1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "clang/Frontend/CodeGenOptions.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 63 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 64 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 65 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 66 case CC_Swift: return llvm::CallingConv::Swift; 67 } 68 } 69 70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 71 /// qualification. 72 /// FIXME: address space qualification? 73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 74 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 75 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 76 } 77 78 /// Returns the canonical formal type of the given C++ method. 79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 80 return MD->getType()->getCanonicalTypeUnqualified() 81 .getAs<FunctionProtoType>(); 82 } 83 84 /// Returns the "extra-canonicalized" return type, which discards 85 /// qualifiers on the return type. Codegen doesn't care about them, 86 /// and it makes ABI code a little easier to be able to assume that 87 /// all parameter and return types are top-level unqualified. 88 static CanQualType GetReturnType(QualType RetTy) { 89 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 90 } 91 92 /// Arrange the argument and result information for a value of the given 93 /// unprototyped freestanding function type. 94 const CGFunctionInfo & 95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 96 // When translating an unprototyped function type, always use a 97 // variadic type. 98 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 99 /*instanceMethod=*/false, 100 /*chainCall=*/false, None, 101 FTNP->getExtInfo(), {}, RequiredArgs(0)); 102 } 103 104 static void addExtParameterInfosForCall( 105 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 106 const FunctionProtoType *proto, 107 unsigned prefixArgs, 108 unsigned totalArgs) { 109 assert(proto->hasExtParameterInfos()); 110 assert(paramInfos.size() <= prefixArgs); 111 assert(proto->getNumParams() + prefixArgs <= totalArgs); 112 113 paramInfos.reserve(totalArgs); 114 115 // Add default infos for any prefix args that don't already have infos. 116 paramInfos.resize(prefixArgs); 117 118 // Add infos for the prototype. 119 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 120 paramInfos.push_back(ParamInfo); 121 // pass_object_size params have no parameter info. 122 if (ParamInfo.hasPassObjectSize()) 123 paramInfos.emplace_back(); 124 } 125 126 assert(paramInfos.size() <= totalArgs && 127 "Did we forget to insert pass_object_size args?"); 128 // Add default infos for the variadic and/or suffix arguments. 129 paramInfos.resize(totalArgs); 130 } 131 132 /// Adds the formal paramaters in FPT to the given prefix. If any parameter in 133 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 134 static void appendParameterTypes(const CodeGenTypes &CGT, 135 SmallVectorImpl<CanQualType> &prefix, 136 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 137 CanQual<FunctionProtoType> FPT) { 138 // Fast path: don't touch param info if we don't need to. 139 if (!FPT->hasExtParameterInfos()) { 140 assert(paramInfos.empty() && 141 "We have paramInfos, but the prototype doesn't?"); 142 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 143 return; 144 } 145 146 unsigned PrefixSize = prefix.size(); 147 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 148 // parameters; the only thing that can change this is the presence of 149 // pass_object_size. So, we preallocate for the common case. 150 prefix.reserve(prefix.size() + FPT->getNumParams()); 151 152 auto ExtInfos = FPT->getExtParameterInfos(); 153 assert(ExtInfos.size() == FPT->getNumParams()); 154 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 155 prefix.push_back(FPT->getParamType(I)); 156 if (ExtInfos[I].hasPassObjectSize()) 157 prefix.push_back(CGT.getContext().getSizeType()); 158 } 159 160 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 161 prefix.size()); 162 } 163 164 /// Arrange the LLVM function layout for a value of the given function 165 /// type, on top of any implicit parameters already stored. 166 static const CGFunctionInfo & 167 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 168 SmallVectorImpl<CanQualType> &prefix, 169 CanQual<FunctionProtoType> FTP, 170 const FunctionDecl *FD) { 171 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 172 RequiredArgs Required = 173 RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD); 174 // FIXME: Kill copy. 175 appendParameterTypes(CGT, prefix, paramInfos, FTP); 176 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 177 178 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 179 /*chainCall=*/false, prefix, 180 FTP->getExtInfo(), paramInfos, 181 Required); 182 } 183 184 /// Arrange the argument and result information for a value of the 185 /// given freestanding function type. 186 const CGFunctionInfo & 187 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 188 const FunctionDecl *FD) { 189 SmallVector<CanQualType, 16> argTypes; 190 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 191 FTP, FD); 192 } 193 194 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 195 // Set the appropriate calling convention for the Function. 196 if (D->hasAttr<StdCallAttr>()) 197 return CC_X86StdCall; 198 199 if (D->hasAttr<FastCallAttr>()) 200 return CC_X86FastCall; 201 202 if (D->hasAttr<RegCallAttr>()) 203 return CC_X86RegCall; 204 205 if (D->hasAttr<ThisCallAttr>()) 206 return CC_X86ThisCall; 207 208 if (D->hasAttr<VectorCallAttr>()) 209 return CC_X86VectorCall; 210 211 if (D->hasAttr<PascalAttr>()) 212 return CC_X86Pascal; 213 214 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 215 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 216 217 if (D->hasAttr<IntelOclBiccAttr>()) 218 return CC_IntelOclBicc; 219 220 if (D->hasAttr<MSABIAttr>()) 221 return IsWindows ? CC_C : CC_X86_64Win64; 222 223 if (D->hasAttr<SysVABIAttr>()) 224 return IsWindows ? CC_X86_64SysV : CC_C; 225 226 if (D->hasAttr<PreserveMostAttr>()) 227 return CC_PreserveMost; 228 229 if (D->hasAttr<PreserveAllAttr>()) 230 return CC_PreserveAll; 231 232 return CC_C; 233 } 234 235 /// Arrange the argument and result information for a call to an 236 /// unknown C++ non-static member function of the given abstract type. 237 /// (Zero value of RD means we don't have any meaningful "this" argument type, 238 /// so fall back to a generic pointer type). 239 /// The member function must be an ordinary function, i.e. not a 240 /// constructor or destructor. 241 const CGFunctionInfo & 242 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 243 const FunctionProtoType *FTP, 244 const CXXMethodDecl *MD) { 245 SmallVector<CanQualType, 16> argTypes; 246 247 // Add the 'this' pointer. 248 if (RD) 249 argTypes.push_back(GetThisType(Context, RD)); 250 else 251 argTypes.push_back(Context.VoidPtrTy); 252 253 return ::arrangeLLVMFunctionInfo( 254 *this, true, argTypes, 255 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 256 } 257 258 /// Arrange the argument and result information for a declaration or 259 /// definition of the given C++ non-static member function. The 260 /// member function must be an ordinary function, i.e. not a 261 /// constructor or destructor. 262 const CGFunctionInfo & 263 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 264 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 265 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 266 267 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 268 269 if (MD->isInstance()) { 270 // The abstract case is perfectly fine. 271 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 272 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 273 } 274 275 return arrangeFreeFunctionType(prototype, MD); 276 } 277 278 bool CodeGenTypes::inheritingCtorHasParams( 279 const InheritedConstructor &Inherited, CXXCtorType Type) { 280 // Parameters are unnecessary if we're constructing a base class subobject 281 // and the inherited constructor lives in a virtual base. 282 return Type == Ctor_Complete || 283 !Inherited.getShadowDecl()->constructsVirtualBase() || 284 !Target.getCXXABI().hasConstructorVariants(); 285 } 286 287 const CGFunctionInfo & 288 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 289 StructorType Type) { 290 291 SmallVector<CanQualType, 16> argTypes; 292 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 293 argTypes.push_back(GetThisType(Context, MD->getParent())); 294 295 bool PassParams = true; 296 297 GlobalDecl GD; 298 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 299 GD = GlobalDecl(CD, toCXXCtorType(Type)); 300 301 // A base class inheriting constructor doesn't get forwarded arguments 302 // needed to construct a virtual base (or base class thereof). 303 if (auto Inherited = CD->getInheritedConstructor()) 304 PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); 305 } else { 306 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 307 GD = GlobalDecl(DD, toCXXDtorType(Type)); 308 } 309 310 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 311 312 // Add the formal parameters. 313 if (PassParams) 314 appendParameterTypes(*this, argTypes, paramInfos, FTP); 315 316 CGCXXABI::AddedStructorArgs AddedArgs = 317 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 318 if (!paramInfos.empty()) { 319 // Note: prefix implies after the first param. 320 if (AddedArgs.Prefix) 321 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 322 FunctionProtoType::ExtParameterInfo{}); 323 if (AddedArgs.Suffix) 324 paramInfos.append(AddedArgs.Suffix, 325 FunctionProtoType::ExtParameterInfo{}); 326 } 327 328 RequiredArgs required = 329 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 330 : RequiredArgs::All); 331 332 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 333 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 334 ? argTypes.front() 335 : TheCXXABI.hasMostDerivedReturn(GD) 336 ? CGM.getContext().VoidPtrTy 337 : Context.VoidTy; 338 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 339 /*chainCall=*/false, argTypes, extInfo, 340 paramInfos, required); 341 } 342 343 static SmallVector<CanQualType, 16> 344 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 345 SmallVector<CanQualType, 16> argTypes; 346 for (auto &arg : args) 347 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 348 return argTypes; 349 } 350 351 static SmallVector<CanQualType, 16> 352 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 353 SmallVector<CanQualType, 16> argTypes; 354 for (auto &arg : args) 355 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 356 return argTypes; 357 } 358 359 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 360 getExtParameterInfosForCall(const FunctionProtoType *proto, 361 unsigned prefixArgs, unsigned totalArgs) { 362 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 363 if (proto->hasExtParameterInfos()) { 364 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 365 } 366 return result; 367 } 368 369 /// Arrange a call to a C++ method, passing the given arguments. 370 /// 371 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 372 /// parameter. 373 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 374 /// args. 375 /// PassProtoArgs indicates whether `args` has args for the parameters in the 376 /// given CXXConstructorDecl. 377 const CGFunctionInfo & 378 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 379 const CXXConstructorDecl *D, 380 CXXCtorType CtorKind, 381 unsigned ExtraPrefixArgs, 382 unsigned ExtraSuffixArgs, 383 bool PassProtoArgs) { 384 // FIXME: Kill copy. 385 SmallVector<CanQualType, 16> ArgTypes; 386 for (const auto &Arg : args) 387 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 388 389 // +1 for implicit this, which should always be args[0]. 390 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 391 392 CanQual<FunctionProtoType> FPT = GetFormalType(D); 393 RequiredArgs Required = 394 RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D); 395 GlobalDecl GD(D, CtorKind); 396 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 397 ? ArgTypes.front() 398 : TheCXXABI.hasMostDerivedReturn(GD) 399 ? CGM.getContext().VoidPtrTy 400 : Context.VoidTy; 401 402 FunctionType::ExtInfo Info = FPT->getExtInfo(); 403 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 404 // If the prototype args are elided, we should only have ABI-specific args, 405 // which never have param info. 406 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 407 // ABI-specific suffix arguments are treated the same as variadic arguments. 408 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 409 ArgTypes.size()); 410 } 411 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 412 /*chainCall=*/false, ArgTypes, Info, 413 ParamInfos, Required); 414 } 415 416 /// Arrange the argument and result information for the declaration or 417 /// definition of the given function. 418 const CGFunctionInfo & 419 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 420 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 421 if (MD->isInstance()) 422 return arrangeCXXMethodDeclaration(MD); 423 424 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 425 426 assert(isa<FunctionType>(FTy)); 427 428 // When declaring a function without a prototype, always use a 429 // non-variadic type. 430 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 431 return arrangeLLVMFunctionInfo( 432 noProto->getReturnType(), /*instanceMethod=*/false, 433 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 434 } 435 436 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD); 437 } 438 439 /// Arrange the argument and result information for the declaration or 440 /// definition of an Objective-C method. 441 const CGFunctionInfo & 442 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 443 // It happens that this is the same as a call with no optional 444 // arguments, except also using the formal 'self' type. 445 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 446 } 447 448 /// Arrange the argument and result information for the function type 449 /// through which to perform a send to the given Objective-C method, 450 /// using the given receiver type. The receiver type is not always 451 /// the 'self' type of the method or even an Objective-C pointer type. 452 /// This is *not* the right method for actually performing such a 453 /// message send, due to the possibility of optional arguments. 454 const CGFunctionInfo & 455 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 456 QualType receiverType) { 457 SmallVector<CanQualType, 16> argTys; 458 argTys.push_back(Context.getCanonicalParamType(receiverType)); 459 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 460 // FIXME: Kill copy? 461 for (const auto *I : MD->parameters()) { 462 argTys.push_back(Context.getCanonicalParamType(I->getType())); 463 } 464 465 FunctionType::ExtInfo einfo; 466 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 467 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 468 469 if (getContext().getLangOpts().ObjCAutoRefCount && 470 MD->hasAttr<NSReturnsRetainedAttr>()) 471 einfo = einfo.withProducesResult(true); 472 473 RequiredArgs required = 474 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 475 476 return arrangeLLVMFunctionInfo( 477 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 478 /*chainCall=*/false, argTys, einfo, {}, required); 479 } 480 481 const CGFunctionInfo & 482 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 483 const CallArgList &args) { 484 auto argTypes = getArgTypesForCall(Context, args); 485 FunctionType::ExtInfo einfo; 486 487 return arrangeLLVMFunctionInfo( 488 GetReturnType(returnType), /*instanceMethod=*/false, 489 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 490 } 491 492 const CGFunctionInfo & 493 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 494 // FIXME: Do we need to handle ObjCMethodDecl? 495 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 496 497 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 498 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 499 500 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 501 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 502 503 return arrangeFunctionDeclaration(FD); 504 } 505 506 /// Arrange a thunk that takes 'this' as the first parameter followed by 507 /// varargs. Return a void pointer, regardless of the actual return type. 508 /// The body of the thunk will end in a musttail call to a function of the 509 /// correct type, and the caller will bitcast the function to the correct 510 /// prototype. 511 const CGFunctionInfo & 512 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) { 513 assert(MD->isVirtual() && "only virtual memptrs have thunks"); 514 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 515 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 516 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 517 /*chainCall=*/false, ArgTys, 518 FTP->getExtInfo(), {}, RequiredArgs(1)); 519 } 520 521 const CGFunctionInfo & 522 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 523 CXXCtorType CT) { 524 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 525 526 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 527 SmallVector<CanQualType, 2> ArgTys; 528 const CXXRecordDecl *RD = CD->getParent(); 529 ArgTys.push_back(GetThisType(Context, RD)); 530 if (CT == Ctor_CopyingClosure) 531 ArgTys.push_back(*FTP->param_type_begin()); 532 if (RD->getNumVBases() > 0) 533 ArgTys.push_back(Context.IntTy); 534 CallingConv CC = Context.getDefaultCallingConvention( 535 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 536 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 537 /*chainCall=*/false, ArgTys, 538 FunctionType::ExtInfo(CC), {}, 539 RequiredArgs::All); 540 } 541 542 /// Arrange a call as unto a free function, except possibly with an 543 /// additional number of formal parameters considered required. 544 static const CGFunctionInfo & 545 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 546 CodeGenModule &CGM, 547 const CallArgList &args, 548 const FunctionType *fnType, 549 unsigned numExtraRequiredArgs, 550 bool chainCall) { 551 assert(args.size() >= numExtraRequiredArgs); 552 553 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 554 555 // In most cases, there are no optional arguments. 556 RequiredArgs required = RequiredArgs::All; 557 558 // If we have a variadic prototype, the required arguments are the 559 // extra prefix plus the arguments in the prototype. 560 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 561 if (proto->isVariadic()) 562 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 563 564 if (proto->hasExtParameterInfos()) 565 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 566 args.size()); 567 568 // If we don't have a prototype at all, but we're supposed to 569 // explicitly use the variadic convention for unprototyped calls, 570 // treat all of the arguments as required but preserve the nominal 571 // possibility of variadics. 572 } else if (CGM.getTargetCodeGenInfo() 573 .isNoProtoCallVariadic(args, 574 cast<FunctionNoProtoType>(fnType))) { 575 required = RequiredArgs(args.size()); 576 } 577 578 // FIXME: Kill copy. 579 SmallVector<CanQualType, 16> argTypes; 580 for (const auto &arg : args) 581 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 582 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 583 /*instanceMethod=*/false, chainCall, 584 argTypes, fnType->getExtInfo(), paramInfos, 585 required); 586 } 587 588 /// Figure out the rules for calling a function with the given formal 589 /// type using the given arguments. The arguments are necessary 590 /// because the function might be unprototyped, in which case it's 591 /// target-dependent in crazy ways. 592 const CGFunctionInfo & 593 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 594 const FunctionType *fnType, 595 bool chainCall) { 596 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 597 chainCall ? 