1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/Basic/CodeGenOptions.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/SwiftCallingConv.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 using namespace clang;
40 using namespace CodeGen;
41 
42 /***/
43 
44 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
45   switch (CC) {
46   default: return llvm::CallingConv::C;
47   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
48   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
49   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
50   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
51   case CC_Win64: return llvm::CallingConv::Win64;
52   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
53   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
54   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
55   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
56   // TODO: Add support for __pascal to LLVM.
57   case CC_X86Pascal: return llvm::CallingConv::C;
58   // TODO: Add support for __vectorcall to LLVM.
59   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
60   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
61   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
62   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
63   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
64   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
65   case CC_Swift: return llvm::CallingConv::Swift;
66   }
67 }
68 
69 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
70 /// qualification.
71 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD,
72                                const CXXMethodDecl *MD) {
73   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
74   if (MD)
75     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
76   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
77 }
78 
79 /// Returns the canonical formal type of the given C++ method.
80 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
81   return MD->getType()->getCanonicalTypeUnqualified()
82            .getAs<FunctionProtoType>();
83 }
84 
85 /// Returns the "extra-canonicalized" return type, which discards
86 /// qualifiers on the return type.  Codegen doesn't care about them,
87 /// and it makes ABI code a little easier to be able to assume that
88 /// all parameter and return types are top-level unqualified.
89 static CanQualType GetReturnType(QualType RetTy) {
90   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
91 }
92 
93 /// Arrange the argument and result information for a value of the given
94 /// unprototyped freestanding function type.
95 const CGFunctionInfo &
96 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
97   // When translating an unprototyped function type, always use a
98   // variadic type.
99   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
100                                  /*instanceMethod=*/false,
101                                  /*chainCall=*/false, None,
102                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
103 }
104 
105 static void addExtParameterInfosForCall(
106          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
107                                         const FunctionProtoType *proto,
108                                         unsigned prefixArgs,
109                                         unsigned totalArgs) {
110   assert(proto->hasExtParameterInfos());
111   assert(paramInfos.size() <= prefixArgs);
112   assert(proto->getNumParams() + prefixArgs <= totalArgs);
113 
114   paramInfos.reserve(totalArgs);
115 
116   // Add default infos for any prefix args that don't already have infos.
117   paramInfos.resize(prefixArgs);
118 
119   // Add infos for the prototype.
120   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
121     paramInfos.push_back(ParamInfo);
122     // pass_object_size params have no parameter info.
123     if (ParamInfo.hasPassObjectSize())
124       paramInfos.emplace_back();
125   }
126 
127   assert(paramInfos.size() <= totalArgs &&
128          "Did we forget to insert pass_object_size args?");
129   // Add default infos for the variadic and/or suffix arguments.
130   paramInfos.resize(totalArgs);
131 }
132 
133 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
134 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
135 static void appendParameterTypes(const CodeGenTypes &CGT,
136                                  SmallVectorImpl<CanQualType> &prefix,
137               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
138                                  CanQual<FunctionProtoType> FPT) {
139   // Fast path: don't touch param info if we don't need to.
140   if (!FPT->hasExtParameterInfos()) {
141     assert(paramInfos.empty() &&
142            "We have paramInfos, but the prototype doesn't?");
143     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
144     return;
145   }
146 
147   unsigned PrefixSize = prefix.size();
148   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
149   // parameters; the only thing that can change this is the presence of
150   // pass_object_size. So, we preallocate for the common case.
151   prefix.reserve(prefix.size() + FPT->getNumParams());
152 
153   auto ExtInfos = FPT->getExtParameterInfos();
154   assert(ExtInfos.size() == FPT->getNumParams());
155   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
156     prefix.push_back(FPT->getParamType(I));
157     if (ExtInfos[I].hasPassObjectSize())
158       prefix.push_back(CGT.getContext().getSizeType());
159   }
160 
161   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
162                               prefix.size());
163 }
164 
165 /// Arrange the LLVM function layout for a value of the given function
166 /// type, on top of any implicit parameters already stored.
167 static const CGFunctionInfo &
168 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
169                         SmallVectorImpl<CanQualType> &prefix,
170                         CanQual<FunctionProtoType> FTP) {
171   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
172   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
173   // FIXME: Kill copy.
174   appendParameterTypes(CGT, prefix, paramInfos, FTP);
175   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
176 
177   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
178                                      /*chainCall=*/false, prefix,
179                                      FTP->getExtInfo(), paramInfos,
180                                      Required);
181 }
182 
183 /// Arrange the argument and result information for a value of the
184 /// given freestanding function type.
185 const CGFunctionInfo &
186 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
187   SmallVector<CanQualType, 16> argTypes;
188   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
189                                    FTP);
190 }
191 
192 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
193   // Set the appropriate calling convention for the Function.
194   if (D->hasAttr<StdCallAttr>())
195     return CC_X86StdCall;
196 
197   if (D->hasAttr<FastCallAttr>())
198     return CC_X86FastCall;
199 
200   if (D->hasAttr<RegCallAttr>())
201     return CC_X86RegCall;
202 
203   if (D->hasAttr<ThisCallAttr>())
204     return CC_X86ThisCall;
205 
206   if (D->hasAttr<VectorCallAttr>())
207     return CC_X86VectorCall;
208 
209   if (D->hasAttr<PascalAttr>())
210     return CC_X86Pascal;
211 
212   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
213     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
214 
215   if (D->hasAttr<AArch64VectorPcsAttr>())
216     return CC_AArch64VectorCall;
217 
218   if (D->hasAttr<IntelOclBiccAttr>())
219     return CC_IntelOclBicc;
220 
221   if (D->hasAttr<MSABIAttr>())
222     return IsWindows ? CC_C : CC_Win64;
223 
224   if (D->hasAttr<SysVABIAttr>())
225     return IsWindows ? CC_X86_64SysV : CC_C;
226 
227   if (D->hasAttr<PreserveMostAttr>())
228     return CC_PreserveMost;
229 
230   if (D->hasAttr<PreserveAllAttr>())
231     return CC_PreserveAll;
232 
233   return CC_C;
234 }
235 
236 /// Arrange the argument and result information for a call to an
237 /// unknown C++ non-static member function of the given abstract type.
238 /// (Zero value of RD means we don't have any meaningful "this" argument type,
239 ///  so fall back to a generic pointer type).
240 /// The member function must be an ordinary function, i.e. not a
241 /// constructor or destructor.
242 const CGFunctionInfo &
243 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
244                                    const FunctionProtoType *FTP,
245                                    const CXXMethodDecl *MD) {
246   SmallVector<CanQualType, 16> argTypes;
247 
248   // Add the 'this' pointer.
249   if (RD)
250     argTypes.push_back(GetThisType(Context, RD, MD));
251   else
252     argTypes.push_back(Context.VoidPtrTy);
253 
254   return ::arrangeLLVMFunctionInfo(
255       *this, true, argTypes,
256       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
257 }
258 
259 /// Set calling convention for CUDA/HIP kernel.
260 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
261                                            const FunctionDecl *FD) {
262   if (FD->hasAttr<CUDAGlobalAttr>()) {
263     const FunctionType *FT = FTy->getAs<FunctionType>();
264     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
265     FTy = FT->getCanonicalTypeUnqualified();
266   }
267 }
268 
269 /// Arrange the argument and result information for a declaration or
270 /// definition of the given C++ non-static member function.  The
271 /// member function must be an ordinary function, i.e. not a
272 /// constructor or destructor.
273 const CGFunctionInfo &
274 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
275   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
276   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
277 
278   CanQualType FT = GetFormalType(MD).getAs<Type>();
279   setCUDAKernelCallingConvention(FT, CGM, MD);
280   auto prototype = FT.getAs<FunctionProtoType>();
281 
282   if (MD->isInstance()) {
283     // The abstract case is perfectly fine.
284     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
285     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
286   }
287 
288   return arrangeFreeFunctionType(prototype);
289 }
290 
291 bool CodeGenTypes::inheritingCtorHasParams(
292     const InheritedConstructor &Inherited, CXXCtorType Type) {
293   // Parameters are unnecessary if we're constructing a base class subobject
294   // and the inherited constructor lives in a virtual base.
295   return Type == Ctor_Complete ||
296          !Inherited.getShadowDecl()->constructsVirtualBase() ||
297          !Target.getCXXABI().hasConstructorVariants();
298   }
299 
300 const CGFunctionInfo &
301 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
302                                             StructorType Type) {
303 
304   SmallVector<CanQualType, 16> argTypes;
305   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
306   argTypes.push_back(GetThisType(Context, MD->getParent(), MD));
307 
308   bool PassParams = true;
309 
310   GlobalDecl GD;
311   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
312     GD = GlobalDecl(CD, toCXXCtorType(Type));
313 
314     // A base class inheriting constructor doesn't get forwarded arguments
315     // needed to construct a virtual base (or base class thereof).
316     if (auto Inherited = CD->getInheritedConstructor())
317       PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
318   } else {
319     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
320     GD = GlobalDecl(DD, toCXXDtorType(Type));
321   }
322 
323   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
324 
325   // Add the formal parameters.
326   if (PassParams)
327     appendParameterTypes(*this, argTypes, paramInfos, FTP);
328 
329   CGCXXABI::AddedStructorArgs AddedArgs =
330       TheCXXABI.buildStructorSignature(MD, Type, argTypes);
331   if (!paramInfos.empty()) {
332     // Note: prefix implies after the first param.
333     if (AddedArgs.Prefix)
334       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
335                         FunctionProtoType::ExtParameterInfo{});
336     if (AddedArgs.Suffix)
337       paramInfos.append(AddedArgs.Suffix,
338                         FunctionProtoType::ExtParameterInfo{});
339   }
340 
341   RequiredArgs required =
342       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
343                                       : RequiredArgs::All);
344 
345   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
346   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
347                                ? argTypes.front()
348                                : TheCXXABI.hasMostDerivedReturn(GD)
349                                      ? CGM.getContext().VoidPtrTy
350                                      : Context.VoidTy;
351   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
352                                  /*chainCall=*/false, argTypes, extInfo,
353                                  paramInfos, required);
354 }
355 
356 static SmallVector<CanQualType, 16>
357 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
358   SmallVector<CanQualType, 16> argTypes;
359   for (auto &arg : args)
360     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
361   return argTypes;
362 }
363 
364 static SmallVector<CanQualType, 16>
365 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
366   SmallVector<CanQualType, 16> argTypes;
367   for (auto &arg : args)
368     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
369   return argTypes;
370 }
371 
372 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
373 getExtParameterInfosForCall(const FunctionProtoType *proto,
374                             unsigned prefixArgs, unsigned totalArgs) {
375   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
376   if (proto->hasExtParameterInfos()) {
377     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
378   }
379   return result;
380 }
381 
382 /// Arrange a call to a C++ method, passing the given arguments.
383 ///
384 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
385 /// parameter.
386 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
387 /// args.
388 /// PassProtoArgs indicates whether `args` has args for the parameters in the
389 /// given CXXConstructorDecl.
390 const CGFunctionInfo &
391 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
392                                         const CXXConstructorDecl *D,
393                                         CXXCtorType CtorKind,
394                                         unsigned ExtraPrefixArgs,
395                                         unsigned ExtraSuffixArgs,
396                                         bool PassProtoArgs) {
397   // FIXME: Kill copy.
398   SmallVector<CanQualType, 16> ArgTypes;
399   for (const auto &Arg : args)
400     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
401 
402   // +1 for implicit this, which should always be args[0].
403   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
404 
405   CanQual<FunctionProtoType> FPT = GetFormalType(D);
406   RequiredArgs Required =
407       RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs);
408   GlobalDecl GD(D, CtorKind);
409   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
410                                ? ArgTypes.front()
411                                : TheCXXABI.hasMostDerivedReturn(GD)
412                                      ? CGM.getContext().VoidPtrTy
413                                      : Context.VoidTy;
414 
415   FunctionType::ExtInfo Info = FPT->getExtInfo();
416   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
417   // If the prototype args are elided, we should only have ABI-specific args,
418   // which never have param info.
419   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
420     // ABI-specific suffix arguments are treated the same as variadic arguments.
421     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
422                                 ArgTypes.size());
423   }
424   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
425                                  /*chainCall=*/false, ArgTypes, Info,
426                                  ParamInfos, Required);
427 }
428 
429 /// Arrange the argument and result information for the declaration or
430 /// definition of the given function.
431 const CGFunctionInfo &
432 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
433   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
434     if (MD->isInstance())
435       return arrangeCXXMethodDeclaration(MD);
436 
437   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
438 
439   assert(isa<FunctionType>(FTy));
440   setCUDAKernelCallingConvention(FTy, CGM, FD);
441 
442   // When declaring a function without a prototype, always use a
443   // non-variadic type.
444   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
445     return arrangeLLVMFunctionInfo(
446         noProto->getReturnType(), /*instanceMethod=*/false,
447         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
448   }
449 
450   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
451 }
452 
453 /// Arrange the argument and result information for the declaration or
454 /// definition of an Objective-C method.
455 const CGFunctionInfo &
456 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
457   // It happens that this is the same as a call with no optional
458   // arguments, except also using the formal 'self' type.
459   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
460 }
461 
462 /// Arrange the argument and result information for the function type
463 /// through which to perform a send to the given Objective-C method,
464 /// using the given receiver type.  The receiver type is not always
465 /// the 'self' type of the method or even an Objective-C pointer type.
466 /// This is *not* the right method for actually performing such a
467 /// message send, due to the possibility of optional arguments.
468 const CGFunctionInfo &
469 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
470                                               QualType receiverType) {
471   SmallVector<CanQualType, 16> argTys;
472   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
473   argTys.push_back(Context.getCanonicalParamType(receiverType));
474   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
475   // FIXME: Kill copy?
476   for (const auto *I : MD->parameters()) {
477     argTys.push_back(Context.getCanonicalParamType(I->getType()));
478     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
479         I->hasAttr<NoEscapeAttr>());
480     extParamInfos.push_back(extParamInfo);
481   }
482 
483   FunctionType::ExtInfo einfo;
484   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
485   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
486 
487   if (getContext().getLangOpts().ObjCAutoRefCount &&
488       MD->hasAttr<NSReturnsRetainedAttr>())
489     einfo = einfo.withProducesResult(true);
490 
491   RequiredArgs required =
492     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
493 
494   return arrangeLLVMFunctionInfo(
495       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
496       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
497 }
498 
499 const CGFunctionInfo &
500 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
501                                                  const CallArgList &args) {
502   auto argTypes = getArgTypesForCall(Context, args);
503   FunctionType::ExtInfo einfo;
504 
505   return arrangeLLVMFunctionInfo(
506       GetReturnType(returnType), /*instanceMethod=*/false,
507       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
508 }
509 
510 const CGFunctionInfo &
511 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
512   // FIXME: Do we need to handle ObjCMethodDecl?
513   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
514 
515   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
516     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
517 
518   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
519     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
520 
521   return arrangeFunctionDeclaration(FD);
522 }
523 
524 /// Arrange a thunk that takes 'this' as the first parameter followed by
525 /// varargs.  Return a void pointer, regardless of the actual return type.
526 /// The body of the thunk will end in a musttail call to a function of the
527 /// correct type, and the caller will bitcast the function to the correct
528 /// prototype.
529 const CGFunctionInfo &
530 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
531   assert(MD->isVirtual() && "only methods have thunks");
532   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
533   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent(), MD) };
534   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
535                                  /*chainCall=*/false, ArgTys,
536                                  FTP->getExtInfo(), {}, RequiredArgs(1));
537 }
538 
539 const CGFunctionInfo &
540 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
541                                    CXXCtorType CT) {
542   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
543 
544   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
545   SmallVector<CanQualType, 2> ArgTys;
546   const CXXRecordDecl *RD = CD->getParent();
547   ArgTys.push_back(GetThisType(Context, RD, CD));
548   if (CT == Ctor_CopyingClosure)
549     ArgTys.push_back(*FTP->param_type_begin());
550   if (RD->getNumVBases() > 0)
551     ArgTys.push_back(Context.IntTy);
552   CallingConv CC = Context.getDefaultCallingConvention(
553       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
554   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
555                                  /*chainCall=*/false, ArgTys,
556                                  FunctionType::ExtInfo(CC), {},
557                                  RequiredArgs::All);
558 }
559 
560 /// Arrange a call as unto a free function, except possibly with an
561 /// additional number of formal parameters considered required.
562 static const CGFunctionInfo &
563 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
564                             CodeGenModule &CGM,
565                             const CallArgList &args,
566                             const FunctionType *fnType,
567                             unsigned numExtraRequiredArgs,
568                             bool chainCall) {
569   assert(args.size() >= numExtraRequiredArgs);
570 
571   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
572 
573   // In most cases, there are no optional arguments.
574   RequiredArgs required = RequiredArgs::All;
575 
576   // If we have a variadic prototype, the required arguments are the
577   // extra prefix plus the arguments in the prototype.
578   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
579     if (proto->isVariadic())
580       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
581 
582     if (proto->hasExtParameterInfos())
583       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
584                                   args.size());
585 
586   // If we don't have a prototype at all, but we're supposed to
587   // explicitly use the variadic convention for unprototyped calls,
588   // treat all of the arguments as required but preserve the nominal
589   // possibility of variadics.
590   } else if (CGM.getTargetCodeGenInfo()
591                 .isNoProtoCallVariadic(args,
592                                        cast<FunctionNoProtoType>(fnType))) {
593     required = RequiredArgs(args.size());
594   }
595 
596   // FIXME: Kill copy.
597   SmallVector<CanQualType, 16> argTypes;
598   for (const auto &arg : args)
599     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
600   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
601                                      /*instanceMethod=*/false, chainCall,
602                                      argTypes, fnType->getExtInfo(), paramInfos,
603                                      required);
604 }
605 
606 /// Figure out the rules for calling a function with the given formal
607 /// type using the given arguments.  The arguments are necessary
608 /// because the function might be unprototyped, in which case it's
609 /// target-dependent in crazy ways.
