, in which case it's 612 /// target-dependent in crazy ways. 613 const CGFunctionInfo & 614 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 615 const FunctionType *fnType, 616 bool chainCall) { 617 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 618 chainCall ? 1 : 0, chainCall); 619 } 620 621 /// A block function is essentially a free function with an 622 /// extra implicit argument. 623 const CGFunctionInfo & 624 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 625 const FunctionType *fnType) { 626 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 627 /*chainCall=*/false); 628 } 629 630 const CGFunctionInfo & 631 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 632 const FunctionArgList ¶ms) { 633 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 634 auto argTypes = getArgTypesForDeclaration(Context, params); 635 636 return arrangeLLVMFunctionInfo( 637 GetReturnType(proto->getReturnType()), 638 /*instanceMethod*/ false, /*chainCall*/ false, argTypes, 639 proto->getExtInfo(), paramInfos, 640 RequiredArgs::forPrototypePlus(proto, 1, nullptr)); 641 } 642 643 const CGFunctionInfo & 644 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 645 const CallArgList &args) { 646 // FIXME: Kill copy. 647 SmallVector<CanQualType, 16> argTypes; 648 for (const auto &Arg : args) 649 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 650 return arrangeLLVMFunctionInfo( 651 GetReturnType(resultType), /*instanceMethod=*/false, 652 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 653 /*paramInfos=*/ {}, RequiredArgs::All); 654 } 655 656 const CGFunctionInfo & 657 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 658 const FunctionArgList &args) { 659 auto argTypes = getArgTypesForDeclaration(Context, args); 660 661 return arrangeLLVMFunctionInfo( 662 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 663 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 664 } 665 666 const CGFunctionInfo & 667 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 668 ArrayRef<CanQualType> argTypes) { 669 return arrangeLLVMFunctionInfo( 670 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 671 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 672 } 673 674 /// Arrange a call to a C++ method, passing the given arguments. 675 /// 676 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 677 /// does not count `this`. 678 const CGFunctionInfo & 679 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 680 const FunctionProtoType *proto, 681 RequiredArgs required, 682 unsigned numPrefixArgs) { 683 assert(numPrefixArgs + 1 <= args.size() && 684 "Emitting a call with less args than the required prefix?"); 685 // Add one to account for `this`. It's a bit awkward here, but we don't count 686 // `this` in similar places elsewhere. 687 auto paramInfos = 688 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 689 690 // FIXME: Kill copy. 691 auto argTypes = getArgTypesForCall(Context, args); 692 693 FunctionType::ExtInfo info = proto->getExtInfo(); 694 return arrangeLLVMFunctionInfo( 695 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 696 /*chainCall=*/false, argTypes, info, paramInfos, required); 697 } 698 699 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 700 return arrangeLLVMFunctionInfo( 701 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 702 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 703 } 704 705 const CGFunctionInfo & 706 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 707 const CallArgList &args) { 708 assert(signature.arg_size() <= args.size()); 709 if (signature.arg_size() == args.size()) 710 return signature; 711 712 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 713 auto sigParamInfos = signature.getExtParameterInfos(); 714 if (!sigParamInfos.empty()) { 715 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 716 paramInfos.resize(args.size()); 717 } 718 719 auto argTypes = getArgTypesForCall(Context, args); 720 721 assert(signature.getRequiredArgs().allowsOptionalArgs()); 722 return arrangeLLVMFunctionInfo(signature.getReturnType(), 723 signature.isInstanceMethod(), 724 signature.isChainCall(), 725 argTypes, 726 signature.getExtInfo(), 727 paramInfos, 728 signature.getRequiredArgs()); 729 } 730 731 namespace clang { 732 namespace CodeGen { 733 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 734 } 735 } 736 737 /// Arrange the argument and result information for an abstract value 738 /// of a given function type. This is the method which all of the 739 /// above functions ultimately defer to. 740 const CGFunctionInfo & 741 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 742 bool instanceMethod, 743 bool chainCall, 744 ArrayRef<CanQualType> argTypes, 745 FunctionType::ExtInfo info, 746 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 747 RequiredArgs required) { 748 assert(llvm::all_of(argTypes, 749 [](CanQualType T) { return T.isCanonicalAsParam(); })); 750 751 // Lookup or create unique function info. 752 llvm::FoldingSetNodeID ID; 753 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 754 required, resultType, argTypes); 755 756 void *insertPos = nullptr; 757 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 758 if (FI) 759 return *FI; 760 761 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 762 763 // Construct the function info. We co-allocate the ArgInfos. 764 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 765 paramInfos, resultType, argTypes, required); 766 FunctionInfos.InsertNode(FI, insertPos); 767 768 bool inserted = FunctionsBeingProcessed.insert(FI).second; 769 (void)inserted; 770 assert(inserted && "Recursively being processed?"); 771 772 // Compute ABI information. 773 if (CC == llvm::CallingConv::SPIR_KERNEL) { 774 // Force target independent argument handling for the host visible 775 // kernel functions. 776 computeSPIRKernelABIInfo(CGM, *FI); 777 } else if (info.getCC() == CC_Swift) { 778 swiftcall::computeABIInfo(CGM, *FI); 779 } else { 780 getABIInfo().computeInfo(*FI); 781 } 782 783 // Loop over all of the computed argument and return value info. If any of 784 // them are direct or extend without a specified coerce type, specify the 785 // default now. 786 ABIArgInfo &retInfo = FI->getReturnInfo(); 787 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 788 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 789 790 for (auto &I : FI->arguments()) 791 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 792 I.info.setCoerceToType(ConvertType(I.type)); 793 794 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 795 assert(erased && "Not in set?"); 796 797 return *FI; 798 } 799 800 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 801 bool instanceMethod, 802 bool chainCall, 803 const FunctionType::ExtInfo &info, 804 ArrayRef<ExtParameterInfo> paramInfos, 805 CanQualType resultType, 806 ArrayRef<CanQualType> argTypes, 807 RequiredArgs required) { 808 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 809 810 void *buffer = 811 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 812 argTypes.size() + 1, paramInfos.size())); 813 814 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 815 FI->CallingConvention = llvmCC; 816 FI->EffectiveCallingConvention = llvmCC; 817 FI->ASTCallingConvention = info.getCC(); 818 FI->InstanceMethod = instanceMethod; 819 FI->ChainCall = chainCall; 820 FI->NoReturn = info.getNoReturn(); 821 FI->ReturnsRetained = info.getProducesResult(); 822 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 823 FI->NoCfCheck = info.getNoCfCheck(); 824 FI->Required = required; 825 FI->HasRegParm = info.getHasRegParm(); 826 FI->RegParm = info.getRegParm(); 827 FI->ArgStruct = nullptr; 828 FI->ArgStructAlign = 0; 829 FI->NumArgs = argTypes.size(); 830 FI->HasExtParameterInfos = !paramInfos.empty(); 831 FI->getArgsBuffer()[0].type = resultType; 832 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 833 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 834 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 835 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 836 return FI; 837 } 838 839 /***/ 840 841 namespace { 842 // ABIArgInfo::Expand implementation. 843 844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 845 struct TypeExpansion { 846 enum TypeExpansionKind { 847 // Elements of constant arrays are expanded recursively. 848 TEK_ConstantArray, 849 // Record fields are expanded recursively (but if record is a union, only 850 // the field with the largest size is expanded). 851 TEK_Record, 852 // For complex types, real and imaginary parts are expanded recursively. 853 TEK_Complex, 854 // All other types are not expandable. 855 TEK_None 856 }; 857 858 const TypeExpansionKind Kind; 859 860 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 861 virtual ~TypeExpansion() {} 862 }; 863 864 struct ConstantArrayExpansion : TypeExpansion { 865 QualType EltTy; 866 uint64_t NumElts; 867 868 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 869 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 870 static bool classof(const TypeExpansion *TE) { 871 return TE->Kind == TEK_ConstantArray; 872 } 873 }; 874 875 struct RecordExpansion : TypeExpansion { 876 SmallVector<const CXXBaseSpecifier *, 1> Bases; 877 878 SmallVector<const FieldDecl *, 1> Fields; 879 880 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 881 SmallVector<const FieldDecl *, 1> &&Fields) 882 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 883 Fields(std::move(Fields)) {} 884 static bool classof(const TypeExpansion *TE) { 885 return TE->Kind == TEK_Record; 886 } 887 }; 888 889 struct ComplexExpansion : TypeExpansion { 890 QualType EltTy; 891 892 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 893 static bool classof(const TypeExpansion *TE) { 894 return TE->Kind == TEK_Complex; 895 } 896 }; 897 898 struct NoExpansion : TypeExpansion { 899 NoExpansion() : TypeExpansion(TEK_None) {} 900 static bool classof(const TypeExpansion *TE) { 901 return TE->Kind == TEK_None; 902 } 903 }; 904 } // namespace 905 906 static std::unique_ptr<TypeExpansion> 907 getTypeExpansion(QualType Ty, const ASTContext &Context) { 908 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 909 return llvm::make_unique<ConstantArrayExpansion>( 910 AT->getElementType(), AT->getSize().getZExtValue()); 911 } 912 if (const RecordType *RT = Ty->getAs<RecordType>()) { 913 SmallVector<const CXXBaseSpecifier *, 1> Bases; 914 SmallVector<const FieldDecl *, 1> Fields; 915 const RecordDecl *RD = RT->getDecl(); 916 assert(!RD->hasFlexibleArrayMember() && 917 "Cannot expand structure with flexible array."); 918 if (RD->isUnion()) { 919 // Unions can be here only in degenerative cases - all the fields are same 920 // after flattening. Thus we have to use the "largest" field. 921 const FieldDecl *LargestFD = nullptr; 922 CharUnits UnionSize = CharUnits::Zero(); 923 924 for (const auto *FD : RD->fields()) { 925 if (FD->isZeroLengthBitField(Context)) 926 continue; 927 assert(!FD->isBitField() && 928 "Cannot expand structure with bit-field members."); 929 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 930 if (UnionSize < FieldSize) { 931 UnionSize = FieldSize; 932 LargestFD = FD; 933 } 934 } 935 if (LargestFD) 936 Fields.push_back(LargestFD); 937 } else { 938 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 939 assert(!CXXRD->isDynamicClass() && 940 "cannot expand vtable pointers in dynamic classes"); 941 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 942 Bases.push_back(&BS); 943 } 944 945 for (const auto *FD : RD->fields()) { 946 if (FD->isZeroLengthBitField(Context)) 947 continue; 948 assert(!FD->isBitField() && 949 "Cannot expand structure with bit-field members."); 950 Fields.push_back(FD); 951 } 952 } 953 return llvm::make_unique<RecordExpansion>(std::move(Bases), 954 std::move(Fields)); 955 } 956 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 957 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 958 } 959 return llvm::make_unique<NoExpansion>(); 960 } 961 962 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 963 auto Exp = getTypeExpansion(Ty, Context); 964 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 965 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 966 } 967 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 968 int Res = 0; 969 for (auto BS : RExp->Bases) 970 Res += getExpansionSize(BS->getType(), Context); 971 for (auto FD : RExp->Fields) 972 Res += getExpansionSize(FD->getType(), Context); 973 return Res; 974 } 975 if (isa<ComplexExpansion>(Exp.get())) 976 return 2; 977 assert(isa<NoExpansion>(Exp.get())); 978 return 1; 979 } 980 981 void 982 CodeGenTypes::getExpandedTypes(QualType Ty, 983 SmallVectorImpl<llvm::Type *>::iterator &TI) { 984 auto Exp = getTypeExpansion(Ty, Context); 985 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 986 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 987 getExpandedTypes(CAExp->EltTy, TI); 988 } 989 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 990 for (auto BS : RExp->Bases) 991 getExpandedTypes(BS->getType(), TI); 992 for (auto FD : RExp->Fields) 993 getExpandedTypes(FD->getType(), TI); 994 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 995 llvm::Type *EltTy = ConvertType(CExp->EltTy); 996 *TI++ = EltTy; 997 *TI++ = EltTy; 998 } else { 999 assert(isa<NoExpansion>(Exp.get())); 1000 *TI++ = ConvertType(Ty); 1001 } 1002 } 1003 1004 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1005 ConstantArrayExpansion *CAE, 1006 Address BaseAddr, 1007 llvm::function_ref<void(Address)> Fn) { 1008 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1009 CharUnits EltAlign = 1010 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1011 1012 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1013 llvm::Value *EltAddr = 1014 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1015 Fn(Address(EltAddr, EltAlign)); 1016 } 1017 } 1018 1019 void CodeGenFunction::ExpandTypeFromArgs( 1020 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 1021 assert(LV.isSimple() && 1022 "Unexpected non-simple lvalue during struct expansion."); 1023 1024 auto Exp = getTypeExpansion(Ty, getContext()); 1025 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1026 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 1027 [&](Address EltAddr) { 1028 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1029 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1030 }); 1031 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1032 Address This = LV.getAddress(); 1033 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1034 // Perform a single step derived-to-base conversion. 1035 Address Base = 1036 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1037 /*NullCheckValue=*/false, SourceLocation()); 1038 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1039 1040 // Recurse onto bases. 1041 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1042 } 1043 for (auto FD : RExp->Fields) { 1044 // FIXME: What are the right qualifiers here? 1045 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1046 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1047 } 1048 } else if (isa<ComplexExpansion>(Exp.get())) { 1049 auto realValue = *AI++; 1050 auto imagValue = *AI++; 1051 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1052 } else { 1053 assert(isa<NoExpansion>(Exp.get())); 1054 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1055 } 1056 } 1057 1058 void CodeGenFunction::ExpandTypeToArgs( 1059 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1060 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1061 auto Exp = getTypeExpansion(Ty, getContext()); 1062 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1063 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1064 : Arg.getKnownRValue().getAggregateAddress(); 1065 forConstantArrayExpansion( 1066 *this, CAExp, Addr, [&](Address EltAddr) { 1067 CallArg EltArg = CallArg( 1068 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1069 CAExp->EltTy); 1070 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1071 IRCallArgPos); 1072 }); 1073 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1074 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1075 : Arg.getKnownRValue().getAggregateAddress(); 1076 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1077 // Perform a single step derived-to-base conversion. 1078 Address Base = 1079 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1080 /*NullCheckValue=*/false, SourceLocation()); 1081 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1082 1083 // Recurse onto bases. 1084 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1085 IRCallArgPos); 1086 } 1087 1088 LValue LV = MakeAddrLValue(This, Ty); 1089 for (auto FD : RExp->Fields) { 1090 CallArg FldArg = 1091 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1092 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1093 IRCallArgPos); 1094 } 1095 } else if (isa<ComplexExpansion>(Exp.get())) { 1096 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1097 IRCallArgs[IRCallArgPos++] = CV.first; 1098 IRCallArgs[IRCallArgPos++] = CV.second; 1099 } else { 1100 assert(isa<NoExpansion>(Exp.get())); 1101 auto RV = Arg.getKnownRValue(); 1102 assert(RV.isScalar() && 1103 "Unexpected non-scalar rvalue during struct expansion."); 1104 1105 // Insert a bitcast as needed. 1106 llvm::Value *V = RV.getScalarVal(); 1107 if (IRCallArgPos < IRFuncTy->getNumParams() && 1108 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1109 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1110 1111 IRCallArgs[IRCallArgPos++] = V; 1112 } 1113 } 1114 1115 /// Create a temporary allocation for the purposes of coercion. 1116 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1117 CharUnits MinAlign) { 1118 // Don't use an alignment that's worse than what LLVM would prefer. 1119 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1120 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1121 1122 return CGF.CreateTempAlloca(Ty, Align); 1123 } 1124 1125 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1126 /// accessing some number of bytes out of it, try to gep into the struct to get 1127 /// at its inner goodness. Dive as deep as possible without entering an element 1128 /// with an in-memory size smaller than DstSize. 