1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/Basic/CodeGenOptions.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/SwiftCallingConv.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 using namespace clang;
40 using namespace CodeGen;
41 
42 /***/
43 
44 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
45   switch (CC) {
46   default: return llvm::CallingConv::C;
47   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
48   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
49   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
50   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
51   case CC_Win64: return llvm::CallingConv::Win64;
52   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
53   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
54   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
55   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
56   // TODO: Add support for __pascal to LLVM.
57   case CC_X86Pascal: return llvm::CallingConv::C;
58   // TODO: Add support for __vectorcall to LLVM.
59   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
60   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
61   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
62   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
63   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
64   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
65   case CC_Swift: return llvm::CallingConv::Swift;
66   }
67 }
68 
69 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
70 /// qualification. Either or both of RD and MD may be null. A null RD indicates
71 /// that there is no meaningful 'this' type, and a null MD can occur when
72 /// calling a method pointer.
73 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
74                                          const CXXMethodDecl *MD) {
75   QualType RecTy;
76   if (RD)
77     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
78   else
79     RecTy = Context.VoidTy;
80 
81   if (MD)
82     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
83   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
84 }
85 
86 /// Returns the canonical formal type of the given C++ method.
87 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
88   return MD->getType()->getCanonicalTypeUnqualified()
89            .getAs<FunctionProtoType>();
90 }
91 
92 /// Returns the "extra-canonicalized" return type, which discards
93 /// qualifiers on the return type.  Codegen doesn't care about them,
94 /// and it makes ABI code a little easier to be able to assume that
95 /// all parameter and return types are top-level unqualified.
96 static CanQualType GetReturnType(QualType RetTy) {
97   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
98 }
99 
100 /// Arrange the argument and result information for a value of the given
101 /// unprototyped freestanding function type.
102 const CGFunctionInfo &
103 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
104   // When translating an unprototyped function type, always use a
105   // variadic type.
106   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
107                                  /*instanceMethod=*/false,
108                                  /*chainCall=*/false, None,
109                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
110 }
111 
112 static void addExtParameterInfosForCall(
113          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
114                                         const FunctionProtoType *proto,
115                                         unsigned prefixArgs,
116                                         unsigned totalArgs) {
117   assert(proto->hasExtParameterInfos());
118   assert(paramInfos.size() <= prefixArgs);
119   assert(proto->getNumParams() + prefixArgs <= totalArgs);
120 
121   paramInfos.reserve(totalArgs);
122 
123   // Add default infos for any prefix args that don't already have infos.
124   paramInfos.resize(prefixArgs);
125 
126   // Add infos for the prototype.
127   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
128     paramInfos.push_back(ParamInfo);
129     // pass_object_size params have no parameter info.
130     if (ParamInfo.hasPassObjectSize())
131       paramInfos.emplace_back();
132   }
133 
134   assert(paramInfos.size() <= totalArgs &&
135          "Did we forget to insert pass_object_size args?");
136   // Add default infos for the variadic and/or suffix arguments.
137   paramInfos.resize(totalArgs);
138 }
139 
140 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
141 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
142 static void appendParameterTypes(const CodeGenTypes &CGT,
143                                  SmallVectorImpl<CanQualType> &prefix,
144               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
145                                  CanQual<FunctionProtoType> FPT) {
146   // Fast path: don't touch param info if we don't need to.
147   if (!FPT->hasExtParameterInfos()) {
148     assert(paramInfos.empty() &&
149            "We have paramInfos, but the prototype doesn't?");
150     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
151     return;
152   }
153 
154   unsigned PrefixSize = prefix.size();
155   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
156   // parameters; the only thing that can change this is the presence of
157   // pass_object_size. So, we preallocate for the common case.
158   prefix.reserve(prefix.size() + FPT->getNumParams());
159 
160   auto ExtInfos = FPT->getExtParameterInfos();
161   assert(ExtInfos.size() == FPT->getNumParams());
162   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
163     prefix.push_back(FPT->getParamType(I));
164     if (ExtInfos[I].hasPassObjectSize())
165       prefix.push_back(CGT.getContext().getSizeType());
166   }
167 
168   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
169                               prefix.size());
170 }
171 
172 /// Arrange the LLVM function layout for a value of the given function
173 /// type, on top of any implicit parameters already stored.
174 static const CGFunctionInfo &
175 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
176                         SmallVectorImpl<CanQualType> &prefix,
177                         CanQual<FunctionProtoType> FTP) {
178   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
179   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
180   // FIXME: Kill copy.
181   appendParameterTypes(CGT, prefix, paramInfos, FTP);
182   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
183 
184   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
185                                      /*chainCall=*/false, prefix,
186                                      FTP->getExtInfo(), paramInfos,
187                                      Required);
188 }
189 
190 /// Arrange the argument and result information for a value of the
191 /// given freestanding function type.
192 const CGFunctionInfo &
193 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
194   SmallVector<CanQualType, 16> argTypes;
195   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
196                                    FTP);
197 }
198 
199 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
200   // Set the appropriate calling convention for the Function.
201   if (D->hasAttr<StdCallAttr>())
202     return CC_X86StdCall;
203 
204   if (D->hasAttr<FastCallAttr>())
205     return CC_X86FastCall;
206 
207   if (D->hasAttr<RegCallAttr>())
208     return CC_X86RegCall;
209 
210   if (D->hasAttr<ThisCallAttr>())
211     return CC_X86ThisCall;
212 
213   if (D->hasAttr<VectorCallAttr>())
214     return CC_X86VectorCall;
215 
216   if (D->hasAttr<PascalAttr>())
217     return CC_X86Pascal;
218 
219   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
220     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
221 
222   if (D->hasAttr<AArch64VectorPcsAttr>())
223     return CC_AArch64VectorCall;
224 
225   if (D->hasAttr<IntelOclBiccAttr>())
226     return CC_IntelOclBicc;
227 
228   if (D->hasAttr<MSABIAttr>())
229     return IsWindows ? CC_C : CC_Win64;
230 
231   if (D->hasAttr<SysVABIAttr>())
232     return IsWindows ? CC_X86_64SysV : CC_C;
233 
234   if (D->hasAttr<PreserveMostAttr>())
235     return CC_PreserveMost;
236 
237   if (D->hasAttr<PreserveAllAttr>())
238     return CC_PreserveAll;
239 
240   return CC_C;
241 }
242 
243 /// Arrange the argument and result information for a call to an
244 /// unknown C++ non-static member function of the given abstract type.
245 /// (A null RD means we don't have any meaningful "this" argument type,
246 ///  so fall back to a generic pointer type).
247 /// The member function must be an ordinary function, i.e. not a
248 /// constructor or destructor.
249 const CGFunctionInfo &
250 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
251                                    const FunctionProtoType *FTP,
252                                    const CXXMethodDecl *MD) {
253   SmallVector<CanQualType, 16> argTypes;
254 
255   // Add the 'this' pointer.
256   argTypes.push_back(DeriveThisType(RD, MD));
257 
258   return ::arrangeLLVMFunctionInfo(
259       *this, true, argTypes,
260       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
261 }
262 
263 /// Set calling convention for CUDA/HIP kernel.
264 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
265                                            const FunctionDecl *FD) {
266   if (FD->hasAttr<CUDAGlobalAttr>()) {
267     const FunctionType *FT = FTy->getAs<FunctionType>();
268     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
269     FTy = FT->getCanonicalTypeUnqualified();
270   }
271 }
272 
273 /// Arrange the argument and result information for a declaration or
274 /// definition of the given C++ non-static member function.  The
275 /// member function must be an ordinary function, i.e. not a
276 /// constructor or destructor.
277 const CGFunctionInfo &
278 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
279   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
280   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
281 
282   CanQualType FT = GetFormalType(MD).getAs<Type>();
283   setCUDAKernelCallingConvention(FT, CGM, MD);
284   auto prototype = FT.getAs<FunctionProtoType>();
285 
286   if (MD->isInstance()) {
287     // The abstract case is perfectly fine.
288     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
289     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
290   }
291 
292   return arrangeFreeFunctionType(prototype);
293 }
294 
295 bool CodeGenTypes::inheritingCtorHasParams(
296     const InheritedConstructor &Inherited, CXXCtorType Type) {
297   // Parameters are unnecessary if we're constructing a base class subobject
298   // and the inherited constructor lives in a virtual base.
299   return Type == Ctor_Complete ||
300          !Inherited.getShadowDecl()->constructsVirtualBase() ||
301          !Target.getCXXABI().hasConstructorVariants();
302   }
303 
304 const CGFunctionInfo &
305 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
306                                             StructorType Type) {
307 
308   SmallVector<CanQualType, 16> argTypes;
309   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
310   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
311 
312   bool PassParams = true;
313 
314   GlobalDecl GD;
315   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
316     GD = GlobalDecl(CD, toCXXCtorType(Type));
317 
318     // A base class inheriting constructor doesn't get forwarded arguments
319     // needed to construct a virtual base (or base class thereof).
320     if (auto Inherited = CD->getInheritedConstructor())
321       PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
322   } else {
323     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
324     GD = GlobalDecl(DD, toCXXDtorType(Type));
325   }
326 
327   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
328 
329   // Add the formal parameters.
330   if (PassParams)
331     appendParameterTypes(*this, argTypes, paramInfos, FTP);
332 
333   CGCXXABI::AddedStructorArgs AddedArgs =
334       TheCXXABI.buildStructorSignature(MD, Type, argTypes);
335   if (!paramInfos.empty()) {
336     // Note: prefix implies after the first param.
337     if (AddedArgs.Prefix)
338       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
339                         FunctionProtoType::ExtParameterInfo{});
340     if (AddedArgs.Suffix)
341       paramInfos.append(AddedArgs.Suffix,
342                         FunctionProtoType::ExtParameterInfo{});
343   }
344 
345   RequiredArgs required =
346       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
347                                       : RequiredArgs::All);
348 
349   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
350   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
351                                ? argTypes.front()
352                                : TheCXXABI.hasMostDerivedReturn(GD)
353                                      ? CGM.getContext().VoidPtrTy
354                                      : Context.VoidTy;
355   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
356                                  /*chainCall=*/false, argTypes, extInfo,
357                                  paramInfos, required);
358 }
359 
360 static SmallVector<CanQualType, 16>
361 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
362   SmallVector<CanQualType, 16> argTypes;
363   for (auto &arg : args)
364     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
365   return argTypes;
366 }
367 
368 static SmallVector<CanQualType, 16>
369 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
370   SmallVector<CanQualType, 16> argTypes;
371   for (auto &arg : args)
372     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
373   return argTypes;
374 }
375 
376 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
377 getExtParameterInfosForCall(const FunctionProtoType *proto,
378                             unsigned prefixArgs, unsigned totalArgs) {
379   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
380   if (proto->hasExtParameterInfos()) {
381     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
382   }
383   return result;
384 }
385 
386 /// Arrange a call to a C++ method, passing the given arguments.
387 ///
388 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
389 /// parameter.
390 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
391 /// args.
392 /// PassProtoArgs indicates whether `args` has args for the parameters in the
393 /// given CXXConstructorDecl.
394 const CGFunctionInfo &
395 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
396                                         const CXXConstructorDecl *D,
397                                         CXXCtorType CtorKind,
398                                         unsigned ExtraPrefixArgs,
399                                         unsigned ExtraSuffixArgs,
400                                         bool PassProtoArgs) {
401   // FIXME: Kill copy.
402   SmallVector<CanQualType, 16> ArgTypes;
403   for (const auto &Arg : args)
404     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
405 
406   // +1 for implicit this, which should always be args[0].
407   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
408 
409   CanQual<FunctionProtoType> FPT = GetFormalType(D);
410   RequiredArgs Required = PassProtoArgs
411                               ? RequiredArgs::forPrototypePlus(
412                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
413                               : RequiredArgs::All;
414 
415   GlobalDecl GD(D, CtorKind);
416   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
417                                ? ArgTypes.front()
418                                : TheCXXABI.hasMostDerivedReturn(GD)
419                                      ? CGM.getContext().VoidPtrTy
420                                      : Context.VoidTy;
421 
422   FunctionType::ExtInfo Info = FPT->getExtInfo();
423   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
424   // If the prototype args are elided, we should only have ABI-specific args,
425   // which never have param info.
426   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
427     // ABI-specific suffix arguments are treated the same as variadic arguments.
428     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
429                                 ArgTypes.size());
430   }
431   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
432                                  /*chainCall=*/false, ArgTypes, Info,
433                                  ParamInfos, Required);
434 }
435 
436 /// Arrange the argument and result information for the declaration or
437 /// definition of the given function.
438 const CGFunctionInfo &
439 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
440   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
441     if (MD->isInstance())
442       return arrangeCXXMethodDeclaration(MD);
443 
444   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
445 
446   assert(isa<FunctionType>(FTy));
447   setCUDAKernelCallingConvention(FTy, CGM, FD);
448 
449   // When declaring a function without a prototype, always use a
450   // non-variadic type.
451   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
452     return arrangeLLVMFunctionInfo(
453         noProto->getReturnType(), /*instanceMethod=*/false,
454         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
455   }
456 
457   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
458 }
459 
460 /// Arrange the argument and result information for the declaration or
461 /// definition of an Objective-C method.
462 const CGFunctionInfo &
463 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
464   // It happens that this is the same as a call with no optional
465   // arguments, except also using the formal 'self' type.
466   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
467 }
468 
469 /// Arrange the argument and result information for the function type
470 /// through which to perform a send to the given Objective-C method,
471 /// using the given receiver type.  The receiver type is not always
472 /// the 'self' type of the method or even an Objective-C pointer type.
473 /// This is *not* the right method for actually performing such a
474 /// message send, due to the possibility of optional arguments.
475 const CGFunctionInfo &
476 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
477                                               QualType receiverType) {
478   SmallVector<CanQualType, 16> argTys;
479   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
480   argTys.push_back(Context.getCanonicalParamType(receiverType));
481   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
482   // FIXME: Kill copy?
483   for (const auto *I : MD->parameters()) {
484     argTys.push_back(Context.getCanonicalParamType(I->getType()));
485     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
486         I->hasAttr<NoEscapeAttr>());
487     extParamInfos.push_back(extParamInfo);
488   }
489 
490   FunctionType::ExtInfo einfo;
491   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
492   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
493 
494   if (getContext().getLangOpts().ObjCAutoRefCount &&
495       MD->hasAttr<NSReturnsRetainedAttr>())
496     einfo = einfo.withProducesResult(true);
497 
498   RequiredArgs required =
499     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
500 
501   return arrangeLLVMFunctionInfo(
502       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
503       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
504 }
505 
506 const CGFunctionInfo &
507 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
508                                                  const CallArgList &args) {
509   auto argTypes = getArgTypesForCall(Context, args);
510   FunctionType::ExtInfo einfo;
511 
512   return arrangeLLVMFunctionInfo(
513       GetReturnType(returnType), /*instanceMethod=*/false,
514       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
515 }
516 
517 const CGFunctionInfo &
518 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
519   // FIXME: Do we need to handle ObjCMethodDecl?
520   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
521 
522   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
523     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
524 
525   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
526     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
527 
528   return arrangeFunctionDeclaration(FD);
529 }
530 
531 /// Arrange a thunk that takes 'this' as the first parameter followed by
532 /// varargs.  Return a void pointer, regardless of the actual return type.
533 /// The body of the thunk will end in a musttail call to a function of the
534 /// correct type, and the caller will bitcast the function to the correct
535 /// prototype.
536 const CGFunctionInfo &
537 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
538   assert(MD->isVirtual() && "only methods have thunks");
539   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
540   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
541   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
542                                  /*chainCall=*/false, ArgTys,
543                                  FTP->getExtInfo(), {}, RequiredArgs(1));
544 }
545 
546 const CGFunctionInfo &
547 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
548                                    CXXCtorType CT) {
549   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
550 
551   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
552   SmallVector<CanQualType, 2> ArgTys;
553   const CXXRecordDecl *RD = CD->getParent();
554   ArgTys.push_back(DeriveThisType(RD, CD));
555   if (CT == Ctor_CopyingClosure)
556     ArgTys.push_back(*FTP->param_type_begin());
557   if (RD->getNumVBases() > 0)
558     ArgTys.push_back(Context.IntTy);
559   CallingConv CC = Context.getDefaultCallingConvention(
560       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
561   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
562                                  /*chainCall=*/false, ArgTys,
563                                  FunctionType::ExtInfo(CC), {},
564                                  RequiredArgs::All);
565 }
566 
567 /// Arrange a call as unto a free function, except possibly with an
568 /// additional number of formal parameters considered required.
569 static const CGFunctionInfo &
570 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
571                             CodeGenModule &CGM,
572                             const CallArgList &args,
573                             const FunctionType *fnType,
574                             unsigned numExtraRequiredArgs,
575                             bool chainCall) {
576   assert(args.size() >= numExtraRequiredArgs);
577 
578   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
579 
580   // In most cases, there are no optional arguments.
581   RequiredArgs required = RequiredArgs::All;
582 
583   // If we have a variadic prototype, the required arguments are the
584   // extra prefix plus the arguments in the prototype.
585   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
586     if (proto->isVariadic())
587       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
588 
589     if (proto->hasExtParameterInfos())
590       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
591                                   args.size());
592 
593   // If we don't have a prototype at all, but we're supposed to
594   // explicitly use the variadic convention for unprototyped calls,
595   // treat all of the arguments as required but preserve the nominal
596   // possibility of variadics.
597   } else if (CGM.getTargetCodeGenInfo()
598                 .isNoProtoCallVariadic(args,
599                                        cast<FunctionNoProtoType>(fnType))) {
600     required = RequiredArgs(args.size());
601   }
602 
603   // FIXME: Kill copy.
604   SmallVector<CanQualType, 16> argTypes;
605   for (const auto &arg : args)
606     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
607   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
608                                      /*instanceMethod=*/false, chainCall,
609                                      argTypes, fnType->getExtInfo(), paramInfos,
610                                      required);
611 }
612 
613 /// Figure out the rules for calling a function with the given formal
614 /// type using the given arguments.  The arguments are necessary
615 /// because the function might be unprototyped, in which case it's
616 /// target-dependent in crazy ways.
