1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/Basic/TargetBuiltins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Assumptions.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/InlineAsm.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/Transforms/Utils/Local.h" 43 using namespace clang; 44 using namespace CodeGen; 45 46 /***/ 47 48 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 49 switch (CC) { 50 default: return llvm::CallingConv::C; 51 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 52 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 53 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 54 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 55 case CC_Win64: return llvm::CallingConv::Win64; 56 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 57 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 58 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 59 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 60 // TODO: Add support for __pascal to LLVM. 61 case CC_X86Pascal: return llvm::CallingConv::C; 62 // TODO: Add support for __vectorcall to LLVM. 63 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 64 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 65 case CC_AArch64SVEPCS: return llvm::CallingConv::AArch64_SVE_VectorCall; 66 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 67 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 68 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 69 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 70 case CC_Swift: return llvm::CallingConv::Swift; 71 case CC_SwiftAsync: return llvm::CallingConv::SwiftTail; 72 } 73 } 74 75 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 76 /// qualification. Either or both of RD and MD may be null. A null RD indicates 77 /// that there is no meaningful 'this' type, and a null MD can occur when 78 /// calling a method pointer. 79 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 80 const CXXMethodDecl *MD) { 81 QualType RecTy; 82 if (RD) 83 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 84 else 85 RecTy = Context.VoidTy; 86 87 if (MD) 88 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 89 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 90 } 91 92 /// Returns the canonical formal type of the given C++ method. 93 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 94 return MD->getType()->getCanonicalTypeUnqualified() 95 .getAs<FunctionProtoType>(); 96 } 97 98 /// Returns the "extra-canonicalized" return type, which discards 99 /// qualifiers on the return type. Codegen doesn't care about them, 100 /// and it makes ABI code a little easier to be able to assume that 101 /// all parameter and return types are top-level unqualified. 102 static CanQualType GetReturnType(QualType RetTy) { 103 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 104 } 105 106 /// Arrange the argument and result information for a value of the given 107 /// unprototyped freestanding function type. 108 const CGFunctionInfo & 109 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 110 // When translating an unprototyped function type, always use a 111 // variadic type. 112 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 113 /*instanceMethod=*/false, 114 /*chainCall=*/false, None, 115 FTNP->getExtInfo(), {}, RequiredArgs(0)); 116 } 117 118 static void addExtParameterInfosForCall( 119 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 120 const FunctionProtoType *proto, 121 unsigned prefixArgs, 122 unsigned totalArgs) { 123 assert(proto->hasExtParameterInfos()); 124 assert(paramInfos.size() <= prefixArgs); 125 assert(proto->getNumParams() + prefixArgs <= totalArgs); 126 127 paramInfos.reserve(totalArgs); 128 129 // Add default infos for any prefix args that don't already have infos. 130 paramInfos.resize(prefixArgs); 131 132 // Add infos for the prototype. 133 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 134 paramInfos.push_back(ParamInfo); 135 // pass_object_size params have no parameter info. 136 if (ParamInfo.hasPassObjectSize()) 137 paramInfos.emplace_back(); 138 } 139 140 assert(paramInfos.size() <= totalArgs && 141 "Did we forget to insert pass_object_size args?"); 142 // Add default infos for the variadic and/or suffix arguments. 143 paramInfos.resize(totalArgs); 144 } 145 146 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 147 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 148 static void appendParameterTypes(const CodeGenTypes &CGT, 149 SmallVectorImpl<CanQualType> &prefix, 150 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 151 CanQual<FunctionProtoType> FPT) { 152 // Fast path: don't touch param info if we don't need to. 153 if (!FPT->hasExtParameterInfos()) { 154 assert(paramInfos.empty() && 155 "We have paramInfos, but the prototype doesn't?"); 156 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 157 return; 158 } 159 160 unsigned PrefixSize = prefix.size(); 161 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 162 // parameters; the only thing that can change this is the presence of 163 // pass_object_size. So, we preallocate for the common case. 164 prefix.reserve(prefix.size() + FPT->getNumParams()); 165 166 auto ExtInfos = FPT->getExtParameterInfos(); 167 assert(ExtInfos.size() == FPT->getNumParams()); 168 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 169 prefix.push_back(FPT->getParamType(I)); 170 if (ExtInfos[I].hasPassObjectSize()) 171 prefix.push_back(CGT.getContext().getSizeType()); 172 } 173 174 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 175 prefix.size()); 176 } 177 178 /// Arrange the LLVM function layout for a value of the given function 179 /// type, on top of any implicit parameters already stored. 180 static const CGFunctionInfo & 181 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 182 SmallVectorImpl<CanQualType> &prefix, 183 CanQual<FunctionProtoType> FTP) { 184 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 185 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 186 // FIXME: Kill copy. 187 appendParameterTypes(CGT, prefix, paramInfos, FTP); 188 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 189 190 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 191 /*chainCall=*/false, prefix, 192 FTP->getExtInfo(), paramInfos, 193 Required); 194 } 195 196 /// Arrange the argument and result information for a value of the 197 /// given freestanding function type. 198 const CGFunctionInfo & 199 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 200 SmallVector<CanQualType, 16> argTypes; 201 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 202 FTP); 203 } 204 205 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D, 206 bool IsWindows) { 207 // Set the appropriate calling convention for the Function. 208 if (D->hasAttr<StdCallAttr>()) 209 return CC_X86StdCall; 210 211 if (D->hasAttr<FastCallAttr>()) 212 return CC_X86FastCall; 213 214 if (D->hasAttr<RegCallAttr>()) 215 return CC_X86RegCall; 216 217 if (D->hasAttr<ThisCallAttr>()) 218 return CC_X86ThisCall; 219 220 if (D->hasAttr<VectorCallAttr>()) 221 return CC_X86VectorCall; 222 223 if (D->hasAttr<PascalAttr>()) 224 return CC_X86Pascal; 225 226 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 227 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 228 229 if (D->hasAttr<AArch64VectorPcsAttr>()) 230 return CC_AArch64VectorCall; 231 232 if (D->hasAttr<AArch64SVEPcsAttr>()) 233 return CC_AArch64SVEPCS; 234 235 if (D->hasAttr<IntelOclBiccAttr>()) 236 return CC_IntelOclBicc; 237 238 if (D->hasAttr<MSABIAttr>()) 239 return IsWindows ? CC_C : CC_Win64; 240 241 if (D->hasAttr<SysVABIAttr>()) 242 return IsWindows ? CC_X86_64SysV : CC_C; 243 244 if (D->hasAttr<PreserveMostAttr>()) 245 return CC_PreserveMost; 246 247 if (D->hasAttr<PreserveAllAttr>()) 248 return CC_PreserveAll; 249 250 return CC_C; 251 } 252 253 /// Arrange the argument and result information for a call to an 254 /// unknown C++ non-static member function of the given abstract type. 255 /// (A null RD means we don't have any meaningful "this" argument type, 256 /// so fall back to a generic pointer type). 257 /// The member function must be an ordinary function, i.e. not a 258 /// constructor or destructor. 259 const CGFunctionInfo & 260 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 261 const FunctionProtoType *FTP, 262 const CXXMethodDecl *MD) { 263 SmallVector<CanQualType, 16> argTypes; 264 265 // Add the 'this' pointer. 266 argTypes.push_back(DeriveThisType(RD, MD)); 267 268 return ::arrangeLLVMFunctionInfo( 269 *this, true, argTypes, 270 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 271 } 272 273 /// Set calling convention for CUDA/HIP kernel. 274 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 275 const FunctionDecl *FD) { 276 if (FD->hasAttr<CUDAGlobalAttr>()) { 277 const FunctionType *FT = FTy->getAs<FunctionType>(); 278 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 279 FTy = FT->getCanonicalTypeUnqualified(); 280 } 281 } 282 283 /// Arrange the argument and result information for a declaration or 284 /// definition of the given C++ non-static member function. The 285 /// member function must be an ordinary function, i.e. not a 286 /// constructor or destructor. 287 const CGFunctionInfo & 288 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 289 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 290 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 291 292 CanQualType FT = GetFormalType(MD).getAs<Type>(); 293 setCUDAKernelCallingConvention(FT, CGM, MD); 294 auto prototype = FT.getAs<FunctionProtoType>(); 295 296 if (MD->isInstance()) { 297 // The abstract case is perfectly fine. 298 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 299 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 300 } 301 302 return arrangeFreeFunctionType(prototype); 303 } 304 305 bool CodeGenTypes::inheritingCtorHasParams( 306 const InheritedConstructor &Inherited, CXXCtorType Type) { 307 // Parameters are unnecessary if we're constructing a base class subobject 308 // and the inherited constructor lives in a virtual base. 309 return Type == Ctor_Complete || 310 !Inherited.getShadowDecl()->constructsVirtualBase() || 311 !Target.getCXXABI().hasConstructorVariants(); 312 } 313 314 const CGFunctionInfo & 315 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 316 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 317 318 SmallVector<CanQualType, 16> argTypes; 319 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 320 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 321 322 bool PassParams = true; 323 324 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 325 // A base class inheriting constructor doesn't get forwarded arguments 326 // needed to construct a virtual base (or base class thereof). 327 if (auto Inherited = CD->getInheritedConstructor()) 328 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 329 } 330 331 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 332 333 // Add the formal parameters. 334 if (PassParams) 335 appendParameterTypes(*this, argTypes, paramInfos, FTP); 336 337 CGCXXABI::AddedStructorArgCounts AddedArgs = 338 TheCXXABI.buildStructorSignature(GD, argTypes); 339 if (!paramInfos.empty()) { 340 // Note: prefix implies after the first param. 341 if (AddedArgs.Prefix) 342 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 343 FunctionProtoType::ExtParameterInfo{}); 344 if (AddedArgs.Suffix) 345 paramInfos.append(AddedArgs.Suffix, 346 FunctionProtoType::ExtParameterInfo{}); 347 } 348 349 RequiredArgs required = 350 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 351 : RequiredArgs::All); 352 353 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 354 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 355 ? argTypes.front() 356 : TheCXXABI.hasMostDerivedReturn(GD) 357 ? CGM.getContext().VoidPtrTy 358 : Context.VoidTy; 359 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 360 /*chainCall=*/false, argTypes, extInfo, 361 paramInfos, required); 362 } 363 364 static SmallVector<CanQualType, 16> 365 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 366 SmallVector<CanQualType, 16> argTypes; 367 for (auto &arg : args) 368 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 369 return argTypes; 370 } 371 372 static SmallVector<CanQualType, 16> 373 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 374 SmallVector<CanQualType, 16> argTypes; 375 for (auto &arg : args) 376 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 377 return argTypes; 378 } 379 380 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 381 getExtParameterInfosForCall(const FunctionProtoType *proto, 382 unsigned prefixArgs, unsigned totalArgs) { 383 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 384 if (proto->hasExtParameterInfos()) { 385 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 386 } 387 return result; 388 } 389 390 /// Arrange a call to a C++ method, passing the given arguments. 391 /// 392 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 393 /// parameter. 394 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 395 /// args. 396 /// PassProtoArgs indicates whether `args` has args for the parameters in the 397 /// given CXXConstructorDecl. 398 const CGFunctionInfo & 399 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 400 const CXXConstructorDecl *D, 401 CXXCtorType CtorKind, 402 unsigned ExtraPrefixArgs, 403 unsigned ExtraSuffixArgs, 404 bool PassProtoArgs) { 405 // FIXME: Kill copy. 406 SmallVector<CanQualType, 16> ArgTypes; 407 for (const auto &Arg : args) 408 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 409 410 // +1 for implicit this, which should always be args[0]. 411 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 412 413 CanQual<FunctionProtoType> FPT = GetFormalType(D); 414 RequiredArgs Required = PassProtoArgs 415 ? RequiredArgs::forPrototypePlus( 416 FPT, TotalPrefixArgs + ExtraSuffixArgs) 417 : RequiredArgs::All; 418 419 GlobalDecl GD(D, CtorKind); 420 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 421 ? ArgTypes.front() 422 : TheCXXABI.hasMostDerivedReturn(GD) 423 ? CGM.getContext().VoidPtrTy 424 : Context.VoidTy; 425 426 FunctionType::ExtInfo Info = FPT->getExtInfo(); 427 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 428 // If the prototype args are elided, we should only have ABI-specific args, 429 // which never have param info. 430 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 431 // ABI-specific suffix arguments are treated the same as variadic arguments. 432 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 433 ArgTypes.size()); 434 } 435 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 436 /*chainCall=*/false, ArgTypes, Info, 437 ParamInfos, Required); 438 } 439 440 /// Arrange the argument and result information for the declaration or 441 /// definition of the given function. 442 const CGFunctionInfo & 443 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 444 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 445 if (MD->isInstance()) 446 return arrangeCXXMethodDeclaration(MD); 447 448 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 449 450 assert(isa<FunctionType>(FTy)); 451 setCUDAKernelCallingConvention(FTy, CGM, FD); 452 453 // When declaring a function without a prototype, always use a 454 // non-variadic type. 455 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 456 return arrangeLLVMFunctionInfo( 457 noProto->getReturnType(), /*instanceMethod=*/false, 458 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 459 } 460 461 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 462 } 463 464 /// Arrange the argument and result information for the declaration or 465 /// definition of an Objective-C method. 466 const CGFunctionInfo & 467 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 468 // It happens that this is the same as a call with no optional 469 // arguments, except also using the formal 'self' type. 470 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 471 } 472 473 /// Arrange the argument and result information for the function type 474 /// through which to perform a send to the given Objective-C method, 475 /// using the given receiver type. The receiver type is not always 476 /// the 'self' type of the method or even an Objective-C pointer type. 477 /// This is *not* the right method for actually performing such a 478 /// message send, due to the possibility of optional arguments. 479 const CGFunctionInfo & 480 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 481 QualType receiverType) { 482 SmallVector<CanQualType, 16> argTys; 483 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 484 argTys.push_back(Context.getCanonicalParamType(receiverType)); 485 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 486 // FIXME: Kill copy? 487 for (const auto *I : MD->parameters()) { 488 argTys.push_back(Context.getCanonicalParamType(I->getType())); 489 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 490 I->hasAttr<NoEscapeAttr>()); 491 extParamInfos.push_back(extParamInfo); 492 } 493 494 FunctionType::ExtInfo einfo; 495 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 496 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 497 498 if (getContext().getLangOpts().ObjCAutoRefCount && 499 MD->hasAttr<NSReturnsRetainedAttr>()) 500 einfo = einfo.withProducesResult(true); 501 502 RequiredArgs required = 503 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 504 505 return arrangeLLVMFunctionInfo( 506 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 507 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 508 } 509 510 const CGFunctionInfo & 511 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 512 const CallArgList &args) { 513 auto argTypes = getArgTypesForCall(Context, args); 514 FunctionType::ExtInfo einfo; 515 516 return arrangeLLVMFunctionInfo( 517 GetReturnType(returnType), /*instanceMethod=*/false, 518 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 519 } 520 521 const CGFunctionInfo & 522 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 523 // FIXME: Do we need to handle ObjCMethodDecl? 524 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 525 526 if (isa<CXXConstructorDecl>(GD.getDecl()) || 527 isa<CXXDestructorDecl>(GD.getDecl())) 528 return arrangeCXXStructorDeclaration(GD); 529 530 return arrangeFunctionDeclaration(FD); 531 } 532 533 /// Arrange a thunk that takes 'this' as the first parameter followed by 534 /// varargs. Return a void pointer, regardless of the actual return type. 535 /// The body of the thunk will end in a musttail call to a function of the 536 /// correct type, and the caller will bitcast the function to the correct 537 /// prototype. 538 const CGFunctionInfo & 539 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 540 assert(MD->isVirtual() && "only methods have thunks"); 541 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 542 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 543 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 544 /*chainCall=*/false, ArgTys, 545 FTP->getExtInfo(), {}, RequiredArgs(1)); 546 } 547 548 const CGFunctionInfo & 549 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 550 CXXCtorType CT) { 551 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 552 553 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 554 SmallVector<CanQualType, 2> ArgTys; 555 const CXXRecordDecl *RD = CD->getParent(); 556 ArgTys.push_back(DeriveThisType(RD, CD)); 557 if (CT == Ctor_CopyingClosure) 558 ArgTys.push_back(*FTP->param_type_begin()); 559 if (RD->getNumVBases() > 0) 560 ArgTys.push_back(Context.IntTy); 561 CallingConv CC = Context.getDefaultCallingConvention( 562 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 563 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 564 /*chainCall=*/false, ArgTys, 565 FunctionType::ExtInfo(CC), {}, 566 RequiredArgs::All); 567 } 568 569 /// Arrange a call as unto a free function, except possibly with an 570 /// additional number of formal parameters considered required. 571 static const CGFunctionInfo & 572 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 573 CodeGenModule &CGM, 574 const CallArgList &args, 575 const FunctionType *fnType, 576 unsigned numExtraRequiredArgs, 577 bool chainCall) { 578 assert(args.size() >= numExtraRequiredArgs); 579 580 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 581 582 // In most cases, there are no optional arguments. 583 RequiredArgs required = RequiredArgs::All; 584 585 // If we have a variadic prototype, the required arguments are the 586 // extra prefix plus the arguments in the prototype. 587 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 588 if (proto->isVariadic()) 589 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 590 591 if (proto->hasExtParameterInfos()) 592 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 593 args.size()); 594 595 // If we don't have a prototype at all, but we're supposed to 596 // explicitly use the variadic convention for unprototyped calls, 597 // treat all of the arguments as required but preserve the nominal 598 // possibility of variadics. 599 } else if (CGM.getTargetCodeGenInfo() 600 .isNoProtoCallVariadic(args, 601 cast<FunctionNoProtoType>(fnType))) { 602 required = RequiredArgs(args.size()); 603 } 604 605 // FIXME: Kill copy. 606 SmallVector<CanQualType, 16> argTypes; 607 for (const auto &arg : args) 608 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 609 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 610 /*instanceMethod=*/false, chainCall, 611 argTypes, fnType->getExtInfo(), paramInfos, 612 required); 613 } 614 615 /// Figure out the rules for calling a function with the given formal 616 /// type using the given arguments. The arguments are necessary 617 /// because the function might be unprototyped, in which case it's 618 /// target-dependent in crazy ways. 619 const CGFunctionInfo & 620 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 621 const FunctionType *fnType, 622 bool chainCall) { 623 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 624 chainCall ? 1 : 0, chainCall); 625 } 626 627 /// A block function is essentially a free function with an 628 /// extra implicit argument. 629 const CGFunctionInfo & 630 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 631 const FunctionType *fnType) { 632 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 633 /*chainCall=*/false); 634 } 635 636 const CGFunctionInfo & 637 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 638 const FunctionArgList ¶ms) { 639 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 640 auto argTypes = getArgTypesForDeclaration(Context, params); 641 642 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 643 /*instanceMethod*/ false, /*chainCall*/ false, 644 argTypes, proto->getExtInfo(), paramInfos, 645 RequiredArgs::forPrototypePlus(proto, 1)); 646 } 647 648 const CGFunctionInfo & 649 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 650 const CallArgList &args) { 651 // FIXME: Kill copy. 652 SmallVector<CanQualType, 16> argTypes; 653 for (const auto &Arg : args) 654 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 655 return arrangeLLVMFunctionInfo( 656 GetReturnType(resultType), /*instanceMethod=*/false, 657 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 658 /*paramInfos=*/ {}, RequiredArgs::All); 659 } 660 661 const CGFunctionInfo & 662 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 663 const FunctionArgList &args) { 664 auto argTypes = getArgTypesForDeclaration(Context, args); 665 666 return arrangeLLVMFunctionInfo( 667 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 668 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 669 } 670 671 const CGFunctionInfo & 672 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 673 ArrayRef<CanQualType> argTypes) { 674 return arrangeLLVMFunctionInfo( 675 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 676 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 677 } 678 679 /// Arrange a call to a C++ method, passing the given arguments. 680 /// 681 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 682 /// does not count `this`. 683 const CGFunctionInfo & 684 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 685 const FunctionProtoType *proto, 686 RequiredArgs required, 687 unsigned numPrefixArgs) { 688 assert(numPrefixArgs + 1 <= args.size() && 689 "Emitting a call with less args than the required prefix?"); 690 // Add one to account for `this`. It's a bit awkward here, but we don't count 691 // `this` in similar places elsewhere. 692 auto paramInfos = 693 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 694 695 // FIXME: Kill copy. 696 auto argTypes = getArgTypesForCall(Context, args); 697 698 FunctionType::ExtInfo info = proto->getExtInfo(); 699 return arrangeLLVMFunctionInfo( 700 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 701 /*chainCall=*/false, argTypes, info, paramInfos, required); 702 } 703 704 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 705 return arrangeLLVMFunctionInfo( 706 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 707 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 708 } 709 710 const CGFunctionInfo & 711 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 712 const CallArgList &args) { 713 assert(signature.arg_size() <= args.size()); 714 if (signature.arg_size() == args.size()) 715 return signature; 716 717 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 718 auto sigParamInfos = signature.getExtParameterInfos(); 719 if (!sigParamInfos.empty()) { 720 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 721 paramInfos.resize(args.size()); 722 } 723 724 auto argTypes = getArgTypesForCall(Context, args); 725 726 assert(signature.getRequiredArgs().allowsOptionalArgs()); 727 return arrangeLLVMFunctionInfo(signature.getReturnType(), 728 signature.isInstanceMethod(), 729 signature.isChainCall(), 730 argTypes, 731 signature.getExtInfo(), 732 paramInfos, 733 signature.getRequiredArgs()); 734 } 735 736 namespace clang { 737 namespace CodeGen { 738 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 739 } 740 } 741 742 /// Arrange the argument and result information for an abstract value 743 /// of a given function type. This is the method which all of the 744 /// above functions ultimately defer to. 745 const CGFunctionInfo & 746 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 747 bool instanceMethod, 748 bool chainCall, 749 ArrayRef<CanQualType> argTypes, 750 FunctionType::ExtInfo info, 751 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 752 RequiredArgs required) { 753 assert(llvm::all_of(argTypes, 754 [](CanQualType T) { return T.isCanonicalAsParam(); })); 755 756 // Lookup or create unique function info. 757 llvm::FoldingSetNodeID ID; 758 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 759 required, resultType, argTypes); 760 761 void *insertPos = nullptr; 762 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 763 if (FI) 764 return *FI; 765 766 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 767 768 // Construct the function info. We co-allocate the ArgInfos. 