1129 static Address 1130 EnterStructPointerForCoercedAccess(Address SrcPtr, 1131 llvm::StructType *SrcSTy, 1132 uint64_t DstSize, CodeGenFunction &CGF) { 1133 // We can't dive into a zero-element struct. 1134 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1135 1136 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1137 1138 // If the first elt is at least as large as what we're looking for, or if the 1139 // first element is the same size as the whole struct, we can enter it. The 1140 // comparison must be made on the store size and not the alloca size. Using 1141 // the alloca size may overstate the size of the load. 1142 uint64_t FirstEltSize = 1143 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1144 if (FirstEltSize < DstSize && 1145 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1146 return SrcPtr; 1147 1148 // GEP into the first element. 1149 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 1150 1151 // If the first element is a struct, recurse. 1152 llvm::Type *SrcTy = SrcPtr.getElementType(); 1153 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1154 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1155 1156 return SrcPtr; 1157 } 1158 1159 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1160 /// are either integers or pointers. This does a truncation of the value if it 1161 /// is too large or a zero extension if it is too small. 1162 /// 1163 /// This behaves as if the value were coerced through memory, so on big-endian 1164 /// targets the high bits are preserved in a truncation, while little-endian 1165 /// targets preserve the low bits. 1166 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1167 llvm::Type *Ty, 1168 CodeGenFunction &CGF) { 1169 if (Val->getType() == Ty) 1170 return Val; 1171 1172 if (isa<llvm::PointerType>(Val->getType())) { 1173 // If this is Pointer->Pointer avoid conversion to and from int. 1174 if (isa<llvm::PointerType>(Ty)) 1175 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1176 1177 // Convert the pointer to an integer so we can play with its width. 1178 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1179 } 1180 1181 llvm::Type *DestIntTy = Ty; 1182 if (isa<llvm::PointerType>(DestIntTy)) 1183 DestIntTy = CGF.IntPtrTy; 1184 1185 if (Val->getType() != DestIntTy) { 1186 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1187 if (DL.isBigEndian()) { 1188 // Preserve the high bits on big-endian targets. 1189 // That is what memory coercion does. 1190 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1191 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1192 1193 if (SrcSize > DstSize) { 1194 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1195 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1196 } else { 1197 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1198 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1199 } 1200 } else { 1201 // Little-endian targets preserve the low bits. No shifts required. 1202 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1203 } 1204 } 1205 1206 if (isa<llvm::PointerType>(Ty)) 1207 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1208 return Val; 1209 } 1210 1211 1212 1213 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1214 /// a pointer to an object of type \arg Ty, known to be aligned to 1215 /// \arg SrcAlign bytes. 1216 /// 1217 /// This safely handles the case when the src type is smaller than the 1218 /// destination type; in this situation the values of bits which not 1219 /// present in the src are undefined. 1220 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1221 CodeGenFunction &CGF) { 1222 llvm::Type *SrcTy = Src.getElementType(); 1223 1224 // If SrcTy and Ty are the same, just do a load. 1225 if (SrcTy == Ty) 1226 return CGF.Builder.CreateLoad(Src); 1227 1228 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1229 1230 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1231 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1232 SrcTy = Src.getType()->getElementType(); 1233 } 1234 1235 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1236 1237 // If the source and destination are integer or pointer types, just do an 1238 // extension or truncation to the desired type. 1239 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1240 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1241 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1242 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1243 } 1244 1245 // If load is legal, just bitcast the src pointer. 1246 if (SrcSize >= DstSize) { 1247 // Generally SrcSize is never greater than DstSize, since this means we are 1248 // losing bits. However, this can happen in cases where the structure has 1249 // additional padding, for example due to a user specified alignment. 1250 // 1251 // FIXME: Assert that we aren't truncating non-padding bits when have access 1252 // to that information. 1253 Src = CGF.Builder.CreateBitCast(Src, 1254 Ty->getPointerTo(Src.getAddressSpace())); 1255 return CGF.Builder.CreateLoad(Src); 1256 } 1257 1258 // Otherwise do coercion through memory. This is stupid, but simple. 1259 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1260 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); 1261 Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty); 1262 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1263 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1264 false); 1265 return CGF.Builder.CreateLoad(Tmp); 1266 } 1267 1268 // Function to store a first-class aggregate into memory. We prefer to 1269 // store the elements rather than the aggregate to be more friendly to 1270 // fast-isel. 1271 // FIXME: Do we need to recurse here? 1272 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1273 Address Dest, bool DestIsVolatile) { 1274 // Prefer scalar stores to first-class aggregate stores. 1275 if (llvm::StructType *STy = 1276 dyn_cast<llvm::StructType>(Val->getType())) { 1277 const llvm::StructLayout *Layout = 1278 CGF.CGM.getDataLayout().getStructLayout(STy); 1279 1280 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1281 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1282 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1283 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1284 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1285 } 1286 } else { 1287 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1288 } 1289 } 1290 1291 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1292 /// where the source and destination may have different types. The 1293 /// destination is known to be aligned to \arg DstAlign bytes. 1294 /// 1295 /// This safely handles the case when the src type is larger than the 1296 /// destination type; the upper bits of the src will be lost. 1297 static void CreateCoercedStore(llvm::Value *Src, 1298 Address Dst, 1299 bool DstIsVolatile, 1300 CodeGenFunction &CGF) { 1301 llvm::Type *SrcTy = Src->getType(); 1302 llvm::Type *DstTy = Dst.getType()->getElementType(); 1303 if (SrcTy == DstTy) { 1304 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1305 return; 1306 } 1307 1308 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1309 1310 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1311 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1312 DstTy = Dst.getType()->getElementType(); 1313 } 1314 1315 // If the source and destination are integer or pointer types, just do an 1316 // extension or truncation to the desired type. 1317 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1318 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1319 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1320 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1321 return; 1322 } 1323 1324 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1325 1326 // If store is legal, just bitcast the src pointer. 1327 if (SrcSize <= DstSize) { 1328 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1329 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1330 } else { 1331 // Otherwise do coercion through memory. This is stupid, but 1332 // simple. 1333 1334 // Generally SrcSize is never greater than DstSize, since this means we are 1335 // losing bits. However, this can happen in cases where the structure has 1336 // additional padding, for example due to a user specified alignment. 1337 // 1338 // FIXME: Assert that we aren't truncating non-padding bits when have access 1339 // to that information. 1340 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1341 CGF.Builder.CreateStore(Src, Tmp); 1342 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); 1343 Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty); 1344 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1345 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1346 false); 1347 } 1348 } 1349 1350 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1351 const ABIArgInfo &info) { 1352 if (unsigned offset = info.getDirectOffset()) { 1353 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1354 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1355 CharUnits::fromQuantity(offset)); 1356 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1357 } 1358 return addr; 1359 } 1360 1361 namespace { 1362 1363 /// Encapsulates information about the way function arguments from 1364 /// CGFunctionInfo should be passed to actual LLVM IR function. 1365 class ClangToLLVMArgMapping { 1366 static const unsigned InvalidIndex = ~0U; 1367 unsigned InallocaArgNo; 1368 unsigned SRetArgNo; 1369 unsigned TotalIRArgs; 1370 1371 /// Arguments of LLVM IR function corresponding to single Clang argument. 1372 struct IRArgs { 1373 unsigned PaddingArgIndex; 1374 // Argument is expanded to IR arguments at positions 1375 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1376 unsigned FirstArgIndex; 1377 unsigned NumberOfArgs; 1378 1379 IRArgs() 1380 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1381 NumberOfArgs(0) {} 1382 }; 1383 1384 SmallVector<IRArgs, 8> ArgInfo; 1385 1386 public: 1387 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1388 bool OnlyRequiredArgs = false) 1389 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1390 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1391 construct(Context, FI, OnlyRequiredArgs); 1392 } 1393 1394 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1395 unsigned getInallocaArgNo() const { 1396 assert(hasInallocaArg()); 1397 return InallocaArgNo; 1398 } 1399 1400 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1401 unsigned getSRetArgNo() const { 1402 assert(hasSRetArg()); 1403 return SRetArgNo; 1404 } 1405 1406 unsigned totalIRArgs() const { return TotalIRArgs; } 1407 1408 bool hasPaddingArg(unsigned ArgNo) const { 1409 assert(ArgNo < ArgInfo.size()); 1410 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1411 } 1412 unsigned getPaddingArgNo(unsigned ArgNo) const { 1413 assert(hasPaddingArg(ArgNo)); 1414 return ArgInfo[ArgNo].PaddingArgIndex; 1415 } 1416 1417 /// Returns index of first IR argument corresponding to ArgNo, and their 1418 /// quantity. 1419 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1420 assert(ArgNo < ArgInfo.size()); 1421 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1422 ArgInfo[ArgNo].NumberOfArgs); 1423 } 1424 1425 private: 1426 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1427 bool OnlyRequiredArgs); 1428 }; 1429 1430 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1431 const CGFunctionInfo &FI, 1432 bool OnlyRequiredArgs) { 1433 unsigned IRArgNo = 0; 1434 bool SwapThisWithSRet = false; 1435 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1436 1437 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1438 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1439 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1440 } 1441 1442 unsigned ArgNo = 0; 1443 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1444 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1445 ++I, ++ArgNo) { 1446 assert(I != FI.arg_end()); 1447 QualType ArgType = I->type; 1448 const ABIArgInfo &AI = I->info; 1449 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1450 auto &IRArgs = ArgInfo[ArgNo]; 1451 1452 if (AI.getPaddingType()) 1453 IRArgs.PaddingArgIndex = IRArgNo++; 1454 1455 switch (AI.getKind()) { 1456 case ABIArgInfo::Extend: 1457 case ABIArgInfo::Direct: { 1458 // FIXME: handle sseregparm someday... 1459 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1460 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1461 IRArgs.NumberOfArgs = STy->getNumElements(); 1462 } else { 1463 IRArgs.NumberOfArgs = 1; 1464 } 1465 break; 1466 } 1467 case ABIArgInfo::Indirect: 1468 IRArgs.NumberOfArgs = 1; 1469 break; 1470 case ABIArgInfo::Ignore: 1471 case ABIArgInfo::InAlloca: 1472 // ignore and inalloca doesn't have matching LLVM parameters. 1473 IRArgs.NumberOfArgs = 0; 1474 break; 1475 case ABIArgInfo::CoerceAndExpand: 1476 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1477 break; 1478 case ABIArgInfo::Expand: 1479 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1480 break; 1481 } 1482 1483 if (IRArgs.NumberOfArgs > 0) { 1484 IRArgs.FirstArgIndex = IRArgNo; 1485 IRArgNo += IRArgs.NumberOfArgs; 1486 } 1487 1488 // Skip over the sret parameter when it comes second. We already handled it 1489 // above. 1490 if (IRArgNo == 1 && SwapThisWithSRet) 1491 IRArgNo++; 1492 } 1493 assert(ArgNo == ArgInfo.size()); 1494 1495 if (FI.usesInAlloca()) 1496 InallocaArgNo = IRArgNo++; 1497 1498 TotalIRArgs = IRArgNo; 1499 } 1500 } // namespace 1501 1502 /***/ 1503 1504 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1505 const auto &RI = FI.getReturnInfo(); 1506 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1507 } 1508 1509 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1510 return ReturnTypeUsesSRet(FI) && 1511 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1512 } 1513 1514 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1515 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1516 switch (BT->getKind()) { 1517 default: 1518 return false; 1519 case BuiltinType::Float: 1520 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1521 case BuiltinType::Double: 1522 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1523 case BuiltinType::LongDouble: 1524 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1525 } 1526 } 1527 1528 return false; 1529 } 1530 1531 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1532 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1533 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1534 if (BT->getKind() == BuiltinType::LongDouble) 1535 return getTarget().useObjCFP2RetForComplexLongDouble(); 1536 } 1537 } 1538 1539 return false; 1540 } 1541 1542 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1543 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1544 return GetFunctionType(FI); 1545 } 1546 1547 llvm::FunctionType * 1548 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1549 1550 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1551 (void)Inserted; 1552 assert(Inserted && "Recursively being processed?"); 1553 1554 llvm::Type *resultType = nullptr; 1555 const ABIArgInfo &retAI = FI.getReturnInfo(); 1556 switch (retAI.getKind()) { 1557 case ABIArgInfo::Expand: 1558 llvm_unreachable("Invalid ABI kind for return argument"); 1559 1560 case ABIArgInfo::Extend: 1561 case ABIArgInfo::Direct: 1562 resultType = retAI.getCoerceToType(); 1563 break; 1564 1565 case ABIArgInfo::InAlloca: 1566 if (retAI.getInAllocaSRet()) { 1567 // sret things on win32 aren't void, they return the sret pointer. 1568 QualType ret = FI.getReturnType(); 1569 llvm::Type *ty = ConvertType(ret); 1570 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1571 resultType = llvm::PointerType::get(ty, addressSpace); 1572 } else { 1573 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1574 } 1575 break; 1576 1577 case ABIArgInfo::Indirect: 1578 case ABIArgInfo::Ignore: 1579 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1580 break; 1581 1582 case ABIArgInfo::CoerceAndExpand: 1583 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1584 break; 1585 } 1586 1587 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1588 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1589 1590 // Add type for sret argument. 1591 if (IRFunctionArgs.hasSRetArg()) { 1592 QualType Ret = FI.getReturnType(); 1593 llvm::Type *Ty = ConvertType(Ret); 1594 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1595 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1596 llvm::PointerType::get(Ty, AddressSpace); 1597 } 1598 1599 // Add type for inalloca argument. 1600 if (IRFunctionArgs.hasInallocaArg()) { 1601 auto ArgStruct = FI.getArgStruct(); 1602 assert(ArgStruct); 1603 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1604 } 1605 1606 // Add in all of the required arguments. 1607 unsigned ArgNo = 0; 1608 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1609 ie = it + FI.getNumRequiredArgs(); 1610 for (; it != ie; ++it, ++ArgNo) { 1611 const ABIArgInfo &ArgInfo = it->info; 1612 1613 // Insert a padding type to ensure proper alignment. 1614 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1615 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1616 ArgInfo.getPaddingType(); 1617 1618 unsigned FirstIRArg, NumIRArgs; 1619 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1620 1621 switch (ArgInfo.getKind()) { 1622 case ABIArgInfo::Ignore: 1623 case ABIArgInfo::InAlloca: 1624 assert(NumIRArgs == 0); 1625 break; 1626 1627 case ABIArgInfo::Indirect: { 1628 assert(NumIRArgs == 1); 1629 // indirect arguments are always on the stack, which is alloca addr space. 1630 llvm::Type *LTy = ConvertTypeForMem(it->type); 1631 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1632 CGM.getDataLayout().getAllocaAddrSpace()); 1633 break; 1634 } 1635 1636 case ABIArgInfo::Extend: 1637 case ABIArgInfo::Direct: { 1638 // Fast-isel and the optimizer generally like scalar values better than 1639 // FCAs, so we flatten them if this is safe to do for this argument. 