1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/Basic/CodeGenOptions.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/SwiftCallingConv.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallSite.h"
35 #include "llvm/IR/CallingConv.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 using namespace clang;
41 using namespace CodeGen;
42 
43 /***/
44 
45 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
46   switch (CC) {
47   default: return llvm::CallingConv::C;
48   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
49   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
50   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
51   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
52   case CC_Win64: return llvm::CallingConv::Win64;
53   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
54   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
55   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
56   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
57   // TODO: Add support for __pascal to LLVM.
58   case CC_X86Pascal: return llvm::CallingConv::C;
59   // TODO: Add support for __vectorcall to LLVM.
60   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
61   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
62   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
63   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
64   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
65   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
66   case CC_Swift: return llvm::CallingConv::Swift;
67   }
68 }
69 
70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
71 /// qualification.
72 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD,
73                                const CXXMethodDecl *MD) {
74   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
75   if (MD)
76     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getTypeQualifiers().getAddressSpace());
77   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
78 }
79 
80 /// Returns the canonical formal type of the given C++ method.
81 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
82   return MD->getType()->getCanonicalTypeUnqualified()
83            .getAs<FunctionProtoType>();
84 }
85 
86 /// Returns the "extra-canonicalized" return type, which discards
87 /// qualifiers on the return type.  Codegen doesn't care about them,
88 /// and it makes ABI code a little easier to be able to assume that
89 /// all parameter and return types are top-level unqualified.
90 static CanQualType GetReturnType(QualType RetTy) {
91   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
92 }
93 
94 /// Arrange the argument and result information for a value of the given
95 /// unprototyped freestanding function type.
96 const CGFunctionInfo &
97 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
98   // When translating an unprototyped function type, always use a
99   // variadic type.
100   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
101                                  /*instanceMethod=*/false,
102                                  /*chainCall=*/false, None,
103                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
104 }
105 
106 static void addExtParameterInfosForCall(
107          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
108                                         const FunctionProtoType *proto,
109                                         unsigned prefixArgs,
110                                         unsigned totalArgs) {
111   assert(proto->hasExtParameterInfos());
112   assert(paramInfos.size() <= prefixArgs);
113   assert(proto->getNumParams() + prefixArgs <= totalArgs);
114 
115   paramInfos.reserve(totalArgs);
116 
117   // Add default infos for any prefix args that don't already have infos.
118   paramInfos.resize(prefixArgs);
119 
120   // Add infos for the prototype.
121   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
122     paramInfos.push_back(ParamInfo);
123     // pass_object_size params have no parameter info.
124     if (ParamInfo.hasPassObjectSize())
125       paramInfos.emplace_back();
126   }
127 
128   assert(paramInfos.size() <= totalArgs &&
129          "Did we forget to insert pass_object_size args?");
130   // Add default infos for the variadic and/or suffix arguments.
131   paramInfos.resize(totalArgs);
132 }
133 
134 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
135 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
136 static void appendParameterTypes(const CodeGenTypes &CGT,
137                                  SmallVectorImpl<CanQualType> &prefix,
138               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
139                                  CanQual<FunctionProtoType> FPT) {
140   // Fast path: don't touch param info if we don't need to.
141   if (!FPT->hasExtParameterInfos()) {
142     assert(paramInfos.empty() &&
143            "We have paramInfos, but the prototype doesn't?");
144     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
145     return;
146   }
147 
148   unsigned PrefixSize = prefix.size();
149   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
150   // parameters; the only thing that can change this is the presence of
151   // pass_object_size. So, we preallocate for the common case.
152   prefix.reserve(prefix.size() + FPT->getNumParams());
153 
154   auto ExtInfos = FPT->getExtParameterInfos();
155   assert(ExtInfos.size() == FPT->getNumParams());
156   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
157     prefix.push_back(FPT->getParamType(I));
158     if (ExtInfos[I].hasPassObjectSize())
159       prefix.push_back(CGT.getContext().getSizeType());
160   }
161 
162   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
163                               prefix.size());
164 }
165 
166 /// Arrange the LLVM function layout for a value of the given function
167 /// type, on top of any implicit parameters already stored.
