1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/Basic/CodeGenOptions.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 using namespace clang; 40 using namespace CodeGen; 41 42 /***/ 43 44 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 45 switch (CC) { 46 default: return llvm::CallingConv::C; 47 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 48 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 49 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 50 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 51 case CC_Win64: return llvm::CallingConv::Win64; 52 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 53 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 54 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 55 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 56 // TODO: Add support for __pascal to LLVM. 57 case CC_X86Pascal: return llvm::CallingConv::C; 58 // TODO: Add support for __vectorcall to LLVM. 59 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 60 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 61 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 62 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 63 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 64 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 65 case CC_Swift: return llvm::CallingConv::Swift; 66 } 67 } 68 69 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 70 /// qualification. Either or both of RD and MD may be null. A null RD indicates 71 /// that there is no meaningful 'this' type, and a null MD can occur when 72 /// calling a method pointer. 73 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 74 const CXXMethodDecl *MD) { 75 QualType RecTy; 76 if (RD) 77 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 78 else 79 RecTy = Context.VoidTy; 80 81 if (MD) 82 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 83 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 84 } 85 86 /// Returns the canonical formal type of the given C++ method. 87 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 88 return MD->getType()->getCanonicalTypeUnqualified() 89 .getAs<FunctionProtoType>(); 90 } 91 92 /// Returns the "extra-canonicalized" return type, which discards 93 /// qualifiers on the return type. Codegen doesn't care about them, 94 /// and it makes ABI code a little easier to be able to assume that 95 /// all parameter and return types are top-level unqualified. 96 static CanQualType GetReturnType(QualType RetTy) { 97 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 98 } 99 100 /// Arrange the argument and result information for a value of the given 101 /// unprototyped freestanding function type. 102 const CGFunctionInfo & 103 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 104 // When translating an unprototyped function type, always use a 105 // variadic type. 106 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 107 /*instanceMethod=*/false, 108 /*chainCall=*/false, None, 109 FTNP->getExtInfo(), {}, RequiredArgs(0)); 110 } 111 112 static void addExtParameterInfosForCall( 113 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 114 const FunctionProtoType *proto, 115 unsigned prefixArgs, 116 unsigned totalArgs) { 117 assert(proto->hasExtParameterInfos()); 118 assert(paramInfos.size() <= prefixArgs); 119 assert(proto->getNumParams() + prefixArgs <= totalArgs); 120 121 paramInfos.reserve(totalArgs); 122 123 // Add default infos for any prefix args that don't already have infos. 124 paramInfos.resize(prefixArgs); 125 126 // Add infos for the prototype. 127 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 128 paramInfos.push_back(ParamInfo); 129 // pass_object_size params have no parameter info. 130 if (ParamInfo.hasPassObjectSize()) 131 paramInfos.emplace_back(); 132 } 133 134 assert(paramInfos.size() <= totalArgs && 135 "Did we forget to insert pass_object_size args?"); 136 // Add default infos for the variadic and/or suffix arguments. 137 paramInfos.resize(totalArgs); 138 } 139 140 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 141 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 142 static void appendParameterTypes(const CodeGenTypes &CGT, 143 SmallVectorImpl<CanQualType> &prefix, 144 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 145 CanQual<FunctionProtoType> FPT) { 146 // Fast path: don't touch param info if we don't need to. 147 if (!FPT->hasExtParameterInfos()) { 148 assert(paramInfos.empty() && 149 "We have paramInfos, but the prototype doesn't?"); 150 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 151 return; 152 } 153 154 unsigned PrefixSize = prefix.size(); 155 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 156 // parameters; the only thing that can change this is the presence of 157 // pass_object_size. So, we preallocate for the common case. 158 prefix.reserve(prefix.size() + FPT->getNumParams()); 159 160 auto ExtInfos = FPT->getExtParameterInfos(); 161 assert(ExtInfos.size() == FPT->getNumParams()); 162 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 163 prefix.push_back(FPT->getParamType(I)); 164 if (ExtInfos[I].hasPassObjectSize()) 165 prefix.push_back(CGT.getContext().getSizeType()); 166 } 167 168 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 169 prefix.size()); 170 } 171 172 /// Arrange the LLVM function layout for a value of the given function 173 /// type, on top of any implicit parameters already stored. 174 static const CGFunctionInfo & 175 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 176 SmallVectorImpl<CanQualType> &prefix, 177 CanQual<FunctionProtoType> FTP) { 178 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 179 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 180 // FIXME: Kill copy. 181 appendParameterTypes(CGT, prefix, paramInfos, FTP); 182 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 183 184 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 185 /*chainCall=*/false, prefix, 186 FTP->getExtInfo(), paramInfos, 187 Required); 188 } 189 190 /// Arrange the argument and result information for a value of the 191 /// given freestanding function type. 192 const CGFunctionInfo & 193 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 194 SmallVector<CanQualType, 16> argTypes; 195 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 196 FTP); 197 } 198 199 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 200 // Set the appropriate calling convention for the Function. 201 if (D->hasAttr<StdCallAttr>()) 202 return CC_X86StdCall; 203 204 if (D->hasAttr<FastCallAttr>()) 205 return CC_X86FastCall; 206 207 if (D->hasAttr<RegCallAttr>()) 208 return CC_X86RegCall; 209 210 if (D->hasAttr<ThisCallAttr>()) 211 return CC_X86ThisCall; 212 213 if (D->hasAttr<VectorCallAttr>()) 214 return CC_X86VectorCall; 215 216 if (D->hasAttr<PascalAttr>()) 217 return CC_X86Pascal; 218 219 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 220 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 221 222 if (D->hasAttr<AArch64VectorPcsAttr>()) 223 return CC_AArch64VectorCall; 224 225 if (D->hasAttr<IntelOclBiccAttr>()) 226 return CC_IntelOclBicc; 227 228 if (D->hasAttr<MSABIAttr>()) 229 return IsWindows ? CC_C : CC_Win64; 230 231 if (D->hasAttr<SysVABIAttr>()) 232 return IsWindows ? CC_X86_64SysV : CC_C; 233 234 if (D->hasAttr<PreserveMostAttr>()) 235 return CC_PreserveMost; 236 237 if (D->hasAttr<PreserveAllAttr>()) 238 return CC_PreserveAll; 239 240 return CC_C; 241 } 242 243 /// Arrange the argument and result information for a call to an 244 /// unknown C++ non-static member function of the given abstract type. 245 /// (A null RD means we don't have any meaningful "this" argument type, 246 /// so fall back to a generic pointer type). 247 /// The member function must be an ordinary function, i.e. not a 248 /// constructor or destructor. 249 const CGFunctionInfo & 250 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 251 const FunctionProtoType *FTP, 252 const CXXMethodDecl *MD) { 253 SmallVector<CanQualType, 16> argTypes; 254 255 // Add the 'this' pointer. 256 argTypes.push_back(DeriveThisType(RD, MD)); 257 258 return ::arrangeLLVMFunctionInfo( 259 *this, true, argTypes, 260 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 261 } 262 263 /// Set calling convention for CUDA/HIP kernel. 264 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 265 const FunctionDecl *FD) { 266 if (FD->hasAttr<CUDAGlobalAttr>()) { 267 const FunctionType *FT = FTy->getAs<FunctionType>(); 268 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 269 FTy = FT->getCanonicalTypeUnqualified(); 270 } 271 } 272 273 /// Arrange the argument and result information for a declaration or 274 /// definition of the given C++ non-static member function. The 275 /// member function must be an ordinary function, i.e. not a 276 /// constructor or destructor. 277 const CGFunctionInfo & 278 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 279 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 280 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 281 282 CanQualType FT = GetFormalType(MD).getAs<Type>(); 283 setCUDAKernelCallingConvention(FT, CGM, MD); 284 auto prototype = FT.getAs<FunctionProtoType>(); 285 286 if (MD->isInstance()) { 287 // The abstract case is perfectly fine. 288 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 289 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 290 } 291 292 return arrangeFreeFunctionType(prototype); 293 } 294 295 bool CodeGenTypes::inheritingCtorHasParams( 296 const InheritedConstructor &Inherited, CXXCtorType Type) { 297 // Parameters are unnecessary if we're constructing a base class subobject 298 // and the inherited constructor lives in a virtual base. 299 return Type == Ctor_Complete || 300 !Inherited.getShadowDecl()->constructsVirtualBase() || 301 !Target.getCXXABI().hasConstructorVariants(); 302 } 303 304 const CGFunctionInfo & 305 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 306 StructorType Type) { 307 308 SmallVector<CanQualType, 16> argTypes; 309 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 310 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 311 312 bool PassParams = true; 313 314 GlobalDecl GD; 315 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 316 GD = GlobalDecl(CD, toCXXCtorType(Type)); 317 318 // A base class inheriting constructor doesn't get forwarded arguments 319 // needed to construct a virtual base (or base class thereof). 320 if (auto Inherited = CD->getInheritedConstructor()) 321 PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); 322 } else { 323 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 324 GD = GlobalDecl(DD, toCXXDtorType(Type)); 325 } 326 327 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 328 329 // Add the formal parameters. 330 if (PassParams) 331 appendParameterTypes(*this, argTypes, paramInfos, FTP); 332 333 CGCXXABI::AddedStructorArgs AddedArgs = 334 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 335 if (!paramInfos.empty()) { 336 // Note: prefix implies after the first param. 337 if (AddedArgs.Prefix) 338 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 339 FunctionProtoType::ExtParameterInfo{}); 340 if (AddedArgs.Suffix) 341 paramInfos.append(AddedArgs.Suffix, 342 FunctionProtoType::ExtParameterInfo{}); 343 } 344 345 RequiredArgs required = 346 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 347 : RequiredArgs::All); 348 349 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 350 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 351 ? argTypes.front() 352 : TheCXXABI.hasMostDerivedReturn(GD) 353 ? CGM.getContext().VoidPtrTy 354 : Context.VoidTy; 355 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 356 /*chainCall=*/false, argTypes, extInfo, 357 paramInfos, required); 358 } 359 360 static SmallVector<CanQualType, 16> 361 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 362 SmallVector<CanQualType, 16> argTypes; 363 for (auto &arg : args) 364 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 365 return argTypes; 366 } 367 368 static SmallVector<CanQualType, 16> 369 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 370 SmallVector<CanQualType, 16> argTypes; 371 for (auto &arg : args) 372 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 373 return argTypes; 374 } 375 376 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 377 getExtParameterInfosForCall(const FunctionProtoType *proto, 378 unsigned prefixArgs, unsigned totalArgs) { 379 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 380 if (proto->hasExtParameterInfos()) { 381 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 382 } 383 return result; 384 } 385 386 /// Arrange a call to a C++ method, passing the given arguments. 387 /// 388 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 389 /// parameter. 390 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 391 /// args. 392 /// PassProtoArgs indicates whether `args` has args for the parameters in the 393 /// given CXXConstructorDecl. 394 const CGFunctionInfo & 395 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 396 const CXXConstructorDecl *D, 397 CXXCtorType CtorKind, 398 unsigned ExtraPrefixArgs, 399 unsigned ExtraSuffixArgs, 400 bool PassProtoArgs) { 401 // FIXME: Kill copy. 402 SmallVector<CanQualType, 16> ArgTypes; 403 for (const auto &Arg : args) 404 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 405 406 // +1 for implicit this, which should always be args[0]. 407 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 408 409 CanQual<FunctionProtoType> FPT = GetFormalType(D); 410 RequiredArgs Required = PassProtoArgs 411 ? RequiredArgs::forPrototypePlus( 412 FPT, TotalPrefixArgs + ExtraSuffixArgs) 413 : RequiredArgs::All; 414 415 GlobalDecl GD(D, CtorKind); 416 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 417 ? ArgTypes.front() 418 : TheCXXABI.hasMostDerivedReturn(GD) 419 ? CGM.getContext().VoidPtrTy 420 : Context.VoidTy; 421 422 FunctionType::ExtInfo Info = FPT->getExtInfo(); 423 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 424 // If the prototype args are elided, we should only have ABI-specific args, 425 // which never have param info. 426 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 427 // ABI-specific suffix arguments are treated the same as variadic arguments. 428 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 429 ArgTypes.size()); 430 } 431 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 432 /*chainCall=*/false, ArgTypes, Info, 433 ParamInfos, Required); 434 } 435 436 /// Arrange the argument and result information for the declaration or 437 /// definition of the given function. 438 const CGFunctionInfo & 439 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 440 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 441 if (MD->isInstance()) 442 return arrangeCXXMethodDeclaration(MD); 443 444 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 445 446 assert(isa<FunctionType>(FTy)); 447 setCUDAKernelCallingConvention(FTy, CGM, FD); 448 449 // When declaring a function without a prototype, always use a 450 // non-variadic type. 451 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 452 return arrangeLLVMFunctionInfo( 453 noProto->getReturnType(), /*instanceMethod=*/false, 454 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 455 } 456 457 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 458 } 459 460 /// Arrange the argument and result information for the declaration or 461 /// definition of an Objective-C method. 462 const CGFunctionInfo & 463 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 464 // It happens that this is the same as a call with no optional 465 // arguments, except also using the formal 'self' type. 466 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 467 } 468 469 /// Arrange the argument and result information for the function type 470 /// through which to perform a send to the given Objective-C method, 471 /// using the given receiver type. The receiver type is not always 472 /// the 'self' type of the method or even an Objective-C pointer type. 473 /// This is *not* the right method for actually performing such a 474 /// message send, due to the possibility of optional arguments. 475 const CGFunctionInfo & 476 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 477 QualType receiverType) { 478 SmallVector<CanQualType, 16> argTys; 479 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 480 argTys.push_back(Context.getCanonicalParamType(receiverType)); 481 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 482 // FIXME: Kill copy? 483 for (const auto *I : MD->parameters()) { 484 argTys.push_back(Context.getCanonicalParamType(I->getType())); 485 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 486 I->hasAttr<NoEscapeAttr>()); 487 extParamInfos.push_back(extParamInfo); 488 } 489 490 FunctionType::ExtInfo einfo; 491 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 492 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 493 494 if (getContext().getLangOpts().ObjCAutoRefCount && 495 MD->hasAttr<NSReturnsRetainedAttr>()) 496 einfo = einfo.withProducesResult(true); 497 498 RequiredArgs required = 499 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 500 501 return arrangeLLVMFunctionInfo( 502 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 503 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 504 } 505 506 const CGFunctionInfo & 507 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 508 const CallArgList &args) { 509 auto argTypes = getArgTypesForCall(Context, args); 510 FunctionType::ExtInfo einfo; 511 512 return arrangeLLVMFunctionInfo( 513 GetReturnType(returnType), /*instanceMethod=*/false, 514 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 515 } 516 517 const CGFunctionInfo & 518 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 519 // FIXME: Do we need to handle ObjCMethodDecl? 520 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 521 522 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 523 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 524 525 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 526 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 527 528 return arrangeFunctionDeclaration(FD); 529 } 530 531 /// Arrange a thunk that takes 'this' as the first parameter followed by 532 /// varargs. Return a void pointer, regardless of the actual return type. 533 /// The body of the thunk will end in a musttail call to a function of the 534 /// correct type, and the caller will bitcast the function to the correct 535 /// prototype. 536 const CGFunctionInfo & 537 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 538 assert(MD->isVirtual() && "only methods have thunks"); 539 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 540 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 541 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 542 /*chainCall=*/false, ArgTys, 543 FTP->getExtInfo(), {}, RequiredArgs(1)); 544 } 545 546 const CGFunctionInfo & 547 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 548 CXXCtorType CT) { 549 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 550 551 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 552 SmallVector<CanQualType, 2> ArgTys; 553 const CXXRecordDecl *RD = CD->getParent(); 554 ArgTys.push_back(DeriveThisType(RD, CD)); 555 if (CT == Ctor_CopyingClosure) 556 ArgTys.push_back(*FTP->param_type_begin()); 557 if (RD->getNumVBases() > 0) 558 ArgTys.push_back(Context.IntTy); 559 CallingConv CC = Context.getDefaultCallingConvention( 560 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 561 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 562 /*chainCall=*/false, ArgTys, 563 FunctionType::ExtInfo(CC), {}, 564 RequiredArgs::All); 565 } 566 567 /// Arrange a call as unto a free function, except possibly with an 568 /// additional number of formal parameters considered required. 569 static const CGFunctionInfo & 570 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 571 CodeGenModule &CGM, 572 const CallArgList &args, 573 const FunctionType *fnType, 574 unsigned numExtraRequiredArgs, 575 bool chainCall) { 576 assert(args.size() >= numExtraRequiredArgs); 577 578 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 579 580 // In most cases, there are no optional arguments. 581 RequiredArgs required = RequiredArgs::All; 582 583 // If we have a variadic prototype, the required arguments are the 584 // extra prefix plus the arguments in the prototype. 585 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 586 if (proto->isVariadic()) 587 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 588 589 if (proto->hasExtParameterInfos()) 590 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 591 args.size()); 592 593 // If we don't have a prototype at all, but we're supposed to 594 // explicitly use the variadic convention for unprototyped calls, 595 // treat all of the arguments as required but preserve the nominal 596 // possibility of variadics. 