1640 llvm::Type *argType = ArgInfo.getCoerceToType(); 1641 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1642 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1643 assert(NumIRArgs == st->getNumElements()); 1644 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1645 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1646 } else { 1647 assert(NumIRArgs == 1); 1648 ArgTypes[FirstIRArg] = argType; 1649 } 1650 break; 1651 } 1652 1653 case ABIArgInfo::CoerceAndExpand: { 1654 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1655 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1656 *ArgTypesIter++ = EltTy; 1657 } 1658 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1659 break; 1660 } 1661 1662 case ABIArgInfo::Expand: 1663 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1664 getExpandedTypes(it->type, ArgTypesIter); 1665 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1666 break; 1667 } 1668 } 1669 1670 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1671 assert(Erased && "Not in set?"); 1672 1673 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1674 } 1675 1676 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1677 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1678 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1679 1680 if (!isFuncTypeConvertible(FPT)) 1681 return llvm::StructType::get(getLLVMContext()); 1682 1683 const CGFunctionInfo *Info; 1684 if (isa<CXXDestructorDecl>(MD)) 1685 Info = 1686 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1687 else 1688 Info = &arrangeCXXMethodDeclaration(MD); 1689 return GetFunctionType(*Info); 1690 } 1691 1692 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1693 llvm::AttrBuilder &FuncAttrs, 1694 const FunctionProtoType *FPT) { 1695 if (!FPT) 1696 return; 1697 1698 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1699 FPT->isNothrow()) 1700 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1701 } 1702 1703 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1704 bool AttrOnCallSite, 1705 llvm::AttrBuilder &FuncAttrs) { 1706 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1707 if (!HasOptnone) { 1708 if (CodeGenOpts.OptimizeSize) 1709 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1710 if (CodeGenOpts.OptimizeSize == 2) 1711 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1712 } 1713 1714 if (CodeGenOpts.DisableRedZone) 1715 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1716 if (CodeGenOpts.IndirectTlsSegRefs) 1717 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1718 if (CodeGenOpts.NoImplicitFloat) 1719 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1720 1721 if (AttrOnCallSite) { 1722 // Attributes that should go on the call site only. 1723 if (!CodeGenOpts.SimplifyLibCalls || 1724 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1725 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1726 if (!CodeGenOpts.TrapFuncName.empty()) 1727 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1728 } else { 1729 // Attributes that should go on the function, but not the call site. 1730 if (!CodeGenOpts.DisableFPElim) { 1731 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1732 } else if (CodeGenOpts.OmitLeafFramePointer) { 1733 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1734 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1735 } else { 1736 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1737 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1738 } 1739 1740 FuncAttrs.addAttribute("less-precise-fpmad", 1741 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1742 1743 if (CodeGenOpts.NullPointerIsValid) 1744 FuncAttrs.addAttribute("null-pointer-is-valid", "true"); 1745 if (!CodeGenOpts.FPDenormalMode.empty()) 1746 FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); 1747 1748 FuncAttrs.addAttribute("no-trapping-math", 1749 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1750 1751 // Strict (compliant) code is the default, so only add this attribute to 1752 // indicate that we are trying to workaround a problem case. 1753 if (!CodeGenOpts.StrictFloatCastOverflow) 1754 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1755 1756 // TODO: Are these all needed? 1757 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1758 FuncAttrs.addAttribute("no-infs-fp-math", 1759 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1760 FuncAttrs.addAttribute("no-nans-fp-math", 1761 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1762 FuncAttrs.addAttribute("unsafe-fp-math", 1763 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1764 FuncAttrs.addAttribute("use-soft-float", 1765 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1766 FuncAttrs.addAttribute("stack-protector-buffer-size", 1767 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1768 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1769 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1770 FuncAttrs.addAttribute( 1771 "correctly-rounded-divide-sqrt-fp-math", 1772 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1773 1774 if (getLangOpts().OpenCL) 1775 FuncAttrs.addAttribute("denorms-are-zero", 1776 llvm::toStringRef(CodeGenOpts.FlushDenorm)); 1777 1778 // TODO: Reciprocal estimate codegen options should apply to instructions? 1779 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1780 if (!Recips.empty()) 1781 FuncAttrs.addAttribute("reciprocal-estimates", 1782 llvm::join(Recips, ",")); 1783 1784 if (!CodeGenOpts.PreferVectorWidth.empty() && 1785 CodeGenOpts.PreferVectorWidth != "none") 1786 FuncAttrs.addAttribute("prefer-vector-width", 1787 CodeGenOpts.PreferVectorWidth); 1788 1789 if (CodeGenOpts.StackRealignment) 1790 FuncAttrs.addAttribute("stackrealign"); 1791 if (CodeGenOpts.Backchain) 1792 FuncAttrs.addAttribute("backchain"); 1793 1794 if (CodeGenOpts.SpeculativeLoadHardening) 1795 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1796 } 1797 1798 if (getLangOpts().assumeFunctionsAreConvergent()) { 1799 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1800 // convergent (meaning, they may call an intrinsically convergent op, such 1801 // as __syncthreads() / barrier(), and so can't have certain optimizations 1802 // applied around them). LLVM will remove this attribute where it safely 1803 // can. 1804 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1805 } 1806 1807 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1808 // Exceptions aren't supported in CUDA device code. 1809 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1810 1811 // Respect -fcuda-flush-denormals-to-zero. 1812 if (CodeGenOpts.FlushDenorm) 1813 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1814 } 1815 1816 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1817 StringRef Var, Value; 1818 std::tie(Var, Value) = Attr.split('='); 1819 FuncAttrs.addAttribute(Var, Value); 1820 } 1821 } 1822 1823 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1824 llvm::AttrBuilder FuncAttrs; 1825 ConstructDefaultFnAttrList(F.getName(), 1826 F.hasFnAttribute(llvm::Attribute::OptimizeNone), 1827 /* AttrOnCallsite = */ false, FuncAttrs); 1828 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1829 } 1830 1831 void CodeGenModule::ConstructAttributeList( 1832 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1833 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1834 llvm::AttrBuilder FuncAttrs; 1835 llvm::AttrBuilder RetAttrs; 1836 1837 CallingConv = FI.getEffectiveCallingConvention(); 1838 if (FI.isNoReturn()) 1839 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1840 1841 // If we have information about the function prototype, we can learn 1842 // attributes from there. 1843 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1844 CalleeInfo.getCalleeFunctionProtoType()); 1845 1846 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 1847 1848 bool HasOptnone = false; 1849 // FIXME: handle sseregparm someday... 1850 if (TargetDecl) { 1851 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1852 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1853 if (TargetDecl->hasAttr<NoThrowAttr>()) 1854 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1855 if (TargetDecl->hasAttr<NoReturnAttr>()) 1856 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1857 if (TargetDecl->hasAttr<ColdAttr>()) 1858 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1859 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1860 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1861 if (TargetDecl->hasAttr<ConvergentAttr>()) 1862 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1863 1864 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1865 AddAttributesFromFunctionProtoType( 1866 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1867 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1868 // These attributes are not inherited by overloads. 1869 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1870 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1871 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1872 } 1873 1874 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1875 if (TargetDecl->hasAttr<ConstAttr>()) { 1876 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1877 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1878 } else if (TargetDecl->hasAttr<PureAttr>()) { 1879 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1880 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1881 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1882 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1883 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1884 } 1885 if (TargetDecl->hasAttr<RestrictAttr>()) 1886 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1887 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1888 !CodeGenOpts.NullPointerIsValid) 1889 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1890 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1891 FuncAttrs.addAttribute("no_caller_saved_registers"); 1892 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1893 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1894 1895 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1896 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1897 Optional<unsigned> NumElemsParam; 1898 if (AllocSize->getNumElemsParam().isValid()) 1899 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 1900 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 1901 NumElemsParam); 1902 } 1903 } 1904 1905 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1906 1907 // This must run after constructing the default function attribute list 1908 // to ensure that the speculative load hardening attribute is removed 1909 // in the case where the -mspeculative-load-hardening flag was passed. 1910 if (TargetDecl) { 1911 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 1912 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 1913 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 1914 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1915 } 1916 1917 if (CodeGenOpts.EnableSegmentedStacks && 1918 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1919 FuncAttrs.addAttribute("split-stack"); 1920 1921 // Add NonLazyBind attribute to function declarations when -fno-plt 1922 // is used. 1923 if (TargetDecl && CodeGenOpts.NoPLT) { 1924 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1925 if (!Fn->isDefined() && !AttrOnCallSite) { 1926 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 1927 } 1928 } 1929 } 1930 1931 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) { 1932 if (getLangOpts().OpenCLVersion <= 120) { 1933 // OpenCL v1.2 Work groups are always uniform 1934 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 1935 } else { 1936 // OpenCL v2.0 Work groups may be whether uniform or not. 1937 // '-cl-uniform-work-group-size' compile option gets a hint 1938 // to the compiler that the global work-size be a multiple of 1939 // the work-group size specified to clEnqueueNDRangeKernel 1940 // (i.e. work groups are uniform). 1941 FuncAttrs.addAttribute("uniform-work-group-size", 1942 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 1943 } 1944 } 1945 1946 if (!AttrOnCallSite) { 1947 bool DisableTailCalls = false; 1948 1949 if (CodeGenOpts.DisableTailCalls) 1950 DisableTailCalls = true; 1951 else if (TargetDecl) { 1952 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 1953 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 1954 DisableTailCalls = true; 1955 else if (CodeGenOpts.NoEscapingBlockTailCalls) { 1956 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 1957 if (!BD->doesNotEscape()) 1958 DisableTailCalls = true; 1959 } 1960 } 1961 1962 FuncAttrs.addAttribute("disable-tail-calls", 1963 llvm::toStringRef(DisableTailCalls)); 1964 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 1965 } 1966 1967 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1968 1969 QualType RetTy = FI.getReturnType(); 1970 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1971 switch (RetAI.getKind()) { 1972 case ABIArgInfo::Extend: 1973 if (RetAI.isSignExt()) 1974 RetAttrs.addAttribute(llvm::Attribute::SExt); 1975 else 1976 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1977 LLVM_FALLTHROUGH; 1978 case ABIArgInfo::Direct: 1979 if (RetAI.getInReg()) 1980 RetAttrs.addAttribute(llvm::Attribute::InReg); 1981 break; 1982 case ABIArgInfo::Ignore: 1983 break; 1984 1985 case ABIArgInfo::InAlloca: 1986 case ABIArgInfo::Indirect: { 1987 // inalloca and sret disable readnone and readonly 1988 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1989 .removeAttribute(llvm::Attribute::ReadNone); 1990 break; 1991 } 1992 1993 case ABIArgInfo::CoerceAndExpand: 1994 break; 1995 1996 case ABIArgInfo::Expand: 1997 llvm_unreachable("Invalid ABI kind for return argument"); 1998 } 1999 2000 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2001 QualType PTy = RefTy->getPointeeType(); 2002 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2003 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2004 .getQuantity()); 2005 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2006 !CodeGenOpts.NullPointerIsValid) 2007 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2008 } 2009 2010 bool hasUsedSRet = false; 2011 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2012 2013 // Attach attributes to sret. 2014 if (IRFunctionArgs.hasSRetArg()) { 2015 llvm::AttrBuilder SRETAttrs; 2016 if (!RetAI.getSuppressSRet()) 2017 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 2018 hasUsedSRet = true; 2019 if (RetAI.getInReg()) 2020 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2021 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2022 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2023 } 2024 2025 // Attach attributes to inalloca argument. 2026 if (IRFunctionArgs.hasInallocaArg()) { 2027 llvm::AttrBuilder Attrs; 2028 Attrs.addAttribute(llvm::Attribute::InAlloca); 2029 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2030 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2031 } 2032 2033 unsigned ArgNo = 0; 2034 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2035 E = FI.arg_end(); 2036 I != E; ++I, ++ArgNo) { 2037 QualType ParamType = I->type; 2038 const ABIArgInfo &AI = I->info; 2039 llvm::AttrBuilder Attrs; 2040 2041 // Add attribute for padding argument, if necessary. 2042 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2043 if (AI.getPaddingInReg()) { 2044 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2045 llvm::AttributeSet::get( 2046 getLLVMContext(), 2047 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2048 } 2049 } 2050 2051 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2052 // have the corresponding parameter variable. It doesn't make 2053 // sense to do it here because parameters are so messed up. 2054 switch (AI.getKind()) { 2055 case ABIArgInfo::Extend: 2056 if (AI.isSignExt()) 2057 Attrs.addAttribute(llvm::Attribute::SExt); 2058 else 2059 Attrs.addAttribute(llvm::Attribute::ZExt); 2060 LLVM_FALLTHROUGH; 2061 case ABIArgInfo::Direct: 2062 if (ArgNo == 0 && FI.isChainCall()) 2063 Attrs.addAttribute(llvm::Attribute::Nest); 2064 else if (AI.getInReg()) 2065 Attrs.addAttribute(llvm::Attribute::InReg); 2066 break; 2067 2068 case ABIArgInfo::Indirect: { 2069 if (AI.getInReg()) 2070 Attrs.addAttribute(llvm::Attribute::InReg); 2071 2072 if (AI.getIndirectByVal()) 2073 Attrs.addAttribute(llvm::Attribute::ByVal); 2074 2075 CharUnits Align = AI.getIndirectAlign(); 2076 2077 // In a byval argument, it is important that the required 2078 // alignment of the type is honored, as LLVM might be creating a 2079 // *new* stack object, and needs to know what alignment to give 2080 // it. (Sometimes it can deduce a sensible alignment on its own, 2081 // but not if clang decides it must emit a packed struct, or the 2082 // user specifies increased alignment requirements.) 2083 // 2084 // This is different from indirect *not* byval, where the object 2085 // exists already, and the align attribute is purely 2086 // informative. 2087 assert(!Align.isZero()); 2088 2089 // For now, only add this when we have a byval argument. 2090 // TODO: be less lazy about updating test cases. 2091 if (AI.getIndirectByVal()) 2092 Attrs.addAlignmentAttr(Align.getQuantity()); 2093 2094 // byval disables readnone and readonly. 2095 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2096 .removeAttribute(llvm::Attribute::ReadNone); 2097 break; 2098 } 2099 case ABIArgInfo::Ignore: 2100 case ABIArgInfo::Expand: 2101 case ABIArgInfo::CoerceAndExpand: 2102 break; 2103 2104 case ABIArgInfo::InAlloca: 2105 // inalloca disables readnone and readonly. 2106 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2107 .removeAttribute(llvm::Attribute::ReadNone); 2108 continue; 2109 } 2110 2111 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2112 QualType PTy = RefTy->getPointeeType(); 2113 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2114 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2115 .getQuantity()); 2116 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2117 !CodeGenOpts.NullPointerIsValid) 2118 Attrs.addAttribute(llvm::Attribute::NonNull); 2119 } 2120 2121 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2122 case ParameterABI::Ordinary: 2123 break; 2124 2125 case ParameterABI::SwiftIndirectResult: { 2126 // Add 'sret' if we haven't already used it for something, but 2127 // only if the result is void. 2128 if (!hasUsedSRet && RetTy->isVoidType()) { 2129 Attrs.addAttribute(llvm::Attribute::StructRet); 2130 hasUsedSRet = true; 2131 } 2132 2133 // Add 'noalias' in either case. 2134 Attrs.addAttribute(llvm::Attribute::NoAlias); 2135 2136 // Add 'dereferenceable' and 'alignment'. 