168 static const CGFunctionInfo &
169 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
170                         SmallVectorImpl<CanQualType> &prefix,
171                         CanQual<FunctionProtoType> FTP,
172                         const FunctionDecl *FD) {
173   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
174   RequiredArgs Required =
175       RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD);
176   // FIXME: Kill copy.
177   appendParameterTypes(CGT, prefix, paramInfos, FTP);
178   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
179 
180   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
181                                      /*chainCall=*/false, prefix,
182                                      FTP->getExtInfo(), paramInfos,
183                                      Required);
184 }
185 
186 /// Arrange the argument and result information for a value of the
187 /// given freestanding function type.
188 const CGFunctionInfo &
189 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
190                                       const FunctionDecl *FD) {
191   SmallVector<CanQualType, 16> argTypes;
192   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
193                                    FTP, FD);
194 }
195 
196 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
197   // Set the appropriate calling convention for the Function.
198   if (D->hasAttr<StdCallAttr>())
199     return CC_X86StdCall;
200 
201   if (D->hasAttr<FastCallAttr>())
202     return CC_X86FastCall;
203 
204   if (D->hasAttr<RegCallAttr>())
205     return CC_X86RegCall;
206 
207   if (D->hasAttr<ThisCallAttr>())
208     return CC_X86ThisCall;
209 
210   if (D->hasAttr<VectorCallAttr>())
211     return CC_X86VectorCall;
212 
213   if (D->hasAttr<PascalAttr>())
214     return CC_X86Pascal;
215 
216   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
217     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
218 
219   if (D->hasAttr<AArch64VectorPcsAttr>())
220     return CC_AArch64VectorCall;
221 
222   if (D->hasAttr<IntelOclBiccAttr>())
223     return CC_IntelOclBicc;
224 
225   if (D->hasAttr<MSABIAttr>())
226     return IsWindows ? CC_C : CC_Win64;
227 
228   if (D->hasAttr<SysVABIAttr>())
229     return IsWindows ? CC_X86_64SysV : CC_C;
230 
231   if (D->hasAttr<PreserveMostAttr>())
232     return CC_PreserveMost;
233 
234   if (D->hasAttr<PreserveAllAttr>())
235     return CC_PreserveAll;
236 
237   return CC_C;
238 }
239 
240 /// Arrange the argument and result information for a call to an
241 /// unknown C++ non-static member function of the given abstract type.
242 /// (Zero value of RD means we don't have any meaningful "this" argument type,
243 ///  so fall back to a generic pointer type).
244 /// The member function must be an ordinary function, i.e. not a
245 /// constructor or destructor.
246 const CGFunctionInfo &
247 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
248                                    const FunctionProtoType *FTP,
249                                    const CXXMethodDecl *MD) {
250   SmallVector<CanQualType, 16> argTypes;
251 
252   // Add the 'this' pointer.
253   if (RD)
254     argTypes.push_back(GetThisType(Context, RD, MD));
255   else
256     argTypes.push_back(Context.VoidPtrTy);
257 
258   return ::arrangeLLVMFunctionInfo(
259       *this, true, argTypes,
260       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
261 }
262 
263 /// Set calling convention for CUDA/HIP kernel.
264 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
265                                            const FunctionDecl *FD) {
266   if (FD->hasAttr<CUDAGlobalAttr>()) {
267     const FunctionType *FT = FTy->getAs<FunctionType>();
268     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
269     FTy = FT->getCanonicalTypeUnqualified();
270   }
271 }
272 
273 /// Arrange the argument and result information for a declaration or
274 /// definition of the given C++ non-static member function.  The
275 /// member function must be an ordinary function, i.e. not a
276 /// constructor or destructor.
277 const CGFunctionInfo &
278 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
279   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
280   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
281 
282   CanQualType FT = GetFormalType(MD).getAs<Type>();
283   setCUDAKernelCallingConvention(FT, CGM, MD);
284   auto prototype = FT.getAs<FunctionProtoType>();
285 
286   if (MD->isInstance()) {
287     // The abstract case is perfectly fine.