617 const CGFunctionInfo &
618 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
619                                       const FunctionType *fnType,
620                                       bool chainCall) {
621   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
622                                      chainCall ? 1 : 0, chainCall);
623 }
624 
625 /// A block function is essentially a free function with an
626 /// extra implicit argument.
627 const CGFunctionInfo &
628 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
629                                        const FunctionType *fnType) {
630   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
631                                      /*chainCall=*/false);
632 }
633 
634 const CGFunctionInfo &
635 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
636                                               const FunctionArgList &params) {
637   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
638   auto argTypes = getArgTypesForDeclaration(Context, params);
639 
640   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
641                                  /*instanceMethod*/ false, /*chainCall*/ false,
642                                  argTypes, proto->getExtInfo(), paramInfos,
643                                  RequiredArgs::forPrototypePlus(proto, 1));
644 }
645 
646 const CGFunctionInfo &
647 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
648                                          const CallArgList &args) {
649   // FIXME: Kill copy.
650   SmallVector<CanQualType, 16> argTypes;
651   for (const auto &Arg : args)
652     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
653   return arrangeLLVMFunctionInfo(
654       GetReturnType(resultType), /*instanceMethod=*/false,
655       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
656       /*paramInfos=*/ {}, RequiredArgs::All);
657 }
658 
659 const CGFunctionInfo &
660 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
661                                                 const FunctionArgList &args) {
662   auto argTypes = getArgTypesForDeclaration(Context, args);
663 
664   return arrangeLLVMFunctionInfo(
665       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
666       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
667 }
668 
669 const CGFunctionInfo &
670 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
671                                               ArrayRef<CanQualType> argTypes) {
672   return arrangeLLVMFunctionInfo(
673       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
674       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
675 }
676 
677 /// Arrange a call to a C++ method, passing the given arguments.
678 ///
679 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
680 /// does not count `this`.
681 const CGFunctionInfo &
682 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
683                                    const FunctionProtoType *proto,
684                                    RequiredArgs required,
685                                    unsigned numPrefixArgs) {
686   assert(numPrefixArgs + 1 <= args.size() &&
687          "Emitting a call with less args than the required prefix?");
688   // Add one to account for `this`. It's a bit awkward here, but we don't count
689   // `this` in similar places elsewhere.
690   auto paramInfos =
691     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
692 
693   // FIXME: Kill copy.
694   auto argTypes = getArgTypesForCall(Context, args);
695 
696   FunctionType::ExtInfo info = proto->getExtInfo();
697   return arrangeLLVMFunctionInfo(
698       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
699       /*chainCall=*/false, argTypes, info, paramInfos, required);
700 }
701 
702 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
703   return arrangeLLVMFunctionInfo(
704       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
705       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
706 }
707 
708 const CGFunctionInfo &
709 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
710                           const CallArgList &args) {
711   assert(signature.arg_size() <= args.size());
712   if (signature.arg_size() == args.size())
713     return signature;
714 
715   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
716   auto sigParamInfos = signature.getExtParameterInfos();
717   if (!sigParamInfos.empty()) {
718     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
719     paramInfos.resize(args.size());
720   }
721 
722   auto argTypes = getArgTypesForCall(Context, args);
723 
724   assert(signature.getRequiredArgs().allowsOptionalArgs());
725   return arrangeLLVMFunctionInfo(signature.getReturnType(),
726                                  signature.isInstanceMethod(),
727                                  signature.isChainCall(),
728                                  argTypes,
729                                  signature.getExtInfo(),
730                                  paramInfos,
731                                  signature.getRequiredArgs());
732 }
733 
734 namespace clang {
735 namespace CodeGen {
736 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
737 }
738 }
739 
740 /// Arrange the argument and result information for an abstract value
741 /// of a given function type.  This is the method which all of the
742 /// above functions ultimately defer to.
743 const CGFunctionInfo &
744 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
745                                       bool instanceMethod,
746                                       bool chainCall,
747                                       ArrayRef<CanQualType> argTypes,
748                                       FunctionType::ExtInfo info,
749                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
750                                       RequiredArgs required) {
751   assert(llvm::all_of(argTypes,
752                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
753 
754   // Lookup or create unique function info.
755   llvm::FoldingSetNodeID ID;
756   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
757                           required, resultType, argTypes);
758 
759   void *insertPos = nullptr;
760   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
761   if (FI)
762     return *FI;
763 
764   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
765 
766   // Construct the function info.  We co-allocate the ArgInfos.
767   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
768                               paramInfos, resultType, argTypes, required);
769   FunctionInfos.InsertNode(FI, insertPos);
770 
771   bool inserted = FunctionsBeingProcessed.insert(FI).second;
772   (void)inserted;
773   assert(inserted && "Recursively being processed?");
774 
775   // Compute ABI information.
776   if (CC == llvm::CallingConv::SPIR_KERNEL) {
777     // Force target independent argument handling for the host visible
778     // kernel functions.
779     computeSPIRKernelABIInfo(CGM, *FI);
780   } else if (info.getCC() == CC_Swift) {
781     swiftcall::computeABIInfo(CGM, *FI);
782   } else {
783     getABIInfo().computeInfo(*FI);
784   }
785 
786   // Loop over all of the computed argument and return value info.  If any of
787   // them are direct or extend without a specified coerce type, specify the
788   // default now.
789   ABIArgInfo &retInfo = FI->getReturnInfo();
790   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
791     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
792 
793   for (auto &I : FI->arguments())
794     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
795       I.info.setCoerceToType(ConvertType(I.type));
796 
797   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
798   assert(erased && "Not in set?");
799 
800   return *FI;
801 }
802 
803 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
804                                        bool instanceMethod,
805                                        bool chainCall,
806                                        const FunctionType::ExtInfo &info,
807                                        ArrayRef<ExtParameterInfo> paramInfos,
808                                        CanQualType resultType,
809                                        ArrayRef<CanQualType> argTypes,
810                                        RequiredArgs required) {
811   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
812   assert(!required.allowsOptionalArgs() ||
813          required.getNumRequiredArgs() <= argTypes.size());
814 
815   void *buffer =
816     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
817                                   argTypes.size() + 1, paramInfos.size()));
818 
819   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
820   FI->CallingConvention = llvmCC;
821   FI->EffectiveCallingConvention = llvmCC;
822   FI->ASTCallingConvention = info.getCC();
823   FI->InstanceMethod = instanceMethod;
824   FI->ChainCall = chainCall;
825   FI->NoReturn = info.getNoReturn();
826   FI->ReturnsRetained = info.getProducesResult();
827   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
828   FI->NoCfCheck = info.getNoCfCheck();
829   FI->Required = required;
830   FI->HasRegParm = info.getHasRegParm();
831   FI->RegParm = info.getRegParm();
832   FI->ArgStruct = nullptr;
833   FI->ArgStructAlign = 0;
834   FI->NumArgs = argTypes.size();
835   FI->HasExtParameterInfos = !paramInfos.empty();
836   FI->getArgsBuffer()[0].type = resultType;
837   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
838     FI->getArgsBuffer()[i + 1].type = argTypes[i];
839   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
840     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
841   return FI;
842 }
843 
844 /***/
845 
846 namespace {
847 // ABIArgInfo::Expand implementation.
848 
849 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
850 struct TypeExpansion {
851   enum TypeExpansionKind {
852     // Elements of constant arrays are expanded recursively.
853     TEK_ConstantArray,
854     // Record fields are expanded recursively (but if record is a union, only
855     // the field with the largest size is expanded).
856     TEK_Record,
857     // For complex types, real and imaginary parts are expanded recursively.
858     TEK_Complex,
859     // All other types are not expandable.
860     TEK_None
861   };
862 
863   const TypeExpansionKind Kind;
864 
865   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
866   virtual ~TypeExpansion() {}
867 };
868 
869 struct ConstantArrayExpansion : TypeExpansion {
870   QualType EltTy;
871   uint64_t NumElts;
872 
873   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
874       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
875   static bool classof(const TypeExpansion *TE) {
876     return TE->Kind == TEK_ConstantArray;
877   }
878 };
879 
880 struct RecordExpansion : TypeExpansion {
881   SmallVector<const CXXBaseSpecifier *, 1> Bases;
882 
883   SmallVector<const FieldDecl *, 1> Fields;
884 
885   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
886                   SmallVector<const FieldDecl *, 1> &&Fields)
887       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
888         Fields(std::move(Fields)) {}
889   static bool classof(const TypeExpansion *TE) {
890     return TE->Kind == TEK_Record;
891   }
892 };
893 
894 struct ComplexExpansion : TypeExpansion {
895   QualType EltTy;
896 
897   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
898   static bool classof(const TypeExpansion *TE) {
899     return TE->Kind == TEK_Complex;
900   }
901 };
902 
903 struct NoExpansion : TypeExpansion {
904   NoExpansion() : TypeExpansion(TEK_None) {}
905   static bool classof(const TypeExpansion *TE) {
906     return TE->Kind == TEK_None;
907   }
908 };
909 }  // namespace
910 
911 static std::unique_ptr<TypeExpansion>
912 getTypeExpansion(QualType Ty, const ASTContext &Context) {
913   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
914     return llvm::make_unique<ConstantArrayExpansion>(
915         AT->getElementType(), AT->getSize().getZExtValue());
916   }
917   if (const RecordType *RT = Ty->getAs<RecordType>()) {
918     SmallVector<const CXXBaseSpecifier *, 1> Bases;
919     SmallVector<const FieldDecl *, 1> Fields;
920     const RecordDecl *RD = RT->getDecl();
921     assert(!RD->hasFlexibleArrayMember() &&
922            "Cannot expand structure with flexible array.");
923     if (RD->isUnion()) {
924       // Unions can be here only in degenerative cases - all the fields are same
925       // after flattening. Thus we have to use the "largest" field.
926       const FieldDecl *LargestFD = nullptr;
927       CharUnits UnionSize = CharUnits::Zero();
928 
929       for (const auto *FD : RD->fields()) {
930         if (FD->isZeroLengthBitField(Context))
931           continue;
932         assert(!FD->isBitField() &&
933                "Cannot expand structure with bit-field members.");
934         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
935         if (UnionSize < FieldSize) {
936           UnionSize = FieldSize;
937           LargestFD = FD;
938         }
939       }
940       if (LargestFD)
941         Fields.push_back(LargestFD);
942     } else {
943       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
944         assert(!CXXRD->isDynamicClass() &&
945                "cannot expand vtable pointers in dynamic classes");
946         for (const CXXBaseSpecifier &BS : CXXRD->bases())
947           Bases.push_back(&BS);
948       }
949 
950       for (const auto *FD : RD->fields()) {
951         if (FD->isZeroLengthBitField(Context))
952           continue;
953         assert(!FD->isBitField() &&
954                "Cannot expand structure with bit-field members.");
955         Fields.push_back(FD);
956       }
957     }
958     return llvm::make_unique<RecordExpansion>(std::move(Bases),
959                                               std::move(Fields));
960   }
961   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
962     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
963   }
964   return llvm::make_unique<NoExpansion>();
965 }
966 
967 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
968   auto Exp = getTypeExpansion(Ty, Context);
969   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
970     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
971   }
972   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
973     int Res = 0;
974     for (auto BS : RExp->Bases)
975       Res += getExpansionSize(BS->getType(), Context);
976     for (auto FD : RExp->Fields)
977       Res += getExpansionSize(FD->getType(), Context);
978     return Res;
979   }
980   if (isa<ComplexExpansion>(Exp.get()))
981     return 2;
982   assert(isa<NoExpansion>(Exp.get()));
983   return 1;
984 }
985 
986 void
987 CodeGenTypes::getExpandedTypes(QualType Ty,
988                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
989   auto Exp = getTypeExpansion(Ty, Context);
990   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
991     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
992       getExpandedTypes(CAExp->EltTy, TI);
993     }
994   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
995     for (auto BS : RExp->Bases)
996       getExpandedTypes(BS->getType(), TI);
997     for (auto FD : RExp->Fields)
998       getExpandedTypes(FD->getType(), TI);
999   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
1000     llvm::Type *EltTy = ConvertType(CExp->EltTy);
1001     *TI++ = EltTy;
1002     *TI++ = EltTy;
1003   } else {
1004     assert(isa<NoExpansion>(Exp.get()));
1005     *TI++ = ConvertType(Ty);
1006   }
1007 }
1008 
1009 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1010                                       ConstantArrayExpansion *CAE,
1011                                       Address BaseAddr,
1012                                       llvm::function_ref<void(Address)> Fn) {
1013   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1014   CharUnits EltAlign =
1015     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1016 
1017   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1018     llvm::Value *EltAddr =
1019       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1020     Fn(Address(EltAddr, EltAlign));
1021   }
1022 }
1023 
1024 void CodeGenFunction::ExpandTypeFromArgs(
1025     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1026   assert(LV.isSimple() &&
1027          "Unexpected non-simple lvalue during struct expansion.");
1028 
1029   auto Exp = getTypeExpansion(Ty, getContext());
1030   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1031     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
1032                               [&](Address EltAddr) {
1033       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1034       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1035     });
1036   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1037     Address This = LV.getAddress();
1038     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1039       // Perform a single step derived-to-base conversion.
1040       Address Base =
1041           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1042                                 /*NullCheckValue=*/false, SourceLocation());
1043       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1044 
1045       // Recurse onto bases.
1046       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1047     }
1048     for (auto FD : RExp->Fields) {
1049       // FIXME: What are the right qualifiers here?
1050       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1051       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1052     }
1053   } else if (isa<ComplexExpansion>(Exp.get())) {
1054     auto realValue = *AI++;
1055     auto imagValue = *AI++;
1056     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1057   } else {
1058     assert(isa<NoExpansion>(Exp.get()));
1059     EmitStoreThroughLValue(RValue::get(*AI++), LV);
1060   }
1061 }
1062 
1063 void CodeGenFunction::ExpandTypeToArgs(
1064     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1065     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1066   auto Exp = getTypeExpansion(Ty, getContext());
1067   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1068     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1069                                    : Arg.getKnownRValue().getAggregateAddress();
1070     forConstantArrayExpansion(
1071         *this, CAExp, Addr, [&](Address EltAddr) {
1072           CallArg EltArg = CallArg(
1073               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1074               CAExp->EltTy);
1075           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1076                            IRCallArgPos);
1077         });
1078   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1079     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1080                                    : Arg.getKnownRValue().getAggregateAddress();
1081     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1082       // Perform a single step derived-to-base conversion.
1083       Address Base =
1084           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1085                                 /*NullCheckValue=*/false, SourceLocation());
1086       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1087 
1088       // Recurse onto bases.
1089       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1090                        IRCallArgPos);
1091     }
1092 
1093     LValue LV = MakeAddrLValue(This, Ty);
1094     for (auto FD : RExp->Fields) {
1095       CallArg FldArg =
1096           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1097       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1098                        IRCallArgPos);
1099     }
1100   } else if (isa<ComplexExpansion>(Exp.get())) {
1101     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1102     IRCallArgs[IRCallArgPos++] = CV.first;
1103     IRCallArgs[IRCallArgPos++] = CV.second;
1104   } else {
1105     assert(isa<NoExpansion>(Exp.get()));
1106     auto RV = Arg.getKnownRValue();
1107     assert(RV.isScalar() &&
1108            "Unexpected non-scalar rvalue during struct expansion.");
1109 
1110     // Insert a bitcast as needed.
1111     llvm::Value *V = RV.getScalarVal();
1112     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1113         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1114       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1115 
1116     IRCallArgs[IRCallArgPos++] = V;
1117   }
1118 }
1119 
1120 /// Create a temporary allocation for the purposes of coercion.
1121 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1122                                            CharUnits MinAlign) {
1123   // Don't use an alignment that's worse than what LLVM would prefer.
1124   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1125   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1126 
1127   return CGF.CreateTempAlloca(Ty, Align);
1128 }
1129 
1130 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1131 /// accessing some number of bytes out of it, try to gep into the struct to get
1132 /// at its inner goodness.  Dive as deep as possible without entering an element
1133 /// with an in-memory size smaller than DstSize.
1134 static Address
1135 EnterStructPointerForCoercedAccess(Address SrcPtr,
1136                                    llvm::StructType *SrcSTy,
1137                                    uint64_t DstSize, CodeGenFunction &CGF) {
1138   // We can't dive into a zero-element struct.
1139   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1140 
1141   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1142 
1143   // If the first elt is at least as large as what we're looking for, or if the
1144   // first element is the same size as the whole struct, we can enter it. The
1145   // comparison must be made on the store size and not the alloca size. Using
1146   // the alloca size may overstate the size of the load.
1147   uint64_t FirstEltSize =
1148     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1149   if (FirstEltSize < DstSize &&
1150       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1151     return SrcPtr;
1152 
1153   // GEP into the first element.
1154   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1155 
1156   // If the first element is a struct, recurse.
1157   llvm::Type *SrcTy = SrcPtr.getElementType();
1158   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1159     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1160 
1161   return SrcPtr;
1162 }
1163 
1164 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1165 /// are either integers or pointers.  This does a truncation of the value if it
1166 /// is too large or a zero extension if it is too small.
1167 ///
1168 /// This behaves as if the value were coerced through memory, so on big-endian
1169 /// targets the high bits are preserved in a truncation, while little-endian
1170 /// targets preserve the low bits.
1171 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1172                                              llvm::Type *Ty,
1173                                              CodeGenFunction &CGF) {
1174   if (Val->getType() == Ty)
1175     return Val;
1176 
1177   if (isa<llvm::PointerType>(Val->getType())) {
1178     // If this is Pointer->Pointer avoid conversion to and from int.
1179     if (isa<llvm::PointerType>(Ty))
1180       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1181 
1182     // Convert the pointer to an integer so we can play with its width.
1183     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1184   }
1185 
1186   llvm::Type *DestIntTy = Ty;
1187   if (isa<llvm::PointerType>(DestIntTy))
1188     DestIntTy = CGF.IntPtrTy;
1189 
1190   if (Val->getType() != DestIntTy) {
1191     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1192     if (DL.isBigEndian()) {
1193       // Preserve the high bits on big-endian targets.