2137 auto PTy = ParamType->getPointeeType(); 2138 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2139 auto info = getContext().getTypeInfoInChars(PTy); 2140 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2141 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 2142 info.second.getQuantity())); 2143 } 2144 break; 2145 } 2146 2147 case ParameterABI::SwiftErrorResult: 2148 Attrs.addAttribute(llvm::Attribute::SwiftError); 2149 break; 2150 2151 case ParameterABI::SwiftContext: 2152 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2153 break; 2154 } 2155 2156 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2157 Attrs.addAttribute(llvm::Attribute::NoCapture); 2158 2159 if (Attrs.hasAttributes()) { 2160 unsigned FirstIRArg, NumIRArgs; 2161 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2162 for (unsigned i = 0; i < NumIRArgs; i++) 2163 ArgAttrs[FirstIRArg + i] = 2164 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2165 } 2166 } 2167 assert(ArgNo == FI.arg_size()); 2168 2169 AttrList = llvm::AttributeList::get( 2170 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2171 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2172 } 2173 2174 /// An argument came in as a promoted argument; demote it back to its 2175 /// declared type. 2176 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2177 const VarDecl *var, 2178 llvm::Value *value) { 2179 llvm::Type *varType = CGF.ConvertType(var->getType()); 2180 2181 // This can happen with promotions that actually don't change the 2182 // underlying type, like the enum promotions. 2183 if (value->getType() == varType) return value; 2184 2185 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2186 && "unexpected promotion type"); 2187 2188 if (isa<llvm::IntegerType>(varType)) 2189 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2190 2191 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2192 } 2193 2194 /// Returns the attribute (either parameter attribute, or function 2195 /// attribute), which declares argument ArgNo to be non-null. 2196 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2197 QualType ArgType, unsigned ArgNo) { 2198 // FIXME: __attribute__((nonnull)) can also be applied to: 2199 // - references to pointers, where the pointee is known to be 2200 // nonnull (apparently a Clang extension) 2201 // - transparent unions containing pointers 2202 // In the former case, LLVM IR cannot represent the constraint. In 2203 // the latter case, we have no guarantee that the transparent union 2204 // is in fact passed as a pointer. 2205 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2206 return nullptr; 2207 // First, check attribute on parameter itself. 2208 if (PVD) { 2209 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2210 return ParmNNAttr; 2211 } 2212 // Check function attributes. 2213 if (!FD) 2214 return nullptr; 2215 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2216 if (NNAttr->isNonNull(ArgNo)) 2217 return NNAttr; 2218 } 2219 return nullptr; 2220 } 2221 2222 namespace { 2223 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2224 Address Temp; 2225 Address Arg; 2226 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2227 void Emit(CodeGenFunction &CGF, Flags flags) override { 2228 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2229 CGF.Builder.CreateStore(errorValue, Arg); 2230 } 2231 }; 2232 } 2233 2234 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2235 llvm::Function *Fn, 2236 const FunctionArgList &Args) { 2237 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2238 // Naked functions don't have prologues. 2239 return; 2240 2241 // If this is an implicit-return-zero function, go ahead and 2242 // initialize the return value. TODO: it might be nice to have 2243 // a more general mechanism for this that didn't require synthesized 2244 // return statements. 2245 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2246 if (FD->hasImplicitReturnZero()) { 2247 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2248 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2249 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2250 Builder.CreateStore(Zero, ReturnValue); 2251 } 2252 } 2253 2254 // FIXME: We no longer need the types from FunctionArgList; lift up and 2255 // simplify. 2256 2257 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2258 // Flattened function arguments. 2259 SmallVector<llvm::Value *, 16> FnArgs; 2260 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2261 for (auto &Arg : Fn->args()) { 2262 FnArgs.push_back(&Arg); 2263 } 2264 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2265 2266 // If we're using inalloca, all the memory arguments are GEPs off of the last 2267 // parameter, which is a pointer to the complete memory area. 2268 Address ArgStruct = Address::invalid(); 2269 const llvm::StructLayout *ArgStructLayout = nullptr; 2270 if (IRFunctionArgs.hasInallocaArg()) { 2271 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 2272 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2273 FI.getArgStructAlignment()); 2274 2275 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2276 } 2277 2278 // Name the struct return parameter. 2279 if (IRFunctionArgs.hasSRetArg()) { 2280 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2281 AI->setName("agg.result"); 2282 AI->addAttr(llvm::Attribute::NoAlias); 2283 } 2284 2285 // Track if we received the parameter as a pointer (indirect, byval, or 2286 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2287 // into a local alloca for us. 2288 SmallVector<ParamValue, 16> ArgVals; 2289 ArgVals.reserve(Args.size()); 2290 2291 // Create a pointer value for every parameter declaration. This usually 2292 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2293 // any cleanups or do anything that might unwind. We do that separately, so 2294 // we can push the cleanups in the correct order for the ABI. 2295 assert(FI.arg_size() == Args.size() && 2296 "Mismatch between function signature & arguments."); 2297 unsigned ArgNo = 0; 2298 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2299 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2300 i != e; ++i, ++info_it, ++ArgNo) { 2301 const VarDecl *Arg = *i; 2302 const ABIArgInfo &ArgI = info_it->info; 2303 2304 bool isPromoted = 2305 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2306 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2307 // the parameter is promoted. In this case we convert to 2308 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2309 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2310 assert(hasScalarEvaluationKind(Ty) == 2311 hasScalarEvaluationKind(Arg->getType())); 2312 2313 unsigned FirstIRArg, NumIRArgs; 2314 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2315 2316 switch (ArgI.getKind()) { 2317 case ABIArgInfo::InAlloca: { 2318 assert(NumIRArgs == 0); 2319 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2320 CharUnits FieldOffset = 2321 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 2322 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 2323 Arg->getName()); 2324 ArgVals.push_back(ParamValue::forIndirect(V)); 2325 break; 2326 } 2327 2328 case ABIArgInfo::Indirect: { 2329 assert(NumIRArgs == 1); 2330 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2331 2332 if (!hasScalarEvaluationKind(Ty)) { 2333 // Aggregates and complex variables are accessed by reference. All we 2334 // need to do is realign the value, if requested. 2335 Address V = ParamAddr; 2336 if (ArgI.getIndirectRealign()) { 2337 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2338 2339 // Copy from the incoming argument pointer to the temporary with the 2340 // appropriate alignment. 2341 // 2342 // FIXME: We should have a common utility for generating an aggregate 2343 // copy. 2344 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2345 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2346 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2347 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2348 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2349 V = AlignedTemp; 2350 } 2351 ArgVals.push_back(ParamValue::forIndirect(V)); 2352 } else { 2353 // Load scalar value from indirect argument. 2354 llvm::Value *V = 2355 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2356 2357 if (isPromoted) 2358 V = emitArgumentDemotion(*this, Arg, V); 2359 ArgVals.push_back(ParamValue::forDirect(V)); 2360 } 2361 break; 2362 } 2363 2364 case ABIArgInfo::Extend: 2365 case ABIArgInfo::Direct: { 2366 2367 // If we have the trivial case, handle it with no muss and fuss. 2368 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2369 ArgI.getCoerceToType() == ConvertType(Ty) && 2370 ArgI.getDirectOffset() == 0) { 2371 assert(NumIRArgs == 1); 2372 llvm::Value *V = FnArgs[FirstIRArg]; 2373 auto AI = cast<llvm::Argument>(V); 2374 2375 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2376 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2377 PVD->getFunctionScopeIndex()) && 2378 !CGM.getCodeGenOpts().NullPointerIsValid) 2379 AI->addAttr(llvm::Attribute::NonNull); 2380 2381 QualType OTy = PVD->getOriginalType(); 2382 if (const auto *ArrTy = 2383 getContext().getAsConstantArrayType(OTy)) { 2384 // A C99 array parameter declaration with the static keyword also 2385 // indicates dereferenceability, and if the size is constant we can 2386 // use the dereferenceable attribute (which requires the size in 2387 // bytes). 2388 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2389 QualType ETy = ArrTy->getElementType(); 2390 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2391 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2392 ArrSize) { 2393 llvm::AttrBuilder Attrs; 2394 Attrs.addDereferenceableAttr( 2395 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2396 AI->addAttrs(Attrs); 2397 } else if (getContext().getTargetAddressSpace(ETy) == 0 && 2398 !CGM.getCodeGenOpts().NullPointerIsValid) { 2399 AI->addAttr(llvm::Attribute::NonNull); 2400 } 2401 } 2402 } else if (const auto *ArrTy = 2403 getContext().getAsVariableArrayType(OTy)) { 2404 // For C99 VLAs with the static keyword, we don't know the size so 2405 // we can't use the dereferenceable attribute, but in addrspace(0) 2406 // we know that it must be nonnull. 2407 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2408 !getContext().getTargetAddressSpace(ArrTy->getElementType()) && 2409 !CGM.getCodeGenOpts().NullPointerIsValid) 2410 AI->addAttr(llvm::Attribute::NonNull); 2411 } 2412 2413 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2414 if (!AVAttr) 2415 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2416 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2417 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2418 // If alignment-assumption sanitizer is enabled, we do *not* add 2419 // alignment attribute here, but emit normal alignment assumption, 2420 // so the UBSAN check could function. 2421 llvm::Value *AlignmentValue = 2422 EmitScalarExpr(AVAttr->getAlignment()); 2423 llvm::ConstantInt *AlignmentCI = 2424 cast<llvm::ConstantInt>(AlignmentValue); 2425 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), 2426 +llvm::Value::MaximumAlignment); 2427 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2428 } 2429 } 2430 2431 if (Arg->getType().isRestrictQualified()) 2432 AI->addAttr(llvm::Attribute::NoAlias); 2433 2434 // LLVM expects swifterror parameters to be used in very restricted 2435 // ways. Copy the value into a less-restricted temporary. 2436 if (FI.getExtParameterInfo(ArgNo).getABI() 2437 == ParameterABI::SwiftErrorResult) { 2438 QualType pointeeTy = Ty->getPointeeType(); 2439 assert(pointeeTy->isPointerType()); 2440 Address temp = 2441 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2442 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2443 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2444 Builder.CreateStore(incomingErrorValue, temp); 2445 V = temp.getPointer(); 2446 2447 // Push a cleanup to copy the value back at the end of the function. 2448 // The convention does not guarantee that the value will be written 2449 // back if the function exits with an unwind exception. 2450 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2451 } 2452 2453 // Ensure the argument is the correct type. 2454 if (V->getType() != ArgI.getCoerceToType()) 2455 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2456 2457 if (isPromoted) 2458 V = emitArgumentDemotion(*this, Arg, V); 2459 2460 // Because of merging of function types from multiple decls it is 2461 // possible for the type of an argument to not match the corresponding 2462 // type in the function type. Since we are codegening the callee 2463 // in here, add a cast to the argument type. 2464 llvm::Type *LTy = ConvertType(Arg->getType()); 2465 if (V->getType() != LTy) 2466 V = Builder.CreateBitCast(V, LTy); 2467 2468 ArgVals.push_back(ParamValue::forDirect(V)); 2469 break; 2470 } 2471 2472 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2473 Arg->getName()); 2474 2475 // Pointer to store into. 2476 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2477 2478 // Fast-isel and the optimizer generally like scalar values better than 2479 // FCAs, so we flatten them if this is safe to do for this argument. 2480 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2481 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2482 STy->getNumElements() > 1) { 2483 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2484 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2485 llvm::Type *DstTy = Ptr.getElementType(); 2486 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2487 2488 Address AddrToStoreInto = Address::invalid(); 2489 if (SrcSize <= DstSize) { 2490 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2491 } else { 2492 AddrToStoreInto = 2493 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2494 } 2495 2496 assert(STy->getNumElements() == NumIRArgs); 2497 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2498 auto AI = FnArgs[FirstIRArg + i]; 2499 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2500 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2501 Address EltPtr = 2502 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2503 Builder.CreateStore(AI, EltPtr); 2504 } 2505 2506 if (SrcSize > DstSize) { 2507 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2508 } 2509 2510 } else { 2511 // Simple case, just do a coerced store of the argument into the alloca. 2512 assert(NumIRArgs == 1); 2513 auto AI = FnArgs[FirstIRArg]; 2514 AI->setName(Arg->getName() + ".coerce"); 2515 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2516 } 2517 2518 // Match to what EmitParmDecl is expecting for this type. 2519 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2520 llvm::Value *V = 2521 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2522 if (isPromoted) 2523 V = emitArgumentDemotion(*this, Arg, V); 2524 ArgVals.push_back(ParamValue::forDirect(V)); 2525 } else { 2526 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2527 } 2528 break; 2529 } 2530 2531 case ABIArgInfo::CoerceAndExpand: { 2532 // Reconstruct into a temporary. 2533 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2534 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2535 2536 auto coercionType = ArgI.getCoerceAndExpandType(); 2537 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2538 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2539 2540 unsigned argIndex = FirstIRArg; 2541 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2542 llvm::Type *eltType = coercionType->getElementType(i); 2543 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2544 continue; 2545 2546 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); 2547 auto elt = FnArgs[argIndex++]; 2548 Builder.CreateStore(elt, eltAddr); 2549 } 2550 assert(argIndex == FirstIRArg + NumIRArgs); 2551 break; 2552 } 2553 2554 case ABIArgInfo::Expand: { 2555 // If this structure was expanded into multiple arguments then 2556 // we need to create a temporary and reconstruct it from the 2557 // arguments. 2558 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2559 LValue LV = MakeAddrLValue(Alloca, Ty); 2560 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2561 2562 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2563 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2564 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2565 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2566 auto AI = FnArgs[FirstIRArg + i]; 2567 AI->setName(Arg->getName() + "." + Twine(i)); 2568 } 2569 break; 2570 } 2571 2572 case ABIArgInfo::Ignore: 2573 assert(NumIRArgs == 0); 2574 // Initialize the local variable appropriately. 2575 if (!hasScalarEvaluationKind(Ty)) { 2576 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2577 } else { 2578 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2579 ArgVals.push_back(ParamValue::forDirect(U)); 2580 } 2581 break; 2582 } 2583 } 2584 2585 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2586 for (int I = Args.size() - 1; I >= 0; --I) 2587 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2588 } else { 2589 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2590 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2591 } 2592 } 2593 2594 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2595 while (insn->use_empty()) { 2596 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2597 if (!bitcast) return; 2598 2599 // This is "safe" because we would have used a ConstantExpr otherwise. 2600 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2601 bitcast->eraseFromParent(); 2602 } 2603 } 2604 2605 /// Try to emit a fused autorelease of a return result. 