610 const CGFunctionInfo &
611 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
612                                       const FunctionType *fnType,
613                                       bool chainCall) {
614   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
615                                      chainCall ? 1 : 0, chainCall);
616 }
617 
618 /// A block function is essentially a free function with an
619 /// extra implicit argument.
620 const CGFunctionInfo &
621 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
622                                        const FunctionType *fnType) {
623   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
624                                      /*chainCall=*/false);
625 }
626 
627 const CGFunctionInfo &
628 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
629                                               const FunctionArgList &params) {
630   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
631   auto argTypes = getArgTypesForDeclaration(Context, params);
632 
633   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
634                                  /*instanceMethod*/ false, /*chainCall*/ false,
635                                  argTypes, proto->getExtInfo(), paramInfos,
636                                  RequiredArgs::forPrototypePlus(proto, 1));
637 }
638 
639 const CGFunctionInfo &
640 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
641                                          const CallArgList &args) {
642   // FIXME: Kill copy.
643   SmallVector<CanQualType, 16> argTypes;
644   for (const auto &Arg : args)
645     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
646   return arrangeLLVMFunctionInfo(
647       GetReturnType(resultType), /*instanceMethod=*/false,
648       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
649       /*paramInfos=*/ {}, RequiredArgs::All);
650 }
651 
652 const CGFunctionInfo &
653 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
654                                                 const FunctionArgList &args) {
655   auto argTypes = getArgTypesForDeclaration(Context, args);
656 
657   return arrangeLLVMFunctionInfo(
658       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
659       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
660 }
661 
662 const CGFunctionInfo &
663 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
664                                               ArrayRef<CanQualType> argTypes) {
665   return arrangeLLVMFunctionInfo(
666       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
667       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
668 }
669 
670 /// Arrange a call to a C++ method, passing the given arguments.
671 ///
672 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
673 /// does not count `this`.
674 const CGFunctionInfo &
675 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
676                                    const FunctionProtoType *proto,
677                                    RequiredArgs required,
678                                    unsigned numPrefixArgs) {
679   assert(numPrefixArgs + 1 <= args.size() &&
680          "Emitting a call with less args than the required prefix?");
681   // Add one to account for `this`. It's a bit awkward here, but we don't count
682   // `this` in similar places elsewhere.
683   auto paramInfos =
684     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
685 
686   // FIXME: Kill copy.
687   auto argTypes = getArgTypesForCall(Context, args);
688 
689   FunctionType::ExtInfo info = proto->getExtInfo();
690   return arrangeLLVMFunctionInfo(
691       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
692       /*chainCall=*/false, argTypes, info, paramInfos, required);
693 }
694 
695 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
696   return arrangeLLVMFunctionInfo(
697       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
698       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
699 }
700 
701 const CGFunctionInfo &
702 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
703                           const CallArgList &args) {
704   assert(signature.arg_size() <= args.size());
705   if (signature.arg_size() == args.size())
706     return signature;
707 
708   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
709   auto sigParamInfos = signature.getExtParameterInfos();
710   if (!sigParamInfos.empty()) {
711     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
712     paramInfos.resize(args.size());
713   }
714 
715   auto argTypes = getArgTypesForCall(Context, args);
716 
717   assert(signature.getRequiredArgs().allowsOptionalArgs());
718   return arrangeLLVMFunctionInfo(signature.getReturnType(),
719                                  signature.isInstanceMethod(),
720                                  signature.isChainCall(),
721                                  argTypes,
722                                  signature.getExtInfo(),
723                                  paramInfos,
724                                  signature.getRequiredArgs());
725 }
726 
727 namespace clang {
728 namespace CodeGen {
729 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
730 }
731 }
732 
733 /// Arrange the argument and result information for an abstract value
734 /// of a given function type.  This is the method which all of the
735 /// above functions ultimately defer to.
736 const CGFunctionInfo &
737 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
738                                       bool instanceMethod,
739                                       bool chainCall,
740                                       ArrayRef<CanQualType> argTypes,
741                                       FunctionType::ExtInfo info,
742                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
743                                       RequiredArgs required) {
744   assert(llvm::all_of(argTypes,
745                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
746 
747   // Lookup or create unique function info.
748   llvm::FoldingSetNodeID ID;
749   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
750                           required, resultType, argTypes);
751 
752   void *insertPos = nullptr;
753   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
754   if (FI)
755     return *FI;
756 
757   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
758 
759   // Construct the function info.  We co-allocate the ArgInfos.
760   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
761                               paramInfos, resultType, argTypes, required);
762   FunctionInfos.InsertNode(FI, insertPos);
763 
764   bool inserted = FunctionsBeingProcessed.insert(FI).second;
765   (void)inserted;
766   assert(inserted && "Recursively being processed?");
767 
768   // Compute ABI information.
769   if (CC == llvm::CallingConv::SPIR_KERNEL) {
770     // Force target independent argument handling for the host visible
771     // kernel functions.
772     computeSPIRKernelABIInfo(CGM, *FI);
773   } else if (info.getCC() == CC_Swift) {
774     swiftcall::computeABIInfo(CGM, *FI);
775   } else {
776     getABIInfo().computeInfo(*FI);
777   }
778 
779   // Loop over all of the computed argument and return value info.  If any of
780   // them are direct or extend without a specified coerce type, specify the
781   // default now.
782   ABIArgInfo &retInfo = FI->getReturnInfo();
783   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
784     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
785 
786   for (auto &I : FI->arguments())
787     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
788       I.info.setCoerceToType(ConvertType(I.type));
789 
790   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
791   assert(erased && "Not in set?");
792 
793   return *FI;
794 }
795 
796 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
797                                        bool instanceMethod,
798                                        bool chainCall,
799                                        const FunctionType::ExtInfo &info,
800                                        ArrayRef<ExtParameterInfo> paramInfos,
801                                        CanQualType resultType,
802                                        ArrayRef<CanQualType> argTypes,
803                                        RequiredArgs required) {
804   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
805 
806   void *buffer =
807     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
808                                   argTypes.size() + 1, paramInfos.size()));
809 
810   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
811   FI->CallingConvention = llvmCC;
812   FI->EffectiveCallingConvention = llvmCC;
813   FI->ASTCallingConvention = info.getCC();
814   FI->InstanceMethod = instanceMethod;
815   FI->ChainCall = chainCall;
816   FI->NoReturn = info.getNoReturn();
817   FI->ReturnsRetained = info.getProducesResult();
818   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
819   FI->NoCfCheck = info.getNoCfCheck();
820   FI->Required = required;
821   FI->HasRegParm = info.getHasRegParm();
822   FI->RegParm = info.getRegParm();
823   FI->ArgStruct = nullptr;
824   FI->ArgStructAlign = 0;
825   FI->NumArgs = argTypes.size();
826   FI->HasExtParameterInfos = !paramInfos.empty();
827   FI->getArgsBuffer()[0].type = resultType;
828   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
829     FI->getArgsBuffer()[i + 1].type = argTypes[i];
830   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
831     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
832   return FI;
833 }
834 
835 /***/
836 
837 namespace {
838 // ABIArgInfo::Expand implementation.
839 
840 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
841 struct TypeExpansion {
842   enum TypeExpansionKind {
843     // Elements of constant arrays are expanded recursively.
844     TEK_ConstantArray,
845     // Record fields are expanded recursively (but if record is a union, only
846     // the field with the largest size is expanded).
847     TEK_Record,
848     // For complex types, real and imaginary parts are expanded recursively.
849     TEK_Complex,
850     // All other types are not expandable.
851     TEK_None
852   };
853 
854   const TypeExpansionKind Kind;
855 
856   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
857   virtual ~TypeExpansion() {}
858 };
859 
860 struct ConstantArrayExpansion : TypeExpansion {
861   QualType EltTy;
862   uint64_t NumElts;
863 
864   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
865       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
866   static bool classof(const TypeExpansion *TE) {
867     return TE->Kind == TEK_ConstantArray;
868   }
869 };
870 
871 struct RecordExpansion : TypeExpansion {
872   SmallVector<const CXXBaseSpecifier *, 1> Bases;
873 
874   SmallVector<const FieldDecl *, 1> Fields;
875 
876   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
877                   SmallVector<const FieldDecl *, 1> &&Fields)
878       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
879         Fields(std::move(Fields)) {}
880   static bool classof(const TypeExpansion *TE) {
881     return TE->Kind == TEK_Record;
882   }
883 };
884 
885 struct ComplexExpansion : TypeExpansion {
886   QualType EltTy;
887 
888   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
889   static bool classof(const TypeExpansion *TE) {
890     return TE->Kind == TEK_Complex;
891   }
892 };
893 
894 struct NoExpansion : TypeExpansion {
895   NoExpansion() : TypeExpansion(TEK_None) {}
896   static bool classof(const TypeExpansion *TE) {
897     return TE->Kind == TEK_None;
898   }
899 };
900 }  // namespace
901 
902 static std::unique_ptr<TypeExpansion>
903 getTypeExpansion(QualType Ty, const ASTContext &Context) {
904   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
905     return llvm::make_unique<ConstantArrayExpansion>(
906         AT->getElementType(), AT->getSize().getZExtValue());
907   }
908   if (const RecordType *RT = Ty->getAs<RecordType>()) {
909     SmallVector<const CXXBaseSpecifier *, 1> Bases;
910     SmallVector<const FieldDecl *, 1> Fields;
911     const RecordDecl *RD = RT->getDecl();
912     assert(!RD->hasFlexibleArrayMember() &&
913            "Cannot expand structure with flexible array.");
914     if (RD->isUnion()) {
915       // Unions can be here only in degenerative cases - all the fields are same
916       // after flattening. Thus we have to use the "largest" field.
917       const FieldDecl *LargestFD = nullptr;
918       CharUnits UnionSize = CharUnits::Zero();
919 
920       for (const auto *FD : RD->fields()) {
921         if (FD->isZeroLengthBitField(Context))
922           continue;
923         assert(!FD->isBitField() &&
924                "Cannot expand structure with bit-field members.");
925         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
926         if (UnionSize < FieldSize) {
927           UnionSize = FieldSize;
928           LargestFD = FD;
929         }
930       }
931       if (LargestFD)
932         Fields.push_back(LargestFD);
933     } else {
934       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
935         assert(!CXXRD->isDynamicClass() &&
936                "cannot expand vtable pointers in dynamic classes");
937         for (const CXXBaseSpecifier &BS : CXXRD->bases())
938           Bases.push_back(&BS);
939       }
940 
941       for (const auto *FD : RD->fields()) {
942         if (FD->isZeroLengthBitField(Context))
943           continue;
944         assert(!FD->isBitField() &&
945                "Cannot expand structure with bit-field members.");
946         Fields.push_back(FD);
947       }
948     }
949     return llvm::make_unique<RecordExpansion>(std::move(Bases),
950                                               std::move(Fields));
951   }
952   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
953     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
954   }
955   return llvm::make_unique<NoExpansion>();
956 }
957 
958 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
959   auto Exp = getTypeExpansion(Ty, Context);
960   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
961     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
962   }
963   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
964     int Res = 0;
965     for (auto BS : RExp->Bases)
966       Res += getExpansionSize(BS->getType(), Context);
967     for (auto FD : RExp->Fields)
968       Res += getExpansionSize(FD->getType(), Context);
969     return Res;
970   }
971   if (isa<ComplexExpansion>(Exp.get()))
972     return 2;
973   assert(isa<NoExpansion>(Exp.get()));
974   return 1;
975 }
976 
977 void
978 CodeGenTypes::getExpandedTypes(QualType Ty,
979                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
980   auto Exp = getTypeExpansion(Ty, Context);
981   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
982     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
983       getExpandedTypes(CAExp->EltTy, TI);
984     }
985   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
986     for (auto BS : RExp->Bases)
987       getExpandedTypes(BS->getType(), TI);
988     for (auto FD : RExp->Fields)
989       getExpandedTypes(FD->getType(), TI);
990   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
991     llvm::Type *EltTy = ConvertType(CExp->EltTy);
992     *TI++ = EltTy;
993     *TI++ = EltTy;
994   } else {
995     assert(isa<NoExpansion>(Exp.get()));
996     *TI++ = ConvertType(Ty);
997   }
998 }
999 
1000 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1001                                       ConstantArrayExpansion *CAE,
1002                                       Address BaseAddr,
1003                                       llvm::function_ref<void(Address)> Fn) {
1004   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1005   CharUnits EltAlign =
1006     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1007 
1008   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1009     llvm::Value *EltAddr =
1010       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1011     Fn(Address(EltAddr, EltAlign));
1012   }
1013 }
1014 
1015 void CodeGenFunction::ExpandTypeFromArgs(
1016     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1017   assert(LV.isSimple() &&
1018          "Unexpected non-simple lvalue during struct expansion.");
1019 
1020   auto Exp = getTypeExpansion(Ty, getContext());
1021   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1022     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
1023                               [&](Address EltAddr) {
1024       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1025       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1026     });
1027   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1028     Address This = LV.getAddress();
1029     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1030       // Perform a single step derived-to-base conversion.
1031       Address Base =
1032           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1033                                 /*NullCheckValue=*/false, SourceLocation());
1034       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1035 
1036       // Recurse onto bases.
1037       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1038     }
1039     for (auto FD : RExp->Fields) {
1040       // FIXME: What are the right qualifiers here?
1041       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1042       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1043     }
1044   } else if (isa<ComplexExpansion>(Exp.get())) {
1045     auto realValue = *AI++;
1046     auto imagValue = *AI++;
1047     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1048   } else {
1049     assert(isa<NoExpansion>(Exp.get()));
1050     EmitStoreThroughLValue(RValue::get(*AI++), LV);
1051   }
1052 }
1053 
1054 void CodeGenFunction::ExpandTypeToArgs(
1055     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1056     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1057   auto Exp = getTypeExpansion(Ty, getContext());
1058   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1059     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1060                                    : Arg.getKnownRValue().getAggregateAddress();
1061     forConstantArrayExpansion(
1062         *this, CAExp, Addr, [&](Address EltAddr) {
1063           CallArg EltArg = CallArg(
1064               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1065               CAExp->EltTy);
1066           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1067                            IRCallArgPos);
1068         });
1069   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1070     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1071                                    : Arg.getKnownRValue().getAggregateAddress();
1072     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1073       // Perform a single step derived-to-base conversion.
1074       Address Base =
1075           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1076                                 /*NullCheckValue=*/false, SourceLocation());
1077       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1078 
1079       // Recurse onto bases.
1080       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1081                        IRCallArgPos);
1082     }
1083 
1084     LValue LV = MakeAddrLValue(This, Ty);
1085     for (auto FD : RExp->Fields) {
1086       CallArg FldArg =
1087           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1088       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1089                        IRCallArgPos);
1090     }
1091   } else if (isa<ComplexExpansion>(Exp.get())) {
1092     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1093     IRCallArgs[IRCallArgPos++] = CV.first;
1094     IRCallArgs[IRCallArgPos++] = CV.second;
1095   } else {
1096     assert(isa<NoExpansion>(Exp.get()));
1097     auto RV = Arg.getKnownRValue();
1098     assert(RV.isScalar() &&
1099            "Unexpected non-scalar rvalue during struct expansion.");
1100 
1101     // Insert a bitcast as needed.
1102     llvm::Value *V = RV.getScalarVal();
1103     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1104         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1105       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1106 
1107     IRCallArgs[IRCallArgPos++] = V;
1108   }
1109 }
1110 
1111 /// Create a temporary allocation for the purposes of coercion.
1112 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1113                                            CharUnits MinAlign) {
1114   // Don't use an alignment that's worse than what LLVM would prefer.
1115   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1116   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1117 
1118   return CGF.CreateTempAlloca(Ty, Align);
1119 }
1120 
1121 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1122 /// accessing some number of bytes out of it, try to gep into the struct to get
1123 /// at its inner goodness.  Dive as deep as possible without entering an element
1124 /// with an in-memory size smaller than DstSize.
1125 static Address
1126 EnterStructPointerForCoercedAccess(Address SrcPtr,
1127                                    llvm::StructType *SrcSTy,
1128                                    uint64_t DstSize, CodeGenFunction &CGF) {
1129   // We can't dive into a zero-element struct.
1130   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1131 
1132   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1133 
1134   // If the first elt is at least as large as what we're looking for, or if the
1135   // first element is the same size as the whole struct, we can enter it. The
1136   // comparison must be made on the store size and not the alloca size. Using
1137   // the alloca size may overstate the size of the load.
1138   uint64_t FirstEltSize =
1139     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1140   if (FirstEltSize < DstSize &&
1141       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1142     return SrcPtr;
1143 
1144   // GEP into the first element.
1145   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
1146 
1147   // If the first element is a struct, recurse.
1148   llvm::Type *SrcTy = SrcPtr.getElementType();
1149   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1150     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1151 
1152   return SrcPtr;
1153 }
1154 
1155 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1156 /// are either integers or pointers.  This does a truncation of the value if it
1157 /// is too large or a zero extension if it is too small.
1158 ///
1159 /// This behaves as if the value were coerced through memory, so on big-endian
1160 /// targets the high bits are preserved in a truncation, while little-endian
1161 /// targets preserve the low bits.
1162 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1163                                              llvm::Type *Ty,
1164                                              CodeGenFunction &CGF) {
1165   if (Val->getType() == Ty)
1166     return Val;
1167 
1168   if (isa<llvm::PointerType>(Val->getType())) {
1169     // If this is Pointer->Pointer avoid conversion to and from int.
1170     if (isa<llvm::PointerType>(Ty))
1171       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1172 
1173     // Convert the pointer to an integer so we can play with its width.
1174     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1175   }
1176 
1177   llvm::Type *DestIntTy = Ty;
1178   if (isa<llvm::PointerType>(DestIntTy))
1179     DestIntTy = CGF.IntPtrTy;
1180 
1181   if (Val->getType() != DestIntTy) {
1182     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1183     if (DL.isBigEndian()) {
1184       // Preserve the high bits on big-endian targets.