769 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 770 paramInfos, resultType, argTypes, required); 771 FunctionInfos.InsertNode(FI, insertPos); 772 773 bool inserted = FunctionsBeingProcessed.insert(FI).second; 774 (void)inserted; 775 assert(inserted && "Recursively being processed?"); 776 777 // Compute ABI information. 778 if (CC == llvm::CallingConv::SPIR_KERNEL) { 779 // Force target independent argument handling for the host visible 780 // kernel functions. 781 computeSPIRKernelABIInfo(CGM, *FI); 782 } else if (info.getCC() == CC_Swift || info.getCC() == CC_SwiftAsync) { 783 swiftcall::computeABIInfo(CGM, *FI); 784 } else { 785 getABIInfo().computeInfo(*FI); 786 } 787 788 // Loop over all of the computed argument and return value info. If any of 789 // them are direct or extend without a specified coerce type, specify the 790 // default now. 791 ABIArgInfo &retInfo = FI->getReturnInfo(); 792 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 793 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 794 795 for (auto &I : FI->arguments()) 796 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 797 I.info.setCoerceToType(ConvertType(I.type)); 798 799 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 800 assert(erased && "Not in set?"); 801 802 return *FI; 803 } 804 805 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 806 bool instanceMethod, 807 bool chainCall, 808 const FunctionType::ExtInfo &info, 809 ArrayRef<ExtParameterInfo> paramInfos, 810 CanQualType resultType, 811 ArrayRef<CanQualType> argTypes, 812 RequiredArgs required) { 813 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 814 assert(!required.allowsOptionalArgs() || 815 required.getNumRequiredArgs() <= argTypes.size()); 816 817 void *buffer = 818 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 819 argTypes.size() + 1, paramInfos.size())); 820 821 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 822 FI->CallingConvention = llvmCC; 823 FI->EffectiveCallingConvention = llvmCC; 824 FI->ASTCallingConvention = info.getCC(); 825 FI->InstanceMethod = instanceMethod; 826 FI->ChainCall = chainCall; 827 FI->CmseNSCall = info.getCmseNSCall(); 828 FI->NoReturn = info.getNoReturn(); 829 FI->ReturnsRetained = info.getProducesResult(); 830 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 831 FI->NoCfCheck = info.getNoCfCheck(); 832 FI->Required = required; 833 FI->HasRegParm = info.getHasRegParm(); 834 FI->RegParm = info.getRegParm(); 835 FI->ArgStruct = nullptr; 836 FI->ArgStructAlign = 0; 837 FI->NumArgs = argTypes.size(); 838 FI->HasExtParameterInfos = !paramInfos.empty(); 839 FI->getArgsBuffer()[0].type = resultType; 840 FI->MaxVectorWidth = 0; 841 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 842 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 843 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 844 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 845 return FI; 846 } 847 848 /***/ 849 850 namespace { 851 // ABIArgInfo::Expand implementation. 852 853 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 854 struct TypeExpansion { 855 enum TypeExpansionKind { 856 // Elements of constant arrays are expanded recursively. 857 TEK_ConstantArray, 858 // Record fields are expanded recursively (but if record is a union, only 859 // the field with the largest size is expanded). 860 TEK_Record, 861 // For complex types, real and imaginary parts are expanded recursively. 862 TEK_Complex, 863 // All other types are not expandable. 864 TEK_None 865 }; 866 867 const TypeExpansionKind Kind; 868 869 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 870 virtual ~TypeExpansion() {} 871 }; 872 873 struct ConstantArrayExpansion : TypeExpansion { 874 QualType EltTy; 875 uint64_t NumElts; 876 877 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 878 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 879 static bool classof(const TypeExpansion *TE) { 880 return TE->Kind == TEK_ConstantArray; 881 } 882 }; 883 884 struct RecordExpansion : TypeExpansion { 885 SmallVector<const CXXBaseSpecifier *, 1> Bases; 886 887 SmallVector<const FieldDecl *, 1> Fields; 888 889 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 890 SmallVector<const FieldDecl *, 1> &&Fields) 891 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 892 Fields(std::move(Fields)) {} 893 static bool classof(const TypeExpansion *TE) { 894 return TE->Kind == TEK_Record; 895 } 896 }; 897 898 struct ComplexExpansion : TypeExpansion { 899 QualType EltTy; 900 901 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 902 static bool classof(const TypeExpansion *TE) { 903 return TE->Kind == TEK_Complex; 904 } 905 }; 906 907 struct NoExpansion : TypeExpansion { 908 NoExpansion() : TypeExpansion(TEK_None) {} 909 static bool classof(const TypeExpansion *TE) { 910 return TE->Kind == TEK_None; 911 } 912 }; 913 } // namespace 914 915 static std::unique_ptr<TypeExpansion> 916 getTypeExpansion(QualType Ty, const ASTContext &Context) { 917 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 918 return std::make_unique<ConstantArrayExpansion>( 919 AT->getElementType(), AT->getSize().getZExtValue()); 920 } 921 if (const RecordType *RT = Ty->getAs<RecordType>()) { 922 SmallVector<const CXXBaseSpecifier *, 1> Bases; 923 SmallVector<const FieldDecl *, 1> Fields; 924 const RecordDecl *RD = RT->getDecl(); 925 assert(!RD->hasFlexibleArrayMember() && 926 "Cannot expand structure with flexible array."); 927 if (RD->isUnion()) { 928 // Unions can be here only in degenerative cases - all the fields are same 929 // after flattening. Thus we have to use the "largest" field. 930 const FieldDecl *LargestFD = nullptr; 931 CharUnits UnionSize = CharUnits::Zero(); 932 933 for (const auto *FD : RD->fields()) { 934 if (FD->isZeroLengthBitField(Context)) 935 continue; 936 assert(!FD->isBitField() && 937 "Cannot expand structure with bit-field members."); 938 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 939 if (UnionSize < FieldSize) { 940 UnionSize = FieldSize; 941 LargestFD = FD; 942 } 943 } 944 if (LargestFD) 945 Fields.push_back(LargestFD); 946 } else { 947 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 948 assert(!CXXRD->isDynamicClass() && 949 "cannot expand vtable pointers in dynamic classes"); 950 llvm::append_range(Bases, llvm::make_pointer_range(CXXRD->bases())); 951 } 952 953 for (const auto *FD : RD->fields()) { 954 if (FD->isZeroLengthBitField(Context)) 955 continue; 956 assert(!FD->isBitField() && 957 "Cannot expand structure with bit-field members."); 958 Fields.push_back(FD); 959 } 960 } 961 return std::make_unique<RecordExpansion>(std::move(Bases), 962 std::move(Fields)); 963 } 964 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 965 return std::make_unique<ComplexExpansion>(CT->getElementType()); 966 } 967 return std::make_unique<NoExpansion>(); 968 } 969 970 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 971 auto Exp = getTypeExpansion(Ty, Context); 972 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 973 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 974 } 975 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 976 int Res = 0; 977 for (auto BS : RExp->Bases) 978 Res += getExpansionSize(BS->getType(), Context); 979 for (auto FD : RExp->Fields) 980 Res += getExpansionSize(FD->getType(), Context); 981 return Res; 982 } 983 if (isa<ComplexExpansion>(Exp.get())) 984 return 2; 985 assert(isa<NoExpansion>(Exp.get())); 986 return 1; 987 } 988 989 void 990 CodeGenTypes::getExpandedTypes(QualType Ty, 991 SmallVectorImpl<llvm::Type *>::iterator &TI) { 992 auto Exp = getTypeExpansion(Ty, Context); 993 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 994 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 995 getExpandedTypes(CAExp->EltTy, TI); 996 } 997 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 998 for (auto BS : RExp->Bases) 999 getExpandedTypes(BS->getType(), TI); 1000 for (auto FD : RExp->Fields) 1001 getExpandedTypes(FD->getType(), TI); 1002 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 1003 llvm::Type *EltTy = ConvertType(CExp->EltTy); 1004 *TI++ = EltTy; 1005 *TI++ = EltTy; 1006 } else { 1007 assert(isa<NoExpansion>(Exp.get())); 1008 *TI++ = ConvertType(Ty); 1009 } 1010 } 1011 1012 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1013 ConstantArrayExpansion *CAE, 1014 Address BaseAddr, 1015 llvm::function_ref<void(Address)> Fn) { 1016 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1017 CharUnits EltAlign = 1018 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1019 llvm::Type *EltTy = CGF.ConvertTypeForMem(CAE->EltTy); 1020 1021 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1022 llvm::Value *EltAddr = CGF.Builder.CreateConstGEP2_32( 1023 BaseAddr.getElementType(), BaseAddr.getPointer(), 0, i); 1024 Fn(Address(EltAddr, EltTy, EltAlign)); 1025 } 1026 } 1027 1028 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1029 llvm::Function::arg_iterator &AI) { 1030 assert(LV.isSimple() && 1031 "Unexpected non-simple lvalue during struct expansion."); 1032 1033 auto Exp = getTypeExpansion(Ty, getContext()); 1034 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1035 forConstantArrayExpansion( 1036 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1037 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1038 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1039 }); 1040 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1041 Address This = LV.getAddress(*this); 1042 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1043 // Perform a single step derived-to-base conversion. 1044 Address Base = 1045 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1046 /*NullCheckValue=*/false, SourceLocation()); 1047 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1048 1049 // Recurse onto bases. 1050 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1051 } 1052 for (auto FD : RExp->Fields) { 1053 // FIXME: What are the right qualifiers here? 1054 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1055 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1056 } 1057 } else if (isa<ComplexExpansion>(Exp.get())) { 1058 auto realValue = &*AI++; 1059 auto imagValue = &*AI++; 1060 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1061 } else { 1062 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1063 // primitive store. 1064 assert(isa<NoExpansion>(Exp.get())); 1065 llvm::Value *Arg = &*AI++; 1066 if (LV.isBitField()) { 1067 EmitStoreThroughLValue(RValue::get(Arg), LV); 1068 } else { 1069 // TODO: currently there are some places are inconsistent in what LLVM 1070 // pointer type they use (see D118744). Once clang uses opaque pointers 1071 // all LLVM pointer types will be the same and we can remove this check. 1072 if (Arg->getType()->isPointerTy()) { 1073 Address Addr = LV.getAddress(*this); 1074 Arg = Builder.CreateBitCast(Arg, Addr.getElementType()); 1075 } 1076 EmitStoreOfScalar(Arg, LV); 1077 } 1078 } 1079 } 1080 1081 void CodeGenFunction::ExpandTypeToArgs( 1082 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1083 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1084 auto Exp = getTypeExpansion(Ty, getContext()); 1085 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1086 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1087 : Arg.getKnownRValue().getAggregateAddress(); 1088 forConstantArrayExpansion( 1089 *this, CAExp, Addr, [&](Address EltAddr) { 1090 CallArg EltArg = CallArg( 1091 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1092 CAExp->EltTy); 1093 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1094 IRCallArgPos); 1095 }); 1096 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1097 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1098 : Arg.getKnownRValue().getAggregateAddress(); 1099 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1100 // Perform a single step derived-to-base conversion. 1101 Address Base = 1102 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1103 /*NullCheckValue=*/false, SourceLocation()); 1104 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1105 1106 // Recurse onto bases. 1107 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1108 IRCallArgPos); 1109 } 1110 1111 LValue LV = MakeAddrLValue(This, Ty); 1112 for (auto FD : RExp->Fields) { 1113 CallArg FldArg = 1114 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1115 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1116 IRCallArgPos); 1117 } 1118 } else if (isa<ComplexExpansion>(Exp.get())) { 1119 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1120 IRCallArgs[IRCallArgPos++] = CV.first; 1121 IRCallArgs[IRCallArgPos++] = CV.second; 1122 } else { 1123 assert(isa<NoExpansion>(Exp.get())); 1124 auto RV = Arg.getKnownRValue(); 1125 assert(RV.isScalar() && 1126 "Unexpected non-scalar rvalue during struct expansion."); 1127 1128 // Insert a bitcast as needed. 1129 llvm::Value *V = RV.getScalarVal(); 1130 if (IRCallArgPos < IRFuncTy->getNumParams() && 1131 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1132 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1133 1134 IRCallArgs[IRCallArgPos++] = V; 1135 } 1136 } 1137 1138 /// Create a temporary allocation for the purposes of coercion. 1139 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1140 CharUnits MinAlign, 1141 const Twine &Name = "tmp") { 1142 // Don't use an alignment that's worse than what LLVM would prefer. 1143 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1144 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1145 1146 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1147 } 1148 1149 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1150 /// accessing some number of bytes out of it, try to gep into the struct to get 1151 /// at its inner goodness. Dive as deep as possible without entering an element 1152 /// with an in-memory size smaller than DstSize. 1153 static Address 1154 EnterStructPointerForCoercedAccess(Address SrcPtr, 1155 llvm::StructType *SrcSTy, 1156 uint64_t DstSize, CodeGenFunction &CGF) { 1157 // We can't dive into a zero-element struct. 1158 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1159 1160 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1161 1162 // If the first elt is at least as large as what we're looking for, or if the 1163 // first element is the same size as the whole struct, we can enter it. The 1164 // comparison must be made on the store size and not the alloca size. Using 1165 // the alloca size may overstate the size of the load. 1166 uint64_t FirstEltSize = 1167 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1168 if (FirstEltSize < DstSize && 1169 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1170 return SrcPtr; 1171 1172 // GEP into the first element. 1173 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1174 1175 // If the first element is a struct, recurse. 1176 llvm::Type *SrcTy = SrcPtr.getElementType(); 1177 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1178 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1179 1180 return SrcPtr; 1181 } 1182 1183 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1184 /// are either integers or pointers. This does a truncation of the value if it 1185 /// is too large or a zero extension if it is too small. 1186 /// 1187 /// This behaves as if the value were coerced through memory, so on big-endian 1188 /// targets the high bits are preserved in a truncation, while little-endian 1189 /// targets preserve the low bits. 1190 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1191 llvm::Type *Ty, 1192 CodeGenFunction &CGF) { 1193 if (Val->getType() == Ty) 1194 return Val; 1195 1196 if (isa<llvm::PointerType>(Val->getType())) { 1197 // If this is Pointer->Pointer avoid conversion to and from int. 1198 if (isa<llvm::PointerType>(Ty)) 1199 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1200 1201 // Convert the pointer to an integer so we can play with its width. 1202 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1203 } 1204 1205 llvm::Type *DestIntTy = Ty; 1206 if (isa<llvm::PointerType>(DestIntTy)) 1207 DestIntTy = CGF.IntPtrTy; 1208 1209 if (Val->getType() != DestIntTy) { 1210 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1211 if (DL.isBigEndian()) { 1212 // Preserve the high bits on big-endian targets. 1213 // That is what memory coercion does. 1214 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1215 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1216 1217 if (SrcSize > DstSize) { 1218 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1219 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1220 } else { 1221 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1222 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1223 } 1224 } else { 1225 // Little-endian targets preserve the low bits. No shifts required. 1226 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1227 } 1228 } 1229 1230 if (isa<llvm::PointerType>(Ty)) 1231 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1232 return Val; 1233 } 1234 1235 1236 1237 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1238 /// a pointer to an object of type \arg Ty, known to be aligned to 1239 /// \arg SrcAlign bytes. 1240 /// 1241 /// This safely handles the case when the src type is smaller than the 1242 /// destination type; in this situation the values of bits which not 1243 /// present in the src are undefined. 1244 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1245 CodeGenFunction &CGF) { 1246 llvm::Type *SrcTy = Src.getElementType(); 1247 1248 // If SrcTy and Ty are the same, just do a load. 1249 if (SrcTy == Ty) 1250 return CGF.Builder.CreateLoad(Src); 1251 1252 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1253 1254 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1255 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1256 DstSize.getFixedSize(), CGF); 1257 SrcTy = Src.getElementType(); 1258 } 1259 1260 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1261 1262 // If the source and destination are integer or pointer types, just do an 1263 // extension or truncation to the desired type. 1264 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1265 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1266 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1267 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1268 } 1269 1270 // If load is legal, just bitcast the src pointer. 1271 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1272 SrcSize.getFixedSize() >= DstSize.getFixedSize()) { 1273 // Generally SrcSize is never greater than DstSize, since this means we are 1274 // losing bits. However, this can happen in cases where the structure has 1275 // additional padding, for example due to a user specified alignment. 1276 // 1277 // FIXME: Assert that we aren't truncating non-padding bits when have access 1278 // to that information. 1279 Src = CGF.Builder.CreateElementBitCast(Src, Ty); 1280 return CGF.Builder.CreateLoad(Src); 1281 } 1282 1283 // If coercing a fixed vector to a scalable vector for ABI compatibility, and 1284 // the types match, use the llvm.experimental.vector.insert intrinsic to 1285 // perform the conversion. 1286 if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) { 1287 if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { 1288 // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate 1289 // vector, use a vector insert and bitcast the result. 1290 bool NeedsBitcast = false; 1291 auto PredType = 1292 llvm::ScalableVectorType::get(CGF.Builder.getInt1Ty(), 16); 1293 llvm::Type *OrigType = Ty; 1294 if (ScalableDst == PredType && 1295 FixedSrc->getElementType() == CGF.Builder.getInt8Ty()) { 1296 ScalableDst = llvm::ScalableVectorType::get(CGF.Builder.getInt8Ty(), 2); 1297 NeedsBitcast = true; 1298 } 1299 if (ScalableDst->getElementType() == FixedSrc->getElementType()) { 1300 auto *Load = CGF.Builder.CreateLoad(Src); 1301 auto *UndefVec = llvm::UndefValue::get(ScalableDst); 1302 auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); 1303 llvm::Value *Result = CGF.Builder.CreateInsertVector( 1304 ScalableDst, UndefVec, Load, Zero, "castScalableSve"); 1305 if (NeedsBitcast) 1306 Result = CGF.Builder.CreateBitCast(Result, OrigType); 1307 return Result; 1308 } 1309 } 1310 } 1311 1312 // Otherwise do coercion through memory. This is stupid, but simple. 1313 Address Tmp = 1314 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1315 CGF.Builder.CreateMemCpy( 1316 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(), 1317 Src.getAlignment().getAsAlign(), 1318 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize())); 1319 return CGF.Builder.CreateLoad(Tmp); 1320 } 1321 1322 // Function to store a first-class aggregate into memory. We prefer to 1323 // store the elements rather than the aggregate to be more friendly to 1324 // fast-isel. 1325 // FIXME: Do we need to recurse here? 1326 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1327 bool DestIsVolatile) { 1328 // Prefer scalar stores to first-class aggregate stores. 1329 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1330 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1331 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1332 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1333 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1334 } 1335 } else { 1336 Builder.CreateStore(Val, Dest, DestIsVolatile); 1337 } 1338 } 1339 1340 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1341 /// where the source and destination may have different types. The 1342 /// destination is known to be aligned to \arg DstAlign bytes. 1343 /// 1344 /// This safely handles the case when the src type is larger than the 1345 /// destination type; the upper bits of the src will be lost. 1346 static void CreateCoercedStore(llvm::Value *Src, 1347 Address Dst, 1348 bool DstIsVolatile, 1349 CodeGenFunction &CGF) { 1350 llvm::Type *SrcTy = Src->getType(); 1351 llvm::Type *DstTy = Dst.getElementType(); 1352 if (SrcTy == DstTy) { 1353 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1354 return; 1355 } 1356 1357 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1358 1359 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1360 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1361 SrcSize.getFixedSize(), CGF); 1362 DstTy = Dst.getElementType(); 1363 } 1364 1365 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1366 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1367 if (SrcPtrTy && DstPtrTy && 1368 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1369 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1370 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1371 return; 1372 } 1373 1374 // If the source and destination are integer or pointer types, just do an 1375 // extension or truncation to the desired type. 1376 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1377 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1378 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1379 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1380 return; 1381 } 1382 1383 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1384 1385 // If store is legal, just bitcast the src pointer. 1386 if (isa<llvm::ScalableVectorType>(SrcTy) || 1387 isa<llvm::ScalableVectorType>(DstTy) || 1388 SrcSize.getFixedSize() <= DstSize.getFixedSize()) { 1389 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1390 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1391 } else { 1392 // Otherwise do coercion through memory. This is stupid, but 1393 // simple. 1394 1395 // Generally SrcSize is never greater than DstSize, since this means we are 1396 // losing bits. However, this can happen in cases where the structure has 1397 // additional padding, for example due to a user specified alignment. 1398 // 1399 // FIXME: Assert that we aren't truncating non-padding bits when have access 1400 // to that information. 1401 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1402 CGF.Builder.CreateStore(Src, Tmp); 1403 CGF.Builder.CreateMemCpy( 1404 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1405 Tmp.getAlignment().getAsAlign(), 1406 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize())); 1407 } 1408 } 1409 1410 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1411 const ABIArgInfo &info) { 1412 if (unsigned offset = info.getDirectOffset()) { 1413 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1414 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1415 CharUnits::fromQuantity(offset)); 1416 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1417 } 1418 return addr; 1419 } 1420 1421 namespace { 1422 1423 /// Encapsulates information about the way function arguments from 1424 /// CGFunctionInfo should be passed to actual LLVM IR function. 1425 class ClangToLLVMArgMapping { 1426 static const unsigned InvalidIndex = ~0U; 1427 unsigned InallocaArgNo; 1428 unsigned SRetArgNo; 1429 unsigned TotalIRArgs; 1430 1431 /// Arguments of LLVM IR function corresponding to single Clang argument. 