2606 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2607 llvm::Value *result) { 2608 // We must be immediately followed the cast. 2609 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2610 if (BB->empty()) return nullptr; 2611 if (&BB->back() != result) return nullptr; 2612 2613 llvm::Type *resultType = result->getType(); 2614 2615 // result is in a BasicBlock and is therefore an Instruction. 2616 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2617 2618 SmallVector<llvm::Instruction *, 4> InstsToKill; 2619 2620 // Look for: 2621 // %generator = bitcast %type1* %generator2 to %type2* 2622 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2623 // We would have emitted this as a constant if the operand weren't 2624 // an Instruction. 2625 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2626 2627 // Require the generator to be immediately followed by the cast. 2628 if (generator->getNextNode() != bitcast) 2629 return nullptr; 2630 2631 InstsToKill.push_back(bitcast); 2632 } 2633 2634 // Look for: 2635 // %generator = call i8* @objc_retain(i8* %originalResult) 2636 // or 2637 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2638 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2639 if (!call) return nullptr; 2640 2641 bool doRetainAutorelease; 2642 2643 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2644 doRetainAutorelease = true; 2645 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2646 .objc_retainAutoreleasedReturnValue) { 2647 doRetainAutorelease = false; 2648 2649 // If we emitted an assembly marker for this call (and the 2650 // ARCEntrypoints field should have been set if so), go looking 2651 // for that call. If we can't find it, we can't do this 2652 // optimization. But it should always be the immediately previous 2653 // instruction, unless we needed bitcasts around the call. 2654 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2655 llvm::Instruction *prev = call->getPrevNode(); 2656 assert(prev); 2657 if (isa<llvm::BitCastInst>(prev)) { 2658 prev = prev->getPrevNode(); 2659 assert(prev); 2660 } 2661 assert(isa<llvm::CallInst>(prev)); 2662 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2663 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2664 InstsToKill.push_back(prev); 2665 } 2666 } else { 2667 return nullptr; 2668 } 2669 2670 result = call->getArgOperand(0); 2671 InstsToKill.push_back(call); 2672 2673 // Keep killing bitcasts, for sanity. Note that we no longer care 2674 // about precise ordering as long as there's exactly one use. 2675 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2676 if (!bitcast->hasOneUse()) break; 2677 InstsToKill.push_back(bitcast); 2678 result = bitcast->getOperand(0); 2679 } 2680 2681 // Delete all the unnecessary instructions, from latest to earliest. 2682 for (auto *I : InstsToKill) 2683 I->eraseFromParent(); 2684 2685 // Do the fused retain/autorelease if we were asked to. 2686 if (doRetainAutorelease) 2687 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2688 2689 // Cast back to the result type. 2690 return CGF.Builder.CreateBitCast(result, resultType); 2691 } 2692 2693 /// If this is a +1 of the value of an immutable 'self', remove it. 2694 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2695 llvm::Value *result) { 2696 // This is only applicable to a method with an immutable 'self'. 2697 const ObjCMethodDecl *method = 2698 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2699 if (!method) return nullptr; 2700 const VarDecl *self = method->getSelfDecl(); 2701 if (!self->getType().isConstQualified()) return nullptr; 2702 2703 // Look for a retain call. 2704 llvm::CallInst *retainCall = 2705 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2706 if (!retainCall || 2707 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2708 return nullptr; 2709 2710 // Look for an ordinary load of 'self'. 2711 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2712 llvm::LoadInst *load = 2713 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2714 if (!load || load->isAtomic() || load->isVolatile() || 2715 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2716 return nullptr; 2717 2718 // Okay! Burn it all down. This relies for correctness on the 2719 // assumption that the retain is emitted as part of the return and 2720 // that thereafter everything is used "linearly". 2721 llvm::Type *resultType = result->getType(); 2722 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2723 assert(retainCall->use_empty()); 2724 retainCall->eraseFromParent(); 2725 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2726 2727 return CGF.Builder.CreateBitCast(load, resultType); 2728 } 2729 2730 /// Emit an ARC autorelease of the result of a function. 2731 /// 2732 /// \return the value to actually return from the function 2733 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2734 llvm::Value *result) { 2735 // If we're returning 'self', kill the initial retain. This is a 2736 // heuristic attempt to "encourage correctness" in the really unfortunate 2737 // case where we have a return of self during a dealloc and we desperately 2738 // need to avoid the possible autorelease. 2739 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2740 return self; 2741 2742 // At -O0, try to emit a fused retain/autorelease. 2743 if (CGF.shouldUseFusedARCCalls()) 2744 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2745 return fused; 2746 2747 return CGF.EmitARCAutoreleaseReturnValue(result); 2748 } 2749 2750 /// Heuristically search for a dominating store to the return-value slot. 2751 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2752 // Check if a User is a store which pointerOperand is the ReturnValue. 2753 // We are looking for stores to the ReturnValue, not for stores of the 2754 // ReturnValue to some other location. 2755 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2756 auto *SI = dyn_cast<llvm::StoreInst>(U); 2757 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2758 return nullptr; 2759 // These aren't actually possible for non-coerced returns, and we 2760 // only care about non-coerced returns on this code path. 2761 assert(!SI->isAtomic() && !SI->isVolatile()); 2762 return SI; 2763 }; 2764 // If there are multiple uses of the return-value slot, just check 2765 // for something immediately preceding the IP. Sometimes this can 2766 // happen with how we generate implicit-returns; it can also happen 2767 // with noreturn cleanups. 2768 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2769 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2770 if (IP->empty()) return nullptr; 2771 llvm::Instruction *I = &IP->back(); 2772 2773 // Skip lifetime markers 2774 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2775 IE = IP->rend(); 2776 II != IE; ++II) { 2777 if (llvm::IntrinsicInst *Intrinsic = 2778 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2779 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2780 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2781 ++II; 2782 if (II == IE) 2783 break; 2784 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2785 continue; 2786 } 2787 } 2788 I = &*II; 2789 break; 2790 } 2791 2792 return GetStoreIfValid(I); 2793 } 2794 2795 llvm::StoreInst *store = 2796 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2797 if (!store) return nullptr; 2798 2799 // Now do a first-and-dirty dominance check: just walk up the 2800 // single-predecessors chain from the current insertion point. 2801 llvm::BasicBlock *StoreBB = store->getParent(); 2802 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2803 while (IP != StoreBB) { 2804 if (!(IP = IP->getSinglePredecessor())) 2805 return nullptr; 2806 } 2807 2808 // Okay, the store's basic block dominates the insertion point; we 2809 // can do our thing. 2810 return store; 2811 } 2812 2813 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2814 bool EmitRetDbgLoc, 2815 SourceLocation EndLoc) { 2816 if (FI.isNoReturn()) { 2817 // Noreturn functions don't return. 2818 EmitUnreachable(EndLoc); 2819 return; 2820 } 2821 2822 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2823 // Naked functions don't have epilogues. 2824 Builder.CreateUnreachable(); 2825 return; 2826 } 2827 2828 // Functions with no result always return void. 2829 if (!ReturnValue.isValid()) { 2830 Builder.CreateRetVoid(); 2831 return; 2832 } 2833 2834 llvm::DebugLoc RetDbgLoc; 2835 llvm::Value *RV = nullptr; 2836 QualType RetTy = FI.getReturnType(); 2837 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2838 2839 switch (RetAI.getKind()) { 2840 case ABIArgInfo::InAlloca: 2841 // Aggregrates get evaluated directly into the destination. Sometimes we 2842 // need to return the sret value in a register, though. 2843 assert(hasAggregateEvaluationKind(RetTy)); 2844 if (RetAI.getInAllocaSRet()) { 2845 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2846 --EI; 2847 llvm::Value *ArgStruct = &*EI; 2848 llvm::Value *SRet = Builder.CreateStructGEP( 2849 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2850 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2851 } 2852 break; 2853 2854 case ABIArgInfo::Indirect: { 2855 auto AI = CurFn->arg_begin(); 2856 if (RetAI.isSRetAfterThis()) 2857 ++AI; 2858 switch (getEvaluationKind(RetTy)) { 2859 case TEK_Complex: { 2860 ComplexPairTy RT = 2861 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2862 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2863 /*isInit*/ true); 2864 break; 2865 } 2866 case TEK_Aggregate: 2867 // Do nothing; aggregrates get evaluated directly into the destination. 2868 break; 2869 case TEK_Scalar: 2870 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2871 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2872 /*isInit*/ true); 2873 break; 2874 } 2875 break; 2876 } 2877 2878 case ABIArgInfo::Extend: 2879 case ABIArgInfo::Direct: 2880 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2881 RetAI.getDirectOffset() == 0) { 2882 // The internal return value temp always will have pointer-to-return-type 2883 // type, just do a load. 2884 2885 // If there is a dominating store to ReturnValue, we can elide 2886 // the load, zap the store, and usually zap the alloca. 2887 if (llvm::StoreInst *SI = 2888 findDominatingStoreToReturnValue(*this)) { 2889 // Reuse the debug location from the store unless there is 2890 // cleanup code to be emitted between the store and return 2891 // instruction. 2892 if (EmitRetDbgLoc && !AutoreleaseResult) 2893 RetDbgLoc = SI->getDebugLoc(); 2894 // Get the stored value and nuke the now-dead store. 2895 RV = SI->getValueOperand(); 2896 SI->eraseFromParent(); 2897 2898 // If that was the only use of the return value, nuke it as well now. 2899 auto returnValueInst = ReturnValue.getPointer(); 2900 if (returnValueInst->use_empty()) { 2901 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2902 alloca->eraseFromParent(); 2903 ReturnValue = Address::invalid(); 2904 } 2905 } 2906 2907 // Otherwise, we have to do a simple load. 2908 } else { 2909 RV = Builder.CreateLoad(ReturnValue); 2910 } 2911 } else { 2912 // If the value is offset in memory, apply the offset now. 2913 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2914 2915 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2916 } 2917 2918 // In ARC, end functions that return a retainable type with a call 2919 // to objc_autoreleaseReturnValue. 2920 if (AutoreleaseResult) { 2921 #ifndef NDEBUG 2922 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2923 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2924 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2925 // CurCodeDecl or BlockInfo. 2926 QualType RT; 2927 2928 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2929 RT = FD->getReturnType(); 2930 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2931 RT = MD->getReturnType(); 2932 else if (isa<BlockDecl>(CurCodeDecl)) 2933 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2934 else 2935 llvm_unreachable("Unexpected function/method type"); 2936 2937 assert(getLangOpts().ObjCAutoRefCount && 2938 !FI.isReturnsRetained() && 2939 RT->isObjCRetainableType()); 2940 #endif 2941 RV = emitAutoreleaseOfResult(*this, RV); 2942 } 2943 2944 break; 2945 2946 case ABIArgInfo::Ignore: 2947 break; 2948 2949 case ABIArgInfo::CoerceAndExpand: { 2950 auto coercionType = RetAI.getCoerceAndExpandType(); 2951 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2952 2953 // Load all of the coerced elements out into results. 2954 llvm::SmallVector<llvm::Value*, 4> results; 2955 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2956 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2957 auto coercedEltType = coercionType->getElementType(i); 2958 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2959 continue; 2960 2961 auto eltAddr = Builder.CreateStructGEP(addr, i, layout); 2962 auto elt = Builder.CreateLoad(eltAddr); 2963 results.push_back(elt); 2964 } 2965 2966 // If we have one result, it's the single direct result type. 2967 if (results.size() == 1) { 2968 RV = results[0]; 2969 2970 // Otherwise, we need to make a first-class aggregate. 2971 } else { 2972 // Construct a return type that lacks padding elements. 2973 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2974 2975 RV = llvm::UndefValue::get(returnType); 2976 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2977 RV = Builder.CreateInsertValue(RV, results[i], i); 2978 } 2979 } 2980 break; 2981 } 2982 2983 case ABIArgInfo::Expand: 2984 llvm_unreachable("Invalid ABI kind for return argument"); 2985 } 2986 2987 llvm::Instruction *Ret; 2988 if (RV) { 2989 EmitReturnValueCheck(RV); 2990 Ret = Builder.CreateRet(RV); 2991 } else { 2992 Ret = Builder.CreateRetVoid(); 2993 } 2994 2995 if (RetDbgLoc) 2996 Ret->setDebugLoc(std::move(RetDbgLoc)); 2997 } 2998 2999 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3000 // A current decl may not be available when emitting vtable thunks. 3001 if (!CurCodeDecl) 3002 return; 3003 3004 ReturnsNonNullAttr *RetNNAttr = nullptr; 3005 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3006 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3007 3008 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3009 return; 3010 3011 // Prefer the returns_nonnull attribute if it's present. 3012 SourceLocation AttrLoc; 3013 SanitizerMask CheckKind; 3014 SanitizerHandler Handler; 3015 if (RetNNAttr) { 3016 assert(!requiresReturnValueNullabilityCheck() && 3017 "Cannot check nullability and the nonnull attribute"); 3018 AttrLoc = RetNNAttr->getLocation(); 3019 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3020 Handler = SanitizerHandler::NonnullReturn; 3021 } else { 3022 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3023 if (auto *TSI = DD->getTypeSourceInfo()) 3024 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) 3025 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3026 CheckKind = SanitizerKind::NullabilityReturn; 3027 Handler = SanitizerHandler::NullabilityReturn; 3028 } 3029 3030 SanitizerScope SanScope(this); 3031 3032 // Make sure the "return" source location is valid. If we're checking a 3033 // nullability annotation, make sure the preconditions for the check are met. 3034 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3035 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3036 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3037 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3038 if (requiresReturnValueNullabilityCheck()) 3039 CanNullCheck = 3040 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3041 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3042 EmitBlock(Check); 3043 3044 // Now do the null check. 3045 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3046 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3047 llvm::Value *DynamicData[] = {SLocPtr}; 3048 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3049 3050 EmitBlock(NoCheck); 3051 3052 #ifndef NDEBUG 3053 // The return location should not be used after the check has been emitted. 3054 ReturnLocation = Address::invalid(); 3055 #endif 3056 } 3057 3058 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3059 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3060 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3061 } 3062 3063 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3064 QualType Ty) { 3065 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3066 // placeholders. 3067 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3068 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3069 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3070 3071 // FIXME: When we generate this IR in one pass, we shouldn't need 3072 // this win32-specific alignment hack. 3073 CharUnits Align = CharUnits::fromQuantity(4); 3074 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3075 3076 return AggValueSlot::forAddr(Address(Placeholder, Align), 3077 Ty.getQualifiers(), 3078 AggValueSlot::IsNotDestructed, 3079 AggValueSlot::DoesNotNeedGCBarriers, 3080 AggValueSlot::IsNotAliased, 3081 AggValueSlot::DoesNotOverlap); 3082 } 3083 3084 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3085 const VarDecl *param, 3086 SourceLocation loc) { 3087 // StartFunction converted the ABI-lowered parameter(s) into a 3088 // local alloca. We need to turn that into an r-value suitable 3089 // for EmitCall. 3090 Address local = GetAddrOfLocalVar(param); 3091 3092 QualType type = param->getType(); 3093 3094 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3095 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3096 } 3097 3098 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3099 // but the argument needs to be the original pointer. 3100 if (type->isReferenceType()) { 3101 args.add(RValue::get(Builder.CreateLoad(local)), type); 3102 3103 // In ARC, move out of consumed arguments so that the release cleanup 3104 // entered by StartFunction doesn't cause an over-release. This isn't 3105 // optimal -O0 code generation, but it should get cleaned up when 3106 // optimization is enabled. This also assumes that delegate calls are 3107 // performed exactly once for a set of arguments, but that should be safe. 3108 } else if (getLangOpts().ObjCAutoRefCount && 3109 param->hasAttr<NSConsumedAttr>() && 3110 type->isObjCRetainableType()) { 3111 llvm::Value *ptr = Builder.CreateLoad(local); 3112 auto null = 3113 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3114 Builder.CreateStore(null, local); 3115 args.add(RValue::get(ptr), type); 3116 3117 // For the most part, we just need to load the alloca, except that 3118 // aggregate r-values are actually pointers to temporaries. 