288     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
289     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
290   }
291 
292   return arrangeFreeFunctionType(prototype, MD);
293 }
294 
295 bool CodeGenTypes::inheritingCtorHasParams(
296     const InheritedConstructor &Inherited, CXXCtorType Type) {
297   // Parameters are unnecessary if we're constructing a base class subobject
298   // and the inherited constructor lives in a virtual base.
299   return Type == Ctor_Complete ||
300          !Inherited.getShadowDecl()->constructsVirtualBase() ||
301          !Target.getCXXABI().hasConstructorVariants();
302   }
303 
304 const CGFunctionInfo &
305 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
306                                             StructorType Type) {
307 
308   SmallVector<CanQualType, 16> argTypes;
309   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
310   argTypes.push_back(GetThisType(Context, MD->getParent(), MD));
311 
312   bool PassParams = true;
313 
314   GlobalDecl GD;
315   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
316     GD = GlobalDecl(CD, toCXXCtorType(Type));
317 
318     // A base class inheriting constructor doesn't get forwarded arguments
319     // needed to construct a virtual base (or base class thereof).
320     if (auto Inherited = CD->getInheritedConstructor())
321       PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
322   } else {
323     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
324     GD = GlobalDecl(DD, toCXXDtorType(Type));
325   }
326 
327   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
328 
329   // Add the formal parameters.
330   if (PassParams)
331     appendParameterTypes(*this, argTypes, paramInfos, FTP);
332 
333   CGCXXABI::AddedStructorArgs AddedArgs =
334       TheCXXABI.buildStructorSignature(MD, Type, argTypes);
335   if (!paramInfos.empty()) {
336     // Note: prefix implies after the first param.
337     if (AddedArgs.Prefix)
338       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
339                         FunctionProtoType::ExtParameterInfo{});
340     if (AddedArgs.Suffix)
341       paramInfos.append(AddedArgs.Suffix,
342                         FunctionProtoType::ExtParameterInfo{});
343   }
344 
345   RequiredArgs required =
346       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
347                                       : RequiredArgs::All);
348 
349   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
350   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
351                                ? argTypes.front()
352                                : TheCXXABI.hasMostDerivedReturn(GD)
353                                      ? CGM.getContext().VoidPtrTy
354                                      : Context.VoidTy;
355   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
356                                  /*chainCall=*/false, argTypes, extInfo,
357                                  paramInfos, required);
358 }
359 
360 static SmallVector<CanQualType, 16>
361 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
362   SmallVector<CanQualType, 16> argTypes;
363   for (auto &arg : args)
364     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
365   return argTypes;
366 }
367 
368 static SmallVector<CanQualType, 16>
369 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
370   SmallVector<CanQualType, 16> argTypes;
371   for (auto &arg : args)
372     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
373   return argTypes;
374 }
375 
376 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
377 getExtParameterInfosForCall(const FunctionProtoType *proto,
378                             unsigned prefixArgs, unsigned totalArgs) {
379   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
380   if (proto->hasExtParameterInfos()) {
381     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
382   }
383   return result;
384 }
385 
386 /// Arrange a call to a C++ method, passing the given arguments.
387 ///
388 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
389 /// parameter.
390 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
391 /// args.
392 /// PassProtoArgs indicates whether `args` has args for the parameters in the
393 /// given CXXConstructorDecl.
394 const CGFunctionInfo &
395 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
396                                         const CXXConstructorDecl *D,
397                                         CXXCtorType CtorKind,
398                                         unsigned ExtraPrefixArgs,
399                                         unsigned ExtraSuffixArgs,
400                                         bool PassProtoArgs) {
401   // FIXME: Kill copy.
402   SmallVector<CanQualType, 16> ArgTypes;
403   for (const auto &Arg : args)
404     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
405 
406   // +1 for implicit this, which should always be args[0].
407   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
408 
409   CanQual<FunctionProtoType> FPT = GetFormalType(D);
410   RequiredArgs Required =
411       RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D);
412   GlobalDecl GD(D, CtorKind);
413   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
414                                ? ArgTypes.front()
415                                : TheCXXABI.hasMostDerivedReturn(GD)
416                                      ? CGM.getContext().VoidPtrTy
417                                      : Context.VoidTy;
418 
419   FunctionType::ExtInfo Info = FPT->getExtInfo();
420   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
421   // If the prototype args are elided, we should only have ABI-specific args,
422   // which never have param info.