1194       // That is what memory coercion does.
1195       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1196       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1197 
1198       if (SrcSize > DstSize) {
1199         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1200         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1201       } else {
1202         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1203         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1204       }
1205     } else {
1206       // Little-endian targets preserve the low bits. No shifts required.
1207       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1208     }
1209   }
1210 
1211   if (isa<llvm::PointerType>(Ty))
1212     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1213   return Val;
1214 }
1215 
1216 
1217 
1218 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1219 /// a pointer to an object of type \arg Ty, known to be aligned to
1220 /// \arg SrcAlign bytes.
1221 ///
1222 /// This safely handles the case when the src type is smaller than the
1223 /// destination type; in this situation the values of bits which not
1224 /// present in the src are undefined.
1225 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1226                                       CodeGenFunction &CGF) {
1227   llvm::Type *SrcTy = Src.getElementType();
1228 
1229   // If SrcTy and Ty are the same, just do a load.
1230   if (SrcTy == Ty)
1231     return CGF.Builder.CreateLoad(Src);
1232 
1233   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1234 
1235   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1236     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1237     SrcTy = Src.getType()->getElementType();
1238   }
1239 
1240   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1241 
1242   // If the source and destination are integer or pointer types, just do an
1243   // extension or truncation to the desired type.
1244   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1245       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1246     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1247     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1248   }
1249 
1250   // If load is legal, just bitcast the src pointer.
1251   if (SrcSize >= DstSize) {
1252     // Generally SrcSize is never greater than DstSize, since this means we are
1253     // losing bits. However, this can happen in cases where the structure has
1254     // additional padding, for example due to a user specified alignment.
1255     //
1256     // FIXME: Assert that we aren't truncating non-padding bits when have access
1257     // to that information.
1258     Src = CGF.Builder.CreateBitCast(Src,
1259                                     Ty->getPointerTo(Src.getAddressSpace()));
1260     return CGF.Builder.CreateLoad(Src);
1261   }
1262 
1263   // Otherwise do coercion through memory. This is stupid, but simple.
1264   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1265   Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1266   Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty);
1267   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1268       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1269       false);
1270   return CGF.Builder.CreateLoad(Tmp);
1271 }
1272 
1273 // Function to store a first-class aggregate into memory.  We prefer to
1274 // store the elements rather than the aggregate to be more friendly to
1275 // fast-isel.
1276 // FIXME: Do we need to recurse here?
1277 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1278                           Address Dest, bool DestIsVolatile) {
1279   // Prefer scalar stores to first-class aggregate stores.
1280   if (llvm::StructType *STy =
1281         dyn_cast<llvm::StructType>(Val->getType())) {
1282     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1283       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i);
1284       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1285       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1286     }
1287   } else {
1288     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1289   }
1290 }
1291 
1292 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1293 /// where the source and destination may have different types.  The
1294 /// destination is known to be aligned to \arg DstAlign bytes.
1295 ///
1296 /// This safely handles the case when the src type is larger than the
1297 /// destination type; the upper bits of the src will be lost.
1298 static void CreateCoercedStore(llvm::Value *Src,
1299                                Address Dst,
1300                                bool DstIsVolatile,
1301                                CodeGenFunction &CGF) {
1302   llvm::Type *SrcTy = Src->getType();
1303   llvm::Type *DstTy = Dst.getType()->getElementType();
1304   if (SrcTy == DstTy) {
1305     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1306     return;
1307   }
1308 
1309   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1310 
1311   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1312     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1313     DstTy = Dst.getType()->getElementType();
1314   }
1315 
1316   // If the source and destination are integer or pointer types, just do an
1317   // extension or truncation to the desired type.
1318   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1319       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1320     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1321     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1322     return;
1323   }
1324 
1325   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1326 
1327   // If store is legal, just bitcast the src pointer.
1328   if (SrcSize <= DstSize) {
1329     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1330     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1331   } else {
1332     // Otherwise do coercion through memory. This is stupid, but
1333     // simple.
1334 
1335     // Generally SrcSize is never greater than DstSize, since this means we are
1336     // losing bits. However, this can happen in cases where the structure has
1337     // additional padding, for example due to a user specified alignment.
1338     //
1339     // FIXME: Assert that we aren't truncating non-padding bits when have access
1340     // to that information.
1341     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1342     CGF.Builder.CreateStore(Src, Tmp);
1343     Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1344     Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty);
1345     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1346         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1347         false);
1348   }
1349 }
1350 
1351 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1352                                    const ABIArgInfo &info) {
1353   if (unsigned offset = info.getDirectOffset()) {
1354     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1355     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1356                                              CharUnits::fromQuantity(offset));
1357     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1358   }
1359   return addr;
1360 }
1361 
1362 namespace {
1363 
1364 /// Encapsulates information about the way function arguments from
1365 /// CGFunctionInfo should be passed to actual LLVM IR function.
1366 class ClangToLLVMArgMapping {
1367   static const unsigned InvalidIndex = ~0U;
1368   unsigned InallocaArgNo;
1369   unsigned SRetArgNo;
1370   unsigned TotalIRArgs;
1371 
1372   /// Arguments of LLVM IR function corresponding to single Clang argument.
1373   struct IRArgs {
1374     unsigned PaddingArgIndex;
1375     // Argument is expanded to IR arguments at positions
1376     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1377     unsigned FirstArgIndex;
1378     unsigned NumberOfArgs;
1379 
1380     IRArgs()
1381         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1382           NumberOfArgs(0) {}
1383   };
1384 
1385   SmallVector<IRArgs, 8> ArgInfo;
1386 
1387 public:
1388   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1389                         bool OnlyRequiredArgs = false)
1390       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1391         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1392     construct(Context, FI, OnlyRequiredArgs);
1393   }
1394 
1395   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1396   unsigned getInallocaArgNo() const {
1397     assert(hasInallocaArg());
1398     return InallocaArgNo;
1399   }
1400 
1401   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1402   unsigned getSRetArgNo() const {
1403     assert(hasSRetArg());
1404     return SRetArgNo;
1405   }
1406 
1407   unsigned totalIRArgs() const { return TotalIRArgs; }
1408 
1409   bool hasPaddingArg(unsigned ArgNo) const {
1410     assert(ArgNo < ArgInfo.size());
1411     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1412   }
1413   unsigned getPaddingArgNo(unsigned ArgNo) const {
1414     assert(hasPaddingArg(ArgNo));
1415     return ArgInfo[ArgNo].PaddingArgIndex;
1416   }
1417 
1418   /// Returns index of first IR argument corresponding to ArgNo, and their
1419   /// quantity.
1420   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1421     assert(ArgNo < ArgInfo.size());
1422     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1423                           ArgInfo[ArgNo].NumberOfArgs);
1424   }
1425 
1426 private:
1427   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1428                  bool OnlyRequiredArgs);
1429 };
1430 
1431 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1432                                       const CGFunctionInfo &FI,
1433                                       bool OnlyRequiredArgs) {
1434   unsigned IRArgNo = 0;
1435   bool SwapThisWithSRet = false;
1436   const ABIArgInfo &RetAI = FI.getReturnInfo();
1437 
1438   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1439     SwapThisWithSRet = RetAI.isSRetAfterThis();
1440     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1441   }
1442 
1443   unsigned ArgNo = 0;
1444   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1445   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1446        ++I, ++ArgNo) {
1447     assert(I != FI.arg_end());
1448     QualType ArgType = I->type;
1449     const ABIArgInfo &AI = I->info;
1450     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1451     auto &IRArgs = ArgInfo[ArgNo];
1452 
1453     if (AI.getPaddingType())
1454       IRArgs.PaddingArgIndex = IRArgNo++;
1455 
1456     switch (AI.getKind()) {
1457     case ABIArgInfo::Extend:
1458     case ABIArgInfo::Direct: {
1459       // FIXME: handle sseregparm someday...
1460       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1461       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1462         IRArgs.NumberOfArgs = STy->getNumElements();
1463       } else {
1464         IRArgs.NumberOfArgs = 1;
1465       }
1466       break;
1467     }
1468     case ABIArgInfo::Indirect:
1469       IRArgs.NumberOfArgs = 1;
1470       break;
1471     case ABIArgInfo::Ignore:
1472     case ABIArgInfo::InAlloca:
1473       // ignore and inalloca doesn't have matching LLVM parameters.
1474       IRArgs.NumberOfArgs = 0;
1475       break;
1476     case ABIArgInfo::CoerceAndExpand:
1477       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1478       break;
1479     case ABIArgInfo::Expand:
1480       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1481       break;
1482     }
1483 
1484     if (IRArgs.NumberOfArgs > 0) {
1485       IRArgs.FirstArgIndex = IRArgNo;
1486       IRArgNo += IRArgs.NumberOfArgs;
1487     }
1488 
1489     // Skip over the sret parameter when it comes second.  We already handled it
1490     // above.
1491     if (IRArgNo == 1 && SwapThisWithSRet)
1492       IRArgNo++;
1493   }
1494   assert(ArgNo == ArgInfo.size());
1495 
1496   if (FI.usesInAlloca())
1497     InallocaArgNo = IRArgNo++;
1498 
1499   TotalIRArgs = IRArgNo;
1500 }
1501 }  // namespace
1502 
1503 /***/
1504 
1505 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1506   const auto &RI = FI.getReturnInfo();
1507   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1508 }
1509 
1510 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1511   return ReturnTypeUsesSRet(FI) &&
1512          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1513 }
1514 
1515 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1516   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1517     switch (BT->getKind()) {
1518     default:
1519       return false;
1520     case BuiltinType::Float:
1521       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1522     case BuiltinType::Double:
1523       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1524     case BuiltinType::LongDouble:
1525       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1526     }
1527   }
1528 
1529   return false;
1530 }
1531 
1532 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1533   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1534     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1535       if (BT->getKind() == BuiltinType::LongDouble)
1536         return getTarget().useObjCFP2RetForComplexLongDouble();
1537     }
1538   }
1539 
1540   return false;
1541 }
1542 
1543 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1544   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1545   return GetFunctionType(FI);
1546 }
1547 
1548 llvm::FunctionType *
1549 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1550 
1551   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1552   (void)Inserted;
1553   assert(Inserted && "Recursively being processed?");
1554 
1555   llvm::Type *resultType = nullptr;
1556   const ABIArgInfo &retAI = FI.getReturnInfo();
1557   switch (retAI.getKind()) {
1558   case ABIArgInfo::Expand:
1559     llvm_unreachable("Invalid ABI kind for return argument");
1560 
1561   case ABIArgInfo::Extend:
1562   case ABIArgInfo::Direct:
1563     resultType = retAI.getCoerceToType();
1564     break;
1565 
1566   case ABIArgInfo::InAlloca:
1567     if (retAI.getInAllocaSRet()) {
1568       // sret things on win32 aren't void, they return the sret pointer.
1569       QualType ret = FI.getReturnType();
1570       llvm::Type *ty = ConvertType(ret);
1571       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1572       resultType = llvm::PointerType::get(ty, addressSpace);
1573     } else {
1574       resultType = llvm::Type::getVoidTy(getLLVMContext());
1575     }
1576     break;
1577 
1578   case ABIArgInfo::Indirect:
1579   case ABIArgInfo::Ignore:
1580     resultType = llvm::Type::getVoidTy(getLLVMContext());
1581     break;
1582 
1583   case ABIArgInfo::CoerceAndExpand:
1584     resultType = retAI.getUnpaddedCoerceAndExpandType();
1585     break;
1586   }
1587 
1588   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1589   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1590 
1591   // Add type for sret argument.
1592   if (IRFunctionArgs.hasSRetArg()) {
1593     QualType Ret = FI.getReturnType();
1594     llvm::Type *Ty = ConvertType(Ret);
1595     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1596     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1597         llvm::PointerType::get(Ty, AddressSpace);
1598   }
1599 
1600   // Add type for inalloca argument.
1601   if (IRFunctionArgs.hasInallocaArg()) {
1602     auto ArgStruct = FI.getArgStruct();
1603     assert(ArgStruct);
1604     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1605   }
1606 
1607   // Add in all of the required arguments.
1608   unsigned ArgNo = 0;
1609   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1610                                      ie = it + FI.getNumRequiredArgs();
1611   for (; it != ie; ++it, ++ArgNo) {
1612     const ABIArgInfo &ArgInfo = it->info;
1613 
1614     // Insert a padding type to ensure proper alignment.
1615     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1616       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1617           ArgInfo.getPaddingType();
1618 
1619     unsigned FirstIRArg, NumIRArgs;
1620     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1621 
1622     switch (ArgInfo.getKind()) {
1623     case ABIArgInfo::Ignore:
1624     case ABIArgInfo::InAlloca:
1625       assert(NumIRArgs == 0);
1626       break;
1627 
1628     case ABIArgInfo::Indirect: {
1629       assert(NumIRArgs == 1);
1630       // indirect arguments are always on the stack, which is alloca addr space.
1631       llvm::Type *LTy = ConvertTypeForMem(it->type);
1632       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1633           CGM.getDataLayout().getAllocaAddrSpace());
1634       break;
1635     }
1636 
1637     case ABIArgInfo::Extend:
1638     case ABIArgInfo::Direct: {
1639       // Fast-isel and the optimizer generally like scalar values better than
1640       // FCAs, so we flatten them if this is safe to do for this argument.
1641       llvm::Type *argType = ArgInfo.getCoerceToType();
1642       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1643       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1644         assert(NumIRArgs == st->getNumElements());
1645         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1646           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1647       } else {
1648         assert(NumIRArgs == 1);
1649         ArgTypes[FirstIRArg] = argType;
1650       }
1651       break;
1652     }
1653 
1654     case ABIArgInfo::CoerceAndExpand: {
1655       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1656       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1657         *ArgTypesIter++ = EltTy;
1658       }
1659       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1660       break;
1661     }
1662 
1663     case ABIArgInfo::Expand:
1664       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1665       getExpandedTypes(it->type, ArgTypesIter);
1666       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1667       break;
1668     }
1669   }
1670 
1671   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1672   assert(Erased && "Not in set?");
1673 
1674   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1675 }
1676 
1677 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1678   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1679   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1680 
1681   if (!isFuncTypeConvertible(FPT))
1682     return llvm::StructType::get(getLLVMContext());
1683 
1684   const CGFunctionInfo *Info;
1685   if (isa<CXXDestructorDecl>(MD))
1686     Info =
1687         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1688   else
1689     Info = &arrangeCXXMethodDeclaration(MD);
1690   return GetFunctionType(*Info);
1691 }
1692 
1693 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1694                                                llvm::AttrBuilder &FuncAttrs,
1695                                                const FunctionProtoType *FPT) {
1696   if (!FPT)
1697     return;
1698 
1699   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1700       FPT->isNothrow())
1701     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1702 }
1703 
1704 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1705                                                bool AttrOnCallSite,
1706                                                llvm::AttrBuilder &FuncAttrs) {
1707   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1708   if (!HasOptnone) {
1709     if (CodeGenOpts.OptimizeSize)
1710       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1711     if (CodeGenOpts.OptimizeSize == 2)
1712       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1713   }
1714 
1715   if (CodeGenOpts.DisableRedZone)
1716     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1717   if (CodeGenOpts.IndirectTlsSegRefs)
1718     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1719   if (CodeGenOpts.NoImplicitFloat)
1720     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1721 
1722   if (AttrOnCallSite) {
1723     // Attributes that should go on the call site only.
1724     if (!CodeGenOpts.SimplifyLibCalls ||
1725         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1726       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1727     if (!CodeGenOpts.TrapFuncName.empty())
1728       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1729   } else {
1730     // Attributes that should go on the function, but not the call site.
1731     if (!CodeGenOpts.DisableFPElim) {
1732       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1733     } else if (CodeGenOpts.OmitLeafFramePointer) {
1734       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1735       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1736     } else {
1737       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1738       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1739     }
1740 
1741     FuncAttrs.addAttribute("less-precise-fpmad",
1742                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1743 
1744     if (CodeGenOpts.NullPointerIsValid)
1745       FuncAttrs.addAttribute("null-pointer-is-valid", "true");
1746     if (!CodeGenOpts.FPDenormalMode.empty())
1747       FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
1748 
1749     FuncAttrs.addAttribute("no-trapping-math",
1750                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1751 
1752     // Strict (compliant) code is the default, so only add this attribute to
1753     // indicate that we are trying to workaround a problem case.
1754     if (!CodeGenOpts.StrictFloatCastOverflow)
1755       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1756 
1757     // TODO: Are these all needed?
1758     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1759     FuncAttrs.addAttribute("no-infs-fp-math",
1760                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1761     FuncAttrs.addAttribute("no-nans-fp-math",
1762                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1763     FuncAttrs.addAttribute("unsafe-fp-math",
1764                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1765     FuncAttrs.addAttribute("use-soft-float",
1766                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1767     FuncAttrs.addAttribute("stack-protector-buffer-size",
1768                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1769     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1770                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1771     FuncAttrs.addAttribute(
1772         "correctly-rounded-divide-sqrt-fp-math",
1773         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1774 
1775     if (getLangOpts().OpenCL)
1776       FuncAttrs.addAttribute("denorms-are-zero",
1777                              llvm::toStringRef(CodeGenOpts.FlushDenorm));
1778 
1779     // TODO: Reciprocal estimate codegen options should apply to instructions?
1780     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1781     if (!Recips.empty())
1782       FuncAttrs.addAttribute("reciprocal-estimates",
1783                              llvm::join(Recips, ","));
1784 
1785     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1786         CodeGenOpts.PreferVectorWidth != "none")
1787       FuncAttrs.addAttribute("prefer-vector-width",
1788                              CodeGenOpts.PreferVectorWidth);
1789 
1790     if (CodeGenOpts.StackRealignment)
1791       FuncAttrs.addAttribute("stackrealign");
1792     if (CodeGenOpts.Backchain)
1793       FuncAttrs.addAttribute("backchain");
1794 
1795     if (CodeGenOpts.SpeculativeLoadHardening)
1796       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1797   }
1798 
1799   if (getLangOpts().assumeFunctionsAreConvergent()) {
1800     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1801     // convergent (meaning, they may call an intrinsically convergent op, such
1802     // as __syncthreads() / barrier(), and so can't have certain optimizations
1803     // applied around them).  LLVM will remove this attribute where it safely
1804     // can.