1 : 0, chainCall); 598 } 599 600 /// A block function is essentially a free function with an 601 /// extra implicit argument. 602 const CGFunctionInfo & 603 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 604 const FunctionType *fnType) { 605 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 606 /*chainCall=*/false); 607 } 608 609 const CGFunctionInfo & 610 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 611 const FunctionArgList ¶ms) { 612 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 613 auto argTypes = getArgTypesForDeclaration(Context, params); 614 615 return arrangeLLVMFunctionInfo( 616 GetReturnType(proto->getReturnType()), 617 /*instanceMethod*/ false, /*chainCall*/ false, argTypes, 618 proto->getExtInfo(), paramInfos, 619 RequiredArgs::forPrototypePlus(proto, 1, nullptr)); 620 } 621 622 const CGFunctionInfo & 623 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 624 const CallArgList &args) { 625 // FIXME: Kill copy. 626 SmallVector<CanQualType, 16> argTypes; 627 for (const auto &Arg : args) 628 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 629 return arrangeLLVMFunctionInfo( 630 GetReturnType(resultType), /*instanceMethod=*/false, 631 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 632 /*paramInfos=*/ {}, RequiredArgs::All); 633 } 634 635 const CGFunctionInfo & 636 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 637 const FunctionArgList &args) { 638 auto argTypes = getArgTypesForDeclaration(Context, args); 639 640 return arrangeLLVMFunctionInfo( 641 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 642 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 643 } 644 645 const CGFunctionInfo & 646 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 647 ArrayRef<CanQualType> argTypes) { 648 return arrangeLLVMFunctionInfo( 649 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 650 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 651 } 652 653 /// Arrange a call to a C++ method, passing the given arguments. 654 /// 655 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 656 /// does not count `this`. 657 const CGFunctionInfo & 658 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 659 const FunctionProtoType *proto, 660 RequiredArgs required, 661 unsigned numPrefixArgs) { 662 assert(numPrefixArgs + 1 <= args.size() && 663 "Emitting a call with less args than the required prefix?"); 664 // Add one to account for `this`. It's a bit awkward here, but we don't count 665 // `this` in similar places elsewhere. 666 auto paramInfos = 667 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 668 669 // FIXME: Kill copy. 670 auto argTypes = getArgTypesForCall(Context, args); 671 672 FunctionType::ExtInfo info = proto->getExtInfo(); 673 return arrangeLLVMFunctionInfo( 674 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 675 /*chainCall=*/false, argTypes, info, paramInfos, required); 676 } 677 678 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 679 return arrangeLLVMFunctionInfo( 680 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 681 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 682 } 683 684 const CGFunctionInfo & 685 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 686 const CallArgList &args) { 687 assert(signature.arg_size() <= args.size()); 688 if (signature.arg_size() == args.size()) 689 return signature; 690 691 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 692 auto sigParamInfos = signature.getExtParameterInfos(); 693 if (!sigParamInfos.empty()) { 694 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 695 paramInfos.resize(args.size()); 696 } 697 698 auto argTypes = getArgTypesForCall(Context, args); 699 700 assert(signature.getRequiredArgs().allowsOptionalArgs()); 701 return arrangeLLVMFunctionInfo(signature.getReturnType(), 702 signature.isInstanceMethod(), 703 signature.isChainCall(), 704 argTypes, 705 signature.getExtInfo(), 706 paramInfos, 707 signature.getRequiredArgs()); 708 } 709 710 namespace clang { 711 namespace CodeGen { 712 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 713 } 714 } 715 716 /// Arrange the argument and result information for an abstract value 717 /// of a given function type. This is the method which all of the 718 /// above functions ultimately defer to. 719 const CGFunctionInfo & 720 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 721 bool instanceMethod, 722 bool chainCall, 723 ArrayRef<CanQualType> argTypes, 724 FunctionType::ExtInfo info, 725 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 726 RequiredArgs required) { 727 assert(std::all_of(argTypes.begin(), argTypes.end(), 728 [](CanQualType T) { return T.isCanonicalAsParam(); })); 729 730 // Lookup or create unique function info. 731 llvm::FoldingSetNodeID ID; 732 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 733 required, resultType, argTypes); 734 735 void *insertPos = nullptr; 736 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 737 if (FI) 738 return *FI; 739 740 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 741 742 // Construct the function info. We co-allocate the ArgInfos. 743 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 744 paramInfos, resultType, argTypes, required); 745 FunctionInfos.InsertNode(FI, insertPos); 746 747 bool inserted = FunctionsBeingProcessed.insert(FI).second; 748 (void)inserted; 749 assert(inserted && "Recursively being processed?"); 750 751 // Compute ABI information. 752 if (CC == llvm::CallingConv::SPIR_KERNEL) { 753 // Force target independent argument handling for the host visible 754 // kernel functions. 755 computeSPIRKernelABIInfo(CGM, *FI); 756 } else if (info.getCC() == CC_Swift) { 757 swiftcall::computeABIInfo(CGM, *FI); 758 } else { 759 getABIInfo().computeInfo(*FI); 760 } 761 762 // Loop over all of the computed argument and return value info. If any of 763 // them are direct or extend without a specified coerce type, specify the 764 // default now. 765 ABIArgInfo &retInfo = FI->getReturnInfo(); 766 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 767 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 768 769 for (auto &I : FI->arguments()) 770 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 771 I.info.setCoerceToType(ConvertType(I.type)); 772 773 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 774 assert(erased && "Not in set?"); 775 776 return *FI; 777 } 778 779 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 780 bool instanceMethod, 781 bool chainCall, 782 const FunctionType::ExtInfo &info, 783 ArrayRef<ExtParameterInfo> paramInfos, 784 CanQualType resultType, 785 ArrayRef<CanQualType> argTypes, 786 RequiredArgs required) { 787 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 788 789 void *buffer = 790 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 791 argTypes.size() + 1, paramInfos.size())); 792 793 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 794 FI->CallingConvention = llvmCC; 795 FI->EffectiveCallingConvention = llvmCC; 796 FI->ASTCallingConvention = info.getCC(); 797 FI->InstanceMethod = instanceMethod; 798 FI->ChainCall = chainCall; 799 FI->NoReturn = info.getNoReturn(); 800 FI->ReturnsRetained = info.getProducesResult(); 801 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 802 FI->Required = required; 803 FI->HasRegParm = info.getHasRegParm(); 804 FI->RegParm = info.getRegParm(); 805 FI->ArgStruct = nullptr; 806 FI->ArgStructAlign = 0; 807 FI->NumArgs = argTypes.size(); 808 FI->HasExtParameterInfos = !paramInfos.empty(); 809 FI->getArgsBuffer()[0].type = resultType; 810 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 811 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 812 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 813 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 814 return FI; 815 } 816 817 /***/ 818 819 namespace { 820 // ABIArgInfo::Expand implementation. 821 822 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 823 struct TypeExpansion { 824 enum TypeExpansionKind { 825 // Elements of constant arrays are expanded recursively. 826 TEK_ConstantArray, 827 // Record fields are expanded recursively (but if record is a union, only 828 // the field with the largest size is expanded). 829 TEK_Record, 830 // For complex types, real and imaginary parts are expanded recursively. 831 TEK_Complex, 832 // All other types are not expandable. 833 TEK_None 834 }; 835 836 const TypeExpansionKind Kind; 837 838 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 839 virtual ~TypeExpansion() {} 840 }; 841 842 struct ConstantArrayExpansion : TypeExpansion { 843 QualType EltTy; 844 uint64_t NumElts; 845 846 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 847 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 848 static bool classof(const TypeExpansion *TE) { 849 return TE->Kind == TEK_ConstantArray; 850 } 851 }; 852 853 struct RecordExpansion : TypeExpansion { 854 SmallVector<const CXXBaseSpecifier *, 1> Bases; 855 856 SmallVector<const FieldDecl *, 1> Fields; 857 858 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 859 SmallVector<const FieldDecl *, 1> &&Fields) 860 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 861 Fields(std::move(Fields)) {} 862 static bool classof(const TypeExpansion *TE) { 863 return TE->Kind == TEK_Record; 864 } 865 }; 866 867 struct ComplexExpansion : TypeExpansion { 868 QualType EltTy; 869 870 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 871 static bool classof(const TypeExpansion *TE) { 872 return TE->Kind == TEK_Complex; 873 } 874 }; 875 876 struct NoExpansion : TypeExpansion { 877 NoExpansion() : TypeExpansion(TEK_None) {} 878 static bool classof(const TypeExpansion *TE) { 879 return TE->Kind == TEK_None; 880 } 881 }; 882 } // namespace 883 884 static std::unique_ptr<TypeExpansion> 885 getTypeExpansion(QualType Ty, const ASTContext &Context) { 886 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 887 return llvm::make_unique<ConstantArrayExpansion>( 888 AT->getElementType(), AT->getSize().getZExtValue()); 889 } 890 if (const RecordType *RT = Ty->getAs<RecordType>()) { 891 SmallVector<const CXXBaseSpecifier *, 1> Bases; 892 SmallVector<const FieldDecl *, 1> Fields; 893 const RecordDecl *RD = RT->getDecl(); 894 assert(!RD->hasFlexibleArrayMember() && 895 "Cannot expand structure with flexible array."); 896 if (RD->isUnion()) { 897 // Unions can be here only in degenerative cases - all the fields are same 898 // after flattening. Thus we have to use the "largest" field. 899 const FieldDecl *LargestFD = nullptr; 900 CharUnits UnionSize = CharUnits::Zero(); 901 902 for (const auto *FD : RD->fields()) { 903 // Skip zero length bitfields. 904 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 905 continue; 906 assert(!FD->isBitField() && 907 "Cannot expand structure with bit-field members."); 908 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 909 if (UnionSize < FieldSize) { 910 UnionSize = FieldSize; 911 LargestFD = FD; 912 } 913 } 914 if (LargestFD) 915 Fields.push_back(LargestFD); 916 } else { 917 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 918 assert(!CXXRD->isDynamicClass() && 919 "cannot expand vtable pointers in dynamic classes"); 920 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 921 Bases.push_back(&BS); 922 } 923 924 for (const auto *FD : RD->fields()) { 925 // Skip zero length bitfields. 926 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 927 continue; 928 assert(!FD->isBitField() && 929 "Cannot expand structure with bit-field members."); 930 Fields.push_back(FD); 931 } 932 } 933 return llvm::make_unique<RecordExpansion>(std::move(Bases), 934 std::move(Fields)); 935 } 936 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 937 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 938 } 939 return llvm::make_unique<NoExpansion>(); 940 } 941 942 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 943 auto Exp = getTypeExpansion(Ty, Context); 944 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 945 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 946 } 947 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 948 int Res = 0; 949 for (auto BS : RExp->Bases) 950 Res += getExpansionSize(BS->getType(), Context); 951 for (auto FD : RExp->Fields) 952 Res += getExpansionSize(FD->getType(), Context); 953 return Res; 954 } 955 if (isa<ComplexExpansion>(Exp.get())) 956 return 2; 957 assert(isa<NoExpansion>(Exp.get())); 958 return 1; 959 } 960 961 void 962 CodeGenTypes::getExpandedTypes(QualType Ty, 963 SmallVectorImpl<llvm::Type *>::iterator &TI) { 964 auto Exp = getTypeExpansion(Ty, Context); 965 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 966 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 967 getExpandedTypes(CAExp->EltTy, TI); 968 } 969 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 970 for (auto BS : RExp->Bases) 971 getExpandedTypes(BS->getType(), TI); 972 for (auto FD : RExp->Fields) 973 getExpandedTypes(FD->getType(), TI); 974 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 975 llvm::Type *EltTy = ConvertType(CExp->EltTy); 976 *TI++ = EltTy; 977 *TI++ = EltTy; 978 } else { 979 assert(isa<NoExpansion>(Exp.get())); 980 *TI++ = ConvertType(Ty); 981 } 982 } 983 984 static void forConstantArrayExpansion(CodeGenFunction &CGF, 985 ConstantArrayExpansion *CAE, 986 Address BaseAddr, 987 llvm::function_ref<void(Address)> Fn) { 988 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 989 CharUnits EltAlign = 990 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 991 992 for (int i = 0, n = CAE->NumElts; i < n; i++) { 993 llvm::Value *EltAddr = 994 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 995 Fn(Address(EltAddr, EltAlign)); 996 } 997 } 998 999 void CodeGenFunction::ExpandTypeFromArgs( 1000 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 1001 assert(LV.isSimple() && 1002 "Unexpected non-simple lvalue during struct expansion."); 1003 1004 auto Exp = getTypeExpansion(Ty, getContext()); 1005 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1006 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 1007 [&](Address EltAddr) { 1008 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1009 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1010 }); 1011 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1012 Address This = LV.getAddress(); 1013 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1014 // Perform a single step derived-to-base conversion. 1015 Address Base = 1016 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1017 /*NullCheckValue=*/false, SourceLocation()); 1018 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1019 1020 // Recurse onto bases. 1021 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1022 } 1023 for (auto FD : RExp->Fields) { 1024 // FIXME: What are the right qualifiers here? 1025 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1026 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1027 } 1028 } else if (isa<ComplexExpansion>(Exp.get())) { 1029 auto realValue = *AI++; 1030 auto imagValue = *AI++; 1031 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1032 } else { 1033 assert(isa<NoExpansion>(Exp.get())); 1034 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1035 } 1036 } 1037 1038 void CodeGenFunction::ExpandTypeToArgs( 1039 QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 1040 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1041 auto Exp = getTypeExpansion(Ty, getContext()); 1042 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1043 forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(), 1044 [&](Address EltAddr) { 1045 RValue EltRV = 1046 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()); 1047 ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos); 1048 }); 1049 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1050 Address This = RV.getAggregateAddress(); 1051 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1052 // Perform a single step derived-to-base conversion. 1053 Address Base = 1054 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1055 /*NullCheckValue=*/false, SourceLocation()); 1056 RValue BaseRV = RValue::getAggregate(Base); 1057 1058 // Recurse onto bases. 1059 ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs, 1060 IRCallArgPos); 1061 } 1062 1063 LValue LV = MakeAddrLValue(This, Ty); 1064 for (auto FD : RExp->Fields) { 1065 RValue FldRV = EmitRValueForField(LV, FD, SourceLocation()); 1066 ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs, 1067 IRCallArgPos); 1068 } 1069 } else if (isa<ComplexExpansion>(Exp.get())) { 1070 ComplexPairTy CV = RV.getComplexVal(); 1071 IRCallArgs[IRCallArgPos++] = CV.first; 1072 IRCallArgs[IRCallArgPos++] = CV.second; 1073 } else { 1074 assert(isa<NoExpansion>(Exp.get())); 1075 assert(RV.isScalar() && 1076 "Unexpected non-scalar rvalue during struct expansion."); 1077 1078 // Insert a bitcast as needed. 1079 llvm::Value *V = RV.getScalarVal(); 1080 if (IRCallArgPos < IRFuncTy->getNumParams() && 1081 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1082 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1083 1084 IRCallArgs[IRCallArgPos++] = V; 1085 } 1086 } 1087 1088 /// Create a temporary allocation for the purposes of coercion. 1089 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1090 CharUnits MinAlign) { 1091 // Don't use an alignment that's worse than what LLVM would prefer. 1092 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1093 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1094 1095 return CGF.CreateTempAlloca(Ty, Align); 1096 } 1097 1098 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1099 /// accessing some number of bytes out of it, try to gep into the struct to get 1100 /// at its inner goodness. Dive as deep as possible without entering an element 1101 /// with an in-memory size smaller than DstSize. 1102 static Address 1103 EnterStructPointerForCoercedAccess(Address SrcPtr, 1104 llvm::StructType *SrcSTy, 1105 uint64_t DstSize, CodeGenFunction &CGF) { 1106 // We can't dive into a zero-element struct. 1107 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1108 1109 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1110 1111 // If the first elt is at least as large as what we're looking for, or if the 1112 // first element is the same size as the whole struct, we can enter it. The 1113 // comparison must be made on the store size and not the alloca size. Using 1114 // the alloca size may overstate the size of the load. 1115 uint64_t FirstEltSize = 1116 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1117 if (FirstEltSize < DstSize && 1118 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1119 return SrcPtr; 1120 1121 // GEP into the first element. 1122 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 1123 1124 // If the first element is a struct, recurse. 1125 llvm::Type *SrcTy = SrcPtr.getElementType(); 1126 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1127 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1128 1129 return SrcPtr; 1130 } 1131 1132 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1133 /// are either integers or pointers. This does a truncation of the value if it 1134 /// is too large or a zero extension if it is too small. 