1185       // That is what memory coercion does.
1186       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1187       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1188 
1189       if (SrcSize > DstSize) {
1190         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1191         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1192       } else {
1193         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1194         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1195       }
1196     } else {
1197       // Little-endian targets preserve the low bits. No shifts required.
1198       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1199     }
1200   }
1201 
1202   if (isa<llvm::PointerType>(Ty))
1203     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1204   return Val;
1205 }
1206 
1207 
1208 
1209 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1210 /// a pointer to an object of type \arg Ty, known to be aligned to
1211 /// \arg SrcAlign bytes.
1212 ///
1213 /// This safely handles the case when the src type is smaller than the
1214 /// destination type; in this situation the values of bits which not
1215 /// present in the src are undefined.
1216 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1217                                       CodeGenFunction &CGF) {
1218   llvm::Type *SrcTy = Src.getElementType();
1219 
1220   // If SrcTy and Ty are the same, just do a load.
1221   if (SrcTy == Ty)
1222     return CGF.Builder.CreateLoad(Src);
1223 
1224   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1225 
1226   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1227     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1228     SrcTy = Src.getType()->getElementType();
1229   }
1230 
1231   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1232 
1233   // If the source and destination are integer or pointer types, just do an
1234   // extension or truncation to the desired type.
1235   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1236       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1237     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1238     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1239   }
1240 
1241   // If load is legal, just bitcast the src pointer.
1242   if (SrcSize >= DstSize) {
1243     // Generally SrcSize is never greater than DstSize, since this means we are
1244     // losing bits. However, this can happen in cases where the structure has
1245     // additional padding, for example due to a user specified alignment.
1246     //
1247     // FIXME: Assert that we aren't truncating non-padding bits when have access
1248     // to that information.
1249     Src = CGF.Builder.CreateBitCast(Src,
1250                                     Ty->getPointerTo(Src.getAddressSpace()));
1251     return CGF.Builder.CreateLoad(Src);
1252   }
1253 
1254   // Otherwise do coercion through memory. This is stupid, but simple.
1255   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1256   Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1257   Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty);
1258   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1259       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1260       false);
1261   return CGF.Builder.CreateLoad(Tmp);
1262 }
1263 
1264 // Function to store a first-class aggregate into memory.  We prefer to
1265 // store the elements rather than the aggregate to be more friendly to
1266 // fast-isel.
1267 // FIXME: Do we need to recurse here?
1268 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1269                           Address Dest, bool DestIsVolatile) {
1270   // Prefer scalar stores to first-class aggregate stores.
1271   if (llvm::StructType *STy =
1272         dyn_cast<llvm::StructType>(Val->getType())) {
1273     const llvm::StructLayout *Layout =
1274       CGF.CGM.getDataLayout().getStructLayout(STy);
1275 
1276     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1277       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1278       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1279       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1280       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1281     }
1282   } else {
1283     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1284   }
1285 }
1286 
1287 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1288 /// where the source and destination may have different types.  The
1289 /// destination is known to be aligned to \arg DstAlign bytes.
1290 ///
1291 /// This safely handles the case when the src type is larger than the
1292 /// destination type; the upper bits of the src will be lost.
1293 static void CreateCoercedStore(llvm::Value *Src,
1294                                Address Dst,
1295                                bool DstIsVolatile,
1296                                CodeGenFunction &CGF) {
1297   llvm::Type *SrcTy = Src->getType();
1298   llvm::Type *DstTy = Dst.getType()->getElementType();
1299   if (SrcTy == DstTy) {
1300     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1301     return;
1302   }
1303 
1304   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1305 
1306   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1307     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1308     DstTy = Dst.getType()->getElementType();
1309   }
1310 
1311   // If the source and destination are integer or pointer types, just do an
1312   // extension or truncation to the desired type.
1313   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1314       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1315     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1316     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1317     return;
1318   }
1319 
1320   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1321 
1322   // If store is legal, just bitcast the src pointer.
1323   if (SrcSize <= DstSize) {
1324     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1325     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1326   } else {
1327     // Otherwise do coercion through memory. This is stupid, but
1328     // simple.
1329 
1330     // Generally SrcSize is never greater than DstSize, since this means we are
1331     // losing bits. However, this can happen in cases where the structure has
1332     // additional padding, for example due to a user specified alignment.
1333     //
1334     // FIXME: Assert that we aren't truncating non-padding bits when have access
1335     // to that information.
1336     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1337     CGF.Builder.CreateStore(Src, Tmp);
1338     Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1339     Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty);
1340     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1341         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1342         false);
1343   }
1344 }
1345 
1346 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1347                                    const ABIArgInfo &info) {
1348   if (unsigned offset = info.getDirectOffset()) {
1349     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1350     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1351                                              CharUnits::fromQuantity(offset));
1352     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1353   }
1354   return addr;
1355 }
1356 
1357 namespace {
1358 
1359 /// Encapsulates information about the way function arguments from
1360 /// CGFunctionInfo should be passed to actual LLVM IR function.
1361 class ClangToLLVMArgMapping {
1362   static const unsigned InvalidIndex = ~0U;
1363   unsigned InallocaArgNo;
1364   unsigned SRetArgNo;
1365   unsigned TotalIRArgs;
1366 
1367   /// Arguments of LLVM IR function corresponding to single Clang argument.
1368   struct IRArgs {
1369     unsigned PaddingArgIndex;
1370     // Argument is expanded to IR arguments at positions
1371     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1372     unsigned FirstArgIndex;
1373     unsigned NumberOfArgs;
1374 
1375     IRArgs()
1376         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1377           NumberOfArgs(0) {}
1378   };
1379 
1380   SmallVector<IRArgs, 8> ArgInfo;
1381 
1382 public:
1383   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1384                         bool OnlyRequiredArgs = false)
1385       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1386         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1387     construct(Context, FI, OnlyRequiredArgs);
1388   }
1389 
1390   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1391   unsigned getInallocaArgNo() const {
1392     assert(hasInallocaArg());
1393     return InallocaArgNo;
1394   }
1395 
1396   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1397   unsigned getSRetArgNo() const {
1398     assert(hasSRetArg());
1399     return SRetArgNo;
1400   }
1401 
1402   unsigned totalIRArgs() const { return TotalIRArgs; }
1403 
1404   bool hasPaddingArg(unsigned ArgNo) const {
1405     assert(ArgNo < ArgInfo.size());
1406     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1407   }
1408   unsigned getPaddingArgNo(unsigned ArgNo) const {
1409     assert(hasPaddingArg(ArgNo));
1410     return ArgInfo[ArgNo].PaddingArgIndex;
1411   }
1412 
1413   /// Returns index of first IR argument corresponding to ArgNo, and their
1414   /// quantity.
1415   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1416     assert(ArgNo < ArgInfo.size());
1417     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1418                           ArgInfo[ArgNo].NumberOfArgs);
1419   }
1420 
1421 private:
1422   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1423                  bool OnlyRequiredArgs);
1424 };
1425 
1426 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1427                                       const CGFunctionInfo &FI,
1428                                       bool OnlyRequiredArgs) {
1429   unsigned IRArgNo = 0;
1430   bool SwapThisWithSRet = false;
1431   const ABIArgInfo &RetAI = FI.getReturnInfo();
1432 
1433   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1434     SwapThisWithSRet = RetAI.isSRetAfterThis();
1435     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1436   }
1437 
1438   unsigned ArgNo = 0;
1439   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1440   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1441        ++I, ++ArgNo) {
1442     assert(I != FI.arg_end());
1443     QualType ArgType = I->type;
1444     const ABIArgInfo &AI = I->info;
1445     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1446     auto &IRArgs = ArgInfo[ArgNo];
1447 
1448     if (AI.getPaddingType())
1449       IRArgs.PaddingArgIndex = IRArgNo++;
1450 
1451     switch (AI.getKind()) {
1452     case ABIArgInfo::Extend:
1453     case ABIArgInfo::Direct: {
1454       // FIXME: handle sseregparm someday...
1455       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1456       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1457         IRArgs.NumberOfArgs = STy->getNumElements();
1458       } else {
1459         IRArgs.NumberOfArgs = 1;
1460       }
1461       break;
1462     }
1463     case ABIArgInfo::Indirect:
1464       IRArgs.NumberOfArgs = 1;
1465       break;
1466     case ABIArgInfo::Ignore:
1467     case ABIArgInfo::InAlloca:
1468       // ignore and inalloca doesn't have matching LLVM parameters.
1469       IRArgs.NumberOfArgs = 0;
1470       break;
1471     case ABIArgInfo::CoerceAndExpand:
1472       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1473       break;
1474     case ABIArgInfo::Expand:
1475       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1476       break;
1477     }
1478 
1479     if (IRArgs.NumberOfArgs > 0) {
1480       IRArgs.FirstArgIndex = IRArgNo;
1481       IRArgNo += IRArgs.NumberOfArgs;
1482     }
1483 
1484     // Skip over the sret parameter when it comes second.  We already handled it
1485     // above.
1486     if (IRArgNo == 1 && SwapThisWithSRet)
1487       IRArgNo++;
1488   }
1489   assert(ArgNo == ArgInfo.size());
1490 
1491   if (FI.usesInAlloca())
1492     InallocaArgNo = IRArgNo++;
1493 
1494   TotalIRArgs = IRArgNo;
1495 }
1496 }  // namespace
1497 
1498 /***/
1499 
1500 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1501   const auto &RI = FI.getReturnInfo();
1502   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1503 }
1504 
1505 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1506   return ReturnTypeUsesSRet(FI) &&
1507          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1508 }
1509 
1510 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1511   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1512     switch (BT->getKind()) {
1513     default:
1514       return false;
1515     case BuiltinType::Float:
1516       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1517     case BuiltinType::Double:
1518       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1519     case BuiltinType::LongDouble:
1520       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1521     }
1522   }
1523 
1524   return false;
1525 }
1526 
1527 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1528   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1529     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1530       if (BT->getKind() == BuiltinType::LongDouble)
1531         return getTarget().useObjCFP2RetForComplexLongDouble();
1532     }
1533   }
1534 
1535   return false;
1536 }
1537 
1538 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1539   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1540   return GetFunctionType(FI);
1541 }
1542 
1543 llvm::FunctionType *
1544 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1545 
1546   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1547   (void)Inserted;
1548   assert(Inserted && "Recursively being processed?");
1549 
1550   llvm::Type *resultType = nullptr;
1551   const ABIArgInfo &retAI = FI.getReturnInfo();
1552   switch (retAI.getKind()) {
1553   case ABIArgInfo::Expand:
1554     llvm_unreachable("Invalid ABI kind for return argument");
1555 
1556   case ABIArgInfo::Extend:
1557   case ABIArgInfo::Direct:
1558     resultType = retAI.getCoerceToType();
1559     break;
1560 
1561   case ABIArgInfo::InAlloca:
1562     if (retAI.getInAllocaSRet()) {
1563       // sret things on win32 aren't void, they return the sret pointer.
1564       QualType ret = FI.getReturnType();
1565       llvm::Type *ty = ConvertType(ret);
1566       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1567       resultType = llvm::PointerType::get(ty, addressSpace);
1568     } else {
1569       resultType = llvm::Type::getVoidTy(getLLVMContext());
1570     }
1571     break;
1572 
1573   case ABIArgInfo::Indirect:
1574   case ABIArgInfo::Ignore:
1575     resultType = llvm::Type::getVoidTy(getLLVMContext());
1576     break;
1577 
1578   case ABIArgInfo::CoerceAndExpand:
1579     resultType = retAI.getUnpaddedCoerceAndExpandType();
1580     break;
1581   }
1582 
1583   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1584   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1585 
1586   // Add type for sret argument.
1587   if (IRFunctionArgs.hasSRetArg()) {
1588     QualType Ret = FI.getReturnType();
1589     llvm::Type *Ty = ConvertType(Ret);
1590     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1591     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1592         llvm::PointerType::get(Ty, AddressSpace);
1593   }
1594 
1595   // Add type for inalloca argument.
1596   if (IRFunctionArgs.hasInallocaArg()) {
1597     auto ArgStruct = FI.getArgStruct();
1598     assert(ArgStruct);
1599     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1600   }
1601 
1602   // Add in all of the required arguments.
1603   unsigned ArgNo = 0;
1604   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1605                                      ie = it + FI.getNumRequiredArgs();
1606   for (; it != ie; ++it, ++ArgNo) {
1607     const ABIArgInfo &ArgInfo = it->info;
1608 
1609     // Insert a padding type to ensure proper alignment.
1610     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1611       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1612           ArgInfo.getPaddingType();
1613 
1614     unsigned FirstIRArg, NumIRArgs;
1615     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1616 
1617     switch (ArgInfo.getKind()) {
1618     case ABIArgInfo::Ignore:
1619     case ABIArgInfo::InAlloca:
1620       assert(NumIRArgs == 0);
1621       break;
1622 
1623     case ABIArgInfo::Indirect: {
1624       assert(NumIRArgs == 1);
1625       // indirect arguments are always on the stack, which is alloca addr space.
1626       llvm::Type *LTy = ConvertTypeForMem(it->type);
1627       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1628           CGM.getDataLayout().getAllocaAddrSpace());
1629       break;
1630     }
1631 
1632     case ABIArgInfo::Extend:
1633     case ABIArgInfo::Direct: {
1634       // Fast-isel and the optimizer generally like scalar values better than
1635       // FCAs, so we flatten them if this is safe to do for this argument.
1636       llvm::Type *argType = ArgInfo.getCoerceToType();
1637       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1638       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1639         assert(NumIRArgs == st->getNumElements());
1640         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1641           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1642       } else {
1643         assert(NumIRArgs == 1);
1644         ArgTypes[FirstIRArg] = argType;
1645       }
1646       break;
1647     }
1648 
1649     case ABIArgInfo::CoerceAndExpand: {
1650       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1651       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1652         *ArgTypesIter++ = EltTy;
1653       }
1654       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1655       break;
1656     }
1657 
1658     case ABIArgInfo::Expand:
1659       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1660       getExpandedTypes(it->type, ArgTypesIter);
1661       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1662       break;
1663     }
1664   }
1665 
1666   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1667   assert(Erased && "Not in set?");
1668 
1669   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1670 }
1671 
1672 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1673   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1674   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1675 
1676   if (!isFuncTypeConvertible(FPT))
1677     return llvm::StructType::get(getLLVMContext());
1678 
1679   const CGFunctionInfo *Info;
1680   if (isa<CXXDestructorDecl>(MD))
1681     Info =
1682         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1683   else
1684     Info = &arrangeCXXMethodDeclaration(MD);
1685   return GetFunctionType(*Info);
1686 }
1687 
1688 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1689                                                llvm::AttrBuilder &FuncAttrs,
1690                                                const FunctionProtoType *FPT) {
1691   if (!FPT)
1692     return;
1693 
1694   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1695       FPT->isNothrow())
1696     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1697 }
1698 
1699 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1700                                                bool AttrOnCallSite,
1701                                                llvm::AttrBuilder &FuncAttrs) {
1702   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1703   if (!HasOptnone) {
1704     if (CodeGenOpts.OptimizeSize)
1705       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1706     if (CodeGenOpts.OptimizeSize == 2)
1707       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1708   }
1709 
1710   if (CodeGenOpts.DisableRedZone)
1711     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1712   if (CodeGenOpts.IndirectTlsSegRefs)
1713     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1714   if (CodeGenOpts.NoImplicitFloat)
1715     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1716 
1717   if (AttrOnCallSite) {
1718     // Attributes that should go on the call site only.
1719     if (!CodeGenOpts.SimplifyLibCalls ||
1720         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1721       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1722     if (!CodeGenOpts.TrapFuncName.empty())
1723       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1724   } else {
1725     // Attributes that should go on the function, but not the call site.
1726     if (!CodeGenOpts.DisableFPElim) {
1727       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1728     } else if (CodeGenOpts.OmitLeafFramePointer) {
1729       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1730       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1731     } else {
1732       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1733       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1734     }
1735 
1736     FuncAttrs.addAttribute("less-precise-fpmad",
1737                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1738 
1739     if (CodeGenOpts.NullPointerIsValid)
1740       FuncAttrs.addAttribute("null-pointer-is-valid", "true");
1741     if (!CodeGenOpts.FPDenormalMode.empty())
1742       FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
1743 
1744     FuncAttrs.addAttribute("no-trapping-math",
1745                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1746 
1747     // Strict (compliant) code is the default, so only add this attribute to
1748     // indicate that we are trying to workaround a problem case.
1749     if (!CodeGenOpts.StrictFloatCastOverflow)
1750       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1751 
1752     // TODO: Are these all needed?
1753     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1754     FuncAttrs.addAttribute("no-infs-fp-math",
1755                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1756     FuncAttrs.addAttribute("no-nans-fp-math",
1757                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1758     FuncAttrs.addAttribute("unsafe-fp-math",
1759                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1760     FuncAttrs.addAttribute("use-soft-float",
1761                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1762     FuncAttrs.addAttribute("stack-protector-buffer-size",
1763                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1764     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1765                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1766     FuncAttrs.addAttribute(
1767         "correctly-rounded-divide-sqrt-fp-math",
1768         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1769 
1770     if (getLangOpts().OpenCL)
1771       FuncAttrs.addAttribute("denorms-are-zero",
1772                              llvm::toStringRef(CodeGenOpts.FlushDenorm));
1773 
1774     // TODO: Reciprocal estimate codegen options should apply to instructions?
1775     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1776     if (!Recips.empty())
1777       FuncAttrs.addAttribute("reciprocal-estimates",
1778                              llvm::join(Recips, ","));
1779 
1780     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1781         CodeGenOpts.PreferVectorWidth != "none")
1782       FuncAttrs.addAttribute("prefer-vector-width",
1783                              CodeGenOpts.PreferVectorWidth);
1784 
1785     if (CodeGenOpts.StackRealignment)
1786       FuncAttrs.addAttribute("stackrealign");
1787     if (CodeGenOpts.Backchain)
1788       FuncAttrs.addAttribute("backchain");
1789 
1790     if (CodeGenOpts.SpeculativeLoadHardening)
1791       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1792   }
1793 
1794   if (getLangOpts().assumeFunctionsAreConvergent()) {
1795     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1796     // convergent (meaning, they may call an intrinsically convergent op, such
1797     // as __syncthreads() / barrier(), and so can't have certain optimizations
1798     // applied around them).  LLVM will remove this attribute where it safely
1799     // can.