3119 } else { 3120 args.add(convertTempToRValue(local, type, loc), type); 3121 } 3122 3123 // Deactivate the cleanup for the callee-destructed param that was pushed. 3124 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3125 type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3126 type.isDestructedType()) { 3127 EHScopeStack::stable_iterator cleanup = 3128 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3129 assert(cleanup.isValid() && 3130 "cleanup for callee-destructed param not recorded"); 3131 // This unreachable is a temporary marker which will be removed later. 3132 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3133 args.addArgCleanupDeactivation(cleanup, isActive); 3134 } 3135 } 3136 3137 static bool isProvablyNull(llvm::Value *addr) { 3138 return isa<llvm::ConstantPointerNull>(addr); 3139 } 3140 3141 /// Emit the actual writing-back of a writeback. 3142 static void emitWriteback(CodeGenFunction &CGF, 3143 const CallArgList::Writeback &writeback) { 3144 const LValue &srcLV = writeback.Source; 3145 Address srcAddr = srcLV.getAddress(); 3146 assert(!isProvablyNull(srcAddr.getPointer()) && 3147 "shouldn't have writeback for provably null argument"); 3148 3149 llvm::BasicBlock *contBB = nullptr; 3150 3151 // If the argument wasn't provably non-null, we need to null check 3152 // before doing the store. 3153 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3154 CGF.CGM.getDataLayout()); 3155 if (!provablyNonNull) { 3156 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3157 contBB = CGF.createBasicBlock("icr.done"); 3158 3159 llvm::Value *isNull = 3160 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3161 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3162 CGF.EmitBlock(writebackBB); 3163 } 3164 3165 // Load the value to writeback. 3166 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3167 3168 // Cast it back, in case we're writing an id to a Foo* or something. 3169 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3170 "icr.writeback-cast"); 3171 3172 // Perform the writeback. 3173 3174 // If we have a "to use" value, it's something we need to emit a use 3175 // of. This has to be carefully threaded in: if it's done after the 3176 // release it's potentially undefined behavior (and the optimizer 3177 // will ignore it), and if it happens before the retain then the 3178 // optimizer could move the release there. 3179 if (writeback.ToUse) { 3180 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3181 3182 // Retain the new value. No need to block-copy here: the block's 3183 // being passed up the stack. 3184 value = CGF.EmitARCRetainNonBlock(value); 3185 3186 // Emit the intrinsic use here. 3187 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3188 3189 // Load the old value (primitively). 3190 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3191 3192 // Put the new value in place (primitively). 3193 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3194 3195 // Release the old value. 3196 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3197 3198 // Otherwise, we can just do a normal lvalue store. 3199 } else { 3200 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3201 } 3202 3203 // Jump to the continuation block. 3204 if (!provablyNonNull) 3205 CGF.EmitBlock(contBB); 3206 } 3207 3208 static void emitWritebacks(CodeGenFunction &CGF, 3209 const CallArgList &args) { 3210 for (const auto &I : args.writebacks()) 3211 emitWriteback(CGF, I); 3212 } 3213 3214 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3215 const CallArgList &CallArgs) { 3216 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3217 CallArgs.getCleanupsToDeactivate(); 3218 // Iterate in reverse to increase the likelihood of popping the cleanup. 3219 for (const auto &I : llvm::reverse(Cleanups)) { 3220 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3221 I.IsActiveIP->eraseFromParent(); 3222 } 3223 } 3224 3225 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3226 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3227 if (uop->getOpcode() == UO_AddrOf) 3228 return uop->getSubExpr(); 3229 return nullptr; 3230 } 3231 3232 /// Emit an argument that's being passed call-by-writeback. That is, 3233 /// we are passing the address of an __autoreleased temporary; it 3234 /// might be copy-initialized with the current value of the given 3235 /// address, but it will definitely be copied out of after the call. 3236 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3237 const ObjCIndirectCopyRestoreExpr *CRE) { 3238 LValue srcLV; 3239 3240 // Make an optimistic effort to emit the address as an l-value. 3241 // This can fail if the argument expression is more complicated. 3242 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3243 srcLV = CGF.EmitLValue(lvExpr); 3244 3245 // Otherwise, just emit it as a scalar. 3246 } else { 3247 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3248 3249 QualType srcAddrType = 3250 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3251 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3252 } 3253 Address srcAddr = srcLV.getAddress(); 3254 3255 // The dest and src types don't necessarily match in LLVM terms 3256 // because of the crazy ObjC compatibility rules. 3257 3258 llvm::PointerType *destType = 3259 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3260 3261 // If the address is a constant null, just pass the appropriate null. 3262 if (isProvablyNull(srcAddr.getPointer())) { 3263 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3264 CRE->getType()); 3265 return; 3266 } 3267 3268 // Create the temporary. 3269 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3270 CGF.getPointerAlign(), 3271 "icr.temp"); 3272 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3273 // and that cleanup will be conditional if we can't prove that the l-value 3274 // isn't null, so we need to register a dominating point so that the cleanups 3275 // system will make valid IR. 3276 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3277 3278 // Zero-initialize it if we're not doing a copy-initialization. 3279 bool shouldCopy = CRE->shouldCopy(); 3280 if (!shouldCopy) { 3281 llvm::Value *null = 3282 llvm::ConstantPointerNull::get( 3283 cast<llvm::PointerType>(destType->getElementType())); 3284 CGF.Builder.CreateStore(null, temp); 3285 } 3286 3287 llvm::BasicBlock *contBB = nullptr; 3288 llvm::BasicBlock *originBB = nullptr; 3289 3290 // If the address is *not* known to be non-null, we need to switch. 3291 llvm::Value *finalArgument; 3292 3293 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3294 CGF.CGM.getDataLayout()); 3295 if (provablyNonNull) { 3296 finalArgument = temp.getPointer(); 3297 } else { 3298 llvm::Value *isNull = 3299 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3300 3301 finalArgument = CGF.Builder.CreateSelect(isNull, 3302 llvm::ConstantPointerNull::get(destType), 3303 temp.getPointer(), "icr.argument"); 3304 3305 // If we need to copy, then the load has to be conditional, which 3306 // means we need control flow. 3307 if (shouldCopy) { 3308 originBB = CGF.Builder.GetInsertBlock(); 3309 contBB = CGF.createBasicBlock("icr.cont"); 3310 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3311 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3312 CGF.EmitBlock(copyBB); 3313 condEval.begin(CGF); 3314 } 3315 } 3316 3317 llvm::Value *valueToUse = nullptr; 3318 3319 // Perform a copy if necessary. 3320 if (shouldCopy) { 3321 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3322 assert(srcRV.isScalar()); 3323 3324 llvm::Value *src = srcRV.getScalarVal(); 3325 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3326 "icr.cast"); 3327 3328 // Use an ordinary store, not a store-to-lvalue. 3329 CGF.Builder.CreateStore(src, temp); 3330 3331 // If optimization is enabled, and the value was held in a 3332 // __strong variable, we need to tell the optimizer that this 3333 // value has to stay alive until we're doing the store back. 3334 // This is because the temporary is effectively unretained, 3335 // and so otherwise we can violate the high-level semantics. 3336 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3337 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3338 valueToUse = src; 3339 } 3340 } 3341 3342 // Finish the control flow if we needed it. 3343 if (shouldCopy && !provablyNonNull) { 3344 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3345 CGF.EmitBlock(contBB); 3346 3347 // Make a phi for the value to intrinsically use. 3348 if (valueToUse) { 3349 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3350 "icr.to-use"); 3351 phiToUse->addIncoming(valueToUse, copyBB); 3352 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3353 originBB); 3354 valueToUse = phiToUse; 3355 } 3356 3357 condEval.end(CGF); 3358 } 3359 3360 args.addWriteback(srcLV, temp, valueToUse); 3361 args.add(RValue::get(finalArgument), CRE->getType()); 3362 } 3363 3364 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3365 assert(!StackBase); 3366 3367 // Save the stack. 3368 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3369 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3370 } 3371 3372 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3373 if (StackBase) { 3374 // Restore the stack after the call. 3375 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3376 CGF.Builder.CreateCall(F, StackBase); 3377 } 3378 } 3379 3380 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3381 SourceLocation ArgLoc, 3382 AbstractCallee AC, 3383 unsigned ParmNum) { 3384 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3385 SanOpts.has(SanitizerKind::NullabilityArg))) 3386 return; 3387 3388 // The param decl may be missing in a variadic function. 3389 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3390 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3391 3392 // Prefer the nonnull attribute if it's present. 3393 const NonNullAttr *NNAttr = nullptr; 3394 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3395 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3396 3397 bool CanCheckNullability = false; 3398 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3399 auto Nullability = PVD->getType()->getNullability(getContext()); 3400 CanCheckNullability = Nullability && 3401 *Nullability == NullabilityKind::NonNull && 3402 PVD->getTypeSourceInfo(); 3403 } 3404 3405 if (!NNAttr && !CanCheckNullability) 3406 return; 3407 3408 SourceLocation AttrLoc; 3409 SanitizerMask CheckKind; 3410 SanitizerHandler Handler; 3411 if (NNAttr) { 3412 AttrLoc = NNAttr->getLocation(); 3413 CheckKind = SanitizerKind::NonnullAttribute; 3414 Handler = SanitizerHandler::NonnullArg; 3415 } else { 3416 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3417 CheckKind = SanitizerKind::NullabilityArg; 3418 Handler = SanitizerHandler::NullabilityArg; 3419 } 3420 3421 SanitizerScope SanScope(this); 3422 assert(RV.isScalar()); 3423 llvm::Value *V = RV.getScalarVal(); 3424 llvm::Value *Cond = 3425 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3426 llvm::Constant *StaticData[] = { 3427 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3428 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3429 }; 3430 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3431 } 3432 3433 void CodeGenFunction::EmitCallArgs( 3434 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3435 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3436 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3437 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3438 3439 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3440 // because arguments are destroyed left to right in the callee. As a special 3441 // case, there are certain language constructs that require left-to-right 3442 // evaluation, and in those cases we consider the evaluation order requirement 3443 // to trump the "destruction order is reverse construction order" guarantee. 3444 bool LeftToRight = 3445 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3446 ? Order == EvaluationOrder::ForceLeftToRight 3447 : Order != EvaluationOrder::ForceRightToLeft; 3448 3449 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3450 RValue EmittedArg) { 3451 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3452 return; 3453 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3454 if (PS == nullptr) 3455 return; 3456 3457 const auto &Context = getContext(); 3458 auto SizeTy = Context.getSizeType(); 3459 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3460 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3461 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3462 EmittedArg.getScalarVal(), 3463 /*IsDynamic=*/false); 3464 Args.add(RValue::get(V), SizeTy); 3465 // If we're emitting args in reverse, be sure to do so with 3466 // pass_object_size, as well. 3467 if (!LeftToRight) 3468 std::swap(Args.back(), *(&Args.back() - 1)); 3469 }; 3470 3471 // Insert a stack save if we're going to need any inalloca args. 3472 bool HasInAllocaArgs = false; 3473 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3474 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3475 I != E && !HasInAllocaArgs; ++I) 3476 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3477 if (HasInAllocaArgs) { 3478 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3479 Args.allocateArgumentMemory(*this); 3480 } 3481 } 3482 3483 // Evaluate each argument in the appropriate order. 3484 size_t CallArgsStart = Args.size(); 3485 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3486 unsigned Idx = LeftToRight ? I : E - I - 1; 3487 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3488 unsigned InitialArgSize = Args.size(); 3489 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3490 // the argument and parameter match or the objc method is parameterized. 3491 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3492 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3493 ArgTypes[Idx]) || 3494 (isa<ObjCMethodDecl>(AC.getDecl()) && 3495 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3496 "Argument and parameter types don't match"); 3497 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3498 // In particular, we depend on it being the last arg in Args, and the 3499 // objectsize bits depend on there only being one arg if !LeftToRight. 3500 assert(InitialArgSize + 1 == Args.size() && 3501 "The code below depends on only adding one arg per EmitCallArg"); 3502 (void)InitialArgSize; 3503 // Since pointer argument are never emitted as LValue, it is safe to emit 3504 // non-null argument check for r-value only. 3505 if (!Args.back().hasLValue()) { 3506 RValue RVArg = Args.back().getKnownRValue(); 3507 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3508 ParamsToSkip + Idx); 3509 // @llvm.objectsize should never have side-effects and shouldn't need 3510 // destruction/cleanups, so we can safely "emit" it after its arg, 3511 // regardless of right-to-leftness 3512 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3513 } 3514 } 3515 3516 if (!LeftToRight) { 3517 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3518 // IR function. 3519 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3520 } 3521 } 3522 3523 namespace { 3524 3525 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3526 DestroyUnpassedArg(Address Addr, QualType Ty) 3527 : Addr(Addr), Ty(Ty) {} 3528 3529 Address Addr; 3530 QualType Ty; 3531 3532 void Emit(CodeGenFunction &CGF, Flags flags) override { 3533 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3534 if (DtorKind == QualType::DK_cxx_destructor) { 3535 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3536 assert(!Dtor->isTrivial()); 3537 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3538 /*Delegating=*/false, Addr); 3539 } else { 3540 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3541 } 3542 } 3543 }; 3544 3545 struct DisableDebugLocationUpdates { 3546 CodeGenFunction &CGF; 3547 bool disabledDebugInfo; 3548 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3549 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3550 CGF.disableDebugInfo(); 3551 } 3552 ~DisableDebugLocationUpdates() { 3553 if (disabledDebugInfo) 3554 CGF.enableDebugInfo(); 3555 } 3556 }; 3557 3558 } // end anonymous namespace 3559 3560 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3561 if (!HasLV) 3562 return RV; 3563 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3564 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 3565 LV.isVolatile()); 3566 IsUsed = true; 3567 return RValue::getAggregate(Copy.getAddress()); 3568 } 3569 3570 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3571 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3572 if (!HasLV && RV.isScalar()) 3573 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true); 3574 else if (!HasLV && RV.isComplex()) 3575 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3576 else { 3577 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); 3578 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3579 // We assume that call args are never copied into subobjects. 3580 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 3581 HasLV ? LV.isVolatileQualified() 3582 : RV.isVolatileQualified()); 3583 } 3584 IsUsed = true; 3585 } 3586 3587 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3588 QualType type) { 3589 DisableDebugLocationUpdates Dis(*this, E); 3590 if (const ObjCIndirectCopyRestoreExpr *CRE 3591 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3592 assert(getLangOpts().ObjCAutoRefCount); 3593 return emitWritebackArg(*this, args, CRE); 3594 } 3595 3596 assert(type->isReferenceType() == E->isGLValue() && 3597 "reference binding to unmaterialized r-value!"); 3598 3599 if (E->isGLValue()) { 3600 assert(E->getObjectKind() == OK_Ordinary); 3601 return args.add(EmitReferenceBindingToExpr(E), type); 3602 } 3603 3604 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3605 3606 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3607 // However, we still have to push an EH-only cleanup in case we unwind before 3608 // we make it to the call. 3609 if (HasAggregateEvalKind && 3610 type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 3611 // If we're using inalloca, use the argument memory. Otherwise, use a 3612 // temporary. 