1432 struct IRArgs { 1433 unsigned PaddingArgIndex; 1434 // Argument is expanded to IR arguments at positions 1435 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1436 unsigned FirstArgIndex; 1437 unsigned NumberOfArgs; 1438 1439 IRArgs() 1440 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1441 NumberOfArgs(0) {} 1442 }; 1443 1444 SmallVector<IRArgs, 8> ArgInfo; 1445 1446 public: 1447 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1448 bool OnlyRequiredArgs = false) 1449 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1450 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1451 construct(Context, FI, OnlyRequiredArgs); 1452 } 1453 1454 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1455 unsigned getInallocaArgNo() const { 1456 assert(hasInallocaArg()); 1457 return InallocaArgNo; 1458 } 1459 1460 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1461 unsigned getSRetArgNo() const { 1462 assert(hasSRetArg()); 1463 return SRetArgNo; 1464 } 1465 1466 unsigned totalIRArgs() const { return TotalIRArgs; } 1467 1468 bool hasPaddingArg(unsigned ArgNo) const { 1469 assert(ArgNo < ArgInfo.size()); 1470 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1471 } 1472 unsigned getPaddingArgNo(unsigned ArgNo) const { 1473 assert(hasPaddingArg(ArgNo)); 1474 return ArgInfo[ArgNo].PaddingArgIndex; 1475 } 1476 1477 /// Returns index of first IR argument corresponding to ArgNo, and their 1478 /// quantity. 1479 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1480 assert(ArgNo < ArgInfo.size()); 1481 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1482 ArgInfo[ArgNo].NumberOfArgs); 1483 } 1484 1485 private: 1486 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1487 bool OnlyRequiredArgs); 1488 }; 1489 1490 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1491 const CGFunctionInfo &FI, 1492 bool OnlyRequiredArgs) { 1493 unsigned IRArgNo = 0; 1494 bool SwapThisWithSRet = false; 1495 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1496 1497 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1498 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1499 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1500 } 1501 1502 unsigned ArgNo = 0; 1503 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1504 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1505 ++I, ++ArgNo) { 1506 assert(I != FI.arg_end()); 1507 QualType ArgType = I->type; 1508 const ABIArgInfo &AI = I->info; 1509 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1510 auto &IRArgs = ArgInfo[ArgNo]; 1511 1512 if (AI.getPaddingType()) 1513 IRArgs.PaddingArgIndex = IRArgNo++; 1514 1515 switch (AI.getKind()) { 1516 case ABIArgInfo::Extend: 1517 case ABIArgInfo::Direct: { 1518 // FIXME: handle sseregparm someday... 1519 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1520 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1521 IRArgs.NumberOfArgs = STy->getNumElements(); 1522 } else { 1523 IRArgs.NumberOfArgs = 1; 1524 } 1525 break; 1526 } 1527 case ABIArgInfo::Indirect: 1528 case ABIArgInfo::IndirectAliased: 1529 IRArgs.NumberOfArgs = 1; 1530 break; 1531 case ABIArgInfo::Ignore: 1532 case ABIArgInfo::InAlloca: 1533 // ignore and inalloca doesn't have matching LLVM parameters. 1534 IRArgs.NumberOfArgs = 0; 1535 break; 1536 case ABIArgInfo::CoerceAndExpand: 1537 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1538 break; 1539 case ABIArgInfo::Expand: 1540 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1541 break; 1542 } 1543 1544 if (IRArgs.NumberOfArgs > 0) { 1545 IRArgs.FirstArgIndex = IRArgNo; 1546 IRArgNo += IRArgs.NumberOfArgs; 1547 } 1548 1549 // Skip over the sret parameter when it comes second. We already handled it 1550 // above. 1551 if (IRArgNo == 1 && SwapThisWithSRet) 1552 IRArgNo++; 1553 } 1554 assert(ArgNo == ArgInfo.size()); 1555 1556 if (FI.usesInAlloca()) 1557 InallocaArgNo = IRArgNo++; 1558 1559 TotalIRArgs = IRArgNo; 1560 } 1561 } // namespace 1562 1563 /***/ 1564 1565 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1566 const auto &RI = FI.getReturnInfo(); 1567 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1568 } 1569 1570 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1571 return ReturnTypeUsesSRet(FI) && 1572 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1573 } 1574 1575 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1576 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1577 switch (BT->getKind()) { 1578 default: 1579 return false; 1580 case BuiltinType::Float: 1581 return getTarget().useObjCFPRetForRealType(FloatModeKind::Float); 1582 case BuiltinType::Double: 1583 return getTarget().useObjCFPRetForRealType(FloatModeKind::Double); 1584 case BuiltinType::LongDouble: 1585 return getTarget().useObjCFPRetForRealType(FloatModeKind::LongDouble); 1586 } 1587 } 1588 1589 return false; 1590 } 1591 1592 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1593 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1594 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1595 if (BT->getKind() == BuiltinType::LongDouble) 1596 return getTarget().useObjCFP2RetForComplexLongDouble(); 1597 } 1598 } 1599 1600 return false; 1601 } 1602 1603 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1604 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1605 return GetFunctionType(FI); 1606 } 1607 1608 llvm::FunctionType * 1609 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1610 1611 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1612 (void)Inserted; 1613 assert(Inserted && "Recursively being processed?"); 1614 1615 llvm::Type *resultType = nullptr; 1616 const ABIArgInfo &retAI = FI.getReturnInfo(); 1617 switch (retAI.getKind()) { 1618 case ABIArgInfo::Expand: 1619 case ABIArgInfo::IndirectAliased: 1620 llvm_unreachable("Invalid ABI kind for return argument"); 1621 1622 case ABIArgInfo::Extend: 1623 case ABIArgInfo::Direct: 1624 resultType = retAI.getCoerceToType(); 1625 break; 1626 1627 case ABIArgInfo::InAlloca: 1628 if (retAI.getInAllocaSRet()) { 1629 // sret things on win32 aren't void, they return the sret pointer. 1630 QualType ret = FI.getReturnType(); 1631 llvm::Type *ty = ConvertType(ret); 1632 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1633 resultType = llvm::PointerType::get(ty, addressSpace); 1634 } else { 1635 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1636 } 1637 break; 1638 1639 case ABIArgInfo::Indirect: 1640 case ABIArgInfo::Ignore: 1641 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1642 break; 1643 1644 case ABIArgInfo::CoerceAndExpand: 1645 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1646 break; 1647 } 1648 1649 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1650 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1651 1652 // Add type for sret argument. 1653 if (IRFunctionArgs.hasSRetArg()) { 1654 QualType Ret = FI.getReturnType(); 1655 llvm::Type *Ty = ConvertType(Ret); 1656 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1657 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1658 llvm::PointerType::get(Ty, AddressSpace); 1659 } 1660 1661 // Add type for inalloca argument. 1662 if (IRFunctionArgs.hasInallocaArg()) { 1663 auto ArgStruct = FI.getArgStruct(); 1664 assert(ArgStruct); 1665 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1666 } 1667 1668 // Add in all of the required arguments. 1669 unsigned ArgNo = 0; 1670 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1671 ie = it + FI.getNumRequiredArgs(); 1672 for (; it != ie; ++it, ++ArgNo) { 1673 const ABIArgInfo &ArgInfo = it->info; 1674 1675 // Insert a padding type to ensure proper alignment. 1676 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1677 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1678 ArgInfo.getPaddingType(); 1679 1680 unsigned FirstIRArg, NumIRArgs; 1681 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1682 1683 switch (ArgInfo.getKind()) { 1684 case ABIArgInfo::Ignore: 1685 case ABIArgInfo::InAlloca: 1686 assert(NumIRArgs == 0); 1687 break; 1688 1689 case ABIArgInfo::Indirect: { 1690 assert(NumIRArgs == 1); 1691 // indirect arguments are always on the stack, which is alloca addr space. 1692 llvm::Type *LTy = ConvertTypeForMem(it->type); 1693 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1694 CGM.getDataLayout().getAllocaAddrSpace()); 1695 break; 1696 } 1697 case ABIArgInfo::IndirectAliased: { 1698 assert(NumIRArgs == 1); 1699 llvm::Type *LTy = ConvertTypeForMem(it->type); 1700 ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace()); 1701 break; 1702 } 1703 case ABIArgInfo::Extend: 1704 case ABIArgInfo::Direct: { 1705 // Fast-isel and the optimizer generally like scalar values better than 1706 // FCAs, so we flatten them if this is safe to do for this argument. 1707 llvm::Type *argType = ArgInfo.getCoerceToType(); 1708 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1709 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1710 assert(NumIRArgs == st->getNumElements()); 1711 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1712 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1713 } else { 1714 assert(NumIRArgs == 1); 1715 ArgTypes[FirstIRArg] = argType; 1716 } 1717 break; 1718 } 1719 1720 case ABIArgInfo::CoerceAndExpand: { 1721 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1722 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1723 *ArgTypesIter++ = EltTy; 1724 } 1725 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1726 break; 1727 } 1728 1729 case ABIArgInfo::Expand: 1730 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1731 getExpandedTypes(it->type, ArgTypesIter); 1732 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1733 break; 1734 } 1735 } 1736 1737 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1738 assert(Erased && "Not in set?"); 1739 1740 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1741 } 1742 1743 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1744 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1745 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1746 1747 if (!isFuncTypeConvertible(FPT)) 1748 return llvm::StructType::get(getLLVMContext()); 1749 1750 return GetFunctionType(GD); 1751 } 1752 1753 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1754 llvm::AttrBuilder &FuncAttrs, 1755 const FunctionProtoType *FPT) { 1756 if (!FPT) 1757 return; 1758 1759 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1760 FPT->isNothrow()) 1761 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1762 } 1763 1764 static void AddAttributesFromAssumes(llvm::AttrBuilder &FuncAttrs, 1765 const Decl *Callee) { 1766 if (!Callee) 1767 return; 1768 1769 SmallVector<StringRef, 4> Attrs; 1770 1771 for (const AssumptionAttr *AA : Callee->specific_attrs<AssumptionAttr>()) 1772 AA->getAssumption().split(Attrs, ","); 1773 1774 if (!Attrs.empty()) 1775 FuncAttrs.addAttribute(llvm::AssumptionAttrKey, 1776 llvm::join(Attrs.begin(), Attrs.end(), ",")); 1777 } 1778 1779 bool CodeGenModule::MayDropFunctionReturn(const ASTContext &Context, 1780 QualType ReturnType) { 1781 // We can't just discard the return value for a record type with a 1782 // complex destructor or a non-trivially copyable type. 1783 if (const RecordType *RT = 1784 ReturnType.getCanonicalType()->getAs<RecordType>()) { 1785 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1786 return ClassDecl->hasTrivialDestructor(); 1787 } 1788 return ReturnType.isTriviallyCopyableType(Context); 1789 } 1790 1791 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 1792 bool HasOptnone, 1793 bool AttrOnCallSite, 1794 llvm::AttrBuilder &FuncAttrs) { 1795 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1796 if (!HasOptnone) { 1797 if (CodeGenOpts.OptimizeSize) 1798 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1799 if (CodeGenOpts.OptimizeSize == 2) 1800 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1801 } 1802 1803 if (CodeGenOpts.DisableRedZone) 1804 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1805 if (CodeGenOpts.IndirectTlsSegRefs) 1806 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1807 if (CodeGenOpts.NoImplicitFloat) 1808 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1809 1810 if (AttrOnCallSite) { 1811 // Attributes that should go on the call site only. 1812 // FIXME: Look for 'BuiltinAttr' on the function rather than re-checking 1813 // the -fno-builtin-foo list. 1814 if (!CodeGenOpts.SimplifyLibCalls || LangOpts.isNoBuiltinFunc(Name)) 1815 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1816 if (!CodeGenOpts.TrapFuncName.empty()) 1817 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1818 } else { 1819 StringRef FpKind; 1820 switch (CodeGenOpts.getFramePointer()) { 1821 case CodeGenOptions::FramePointerKind::None: 1822 FpKind = "none"; 1823 break; 1824 case CodeGenOptions::FramePointerKind::NonLeaf: 1825 FpKind = "non-leaf"; 1826 break; 1827 case CodeGenOptions::FramePointerKind::All: 1828 FpKind = "all"; 1829 break; 1830 } 1831 FuncAttrs.addAttribute("frame-pointer", FpKind); 1832 1833 if (CodeGenOpts.LessPreciseFPMAD) 1834 FuncAttrs.addAttribute("less-precise-fpmad", "true"); 1835 1836 if (CodeGenOpts.NullPointerIsValid) 1837 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1838 1839 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE()) 1840 FuncAttrs.addAttribute("denormal-fp-math", 1841 CodeGenOpts.FPDenormalMode.str()); 1842 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) { 1843 FuncAttrs.addAttribute( 1844 "denormal-fp-math-f32", 1845 CodeGenOpts.FP32DenormalMode.str()); 1846 } 1847 1848 if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore) 1849 FuncAttrs.addAttribute("no-trapping-math", "true"); 1850 1851 // TODO: Are these all needed? 1852 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1853 if (LangOpts.NoHonorInfs) 1854 FuncAttrs.addAttribute("no-infs-fp-math", "true"); 1855 if (LangOpts.NoHonorNaNs) 1856 FuncAttrs.addAttribute("no-nans-fp-math", "true"); 1857 if (LangOpts.ApproxFunc) 1858 FuncAttrs.addAttribute("approx-func-fp-math", "true"); 1859 if (LangOpts.UnsafeFPMath) 1860 FuncAttrs.addAttribute("unsafe-fp-math", "true"); 1861 if (CodeGenOpts.SoftFloat) 1862 FuncAttrs.addAttribute("use-soft-float", "true"); 1863 FuncAttrs.addAttribute("stack-protector-buffer-size", 1864 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1865 if (LangOpts.NoSignedZero) 1866 FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true"); 1867 1868 // TODO: Reciprocal estimate codegen options should apply to instructions? 1869 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1870 if (!Recips.empty()) 1871 FuncAttrs.addAttribute("reciprocal-estimates", 1872 llvm::join(Recips, ",")); 1873 1874 if (!CodeGenOpts.PreferVectorWidth.empty() && 1875 CodeGenOpts.PreferVectorWidth != "none") 1876 FuncAttrs.addAttribute("prefer-vector-width", 1877 CodeGenOpts.PreferVectorWidth); 1878 1879 if (CodeGenOpts.StackRealignment) 1880 FuncAttrs.addAttribute("stackrealign"); 1881 if (CodeGenOpts.Backchain) 1882 FuncAttrs.addAttribute("backchain"); 1883 if (CodeGenOpts.EnableSegmentedStacks) 1884 FuncAttrs.addAttribute("split-stack"); 1885 1886 if (CodeGenOpts.SpeculativeLoadHardening) 1887 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1888 1889 // Add zero-call-used-regs attribute. 1890 switch (CodeGenOpts.getZeroCallUsedRegs()) { 1891 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Skip: 1892 FuncAttrs.removeAttribute("zero-call-used-regs"); 1893 break; 1894 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPRArg: 1895 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr-arg"); 1896 break; 1897 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedGPR: 1898 FuncAttrs.addAttribute("zero-call-used-regs", "used-gpr"); 1899 break; 1900 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::UsedArg: 1901 FuncAttrs.addAttribute("zero-call-used-regs", "used-arg"); 1902 break; 1903 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::Used: 1904 FuncAttrs.addAttribute("zero-call-used-regs", "used"); 1905 break; 1906 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPRArg: 1907 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr-arg"); 1908 break; 1909 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllGPR: 1910 FuncAttrs.addAttribute("zero-call-used-regs", "all-gpr"); 1911 break; 1912 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::AllArg: 1913 FuncAttrs.addAttribute("zero-call-used-regs", "all-arg"); 1914 break; 1915 case llvm::ZeroCallUsedRegs::ZeroCallUsedRegsKind::All: 1916 FuncAttrs.addAttribute("zero-call-used-regs", "all"); 1917 break; 1918 } 1919 } 1920 1921 if (getLangOpts().assumeFunctionsAreConvergent()) { 1922 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1923 // convergent (meaning, they may call an intrinsically convergent op, such 1924 // as __syncthreads() / barrier(), and so can't have certain optimizations 1925 // applied around them). LLVM will remove this attribute where it safely 1926 // can. 1927 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1928 } 1929 1930 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1931 // Exceptions aren't supported in CUDA device code. 1932 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1933 } 1934 1935 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1936 StringRef Var, Value; 1937 std::tie(Var, Value) = Attr.split('='); 1938 FuncAttrs.addAttribute(Var, Value); 1939 } 1940 } 1941 1942 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) { 1943 llvm::AttrBuilder FuncAttrs(F.getContext()); 1944 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 1945 /* AttrOnCallSite = */ false, FuncAttrs); 1946 // TODO: call GetCPUAndFeaturesAttributes? 1947 F.addFnAttrs(FuncAttrs); 1948 } 1949 1950 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 1951 llvm::AttrBuilder &attrs) { 1952 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 1953 /*for call*/ false, attrs); 1954 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 1955 } 1956 1957 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 1958 const LangOptions &LangOpts, 1959 const NoBuiltinAttr *NBA = nullptr) { 1960 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 1961 SmallString<32> AttributeName; 1962 AttributeName += "no-builtin-"; 1963 AttributeName += BuiltinName; 1964 FuncAttrs.addAttribute(AttributeName); 1965 }; 1966 1967 // First, handle the language options passed through -fno-builtin. 1968 if (LangOpts.NoBuiltin) { 1969 // -fno-builtin disables them all. 1970 FuncAttrs.addAttribute("no-builtins"); 1971 return; 1972 } 1973 1974 // Then, add attributes for builtins specified through -fno-builtin-<name>. 1975 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 1976 1977 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 1978 // the source. 1979 if (!NBA) 1980 return; 1981 1982 // If there is a wildcard in the builtin names specified through the 1983 // attribute, disable them all. 1984 if (llvm::is_contained(NBA->builtinNames(), "*")) { 1985 FuncAttrs.addAttribute("no-builtins"); 1986 return; 1987 } 1988 1989 // And last, add the rest of the builtin names. 1990 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 1991 } 1992 1993 static bool DetermineNoUndef(QualType QTy, CodeGenTypes &Types, 1994 const llvm::DataLayout &DL, const ABIArgInfo &AI, 1995 bool CheckCoerce = true) { 1996 llvm::Type *Ty = Types.ConvertTypeForMem(QTy); 1997 if (AI.getKind() == ABIArgInfo::Indirect) 1998 return true; 1999 if (AI.getKind() == ABIArgInfo::Extend) 2000 return true; 2001 if (!DL.typeSizeEqualsStoreSize(Ty)) 2002 // TODO: This will result in a modest amount of values not marked noundef 2003 // when they could be. We care about values that *invisibly* contain undef 2004 // bits from the perspective of LLVM IR. 2005 return false; 2006 if (CheckCoerce && AI.canHaveCoerceToType()) { 2007 llvm::Type *CoerceTy = AI.getCoerceToType(); 2008 if (llvm::TypeSize::isKnownGT(DL.getTypeSizeInBits(CoerceTy), 2009 DL.getTypeSizeInBits(Ty))) 2010 // If we're coercing to a type with a greater size than the canonical one, 2011 // we're introducing new undef bits. 2012 // Coercing to a type of smaller or equal size is ok, as we know that 2013 // there's no internal padding (typeSizeEqualsStoreSize). 2014 return false; 2015 } 2016 if (QTy->isBitIntType()) 2017 return true; 2018 if (QTy->isReferenceType()) 2019 return true; 2020 if (QTy->isNullPtrType()) 2021 return false; 2022 if (QTy->isMemberPointerType()) 2023 // TODO: Some member pointers are `noundef`, but it depends on the ABI. For 2024 // now, never mark them. 2025 return false; 2026 if (QTy->isScalarType()) { 2027 if (const ComplexType *Complex = dyn_cast<ComplexType>(QTy)) 2028 return DetermineNoUndef(Complex->getElementType(), Types, DL, AI, false); 2029 return true; 2030 } 2031 if (const VectorType *Vector = dyn_cast<VectorType>(QTy)) 2032 return DetermineNoUndef(Vector->getElementType(), Types, DL, AI, false); 2033 if (const MatrixType *Matrix = dyn_cast<MatrixType>(QTy)) 2034 return DetermineNoUndef(Matrix->getElementType(), Types, DL, AI, false); 2035 if (const ArrayType *Array = dyn_cast<ArrayType>(QTy)) 2036 return DetermineNoUndef(Array->getElementType(), Types, DL, AI, false); 2037 2038 // TODO: Some structs may be `noundef`, in specific situations. 2039 return false; 2040 } 2041 2042 /// Construct the IR attribute list of a function or call. 2043 /// 2044 /// When adding an attribute, please consider where it should be handled: 2045 /// 2046 /// - getDefaultFunctionAttributes is for attributes that are essentially 2047 /// part of the global target configuration (but perhaps can be 2048 /// overridden on a per-function basis). Adding attributes there 2049 /// will cause them to also be set in frontends that build on Clang's 2050 /// target-configuration logic, as well as for code defined in library 2051 /// modules such as CUDA's libdevice. 2052 /// 2053 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 2054 /// and adds declaration-specific, convention-specific, and 2055 /// frontend-specific logic. The last is of particular importance: 2056 /// attributes that restrict how the frontend generates code must be 2057 /// added here rather than getDefaultFunctionAttributes. 2058 /// 2059 void CodeGenModule::ConstructAttributeList(StringRef Name, 2060 const CGFunctionInfo &FI, 2061 CGCalleeInfo CalleeInfo, 2062 llvm::AttributeList &AttrList, 2063 unsigned &CallingConv, 2064 bool AttrOnCallSite, bool IsThunk) { 2065 llvm::AttrBuilder FuncAttrs(getLLVMContext()); 2066 llvm::AttrBuilder RetAttrs(getLLVMContext()); 2067 2068 // Collect function IR attributes from the CC lowering. 2069 // We'll collect the paramete and result attributes later. 2070 CallingConv = FI.getEffectiveCallingConvention(); 2071 if (FI.isNoReturn()) 2072 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2073 if (FI.isCmseNSCall()) 2074 FuncAttrs.addAttribute("cmse_nonsecure_call"); 2075 2076 // Collect function IR attributes from the callee prototype if we have one. 2077 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 2078 CalleeInfo.getCalleeFunctionProtoType()); 2079 2080 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 2081 2082 // Attach assumption attributes to the declaration. If this is a call 2083 // site, attach assumptions from the caller to the call as well. 2084 AddAttributesFromAssumes(FuncAttrs, TargetDecl); 2085 2086 bool HasOptnone = false; 2087 // The NoBuiltinAttr attached to the target FunctionDecl. 2088 const NoBuiltinAttr *NBA = nullptr; 2089 2090 // Collect function IR attributes based on declaration-specific 2091 // information. 2092 // FIXME: handle sseregparm someday... 2093 if (TargetDecl) { 2094 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 2095 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 2096 if (TargetDecl->hasAttr<NoThrowAttr>()) 2097 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2098 if (TargetDecl->hasAttr<NoReturnAttr>()) 2099 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2100 if (TargetDecl->hasAttr<ColdAttr>()) 2101 FuncAttrs.addAttribute(llvm::Attribute::Cold); 2102 if (TargetDecl->hasAttr<HotAttr>()) 2103 FuncAttrs.addAttribute(llvm::Attribute::Hot); 2104 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 2105 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 2106 if (TargetDecl->hasAttr<ConvergentAttr>()) 2107 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 2108 2109 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2110 AddAttributesFromFunctionProtoType( 2111 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 2112 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 2113 // A sane operator new returns a non-aliasing pointer. 2114 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 2115 if (getCodeGenOpts().AssumeSaneOperatorNew && 2116 (Kind == OO_New || Kind == OO_Array_New)) 2117 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2118 } 2119 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 2120 const bool IsVirtualCall = MD && MD->isVirtual(); 2121 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 2122 // virtual function. These attributes are not inherited by overloads. 2123 if (!(AttrOnCallSite && IsVirtualCall)) { 2124 if (Fn->isNoReturn()) 2125 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 2126 NBA = Fn->getAttr<NoBuiltinAttr>(); 2127 } 2128 // Only place nomerge attribute on call sites, never functions. This 2129 // allows it to work on indirect virtual function calls. 2130 if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>()) 2131 FuncAttrs.addAttribute(llvm::Attribute::NoMerge); 2132 } 2133 2134 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 2135 if (TargetDecl->hasAttr<ConstAttr>()) { 2136 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 2137 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2138 // gcc specifies that 'const' functions have greater restrictions than 2139 // 'pure' functions, so they also cannot have infinite loops. 2140 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2141 } else if (TargetDecl->hasAttr<PureAttr>()) { 2142 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 2143 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2144 // gcc specifies that 'pure' functions cannot have infinite loops. 