1800     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1801   }
1802 
1803   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1804     // Exceptions aren't supported in CUDA device code.
1805     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1806 
1807     // Respect -fcuda-flush-denormals-to-zero.
1808     if (CodeGenOpts.FlushDenorm)
1809       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1810   }
1811 
1812   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1813     StringRef Var, Value;
1814     std::tie(Var, Value) = Attr.split('=');
1815     FuncAttrs.addAttribute(Var, Value);
1816   }
1817 }
1818 
1819 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1820   llvm::AttrBuilder FuncAttrs;
1821   ConstructDefaultFnAttrList(F.getName(),
1822                              F.hasFnAttribute(llvm::Attribute::OptimizeNone),
1823                              /* AttrOnCallsite = */ false, FuncAttrs);
1824   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1825 }
1826 
1827 void CodeGenModule::ConstructAttributeList(
1828     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1829     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1830   llvm::AttrBuilder FuncAttrs;
1831   llvm::AttrBuilder RetAttrs;
1832 
1833   CallingConv = FI.getEffectiveCallingConvention();
1834   if (FI.isNoReturn())
1835     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1836 
1837   // If we have information about the function prototype, we can learn
1838   // attributes from there.
1839   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1840                                      CalleeInfo.getCalleeFunctionProtoType());
1841 
1842   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1843 
1844   bool HasOptnone = false;
1845   // FIXME: handle sseregparm someday...
1846   if (TargetDecl) {
1847     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1848       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1849     if (TargetDecl->hasAttr<NoThrowAttr>())
1850       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1851     if (TargetDecl->hasAttr<NoReturnAttr>())
1852       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1853     if (TargetDecl->hasAttr<ColdAttr>())
1854       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1855     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1856       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1857     if (TargetDecl->hasAttr<ConvergentAttr>())
1858       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1859 
1860     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1861       AddAttributesFromFunctionProtoType(
1862           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1863       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1864       // These attributes are not inherited by overloads.
1865       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1866       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1867         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1868     }
1869 
1870     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1871     if (TargetDecl->hasAttr<ConstAttr>()) {
1872       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1873       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1874     } else if (TargetDecl->hasAttr<PureAttr>()) {
1875       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1876       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1877     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1878       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1879       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1880     }
1881     if (TargetDecl->hasAttr<RestrictAttr>())
1882       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1883     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1884         !CodeGenOpts.NullPointerIsValid)
1885       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1886     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1887       FuncAttrs.addAttribute("no_caller_saved_registers");
1888     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1889       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1890 
1891     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1892     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1893       Optional<unsigned> NumElemsParam;
1894       if (AllocSize->getNumElemsParam().isValid())
1895         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1896       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1897                                  NumElemsParam);
1898     }
1899   }
1900 
1901   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1902 
1903   // This must run after constructing the default function attribute list
1904   // to ensure that the speculative load hardening attribute is removed
1905   // in the case where the -mspeculative-load-hardening flag was passed.
1906   if (TargetDecl) {
1907     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
1908       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
1909     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
1910       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1911   }
1912 
1913   if (CodeGenOpts.EnableSegmentedStacks &&
1914       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1915     FuncAttrs.addAttribute("split-stack");
1916 
1917   // Add NonLazyBind attribute to function declarations when -fno-plt
1918   // is used.
1919   if (TargetDecl && CodeGenOpts.NoPLT) {
1920     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1921       if (!Fn->isDefined() && !AttrOnCallSite) {
1922         FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1923       }
1924     }
1925   }
1926 
1927   if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1928     if (getLangOpts().OpenCLVersion <= 120) {
1929       // OpenCL v1.2 Work groups are always uniform
1930       FuncAttrs.addAttribute("uniform-work-group-size", "true");
1931     } else {
1932       // OpenCL v2.0 Work groups may be whether uniform or not.
1933       // '-cl-uniform-work-group-size' compile option gets a hint
1934       // to the compiler that the global work-size be a multiple of
1935       // the work-group size specified to clEnqueueNDRangeKernel
1936       // (i.e. work groups are uniform).
1937       FuncAttrs.addAttribute("uniform-work-group-size",
1938                              llvm::toStringRef(CodeGenOpts.UniformWGSize));
1939     }
1940   }
1941 
1942   if (!AttrOnCallSite) {
1943     bool DisableTailCalls = false;
1944 
1945     if (CodeGenOpts.DisableTailCalls)
1946       DisableTailCalls = true;
1947     else if (TargetDecl) {
1948       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1949           TargetDecl->hasAttr<AnyX86InterruptAttr>())
1950         DisableTailCalls = true;
1951       else if (CodeGenOpts.NoEscapingBlockTailCalls) {
1952         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
1953           if (!BD->doesNotEscape())
1954             DisableTailCalls = true;
1955       }
1956     }
1957 
1958     FuncAttrs.addAttribute("disable-tail-calls",
1959                            llvm::toStringRef(DisableTailCalls));
1960     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
1961   }
1962 
1963   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1964 
1965   QualType RetTy = FI.getReturnType();
1966   const ABIArgInfo &RetAI = FI.getReturnInfo();
1967   switch (RetAI.getKind()) {
1968   case ABIArgInfo::Extend:
1969     if (RetAI.isSignExt())
1970       RetAttrs.addAttribute(llvm::Attribute::SExt);
1971     else
1972       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1973     LLVM_FALLTHROUGH;
1974   case ABIArgInfo::Direct:
1975     if (RetAI.getInReg())
1976       RetAttrs.addAttribute(llvm::Attribute::InReg);
1977     break;
1978   case ABIArgInfo::Ignore:
1979     break;
1980 
1981   case ABIArgInfo::InAlloca:
1982   case ABIArgInfo::Indirect: {
1983     // inalloca and sret disable readnone and readonly
1984     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1985       .removeAttribute(llvm::Attribute::ReadNone);
1986     break;
1987   }
1988 
1989   case ABIArgInfo::CoerceAndExpand:
1990     break;
1991 
1992   case ABIArgInfo::Expand:
1993     llvm_unreachable("Invalid ABI kind for return argument");
1994   }
1995 
1996   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1997     QualType PTy = RefTy->getPointeeType();
1998     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1999       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2000                                         .getQuantity());
2001     else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2002              !CodeGenOpts.NullPointerIsValid)
2003       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2004   }
2005 
2006   bool hasUsedSRet = false;
2007   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2008 
2009   // Attach attributes to sret.
2010   if (IRFunctionArgs.hasSRetArg()) {
2011     llvm::AttrBuilder SRETAttrs;
2012     if (!RetAI.getSuppressSRet())
2013       SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2014     hasUsedSRet = true;
2015     if (RetAI.getInReg())
2016       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2017     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2018         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2019   }
2020 
2021   // Attach attributes to inalloca argument.
2022   if (IRFunctionArgs.hasInallocaArg()) {
2023     llvm::AttrBuilder Attrs;
2024     Attrs.addAttribute(llvm::Attribute::InAlloca);
2025     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2026         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2027   }
2028 
2029   unsigned ArgNo = 0;
2030   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2031                                           E = FI.arg_end();
2032        I != E; ++I, ++ArgNo) {
2033     QualType ParamType = I->type;
2034     const ABIArgInfo &AI = I->info;
2035     llvm::AttrBuilder Attrs;
2036 
2037     // Add attribute for padding argument, if necessary.
2038     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2039       if (AI.getPaddingInReg()) {
2040         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2041             llvm::AttributeSet::get(
2042                 getLLVMContext(),
2043                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2044       }
2045     }
2046 
2047     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2048     // have the corresponding parameter variable.  It doesn't make
2049     // sense to do it here because parameters are so messed up.
2050     switch (AI.getKind()) {
2051     case ABIArgInfo::Extend:
2052       if (AI.isSignExt())
2053         Attrs.addAttribute(llvm::Attribute::SExt);
2054       else
2055         Attrs.addAttribute(llvm::Attribute::ZExt);
2056       LLVM_FALLTHROUGH;
2057     case ABIArgInfo::Direct:
2058       if (ArgNo == 0 && FI.isChainCall())
2059         Attrs.addAttribute(llvm::Attribute::Nest);
2060       else if (AI.getInReg())
2061         Attrs.addAttribute(llvm::Attribute::InReg);
2062       break;
2063 
2064     case ABIArgInfo::Indirect: {
2065       if (AI.getInReg())
2066         Attrs.addAttribute(llvm::Attribute::InReg);
2067 
2068       if (AI.getIndirectByVal())
2069         Attrs.addAttribute(llvm::Attribute::ByVal);
2070 
2071       CharUnits Align = AI.getIndirectAlign();
2072 
2073       // In a byval argument, it is important that the required
2074       // alignment of the type is honored, as LLVM might be creating a
2075       // *new* stack object, and needs to know what alignment to give
2076       // it. (Sometimes it can deduce a sensible alignment on its own,
2077       // but not if clang decides it must emit a packed struct, or the
2078       // user specifies increased alignment requirements.)
2079       //
2080       // This is different from indirect *not* byval, where the object
2081       // exists already, and the align attribute is purely
2082       // informative.
2083       assert(!Align.isZero());
2084 
2085       // For now, only add this when we have a byval argument.
2086       // TODO: be less lazy about updating test cases.
2087       if (AI.getIndirectByVal())
2088         Attrs.addAlignmentAttr(Align.getQuantity());
2089 
2090       // byval disables readnone and readonly.
2091       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2092         .removeAttribute(llvm::Attribute::ReadNone);
2093       break;
2094     }
2095     case ABIArgInfo::Ignore:
2096     case ABIArgInfo::Expand:
2097     case ABIArgInfo::CoerceAndExpand:
2098       break;
2099 
2100     case ABIArgInfo::InAlloca:
2101       // inalloca disables readnone and readonly.
2102       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2103           .removeAttribute(llvm::Attribute::ReadNone);
2104       continue;
2105     }
2106 
2107     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2108       QualType PTy = RefTy->getPointeeType();
2109       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2110         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2111                                        .getQuantity());
2112       else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2113                !CodeGenOpts.NullPointerIsValid)
2114         Attrs.addAttribute(llvm::Attribute::NonNull);
2115     }
2116 
2117     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2118     case ParameterABI::Ordinary:
2119       break;
2120 
2121     case ParameterABI::SwiftIndirectResult: {
2122       // Add 'sret' if we haven't already used it for something, but
2123       // only if the result is void.
2124       if (!hasUsedSRet && RetTy->isVoidType()) {
2125         Attrs.addAttribute(llvm::Attribute::StructRet);
2126         hasUsedSRet = true;
2127       }
2128 
2129       // Add 'noalias' in either case.
2130       Attrs.addAttribute(llvm::Attribute::NoAlias);
2131 
2132       // Add 'dereferenceable' and 'alignment'.
2133       auto PTy = ParamType->getPointeeType();
2134       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2135         auto info = getContext().getTypeInfoInChars(PTy);
2136         Attrs.addDereferenceableAttr(info.first.getQuantity());
2137         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
2138                                                  info.second.getQuantity()));
2139       }
2140       break;
2141     }
2142 
2143     case ParameterABI::SwiftErrorResult:
2144       Attrs.addAttribute(llvm::Attribute::SwiftError);
2145       break;
2146 
2147     case ParameterABI::SwiftContext:
2148       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2149       break;
2150     }
2151 
2152     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2153       Attrs.addAttribute(llvm::Attribute::NoCapture);
2154 
2155     if (Attrs.hasAttributes()) {
2156       unsigned FirstIRArg, NumIRArgs;
2157       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2158       for (unsigned i = 0; i < NumIRArgs; i++)
2159         ArgAttrs[FirstIRArg + i] =
2160             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2161     }
2162   }
2163   assert(ArgNo == FI.arg_size());
2164 
2165   AttrList = llvm::AttributeList::get(
2166       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2167       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2168 }
2169 
2170 /// An argument came in as a promoted argument; demote it back to its
2171 /// declared type.
2172 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2173                                          const VarDecl *var,
2174                                          llvm::Value *value) {
2175   llvm::Type *varType = CGF.ConvertType(var->getType());
2176 
2177   // This can happen with promotions that actually don't change the
2178   // underlying type, like the enum promotions.
2179   if (value->getType() == varType) return value;
2180 
2181   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2182          && "unexpected promotion type");
2183 
2184   if (isa<llvm::IntegerType>(varType))
2185     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2186 
2187   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2188 }
2189 
2190 /// Returns the attribute (either parameter attribute, or function
2191 /// attribute), which declares argument ArgNo to be non-null.
2192 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2193                                          QualType ArgType, unsigned ArgNo) {
2194   // FIXME: __attribute__((nonnull)) can also be applied to:
2195   //   - references to pointers, where the pointee is known to be
2196   //     nonnull (apparently a Clang extension)
2197   //   - transparent unions containing pointers
2198   // In the former case, LLVM IR cannot represent the constraint. In
2199   // the latter case, we have no guarantee that the transparent union
2200   // is in fact passed as a pointer.
2201   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2202     return nullptr;
2203   // First, check attribute on parameter itself.
2204   if (PVD) {
2205     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2206       return ParmNNAttr;
2207   }
2208   // Check function attributes.
2209   if (!FD)
2210     return nullptr;
2211   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2212     if (NNAttr->isNonNull(ArgNo))
2213       return NNAttr;
2214   }
2215   return nullptr;
2216 }
2217 
2218 namespace {
2219   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2220     Address Temp;
2221     Address Arg;
2222     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2223     void Emit(CodeGenFunction &CGF, Flags flags) override {
2224       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2225       CGF.Builder.CreateStore(errorValue, Arg);
2226     }
2227   };
2228 }
2229 
2230 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2231                                          llvm::Function *Fn,
2232                                          const FunctionArgList &Args) {
2233   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2234     // Naked functions don't have prologues.
2235     return;
2236 
2237   // If this is an implicit-return-zero function, go ahead and
2238   // initialize the return value.  TODO: it might be nice to have
2239   // a more general mechanism for this that didn't require synthesized
2240   // return statements.
2241   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2242     if (FD->hasImplicitReturnZero()) {
2243       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2244       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2245       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2246       Builder.CreateStore(Zero, ReturnValue);
2247     }
2248   }
2249 
2250   // FIXME: We no longer need the types from FunctionArgList; lift up and
2251   // simplify.
2252 
2253   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2254   // Flattened function arguments.
2255   SmallVector<llvm::Value *, 16> FnArgs;
2256   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2257   for (auto &Arg : Fn->args()) {
2258     FnArgs.push_back(&Arg);
2259   }
2260   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2261 
2262   // If we're using inalloca, all the memory arguments are GEPs off of the last
2263   // parameter, which is a pointer to the complete memory area.
2264   Address ArgStruct = Address::invalid();
2265   const llvm::StructLayout *ArgStructLayout = nullptr;
2266   if (IRFunctionArgs.hasInallocaArg()) {
2267     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
2268     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2269                         FI.getArgStructAlignment());
2270 
2271     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2272   }
2273 
2274   // Name the struct return parameter.
2275   if (IRFunctionArgs.hasSRetArg()) {
2276     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2277     AI->setName("agg.result");
2278     AI->addAttr(llvm::Attribute::NoAlias);
2279   }
2280 
2281   // Track if we received the parameter as a pointer (indirect, byval, or
2282   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2283   // into a local alloca for us.
2284   SmallVector<ParamValue, 16> ArgVals;
2285   ArgVals.reserve(Args.size());
2286 
2287   // Create a pointer value for every parameter declaration.  This usually
2288   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2289   // any cleanups or do anything that might unwind.  We do that separately, so
2290   // we can push the cleanups in the correct order for the ABI.
2291   assert(FI.arg_size() == Args.size() &&
2292          "Mismatch between function signature & arguments.");
2293   unsigned ArgNo = 0;
2294   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2295   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2296        i != e; ++i, ++info_it, ++ArgNo) {
2297     const VarDecl *Arg = *i;
2298     const ABIArgInfo &ArgI = info_it->info;
2299 
2300     bool isPromoted =
2301       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2302     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2303     // the parameter is promoted. In this case we convert to
2304     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2305     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2306     assert(hasScalarEvaluationKind(Ty) ==
2307            hasScalarEvaluationKind(Arg->getType()));
2308 
2309     unsigned FirstIRArg, NumIRArgs;
2310     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2311 
2312     switch (ArgI.getKind()) {
2313     case ABIArgInfo::InAlloca: {
2314       assert(NumIRArgs == 0);
2315       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2316       CharUnits FieldOffset =
2317         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
2318       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
2319                                           Arg->getName());
2320       ArgVals.push_back(ParamValue::forIndirect(V));
2321       break;
2322     }
2323 
2324     case ABIArgInfo::Indirect: {
2325       assert(NumIRArgs == 1);
2326       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2327 
2328       if (!hasScalarEvaluationKind(Ty)) {
2329         // Aggregates and complex variables are accessed by reference.  All we
2330         // need to do is realign the value, if requested.
2331         Address V = ParamAddr;
2332         if (ArgI.getIndirectRealign()) {
2333           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2334 
2335           // Copy from the incoming argument pointer to the temporary with the
2336           // appropriate alignment.
2337           //
2338           // FIXME: We should have a common utility for generating an aggregate
2339           // copy.
2340           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2341           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2342           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2343           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2344           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2345           V = AlignedTemp;
2346         }
2347         ArgVals.push_back(ParamValue::forIndirect(V));
2348       } else {
2349         // Load scalar value from indirect argument.