1805     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1806   }
1807 
1808   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1809     // Exceptions aren't supported in CUDA device code.
1810     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1811 
1812     // Respect -fcuda-flush-denormals-to-zero.
1813     if (CodeGenOpts.FlushDenorm)
1814       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1815   }
1816 
1817   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1818     StringRef Var, Value;
1819     std::tie(Var, Value) = Attr.split('=');
1820     FuncAttrs.addAttribute(Var, Value);
1821   }
1822 }
1823 
1824 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1825   llvm::AttrBuilder FuncAttrs;
1826   ConstructDefaultFnAttrList(F.getName(),
1827                              F.hasFnAttribute(llvm::Attribute::OptimizeNone),
1828                              /* AttrOnCallsite = */ false, FuncAttrs);
1829   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1830 }
1831 
1832 void CodeGenModule::ConstructAttributeList(
1833     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1834     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1835   llvm::AttrBuilder FuncAttrs;
1836   llvm::AttrBuilder RetAttrs;
1837 
1838   CallingConv = FI.getEffectiveCallingConvention();
1839   if (FI.isNoReturn())
1840     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1841 
1842   // If we have information about the function prototype, we can learn
1843   // attributes from there.
1844   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1845                                      CalleeInfo.getCalleeFunctionProtoType());
1846 
1847   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1848 
1849   bool HasOptnone = false;
1850   // FIXME: handle sseregparm someday...
1851   if (TargetDecl) {
1852     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1853       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1854     if (TargetDecl->hasAttr<NoThrowAttr>())
1855       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1856     if (TargetDecl->hasAttr<NoReturnAttr>())
1857       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1858     if (TargetDecl->hasAttr<ColdAttr>())
1859       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1860     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1861       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1862     if (TargetDecl->hasAttr<ConvergentAttr>())
1863       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1864 
1865     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1866       AddAttributesFromFunctionProtoType(
1867           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1868       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1869       // These attributes are not inherited by overloads.
1870       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1871       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1872         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1873     }
1874 
1875     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1876     if (TargetDecl->hasAttr<ConstAttr>()) {
1877       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1878       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1879     } else if (TargetDecl->hasAttr<PureAttr>()) {
1880       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1881       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1882     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1883       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1884       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1885     }
1886     if (TargetDecl->hasAttr<RestrictAttr>())
1887       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1888     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1889         !CodeGenOpts.NullPointerIsValid)
1890       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1891     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1892       FuncAttrs.addAttribute("no_caller_saved_registers");
1893     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1894       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1895 
1896     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1897     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1898       Optional<unsigned> NumElemsParam;
1899       if (AllocSize->getNumElemsParam().isValid())
1900         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1901       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1902                                  NumElemsParam);
1903     }
1904   }
1905 
1906   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1907 
1908   // This must run after constructing the default function attribute list
1909   // to ensure that the speculative load hardening attribute is removed
1910   // in the case where the -mspeculative-load-hardening flag was passed.
1911   if (TargetDecl) {
1912     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
1913       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
1914     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
1915       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1916   }
1917 
1918   if (CodeGenOpts.EnableSegmentedStacks &&
1919       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1920     FuncAttrs.addAttribute("split-stack");
1921 
1922   // Add NonLazyBind attribute to function declarations when -fno-plt
1923   // is used.
1924   if (TargetDecl && CodeGenOpts.NoPLT) {
1925     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1926       if (!Fn->isDefined() && !AttrOnCallSite) {
1927         FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1928       }
1929     }
1930   }
1931 
1932   if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1933     if (getLangOpts().OpenCLVersion <= 120) {
1934       // OpenCL v1.2 Work groups are always uniform
1935       FuncAttrs.addAttribute("uniform-work-group-size", "true");
1936     } else {
1937       // OpenCL v2.0 Work groups may be whether uniform or not.
1938       // '-cl-uniform-work-group-size' compile option gets a hint
1939       // to the compiler that the global work-size be a multiple of
1940       // the work-group size specified to clEnqueueNDRangeKernel
1941       // (i.e. work groups are uniform).
1942       FuncAttrs.addAttribute("uniform-work-group-size",
1943                              llvm::toStringRef(CodeGenOpts.UniformWGSize));
1944     }
1945   }
1946 
1947   if (!AttrOnCallSite) {
1948     bool DisableTailCalls = false;
1949 
1950     if (CodeGenOpts.DisableTailCalls)
1951       DisableTailCalls = true;
1952     else if (TargetDecl) {
1953       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1954           TargetDecl->hasAttr<AnyX86InterruptAttr>())
1955         DisableTailCalls = true;
1956       else if (CodeGenOpts.NoEscapingBlockTailCalls) {
1957         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
1958           if (!BD->doesNotEscape())
1959             DisableTailCalls = true;
1960       }
1961     }
1962 
1963     FuncAttrs.addAttribute("disable-tail-calls",
1964                            llvm::toStringRef(DisableTailCalls));
1965     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
1966   }
1967 
1968   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1969 
1970   QualType RetTy = FI.getReturnType();
1971   const ABIArgInfo &RetAI = FI.getReturnInfo();
1972   switch (RetAI.getKind()) {
1973   case ABIArgInfo::Extend:
1974     if (RetAI.isSignExt())
1975       RetAttrs.addAttribute(llvm::Attribute::SExt);
1976     else
1977       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1978     LLVM_FALLTHROUGH;
1979   case ABIArgInfo::Direct:
1980     if (RetAI.getInReg())
1981       RetAttrs.addAttribute(llvm::Attribute::InReg);
1982     break;
1983   case ABIArgInfo::Ignore:
1984     break;
1985 
1986   case ABIArgInfo::InAlloca:
1987   case ABIArgInfo::Indirect: {
1988     // inalloca and sret disable readnone and readonly
1989     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1990       .removeAttribute(llvm::Attribute::ReadNone);
1991     break;
1992   }
1993 
1994   case ABIArgInfo::CoerceAndExpand:
1995     break;
1996 
1997   case ABIArgInfo::Expand:
1998     llvm_unreachable("Invalid ABI kind for return argument");
1999   }
2000 
2001   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2002     QualType PTy = RefTy->getPointeeType();
2003     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2004       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2005                                         .getQuantity());
2006     else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2007              !CodeGenOpts.NullPointerIsValid)
2008       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2009   }
2010 
2011   bool hasUsedSRet = false;
2012   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2013 
2014   // Attach attributes to sret.
2015   if (IRFunctionArgs.hasSRetArg()) {
2016     llvm::AttrBuilder SRETAttrs;
2017     if (!RetAI.getSuppressSRet())
2018       SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2019     hasUsedSRet = true;
2020     if (RetAI.getInReg())
2021       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2022     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2023         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2024   }
2025 
2026   // Attach attributes to inalloca argument.
2027   if (IRFunctionArgs.hasInallocaArg()) {
2028     llvm::AttrBuilder Attrs;
2029     Attrs.addAttribute(llvm::Attribute::InAlloca);
2030     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2031         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2032   }
2033 
2034   unsigned ArgNo = 0;
2035   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2036                                           E = FI.arg_end();
2037        I != E; ++I, ++ArgNo) {
2038     QualType ParamType = I->type;
2039     const ABIArgInfo &AI = I->info;
2040     llvm::AttrBuilder Attrs;
2041 
2042     // Add attribute for padding argument, if necessary.
2043     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2044       if (AI.getPaddingInReg()) {
2045         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2046             llvm::AttributeSet::get(
2047                 getLLVMContext(),
2048                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2049       }
2050     }
2051 
2052     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2053     // have the corresponding parameter variable.  It doesn't make
2054     // sense to do it here because parameters are so messed up.
2055     switch (AI.getKind()) {
2056     case ABIArgInfo::Extend:
2057       if (AI.isSignExt())
2058         Attrs.addAttribute(llvm::Attribute::SExt);
2059       else
2060         Attrs.addAttribute(llvm::Attribute::ZExt);
2061       LLVM_FALLTHROUGH;
2062     case ABIArgInfo::Direct:
2063       if (ArgNo == 0 && FI.isChainCall())
2064         Attrs.addAttribute(llvm::Attribute::Nest);
2065       else if (AI.getInReg())
2066         Attrs.addAttribute(llvm::Attribute::InReg);
2067       break;
2068 
2069     case ABIArgInfo::Indirect: {
2070       if (AI.getInReg())
2071         Attrs.addAttribute(llvm::Attribute::InReg);
2072 
2073       if (AI.getIndirectByVal())
2074         Attrs.addAttribute(llvm::Attribute::ByVal);
2075 
2076       CharUnits Align = AI.getIndirectAlign();
2077 
2078       // In a byval argument, it is important that the required
2079       // alignment of the type is honored, as LLVM might be creating a
2080       // *new* stack object, and needs to know what alignment to give
2081       // it. (Sometimes it can deduce a sensible alignment on its own,
2082       // but not if clang decides it must emit a packed struct, or the
2083       // user specifies increased alignment requirements.)
2084       //
2085       // This is different from indirect *not* byval, where the object
2086       // exists already, and the align attribute is purely
2087       // informative.
2088       assert(!Align.isZero());
2089 
2090       // For now, only add this when we have a byval argument.
2091       // TODO: be less lazy about updating test cases.
2092       if (AI.getIndirectByVal())
2093         Attrs.addAlignmentAttr(Align.getQuantity());
2094 
2095       // byval disables readnone and readonly.
2096       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2097         .removeAttribute(llvm::Attribute::ReadNone);
2098       break;
2099     }
2100     case ABIArgInfo::Ignore:
2101     case ABIArgInfo::Expand:
2102     case ABIArgInfo::CoerceAndExpand:
2103       break;
2104 
2105     case ABIArgInfo::InAlloca:
2106       // inalloca disables readnone and readonly.
2107       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2108           .removeAttribute(llvm::Attribute::ReadNone);
2109       continue;
2110     }
2111 
2112     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2113       QualType PTy = RefTy->getPointeeType();
2114       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2115         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2116                                        .getQuantity());
2117       else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2118                !CodeGenOpts.NullPointerIsValid)
2119         Attrs.addAttribute(llvm::Attribute::NonNull);
2120     }
2121 
2122     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2123     case ParameterABI::Ordinary:
2124       break;
2125 
2126     case ParameterABI::SwiftIndirectResult: {
2127       // Add 'sret' if we haven't already used it for something, but
2128       // only if the result is void.
2129       if (!hasUsedSRet && RetTy->isVoidType()) {
2130         Attrs.addAttribute(llvm::Attribute::StructRet);
2131         hasUsedSRet = true;
2132       }
2133 
2134       // Add 'noalias' in either case.
2135       Attrs.addAttribute(llvm::Attribute::NoAlias);
2136 
2137       // Add 'dereferenceable' and 'alignment'.
2138       auto PTy = ParamType->getPointeeType();
2139       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2140         auto info = getContext().getTypeInfoInChars(PTy);
2141         Attrs.addDereferenceableAttr(info.first.getQuantity());
2142         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
2143                                                  info.second.getQuantity()));
2144       }
2145       break;
2146     }
2147 
2148     case ParameterABI::SwiftErrorResult:
2149       Attrs.addAttribute(llvm::Attribute::SwiftError);
2150       break;
2151 
2152     case ParameterABI::SwiftContext:
2153       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2154       break;
2155     }
2156 
2157     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2158       Attrs.addAttribute(llvm::Attribute::NoCapture);
2159 
2160     if (Attrs.hasAttributes()) {
2161       unsigned FirstIRArg, NumIRArgs;
2162       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2163       for (unsigned i = 0; i < NumIRArgs; i++)
2164         ArgAttrs[FirstIRArg + i] =
2165             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2166     }
2167   }
2168   assert(ArgNo == FI.arg_size());
2169 
2170   AttrList = llvm::AttributeList::get(
2171       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2172       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2173 }
2174 
2175 /// An argument came in as a promoted argument; demote it back to its
2176 /// declared type.
2177 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2178                                          const VarDecl *var,
2179                                          llvm::Value *value) {
2180   llvm::Type *varType = CGF.ConvertType(var->getType());
2181 
2182   // This can happen with promotions that actually don't change the
2183   // underlying type, like the enum promotions.
2184   if (value->getType() == varType) return value;
2185 
2186   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2187          && "unexpected promotion type");
2188 
2189   if (isa<llvm::IntegerType>(varType))
2190     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2191 
2192   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2193 }
2194 
2195 /// Returns the attribute (either parameter attribute, or function
2196 /// attribute), which declares argument ArgNo to be non-null.
2197 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2198                                          QualType ArgType, unsigned ArgNo) {
2199   // FIXME: __attribute__((nonnull)) can also be applied to:
2200   //   - references to pointers, where the pointee is known to be
2201   //     nonnull (apparently a Clang extension)
2202   //   - transparent unions containing pointers
2203   // In the former case, LLVM IR cannot represent the constraint. In
2204   // the latter case, we have no guarantee that the transparent union
2205   // is in fact passed as a pointer.
2206   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2207     return nullptr;
2208   // First, check attribute on parameter itself.
2209   if (PVD) {
2210     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2211       return ParmNNAttr;
2212   }
2213   // Check function attributes.
2214   if (!FD)
2215     return nullptr;
2216   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2217     if (NNAttr->isNonNull(ArgNo))
2218       return NNAttr;
2219   }
2220   return nullptr;
2221 }
2222 
2223 namespace {
2224   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2225     Address Temp;
2226     Address Arg;
2227     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2228     void Emit(CodeGenFunction &CGF, Flags flags) override {
2229       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2230       CGF.Builder.CreateStore(errorValue, Arg);
2231     }
2232   };
2233 }
2234 
2235 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2236                                          llvm::Function *Fn,
2237                                          const FunctionArgList &Args) {
2238   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2239     // Naked functions don't have prologues.
2240     return;
2241 
2242   // If this is an implicit-return-zero function, go ahead and
2243   // initialize the return value.  TODO: it might be nice to have
2244   // a more general mechanism for this that didn't require synthesized
2245   // return statements.
2246   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2247     if (FD->hasImplicitReturnZero()) {
2248       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2249       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2250       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2251       Builder.CreateStore(Zero, ReturnValue);
2252     }
2253   }
2254 
2255   // FIXME: We no longer need the types from FunctionArgList; lift up and
2256   // simplify.
2257 
2258   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2259   // Flattened function arguments.
2260   SmallVector<llvm::Value *, 16> FnArgs;
2261   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2262   for (auto &Arg : Fn->args()) {
2263     FnArgs.push_back(&Arg);
2264   }
2265   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2266 
2267   // If we're using inalloca, all the memory arguments are GEPs off of the last
2268   // parameter, which is a pointer to the complete memory area.
2269   Address ArgStruct = Address::invalid();
2270   if (IRFunctionArgs.hasInallocaArg()) {
2271     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2272                         FI.getArgStructAlignment());
2273 
2274     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2275   }
2276 
2277   // Name the struct return parameter.
2278   if (IRFunctionArgs.hasSRetArg()) {
2279     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2280     AI->setName("agg.result");
2281     AI->addAttr(llvm::Attribute::NoAlias);
2282   }
2283 
2284   // Track if we received the parameter as a pointer (indirect, byval, or
2285   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2286   // into a local alloca for us.
2287   SmallVector<ParamValue, 16> ArgVals;
2288   ArgVals.reserve(Args.size());
2289 
2290   // Create a pointer value for every parameter declaration.  This usually
2291   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2292   // any cleanups or do anything that might unwind.  We do that separately, so
2293   // we can push the cleanups in the correct order for the ABI.
2294   assert(FI.arg_size() == Args.size() &&
2295          "Mismatch between function signature & arguments.");
2296   unsigned ArgNo = 0;
2297   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2298   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2299        i != e; ++i, ++info_it, ++ArgNo) {
2300     const VarDecl *Arg = *i;
2301     const ABIArgInfo &ArgI = info_it->info;
2302 
2303     bool isPromoted =
2304       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2305     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2306     // the parameter is promoted. In this case we convert to
2307     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2308     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2309     assert(hasScalarEvaluationKind(Ty) ==
2310            hasScalarEvaluationKind(Arg->getType()));
2311 
2312     unsigned FirstIRArg, NumIRArgs;
2313     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2314 
2315     switch (ArgI.getKind()) {
2316     case ABIArgInfo::InAlloca: {
2317       assert(NumIRArgs == 0);
2318       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2319       Address V =
2320           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2321       ArgVals.push_back(ParamValue::forIndirect(V));
2322       break;
2323     }
2324 
2325     case ABIArgInfo::Indirect: {
2326       assert(NumIRArgs == 1);
2327       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2328 
2329       if (!hasScalarEvaluationKind(Ty)) {
2330         // Aggregates and complex variables are accessed by reference.  All we
2331         // need to do is realign the value, if requested.
2332         Address V = ParamAddr;
2333         if (ArgI.getIndirectRealign()) {
2334           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2335 
2336           // Copy from the incoming argument pointer to the temporary with the
2337           // appropriate alignment.
2338           //
2339           // FIXME: We should have a common utility for generating an aggregate
2340           // copy.
2341           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2342           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2343           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2344           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2345           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2346           V = AlignedTemp;
2347         }
2348         ArgVals.push_back(ParamValue::forIndirect(V));
2349       } else {
2350         // Load scalar value from indirect argument.
2351         llvm::Value *V =
2352             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2353 
2354         if (isPromoted)
2355           V = emitArgumentDemotion(*this, Arg, V);
2356         ArgVals.push_back(ParamValue::forDirect(V));
2357       }
2358       break;
2359     }
2360 
2361     case ABIArgInfo::Extend:
2362     case ABIArgInfo::Direct: {
2363 
2364       // If we have the trivial case, handle it with no muss and fuss.