2145 FuncAttrs.addAttribute(llvm::Attribute::WillReturn); 2146 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 2147 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 2148 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 2149 } 2150 if (TargetDecl->hasAttr<RestrictAttr>()) 2151 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 2152 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 2153 !CodeGenOpts.NullPointerIsValid) 2154 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2155 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 2156 FuncAttrs.addAttribute("no_caller_saved_registers"); 2157 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 2158 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 2159 if (TargetDecl->hasAttr<LeafAttr>()) 2160 FuncAttrs.addAttribute(llvm::Attribute::NoCallback); 2161 2162 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 2163 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 2164 Optional<unsigned> NumElemsParam; 2165 if (AllocSize->getNumElemsParam().isValid()) 2166 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 2167 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 2168 NumElemsParam); 2169 } 2170 2171 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2172 if (getLangOpts().OpenCLVersion <= 120) { 2173 // OpenCL v1.2 Work groups are always uniform 2174 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2175 } else { 2176 // OpenCL v2.0 Work groups may be whether uniform or not. 2177 // '-cl-uniform-work-group-size' compile option gets a hint 2178 // to the compiler that the global work-size be a multiple of 2179 // the work-group size specified to clEnqueueNDRangeKernel 2180 // (i.e. work groups are uniform). 2181 FuncAttrs.addAttribute("uniform-work-group-size", 2182 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 2183 } 2184 } 2185 } 2186 2187 // Attach "no-builtins" attributes to: 2188 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2189 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2190 // The attributes can come from: 2191 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2192 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2193 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2194 2195 // Collect function IR attributes based on global settiings. 2196 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2197 2198 // Override some default IR attributes based on declaration-specific 2199 // information. 2200 if (TargetDecl) { 2201 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2202 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2203 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2204 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2205 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2206 FuncAttrs.removeAttribute("split-stack"); 2207 if (TargetDecl->hasAttr<ZeroCallUsedRegsAttr>()) { 2208 // A function "__attribute__((...))" overrides the command-line flag. 2209 auto Kind = 2210 TargetDecl->getAttr<ZeroCallUsedRegsAttr>()->getZeroCallUsedRegs(); 2211 FuncAttrs.removeAttribute("zero-call-used-regs"); 2212 FuncAttrs.addAttribute( 2213 "zero-call-used-regs", 2214 ZeroCallUsedRegsAttr::ConvertZeroCallUsedRegsKindToStr(Kind)); 2215 } 2216 2217 // Add NonLazyBind attribute to function declarations when -fno-plt 2218 // is used. 2219 // FIXME: what if we just haven't processed the function definition 2220 // yet, or if it's an external definition like C99 inline? 2221 if (CodeGenOpts.NoPLT) { 2222 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2223 if (!Fn->isDefined() && !AttrOnCallSite) { 2224 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2225 } 2226 } 2227 } 2228 } 2229 2230 // Add "sample-profile-suffix-elision-policy" attribute for internal linkage 2231 // functions with -funique-internal-linkage-names. 2232 if (TargetDecl && CodeGenOpts.UniqueInternalLinkageNames) { 2233 if (isa<FunctionDecl>(TargetDecl)) { 2234 if (this->getFunctionLinkage(CalleeInfo.getCalleeDecl()) == 2235 llvm::GlobalValue::InternalLinkage) 2236 FuncAttrs.addAttribute("sample-profile-suffix-elision-policy", 2237 "selected"); 2238 } 2239 } 2240 2241 // Collect non-call-site function IR attributes from declaration-specific 2242 // information. 2243 if (!AttrOnCallSite) { 2244 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2245 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2246 2247 // Whether tail calls are enabled. 2248 auto shouldDisableTailCalls = [&] { 2249 // Should this be honored in getDefaultFunctionAttributes? 2250 if (CodeGenOpts.DisableTailCalls) 2251 return true; 2252 2253 if (!TargetDecl) 2254 return false; 2255 2256 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2257 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2258 return true; 2259 2260 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2261 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2262 if (!BD->doesNotEscape()) 2263 return true; 2264 } 2265 2266 return false; 2267 }; 2268 if (shouldDisableTailCalls()) 2269 FuncAttrs.addAttribute("disable-tail-calls", "true"); 2270 2271 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2272 // handles these separately to set them based on the global defaults. 2273 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2274 } 2275 2276 // Collect attributes from arguments and return values. 2277 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2278 2279 QualType RetTy = FI.getReturnType(); 2280 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2281 const llvm::DataLayout &DL = getDataLayout(); 2282 2283 // C++ explicitly makes returning undefined values UB. C's rule only applies 2284 // to used values, so we never mark them noundef for now. 2285 bool HasStrictReturn = getLangOpts().CPlusPlus; 2286 if (TargetDecl && HasStrictReturn) { 2287 if (const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(TargetDecl)) 2288 HasStrictReturn &= !FDecl->isExternC(); 2289 else if (const VarDecl *VDecl = dyn_cast<VarDecl>(TargetDecl)) 2290 // Function pointer 2291 HasStrictReturn &= !VDecl->isExternC(); 2292 } 2293 2294 // We don't want to be too aggressive with the return checking, unless 2295 // it's explicit in the code opts or we're using an appropriate sanitizer. 2296 // Try to respect what the programmer intended. 2297 HasStrictReturn &= getCodeGenOpts().StrictReturn || 2298 !MayDropFunctionReturn(getContext(), RetTy) || 2299 getLangOpts().Sanitize.has(SanitizerKind::Memory) || 2300 getLangOpts().Sanitize.has(SanitizerKind::Return); 2301 2302 // Determine if the return type could be partially undef 2303 if (CodeGenOpts.EnableNoundefAttrs && HasStrictReturn) { 2304 if (!RetTy->isVoidType() && RetAI.getKind() != ABIArgInfo::Indirect && 2305 DetermineNoUndef(RetTy, getTypes(), DL, RetAI)) 2306 RetAttrs.addAttribute(llvm::Attribute::NoUndef); 2307 } 2308 2309 switch (RetAI.getKind()) { 2310 case ABIArgInfo::Extend: 2311 if (RetAI.isSignExt()) 2312 RetAttrs.addAttribute(llvm::Attribute::SExt); 2313 else 2314 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2315 LLVM_FALLTHROUGH; 2316 case ABIArgInfo::Direct: 2317 if (RetAI.getInReg()) 2318 RetAttrs.addAttribute(llvm::Attribute::InReg); 2319 break; 2320 case ABIArgInfo::Ignore: 2321 break; 2322 2323 case ABIArgInfo::InAlloca: 2324 case ABIArgInfo::Indirect: { 2325 // inalloca and sret disable readnone and readonly 2326 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2327 .removeAttribute(llvm::Attribute::ReadNone); 2328 break; 2329 } 2330 2331 case ABIArgInfo::CoerceAndExpand: 2332 break; 2333 2334 case ABIArgInfo::Expand: 2335 case ABIArgInfo::IndirectAliased: 2336 llvm_unreachable("Invalid ABI kind for return argument"); 2337 } 2338 2339 if (!IsThunk) { 2340 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2341 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2342 QualType PTy = RefTy->getPointeeType(); 2343 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2344 RetAttrs.addDereferenceableAttr( 2345 getMinimumObjectSize(PTy).getQuantity()); 2346 if (getContext().getTargetAddressSpace(PTy) == 0 && 2347 !CodeGenOpts.NullPointerIsValid) 2348 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2349 if (PTy->isObjectType()) { 2350 llvm::Align Alignment = 2351 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2352 RetAttrs.addAlignmentAttr(Alignment); 2353 } 2354 } 2355 } 2356 2357 bool hasUsedSRet = false; 2358 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2359 2360 // Attach attributes to sret. 2361 if (IRFunctionArgs.hasSRetArg()) { 2362 llvm::AttrBuilder SRETAttrs(getLLVMContext()); 2363 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2364 hasUsedSRet = true; 2365 if (RetAI.getInReg()) 2366 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2367 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2368 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2369 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2370 } 2371 2372 // Attach attributes to inalloca argument. 2373 if (IRFunctionArgs.hasInallocaArg()) { 2374 llvm::AttrBuilder Attrs(getLLVMContext()); 2375 Attrs.addInAllocaAttr(FI.getArgStruct()); 2376 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2377 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2378 } 2379 2380 // Apply `nonnull`, `dereferencable(N)` and `align N` to the `this` argument, 2381 // unless this is a thunk function. 2382 // FIXME: fix this properly, https://reviews.llvm.org/D100388 2383 if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() && 2384 !FI.arg_begin()->type->isVoidPointerType() && !IsThunk) { 2385 auto IRArgs = IRFunctionArgs.getIRArgs(0); 2386 2387 assert(IRArgs.second == 1 && "Expected only a single `this` pointer."); 2388 2389 llvm::AttrBuilder Attrs(getLLVMContext()); 2390 2391 QualType ThisTy = 2392 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType(); 2393 2394 if (!CodeGenOpts.NullPointerIsValid && 2395 getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) { 2396 Attrs.addAttribute(llvm::Attribute::NonNull); 2397 Attrs.addDereferenceableAttr(getMinimumObjectSize(ThisTy).getQuantity()); 2398 } else { 2399 // FIXME dereferenceable should be correct here, regardless of 2400 // NullPointerIsValid. However, dereferenceable currently does not always 2401 // respect NullPointerIsValid and may imply nonnull and break the program. 2402 // See https://reviews.llvm.org/D66618 for discussions. 2403 Attrs.addDereferenceableOrNullAttr( 2404 getMinimumObjectSize( 2405 FI.arg_begin()->type.castAs<PointerType>()->getPointeeType()) 2406 .getQuantity()); 2407 } 2408 2409 llvm::Align Alignment = 2410 getNaturalTypeAlignment(ThisTy, /*BaseInfo=*/nullptr, 2411 /*TBAAInfo=*/nullptr, /*forPointeeType=*/true) 2412 .getAsAlign(); 2413 Attrs.addAlignmentAttr(Alignment); 2414 2415 ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs); 2416 } 2417 2418 unsigned ArgNo = 0; 2419 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2420 E = FI.arg_end(); 2421 I != E; ++I, ++ArgNo) { 2422 QualType ParamType = I->type; 2423 const ABIArgInfo &AI = I->info; 2424 llvm::AttrBuilder Attrs(getLLVMContext()); 2425 2426 // Add attribute for padding argument, if necessary. 2427 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2428 if (AI.getPaddingInReg()) { 2429 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2430 llvm::AttributeSet::get( 2431 getLLVMContext(), 2432 llvm::AttrBuilder(getLLVMContext()).addAttribute(llvm::Attribute::InReg)); 2433 } 2434 } 2435 2436 // Decide whether the argument we're handling could be partially undef 2437 if (CodeGenOpts.EnableNoundefAttrs && 2438 DetermineNoUndef(ParamType, getTypes(), DL, AI)) { 2439 Attrs.addAttribute(llvm::Attribute::NoUndef); 2440 } 2441 2442 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2443 // have the corresponding parameter variable. It doesn't make 2444 // sense to do it here because parameters are so messed up. 2445 switch (AI.getKind()) { 2446 case ABIArgInfo::Extend: 2447 if (AI.isSignExt()) 2448 Attrs.addAttribute(llvm::Attribute::SExt); 2449 else 2450 Attrs.addAttribute(llvm::Attribute::ZExt); 2451 LLVM_FALLTHROUGH; 2452 case ABIArgInfo::Direct: 2453 if (ArgNo == 0 && FI.isChainCall()) 2454 Attrs.addAttribute(llvm::Attribute::Nest); 2455 else if (AI.getInReg()) 2456 Attrs.addAttribute(llvm::Attribute::InReg); 2457 Attrs.addStackAlignmentAttr(llvm::MaybeAlign(AI.getDirectAlign())); 2458 break; 2459 2460 case ABIArgInfo::Indirect: { 2461 if (AI.getInReg()) 2462 Attrs.addAttribute(llvm::Attribute::InReg); 2463 2464 if (AI.getIndirectByVal()) 2465 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2466 2467 auto *Decl = ParamType->getAsRecordDecl(); 2468 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2469 Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs) 2470 // When calling the function, the pointer passed in will be the only 2471 // reference to the underlying object. Mark it accordingly. 2472 Attrs.addAttribute(llvm::Attribute::NoAlias); 2473 2474 // TODO: We could add the byref attribute if not byval, but it would 2475 // require updating many testcases. 2476 2477 CharUnits Align = AI.getIndirectAlign(); 2478 2479 // In a byval argument, it is important that the required 2480 // alignment of the type is honored, as LLVM might be creating a 2481 // *new* stack object, and needs to know what alignment to give 2482 // it. (Sometimes it can deduce a sensible alignment on its own, 2483 // but not if clang decides it must emit a packed struct, or the 2484 // user specifies increased alignment requirements.) 2485 // 2486 // This is different from indirect *not* byval, where the object 2487 // exists already, and the align attribute is purely 2488 // informative. 2489 assert(!Align.isZero()); 2490 2491 // For now, only add this when we have a byval argument. 2492 // TODO: be less lazy about updating test cases. 2493 if (AI.getIndirectByVal()) 2494 Attrs.addAlignmentAttr(Align.getQuantity()); 2495 2496 // byval disables readnone and readonly. 2497 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2498 .removeAttribute(llvm::Attribute::ReadNone); 2499 2500 break; 2501 } 2502 case ABIArgInfo::IndirectAliased: { 2503 CharUnits Align = AI.getIndirectAlign(); 2504 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2505 Attrs.addAlignmentAttr(Align.getQuantity()); 2506 break; 2507 } 2508 case ABIArgInfo::Ignore: 2509 case ABIArgInfo::Expand: 2510 case ABIArgInfo::CoerceAndExpand: 2511 break; 2512 2513 case ABIArgInfo::InAlloca: 2514 // inalloca disables readnone and readonly. 2515 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2516 .removeAttribute(llvm::Attribute::ReadNone); 2517 continue; 2518 } 2519 2520 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2521 QualType PTy = RefTy->getPointeeType(); 2522 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2523 Attrs.addDereferenceableAttr( 2524 getMinimumObjectSize(PTy).getQuantity()); 2525 if (getContext().getTargetAddressSpace(PTy) == 0 && 2526 !CodeGenOpts.NullPointerIsValid) 2527 Attrs.addAttribute(llvm::Attribute::NonNull); 2528 if (PTy->isObjectType()) { 2529 llvm::Align Alignment = 2530 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2531 Attrs.addAlignmentAttr(Alignment); 2532 } 2533 } 2534 2535 // From OpenCL spec v3.0.10 section 6.3.5 Alignment of Types: 2536 // > For arguments to a __kernel function declared to be a pointer to a 2537 // > data type, the OpenCL compiler can assume that the pointee is always 2538 // > appropriately aligned as required by the data type. 2539 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>() && 2540 ParamType->isPointerType()) { 2541 QualType PTy = ParamType->getPointeeType(); 2542 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2543 llvm::Align Alignment = 2544 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2545 Attrs.addAlignmentAttr(Alignment); 2546 } 2547 } 2548 2549 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2550 case ParameterABI::Ordinary: 2551 break; 2552 2553 case ParameterABI::SwiftIndirectResult: { 2554 // Add 'sret' if we haven't already used it for something, but 2555 // only if the result is void. 2556 if (!hasUsedSRet && RetTy->isVoidType()) { 2557 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2558 hasUsedSRet = true; 2559 } 2560 2561 // Add 'noalias' in either case. 2562 Attrs.addAttribute(llvm::Attribute::NoAlias); 2563 2564 // Add 'dereferenceable' and 'alignment'. 2565 auto PTy = ParamType->getPointeeType(); 2566 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2567 auto info = getContext().getTypeInfoInChars(PTy); 2568 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2569 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2570 } 2571 break; 2572 } 2573 2574 case ParameterABI::SwiftErrorResult: 2575 Attrs.addAttribute(llvm::Attribute::SwiftError); 2576 break; 2577 2578 case ParameterABI::SwiftContext: 2579 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2580 break; 2581 2582 case ParameterABI::SwiftAsyncContext: 2583 Attrs.addAttribute(llvm::Attribute::SwiftAsync); 2584 break; 2585 } 2586 2587 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2588 Attrs.addAttribute(llvm::Attribute::NoCapture); 2589 2590 if (Attrs.hasAttributes()) { 2591 unsigned FirstIRArg, NumIRArgs; 2592 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2593 for (unsigned i = 0; i < NumIRArgs; i++) 2594 ArgAttrs[FirstIRArg + i] = ArgAttrs[FirstIRArg + i].addAttributes( 2595 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), Attrs)); 2596 } 2597 } 2598 assert(ArgNo == FI.arg_size()); 2599 2600 AttrList = llvm::AttributeList::get( 2601 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2602 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2603 } 2604 2605 /// An argument came in as a promoted argument; demote it back to its 2606 /// declared type. 2607 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2608 const VarDecl *var, 2609 llvm::Value *value) { 2610 llvm::Type *varType = CGF.ConvertType(var->getType()); 2611 2612 // This can happen with promotions that actually don't change the 2613 // underlying type, like the enum promotions. 2614 if (value->getType() == varType) return value; 2615 2616 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2617 && "unexpected promotion type"); 2618 2619 if (isa<llvm::IntegerType>(varType)) 2620 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2621 2622 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2623 } 2624 2625 /// Returns the attribute (either parameter attribute, or function 2626 /// attribute), which declares argument ArgNo to be non-null. 2627 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2628 QualType ArgType, unsigned ArgNo) { 2629 // FIXME: __attribute__((nonnull)) can also be applied to: 2630 // - references to pointers, where the pointee is known to be 2631 // nonnull (apparently a Clang extension) 2632 // - transparent unions containing pointers 2633 // In the former case, LLVM IR cannot represent the constraint. In 2634 // the latter case, we have no guarantee that the transparent union 2635 // is in fact passed as a pointer. 2636 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2637 return nullptr; 2638 // First, check attribute on parameter itself. 2639 if (PVD) { 2640 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2641 return ParmNNAttr; 2642 } 2643 // Check function attributes. 2644 if (!FD) 2645 return nullptr; 2646 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2647 if (NNAttr->isNonNull(ArgNo)) 2648 return NNAttr; 2649 } 2650 return nullptr; 2651 } 2652 2653 namespace { 2654 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2655 Address Temp; 2656 Address Arg; 2657 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2658 void Emit(CodeGenFunction &CGF, Flags flags) override { 2659 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2660 CGF.Builder.CreateStore(errorValue, Arg); 2661 } 2662 }; 2663 } 2664 2665 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2666 llvm::Function *Fn, 2667 const FunctionArgList &Args) { 2668 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2669 // Naked functions don't have prologues. 2670 return; 2671 2672 // If this is an implicit-return-zero function, go ahead and 2673 // initialize the return value. TODO: it might be nice to have 2674 // a more general mechanism for this that didn't require synthesized 2675 // return statements. 2676 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2677 if (FD->hasImplicitReturnZero()) { 2678 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2679 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2680 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2681 Builder.CreateStore(Zero, ReturnValue); 2682 } 2683 } 2684 2685 // FIXME: We no longer need the types from FunctionArgList; lift up and 2686 // simplify. 2687 2688 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2689 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2690 2691 // If we're using inalloca, all the memory arguments are GEPs off of the last 2692 // parameter, which is a pointer to the complete memory area. 2693 Address ArgStruct = Address::invalid(); 2694 if (IRFunctionArgs.hasInallocaArg()) { 2695 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2696 FI.getArgStruct(), FI.getArgStructAlignment()); 2697 2698 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2699 } 2700 2701 // Name the struct return parameter. 2702 if (IRFunctionArgs.hasSRetArg()) { 2703 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2704 AI->setName("agg.result"); 2705 AI->addAttr(llvm::Attribute::NoAlias); 2706 } 2707 2708 // Track if we received the parameter as a pointer (indirect, byval, or 2709 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2710 // into a local alloca for us. 2711 SmallVector<ParamValue, 16> ArgVals; 2712 ArgVals.reserve(Args.size()); 2713 2714 // Create a pointer value for every parameter declaration. This usually 2715 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2716 // any cleanups or do anything that might unwind. We do that separately, so 2717 // we can push the cleanups in the correct order for the ABI. 2718 assert(FI.arg_size() == Args.size() && 2719 "Mismatch between function signature & arguments."); 2720 unsigned ArgNo = 0; 2721 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2722 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2723 i != e; ++i, ++info_it, ++ArgNo) { 2724 const VarDecl *Arg = *i; 2725 const ABIArgInfo &ArgI = info_it->info; 2726 2727 bool isPromoted = 2728 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2729 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2730 // the parameter is promoted. In this case we convert to 2731 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2732 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2733 assert(hasScalarEvaluationKind(Ty) == 2734 hasScalarEvaluationKind(Arg->getType())); 2735 2736 unsigned FirstIRArg, NumIRArgs; 2737 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2738 2739 switch (ArgI.getKind()) { 2740 case ABIArgInfo::InAlloca: { 2741 assert(NumIRArgs == 0); 2742 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2743 Address V = 2744 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2745 if (ArgI.getInAllocaIndirect()) 2746 V = Address(Builder.CreateLoad(V), ConvertTypeForMem(Ty), 2747 getContext().getTypeAlignInChars(Ty)); 2748 ArgVals.push_back(ParamValue::forIndirect(V)); 2749 break; 2750 } 2751 2752 case ABIArgInfo::Indirect: 2753 case ABIArgInfo::IndirectAliased: { 2754 assert(NumIRArgs == 1); 2755 Address ParamAddr = Address(Fn->getArg(FirstIRArg), ConvertTypeForMem(Ty), 2756 ArgI.getIndirectAlign()); 2757 2758 if (!hasScalarEvaluationKind(Ty)) { 2759 // Aggregates and complex variables are accessed by reference. All we 2760 // need to do is realign the value, if requested. Also, if the address 2761 // may be aliased, copy it to ensure that the parameter variable is 2762 // mutable and has a unique adress, as C requires. 2763 Address V = ParamAddr; 2764 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 2765 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2766 2767 // Copy from the incoming argument pointer to the temporary with the 2768 // appropriate alignment. 2769 // 2770 // FIXME: We should have a common utility for generating an aggregate 2771 // copy. 2772 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2773 Builder.CreateMemCpy( 2774 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 2775 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 2776 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 2777 V = AlignedTemp; 2778 } 2779 ArgVals.push_back(ParamValue::forIndirect(V)); 2780 } else { 2781 // Load scalar value from indirect argument. 2782 llvm::Value *V = 2783 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2784 2785 if (isPromoted) 2786 V = emitArgumentDemotion(*this, Arg, V); 2787 ArgVals.push_back(ParamValue::forDirect(V)); 2788 } 2789 break; 2790 } 2791 2792 case ABIArgInfo::Extend: 2793 case ABIArgInfo::Direct: { 2794 auto AI = Fn->getArg(FirstIRArg); 2795 llvm::Type *LTy = ConvertType(Arg->getType()); 2796 2797 // Prepare parameter attributes. So far, only attributes for pointer 2798 // parameters are prepared. See 2799 // http://llvm.org/docs/LangRef.html#paramattrs. 2800 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 2801 ArgI.getCoerceToType()->isPointerTy()) { 2802 assert(NumIRArgs == 1); 2803 2804 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2805 // Set `nonnull` attribute if any. 2806 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2807 PVD->getFunctionScopeIndex()) && 2808 !CGM.getCodeGenOpts().NullPointerIsValid) 2809 AI->addAttr(llvm::Attribute::NonNull); 2810 2811 QualType OTy = PVD->getOriginalType(); 2812 if (const auto *ArrTy = 2813 getContext().getAsConstantArrayType(OTy)) { 2814 // A C99 array parameter declaration with the static keyword also 2815 // indicates dereferenceability, and if the size is constant we can 2816 // use the dereferenceable attribute (which requires the size in 2817 // bytes). 