423   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
424     // ABI-specific suffix arguments are treated the same as variadic arguments.
425     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
426                                 ArgTypes.size());
427   }
428   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
429                                  /*chainCall=*/false, ArgTypes, Info,
430                                  ParamInfos, Required);
431 }
432 
433 /// Arrange the argument and result information for the declaration or
434 /// definition of the given function.
435 const CGFunctionInfo &
436 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
437   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
438     if (MD->isInstance())
439       return arrangeCXXMethodDeclaration(MD);
440 
441   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
442 
443   assert(isa<FunctionType>(FTy));
444   setCUDAKernelCallingConvention(FTy, CGM, FD);
445 
446   // When declaring a function without a prototype, always use a
447   // non-variadic type.
448   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
449     return arrangeLLVMFunctionInfo(
450         noProto->getReturnType(), /*instanceMethod=*/false,
451         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
452   }
453 
454   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD);
455 }
456 
457 /// Arrange the argument and result information for the declaration or
458 /// definition of an Objective-C method.
459 const CGFunctionInfo &
460 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
461   // It happens that this is the same as a call with no optional
462   // arguments, except also using the formal 'self' type.
463   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
464 }
465 
466 /// Arrange the argument and result information for the function type
467 /// through which to perform a send to the given Objective-C method,
468 /// using the given receiver type.  The receiver type is not always
469 /// the 'self' type of the method or even an Objective-C pointer type.
470 /// This is *not* the right method for actually performing such a
471 /// message send, due to the possibility of optional arguments.
472 const CGFunctionInfo &
473 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
474                                               QualType receiverType) {
475   SmallVector<CanQualType, 16> argTys;
476   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
477   argTys.push_back(Context.getCanonicalParamType(receiverType));
478   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
479   // FIXME: Kill copy?
480   for (const auto *I : MD->parameters()) {
481     argTys.push_back(Context.getCanonicalParamType(I->getType()));
482     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
483         I->hasAttr<NoEscapeAttr>());
484     extParamInfos.push_back(extParamInfo);
485   }
486 
487   FunctionType::ExtInfo einfo;
488   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
489   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
490 
491   if (getContext().getLangOpts().ObjCAutoRefCount &&
492       MD->hasAttr<NSReturnsRetainedAttr>())
493     einfo = einfo.withProducesResult(true);
494 
495   RequiredArgs required =
496     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
497 
498   return arrangeLLVMFunctionInfo(
499       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
500       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
501 }
502 
503 const CGFunctionInfo &
504 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
505                                                  const CallArgList &args) {
506   auto argTypes = getArgTypesForCall(Context, args);
507   FunctionType::ExtInfo einfo;
508 
509   return arrangeLLVMFunctionInfo(
510       GetReturnType(returnType), /*instanceMethod=*/false,
511       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
512 }
513 
514 const CGFunctionInfo &
515 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
516   // FIXME: Do we need to handle ObjCMethodDecl?
517   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
518 
519   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
520     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
521 
522   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
523     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
524 
525   return arrangeFunctionDeclaration(FD);
526 }
527 
528 /// Arrange a thunk that takes 'this' as the first parameter followed by
529 /// varargs.  Return a void pointer, regardless of the actual return type.
530 /// The body of the thunk will end in a musttail call to a function of the
531 /// correct type, and the caller will bitcast the function to the correct
532 /// prototype.
533 const CGFunctionInfo &
534 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
535   assert(MD->isVirtual() && "only methods have thunks");
536   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
537   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent(), MD) };
538   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
539                                  /*chainCall=*/false, ArgTys,
540                                  FTP->getExtInfo(), {}, RequiredArgs(1));
541 }
542 
543 const CGFunctionInfo &
544 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
545                                    CXXCtorType CT) {
546   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
547 
548   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
549   SmallVector<CanQualType, 2> ArgTys;
550   const CXXRecordDecl *RD = CD->getParent();
551   ArgTys.push_back(GetThisType(Context, RD, CD));
552   if (CT == Ctor_CopyingClosure)
553     ArgTys.push_back(*FTP->param_type_begin());
554   if (RD->getNumVBases() > 0)
555     ArgTys.push_back(Context.IntTy);
556   CallingConv CC = Context.getDefaultCallingConvention(
557       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
558   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
559                                  /*chainCall=*/false, ArgTys,
560                                  FunctionType::ExtInfo(CC), {},
561                                  RequiredArgs::All);
562 }
563 
564 /// Arrange a call as unto a free function, except possibly with an
565 /// additional number of formal parameters considered required.