2350         llvm::Value *V =
2351             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2352 
2353         if (isPromoted)
2354           V = emitArgumentDemotion(*this, Arg, V);
2355         ArgVals.push_back(ParamValue::forDirect(V));
2356       }
2357       break;
2358     }
2359 
2360     case ABIArgInfo::Extend:
2361     case ABIArgInfo::Direct: {
2362 
2363       // If we have the trivial case, handle it with no muss and fuss.
2364       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2365           ArgI.getCoerceToType() == ConvertType(Ty) &&
2366           ArgI.getDirectOffset() == 0) {
2367         assert(NumIRArgs == 1);
2368         llvm::Value *V = FnArgs[FirstIRArg];
2369         auto AI = cast<llvm::Argument>(V);
2370 
2371         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2372           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2373                              PVD->getFunctionScopeIndex()) &&
2374               !CGM.getCodeGenOpts().NullPointerIsValid)
2375             AI->addAttr(llvm::Attribute::NonNull);
2376 
2377           QualType OTy = PVD->getOriginalType();
2378           if (const auto *ArrTy =
2379               getContext().getAsConstantArrayType(OTy)) {
2380             // A C99 array parameter declaration with the static keyword also
2381             // indicates dereferenceability, and if the size is constant we can
2382             // use the dereferenceable attribute (which requires the size in
2383             // bytes).
2384             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2385               QualType ETy = ArrTy->getElementType();
2386               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2387               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2388                   ArrSize) {
2389                 llvm::AttrBuilder Attrs;
2390                 Attrs.addDereferenceableAttr(
2391                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2392                 AI->addAttrs(Attrs);
2393               } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
2394                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2395                 AI->addAttr(llvm::Attribute::NonNull);
2396               }
2397             }
2398           } else if (const auto *ArrTy =
2399                      getContext().getAsVariableArrayType(OTy)) {
2400             // For C99 VLAs with the static keyword, we don't know the size so
2401             // we can't use the dereferenceable attribute, but in addrspace(0)
2402             // we know that it must be nonnull.
2403             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2404                 !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2405                 !CGM.getCodeGenOpts().NullPointerIsValid)
2406               AI->addAttr(llvm::Attribute::NonNull);
2407           }
2408 
2409           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2410           if (!AVAttr)
2411             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2412               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2413           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2414             // If alignment-assumption sanitizer is enabled, we do *not* add
2415             // alignment attribute here, but emit normal alignment assumption,
2416             // so the UBSAN check could function.
2417             llvm::Value *AlignmentValue =
2418               EmitScalarExpr(AVAttr->getAlignment());
2419             llvm::ConstantInt *AlignmentCI =
2420               cast<llvm::ConstantInt>(AlignmentValue);
2421             unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
2422                                           +llvm::Value::MaximumAlignment);
2423             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2424           }
2425         }
2426 
2427         if (Arg->getType().isRestrictQualified())
2428           AI->addAttr(llvm::Attribute::NoAlias);
2429 
2430         // LLVM expects swifterror parameters to be used in very restricted
2431         // ways.  Copy the value into a less-restricted temporary.
2432         if (FI.getExtParameterInfo(ArgNo).getABI()
2433               == ParameterABI::SwiftErrorResult) {
2434           QualType pointeeTy = Ty->getPointeeType();
2435           assert(pointeeTy->isPointerType());
2436           Address temp =
2437             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2438           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2439           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2440           Builder.CreateStore(incomingErrorValue, temp);
2441           V = temp.getPointer();
2442 
2443           // Push a cleanup to copy the value back at the end of the function.
2444           // The convention does not guarantee that the value will be written
2445           // back if the function exits with an unwind exception.
2446           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2447         }
2448 
2449         // Ensure the argument is the correct type.
2450         if (V->getType() != ArgI.getCoerceToType())
2451           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2452 
2453         if (isPromoted)
2454           V = emitArgumentDemotion(*this, Arg, V);
2455 
2456         // Because of merging of function types from multiple decls it is
2457         // possible for the type of an argument to not match the corresponding
2458         // type in the function type. Since we are codegening the callee
2459         // in here, add a cast to the argument type.
2460         llvm::Type *LTy = ConvertType(Arg->getType());
2461         if (V->getType() != LTy)
2462           V = Builder.CreateBitCast(V, LTy);
2463 
2464         ArgVals.push_back(ParamValue::forDirect(V));
2465         break;
2466       }
2467 
2468       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2469                                      Arg->getName());
2470 
2471       // Pointer to store into.
2472       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2473 
2474       // Fast-isel and the optimizer generally like scalar values better than
2475       // FCAs, so we flatten them if this is safe to do for this argument.
2476       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2477       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2478           STy->getNumElements() > 1) {
2479         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2480         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2481         llvm::Type *DstTy = Ptr.getElementType();
2482         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2483 
2484         Address AddrToStoreInto = Address::invalid();
2485         if (SrcSize <= DstSize) {
2486           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2487         } else {
2488           AddrToStoreInto =
2489             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2490         }
2491 
2492         assert(STy->getNumElements() == NumIRArgs);
2493         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2494           auto AI = FnArgs[FirstIRArg + i];
2495           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2496           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2497           Address EltPtr =
2498             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2499           Builder.CreateStore(AI, EltPtr);
2500         }
2501 
2502         if (SrcSize > DstSize) {
2503           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2504         }
2505 
2506       } else {
2507         // Simple case, just do a coerced store of the argument into the alloca.
2508         assert(NumIRArgs == 1);
2509         auto AI = FnArgs[FirstIRArg];
2510         AI->setName(Arg->getName() + ".coerce");
2511         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2512       }
2513 
2514       // Match to what EmitParmDecl is expecting for this type.
2515       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2516         llvm::Value *V =
2517             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2518         if (isPromoted)
2519           V = emitArgumentDemotion(*this, Arg, V);
2520         ArgVals.push_back(ParamValue::forDirect(V));
2521       } else {
2522         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2523       }
2524       break;
2525     }
2526 
2527     case ABIArgInfo::CoerceAndExpand: {
2528       // Reconstruct into a temporary.
2529       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2530       ArgVals.push_back(ParamValue::forIndirect(alloca));
2531 
2532       auto coercionType = ArgI.getCoerceAndExpandType();
2533       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2534       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2535 
2536       unsigned argIndex = FirstIRArg;
2537       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2538         llvm::Type *eltType = coercionType->getElementType(i);
2539         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2540           continue;
2541 
2542         auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
2543         auto elt = FnArgs[argIndex++];
2544         Builder.CreateStore(elt, eltAddr);
2545       }
2546       assert(argIndex == FirstIRArg + NumIRArgs);
2547       break;
2548     }
2549 
2550     case ABIArgInfo::Expand: {
2551       // If this structure was expanded into multiple arguments then
2552       // we need to create a temporary and reconstruct it from the
2553       // arguments.
2554       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2555       LValue LV = MakeAddrLValue(Alloca, Ty);
2556       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2557 
2558       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2559       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2560       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2561       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2562         auto AI = FnArgs[FirstIRArg + i];
2563         AI->setName(Arg->getName() + "." + Twine(i));
2564       }
2565       break;
2566     }
2567 
2568     case ABIArgInfo::Ignore:
2569       assert(NumIRArgs == 0);
2570       // Initialize the local variable appropriately.
2571       if (!hasScalarEvaluationKind(Ty)) {
2572         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2573       } else {
2574         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2575         ArgVals.push_back(ParamValue::forDirect(U));
2576       }
2577       break;
2578     }
2579   }
2580 
2581   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2582     for (int I = Args.size() - 1; I >= 0; --I)
2583       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2584   } else {
2585     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2586       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2587   }
2588 }
2589 
2590 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2591   while (insn->use_empty()) {
2592     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2593     if (!bitcast) return;
2594 
2595     // This is "safe" because we would have used a ConstantExpr otherwise.
2596     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2597     bitcast->eraseFromParent();
2598   }
2599 }
2600 
2601 /// Try to emit a fused autorelease of a return result.
2602 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2603                                                     llvm::Value *result) {
2604   // We must be immediately followed the cast.
2605   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2606   if (BB->empty()) return nullptr;
2607   if (&BB->back() != result) return nullptr;
2608 
2609   llvm::Type *resultType = result->getType();
2610 
2611   // result is in a BasicBlock and is therefore an Instruction.
2612   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2613 
2614   SmallVector<llvm::Instruction *, 4> InstsToKill;
2615 
2616   // Look for:
2617   //  %generator = bitcast %type1* %generator2 to %type2*
2618   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2619     // We would have emitted this as a constant if the operand weren't
2620     // an Instruction.
2621     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2622 
2623     // Require the generator to be immediately followed by the cast.
2624     if (generator->getNextNode() != bitcast)
2625       return nullptr;
2626 
2627     InstsToKill.push_back(bitcast);
2628   }
2629 
2630   // Look for:
2631   //   %generator = call i8* @objc_retain(i8* %originalResult)
2632   // or
2633   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2634   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2635   if (!call) return nullptr;
2636 
2637   bool doRetainAutorelease;
2638 
2639   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2640     doRetainAutorelease = true;
2641   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2642                                           .objc_retainAutoreleasedReturnValue) {
2643     doRetainAutorelease = false;
2644 
2645     // If we emitted an assembly marker for this call (and the
2646     // ARCEntrypoints field should have been set if so), go looking
2647     // for that call.  If we can't find it, we can't do this
2648     // optimization.  But it should always be the immediately previous
2649     // instruction, unless we needed bitcasts around the call.
2650     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2651       llvm::Instruction *prev = call->getPrevNode();
2652       assert(prev);
2653       if (isa<llvm::BitCastInst>(prev)) {
2654         prev = prev->getPrevNode();
2655         assert(prev);
2656       }
2657       assert(isa<llvm::CallInst>(prev));
2658       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2659                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2660       InstsToKill.push_back(prev);
2661     }
2662   } else {
2663     return nullptr;
2664   }
2665 
2666   result = call->getArgOperand(0);
2667   InstsToKill.push_back(call);
2668 
2669   // Keep killing bitcasts, for sanity.  Note that we no longer care
2670   // about precise ordering as long as there's exactly one use.
2671   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2672     if (!bitcast->hasOneUse()) break;
2673     InstsToKill.push_back(bitcast);
2674     result = bitcast->getOperand(0);
2675   }
2676 
2677   // Delete all the unnecessary instructions, from latest to earliest.
2678   for (auto *I : InstsToKill)
2679     I->eraseFromParent();
2680 
2681   // Do the fused retain/autorelease if we were asked to.
2682   if (doRetainAutorelease)
2683     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2684 
2685   // Cast back to the result type.
2686   return CGF.Builder.CreateBitCast(result, resultType);
2687 }
2688 
2689 /// If this is a +1 of the value of an immutable 'self', remove it.
2690 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2691                                           llvm::Value *result) {
2692   // This is only applicable to a method with an immutable 'self'.
2693   const ObjCMethodDecl *method =
2694     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2695   if (!method) return nullptr;
2696   const VarDecl *self = method->getSelfDecl();
2697   if (!self->getType().isConstQualified()) return nullptr;
2698 
2699   // Look for a retain call.
2700   llvm::CallInst *retainCall =
2701     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2702   if (!retainCall ||
2703       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2704     return nullptr;
2705 
2706   // Look for an ordinary load of 'self'.
2707   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2708   llvm::LoadInst *load =
2709     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2710   if (!load || load->isAtomic() || load->isVolatile() ||
2711       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2712     return nullptr;
2713 
2714   // Okay!  Burn it all down.  This relies for correctness on the
2715   // assumption that the retain is emitted as part of the return and
2716   // that thereafter everything is used "linearly".
2717   llvm::Type *resultType = result->getType();
2718   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2719   assert(retainCall->use_empty());
2720   retainCall->eraseFromParent();
2721   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2722 
2723   return CGF.Builder.CreateBitCast(load, resultType);
2724 }
2725 
2726 /// Emit an ARC autorelease of the result of a function.
2727 ///
2728 /// \return the value to actually return from the function
2729 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2730                                             llvm::Value *result) {
2731   // If we're returning 'self', kill the initial retain.  This is a
2732   // heuristic attempt to "encourage correctness" in the really unfortunate
2733   // case where we have a return of self during a dealloc and we desperately
2734   // need to avoid the possible autorelease.
2735   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2736     return self;
2737 
2738   // At -O0, try to emit a fused retain/autorelease.
2739   if (CGF.shouldUseFusedARCCalls())
2740     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2741       return fused;
2742 
2743   return CGF.EmitARCAutoreleaseReturnValue(result);
2744 }
2745 
2746 /// Heuristically search for a dominating store to the return-value slot.
2747 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2748   // Check if a User is a store which pointerOperand is the ReturnValue.
2749   // We are looking for stores to the ReturnValue, not for stores of the
2750   // ReturnValue to some other location.
2751   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2752     auto *SI = dyn_cast<llvm::StoreInst>(U);
2753     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2754       return nullptr;
2755     // These aren't actually possible for non-coerced returns, and we
2756     // only care about non-coerced returns on this code path.
2757     assert(!SI->isAtomic() && !SI->isVolatile());
2758     return SI;
2759   };
2760   // If there are multiple uses of the return-value slot, just check
2761   // for something immediately preceding the IP.  Sometimes this can
2762   // happen with how we generate implicit-returns; it can also happen
2763   // with noreturn cleanups.
2764   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2765     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2766     if (IP->empty()) return nullptr;
2767     llvm::Instruction *I = &IP->back();
2768 
2769     // Skip lifetime markers
2770     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2771                                             IE = IP->rend();
2772          II != IE; ++II) {
2773       if (llvm::IntrinsicInst *Intrinsic =
2774               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2775         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2776           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2777           ++II;
2778           if (II == IE)
2779             break;
2780           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2781             continue;
2782         }
2783       }
2784       I = &*II;
2785       break;
2786     }
2787 
2788     return GetStoreIfValid(I);
2789   }
2790 
2791   llvm::StoreInst *store =
2792       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2793   if (!store) return nullptr;
2794 
2795   // Now do a first-and-dirty dominance check: just walk up the
2796   // single-predecessors chain from the current insertion point.
2797   llvm::BasicBlock *StoreBB = store->getParent();
2798   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2799   while (IP != StoreBB) {
2800     if (!(IP = IP->getSinglePredecessor()))
2801       return nullptr;
2802   }
2803 
2804   // Okay, the store's basic block dominates the insertion point; we
2805   // can do our thing.
2806   return store;
2807 }
2808 
2809 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2810                                          bool EmitRetDbgLoc,
2811                                          SourceLocation EndLoc) {
2812   if (FI.isNoReturn()) {
2813     // Noreturn functions don't return.
2814     EmitUnreachable(EndLoc);
2815     return;
2816   }
2817 
2818   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2819     // Naked functions don't have epilogues.
2820     Builder.CreateUnreachable();
2821     return;
2822   }
2823 
2824   // Functions with no result always return void.
2825   if (!ReturnValue.isValid()) {
2826     Builder.CreateRetVoid();
2827     return;
2828   }
2829 
2830   llvm::DebugLoc RetDbgLoc;
2831   llvm::Value *RV = nullptr;
2832   QualType RetTy = FI.getReturnType();
2833   const ABIArgInfo &RetAI = FI.getReturnInfo();
2834 
2835   switch (RetAI.getKind()) {
2836   case ABIArgInfo::InAlloca:
2837     // Aggregrates get evaluated directly into the destination.  Sometimes we
2838     // need to return the sret value in a register, though.
2839     assert(hasAggregateEvaluationKind(RetTy));
2840     if (RetAI.getInAllocaSRet()) {
2841       llvm::Function::arg_iterator EI = CurFn->arg_end();
2842       --EI;
2843       llvm::Value *ArgStruct = &*EI;
2844       llvm::Value *SRet = Builder.CreateStructGEP(
2845           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2846       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2847     }
2848     break;
2849 
2850   case ABIArgInfo::Indirect: {
2851     auto AI = CurFn->arg_begin();
2852     if (RetAI.isSRetAfterThis())
2853       ++AI;
2854     switch (getEvaluationKind(RetTy)) {
2855     case TEK_Complex: {
2856       ComplexPairTy RT =
2857         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2858       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2859                          /*isInit*/ true);
2860       break;
2861     }
2862     case TEK_Aggregate:
2863       // Do nothing; aggregrates get evaluated directly into the destination.
2864       break;
2865     case TEK_Scalar:
2866       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2867                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2868                         /*isInit*/ true);
2869       break;
2870     }
2871     break;
2872   }
2873 
2874   case ABIArgInfo::Extend:
2875   case ABIArgInfo::Direct:
2876     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2877         RetAI.getDirectOffset() == 0) {
2878       // The internal return value temp always will have pointer-to-return-type
2879       // type, just do a load.
2880 
2881       // If there is a dominating store to ReturnValue, we can elide
2882       // the load, zap the store, and usually zap the alloca.
2883       if (llvm::StoreInst *SI =
2884               findDominatingStoreToReturnValue(*this)) {
2885         // Reuse the debug location from the store unless there is
2886         // cleanup code to be emitted between the store and return
2887         // instruction.
2888         if (EmitRetDbgLoc && !AutoreleaseResult)
2889           RetDbgLoc = SI->getDebugLoc();
2890         // Get the stored value and nuke the now-dead store.
2891         RV = SI->getValueOperand();
2892         SI->eraseFromParent();
2893 
2894         // If that was the only use of the return value, nuke it as well now.
2895         auto returnValueInst = ReturnValue.getPointer();
2896         if (returnValueInst->use_empty()) {
2897           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2898             alloca->eraseFromParent();
2899             ReturnValue = Address::invalid();
2900           }
2901         }
2902 
2903       // Otherwise, we have to do a simple load.
2904       } else {
2905         RV = Builder.CreateLoad(ReturnValue);
2906       }
2907     } else {
2908       // If the value is offset in memory, apply the offset now.
2909       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2910 
2911       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2912     }
2913 
2914     // In ARC, end functions that return a retainable type with a call
2915     // to objc_autoreleaseReturnValue.