2818 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2819 QualType ETy = ArrTy->getElementType(); 2820 llvm::Align Alignment = 2821 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2822 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 2823 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2824 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2825 ArrSize) { 2826 llvm::AttrBuilder Attrs(getLLVMContext()); 2827 Attrs.addDereferenceableAttr( 2828 getContext().getTypeSizeInChars(ETy).getQuantity() * 2829 ArrSize); 2830 AI->addAttrs(Attrs); 2831 } else if (getContext().getTargetInfo().getNullPointerValue( 2832 ETy.getAddressSpace()) == 0 && 2833 !CGM.getCodeGenOpts().NullPointerIsValid) { 2834 AI->addAttr(llvm::Attribute::NonNull); 2835 } 2836 } 2837 } else if (const auto *ArrTy = 2838 getContext().getAsVariableArrayType(OTy)) { 2839 // For C99 VLAs with the static keyword, we don't know the size so 2840 // we can't use the dereferenceable attribute, but in addrspace(0) 2841 // we know that it must be nonnull. 2842 if (ArrTy->getSizeModifier() == VariableArrayType::Static) { 2843 QualType ETy = ArrTy->getElementType(); 2844 llvm::Align Alignment = 2845 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2846 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr(Alignment)); 2847 if (!getContext().getTargetAddressSpace(ETy) && 2848 !CGM.getCodeGenOpts().NullPointerIsValid) 2849 AI->addAttr(llvm::Attribute::NonNull); 2850 } 2851 } 2852 2853 // Set `align` attribute if any. 2854 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2855 if (!AVAttr) 2856 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2857 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2858 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2859 // If alignment-assumption sanitizer is enabled, we do *not* add 2860 // alignment attribute here, but emit normal alignment assumption, 2861 // so the UBSAN check could function. 2862 llvm::ConstantInt *AlignmentCI = 2863 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 2864 uint64_t AlignmentInt = 2865 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 2866 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 2867 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 2868 AI->addAttrs(llvm::AttrBuilder(getLLVMContext()).addAlignmentAttr( 2869 llvm::Align(AlignmentInt))); 2870 } 2871 } 2872 } 2873 2874 // Set 'noalias' if an argument type has the `restrict` qualifier. 2875 if (Arg->getType().isRestrictQualified()) 2876 AI->addAttr(llvm::Attribute::NoAlias); 2877 } 2878 2879 // Prepare the argument value. If we have the trivial case, handle it 2880 // with no muss and fuss. 2881 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2882 ArgI.getCoerceToType() == ConvertType(Ty) && 2883 ArgI.getDirectOffset() == 0) { 2884 assert(NumIRArgs == 1); 2885 2886 // LLVM expects swifterror parameters to be used in very restricted 2887 // ways. Copy the value into a less-restricted temporary. 2888 llvm::Value *V = AI; 2889 if (FI.getExtParameterInfo(ArgNo).getABI() 2890 == ParameterABI::SwiftErrorResult) { 2891 QualType pointeeTy = Ty->getPointeeType(); 2892 assert(pointeeTy->isPointerType()); 2893 Address temp = 2894 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2895 Address arg(V, ConvertTypeForMem(pointeeTy), 2896 getContext().getTypeAlignInChars(pointeeTy)); 2897 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2898 Builder.CreateStore(incomingErrorValue, temp); 2899 V = temp.getPointer(); 2900 2901 // Push a cleanup to copy the value back at the end of the function. 2902 // The convention does not guarantee that the value will be written 2903 // back if the function exits with an unwind exception. 2904 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2905 } 2906 2907 // Ensure the argument is the correct type. 2908 if (V->getType() != ArgI.getCoerceToType()) 2909 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2910 2911 if (isPromoted) 2912 V = emitArgumentDemotion(*this, Arg, V); 2913 2914 // Because of merging of function types from multiple decls it is 2915 // possible for the type of an argument to not match the corresponding 2916 // type in the function type. Since we are codegening the callee 2917 // in here, add a cast to the argument type. 2918 llvm::Type *LTy = ConvertType(Arg->getType()); 2919 if (V->getType() != LTy) 2920 V = Builder.CreateBitCast(V, LTy); 2921 2922 ArgVals.push_back(ParamValue::forDirect(V)); 2923 break; 2924 } 2925 2926 // VLST arguments are coerced to VLATs at the function boundary for 2927 // ABI consistency. If this is a VLST that was coerced to 2928 // a VLAT at the function boundary and the types match up, use 2929 // llvm.experimental.vector.extract to convert back to the original 2930 // VLST. 2931 if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) { 2932 llvm::Value *Coerced = Fn->getArg(FirstIRArg); 2933 if (auto *VecTyFrom = 2934 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) { 2935 // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 2936 // vector, bitcast the source and use a vector extract. 2937 auto PredType = 2938 llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 2939 if (VecTyFrom == PredType && 2940 VecTyTo->getElementType() == Builder.getInt8Ty()) { 2941 VecTyFrom = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); 2942 Coerced = Builder.CreateBitCast(Coerced, VecTyFrom); 2943 } 2944 if (VecTyFrom->getElementType() == VecTyTo->getElementType()) { 2945 llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty); 2946 2947 assert(NumIRArgs == 1); 2948 Coerced->setName(Arg->getName() + ".coerce"); 2949 ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector( 2950 VecTyTo, Coerced, Zero, "castFixedSve"))); 2951 break; 2952 } 2953 } 2954 } 2955 2956 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2957 Arg->getName()); 2958 2959 // Pointer to store into. 2960 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2961 2962 // Fast-isel and the optimizer generally like scalar values better than 2963 // FCAs, so we flatten them if this is safe to do for this argument. 2964 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2965 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2966 STy->getNumElements() > 1) { 2967 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2968 llvm::Type *DstTy = Ptr.getElementType(); 2969 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2970 2971 Address AddrToStoreInto = Address::invalid(); 2972 if (SrcSize <= DstSize) { 2973 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2974 } else { 2975 AddrToStoreInto = 2976 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2977 } 2978 2979 assert(STy->getNumElements() == NumIRArgs); 2980 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2981 auto AI = Fn->getArg(FirstIRArg + i); 2982 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2983 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2984 Builder.CreateStore(AI, EltPtr); 2985 } 2986 2987 if (SrcSize > DstSize) { 2988 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2989 } 2990 2991 } else { 2992 // Simple case, just do a coerced store of the argument into the alloca. 2993 assert(NumIRArgs == 1); 2994 auto AI = Fn->getArg(FirstIRArg); 2995 AI->setName(Arg->getName() + ".coerce"); 2996 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 2997 } 2998 2999 // Match to what EmitParmDecl is expecting for this type. 3000 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 3001 llvm::Value *V = 3002 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 3003 if (isPromoted) 3004 V = emitArgumentDemotion(*this, Arg, V); 3005 ArgVals.push_back(ParamValue::forDirect(V)); 3006 } else { 3007 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3008 } 3009 break; 3010 } 3011 3012 case ABIArgInfo::CoerceAndExpand: { 3013 // Reconstruct into a temporary. 3014 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3015 ArgVals.push_back(ParamValue::forIndirect(alloca)); 3016 3017 auto coercionType = ArgI.getCoerceAndExpandType(); 3018 alloca = Builder.CreateElementBitCast(alloca, coercionType); 3019 3020 unsigned argIndex = FirstIRArg; 3021 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3022 llvm::Type *eltType = coercionType->getElementType(i); 3023 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 3024 continue; 3025 3026 auto eltAddr = Builder.CreateStructGEP(alloca, i); 3027 auto elt = Fn->getArg(argIndex++); 3028 Builder.CreateStore(elt, eltAddr); 3029 } 3030 assert(argIndex == FirstIRArg + NumIRArgs); 3031 break; 3032 } 3033 3034 case ABIArgInfo::Expand: { 3035 // If this structure was expanded into multiple arguments then 3036 // we need to create a temporary and reconstruct it from the 3037 // arguments. 3038 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 3039 LValue LV = MakeAddrLValue(Alloca, Ty); 3040 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 3041 3042 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 3043 ExpandTypeFromArgs(Ty, LV, FnArgIter); 3044 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 3045 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 3046 auto AI = Fn->getArg(FirstIRArg + i); 3047 AI->setName(Arg->getName() + "." + Twine(i)); 3048 } 3049 break; 3050 } 3051 3052 case ABIArgInfo::Ignore: 3053 assert(NumIRArgs == 0); 3054 // Initialize the local variable appropriately. 3055 if (!hasScalarEvaluationKind(Ty)) { 3056 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 3057 } else { 3058 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 3059 ArgVals.push_back(ParamValue::forDirect(U)); 3060 } 3061 break; 3062 } 3063 } 3064 3065 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3066 for (int I = Args.size() - 1; I >= 0; --I) 3067 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3068 } else { 3069 for (unsigned I = 0, E = Args.size(); I != E; ++I) 3070 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 3071 } 3072 } 3073 3074 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 3075 while (insn->use_empty()) { 3076 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 3077 if (!bitcast) return; 3078 3079 // This is "safe" because we would have used a ConstantExpr otherwise. 3080 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 3081 bitcast->eraseFromParent(); 3082 } 3083 } 3084 3085 /// Try to emit a fused autorelease of a return result. 3086 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 3087 llvm::Value *result) { 3088 // We must be immediately followed the cast. 3089 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 3090 if (BB->empty()) return nullptr; 3091 if (&BB->back() != result) return nullptr; 3092 3093 llvm::Type *resultType = result->getType(); 3094 3095 // result is in a BasicBlock and is therefore an Instruction. 3096 llvm::Instruction *generator = cast<llvm::Instruction>(result); 3097 3098 SmallVector<llvm::Instruction *, 4> InstsToKill; 3099 3100 // Look for: 3101 // %generator = bitcast %type1* %generator2 to %type2* 3102 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 3103 // We would have emitted this as a constant if the operand weren't 3104 // an Instruction. 3105 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 3106 3107 // Require the generator to be immediately followed by the cast. 3108 if (generator->getNextNode() != bitcast) 3109 return nullptr; 3110 3111 InstsToKill.push_back(bitcast); 3112 } 3113 3114 // Look for: 3115 // %generator = call i8* @objc_retain(i8* %originalResult) 3116 // or 3117 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 3118 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 3119 if (!call) return nullptr; 3120 3121 bool doRetainAutorelease; 3122 3123 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 3124 doRetainAutorelease = true; 3125 } else if (call->getCalledOperand() == 3126 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 3127 doRetainAutorelease = false; 3128 3129 // If we emitted an assembly marker for this call (and the 3130 // ARCEntrypoints field should have been set if so), go looking 3131 // for that call. If we can't find it, we can't do this 3132 // optimization. But it should always be the immediately previous 3133 // instruction, unless we needed bitcasts around the call. 3134 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 3135 llvm::Instruction *prev = call->getPrevNode(); 3136 assert(prev); 3137 if (isa<llvm::BitCastInst>(prev)) { 3138 prev = prev->getPrevNode(); 3139 assert(prev); 3140 } 3141 assert(isa<llvm::CallInst>(prev)); 3142 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 3143 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 3144 InstsToKill.push_back(prev); 3145 } 3146 } else { 3147 return nullptr; 3148 } 3149 3150 result = call->getArgOperand(0); 3151 InstsToKill.push_back(call); 3152 3153 // Keep killing bitcasts, for sanity. Note that we no longer care 3154 // about precise ordering as long as there's exactly one use. 3155 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 3156 if (!bitcast->hasOneUse()) break; 3157 InstsToKill.push_back(bitcast); 3158 result = bitcast->getOperand(0); 3159 } 3160 3161 // Delete all the unnecessary instructions, from latest to earliest. 3162 for (auto *I : InstsToKill) 3163 I->eraseFromParent(); 3164 3165 // Do the fused retain/autorelease if we were asked to. 3166 if (doRetainAutorelease) 3167 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 3168 3169 // Cast back to the result type. 3170 return CGF.Builder.CreateBitCast(result, resultType); 3171 } 3172 3173 /// If this is a +1 of the value of an immutable 'self', remove it. 3174 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 3175 llvm::Value *result) { 3176 // This is only applicable to a method with an immutable 'self'. 3177 const ObjCMethodDecl *method = 3178 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 3179 if (!method) return nullptr; 3180 const VarDecl *self = method->getSelfDecl(); 3181 if (!self->getType().isConstQualified()) return nullptr; 3182 3183 // Look for a retain call. 3184 llvm::CallInst *retainCall = 3185 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 3186 if (!retainCall || retainCall->getCalledOperand() != 3187 CGF.CGM.getObjCEntrypoints().objc_retain) 3188 return nullptr; 3189 3190 // Look for an ordinary load of 'self'. 3191 llvm::Value *retainedValue = retainCall->getArgOperand(0); 3192 llvm::LoadInst *load = 3193 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 3194 if (!load || load->isAtomic() || load->isVolatile() || 3195 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 3196 return nullptr; 3197 3198 // Okay! Burn it all down. This relies for correctness on the 3199 // assumption that the retain is emitted as part of the return and 3200 // that thereafter everything is used "linearly". 3201 llvm::Type *resultType = result->getType(); 3202 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 3203 assert(retainCall->use_empty()); 3204 retainCall->eraseFromParent(); 3205 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 3206 3207 return CGF.Builder.CreateBitCast(load, resultType); 3208 } 3209 3210 /// Emit an ARC autorelease of the result of a function. 3211 /// 3212 /// \return the value to actually return from the function 3213 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 3214 llvm::Value *result) { 3215 // If we're returning 'self', kill the initial retain. This is a 3216 // heuristic attempt to "encourage correctness" in the really unfortunate 3217 // case where we have a return of self during a dealloc and we desperately 3218 // need to avoid the possible autorelease. 3219 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 3220 return self; 3221 3222 // At -O0, try to emit a fused retain/autorelease. 3223 if (CGF.shouldUseFusedARCCalls()) 3224 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 3225 return fused; 3226 3227 return CGF.EmitARCAutoreleaseReturnValue(result); 3228 } 3229 3230 /// Heuristically search for a dominating store to the return-value slot. 3231 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 3232 // Check if a User is a store which pointerOperand is the ReturnValue. 3233 // We are looking for stores to the ReturnValue, not for stores of the 3234 // ReturnValue to some other location. 3235 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 3236 auto *SI = dyn_cast<llvm::StoreInst>(U); 3237 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer() || 3238 SI->getValueOperand()->getType() != CGF.ReturnValue.getElementType()) 3239 return nullptr; 3240 // These aren't actually possible for non-coerced returns, and we 3241 // only care about non-coerced returns on this code path. 3242 assert(!SI->isAtomic() && !SI->isVolatile()); 3243 return SI; 3244 }; 3245 // If there are multiple uses of the return-value slot, just check 3246 // for something immediately preceding the IP. Sometimes this can 3247 // happen with how we generate implicit-returns; it can also happen 3248 // with noreturn cleanups. 3249 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 3250 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3251 if (IP->empty()) return nullptr; 3252 3253 // Look at directly preceding instruction, skipping bitcasts and lifetime 3254 // markers. 3255 for (llvm::Instruction &I : make_range(IP->rbegin(), IP->rend())) { 3256 if (isa<llvm::BitCastInst>(&I)) 3257 continue; 3258 if (auto *II = dyn_cast<llvm::IntrinsicInst>(&I)) 3259 if (II->getIntrinsicID() == llvm::Intrinsic::lifetime_end) 3260 continue; 3261 3262 return GetStoreIfValid(&I); 3263 } 3264 return nullptr; 3265 } 3266 3267 llvm::StoreInst *store = 3268 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 3269 if (!store) return nullptr; 3270 3271 // Now do a first-and-dirty dominance check: just walk up the 3272 // single-predecessors chain from the current insertion point. 3273 llvm::BasicBlock *StoreBB = store->getParent(); 3274 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 3275 while (IP != StoreBB) { 3276 if (!(IP = IP->getSinglePredecessor())) 3277 return nullptr; 3278 } 3279 3280 // Okay, the store's basic block dominates the insertion point; we 3281 // can do our thing. 3282 return store; 3283 } 3284 3285 // Helper functions for EmitCMSEClearRecord 3286 3287 // Set the bits corresponding to a field having width `BitWidth` and located at 3288 // offset `BitOffset` (from the least significant bit) within a storage unit of 3289 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 3290 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 3291 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 3292 int BitWidth, int CharWidth) { 3293 assert(CharWidth <= 64); 3294 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 3295 3296 int Pos = 0; 3297 if (BitOffset >= CharWidth) { 3298 Pos += BitOffset / CharWidth; 3299 BitOffset = BitOffset % CharWidth; 3300 } 3301 3302 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 3303 if (BitOffset + BitWidth >= CharWidth) { 3304 Bits[Pos++] |= (Used << BitOffset) & Used; 3305 BitWidth -= CharWidth - BitOffset; 3306 BitOffset = 0; 3307 } 3308 3309 while (BitWidth >= CharWidth) { 3310 Bits[Pos++] = Used; 3311 BitWidth -= CharWidth; 3312 } 3313 3314 if (BitWidth > 0) 3315 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3316 } 3317 3318 // Set the bits corresponding to a field having width `BitWidth` and located at 3319 // offset `BitOffset` (from the least significant bit) within a storage unit of 3320 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3321 // `Bits` corresponds to one target byte. Use target endian layout. 3322 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3323 int StorageSize, int BitOffset, int BitWidth, 3324 int CharWidth, bool BigEndian) { 3325 3326 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3327 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3328 3329 if (BigEndian) 3330 std::reverse(TmpBits.begin(), TmpBits.end()); 3331 3332 for (uint64_t V : TmpBits) 3333 Bits[StorageOffset++] |= V; 3334 } 3335 3336 static void setUsedBits(CodeGenModule &, QualType, int, 3337 SmallVectorImpl<uint64_t> &); 3338 3339 // Set the bits in `Bits`, which correspond to the value representations of 3340 // the actual members of the record type `RTy`. Note that this function does 3341 // not handle base classes, virtual tables, etc, since they cannot happen in 3342 // CMSE function arguments or return. The bit mask corresponds to the target 3343 // memory layout, i.e. it's endian dependent. 3344 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3345 SmallVectorImpl<uint64_t> &Bits) { 3346 ASTContext &Context = CGM.getContext(); 3347 int CharWidth = Context.getCharWidth(); 3348 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3349 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3350 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3351 3352 int Idx = 0; 3353 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3354 const FieldDecl *F = *I; 3355 3356 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3357 F->getType()->isIncompleteArrayType()) 3358 continue; 3359 3360 if (F->isBitField()) { 3361 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3362 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3363 BFI.StorageSize / CharWidth, BFI.Offset, 3364 BFI.Size, CharWidth, 3365 CGM.getDataLayout().isBigEndian()); 3366 continue; 3367 } 3368 3369 setUsedBits(CGM, F->getType(), 3370 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3371 } 3372 } 3373 3374 // Set the bits in `Bits`, which correspond to the value representations of 3375 // the elements of an array type `ATy`. 3376 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3377 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3378 const ASTContext &Context = CGM.getContext(); 3379 3380 QualType ETy = Context.getBaseElementType(ATy); 3381 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3382 SmallVector<uint64_t, 4> TmpBits(Size); 3383 setUsedBits(CGM, ETy, 0, TmpBits); 3384 3385 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3386 auto Src = TmpBits.begin(); 3387 auto Dst = Bits.begin() + Offset + I * Size; 3388 for (int J = 0; J < Size; ++J) 3389 *Dst++ |= *Src++; 3390 } 3391 } 3392 3393 // Set the bits in `Bits`, which correspond to the value representations of 3394 // the type `QTy`. 3395 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3396 SmallVectorImpl<uint64_t> &Bits) { 3397 if (const auto *RTy = QTy->getAs<RecordType>()) 3398 return setUsedBits(CGM, RTy, Offset, Bits); 3399 3400 ASTContext &Context = CGM.getContext(); 3401 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3402 return setUsedBits(CGM, ATy, Offset, Bits); 3403 3404 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3405 if (Size <= 0) 3406 return; 3407 3408 std::fill_n(Bits.begin() + Offset, Size, 3409 (uint64_t(1) << Context.getCharWidth()) - 1); 3410 } 3411 3412 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3413 int Pos, int Size, int CharWidth, 3414 bool BigEndian) { 3415 assert(Size > 0); 3416 uint64_t Mask = 0; 3417 if (BigEndian) { 3418 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3419 ++P) 3420 Mask = (Mask << CharWidth) | *P; 3421 } else { 3422 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3423 do 3424 Mask = (Mask << CharWidth) | *--P; 3425 while (P != End); 3426 } 3427 return Mask; 3428 } 3429 3430 // Emit code to clear the bits in a record, which aren't a part of any user 3431 // declared member, when the record is a function return. 3432 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3433 llvm::IntegerType *ITy, 3434 QualType QTy) { 3435 assert(Src->getType() == ITy); 3436 assert(ITy->getScalarSizeInBits() <= 64); 3437 3438 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3439 int Size = DataLayout.getTypeStoreSize(ITy); 3440 SmallVector<uint64_t, 4> Bits(Size); 3441 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3442 3443 int CharWidth = CGM.getContext().getCharWidth(); 3444 uint64_t Mask = 3445 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3446 3447 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3448 } 3449 3450 // Emit code to clear the bits in a record, which aren't a part of any user 3451 // declared member, when the record is a function argument. 3452 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3453 llvm::ArrayType *ATy, 3454 QualType QTy) { 3455 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3456 int Size = DataLayout.getTypeStoreSize(ATy); 3457 SmallVector<uint64_t, 16> Bits(Size); 3458 setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits); 3459 3460 // Clear each element of the LLVM array. 3461 int CharWidth = CGM.getContext().getCharWidth(); 3462 int CharsPerElt = 3463 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3464 int MaskIndex = 0; 3465 llvm::Value *R = llvm::UndefValue::get(ATy); 3466 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3467 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3468 DataLayout.isBigEndian()); 3469 MaskIndex += CharsPerElt; 3470 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3471 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3472 R = Builder.CreateInsertValue(R, T1, I); 3473 } 3474 3475 return R; 3476 } 3477 3478 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3479 bool EmitRetDbgLoc, 3480 SourceLocation EndLoc) { 3481 if (FI.isNoReturn()) { 3482 // Noreturn functions don't return. 3483 EmitUnreachable(EndLoc); 3484 return; 3485 } 3486 3487 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3488 // Naked functions don't have epilogues. 3489 Builder.CreateUnreachable(); 3490 return; 3491 } 3492 3493 // Functions with no result always return void. 3494 if (!ReturnValue.isValid()) { 3495 Builder.CreateRetVoid(); 3496 return; 3497 } 3498 3499 llvm::DebugLoc RetDbgLoc; 3500 llvm::Value *RV = nullptr; 3501 QualType RetTy = FI.getReturnType(); 3502 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3503 3504 switch (RetAI.getKind()) { 3505 case ABIArgInfo::InAlloca: 3506 // Aggregrates get evaluated directly into the destination. Sometimes we 3507 // need to return the sret value in a register, though. 