597 } else if (CGM.getTargetCodeGenInfo() 598 .isNoProtoCallVariadic(args, 599 cast<FunctionNoProtoType>(fnType))) { 600 required = RequiredArgs(args.size()); 601 } 602 603 // FIXME: Kill copy. 604 SmallVector<CanQualType, 16> argTypes; 605 for (const auto &arg : args) 606 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 607 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 608 /*instanceMethod=*/false, chainCall, 609 argTypes, fnType->getExtInfo(), paramInfos, 610 required); 611 } 612 613 /// Figure out the rules for calling a function with the given formal 614 /// type using the given arguments. The arguments are necessary 615 /// because the function might be unprototyped, in which case it's 616 /// target-dependent in crazy ways. 617 const CGFunctionInfo & 618 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 619 const FunctionType *fnType, 620 bool chainCall) { 621 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 622 chainCall ? 1 : 0, chainCall); 623 } 624 625 /// A block function is essentially a free function with an 626 /// extra implicit argument. 627 const CGFunctionInfo & 628 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 629 const FunctionType *fnType) { 630 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 631 /*chainCall=*/false); 632 } 633 634 const CGFunctionInfo & 635 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 636 const FunctionArgList ¶ms) { 637 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 638 auto argTypes = getArgTypesForDeclaration(Context, params); 639 640 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 641 /*instanceMethod*/ false, /*chainCall*/ false, 642 argTypes, proto->getExtInfo(), paramInfos, 643 RequiredArgs::forPrototypePlus(proto, 1)); 644 } 645 646 const CGFunctionInfo & 647 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 648 const CallArgList &args) { 649 // FIXME: Kill copy. 650 SmallVector<CanQualType, 16> argTypes; 651 for (const auto &Arg : args) 652 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 653 return arrangeLLVMFunctionInfo( 654 GetReturnType(resultType), /*instanceMethod=*/false, 655 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 656 /*paramInfos=*/ {}, RequiredArgs::All); 657 } 658 659 const CGFunctionInfo & 660 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 661 const FunctionArgList &args) { 662 auto argTypes = getArgTypesForDeclaration(Context, args); 663 664 return arrangeLLVMFunctionInfo( 665 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 666 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 667 } 668 669 const CGFunctionInfo & 670 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 671 ArrayRef<CanQualType> argTypes) { 672 return arrangeLLVMFunctionInfo( 673 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 674 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 675 } 676 677 /// Arrange a call to a C++ method, passing the given arguments. 678 /// 679 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 680 /// does not count `this`. 681 const CGFunctionInfo & 682 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 683 const FunctionProtoType *proto, 684 RequiredArgs required, 685 unsigned numPrefixArgs) { 686 assert(numPrefixArgs + 1 <= args.size() && 687 "Emitting a call with less args than the required prefix?"); 688 // Add one to account for `this`. It's a bit awkward here, but we don't count 689 // `this` in similar places elsewhere. 690 auto paramInfos = 691 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 692 693 // FIXME: Kill copy. 694 auto argTypes = getArgTypesForCall(Context, args); 695 696 FunctionType::ExtInfo info = proto->getExtInfo(); 697 return arrangeLLVMFunctionInfo( 698 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 699 /*chainCall=*/false, argTypes, info, paramInfos, required); 700 } 701 702 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 703 return arrangeLLVMFunctionInfo( 704 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 705 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 706 } 707 708 const CGFunctionInfo & 709 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 710 const CallArgList &args) { 711 assert(signature.arg_size() <= args.size()); 712 if (signature.arg_size() == args.size()) 713 return signature; 714 715 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 716 auto sigParamInfos = signature.getExtParameterInfos(); 717 if (!sigParamInfos.empty()) { 718 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 719 paramInfos.resize(args.size()); 720 } 721 722 auto argTypes = getArgTypesForCall(Context, args); 723 724 assert(signature.getRequiredArgs().allowsOptionalArgs()); 725 return arrangeLLVMFunctionInfo(signature.getReturnType(), 726 signature.isInstanceMethod(), 727 signature.isChainCall(), 728 argTypes, 729 signature.getExtInfo(), 730 paramInfos, 731 signature.getRequiredArgs()); 732 } 733 734 namespace clang { 735 namespace CodeGen { 736 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 737 } 738 } 739 740 /// Arrange the argument and result information for an abstract value 741 /// of a given function type. This is the method which all of the 742 /// above functions ultimately defer to. 743 const CGFunctionInfo & 744 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 745 bool instanceMethod, 746 bool chainCall, 747 ArrayRef<CanQualType> argTypes, 748 FunctionType::ExtInfo info, 749 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 750 RequiredArgs required) { 751 assert(llvm::all_of(argTypes, 752 [](CanQualType T) { return T.isCanonicalAsParam(); })); 753 754 // Lookup or create unique function info. 755 llvm::FoldingSetNodeID ID; 756 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 757 required, resultType, argTypes); 758 759 void *insertPos = nullptr; 760 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 761 if (FI) 762 return *FI; 763 764 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 765 766 // Construct the function info. We co-allocate the ArgInfos. 767 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 768 paramInfos, resultType, argTypes, required); 769 FunctionInfos.InsertNode(FI, insertPos); 770 771 bool inserted = FunctionsBeingProcessed.insert(FI).second; 772 (void)inserted; 773 assert(inserted && "Recursively being processed?"); 774 775 // Compute ABI information. 776 if (CC == llvm::CallingConv::SPIR_KERNEL) { 777 // Force target independent argument handling for the host visible 778 // kernel functions. 779 computeSPIRKernelABIInfo(CGM, *FI); 780 } else if (info.getCC() == CC_Swift) { 781 swiftcall::computeABIInfo(CGM, *FI); 782 } else { 783 getABIInfo().computeInfo(*FI); 784 } 785 786 // Loop over all of the computed argument and return value info. If any of 787 // them are direct or extend without a specified coerce type, specify the 788 // default now. 789 ABIArgInfo &retInfo = FI->getReturnInfo(); 790 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 791 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 792 793 for (auto &I : FI->arguments()) 794 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 795 I.info.setCoerceToType(ConvertType(I.type)); 796 797 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 798 assert(erased && "Not in set?"); 799 800 return *FI; 801 } 802 803 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 804 bool instanceMethod, 805 bool chainCall, 806 const FunctionType::ExtInfo &info, 807 ArrayRef<ExtParameterInfo> paramInfos, 808 CanQualType resultType, 809 ArrayRef<CanQualType> argTypes, 810 RequiredArgs required) { 811 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 812 assert(!required.allowsOptionalArgs() || 813 required.getNumRequiredArgs() <= argTypes.size()); 814 815 void *buffer = 816 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 817 argTypes.size() + 1, paramInfos.size())); 818 819 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 820 FI->CallingConvention = llvmCC; 821 FI->EffectiveCallingConvention = llvmCC; 822 FI->ASTCallingConvention = info.getCC(); 823 FI->InstanceMethod = instanceMethod; 824 FI->ChainCall = chainCall; 825 FI->NoReturn = info.getNoReturn(); 826 FI->ReturnsRetained = info.getProducesResult(); 827 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 828 FI->NoCfCheck = info.getNoCfCheck(); 829 FI->Required = required; 830 FI->HasRegParm = info.getHasRegParm(); 831 FI->RegParm = info.getRegParm(); 832 FI->ArgStruct = nullptr; 833 FI->ArgStructAlign = 0; 834 FI->NumArgs = argTypes.size(); 835 FI->HasExtParameterInfos = !paramInfos.empty(); 836 FI->getArgsBuffer()[0].type = resultType; 837 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 838 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 839 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 840 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 841 return FI; 842 } 843 844 /***/ 845 846 namespace { 847 // ABIArgInfo::Expand implementation. 848 849 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 850 struct TypeExpansion { 851 enum TypeExpansionKind { 852 // Elements of constant arrays are expanded recursively. 853 TEK_ConstantArray, 854 // Record fields are expanded recursively (but if record is a union, only 855 // the field with the largest size is expanded). 856 TEK_Record, 857 // For complex types, real and imaginary parts are expanded recursively. 858 TEK_Complex, 859 // All other types are not expandable. 860 TEK_None 861 }; 862 863 const TypeExpansionKind Kind; 864 865 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 866 virtual ~TypeExpansion() {} 867 }; 868 869 struct ConstantArrayExpansion : TypeExpansion { 870 QualType EltTy; 871 uint64_t NumElts; 872 873 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 874 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 875 static bool classof(const TypeExpansion *TE) { 876 return TE->Kind == TEK_ConstantArray; 877 } 878 }; 879 880 struct RecordExpansion : TypeExpansion { 881 SmallVector<const CXXBaseSpecifier *, 1> Bases; 882 883 SmallVector<const FieldDecl *, 1> Fields; 884 885 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 886 SmallVector<const FieldDecl *, 1> &&Fields) 887 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 888 Fields(std::move(Fields)) {} 889 static bool classof(const TypeExpansion *TE) { 890 return TE->Kind == TEK_Record; 891 } 892 }; 893 894 struct ComplexExpansion : TypeExpansion { 895 QualType EltTy; 896 897 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 898 static bool classof(const TypeExpansion *TE) { 899 return TE->Kind == TEK_Complex; 900 } 901 }; 902 903 struct NoExpansion : TypeExpansion { 904 NoExpansion() : TypeExpansion(TEK_None) {} 905 static bool classof(const TypeExpansion *TE) { 906 return TE->Kind == TEK_None; 907 } 908 }; 909 } // namespace 910 911 static std::unique_ptr<TypeExpansion> 912 getTypeExpansion(QualType Ty, const ASTContext &Context) { 913 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 914 return llvm::make_unique<ConstantArrayExpansion>( 915 AT->getElementType(), AT->getSize().getZExtValue()); 916 } 917 if (const RecordType *RT = Ty->getAs<RecordType>()) { 918 SmallVector<const CXXBaseSpecifier *, 1> Bases; 919 SmallVector<const FieldDecl *, 1> Fields; 920 const RecordDecl *RD = RT->getDecl(); 921 assert(!RD->hasFlexibleArrayMember() && 922 "Cannot expand structure with flexible array."); 923 if (RD->isUnion()) { 924 // Unions can be here only in degenerative cases - all the fields are same 925 // after flattening. Thus we have to use the "largest" field. 926 const FieldDecl *LargestFD = nullptr; 927 CharUnits UnionSize = CharUnits::Zero(); 928 929 for (const auto *FD : RD->fields()) { 930 if (FD->isZeroLengthBitField(Context)) 931 continue; 932 assert(!FD->isBitField() && 933 "Cannot expand structure with bit-field members."); 934 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 935 if (UnionSize < FieldSize) { 936 UnionSize = FieldSize; 937 LargestFD = FD; 938 } 939 } 940 if (LargestFD) 941 Fields.push_back(LargestFD); 942 } else { 943 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 944 assert(!CXXRD->isDynamicClass() && 945 "cannot expand vtable pointers in dynamic classes"); 946 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 947 Bases.push_back(&BS); 948 } 949 950 for (const auto *FD : RD->fields()) { 951 if (FD->isZeroLengthBitField(Context)) 952 continue; 953 assert(!FD->isBitField() && 954 "Cannot expand structure with bit-field members."); 955 Fields.push_back(FD); 956 } 957 } 958 return llvm::make_unique<RecordExpansion>(std::move(Bases), 959 std::move(Fields)); 960 } 961 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 962 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 963 } 964 return llvm::make_unique<NoExpansion>(); 965 } 966 967 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 968 auto Exp = getTypeExpansion(Ty, Context); 969 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 970 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 971 } 972 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 973 int Res = 0; 974 for (auto BS : RExp->Bases) 975 Res += getExpansionSize(BS->getType(), Context); 976 for (auto FD : RExp->Fields) 977 Res += getExpansionSize(FD->getType(), Context); 978 return Res; 979 } 980 if (isa<ComplexExpansion>(Exp.get())) 981 return 2; 982 assert(isa<NoExpansion>(Exp.get())); 983 return 1; 984 } 985 986 void 987 CodeGenTypes::getExpandedTypes(QualType Ty, 988 SmallVectorImpl<llvm::Type *>::iterator &TI) { 989 auto Exp = getTypeExpansion(Ty, Context); 990 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 991 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 992 getExpandedTypes(CAExp->EltTy, TI); 993 } 994 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 995 for (auto BS : RExp->Bases) 996 getExpandedTypes(BS->getType(), TI); 997 for (auto FD : RExp->Fields) 998 getExpandedTypes(FD->getType(), TI); 999 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 1000 llvm::Type *EltTy = ConvertType(CExp->EltTy); 1001 *TI++ = EltTy; 1002 *TI++ = EltTy; 1003 } else { 1004 assert(isa<NoExpansion>(Exp.get())); 1005 *TI++ = ConvertType(Ty); 1006 } 1007 } 1008 1009 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1010 ConstantArrayExpansion *CAE, 1011 Address BaseAddr, 1012 llvm::function_ref<void(Address)> Fn) { 1013 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1014 CharUnits EltAlign = 1015 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1016 1017 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1018 llvm::Value *EltAddr = 1019 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1020 Fn(Address(EltAddr, EltAlign)); 1021 } 1022 } 1023 1024 void CodeGenFunction::ExpandTypeFromArgs( 1025 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 1026 assert(LV.isSimple() && 1027 "Unexpected non-simple lvalue during struct expansion."); 1028 1029 auto Exp = getTypeExpansion(Ty, getContext()); 1030 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1031 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 1032 [&](Address EltAddr) { 1033 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1034 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1035 }); 1036 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1037 Address This = LV.getAddress(); 1038 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1039 // Perform a single step derived-to-base conversion. 1040 Address Base = 1041 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1042 /*NullCheckValue=*/false, SourceLocation()); 1043 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1044 1045 // Recurse onto bases. 1046 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1047 } 1048 for (auto FD : RExp->Fields) { 1049 // FIXME: What are the right qualifiers here? 1050 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1051 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1052 } 1053 } else if (isa<ComplexExpansion>(Exp.get())) { 1054 auto realValue = *AI++; 1055 auto imagValue = *AI++; 1056 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1057 } else { 1058 assert(isa<NoExpansion>(Exp.get())); 1059 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1060 } 1061 } 1062 1063 void CodeGenFunction::ExpandTypeToArgs( 1064 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1065 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1066 auto Exp = getTypeExpansion(Ty, getContext()); 1067 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1068 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1069 : Arg.getKnownRValue().getAggregateAddress(); 1070 forConstantArrayExpansion( 1071 *this, CAExp, Addr, [&](Address EltAddr) { 1072 CallArg EltArg = CallArg( 1073 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1074 CAExp->EltTy); 1075 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1076 IRCallArgPos); 1077 }); 1078 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1079 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1080 : Arg.getKnownRValue().getAggregateAddress(); 1081 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1082 // Perform a single step derived-to-base conversion. 1083 Address Base = 1084 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1085 /*NullCheckValue=*/false, SourceLocation()); 1086 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1087 1088 // Recurse onto bases. 1089 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1090 IRCallArgPos); 1091 } 1092 1093 LValue LV = MakeAddrLValue(This, Ty); 1094 for (auto FD : RExp->Fields) { 1095 CallArg FldArg = 1096 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1097 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1098 IRCallArgPos); 1099 } 1100 } else if (isa<ComplexExpansion>(Exp.get())) { 1101 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1102 IRCallArgs[IRCallArgPos++] = CV.first; 1103 IRCallArgs[IRCallArgPos++] = CV.second; 1104 } else { 1105 assert(isa<NoExpansion>(Exp.get())); 1106 auto RV = Arg.getKnownRValue(); 1107 assert(RV.isScalar() && 1108 "Unexpected non-scalar rvalue during struct expansion."); 1109 1110 // Insert a bitcast as needed. 1111 llvm::Value *V = RV.getScalarVal(); 1112 if (IRCallArgPos < IRFuncTy->getNumParams() && 1113 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1114 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1115 1116 IRCallArgs[IRCallArgPos++] = V; 1117 } 1118 } 1119 1120 /// Create a temporary allocation for the purposes of coercion. 1121 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1122 CharUnits MinAlign) { 1123 // Don't use an alignment that's worse than what LLVM would prefer. 1124 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1125 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1126 1127 return CGF.CreateTempAlloca(Ty, Align); 1128 } 1129 1130 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1131 /// accessing some number of bytes out of it, try to gep into the struct to get 1132 /// at its inner goodness. Dive as deep as possible without entering an element 1133 /// with an in-memory size smaller than DstSize. 1134 static Address 1135 EnterStructPointerForCoercedAccess(Address SrcPtr, 1136 llvm::StructType *SrcSTy, 1137 uint64_t DstSize, CodeGenFunction &CGF) { 1138 // We can't dive into a zero-element struct. 1139 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1140 1141 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1142 1143 // If the first elt is at least as large as what we're looking for, or if the 1144 // first element is the same size as the whole struct, we can enter it. The 1145 // comparison must be made on the store size and not the alloca size. Using 1146 // the alloca size may overstate the size of the load. 1147 uint64_t FirstEltSize = 1148 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1149 if (FirstEltSize < DstSize && 1150 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1151 return SrcPtr; 1152 1153 // GEP into the first element. 1154 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1155 1156 // If the first element is a struct, recurse. 1157 llvm::Type *SrcTy = SrcPtr.getElementType(); 1158 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1159 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1160 1161 return SrcPtr; 1162 } 1163 1164 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1165 /// are either integers or pointers. This does a truncation of the value if it 1166 /// is too large or a zero extension if it is too small. 1167 /// 1168 /// This behaves as if the value were coerced through memory, so on big-endian 1169 /// targets the high bits are preserved in a truncation, while little-endian 1170 /// targets preserve the low bits. 1171 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1172 llvm::Type *Ty, 1173 CodeGenFunction &CGF) { 1174 if (Val->getType() == Ty) 1175 return Val; 1176 1177 if (isa<llvm::PointerType>(Val->getType())) { 1178 // If this is Pointer->Pointer avoid conversion to and from int. 1179 if (isa<llvm::PointerType>(Ty)) 1180 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1181 1182 // Convert the pointer to an integer so we can play with its width. 