3613 AggValueSlot Slot; 3614 if (args.isUsingInAlloca()) 3615 Slot = createPlaceholderSlot(*this, type); 3616 else 3617 Slot = CreateAggTemp(type, "agg.tmp"); 3618 3619 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3620 if (const auto *RD = type->getAsCXXRecordDecl()) 3621 DestroyedInCallee = RD->hasNonTrivialDestructor(); 3622 else 3623 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3624 3625 if (DestroyedInCallee) 3626 Slot.setExternallyDestructed(); 3627 3628 EmitAggExpr(E, Slot); 3629 RValue RV = Slot.asRValue(); 3630 args.add(RV, type); 3631 3632 if (DestroyedInCallee && NeedsEHCleanup) { 3633 // Create a no-op GEP between the placeholder and the cleanup so we can 3634 // RAUW it successfully. It also serves as a marker of the first 3635 // instruction where the cleanup is active. 3636 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3637 type); 3638 // This unreachable is a temporary marker which will be removed later. 3639 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3640 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3641 } 3642 return; 3643 } 3644 3645 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3646 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3647 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3648 assert(L.isSimple()); 3649 args.addUncopiedAggregate(L, type); 3650 return; 3651 } 3652 3653 args.add(EmitAnyExprToTemp(E), type); 3654 } 3655 3656 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3657 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3658 // implicitly widens null pointer constants that are arguments to varargs 3659 // functions to pointer-sized ints. 3660 if (!getTarget().getTriple().isOSWindows()) 3661 return Arg->getType(); 3662 3663 if (Arg->getType()->isIntegerType() && 3664 getContext().getTypeSize(Arg->getType()) < 3665 getContext().getTargetInfo().getPointerWidth(0) && 3666 Arg->isNullPointerConstant(getContext(), 3667 Expr::NPC_ValueDependentIsNotNull)) { 3668 return getContext().getIntPtrType(); 3669 } 3670 3671 return Arg->getType(); 3672 } 3673 3674 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3675 // optimizer it can aggressively ignore unwind edges. 3676 void 3677 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3678 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3679 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3680 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3681 CGM.getNoObjCARCExceptionsMetadata()); 3682 } 3683 3684 /// Emits a call to the given no-arguments nounwind runtime function. 3685 llvm::CallInst * 3686 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3687 const llvm::Twine &name) { 3688 return EmitNounwindRuntimeCall(callee, None, name); 3689 } 3690 3691 /// Emits a call to the given nounwind runtime function. 3692 llvm::CallInst * 3693 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3694 ArrayRef<llvm::Value*> args, 3695 const llvm::Twine &name) { 3696 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3697 call->setDoesNotThrow(); 3698 return call; 3699 } 3700 3701 /// Emits a simple call (never an invoke) to the given no-arguments 3702 /// runtime function. 3703 llvm::CallInst * 3704 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3705 const llvm::Twine &name) { 3706 return EmitRuntimeCall(callee, None, name); 3707 } 3708 3709 // Calls which may throw must have operand bundles indicating which funclet 3710 // they are nested within. 3711 SmallVector<llvm::OperandBundleDef, 1> 3712 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 3713 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3714 // There is no need for a funclet operand bundle if we aren't inside a 3715 // funclet. 3716 if (!CurrentFuncletPad) 3717 return BundleList; 3718 3719 // Skip intrinsics which cannot throw. 3720 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3721 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3722 return BundleList; 3723 3724 BundleList.emplace_back("funclet", CurrentFuncletPad); 3725 return BundleList; 3726 } 3727 3728 /// Emits a simple call (never an invoke) to the given runtime function. 3729 llvm::CallInst * 3730 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3731 ArrayRef<llvm::Value*> args, 3732 const llvm::Twine &name) { 3733 llvm::CallInst *call = 3734 Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name); 3735 call->setCallingConv(getRuntimeCC()); 3736 return call; 3737 } 3738 3739 /// Emits a call or invoke to the given noreturn runtime function. 3740 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3741 ArrayRef<llvm::Value*> args) { 3742 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3743 getBundlesForFunclet(callee); 3744 3745 if (getInvokeDest()) { 3746 llvm::InvokeInst *invoke = 3747 Builder.CreateInvoke(callee, 3748 getUnreachableBlock(), 3749 getInvokeDest(), 3750 args, 3751 BundleList); 3752 invoke->setDoesNotReturn(); 3753 invoke->setCallingConv(getRuntimeCC()); 3754 } else { 3755 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3756 call->setDoesNotReturn(); 3757 call->setCallingConv(getRuntimeCC()); 3758 Builder.CreateUnreachable(); 3759 } 3760 } 3761 3762 /// Emits a call or invoke instruction to the given nullary runtime function. 3763 llvm::CallBase *CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3764 const Twine &name) { 3765 return EmitRuntimeCallOrInvoke(callee, None, name); 3766 } 3767 3768 /// Emits a call or invoke instruction to the given runtime function. 3769 llvm::CallBase *CodeGenFunction::EmitRuntimeCallOrInvoke( 3770 llvm::Value *callee, ArrayRef<llvm::Value *> args, const Twine &name) { 3771 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 3772 call->setCallingConv(getRuntimeCC()); 3773 return call; 3774 } 3775 3776 /// Emits a call or invoke instruction to the given function, depending 3777 /// on the current state of the EH stack. 3778 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3779 ArrayRef<llvm::Value *> Args, 3780 const Twine &Name) { 3781 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3782 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3783 getBundlesForFunclet(Callee); 3784 3785 llvm::CallBase *Inst; 3786 if (!InvokeDest) 3787 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3788 else { 3789 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3790 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3791 Name); 3792 EmitBlock(ContBB); 3793 } 3794 3795 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3796 // optimizer it can aggressively ignore unwind edges. 3797 if (CGM.getLangOpts().ObjCAutoRefCount) 3798 AddObjCARCExceptionMetadata(Inst); 3799 3800 return Inst; 3801 } 3802 3803 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3804 llvm::Value *New) { 3805 DeferredReplacements.push_back(std::make_pair(Old, New)); 3806 } 3807 3808 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3809 const CGCallee &Callee, 3810 ReturnValueSlot ReturnValue, 3811 const CallArgList &CallArgs, 3812 llvm::CallBase **callOrInvoke, 3813 SourceLocation Loc) { 3814 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3815 3816 assert(Callee.isOrdinary() || Callee.isVirtual()); 3817 3818 // Handle struct-return functions by passing a pointer to the 3819 // location that we would like to return into. 3820 QualType RetTy = CallInfo.getReturnType(); 3821 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3822 3823 llvm::FunctionType *IRFuncTy = Callee.getFunctionType(); 3824 3825 // 1. Set up the arguments. 3826 3827 // If we're using inalloca, insert the allocation after the stack save. 3828 // FIXME: Do this earlier rather than hacking it in here! 3829 Address ArgMemory = Address::invalid(); 3830 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3831 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3832 const llvm::DataLayout &DL = CGM.getDataLayout(); 3833 ArgMemoryLayout = DL.getStructLayout(ArgStruct); 3834 llvm::Instruction *IP = CallArgs.getStackBase(); 3835 llvm::AllocaInst *AI; 3836 if (IP) { 3837 IP = IP->getNextNode(); 3838 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 3839 "argmem", IP); 3840 } else { 3841 AI = CreateTempAlloca(ArgStruct, "argmem"); 3842 } 3843 auto Align = CallInfo.getArgStructAlignment(); 3844 AI->setAlignment(Align.getQuantity()); 3845 AI->setUsedWithInAlloca(true); 3846 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3847 ArgMemory = Address(AI, Align); 3848 } 3849 3850 // Helper function to drill into the inalloca allocation. 3851 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3852 auto FieldOffset = 3853 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3854 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3855 }; 3856 3857 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3858 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3859 3860 // If the call returns a temporary with struct return, create a temporary 3861 // alloca to hold the result, unless one is given to us. 3862 Address SRetPtr = Address::invalid(); 3863 Address SRetAlloca = Address::invalid(); 3864 llvm::Value *UnusedReturnSizePtr = nullptr; 3865 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3866 if (!ReturnValue.isNull()) { 3867 SRetPtr = ReturnValue.getValue(); 3868 } else { 3869 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 3870 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3871 uint64_t size = 3872 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3873 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 3874 } 3875 } 3876 if (IRFunctionArgs.hasSRetArg()) { 3877 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3878 } else if (RetAI.isInAlloca()) { 3879 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3880 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3881 } 3882 } 3883 3884 Address swiftErrorTemp = Address::invalid(); 3885 Address swiftErrorArg = Address::invalid(); 3886 3887 // Translate all of the arguments as necessary to match the IR lowering. 3888 assert(CallInfo.arg_size() == CallArgs.size() && 3889 "Mismatch between function signature & arguments."); 3890 unsigned ArgNo = 0; 3891 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3892 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3893 I != E; ++I, ++info_it, ++ArgNo) { 3894 const ABIArgInfo &ArgInfo = info_it->info; 3895 3896 // Insert a padding argument to ensure proper alignment. 3897 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3898 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3899 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3900 3901 unsigned FirstIRArg, NumIRArgs; 3902 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3903 3904 switch (ArgInfo.getKind()) { 3905 case ABIArgInfo::InAlloca: { 3906 assert(NumIRArgs == 0); 3907 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3908 if (I->isAggregate()) { 3909 // Replace the placeholder with the appropriate argument slot GEP. 3910 Address Addr = I->hasLValue() 3911 ? I->getKnownLValue().getAddress() 3912 : I->getKnownRValue().getAggregateAddress(); 3913 llvm::Instruction *Placeholder = 3914 cast<llvm::Instruction>(Addr.getPointer()); 3915 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3916 Builder.SetInsertPoint(Placeholder); 3917 Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3918 Builder.restoreIP(IP); 3919 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3920 } else { 3921 // Store the RValue into the argument struct. 3922 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3923 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3924 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3925 // There are some cases where a trivial bitcast is not avoidable. The 3926 // definition of a type later in a translation unit may change it's type 3927 // from {}* to (%struct.foo*)*. 3928 if (Addr.getType() != MemType) 3929 Addr = Builder.CreateBitCast(Addr, MemType); 3930 I->copyInto(*this, Addr); 3931 } 3932 break; 3933 } 3934 3935 case ABIArgInfo::Indirect: { 3936 assert(NumIRArgs == 1); 3937 if (!I->isAggregate()) { 3938 // Make a temporary alloca to pass the argument. 3939 Address Addr = CreateMemTempWithoutCast( 3940 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 3941 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3942 3943 I->copyInto(*this, Addr); 3944 } else { 3945 // We want to avoid creating an unnecessary temporary+copy here; 3946 // however, we need one in three cases: 3947 // 1. If the argument is not byval, and we are required to copy the 3948 // source. (This case doesn't occur on any common architecture.) 3949 // 2. If the argument is byval, RV is not sufficiently aligned, and 3950 // we cannot force it to be sufficiently aligned. 3951 // 3. If the argument is byval, but RV is not located in default 3952 // or alloca address space. 3953 Address Addr = I->hasLValue() 3954 ? I->getKnownLValue().getAddress() 3955 : I->getKnownRValue().getAggregateAddress(); 3956 llvm::Value *V = Addr.getPointer(); 3957 CharUnits Align = ArgInfo.getIndirectAlign(); 3958 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3959 3960 assert((FirstIRArg >= IRFuncTy->getNumParams() || 3961 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 3962 TD->getAllocaAddrSpace()) && 3963 "indirect argument must be in alloca address space"); 3964 3965 bool NeedCopy = false; 3966 3967 if (Addr.getAlignment() < Align && 3968 llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) < 3969 Align.getQuantity()) { 3970 NeedCopy = true; 3971 } else if (I->hasLValue()) { 3972 auto LV = I->getKnownLValue(); 3973 auto AS = LV.getAddressSpace(); 3974 3975 if ((!ArgInfo.getIndirectByVal() && 3976 (LV.getAlignment() >= 3977 getContext().getTypeAlignInChars(I->Ty)))) { 3978 NeedCopy = true; 3979 } 3980 if (!getLangOpts().OpenCL) { 3981 if ((ArgInfo.getIndirectByVal() && 3982 (AS != LangAS::Default && 3983 AS != CGM.getASTAllocaAddressSpace()))) { 3984 NeedCopy = true; 3985 } 3986 } 3987 // For OpenCL even if RV is located in default or alloca address space 3988 // we don't want to perform address space cast for it. 3989 else if ((ArgInfo.getIndirectByVal() && 3990 Addr.getType()->getAddressSpace() != IRFuncTy-> 3991 getParamType(FirstIRArg)->getPointerAddressSpace())) { 3992 NeedCopy = true; 3993 } 3994 } 3995 3996 if (NeedCopy) { 3997 // Create an aligned temporary, and copy to it. 3998 Address AI = CreateMemTempWithoutCast( 3999 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4000 IRCallArgs[FirstIRArg] = AI.getPointer(); 4001 I->copyInto(*this, AI); 4002 } else { 4003 // Skip the extra memcpy call. 4004 auto *T = V->getType()->getPointerElementType()->getPointerTo( 4005 CGM.getDataLayout().getAllocaAddrSpace()); 4006 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4007 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4008 true); 4009 } 4010 } 4011 break; 4012 } 4013 4014 case ABIArgInfo::Ignore: 4015 assert(NumIRArgs == 0); 4016 break; 4017 4018 case ABIArgInfo::Extend: 4019 case ABIArgInfo::Direct: { 4020 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4021 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4022 ArgInfo.getDirectOffset() == 0) { 4023 assert(NumIRArgs == 1); 4024 llvm::Value *V; 4025 if (!I->isAggregate()) 4026 V = I->getKnownRValue().getScalarVal(); 4027 else 4028 V = Builder.CreateLoad( 4029 I->hasLValue() ? I->getKnownLValue().getAddress() 4030 : I->getKnownRValue().getAggregateAddress()); 4031 4032 // Implement swifterror by copying into a new swifterror argument. 4033 // We'll write back in the normal path out of the call. 4034 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4035 == ParameterABI::SwiftErrorResult) { 4036 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4037 4038 QualType pointeeTy = I->Ty->getPointeeType(); 4039 swiftErrorArg = 4040 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4041 4042 swiftErrorTemp = 4043 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4044 V = swiftErrorTemp.getPointer(); 4045 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4046 4047 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4048 Builder.CreateStore(errorValue, swiftErrorTemp); 4049 } 4050 4051 // We might have to widen integers, but we should never truncate. 4052 if (ArgInfo.getCoerceToType() != V->getType() && 4053 V->getType()->isIntegerTy()) 4054 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4055 4056 // If the argument doesn't match, perform a bitcast to coerce it. This 4057 // can happen due to trivial type mismatches. 4058 if (FirstIRArg < IRFuncTy->getNumParams() && 4059 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4060 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4061 4062 IRCallArgs[FirstIRArg] = V; 4063 break; 4064 } 4065 4066 // FIXME: Avoid the conversion through memory if possible. 4067 Address Src = Address::invalid(); 4068 if (!I->isAggregate()) { 4069 Src = CreateMemTemp(I->Ty, "coerce"); 4070 I->copyInto(*this, Src); 4071 } else { 4072 Src = I->hasLValue() ? I->getKnownLValue().getAddress() 4073 : I->getKnownRValue().getAggregateAddress(); 4074 } 4075 4076 // If the value is offset in memory, apply the offset now. 4077 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4078 4079 // Fast-isel and the optimizer generally like scalar values better than 4080 // FCAs, so we flatten them if this is safe to do for this argument. 4081 llvm::StructType *STy = 4082 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4083 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4084 llvm::Type *SrcTy = Src.getType()->getElementType(); 4085 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4086 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4087 4088 // If the source type is smaller than the destination type of the 4089 // coerce-to logic, copy the source value into a temp alloca the size 4090 // of the destination type to allow loading all of it. The bits past 4091 // the source value are left undef. 