3508 assert(hasAggregateEvaluationKind(RetTy)); 3509 if (RetAI.getInAllocaSRet()) { 3510 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3511 --EI; 3512 llvm::Value *ArgStruct = &*EI; 3513 llvm::Value *SRet = Builder.CreateStructGEP( 3514 FI.getArgStruct(), ArgStruct, RetAI.getInAllocaFieldIndex()); 3515 llvm::Type *Ty = 3516 cast<llvm::GetElementPtrInst>(SRet)->getResultElementType(); 3517 RV = Builder.CreateAlignedLoad(Ty, SRet, getPointerAlign(), "sret"); 3518 } 3519 break; 3520 3521 case ABIArgInfo::Indirect: { 3522 auto AI = CurFn->arg_begin(); 3523 if (RetAI.isSRetAfterThis()) 3524 ++AI; 3525 switch (getEvaluationKind(RetTy)) { 3526 case TEK_Complex: { 3527 ComplexPairTy RT = 3528 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3529 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3530 /*isInit*/ true); 3531 break; 3532 } 3533 case TEK_Aggregate: 3534 // Do nothing; aggregrates get evaluated directly into the destination. 3535 break; 3536 case TEK_Scalar: { 3537 LValueBaseInfo BaseInfo; 3538 TBAAAccessInfo TBAAInfo; 3539 CharUnits Alignment = 3540 CGM.getNaturalTypeAlignment(RetTy, &BaseInfo, &TBAAInfo); 3541 Address ArgAddr(&*AI, ConvertType(RetTy), Alignment); 3542 LValue ArgVal = 3543 LValue::MakeAddr(ArgAddr, RetTy, getContext(), BaseInfo, TBAAInfo); 3544 EmitStoreOfScalar( 3545 Builder.CreateLoad(ReturnValue), ArgVal, /*isInit*/ true); 3546 break; 3547 } 3548 } 3549 break; 3550 } 3551 3552 case ABIArgInfo::Extend: 3553 case ABIArgInfo::Direct: 3554 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3555 RetAI.getDirectOffset() == 0) { 3556 // The internal return value temp always will have pointer-to-return-type 3557 // type, just do a load. 3558 3559 // If there is a dominating store to ReturnValue, we can elide 3560 // the load, zap the store, and usually zap the alloca. 3561 if (llvm::StoreInst *SI = 3562 findDominatingStoreToReturnValue(*this)) { 3563 // Reuse the debug location from the store unless there is 3564 // cleanup code to be emitted between the store and return 3565 // instruction. 3566 if (EmitRetDbgLoc && !AutoreleaseResult) 3567 RetDbgLoc = SI->getDebugLoc(); 3568 // Get the stored value and nuke the now-dead store. 3569 RV = SI->getValueOperand(); 3570 SI->eraseFromParent(); 3571 3572 // Otherwise, we have to do a simple load. 3573 } else { 3574 RV = Builder.CreateLoad(ReturnValue); 3575 } 3576 } else { 3577 // If the value is offset in memory, apply the offset now. 3578 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3579 3580 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3581 } 3582 3583 // In ARC, end functions that return a retainable type with a call 3584 // to objc_autoreleaseReturnValue. 3585 if (AutoreleaseResult) { 3586 #ifndef NDEBUG 3587 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3588 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3589 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3590 // CurCodeDecl or BlockInfo. 3591 QualType RT; 3592 3593 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3594 RT = FD->getReturnType(); 3595 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3596 RT = MD->getReturnType(); 3597 else if (isa<BlockDecl>(CurCodeDecl)) 3598 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3599 else 3600 llvm_unreachable("Unexpected function/method type"); 3601 3602 assert(getLangOpts().ObjCAutoRefCount && 3603 !FI.isReturnsRetained() && 3604 RT->isObjCRetainableType()); 3605 #endif 3606 RV = emitAutoreleaseOfResult(*this, RV); 3607 } 3608 3609 break; 3610 3611 case ABIArgInfo::Ignore: 3612 break; 3613 3614 case ABIArgInfo::CoerceAndExpand: { 3615 auto coercionType = RetAI.getCoerceAndExpandType(); 3616 3617 // Load all of the coerced elements out into results. 3618 llvm::SmallVector<llvm::Value*, 4> results; 3619 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 3620 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3621 auto coercedEltType = coercionType->getElementType(i); 3622 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3623 continue; 3624 3625 auto eltAddr = Builder.CreateStructGEP(addr, i); 3626 auto elt = Builder.CreateLoad(eltAddr); 3627 results.push_back(elt); 3628 } 3629 3630 // If we have one result, it's the single direct result type. 3631 if (results.size() == 1) { 3632 RV = results[0]; 3633 3634 // Otherwise, we need to make a first-class aggregate. 3635 } else { 3636 // Construct a return type that lacks padding elements. 3637 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3638 3639 RV = llvm::UndefValue::get(returnType); 3640 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3641 RV = Builder.CreateInsertValue(RV, results[i], i); 3642 } 3643 } 3644 break; 3645 } 3646 case ABIArgInfo::Expand: 3647 case ABIArgInfo::IndirectAliased: 3648 llvm_unreachable("Invalid ABI kind for return argument"); 3649 } 3650 3651 llvm::Instruction *Ret; 3652 if (RV) { 3653 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3654 // For certain return types, clear padding bits, as they may reveal 3655 // sensitive information. 3656 // Small struct/union types are passed as integers. 3657 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3658 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3659 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3660 } 3661 EmitReturnValueCheck(RV); 3662 Ret = Builder.CreateRet(RV); 3663 } else { 3664 Ret = Builder.CreateRetVoid(); 3665 } 3666 3667 if (RetDbgLoc) 3668 Ret->setDebugLoc(std::move(RetDbgLoc)); 3669 } 3670 3671 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3672 // A current decl may not be available when emitting vtable thunks. 3673 if (!CurCodeDecl) 3674 return; 3675 3676 // If the return block isn't reachable, neither is this check, so don't emit 3677 // it. 3678 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3679 return; 3680 3681 ReturnsNonNullAttr *RetNNAttr = nullptr; 3682 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3683 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3684 3685 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3686 return; 3687 3688 // Prefer the returns_nonnull attribute if it's present. 3689 SourceLocation AttrLoc; 3690 SanitizerMask CheckKind; 3691 SanitizerHandler Handler; 3692 if (RetNNAttr) { 3693 assert(!requiresReturnValueNullabilityCheck() && 3694 "Cannot check nullability and the nonnull attribute"); 3695 AttrLoc = RetNNAttr->getLocation(); 3696 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3697 Handler = SanitizerHandler::NonnullReturn; 3698 } else { 3699 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3700 if (auto *TSI = DD->getTypeSourceInfo()) 3701 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3702 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3703 CheckKind = SanitizerKind::NullabilityReturn; 3704 Handler = SanitizerHandler::NullabilityReturn; 3705 } 3706 3707 SanitizerScope SanScope(this); 3708 3709 // Make sure the "return" source location is valid. If we're checking a 3710 // nullability annotation, make sure the preconditions for the check are met. 3711 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3712 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3713 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3714 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3715 if (requiresReturnValueNullabilityCheck()) 3716 CanNullCheck = 3717 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3718 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3719 EmitBlock(Check); 3720 3721 // Now do the null check. 3722 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3723 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3724 llvm::Value *DynamicData[] = {SLocPtr}; 3725 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3726 3727 EmitBlock(NoCheck); 3728 3729 #ifndef NDEBUG 3730 // The return location should not be used after the check has been emitted. 3731 ReturnLocation = Address::invalid(); 3732 #endif 3733 } 3734 3735 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3736 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3737 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3738 } 3739 3740 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3741 QualType Ty) { 3742 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3743 // placeholders. 3744 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3745 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3746 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3747 3748 // FIXME: When we generate this IR in one pass, we shouldn't need 3749 // this win32-specific alignment hack. 3750 CharUnits Align = CharUnits::fromQuantity(4); 3751 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3752 3753 return AggValueSlot::forAddr(Address(Placeholder, IRTy, Align), 3754 Ty.getQualifiers(), 3755 AggValueSlot::IsNotDestructed, 3756 AggValueSlot::DoesNotNeedGCBarriers, 3757 AggValueSlot::IsNotAliased, 3758 AggValueSlot::DoesNotOverlap); 3759 } 3760 3761 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3762 const VarDecl *param, 3763 SourceLocation loc) { 3764 // StartFunction converted the ABI-lowered parameter(s) into a 3765 // local alloca. We need to turn that into an r-value suitable 3766 // for EmitCall. 3767 Address local = GetAddrOfLocalVar(param); 3768 3769 QualType type = param->getType(); 3770 3771 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3772 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3773 } 3774 3775 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3776 // but the argument needs to be the original pointer. 3777 if (type->isReferenceType()) { 3778 args.add(RValue::get(Builder.CreateLoad(local)), type); 3779 3780 // In ARC, move out of consumed arguments so that the release cleanup 3781 // entered by StartFunction doesn't cause an over-release. This isn't 3782 // optimal -O0 code generation, but it should get cleaned up when 3783 // optimization is enabled. This also assumes that delegate calls are 3784 // performed exactly once for a set of arguments, but that should be safe. 3785 } else if (getLangOpts().ObjCAutoRefCount && 3786 param->hasAttr<NSConsumedAttr>() && 3787 type->isObjCRetainableType()) { 3788 llvm::Value *ptr = Builder.CreateLoad(local); 3789 auto null = 3790 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3791 Builder.CreateStore(null, local); 3792 args.add(RValue::get(ptr), type); 3793 3794 // For the most part, we just need to load the alloca, except that 3795 // aggregate r-values are actually pointers to temporaries. 3796 } else { 3797 args.add(convertTempToRValue(local, type, loc), type); 3798 } 3799 3800 // Deactivate the cleanup for the callee-destructed param that was pushed. 3801 if (type->isRecordType() && !CurFuncIsThunk && 3802 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3803 param->needsDestruction(getContext())) { 3804 EHScopeStack::stable_iterator cleanup = 3805 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3806 assert(cleanup.isValid() && 3807 "cleanup for callee-destructed param not recorded"); 3808 // This unreachable is a temporary marker which will be removed later. 3809 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3810 args.addArgCleanupDeactivation(cleanup, isActive); 3811 } 3812 } 3813 3814 static bool isProvablyNull(llvm::Value *addr) { 3815 return isa<llvm::ConstantPointerNull>(addr); 3816 } 3817 3818 /// Emit the actual writing-back of a writeback. 3819 static void emitWriteback(CodeGenFunction &CGF, 3820 const CallArgList::Writeback &writeback) { 3821 const LValue &srcLV = writeback.Source; 3822 Address srcAddr = srcLV.getAddress(CGF); 3823 assert(!isProvablyNull(srcAddr.getPointer()) && 3824 "shouldn't have writeback for provably null argument"); 3825 3826 llvm::BasicBlock *contBB = nullptr; 3827 3828 // If the argument wasn't provably non-null, we need to null check 3829 // before doing the store. 3830 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3831 CGF.CGM.getDataLayout()); 3832 if (!provablyNonNull) { 3833 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3834 contBB = CGF.createBasicBlock("icr.done"); 3835 3836 llvm::Value *isNull = 3837 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3838 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3839 CGF.EmitBlock(writebackBB); 3840 } 3841 3842 // Load the value to writeback. 3843 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3844 3845 // Cast it back, in case we're writing an id to a Foo* or something. 3846 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3847 "icr.writeback-cast"); 3848 3849 // Perform the writeback. 3850 3851 // If we have a "to use" value, it's something we need to emit a use 3852 // of. This has to be carefully threaded in: if it's done after the 3853 // release it's potentially undefined behavior (and the optimizer 3854 // will ignore it), and if it happens before the retain then the 3855 // optimizer could move the release there. 3856 if (writeback.ToUse) { 3857 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3858 3859 // Retain the new value. No need to block-copy here: the block's 3860 // being passed up the stack. 3861 value = CGF.EmitARCRetainNonBlock(value); 3862 3863 // Emit the intrinsic use here. 3864 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3865 3866 // Load the old value (primitively). 3867 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3868 3869 // Put the new value in place (primitively). 3870 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3871 3872 // Release the old value. 3873 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3874 3875 // Otherwise, we can just do a normal lvalue store. 3876 } else { 3877 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3878 } 3879 3880 // Jump to the continuation block. 3881 if (!provablyNonNull) 3882 CGF.EmitBlock(contBB); 3883 } 3884 3885 static void emitWritebacks(CodeGenFunction &CGF, 3886 const CallArgList &args) { 3887 for (const auto &I : args.writebacks()) 3888 emitWriteback(CGF, I); 3889 } 3890 3891 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3892 const CallArgList &CallArgs) { 3893 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3894 CallArgs.getCleanupsToDeactivate(); 3895 // Iterate in reverse to increase the likelihood of popping the cleanup. 3896 for (const auto &I : llvm::reverse(Cleanups)) { 3897 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3898 I.IsActiveIP->eraseFromParent(); 3899 } 3900 } 3901 3902 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3903 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3904 if (uop->getOpcode() == UO_AddrOf) 3905 return uop->getSubExpr(); 3906 return nullptr; 3907 } 3908 3909 /// Emit an argument that's being passed call-by-writeback. That is, 3910 /// we are passing the address of an __autoreleased temporary; it 3911 /// might be copy-initialized with the current value of the given 3912 /// address, but it will definitely be copied out of after the call. 3913 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3914 const ObjCIndirectCopyRestoreExpr *CRE) { 3915 LValue srcLV; 3916 3917 // Make an optimistic effort to emit the address as an l-value. 3918 // This can fail if the argument expression is more complicated. 3919 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3920 srcLV = CGF.EmitLValue(lvExpr); 3921 3922 // Otherwise, just emit it as a scalar. 3923 } else { 3924 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3925 3926 QualType srcAddrType = 3927 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3928 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3929 } 3930 Address srcAddr = srcLV.getAddress(CGF); 3931 3932 // The dest and src types don't necessarily match in LLVM terms 3933 // because of the crazy ObjC compatibility rules. 3934 3935 llvm::PointerType *destType = 3936 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3937 llvm::Type *destElemType = 3938 CGF.ConvertTypeForMem(CRE->getType()->getPointeeType()); 3939 3940 // If the address is a constant null, just pass the appropriate null. 3941 if (isProvablyNull(srcAddr.getPointer())) { 3942 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3943 CRE->getType()); 3944 return; 3945 } 3946 3947 // Create the temporary. 3948 Address temp = 3949 CGF.CreateTempAlloca(destElemType, CGF.getPointerAlign(), "icr.temp"); 3950 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3951 // and that cleanup will be conditional if we can't prove that the l-value 3952 // isn't null, so we need to register a dominating point so that the cleanups 3953 // system will make valid IR. 3954 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3955 3956 // Zero-initialize it if we're not doing a copy-initialization. 3957 bool shouldCopy = CRE->shouldCopy(); 3958 if (!shouldCopy) { 3959 llvm::Value *null = 3960 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(destElemType)); 3961 CGF.Builder.CreateStore(null, temp); 3962 } 3963 3964 llvm::BasicBlock *contBB = nullptr; 3965 llvm::BasicBlock *originBB = nullptr; 3966 3967 // If the address is *not* known to be non-null, we need to switch. 3968 llvm::Value *finalArgument; 3969 3970 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3971 CGF.CGM.getDataLayout()); 3972 if (provablyNonNull) { 3973 finalArgument = temp.getPointer(); 3974 } else { 3975 llvm::Value *isNull = 3976 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3977 3978 finalArgument = CGF.Builder.CreateSelect(isNull, 3979 llvm::ConstantPointerNull::get(destType), 3980 temp.getPointer(), "icr.argument"); 3981 3982 // If we need to copy, then the load has to be conditional, which 3983 // means we need control flow. 3984 if (shouldCopy) { 3985 originBB = CGF.Builder.GetInsertBlock(); 3986 contBB = CGF.createBasicBlock("icr.cont"); 3987 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3988 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3989 CGF.EmitBlock(copyBB); 3990 condEval.begin(CGF); 3991 } 3992 } 3993 3994 llvm::Value *valueToUse = nullptr; 3995 3996 // Perform a copy if necessary. 3997 if (shouldCopy) { 3998 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3999 assert(srcRV.isScalar()); 4000 4001 llvm::Value *src = srcRV.getScalarVal(); 4002 src = CGF.Builder.CreateBitCast(src, destElemType, "icr.cast"); 4003 4004 // Use an ordinary store, not a store-to-lvalue. 4005 CGF.Builder.CreateStore(src, temp); 4006 4007 // If optimization is enabled, and the value was held in a 4008 // __strong variable, we need to tell the optimizer that this 4009 // value has to stay alive until we're doing the store back. 4010 // This is because the temporary is effectively unretained, 4011 // and so otherwise we can violate the high-level semantics. 4012 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 4013 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 4014 valueToUse = src; 4015 } 4016 } 4017 4018 // Finish the control flow if we needed it. 4019 if (shouldCopy && !provablyNonNull) { 4020 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 4021 CGF.EmitBlock(contBB); 4022 4023 // Make a phi for the value to intrinsically use. 4024 if (valueToUse) { 4025 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 4026 "icr.to-use"); 4027 phiToUse->addIncoming(valueToUse, copyBB); 4028 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 4029 originBB); 4030 valueToUse = phiToUse; 4031 } 4032 4033 condEval.end(CGF); 4034 } 4035 4036 args.addWriteback(srcLV, temp, valueToUse); 4037 args.add(RValue::get(finalArgument), CRE->getType()); 4038 } 4039 4040 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 4041 assert(!StackBase); 4042 4043 // Save the stack. 4044 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 4045 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 4046 } 4047 4048 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 4049 if (StackBase) { 4050 // Restore the stack after the call. 4051 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 4052 CGF.Builder.CreateCall(F, StackBase); 4053 } 4054 } 4055 4056 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 4057 SourceLocation ArgLoc, 4058 AbstractCallee AC, 4059 unsigned ParmNum) { 4060 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 4061 SanOpts.has(SanitizerKind::NullabilityArg))) 4062 return; 4063 4064 // The param decl may be missing in a variadic function. 4065 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 4066 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 4067 4068 // Prefer the nonnull attribute if it's present. 4069 const NonNullAttr *NNAttr = nullptr; 4070 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 4071 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 4072 4073 bool CanCheckNullability = false; 4074 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 4075 auto Nullability = PVD->getType()->getNullability(getContext()); 4076 CanCheckNullability = Nullability && 4077 *Nullability == NullabilityKind::NonNull && 4078 PVD->getTypeSourceInfo(); 4079 } 4080 4081 if (!NNAttr && !CanCheckNullability) 4082 return; 4083 4084 SourceLocation AttrLoc; 4085 SanitizerMask CheckKind; 4086 SanitizerHandler Handler; 4087 if (NNAttr) { 4088 AttrLoc = NNAttr->getLocation(); 4089 CheckKind = SanitizerKind::NonnullAttribute; 4090 Handler = SanitizerHandler::NonnullArg; 4091 } else { 4092 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 4093 CheckKind = SanitizerKind::NullabilityArg; 4094 Handler = SanitizerHandler::NullabilityArg; 4095 } 4096 4097 SanitizerScope SanScope(this); 4098 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 4099 llvm::Constant *StaticData[] = { 4100 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 4101 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 4102 }; 4103 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 4104 } 4105 4106 // Check if the call is going to use the inalloca convention. This needs to 4107 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged 4108 // later, so we can't check it directly. 4109 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC, 4110 ArrayRef<QualType> ArgTypes) { 4111 // The Swift calling conventions don't go through the target-specific 4112 // argument classification, they never use inalloca. 4113 // TODO: Consider limiting inalloca use to only calling conventions supported 4114 // by MSVC. 4115 if (ExplicitCC == CC_Swift || ExplicitCC == CC_SwiftAsync) 4116 return false; 4117 if (!CGM.getTarget().getCXXABI().isMicrosoft()) 4118 return false; 4119 return llvm::any_of(ArgTypes, [&](QualType Ty) { 4120 return isInAllocaArgument(CGM.getCXXABI(), Ty); 4121 }); 4122 } 4123 4124 #ifndef NDEBUG 4125 // Determine whether the given argument is an Objective-C method 4126 // that may have type parameters in its signature. 4127 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 4128 const DeclContext *dc = method->getDeclContext(); 4129 if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) { 4130 return classDecl->getTypeParamListAsWritten(); 4131 } 4132 4133 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 4134 return catDecl->getTypeParamList(); 4135 } 4136 4137 return false; 4138 } 4139 #endif 4140 4141 /// EmitCallArgs - Emit call arguments for a function. 4142 void CodeGenFunction::EmitCallArgs( 4143 CallArgList &Args, PrototypeWrapper Prototype, 4144 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 4145 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 4146 SmallVector<QualType, 16> ArgTypes; 4147 4148 assert((ParamsToSkip == 0 || Prototype.P) && 4149 "Can't skip parameters if type info is not provided"); 4150 4151 // This variable only captures *explicitly* written conventions, not those 4152 // applied by default via command line flags or target defaults, such as 4153 // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would 4154 // require knowing if this is a C++ instance method or being able to see 4155 // unprototyped FunctionTypes. 4156 CallingConv ExplicitCC = CC_C; 4157 4158 // First, if a prototype was provided, use those argument types. 4159 bool IsVariadic = false; 4160 if (Prototype.P) { 4161 const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>(); 4162 if (MD) { 4163 IsVariadic = MD->isVariadic(); 4164 ExplicitCC = getCallingConventionForDecl( 4165 MD, CGM.getTarget().getTriple().isOSWindows()); 4166 ArgTypes.assign(MD->param_type_begin() + ParamsToSkip, 4167 MD->param_type_end()); 4168 } else { 4169 const auto *FPT = Prototype.P.get<const FunctionProtoType *>(); 4170 IsVariadic = FPT->isVariadic(); 4171 ExplicitCC = FPT->getExtInfo().getCC(); 4172 ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip, 4173 FPT->param_type_end()); 4174 } 4175 4176 #ifndef NDEBUG 4177 // Check that the prototyped types match the argument expression types. 4178 bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD); 4179 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 4180 for (QualType Ty : ArgTypes) { 4181 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 4182 assert( 4183 (isGenericMethod || Ty->isVariablyModifiedType() || 4184 Ty.getNonReferenceType()->isObjCRetainableType() || 4185 getContext() 4186 .getCanonicalType(Ty.getNonReferenceType()) 4187 .getTypePtr() == 4188 getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) && 4189 "type mismatch in call argument!"); 4190 ++Arg; 4191 } 4192 4193 // Either we've emitted all the call args, or we have a call to variadic 4194 // function. 4195 assert((Arg == ArgRange.end() || IsVariadic) && 4196 "Extra arguments in non-variadic function!"); 4197 #endif 4198 } 4199 4200 // If we still have any arguments, emit them using the type of the argument. 4201 for (auto *A : llvm::drop_begin(ArgRange, ArgTypes.size())) 4202 ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType()); 4203 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 4204 4205 // We must evaluate arguments from right to left in the MS C++ ABI, 4206 // because arguments are destroyed left to right in the callee. As a special 4207 // case, there are certain language constructs that require left-to-right 4208 // evaluation, and in those cases we consider the evaluation order requirement 4209 // to trump the "destruction order is reverse construction order" guarantee. 