1135 /// 1136 /// This behaves as if the value were coerced through memory, so on big-endian 1137 /// targets the high bits are preserved in a truncation, while little-endian 1138 /// targets preserve the low bits. 1139 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1140 llvm::Type *Ty, 1141 CodeGenFunction &CGF) { 1142 if (Val->getType() == Ty) 1143 return Val; 1144 1145 if (isa<llvm::PointerType>(Val->getType())) { 1146 // If this is Pointer->Pointer avoid conversion to and from int. 1147 if (isa<llvm::PointerType>(Ty)) 1148 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1149 1150 // Convert the pointer to an integer so we can play with its width. 1151 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1152 } 1153 1154 llvm::Type *DestIntTy = Ty; 1155 if (isa<llvm::PointerType>(DestIntTy)) 1156 DestIntTy = CGF.IntPtrTy; 1157 1158 if (Val->getType() != DestIntTy) { 1159 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1160 if (DL.isBigEndian()) { 1161 // Preserve the high bits on big-endian targets. 1162 // That is what memory coercion does. 1163 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1164 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1165 1166 if (SrcSize > DstSize) { 1167 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1168 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1169 } else { 1170 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1171 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1172 } 1173 } else { 1174 // Little-endian targets preserve the low bits. No shifts required. 1175 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1176 } 1177 } 1178 1179 if (isa<llvm::PointerType>(Ty)) 1180 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1181 return Val; 1182 } 1183 1184 1185 1186 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1187 /// a pointer to an object of type \arg Ty, known to be aligned to 1188 /// \arg SrcAlign bytes. 1189 /// 1190 /// This safely handles the case when the src type is smaller than the 1191 /// destination type; in this situation the values of bits which not 1192 /// present in the src are undefined. 1193 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1194 CodeGenFunction &CGF) { 1195 llvm::Type *SrcTy = Src.getElementType(); 1196 1197 // If SrcTy and Ty are the same, just do a load. 1198 if (SrcTy == Ty) 1199 return CGF.Builder.CreateLoad(Src); 1200 1201 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1202 1203 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1204 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1205 SrcTy = Src.getType()->getElementType(); 1206 } 1207 1208 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1209 1210 // If the source and destination are integer or pointer types, just do an 1211 // extension or truncation to the desired type. 1212 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1213 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1214 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1215 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1216 } 1217 1218 // If load is legal, just bitcast the src pointer. 1219 if (SrcSize >= DstSize) { 1220 // Generally SrcSize is never greater than DstSize, since this means we are 1221 // losing bits. However, this can happen in cases where the structure has 1222 // additional padding, for example due to a user specified alignment. 1223 // 1224 // FIXME: Assert that we aren't truncating non-padding bits when have access 1225 // to that information. 1226 Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty)); 1227 return CGF.Builder.CreateLoad(Src); 1228 } 1229 1230 // Otherwise do coercion through memory. This is stupid, but simple. 1231 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1232 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1233 Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy); 1234 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1235 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1236 false); 1237 return CGF.Builder.CreateLoad(Tmp); 1238 } 1239 1240 // Function to store a first-class aggregate into memory. We prefer to 1241 // store the elements rather than the aggregate to be more friendly to 1242 // fast-isel. 1243 // FIXME: Do we need to recurse here? 1244 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1245 Address Dest, bool DestIsVolatile) { 1246 // Prefer scalar stores to first-class aggregate stores. 1247 if (llvm::StructType *STy = 1248 dyn_cast<llvm::StructType>(Val->getType())) { 1249 const llvm::StructLayout *Layout = 1250 CGF.CGM.getDataLayout().getStructLayout(STy); 1251 1252 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1253 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1254 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1255 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1256 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1257 } 1258 } else { 1259 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1260 } 1261 } 1262 1263 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1264 /// where the source and destination may have different types. The 1265 /// destination is known to be aligned to \arg DstAlign bytes. 1266 /// 1267 /// This safely handles the case when the src type is larger than the 1268 /// destination type; the upper bits of the src will be lost. 1269 static void CreateCoercedStore(llvm::Value *Src, 1270 Address Dst, 1271 bool DstIsVolatile, 1272 CodeGenFunction &CGF) { 1273 llvm::Type *SrcTy = Src->getType(); 1274 llvm::Type *DstTy = Dst.getType()->getElementType(); 1275 if (SrcTy == DstTy) { 1276 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1277 return; 1278 } 1279 1280 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1281 1282 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1283 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1284 DstTy = Dst.getType()->getElementType(); 1285 } 1286 1287 // If the source and destination are integer or pointer types, just do an 1288 // extension or truncation to the desired type. 1289 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1290 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1291 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1292 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1293 return; 1294 } 1295 1296 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1297 1298 // If store is legal, just bitcast the src pointer. 1299 if (SrcSize <= DstSize) { 1300 Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy)); 1301 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1302 } else { 1303 // Otherwise do coercion through memory. This is stupid, but 1304 // simple. 1305 1306 // Generally SrcSize is never greater than DstSize, since this means we are 1307 // losing bits. However, this can happen in cases where the structure has 1308 // additional padding, for example due to a user specified alignment. 1309 // 1310 // FIXME: Assert that we aren't truncating non-padding bits when have access 1311 // to that information. 1312 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1313 CGF.Builder.CreateStore(Src, Tmp); 1314 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1315 Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy); 1316 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1317 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1318 false); 1319 } 1320 } 1321 1322 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1323 const ABIArgInfo &info) { 1324 if (unsigned offset = info.getDirectOffset()) { 1325 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1326 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1327 CharUnits::fromQuantity(offset)); 1328 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1329 } 1330 return addr; 1331 } 1332 1333 namespace { 1334 1335 /// Encapsulates information about the way function arguments from 1336 /// CGFunctionInfo should be passed to actual LLVM IR function. 1337 class ClangToLLVMArgMapping { 1338 static const unsigned InvalidIndex = ~0U; 1339 unsigned InallocaArgNo; 1340 unsigned SRetArgNo; 1341 unsigned TotalIRArgs; 1342 1343 /// Arguments of LLVM IR function corresponding to single Clang argument. 1344 struct IRArgs { 1345 unsigned PaddingArgIndex; 1346 // Argument is expanded to IR arguments at positions 1347 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1348 unsigned FirstArgIndex; 1349 unsigned NumberOfArgs; 1350 1351 IRArgs() 1352 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1353 NumberOfArgs(0) {} 1354 }; 1355 1356 SmallVector<IRArgs, 8> ArgInfo; 1357 1358 public: 1359 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1360 bool OnlyRequiredArgs = false) 1361 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1362 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1363 construct(Context, FI, OnlyRequiredArgs); 1364 } 1365 1366 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1367 unsigned getInallocaArgNo() const { 1368 assert(hasInallocaArg()); 1369 return InallocaArgNo; 1370 } 1371 1372 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1373 unsigned getSRetArgNo() const { 1374 assert(hasSRetArg()); 1375 return SRetArgNo; 1376 } 1377 1378 unsigned totalIRArgs() const { return TotalIRArgs; } 1379 1380 bool hasPaddingArg(unsigned ArgNo) const { 1381 assert(ArgNo < ArgInfo.size()); 1382 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1383 } 1384 unsigned getPaddingArgNo(unsigned ArgNo) const { 1385 assert(hasPaddingArg(ArgNo)); 1386 return ArgInfo[ArgNo].PaddingArgIndex; 1387 } 1388 1389 /// Returns index of first IR argument corresponding to ArgNo, and their 1390 /// quantity. 1391 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1392 assert(ArgNo < ArgInfo.size()); 1393 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1394 ArgInfo[ArgNo].NumberOfArgs); 1395 } 1396 1397 private: 1398 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1399 bool OnlyRequiredArgs); 1400 }; 1401 1402 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1403 const CGFunctionInfo &FI, 1404 bool OnlyRequiredArgs) { 1405 unsigned IRArgNo = 0; 1406 bool SwapThisWithSRet = false; 1407 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1408 1409 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1410 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1411 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1412 } 1413 1414 unsigned ArgNo = 0; 1415 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1416 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1417 ++I, ++ArgNo) { 1418 assert(I != FI.arg_end()); 1419 QualType ArgType = I->type; 1420 const ABIArgInfo &AI = I->info; 1421 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1422 auto &IRArgs = ArgInfo[ArgNo]; 1423 1424 if (AI.getPaddingType()) 1425 IRArgs.PaddingArgIndex = IRArgNo++; 1426 1427 switch (AI.getKind()) { 1428 case ABIArgInfo::Extend: 1429 case ABIArgInfo::Direct: { 1430 // FIXME: handle sseregparm someday... 1431 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1432 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1433 IRArgs.NumberOfArgs = STy->getNumElements(); 1434 } else { 1435 IRArgs.NumberOfArgs = 1; 1436 } 1437 break; 1438 } 1439 case ABIArgInfo::Indirect: 1440 IRArgs.NumberOfArgs = 1; 1441 break; 1442 case ABIArgInfo::Ignore: 1443 case ABIArgInfo::InAlloca: 1444 // ignore and inalloca doesn't have matching LLVM parameters. 1445 IRArgs.NumberOfArgs = 0; 1446 break; 1447 case ABIArgInfo::CoerceAndExpand: 1448 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1449 break; 1450 case ABIArgInfo::Expand: 1451 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1452 break; 1453 } 1454 1455 if (IRArgs.NumberOfArgs > 0) { 1456 IRArgs.FirstArgIndex = IRArgNo; 1457 IRArgNo += IRArgs.NumberOfArgs; 1458 } 1459 1460 // Skip over the sret parameter when it comes second. We already handled it 1461 // above. 1462 if (IRArgNo == 1 && SwapThisWithSRet) 1463 IRArgNo++; 1464 } 1465 assert(ArgNo == ArgInfo.size()); 1466 1467 if (FI.usesInAlloca()) 1468 InallocaArgNo = IRArgNo++; 1469 1470 TotalIRArgs = IRArgNo; 1471 } 1472 } // namespace 1473 1474 /***/ 1475 1476 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1477 return FI.getReturnInfo().isIndirect(); 1478 } 1479 1480 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1481 return ReturnTypeUsesSRet(FI) && 1482 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1483 } 1484 1485 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1486 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1487 switch (BT->getKind()) { 1488 default: 1489 return false; 1490 case BuiltinType::Float: 1491 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1492 case BuiltinType::Double: 1493 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1494 case BuiltinType::LongDouble: 1495 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1496 } 1497 } 1498 1499 return false; 1500 } 1501 1502 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1503 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1504 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1505 if (BT->getKind() == BuiltinType::LongDouble) 1506 return getTarget().useObjCFP2RetForComplexLongDouble(); 1507 } 1508 } 1509 1510 return false; 1511 } 1512 1513 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1514 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1515 return GetFunctionType(FI); 1516 } 1517 1518 llvm::FunctionType * 1519 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1520 1521 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1522 (void)Inserted; 1523 assert(Inserted && "Recursively being processed?"); 1524 1525 llvm::Type *resultType = nullptr; 1526 const ABIArgInfo &retAI = FI.getReturnInfo(); 1527 switch (retAI.getKind()) { 1528 case ABIArgInfo::Expand: 1529 llvm_unreachable("Invalid ABI kind for return argument"); 1530 1531 case ABIArgInfo::Extend: 1532 case ABIArgInfo::Direct: 1533 resultType = retAI.getCoerceToType(); 1534 break; 1535 1536 case ABIArgInfo::InAlloca: 1537 if (retAI.getInAllocaSRet()) { 1538 // sret things on win32 aren't void, they return the sret pointer. 1539 QualType ret = FI.getReturnType(); 1540 llvm::Type *ty = ConvertType(ret); 1541 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1542 resultType = llvm::PointerType::get(ty, addressSpace); 1543 } else { 1544 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1545 } 1546 break; 1547 1548 case ABIArgInfo::Indirect: 1549 case ABIArgInfo::Ignore: 1550 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1551 break; 1552 1553 case ABIArgInfo::CoerceAndExpand: 1554 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1555 break; 1556 } 1557 1558 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1559 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1560 1561 // Add type for sret argument. 1562 if (IRFunctionArgs.hasSRetArg()) { 1563 QualType Ret = FI.getReturnType(); 1564 llvm::Type *Ty = ConvertType(Ret); 1565 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1566 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1567 llvm::PointerType::get(Ty, AddressSpace); 1568 } 1569 1570 // Add type for inalloca argument. 1571 if (IRFunctionArgs.hasInallocaArg()) { 1572 auto ArgStruct = FI.getArgStruct(); 1573 assert(ArgStruct); 1574 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1575 } 1576 1577 // Add in all of the required arguments. 1578 unsigned ArgNo = 0; 1579 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1580 ie = it + FI.getNumRequiredArgs(); 1581 for (; it != ie; ++it, ++ArgNo) { 1582 const ABIArgInfo &ArgInfo = it->info; 1583 1584 // Insert a padding type to ensure proper alignment. 1585 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1586 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1587 ArgInfo.getPaddingType(); 1588 1589 unsigned FirstIRArg, NumIRArgs; 1590 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1591 1592 switch (ArgInfo.getKind()) { 1593 case ABIArgInfo::Ignore: 1594 case ABIArgInfo::InAlloca: 1595 assert(NumIRArgs == 0); 1596 break; 1597 1598 case ABIArgInfo::Indirect: { 1599 assert(NumIRArgs == 1); 1600 // indirect arguments are always on the stack, which is alloca addr space. 1601 llvm::Type *LTy = ConvertTypeForMem(it->type); 1602 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1603 CGM.getDataLayout().getAllocaAddrSpace()); 1604 break; 1605 } 1606 1607 case ABIArgInfo::Extend: 1608 case ABIArgInfo::Direct: { 1609 // Fast-isel and the optimizer generally like scalar values better than 1610 // FCAs, so we flatten them if this is safe to do for this argument. 1611 llvm::Type *argType = ArgInfo.getCoerceToType(); 1612 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1613 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1614 assert(NumIRArgs == st->getNumElements()); 1615 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1616 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1617 } else { 1618 assert(NumIRArgs == 1); 1619 ArgTypes[FirstIRArg] = argType; 1620 } 1621 break; 1622 } 1623 1624 case ABIArgInfo::CoerceAndExpand: { 1625 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1626 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1627 *ArgTypesIter++ = EltTy; 1628 } 1629 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1630 break; 1631 } 1632 1633 case ABIArgInfo::Expand: 1634 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1635 getExpandedTypes(it->type, ArgTypesIter); 1636 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1637 break; 1638 } 1639 } 1640 1641 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1642 assert(Erased && "Not in set?"); 1643 1644 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1645 } 1646 1647 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1648 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1649 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1650 1651 if (!isFuncTypeConvertible(FPT)) 1652 return llvm::StructType::get(getLLVMContext()); 1653 1654 const CGFunctionInfo *Info; 1655 if (isa<CXXDestructorDecl>(MD)) 1656 Info = 1657 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1658 else 1659 Info = &arrangeCXXMethodDeclaration(MD); 1660 return GetFunctionType(*Info); 1661 } 1662 1663 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1664 llvm::AttrBuilder &FuncAttrs, 1665 const FunctionProtoType *FPT) { 1666 if (!FPT) 1667 return; 1668 1669 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1670 FPT->isNothrow(Ctx)) 1671 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1672 } 1673 1674 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1675 bool AttrOnCallSite, 1676 llvm::AttrBuilder &FuncAttrs) { 1677 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1678 if (!HasOptnone) { 1679 if (CodeGenOpts.OptimizeSize) 1680 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1681 if (CodeGenOpts.OptimizeSize == 2) 1682 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1683 } 1684 1685 if (CodeGenOpts.DisableRedZone) 1686 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1687 if (CodeGenOpts.NoImplicitFloat) 1688 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1689 1690 if (AttrOnCallSite) { 1691 // Attributes that should go on the call site only. 1692 if (!CodeGenOpts.SimplifyLibCalls || 1693 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1694 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1695 if (!CodeGenOpts.TrapFuncName.empty()) 1696 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1697 } else { 1698 // Attributes that should go on the function, but not the call site. 1699 if (!CodeGenOpts.DisableFPElim) { 1700 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1701 } else if (CodeGenOpts.OmitLeafFramePointer) { 1702 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1703 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1704 } else { 1705 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1706 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1707 } 1708 1709 FuncAttrs.addAttribute("less-precise-fpmad", 1710 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1711 1712 if (!CodeGenOpts.FPDenormalMode.empty()) 1713 FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); 1714 1715 FuncAttrs.addAttribute("no-trapping-math", 1716 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1717 1718 // TODO: Are these all needed? 