2916     if (AutoreleaseResult) {
2917 #ifndef NDEBUG
2918       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2919       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2920       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2921       // CurCodeDecl or BlockInfo.
2922       QualType RT;
2923 
2924       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2925         RT = FD->getReturnType();
2926       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2927         RT = MD->getReturnType();
2928       else if (isa<BlockDecl>(CurCodeDecl))
2929         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2930       else
2931         llvm_unreachable("Unexpected function/method type");
2932 
2933       assert(getLangOpts().ObjCAutoRefCount &&
2934              !FI.isReturnsRetained() &&
2935              RT->isObjCRetainableType());
2936 #endif
2937       RV = emitAutoreleaseOfResult(*this, RV);
2938     }
2939 
2940     break;
2941 
2942   case ABIArgInfo::Ignore:
2943     break;
2944 
2945   case ABIArgInfo::CoerceAndExpand: {
2946     auto coercionType = RetAI.getCoerceAndExpandType();
2947     auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2948 
2949     // Load all of the coerced elements out into results.
2950     llvm::SmallVector<llvm::Value*, 4> results;
2951     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2952     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2953       auto coercedEltType = coercionType->getElementType(i);
2954       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2955         continue;
2956 
2957       auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
2958       auto elt = Builder.CreateLoad(eltAddr);
2959       results.push_back(elt);
2960     }
2961 
2962     // If we have one result, it's the single direct result type.
2963     if (results.size() == 1) {
2964       RV = results[0];
2965 
2966     // Otherwise, we need to make a first-class aggregate.
2967     } else {
2968       // Construct a return type that lacks padding elements.
2969       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2970 
2971       RV = llvm::UndefValue::get(returnType);
2972       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2973         RV = Builder.CreateInsertValue(RV, results[i], i);
2974       }
2975     }
2976     break;
2977   }
2978 
2979   case ABIArgInfo::Expand:
2980     llvm_unreachable("Invalid ABI kind for return argument");
2981   }
2982 
2983   llvm::Instruction *Ret;
2984   if (RV) {
2985     EmitReturnValueCheck(RV);
2986     Ret = Builder.CreateRet(RV);
2987   } else {
2988     Ret = Builder.CreateRetVoid();
2989   }
2990 
2991   if (RetDbgLoc)
2992     Ret->setDebugLoc(std::move(RetDbgLoc));
2993 }
2994 
2995 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
2996   // A current decl may not be available when emitting vtable thunks.
2997   if (!CurCodeDecl)
2998     return;
2999 
3000   ReturnsNonNullAttr *RetNNAttr = nullptr;
3001   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3002     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3003 
3004   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3005     return;
3006 
3007   // Prefer the returns_nonnull attribute if it's present.
3008   SourceLocation AttrLoc;
3009   SanitizerMask CheckKind;
3010   SanitizerHandler Handler;
3011   if (RetNNAttr) {
3012     assert(!requiresReturnValueNullabilityCheck() &&
3013            "Cannot check nullability and the nonnull attribute");
3014     AttrLoc = RetNNAttr->getLocation();
3015     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3016     Handler = SanitizerHandler::NonnullReturn;
3017   } else {
3018     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3019       if (auto *TSI = DD->getTypeSourceInfo())
3020         if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
3021           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3022     CheckKind = SanitizerKind::NullabilityReturn;
3023     Handler = SanitizerHandler::NullabilityReturn;
3024   }
3025 
3026   SanitizerScope SanScope(this);
3027 
3028   // Make sure the "return" source location is valid. If we're checking a
3029   // nullability annotation, make sure the preconditions for the check are met.
3030   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3031   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3032   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3033   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3034   if (requiresReturnValueNullabilityCheck())
3035     CanNullCheck =
3036         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3037   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3038   EmitBlock(Check);
3039 
3040   // Now do the null check.
3041   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3042   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3043   llvm::Value *DynamicData[] = {SLocPtr};
3044   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3045 
3046   EmitBlock(NoCheck);
3047 
3048 #ifndef NDEBUG
3049   // The return location should not be used after the check has been emitted.
3050   ReturnLocation = Address::invalid();
3051 #endif
3052 }
3053 
3054 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3055   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3056   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3057 }
3058 
3059 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3060                                           QualType Ty) {
3061   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3062   // placeholders.
3063   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3064   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3065   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3066 
3067   // FIXME: When we generate this IR in one pass, we shouldn't need
3068   // this win32-specific alignment hack.
3069   CharUnits Align = CharUnits::fromQuantity(4);
3070   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3071 
3072   return AggValueSlot::forAddr(Address(Placeholder, Align),
3073                                Ty.getQualifiers(),
3074                                AggValueSlot::IsNotDestructed,
3075                                AggValueSlot::DoesNotNeedGCBarriers,
3076                                AggValueSlot::IsNotAliased,
3077                                AggValueSlot::DoesNotOverlap);
3078 }
3079 
3080 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3081                                           const VarDecl *param,
3082                                           SourceLocation loc) {
3083   // StartFunction converted the ABI-lowered parameter(s) into a
3084   // local alloca.  We need to turn that into an r-value suitable
3085   // for EmitCall.
3086   Address local = GetAddrOfLocalVar(param);
3087 
3088   QualType type = param->getType();
3089 
3090   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3091     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3092   }
3093 
3094   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3095   // but the argument needs to be the original pointer.
3096   if (type->isReferenceType()) {
3097     args.add(RValue::get(Builder.CreateLoad(local)), type);
3098 
3099   // In ARC, move out of consumed arguments so that the release cleanup
3100   // entered by StartFunction doesn't cause an over-release.  This isn't
3101   // optimal -O0 code generation, but it should get cleaned up when
3102   // optimization is enabled.  This also assumes that delegate calls are
3103   // performed exactly once for a set of arguments, but that should be safe.
3104   } else if (getLangOpts().ObjCAutoRefCount &&
3105              param->hasAttr<NSConsumedAttr>() &&
3106              type->isObjCRetainableType()) {
3107     llvm::Value *ptr = Builder.CreateLoad(local);
3108     auto null =
3109       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3110     Builder.CreateStore(null, local);
3111     args.add(RValue::get(ptr), type);
3112 
3113   // For the most part, we just need to load the alloca, except that
3114   // aggregate r-values are actually pointers to temporaries.
3115   } else {
3116     args.add(convertTempToRValue(local, type, loc), type);
3117   }
3118 
3119   // Deactivate the cleanup for the callee-destructed param that was pushed.
3120   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3121       type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3122       type.isDestructedType()) {
3123     EHScopeStack::stable_iterator cleanup =
3124         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3125     assert(cleanup.isValid() &&
3126            "cleanup for callee-destructed param not recorded");
3127     // This unreachable is a temporary marker which will be removed later.
3128     llvm::Instruction *isActive = Builder.CreateUnreachable();
3129     args.addArgCleanupDeactivation(cleanup, isActive);
3130   }
3131 }
3132 
3133 static bool isProvablyNull(llvm::Value *addr) {
3134   return isa<llvm::ConstantPointerNull>(addr);
3135 }
3136 
3137 /// Emit the actual writing-back of a writeback.
3138 static void emitWriteback(CodeGenFunction &CGF,
3139                           const CallArgList::Writeback &writeback) {
3140   const LValue &srcLV = writeback.Source;
3141   Address srcAddr = srcLV.getAddress();
3142   assert(!isProvablyNull(srcAddr.getPointer()) &&
3143          "shouldn't have writeback for provably null argument");
3144 
3145   llvm::BasicBlock *contBB = nullptr;
3146 
3147   // If the argument wasn't provably non-null, we need to null check
3148   // before doing the store.
3149   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3150                                               CGF.CGM.getDataLayout());
3151   if (!provablyNonNull) {
3152     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3153     contBB = CGF.createBasicBlock("icr.done");
3154 
3155     llvm::Value *isNull =
3156       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3157     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3158     CGF.EmitBlock(writebackBB);
3159   }
3160 
3161   // Load the value to writeback.
3162   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3163 
3164   // Cast it back, in case we're writing an id to a Foo* or something.
3165   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3166                                     "icr.writeback-cast");
3167 
3168   // Perform the writeback.
3169 
3170   // If we have a "to use" value, it's something we need to emit a use
3171   // of.  This has to be carefully threaded in: if it's done after the
3172   // release it's potentially undefined behavior (and the optimizer
3173   // will ignore it), and if it happens before the retain then the
3174   // optimizer could move the release there.
3175   if (writeback.ToUse) {
3176     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3177 
3178     // Retain the new value.  No need to block-copy here:  the block's
3179     // being passed up the stack.
3180     value = CGF.EmitARCRetainNonBlock(value);
3181 
3182     // Emit the intrinsic use here.
3183     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3184 
3185     // Load the old value (primitively).
3186     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3187 
3188     // Put the new value in place (primitively).
3189     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3190 
3191     // Release the old value.
3192     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3193 
3194   // Otherwise, we can just do a normal lvalue store.
3195   } else {
3196     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3197   }
3198 
3199   // Jump to the continuation block.
3200   if (!provablyNonNull)
3201     CGF.EmitBlock(contBB);
3202 }
3203 
3204 static void emitWritebacks(CodeGenFunction &CGF,
3205                            const CallArgList &args) {
3206   for (const auto &I : args.writebacks())
3207     emitWriteback(CGF, I);
3208 }
3209 
3210 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3211                                             const CallArgList &CallArgs) {
3212   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3213     CallArgs.getCleanupsToDeactivate();
3214   // Iterate in reverse to increase the likelihood of popping the cleanup.
3215   for (const auto &I : llvm::reverse(Cleanups)) {
3216     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3217     I.IsActiveIP->eraseFromParent();
3218   }
3219 }
3220 
3221 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3222   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3223     if (uop->getOpcode() == UO_AddrOf)
3224       return uop->getSubExpr();
3225   return nullptr;
3226 }
3227 
3228 /// Emit an argument that's being passed call-by-writeback.  That is,
3229 /// we are passing the address of an __autoreleased temporary; it
3230 /// might be copy-initialized with the current value of the given
3231 /// address, but it will definitely be copied out of after the call.
3232 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3233                              const ObjCIndirectCopyRestoreExpr *CRE) {
3234   LValue srcLV;
3235 
3236   // Make an optimistic effort to emit the address as an l-value.
3237   // This can fail if the argument expression is more complicated.
3238   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3239     srcLV = CGF.EmitLValue(lvExpr);
3240 
3241   // Otherwise, just emit it as a scalar.
3242   } else {
3243     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3244 
3245     QualType srcAddrType =
3246       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3247     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3248   }
3249   Address srcAddr = srcLV.getAddress();
3250 
3251   // The dest and src types don't necessarily match in LLVM terms
3252   // because of the crazy ObjC compatibility rules.
3253 
3254   llvm::PointerType *destType =
3255     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3256 
3257   // If the address is a constant null, just pass the appropriate null.
3258   if (isProvablyNull(srcAddr.getPointer())) {
3259     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3260              CRE->getType());
3261     return;
3262   }
3263 
3264   // Create the temporary.
3265   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3266                                       CGF.getPointerAlign(),
3267                                       "icr.temp");
3268   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3269   // and that cleanup will be conditional if we can't prove that the l-value
3270   // isn't null, so we need to register a dominating point so that the cleanups
3271   // system will make valid IR.
3272   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3273 
3274   // Zero-initialize it if we're not doing a copy-initialization.
3275   bool shouldCopy = CRE->shouldCopy();
3276   if (!shouldCopy) {
3277     llvm::Value *null =
3278       llvm::ConstantPointerNull::get(
3279         cast<llvm::PointerType>(destType->getElementType()));
3280     CGF.Builder.CreateStore(null, temp);
3281   }
3282 
3283   llvm::BasicBlock *contBB = nullptr;
3284   llvm::BasicBlock *originBB = nullptr;
3285 
3286   // If the address is *not* known to be non-null, we need to switch.
3287   llvm::Value *finalArgument;
3288 
3289   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3290                                               CGF.CGM.getDataLayout());
3291   if (provablyNonNull) {
3292     finalArgument = temp.getPointer();
3293   } else {
3294     llvm::Value *isNull =
3295       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3296 
3297     finalArgument = CGF.Builder.CreateSelect(isNull,
3298                                    llvm::ConstantPointerNull::get(destType),
3299                                              temp.getPointer(), "icr.argument");
3300 
3301     // If we need to copy, then the load has to be conditional, which
3302     // means we need control flow.
3303     if (shouldCopy) {
3304       originBB = CGF.Builder.GetInsertBlock();
3305       contBB = CGF.createBasicBlock("icr.cont");
3306       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3307       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3308       CGF.EmitBlock(copyBB);
3309       condEval.begin(CGF);
3310     }
3311   }
3312 
3313   llvm::Value *valueToUse = nullptr;
3314 
3315   // Perform a copy if necessary.
3316   if (shouldCopy) {
3317     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3318     assert(srcRV.isScalar());
3319 
3320     llvm::Value *src = srcRV.getScalarVal();
3321     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3322                                     "icr.cast");
3323 
3324     // Use an ordinary store, not a store-to-lvalue.
3325     CGF.Builder.CreateStore(src, temp);
3326 
3327     // If optimization is enabled, and the value was held in a
3328     // __strong variable, we need to tell the optimizer that this
3329     // value has to stay alive until we're doing the store back.
3330     // This is because the temporary is effectively unretained,
3331     // and so otherwise we can violate the high-level semantics.
3332     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3333         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3334       valueToUse = src;
3335     }
3336   }
3337 
3338   // Finish the control flow if we needed it.
3339   if (shouldCopy && !provablyNonNull) {
3340     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3341     CGF.EmitBlock(contBB);
3342 
3343     // Make a phi for the value to intrinsically use.
3344     if (valueToUse) {
3345       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3346                                                       "icr.to-use");
3347       phiToUse->addIncoming(valueToUse, copyBB);
3348       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3349                             originBB);
3350       valueToUse = phiToUse;
3351     }
3352 
3353     condEval.end(CGF);
3354   }
3355 
3356   args.addWriteback(srcLV, temp, valueToUse);
3357   args.add(RValue::get(finalArgument), CRE->getType());
3358 }
3359 
3360 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3361   assert(!StackBase);
3362 
3363   // Save the stack.
3364   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3365   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3366 }
3367 
3368 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3369   if (StackBase) {
3370     // Restore the stack after the call.
3371     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3372     CGF.Builder.CreateCall(F, StackBase);
3373   }
3374 }
3375 
3376 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3377                                           SourceLocation ArgLoc,
3378                                           AbstractCallee AC,
3379                                           unsigned ParmNum) {
3380   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3381                          SanOpts.has(SanitizerKind::NullabilityArg)))
3382     return;
3383 
3384   // The param decl may be missing in a variadic function.
3385   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3386   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3387 
3388   // Prefer the nonnull attribute if it's present.
3389   const NonNullAttr *NNAttr = nullptr;
3390   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3391     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3392 
3393   bool CanCheckNullability = false;
3394   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3395     auto Nullability = PVD->getType()->getNullability(getContext());
3396     CanCheckNullability = Nullability &&
3397                           *Nullability == NullabilityKind::NonNull &&
3398                           PVD->getTypeSourceInfo();
3399   }
3400 
3401   if (!NNAttr && !CanCheckNullability)
3402     return;
3403 
3404   SourceLocation AttrLoc;
3405   SanitizerMask CheckKind;
3406   SanitizerHandler Handler;
3407   if (NNAttr) {
3408     AttrLoc = NNAttr->getLocation();
3409     CheckKind = SanitizerKind::NonnullAttribute;
3410     Handler = SanitizerHandler::NonnullArg;
3411   } else {
3412     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3413     CheckKind = SanitizerKind::NullabilityArg;
3414     Handler = SanitizerHandler::NullabilityArg;
3415   }
3416 
3417   SanitizerScope SanScope(this);
3418   assert(RV.isScalar());
3419   llvm::Value *V = RV.getScalarVal();
3420   llvm::Value *Cond =
3421       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3422   llvm::Constant *StaticData[] = {
3423       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3424       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3425   };
3426   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3427 }
3428 
3429 void CodeGenFunction::EmitCallArgs(
3430     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3431     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3432     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3433   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3434 
3435   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3436   // because arguments are destroyed left to right in the callee. As a special
3437   // case, there are certain language constructs that require left-to-right
3438   // evaluation, and in those cases we consider the evaluation order requirement
3439   // to trump the "destruction order is reverse construction order" guarantee.
3440   bool LeftToRight =
3441       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3442           ? Order == EvaluationOrder::ForceLeftToRight
3443           : Order != EvaluationOrder::ForceRightToLeft;
3444 
3445   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3446                                          RValue EmittedArg) {
3447     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3448       return;
3449     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3450     if (PS == nullptr)
3451       return;
3452 
3453     const auto &Context = getContext();
3454     auto SizeTy = Context.getSizeType();
3455     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3456     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3457     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3458                                                      EmittedArg.getScalarVal(),
3459                                                      /*IsDynamic=*/false);
3460     Args.add(RValue::get(V), SizeTy);
3461     // If we're emitting args in reverse, be sure to do so with
3462     // pass_object_size, as well.
3463     if (!LeftToRight)
3464       std::swap(Args.back(), *(&Args.back() - 1));
3465   };
3466 
3467   // Insert a stack save if we're going to need any inalloca args.
3468   bool HasInAllocaArgs = false;
3469   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3470     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3471          I != E && !HasInAllocaArgs; ++I)
3472       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3473     if (HasInAllocaArgs) {
3474       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3475       Args.allocateArgumentMemory(*this);
3476     }
3477   }
3478 
3479   // Evaluate each argument in the appropriate order.
3480   size_t CallArgsStart = Args.size();
3481   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3482     unsigned Idx = LeftToRight ? I : E - I - 1;
3483     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3484     unsigned InitialArgSize = Args.size();
3485     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3486     // the argument and parameter match or the objc method is parameterized.