1183 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1184 } 1185 1186 llvm::Type *DestIntTy = Ty; 1187 if (isa<llvm::PointerType>(DestIntTy)) 1188 DestIntTy = CGF.IntPtrTy; 1189 1190 if (Val->getType() != DestIntTy) { 1191 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1192 if (DL.isBigEndian()) { 1193 // Preserve the high bits on big-endian targets. 1194 // That is what memory coercion does. 1195 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1196 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1197 1198 if (SrcSize > DstSize) { 1199 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1200 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1201 } else { 1202 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1203 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1204 } 1205 } else { 1206 // Little-endian targets preserve the low bits. No shifts required. 1207 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1208 } 1209 } 1210 1211 if (isa<llvm::PointerType>(Ty)) 1212 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1213 return Val; 1214 } 1215 1216 1217 1218 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1219 /// a pointer to an object of type \arg Ty, known to be aligned to 1220 /// \arg SrcAlign bytes. 1221 /// 1222 /// This safely handles the case when the src type is smaller than the 1223 /// destination type; in this situation the values of bits which not 1224 /// present in the src are undefined. 1225 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1226 CodeGenFunction &CGF) { 1227 llvm::Type *SrcTy = Src.getElementType(); 1228 1229 // If SrcTy and Ty are the same, just do a load. 1230 if (SrcTy == Ty) 1231 return CGF.Builder.CreateLoad(Src); 1232 1233 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1234 1235 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1236 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1237 SrcTy = Src.getType()->getElementType(); 1238 } 1239 1240 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1241 1242 // If the source and destination are integer or pointer types, just do an 1243 // extension or truncation to the desired type. 1244 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1245 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1246 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1247 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1248 } 1249 1250 // If load is legal, just bitcast the src pointer. 1251 if (SrcSize >= DstSize) { 1252 // Generally SrcSize is never greater than DstSize, since this means we are 1253 // losing bits. However, this can happen in cases where the structure has 1254 // additional padding, for example due to a user specified alignment. 1255 // 1256 // FIXME: Assert that we aren't truncating non-padding bits when have access 1257 // to that information. 1258 Src = CGF.Builder.CreateBitCast(Src, 1259 Ty->getPointerTo(Src.getAddressSpace())); 1260 return CGF.Builder.CreateLoad(Src); 1261 } 1262 1263 // Otherwise do coercion through memory. This is stupid, but simple. 1264 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1265 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); 1266 Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty); 1267 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1268 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1269 false); 1270 return CGF.Builder.CreateLoad(Tmp); 1271 } 1272 1273 // Function to store a first-class aggregate into memory. We prefer to 1274 // store the elements rather than the aggregate to be more friendly to 1275 // fast-isel. 1276 // FIXME: Do we need to recurse here? 1277 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1278 Address Dest, bool DestIsVolatile) { 1279 // Prefer scalar stores to first-class aggregate stores. 1280 if (llvm::StructType *STy = 1281 dyn_cast<llvm::StructType>(Val->getType())) { 1282 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1283 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i); 1284 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1285 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1286 } 1287 } else { 1288 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1289 } 1290 } 1291 1292 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1293 /// where the source and destination may have different types. The 1294 /// destination is known to be aligned to \arg DstAlign bytes. 1295 /// 1296 /// This safely handles the case when the src type is larger than the 1297 /// destination type; the upper bits of the src will be lost. 1298 static void CreateCoercedStore(llvm::Value *Src, 1299 Address Dst, 1300 bool DstIsVolatile, 1301 CodeGenFunction &CGF) { 1302 llvm::Type *SrcTy = Src->getType(); 1303 llvm::Type *DstTy = Dst.getType()->getElementType(); 1304 if (SrcTy == DstTy) { 1305 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1306 return; 1307 } 1308 1309 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1310 1311 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1312 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1313 DstTy = Dst.getType()->getElementType(); 1314 } 1315 1316 // If the source and destination are integer or pointer types, just do an 1317 // extension or truncation to the desired type. 1318 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1319 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1320 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1321 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1322 return; 1323 } 1324 1325 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1326 1327 // If store is legal, just bitcast the src pointer. 1328 if (SrcSize <= DstSize) { 1329 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1330 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1331 } else { 1332 // Otherwise do coercion through memory. This is stupid, but 1333 // simple. 1334 1335 // Generally SrcSize is never greater than DstSize, since this means we are 1336 // losing bits. However, this can happen in cases where the structure has 1337 // additional padding, for example due to a user specified alignment. 1338 // 1339 // FIXME: Assert that we aren't truncating non-padding bits when have access 1340 // to that information. 1341 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1342 CGF.Builder.CreateStore(Src, Tmp); 1343 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); 1344 Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty); 1345 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1346 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1347 false); 1348 } 1349 } 1350 1351 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1352 const ABIArgInfo &info) { 1353 if (unsigned offset = info.getDirectOffset()) { 1354 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1355 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1356 CharUnits::fromQuantity(offset)); 1357 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1358 } 1359 return addr; 1360 } 1361 1362 namespace { 1363 1364 /// Encapsulates information about the way function arguments from 1365 /// CGFunctionInfo should be passed to actual LLVM IR function. 1366 class ClangToLLVMArgMapping { 1367 static const unsigned InvalidIndex = ~0U; 1368 unsigned InallocaArgNo; 1369 unsigned SRetArgNo; 1370 unsigned TotalIRArgs; 1371 1372 /// Arguments of LLVM IR function corresponding to single Clang argument. 1373 struct IRArgs { 1374 unsigned PaddingArgIndex; 1375 // Argument is expanded to IR arguments at positions 1376 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1377 unsigned FirstArgIndex; 1378 unsigned NumberOfArgs; 1379 1380 IRArgs() 1381 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1382 NumberOfArgs(0) {} 1383 }; 1384 1385 SmallVector<IRArgs, 8> ArgInfo; 1386 1387 public: 1388 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1389 bool OnlyRequiredArgs = false) 1390 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1391 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1392 construct(Context, FI, OnlyRequiredArgs); 1393 } 1394 1395 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1396 unsigned getInallocaArgNo() const { 1397 assert(hasInallocaArg()); 1398 return InallocaArgNo; 1399 } 1400 1401 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1402 unsigned getSRetArgNo() const { 1403 assert(hasSRetArg()); 1404 return SRetArgNo; 1405 } 1406 1407 unsigned totalIRArgs() const { return TotalIRArgs; } 1408 1409 bool hasPaddingArg(unsigned ArgNo) const { 1410 assert(ArgNo < ArgInfo.size()); 1411 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1412 } 1413 unsigned getPaddingArgNo(unsigned ArgNo) const { 1414 assert(hasPaddingArg(ArgNo)); 1415 return ArgInfo[ArgNo].PaddingArgIndex; 1416 } 1417 1418 /// Returns index of first IR argument corresponding to ArgNo, and their 1419 /// quantity. 1420 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1421 assert(ArgNo < ArgInfo.size()); 1422 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1423 ArgInfo[ArgNo].NumberOfArgs); 1424 } 1425 1426 private: 1427 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1428 bool OnlyRequiredArgs); 1429 }; 1430 1431 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1432 const CGFunctionInfo &FI, 1433 bool OnlyRequiredArgs) { 1434 unsigned IRArgNo = 0; 1435 bool SwapThisWithSRet = false; 1436 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1437 1438 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1439 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1440 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1441 } 1442 1443 unsigned ArgNo = 0; 1444 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1445 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1446 ++I, ++ArgNo) { 1447 assert(I != FI.arg_end()); 1448 QualType ArgType = I->type; 1449 const ABIArgInfo &AI = I->info; 1450 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1451 auto &IRArgs = ArgInfo[ArgNo]; 1452 1453 if (AI.getPaddingType()) 1454 IRArgs.PaddingArgIndex = IRArgNo++; 1455 1456 switch (AI.getKind()) { 1457 case ABIArgInfo::Extend: 1458 case ABIArgInfo::Direct: { 1459 // FIXME: handle sseregparm someday... 1460 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1461 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1462 IRArgs.NumberOfArgs = STy->getNumElements(); 1463 } else { 1464 IRArgs.NumberOfArgs = 1; 1465 } 1466 break; 1467 } 1468 case ABIArgInfo::Indirect: 1469 IRArgs.NumberOfArgs = 1; 1470 break; 1471 case ABIArgInfo::Ignore: 1472 case ABIArgInfo::InAlloca: 1473 // ignore and inalloca doesn't have matching LLVM parameters. 1474 IRArgs.NumberOfArgs = 0; 1475 break; 1476 case ABIArgInfo::CoerceAndExpand: 1477 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1478 break; 1479 case ABIArgInfo::Expand: 1480 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1481 break; 1482 } 1483 1484 if (IRArgs.NumberOfArgs > 0) { 1485 IRArgs.FirstArgIndex = IRArgNo; 1486 IRArgNo += IRArgs.NumberOfArgs; 1487 } 1488 1489 // Skip over the sret parameter when it comes second. We already handled it 1490 // above. 1491 if (IRArgNo == 1 && SwapThisWithSRet) 1492 IRArgNo++; 1493 } 1494 assert(ArgNo == ArgInfo.size()); 1495 1496 if (FI.usesInAlloca()) 1497 InallocaArgNo = IRArgNo++; 1498 1499 TotalIRArgs = IRArgNo; 1500 } 1501 } // namespace 1502 1503 /***/ 1504 1505 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1506 const auto &RI = FI.getReturnInfo(); 1507 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1508 } 1509 1510 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1511 return ReturnTypeUsesSRet(FI) && 1512 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1513 } 1514 1515 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1516 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1517 switch (BT->getKind()) { 1518 default: 1519 return false; 1520 case BuiltinType::Float: 1521 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1522 case BuiltinType::Double: 1523 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1524 case BuiltinType::LongDouble: 1525 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1526 } 1527 } 1528 1529 return false; 1530 } 1531 1532 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1533 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1534 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1535 if (BT->getKind() == BuiltinType::LongDouble) 1536 return getTarget().useObjCFP2RetForComplexLongDouble(); 1537 } 1538 } 1539 1540 return false; 1541 } 1542 1543 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1544 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1545 return GetFunctionType(FI); 1546 } 1547 1548 llvm::FunctionType * 1549 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1550 1551 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1552 (void)Inserted; 1553 assert(Inserted && "Recursively being processed?"); 1554 1555 llvm::Type *resultType = nullptr; 1556 const ABIArgInfo &retAI = FI.getReturnInfo(); 1557 switch (retAI.getKind()) { 1558 case ABIArgInfo::Expand: 1559 llvm_unreachable("Invalid ABI kind for return argument"); 1560 1561 case ABIArgInfo::Extend: 1562 case ABIArgInfo::Direct: 1563 resultType = retAI.getCoerceToType(); 1564 break; 1565 1566 case ABIArgInfo::InAlloca: 1567 if (retAI.getInAllocaSRet()) { 1568 // sret things on win32 aren't void, they return the sret pointer. 1569 QualType ret = FI.getReturnType(); 1570 llvm::Type *ty = ConvertType(ret); 1571 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1572 resultType = llvm::PointerType::get(ty, addressSpace); 1573 } else { 1574 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1575 } 1576 break; 1577 1578 case ABIArgInfo::Indirect: 1579 case ABIArgInfo::Ignore: 1580 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1581 break; 1582 1583 case ABIArgInfo::CoerceAndExpand: 1584 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1585 break; 1586 } 1587 1588 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1589 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1590 1591 // Add type for sret argument. 1592 if (IRFunctionArgs.hasSRetArg()) { 1593 QualType Ret = FI.getReturnType(); 1594 llvm::Type *Ty = ConvertType(Ret); 1595 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1596 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1597 llvm::PointerType::get(Ty, AddressSpace); 1598 } 1599 1600 // Add type for inalloca argument. 1601 if (IRFunctionArgs.hasInallocaArg()) { 1602 auto ArgStruct = FI.getArgStruct(); 1603 assert(ArgStruct); 1604 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1605 } 1606 1607 // Add in all of the required arguments. 1608 unsigned ArgNo = 0; 1609 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1610 ie = it + FI.getNumRequiredArgs(); 1611 for (; it != ie; ++it, ++ArgNo) { 1612 const ABIArgInfo &ArgInfo = it->info; 1613 1614 // Insert a padding type to ensure proper alignment. 1615 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1616 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1617 ArgInfo.getPaddingType(); 1618 1619 unsigned FirstIRArg, NumIRArgs; 1620 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1621 1622 switch (ArgInfo.getKind()) { 1623 case ABIArgInfo::Ignore: 1624 case ABIArgInfo::InAlloca: 1625 assert(NumIRArgs == 0); 1626 break; 1627 1628 case ABIArgInfo::Indirect: { 1629 assert(NumIRArgs == 1); 1630 // indirect arguments are always on the stack, which is alloca addr space. 1631 llvm::Type *LTy = ConvertTypeForMem(it->type); 1632 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1633 CGM.getDataLayout().getAllocaAddrSpace()); 1634 break; 1635 } 1636 1637 case ABIArgInfo::Extend: 1638 case ABIArgInfo::Direct: { 1639 // Fast-isel and the optimizer generally like scalar values better than 1640 // FCAs, so we flatten them if this is safe to do for this argument. 1641 llvm::Type *argType = ArgInfo.getCoerceToType(); 1642 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1643 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1644 assert(NumIRArgs == st->getNumElements()); 1645 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1646 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1647 } else { 1648 assert(NumIRArgs == 1); 1649 ArgTypes[FirstIRArg] = argType; 1650 } 1651 break; 1652 } 1653 1654 case ABIArgInfo::CoerceAndExpand: { 1655 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1656 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1657 *ArgTypesIter++ = EltTy; 1658 } 1659 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1660 break; 1661 } 1662 1663 case ABIArgInfo::Expand: 1664 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1665 getExpandedTypes(it->type, ArgTypesIter); 1666 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1667 break; 1668 } 1669 } 1670 1671 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1672 assert(Erased && "Not in set?"); 1673 1674 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1675 } 1676 1677 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1678 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1679 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1680 1681 if (!isFuncTypeConvertible(FPT)) 1682 return llvm::StructType::get(getLLVMContext()); 1683 1684 const CGFunctionInfo *Info; 1685 if (isa<CXXDestructorDecl>(MD)) 1686 Info = 1687 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1688 else 1689 Info = &arrangeCXXMethodDeclaration(MD); 1690 return GetFunctionType(*Info); 1691 } 1692 1693 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1694 llvm::AttrBuilder &FuncAttrs, 1695 const FunctionProtoType *FPT) { 1696 if (!FPT) 1697 return; 1698 1699 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1700 FPT->isNothrow()) 1701 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1702 } 1703 1704 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1705 bool AttrOnCallSite, 1706 llvm::AttrBuilder &FuncAttrs) { 1707 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1708 if (!HasOptnone) { 1709 if (CodeGenOpts.OptimizeSize) 1710 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1711 if (CodeGenOpts.OptimizeSize == 2) 1712 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1713 } 1714 1715 if (CodeGenOpts.DisableRedZone) 1716 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1717 if (CodeGenOpts.IndirectTlsSegRefs) 1718 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1719 if (CodeGenOpts.NoImplicitFloat) 1720 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1721 1722 if (AttrOnCallSite) { 1723 // Attributes that should go on the call site only. 1724 if (!CodeGenOpts.SimplifyLibCalls || 1725 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1726 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1727 if (!CodeGenOpts.TrapFuncName.empty()) 1728 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1729 } else { 1730 // Attributes that should go on the function, but not the call site. 1731 if (!CodeGenOpts.DisableFPElim) { 1732 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1733 } else if (CodeGenOpts.OmitLeafFramePointer) { 1734 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1735 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1736 } else { 1737 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1738 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1739 } 1740 1741 FuncAttrs.addAttribute("less-precise-fpmad", 1742 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1743 1744 if (CodeGenOpts.NullPointerIsValid) 1745 FuncAttrs.addAttribute("null-pointer-is-valid", "true"); 1746 if (!CodeGenOpts.FPDenormalMode.empty()) 1747 FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); 1748 1749 FuncAttrs.addAttribute("no-trapping-math", 1750 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1751 1752 // Strict (compliant) code is the default, so only add this attribute to 1753 // indicate that we are trying to workaround a problem case. 1754 if (!CodeGenOpts.StrictFloatCastOverflow) 1755 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1756 1757 // TODO: Are these all needed? 