1719 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1720 FuncAttrs.addAttribute("no-infs-fp-math", 1721 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1722 FuncAttrs.addAttribute("no-nans-fp-math", 1723 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1724 FuncAttrs.addAttribute("unsafe-fp-math", 1725 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1726 FuncAttrs.addAttribute("use-soft-float", 1727 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1728 FuncAttrs.addAttribute("stack-protector-buffer-size", 1729 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1730 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1731 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1732 FuncAttrs.addAttribute( 1733 "correctly-rounded-divide-sqrt-fp-math", 1734 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1735 1736 // TODO: Reciprocal estimate codegen options should apply to instructions? 1737 std::vector<std::string> &Recips = getTarget().getTargetOpts().Reciprocals; 1738 if (!Recips.empty()) 1739 FuncAttrs.addAttribute("reciprocal-estimates", 1740 llvm::join(Recips.begin(), Recips.end(), ",")); 1741 1742 if (CodeGenOpts.StackRealignment) 1743 FuncAttrs.addAttribute("stackrealign"); 1744 if (CodeGenOpts.Backchain) 1745 FuncAttrs.addAttribute("backchain"); 1746 } 1747 1748 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1749 // Conservatively, mark all functions and calls in CUDA as convergent 1750 // (meaning, they may call an intrinsically convergent op, such as 1751 // __syncthreads(), and so can't have certain optimizations applied around 1752 // them). LLVM will remove this attribute where it safely can. 1753 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1754 1755 // Exceptions aren't supported in CUDA device code. 1756 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1757 1758 // Respect -fcuda-flush-denormals-to-zero. 1759 if (getLangOpts().CUDADeviceFlushDenormalsToZero) 1760 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1761 } 1762 } 1763 1764 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1765 llvm::AttrBuilder FuncAttrs; 1766 ConstructDefaultFnAttrList(F.getName(), 1767 F.hasFnAttribute(llvm::Attribute::OptimizeNone), 1768 /* AttrOnCallsite = */ false, FuncAttrs); 1769 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1770 } 1771 1772 void CodeGenModule::ConstructAttributeList( 1773 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1774 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1775 llvm::AttrBuilder FuncAttrs; 1776 llvm::AttrBuilder RetAttrs; 1777 1778 CallingConv = FI.getEffectiveCallingConvention(); 1779 if (FI.isNoReturn()) 1780 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1781 1782 // If we have information about the function prototype, we can learn 1783 // attributes form there. 1784 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1785 CalleeInfo.getCalleeFunctionProtoType()); 1786 1787 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 1788 1789 bool HasOptnone = false; 1790 // FIXME: handle sseregparm someday... 1791 if (TargetDecl) { 1792 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1793 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1794 if (TargetDecl->hasAttr<NoThrowAttr>()) 1795 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1796 if (TargetDecl->hasAttr<NoReturnAttr>()) 1797 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1798 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1799 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1800 if (TargetDecl->hasAttr<ConvergentAttr>()) 1801 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1802 1803 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1804 AddAttributesFromFunctionProtoType( 1805 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1806 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1807 // These attributes are not inherited by overloads. 1808 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1809 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1810 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1811 } 1812 1813 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1814 if (TargetDecl->hasAttr<ConstAttr>()) { 1815 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1816 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1817 } else if (TargetDecl->hasAttr<PureAttr>()) { 1818 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1819 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1820 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1821 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1822 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1823 } 1824 if (TargetDecl->hasAttr<RestrictAttr>()) 1825 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1826 if (TargetDecl->hasAttr<ReturnsNonNullAttr>()) 1827 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1828 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1829 FuncAttrs.addAttribute("no_caller_saved_registers"); 1830 1831 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1832 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1833 Optional<unsigned> NumElemsParam; 1834 // alloc_size args are base-1, 0 means not present. 1835 if (unsigned N = AllocSize->getNumElemsParam()) 1836 NumElemsParam = N - 1; 1837 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam() - 1, 1838 NumElemsParam); 1839 } 1840 } 1841 1842 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1843 1844 if (CodeGenOpts.EnableSegmentedStacks && 1845 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1846 FuncAttrs.addAttribute("split-stack"); 1847 1848 if (!AttrOnCallSite) { 1849 bool DisableTailCalls = 1850 CodeGenOpts.DisableTailCalls || 1851 (TargetDecl && (TargetDecl->hasAttr<DisableTailCallsAttr>() || 1852 TargetDecl->hasAttr<AnyX86InterruptAttr>())); 1853 FuncAttrs.addAttribute("disable-tail-calls", 1854 llvm::toStringRef(DisableTailCalls)); 1855 1856 // Add target-cpu and target-features attributes to functions. If 1857 // we have a decl for the function and it has a target attribute then 1858 // parse that and add it to the feature set. 1859 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1860 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 1861 if (FD && FD->hasAttr<TargetAttr>()) { 1862 llvm::StringMap<bool> FeatureMap; 1863 getFunctionFeatureMap(FeatureMap, FD); 1864 1865 // Produce the canonical string for this set of features. 1866 std::vector<std::string> Features; 1867 for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(), 1868 ie = FeatureMap.end(); 1869 it != ie; ++it) 1870 Features.push_back((it->second ? "+" : "-") + it->first().str()); 1871 1872 // Now add the target-cpu and target-features to the function. 1873 // While we populated the feature map above, we still need to 1874 // get and parse the target attribute so we can get the cpu for 1875 // the function. 1876 const auto *TD = FD->getAttr<TargetAttr>(); 1877 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1878 if (ParsedAttr.second != "") 1879 TargetCPU = ParsedAttr.second; 1880 if (TargetCPU != "") 1881 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1882 if (!Features.empty()) { 1883 std::sort(Features.begin(), Features.end()); 1884 FuncAttrs.addAttribute( 1885 "target-features", 1886 llvm::join(Features.begin(), Features.end(), ",")); 1887 } 1888 } else { 1889 // Otherwise just add the existing target cpu and target features to the 1890 // function. 1891 std::vector<std::string> &Features = getTarget().getTargetOpts().Features; 1892 if (TargetCPU != "") 1893 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1894 if (!Features.empty()) { 1895 std::sort(Features.begin(), Features.end()); 1896 FuncAttrs.addAttribute( 1897 "target-features", 1898 llvm::join(Features.begin(), Features.end(), ",")); 1899 } 1900 } 1901 } 1902 1903 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1904 1905 QualType RetTy = FI.getReturnType(); 1906 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1907 switch (RetAI.getKind()) { 1908 case ABIArgInfo::Extend: 1909 if (RetTy->hasSignedIntegerRepresentation()) 1910 RetAttrs.addAttribute(llvm::Attribute::SExt); 1911 else if (RetTy->hasUnsignedIntegerRepresentation()) 1912 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1913 // FALL THROUGH 1914 case ABIArgInfo::Direct: 1915 if (RetAI.getInReg()) 1916 RetAttrs.addAttribute(llvm::Attribute::InReg); 1917 break; 1918 case ABIArgInfo::Ignore: 1919 break; 1920 1921 case ABIArgInfo::InAlloca: 1922 case ABIArgInfo::Indirect: { 1923 // inalloca and sret disable readnone and readonly 1924 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1925 .removeAttribute(llvm::Attribute::ReadNone); 1926 break; 1927 } 1928 1929 case ABIArgInfo::CoerceAndExpand: 1930 break; 1931 1932 case ABIArgInfo::Expand: 1933 llvm_unreachable("Invalid ABI kind for return argument"); 1934 } 1935 1936 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1937 QualType PTy = RefTy->getPointeeType(); 1938 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1939 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1940 .getQuantity()); 1941 else if (getContext().getTargetAddressSpace(PTy) == 0) 1942 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1943 } 1944 1945 bool hasUsedSRet = false; 1946 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 1947 1948 // Attach attributes to sret. 1949 if (IRFunctionArgs.hasSRetArg()) { 1950 llvm::AttrBuilder SRETAttrs; 1951 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1952 hasUsedSRet = true; 1953 if (RetAI.getInReg()) 1954 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1955 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 1956 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 1957 } 1958 1959 // Attach attributes to inalloca argument. 1960 if (IRFunctionArgs.hasInallocaArg()) { 1961 llvm::AttrBuilder Attrs; 1962 Attrs.addAttribute(llvm::Attribute::InAlloca); 1963 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 1964 llvm::AttributeSet::get(getLLVMContext(), Attrs); 1965 } 1966 1967 unsigned ArgNo = 0; 1968 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 1969 E = FI.arg_end(); 1970 I != E; ++I, ++ArgNo) { 1971 QualType ParamType = I->type; 1972 const ABIArgInfo &AI = I->info; 1973 llvm::AttrBuilder Attrs; 1974 1975 // Add attribute for padding argument, if necessary. 1976 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 1977 if (AI.getPaddingInReg()) { 1978 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1979 llvm::AttributeSet::get( 1980 getLLVMContext(), 1981 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 1982 } 1983 } 1984 1985 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1986 // have the corresponding parameter variable. It doesn't make 1987 // sense to do it here because parameters are so messed up. 1988 switch (AI.getKind()) { 1989 case ABIArgInfo::Extend: 1990 if (ParamType->isSignedIntegerOrEnumerationType()) 1991 Attrs.addAttribute(llvm::Attribute::SExt); 1992 else if (ParamType->isUnsignedIntegerOrEnumerationType()) { 1993 if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType)) 1994 Attrs.addAttribute(llvm::Attribute::SExt); 1995 else 1996 Attrs.addAttribute(llvm::Attribute::ZExt); 1997 } 1998 // FALL THROUGH 1999 case ABIArgInfo::Direct: 2000 if (ArgNo == 0 && FI.isChainCall()) 2001 Attrs.addAttribute(llvm::Attribute::Nest); 2002 else if (AI.getInReg()) 2003 Attrs.addAttribute(llvm::Attribute::InReg); 2004 break; 2005 2006 case ABIArgInfo::Indirect: { 2007 if (AI.getInReg()) 2008 Attrs.addAttribute(llvm::Attribute::InReg); 2009 2010 if (AI.getIndirectByVal()) 2011 Attrs.addAttribute(llvm::Attribute::ByVal); 2012 2013 CharUnits Align = AI.getIndirectAlign(); 2014 2015 // In a byval argument, it is important that the required 2016 // alignment of the type is honored, as LLVM might be creating a 2017 // *new* stack object, and needs to know what alignment to give 2018 // it. (Sometimes it can deduce a sensible alignment on its own, 2019 // but not if clang decides it must emit a packed struct, or the 2020 // user specifies increased alignment requirements.) 2021 // 2022 // This is different from indirect *not* byval, where the object 2023 // exists already, and the align attribute is purely 2024 // informative. 2025 assert(!Align.isZero()); 2026 2027 // For now, only add this when we have a byval argument. 2028 // TODO: be less lazy about updating test cases. 2029 if (AI.getIndirectByVal()) 2030 Attrs.addAlignmentAttr(Align.getQuantity()); 2031 2032 // byval disables readnone and readonly. 2033 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2034 .removeAttribute(llvm::Attribute::ReadNone); 2035 break; 2036 } 2037 case ABIArgInfo::Ignore: 2038 case ABIArgInfo::Expand: 2039 case ABIArgInfo::CoerceAndExpand: 2040 break; 2041 2042 case ABIArgInfo::InAlloca: 2043 // inalloca disables readnone and readonly. 2044 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2045 .removeAttribute(llvm::Attribute::ReadNone); 2046 continue; 2047 } 2048 2049 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2050 QualType PTy = RefTy->getPointeeType(); 2051 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2052 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2053 .getQuantity()); 2054 else if (getContext().getTargetAddressSpace(PTy) == 0) 2055 Attrs.addAttribute(llvm::Attribute::NonNull); 2056 } 2057 2058 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2059 case ParameterABI::Ordinary: 2060 break; 2061 2062 case ParameterABI::SwiftIndirectResult: { 2063 // Add 'sret' if we haven't already used it for something, but 2064 // only if the result is void. 2065 if (!hasUsedSRet && RetTy->isVoidType()) { 2066 Attrs.addAttribute(llvm::Attribute::StructRet); 2067 hasUsedSRet = true; 2068 } 2069 2070 // Add 'noalias' in either case. 2071 Attrs.addAttribute(llvm::Attribute::NoAlias); 2072 2073 // Add 'dereferenceable' and 'alignment'. 2074 auto PTy = ParamType->getPointeeType(); 2075 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2076 auto info = getContext().getTypeInfoInChars(PTy); 2077 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2078 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 2079 info.second.getQuantity())); 2080 } 2081 break; 2082 } 2083 2084 case ParameterABI::SwiftErrorResult: 2085 Attrs.addAttribute(llvm::Attribute::SwiftError); 2086 break; 2087 2088 case ParameterABI::SwiftContext: 2089 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2090 break; 2091 } 2092 2093 if (Attrs.hasAttributes()) { 2094 unsigned FirstIRArg, NumIRArgs; 2095 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2096 for (unsigned i = 0; i < NumIRArgs; i++) 2097 ArgAttrs[FirstIRArg + i] = 2098 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2099 } 2100 } 2101 assert(ArgNo == FI.arg_size()); 2102 2103 AttrList = llvm::AttributeList::get( 2104 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2105 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2106 } 2107 2108 /// An argument came in as a promoted argument; demote it back to its 2109 /// declared type. 2110 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2111 const VarDecl *var, 2112 llvm::Value *value) { 2113 llvm::Type *varType = CGF.ConvertType(var->getType()); 2114 2115 // This can happen with promotions that actually don't change the 2116 // underlying type, like the enum promotions. 2117 if (value->getType() == varType) return value; 2118 2119 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2120 && "unexpected promotion type"); 2121 2122 if (isa<llvm::IntegerType>(varType)) 2123 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2124 2125 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2126 } 2127 2128 /// Returns the attribute (either parameter attribute, or function 2129 /// attribute), which declares argument ArgNo to be non-null. 2130 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2131 QualType ArgType, unsigned ArgNo) { 2132 // FIXME: __attribute__((nonnull)) can also be applied to: 2133 // - references to pointers, where the pointee is known to be 2134 // nonnull (apparently a Clang extension) 2135 // - transparent unions containing pointers 2136 // In the former case, LLVM IR cannot represent the constraint. In 2137 // the latter case, we have no guarantee that the transparent union 2138 // is in fact passed as a pointer. 2139 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2140 return nullptr; 2141 // First, check attribute on parameter itself. 2142 if (PVD) { 2143 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2144 return ParmNNAttr; 2145 } 2146 // Check function attributes. 2147 if (!FD) 2148 return nullptr; 2149 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2150 if (NNAttr->isNonNull(ArgNo)) 2151 return NNAttr; 2152 } 2153 return nullptr; 2154 } 2155 2156 namespace { 2157 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2158 Address Temp; 2159 Address Arg; 2160 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2161 void Emit(CodeGenFunction &CGF, Flags flags) override { 2162 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2163 CGF.Builder.CreateStore(errorValue, Arg); 2164 } 2165 }; 2166 } 2167 2168 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2169 llvm::Function *Fn, 2170 const FunctionArgList &Args) { 2171 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2172 // Naked functions don't have prologues. 2173 return; 2174 2175 // If this is an implicit-return-zero function, go ahead and 2176 // initialize the return value. TODO: it might be nice to have 2177 // a more general mechanism for this that didn't require synthesized 2178 // return statements. 2179 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2180 if (FD->hasImplicitReturnZero()) { 2181 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2182 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2183 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2184 Builder.CreateStore(Zero, ReturnValue); 2185 } 2186 } 2187 2188 // FIXME: We no longer need the types from FunctionArgList; lift up and 2189 // simplify. 2190 2191 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2192 // Flattened function arguments. 2193 SmallVector<llvm::Value *, 16> FnArgs; 2194 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2195 for (auto &Arg : Fn->args()) { 2196 FnArgs.push_back(&Arg); 2197 } 2198 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2199 2200 // If we're using inalloca, all the memory arguments are GEPs off of the last 2201 // parameter, which is a pointer to the complete memory area. 2202 Address ArgStruct = Address::invalid(); 2203 const llvm::StructLayout *ArgStructLayout = nullptr; 2204 if (IRFunctionArgs.hasInallocaArg()) { 2205 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 2206 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2207 FI.getArgStructAlignment()); 2208 2209 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2210 } 2211 2212 // Name the struct return parameter. 