3487     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3488             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3489                                                 ArgTypes[Idx]) ||
3490             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3491              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3492            "Argument and parameter types don't match");
3493     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3494     // In particular, we depend on it being the last arg in Args, and the
3495     // objectsize bits depend on there only being one arg if !LeftToRight.
3496     assert(InitialArgSize + 1 == Args.size() &&
3497            "The code below depends on only adding one arg per EmitCallArg");
3498     (void)InitialArgSize;
3499     // Since pointer argument are never emitted as LValue, it is safe to emit
3500     // non-null argument check for r-value only.
3501     if (!Args.back().hasLValue()) {
3502       RValue RVArg = Args.back().getKnownRValue();
3503       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3504                           ParamsToSkip + Idx);
3505       // @llvm.objectsize should never have side-effects and shouldn't need
3506       // destruction/cleanups, so we can safely "emit" it after its arg,
3507       // regardless of right-to-leftness
3508       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3509     }
3510   }
3511 
3512   if (!LeftToRight) {
3513     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3514     // IR function.
3515     std::reverse(Args.begin() + CallArgsStart, Args.end());
3516   }
3517 }
3518 
3519 namespace {
3520 
3521 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3522   DestroyUnpassedArg(Address Addr, QualType Ty)
3523       : Addr(Addr), Ty(Ty) {}
3524 
3525   Address Addr;
3526   QualType Ty;
3527 
3528   void Emit(CodeGenFunction &CGF, Flags flags) override {
3529     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3530     if (DtorKind == QualType::DK_cxx_destructor) {
3531       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3532       assert(!Dtor->isTrivial());
3533       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3534                                 /*Delegating=*/false, Addr);
3535     } else {
3536       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3537     }
3538   }
3539 };
3540 
3541 struct DisableDebugLocationUpdates {
3542   CodeGenFunction &CGF;
3543   bool disabledDebugInfo;
3544   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3545     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3546       CGF.disableDebugInfo();
3547   }
3548   ~DisableDebugLocationUpdates() {
3549     if (disabledDebugInfo)
3550       CGF.enableDebugInfo();
3551   }
3552 };
3553 
3554 } // end anonymous namespace
3555 
3556 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3557   if (!HasLV)
3558     return RV;
3559   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3560   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3561                         LV.isVolatile());
3562   IsUsed = true;
3563   return RValue::getAggregate(Copy.getAddress());
3564 }
3565 
3566 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3567   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3568   if (!HasLV && RV.isScalar())
3569     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true);
3570   else if (!HasLV && RV.isComplex())
3571     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3572   else {
3573     auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress();
3574     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3575     // We assume that call args are never copied into subobjects.
3576     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3577                           HasLV ? LV.isVolatileQualified()
3578                                 : RV.isVolatileQualified());
3579   }
3580   IsUsed = true;
3581 }
3582 
3583 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3584                                   QualType type) {
3585   DisableDebugLocationUpdates Dis(*this, E);
3586   if (const ObjCIndirectCopyRestoreExpr *CRE
3587         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3588     assert(getLangOpts().ObjCAutoRefCount);
3589     return emitWritebackArg(*this, args, CRE);
3590   }
3591 
3592   assert(type->isReferenceType() == E->isGLValue() &&
3593          "reference binding to unmaterialized r-value!");
3594 
3595   if (E->isGLValue()) {
3596     assert(E->getObjectKind() == OK_Ordinary);
3597     return args.add(EmitReferenceBindingToExpr(E), type);
3598   }
3599 
3600   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3601 
3602   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3603   // However, we still have to push an EH-only cleanup in case we unwind before
3604   // we make it to the call.
3605   if (HasAggregateEvalKind &&
3606       type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3607     // If we're using inalloca, use the argument memory.  Otherwise, use a
3608     // temporary.
3609     AggValueSlot Slot;
3610     if (args.isUsingInAlloca())
3611       Slot = createPlaceholderSlot(*this, type);
3612     else
3613       Slot = CreateAggTemp(type, "agg.tmp");
3614 
3615     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3616     if (const auto *RD = type->getAsCXXRecordDecl())
3617       DestroyedInCallee = RD->hasNonTrivialDestructor();
3618     else
3619       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3620 
3621     if (DestroyedInCallee)
3622       Slot.setExternallyDestructed();
3623 
3624     EmitAggExpr(E, Slot);
3625     RValue RV = Slot.asRValue();
3626     args.add(RV, type);
3627 
3628     if (DestroyedInCallee && NeedsEHCleanup) {
3629       // Create a no-op GEP between the placeholder and the cleanup so we can
3630       // RAUW it successfully.  It also serves as a marker of the first
3631       // instruction where the cleanup is active.
3632       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3633                                               type);
3634       // This unreachable is a temporary marker which will be removed later.
3635       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3636       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3637     }
3638     return;
3639   }
3640 
3641   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3642       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3643     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3644     assert(L.isSimple());
3645     args.addUncopiedAggregate(L, type);
3646     return;
3647   }
3648 
3649   args.add(EmitAnyExprToTemp(E), type);
3650 }
3651 
3652 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3653   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3654   // implicitly widens null pointer constants that are arguments to varargs
3655   // functions to pointer-sized ints.
3656   if (!getTarget().getTriple().isOSWindows())
3657     return Arg->getType();
3658 
3659   if (Arg->getType()->isIntegerType() &&
3660       getContext().getTypeSize(Arg->getType()) <
3661           getContext().getTargetInfo().getPointerWidth(0) &&
3662       Arg->isNullPointerConstant(getContext(),
3663                                  Expr::NPC_ValueDependentIsNotNull)) {
3664     return getContext().getIntPtrType();
3665   }
3666 
3667   return Arg->getType();
3668 }
3669 
3670 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3671 // optimizer it can aggressively ignore unwind edges.
3672 void
3673 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3674   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3675       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3676     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3677                       CGM.getNoObjCARCExceptionsMetadata());
3678 }
3679 
3680 /// Emits a call to the given no-arguments nounwind runtime function.
3681 llvm::CallInst *
3682 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3683                                          const llvm::Twine &name) {
3684   return EmitNounwindRuntimeCall(callee, None, name);
3685 }
3686 
3687 /// Emits a call to the given nounwind runtime function.
3688 llvm::CallInst *
3689 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3690                                          ArrayRef<llvm::Value*> args,
3691                                          const llvm::Twine &name) {
3692   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3693   call->setDoesNotThrow();
3694   return call;
3695 }
3696 
3697 /// Emits a simple call (never an invoke) to the given no-arguments
3698 /// runtime function.
3699 llvm::CallInst *
3700 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3701                                  const llvm::Twine &name) {
3702   return EmitRuntimeCall(callee, None, name);
3703 }
3704 
3705 // Calls which may throw must have operand bundles indicating which funclet
3706 // they are nested within.
3707 SmallVector<llvm::OperandBundleDef, 1>
3708 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3709   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3710   // There is no need for a funclet operand bundle if we aren't inside a
3711   // funclet.
3712   if (!CurrentFuncletPad)
3713     return BundleList;
3714 
3715   // Skip intrinsics which cannot throw.
3716   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3717   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3718     return BundleList;
3719 
3720   BundleList.emplace_back("funclet", CurrentFuncletPad);
3721   return BundleList;
3722 }
3723 
3724 /// Emits a simple call (never an invoke) to the given runtime function.
3725 llvm::CallInst *
3726 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3727                                  ArrayRef<llvm::Value*> args,
3728                                  const llvm::Twine &name) {
3729   llvm::CallInst *call =
3730       Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name);
3731   call->setCallingConv(getRuntimeCC());
3732   return call;
3733 }
3734 
3735 /// Emits a call or invoke to the given noreturn runtime function.
3736 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3737                                                ArrayRef<llvm::Value*> args) {
3738   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3739       getBundlesForFunclet(callee);
3740 
3741   if (getInvokeDest()) {
3742     llvm::InvokeInst *invoke =
3743       Builder.CreateInvoke(callee,
3744                            getUnreachableBlock(),
3745                            getInvokeDest(),
3746                            args,
3747                            BundleList);
3748     invoke->setDoesNotReturn();
3749     invoke->setCallingConv(getRuntimeCC());
3750   } else {
3751     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3752     call->setDoesNotReturn();
3753     call->setCallingConv(getRuntimeCC());
3754     Builder.CreateUnreachable();
3755   }
3756 }
3757 
3758 /// Emits a call or invoke instruction to the given nullary runtime function.
3759 llvm::CallBase *CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3760                                                          const Twine &name) {
3761   return EmitRuntimeCallOrInvoke(callee, None, name);
3762 }
3763 
3764 /// Emits a call or invoke instruction to the given runtime function.
3765 llvm::CallBase *CodeGenFunction::EmitRuntimeCallOrInvoke(
3766     llvm::Value *callee, ArrayRef<llvm::Value *> args, const Twine &name) {
3767   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
3768   call->setCallingConv(getRuntimeCC());
3769   return call;
3770 }
3771 
3772 /// Emits a call or invoke instruction to the given function, depending
3773 /// on the current state of the EH stack.
3774 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3775                                                   ArrayRef<llvm::Value *> Args,
3776                                                   const Twine &Name) {
3777   llvm::BasicBlock *InvokeDest = getInvokeDest();
3778   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3779       getBundlesForFunclet(Callee);
3780 
3781   llvm::CallBase *Inst;
3782   if (!InvokeDest)
3783     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3784   else {
3785     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3786     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3787                                 Name);
3788     EmitBlock(ContBB);
3789   }
3790 
3791   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3792   // optimizer it can aggressively ignore unwind edges.
3793   if (CGM.getLangOpts().ObjCAutoRefCount)
3794     AddObjCARCExceptionMetadata(Inst);
3795 
3796   return Inst;
3797 }
3798 
3799 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3800                                                   llvm::Value *New) {
3801   DeferredReplacements.push_back(std::make_pair(Old, New));
3802 }
3803 
3804 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3805                                  const CGCallee &Callee,
3806                                  ReturnValueSlot ReturnValue,
3807                                  const CallArgList &CallArgs,
3808                                  llvm::CallBase **callOrInvoke,
3809                                  SourceLocation Loc) {
3810   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3811 
3812   assert(Callee.isOrdinary() || Callee.isVirtual());
3813 
3814   // Handle struct-return functions by passing a pointer to the
3815   // location that we would like to return into.
3816   QualType RetTy = CallInfo.getReturnType();
3817   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3818 
3819   llvm::FunctionType *IRFuncTy = Callee.getFunctionType();
3820 
3821   // 1. Set up the arguments.
3822 
3823   // If we're using inalloca, insert the allocation after the stack save.
3824   // FIXME: Do this earlier rather than hacking it in here!
3825   Address ArgMemory = Address::invalid();
3826   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3827   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3828     const llvm::DataLayout &DL = CGM.getDataLayout();
3829     ArgMemoryLayout = DL.getStructLayout(ArgStruct);
3830     llvm::Instruction *IP = CallArgs.getStackBase();
3831     llvm::AllocaInst *AI;
3832     if (IP) {
3833       IP = IP->getNextNode();
3834       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3835                                 "argmem", IP);
3836     } else {
3837       AI = CreateTempAlloca(ArgStruct, "argmem");
3838     }
3839     auto Align = CallInfo.getArgStructAlignment();
3840     AI->setAlignment(Align.getQuantity());
3841     AI->setUsedWithInAlloca(true);
3842     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3843     ArgMemory = Address(AI, Align);
3844   }
3845 
3846   // Helper function to drill into the inalloca allocation.
3847   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3848     auto FieldOffset =
3849       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3850     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3851   };
3852 
3853   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3854   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3855 
3856   // If the call returns a temporary with struct return, create a temporary
3857   // alloca to hold the result, unless one is given to us.
3858   Address SRetPtr = Address::invalid();
3859   Address SRetAlloca = Address::invalid();
3860   llvm::Value *UnusedReturnSizePtr = nullptr;
3861   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3862     if (!ReturnValue.isNull()) {
3863       SRetPtr = ReturnValue.getValue();
3864     } else {
3865       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
3866       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3867         uint64_t size =
3868             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3869         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
3870       }
3871     }
3872     if (IRFunctionArgs.hasSRetArg()) {
3873       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3874     } else if (RetAI.isInAlloca()) {
3875       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3876       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3877     }
3878   }
3879 
3880   Address swiftErrorTemp = Address::invalid();
3881   Address swiftErrorArg = Address::invalid();
3882 
3883   // Translate all of the arguments as necessary to match the IR lowering.
3884   assert(CallInfo.arg_size() == CallArgs.size() &&
3885          "Mismatch between function signature & arguments.");
3886   unsigned ArgNo = 0;
3887   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3888   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3889        I != E; ++I, ++info_it, ++ArgNo) {
3890     const ABIArgInfo &ArgInfo = info_it->info;
3891 
3892     // Insert a padding argument to ensure proper alignment.
3893     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3894       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3895           llvm::UndefValue::get(ArgInfo.getPaddingType());
3896 
3897     unsigned FirstIRArg, NumIRArgs;
3898     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3899 
3900     switch (ArgInfo.getKind()) {
3901     case ABIArgInfo::InAlloca: {
3902       assert(NumIRArgs == 0);
3903       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3904       if (I->isAggregate()) {
3905         // Replace the placeholder with the appropriate argument slot GEP.
3906         Address Addr = I->hasLValue()
3907                            ? I->getKnownLValue().getAddress()
3908                            : I->getKnownRValue().getAggregateAddress();
3909         llvm::Instruction *Placeholder =
3910             cast<llvm::Instruction>(Addr.getPointer());
3911         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3912         Builder.SetInsertPoint(Placeholder);
3913         Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3914         Builder.restoreIP(IP);
3915         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3916       } else {
3917         // Store the RValue into the argument struct.
3918         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3919         unsigned AS = Addr.getType()->getPointerAddressSpace();
3920         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3921         // There are some cases where a trivial bitcast is not avoidable.  The
3922         // definition of a type later in a translation unit may change it's type
3923         // from {}* to (%struct.foo*)*.
3924         if (Addr.getType() != MemType)
3925           Addr = Builder.CreateBitCast(Addr, MemType);
3926         I->copyInto(*this, Addr);
3927       }
3928       break;
3929     }
3930 
3931     case ABIArgInfo::Indirect: {
3932       assert(NumIRArgs == 1);
3933       if (!I->isAggregate()) {
3934         // Make a temporary alloca to pass the argument.
3935         Address Addr = CreateMemTempWithoutCast(
3936             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
3937         IRCallArgs[FirstIRArg] = Addr.getPointer();
3938 
3939         I->copyInto(*this, Addr);
3940       } else {
3941         // We want to avoid creating an unnecessary temporary+copy here;
3942         // however, we need one in three cases:
3943         // 1. If the argument is not byval, and we are required to copy the
3944         //    source.  (This case doesn't occur on any common architecture.)
3945         // 2. If the argument is byval, RV is not sufficiently aligned, and
3946         //    we cannot force it to be sufficiently aligned.
3947         // 3. If the argument is byval, but RV is not located in default
3948         //    or alloca address space.
3949         Address Addr = I->hasLValue()
3950                            ? I->getKnownLValue().getAddress()
3951                            : I->getKnownRValue().getAggregateAddress();
3952         llvm::Value *V = Addr.getPointer();
3953         CharUnits Align = ArgInfo.getIndirectAlign();
3954         const llvm::DataLayout *TD = &CGM.getDataLayout();
3955 
3956         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
3957                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
3958                     TD->getAllocaAddrSpace()) &&
3959                "indirect argument must be in alloca address space");
3960 
3961         bool NeedCopy = false;
3962 
3963         if (Addr.getAlignment() < Align &&
3964             llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
3965                 Align.getQuantity()) {
3966           NeedCopy = true;
3967         } else if (I->hasLValue()) {
3968           auto LV = I->getKnownLValue();
3969           auto AS = LV.getAddressSpace();
3970 
3971           if ((!ArgInfo.getIndirectByVal() &&
3972                (LV.getAlignment() >=
3973                 getContext().getTypeAlignInChars(I->Ty)))) {
3974             NeedCopy = true;
3975           }
3976           if (!getLangOpts().OpenCL) {
3977             if ((ArgInfo.getIndirectByVal() &&
3978                 (AS != LangAS::Default &&
3979                  AS != CGM.getASTAllocaAddressSpace()))) {
3980               NeedCopy = true;
3981             }
3982           }
3983           // For OpenCL even if RV is located in default or alloca address space
3984           // we don't want to perform address space cast for it.
3985           else if ((ArgInfo.getIndirectByVal() &&
3986                     Addr.getType()->getAddressSpace() != IRFuncTy->
3987                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
3988             NeedCopy = true;
3989           }
3990         }
3991 
3992         if (NeedCopy) {
3993           // Create an aligned temporary, and copy to it.
3994           Address AI = CreateMemTempWithoutCast(
3995               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
3996           IRCallArgs[FirstIRArg] = AI.getPointer();
3997           I->copyInto(*this, AI);
3998         } else {
3999           // Skip the extra memcpy call.
4000           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4001               CGM.getDataLayout().getAllocaAddrSpace());
4002           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4003               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4004               true);
4005         }
4006       }
4007       break;
4008     }
4009 
4010     case ABIArgInfo::Ignore:
4011       assert(NumIRArgs == 0);
4012       break;
4013 
4014     case ABIArgInfo::Extend:
4015     case ABIArgInfo::Direct: {
4016       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4017           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4018           ArgInfo.getDirectOffset() == 0) {
4019         assert(NumIRArgs == 1);
4020         llvm::Value *V;
4021         if (!I->isAggregate())
4022           V = I->getKnownRValue().getScalarVal();
4023         else
4024           V = Builder.CreateLoad(
4025               I->hasLValue() ? I->getKnownLValue().getAddress()
4026                              : I->getKnownRValue().getAggregateAddress());
4027 
4028         // Implement swifterror by copying into a new swifterror argument.
4029         // We'll write back in the normal path out of the call.