2365       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2366           ArgI.getCoerceToType() == ConvertType(Ty) &&
2367           ArgI.getDirectOffset() == 0) {
2368         assert(NumIRArgs == 1);
2369         llvm::Value *V = FnArgs[FirstIRArg];
2370         auto AI = cast<llvm::Argument>(V);
2371 
2372         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2373           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2374                              PVD->getFunctionScopeIndex()) &&
2375               !CGM.getCodeGenOpts().NullPointerIsValid)
2376             AI->addAttr(llvm::Attribute::NonNull);
2377 
2378           QualType OTy = PVD->getOriginalType();
2379           if (const auto *ArrTy =
2380               getContext().getAsConstantArrayType(OTy)) {
2381             // A C99 array parameter declaration with the static keyword also
2382             // indicates dereferenceability, and if the size is constant we can
2383             // use the dereferenceable attribute (which requires the size in
2384             // bytes).
2385             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2386               QualType ETy = ArrTy->getElementType();
2387               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2388               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2389                   ArrSize) {
2390                 llvm::AttrBuilder Attrs;
2391                 Attrs.addDereferenceableAttr(
2392                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2393                 AI->addAttrs(Attrs);
2394               } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
2395                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2396                 AI->addAttr(llvm::Attribute::NonNull);
2397               }
2398             }
2399           } else if (const auto *ArrTy =
2400                      getContext().getAsVariableArrayType(OTy)) {
2401             // For C99 VLAs with the static keyword, we don't know the size so
2402             // we can't use the dereferenceable attribute, but in addrspace(0)
2403             // we know that it must be nonnull.
2404             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2405                 !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2406                 !CGM.getCodeGenOpts().NullPointerIsValid)
2407               AI->addAttr(llvm::Attribute::NonNull);
2408           }
2409 
2410           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2411           if (!AVAttr)
2412             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2413               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2414           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2415             // If alignment-assumption sanitizer is enabled, we do *not* add
2416             // alignment attribute here, but emit normal alignment assumption,
2417             // so the UBSAN check could function.
2418             llvm::Value *AlignmentValue =
2419               EmitScalarExpr(AVAttr->getAlignment());
2420             llvm::ConstantInt *AlignmentCI =
2421               cast<llvm::ConstantInt>(AlignmentValue);
2422             unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
2423                                           +llvm::Value::MaximumAlignment);
2424             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2425           }
2426         }
2427 
2428         if (Arg->getType().isRestrictQualified())
2429           AI->addAttr(llvm::Attribute::NoAlias);
2430 
2431         // LLVM expects swifterror parameters to be used in very restricted
2432         // ways.  Copy the value into a less-restricted temporary.
2433         if (FI.getExtParameterInfo(ArgNo).getABI()
2434               == ParameterABI::SwiftErrorResult) {
2435           QualType pointeeTy = Ty->getPointeeType();
2436           assert(pointeeTy->isPointerType());
2437           Address temp =
2438             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2439           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2440           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2441           Builder.CreateStore(incomingErrorValue, temp);
2442           V = temp.getPointer();
2443 
2444           // Push a cleanup to copy the value back at the end of the function.
2445           // The convention does not guarantee that the value will be written
2446           // back if the function exits with an unwind exception.
2447           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2448         }
2449 
2450         // Ensure the argument is the correct type.
2451         if (V->getType() != ArgI.getCoerceToType())
2452           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2453 
2454         if (isPromoted)
2455           V = emitArgumentDemotion(*this, Arg, V);
2456 
2457         // Because of merging of function types from multiple decls it is
2458         // possible for the type of an argument to not match the corresponding
2459         // type in the function type. Since we are codegening the callee
2460         // in here, add a cast to the argument type.
2461         llvm::Type *LTy = ConvertType(Arg->getType());
2462         if (V->getType() != LTy)
2463           V = Builder.CreateBitCast(V, LTy);
2464 
2465         ArgVals.push_back(ParamValue::forDirect(V));
2466         break;
2467       }
2468 
2469       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2470                                      Arg->getName());
2471 
2472       // Pointer to store into.
2473       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2474 
2475       // Fast-isel and the optimizer generally like scalar values better than
2476       // FCAs, so we flatten them if this is safe to do for this argument.
2477       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2478       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2479           STy->getNumElements() > 1) {
2480         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2481         llvm::Type *DstTy = Ptr.getElementType();
2482         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2483 
2484         Address AddrToStoreInto = Address::invalid();
2485         if (SrcSize <= DstSize) {
2486           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2487         } else {
2488           AddrToStoreInto =
2489             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2490         }
2491 
2492         assert(STy->getNumElements() == NumIRArgs);
2493         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2494           auto AI = FnArgs[FirstIRArg + i];
2495           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2496           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2497           Builder.CreateStore(AI, EltPtr);
2498         }
2499 
2500         if (SrcSize > DstSize) {
2501           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2502         }
2503 
2504       } else {
2505         // Simple case, just do a coerced store of the argument into the alloca.
2506         assert(NumIRArgs == 1);
2507         auto AI = FnArgs[FirstIRArg];
2508         AI->setName(Arg->getName() + ".coerce");
2509         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2510       }
2511 
2512       // Match to what EmitParmDecl is expecting for this type.
2513       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2514         llvm::Value *V =
2515             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2516         if (isPromoted)
2517           V = emitArgumentDemotion(*this, Arg, V);
2518         ArgVals.push_back(ParamValue::forDirect(V));
2519       } else {
2520         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2521       }
2522       break;
2523     }
2524 
2525     case ABIArgInfo::CoerceAndExpand: {
2526       // Reconstruct into a temporary.
2527       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2528       ArgVals.push_back(ParamValue::forIndirect(alloca));
2529 
2530       auto coercionType = ArgI.getCoerceAndExpandType();
2531       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2532 
2533       unsigned argIndex = FirstIRArg;
2534       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2535         llvm::Type *eltType = coercionType->getElementType(i);
2536         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2537           continue;
2538 
2539         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2540         auto elt = FnArgs[argIndex++];
2541         Builder.CreateStore(elt, eltAddr);
2542       }
2543       assert(argIndex == FirstIRArg + NumIRArgs);
2544       break;
2545     }
2546 
2547     case ABIArgInfo::Expand: {
2548       // If this structure was expanded into multiple arguments then
2549       // we need to create a temporary and reconstruct it from the
2550       // arguments.
2551       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2552       LValue LV = MakeAddrLValue(Alloca, Ty);
2553       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2554 
2555       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2556       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2557       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2558       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2559         auto AI = FnArgs[FirstIRArg + i];
2560         AI->setName(Arg->getName() + "." + Twine(i));
2561       }
2562       break;
2563     }
2564 
2565     case ABIArgInfo::Ignore:
2566       assert(NumIRArgs == 0);
2567       // Initialize the local variable appropriately.
2568       if (!hasScalarEvaluationKind(Ty)) {
2569         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2570       } else {
2571         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2572         ArgVals.push_back(ParamValue::forDirect(U));
2573       }
2574       break;
2575     }
2576   }
2577 
2578   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2579     for (int I = Args.size() - 1; I >= 0; --I)
2580       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2581   } else {
2582     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2583       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2584   }
2585 }
2586 
2587 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2588   while (insn->use_empty()) {
2589     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2590     if (!bitcast) return;
2591 
2592     // This is "safe" because we would have used a ConstantExpr otherwise.
2593     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2594     bitcast->eraseFromParent();
2595   }
2596 }
2597 
2598 /// Try to emit a fused autorelease of a return result.
2599 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2600                                                     llvm::Value *result) {
2601   // We must be immediately followed the cast.
2602   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2603   if (BB->empty()) return nullptr;
2604   if (&BB->back() != result) return nullptr;
2605 
2606   llvm::Type *resultType = result->getType();
2607 
2608   // result is in a BasicBlock and is therefore an Instruction.
2609   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2610 
2611   SmallVector<llvm::Instruction *, 4> InstsToKill;
2612 
2613   // Look for:
2614   //  %generator = bitcast %type1* %generator2 to %type2*
2615   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2616     // We would have emitted this as a constant if the operand weren't
2617     // an Instruction.
2618     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2619 
2620     // Require the generator to be immediately followed by the cast.
2621     if (generator->getNextNode() != bitcast)
2622       return nullptr;
2623 
2624     InstsToKill.push_back(bitcast);
2625   }
2626 
2627   // Look for:
2628   //   %generator = call i8* @objc_retain(i8* %originalResult)
2629   // or
2630   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2631   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2632   if (!call) return nullptr;
2633 
2634   bool doRetainAutorelease;
2635 
2636   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2637     doRetainAutorelease = true;
2638   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2639                                           .objc_retainAutoreleasedReturnValue) {
2640     doRetainAutorelease = false;
2641 
2642     // If we emitted an assembly marker for this call (and the
2643     // ARCEntrypoints field should have been set if so), go looking
2644     // for that call.  If we can't find it, we can't do this
2645     // optimization.  But it should always be the immediately previous
2646     // instruction, unless we needed bitcasts around the call.
2647     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2648       llvm::Instruction *prev = call->getPrevNode();
2649       assert(prev);
2650       if (isa<llvm::BitCastInst>(prev)) {
2651         prev = prev->getPrevNode();
2652         assert(prev);
2653       }
2654       assert(isa<llvm::CallInst>(prev));
2655       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2656                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2657       InstsToKill.push_back(prev);
2658     }
2659   } else {
2660     return nullptr;
2661   }
2662 
2663   result = call->getArgOperand(0);
2664   InstsToKill.push_back(call);
2665 
2666   // Keep killing bitcasts, for sanity.  Note that we no longer care
2667   // about precise ordering as long as there's exactly one use.
2668   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2669     if (!bitcast->hasOneUse()) break;
2670     InstsToKill.push_back(bitcast);
2671     result = bitcast->getOperand(0);
2672   }
2673 
2674   // Delete all the unnecessary instructions, from latest to earliest.
2675   for (auto *I : InstsToKill)
2676     I->eraseFromParent();
2677 
2678   // Do the fused retain/autorelease if we were asked to.
2679   if (doRetainAutorelease)
2680     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2681 
2682   // Cast back to the result type.
2683   return CGF.Builder.CreateBitCast(result, resultType);
2684 }
2685 
2686 /// If this is a +1 of the value of an immutable 'self', remove it.
2687 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2688                                           llvm::Value *result) {
2689   // This is only applicable to a method with an immutable 'self'.
2690   const ObjCMethodDecl *method =
2691     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2692   if (!method) return nullptr;
2693   const VarDecl *self = method->getSelfDecl();
2694   if (!self->getType().isConstQualified()) return nullptr;
2695 
2696   // Look for a retain call.
2697   llvm::CallInst *retainCall =
2698     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2699   if (!retainCall ||
2700       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2701     return nullptr;
2702 
2703   // Look for an ordinary load of 'self'.
2704   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2705   llvm::LoadInst *load =
2706     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2707   if (!load || load->isAtomic() || load->isVolatile() ||
2708       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2709     return nullptr;
2710 
2711   // Okay!  Burn it all down.  This relies for correctness on the
2712   // assumption that the retain is emitted as part of the return and
2713   // that thereafter everything is used "linearly".
2714   llvm::Type *resultType = result->getType();
2715   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2716   assert(retainCall->use_empty());
2717   retainCall->eraseFromParent();
2718   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2719 
2720   return CGF.Builder.CreateBitCast(load, resultType);
2721 }
2722 
2723 /// Emit an ARC autorelease of the result of a function.
2724 ///
2725 /// \return the value to actually return from the function
2726 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2727                                             llvm::Value *result) {
2728   // If we're returning 'self', kill the initial retain.  This is a
2729   // heuristic attempt to "encourage correctness" in the really unfortunate
2730   // case where we have a return of self during a dealloc and we desperately
2731   // need to avoid the possible autorelease.
2732   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2733     return self;
2734 
2735   // At -O0, try to emit a fused retain/autorelease.
2736   if (CGF.shouldUseFusedARCCalls())
2737     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2738       return fused;
2739 
2740   return CGF.EmitARCAutoreleaseReturnValue(result);
2741 }
2742 
2743 /// Heuristically search for a dominating store to the return-value slot.
2744 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2745   // Check if a User is a store which pointerOperand is the ReturnValue.
2746   // We are looking for stores to the ReturnValue, not for stores of the
2747   // ReturnValue to some other location.
2748   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2749     auto *SI = dyn_cast<llvm::StoreInst>(U);
2750     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2751       return nullptr;
2752     // These aren't actually possible for non-coerced returns, and we
2753     // only care about non-coerced returns on this code path.
2754     assert(!SI->isAtomic() && !SI->isVolatile());
2755     return SI;
2756   };
2757   // If there are multiple uses of the return-value slot, just check
2758   // for something immediately preceding the IP.  Sometimes this can
2759   // happen with how we generate implicit-returns; it can also happen
2760   // with noreturn cleanups.
2761   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2762     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2763     if (IP->empty()) return nullptr;
2764     llvm::Instruction *I = &IP->back();
2765 
2766     // Skip lifetime markers
2767     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2768                                             IE = IP->rend();
2769          II != IE; ++II) {
2770       if (llvm::IntrinsicInst *Intrinsic =
2771               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2772         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2773           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2774           ++II;
2775           if (II == IE)
2776             break;
2777           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2778             continue;
2779         }
2780       }
2781       I = &*II;
2782       break;
2783     }
2784 
2785     return GetStoreIfValid(I);
2786   }
2787 
2788   llvm::StoreInst *store =
2789       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2790   if (!store) return nullptr;
2791 
2792   // Now do a first-and-dirty dominance check: just walk up the
2793   // single-predecessors chain from the current insertion point.
2794   llvm::BasicBlock *StoreBB = store->getParent();
2795   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2796   while (IP != StoreBB) {
2797     if (!(IP = IP->getSinglePredecessor()))
2798       return nullptr;
2799   }
2800 
2801   // Okay, the store's basic block dominates the insertion point; we
2802   // can do our thing.
2803   return store;
2804 }
2805 
2806 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2807                                          bool EmitRetDbgLoc,
2808                                          SourceLocation EndLoc) {
2809   if (FI.isNoReturn()) {
2810     // Noreturn functions don't return.
2811     EmitUnreachable(EndLoc);
2812     return;
2813   }
2814 
2815   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2816     // Naked functions don't have epilogues.
2817     Builder.CreateUnreachable();
2818     return;
2819   }
2820 
2821   // Functions with no result always return void.
2822   if (!ReturnValue.isValid()) {
2823     Builder.CreateRetVoid();
2824     return;
2825   }
2826 
2827   llvm::DebugLoc RetDbgLoc;
2828   llvm::Value *RV = nullptr;
2829   QualType RetTy = FI.getReturnType();
2830   const ABIArgInfo &RetAI = FI.getReturnInfo();
2831 
2832   switch (RetAI.getKind()) {
2833   case ABIArgInfo::InAlloca:
2834     // Aggregrates get evaluated directly into the destination.  Sometimes we
2835     // need to return the sret value in a register, though.
2836     assert(hasAggregateEvaluationKind(RetTy));
2837     if (RetAI.getInAllocaSRet()) {
2838       llvm::Function::arg_iterator EI = CurFn->arg_end();
2839       --EI;
2840       llvm::Value *ArgStruct = &*EI;
2841       llvm::Value *SRet = Builder.CreateStructGEP(
2842           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2843       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2844     }
2845     break;
2846 
2847   case ABIArgInfo::Indirect: {
2848     auto AI = CurFn->arg_begin();
2849     if (RetAI.isSRetAfterThis())
2850       ++AI;
2851     switch (getEvaluationKind(RetTy)) {
2852     case TEK_Complex: {
2853       ComplexPairTy RT =
2854         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2855       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2856                          /*isInit*/ true);
2857       break;
2858     }
2859     case TEK_Aggregate:
2860       // Do nothing; aggregrates get evaluated directly into the destination.
2861       break;
2862     case TEK_Scalar:
2863       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2864                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2865                         /*isInit*/ true);
2866       break;
2867     }
2868     break;
2869   }
2870 
2871   case ABIArgInfo::Extend:
2872   case ABIArgInfo::Direct:
2873     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2874         RetAI.getDirectOffset() == 0) {
2875       // The internal return value temp always will have pointer-to-return-type
2876       // type, just do a load.
2877 
2878       // If there is a dominating store to ReturnValue, we can elide
2879       // the load, zap the store, and usually zap the alloca.
2880       if (llvm::StoreInst *SI =
2881               findDominatingStoreToReturnValue(*this)) {
2882         // Reuse the debug location from the store unless there is
2883         // cleanup code to be emitted between the store and return
2884         // instruction.
2885         if (EmitRetDbgLoc && !AutoreleaseResult)
2886           RetDbgLoc = SI->getDebugLoc();
2887         // Get the stored value and nuke the now-dead store.
2888         RV = SI->getValueOperand();
2889         SI->eraseFromParent();
2890 
2891         // If that was the only use of the return value, nuke it as well now.
2892         auto returnValueInst = ReturnValue.getPointer();
2893         if (returnValueInst->use_empty()) {
2894           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2895             alloca->eraseFromParent();
2896             ReturnValue = Address::invalid();
2897           }
2898         }
2899 
2900       // Otherwise, we have to do a simple load.
2901       } else {
2902         RV = Builder.CreateLoad(ReturnValue);
2903       }
2904     } else {
2905       // If the value is offset in memory, apply the offset now.
2906       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2907 
2908       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2909     }
2910 
2911     // In ARC, end functions that return a retainable type with a call
2912     // to objc_autoreleaseReturnValue.
2913     if (AutoreleaseResult) {
2914 #ifndef NDEBUG
2915       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2916       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2917       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2918       // CurCodeDecl or BlockInfo.