2213 if (IRFunctionArgs.hasSRetArg()) { 2214 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2215 AI->setName("agg.result"); 2216 AI->addAttr(llvm::Attribute::NoAlias); 2217 } 2218 2219 // Track if we received the parameter as a pointer (indirect, byval, or 2220 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2221 // into a local alloca for us. 2222 SmallVector<ParamValue, 16> ArgVals; 2223 ArgVals.reserve(Args.size()); 2224 2225 // Create a pointer value for every parameter declaration. This usually 2226 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2227 // any cleanups or do anything that might unwind. We do that separately, so 2228 // we can push the cleanups in the correct order for the ABI. 2229 assert(FI.arg_size() == Args.size() && 2230 "Mismatch between function signature & arguments."); 2231 unsigned ArgNo = 0; 2232 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2233 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2234 i != e; ++i, ++info_it, ++ArgNo) { 2235 const VarDecl *Arg = *i; 2236 QualType Ty = info_it->type; 2237 const ABIArgInfo &ArgI = info_it->info; 2238 2239 bool isPromoted = 2240 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2241 2242 unsigned FirstIRArg, NumIRArgs; 2243 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2244 2245 switch (ArgI.getKind()) { 2246 case ABIArgInfo::InAlloca: { 2247 assert(NumIRArgs == 0); 2248 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2249 CharUnits FieldOffset = 2250 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 2251 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 2252 Arg->getName()); 2253 ArgVals.push_back(ParamValue::forIndirect(V)); 2254 break; 2255 } 2256 2257 case ABIArgInfo::Indirect: { 2258 assert(NumIRArgs == 1); 2259 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2260 2261 if (!hasScalarEvaluationKind(Ty)) { 2262 // Aggregates and complex variables are accessed by reference. All we 2263 // need to do is realign the value, if requested. 2264 Address V = ParamAddr; 2265 if (ArgI.getIndirectRealign()) { 2266 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2267 2268 // Copy from the incoming argument pointer to the temporary with the 2269 // appropriate alignment. 2270 // 2271 // FIXME: We should have a common utility for generating an aggregate 2272 // copy. 2273 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2274 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2275 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2276 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2277 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2278 V = AlignedTemp; 2279 } 2280 ArgVals.push_back(ParamValue::forIndirect(V)); 2281 } else { 2282 // Load scalar value from indirect argument. 2283 llvm::Value *V = 2284 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart()); 2285 2286 if (isPromoted) 2287 V = emitArgumentDemotion(*this, Arg, V); 2288 ArgVals.push_back(ParamValue::forDirect(V)); 2289 } 2290 break; 2291 } 2292 2293 case ABIArgInfo::Extend: 2294 case ABIArgInfo::Direct: { 2295 2296 // If we have the trivial case, handle it with no muss and fuss. 2297 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2298 ArgI.getCoerceToType() == ConvertType(Ty) && 2299 ArgI.getDirectOffset() == 0) { 2300 assert(NumIRArgs == 1); 2301 llvm::Value *V = FnArgs[FirstIRArg]; 2302 auto AI = cast<llvm::Argument>(V); 2303 2304 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2305 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2306 PVD->getFunctionScopeIndex())) 2307 AI->addAttr(llvm::Attribute::NonNull); 2308 2309 QualType OTy = PVD->getOriginalType(); 2310 if (const auto *ArrTy = 2311 getContext().getAsConstantArrayType(OTy)) { 2312 // A C99 array parameter declaration with the static keyword also 2313 // indicates dereferenceability, and if the size is constant we can 2314 // use the dereferenceable attribute (which requires the size in 2315 // bytes). 2316 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2317 QualType ETy = ArrTy->getElementType(); 2318 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2319 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2320 ArrSize) { 2321 llvm::AttrBuilder Attrs; 2322 Attrs.addDereferenceableAttr( 2323 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2324 AI->addAttrs(Attrs); 2325 } else if (getContext().getTargetAddressSpace(ETy) == 0) { 2326 AI->addAttr(llvm::Attribute::NonNull); 2327 } 2328 } 2329 } else if (const auto *ArrTy = 2330 getContext().getAsVariableArrayType(OTy)) { 2331 // For C99 VLAs with the static keyword, we don't know the size so 2332 // we can't use the dereferenceable attribute, but in addrspace(0) 2333 // we know that it must be nonnull. 2334 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2335 !getContext().getTargetAddressSpace(ArrTy->getElementType())) 2336 AI->addAttr(llvm::Attribute::NonNull); 2337 } 2338 2339 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2340 if (!AVAttr) 2341 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2342 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2343 if (AVAttr) { 2344 llvm::Value *AlignmentValue = 2345 EmitScalarExpr(AVAttr->getAlignment()); 2346 llvm::ConstantInt *AlignmentCI = 2347 cast<llvm::ConstantInt>(AlignmentValue); 2348 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), 2349 +llvm::Value::MaximumAlignment); 2350 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2351 } 2352 } 2353 2354 if (Arg->getType().isRestrictQualified()) 2355 AI->addAttr(llvm::Attribute::NoAlias); 2356 2357 // LLVM expects swifterror parameters to be used in very restricted 2358 // ways. Copy the value into a less-restricted temporary. 2359 if (FI.getExtParameterInfo(ArgNo).getABI() 2360 == ParameterABI::SwiftErrorResult) { 2361 QualType pointeeTy = Ty->getPointeeType(); 2362 assert(pointeeTy->isPointerType()); 2363 Address temp = 2364 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2365 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2366 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2367 Builder.CreateStore(incomingErrorValue, temp); 2368 V = temp.getPointer(); 2369 2370 // Push a cleanup to copy the value back at the end of the function. 2371 // The convention does not guarantee that the value will be written 2372 // back if the function exits with an unwind exception. 2373 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2374 } 2375 2376 // Ensure the argument is the correct type. 2377 if (V->getType() != ArgI.getCoerceToType()) 2378 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2379 2380 if (isPromoted) 2381 V = emitArgumentDemotion(*this, Arg, V); 2382 2383 // Because of merging of function types from multiple decls it is 2384 // possible for the type of an argument to not match the corresponding 2385 // type in the function type. Since we are codegening the callee 2386 // in here, add a cast to the argument type. 2387 llvm::Type *LTy = ConvertType(Arg->getType()); 2388 if (V->getType() != LTy) 2389 V = Builder.CreateBitCast(V, LTy); 2390 2391 ArgVals.push_back(ParamValue::forDirect(V)); 2392 break; 2393 } 2394 2395 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2396 Arg->getName()); 2397 2398 // Pointer to store into. 2399 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2400 2401 // Fast-isel and the optimizer generally like scalar values better than 2402 // FCAs, so we flatten them if this is safe to do for this argument. 2403 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2404 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2405 STy->getNumElements() > 1) { 2406 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2407 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2408 llvm::Type *DstTy = Ptr.getElementType(); 2409 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2410 2411 Address AddrToStoreInto = Address::invalid(); 2412 if (SrcSize <= DstSize) { 2413 AddrToStoreInto = 2414 Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 2415 } else { 2416 AddrToStoreInto = 2417 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2418 } 2419 2420 assert(STy->getNumElements() == NumIRArgs); 2421 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2422 auto AI = FnArgs[FirstIRArg + i]; 2423 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2424 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2425 Address EltPtr = 2426 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2427 Builder.CreateStore(AI, EltPtr); 2428 } 2429 2430 if (SrcSize > DstSize) { 2431 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2432 } 2433 2434 } else { 2435 // Simple case, just do a coerced store of the argument into the alloca. 2436 assert(NumIRArgs == 1); 2437 auto AI = FnArgs[FirstIRArg]; 2438 AI->setName(Arg->getName() + ".coerce"); 2439 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2440 } 2441 2442 // Match to what EmitParmDecl is expecting for this type. 2443 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2444 llvm::Value *V = 2445 EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart()); 2446 if (isPromoted) 2447 V = emitArgumentDemotion(*this, Arg, V); 2448 ArgVals.push_back(ParamValue::forDirect(V)); 2449 } else { 2450 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2451 } 2452 break; 2453 } 2454 2455 case ABIArgInfo::CoerceAndExpand: { 2456 // Reconstruct into a temporary. 2457 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2458 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2459 2460 auto coercionType = ArgI.getCoerceAndExpandType(); 2461 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2462 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2463 2464 unsigned argIndex = FirstIRArg; 2465 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2466 llvm::Type *eltType = coercionType->getElementType(i); 2467 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2468 continue; 2469 2470 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); 2471 auto elt = FnArgs[argIndex++]; 2472 Builder.CreateStore(elt, eltAddr); 2473 } 2474 assert(argIndex == FirstIRArg + NumIRArgs); 2475 break; 2476 } 2477 2478 case ABIArgInfo::Expand: { 2479 // If this structure was expanded into multiple arguments then 2480 // we need to create a temporary and reconstruct it from the 2481 // arguments. 2482 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2483 LValue LV = MakeAddrLValue(Alloca, Ty); 2484 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2485 2486 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2487 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2488 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2489 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2490 auto AI = FnArgs[FirstIRArg + i]; 2491 AI->setName(Arg->getName() + "." + Twine(i)); 2492 } 2493 break; 2494 } 2495 2496 case ABIArgInfo::Ignore: 2497 assert(NumIRArgs == 0); 2498 // Initialize the local variable appropriately. 2499 if (!hasScalarEvaluationKind(Ty)) { 2500 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2501 } else { 2502 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2503 ArgVals.push_back(ParamValue::forDirect(U)); 2504 } 2505 break; 2506 } 2507 } 2508 2509 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2510 for (int I = Args.size() - 1; I >= 0; --I) 2511 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2512 } else { 2513 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2514 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2515 } 2516 } 2517 2518 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2519 while (insn->use_empty()) { 2520 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2521 if (!bitcast) return; 2522 2523 // This is "safe" because we would have used a ConstantExpr otherwise. 2524 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2525 bitcast->eraseFromParent(); 2526 } 2527 } 2528 2529 /// Try to emit a fused autorelease of a return result. 2530 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2531 llvm::Value *result) { 2532 // We must be immediately followed the cast. 2533 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2534 if (BB->empty()) return nullptr; 2535 if (&BB->back() != result) return nullptr; 2536 2537 llvm::Type *resultType = result->getType(); 2538 2539 // result is in a BasicBlock and is therefore an Instruction. 2540 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2541 2542 SmallVector<llvm::Instruction *, 4> InstsToKill; 2543 2544 // Look for: 2545 // %generator = bitcast %type1* %generator2 to %type2* 2546 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2547 // We would have emitted this as a constant if the operand weren't 2548 // an Instruction. 2549 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2550 2551 // Require the generator to be immediately followed by the cast. 2552 if (generator->getNextNode() != bitcast) 2553 return nullptr; 2554 2555 InstsToKill.push_back(bitcast); 2556 } 2557 2558 // Look for: 2559 // %generator = call i8* @objc_retain(i8* %originalResult) 2560 // or 2561 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2562 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2563 if (!call) return nullptr; 2564 2565 bool doRetainAutorelease; 2566 2567 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2568 doRetainAutorelease = true; 2569 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2570 .objc_retainAutoreleasedReturnValue) { 2571 doRetainAutorelease = false; 2572 2573 // If we emitted an assembly marker for this call (and the 2574 // ARCEntrypoints field should have been set if so), go looking 2575 // for that call. If we can't find it, we can't do this 2576 // optimization. But it should always be the immediately previous 2577 // instruction, unless we needed bitcasts around the call. 2578 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2579 llvm::Instruction *prev = call->getPrevNode(); 2580 assert(prev); 2581 if (isa<llvm::BitCastInst>(prev)) { 2582 prev = prev->getPrevNode(); 2583 assert(prev); 2584 } 2585 assert(isa<llvm::CallInst>(prev)); 2586 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2587 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2588 InstsToKill.push_back(prev); 2589 } 2590 } else { 2591 return nullptr; 2592 } 2593 2594 result = call->getArgOperand(0); 2595 InstsToKill.push_back(call); 2596 2597 // Keep killing bitcasts, for sanity. Note that we no longer care 2598 // about precise ordering as long as there's exactly one use. 2599 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2600 if (!bitcast->hasOneUse()) break; 2601 InstsToKill.push_back(bitcast); 2602 result = bitcast->getOperand(0); 2603 } 2604 2605 // Delete all the unnecessary instructions, from latest to earliest. 2606 for (auto *I : InstsToKill) 2607 I->eraseFromParent(); 2608 2609 // Do the fused retain/autorelease if we were asked to. 2610 if (doRetainAutorelease) 2611 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2612 2613 // Cast back to the result type. 2614 return CGF.Builder.CreateBitCast(result, resultType); 2615 } 2616 2617 /// If this is a +1 of the value of an immutable 'self', remove it. 2618 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2619 llvm::Value *result) { 2620 // This is only applicable to a method with an immutable 'self'. 2621 const ObjCMethodDecl *method = 2622 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2623 if (!method) return nullptr; 2624 const VarDecl *self = method->getSelfDecl(); 2625 if (!self->getType().isConstQualified()) return nullptr; 2626 2627 // Look for a retain call. 2628 llvm::CallInst *retainCall = 2629 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2630 if (!retainCall || 2631 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2632 return nullptr; 2633 2634 // Look for an ordinary load of 'self'. 2635 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2636 llvm::LoadInst *load = 2637 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2638 if (!load || load->isAtomic() || load->isVolatile() || 2639 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2640 return nullptr; 2641 2642 // Okay! Burn it all down. This relies for correctness on the 2643 // assumption that the retain is emitted as part of the return and 2644 // that thereafter everything is used "linearly". 2645 llvm::Type *resultType = result->getType(); 2646 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2647 assert(retainCall->use_empty()); 2648 retainCall->eraseFromParent(); 2649 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2650 2651 return CGF.Builder.CreateBitCast(load, resultType); 2652 } 2653 2654 /// Emit an ARC autorelease of the result of a function. 2655 /// 2656 /// \return the value to actually return from the function 2657 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2658 llvm::Value *result) { 2659 // If we're returning 'self', kill the initial retain. This is a 2660 // heuristic attempt to "encourage correctness" in the really unfortunate 2661 // case where we have a return of self during a dealloc and we desperately 2662 // need to avoid the possible autorelease. 2663 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2664 return self; 2665 2666 // At -O0, try to emit a fused retain/autorelease. 2667 if (CGF.shouldUseFusedARCCalls()) 2668 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2669 return fused; 2670 2671 return CGF.EmitARCAutoreleaseReturnValue(result); 2672 } 2673 2674 /// Heuristically search for a dominating store to the return-value slot. 2675 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2676 // Check if a User is a store which pointerOperand is the ReturnValue. 2677 // We are looking for stores to the ReturnValue, not for stores of the 2678 // ReturnValue to some other location. 2679 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2680 auto *SI = dyn_cast<llvm::StoreInst>(U); 2681 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2682 return nullptr; 2683 // These aren't actually possible for non-coerced returns, and we 2684 // only care about non-coerced returns on this code path. 2685 assert(!SI->isAtomic() && !SI->isVolatile()); 2686 return SI; 2687 }; 2688 // If there are multiple uses of the return-value slot, just check 2689 // for something immediately preceding the IP. Sometimes this can 2690 // happen with how we generate implicit-returns; it can also happen 2691 // with noreturn cleanups. 2692 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2693 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2694 if (IP->empty()) return nullptr; 2695 llvm::Instruction *I = &IP->back(); 2696 2697 // Skip lifetime markers 2698 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2699 IE = IP->rend(); 2700 II != IE; ++II) { 2701 if (llvm::IntrinsicInst *Intrinsic = 2702 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2703 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2704 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2705 ++II; 2706 if (II == IE) 2707 break; 2708 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2709 continue; 2710 } 2711 } 2712 I = &*II; 2713 break; 2714 } 2715 2716 return GetStoreIfValid(I); 2717 } 2718 2719 llvm::StoreInst *store = 2720 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2721 if (!store) return nullptr; 2722 2723 // Now do a first-and-dirty dominance check: just walk up the 2724 // single-predecessors chain from the current insertion point. 2725 llvm::BasicBlock *StoreBB = store->getParent(); 2726 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2727 while (IP != StoreBB) { 2728 if (!(IP = IP->getSinglePredecessor())) 2729 return nullptr; 2730 } 2731 2732 // Okay, the store's basic block dominates the insertion point; we 2733 // can do our thing. 2734 return store; 2735 } 2736 2737 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2738 bool EmitRetDbgLoc, 2739 SourceLocation EndLoc) { 2740 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2741 // Naked functions don't have epilogues. 2742 Builder.CreateUnreachable(); 2743 return; 2744 } 2745 2746 // Functions with no result always return void. 2747 if (!ReturnValue.isValid()) { 2748 Builder.CreateRetVoid(); 2749 return; 2750 } 2751 2752 llvm::DebugLoc RetDbgLoc; 2753 llvm::Value *RV = nullptr; 2754 QualType RetTy = FI.getReturnType(); 2755 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2756 2757 switch (RetAI.getKind()) { 2758 case ABIArgInfo::InAlloca: 2759 // Aggregrates get evaluated directly into the destination. Sometimes we 2760 // need to return the sret value in a register, though. 