1758 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1759 FuncAttrs.addAttribute("no-infs-fp-math", 1760 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1761 FuncAttrs.addAttribute("no-nans-fp-math", 1762 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1763 FuncAttrs.addAttribute("unsafe-fp-math", 1764 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1765 FuncAttrs.addAttribute("use-soft-float", 1766 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1767 FuncAttrs.addAttribute("stack-protector-buffer-size", 1768 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1769 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1770 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1771 FuncAttrs.addAttribute( 1772 "correctly-rounded-divide-sqrt-fp-math", 1773 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1774 1775 if (getLangOpts().OpenCL) 1776 FuncAttrs.addAttribute("denorms-are-zero", 1777 llvm::toStringRef(CodeGenOpts.FlushDenorm)); 1778 1779 // TODO: Reciprocal estimate codegen options should apply to instructions? 1780 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1781 if (!Recips.empty()) 1782 FuncAttrs.addAttribute("reciprocal-estimates", 1783 llvm::join(Recips, ",")); 1784 1785 if (!CodeGenOpts.PreferVectorWidth.empty() && 1786 CodeGenOpts.PreferVectorWidth != "none") 1787 FuncAttrs.addAttribute("prefer-vector-width", 1788 CodeGenOpts.PreferVectorWidth); 1789 1790 if (CodeGenOpts.StackRealignment) 1791 FuncAttrs.addAttribute("stackrealign"); 1792 if (CodeGenOpts.Backchain) 1793 FuncAttrs.addAttribute("backchain"); 1794 1795 if (CodeGenOpts.SpeculativeLoadHardening) 1796 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1797 } 1798 1799 if (getLangOpts().assumeFunctionsAreConvergent()) { 1800 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1801 // convergent (meaning, they may call an intrinsically convergent op, such 1802 // as __syncthreads() / barrier(), and so can't have certain optimizations 1803 // applied around them). LLVM will remove this attribute where it safely 1804 // can. 1805 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1806 } 1807 1808 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1809 // Exceptions aren't supported in CUDA device code. 1810 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1811 1812 // Respect -fcuda-flush-denormals-to-zero. 1813 if (CodeGenOpts.FlushDenorm) 1814 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1815 } 1816 1817 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1818 StringRef Var, Value; 1819 std::tie(Var, Value) = Attr.split('='); 1820 FuncAttrs.addAttribute(Var, Value); 1821 } 1822 } 1823 1824 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1825 llvm::AttrBuilder FuncAttrs; 1826 ConstructDefaultFnAttrList(F.getName(), 1827 F.hasFnAttribute(llvm::Attribute::OptimizeNone), 1828 /* AttrOnCallsite = */ false, FuncAttrs); 1829 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1830 } 1831 1832 void CodeGenModule::ConstructAttributeList( 1833 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1834 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1835 llvm::AttrBuilder FuncAttrs; 1836 llvm::AttrBuilder RetAttrs; 1837 1838 CallingConv = FI.getEffectiveCallingConvention(); 1839 if (FI.isNoReturn()) 1840 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1841 1842 // If we have information about the function prototype, we can learn 1843 // attributes from there. 1844 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1845 CalleeInfo.getCalleeFunctionProtoType()); 1846 1847 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 1848 1849 bool HasOptnone = false; 1850 // FIXME: handle sseregparm someday... 1851 if (TargetDecl) { 1852 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1853 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1854 if (TargetDecl->hasAttr<NoThrowAttr>()) 1855 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1856 if (TargetDecl->hasAttr<NoReturnAttr>()) 1857 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1858 if (TargetDecl->hasAttr<ColdAttr>()) 1859 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1860 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1861 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1862 if (TargetDecl->hasAttr<ConvergentAttr>()) 1863 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1864 1865 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1866 AddAttributesFromFunctionProtoType( 1867 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1868 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1869 // These attributes are not inherited by overloads. 1870 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1871 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1872 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1873 } 1874 1875 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1876 if (TargetDecl->hasAttr<ConstAttr>()) { 1877 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1878 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1879 } else if (TargetDecl->hasAttr<PureAttr>()) { 1880 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1881 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1882 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1883 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1884 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1885 } 1886 if (TargetDecl->hasAttr<RestrictAttr>()) 1887 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1888 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1889 !CodeGenOpts.NullPointerIsValid) 1890 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1891 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1892 FuncAttrs.addAttribute("no_caller_saved_registers"); 1893 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1894 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1895 1896 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1897 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1898 Optional<unsigned> NumElemsParam; 1899 if (AllocSize->getNumElemsParam().isValid()) 1900 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 1901 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 1902 NumElemsParam); 1903 } 1904 } 1905 1906 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1907 1908 // This must run after constructing the default function attribute list 1909 // to ensure that the speculative load hardening attribute is removed 1910 // in the case where the -mspeculative-load-hardening flag was passed. 1911 if (TargetDecl) { 1912 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 1913 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 1914 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 1915 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1916 } 1917 1918 if (CodeGenOpts.EnableSegmentedStacks && 1919 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1920 FuncAttrs.addAttribute("split-stack"); 1921 1922 // Add NonLazyBind attribute to function declarations when -fno-plt 1923 // is used. 1924 if (TargetDecl && CodeGenOpts.NoPLT) { 1925 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1926 if (!Fn->isDefined() && !AttrOnCallSite) { 1927 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 1928 } 1929 } 1930 } 1931 1932 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) { 1933 if (getLangOpts().OpenCLVersion <= 120) { 1934 // OpenCL v1.2 Work groups are always uniform 1935 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 1936 } else { 1937 // OpenCL v2.0 Work groups may be whether uniform or not. 1938 // '-cl-uniform-work-group-size' compile option gets a hint 1939 // to the compiler that the global work-size be a multiple of 1940 // the work-group size specified to clEnqueueNDRangeKernel 1941 // (i.e. work groups are uniform). 1942 FuncAttrs.addAttribute("uniform-work-group-size", 1943 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 1944 } 1945 } 1946 1947 if (!AttrOnCallSite) { 1948 bool DisableTailCalls = false; 1949 1950 if (CodeGenOpts.DisableTailCalls) 1951 DisableTailCalls = true; 1952 else if (TargetDecl) { 1953 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 1954 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 1955 DisableTailCalls = true; 1956 else if (CodeGenOpts.NoEscapingBlockTailCalls) { 1957 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 1958 if (!BD->doesNotEscape()) 1959 DisableTailCalls = true; 1960 } 1961 } 1962 1963 FuncAttrs.addAttribute("disable-tail-calls", 1964 llvm::toStringRef(DisableTailCalls)); 1965 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 1966 } 1967 1968 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1969 1970 QualType RetTy = FI.getReturnType(); 1971 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1972 switch (RetAI.getKind()) { 1973 case ABIArgInfo::Extend: 1974 if (RetAI.isSignExt()) 1975 RetAttrs.addAttribute(llvm::Attribute::SExt); 1976 else 1977 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1978 LLVM_FALLTHROUGH; 1979 case ABIArgInfo::Direct: 1980 if (RetAI.getInReg()) 1981 RetAttrs.addAttribute(llvm::Attribute::InReg); 1982 break; 1983 case ABIArgInfo::Ignore: 1984 break; 1985 1986 case ABIArgInfo::InAlloca: 1987 case ABIArgInfo::Indirect: { 1988 // inalloca and sret disable readnone and readonly 1989 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1990 .removeAttribute(llvm::Attribute::ReadNone); 1991 break; 1992 } 1993 1994 case ABIArgInfo::CoerceAndExpand: 1995 break; 1996 1997 case ABIArgInfo::Expand: 1998 llvm_unreachable("Invalid ABI kind for return argument"); 1999 } 2000 2001 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2002 QualType PTy = RefTy->getPointeeType(); 2003 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2004 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2005 .getQuantity()); 2006 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2007 !CodeGenOpts.NullPointerIsValid) 2008 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2009 } 2010 2011 bool hasUsedSRet = false; 2012 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2013 2014 // Attach attributes to sret. 2015 if (IRFunctionArgs.hasSRetArg()) { 2016 llvm::AttrBuilder SRETAttrs; 2017 if (!RetAI.getSuppressSRet()) 2018 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 2019 hasUsedSRet = true; 2020 if (RetAI.getInReg()) 2021 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2022 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2023 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2024 } 2025 2026 // Attach attributes to inalloca argument. 2027 if (IRFunctionArgs.hasInallocaArg()) { 2028 llvm::AttrBuilder Attrs; 2029 Attrs.addAttribute(llvm::Attribute::InAlloca); 2030 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2031 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2032 } 2033 2034 unsigned ArgNo = 0; 2035 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2036 E = FI.arg_end(); 2037 I != E; ++I, ++ArgNo) { 2038 QualType ParamType = I->type; 2039 const ABIArgInfo &AI = I->info; 2040 llvm::AttrBuilder Attrs; 2041 2042 // Add attribute for padding argument, if necessary. 2043 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2044 if (AI.getPaddingInReg()) { 2045 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2046 llvm::AttributeSet::get( 2047 getLLVMContext(), 2048 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2049 } 2050 } 2051 2052 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2053 // have the corresponding parameter variable. It doesn't make 2054 // sense to do it here because parameters are so messed up. 2055 switch (AI.getKind()) { 2056 case ABIArgInfo::Extend: 2057 if (AI.isSignExt()) 2058 Attrs.addAttribute(llvm::Attribute::SExt); 2059 else 2060 Attrs.addAttribute(llvm::Attribute::ZExt); 2061 LLVM_FALLTHROUGH; 2062 case ABIArgInfo::Direct: 2063 if (ArgNo == 0 && FI.isChainCall()) 2064 Attrs.addAttribute(llvm::Attribute::Nest); 2065 else if (AI.getInReg()) 2066 Attrs.addAttribute(llvm::Attribute::InReg); 2067 break; 2068 2069 case ABIArgInfo::Indirect: { 2070 if (AI.getInReg()) 2071 Attrs.addAttribute(llvm::Attribute::InReg); 2072 2073 if (AI.getIndirectByVal()) 2074 Attrs.addAttribute(llvm::Attribute::ByVal); 2075 2076 CharUnits Align = AI.getIndirectAlign(); 2077 2078 // In a byval argument, it is important that the required 2079 // alignment of the type is honored, as LLVM might be creating a 2080 // *new* stack object, and needs to know what alignment to give 2081 // it. (Sometimes it can deduce a sensible alignment on its own, 2082 // but not if clang decides it must emit a packed struct, or the 2083 // user specifies increased alignment requirements.) 2084 // 2085 // This is different from indirect *not* byval, where the object 2086 // exists already, and the align attribute is purely 2087 // informative. 2088 assert(!Align.isZero()); 2089 2090 // For now, only add this when we have a byval argument. 2091 // TODO: be less lazy about updating test cases. 2092 if (AI.getIndirectByVal()) 2093 Attrs.addAlignmentAttr(Align.getQuantity()); 2094 2095 // byval disables readnone and readonly. 2096 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2097 .removeAttribute(llvm::Attribute::ReadNone); 2098 break; 2099 } 2100 case ABIArgInfo::Ignore: 2101 case ABIArgInfo::Expand: 2102 case ABIArgInfo::CoerceAndExpand: 2103 break; 2104 2105 case ABIArgInfo::InAlloca: 2106 // inalloca disables readnone and readonly. 2107 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2108 .removeAttribute(llvm::Attribute::ReadNone); 2109 continue; 2110 } 2111 2112 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2113 QualType PTy = RefTy->getPointeeType(); 2114 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2115 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2116 .getQuantity()); 2117 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2118 !CodeGenOpts.NullPointerIsValid) 2119 Attrs.addAttribute(llvm::Attribute::NonNull); 2120 } 2121 2122 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2123 case ParameterABI::Ordinary: 2124 break; 2125 2126 case ParameterABI::SwiftIndirectResult: { 2127 // Add 'sret' if we haven't already used it for something, but 2128 // only if the result is void. 2129 if (!hasUsedSRet && RetTy->isVoidType()) { 2130 Attrs.addAttribute(llvm::Attribute::StructRet); 2131 hasUsedSRet = true; 2132 } 2133 2134 // Add 'noalias' in either case. 2135 Attrs.addAttribute(llvm::Attribute::NoAlias); 2136 2137 // Add 'dereferenceable' and 'alignment'. 2138 auto PTy = ParamType->getPointeeType(); 2139 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2140 auto info = getContext().getTypeInfoInChars(PTy); 2141 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2142 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 2143 info.second.getQuantity())); 2144 } 2145 break; 2146 } 2147 2148 case ParameterABI::SwiftErrorResult: 2149 Attrs.addAttribute(llvm::Attribute::SwiftError); 2150 break; 2151 2152 case ParameterABI::SwiftContext: 2153 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2154 break; 2155 } 2156 2157 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2158 Attrs.addAttribute(llvm::Attribute::NoCapture); 2159 2160 if (Attrs.hasAttributes()) { 2161 unsigned FirstIRArg, NumIRArgs; 2162 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2163 for (unsigned i = 0; i < NumIRArgs; i++) 2164 ArgAttrs[FirstIRArg + i] = 2165 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2166 } 2167 } 2168 assert(ArgNo == FI.arg_size()); 2169 2170 AttrList = llvm::AttributeList::get( 2171 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2172 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2173 } 2174 2175 /// An argument came in as a promoted argument; demote it back to its 2176 /// declared type. 2177 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2178 const VarDecl *var, 2179 llvm::Value *value) { 2180 llvm::Type *varType = CGF.ConvertType(var->getType()); 2181 2182 // This can happen with promotions that actually don't change the 2183 // underlying type, like the enum promotions. 2184 if (value->getType() == varType) return value; 2185 2186 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2187 && "unexpected promotion type"); 2188 2189 if (isa<llvm::IntegerType>(varType)) 2190 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2191 2192 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2193 } 2194 2195 /// Returns the attribute (either parameter attribute, or function 2196 /// attribute), which declares argument ArgNo to be non-null. 2197 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2198 QualType ArgType, unsigned ArgNo) { 2199 // FIXME: __attribute__((nonnull)) can also be applied to: 2200 // - references to pointers, where the pointee is known to be 2201 // nonnull (apparently a Clang extension) 2202 // - transparent unions containing pointers 2203 // In the former case, LLVM IR cannot represent the constraint. In 2204 // the latter case, we have no guarantee that the transparent union 2205 // is in fact passed as a pointer. 2206 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2207 return nullptr; 2208 // First, check attribute on parameter itself. 2209 if (PVD) { 2210 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2211 return ParmNNAttr; 2212 } 2213 // Check function attributes. 2214 if (!FD) 2215 return nullptr; 2216 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2217 if (NNAttr->isNonNull(ArgNo)) 2218 return NNAttr; 2219 } 2220 return nullptr; 2221 } 2222 2223 namespace { 2224 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2225 Address Temp; 2226 Address Arg; 2227 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2228 void Emit(CodeGenFunction &CGF, Flags flags) override { 2229 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2230 CGF.Builder.CreateStore(errorValue, Arg); 2231 } 2232 }; 2233 } 2234 2235 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2236 llvm::Function *Fn, 2237 const FunctionArgList &Args) { 2238 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2239 // Naked functions don't have prologues. 2240 return; 2241 2242 // If this is an implicit-return-zero function, go ahead and 2243 // initialize the return value. TODO: it might be nice to have 2244 // a more general mechanism for this that didn't require synthesized 2245 // return statements. 2246 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2247 if (FD->hasImplicitReturnZero()) { 2248 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2249 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2250 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2251 Builder.CreateStore(Zero, ReturnValue); 2252 } 2253 } 2254 2255 // FIXME: We no longer need the types from FunctionArgList; lift up and 2256 // simplify. 2257 2258 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2259 // Flattened function arguments. 2260 SmallVector<llvm::Value *, 16> FnArgs; 2261 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2262 for (auto &Arg : Fn->args()) { 2263 FnArgs.push_back(&Arg); 2264 } 2265 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2266 2267 // If we're using inalloca, all the memory arguments are GEPs off of the last 2268 // parameter, which is a pointer to the complete memory area. 2269 Address ArgStruct = Address::invalid(); 2270 if (IRFunctionArgs.hasInallocaArg()) { 2271 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2272 FI.getArgStructAlignment()); 2273 2274 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2275 } 2276 2277 // Name the struct return parameter. 2278 if (IRFunctionArgs.hasSRetArg()) { 2279 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2280 AI->setName("agg.result"); 2281 AI->addAttr(llvm::Attribute::NoAlias); 2282 } 2283 2284 // Track if we received the parameter as a pointer (indirect, byval, or 2285 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2286 // into a local alloca for us. 2287 SmallVector<ParamValue, 16> ArgVals; 2288 ArgVals.reserve(Args.size()); 2289 2290 // Create a pointer value for every parameter declaration. This usually 2291 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2292 // any cleanups or do anything that might unwind. We do that separately, so 2293 // we can push the cleanups in the correct order for the ABI. 2294 assert(FI.arg_size() == Args.size() && 2295 "Mismatch between function signature & arguments."); 2296 unsigned ArgNo = 0; 2297 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2298 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2299 i != e; ++i, ++info_it, ++ArgNo) { 2300 const VarDecl *Arg = *i; 2301 const ABIArgInfo &ArgI = info_it->info; 2302 2303 bool isPromoted = 2304 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2305 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2306 // the parameter is promoted. In this case we convert to 2307 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2308 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2309 assert(hasScalarEvaluationKind(Ty) == 2310 hasScalarEvaluationKind(Arg->getType())); 2311 2312 unsigned FirstIRArg, NumIRArgs; 2313 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2314 2315 switch (ArgI.getKind()) { 2316 case ABIArgInfo::InAlloca: { 2317 assert(NumIRArgs == 0); 2318 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2319 Address V = 2320 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2321 ArgVals.push_back(ParamValue::forIndirect(V)); 2322 break; 2323 } 2324 2325 case ABIArgInfo::Indirect: { 2326 assert(NumIRArgs == 1); 2327 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2328 2329 if (!hasScalarEvaluationKind(Ty)) { 2330 // Aggregates and complex variables are accessed by reference. All we 2331 // need to do is realign the value, if requested. 