4030         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4031               == ParameterABI::SwiftErrorResult) {
4032           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4033 
4034           QualType pointeeTy = I->Ty->getPointeeType();
4035           swiftErrorArg =
4036             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4037 
4038           swiftErrorTemp =
4039             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4040           V = swiftErrorTemp.getPointer();
4041           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4042 
4043           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4044           Builder.CreateStore(errorValue, swiftErrorTemp);
4045         }
4046 
4047         // We might have to widen integers, but we should never truncate.
4048         if (ArgInfo.getCoerceToType() != V->getType() &&
4049             V->getType()->isIntegerTy())
4050           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4051 
4052         // If the argument doesn't match, perform a bitcast to coerce it.  This
4053         // can happen due to trivial type mismatches.
4054         if (FirstIRArg < IRFuncTy->getNumParams() &&
4055             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4056           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4057 
4058         IRCallArgs[FirstIRArg] = V;
4059         break;
4060       }
4061 
4062       // FIXME: Avoid the conversion through memory if possible.
4063       Address Src = Address::invalid();
4064       if (!I->isAggregate()) {
4065         Src = CreateMemTemp(I->Ty, "coerce");
4066         I->copyInto(*this, Src);
4067       } else {
4068         Src = I->hasLValue() ? I->getKnownLValue().getAddress()
4069                              : I->getKnownRValue().getAggregateAddress();
4070       }
4071 
4072       // If the value is offset in memory, apply the offset now.
4073       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4074 
4075       // Fast-isel and the optimizer generally like scalar values better than
4076       // FCAs, so we flatten them if this is safe to do for this argument.
4077       llvm::StructType *STy =
4078             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4079       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4080         llvm::Type *SrcTy = Src.getType()->getElementType();
4081         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4082         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4083 
4084         // If the source type is smaller than the destination type of the
4085         // coerce-to logic, copy the source value into a temp alloca the size
4086         // of the destination type to allow loading all of it. The bits past
4087         // the source value are left undef.
4088         if (SrcSize < DstSize) {
4089           Address TempAlloca
4090             = CreateTempAlloca(STy, Src.getAlignment(),
4091                                Src.getName() + ".coerce");
4092           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4093           Src = TempAlloca;
4094         } else {
4095           Src = Builder.CreateBitCast(Src,
4096                                       STy->getPointerTo(Src.getAddressSpace()));
4097         }
4098 
4099         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
4100         assert(NumIRArgs == STy->getNumElements());
4101         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4102           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
4103           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
4104           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4105           IRCallArgs[FirstIRArg + i] = LI;
4106         }
4107       } else {
4108         // In the simple case, just pass the coerced loaded value.
4109         assert(NumIRArgs == 1);
4110         IRCallArgs[FirstIRArg] =
4111           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4112       }
4113 
4114       break;
4115     }
4116 
4117     case ABIArgInfo::CoerceAndExpand: {
4118       auto coercionType = ArgInfo.getCoerceAndExpandType();
4119       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4120 
4121       llvm::Value *tempSize = nullptr;
4122       Address addr = Address::invalid();
4123       Address AllocaAddr = Address::invalid();
4124       if (I->isAggregate()) {
4125         addr = I->hasLValue() ? I->getKnownLValue().getAddress()
4126                               : I->getKnownRValue().getAggregateAddress();
4127 
4128       } else {
4129         RValue RV = I->getKnownRValue();
4130         assert(RV.isScalar()); // complex should always just be direct
4131 
4132         llvm::Type *scalarType = RV.getScalarVal()->getType();
4133         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4134         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4135 
4136         // Materialize to a temporary.
4137         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
4138                                 CharUnits::fromQuantity(std::max(
4139                                     layout->getAlignment(), scalarAlign)),
4140                                 "tmp",
4141                                 /*ArraySize=*/nullptr, &AllocaAddr);
4142         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4143 
4144         Builder.CreateStore(RV.getScalarVal(), addr);
4145       }
4146 
4147       addr = Builder.CreateElementBitCast(addr, coercionType);
4148 
4149       unsigned IRArgPos = FirstIRArg;
4150       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4151         llvm::Type *eltType = coercionType->getElementType(i);
4152         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4153         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4154         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4155         IRCallArgs[IRArgPos++] = elt;
4156       }
4157       assert(IRArgPos == FirstIRArg + NumIRArgs);
4158 
4159       if (tempSize) {
4160         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4161       }
4162 
4163       break;
4164     }
4165 
4166     case ABIArgInfo::Expand:
4167       unsigned IRArgPos = FirstIRArg;
4168       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4169       assert(IRArgPos == FirstIRArg + NumIRArgs);
4170       break;
4171     }
4172   }
4173 
4174   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4175   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4176 
4177   // If we're using inalloca, set up that argument.
4178   if (ArgMemory.isValid()) {
4179     llvm::Value *Arg = ArgMemory.getPointer();
4180     if (CallInfo.isVariadic()) {
4181       // When passing non-POD arguments by value to variadic functions, we will
4182       // end up with a variadic prototype and an inalloca call site.  In such
4183       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4184       // the callee.
4185       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4186       auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS);
4187       CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy);
4188     } else {
4189       llvm::Type *LastParamTy =
4190           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4191       if (Arg->getType() != LastParamTy) {
4192 #ifndef NDEBUG
4193         // Assert that these structs have equivalent element types.
4194         llvm::StructType *FullTy = CallInfo.getArgStruct();
4195         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4196             cast<llvm::PointerType>(LastParamTy)->getElementType());
4197         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4198         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4199                                                 DE = DeclaredTy->element_end(),
4200                                                 FI = FullTy->element_begin();
4201              DI != DE; ++DI, ++FI)
4202           assert(*DI == *FI);
4203 #endif
4204         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4205       }
4206     }
4207     assert(IRFunctionArgs.hasInallocaArg());
4208     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4209   }
4210 
4211   // 2. Prepare the function pointer.
4212 
4213   // If the callee is a bitcast of a non-variadic function to have a
4214   // variadic function pointer type, check to see if we can remove the
4215   // bitcast.  This comes up with unprototyped functions.
4216   //
4217   // This makes the IR nicer, but more importantly it ensures that we
4218   // can inline the function at -O0 if it is marked always_inline.
4219   auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* {
4220     llvm::FunctionType *CalleeFT =
4221       cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType());
4222     if (!CalleeFT->isVarArg())
4223       return Ptr;
4224 
4225     llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr);
4226     if (!CE || CE->getOpcode() != llvm::Instruction::BitCast)
4227       return Ptr;
4228 
4229     llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0));
4230     if (!OrigFn)
4231       return Ptr;
4232 
4233     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4234 
4235     // If the original type is variadic, or if any of the component types
4236     // disagree, we cannot remove the cast.
4237     if (OrigFT->isVarArg() ||
4238         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4239         OrigFT->getReturnType() != CalleeFT->getReturnType())
4240       return Ptr;
4241 
4242     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4243       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4244         return Ptr;
4245 
4246     return OrigFn;
4247   };
4248   CalleePtr = simplifyVariadicCallee(CalleePtr);
4249 
4250   // 3. Perform the actual call.
4251 
4252   // Deactivate any cleanups that we're supposed to do immediately before
4253   // the call.
4254   if (!CallArgs.getCleanupsToDeactivate().empty())
4255     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4256 
4257   // Assert that the arguments we computed match up.  The IR verifier
4258   // will catch this, but this is a common enough source of problems
4259   // during IRGen changes that it's way better for debugging to catch
4260   // it ourselves here.
4261 #ifndef NDEBUG
4262   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4263   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4264     // Inalloca argument can have different type.
4265     if (IRFunctionArgs.hasInallocaArg() &&
4266         i == IRFunctionArgs.getInallocaArgNo())
4267       continue;
4268     if (i < IRFuncTy->getNumParams())
4269       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4270   }
4271 #endif
4272 
4273   // Update the largest vector width if any arguments have vector types.
4274   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4275     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4276       LargestVectorWidth = std::max(LargestVectorWidth,
4277                                     VT->getPrimitiveSizeInBits());
4278   }
4279 
4280   // Compute the calling convention and attributes.
4281   unsigned CallingConv;
4282   llvm::AttributeList Attrs;
4283   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4284                              Callee.getAbstractInfo(), Attrs, CallingConv,
4285                              /*AttrOnCallSite=*/true);
4286 
4287   // Apply some call-site-specific attributes.
4288   // TODO: work this into building the attribute set.
4289 
4290   // Apply always_inline to all calls within flatten functions.
4291   // FIXME: should this really take priority over __try, below?
4292   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4293       !(Callee.getAbstractInfo().getCalleeDecl().getDecl() &&
4294         Callee.getAbstractInfo()
4295             .getCalleeDecl()
4296             .getDecl()
4297             ->hasAttr<NoInlineAttr>())) {
4298     Attrs =
4299         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4300                            llvm::Attribute::AlwaysInline);
4301   }
4302 
4303   // Disable inlining inside SEH __try blocks.
4304   if (isSEHTryScope()) {
4305     Attrs =
4306         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4307                            llvm::Attribute::NoInline);
4308   }
4309 
4310   // Decide whether to use a call or an invoke.
4311   bool CannotThrow;
4312   if (currentFunctionUsesSEHTry()) {
4313     // SEH cares about asynchronous exceptions, so everything can "throw."
4314     CannotThrow = false;
4315   } else if (isCleanupPadScope() &&
4316              EHPersonality::get(*this).isMSVCXXPersonality()) {
4317     // The MSVC++ personality will implicitly terminate the program if an
4318     // exception is thrown during a cleanup outside of a try/catch.
4319     // We don't need to model anything in IR to get this behavior.
4320     CannotThrow = true;
4321   } else {
4322     // Otherwise, nounwind call sites will never throw.
4323     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4324                                      llvm::Attribute::NoUnwind);
4325   }
4326 
4327   // If we made a temporary, be sure to clean up after ourselves. Note that we
4328   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4329   // pop this cleanup later on. Being eager about this is OK, since this
4330   // temporary is 'invisible' outside of the callee.
4331   if (UnusedReturnSizePtr)
4332     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4333                                          UnusedReturnSizePtr);
4334 
4335   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4336 
4337   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4338       getBundlesForFunclet(CalleePtr);
4339 
4340   // Emit the actual call/invoke instruction.
4341   llvm::CallBase *CI;
4342   if (!InvokeDest) {
4343     CI = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList);
4344   } else {
4345     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4346     CI = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs,
4347                               BundleList);
4348     EmitBlock(Cont);
4349   }
4350   if (callOrInvoke)
4351     *callOrInvoke = CI;
4352 
4353   // Apply the attributes and calling convention.
4354   CI->setAttributes(Attrs);
4355   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4356 
4357   // Apply various metadata.
4358 
4359   if (!CI->getType()->isVoidTy())
4360     CI->setName("call");
4361 
4362   // Update largest vector width from the return type.
4363   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4364     LargestVectorWidth = std::max(LargestVectorWidth,
4365                                   VT->getPrimitiveSizeInBits());
4366 
4367   // Insert instrumentation or attach profile metadata at indirect call sites.
4368   // For more details, see the comment before the definition of
4369   // IPVK_IndirectCallTarget in InstrProfData.inc.
4370   if (!CI->getCalledFunction())
4371     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4372                      CI, CalleePtr);
4373 
4374   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4375   // optimizer it can aggressively ignore unwind edges.
4376   if (CGM.getLangOpts().ObjCAutoRefCount)
4377     AddObjCARCExceptionMetadata(CI);
4378 
4379   // Suppress tail calls if requested.
4380   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4381     const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4382     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4383       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4384   }
4385 
4386   // 4. Finish the call.
4387 
4388   // If the call doesn't return, finish the basic block and clear the
4389   // insertion point; this allows the rest of IRGen to discard
4390   // unreachable code.
4391   if (CI->doesNotReturn()) {
4392     if (UnusedReturnSizePtr)
4393       PopCleanupBlock();
4394 
4395     // Strip away the noreturn attribute to better diagnose unreachable UB.
4396     if (SanOpts.has(SanitizerKind::Unreachable)) {
4397       // Also remove from function since CallBase::hasFnAttr additionally checks
4398       // attributes of the called function.
4399       if (auto *F = CI->getCalledFunction())
4400         F->removeFnAttr(llvm::Attribute::NoReturn);
4401       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
4402                           llvm::Attribute::NoReturn);
4403 
4404       // Avoid incompatibility with ASan which relies on the `noreturn`
4405       // attribute to insert handler calls.
4406       if (SanOpts.has(SanitizerKind::Address)) {
4407         SanitizerScope SanScope(this);
4408         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
4409         Builder.SetInsertPoint(CI);
4410         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
4411         auto *Fn = CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
4412         EmitNounwindRuntimeCall(Fn);
4413       }
4414     }
4415 
4416     EmitUnreachable(Loc);
4417     Builder.ClearInsertionPoint();
4418 
4419     // FIXME: For now, emit a dummy basic block because expr emitters in
4420     // generally are not ready to handle emitting expressions at unreachable
4421     // points.
4422     EnsureInsertPoint();
4423 
4424     // Return a reasonable RValue.
4425     return GetUndefRValue(RetTy);
4426   }
4427 
4428   // Perform the swifterror writeback.
4429   if (swiftErrorTemp.isValid()) {
4430     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4431     Builder.CreateStore(errorResult, swiftErrorArg);
4432   }
4433 
4434   // Emit any call-associated writebacks immediately.  Arguably this
4435   // should happen after any return-value munging.
4436   if (CallArgs.hasWritebacks())
4437     emitWritebacks(*this, CallArgs);
4438 
4439   // The stack cleanup for inalloca arguments has to run out of the normal
4440   // lexical order, so deactivate it and run it manually here.
4441   CallArgs.freeArgumentMemory(*this);
4442 
4443   // Extract the return value.
4444   RValue Ret = [&] {
4445     switch (RetAI.getKind()) {
4446     case ABIArgInfo::CoerceAndExpand: {
4447       auto coercionType = RetAI.getCoerceAndExpandType();
4448       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4449 
4450       Address addr = SRetPtr;
4451       addr = Builder.CreateElementBitCast(addr, coercionType);
4452 
4453       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4454       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4455 
4456       unsigned unpaddedIndex = 0;
4457       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4458         llvm::Type *eltType = coercionType->getElementType(i);
4459         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4460         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4461         llvm::Value *elt = CI;
4462         if (requiresExtract)
4463           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4464         else
4465           assert(unpaddedIndex == 0);
4466         Builder.CreateStore(elt, eltAddr);
4467       }
4468       // FALLTHROUGH
4469       LLVM_FALLTHROUGH;
4470     }
4471 
4472     case ABIArgInfo::InAlloca:
4473     case ABIArgInfo::Indirect: {
4474       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4475       if (UnusedReturnSizePtr)
4476         PopCleanupBlock();
4477       return ret;
4478     }
4479 
4480     case ABIArgInfo::Ignore:
4481       // If we are ignoring an argument that had a result, make sure to
4482       // construct the appropriate return value for our caller.
4483       return GetUndefRValue(RetTy);
4484 
4485     case ABIArgInfo::Extend:
4486     case ABIArgInfo::Direct: {
4487       llvm::Type *RetIRTy = ConvertType(RetTy);
4488       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4489         switch (getEvaluationKind(RetTy)) {
4490         case TEK_Complex: {
4491           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4492           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4493           return RValue::getComplex(std::make_pair(Real, Imag));
4494         }
4495         case TEK_Aggregate: {
4496           Address DestPtr = ReturnValue.getValue();
4497           bool DestIsVolatile = ReturnValue.isVolatile();
4498 
4499           if (!DestPtr.isValid()) {
4500             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4501             DestIsVolatile = false;
4502           }
4503           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4504           return RValue::getAggregate(DestPtr);
4505         }
4506         case TEK_Scalar: {
4507           // If the argument doesn't match, perform a bitcast to coerce it.  This
4508           // can happen due to trivial type mismatches.
4509           llvm::Value *V = CI;
4510           if (V->getType() != RetIRTy)
4511             V = Builder.CreateBitCast(V, RetIRTy);
4512           return RValue::get(V);
4513         }
4514         }
4515         llvm_unreachable("bad evaluation kind");
4516       }
4517 
4518       Address DestPtr = ReturnValue.getValue();
4519       bool DestIsVolatile = ReturnValue.isVolatile();
4520 
4521       if (!DestPtr.isValid()) {
4522         DestPtr = CreateMemTemp(RetTy, "coerce");
4523         DestIsVolatile = false;
4524       }
4525 
4526       // If the value is offset in memory, apply the offset now.
4527       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4528       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4529 
4530       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4531     }
4532 
4533     case ABIArgInfo::Expand:
4534       llvm_unreachable("Invalid ABI kind for return argument");
4535     }
4536 
4537     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4538   } ();
4539 
4540   // Emit the assume_aligned check on the return value.
4541   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4542   if (Ret.isScalar() && TargetDecl) {
4543     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4544       llvm::Value *OffsetValue = nullptr;
4545       if (const auto *Offset = AA->getOffset())
4546         OffsetValue = EmitScalarExpr(Offset);
4547 
4548       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4549       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4550       EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4551                               AlignmentCI->getZExtValue(), OffsetValue);
4552     } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4553       llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()]
4554                                       .getRValue(*this)
4555                                       .getScalarVal();
4556       EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4557                               AlignmentVal);
4558     }
4559   }
4560 
4561   return Ret;
4562 }
4563 
4564 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
4565   if (isVirtual()) {
4566     const CallExpr *CE = getVirtualCallExpr();
4567     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
4568         CGF, getVirtualMethodDecl(), getThisAddress(), getFunctionType(),
4569         CE ? CE->getBeginLoc() : SourceLocation());
4570   }
4571 
4572   return *this;
4573 }
4574 
4575 /* VarArg handling */
4576 
4577 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4578   VAListAddr = VE->isMicrosoftABI()
4579                  ? EmitMSVAListRef(VE->getSubExpr())
4580                  : EmitVAListRef(VE->getSubExpr());
4581   QualType Ty = VE->getType();
4582   if (VE->isMicrosoftABI())
4583     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4584   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4585 }
4586