566 static const CGFunctionInfo &
567 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
568                             CodeGenModule &CGM,
569                             const CallArgList &args,
570                             const FunctionType *fnType,
571                             unsigned numExtraRequiredArgs,
572                             bool chainCall) {
573   assert(args.size() >= numExtraRequiredArgs);
574 
575   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
576 
577   // In most cases, there are no optional arguments.
578   RequiredArgs required = RequiredArgs::All;
579 
580   // If we have a variadic prototype, the required arguments are the
581   // extra prefix plus the arguments in the prototype.
582   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
583     if (proto->isVariadic())
584       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
585 
586     if (proto->hasExtParameterInfos())
587       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
588                                   args.size());
589 
590   // If we don't have a prototype at all, but we're supposed to
591   // explicitly use the variadic convention for unprototyped calls,
592   // treat all of the arguments as required but preserve the nominal
593   // possibility of variadics.
594   } else if (CGM.getTargetCodeGenInfo()
595                 .isNoProtoCallVariadic(args,
596                                        cast<FunctionNoProtoType>(fnType))) {
597     required = RequiredArgs(args.size());
598   }
599 
600   // FIXME: Kill copy.
601   SmallVector<CanQualType, 16> argTypes;
602   for (const auto &arg : args)
603     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
604   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
605                                      /*instanceMethod=*/false, chainCall,
606                                      argTypes, fnType->getExtInfo(), paramInfos,
607                                      required);
608 }
609 
610 /// Figure out the rules for calling a function with the given formal
611 /// type using the given arguments.  The arguments are necessary
612 /// because the function might be unprototyped, in which case it's
613 /// target-dependent in crazy ways.
614 const CGFunctionInfo &
615 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
616                                       const FunctionType *fnType,
617                                       bool chainCall) {
618   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
619                                      chainCall ? 1 : 0, chainCall);
620 }
621 
622 /// A block function is essentially a free function with an
623 /// extra implicit argument.
624 const CGFunctionInfo &
625 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
626                                        const FunctionType *fnType) {
627   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
628                                      /*chainCall=*/false);
629 }
630 
631 const CGFunctionInfo &
632 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
633                                               const FunctionArgList &params) {
634   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
635   auto argTypes = getArgTypesForDeclaration(Context, params);
636 
637   return arrangeLLVMFunctionInfo(
638       GetReturnType(proto->getReturnType()),
639       /*instanceMethod*/ false, /*chainCall*/ false, argTypes,
640       proto->getExtInfo(), paramInfos,
641       RequiredArgs::forPrototypePlus(proto, 1, nullptr));
642 }
643 
644 const CGFunctionInfo &
645 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
646                                          const CallArgList &args) {
647   // FIXME: Kill copy.
648   SmallVector<CanQualType, 16> argTypes;
649   for (const auto &Arg : args)
650     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
651   return arrangeLLVMFunctionInfo(
652       GetReturnType(resultType), /*instanceMethod=*/false,
653       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
654       /*paramInfos=*/ {}, RequiredArgs::All);
655 }
656 
657 const CGFunctionInfo &
658 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
659                                                 const FunctionArgList &args) {
660   auto argTypes = getArgTypesForDeclaration(Context, args);
661 
662   return arrangeLLVMFunctionInfo(
663       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
664       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
665 }
666 
667 const CGFunctionInfo &
668 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
669                                               ArrayRef<CanQualType> argTypes) {
670   return arrangeLLVMFunctionInfo(
671       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
672       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
673 }
674 
675 /// Arrange a call to a C++ method, passing the given arguments.
676 ///
677 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
678 /// does not count `this`.