2332 Address V = ParamAddr; 2333 if (ArgI.getIndirectRealign()) { 2334 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2335 2336 // Copy from the incoming argument pointer to the temporary with the 2337 // appropriate alignment. 2338 // 2339 // FIXME: We should have a common utility for generating an aggregate 2340 // copy. 2341 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2342 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2343 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2344 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2345 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2346 V = AlignedTemp; 2347 } 2348 ArgVals.push_back(ParamValue::forIndirect(V)); 2349 } else { 2350 // Load scalar value from indirect argument. 2351 llvm::Value *V = 2352 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2353 2354 if (isPromoted) 2355 V = emitArgumentDemotion(*this, Arg, V); 2356 ArgVals.push_back(ParamValue::forDirect(V)); 2357 } 2358 break; 2359 } 2360 2361 case ABIArgInfo::Extend: 2362 case ABIArgInfo::Direct: { 2363 2364 // If we have the trivial case, handle it with no muss and fuss. 2365 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2366 ArgI.getCoerceToType() == ConvertType(Ty) && 2367 ArgI.getDirectOffset() == 0) { 2368 assert(NumIRArgs == 1); 2369 llvm::Value *V = FnArgs[FirstIRArg]; 2370 auto AI = cast<llvm::Argument>(V); 2371 2372 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2373 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2374 PVD->getFunctionScopeIndex()) && 2375 !CGM.getCodeGenOpts().NullPointerIsValid) 2376 AI->addAttr(llvm::Attribute::NonNull); 2377 2378 QualType OTy = PVD->getOriginalType(); 2379 if (const auto *ArrTy = 2380 getContext().getAsConstantArrayType(OTy)) { 2381 // A C99 array parameter declaration with the static keyword also 2382 // indicates dereferenceability, and if the size is constant we can 2383 // use the dereferenceable attribute (which requires the size in 2384 // bytes). 2385 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2386 QualType ETy = ArrTy->getElementType(); 2387 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2388 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2389 ArrSize) { 2390 llvm::AttrBuilder Attrs; 2391 Attrs.addDereferenceableAttr( 2392 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2393 AI->addAttrs(Attrs); 2394 } else if (getContext().getTargetAddressSpace(ETy) == 0 && 2395 !CGM.getCodeGenOpts().NullPointerIsValid) { 2396 AI->addAttr(llvm::Attribute::NonNull); 2397 } 2398 } 2399 } else if (const auto *ArrTy = 2400 getContext().getAsVariableArrayType(OTy)) { 2401 // For C99 VLAs with the static keyword, we don't know the size so 2402 // we can't use the dereferenceable attribute, but in addrspace(0) 2403 // we know that it must be nonnull. 2404 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2405 !getContext().getTargetAddressSpace(ArrTy->getElementType()) && 2406 !CGM.getCodeGenOpts().NullPointerIsValid) 2407 AI->addAttr(llvm::Attribute::NonNull); 2408 } 2409 2410 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2411 if (!AVAttr) 2412 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2413 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2414 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2415 // If alignment-assumption sanitizer is enabled, we do *not* add 2416 // alignment attribute here, but emit normal alignment assumption, 2417 // so the UBSAN check could function. 2418 llvm::Value *AlignmentValue = 2419 EmitScalarExpr(AVAttr->getAlignment()); 2420 llvm::ConstantInt *AlignmentCI = 2421 cast<llvm::ConstantInt>(AlignmentValue); 2422 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), 2423 +llvm::Value::MaximumAlignment); 2424 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2425 } 2426 } 2427 2428 if (Arg->getType().isRestrictQualified()) 2429 AI->addAttr(llvm::Attribute::NoAlias); 2430 2431 // LLVM expects swifterror parameters to be used in very restricted 2432 // ways. Copy the value into a less-restricted temporary. 2433 if (FI.getExtParameterInfo(ArgNo).getABI() 2434 == ParameterABI::SwiftErrorResult) { 2435 QualType pointeeTy = Ty->getPointeeType(); 2436 assert(pointeeTy->isPointerType()); 2437 Address temp = 2438 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2439 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2440 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2441 Builder.CreateStore(incomingErrorValue, temp); 2442 V = temp.getPointer(); 2443 2444 // Push a cleanup to copy the value back at the end of the function. 2445 // The convention does not guarantee that the value will be written 2446 // back if the function exits with an unwind exception. 2447 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2448 } 2449 2450 // Ensure the argument is the correct type. 2451 if (V->getType() != ArgI.getCoerceToType()) 2452 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2453 2454 if (isPromoted) 2455 V = emitArgumentDemotion(*this, Arg, V); 2456 2457 // Because of merging of function types from multiple decls it is 2458 // possible for the type of an argument to not match the corresponding 2459 // type in the function type. Since we are codegening the callee 2460 // in here, add a cast to the argument type. 2461 llvm::Type *LTy = ConvertType(Arg->getType()); 2462 if (V->getType() != LTy) 2463 V = Builder.CreateBitCast(V, LTy); 2464 2465 ArgVals.push_back(ParamValue::forDirect(V)); 2466 break; 2467 } 2468 2469 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2470 Arg->getName()); 2471 2472 // Pointer to store into. 2473 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2474 2475 // Fast-isel and the optimizer generally like scalar values better than 2476 // FCAs, so we flatten them if this is safe to do for this argument. 2477 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2478 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2479 STy->getNumElements() > 1) { 2480 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2481 llvm::Type *DstTy = Ptr.getElementType(); 2482 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2483 2484 Address AddrToStoreInto = Address::invalid(); 2485 if (SrcSize <= DstSize) { 2486 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2487 } else { 2488 AddrToStoreInto = 2489 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2490 } 2491 2492 assert(STy->getNumElements() == NumIRArgs); 2493 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2494 auto AI = FnArgs[FirstIRArg + i]; 2495 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2496 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2497 Builder.CreateStore(AI, EltPtr); 2498 } 2499 2500 if (SrcSize > DstSize) { 2501 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2502 } 2503 2504 } else { 2505 // Simple case, just do a coerced store of the argument into the alloca. 2506 assert(NumIRArgs == 1); 2507 auto AI = FnArgs[FirstIRArg]; 2508 AI->setName(Arg->getName() + ".coerce"); 2509 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2510 } 2511 2512 // Match to what EmitParmDecl is expecting for this type. 2513 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2514 llvm::Value *V = 2515 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2516 if (isPromoted) 2517 V = emitArgumentDemotion(*this, Arg, V); 2518 ArgVals.push_back(ParamValue::forDirect(V)); 2519 } else { 2520 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2521 } 2522 break; 2523 } 2524 2525 case ABIArgInfo::CoerceAndExpand: { 2526 // Reconstruct into a temporary. 2527 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2528 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2529 2530 auto coercionType = ArgI.getCoerceAndExpandType(); 2531 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2532 2533 unsigned argIndex = FirstIRArg; 2534 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2535 llvm::Type *eltType = coercionType->getElementType(i); 2536 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2537 continue; 2538 2539 auto eltAddr = Builder.CreateStructGEP(alloca, i); 2540 auto elt = FnArgs[argIndex++]; 2541 Builder.CreateStore(elt, eltAddr); 2542 } 2543 assert(argIndex == FirstIRArg + NumIRArgs); 2544 break; 2545 } 2546 2547 case ABIArgInfo::Expand: { 2548 // If this structure was expanded into multiple arguments then 2549 // we need to create a temporary and reconstruct it from the 2550 // arguments. 2551 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2552 LValue LV = MakeAddrLValue(Alloca, Ty); 2553 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2554 2555 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2556 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2557 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2558 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2559 auto AI = FnArgs[FirstIRArg + i]; 2560 AI->setName(Arg->getName() + "." + Twine(i)); 2561 } 2562 break; 2563 } 2564 2565 case ABIArgInfo::Ignore: 2566 assert(NumIRArgs == 0); 2567 // Initialize the local variable appropriately. 2568 if (!hasScalarEvaluationKind(Ty)) { 2569 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2570 } else { 2571 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2572 ArgVals.push_back(ParamValue::forDirect(U)); 2573 } 2574 break; 2575 } 2576 } 2577 2578 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2579 for (int I = Args.size() - 1; I >= 0; --I) 2580 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2581 } else { 2582 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2583 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2584 } 2585 } 2586 2587 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2588 while (insn->use_empty()) { 2589 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2590 if (!bitcast) return; 2591 2592 // This is "safe" because we would have used a ConstantExpr otherwise. 2593 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2594 bitcast->eraseFromParent(); 2595 } 2596 } 2597 2598 /// Try to emit a fused autorelease of a return result. 2599 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2600 llvm::Value *result) { 2601 // We must be immediately followed the cast. 2602 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2603 if (BB->empty()) return nullptr; 2604 if (&BB->back() != result) return nullptr; 2605 2606 llvm::Type *resultType = result->getType(); 2607 2608 // result is in a BasicBlock and is therefore an Instruction. 2609 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2610 2611 SmallVector<llvm::Instruction *, 4> InstsToKill; 2612 2613 // Look for: 2614 // %generator = bitcast %type1* %generator2 to %type2* 2615 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2616 // We would have emitted this as a constant if the operand weren't 2617 // an Instruction. 2618 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2619 2620 // Require the generator to be immediately followed by the cast. 2621 if (generator->getNextNode() != bitcast) 2622 return nullptr; 2623 2624 InstsToKill.push_back(bitcast); 2625 } 2626 2627 // Look for: 2628 // %generator = call i8* @objc_retain(i8* %originalResult) 2629 // or 2630 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2631 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2632 if (!call) return nullptr; 2633 2634 bool doRetainAutorelease; 2635 2636 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2637 doRetainAutorelease = true; 2638 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2639 .objc_retainAutoreleasedReturnValue) { 2640 doRetainAutorelease = false; 2641 2642 // If we emitted an assembly marker for this call (and the 2643 // ARCEntrypoints field should have been set if so), go looking 2644 // for that call. If we can't find it, we can't do this 2645 // optimization. But it should always be the immediately previous 2646 // instruction, unless we needed bitcasts around the call. 2647 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2648 llvm::Instruction *prev = call->getPrevNode(); 2649 assert(prev); 2650 if (isa<llvm::BitCastInst>(prev)) { 2651 prev = prev->getPrevNode(); 2652 assert(prev); 2653 } 2654 assert(isa<llvm::CallInst>(prev)); 2655 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2656 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2657 InstsToKill.push_back(prev); 2658 } 2659 } else { 2660 return nullptr; 2661 } 2662 2663 result = call->getArgOperand(0); 2664 InstsToKill.push_back(call); 2665 2666 // Keep killing bitcasts, for sanity. Note that we no longer care 2667 // about precise ordering as long as there's exactly one use. 2668 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2669 if (!bitcast->hasOneUse()) break; 2670 InstsToKill.push_back(bitcast); 2671 result = bitcast->getOperand(0); 2672 } 2673 2674 // Delete all the unnecessary instructions, from latest to earliest. 2675 for (auto *I : InstsToKill) 2676 I->eraseFromParent(); 2677 2678 // Do the fused retain/autorelease if we were asked to. 2679 if (doRetainAutorelease) 2680 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2681 2682 // Cast back to the result type. 2683 return CGF.Builder.CreateBitCast(result, resultType); 2684 } 2685 2686 /// If this is a +1 of the value of an immutable 'self', remove it. 2687 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2688 llvm::Value *result) { 2689 // This is only applicable to a method with an immutable 'self'. 2690 const ObjCMethodDecl *method = 2691 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2692 if (!method) return nullptr; 2693 const VarDecl *self = method->getSelfDecl(); 2694 if (!self->getType().isConstQualified()) return nullptr; 2695 2696 // Look for a retain call. 2697 llvm::CallInst *retainCall = 2698 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2699 if (!retainCall || 2700 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2701 return nullptr; 2702 2703 // Look for an ordinary load of 'self'. 2704 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2705 llvm::LoadInst *load = 2706 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2707 if (!load || load->isAtomic() || load->isVolatile() || 2708 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2709 return nullptr; 2710 2711 // Okay! Burn it all down. This relies for correctness on the 2712 // assumption that the retain is emitted as part of the return and 2713 // that thereafter everything is used "linearly". 2714 llvm::Type *resultType = result->getType(); 2715 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2716 assert(retainCall->use_empty()); 2717 retainCall->eraseFromParent(); 2718 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2719 2720 return CGF.Builder.CreateBitCast(load, resultType); 2721 } 2722 2723 /// Emit an ARC autorelease of the result of a function. 2724 /// 2725 /// \return the value to actually return from the function 2726 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2727 llvm::Value *result) { 2728 // If we're returning 'self', kill the initial retain. This is a 2729 // heuristic attempt to "encourage correctness" in the really unfortunate 2730 // case where we have a return of self during a dealloc and we desperately 2731 // need to avoid the possible autorelease. 2732 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2733 return self; 2734 2735 // At -O0, try to emit a fused retain/autorelease. 2736 if (CGF.shouldUseFusedARCCalls()) 2737 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2738 return fused; 2739 2740 return CGF.EmitARCAutoreleaseReturnValue(result); 2741 } 2742 2743 /// Heuristically search for a dominating store to the return-value slot. 2744 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2745 // Check if a User is a store which pointerOperand is the ReturnValue. 2746 // We are looking for stores to the ReturnValue, not for stores of the 2747 // ReturnValue to some other location. 2748 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2749 auto *SI = dyn_cast<llvm::StoreInst>(U); 2750 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2751 return nullptr; 2752 // These aren't actually possible for non-coerced returns, and we 2753 // only care about non-coerced returns on this code path. 2754 assert(!SI->isAtomic() && !SI->isVolatile()); 2755 return SI; 2756 }; 2757 // If there are multiple uses of the return-value slot, just check 2758 // for something immediately preceding the IP. Sometimes this can 2759 // happen with how we generate implicit-returns; it can also happen 2760 // with noreturn cleanups. 2761 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2762 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2763 if (IP->empty()) return nullptr; 2764 llvm::Instruction *I = &IP->back(); 2765 2766 // Skip lifetime markers 2767 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2768 IE = IP->rend(); 2769 II != IE; ++II) { 2770 if (llvm::IntrinsicInst *Intrinsic = 2771 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2772 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2773 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2774 ++II; 2775 if (II == IE) 2776 break; 2777 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2778 continue; 2779 } 2780 } 2781 I = &*II; 2782 break; 2783 } 2784 2785 return GetStoreIfValid(I); 2786 } 2787 2788 llvm::StoreInst *store = 2789 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2790 if (!store) return nullptr; 2791 2792 // Now do a first-and-dirty dominance check: just walk up the 2793 // single-predecessors chain from the current insertion point. 2794 llvm::BasicBlock *StoreBB = store->getParent(); 2795 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2796 while (IP != StoreBB) { 2797 if (!(IP = IP->getSinglePredecessor())) 2798 return nullptr; 2799 } 2800 2801 // Okay, the store's basic block dominates the insertion point; we 2802 // can do our thing. 2803 return store; 2804 } 2805 2806 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2807 bool EmitRetDbgLoc, 2808 SourceLocation EndLoc) { 2809 if (FI.isNoReturn()) { 2810 // Noreturn functions don't return. 2811 EmitUnreachable(EndLoc); 2812 return; 2813 } 2814 2815 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2816 // Naked functions don't have epilogues. 2817 Builder.CreateUnreachable(); 2818 return; 2819 } 2820 2821 // Functions with no result always return void. 2822 if (!ReturnValue.isValid()) { 2823 Builder.CreateRetVoid(); 2824 return; 2825 } 2826 2827 llvm::DebugLoc RetDbgLoc; 2828 llvm::Value *RV = nullptr; 2829 QualType RetTy = FI.getReturnType(); 2830 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2831 2832 switch (RetAI.getKind()) { 2833 case ABIArgInfo::InAlloca: 2834 // Aggregrates get evaluated directly into the destination. Sometimes we 2835 // need to return the sret value in a register, though. 2836 assert(hasAggregateEvaluationKind(RetTy)); 2837 if (RetAI.getInAllocaSRet()) { 2838 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2839 --EI; 2840 llvm::Value *ArgStruct = &*EI; 2841 llvm::Value *SRet = Builder.CreateStructGEP( 2842 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2843 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2844 } 2845 break; 2846 2847 case ABIArgInfo::Indirect: { 2848 auto AI = CurFn->arg_begin(); 2849 if (RetAI.isSRetAfterThis()) 2850 ++AI; 2851 switch (getEvaluationKind(RetTy)) { 2852 case TEK_Complex: { 2853 ComplexPairTy RT = 2854 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2855 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2856 /*isInit*/ true); 2857 break; 2858 } 2859 case TEK_Aggregate: 2860 // Do nothing; aggregrates get evaluated directly into the destination. 2861 break; 2862 case TEK_Scalar: 2863 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2864 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2865 /*isInit*/ true); 2866 break; 2867 } 2868 break; 2869 } 2870 2871 case ABIArgInfo::Extend: 2872 case ABIArgInfo::Direct: 2873 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2874 RetAI.getDirectOffset() == 0) { 2875 // The internal return value temp always will have pointer-to-return-type 2876 // type, just do a load. 2877 2878 // If there is a dominating store to ReturnValue, we can elide 2879 // the load, zap the store, and usually zap the alloca. 2880 if (llvm::StoreInst *SI = 2881 findDominatingStoreToReturnValue(*this)) { 2882 // Reuse the debug location from the store unless there is 2883 // cleanup code to be emitted between the store and return 2884 // instruction. 