2919       QualType RT;
2920 
2921       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2922         RT = FD->getReturnType();
2923       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2924         RT = MD->getReturnType();
2925       else if (isa<BlockDecl>(CurCodeDecl))
2926         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2927       else
2928         llvm_unreachable("Unexpected function/method type");
2929 
2930       assert(getLangOpts().ObjCAutoRefCount &&
2931              !FI.isReturnsRetained() &&
2932              RT->isObjCRetainableType());
2933 #endif
2934       RV = emitAutoreleaseOfResult(*this, RV);
2935     }
2936 
2937     break;
2938 
2939   case ABIArgInfo::Ignore:
2940     break;
2941 
2942   case ABIArgInfo::CoerceAndExpand: {
2943     auto coercionType = RetAI.getCoerceAndExpandType();
2944 
2945     // Load all of the coerced elements out into results.
2946     llvm::SmallVector<llvm::Value*, 4> results;
2947     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2948     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2949       auto coercedEltType = coercionType->getElementType(i);
2950       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2951         continue;
2952 
2953       auto eltAddr = Builder.CreateStructGEP(addr, i);
2954       auto elt = Builder.CreateLoad(eltAddr);
2955       results.push_back(elt);
2956     }
2957 
2958     // If we have one result, it's the single direct result type.
2959     if (results.size() == 1) {
2960       RV = results[0];
2961 
2962     // Otherwise, we need to make a first-class aggregate.
2963     } else {
2964       // Construct a return type that lacks padding elements.
2965       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2966 
2967       RV = llvm::UndefValue::get(returnType);
2968       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2969         RV = Builder.CreateInsertValue(RV, results[i], i);
2970       }
2971     }
2972     break;
2973   }
2974 
2975   case ABIArgInfo::Expand:
2976     llvm_unreachable("Invalid ABI kind for return argument");
2977   }
2978 
2979   llvm::Instruction *Ret;
2980   if (RV) {
2981     EmitReturnValueCheck(RV);
2982     Ret = Builder.CreateRet(RV);
2983   } else {
2984     Ret = Builder.CreateRetVoid();
2985   }
2986 
2987   if (RetDbgLoc)
2988     Ret->setDebugLoc(std::move(RetDbgLoc));
2989 }
2990 
2991 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
2992   // A current decl may not be available when emitting vtable thunks.
2993   if (!CurCodeDecl)
2994     return;
2995 
2996   ReturnsNonNullAttr *RetNNAttr = nullptr;
2997   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
2998     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
2999 
3000   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3001     return;
3002 
3003   // Prefer the returns_nonnull attribute if it's present.
3004   SourceLocation AttrLoc;
3005   SanitizerMask CheckKind;
3006   SanitizerHandler Handler;
3007   if (RetNNAttr) {
3008     assert(!requiresReturnValueNullabilityCheck() &&
3009            "Cannot check nullability and the nonnull attribute");
3010     AttrLoc = RetNNAttr->getLocation();
3011     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3012     Handler = SanitizerHandler::NonnullReturn;
3013   } else {
3014     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3015       if (auto *TSI = DD->getTypeSourceInfo())
3016         if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
3017           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3018     CheckKind = SanitizerKind::NullabilityReturn;
3019     Handler = SanitizerHandler::NullabilityReturn;
3020   }
3021 
3022   SanitizerScope SanScope(this);
3023 
3024   // Make sure the "return" source location is valid. If we're checking a
3025   // nullability annotation, make sure the preconditions for the check are met.
3026   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3027   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3028   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3029   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3030   if (requiresReturnValueNullabilityCheck())
3031     CanNullCheck =
3032         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3033   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3034   EmitBlock(Check);
3035 
3036   // Now do the null check.
3037   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3038   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3039   llvm::Value *DynamicData[] = {SLocPtr};
3040   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3041 
3042   EmitBlock(NoCheck);
3043 
3044 #ifndef NDEBUG
3045   // The return location should not be used after the check has been emitted.
3046   ReturnLocation = Address::invalid();
3047 #endif
3048 }
3049 
3050 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3051   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3052   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3053 }
3054 
3055 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3056                                           QualType Ty) {
3057   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3058   // placeholders.
3059   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3060   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3061   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3062 
3063   // FIXME: When we generate this IR in one pass, we shouldn't need
3064   // this win32-specific alignment hack.
3065   CharUnits Align = CharUnits::fromQuantity(4);
3066   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3067 
3068   return AggValueSlot::forAddr(Address(Placeholder, Align),
3069                                Ty.getQualifiers(),
3070                                AggValueSlot::IsNotDestructed,
3071                                AggValueSlot::DoesNotNeedGCBarriers,
3072                                AggValueSlot::IsNotAliased,
3073                                AggValueSlot::DoesNotOverlap);
3074 }
3075 
3076 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3077                                           const VarDecl *param,
3078                                           SourceLocation loc) {
3079   // StartFunction converted the ABI-lowered parameter(s) into a
3080   // local alloca.  We need to turn that into an r-value suitable
3081   // for EmitCall.
3082   Address local = GetAddrOfLocalVar(param);
3083 
3084   QualType type = param->getType();
3085 
3086   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3087     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3088   }
3089 
3090   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3091   // but the argument needs to be the original pointer.
3092   if (type->isReferenceType()) {
3093     args.add(RValue::get(Builder.CreateLoad(local)), type);
3094 
3095   // In ARC, move out of consumed arguments so that the release cleanup
3096   // entered by StartFunction doesn't cause an over-release.  This isn't
3097   // optimal -O0 code generation, but it should get cleaned up when
3098   // optimization is enabled.  This also assumes that delegate calls are
3099   // performed exactly once for a set of arguments, but that should be safe.
3100   } else if (getLangOpts().ObjCAutoRefCount &&
3101              param->hasAttr<NSConsumedAttr>() &&
3102              type->isObjCRetainableType()) {
3103     llvm::Value *ptr = Builder.CreateLoad(local);
3104     auto null =
3105       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3106     Builder.CreateStore(null, local);
3107     args.add(RValue::get(ptr), type);
3108 
3109   // For the most part, we just need to load the alloca, except that
3110   // aggregate r-values are actually pointers to temporaries.
3111   } else {
3112     args.add(convertTempToRValue(local, type, loc), type);
3113   }
3114 
3115   // Deactivate the cleanup for the callee-destructed param that was pushed.
3116   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3117       type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3118       type.isDestructedType()) {
3119     EHScopeStack::stable_iterator cleanup =
3120         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3121     assert(cleanup.isValid() &&
3122            "cleanup for callee-destructed param not recorded");
3123     // This unreachable is a temporary marker which will be removed later.
3124     llvm::Instruction *isActive = Builder.CreateUnreachable();
3125     args.addArgCleanupDeactivation(cleanup, isActive);
3126   }
3127 }
3128 
3129 static bool isProvablyNull(llvm::Value *addr) {
3130   return isa<llvm::ConstantPointerNull>(addr);
3131 }
3132 
3133 /// Emit the actual writing-back of a writeback.
3134 static void emitWriteback(CodeGenFunction &CGF,
3135                           const CallArgList::Writeback &writeback) {
3136   const LValue &srcLV = writeback.Source;
3137   Address srcAddr = srcLV.getAddress();
3138   assert(!isProvablyNull(srcAddr.getPointer()) &&
3139          "shouldn't have writeback for provably null argument");
3140 
3141   llvm::BasicBlock *contBB = nullptr;
3142 
3143   // If the argument wasn't provably non-null, we need to null check
3144   // before doing the store.
3145   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3146                                               CGF.CGM.getDataLayout());
3147   if (!provablyNonNull) {
3148     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3149     contBB = CGF.createBasicBlock("icr.done");
3150 
3151     llvm::Value *isNull =
3152       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3153     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3154     CGF.EmitBlock(writebackBB);
3155   }
3156 
3157   // Load the value to writeback.
3158   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3159 
3160   // Cast it back, in case we're writing an id to a Foo* or something.
3161   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3162                                     "icr.writeback-cast");
3163 
3164   // Perform the writeback.
3165 
3166   // If we have a "to use" value, it's something we need to emit a use
3167   // of.  This has to be carefully threaded in: if it's done after the
3168   // release it's potentially undefined behavior (and the optimizer
3169   // will ignore it), and if it happens before the retain then the
3170   // optimizer could move the release there.
3171   if (writeback.ToUse) {
3172     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3173 
3174     // Retain the new value.  No need to block-copy here:  the block's
3175     // being passed up the stack.
3176     value = CGF.EmitARCRetainNonBlock(value);
3177 
3178     // Emit the intrinsic use here.
3179     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3180 
3181     // Load the old value (primitively).
3182     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3183 
3184     // Put the new value in place (primitively).
3185     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3186 
3187     // Release the old value.
3188     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3189 
3190   // Otherwise, we can just do a normal lvalue store.
3191   } else {
3192     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3193   }
3194 
3195   // Jump to the continuation block.
3196   if (!provablyNonNull)
3197     CGF.EmitBlock(contBB);
3198 }
3199 
3200 static void emitWritebacks(CodeGenFunction &CGF,
3201                            const CallArgList &args) {
3202   for (const auto &I : args.writebacks())
3203     emitWriteback(CGF, I);
3204 }
3205 
3206 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3207                                             const CallArgList &CallArgs) {
3208   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3209     CallArgs.getCleanupsToDeactivate();
3210   // Iterate in reverse to increase the likelihood of popping the cleanup.
3211   for (const auto &I : llvm::reverse(Cleanups)) {
3212     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3213     I.IsActiveIP->eraseFromParent();
3214   }
3215 }
3216 
3217 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3218   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3219     if (uop->getOpcode() == UO_AddrOf)
3220       return uop->getSubExpr();
3221   return nullptr;
3222 }
3223 
3224 /// Emit an argument that's being passed call-by-writeback.  That is,
3225 /// we are passing the address of an __autoreleased temporary; it
3226 /// might be copy-initialized with the current value of the given
3227 /// address, but it will definitely be copied out of after the call.
3228 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3229                              const ObjCIndirectCopyRestoreExpr *CRE) {
3230   LValue srcLV;
3231 
3232   // Make an optimistic effort to emit the address as an l-value.
3233   // This can fail if the argument expression is more complicated.
3234   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3235     srcLV = CGF.EmitLValue(lvExpr);
3236 
3237   // Otherwise, just emit it as a scalar.
3238   } else {
3239     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3240 
3241     QualType srcAddrType =
3242       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3243     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3244   }
3245   Address srcAddr = srcLV.getAddress();
3246 
3247   // The dest and src types don't necessarily match in LLVM terms
3248   // because of the crazy ObjC compatibility rules.
3249 
3250   llvm::PointerType *destType =
3251     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3252 
3253   // If the address is a constant null, just pass the appropriate null.
3254   if (isProvablyNull(srcAddr.getPointer())) {
3255     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3256              CRE->getType());
3257     return;
3258   }
3259 
3260   // Create the temporary.
3261   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3262                                       CGF.getPointerAlign(),
3263                                       "icr.temp");
3264   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3265   // and that cleanup will be conditional if we can't prove that the l-value
3266   // isn't null, so we need to register a dominating point so that the cleanups
3267   // system will make valid IR.
3268   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3269 
3270   // Zero-initialize it if we're not doing a copy-initialization.
3271   bool shouldCopy = CRE->shouldCopy();
3272   if (!shouldCopy) {
3273     llvm::Value *null =
3274       llvm::ConstantPointerNull::get(
3275         cast<llvm::PointerType>(destType->getElementType()));
3276     CGF.Builder.CreateStore(null, temp);
3277   }
3278 
3279   llvm::BasicBlock *contBB = nullptr;
3280   llvm::BasicBlock *originBB = nullptr;
3281 
3282   // If the address is *not* known to be non-null, we need to switch.
3283   llvm::Value *finalArgument;
3284 
3285   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3286                                               CGF.CGM.getDataLayout());
3287   if (provablyNonNull) {
3288     finalArgument = temp.getPointer();
3289   } else {
3290     llvm::Value *isNull =
3291       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3292 
3293     finalArgument = CGF.Builder.CreateSelect(isNull,
3294                                    llvm::ConstantPointerNull::get(destType),
3295                                              temp.getPointer(), "icr.argument");
3296 
3297     // If we need to copy, then the load has to be conditional, which
3298     // means we need control flow.
3299     if (shouldCopy) {
3300       originBB = CGF.Builder.GetInsertBlock();
3301       contBB = CGF.createBasicBlock("icr.cont");
3302       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3303       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3304       CGF.EmitBlock(copyBB);
3305       condEval.begin(CGF);
3306     }
3307   }
3308 
3309   llvm::Value *valueToUse = nullptr;
3310 
3311   // Perform a copy if necessary.
3312   if (shouldCopy) {
3313     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3314     assert(srcRV.isScalar());
3315 
3316     llvm::Value *src = srcRV.getScalarVal();
3317     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3318                                     "icr.cast");
3319 
3320     // Use an ordinary store, not a store-to-lvalue.
3321     CGF.Builder.CreateStore(src, temp);
3322 
3323     // If optimization is enabled, and the value was held in a
3324     // __strong variable, we need to tell the optimizer that this
3325     // value has to stay alive until we're doing the store back.
3326     // This is because the temporary is effectively unretained,
3327     // and so otherwise we can violate the high-level semantics.
3328     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3329         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3330       valueToUse = src;
3331     }
3332   }
3333 
3334   // Finish the control flow if we needed it.
3335   if (shouldCopy && !provablyNonNull) {
3336     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3337     CGF.EmitBlock(contBB);
3338 
3339     // Make a phi for the value to intrinsically use.
3340     if (valueToUse) {
3341       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3342                                                       "icr.to-use");
3343       phiToUse->addIncoming(valueToUse, copyBB);
3344       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3345                             originBB);
3346       valueToUse = phiToUse;
3347     }
3348 
3349     condEval.end(CGF);
3350   }
3351 
3352   args.addWriteback(srcLV, temp, valueToUse);
3353   args.add(RValue::get(finalArgument), CRE->getType());
3354 }
3355 
3356 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3357   assert(!StackBase);
3358 
3359   // Save the stack.
3360   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3361   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3362 }
3363 
3364 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3365   if (StackBase) {
3366     // Restore the stack after the call.
3367     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3368     CGF.Builder.CreateCall(F, StackBase);
3369   }
3370 }
3371 
3372 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3373                                           SourceLocation ArgLoc,
3374                                           AbstractCallee AC,
3375                                           unsigned ParmNum) {
3376   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3377                          SanOpts.has(SanitizerKind::NullabilityArg)))
3378     return;
3379 
3380   // The param decl may be missing in a variadic function.
3381   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3382   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3383 
3384   // Prefer the nonnull attribute if it's present.
3385   const NonNullAttr *NNAttr = nullptr;
3386   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3387     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3388 
3389   bool CanCheckNullability = false;
3390   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3391     auto Nullability = PVD->getType()->getNullability(getContext());
3392     CanCheckNullability = Nullability &&
3393                           *Nullability == NullabilityKind::NonNull &&
3394                           PVD->getTypeSourceInfo();
3395   }
3396 
3397   if (!NNAttr && !CanCheckNullability)
3398     return;
3399 
3400   SourceLocation AttrLoc;
3401   SanitizerMask CheckKind;
3402   SanitizerHandler Handler;
3403   if (NNAttr) {
3404     AttrLoc = NNAttr->getLocation();
3405     CheckKind = SanitizerKind::NonnullAttribute;
3406     Handler = SanitizerHandler::NonnullArg;
3407   } else {
3408     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3409     CheckKind = SanitizerKind::NullabilityArg;
3410     Handler = SanitizerHandler::NullabilityArg;
3411   }
3412 
3413   SanitizerScope SanScope(this);
3414   assert(RV.isScalar());
3415   llvm::Value *V = RV.getScalarVal();
3416   llvm::Value *Cond =
3417       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3418   llvm::Constant *StaticData[] = {
3419       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3420       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3421   };
3422   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3423 }
3424 
3425 void CodeGenFunction::EmitCallArgs(
3426     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3427     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3428     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3429   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3430 
3431   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3432   // because arguments are destroyed left to right in the callee. As a special
3433   // case, there are certain language constructs that require left-to-right
3434   // evaluation, and in those cases we consider the evaluation order requirement
3435   // to trump the "destruction order is reverse construction order" guarantee.
3436   bool LeftToRight =
3437       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3438           ? Order == EvaluationOrder::ForceLeftToRight
3439           : Order != EvaluationOrder::ForceRightToLeft;
3440 
3441   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3442                                          RValue EmittedArg) {
3443     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3444       return;
3445     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3446     if (PS == nullptr)
3447       return;
3448 
3449     const auto &Context = getContext();
3450     auto SizeTy = Context.getSizeType();
3451     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3452     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3453     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3454                                                      EmittedArg.getScalarVal(),
3455                                                      /*IsDynamic=*/false);
3456     Args.add(RValue::get(V), SizeTy);
3457     // If we're emitting args in reverse, be sure to do so with
3458     // pass_object_size, as well.
3459     if (!LeftToRight)
3460       std::swap(Args.back(), *(&Args.back() - 1));
3461   };
3462 
3463   // Insert a stack save if we're going to need any inalloca args.
3464   bool HasInAllocaArgs = false;
3465   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3466     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3467          I != E && !HasInAllocaArgs; ++I)
3468       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3469     if (HasInAllocaArgs) {
3470       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3471       Args.allocateArgumentMemory(*this);
3472     }
3473   }
3474 
3475   // Evaluate each argument in the appropriate order.
3476   size_t CallArgsStart = Args.size();
3477   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3478     unsigned Idx = LeftToRight ? I : E - I - 1;
3479     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3480     unsigned InitialArgSize = Args.size();
3481     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3482     // the argument and parameter match or the objc method is parameterized.
3483     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3484             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3485                                                 ArgTypes[Idx]) ||
3486             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3487              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3488            "Argument and parameter types don't match");
3489     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3490     // In particular, we depend on it being the last arg in Args, and the
3491     // objectsize bits depend on there only being one arg if !LeftToRight.
3492     assert(InitialArgSize + 1 == Args.size() &&
3493            "The code below depends on only adding one arg per EmitCallArg");
3494     (void)InitialArgSize;
3495     // Since pointer argument are never emitted as LValue, it is safe to emit
3496     // non-null argument check for r-value only.