4210 bool LeftToRight = 4211 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 4212 ? Order == EvaluationOrder::ForceLeftToRight 4213 : Order != EvaluationOrder::ForceRightToLeft; 4214 4215 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 4216 RValue EmittedArg) { 4217 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 4218 return; 4219 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 4220 if (PS == nullptr) 4221 return; 4222 4223 const auto &Context = getContext(); 4224 auto SizeTy = Context.getSizeType(); 4225 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4226 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 4227 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 4228 EmittedArg.getScalarVal(), 4229 PS->isDynamic()); 4230 Args.add(RValue::get(V), SizeTy); 4231 // If we're emitting args in reverse, be sure to do so with 4232 // pass_object_size, as well. 4233 if (!LeftToRight) 4234 std::swap(Args.back(), *(&Args.back() - 1)); 4235 }; 4236 4237 // Insert a stack save if we're going to need any inalloca args. 4238 if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) { 4239 assert(getTarget().getTriple().getArch() == llvm::Triple::x86 && 4240 "inalloca only supported on x86"); 4241 Args.allocateArgumentMemory(*this); 4242 } 4243 4244 // Evaluate each argument in the appropriate order. 4245 size_t CallArgsStart = Args.size(); 4246 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 4247 unsigned Idx = LeftToRight ? I : E - I - 1; 4248 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 4249 unsigned InitialArgSize = Args.size(); 4250 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 4251 // the argument and parameter match or the objc method is parameterized. 4252 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 4253 getContext().hasSameUnqualifiedType((*Arg)->getType(), 4254 ArgTypes[Idx]) || 4255 (isa<ObjCMethodDecl>(AC.getDecl()) && 4256 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 4257 "Argument and parameter types don't match"); 4258 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 4259 // In particular, we depend on it being the last arg in Args, and the 4260 // objectsize bits depend on there only being one arg if !LeftToRight. 4261 assert(InitialArgSize + 1 == Args.size() && 4262 "The code below depends on only adding one arg per EmitCallArg"); 4263 (void)InitialArgSize; 4264 // Since pointer argument are never emitted as LValue, it is safe to emit 4265 // non-null argument check for r-value only. 4266 if (!Args.back().hasLValue()) { 4267 RValue RVArg = Args.back().getKnownRValue(); 4268 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 4269 ParamsToSkip + Idx); 4270 // @llvm.objectsize should never have side-effects and shouldn't need 4271 // destruction/cleanups, so we can safely "emit" it after its arg, 4272 // regardless of right-to-leftness 4273 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 4274 } 4275 } 4276 4277 if (!LeftToRight) { 4278 // Un-reverse the arguments we just evaluated so they match up with the LLVM 4279 // IR function. 4280 std::reverse(Args.begin() + CallArgsStart, Args.end()); 4281 } 4282 } 4283 4284 namespace { 4285 4286 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 4287 DestroyUnpassedArg(Address Addr, QualType Ty) 4288 : Addr(Addr), Ty(Ty) {} 4289 4290 Address Addr; 4291 QualType Ty; 4292 4293 void Emit(CodeGenFunction &CGF, Flags flags) override { 4294 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 4295 if (DtorKind == QualType::DK_cxx_destructor) { 4296 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 4297 assert(!Dtor->isTrivial()); 4298 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 4299 /*Delegating=*/false, Addr, Ty); 4300 } else { 4301 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 4302 } 4303 } 4304 }; 4305 4306 struct DisableDebugLocationUpdates { 4307 CodeGenFunction &CGF; 4308 bool disabledDebugInfo; 4309 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 4310 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 4311 CGF.disableDebugInfo(); 4312 } 4313 ~DisableDebugLocationUpdates() { 4314 if (disabledDebugInfo) 4315 CGF.enableDebugInfo(); 4316 } 4317 }; 4318 4319 } // end anonymous namespace 4320 4321 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 4322 if (!HasLV) 4323 return RV; 4324 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 4325 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 4326 LV.isVolatile()); 4327 IsUsed = true; 4328 return RValue::getAggregate(Copy.getAddress(CGF)); 4329 } 4330 4331 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 4332 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 4333 if (!HasLV && RV.isScalar()) 4334 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 4335 else if (!HasLV && RV.isComplex()) 4336 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 4337 else { 4338 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 4339 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 4340 // We assume that call args are never copied into subobjects. 4341 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 4342 HasLV ? LV.isVolatileQualified() 4343 : RV.isVolatileQualified()); 4344 } 4345 IsUsed = true; 4346 } 4347 4348 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 4349 QualType type) { 4350 DisableDebugLocationUpdates Dis(*this, E); 4351 if (const ObjCIndirectCopyRestoreExpr *CRE 4352 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 4353 assert(getLangOpts().ObjCAutoRefCount); 4354 return emitWritebackArg(*this, args, CRE); 4355 } 4356 4357 assert(type->isReferenceType() == E->isGLValue() && 4358 "reference binding to unmaterialized r-value!"); 4359 4360 if (E->isGLValue()) { 4361 assert(E->getObjectKind() == OK_Ordinary); 4362 return args.add(EmitReferenceBindingToExpr(E), type); 4363 } 4364 4365 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 4366 4367 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 4368 // However, we still have to push an EH-only cleanup in case we unwind before 4369 // we make it to the call. 4370 if (type->isRecordType() && 4371 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 4372 // If we're using inalloca, use the argument memory. Otherwise, use a 4373 // temporary. 4374 AggValueSlot Slot = args.isUsingInAlloca() 4375 ? createPlaceholderSlot(*this, type) : CreateAggTemp(type, "agg.tmp"); 4376 4377 bool DestroyedInCallee = true, NeedsEHCleanup = true; 4378 if (const auto *RD = type->getAsCXXRecordDecl()) 4379 DestroyedInCallee = RD->hasNonTrivialDestructor(); 4380 else 4381 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 4382 4383 if (DestroyedInCallee) 4384 Slot.setExternallyDestructed(); 4385 4386 EmitAggExpr(E, Slot); 4387 RValue RV = Slot.asRValue(); 4388 args.add(RV, type); 4389 4390 if (DestroyedInCallee && NeedsEHCleanup) { 4391 // Create a no-op GEP between the placeholder and the cleanup so we can 4392 // RAUW it successfully. It also serves as a marker of the first 4393 // instruction where the cleanup is active. 4394 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 4395 type); 4396 // This unreachable is a temporary marker which will be removed later. 4397 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 4398 args.addArgCleanupDeactivation(EHStack.stable_begin(), IsActive); 4399 } 4400 return; 4401 } 4402 4403 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4404 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 4405 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4406 assert(L.isSimple()); 4407 args.addUncopiedAggregate(L, type); 4408 return; 4409 } 4410 4411 args.add(EmitAnyExprToTemp(E), type); 4412 } 4413 4414 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4415 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4416 // implicitly widens null pointer constants that are arguments to varargs 4417 // functions to pointer-sized ints. 4418 if (!getTarget().getTriple().isOSWindows()) 4419 return Arg->getType(); 4420 4421 if (Arg->getType()->isIntegerType() && 4422 getContext().getTypeSize(Arg->getType()) < 4423 getContext().getTargetInfo().getPointerWidth(0) && 4424 Arg->isNullPointerConstant(getContext(), 4425 Expr::NPC_ValueDependentIsNotNull)) { 4426 return getContext().getIntPtrType(); 4427 } 4428 4429 return Arg->getType(); 4430 } 4431 4432 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4433 // optimizer it can aggressively ignore unwind edges. 4434 void 4435 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4436 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4437 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4438 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4439 CGM.getNoObjCARCExceptionsMetadata()); 4440 } 4441 4442 /// Emits a call to the given no-arguments nounwind runtime function. 4443 llvm::CallInst * 4444 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4445 const llvm::Twine &name) { 4446 return EmitNounwindRuntimeCall(callee, None, name); 4447 } 4448 4449 /// Emits a call to the given nounwind runtime function. 4450 llvm::CallInst * 4451 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4452 ArrayRef<llvm::Value *> args, 4453 const llvm::Twine &name) { 4454 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4455 call->setDoesNotThrow(); 4456 return call; 4457 } 4458 4459 /// Emits a simple call (never an invoke) to the given no-arguments 4460 /// runtime function. 4461 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4462 const llvm::Twine &name) { 4463 return EmitRuntimeCall(callee, None, name); 4464 } 4465 4466 // Calls which may throw must have operand bundles indicating which funclet 4467 // they are nested within. 4468 SmallVector<llvm::OperandBundleDef, 1> 4469 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4470 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4471 // There is no need for a funclet operand bundle if we aren't inside a 4472 // funclet. 4473 if (!CurrentFuncletPad) 4474 return BundleList; 4475 4476 // Skip intrinsics which cannot throw. 4477 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 4478 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 4479 return BundleList; 4480 4481 BundleList.emplace_back("funclet", CurrentFuncletPad); 4482 return BundleList; 4483 } 4484 4485 /// Emits a simple call (never an invoke) to the given runtime function. 4486 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4487 ArrayRef<llvm::Value *> args, 4488 const llvm::Twine &name) { 4489 llvm::CallInst *call = Builder.CreateCall( 4490 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4491 call->setCallingConv(getRuntimeCC()); 4492 return call; 4493 } 4494 4495 /// Emits a call or invoke to the given noreturn runtime function. 4496 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4497 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4498 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4499 getBundlesForFunclet(callee.getCallee()); 4500 4501 if (getInvokeDest()) { 4502 llvm::InvokeInst *invoke = 4503 Builder.CreateInvoke(callee, 4504 getUnreachableBlock(), 4505 getInvokeDest(), 4506 args, 4507 BundleList); 4508 invoke->setDoesNotReturn(); 4509 invoke->setCallingConv(getRuntimeCC()); 4510 } else { 4511 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4512 call->setDoesNotReturn(); 4513 call->setCallingConv(getRuntimeCC()); 4514 Builder.CreateUnreachable(); 4515 } 4516 } 4517 4518 /// Emits a call or invoke instruction to the given nullary runtime function. 4519 llvm::CallBase * 4520 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4521 const Twine &name) { 4522 return EmitRuntimeCallOrInvoke(callee, None, name); 4523 } 4524 4525 /// Emits a call or invoke instruction to the given runtime function. 4526 llvm::CallBase * 4527 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4528 ArrayRef<llvm::Value *> args, 4529 const Twine &name) { 4530 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4531 call->setCallingConv(getRuntimeCC()); 4532 return call; 4533 } 4534 4535 /// Emits a call or invoke instruction to the given function, depending 4536 /// on the current state of the EH stack. 4537 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4538 ArrayRef<llvm::Value *> Args, 4539 const Twine &Name) { 4540 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4541 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4542 getBundlesForFunclet(Callee.getCallee()); 4543 4544 llvm::CallBase *Inst; 4545 if (!InvokeDest) 4546 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4547 else { 4548 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4549 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4550 Name); 4551 EmitBlock(ContBB); 4552 } 4553 4554 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4555 // optimizer it can aggressively ignore unwind edges. 4556 if (CGM.getLangOpts().ObjCAutoRefCount) 4557 AddObjCARCExceptionMetadata(Inst); 4558 4559 return Inst; 4560 } 4561 4562 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4563 llvm::Value *New) { 4564 DeferredReplacements.push_back( 4565 std::make_pair(llvm::WeakTrackingVH(Old), New)); 4566 } 4567 4568 namespace { 4569 4570 /// Specify given \p NewAlign as the alignment of return value attribute. If 4571 /// such attribute already exists, re-set it to the maximal one of two options. 4572 LLVM_NODISCARD llvm::AttributeList 4573 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4574 const llvm::AttributeList &Attrs, 4575 llvm::Align NewAlign) { 4576 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4577 if (CurAlign >= NewAlign) 4578 return Attrs; 4579 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4580 return Attrs.removeRetAttribute(Ctx, llvm::Attribute::AttrKind::Alignment) 4581 .addRetAttribute(Ctx, AlignAttr); 4582 } 4583 4584 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4585 protected: 4586 CodeGenFunction &CGF; 4587 4588 /// We do nothing if this is, or becomes, nullptr. 4589 const AlignedAttrTy *AA = nullptr; 4590 4591 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4592 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4593 4594 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4595 : CGF(CGF_) { 4596 if (!FuncDecl) 4597 return; 4598 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4599 } 4600 4601 public: 4602 /// If we can, materialize the alignment as an attribute on return value. 4603 LLVM_NODISCARD llvm::AttributeList 4604 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4605 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4606 return Attrs; 4607 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4608 if (!AlignmentCI) 4609 return Attrs; 4610 // We may legitimately have non-power-of-2 alignment here. 4611 // If so, this is UB land, emit it via `@llvm.assume` instead. 4612 if (!AlignmentCI->getValue().isPowerOf2()) 4613 return Attrs; 4614 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4615 CGF.getLLVMContext(), Attrs, 4616 llvm::Align( 4617 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4618 AA = nullptr; // We're done. Disallow doing anything else. 4619 return NewAttrs; 4620 } 4621 4622 /// Emit alignment assumption. 4623 /// This is a general fallback that we take if either there is an offset, 4624 /// or the alignment is variable or we are sanitizing for alignment. 4625 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4626 if (!AA) 4627 return; 4628 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4629 AA->getLocation(), Alignment, OffsetCI); 4630 AA = nullptr; // We're done. Disallow doing anything else. 4631 } 4632 }; 4633 4634 /// Helper data structure to emit `AssumeAlignedAttr`. 4635 class AssumeAlignedAttrEmitter final 4636 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4637 public: 4638 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4639 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4640 if (!AA) 4641 return; 4642 // It is guaranteed that the alignment/offset are constants. 4643 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4644 if (Expr *Offset = AA->getOffset()) { 4645 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4646 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4647 OffsetCI = nullptr; 4648 } 4649 } 4650 }; 4651 4652 /// Helper data structure to emit `AllocAlignAttr`. 4653 class AllocAlignAttrEmitter final 4654 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4655 public: 4656 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4657 const CallArgList &CallArgs) 4658 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4659 if (!AA) 4660 return; 4661 // Alignment may or may not be a constant, and that is okay. 4662 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4663 .getRValue(CGF) 4664 .getScalarVal(); 4665 } 4666 }; 4667 4668 } // namespace 4669 4670 static unsigned getMaxVectorWidth(const llvm::Type *Ty) { 4671 if (auto *VT = dyn_cast<llvm::VectorType>(Ty)) 4672 return VT->getPrimitiveSizeInBits().getKnownMinSize(); 4673 if (auto *AT = dyn_cast<llvm::ArrayType>(Ty)) 4674 return getMaxVectorWidth(AT->getElementType()); 4675 4676 unsigned MaxVectorWidth = 0; 4677 if (auto *ST = dyn_cast<llvm::StructType>(Ty)) 4678 for (auto *I : ST->elements()) 4679 MaxVectorWidth = std::max(MaxVectorWidth, getMaxVectorWidth(I)); 4680 return MaxVectorWidth; 4681 } 4682 4683 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4684 const CGCallee &Callee, 4685 ReturnValueSlot ReturnValue, 4686 const CallArgList &CallArgs, 4687 llvm::CallBase **callOrInvoke, bool IsMustTail, 4688 SourceLocation Loc) { 4689 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4690 4691 assert(Callee.isOrdinary() || Callee.isVirtual()); 4692 4693 // Handle struct-return functions by passing a pointer to the 4694 // location that we would like to return into. 4695 QualType RetTy = CallInfo.getReturnType(); 4696 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4697 4698 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4699 4700 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4701 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 4702 // We can only guarantee that a function is called from the correct 4703 // context/function based on the appropriate target attributes, 4704 // so only check in the case where we have both always_inline and target 4705 // since otherwise we could be making a conditional call after a check for 4706 // the proper cpu features (and it won't cause code generation issues due to 4707 // function based code generation). 4708 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4709 TargetDecl->hasAttr<TargetAttr>()) 4710 checkTargetFeatures(Loc, FD); 4711 4712 // Some architectures (such as x86-64) have the ABI changed based on 4713 // attribute-target/features. Give them a chance to diagnose. 4714 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 4715 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs); 4716 } 4717 4718 #ifndef NDEBUG 4719 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 4720 // For an inalloca varargs function, we don't expect CallInfo to match the 4721 // function pointer's type, because the inalloca struct a will have extra 4722 // fields in it for the varargs parameters. Code later in this function 4723 // bitcasts the function pointer to the type derived from CallInfo. 4724 // 4725 // In other cases, we assert that the types match up (until pointers stop 4726 // having pointee types). 4727 if (Callee.isVirtual()) 4728 assert(IRFuncTy == Callee.getVirtualFunctionType()); 4729 else { 4730 llvm::PointerType *PtrTy = 4731 llvm::cast<llvm::PointerType>(Callee.getFunctionPointer()->getType()); 4732 assert(PtrTy->isOpaqueOrPointeeTypeMatches(IRFuncTy)); 4733 } 4734 } 4735 #endif 4736 4737 // 1. Set up the arguments. 4738 4739 // If we're using inalloca, insert the allocation after the stack save. 4740 // FIXME: Do this earlier rather than hacking it in here! 4741 Address ArgMemory = Address::invalid(); 4742 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4743 const llvm::DataLayout &DL = CGM.getDataLayout(); 4744 llvm::Instruction *IP = CallArgs.getStackBase(); 4745 llvm::AllocaInst *AI; 4746 if (IP) { 4747 IP = IP->getNextNode(); 4748 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 4749 "argmem", IP); 4750 } else { 4751 AI = CreateTempAlloca(ArgStruct, "argmem"); 4752 } 4753 auto Align = CallInfo.getArgStructAlignment(); 4754 AI->setAlignment(Align.getAsAlign()); 4755 AI->setUsedWithInAlloca(true); 4756 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 4757 ArgMemory = Address(AI, ArgStruct, Align); 4758 } 4759 4760 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 4761 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 4762 4763 // If the call returns a temporary with struct return, create a temporary 4764 // alloca to hold the result, unless one is given to us. 4765 Address SRetPtr = Address::invalid(); 4766 Address SRetAlloca = Address::invalid(); 4767 llvm::Value *UnusedReturnSizePtr = nullptr; 4768 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 4769 if (!ReturnValue.isNull()) { 4770 SRetPtr = ReturnValue.getValue(); 4771 } else { 4772 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 4773 if (HaveInsertPoint() && ReturnValue.isUnused()) { 4774 llvm::TypeSize size = 4775 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 4776 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 4777 } 4778 } 4779 if (IRFunctionArgs.hasSRetArg()) { 4780 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 4781 } else if (RetAI.isInAlloca()) { 4782 Address Addr = 4783 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 4784 Builder.CreateStore(SRetPtr.getPointer(), Addr); 4785 } 4786 } 4787 4788 Address swiftErrorTemp = Address::invalid(); 4789 Address swiftErrorArg = Address::invalid(); 4790 4791 // When passing arguments using temporary allocas, we need to add the 4792 // appropriate lifetime markers. This vector keeps track of all the lifetime 4793 // markers that need to be ended right after the call. 4794 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 4795 4796 // Translate all of the arguments as necessary to match the IR lowering. 4797 assert(CallInfo.arg_size() == CallArgs.size() && 4798 "Mismatch between function signature & arguments."); 4799 unsigned ArgNo = 0; 4800 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 4801 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 4802 I != E; ++I, ++info_it, ++ArgNo) { 4803 const ABIArgInfo &ArgInfo = info_it->info; 4804 4805 // Insert a padding argument to ensure proper alignment. 4806 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 4807 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 4808 llvm::UndefValue::get(ArgInfo.getPaddingType()); 4809 4810 unsigned FirstIRArg, NumIRArgs; 4811 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 4812 4813 switch (ArgInfo.getKind()) { 4814 case ABIArgInfo::InAlloca: { 4815 assert(NumIRArgs == 0); 4816 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 4817 if (I->isAggregate()) { 4818 Address Addr = I->hasLValue() 4819 ? I->getKnownLValue().getAddress(*this) 4820 : I->getKnownRValue().getAggregateAddress(); 4821 llvm::Instruction *Placeholder = 4822 cast<llvm::Instruction>(Addr.getPointer()); 4823 4824 if (!ArgInfo.getInAllocaIndirect()) { 4825 // Replace the placeholder with the appropriate argument slot GEP. 4826 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 4827 Builder.SetInsertPoint(Placeholder); 4828 Addr = Builder.CreateStructGEP(ArgMemory, 4829 ArgInfo.getInAllocaFieldIndex()); 4830 Builder.restoreIP(IP); 4831 } else { 4832 // For indirect things such as overaligned structs, replace the 4833 // placeholder with a regular aggregate temporary alloca. Store the 4834 // address of this alloca into the struct. 4835 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 4836 Address ArgSlot = Builder.CreateStructGEP( 4837 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4838 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4839 } 4840 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 4841 } else if (ArgInfo.getInAllocaIndirect()) { 4842 // Make a temporary alloca and store the address of it into the argument 4843 // struct. 4844 Address Addr = CreateMemTempWithoutCast( 4845 I->Ty, getContext().getTypeAlignInChars(I->Ty), 4846 "indirect-arg-temp"); 4847 I->copyInto(*this, Addr); 4848 Address ArgSlot = 4849 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4850 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4851 } else { 4852 // Store the RValue into the argument struct. 4853 Address Addr = 4854 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4855 // There are some cases where a trivial bitcast is not avoidable. The 4856 // definition of a type later in a translation unit may change it's type 4857 // from {}* to (%struct.foo*)*. 4858 Addr = Builder.CreateElementBitCast(Addr, ConvertTypeForMem(I->Ty)); 4859 I->copyInto(*this, Addr); 4860 } 4861 break; 4862 } 4863 4864 case ABIArgInfo::Indirect: 4865 case ABIArgInfo::IndirectAliased: { 4866 assert(NumIRArgs == 1); 4867 if (!I->isAggregate()) { 4868 // Make a temporary alloca to pass the argument. 4869 Address Addr = CreateMemTempWithoutCast( 4870 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 4871 IRCallArgs[FirstIRArg] = Addr.getPointer(); 4872 4873 I->copyInto(*this, Addr); 4874 } else { 4875 // We want to avoid creating an unnecessary temporary+copy here; 4876 // however, we need one in three cases: 4877 // 1. If the argument is not byval, and we are required to copy the 4878 // source. (This case doesn't occur on any common architecture.) 4879 // 2. If the argument is byval, RV is not sufficiently aligned, and 4880 // we cannot force it to be sufficiently aligned. 4881 // 3. If the argument is byval, but RV is not located in default 4882 // or alloca address space. 