2885 if (EmitRetDbgLoc && !AutoreleaseResult) 2886 RetDbgLoc = SI->getDebugLoc(); 2887 // Get the stored value and nuke the now-dead store. 2888 RV = SI->getValueOperand(); 2889 SI->eraseFromParent(); 2890 2891 // If that was the only use of the return value, nuke it as well now. 2892 auto returnValueInst = ReturnValue.getPointer(); 2893 if (returnValueInst->use_empty()) { 2894 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2895 alloca->eraseFromParent(); 2896 ReturnValue = Address::invalid(); 2897 } 2898 } 2899 2900 // Otherwise, we have to do a simple load. 2901 } else { 2902 RV = Builder.CreateLoad(ReturnValue); 2903 } 2904 } else { 2905 // If the value is offset in memory, apply the offset now. 2906 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2907 2908 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2909 } 2910 2911 // In ARC, end functions that return a retainable type with a call 2912 // to objc_autoreleaseReturnValue. 2913 if (AutoreleaseResult) { 2914 #ifndef NDEBUG 2915 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2916 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2917 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2918 // CurCodeDecl or BlockInfo. 2919 QualType RT; 2920 2921 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2922 RT = FD->getReturnType(); 2923 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2924 RT = MD->getReturnType(); 2925 else if (isa<BlockDecl>(CurCodeDecl)) 2926 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2927 else 2928 llvm_unreachable("Unexpected function/method type"); 2929 2930 assert(getLangOpts().ObjCAutoRefCount && 2931 !FI.isReturnsRetained() && 2932 RT->isObjCRetainableType()); 2933 #endif 2934 RV = emitAutoreleaseOfResult(*this, RV); 2935 } 2936 2937 break; 2938 2939 case ABIArgInfo::Ignore: 2940 break; 2941 2942 case ABIArgInfo::CoerceAndExpand: { 2943 auto coercionType = RetAI.getCoerceAndExpandType(); 2944 2945 // Load all of the coerced elements out into results. 2946 llvm::SmallVector<llvm::Value*, 4> results; 2947 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2948 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2949 auto coercedEltType = coercionType->getElementType(i); 2950 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2951 continue; 2952 2953 auto eltAddr = Builder.CreateStructGEP(addr, i); 2954 auto elt = Builder.CreateLoad(eltAddr); 2955 results.push_back(elt); 2956 } 2957 2958 // If we have one result, it's the single direct result type. 2959 if (results.size() == 1) { 2960 RV = results[0]; 2961 2962 // Otherwise, we need to make a first-class aggregate. 2963 } else { 2964 // Construct a return type that lacks padding elements. 2965 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2966 2967 RV = llvm::UndefValue::get(returnType); 2968 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2969 RV = Builder.CreateInsertValue(RV, results[i], i); 2970 } 2971 } 2972 break; 2973 } 2974 2975 case ABIArgInfo::Expand: 2976 llvm_unreachable("Invalid ABI kind for return argument"); 2977 } 2978 2979 llvm::Instruction *Ret; 2980 if (RV) { 2981 EmitReturnValueCheck(RV); 2982 Ret = Builder.CreateRet(RV); 2983 } else { 2984 Ret = Builder.CreateRetVoid(); 2985 } 2986 2987 if (RetDbgLoc) 2988 Ret->setDebugLoc(std::move(RetDbgLoc)); 2989 } 2990 2991 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 2992 // A current decl may not be available when emitting vtable thunks. 2993 if (!CurCodeDecl) 2994 return; 2995 2996 ReturnsNonNullAttr *RetNNAttr = nullptr; 2997 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 2998 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 2999 3000 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3001 return; 3002 3003 // Prefer the returns_nonnull attribute if it's present. 3004 SourceLocation AttrLoc; 3005 SanitizerMask CheckKind; 3006 SanitizerHandler Handler; 3007 if (RetNNAttr) { 3008 assert(!requiresReturnValueNullabilityCheck() && 3009 "Cannot check nullability and the nonnull attribute"); 3010 AttrLoc = RetNNAttr->getLocation(); 3011 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3012 Handler = SanitizerHandler::NonnullReturn; 3013 } else { 3014 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3015 if (auto *TSI = DD->getTypeSourceInfo()) 3016 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) 3017 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3018 CheckKind = SanitizerKind::NullabilityReturn; 3019 Handler = SanitizerHandler::NullabilityReturn; 3020 } 3021 3022 SanitizerScope SanScope(this); 3023 3024 // Make sure the "return" source location is valid. If we're checking a 3025 // nullability annotation, make sure the preconditions for the check are met. 3026 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3027 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3028 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3029 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3030 if (requiresReturnValueNullabilityCheck()) 3031 CanNullCheck = 3032 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3033 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3034 EmitBlock(Check); 3035 3036 // Now do the null check. 3037 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3038 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3039 llvm::Value *DynamicData[] = {SLocPtr}; 3040 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3041 3042 EmitBlock(NoCheck); 3043 3044 #ifndef NDEBUG 3045 // The return location should not be used after the check has been emitted. 3046 ReturnLocation = Address::invalid(); 3047 #endif 3048 } 3049 3050 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3051 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3052 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3053 } 3054 3055 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3056 QualType Ty) { 3057 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3058 // placeholders. 3059 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3060 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3061 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3062 3063 // FIXME: When we generate this IR in one pass, we shouldn't need 3064 // this win32-specific alignment hack. 3065 CharUnits Align = CharUnits::fromQuantity(4); 3066 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3067 3068 return AggValueSlot::forAddr(Address(Placeholder, Align), 3069 Ty.getQualifiers(), 3070 AggValueSlot::IsNotDestructed, 3071 AggValueSlot::DoesNotNeedGCBarriers, 3072 AggValueSlot::IsNotAliased, 3073 AggValueSlot::DoesNotOverlap); 3074 } 3075 3076 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3077 const VarDecl *param, 3078 SourceLocation loc) { 3079 // StartFunction converted the ABI-lowered parameter(s) into a 3080 // local alloca. We need to turn that into an r-value suitable 3081 // for EmitCall. 3082 Address local = GetAddrOfLocalVar(param); 3083 3084 QualType type = param->getType(); 3085 3086 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3087 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3088 } 3089 3090 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3091 // but the argument needs to be the original pointer. 3092 if (type->isReferenceType()) { 3093 args.add(RValue::get(Builder.CreateLoad(local)), type); 3094 3095 // In ARC, move out of consumed arguments so that the release cleanup 3096 // entered by StartFunction doesn't cause an over-release. This isn't 3097 // optimal -O0 code generation, but it should get cleaned up when 3098 // optimization is enabled. This also assumes that delegate calls are 3099 // performed exactly once for a set of arguments, but that should be safe. 3100 } else if (getLangOpts().ObjCAutoRefCount && 3101 param->hasAttr<NSConsumedAttr>() && 3102 type->isObjCRetainableType()) { 3103 llvm::Value *ptr = Builder.CreateLoad(local); 3104 auto null = 3105 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3106 Builder.CreateStore(null, local); 3107 args.add(RValue::get(ptr), type); 3108 3109 // For the most part, we just need to load the alloca, except that 3110 // aggregate r-values are actually pointers to temporaries. 3111 } else { 3112 args.add(convertTempToRValue(local, type, loc), type); 3113 } 3114 3115 // Deactivate the cleanup for the callee-destructed param that was pushed. 3116 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3117 type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3118 type.isDestructedType()) { 3119 EHScopeStack::stable_iterator cleanup = 3120 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3121 assert(cleanup.isValid() && 3122 "cleanup for callee-destructed param not recorded"); 3123 // This unreachable is a temporary marker which will be removed later. 3124 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3125 args.addArgCleanupDeactivation(cleanup, isActive); 3126 } 3127 } 3128 3129 static bool isProvablyNull(llvm::Value *addr) { 3130 return isa<llvm::ConstantPointerNull>(addr); 3131 } 3132 3133 /// Emit the actual writing-back of a writeback. 3134 static void emitWriteback(CodeGenFunction &CGF, 3135 const CallArgList::Writeback &writeback) { 3136 const LValue &srcLV = writeback.Source; 3137 Address srcAddr = srcLV.getAddress(); 3138 assert(!isProvablyNull(srcAddr.getPointer()) && 3139 "shouldn't have writeback for provably null argument"); 3140 3141 llvm::BasicBlock *contBB = nullptr; 3142 3143 // If the argument wasn't provably non-null, we need to null check 3144 // before doing the store. 3145 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3146 CGF.CGM.getDataLayout()); 3147 if (!provablyNonNull) { 3148 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3149 contBB = CGF.createBasicBlock("icr.done"); 3150 3151 llvm::Value *isNull = 3152 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3153 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3154 CGF.EmitBlock(writebackBB); 3155 } 3156 3157 // Load the value to writeback. 3158 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3159 3160 // Cast it back, in case we're writing an id to a Foo* or something. 3161 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3162 "icr.writeback-cast"); 3163 3164 // Perform the writeback. 3165 3166 // If we have a "to use" value, it's something we need to emit a use 3167 // of. This has to be carefully threaded in: if it's done after the 3168 // release it's potentially undefined behavior (and the optimizer 3169 // will ignore it), and if it happens before the retain then the 3170 // optimizer could move the release there. 3171 if (writeback.ToUse) { 3172 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3173 3174 // Retain the new value. No need to block-copy here: the block's 3175 // being passed up the stack. 3176 value = CGF.EmitARCRetainNonBlock(value); 3177 3178 // Emit the intrinsic use here. 3179 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3180 3181 // Load the old value (primitively). 3182 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3183 3184 // Put the new value in place (primitively). 3185 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3186 3187 // Release the old value. 3188 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3189 3190 // Otherwise, we can just do a normal lvalue store. 3191 } else { 3192 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3193 } 3194 3195 // Jump to the continuation block. 3196 if (!provablyNonNull) 3197 CGF.EmitBlock(contBB); 3198 } 3199 3200 static void emitWritebacks(CodeGenFunction &CGF, 3201 const CallArgList &args) { 3202 for (const auto &I : args.writebacks()) 3203 emitWriteback(CGF, I); 3204 } 3205 3206 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3207 const CallArgList &CallArgs) { 3208 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3209 CallArgs.getCleanupsToDeactivate(); 3210 // Iterate in reverse to increase the likelihood of popping the cleanup. 3211 for (const auto &I : llvm::reverse(Cleanups)) { 3212 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3213 I.IsActiveIP->eraseFromParent(); 3214 } 3215 } 3216 3217 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3218 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3219 if (uop->getOpcode() == UO_AddrOf) 3220 return uop->getSubExpr(); 3221 return nullptr; 3222 } 3223 3224 /// Emit an argument that's being passed call-by-writeback. That is, 3225 /// we are passing the address of an __autoreleased temporary; it 3226 /// might be copy-initialized with the current value of the given 3227 /// address, but it will definitely be copied out of after the call. 3228 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3229 const ObjCIndirectCopyRestoreExpr *CRE) { 3230 LValue srcLV; 3231 3232 // Make an optimistic effort to emit the address as an l-value. 3233 // This can fail if the argument expression is more complicated. 3234 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3235 srcLV = CGF.EmitLValue(lvExpr); 3236 3237 // Otherwise, just emit it as a scalar. 3238 } else { 3239 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3240 3241 QualType srcAddrType = 3242 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3243 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3244 } 3245 Address srcAddr = srcLV.getAddress(); 3246 3247 // The dest and src types don't necessarily match in LLVM terms 3248 // because of the crazy ObjC compatibility rules. 3249 3250 llvm::PointerType *destType = 3251 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3252 3253 // If the address is a constant null, just pass the appropriate null. 3254 if (isProvablyNull(srcAddr.getPointer())) { 3255 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3256 CRE->getType()); 3257 return; 3258 } 3259 3260 // Create the temporary. 3261 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3262 CGF.getPointerAlign(), 3263 "icr.temp"); 3264 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3265 // and that cleanup will be conditional if we can't prove that the l-value 3266 // isn't null, so we need to register a dominating point so that the cleanups 3267 // system will make valid IR. 3268 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3269 3270 // Zero-initialize it if we're not doing a copy-initialization. 3271 bool shouldCopy = CRE->shouldCopy(); 3272 if (!shouldCopy) { 3273 llvm::Value *null = 3274 llvm::ConstantPointerNull::get( 3275 cast<llvm::PointerType>(destType->getElementType())); 3276 CGF.Builder.CreateStore(null, temp); 3277 } 3278 3279 llvm::BasicBlock *contBB = nullptr; 3280 llvm::BasicBlock *originBB = nullptr; 3281 3282 // If the address is *not* known to be non-null, we need to switch. 3283 llvm::Value *finalArgument; 3284 3285 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3286 CGF.CGM.getDataLayout()); 3287 if (provablyNonNull) { 3288 finalArgument = temp.getPointer(); 3289 } else { 3290 llvm::Value *isNull = 3291 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3292 3293 finalArgument = CGF.Builder.CreateSelect(isNull, 3294 llvm::ConstantPointerNull::get(destType), 3295 temp.getPointer(), "icr.argument"); 3296 3297 // If we need to copy, then the load has to be conditional, which 3298 // means we need control flow. 3299 if (shouldCopy) { 3300 originBB = CGF.Builder.GetInsertBlock(); 3301 contBB = CGF.createBasicBlock("icr.cont"); 3302 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3303 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3304 CGF.EmitBlock(copyBB); 3305 condEval.begin(CGF); 3306 } 3307 } 3308 3309 llvm::Value *valueToUse = nullptr; 3310 3311 // Perform a copy if necessary. 3312 if (shouldCopy) { 3313 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3314 assert(srcRV.isScalar()); 3315 3316 llvm::Value *src = srcRV.getScalarVal(); 3317 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3318 "icr.cast"); 3319 3320 // Use an ordinary store, not a store-to-lvalue. 3321 CGF.Builder.CreateStore(src, temp); 3322 3323 // If optimization is enabled, and the value was held in a 3324 // __strong variable, we need to tell the optimizer that this 3325 // value has to stay alive until we're doing the store back. 3326 // This is because the temporary is effectively unretained, 3327 // and so otherwise we can violate the high-level semantics. 3328 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3329 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3330 valueToUse = src; 3331 } 3332 } 3333 3334 // Finish the control flow if we needed it. 3335 if (shouldCopy && !provablyNonNull) { 3336 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3337 CGF.EmitBlock(contBB); 3338 3339 // Make a phi for the value to intrinsically use. 3340 if (valueToUse) { 3341 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3342 "icr.to-use"); 3343 phiToUse->addIncoming(valueToUse, copyBB); 3344 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3345 originBB); 3346 valueToUse = phiToUse; 3347 } 3348 3349 condEval.end(CGF); 3350 } 3351 3352 args.addWriteback(srcLV, temp, valueToUse); 3353 args.add(RValue::get(finalArgument), CRE->getType()); 3354 } 3355 3356 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3357 assert(!StackBase); 3358 3359 // Save the stack. 3360 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3361 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3362 } 3363 3364 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3365 if (StackBase) { 3366 // Restore the stack after the call. 3367 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3368 CGF.Builder.CreateCall(F, StackBase); 3369 } 3370 } 3371 3372 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3373 SourceLocation ArgLoc, 3374 AbstractCallee AC, 3375 unsigned ParmNum) { 3376 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3377 SanOpts.has(SanitizerKind::NullabilityArg))) 3378 return; 3379 3380 // The param decl may be missing in a variadic function. 3381 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3382 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3383 3384 // Prefer the nonnull attribute if it's present. 3385 const NonNullAttr *NNAttr = nullptr; 3386 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3387 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3388 3389 bool CanCheckNullability = false; 3390 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3391 auto Nullability = PVD->getType()->getNullability(getContext()); 3392 CanCheckNullability = Nullability && 3393 *Nullability == NullabilityKind::NonNull && 3394 PVD->getTypeSourceInfo(); 3395 } 3396 3397 if (!NNAttr && !CanCheckNullability) 3398 return; 3399 3400 SourceLocation AttrLoc; 3401 SanitizerMask CheckKind; 3402 SanitizerHandler Handler; 3403 if (NNAttr) { 3404 AttrLoc = NNAttr->getLocation(); 3405 CheckKind = SanitizerKind::NonnullAttribute; 3406 Handler = SanitizerHandler::NonnullArg; 3407 } else { 3408 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3409 CheckKind = SanitizerKind::NullabilityArg; 3410 Handler = SanitizerHandler::NullabilityArg; 3411 } 3412 3413 SanitizerScope SanScope(this); 3414 assert(RV.isScalar()); 3415 llvm::Value *V = RV.getScalarVal(); 3416 llvm::Value *Cond = 3417 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3418 llvm::Constant *StaticData[] = { 3419 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3420 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3421 }; 3422 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3423 } 3424 3425 void CodeGenFunction::EmitCallArgs( 3426 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3427 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3428 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3429 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3430 3431 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3432 // because arguments are destroyed left to right in the callee. As a special 3433 // case, there are certain language constructs that require left-to-right 3434 // evaluation, and in those cases we consider the evaluation order requirement 3435 // to trump the "destruction order is reverse construction order" guarantee. 3436 bool LeftToRight = 3437 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3438 ? Order == EvaluationOrder::ForceLeftToRight 3439 : Order != EvaluationOrder::ForceRightToLeft; 3440 3441 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3442 RValue EmittedArg) { 3443 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3444 return; 3445 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3446 if (PS == nullptr) 3447 return; 3448 3449 const auto &Context = getContext(); 3450 auto SizeTy = Context.getSizeType(); 3451 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3452 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3453 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3454 EmittedArg.getScalarVal(), 3455 /*IsDynamic=*/false); 3456 Args.add(RValue::get(V), SizeTy); 3457 // If we're emitting args in reverse, be sure to do so with 3458 // pass_object_size, as well. 3459 if (!LeftToRight) 3460 std::swap(Args.back(), *(&Args.back() - 1)); 3461 }; 3462 3463 // Insert a stack save if we're going to need any inalloca args. 3464 bool HasInAllocaArgs = false; 3465 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3466 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3467 I != E && !HasInAllocaArgs; ++I) 3468 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3469 if (HasInAllocaArgs) { 3470 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3471 Args.allocateArgumentMemory(*this); 3472 } 3473 } 3474 3475 // Evaluate each argument in the appropriate order. 