3497     if (!Args.back().hasLValue()) {
3498       RValue RVArg = Args.back().getKnownRValue();
3499       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3500                           ParamsToSkip + Idx);
3501       // @llvm.objectsize should never have side-effects and shouldn't need
3502       // destruction/cleanups, so we can safely "emit" it after its arg,
3503       // regardless of right-to-leftness
3504       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3505     }
3506   }
3507 
3508   if (!LeftToRight) {
3509     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3510     // IR function.
3511     std::reverse(Args.begin() + CallArgsStart, Args.end());
3512   }
3513 }
3514 
3515 namespace {
3516 
3517 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3518   DestroyUnpassedArg(Address Addr, QualType Ty)
3519       : Addr(Addr), Ty(Ty) {}
3520 
3521   Address Addr;
3522   QualType Ty;
3523 
3524   void Emit(CodeGenFunction &CGF, Flags flags) override {
3525     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3526     if (DtorKind == QualType::DK_cxx_destructor) {
3527       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3528       assert(!Dtor->isTrivial());
3529       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3530                                 /*Delegating=*/false, Addr);
3531     } else {
3532       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3533     }
3534   }
3535 };
3536 
3537 struct DisableDebugLocationUpdates {
3538   CodeGenFunction &CGF;
3539   bool disabledDebugInfo;
3540   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3541     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3542       CGF.disableDebugInfo();
3543   }
3544   ~DisableDebugLocationUpdates() {
3545     if (disabledDebugInfo)
3546       CGF.enableDebugInfo();
3547   }
3548 };
3549 
3550 } // end anonymous namespace
3551 
3552 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3553   if (!HasLV)
3554     return RV;
3555   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3556   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3557                         LV.isVolatile());
3558   IsUsed = true;
3559   return RValue::getAggregate(Copy.getAddress());
3560 }
3561 
3562 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3563   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3564   if (!HasLV && RV.isScalar())
3565     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true);
3566   else if (!HasLV && RV.isComplex())
3567     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3568   else {
3569     auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress();
3570     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3571     // We assume that call args are never copied into subobjects.
3572     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3573                           HasLV ? LV.isVolatileQualified()
3574                                 : RV.isVolatileQualified());
3575   }
3576   IsUsed = true;
3577 }
3578 
3579 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3580                                   QualType type) {
3581   DisableDebugLocationUpdates Dis(*this, E);
3582   if (const ObjCIndirectCopyRestoreExpr *CRE
3583         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3584     assert(getLangOpts().ObjCAutoRefCount);
3585     return emitWritebackArg(*this, args, CRE);
3586   }
3587 
3588   assert(type->isReferenceType() == E->isGLValue() &&
3589          "reference binding to unmaterialized r-value!");
3590 
3591   if (E->isGLValue()) {
3592     assert(E->getObjectKind() == OK_Ordinary);
3593     return args.add(EmitReferenceBindingToExpr(E), type);
3594   }
3595 
3596   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3597 
3598   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3599   // However, we still have to push an EH-only cleanup in case we unwind before
3600   // we make it to the call.
3601   if (HasAggregateEvalKind &&
3602       type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3603     // If we're using inalloca, use the argument memory.  Otherwise, use a
3604     // temporary.
3605     AggValueSlot Slot;
3606     if (args.isUsingInAlloca())
3607       Slot = createPlaceholderSlot(*this, type);
3608     else
3609       Slot = CreateAggTemp(type, "agg.tmp");
3610 
3611     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3612     if (const auto *RD = type->getAsCXXRecordDecl())
3613       DestroyedInCallee = RD->hasNonTrivialDestructor();
3614     else
3615       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3616 
3617     if (DestroyedInCallee)
3618       Slot.setExternallyDestructed();
3619 
3620     EmitAggExpr(E, Slot);
3621     RValue RV = Slot.asRValue();
3622     args.add(RV, type);
3623 
3624     if (DestroyedInCallee && NeedsEHCleanup) {
3625       // Create a no-op GEP between the placeholder and the cleanup so we can
3626       // RAUW it successfully.  It also serves as a marker of the first
3627       // instruction where the cleanup is active.
3628       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3629                                               type);
3630       // This unreachable is a temporary marker which will be removed later.
3631       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3632       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3633     }
3634     return;
3635   }
3636 
3637   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3638       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3639     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3640     assert(L.isSimple());
3641     args.addUncopiedAggregate(L, type);
3642     return;
3643   }
3644 
3645   args.add(EmitAnyExprToTemp(E), type);
3646 }
3647 
3648 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3649   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3650   // implicitly widens null pointer constants that are arguments to varargs
3651   // functions to pointer-sized ints.
3652   if (!getTarget().getTriple().isOSWindows())
3653     return Arg->getType();
3654 
3655   if (Arg->getType()->isIntegerType() &&
3656       getContext().getTypeSize(Arg->getType()) <
3657           getContext().getTargetInfo().getPointerWidth(0) &&
3658       Arg->isNullPointerConstant(getContext(),
3659                                  Expr::NPC_ValueDependentIsNotNull)) {
3660     return getContext().getIntPtrType();
3661   }
3662 
3663   return Arg->getType();
3664 }
3665 
3666 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3667 // optimizer it can aggressively ignore unwind edges.
3668 void
3669 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3670   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3671       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3672     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3673                       CGM.getNoObjCARCExceptionsMetadata());
3674 }
3675 
3676 /// Emits a call to the given no-arguments nounwind runtime function.
3677 llvm::CallInst *
3678 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3679                                          const llvm::Twine &name) {
3680   return EmitNounwindRuntimeCall(callee, None, name);
3681 }
3682 
3683 /// Emits a call to the given nounwind runtime function.
3684 llvm::CallInst *
3685 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3686                                          ArrayRef<llvm::Value *> args,
3687                                          const llvm::Twine &name) {
3688   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3689   call->setDoesNotThrow();
3690   return call;
3691 }
3692 
3693 /// Emits a simple call (never an invoke) to the given no-arguments
3694 /// runtime function.
3695 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
3696                                                  const llvm::Twine &name) {
3697   return EmitRuntimeCall(callee, None, name);
3698 }
3699 
3700 // Calls which may throw must have operand bundles indicating which funclet
3701 // they are nested within.
3702 SmallVector<llvm::OperandBundleDef, 1>
3703 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3704   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3705   // There is no need for a funclet operand bundle if we aren't inside a
3706   // funclet.
3707   if (!CurrentFuncletPad)
3708     return BundleList;
3709 
3710   // Skip intrinsics which cannot throw.
3711   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3712   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3713     return BundleList;
3714 
3715   BundleList.emplace_back("funclet", CurrentFuncletPad);
3716   return BundleList;
3717 }
3718 
3719 /// Emits a simple call (never an invoke) to the given runtime function.
3720 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
3721                                                  ArrayRef<llvm::Value *> args,
3722                                                  const llvm::Twine &name) {
3723   llvm::CallInst *call = Builder.CreateCall(
3724       callee, args, getBundlesForFunclet(callee.getCallee()), name);
3725   call->setCallingConv(getRuntimeCC());
3726   return call;
3727 }
3728 
3729 /// Emits a call or invoke to the given noreturn runtime function.
3730 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
3731     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
3732   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3733       getBundlesForFunclet(callee.getCallee());
3734 
3735   if (getInvokeDest()) {
3736     llvm::InvokeInst *invoke =
3737       Builder.CreateInvoke(callee,
3738                            getUnreachableBlock(),
3739                            getInvokeDest(),
3740                            args,
3741                            BundleList);
3742     invoke->setDoesNotReturn();
3743     invoke->setCallingConv(getRuntimeCC());
3744   } else {
3745     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3746     call->setDoesNotReturn();
3747     call->setCallingConv(getRuntimeCC());
3748     Builder.CreateUnreachable();
3749   }
3750 }
3751 
3752 /// Emits a call or invoke instruction to the given nullary runtime function.
3753 llvm::CallBase *
3754 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3755                                          const Twine &name) {
3756   return EmitRuntimeCallOrInvoke(callee, None, name);
3757 }
3758 
3759 /// Emits a call or invoke instruction to the given runtime function.
3760 llvm::CallBase *
3761 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3762                                          ArrayRef<llvm::Value *> args,
3763                                          const Twine &name) {
3764   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
3765   call->setCallingConv(getRuntimeCC());
3766   return call;
3767 }
3768 
3769 /// Emits a call or invoke instruction to the given function, depending
3770 /// on the current state of the EH stack.
3771 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
3772                                                   ArrayRef<llvm::Value *> Args,
3773                                                   const Twine &Name) {
3774   llvm::BasicBlock *InvokeDest = getInvokeDest();
3775   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3776       getBundlesForFunclet(Callee.getCallee());
3777 
3778   llvm::CallBase *Inst;
3779   if (!InvokeDest)
3780     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3781   else {
3782     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3783     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3784                                 Name);
3785     EmitBlock(ContBB);
3786   }
3787 
3788   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3789   // optimizer it can aggressively ignore unwind edges.
3790   if (CGM.getLangOpts().ObjCAutoRefCount)
3791     AddObjCARCExceptionMetadata(Inst);
3792 
3793   return Inst;
3794 }
3795 
3796 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3797                                                   llvm::Value *New) {
3798   DeferredReplacements.push_back(std::make_pair(Old, New));
3799 }
3800 
3801 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3802                                  const CGCallee &Callee,
3803                                  ReturnValueSlot ReturnValue,
3804                                  const CallArgList &CallArgs,
3805                                  llvm::CallBase **callOrInvoke,
3806                                  SourceLocation Loc) {
3807   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3808 
3809   assert(Callee.isOrdinary() || Callee.isVirtual());
3810 
3811   // Handle struct-return functions by passing a pointer to the
3812   // location that we would like to return into.
3813   QualType RetTy = CallInfo.getReturnType();
3814   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3815 
3816   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
3817 
3818 #ifndef NDEBUG
3819   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
3820     // For an inalloca varargs function, we don't expect CallInfo to match the
3821     // function pointer's type, because the inalloca struct a will have extra
3822     // fields in it for the varargs parameters.  Code later in this function
3823     // bitcasts the function pointer to the type derived from CallInfo.
3824     //
3825     // In other cases, we assert that the types match up (until pointers stop
3826     // having pointee types).
3827     llvm::Type *TypeFromVal;
3828     if (Callee.isVirtual())
3829       TypeFromVal = Callee.getVirtualFunctionType();
3830     else
3831       TypeFromVal =
3832           Callee.getFunctionPointer()->getType()->getPointerElementType();
3833     assert(IRFuncTy == TypeFromVal);
3834   }
3835 #endif
3836 
3837   // 1. Set up the arguments.
3838 
3839   // If we're using inalloca, insert the allocation after the stack save.
3840   // FIXME: Do this earlier rather than hacking it in here!
3841   Address ArgMemory = Address::invalid();
3842   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3843     const llvm::DataLayout &DL = CGM.getDataLayout();
3844     llvm::Instruction *IP = CallArgs.getStackBase();
3845     llvm::AllocaInst *AI;
3846     if (IP) {
3847       IP = IP->getNextNode();
3848       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3849                                 "argmem", IP);
3850     } else {
3851       AI = CreateTempAlloca(ArgStruct, "argmem");
3852     }
3853     auto Align = CallInfo.getArgStructAlignment();
3854     AI->setAlignment(Align.getQuantity());
3855     AI->setUsedWithInAlloca(true);
3856     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3857     ArgMemory = Address(AI, Align);
3858   }
3859 
3860   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3861   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3862 
3863   // If the call returns a temporary with struct return, create a temporary
3864   // alloca to hold the result, unless one is given to us.
3865   Address SRetPtr = Address::invalid();
3866   Address SRetAlloca = Address::invalid();
3867   llvm::Value *UnusedReturnSizePtr = nullptr;
3868   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3869     if (!ReturnValue.isNull()) {
3870       SRetPtr = ReturnValue.getValue();
3871     } else {
3872       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
3873       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3874         uint64_t size =
3875             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3876         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
3877       }
3878     }
3879     if (IRFunctionArgs.hasSRetArg()) {
3880       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3881     } else if (RetAI.isInAlloca()) {
3882       Address Addr =
3883           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
3884       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3885     }
3886   }
3887 
3888   Address swiftErrorTemp = Address::invalid();
3889   Address swiftErrorArg = Address::invalid();
3890 
3891   // Translate all of the arguments as necessary to match the IR lowering.
3892   assert(CallInfo.arg_size() == CallArgs.size() &&
3893          "Mismatch between function signature & arguments.");
3894   unsigned ArgNo = 0;
3895   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3896   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3897        I != E; ++I, ++info_it, ++ArgNo) {
3898     const ABIArgInfo &ArgInfo = info_it->info;
3899 
3900     // Insert a padding argument to ensure proper alignment.
3901     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3902       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3903           llvm::UndefValue::get(ArgInfo.getPaddingType());
3904 
3905     unsigned FirstIRArg, NumIRArgs;
3906     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3907 
3908     switch (ArgInfo.getKind()) {
3909     case ABIArgInfo::InAlloca: {
3910       assert(NumIRArgs == 0);
3911       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3912       if (I->isAggregate()) {
3913         // Replace the placeholder with the appropriate argument slot GEP.
3914         Address Addr = I->hasLValue()
3915                            ? I->getKnownLValue().getAddress()
3916                            : I->getKnownRValue().getAggregateAddress();
3917         llvm::Instruction *Placeholder =
3918             cast<llvm::Instruction>(Addr.getPointer());
3919         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3920         Builder.SetInsertPoint(Placeholder);
3921         Addr =
3922             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
3923         Builder.restoreIP(IP);
3924         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3925       } else {
3926         // Store the RValue into the argument struct.
3927         Address Addr =
3928             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
3929         unsigned AS = Addr.getType()->getPointerAddressSpace();
3930         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3931         // There are some cases where a trivial bitcast is not avoidable.  The
3932         // definition of a type later in a translation unit may change it's type
3933         // from {}* to (%struct.foo*)*.
3934         if (Addr.getType() != MemType)
3935           Addr = Builder.CreateBitCast(Addr, MemType);
3936         I->copyInto(*this, Addr);
3937       }
3938       break;
3939     }
3940 
3941     case ABIArgInfo::Indirect: {
3942       assert(NumIRArgs == 1);
3943       if (!I->isAggregate()) {
3944         // Make a temporary alloca to pass the argument.
3945         Address Addr = CreateMemTempWithoutCast(
3946             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
3947         IRCallArgs[FirstIRArg] = Addr.getPointer();
3948 
3949         I->copyInto(*this, Addr);
3950       } else {
3951         // We want to avoid creating an unnecessary temporary+copy here;
3952         // however, we need one in three cases:
3953         // 1. If the argument is not byval, and we are required to copy the
3954         //    source.  (This case doesn't occur on any common architecture.)
3955         // 2. If the argument is byval, RV is not sufficiently aligned, and
3956         //    we cannot force it to be sufficiently aligned.
3957         // 3. If the argument is byval, but RV is not located in default
3958         //    or alloca address space.
3959         Address Addr = I->hasLValue()
3960                            ? I->getKnownLValue().getAddress()
3961                            : I->getKnownRValue().getAggregateAddress();
3962         llvm::Value *V = Addr.getPointer();
3963         CharUnits Align = ArgInfo.getIndirectAlign();
3964         const llvm::DataLayout *TD = &CGM.getDataLayout();
3965 
3966         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
3967                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
3968                     TD->getAllocaAddrSpace()) &&
3969                "indirect argument must be in alloca address space");
3970 
3971         bool NeedCopy = false;
3972 
3973         if (Addr.getAlignment() < Align &&
3974             llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
3975                 Align.getQuantity()) {
3976           NeedCopy = true;
3977         } else if (I->hasLValue()) {
3978           auto LV = I->getKnownLValue();
3979           auto AS = LV.getAddressSpace();
3980 
3981           if ((!ArgInfo.getIndirectByVal() &&
3982                (LV.getAlignment() >=
3983                 getContext().getTypeAlignInChars(I->Ty)))) {
3984             NeedCopy = true;
3985           }
3986           if (!getLangOpts().OpenCL) {
3987             if ((ArgInfo.getIndirectByVal() &&
3988                 (AS != LangAS::Default &&
3989                  AS != CGM.getASTAllocaAddressSpace()))) {
3990               NeedCopy = true;
3991             }
3992           }
3993           // For OpenCL even if RV is located in default or alloca address space
3994           // we don't want to perform address space cast for it.
3995           else if ((ArgInfo.getIndirectByVal() &&
3996                     Addr.getType()->getAddressSpace() != IRFuncTy->
3997                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
3998             NeedCopy = true;
3999           }
4000         }
4001 
4002         if (NeedCopy) {
4003           // Create an aligned temporary, and copy to it.
4004           Address AI = CreateMemTempWithoutCast(
4005               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4006           IRCallArgs[FirstIRArg] = AI.getPointer();
4007           I->copyInto(*this, AI);
4008         } else {
4009           // Skip the extra memcpy call.
4010           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4011               CGM.getDataLayout().getAllocaAddrSpace());
4012           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4013               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4014               true);
4015         }
4016       }
4017       break;
4018     }
4019 
4020     case ABIArgInfo::Ignore:
4021       assert(NumIRArgs == 0);
4022       break;
4023 
4024     case ABIArgInfo::Extend:
4025     case ABIArgInfo::Direct: {
4026       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4027           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4028           ArgInfo.getDirectOffset() == 0) {
4029         assert(NumIRArgs == 1);
4030         llvm::Value *V;
4031         if (!I->isAggregate())
4032           V = I->getKnownRValue().getScalarVal();
4033         else
4034           V = Builder.CreateLoad(
4035               I->hasLValue() ? I->getKnownLValue().getAddress()
4036                              : I->getKnownRValue().getAggregateAddress());
4037 
4038         // Implement swifterror by copying into a new swifterror argument.
4039         // We'll write back in the normal path out of the call.
4040         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4041               == ParameterABI::SwiftErrorResult) {
4042           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4043 
4044           QualType pointeeTy = I->Ty->getPointeeType();
4045           swiftErrorArg =
4046             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4047 
4048           swiftErrorTemp =
4049             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4050           V = swiftErrorTemp.getPointer();
4051           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4052 
4053           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4054           Builder.CreateStore(errorValue, swiftErrorTemp);
4055         }
4056 
4057         // We might have to widen integers, but we should never truncate.