4883 Address Addr = I->hasLValue() 4884 ? I->getKnownLValue().getAddress(*this) 4885 : I->getKnownRValue().getAggregateAddress(); 4886 llvm::Value *V = Addr.getPointer(); 4887 CharUnits Align = ArgInfo.getIndirectAlign(); 4888 const llvm::DataLayout *TD = &CGM.getDataLayout(); 4889 4890 assert((FirstIRArg >= IRFuncTy->getNumParams() || 4891 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 4892 TD->getAllocaAddrSpace()) && 4893 "indirect argument must be in alloca address space"); 4894 4895 bool NeedCopy = false; 4896 4897 if (Addr.getAlignment() < Align && 4898 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 4899 Align.getAsAlign()) { 4900 NeedCopy = true; 4901 } else if (I->hasLValue()) { 4902 auto LV = I->getKnownLValue(); 4903 auto AS = LV.getAddressSpace(); 4904 4905 if (!ArgInfo.getIndirectByVal() || 4906 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4907 NeedCopy = true; 4908 } 4909 if (!getLangOpts().OpenCL) { 4910 if ((ArgInfo.getIndirectByVal() && 4911 (AS != LangAS::Default && 4912 AS != CGM.getASTAllocaAddressSpace()))) { 4913 NeedCopy = true; 4914 } 4915 } 4916 // For OpenCL even if RV is located in default or alloca address space 4917 // we don't want to perform address space cast for it. 4918 else if ((ArgInfo.getIndirectByVal() && 4919 Addr.getType()->getAddressSpace() != IRFuncTy-> 4920 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4921 NeedCopy = true; 4922 } 4923 } 4924 4925 if (NeedCopy) { 4926 // Create an aligned temporary, and copy to it. 4927 Address AI = CreateMemTempWithoutCast( 4928 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4929 IRCallArgs[FirstIRArg] = AI.getPointer(); 4930 4931 // Emit lifetime markers for the temporary alloca. 4932 llvm::TypeSize ByvalTempElementSize = 4933 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4934 llvm::Value *LifetimeSize = 4935 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4936 4937 // Add cleanup code to emit the end lifetime marker after the call. 4938 if (LifetimeSize) // In case we disabled lifetime markers. 4939 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4940 4941 // Generate the copy. 4942 I->copyInto(*this, AI); 4943 } else { 4944 // Skip the extra memcpy call. 4945 auto *T = llvm::PointerType::getWithSamePointeeType( 4946 cast<llvm::PointerType>(V->getType()), 4947 CGM.getDataLayout().getAllocaAddrSpace()); 4948 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4949 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4950 true); 4951 } 4952 } 4953 break; 4954 } 4955 4956 case ABIArgInfo::Ignore: 4957 assert(NumIRArgs == 0); 4958 break; 4959 4960 case ABIArgInfo::Extend: 4961 case ABIArgInfo::Direct: { 4962 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4963 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4964 ArgInfo.getDirectOffset() == 0) { 4965 assert(NumIRArgs == 1); 4966 llvm::Value *V; 4967 if (!I->isAggregate()) 4968 V = I->getKnownRValue().getScalarVal(); 4969 else 4970 V = Builder.CreateLoad( 4971 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4972 : I->getKnownRValue().getAggregateAddress()); 4973 4974 // Implement swifterror by copying into a new swifterror argument. 4975 // We'll write back in the normal path out of the call. 4976 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4977 == ParameterABI::SwiftErrorResult) { 4978 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4979 4980 QualType pointeeTy = I->Ty->getPointeeType(); 4981 swiftErrorArg = Address(V, ConvertTypeForMem(pointeeTy), 4982 getContext().getTypeAlignInChars(pointeeTy)); 4983 4984 swiftErrorTemp = 4985 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4986 V = swiftErrorTemp.getPointer(); 4987 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4988 4989 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4990 Builder.CreateStore(errorValue, swiftErrorTemp); 4991 } 4992 4993 // We might have to widen integers, but we should never truncate. 4994 if (ArgInfo.getCoerceToType() != V->getType() && 4995 V->getType()->isIntegerTy()) 4996 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4997 4998 // If the argument doesn't match, perform a bitcast to coerce it. This 4999 // can happen due to trivial type mismatches. 5000 if (FirstIRArg < IRFuncTy->getNumParams() && 5001 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 5002 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 5003 5004 IRCallArgs[FirstIRArg] = V; 5005 break; 5006 } 5007 5008 // FIXME: Avoid the conversion through memory if possible. 5009 Address Src = Address::invalid(); 5010 if (!I->isAggregate()) { 5011 Src = CreateMemTemp(I->Ty, "coerce"); 5012 I->copyInto(*this, Src); 5013 } else { 5014 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5015 : I->getKnownRValue().getAggregateAddress(); 5016 } 5017 5018 // If the value is offset in memory, apply the offset now. 5019 Src = emitAddressAtOffset(*this, Src, ArgInfo); 5020 5021 // Fast-isel and the optimizer generally like scalar values better than 5022 // FCAs, so we flatten them if this is safe to do for this argument. 5023 llvm::StructType *STy = 5024 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 5025 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 5026 llvm::Type *SrcTy = Src.getElementType(); 5027 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 5028 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 5029 5030 // If the source type is smaller than the destination type of the 5031 // coerce-to logic, copy the source value into a temp alloca the size 5032 // of the destination type to allow loading all of it. The bits past 5033 // the source value are left undef. 5034 if (SrcSize < DstSize) { 5035 Address TempAlloca 5036 = CreateTempAlloca(STy, Src.getAlignment(), 5037 Src.getName() + ".coerce"); 5038 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 5039 Src = TempAlloca; 5040 } else { 5041 Src = Builder.CreateElementBitCast(Src, STy); 5042 } 5043 5044 assert(NumIRArgs == STy->getNumElements()); 5045 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 5046 Address EltPtr = Builder.CreateStructGEP(Src, i); 5047 llvm::Value *LI = Builder.CreateLoad(EltPtr); 5048 IRCallArgs[FirstIRArg + i] = LI; 5049 } 5050 } else { 5051 // In the simple case, just pass the coerced loaded value. 5052 assert(NumIRArgs == 1); 5053 llvm::Value *Load = 5054 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 5055 5056 if (CallInfo.isCmseNSCall()) { 5057 // For certain parameter types, clear padding bits, as they may reveal 5058 // sensitive information. 5059 // Small struct/union types are passed as integer arrays. 5060 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 5061 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 5062 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 5063 } 5064 IRCallArgs[FirstIRArg] = Load; 5065 } 5066 5067 break; 5068 } 5069 5070 case ABIArgInfo::CoerceAndExpand: { 5071 auto coercionType = ArgInfo.getCoerceAndExpandType(); 5072 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 5073 5074 llvm::Value *tempSize = nullptr; 5075 Address addr = Address::invalid(); 5076 Address AllocaAddr = Address::invalid(); 5077 if (I->isAggregate()) { 5078 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 5079 : I->getKnownRValue().getAggregateAddress(); 5080 5081 } else { 5082 RValue RV = I->getKnownRValue(); 5083 assert(RV.isScalar()); // complex should always just be direct 5084 5085 llvm::Type *scalarType = RV.getScalarVal()->getType(); 5086 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 5087 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 5088 5089 // Materialize to a temporary. 5090 addr = 5091 CreateTempAlloca(RV.getScalarVal()->getType(), 5092 CharUnits::fromQuantity(std::max( 5093 layout->getAlignment().value(), scalarAlign)), 5094 "tmp", 5095 /*ArraySize=*/nullptr, &AllocaAddr); 5096 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 5097 5098 Builder.CreateStore(RV.getScalarVal(), addr); 5099 } 5100 5101 addr = Builder.CreateElementBitCast(addr, coercionType); 5102 5103 unsigned IRArgPos = FirstIRArg; 5104 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5105 llvm::Type *eltType = coercionType->getElementType(i); 5106 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5107 Address eltAddr = Builder.CreateStructGEP(addr, i); 5108 llvm::Value *elt = Builder.CreateLoad(eltAddr); 5109 IRCallArgs[IRArgPos++] = elt; 5110 } 5111 assert(IRArgPos == FirstIRArg + NumIRArgs); 5112 5113 if (tempSize) { 5114 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 5115 } 5116 5117 break; 5118 } 5119 5120 case ABIArgInfo::Expand: { 5121 unsigned IRArgPos = FirstIRArg; 5122 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 5123 assert(IRArgPos == FirstIRArg + NumIRArgs); 5124 break; 5125 } 5126 } 5127 } 5128 5129 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 5130 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 5131 5132 // If we're using inalloca, set up that argument. 5133 if (ArgMemory.isValid()) { 5134 llvm::Value *Arg = ArgMemory.getPointer(); 5135 if (CallInfo.isVariadic()) { 5136 // When passing non-POD arguments by value to variadic functions, we will 5137 // end up with a variadic prototype and an inalloca call site. In such 5138 // cases, we can't do any parameter mismatch checks. Give up and bitcast 5139 // the callee. 5140 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 5141 CalleePtr = 5142 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 5143 } else { 5144 llvm::Type *LastParamTy = 5145 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 5146 if (Arg->getType() != LastParamTy) { 5147 #ifndef NDEBUG 5148 // Assert that these structs have equivalent element types. 5149 llvm::StructType *FullTy = CallInfo.getArgStruct(); 5150 if (!LastParamTy->isOpaquePointerTy()) { 5151 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 5152 LastParamTy->getNonOpaquePointerElementType()); 5153 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 5154 for (auto DI = DeclaredTy->element_begin(), 5155 DE = DeclaredTy->element_end(), 5156 FI = FullTy->element_begin(); 5157 DI != DE; ++DI, ++FI) 5158 assert(*DI == *FI); 5159 } 5160 #endif 5161 Arg = Builder.CreateBitCast(Arg, LastParamTy); 5162 } 5163 } 5164 assert(IRFunctionArgs.hasInallocaArg()); 5165 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 5166 } 5167 5168 // 2. Prepare the function pointer. 5169 5170 // If the callee is a bitcast of a non-variadic function to have a 5171 // variadic function pointer type, check to see if we can remove the 5172 // bitcast. This comes up with unprototyped functions. 5173 // 5174 // This makes the IR nicer, but more importantly it ensures that we 5175 // can inline the function at -O0 if it is marked always_inline. 5176 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 5177 llvm::Value *Ptr) -> llvm::Function * { 5178 if (!CalleeFT->isVarArg()) 5179 return nullptr; 5180 5181 // Get underlying value if it's a bitcast 5182 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 5183 if (CE->getOpcode() == llvm::Instruction::BitCast) 5184 Ptr = CE->getOperand(0); 5185 } 5186 5187 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 5188 if (!OrigFn) 5189 return nullptr; 5190 5191 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 5192 5193 // If the original type is variadic, or if any of the component types 5194 // disagree, we cannot remove the cast. 5195 if (OrigFT->isVarArg() || 5196 OrigFT->getNumParams() != CalleeFT->getNumParams() || 5197 OrigFT->getReturnType() != CalleeFT->getReturnType()) 5198 return nullptr; 5199 5200 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 5201 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 5202 return nullptr; 5203 5204 return OrigFn; 5205 }; 5206 5207 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 5208 CalleePtr = OrigFn; 5209 IRFuncTy = OrigFn->getFunctionType(); 5210 } 5211 5212 // 3. Perform the actual call. 5213 5214 // Deactivate any cleanups that we're supposed to do immediately before 5215 // the call. 5216 if (!CallArgs.getCleanupsToDeactivate().empty()) 5217 deactivateArgCleanupsBeforeCall(*this, CallArgs); 5218 5219 // Assert that the arguments we computed match up. The IR verifier 5220 // will catch this, but this is a common enough source of problems 5221 // during IRGen changes that it's way better for debugging to catch 5222 // it ourselves here. 5223 #ifndef NDEBUG 5224 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 5225 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 5226 // Inalloca argument can have different type. 5227 if (IRFunctionArgs.hasInallocaArg() && 5228 i == IRFunctionArgs.getInallocaArgNo()) 5229 continue; 5230 if (i < IRFuncTy->getNumParams()) 5231 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 5232 } 5233 #endif 5234 5235 // Update the largest vector width if any arguments have vector types. 5236 for (unsigned i = 0; i < IRCallArgs.size(); ++i) 5237 LargestVectorWidth = std::max(LargestVectorWidth, 5238 getMaxVectorWidth(IRCallArgs[i]->getType())); 5239 5240 // Compute the calling convention and attributes. 5241 unsigned CallingConv; 5242 llvm::AttributeList Attrs; 5243 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 5244 Callee.getAbstractInfo(), Attrs, CallingConv, 5245 /*AttrOnCallSite=*/true, 5246 /*IsThunk=*/false); 5247 5248 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5249 if (FD->hasAttr<StrictFPAttr>()) 5250 // All calls within a strictfp function are marked strictfp 5251 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5252 5253 // Add call-site nomerge attribute if exists. 5254 if (InNoMergeAttributedStmt) 5255 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoMerge); 5256 5257 // Add call-site noinline attribute if exists. 5258 if (InNoInlineAttributedStmt) 5259 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5260 5261 // Add call-site always_inline attribute if exists. 5262 if (InAlwaysInlineAttributedStmt) 5263 Attrs = 5264 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5265 5266 // Apply some call-site-specific attributes. 5267 // TODO: work this into building the attribute set. 5268 5269 // Apply always_inline to all calls within flatten functions. 5270 // FIXME: should this really take priority over __try, below? 5271 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 5272 !InNoInlineAttributedStmt && 5273 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 5274 Attrs = 5275 Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::AlwaysInline); 5276 } 5277 5278 // Disable inlining inside SEH __try blocks. 5279 if (isSEHTryScope()) { 5280 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::NoInline); 5281 } 5282 5283 // Decide whether to use a call or an invoke. 5284 bool CannotThrow; 5285 if (currentFunctionUsesSEHTry()) { 5286 // SEH cares about asynchronous exceptions, so everything can "throw." 5287 CannotThrow = false; 5288 } else if (isCleanupPadScope() && 5289 EHPersonality::get(*this).isMSVCXXPersonality()) { 5290 // The MSVC++ personality will implicitly terminate the program if an 5291 // exception is thrown during a cleanup outside of a try/catch. 5292 // We don't need to model anything in IR to get this behavior. 5293 CannotThrow = true; 5294 } else { 5295 // Otherwise, nounwind call sites will never throw. 5296 CannotThrow = Attrs.hasFnAttr(llvm::Attribute::NoUnwind); 5297 5298 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 5299 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 5300 CannotThrow = true; 5301 } 5302 5303 // If we made a temporary, be sure to clean up after ourselves. Note that we 5304 // can't depend on being inside of an ExprWithCleanups, so we need to manually 5305 // pop this cleanup later on. Being eager about this is OK, since this 5306 // temporary is 'invisible' outside of the callee. 5307 if (UnusedReturnSizePtr) 5308 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 5309 UnusedReturnSizePtr); 5310 5311 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 5312 5313 SmallVector<llvm::OperandBundleDef, 1> BundleList = 5314 getBundlesForFunclet(CalleePtr); 5315 5316 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 5317 if (FD->hasAttr<StrictFPAttr>()) 5318 // All calls within a strictfp function are marked strictfp 5319 Attrs = Attrs.addFnAttribute(getLLVMContext(), llvm::Attribute::StrictFP); 5320 5321 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 5322 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5323 5324 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 5325 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 5326 5327 // Emit the actual call/invoke instruction. 5328 llvm::CallBase *CI; 5329 if (!InvokeDest) { 5330 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 5331 } else { 5332 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 5333 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 5334 BundleList); 5335 EmitBlock(Cont); 5336 } 5337 if (callOrInvoke) 5338 *callOrInvoke = CI; 5339 5340 // If this is within a function that has the guard(nocf) attribute and is an 5341 // indirect call, add the "guard_nocf" attribute to this call to indicate that 5342 // Control Flow Guard checks should not be added, even if the call is inlined. 5343 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 5344 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 5345 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 5346 Attrs = Attrs.addFnAttribute(getLLVMContext(), "guard_nocf"); 5347 } 5348 } 5349 5350 // Apply the attributes and calling convention. 5351 CI->setAttributes(Attrs); 5352 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 5353 5354 // Apply various metadata. 5355 5356 if (!CI->getType()->isVoidTy()) 5357 CI->setName("call"); 5358 5359 // Update largest vector width from the return type. 5360 LargestVectorWidth = 5361 std::max(LargestVectorWidth, getMaxVectorWidth(CI->getType())); 5362 5363 // Insert instrumentation or attach profile metadata at indirect call sites. 5364 // For more details, see the comment before the definition of 5365 // IPVK_IndirectCallTarget in InstrProfData.inc. 5366 if (!CI->getCalledFunction()) 5367 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 5368 CI, CalleePtr); 5369 5370 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 5371 // optimizer it can aggressively ignore unwind edges. 5372 if (CGM.getLangOpts().ObjCAutoRefCount) 5373 AddObjCARCExceptionMetadata(CI); 5374 5375 // Set tail call kind if necessary. 5376 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 5377 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 5378 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 5379 else if (IsMustTail) 5380 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 5381 } 5382 5383 // Add metadata for calls to MSAllocator functions 5384 if (getDebugInfo() && TargetDecl && 5385 TargetDecl->hasAttr<MSAllocatorAttr>()) 5386 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 5387 5388 // Add metadata if calling an __attribute__((error(""))) or warning fn. 5389 if (TargetDecl && TargetDecl->hasAttr<ErrorAttr>()) { 5390 llvm::ConstantInt *Line = 5391 llvm::ConstantInt::get(Int32Ty, Loc.getRawEncoding()); 5392 llvm::ConstantAsMetadata *MD = llvm::ConstantAsMetadata::get(Line); 5393 llvm::MDTuple *MDT = llvm::MDNode::get(getLLVMContext(), {MD}); 5394 CI->setMetadata("srcloc", MDT); 5395 } 5396 5397 // 4. Finish the call. 5398 5399 // If the call doesn't return, finish the basic block and clear the 5400 // insertion point; this allows the rest of IRGen to discard 5401 // unreachable code. 5402 if (CI->doesNotReturn()) { 5403 if (UnusedReturnSizePtr) 5404 PopCleanupBlock(); 5405 5406 // Strip away the noreturn attribute to better diagnose unreachable UB. 5407 if (SanOpts.has(SanitizerKind::Unreachable)) { 5408 // Also remove from function since CallBase::hasFnAttr additionally checks 5409 // attributes of the called function. 5410 if (auto *F = CI->getCalledFunction()) 5411 F->removeFnAttr(llvm::Attribute::NoReturn); 5412 CI->removeFnAttr(llvm::Attribute::NoReturn); 5413 5414 // Avoid incompatibility with ASan which relies on the `noreturn` 5415 // attribute to insert handler calls. 5416 if (SanOpts.hasOneOf(SanitizerKind::Address | 5417 SanitizerKind::KernelAddress)) { 5418 SanitizerScope SanScope(this); 5419 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5420 Builder.SetInsertPoint(CI); 5421 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5422 llvm::FunctionCallee Fn = 5423 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5424 EmitNounwindRuntimeCall(Fn); 5425 } 5426 } 5427 5428 EmitUnreachable(Loc); 5429 Builder.ClearInsertionPoint(); 5430 5431 // FIXME: For now, emit a dummy basic block because expr emitters in 5432 // generally are not ready to handle emitting expressions at unreachable 5433 // points. 5434 EnsureInsertPoint(); 5435 5436 // Return a reasonable RValue. 5437 return GetUndefRValue(RetTy); 5438 } 5439 5440 // If this is a musttail call, return immediately. We do not branch to the 5441 // epilogue in this case. 5442 if (IsMustTail) { 5443 for (auto it = EHStack.find(CurrentCleanupScopeDepth); it != EHStack.end(); 5444 ++it) { 5445 EHCleanupScope *Cleanup = dyn_cast<EHCleanupScope>(&*it); 5446 if (!(Cleanup && Cleanup->getCleanup()->isRedundantBeforeReturn())) 5447 CGM.ErrorUnsupported(MustTailCall, "tail call skipping over cleanups"); 5448 } 5449 if (CI->getType()->isVoidTy()) 5450 Builder.CreateRetVoid(); 5451 else 5452 Builder.CreateRet(CI); 5453 Builder.ClearInsertionPoint(); 5454 EnsureInsertPoint(); 5455 return GetUndefRValue(RetTy); 5456 } 5457 5458 // Perform the swifterror writeback. 5459 if (swiftErrorTemp.isValid()) { 5460 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5461 Builder.CreateStore(errorResult, swiftErrorArg); 5462 } 5463 5464 // Emit any call-associated writebacks immediately. Arguably this 5465 // should happen after any return-value munging. 5466 if (CallArgs.hasWritebacks()) 5467 emitWritebacks(*this, CallArgs); 5468 5469 // The stack cleanup for inalloca arguments has to run out of the normal 5470 // lexical order, so deactivate it and run it manually here. 5471 CallArgs.freeArgumentMemory(*this); 5472 5473 // Extract the return value. 5474 RValue Ret = [&] { 5475 switch (RetAI.getKind()) { 5476 case ABIArgInfo::CoerceAndExpand: { 5477 auto coercionType = RetAI.getCoerceAndExpandType(); 5478 5479 Address addr = SRetPtr; 5480 addr = Builder.CreateElementBitCast(addr, coercionType); 5481 5482 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5483 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5484 5485 unsigned unpaddedIndex = 0; 5486 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5487 llvm::Type *eltType = coercionType->getElementType(i); 5488 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5489 Address eltAddr = Builder.CreateStructGEP(addr, i); 5490 llvm::Value *elt = CI; 5491 if (requiresExtract) 5492 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5493 else 5494 assert(unpaddedIndex == 0); 5495 Builder.CreateStore(elt, eltAddr); 5496 } 5497 // FALLTHROUGH 5498 LLVM_FALLTHROUGH; 5499 } 5500 5501 case ABIArgInfo::InAlloca: 5502 case ABIArgInfo::Indirect: { 5503 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5504 if (UnusedReturnSizePtr) 5505 PopCleanupBlock(); 5506 return ret; 5507 } 5508 5509 case ABIArgInfo::Ignore: 5510 // If we are ignoring an argument that had a result, make sure to 5511 // construct the appropriate return value for our caller. 5512 return GetUndefRValue(RetTy); 5513 5514 case ABIArgInfo::Extend: 5515 case ABIArgInfo::Direct: { 5516 llvm::Type *RetIRTy = ConvertType(RetTy); 5517 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5518 switch (getEvaluationKind(RetTy)) { 5519 case TEK_Complex: { 5520 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5521 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5522 return RValue::getComplex(std::make_pair(Real, Imag)); 5523 } 5524 case TEK_Aggregate: { 5525 Address DestPtr = ReturnValue.getValue(); 5526 bool DestIsVolatile = ReturnValue.isVolatile(); 5527 5528 if (!DestPtr.isValid()) { 5529 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5530 DestIsVolatile = false; 5531 } 5532 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5533 return RValue::getAggregate(DestPtr); 5534 } 5535 case TEK_Scalar: { 5536 // If the argument doesn't match, perform a bitcast to coerce it. This 5537 // can happen due to trivial type mismatches. 5538 llvm::Value *V = CI; 5539 if (V->getType() != RetIRTy) 5540 V = Builder.CreateBitCast(V, RetIRTy); 5541 return RValue::get(V); 5542 } 5543 } 5544 llvm_unreachable("bad evaluation kind"); 5545 } 5546 5547 Address DestPtr = ReturnValue.getValue(); 5548 bool DestIsVolatile = ReturnValue.isVolatile(); 5549 5550 if (!DestPtr.isValid()) { 5551 DestPtr = CreateMemTemp(RetTy, "coerce"); 5552 DestIsVolatile = false; 5553 } 5554 5555 // If the value is offset in memory, apply the offset now. 5556 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5557 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5558 5559 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5560 } 5561 5562 case ABIArgInfo::Expand: 5563 case ABIArgInfo::IndirectAliased: 5564 llvm_unreachable("Invalid ABI kind for return argument"); 5565 } 5566 5567 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5568 } (); 5569 5570 // Emit the assume_aligned check on the return value. 5571 if (Ret.isScalar() && TargetDecl) { 5572 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5573 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5574 } 5575 5576 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5577 // we can't use the full cleanup mechanism. 5578 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5579 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5580 5581 if (!ReturnValue.isExternallyDestructed() && 5582 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5583 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5584 RetTy); 5585 5586 return Ret; 5587 } 5588 5589 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5590 if (isVirtual()) { 5591 const CallExpr *CE = getVirtualCallExpr(); 5592 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5593 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5594 CE ? CE->getBeginLoc() : SourceLocation()); 5595 } 5596 5597 return *this; 5598 } 5599 5600 /* VarArg handling */ 5601 5602 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5603 VAListAddr = VE->isMicrosoftABI() 5604 ? EmitMSVAListRef(VE->getSubExpr()) 5605 : EmitVAListRef(VE->getSubExpr()); 5606 QualType Ty = VE->getType(); 5607 if (VE->isMicrosoftABI()) 5608 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5609 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5610 } 5611