3476 size_t CallArgsStart = Args.size(); 3477 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3478 unsigned Idx = LeftToRight ? I : E - I - 1; 3479 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3480 unsigned InitialArgSize = Args.size(); 3481 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3482 // the argument and parameter match or the objc method is parameterized. 3483 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3484 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3485 ArgTypes[Idx]) || 3486 (isa<ObjCMethodDecl>(AC.getDecl()) && 3487 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3488 "Argument and parameter types don't match"); 3489 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3490 // In particular, we depend on it being the last arg in Args, and the 3491 // objectsize bits depend on there only being one arg if !LeftToRight. 3492 assert(InitialArgSize + 1 == Args.size() && 3493 "The code below depends on only adding one arg per EmitCallArg"); 3494 (void)InitialArgSize; 3495 // Since pointer argument are never emitted as LValue, it is safe to emit 3496 // non-null argument check for r-value only. 3497 if (!Args.back().hasLValue()) { 3498 RValue RVArg = Args.back().getKnownRValue(); 3499 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3500 ParamsToSkip + Idx); 3501 // @llvm.objectsize should never have side-effects and shouldn't need 3502 // destruction/cleanups, so we can safely "emit" it after its arg, 3503 // regardless of right-to-leftness 3504 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3505 } 3506 } 3507 3508 if (!LeftToRight) { 3509 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3510 // IR function. 3511 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3512 } 3513 } 3514 3515 namespace { 3516 3517 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3518 DestroyUnpassedArg(Address Addr, QualType Ty) 3519 : Addr(Addr), Ty(Ty) {} 3520 3521 Address Addr; 3522 QualType Ty; 3523 3524 void Emit(CodeGenFunction &CGF, Flags flags) override { 3525 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3526 if (DtorKind == QualType::DK_cxx_destructor) { 3527 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3528 assert(!Dtor->isTrivial()); 3529 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3530 /*Delegating=*/false, Addr); 3531 } else { 3532 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3533 } 3534 } 3535 }; 3536 3537 struct DisableDebugLocationUpdates { 3538 CodeGenFunction &CGF; 3539 bool disabledDebugInfo; 3540 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3541 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3542 CGF.disableDebugInfo(); 3543 } 3544 ~DisableDebugLocationUpdates() { 3545 if (disabledDebugInfo) 3546 CGF.enableDebugInfo(); 3547 } 3548 }; 3549 3550 } // end anonymous namespace 3551 3552 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3553 if (!HasLV) 3554 return RV; 3555 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3556 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 3557 LV.isVolatile()); 3558 IsUsed = true; 3559 return RValue::getAggregate(Copy.getAddress()); 3560 } 3561 3562 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3563 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3564 if (!HasLV && RV.isScalar()) 3565 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true); 3566 else if (!HasLV && RV.isComplex()) 3567 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3568 else { 3569 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); 3570 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3571 // We assume that call args are never copied into subobjects. 3572 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 3573 HasLV ? LV.isVolatileQualified() 3574 : RV.isVolatileQualified()); 3575 } 3576 IsUsed = true; 3577 } 3578 3579 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3580 QualType type) { 3581 DisableDebugLocationUpdates Dis(*this, E); 3582 if (const ObjCIndirectCopyRestoreExpr *CRE 3583 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3584 assert(getLangOpts().ObjCAutoRefCount); 3585 return emitWritebackArg(*this, args, CRE); 3586 } 3587 3588 assert(type->isReferenceType() == E->isGLValue() && 3589 "reference binding to unmaterialized r-value!"); 3590 3591 if (E->isGLValue()) { 3592 assert(E->getObjectKind() == OK_Ordinary); 3593 return args.add(EmitReferenceBindingToExpr(E), type); 3594 } 3595 3596 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3597 3598 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3599 // However, we still have to push an EH-only cleanup in case we unwind before 3600 // we make it to the call. 3601 if (HasAggregateEvalKind && 3602 type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 3603 // If we're using inalloca, use the argument memory. Otherwise, use a 3604 // temporary. 3605 AggValueSlot Slot; 3606 if (args.isUsingInAlloca()) 3607 Slot = createPlaceholderSlot(*this, type); 3608 else 3609 Slot = CreateAggTemp(type, "agg.tmp"); 3610 3611 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3612 if (const auto *RD = type->getAsCXXRecordDecl()) 3613 DestroyedInCallee = RD->hasNonTrivialDestructor(); 3614 else 3615 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3616 3617 if (DestroyedInCallee) 3618 Slot.setExternallyDestructed(); 3619 3620 EmitAggExpr(E, Slot); 3621 RValue RV = Slot.asRValue(); 3622 args.add(RV, type); 3623 3624 if (DestroyedInCallee && NeedsEHCleanup) { 3625 // Create a no-op GEP between the placeholder and the cleanup so we can 3626 // RAUW it successfully. It also serves as a marker of the first 3627 // instruction where the cleanup is active. 3628 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3629 type); 3630 // This unreachable is a temporary marker which will be removed later. 3631 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3632 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3633 } 3634 return; 3635 } 3636 3637 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3638 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3639 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3640 assert(L.isSimple()); 3641 args.addUncopiedAggregate(L, type); 3642 return; 3643 } 3644 3645 args.add(EmitAnyExprToTemp(E), type); 3646 } 3647 3648 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3649 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3650 // implicitly widens null pointer constants that are arguments to varargs 3651 // functions to pointer-sized ints. 3652 if (!getTarget().getTriple().isOSWindows()) 3653 return Arg->getType(); 3654 3655 if (Arg->getType()->isIntegerType() && 3656 getContext().getTypeSize(Arg->getType()) < 3657 getContext().getTargetInfo().getPointerWidth(0) && 3658 Arg->isNullPointerConstant(getContext(), 3659 Expr::NPC_ValueDependentIsNotNull)) { 3660 return getContext().getIntPtrType(); 3661 } 3662 3663 return Arg->getType(); 3664 } 3665 3666 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3667 // optimizer it can aggressively ignore unwind edges. 3668 void 3669 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3670 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3671 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3672 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3673 CGM.getNoObjCARCExceptionsMetadata()); 3674 } 3675 3676 /// Emits a call to the given no-arguments nounwind runtime function. 3677 llvm::CallInst * 3678 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3679 const llvm::Twine &name) { 3680 return EmitNounwindRuntimeCall(callee, None, name); 3681 } 3682 3683 /// Emits a call to the given nounwind runtime function. 3684 llvm::CallInst * 3685 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 3686 ArrayRef<llvm::Value *> args, 3687 const llvm::Twine &name) { 3688 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3689 call->setDoesNotThrow(); 3690 return call; 3691 } 3692 3693 /// Emits a simple call (never an invoke) to the given no-arguments 3694 /// runtime function. 3695 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 3696 const llvm::Twine &name) { 3697 return EmitRuntimeCall(callee, None, name); 3698 } 3699 3700 // Calls which may throw must have operand bundles indicating which funclet 3701 // they are nested within. 3702 SmallVector<llvm::OperandBundleDef, 1> 3703 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 3704 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3705 // There is no need for a funclet operand bundle if we aren't inside a 3706 // funclet. 3707 if (!CurrentFuncletPad) 3708 return BundleList; 3709 3710 // Skip intrinsics which cannot throw. 3711 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3712 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3713 return BundleList; 3714 3715 BundleList.emplace_back("funclet", CurrentFuncletPad); 3716 return BundleList; 3717 } 3718 3719 /// Emits a simple call (never an invoke) to the given runtime function. 3720 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 3721 ArrayRef<llvm::Value *> args, 3722 const llvm::Twine &name) { 3723 llvm::CallInst *call = Builder.CreateCall( 3724 callee, args, getBundlesForFunclet(callee.getCallee()), name); 3725 call->setCallingConv(getRuntimeCC()); 3726 return call; 3727 } 3728 3729 /// Emits a call or invoke to the given noreturn runtime function. 3730 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 3731 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 3732 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3733 getBundlesForFunclet(callee.getCallee()); 3734 3735 if (getInvokeDest()) { 3736 llvm::InvokeInst *invoke = 3737 Builder.CreateInvoke(callee, 3738 getUnreachableBlock(), 3739 getInvokeDest(), 3740 args, 3741 BundleList); 3742 invoke->setDoesNotReturn(); 3743 invoke->setCallingConv(getRuntimeCC()); 3744 } else { 3745 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3746 call->setDoesNotReturn(); 3747 call->setCallingConv(getRuntimeCC()); 3748 Builder.CreateUnreachable(); 3749 } 3750 } 3751 3752 /// Emits a call or invoke instruction to the given nullary runtime function. 3753 llvm::CallBase * 3754 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3755 const Twine &name) { 3756 return EmitRuntimeCallOrInvoke(callee, None, name); 3757 } 3758 3759 /// Emits a call or invoke instruction to the given runtime function. 3760 llvm::CallBase * 3761 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 3762 ArrayRef<llvm::Value *> args, 3763 const Twine &name) { 3764 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 3765 call->setCallingConv(getRuntimeCC()); 3766 return call; 3767 } 3768 3769 /// Emits a call or invoke instruction to the given function, depending 3770 /// on the current state of the EH stack. 3771 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 3772 ArrayRef<llvm::Value *> Args, 3773 const Twine &Name) { 3774 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3775 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3776 getBundlesForFunclet(Callee.getCallee()); 3777 3778 llvm::CallBase *Inst; 3779 if (!InvokeDest) 3780 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3781 else { 3782 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3783 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3784 Name); 3785 EmitBlock(ContBB); 3786 } 3787 3788 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3789 // optimizer it can aggressively ignore unwind edges. 3790 if (CGM.getLangOpts().ObjCAutoRefCount) 3791 AddObjCARCExceptionMetadata(Inst); 3792 3793 return Inst; 3794 } 3795 3796 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3797 llvm::Value *New) { 3798 DeferredReplacements.push_back(std::make_pair(Old, New)); 3799 } 3800 3801 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3802 const CGCallee &Callee, 3803 ReturnValueSlot ReturnValue, 3804 const CallArgList &CallArgs, 3805 llvm::CallBase **callOrInvoke, 3806 SourceLocation Loc) { 3807 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3808 3809 assert(Callee.isOrdinary() || Callee.isVirtual()); 3810 3811 // Handle struct-return functions by passing a pointer to the 3812 // location that we would like to return into. 3813 QualType RetTy = CallInfo.getReturnType(); 3814 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3815 3816 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 3817 3818 #ifndef NDEBUG 3819 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 3820 // For an inalloca varargs function, we don't expect CallInfo to match the 3821 // function pointer's type, because the inalloca struct a will have extra 3822 // fields in it for the varargs parameters. Code later in this function 3823 // bitcasts the function pointer to the type derived from CallInfo. 3824 // 3825 // In other cases, we assert that the types match up (until pointers stop 3826 // having pointee types). 3827 llvm::Type *TypeFromVal; 3828 if (Callee.isVirtual()) 3829 TypeFromVal = Callee.getVirtualFunctionType(); 3830 else 3831 TypeFromVal = 3832 Callee.getFunctionPointer()->getType()->getPointerElementType(); 3833 assert(IRFuncTy == TypeFromVal); 3834 } 3835 #endif 3836 3837 // 1. Set up the arguments. 3838 3839 // If we're using inalloca, insert the allocation after the stack save. 3840 // FIXME: Do this earlier rather than hacking it in here! 3841 Address ArgMemory = Address::invalid(); 3842 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3843 const llvm::DataLayout &DL = CGM.getDataLayout(); 3844 llvm::Instruction *IP = CallArgs.getStackBase(); 3845 llvm::AllocaInst *AI; 3846 if (IP) { 3847 IP = IP->getNextNode(); 3848 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 3849 "argmem", IP); 3850 } else { 3851 AI = CreateTempAlloca(ArgStruct, "argmem"); 3852 } 3853 auto Align = CallInfo.getArgStructAlignment(); 3854 AI->setAlignment(Align.getQuantity()); 3855 AI->setUsedWithInAlloca(true); 3856 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3857 ArgMemory = Address(AI, Align); 3858 } 3859 3860 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3861 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3862 3863 // If the call returns a temporary with struct return, create a temporary 3864 // alloca to hold the result, unless one is given to us. 3865 Address SRetPtr = Address::invalid(); 3866 Address SRetAlloca = Address::invalid(); 3867 llvm::Value *UnusedReturnSizePtr = nullptr; 3868 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3869 if (!ReturnValue.isNull()) { 3870 SRetPtr = ReturnValue.getValue(); 3871 } else { 3872 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 3873 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3874 uint64_t size = 3875 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3876 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 3877 } 3878 } 3879 if (IRFunctionArgs.hasSRetArg()) { 3880 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3881 } else if (RetAI.isInAlloca()) { 3882 Address Addr = 3883 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 3884 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3885 } 3886 } 3887 3888 Address swiftErrorTemp = Address::invalid(); 3889 Address swiftErrorArg = Address::invalid(); 3890 3891 // Translate all of the arguments as necessary to match the IR lowering. 3892 assert(CallInfo.arg_size() == CallArgs.size() && 3893 "Mismatch between function signature & arguments."); 3894 unsigned ArgNo = 0; 3895 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3896 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3897 I != E; ++I, ++info_it, ++ArgNo) { 3898 const ABIArgInfo &ArgInfo = info_it->info; 3899 3900 // Insert a padding argument to ensure proper alignment. 3901 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3902 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3903 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3904 3905 unsigned FirstIRArg, NumIRArgs; 3906 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3907 3908 switch (ArgInfo.getKind()) { 3909 case ABIArgInfo::InAlloca: { 3910 assert(NumIRArgs == 0); 3911 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3912 if (I->isAggregate()) { 3913 // Replace the placeholder with the appropriate argument slot GEP. 3914 Address Addr = I->hasLValue() 3915 ? I->getKnownLValue().getAddress() 3916 : I->getKnownRValue().getAggregateAddress(); 3917 llvm::Instruction *Placeholder = 3918 cast<llvm::Instruction>(Addr.getPointer()); 3919 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3920 Builder.SetInsertPoint(Placeholder); 3921 Addr = 3922 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 3923 Builder.restoreIP(IP); 3924 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3925 } else { 3926 // Store the RValue into the argument struct. 3927 Address Addr = 3928 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 3929 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3930 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3931 // There are some cases where a trivial bitcast is not avoidable. The 3932 // definition of a type later in a translation unit may change it's type 3933 // from {}* to (%struct.foo*)*. 3934 if (Addr.getType() != MemType) 3935 Addr = Builder.CreateBitCast(Addr, MemType); 3936 I->copyInto(*this, Addr); 3937 } 3938 break; 3939 } 3940 3941 case ABIArgInfo::Indirect: { 3942 assert(NumIRArgs == 1); 3943 if (!I->isAggregate()) { 3944 // Make a temporary alloca to pass the argument. 3945 Address Addr = CreateMemTempWithoutCast( 3946 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 3947 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3948 3949 I->copyInto(*this, Addr); 3950 } else { 3951 // We want to avoid creating an unnecessary temporary+copy here; 3952 // however, we need one in three cases: 3953 // 1. If the argument is not byval, and we are required to copy the 3954 // source. (This case doesn't occur on any common architecture.) 3955 // 2. If the argument is byval, RV is not sufficiently aligned, and 3956 // we cannot force it to be sufficiently aligned. 3957 // 3. If the argument is byval, but RV is not located in default 3958 // or alloca address space. 3959 Address Addr = I->hasLValue() 3960 ? I->getKnownLValue().getAddress() 3961 : I->getKnownRValue().getAggregateAddress(); 3962 llvm::Value *V = Addr.getPointer(); 3963 CharUnits Align = ArgInfo.getIndirectAlign(); 3964 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3965 3966 assert((FirstIRArg >= IRFuncTy->getNumParams() || 3967 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 3968 TD->getAllocaAddrSpace()) && 3969 "indirect argument must be in alloca address space"); 3970 3971 bool NeedCopy = false; 3972 3973 if (Addr.getAlignment() < Align && 3974 llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) < 3975 Align.getQuantity()) { 3976 NeedCopy = true; 3977 } else if (I->hasLValue()) { 3978 auto LV = I->getKnownLValue(); 3979 auto AS = LV.getAddressSpace(); 3980 3981 if ((!ArgInfo.getIndirectByVal() && 3982 (LV.getAlignment() >= 3983 getContext().getTypeAlignInChars(I->Ty)))) { 3984 NeedCopy = true; 3985 } 3986 if (!getLangOpts().OpenCL) { 3987 if ((ArgInfo.getIndirectByVal() && 3988 (AS != LangAS::Default && 3989 AS != CGM.getASTAllocaAddressSpace()))) { 3990 NeedCopy = true; 3991 } 3992 } 3993 // For OpenCL even if RV is located in default or alloca address space 3994 // we don't want to perform address space cast for it. 3995 else if ((ArgInfo.getIndirectByVal() && 3996 Addr.getType()->getAddressSpace() != IRFuncTy-> 3997 getParamType(FirstIRArg)->getPointerAddressSpace())) { 3998 NeedCopy = true; 3999 } 4000 } 4001 4002 if (NeedCopy) { 4003 // Create an aligned temporary, and copy to it. 4004 Address AI = CreateMemTempWithoutCast( 4005 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4006 IRCallArgs[FirstIRArg] = AI.getPointer(); 4007 I->copyInto(*this, AI); 4008 } else { 4009 // Skip the extra memcpy call. 4010 auto *T = V->getType()->getPointerElementType()->getPointerTo( 4011 CGM.getDataLayout().getAllocaAddrSpace()); 4012 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4013 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4014 true); 4015 } 4016 } 4017 break; 4018 } 4019 4020 case ABIArgInfo::Ignore: 4021 assert(NumIRArgs == 0); 4022 break; 4023 4024 case ABIArgInfo::Extend: 4025 case ABIArgInfo::Direct: { 4026 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4027 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4028 ArgInfo.getDirectOffset() == 0) { 4029 assert(NumIRArgs == 1); 4030 llvm::Value *V; 4031 if (!I->isAggregate()) 4032 V = I->getKnownRValue().getScalarVal(); 4033 else 4034 V = Builder.CreateLoad( 4035 I->hasLValue() ? I->getKnownLValue().getAddress() 4036 : I->getKnownRValue().getAggregateAddress()); 4037 4038 // Implement swifterror by copying into a new swifterror argument. 