2761 assert(hasAggregateEvaluationKind(RetTy)); 2762 if (RetAI.getInAllocaSRet()) { 2763 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2764 --EI; 2765 llvm::Value *ArgStruct = &*EI; 2766 llvm::Value *SRet = Builder.CreateStructGEP( 2767 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2768 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2769 } 2770 break; 2771 2772 case ABIArgInfo::Indirect: { 2773 auto AI = CurFn->arg_begin(); 2774 if (RetAI.isSRetAfterThis()) 2775 ++AI; 2776 switch (getEvaluationKind(RetTy)) { 2777 case TEK_Complex: { 2778 ComplexPairTy RT = 2779 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2780 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2781 /*isInit*/ true); 2782 break; 2783 } 2784 case TEK_Aggregate: 2785 // Do nothing; aggregrates get evaluated directly into the destination. 2786 break; 2787 case TEK_Scalar: 2788 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2789 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2790 /*isInit*/ true); 2791 break; 2792 } 2793 break; 2794 } 2795 2796 case ABIArgInfo::Extend: 2797 case ABIArgInfo::Direct: 2798 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2799 RetAI.getDirectOffset() == 0) { 2800 // The internal return value temp always will have pointer-to-return-type 2801 // type, just do a load. 2802 2803 // If there is a dominating store to ReturnValue, we can elide 2804 // the load, zap the store, and usually zap the alloca. 2805 if (llvm::StoreInst *SI = 2806 findDominatingStoreToReturnValue(*this)) { 2807 // Reuse the debug location from the store unless there is 2808 // cleanup code to be emitted between the store and return 2809 // instruction. 2810 if (EmitRetDbgLoc && !AutoreleaseResult) 2811 RetDbgLoc = SI->getDebugLoc(); 2812 // Get the stored value and nuke the now-dead store. 2813 RV = SI->getValueOperand(); 2814 SI->eraseFromParent(); 2815 2816 // If that was the only use of the return value, nuke it as well now. 2817 auto returnValueInst = ReturnValue.getPointer(); 2818 if (returnValueInst->use_empty()) { 2819 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2820 alloca->eraseFromParent(); 2821 ReturnValue = Address::invalid(); 2822 } 2823 } 2824 2825 // Otherwise, we have to do a simple load. 2826 } else { 2827 RV = Builder.CreateLoad(ReturnValue); 2828 } 2829 } else { 2830 // If the value is offset in memory, apply the offset now. 2831 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2832 2833 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2834 } 2835 2836 // In ARC, end functions that return a retainable type with a call 2837 // to objc_autoreleaseReturnValue. 2838 if (AutoreleaseResult) { 2839 #ifndef NDEBUG 2840 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2841 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2842 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2843 // CurCodeDecl or BlockInfo. 2844 QualType RT; 2845 2846 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2847 RT = FD->getReturnType(); 2848 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2849 RT = MD->getReturnType(); 2850 else if (isa<BlockDecl>(CurCodeDecl)) 2851 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2852 else 2853 llvm_unreachable("Unexpected function/method type"); 2854 2855 assert(getLangOpts().ObjCAutoRefCount && 2856 !FI.isReturnsRetained() && 2857 RT->isObjCRetainableType()); 2858 #endif 2859 RV = emitAutoreleaseOfResult(*this, RV); 2860 } 2861 2862 break; 2863 2864 case ABIArgInfo::Ignore: 2865 break; 2866 2867 case ABIArgInfo::CoerceAndExpand: { 2868 auto coercionType = RetAI.getCoerceAndExpandType(); 2869 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2870 2871 // Load all of the coerced elements out into results. 2872 llvm::SmallVector<llvm::Value*, 4> results; 2873 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2874 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2875 auto coercedEltType = coercionType->getElementType(i); 2876 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2877 continue; 2878 2879 auto eltAddr = Builder.CreateStructGEP(addr, i, layout); 2880 auto elt = Builder.CreateLoad(eltAddr); 2881 results.push_back(elt); 2882 } 2883 2884 // If we have one result, it's the single direct result type. 2885 if (results.size() == 1) { 2886 RV = results[0]; 2887 2888 // Otherwise, we need to make a first-class aggregate. 2889 } else { 2890 // Construct a return type that lacks padding elements. 2891 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2892 2893 RV = llvm::UndefValue::get(returnType); 2894 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2895 RV = Builder.CreateInsertValue(RV, results[i], i); 2896 } 2897 } 2898 break; 2899 } 2900 2901 case ABIArgInfo::Expand: 2902 llvm_unreachable("Invalid ABI kind for return argument"); 2903 } 2904 2905 llvm::Instruction *Ret; 2906 if (RV) { 2907 EmitReturnValueCheck(RV, EndLoc); 2908 Ret = Builder.CreateRet(RV); 2909 } else { 2910 Ret = Builder.CreateRetVoid(); 2911 } 2912 2913 if (RetDbgLoc) 2914 Ret->setDebugLoc(std::move(RetDbgLoc)); 2915 } 2916 2917 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV, 2918 SourceLocation EndLoc) { 2919 // A current decl may not be available when emitting vtable thunks. 2920 if (!CurCodeDecl) 2921 return; 2922 2923 ReturnsNonNullAttr *RetNNAttr = nullptr; 2924 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 2925 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 2926 2927 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 2928 return; 2929 2930 // Prefer the returns_nonnull attribute if it's present. 2931 SourceLocation AttrLoc; 2932 SanitizerMask CheckKind; 2933 SanitizerHandler Handler; 2934 if (RetNNAttr) { 2935 assert(!requiresReturnValueNullabilityCheck() && 2936 "Cannot check nullability and the nonnull attribute"); 2937 AttrLoc = RetNNAttr->getLocation(); 2938 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 2939 Handler = SanitizerHandler::NonnullReturn; 2940 } else { 2941 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 2942 if (auto *TSI = DD->getTypeSourceInfo()) 2943 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) 2944 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 2945 CheckKind = SanitizerKind::NullabilityReturn; 2946 Handler = SanitizerHandler::NullabilityReturn; 2947 } 2948 2949 SanitizerScope SanScope(this); 2950 2951 llvm::BasicBlock *Check = nullptr; 2952 llvm::BasicBlock *NoCheck = nullptr; 2953 if (requiresReturnValueNullabilityCheck()) { 2954 // Before doing the nullability check, make sure that the preconditions for 2955 // the check are met. 2956 Check = createBasicBlock("nullcheck"); 2957 NoCheck = createBasicBlock("no.nullcheck"); 2958 Builder.CreateCondBr(RetValNullabilityPrecondition, Check, NoCheck); 2959 EmitBlock(Check); 2960 } 2961 2962 // Now do the null check. If the returns_nonnull attribute is present, this 2963 // is done unconditionally. 2964 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 2965 llvm::Constant *StaticData[] = { 2966 EmitCheckSourceLocation(EndLoc), EmitCheckSourceLocation(AttrLoc), 2967 }; 2968 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 2969 2970 if (requiresReturnValueNullabilityCheck()) 2971 EmitBlock(NoCheck); 2972 } 2973 2974 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 2975 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2976 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 2977 } 2978 2979 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 2980 QualType Ty) { 2981 // FIXME: Generate IR in one pass, rather than going back and fixing up these 2982 // placeholders. 2983 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 2984 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 2985 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 2986 2987 // FIXME: When we generate this IR in one pass, we shouldn't need 2988 // this win32-specific alignment hack. 2989 CharUnits Align = CharUnits::fromQuantity(4); 2990 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 2991 2992 return AggValueSlot::forAddr(Address(Placeholder, Align), 2993 Ty.getQualifiers(), 2994 AggValueSlot::IsNotDestructed, 2995 AggValueSlot::DoesNotNeedGCBarriers, 2996 AggValueSlot::IsNotAliased); 2997 } 2998 2999 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3000 const VarDecl *param, 3001 SourceLocation loc) { 3002 // StartFunction converted the ABI-lowered parameter(s) into a 3003 // local alloca. We need to turn that into an r-value suitable 3004 // for EmitCall. 3005 Address local = GetAddrOfLocalVar(param); 3006 3007 QualType type = param->getType(); 3008 3009 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 3010 "cannot emit delegate call arguments for inalloca arguments!"); 3011 3012 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3013 // but the argument needs to be the original pointer. 3014 if (type->isReferenceType()) { 3015 args.add(RValue::get(Builder.CreateLoad(local)), type); 3016 3017 // In ARC, move out of consumed arguments so that the release cleanup 3018 // entered by StartFunction doesn't cause an over-release. This isn't 3019 // optimal -O0 code generation, but it should get cleaned up when 3020 // optimization is enabled. This also assumes that delegate calls are 3021 // performed exactly once for a set of arguments, but that should be safe. 3022 } else if (getLangOpts().ObjCAutoRefCount && 3023 param->hasAttr<NSConsumedAttr>() && 3024 type->isObjCRetainableType()) { 3025 llvm::Value *ptr = Builder.CreateLoad(local); 3026 auto null = 3027 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3028 Builder.CreateStore(null, local); 3029 args.add(RValue::get(ptr), type); 3030 3031 // For the most part, we just need to load the alloca, except that 3032 // aggregate r-values are actually pointers to temporaries. 3033 } else { 3034 args.add(convertTempToRValue(local, type, loc), type); 3035 } 3036 } 3037 3038 static bool isProvablyNull(llvm::Value *addr) { 3039 return isa<llvm::ConstantPointerNull>(addr); 3040 } 3041 3042 /// Emit the actual writing-back of a writeback. 3043 static void emitWriteback(CodeGenFunction &CGF, 3044 const CallArgList::Writeback &writeback) { 3045 const LValue &srcLV = writeback.Source; 3046 Address srcAddr = srcLV.getAddress(); 3047 assert(!isProvablyNull(srcAddr.getPointer()) && 3048 "shouldn't have writeback for provably null argument"); 3049 3050 llvm::BasicBlock *contBB = nullptr; 3051 3052 // If the argument wasn't provably non-null, we need to null check 3053 // before doing the store. 3054 bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer()); 3055 if (!provablyNonNull) { 3056 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3057 contBB = CGF.createBasicBlock("icr.done"); 3058 3059 llvm::Value *isNull = 3060 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3061 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3062 CGF.EmitBlock(writebackBB); 3063 } 3064 3065 // Load the value to writeback. 3066 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3067 3068 // Cast it back, in case we're writing an id to a Foo* or something. 3069 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3070 "icr.writeback-cast"); 3071 3072 // Perform the writeback. 3073 3074 // If we have a "to use" value, it's something we need to emit a use 3075 // of. This has to be carefully threaded in: if it's done after the 3076 // release it's potentially undefined behavior (and the optimizer 3077 // will ignore it), and if it happens before the retain then the 3078 // optimizer could move the release there. 3079 if (writeback.ToUse) { 3080 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3081 3082 // Retain the new value. No need to block-copy here: the block's 3083 // being passed up the stack. 3084 value = CGF.EmitARCRetainNonBlock(value); 3085 3086 // Emit the intrinsic use here. 3087 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3088 3089 // Load the old value (primitively). 3090 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3091 3092 // Put the new value in place (primitively). 3093 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3094 3095 // Release the old value. 3096 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3097 3098 // Otherwise, we can just do a normal lvalue store. 3099 } else { 3100 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3101 } 3102 3103 // Jump to the continuation block. 3104 if (!provablyNonNull) 3105 CGF.EmitBlock(contBB); 3106 } 3107 3108 static void emitWritebacks(CodeGenFunction &CGF, 3109 const CallArgList &args) { 3110 for (const auto &I : args.writebacks()) 3111 emitWriteback(CGF, I); 3112 } 3113 3114 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3115 const CallArgList &CallArgs) { 3116 assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()); 3117 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3118 CallArgs.getCleanupsToDeactivate(); 3119 // Iterate in reverse to increase the likelihood of popping the cleanup. 3120 for (const auto &I : llvm::reverse(Cleanups)) { 3121 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3122 I.IsActiveIP->eraseFromParent(); 3123 } 3124 } 3125 3126 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3127 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3128 if (uop->getOpcode() == UO_AddrOf) 3129 return uop->getSubExpr(); 3130 return nullptr; 3131 } 3132 3133 /// Emit an argument that's being passed call-by-writeback. That is, 3134 /// we are passing the address of an __autoreleased temporary; it 3135 /// might be copy-initialized with the current value of the given 3136 /// address, but it will definitely be copied out of after the call. 3137 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3138 const ObjCIndirectCopyRestoreExpr *CRE) { 3139 LValue srcLV; 3140 3141 // Make an optimistic effort to emit the address as an l-value. 3142 // This can fail if the argument expression is more complicated. 3143 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3144 srcLV = CGF.EmitLValue(lvExpr); 3145 3146 // Otherwise, just emit it as a scalar. 3147 } else { 3148 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3149 3150 QualType srcAddrType = 3151 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3152 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3153 } 3154 Address srcAddr = srcLV.getAddress(); 3155 3156 // The dest and src types don't necessarily match in LLVM terms 3157 // because of the crazy ObjC compatibility rules. 3158 3159 llvm::PointerType *destType = 3160 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3161 3162 // If the address is a constant null, just pass the appropriate null. 3163 if (isProvablyNull(srcAddr.getPointer())) { 3164 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3165 CRE->getType()); 3166 return; 3167 } 3168 3169 // Create the temporary. 3170 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3171 CGF.getPointerAlign(), 3172 "icr.temp"); 3173 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3174 // and that cleanup will be conditional if we can't prove that the l-value 3175 // isn't null, so we need to register a dominating point so that the cleanups 3176 // system will make valid IR. 3177 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3178 3179 // Zero-initialize it if we're not doing a copy-initialization. 3180 bool shouldCopy = CRE->shouldCopy(); 3181 if (!shouldCopy) { 3182 llvm::Value *null = 3183 llvm::ConstantPointerNull::get( 3184 cast<llvm::PointerType>(destType->getElementType())); 3185 CGF.Builder.CreateStore(null, temp); 3186 } 3187 3188 llvm::BasicBlock *contBB = nullptr; 3189 llvm::BasicBlock *originBB = nullptr; 3190 3191 // If the address is *not* known to be non-null, we need to switch. 3192 llvm::Value *finalArgument; 3193 3194 bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer()); 3195 if (provablyNonNull) { 3196 finalArgument = temp.getPointer(); 3197 } else { 3198 llvm::Value *isNull = 3199 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3200 3201 finalArgument = CGF.Builder.CreateSelect(isNull, 3202 llvm::ConstantPointerNull::get(destType), 3203 temp.getPointer(), "icr.argument"); 3204 3205 // If we need to copy, then the load has to be conditional, which 3206 // means we need control flow. 3207 if (shouldCopy) { 3208 originBB = CGF.Builder.GetInsertBlock(); 3209 contBB = CGF.createBasicBlock("icr.cont"); 3210 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3211 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3212 CGF.EmitBlock(copyBB); 3213 condEval.begin(CGF); 3214 } 3215 } 3216 3217 llvm::Value *valueToUse = nullptr; 3218 3219 // Perform a copy if necessary. 3220 if (shouldCopy) { 3221 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3222 assert(srcRV.isScalar()); 3223 3224 llvm::Value *src = srcRV.getScalarVal(); 3225 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3226 "icr.cast"); 3227 3228 // Use an ordinary store, not a store-to-lvalue. 3229 CGF.Builder.CreateStore(src, temp); 3230 3231 // If optimization is enabled, and the value was held in a 3232 // __strong variable, we need to tell the optimizer that this 3233 // value has to stay alive until we're doing the store back. 3234 // This is because the temporary is effectively unretained, 3235 // and so otherwise we can violate the high-level semantics. 3236 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3237 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3238 valueToUse = src; 3239 } 3240 } 3241 3242 // Finish the control flow if we needed it. 3243 if (shouldCopy && !provablyNonNull) { 3244 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3245 CGF.EmitBlock(contBB); 3246 3247 // Make a phi for the value to intrinsically use. 3248 if (valueToUse) { 3249 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3250 "icr.to-use"); 3251 phiToUse->addIncoming(valueToUse, copyBB); 3252 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3253 originBB); 3254 valueToUse = phiToUse; 3255 } 3256 3257 condEval.end(CGF); 3258 } 3259 3260 args.addWriteback(srcLV, temp, valueToUse); 3261 args.add(RValue::get(finalArgument), CRE->getType()); 3262 } 3263 3264 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3265 assert(!StackBase); 3266 3267 // Save the stack. 3268 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3269 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3270 } 3271 3272 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3273 if (StackBase) { 3274 // Restore the stack after the call. 3275 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3276 CGF.Builder.CreateCall(F, StackBase); 3277 } 3278 } 3279 3280 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3281 SourceLocation ArgLoc, 3282 AbstractCallee AC, 3283 unsigned ParmNum) { 3284 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3285 SanOpts.has(SanitizerKind::NullabilityArg))) 3286 return; 3287 3288 // The param decl may be missing in a variadic function. 3289 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3290 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3291 3292 // Prefer the nonnull attribute if it's present. 