679 const CGFunctionInfo &
680 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
681                                    const FunctionProtoType *proto,
682                                    RequiredArgs required,
683                                    unsigned numPrefixArgs) {
684   assert(numPrefixArgs + 1 <= args.size() &&
685          "Emitting a call with less args than the required prefix?");
686   // Add one to account for `this`. It's a bit awkward here, but we don't count
687   // `this` in similar places elsewhere.
688   auto paramInfos =
689     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
690 
691   // FIXME: Kill copy.
692   auto argTypes = getArgTypesForCall(Context, args);
693 
694   FunctionType::ExtInfo info = proto->getExtInfo();
695   return arrangeLLVMFunctionInfo(
696       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
697       /*chainCall=*/false, argTypes, info, paramInfos, required);
698 }
699 
700 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
701   return arrangeLLVMFunctionInfo(
702       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
703       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
704 }
705 
706 const CGFunctionInfo &
707 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
708                           const CallArgList &args) {
709   assert(signature.arg_size() <= args.size());
710   if (signature.arg_size() == args.size())
711     return signature;
712 
713   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
714   auto sigParamInfos = signature.getExtParameterInfos();
715   if (!sigParamInfos.empty()) {
716     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
717     paramInfos.resize(args.size());
718   }
719 
720   auto argTypes = getArgTypesForCall(Context, args);
721 
722   assert(signature.getRequiredArgs().allowsOptionalArgs());
723   return arrangeLLVMFunctionInfo(signature.getReturnType(),
724                                  signature.isInstanceMethod(),
725                                  signature.isChainCall(),
726                                  argTypes,
727                                  signature.getExtInfo(),
728                                  paramInfos,
729                                  signature.getRequiredArgs());
730 }
731 
732 namespace clang {
733 namespace CodeGen {
734 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
735 }
736 }
737 
738 /// Arrange the argument and result information for an abstract value
739 /// of a given function type.  This is the method which all of the
740 /// above functions ultimately defer to.
741 const CGFunctionInfo &
742 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
743                                       bool instanceMethod,
744                                       bool chainCall,
745                                       ArrayRef<CanQualType> argTypes,
746                                       FunctionType::ExtInfo info,
747                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
748                                       RequiredArgs required) {
749   assert(llvm::all_of(argTypes,
750                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
751 
752   // Lookup or create unique function info.
753   llvm::FoldingSetNodeID ID;
754   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
755                           required, resultType, argTypes);
756 
757   void *insertPos = nullptr;
758   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
759   if (FI)
760     return *FI;
761 
762   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
763 
764   // Construct the function info.  We co-allocate the ArgInfos.
765   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
766                               paramInfos, resultType, argTypes, required);
767   FunctionInfos.InsertNode(FI, insertPos);
768 
769   bool inserted = FunctionsBeingProcessed.insert(FI).second;
770   (void)inserted;
771   assert(inserted && "Recursively being processed?");
772 
773   // Compute ABI information.
774   if (CC == llvm::CallingConv::SPIR_KERNEL) {
775     // Force target independent argument handling for the host visible
776     // kernel functions.
777     computeSPIRKernelABIInfo(CGM, *FI);
778   } else if (info.getCC() == CC_Swift) {
779     swiftcall::computeABIInfo(CGM, *FI);
780   } else {
781     getABIInfo().computeInfo(*FI);
782   }
783 
784   // Loop over all of the computed argument and return value info.  If any of
785   // them are direct or extend without a specified coerce type, specify the
786   // default now.