4058         if (ArgInfo.getCoerceToType() != V->getType() &&
4059             V->getType()->isIntegerTy())
4060           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4061 
4062         // If the argument doesn't match, perform a bitcast to coerce it.  This
4063         // can happen due to trivial type mismatches.
4064         if (FirstIRArg < IRFuncTy->getNumParams() &&
4065             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4066           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4067 
4068         IRCallArgs[FirstIRArg] = V;
4069         break;
4070       }
4071 
4072       // FIXME: Avoid the conversion through memory if possible.
4073       Address Src = Address::invalid();
4074       if (!I->isAggregate()) {
4075         Src = CreateMemTemp(I->Ty, "coerce");
4076         I->copyInto(*this, Src);
4077       } else {
4078         Src = I->hasLValue() ? I->getKnownLValue().getAddress()
4079                              : I->getKnownRValue().getAggregateAddress();
4080       }
4081 
4082       // If the value is offset in memory, apply the offset now.
4083       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4084 
4085       // Fast-isel and the optimizer generally like scalar values better than
4086       // FCAs, so we flatten them if this is safe to do for this argument.
4087       llvm::StructType *STy =
4088             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4089       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4090         llvm::Type *SrcTy = Src.getType()->getElementType();
4091         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4092         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4093 
4094         // If the source type is smaller than the destination type of the
4095         // coerce-to logic, copy the source value into a temp alloca the size
4096         // of the destination type to allow loading all of it. The bits past
4097         // the source value are left undef.
4098         if (SrcSize < DstSize) {
4099           Address TempAlloca
4100             = CreateTempAlloca(STy, Src.getAlignment(),
4101                                Src.getName() + ".coerce");
4102           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4103           Src = TempAlloca;
4104         } else {
4105           Src = Builder.CreateBitCast(Src,
4106                                       STy->getPointerTo(Src.getAddressSpace()));
4107         }
4108 
4109         assert(NumIRArgs == STy->getNumElements());
4110         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4111           Address EltPtr = Builder.CreateStructGEP(Src, i);
4112           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4113           IRCallArgs[FirstIRArg + i] = LI;
4114         }
4115       } else {
4116         // In the simple case, just pass the coerced loaded value.
4117         assert(NumIRArgs == 1);
4118         IRCallArgs[FirstIRArg] =
4119           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4120       }
4121 
4122       break;
4123     }
4124 
4125     case ABIArgInfo::CoerceAndExpand: {
4126       auto coercionType = ArgInfo.getCoerceAndExpandType();
4127       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4128 
4129       llvm::Value *tempSize = nullptr;
4130       Address addr = Address::invalid();
4131       Address AllocaAddr = Address::invalid();
4132       if (I->isAggregate()) {
4133         addr = I->hasLValue() ? I->getKnownLValue().getAddress()
4134                               : I->getKnownRValue().getAggregateAddress();
4135 
4136       } else {
4137         RValue RV = I->getKnownRValue();
4138         assert(RV.isScalar()); // complex should always just be direct
4139 
4140         llvm::Type *scalarType = RV.getScalarVal()->getType();
4141         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4142         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4143 
4144         // Materialize to a temporary.
4145         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
4146                                 CharUnits::fromQuantity(std::max(
4147                                     layout->getAlignment(), scalarAlign)),
4148                                 "tmp",
4149                                 /*ArraySize=*/nullptr, &AllocaAddr);
4150         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4151 
4152         Builder.CreateStore(RV.getScalarVal(), addr);
4153       }
4154 
4155       addr = Builder.CreateElementBitCast(addr, coercionType);
4156 
4157       unsigned IRArgPos = FirstIRArg;
4158       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4159         llvm::Type *eltType = coercionType->getElementType(i);
4160         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4161         Address eltAddr = Builder.CreateStructGEP(addr, i);
4162         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4163         IRCallArgs[IRArgPos++] = elt;
4164       }
4165       assert(IRArgPos == FirstIRArg + NumIRArgs);
4166 
4167       if (tempSize) {
4168         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4169       }
4170 
4171       break;
4172     }
4173 
4174     case ABIArgInfo::Expand:
4175       unsigned IRArgPos = FirstIRArg;
4176       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4177       assert(IRArgPos == FirstIRArg + NumIRArgs);
4178       break;
4179     }
4180   }
4181 
4182   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4183   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4184 
4185   // If we're using inalloca, set up that argument.
4186   if (ArgMemory.isValid()) {
4187     llvm::Value *Arg = ArgMemory.getPointer();
4188     if (CallInfo.isVariadic()) {
4189       // When passing non-POD arguments by value to variadic functions, we will
4190       // end up with a variadic prototype and an inalloca call site.  In such
4191       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4192       // the callee.
4193       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4194       CalleePtr =
4195           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4196     } else {
4197       llvm::Type *LastParamTy =
4198           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4199       if (Arg->getType() != LastParamTy) {
4200 #ifndef NDEBUG
4201         // Assert that these structs have equivalent element types.
4202         llvm::StructType *FullTy = CallInfo.getArgStruct();
4203         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4204             cast<llvm::PointerType>(LastParamTy)->getElementType());
4205         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4206         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4207                                                 DE = DeclaredTy->element_end(),
4208                                                 FI = FullTy->element_begin();
4209              DI != DE; ++DI, ++FI)
4210           assert(*DI == *FI);
4211 #endif
4212         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4213       }
4214     }
4215     assert(IRFunctionArgs.hasInallocaArg());
4216     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4217   }
4218 
4219   // 2. Prepare the function pointer.
4220 
4221   // If the callee is a bitcast of a non-variadic function to have a
4222   // variadic function pointer type, check to see if we can remove the
4223   // bitcast.  This comes up with unprototyped functions.
4224   //
4225   // This makes the IR nicer, but more importantly it ensures that we
4226   // can inline the function at -O0 if it is marked always_inline.
4227   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4228                                    llvm::Value *Ptr) -> llvm::Function * {
4229     if (!CalleeFT->isVarArg())
4230       return nullptr;
4231 
4232     // Get underlying value if it's a bitcast
4233     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4234       if (CE->getOpcode() == llvm::Instruction::BitCast)
4235         Ptr = CE->getOperand(0);
4236     }
4237 
4238     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4239     if (!OrigFn)
4240       return nullptr;
4241 
4242     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4243 
4244     // If the original type is variadic, or if any of the component types
4245     // disagree, we cannot remove the cast.
4246     if (OrigFT->isVarArg() ||
4247         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4248         OrigFT->getReturnType() != CalleeFT->getReturnType())
4249       return nullptr;
4250 
4251     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4252       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4253         return nullptr;
4254 
4255     return OrigFn;
4256   };
4257 
4258   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4259     CalleePtr = OrigFn;
4260     IRFuncTy = OrigFn->getFunctionType();
4261   }
4262 
4263   // 3. Perform the actual call.
4264 
4265   // Deactivate any cleanups that we're supposed to do immediately before
4266   // the call.
4267   if (!CallArgs.getCleanupsToDeactivate().empty())
4268     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4269 
4270   // Assert that the arguments we computed match up.  The IR verifier
4271   // will catch this, but this is a common enough source of problems
4272   // during IRGen changes that it's way better for debugging to catch
4273   // it ourselves here.
4274 #ifndef NDEBUG
4275   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4276   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4277     // Inalloca argument can have different type.
4278     if (IRFunctionArgs.hasInallocaArg() &&
4279         i == IRFunctionArgs.getInallocaArgNo())
4280       continue;
4281     if (i < IRFuncTy->getNumParams())
4282       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4283   }
4284 #endif
4285 
4286   // Update the largest vector width if any arguments have vector types.
4287   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4288     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4289       LargestVectorWidth = std::max(LargestVectorWidth,
4290                                     VT->getPrimitiveSizeInBits());
4291   }
4292 
4293   // Compute the calling convention and attributes.
4294   unsigned CallingConv;
4295   llvm::AttributeList Attrs;
4296   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4297                              Callee.getAbstractInfo(), Attrs, CallingConv,
4298                              /*AttrOnCallSite=*/true);
4299 
4300   // Apply some call-site-specific attributes.
4301   // TODO: work this into building the attribute set.
4302 
4303   // Apply always_inline to all calls within flatten functions.
4304   // FIXME: should this really take priority over __try, below?
4305   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4306       !(Callee.getAbstractInfo().getCalleeDecl().getDecl() &&
4307         Callee.getAbstractInfo()
4308             .getCalleeDecl()
4309             .getDecl()
4310             ->hasAttr<NoInlineAttr>())) {
4311     Attrs =
4312         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4313                            llvm::Attribute::AlwaysInline);
4314   }
4315 
4316   // Disable inlining inside SEH __try blocks.
4317   if (isSEHTryScope()) {
4318     Attrs =
4319         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4320                            llvm::Attribute::NoInline);
4321   }
4322 
4323   // Decide whether to use a call or an invoke.
4324   bool CannotThrow;
4325   if (currentFunctionUsesSEHTry()) {
4326     // SEH cares about asynchronous exceptions, so everything can "throw."
4327     CannotThrow = false;
4328   } else if (isCleanupPadScope() &&
4329              EHPersonality::get(*this).isMSVCXXPersonality()) {
4330     // The MSVC++ personality will implicitly terminate the program if an
4331     // exception is thrown during a cleanup outside of a try/catch.
4332     // We don't need to model anything in IR to get this behavior.
4333     CannotThrow = true;
4334   } else {
4335     // Otherwise, nounwind call sites will never throw.
4336     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4337                                      llvm::Attribute::NoUnwind);
4338   }
4339 
4340   // If we made a temporary, be sure to clean up after ourselves. Note that we
4341   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4342   // pop this cleanup later on. Being eager about this is OK, since this
4343   // temporary is 'invisible' outside of the callee.
4344   if (UnusedReturnSizePtr)
4345     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4346                                          UnusedReturnSizePtr);
4347 
4348   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4349 
4350   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4351       getBundlesForFunclet(CalleePtr);
4352 
4353   // Emit the actual call/invoke instruction.
4354   llvm::CallBase *CI;
4355   if (!InvokeDest) {
4356     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
4357   } else {
4358     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4359     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
4360                               BundleList);
4361     EmitBlock(Cont);
4362   }
4363   if (callOrInvoke)
4364     *callOrInvoke = CI;
4365 
4366   // Apply the attributes and calling convention.
4367   CI->setAttributes(Attrs);
4368   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4369 
4370   // Apply various metadata.
4371 
4372   if (!CI->getType()->isVoidTy())
4373     CI->setName("call");
4374 
4375   // Update largest vector width from the return type.
4376   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4377     LargestVectorWidth = std::max(LargestVectorWidth,
4378                                   VT->getPrimitiveSizeInBits());
4379 
4380   // Insert instrumentation or attach profile metadata at indirect call sites.
4381   // For more details, see the comment before the definition of
4382   // IPVK_IndirectCallTarget in InstrProfData.inc.
4383   if (!CI->getCalledFunction())
4384     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4385                      CI, CalleePtr);
4386 
4387   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4388   // optimizer it can aggressively ignore unwind edges.
4389   if (CGM.getLangOpts().ObjCAutoRefCount)
4390     AddObjCARCExceptionMetadata(CI);
4391 
4392   // Suppress tail calls if requested.
4393   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4394     const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4395     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4396       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4397   }
4398 
4399   // 4. Finish the call.
4400 
4401   // If the call doesn't return, finish the basic block and clear the
4402   // insertion point; this allows the rest of IRGen to discard
4403   // unreachable code.
4404   if (CI->doesNotReturn()) {
4405     if (UnusedReturnSizePtr)
4406       PopCleanupBlock();
4407 
4408     // Strip away the noreturn attribute to better diagnose unreachable UB.
4409     if (SanOpts.has(SanitizerKind::Unreachable)) {
4410       // Also remove from function since CallBase::hasFnAttr additionally checks
4411       // attributes of the called function.
4412       if (auto *F = CI->getCalledFunction())
4413         F->removeFnAttr(llvm::Attribute::NoReturn);
4414       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
4415                           llvm::Attribute::NoReturn);
4416 
4417       // Avoid incompatibility with ASan which relies on the `noreturn`
4418       // attribute to insert handler calls.
4419       if (SanOpts.hasOneOf(SanitizerKind::Address |
4420                            SanitizerKind::KernelAddress)) {
4421         SanitizerScope SanScope(this);
4422         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
4423         Builder.SetInsertPoint(CI);
4424         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
4425         llvm::FunctionCallee Fn =
4426             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
4427         EmitNounwindRuntimeCall(Fn);
4428       }
4429     }
4430 
4431     EmitUnreachable(Loc);
4432     Builder.ClearInsertionPoint();
4433 
4434     // FIXME: For now, emit a dummy basic block because expr emitters in
4435     // generally are not ready to handle emitting expressions at unreachable
4436     // points.
4437     EnsureInsertPoint();
4438 
4439     // Return a reasonable RValue.
4440     return GetUndefRValue(RetTy);
4441   }
4442 
4443   // Perform the swifterror writeback.
4444   if (swiftErrorTemp.isValid()) {
4445     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4446     Builder.CreateStore(errorResult, swiftErrorArg);
4447   }
4448 
4449   // Emit any call-associated writebacks immediately.  Arguably this
4450   // should happen after any return-value munging.
4451   if (CallArgs.hasWritebacks())
4452     emitWritebacks(*this, CallArgs);
4453 
4454   // The stack cleanup for inalloca arguments has to run out of the normal
4455   // lexical order, so deactivate it and run it manually here.
4456   CallArgs.freeArgumentMemory(*this);
4457 
4458   // Extract the return value.
4459   RValue Ret = [&] {
4460     switch (RetAI.getKind()) {
4461     case ABIArgInfo::CoerceAndExpand: {
4462       auto coercionType = RetAI.getCoerceAndExpandType();
4463 
4464       Address addr = SRetPtr;
4465       addr = Builder.CreateElementBitCast(addr, coercionType);
4466 
4467       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4468       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4469 
4470       unsigned unpaddedIndex = 0;
4471       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4472         llvm::Type *eltType = coercionType->getElementType(i);
4473         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4474         Address eltAddr = Builder.CreateStructGEP(addr, i);
4475         llvm::Value *elt = CI;
4476         if (requiresExtract)
4477           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4478         else
4479           assert(unpaddedIndex == 0);
4480         Builder.CreateStore(elt, eltAddr);
4481       }
4482       // FALLTHROUGH
4483       LLVM_FALLTHROUGH;
4484     }
4485 
4486     case ABIArgInfo::InAlloca:
4487     case ABIArgInfo::Indirect: {
4488       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4489       if (UnusedReturnSizePtr)
4490         PopCleanupBlock();
4491       return ret;
4492     }
4493 
4494     case ABIArgInfo::Ignore:
4495       // If we are ignoring an argument that had a result, make sure to
4496       // construct the appropriate return value for our caller.
4497       return GetUndefRValue(RetTy);
4498 
4499     case ABIArgInfo::Extend:
4500     case ABIArgInfo::Direct: {
4501       llvm::Type *RetIRTy = ConvertType(RetTy);
4502       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4503         switch (getEvaluationKind(RetTy)) {
4504         case TEK_Complex: {
4505           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4506           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4507           return RValue::getComplex(std::make_pair(Real, Imag));
4508         }
4509         case TEK_Aggregate: {
4510           Address DestPtr = ReturnValue.getValue();
4511           bool DestIsVolatile = ReturnValue.isVolatile();
4512 
4513           if (!DestPtr.isValid()) {
4514             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4515             DestIsVolatile = false;
4516           }
4517           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4518           return RValue::getAggregate(DestPtr);
4519         }
4520         case TEK_Scalar: {
4521           // If the argument doesn't match, perform a bitcast to coerce it.  This
4522           // can happen due to trivial type mismatches.
4523           llvm::Value *V = CI;
4524           if (V->getType() != RetIRTy)
4525             V = Builder.CreateBitCast(V, RetIRTy);
4526           return RValue::get(V);
4527         }
4528         }
4529         llvm_unreachable("bad evaluation kind");
4530       }
4531 
4532       Address DestPtr = ReturnValue.getValue();
4533       bool DestIsVolatile = ReturnValue.isVolatile();
4534 
4535       if (!DestPtr.isValid()) {
4536         DestPtr = CreateMemTemp(RetTy, "coerce");
4537         DestIsVolatile = false;
4538       }
4539 
4540       // If the value is offset in memory, apply the offset now.
4541       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4542       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4543 
4544       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4545     }
4546 
4547     case ABIArgInfo::Expand:
4548       llvm_unreachable("Invalid ABI kind for return argument");
4549     }
4550 
4551     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4552   } ();
4553 
4554   // Emit the assume_aligned check on the return value.
4555   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4556   if (Ret.isScalar() && TargetDecl) {
4557     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4558       llvm::Value *OffsetValue = nullptr;
4559       if (const auto *Offset = AA->getOffset())
4560         OffsetValue = EmitScalarExpr(Offset);
4561 
4562       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4563       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4564       EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4565                               AlignmentCI->getZExtValue(), OffsetValue);
4566     } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4567       llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()]
4568                                       .getRValue(*this)
4569                                       .getScalarVal();
4570       EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4571                               AlignmentVal);
4572     }
4573   }
4574 
4575   return Ret;
4576 }
4577 
4578 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
4579   if (isVirtual()) {
4580     const CallExpr *CE = getVirtualCallExpr();
4581     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
4582         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
4583         CE ? CE->getBeginLoc() : SourceLocation());
4584   }
4585 
4586   return *this;
4587 }
4588 
4589 /* VarArg handling */
4590 
4591 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4592   VAListAddr = VE->isMicrosoftABI()
4593                  ? EmitMSVAListRef(VE->getSubExpr())
4594                  : EmitVAListRef(VE->getSubExpr());
4595   QualType Ty = VE->getType();
4596   if (VE->isMicrosoftABI())
4597     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4598   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4599 }
4600