3293 const NonNullAttr *NNAttr = nullptr; 3294 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3295 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3296 3297 bool CanCheckNullability = false; 3298 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3299 auto Nullability = PVD->getType()->getNullability(getContext()); 3300 CanCheckNullability = Nullability && 3301 *Nullability == NullabilityKind::NonNull && 3302 PVD->getTypeSourceInfo(); 3303 } 3304 3305 if (!NNAttr && !CanCheckNullability) 3306 return; 3307 3308 SourceLocation AttrLoc; 3309 SanitizerMask CheckKind; 3310 SanitizerHandler Handler; 3311 if (NNAttr) { 3312 AttrLoc = NNAttr->getLocation(); 3313 CheckKind = SanitizerKind::NonnullAttribute; 3314 Handler = SanitizerHandler::NonnullArg; 3315 } else { 3316 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3317 CheckKind = SanitizerKind::NullabilityArg; 3318 Handler = SanitizerHandler::NullabilityArg; 3319 } 3320 3321 SanitizerScope SanScope(this); 3322 assert(RV.isScalar()); 3323 llvm::Value *V = RV.getScalarVal(); 3324 llvm::Value *Cond = 3325 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3326 llvm::Constant *StaticData[] = { 3327 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3328 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3329 }; 3330 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3331 } 3332 3333 void CodeGenFunction::EmitCallArgs( 3334 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3335 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3336 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3337 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3338 3339 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3340 // because arguments are destroyed left to right in the callee. As a special 3341 // case, there are certain language constructs that require left-to-right 3342 // evaluation, and in those cases we consider the evaluation order requirement 3343 // to trump the "destruction order is reverse construction order" guarantee. 3344 bool LeftToRight = 3345 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3346 ? Order == EvaluationOrder::ForceLeftToRight 3347 : Order != EvaluationOrder::ForceRightToLeft; 3348 3349 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3350 RValue EmittedArg) { 3351 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3352 return; 3353 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3354 if (PS == nullptr) 3355 return; 3356 3357 const auto &Context = getContext(); 3358 auto SizeTy = Context.getSizeType(); 3359 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3360 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3361 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3362 EmittedArg.getScalarVal()); 3363 Args.add(RValue::get(V), SizeTy); 3364 // If we're emitting args in reverse, be sure to do so with 3365 // pass_object_size, as well. 3366 if (!LeftToRight) 3367 std::swap(Args.back(), *(&Args.back() - 1)); 3368 }; 3369 3370 // Insert a stack save if we're going to need any inalloca args. 3371 bool HasInAllocaArgs = false; 3372 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3373 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3374 I != E && !HasInAllocaArgs; ++I) 3375 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3376 if (HasInAllocaArgs) { 3377 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3378 Args.allocateArgumentMemory(*this); 3379 } 3380 } 3381 3382 // Evaluate each argument in the appropriate order. 3383 size_t CallArgsStart = Args.size(); 3384 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3385 unsigned Idx = LeftToRight ? I : E - I - 1; 3386 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3387 unsigned InitialArgSize = Args.size(); 3388 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3389 // In particular, we depend on it being the last arg in Args, and the 3390 // objectsize bits depend on there only being one arg if !LeftToRight. 3391 assert(InitialArgSize + 1 == Args.size() && 3392 "The code below depends on only adding one arg per EmitCallArg"); 3393 (void)InitialArgSize; 3394 RValue RVArg = Args.back().RV; 3395 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3396 ParamsToSkip + Idx); 3397 // @llvm.objectsize should never have side-effects and shouldn't need 3398 // destruction/cleanups, so we can safely "emit" it after its arg, 3399 // regardless of right-to-leftness 3400 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3401 } 3402 3403 if (!LeftToRight) { 3404 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3405 // IR function. 3406 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3407 } 3408 } 3409 3410 namespace { 3411 3412 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3413 DestroyUnpassedArg(Address Addr, QualType Ty) 3414 : Addr(Addr), Ty(Ty) {} 3415 3416 Address Addr; 3417 QualType Ty; 3418 3419 void Emit(CodeGenFunction &CGF, Flags flags) override { 3420 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3421 assert(!Dtor->isTrivial()); 3422 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3423 /*Delegating=*/false, Addr); 3424 } 3425 }; 3426 3427 struct DisableDebugLocationUpdates { 3428 CodeGenFunction &CGF; 3429 bool disabledDebugInfo; 3430 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3431 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3432 CGF.disableDebugInfo(); 3433 } 3434 ~DisableDebugLocationUpdates() { 3435 if (disabledDebugInfo) 3436 CGF.enableDebugInfo(); 3437 } 3438 }; 3439 3440 } // end anonymous namespace 3441 3442 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3443 QualType type) { 3444 DisableDebugLocationUpdates Dis(*this, E); 3445 if (const ObjCIndirectCopyRestoreExpr *CRE 3446 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3447 assert(getLangOpts().ObjCAutoRefCount); 3448 assert(getContext().hasSameUnqualifiedType(E->getType(), type)); 3449 return emitWritebackArg(*this, args, CRE); 3450 } 3451 3452 assert(type->isReferenceType() == E->isGLValue() && 3453 "reference binding to unmaterialized r-value!"); 3454 3455 if (E->isGLValue()) { 3456 assert(E->getObjectKind() == OK_Ordinary); 3457 return args.add(EmitReferenceBindingToExpr(E), type); 3458 } 3459 3460 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3461 3462 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3463 // However, we still have to push an EH-only cleanup in case we unwind before 3464 // we make it to the call. 3465 if (HasAggregateEvalKind && 3466 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3467 // If we're using inalloca, use the argument memory. Otherwise, use a 3468 // temporary. 3469 AggValueSlot Slot; 3470 if (args.isUsingInAlloca()) 3471 Slot = createPlaceholderSlot(*this, type); 3472 else 3473 Slot = CreateAggTemp(type, "agg.tmp"); 3474 3475 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3476 bool DestroyedInCallee = 3477 RD && RD->hasNonTrivialDestructor() && 3478 CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default; 3479 if (DestroyedInCallee) 3480 Slot.setExternallyDestructed(); 3481 3482 EmitAggExpr(E, Slot); 3483 RValue RV = Slot.asRValue(); 3484 args.add(RV, type); 3485 3486 if (DestroyedInCallee) { 3487 // Create a no-op GEP between the placeholder and the cleanup so we can 3488 // RAUW it successfully. It also serves as a marker of the first 3489 // instruction where the cleanup is active. 3490 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3491 type); 3492 // This unreachable is a temporary marker which will be removed later. 3493 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3494 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3495 } 3496 return; 3497 } 3498 3499 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3500 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3501 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3502 assert(L.isSimple()); 3503 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 3504 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 3505 } else { 3506 // We can't represent a misaligned lvalue in the CallArgList, so copy 3507 // to an aligned temporary now. 3508 Address tmp = CreateMemTemp(type); 3509 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile()); 3510 args.add(RValue::getAggregate(tmp), type); 3511 } 3512 return; 3513 } 3514 3515 args.add(EmitAnyExprToTemp(E), type); 3516 } 3517 3518 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3519 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3520 // implicitly widens null pointer constants that are arguments to varargs 3521 // functions to pointer-sized ints. 3522 if (!getTarget().getTriple().isOSWindows()) 3523 return Arg->getType(); 3524 3525 if (Arg->getType()->isIntegerType() && 3526 getContext().getTypeSize(Arg->getType()) < 3527 getContext().getTargetInfo().getPointerWidth(0) && 3528 Arg->isNullPointerConstant(getContext(), 3529 Expr::NPC_ValueDependentIsNotNull)) { 3530 return getContext().getIntPtrType(); 3531 } 3532 3533 return Arg->getType(); 3534 } 3535 3536 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3537 // optimizer it can aggressively ignore unwind edges. 3538 void 3539 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3540 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3541 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3542 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3543 CGM.getNoObjCARCExceptionsMetadata()); 3544 } 3545 3546 /// Emits a call to the given no-arguments nounwind runtime function. 3547 llvm::CallInst * 3548 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3549 const llvm::Twine &name) { 3550 return EmitNounwindRuntimeCall(callee, None, name); 3551 } 3552 3553 /// Emits a call to the given nounwind runtime function. 3554 llvm::CallInst * 3555 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3556 ArrayRef<llvm::Value*> args, 3557 const llvm::Twine &name) { 3558 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3559 call->setDoesNotThrow(); 3560 return call; 3561 } 3562 3563 /// Emits a simple call (never an invoke) to the given no-arguments 3564 /// runtime function. 3565 llvm::CallInst * 3566 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3567 const llvm::Twine &name) { 3568 return EmitRuntimeCall(callee, None, name); 3569 } 3570 3571 // Calls which may throw must have operand bundles indicating which funclet 3572 // they are nested within. 3573 static void 3574 getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad, 3575 SmallVectorImpl<llvm::OperandBundleDef> &BundleList) { 3576 // There is no need for a funclet operand bundle if we aren't inside a 3577 // funclet. 3578 if (!CurrentFuncletPad) 3579 return; 3580 3581 // Skip intrinsics which cannot throw. 3582 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3583 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3584 return; 3585 3586 BundleList.emplace_back("funclet", CurrentFuncletPad); 3587 } 3588 3589 /// Emits a simple call (never an invoke) to the given runtime function. 3590 llvm::CallInst * 3591 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3592 ArrayRef<llvm::Value*> args, 3593 const llvm::Twine &name) { 3594 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3595 getBundlesForFunclet(callee, CurrentFuncletPad, BundleList); 3596 3597 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name); 3598 call->setCallingConv(getRuntimeCC()); 3599 return call; 3600 } 3601 3602 /// Emits a call or invoke to the given noreturn runtime function. 3603 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3604 ArrayRef<llvm::Value*> args) { 3605 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3606 getBundlesForFunclet(callee, CurrentFuncletPad, BundleList); 3607 3608 if (getInvokeDest()) { 3609 llvm::InvokeInst *invoke = 3610 Builder.CreateInvoke(callee, 3611 getUnreachableBlock(), 3612 getInvokeDest(), 3613 args, 3614 BundleList); 3615 invoke->setDoesNotReturn(); 3616 invoke->setCallingConv(getRuntimeCC()); 3617 } else { 3618 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3619 call->setDoesNotReturn(); 3620 call->setCallingConv(getRuntimeCC()); 3621 Builder.CreateUnreachable(); 3622 } 3623 } 3624 3625 /// Emits a call or invoke instruction to the given nullary runtime function. 3626 llvm::CallSite 3627 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3628 const Twine &name) { 3629 return EmitRuntimeCallOrInvoke(callee, None, name); 3630 } 3631 3632 /// Emits a call or invoke instruction to the given runtime function. 3633 llvm::CallSite 3634 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3635 ArrayRef<llvm::Value*> args, 3636 const Twine &name) { 3637 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3638 callSite.setCallingConv(getRuntimeCC()); 3639 return callSite; 3640 } 3641 3642 /// Emits a call or invoke instruction to the given function, depending 3643 /// on the current state of the EH stack. 3644 llvm::CallSite 3645 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3646 ArrayRef<llvm::Value *> Args, 3647 const Twine &Name) { 3648 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3649 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3650 getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList); 3651 3652 llvm::Instruction *Inst; 3653 if (!InvokeDest) 3654 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3655 else { 3656 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3657 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3658 Name); 3659 EmitBlock(ContBB); 3660 } 3661 3662 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3663 // optimizer it can aggressively ignore unwind edges. 3664 if (CGM.getLangOpts().ObjCAutoRefCount) 3665 AddObjCARCExceptionMetadata(Inst); 3666 3667 return llvm::CallSite(Inst); 3668 } 3669 3670 /// \brief Store a non-aggregate value to an address to initialize it. For 3671 /// initialization, a non-atomic store will be used. 3672 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src, 3673 LValue Dst) { 3674 if (Src.isScalar()) 3675 CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true); 3676 else 3677 CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true); 3678 } 3679 3680 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3681 llvm::Value *New) { 3682 DeferredReplacements.push_back(std::make_pair(Old, New)); 3683 } 3684 3685 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3686 const CGCallee &Callee, 3687 ReturnValueSlot ReturnValue, 3688 const CallArgList &CallArgs, 3689 llvm::Instruction **callOrInvoke) { 3690 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3691 3692 assert(Callee.isOrdinary()); 3693 3694 // Handle struct-return functions by passing a pointer to the 3695 // location that we would like to return into. 3696 QualType RetTy = CallInfo.getReturnType(); 3697 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3698 3699 llvm::FunctionType *IRFuncTy = Callee.getFunctionType(); 3700 3701 // 1. Set up the arguments. 3702 3703 // If we're using inalloca, insert the allocation after the stack save. 3704 // FIXME: Do this earlier rather than hacking it in here! 3705 Address ArgMemory = Address::invalid(); 3706 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3707 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3708 const llvm::DataLayout &DL = CGM.getDataLayout(); 3709 ArgMemoryLayout = DL.getStructLayout(ArgStruct); 3710 llvm::Instruction *IP = CallArgs.getStackBase(); 3711 llvm::AllocaInst *AI; 3712 if (IP) { 3713 IP = IP->getNextNode(); 3714 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 3715 "argmem", IP); 3716 } else { 3717 AI = CreateTempAlloca(ArgStruct, "argmem"); 3718 } 3719 auto Align = CallInfo.getArgStructAlignment(); 3720 AI->setAlignment(Align.getQuantity()); 3721 AI->setUsedWithInAlloca(true); 3722 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3723 ArgMemory = Address(AI, Align); 3724 } 3725 3726 // Helper function to drill into the inalloca allocation. 3727 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3728 auto FieldOffset = 3729 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3730 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3731 }; 3732 3733 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3734 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3735 3736 // If the call returns a temporary with struct return, create a temporary 3737 // alloca to hold the result, unless one is given to us. 3738 Address SRetPtr = Address::invalid(); 3739 size_t UnusedReturnSize = 0; 3740 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3741 if (!ReturnValue.isNull()) { 3742 SRetPtr = ReturnValue.getValue(); 3743 } else { 3744 SRetPtr = CreateMemTemp(RetTy); 3745 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3746 uint64_t size = 3747 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3748 if (EmitLifetimeStart(size, SRetPtr.getPointer())) 3749 UnusedReturnSize = size; 3750 } 3751 } 3752 if (IRFunctionArgs.hasSRetArg()) { 3753 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3754 } else if (RetAI.isInAlloca()) { 3755 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3756 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3757 } 3758 } 3759 3760 Address swiftErrorTemp = Address::invalid(); 3761 Address swiftErrorArg = Address::invalid(); 3762 3763 // Translate all of the arguments as necessary to match the IR lowering. 3764 assert(CallInfo.arg_size() == CallArgs.size() && 3765 "Mismatch between function signature & arguments."); 3766 unsigned ArgNo = 0; 3767 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3768 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3769 I != E; ++I, ++info_it, ++ArgNo) { 3770 const ABIArgInfo &ArgInfo = info_it->info; 3771 RValue RV = I->RV; 3772 3773 // Insert a padding argument to ensure proper alignment. 3774 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3775 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3776 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3777 3778 unsigned FirstIRArg, NumIRArgs; 3779 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3780 3781 switch (ArgInfo.getKind()) { 3782 case ABIArgInfo::InAlloca: { 3783 assert(NumIRArgs == 0); 3784 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3785 if (RV.isAggregate()) { 3786 // Replace the placeholder with the appropriate argument slot GEP. 3787 llvm::Instruction *Placeholder = 3788 cast<llvm::Instruction>(RV.getAggregatePointer()); 3789 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3790 Builder.SetInsertPoint(Placeholder); 3791 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3792 Builder.restoreIP(IP); 3793 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3794 } else { 3795 // Store the RValue into the argument struct. 3796 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3797 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3798 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3799 // There are some cases where a trivial bitcast is not avoidable. The 3800 // definition of a type later in a translation unit may change it's type 3801 // from {}* to (%struct.foo*)*. 3802 if (Addr.getType() != MemType) 3803 Addr = Builder.CreateBitCast(Addr, MemType); 3804 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3805 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3806 } 3807 break; 3808 } 3809 3810 case ABIArgInfo::Indirect: { 3811 assert(NumIRArgs == 1); 3812 if (RV.isScalar() || RV.isComplex()) { 3813 // Make a temporary alloca to pass the argument. 3814 Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3815 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3816 3817 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3818 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3819 } else { 3820 // We want to avoid creating an unnecessary temporary+copy here; 3821 // however, we need one in three cases: 3822 // 1. If the argument is not byval, and we are required to copy the 3823 // source. (This case doesn't occur on any common architecture.) 3824 // 2. If the argument is byval, RV is not sufficiently aligned, and 3825 // we cannot force it to be sufficiently aligned. 3826 // 3. If the argument is byval, but RV is located in an address space 3827 // different than that of the argument (0). 