4039 // We'll write back in the normal path out of the call. 4040 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4041 == ParameterABI::SwiftErrorResult) { 4042 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4043 4044 QualType pointeeTy = I->Ty->getPointeeType(); 4045 swiftErrorArg = 4046 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4047 4048 swiftErrorTemp = 4049 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4050 V = swiftErrorTemp.getPointer(); 4051 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4052 4053 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4054 Builder.CreateStore(errorValue, swiftErrorTemp); 4055 } 4056 4057 // We might have to widen integers, but we should never truncate. 4058 if (ArgInfo.getCoerceToType() != V->getType() && 4059 V->getType()->isIntegerTy()) 4060 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4061 4062 // If the argument doesn't match, perform a bitcast to coerce it. This 4063 // can happen due to trivial type mismatches. 4064 if (FirstIRArg < IRFuncTy->getNumParams() && 4065 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4066 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4067 4068 IRCallArgs[FirstIRArg] = V; 4069 break; 4070 } 4071 4072 // FIXME: Avoid the conversion through memory if possible. 4073 Address Src = Address::invalid(); 4074 if (!I->isAggregate()) { 4075 Src = CreateMemTemp(I->Ty, "coerce"); 4076 I->copyInto(*this, Src); 4077 } else { 4078 Src = I->hasLValue() ? I->getKnownLValue().getAddress() 4079 : I->getKnownRValue().getAggregateAddress(); 4080 } 4081 4082 // If the value is offset in memory, apply the offset now. 4083 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4084 4085 // Fast-isel and the optimizer generally like scalar values better than 4086 // FCAs, so we flatten them if this is safe to do for this argument. 4087 llvm::StructType *STy = 4088 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4089 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4090 llvm::Type *SrcTy = Src.getType()->getElementType(); 4091 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4092 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4093 4094 // If the source type is smaller than the destination type of the 4095 // coerce-to logic, copy the source value into a temp alloca the size 4096 // of the destination type to allow loading all of it. The bits past 4097 // the source value are left undef. 4098 if (SrcSize < DstSize) { 4099 Address TempAlloca 4100 = CreateTempAlloca(STy, Src.getAlignment(), 4101 Src.getName() + ".coerce"); 4102 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4103 Src = TempAlloca; 4104 } else { 4105 Src = Builder.CreateBitCast(Src, 4106 STy->getPointerTo(Src.getAddressSpace())); 4107 } 4108 4109 assert(NumIRArgs == STy->getNumElements()); 4110 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4111 Address EltPtr = Builder.CreateStructGEP(Src, i); 4112 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4113 IRCallArgs[FirstIRArg + i] = LI; 4114 } 4115 } else { 4116 // In the simple case, just pass the coerced loaded value. 4117 assert(NumIRArgs == 1); 4118 IRCallArgs[FirstIRArg] = 4119 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4120 } 4121 4122 break; 4123 } 4124 4125 case ABIArgInfo::CoerceAndExpand: { 4126 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4127 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4128 4129 llvm::Value *tempSize = nullptr; 4130 Address addr = Address::invalid(); 4131 Address AllocaAddr = Address::invalid(); 4132 if (I->isAggregate()) { 4133 addr = I->hasLValue() ? I->getKnownLValue().getAddress() 4134 : I->getKnownRValue().getAggregateAddress(); 4135 4136 } else { 4137 RValue RV = I->getKnownRValue(); 4138 assert(RV.isScalar()); // complex should always just be direct 4139 4140 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4141 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4142 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4143 4144 // Materialize to a temporary. 4145 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 4146 CharUnits::fromQuantity(std::max( 4147 layout->getAlignment(), scalarAlign)), 4148 "tmp", 4149 /*ArraySize=*/nullptr, &AllocaAddr); 4150 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4151 4152 Builder.CreateStore(RV.getScalarVal(), addr); 4153 } 4154 4155 addr = Builder.CreateElementBitCast(addr, coercionType); 4156 4157 unsigned IRArgPos = FirstIRArg; 4158 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4159 llvm::Type *eltType = coercionType->getElementType(i); 4160 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4161 Address eltAddr = Builder.CreateStructGEP(addr, i); 4162 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4163 IRCallArgs[IRArgPos++] = elt; 4164 } 4165 assert(IRArgPos == FirstIRArg + NumIRArgs); 4166 4167 if (tempSize) { 4168 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4169 } 4170 4171 break; 4172 } 4173 4174 case ABIArgInfo::Expand: 4175 unsigned IRArgPos = FirstIRArg; 4176 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4177 assert(IRArgPos == FirstIRArg + NumIRArgs); 4178 break; 4179 } 4180 } 4181 4182 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4183 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4184 4185 // If we're using inalloca, set up that argument. 4186 if (ArgMemory.isValid()) { 4187 llvm::Value *Arg = ArgMemory.getPointer(); 4188 if (CallInfo.isVariadic()) { 4189 // When passing non-POD arguments by value to variadic functions, we will 4190 // end up with a variadic prototype and an inalloca call site. In such 4191 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4192 // the callee. 4193 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4194 CalleePtr = 4195 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 4196 } else { 4197 llvm::Type *LastParamTy = 4198 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4199 if (Arg->getType() != LastParamTy) { 4200 #ifndef NDEBUG 4201 // Assert that these structs have equivalent element types. 4202 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4203 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4204 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4205 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4206 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4207 DE = DeclaredTy->element_end(), 4208 FI = FullTy->element_begin(); 4209 DI != DE; ++DI, ++FI) 4210 assert(*DI == *FI); 4211 #endif 4212 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4213 } 4214 } 4215 assert(IRFunctionArgs.hasInallocaArg()); 4216 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4217 } 4218 4219 // 2. Prepare the function pointer. 4220 4221 // If the callee is a bitcast of a non-variadic function to have a 4222 // variadic function pointer type, check to see if we can remove the 4223 // bitcast. This comes up with unprototyped functions. 4224 // 4225 // This makes the IR nicer, but more importantly it ensures that we 4226 // can inline the function at -O0 if it is marked always_inline. 4227 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 4228 llvm::Value *Ptr) -> llvm::Function * { 4229 if (!CalleeFT->isVarArg()) 4230 return nullptr; 4231 4232 // Get underlying value if it's a bitcast 4233 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 4234 if (CE->getOpcode() == llvm::Instruction::BitCast) 4235 Ptr = CE->getOperand(0); 4236 } 4237 4238 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 4239 if (!OrigFn) 4240 return nullptr; 4241 4242 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4243 4244 // If the original type is variadic, or if any of the component types 4245 // disagree, we cannot remove the cast. 4246 if (OrigFT->isVarArg() || 4247 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4248 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4249 return nullptr; 4250 4251 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4252 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4253 return nullptr; 4254 4255 return OrigFn; 4256 }; 4257 4258 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 4259 CalleePtr = OrigFn; 4260 IRFuncTy = OrigFn->getFunctionType(); 4261 } 4262 4263 // 3. Perform the actual call. 4264 4265 // Deactivate any cleanups that we're supposed to do immediately before 4266 // the call. 4267 if (!CallArgs.getCleanupsToDeactivate().empty()) 4268 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4269 4270 // Assert that the arguments we computed match up. The IR verifier 4271 // will catch this, but this is a common enough source of problems 4272 // during IRGen changes that it's way better for debugging to catch 4273 // it ourselves here. 4274 #ifndef NDEBUG 4275 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4276 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4277 // Inalloca argument can have different type. 4278 if (IRFunctionArgs.hasInallocaArg() && 4279 i == IRFunctionArgs.getInallocaArgNo()) 4280 continue; 4281 if (i < IRFuncTy->getNumParams()) 4282 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4283 } 4284 #endif 4285 4286 // Update the largest vector width if any arguments have vector types. 4287 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4288 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 4289 LargestVectorWidth = std::max(LargestVectorWidth, 4290 VT->getPrimitiveSizeInBits()); 4291 } 4292 4293 // Compute the calling convention and attributes. 4294 unsigned CallingConv; 4295 llvm::AttributeList Attrs; 4296 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4297 Callee.getAbstractInfo(), Attrs, CallingConv, 4298 /*AttrOnCallSite=*/true); 4299 4300 // Apply some call-site-specific attributes. 4301 // TODO: work this into building the attribute set. 4302 4303 // Apply always_inline to all calls within flatten functions. 4304 // FIXME: should this really take priority over __try, below? 4305 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4306 !(Callee.getAbstractInfo().getCalleeDecl().getDecl() && 4307 Callee.getAbstractInfo() 4308 .getCalleeDecl() 4309 .getDecl() 4310 ->hasAttr<NoInlineAttr>())) { 4311 Attrs = 4312 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4313 llvm::Attribute::AlwaysInline); 4314 } 4315 4316 // Disable inlining inside SEH __try blocks. 4317 if (isSEHTryScope()) { 4318 Attrs = 4319 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4320 llvm::Attribute::NoInline); 4321 } 4322 4323 // Decide whether to use a call or an invoke. 4324 bool CannotThrow; 4325 if (currentFunctionUsesSEHTry()) { 4326 // SEH cares about asynchronous exceptions, so everything can "throw." 4327 CannotThrow = false; 4328 } else if (isCleanupPadScope() && 4329 EHPersonality::get(*this).isMSVCXXPersonality()) { 4330 // The MSVC++ personality will implicitly terminate the program if an 4331 // exception is thrown during a cleanup outside of a try/catch. 4332 // We don't need to model anything in IR to get this behavior. 4333 CannotThrow = true; 4334 } else { 4335 // Otherwise, nounwind call sites will never throw. 4336 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4337 llvm::Attribute::NoUnwind); 4338 } 4339 4340 // If we made a temporary, be sure to clean up after ourselves. Note that we 4341 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4342 // pop this cleanup later on. Being eager about this is OK, since this 4343 // temporary is 'invisible' outside of the callee. 4344 if (UnusedReturnSizePtr) 4345 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 4346 UnusedReturnSizePtr); 4347 4348 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4349 4350 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4351 getBundlesForFunclet(CalleePtr); 4352 4353 // Emit the actual call/invoke instruction. 4354 llvm::CallBase *CI; 4355 if (!InvokeDest) { 4356 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 4357 } else { 4358 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4359 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 4360 BundleList); 4361 EmitBlock(Cont); 4362 } 4363 if (callOrInvoke) 4364 *callOrInvoke = CI; 4365 4366 // Apply the attributes and calling convention. 4367 CI->setAttributes(Attrs); 4368 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4369 4370 // Apply various metadata. 4371 4372 if (!CI->getType()->isVoidTy()) 4373 CI->setName("call"); 4374 4375 // Update largest vector width from the return type. 4376 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 4377 LargestVectorWidth = std::max(LargestVectorWidth, 4378 VT->getPrimitiveSizeInBits()); 4379 4380 // Insert instrumentation or attach profile metadata at indirect call sites. 4381 // For more details, see the comment before the definition of 4382 // IPVK_IndirectCallTarget in InstrProfData.inc. 4383 if (!CI->getCalledFunction()) 4384 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4385 CI, CalleePtr); 4386 4387 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4388 // optimizer it can aggressively ignore unwind edges. 4389 if (CGM.getLangOpts().ObjCAutoRefCount) 4390 AddObjCARCExceptionMetadata(CI); 4391 4392 // Suppress tail calls if requested. 4393 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4394 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4395 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4396 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4397 } 4398 4399 // 4. Finish the call. 4400 4401 // If the call doesn't return, finish the basic block and clear the 4402 // insertion point; this allows the rest of IRGen to discard 4403 // unreachable code. 4404 if (CI->doesNotReturn()) { 4405 if (UnusedReturnSizePtr) 4406 PopCleanupBlock(); 4407 4408 // Strip away the noreturn attribute to better diagnose unreachable UB. 4409 if (SanOpts.has(SanitizerKind::Unreachable)) { 4410 // Also remove from function since CallBase::hasFnAttr additionally checks 4411 // attributes of the called function. 4412 if (auto *F = CI->getCalledFunction()) 4413 F->removeFnAttr(llvm::Attribute::NoReturn); 4414 CI->removeAttribute(llvm::AttributeList::FunctionIndex, 4415 llvm::Attribute::NoReturn); 4416 4417 // Avoid incompatibility with ASan which relies on the `noreturn` 4418 // attribute to insert handler calls. 4419 if (SanOpts.hasOneOf(SanitizerKind::Address | 4420 SanitizerKind::KernelAddress)) { 4421 SanitizerScope SanScope(this); 4422 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 4423 Builder.SetInsertPoint(CI); 4424 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 4425 llvm::FunctionCallee Fn = 4426 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 4427 EmitNounwindRuntimeCall(Fn); 4428 } 4429 } 4430 4431 EmitUnreachable(Loc); 4432 Builder.ClearInsertionPoint(); 4433 4434 // FIXME: For now, emit a dummy basic block because expr emitters in 4435 // generally are not ready to handle emitting expressions at unreachable 4436 // points. 4437 EnsureInsertPoint(); 4438 4439 // Return a reasonable RValue. 4440 return GetUndefRValue(RetTy); 4441 } 4442 4443 // Perform the swifterror writeback. 4444 if (swiftErrorTemp.isValid()) { 4445 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4446 Builder.CreateStore(errorResult, swiftErrorArg); 4447 } 4448 4449 // Emit any call-associated writebacks immediately. Arguably this 4450 // should happen after any return-value munging. 4451 if (CallArgs.hasWritebacks()) 4452 emitWritebacks(*this, CallArgs); 4453 4454 // The stack cleanup for inalloca arguments has to run out of the normal 4455 // lexical order, so deactivate it and run it manually here. 4456 CallArgs.freeArgumentMemory(*this); 4457 4458 // Extract the return value. 4459 RValue Ret = [&] { 4460 switch (RetAI.getKind()) { 4461 case ABIArgInfo::CoerceAndExpand: { 4462 auto coercionType = RetAI.getCoerceAndExpandType(); 4463 4464 Address addr = SRetPtr; 4465 addr = Builder.CreateElementBitCast(addr, coercionType); 4466 4467 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4468 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4469 4470 unsigned unpaddedIndex = 0; 4471 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4472 llvm::Type *eltType = coercionType->getElementType(i); 4473 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4474 Address eltAddr = Builder.CreateStructGEP(addr, i); 4475 llvm::Value *elt = CI; 4476 if (requiresExtract) 4477 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4478 else 4479 assert(unpaddedIndex == 0); 4480 Builder.CreateStore(elt, eltAddr); 4481 } 4482 // FALLTHROUGH 4483 LLVM_FALLTHROUGH; 4484 } 4485 4486 case ABIArgInfo::InAlloca: 4487 case ABIArgInfo::Indirect: { 4488 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4489 if (UnusedReturnSizePtr) 4490 PopCleanupBlock(); 4491 return ret; 4492 } 4493 4494 case ABIArgInfo::Ignore: 4495 // If we are ignoring an argument that had a result, make sure to 4496 // construct the appropriate return value for our caller. 4497 return GetUndefRValue(RetTy); 4498 4499 case ABIArgInfo::Extend: 4500 case ABIArgInfo::Direct: { 4501 llvm::Type *RetIRTy = ConvertType(RetTy); 4502 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4503 switch (getEvaluationKind(RetTy)) { 4504 case TEK_Complex: { 4505 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4506 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4507 return RValue::getComplex(std::make_pair(Real, Imag)); 4508 } 4509 case TEK_Aggregate: { 4510 Address DestPtr = ReturnValue.getValue(); 4511 bool DestIsVolatile = ReturnValue.isVolatile(); 4512 4513 if (!DestPtr.isValid()) { 4514 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4515 DestIsVolatile = false; 4516 } 4517 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4518 return RValue::getAggregate(DestPtr); 4519 } 4520 case TEK_Scalar: { 4521 // If the argument doesn't match, perform a bitcast to coerce it. This 4522 // can happen due to trivial type mismatches. 4523 llvm::Value *V = CI; 4524 if (V->getType() != RetIRTy) 4525 V = Builder.CreateBitCast(V, RetIRTy); 4526 return RValue::get(V); 4527 } 4528 } 4529 llvm_unreachable("bad evaluation kind"); 4530 } 4531 4532 Address DestPtr = ReturnValue.getValue(); 4533 bool DestIsVolatile = ReturnValue.isVolatile(); 4534 4535 if (!DestPtr.isValid()) { 4536 DestPtr = CreateMemTemp(RetTy, "coerce"); 4537 DestIsVolatile = false; 4538 } 4539 4540 // If the value is offset in memory, apply the offset now. 4541 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4542 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4543 4544 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4545 } 4546 4547 case ABIArgInfo::Expand: 4548 llvm_unreachable("Invalid ABI kind for return argument"); 4549 } 4550 4551 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4552 } (); 4553 4554 // Emit the assume_aligned check on the return value. 4555 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4556 if (Ret.isScalar() && TargetDecl) { 4557 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4558 llvm::Value *OffsetValue = nullptr; 4559 if (const auto *Offset = AA->getOffset()) 4560 OffsetValue = EmitScalarExpr(Offset); 4561 4562 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4563 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4564 EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(), 4565 AlignmentCI->getZExtValue(), OffsetValue); 4566 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { 4567 llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()] 4568 .getRValue(*this) 4569 .getScalarVal(); 4570 EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(), 4571 AlignmentVal); 4572 } 4573 } 4574 4575 return Ret; 4576 } 4577 4578 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 4579 if (isVirtual()) { 4580 const CallExpr *CE = getVirtualCallExpr(); 4581 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 4582 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 4583 CE ? CE->getBeginLoc() : SourceLocation()); 4584 } 4585 4586 return *this; 4587 } 4588 4589 /* VarArg handling */ 4590 4591 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4592 VAListAddr = VE->isMicrosoftABI() 4593 ? EmitMSVAListRef(VE->getSubExpr()) 4594 : EmitVAListRef(VE->getSubExpr()); 4595 QualType Ty = VE->getType(); 4596 if (VE->isMicrosoftABI()) 4597 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4598 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4599 } 4600