787   ABIArgInfo &retInfo = FI->getReturnInfo();
788   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
789     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
790 
791   for (auto &I : FI->arguments())
792     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
793       I.info.setCoerceToType(ConvertType(I.type));
794 
795   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
796   assert(erased && "Not in set?");
797 
798   return *FI;
799 }
800 
801 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
802                                        bool instanceMethod,
803                                        bool chainCall,
804                                        const FunctionType::ExtInfo &info,
805                                        ArrayRef<ExtParameterInfo> paramInfos,
806                                        CanQualType resultType,
807                                        ArrayRef<CanQualType> argTypes,
808                                        RequiredArgs required) {
809   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
810 
811   void *buffer =
812     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
813                                   argTypes.size() + 1, paramInfos.size()));
814 
815   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
816   FI->CallingConvention = llvmCC;
817   FI->EffectiveCallingConvention = llvmCC;
818   FI->ASTCallingConvention = info.getCC();
819   FI->InstanceMethod = instanceMethod;
820   FI->ChainCall = chainCall;
821   FI->NoReturn = info.getNoReturn();
822   FI->ReturnsRetained = info.getProducesResult();
823   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
824   FI->NoCfCheck = info.getNoCfCheck();
825   FI->Required = required;
826   FI->HasRegParm = info.getHasRegParm();
827   FI->RegParm = info.getRegParm();
828   FI->ArgStruct = nullptr;
829   FI->ArgStructAlign = 0;
830   FI->NumArgs = argTypes.size();
831   FI->HasExtParameterInfos = !paramInfos.empty();
832   FI->getArgsBuffer()[0].type = resultType;
833   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
834     FI->getArgsBuffer()[i + 1].type = argTypes[i];
835   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
836     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
837   return FI;
838 }
839 
840 /***/
841 
842 namespace {
843 // ABIArgInfo::Expand implementation.
844 
845 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
846 struct TypeExpansion {
847   enum TypeExpansionKind {
848     // Elements of constant arrays are expanded recursively.
849     TEK_ConstantArray,
850     // Record fields are expanded recursively (but if record is a union, only
851     // the field with the largest size is expanded).
852     TEK_Record,
853     // For complex types, real and imaginary parts are expanded recursively.
854     TEK_Complex,
855     // All other types are not expandable.
856     TEK_None
857   };
858 
859   const TypeExpansionKind Kind;
860 
861   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
862   virtual ~TypeExpansion() {}
863 };
864 
865 struct ConstantArrayExpansion : TypeExpansion {
866   QualType EltTy;
867   uint64_t NumElts;
868 
869   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
870       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
871   static bool classof(const TypeExpansion *TE) {
872     return TE->Kind == TEK_ConstantArray;
873   }
874 };
875 
876 struct RecordExpansion : TypeExpansion {
877   SmallVector<const CXXBaseSpecifier *, 1> Bases;
878 
879   SmallVector<const FieldDecl *, 1> Fields;
880 
881   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
882                   SmallVector<const FieldDecl *, 1> &&Fields)
883       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
884         Fields(std::move(Fields)) {}
885   static bool classof(const TypeExpansion *TE) {
886     return TE->Kind == TEK_Record;
887   }
888 };
889 
890 struct ComplexExpansion : TypeExpansion {
891   QualType EltTy;
892 
893   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
894   static bool classof(const TypeExpansion *TE) {
895     return TE->Kind == TEK_Complex;
896   }
897 };
898 
899 struct NoExpansion : TypeExpansion {
900   NoExpansion() : TypeExpansion(TEK_None) {}
901   static bool classof(const TypeExpansion *TE) {
902     return TE->Kind == TEK_None;
903   }
904 };
905 }  // namespace
906 
907 static std::unique_ptr<TypeExpansion>
908 getTypeExpansion(QualType Ty, const ASTContext &Context) {
909   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
910     return llvm::make_unique<ConstantArrayExpansion>(
911         AT->getElementType(), AT->getSize().getZExtValue());
912   }
913   if (const RecordType *RT = Ty->getAs<RecordType>()) {
914     SmallVector<const CXXBaseSpecifier *, 1> Bases;
915     SmallVector<const FieldDecl *, 1> Fields;
916     const RecordDecl *RD = RT->getDecl();
917     assert(!RD->hasFlexibleArrayMember() &&
918            "Cannot expand structure with flexible array.");
919     if (RD->isUnion()) {
920       // Unions can be here only in degenerative cases - all the fields are same
921       // after flattening. Thus we have to use the "largest" field.