3828 Address Addr = RV.getAggregateAddress(); 3829 CharUnits Align = ArgInfo.getIndirectAlign(); 3830 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3831 const unsigned RVAddrSpace = Addr.getType()->getAddressSpace(); 3832 const unsigned ArgAddrSpace = 3833 (FirstIRArg < IRFuncTy->getNumParams() 3834 ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() 3835 : 0); 3836 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 3837 (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align && 3838 llvm::getOrEnforceKnownAlignment(Addr.getPointer(), 3839 Align.getQuantity(), *TD) 3840 < Align.getQuantity()) || 3841 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 3842 // Create an aligned temporary, and copy to it. 3843 Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3844 IRCallArgs[FirstIRArg] = AI.getPointer(); 3845 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 3846 } else { 3847 // Skip the extra memcpy call. 3848 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3849 } 3850 } 3851 break; 3852 } 3853 3854 case ABIArgInfo::Ignore: 3855 assert(NumIRArgs == 0); 3856 break; 3857 3858 case ABIArgInfo::Extend: 3859 case ABIArgInfo::Direct: { 3860 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3861 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3862 ArgInfo.getDirectOffset() == 0) { 3863 assert(NumIRArgs == 1); 3864 llvm::Value *V; 3865 if (RV.isScalar()) 3866 V = RV.getScalarVal(); 3867 else 3868 V = Builder.CreateLoad(RV.getAggregateAddress()); 3869 3870 // Implement swifterror by copying into a new swifterror argument. 3871 // We'll write back in the normal path out of the call. 3872 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 3873 == ParameterABI::SwiftErrorResult) { 3874 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 3875 3876 QualType pointeeTy = I->Ty->getPointeeType(); 3877 swiftErrorArg = 3878 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 3879 3880 swiftErrorTemp = 3881 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 3882 V = swiftErrorTemp.getPointer(); 3883 cast<llvm::AllocaInst>(V)->setSwiftError(true); 3884 3885 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 3886 Builder.CreateStore(errorValue, swiftErrorTemp); 3887 } 3888 3889 // We might have to widen integers, but we should never truncate. 3890 if (ArgInfo.getCoerceToType() != V->getType() && 3891 V->getType()->isIntegerTy()) 3892 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 3893 3894 // If the argument doesn't match, perform a bitcast to coerce it. This 3895 // can happen due to trivial type mismatches. 3896 if (FirstIRArg < IRFuncTy->getNumParams() && 3897 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 3898 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 3899 3900 IRCallArgs[FirstIRArg] = V; 3901 break; 3902 } 3903 3904 // FIXME: Avoid the conversion through memory if possible. 3905 Address Src = Address::invalid(); 3906 if (RV.isScalar() || RV.isComplex()) { 3907 Src = CreateMemTemp(I->Ty, "coerce"); 3908 LValue SrcLV = MakeAddrLValue(Src, I->Ty); 3909 EmitInitStoreOfNonAggregate(*this, RV, SrcLV); 3910 } else { 3911 Src = RV.getAggregateAddress(); 3912 } 3913 3914 // If the value is offset in memory, apply the offset now. 3915 Src = emitAddressAtOffset(*this, Src, ArgInfo); 3916 3917 // Fast-isel and the optimizer generally like scalar values better than 3918 // FCAs, so we flatten them if this is safe to do for this argument. 3919 llvm::StructType *STy = 3920 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 3921 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 3922 llvm::Type *SrcTy = Src.getType()->getElementType(); 3923 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 3924 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 3925 3926 // If the source type is smaller than the destination type of the 3927 // coerce-to logic, copy the source value into a temp alloca the size 3928 // of the destination type to allow loading all of it. The bits past 3929 // the source value are left undef. 3930 if (SrcSize < DstSize) { 3931 Address TempAlloca 3932 = CreateTempAlloca(STy, Src.getAlignment(), 3933 Src.getName() + ".coerce"); 3934 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 3935 Src = TempAlloca; 3936 } else { 3937 Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy)); 3938 } 3939 3940 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 3941 assert(NumIRArgs == STy->getNumElements()); 3942 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3943 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 3944 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 3945 llvm::Value *LI = Builder.CreateLoad(EltPtr); 3946 IRCallArgs[FirstIRArg + i] = LI; 3947 } 3948 } else { 3949 // In the simple case, just pass the coerced loaded value. 3950 assert(NumIRArgs == 1); 3951 IRCallArgs[FirstIRArg] = 3952 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 3953 } 3954 3955 break; 3956 } 3957 3958 case ABIArgInfo::CoerceAndExpand: { 3959 auto coercionType = ArgInfo.getCoerceAndExpandType(); 3960 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 3961 3962 llvm::Value *tempSize = nullptr; 3963 Address addr = Address::invalid(); 3964 if (RV.isAggregate()) { 3965 addr = RV.getAggregateAddress(); 3966 } else { 3967 assert(RV.isScalar()); // complex should always just be direct 3968 3969 llvm::Type *scalarType = RV.getScalarVal()->getType(); 3970 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 3971 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 3972 3973 tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize); 3974 3975 // Materialize to a temporary. 3976 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 3977 CharUnits::fromQuantity(std::max(layout->getAlignment(), 3978 scalarAlign))); 3979 EmitLifetimeStart(scalarSize, addr.getPointer()); 3980 3981 Builder.CreateStore(RV.getScalarVal(), addr); 3982 } 3983 3984 addr = Builder.CreateElementBitCast(addr, coercionType); 3985 3986 unsigned IRArgPos = FirstIRArg; 3987 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3988 llvm::Type *eltType = coercionType->getElementType(i); 3989 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 3990 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 3991 llvm::Value *elt = Builder.CreateLoad(eltAddr); 3992 IRCallArgs[IRArgPos++] = elt; 3993 } 3994 assert(IRArgPos == FirstIRArg + NumIRArgs); 3995 3996 if (tempSize) { 3997 EmitLifetimeEnd(tempSize, addr.getPointer()); 3998 } 3999 4000 break; 4001 } 4002 4003 case ABIArgInfo::Expand: 4004 unsigned IRArgPos = FirstIRArg; 4005 ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos); 4006 assert(IRArgPos == FirstIRArg + NumIRArgs); 4007 break; 4008 } 4009 } 4010 4011 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4012 4013 // If we're using inalloca, set up that argument. 4014 if (ArgMemory.isValid()) { 4015 llvm::Value *Arg = ArgMemory.getPointer(); 4016 if (CallInfo.isVariadic()) { 4017 // When passing non-POD arguments by value to variadic functions, we will 4018 // end up with a variadic prototype and an inalloca call site. In such 4019 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4020 // the callee. 4021 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4022 auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS); 4023 CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy); 4024 } else { 4025 llvm::Type *LastParamTy = 4026 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4027 if (Arg->getType() != LastParamTy) { 4028 #ifndef NDEBUG 4029 // Assert that these structs have equivalent element types. 4030 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4031 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4032 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4033 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4034 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4035 DE = DeclaredTy->element_end(), 4036 FI = FullTy->element_begin(); 4037 DI != DE; ++DI, ++FI) 4038 assert(*DI == *FI); 4039 #endif 4040 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4041 } 4042 } 4043 assert(IRFunctionArgs.hasInallocaArg()); 4044 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4045 } 4046 4047 // 2. Prepare the function pointer. 4048 4049 // If the callee is a bitcast of a non-variadic function to have a 4050 // variadic function pointer type, check to see if we can remove the 4051 // bitcast. This comes up with unprototyped functions. 4052 // 4053 // This makes the IR nicer, but more importantly it ensures that we 4054 // can inline the function at -O0 if it is marked always_inline. 4055 auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* { 4056 llvm::FunctionType *CalleeFT = 4057 cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType()); 4058 if (!CalleeFT->isVarArg()) 4059 return Ptr; 4060 4061 llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr); 4062 if (!CE || CE->getOpcode() != llvm::Instruction::BitCast) 4063 return Ptr; 4064 4065 llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0)); 4066 if (!OrigFn) 4067 return Ptr; 4068 4069 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4070 4071 // If the original type is variadic, or if any of the component types 4072 // disagree, we cannot remove the cast. 4073 if (OrigFT->isVarArg() || 4074 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4075 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4076 return Ptr; 4077 4078 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4079 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4080 return Ptr; 4081 4082 return OrigFn; 4083 }; 4084 CalleePtr = simplifyVariadicCallee(CalleePtr); 4085 4086 // 3. Perform the actual call. 4087 4088 // Deactivate any cleanups that we're supposed to do immediately before 4089 // the call. 4090 if (!CallArgs.getCleanupsToDeactivate().empty()) 4091 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4092 4093 // Assert that the arguments we computed match up. The IR verifier 4094 // will catch this, but this is a common enough source of problems 4095 // during IRGen changes that it's way better for debugging to catch 4096 // it ourselves here. 4097 #ifndef NDEBUG 4098 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4099 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4100 // Inalloca argument can have different type. 4101 if (IRFunctionArgs.hasInallocaArg() && 4102 i == IRFunctionArgs.getInallocaArgNo()) 4103 continue; 4104 if (i < IRFuncTy->getNumParams()) 4105 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4106 } 4107 #endif 4108 4109 // Compute the calling convention and attributes. 4110 unsigned CallingConv; 4111 llvm::AttributeList Attrs; 4112 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4113 Callee.getAbstractInfo(), Attrs, CallingConv, 4114 /*AttrOnCallSite=*/true); 4115 4116 // Apply some call-site-specific attributes. 4117 // TODO: work this into building the attribute set. 4118 4119 // Apply always_inline to all calls within flatten functions. 4120 // FIXME: should this really take priority over __try, below? 4121 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4122 !(Callee.getAbstractInfo().getCalleeDecl() && 4123 Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) { 4124 Attrs = 4125 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4126 llvm::Attribute::AlwaysInline); 4127 } 4128 4129 // Disable inlining inside SEH __try blocks. 4130 if (isSEHTryScope()) { 4131 Attrs = 4132 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4133 llvm::Attribute::NoInline); 4134 } 4135 4136 // Decide whether to use a call or an invoke. 4137 bool CannotThrow; 4138 if (currentFunctionUsesSEHTry()) { 4139 // SEH cares about asynchronous exceptions, so everything can "throw." 4140 CannotThrow = false; 4141 } else if (isCleanupPadScope() && 4142 EHPersonality::get(*this).isMSVCXXPersonality()) { 4143 // The MSVC++ personality will implicitly terminate the program if an 4144 // exception is thrown during a cleanup outside of a try/catch. 4145 // We don't need to model anything in IR to get this behavior. 4146 CannotThrow = true; 4147 } else { 4148 // Otherwise, nounwind call sites will never throw. 4149 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4150 llvm::Attribute::NoUnwind); 4151 } 4152 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4153 4154 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4155 getBundlesForFunclet(CalleePtr, CurrentFuncletPad, BundleList); 4156 4157 // Emit the actual call/invoke instruction. 4158 llvm::CallSite CS; 4159 if (!InvokeDest) { 4160 CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList); 4161 } else { 4162 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4163 CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs, 4164 BundleList); 4165 EmitBlock(Cont); 4166 } 4167 llvm::Instruction *CI = CS.getInstruction(); 4168 if (callOrInvoke) 4169 *callOrInvoke = CI; 4170 4171 // Apply the attributes and calling convention. 4172 CS.setAttributes(Attrs); 4173 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4174 4175 // Apply various metadata. 4176 4177 if (!CI->getType()->isVoidTy()) 4178 CI->setName("call"); 4179 4180 // Insert instrumentation or attach profile metadata at indirect call sites. 4181 // For more details, see the comment before the definition of 4182 // IPVK_IndirectCallTarget in InstrProfData.inc. 4183 if (!CS.getCalledFunction()) 4184 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4185 CI, CalleePtr); 4186 4187 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4188 // optimizer it can aggressively ignore unwind edges. 4189 if (CGM.getLangOpts().ObjCAutoRefCount) 4190 AddObjCARCExceptionMetadata(CI); 4191 4192 // Suppress tail calls if requested. 4193 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4194 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4195 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4196 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4197 } 4198 4199 // 4. Finish the call. 4200 4201 // If the call doesn't return, finish the basic block and clear the 4202 // insertion point; this allows the rest of IRGen to discard 4203 // unreachable code. 4204 if (CS.doesNotReturn()) { 4205 if (UnusedReturnSize) 4206 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 4207 SRetPtr.getPointer()); 4208 4209 Builder.CreateUnreachable(); 4210 Builder.ClearInsertionPoint(); 4211 4212 // FIXME: For now, emit a dummy basic block because expr emitters in 4213 // generally are not ready to handle emitting expressions at unreachable 4214 // points. 4215 EnsureInsertPoint(); 4216 4217 // Return a reasonable RValue. 4218 return GetUndefRValue(RetTy); 4219 } 4220 4221 // Perform the swifterror writeback. 4222 if (swiftErrorTemp.isValid()) { 4223 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4224 Builder.CreateStore(errorResult, swiftErrorArg); 4225 } 4226 4227 // Emit any call-associated writebacks immediately. Arguably this 4228 // should happen after any return-value munging. 4229 if (CallArgs.hasWritebacks()) 4230 emitWritebacks(*this, CallArgs); 4231 4232 // The stack cleanup for inalloca arguments has to run out of the normal 4233 // lexical order, so deactivate it and run it manually here. 4234 CallArgs.freeArgumentMemory(*this); 4235 4236 // Extract the return value. 4237 RValue Ret = [&] { 4238 switch (RetAI.getKind()) { 4239 case ABIArgInfo::CoerceAndExpand: { 4240 auto coercionType = RetAI.getCoerceAndExpandType(); 4241 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4242 4243 Address addr = SRetPtr; 4244 addr = Builder.CreateElementBitCast(addr, coercionType); 4245 4246 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4247 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4248 4249 unsigned unpaddedIndex = 0; 4250 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4251 llvm::Type *eltType = coercionType->getElementType(i); 4252 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4253 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4254 llvm::Value *elt = CI; 4255 if (requiresExtract) 4256 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4257 else 4258 assert(unpaddedIndex == 0); 4259 Builder.CreateStore(elt, eltAddr); 4260 } 4261 // FALLTHROUGH 4262 LLVM_FALLTHROUGH; 4263 } 4264 4265 case ABIArgInfo::InAlloca: 4266 case ABIArgInfo::Indirect: { 4267 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4268 if (UnusedReturnSize) 4269 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 4270 SRetPtr.getPointer()); 4271 return ret; 4272 } 4273 4274 case ABIArgInfo::Ignore: 4275 // If we are ignoring an argument that had a result, make sure to 4276 // construct the appropriate return value for our caller. 4277 return GetUndefRValue(RetTy); 4278 4279 case ABIArgInfo::Extend: 4280 case ABIArgInfo::Direct: { 4281 llvm::Type *RetIRTy = ConvertType(RetTy); 4282 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4283 switch (getEvaluationKind(RetTy)) { 4284 case TEK_Complex: { 4285 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4286 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4287 return RValue::getComplex(std::make_pair(Real, Imag)); 4288 } 4289 case TEK_Aggregate: { 4290 Address DestPtr = ReturnValue.getValue(); 4291 bool DestIsVolatile = ReturnValue.isVolatile(); 4292 4293 if (!DestPtr.isValid()) { 4294 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4295 DestIsVolatile = false; 4296 } 4297 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4298 return RValue::getAggregate(DestPtr); 4299 } 4300 case TEK_Scalar: { 4301 // If the argument doesn't match, perform a bitcast to coerce it. This 4302 // can happen due to trivial type mismatches. 4303 llvm::Value *V = CI; 4304 if (V->getType() != RetIRTy) 4305 V = Builder.CreateBitCast(V, RetIRTy); 4306 return RValue::get(V); 4307 } 4308 } 4309 llvm_unreachable("bad evaluation kind"); 4310 } 4311 4312 Address DestPtr = ReturnValue.getValue(); 4313 bool DestIsVolatile = ReturnValue.isVolatile(); 4314 4315 if (!DestPtr.isValid()) { 4316 DestPtr = CreateMemTemp(RetTy, "coerce"); 4317 DestIsVolatile = false; 4318 } 4319 4320 // If the value is offset in memory, apply the offset now. 4321 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4322 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4323 4324 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4325 } 4326 4327 case ABIArgInfo::Expand: 4328 llvm_unreachable("Invalid ABI kind for return argument"); 4329 } 4330 4331 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4332 } (); 4333 4334 // Emit the assume_aligned check on the return value. 4335 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4336 if (Ret.isScalar() && TargetDecl) { 4337 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4338 llvm::Value *OffsetValue = nullptr; 4339 if (const auto *Offset = AA->getOffset()) 4340 OffsetValue = EmitScalarExpr(Offset); 4341 4342 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4343 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4344 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 4345 OffsetValue); 4346 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { 4347 llvm::Value *ParamVal = 4348 CallArgs[AA->getParamIndex() - 1].RV.getScalarVal(); 4349 EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal); 4350 } 4351 } 4352 4353 return Ret; 4354 } 4355 4356 /* VarArg handling */ 4357 4358 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4359 VAListAddr = VE->isMicrosoftABI() 4360 ? EmitMSVAListRef(VE->getSubExpr()) 4361 : EmitVAListRef(VE->getSubExpr()); 4362 QualType Ty = VE->getType(); 4363 if (VE->isMicrosoftABI()) 4364 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4365 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4366 } 4367