4092 if (SrcSize < DstSize) { 4093 Address TempAlloca 4094 = CreateTempAlloca(STy, Src.getAlignment(), 4095 Src.getName() + ".coerce"); 4096 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4097 Src = TempAlloca; 4098 } else { 4099 Src = Builder.CreateBitCast(Src, 4100 STy->getPointerTo(Src.getAddressSpace())); 4101 } 4102 4103 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 4104 assert(NumIRArgs == STy->getNumElements()); 4105 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4106 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 4107 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 4108 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4109 IRCallArgs[FirstIRArg + i] = LI; 4110 } 4111 } else { 4112 // In the simple case, just pass the coerced loaded value. 4113 assert(NumIRArgs == 1); 4114 IRCallArgs[FirstIRArg] = 4115 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4116 } 4117 4118 break; 4119 } 4120 4121 case ABIArgInfo::CoerceAndExpand: { 4122 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4123 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4124 4125 llvm::Value *tempSize = nullptr; 4126 Address addr = Address::invalid(); 4127 Address AllocaAddr = Address::invalid(); 4128 if (I->isAggregate()) { 4129 addr = I->hasLValue() ? I->getKnownLValue().getAddress() 4130 : I->getKnownRValue().getAggregateAddress(); 4131 4132 } else { 4133 RValue RV = I->getKnownRValue(); 4134 assert(RV.isScalar()); // complex should always just be direct 4135 4136 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4137 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4138 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4139 4140 // Materialize to a temporary. 4141 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 4142 CharUnits::fromQuantity(std::max( 4143 layout->getAlignment(), scalarAlign)), 4144 "tmp", 4145 /*ArraySize=*/nullptr, &AllocaAddr); 4146 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4147 4148 Builder.CreateStore(RV.getScalarVal(), addr); 4149 } 4150 4151 addr = Builder.CreateElementBitCast(addr, coercionType); 4152 4153 unsigned IRArgPos = FirstIRArg; 4154 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4155 llvm::Type *eltType = coercionType->getElementType(i); 4156 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4157 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4158 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4159 IRCallArgs[IRArgPos++] = elt; 4160 } 4161 assert(IRArgPos == FirstIRArg + NumIRArgs); 4162 4163 if (tempSize) { 4164 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4165 } 4166 4167 break; 4168 } 4169 4170 case ABIArgInfo::Expand: 4171 unsigned IRArgPos = FirstIRArg; 4172 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4173 assert(IRArgPos == FirstIRArg + NumIRArgs); 4174 break; 4175 } 4176 } 4177 4178 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4179 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4180 4181 // If we're using inalloca, set up that argument. 4182 if (ArgMemory.isValid()) { 4183 llvm::Value *Arg = ArgMemory.getPointer(); 4184 if (CallInfo.isVariadic()) { 4185 // When passing non-POD arguments by value to variadic functions, we will 4186 // end up with a variadic prototype and an inalloca call site. In such 4187 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4188 // the callee. 4189 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4190 auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS); 4191 CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy); 4192 } else { 4193 llvm::Type *LastParamTy = 4194 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4195 if (Arg->getType() != LastParamTy) { 4196 #ifndef NDEBUG 4197 // Assert that these structs have equivalent element types. 4198 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4199 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4200 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4201 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4202 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4203 DE = DeclaredTy->element_end(), 4204 FI = FullTy->element_begin(); 4205 DI != DE; ++DI, ++FI) 4206 assert(*DI == *FI); 4207 #endif 4208 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4209 } 4210 } 4211 assert(IRFunctionArgs.hasInallocaArg()); 4212 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4213 } 4214 4215 // 2. Prepare the function pointer. 4216 4217 // If the callee is a bitcast of a non-variadic function to have a 4218 // variadic function pointer type, check to see if we can remove the 4219 // bitcast. This comes up with unprototyped functions. 4220 // 4221 // This makes the IR nicer, but more importantly it ensures that we 4222 // can inline the function at -O0 if it is marked always_inline. 4223 auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* { 4224 llvm::FunctionType *CalleeFT = 4225 cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType()); 4226 if (!CalleeFT->isVarArg()) 4227 return Ptr; 4228 4229 llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr); 4230 if (!CE || CE->getOpcode() != llvm::Instruction::BitCast) 4231 return Ptr; 4232 4233 llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0)); 4234 if (!OrigFn) 4235 return Ptr; 4236 4237 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4238 4239 // If the original type is variadic, or if any of the component types 4240 // disagree, we cannot remove the cast. 4241 if (OrigFT->isVarArg() || 4242 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4243 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4244 return Ptr; 4245 4246 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4247 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4248 return Ptr; 4249 4250 return OrigFn; 4251 }; 4252 CalleePtr = simplifyVariadicCallee(CalleePtr); 4253 4254 // 3. Perform the actual call. 4255 4256 // Deactivate any cleanups that we're supposed to do immediately before 4257 // the call. 4258 if (!CallArgs.getCleanupsToDeactivate().empty()) 4259 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4260 4261 // Assert that the arguments we computed match up. The IR verifier 4262 // will catch this, but this is a common enough source of problems 4263 // during IRGen changes that it's way better for debugging to catch 4264 // it ourselves here. 4265 #ifndef NDEBUG 4266 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4267 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4268 // Inalloca argument can have different type. 4269 if (IRFunctionArgs.hasInallocaArg() && 4270 i == IRFunctionArgs.getInallocaArgNo()) 4271 continue; 4272 if (i < IRFuncTy->getNumParams()) 4273 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4274 } 4275 #endif 4276 4277 // Update the largest vector width if any arguments have vector types. 4278 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4279 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 4280 LargestVectorWidth = std::max(LargestVectorWidth, 4281 VT->getPrimitiveSizeInBits()); 4282 } 4283 4284 // Compute the calling convention and attributes. 4285 unsigned CallingConv; 4286 llvm::AttributeList Attrs; 4287 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4288 Callee.getAbstractInfo(), Attrs, CallingConv, 4289 /*AttrOnCallSite=*/true); 4290 4291 // Apply some call-site-specific attributes. 4292 // TODO: work this into building the attribute set. 4293 4294 // Apply always_inline to all calls within flatten functions. 4295 // FIXME: should this really take priority over __try, below? 4296 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4297 !(Callee.getAbstractInfo().getCalleeDecl().getDecl() && 4298 Callee.getAbstractInfo() 4299 .getCalleeDecl() 4300 .getDecl() 4301 ->hasAttr<NoInlineAttr>())) { 4302 Attrs = 4303 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4304 llvm::Attribute::AlwaysInline); 4305 } 4306 4307 // Disable inlining inside SEH __try blocks. 4308 if (isSEHTryScope()) { 4309 Attrs = 4310 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4311 llvm::Attribute::NoInline); 4312 } 4313 4314 // Decide whether to use a call or an invoke. 4315 bool CannotThrow; 4316 if (currentFunctionUsesSEHTry()) { 4317 // SEH cares about asynchronous exceptions, so everything can "throw." 4318 CannotThrow = false; 4319 } else if (isCleanupPadScope() && 4320 EHPersonality::get(*this).isMSVCXXPersonality()) { 4321 // The MSVC++ personality will implicitly terminate the program if an 4322 // exception is thrown during a cleanup outside of a try/catch. 4323 // We don't need to model anything in IR to get this behavior. 4324 CannotThrow = true; 4325 } else { 4326 // Otherwise, nounwind call sites will never throw. 4327 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4328 llvm::Attribute::NoUnwind); 4329 } 4330 4331 // If we made a temporary, be sure to clean up after ourselves. Note that we 4332 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4333 // pop this cleanup later on. Being eager about this is OK, since this 4334 // temporary is 'invisible' outside of the callee. 4335 if (UnusedReturnSizePtr) 4336 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 4337 UnusedReturnSizePtr); 4338 4339 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4340 4341 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4342 getBundlesForFunclet(CalleePtr); 4343 4344 // Emit the actual call/invoke instruction. 4345 llvm::CallBase *CI; 4346 if (!InvokeDest) { 4347 CI = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList); 4348 } else { 4349 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4350 CI = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs, 4351 BundleList); 4352 EmitBlock(Cont); 4353 } 4354 if (callOrInvoke) 4355 *callOrInvoke = CI; 4356 4357 // Apply the attributes and calling convention. 4358 CI->setAttributes(Attrs); 4359 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4360 4361 // Apply various metadata. 4362 4363 if (!CI->getType()->isVoidTy()) 4364 CI->setName("call"); 4365 4366 // Update largest vector width from the return type. 4367 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 4368 LargestVectorWidth = std::max(LargestVectorWidth, 4369 VT->getPrimitiveSizeInBits()); 4370 4371 // Insert instrumentation or attach profile metadata at indirect call sites. 4372 // For more details, see the comment before the definition of 4373 // IPVK_IndirectCallTarget in InstrProfData.inc. 4374 if (!CI->getCalledFunction()) 4375 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4376 CI, CalleePtr); 4377 4378 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4379 // optimizer it can aggressively ignore unwind edges. 4380 if (CGM.getLangOpts().ObjCAutoRefCount) 4381 AddObjCARCExceptionMetadata(CI); 4382 4383 // Suppress tail calls if requested. 4384 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4385 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4386 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4387 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4388 } 4389 4390 // 4. Finish the call. 4391 4392 // If the call doesn't return, finish the basic block and clear the 4393 // insertion point; this allows the rest of IRGen to discard 4394 // unreachable code. 4395 if (CI->doesNotReturn()) { 4396 if (UnusedReturnSizePtr) 4397 PopCleanupBlock(); 4398 4399 // Strip away the noreturn attribute to better diagnose unreachable UB. 4400 if (SanOpts.has(SanitizerKind::Unreachable)) { 4401 // Also remove from function since CI->hasFnAttr(..) also checks attributes 4402 // of the called function. 4403 if (auto *F = CI->getCalledFunction()) 4404 F->removeFnAttr(llvm::Attribute::NoReturn); 4405 CI->removeAttribute(llvm::AttributeList::FunctionIndex, 4406 llvm::Attribute::NoReturn); 4407 4408 // Avoid incompatibility with ASan which relies on the `noreturn` 4409 // attribute to insert handler calls. 4410 if (SanOpts.has(SanitizerKind::Address)) { 4411 SanitizerScope SanScope(this); 4412 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 4413 Builder.SetInsertPoint(CI); 4414 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 4415 auto *Fn = CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 4416 EmitNounwindRuntimeCall(Fn); 4417 } 4418 } 4419 4420 EmitUnreachable(Loc); 4421 Builder.ClearInsertionPoint(); 4422 4423 // FIXME: For now, emit a dummy basic block because expr emitters in 4424 // generally are not ready to handle emitting expressions at unreachable 4425 // points. 4426 EnsureInsertPoint(); 4427 4428 // Return a reasonable RValue. 4429 return GetUndefRValue(RetTy); 4430 } 4431 4432 // Perform the swifterror writeback. 4433 if (swiftErrorTemp.isValid()) { 4434 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4435 Builder.CreateStore(errorResult, swiftErrorArg); 4436 } 4437 4438 // Emit any call-associated writebacks immediately. Arguably this 4439 // should happen after any return-value munging. 4440 if (CallArgs.hasWritebacks()) 4441 emitWritebacks(*this, CallArgs); 4442 4443 // The stack cleanup for inalloca arguments has to run out of the normal 4444 // lexical order, so deactivate it and run it manually here. 4445 CallArgs.freeArgumentMemory(*this); 4446 4447 // Extract the return value. 4448 RValue Ret = [&] { 4449 switch (RetAI.getKind()) { 4450 case ABIArgInfo::CoerceAndExpand: { 4451 auto coercionType = RetAI.getCoerceAndExpandType(); 4452 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4453 4454 Address addr = SRetPtr; 4455 addr = Builder.CreateElementBitCast(addr, coercionType); 4456 4457 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4458 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4459 4460 unsigned unpaddedIndex = 0; 4461 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4462 llvm::Type *eltType = coercionType->getElementType(i); 4463 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4464 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4465 llvm::Value *elt = CI; 4466 if (requiresExtract) 4467 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4468 else 4469 assert(unpaddedIndex == 0); 4470 Builder.CreateStore(elt, eltAddr); 4471 } 4472 // FALLTHROUGH 4473 LLVM_FALLTHROUGH; 4474 } 4475 4476 case ABIArgInfo::InAlloca: 4477 case ABIArgInfo::Indirect: { 4478 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4479 if (UnusedReturnSizePtr) 4480 PopCleanupBlock(); 4481 return ret; 4482 } 4483 4484 case ABIArgInfo::Ignore: 4485 // If we are ignoring an argument that had a result, make sure to 4486 // construct the appropriate return value for our caller. 4487 return GetUndefRValue(RetTy); 4488 4489 case ABIArgInfo::Extend: 4490 case ABIArgInfo::Direct: { 4491 llvm::Type *RetIRTy = ConvertType(RetTy); 4492 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4493 switch (getEvaluationKind(RetTy)) { 4494 case TEK_Complex: { 4495 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4496 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4497 return RValue::getComplex(std::make_pair(Real, Imag)); 4498 } 4499 case TEK_Aggregate: { 4500 Address DestPtr = ReturnValue.getValue(); 4501 bool DestIsVolatile = ReturnValue.isVolatile(); 4502 4503 if (!DestPtr.isValid()) { 4504 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4505 DestIsVolatile = false; 4506 } 4507 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4508 return RValue::getAggregate(DestPtr); 4509 } 4510 case TEK_Scalar: { 4511 // If the argument doesn't match, perform a bitcast to coerce it. This 4512 // can happen due to trivial type mismatches. 4513 llvm::Value *V = CI; 4514 if (V->getType() != RetIRTy) 4515 V = Builder.CreateBitCast(V, RetIRTy); 4516 return RValue::get(V); 4517 } 4518 } 4519 llvm_unreachable("bad evaluation kind"); 4520 } 4521 4522 Address DestPtr = ReturnValue.getValue(); 4523 bool DestIsVolatile = ReturnValue.isVolatile(); 4524 4525 if (!DestPtr.isValid()) { 4526 DestPtr = CreateMemTemp(RetTy, "coerce"); 4527 DestIsVolatile = false; 4528 } 4529 4530 // If the value is offset in memory, apply the offset now. 4531 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4532 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4533 4534 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4535 } 4536 4537 case ABIArgInfo::Expand: 4538 llvm_unreachable("Invalid ABI kind for return argument"); 4539 } 4540 4541 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4542 } (); 4543 4544 // Emit the assume_aligned check on the return value. 4545 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4546 if (Ret.isScalar() && TargetDecl) { 4547 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4548 llvm::Value *OffsetValue = nullptr; 4549 if (const auto *Offset = AA->getOffset()) 4550 OffsetValue = EmitScalarExpr(Offset); 4551 4552 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4553 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4554 EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(), 4555 AlignmentCI->getZExtValue(), OffsetValue); 4556 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { 4557 llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()] 4558 .getRValue(*this) 4559 .getScalarVal(); 4560 EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(), 4561 AlignmentVal); 4562 } 4563 } 4564 4565 return Ret; 4566 } 4567 4568 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 4569 if (isVirtual()) { 4570 const CallExpr *CE = getVirtualCallExpr(); 4571 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 4572 CGF, getVirtualMethodDecl(), getThisAddress(), getFunctionType(), 4573 CE ? CE->getBeginLoc() : SourceLocation()); 4574 } 4575 4576 return *this; 4577 } 4578 4579 /* VarArg handling */ 4580 4581 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4582 VAListAddr = VE->isMicrosoftABI() 4583 ? EmitMSVAListRef(VE->getSubExpr()) 4584 : EmitVAListRef(VE->getSubExpr()); 4585 QualType Ty = VE->getType(); 4586 if (VE->isMicrosoftABI()) 4587 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4588 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4589 } 4590