922       const FieldDecl *LargestFD = nullptr;
923       CharUnits UnionSize = CharUnits::Zero();
924 
925       for (const auto *FD : RD->fields()) {
926         if (FD->isZeroLengthBitField(Context))
927           continue;
928         assert(!FD->isBitField() &&
929                "Cannot expand structure with bit-field members.");
930         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
931         if (UnionSize < FieldSize) {
932           UnionSize = FieldSize;
933           LargestFD = FD;
934         }
935       }
936       if (LargestFD)
937         Fields.push_back(LargestFD);
938     } else {
939       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
940         assert(!CXXRD->isDynamicClass() &&
941                "cannot expand vtable pointers in dynamic classes");
942         for (const CXXBaseSpecifier &BS : CXXRD->bases())
943           Bases.push_back(&BS);
944       }
945 
946       for (const auto *FD : RD->fields()) {
947         if (FD->isZeroLengthBitField(Context))
948           continue;
949         assert(!FD->isBitField() &&
950                "Cannot expand structure with bit-field members.");
951         Fields.push_back(FD);
952       }
953     }
954     return llvm::make_unique<RecordExpansion>(std::move(Bases),
955                                               std::move(Fields));
956   }
957   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
958     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
959   }
960   return llvm::make_unique<NoExpansion>();
961 }
962 
963 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
964   auto Exp = getTypeExpansion(Ty, Context);
965   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
966     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
967   }
968   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
969     int Res = 0;
970     for (auto BS : RExp->Bases)
971       Res += getExpansionSize(BS->getType(), Context);
972     for (auto FD : RExp->Fields)
973       Res += getExpansionSize(FD->getType(), Context);
974     return Res;
975   }
976   if (isa<ComplexExpansion>(Exp.get()))
977     return 2;
978   assert(isa<NoExpansion>(Exp.get()));
979   return 1;
980 }
981 
982 void
983 CodeGenTypes::getExpandedTypes(QualType Ty,
984                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
985   auto Exp = getTypeExpansion(Ty, Context);
986   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
987     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
988       getExpandedTypes(CAExp->EltTy, TI);
989     }
990   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
991     for (auto BS : RExp->Bases)
992       getExpandedTypes(BS->getType(), TI);
993     for (auto FD : RExp->Fields)
994       getExpandedTypes(FD->getType(), TI);
995   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
996     llvm::Type *EltTy = ConvertType(CExp->EltTy);
997     *TI++ = EltTy;
998     *TI++ = EltTy;
999   } else {
1000     assert(isa<NoExpansion>(Exp.get()));
1001     *TI++ = ConvertType(Ty);
1002   }
1003 }
1004 
1005 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1006                                       ConstantArrayExpansion *CAE,
1007                                       Address BaseAddr,
1008                                       llvm::function_ref<void(Address)> Fn) {
1009   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1010   CharUnits EltAlign =
1011     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1012 
1013   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1014     llvm::Value *EltAddr =
1015       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1016     Fn(Address(EltAddr, EltAlign));
1017   }
1018 }
1019 
1020 void CodeGenFunction::ExpandTypeFromArgs(
1021     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1022   assert(LV.isSimple() &&
1023          "Unexpected non-simple lvalue during struct expansion.");
1024 
1025   auto Exp = getTypeExpansion(Ty, getContext());
1026   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1027     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
1028                               [&](Address EltAddr) {
1029       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1030       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1031     });
1032   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1033     Address This = LV.getAddress();
1034     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1035       // Perform a single step derived-to-base conversion.
1036       Address Base =
1037           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1038                                 /*NullCheckValue=*/false, SourceLocation());
1039       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1040 
1041       // Recurse onto bases.
1042       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1043     }
1044     for (auto FD : RExp->Fields) {
1045       // FIXME: What are the right qualifiers here?
1046       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1047       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1048     }
1049   } else if (isa<ComplexExpansion>(Exp.get())) {
1050     auto realValue = *AI++;
1051     auto imagValue = *AI++;
1052     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1053   } else {
1054     assert(isa<NoExpansion>(Exp.get()));
1055     EmitStoreThroughLValue(RValue::get(*AI++), LV);
1056   }
1057 }
1058 
1059 void CodeGenFunction::ExpandTypeToArgs(
1060     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1061     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1062   auto Exp = getTypeExpansion(Ty, getContext());
1063   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1064     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1065                                    : Arg.getKnownRValue().getAggregateAddress();
1066     forConstantArrayExpansion(
1067         *this, CAExp, Addr, [&](Address EltAddr) {
1068           CallArg EltArg = CallArg(
1069               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1070               CAExp->EltTy);
1071           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1072                            IRCallArgPos);
1073         });
1074   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1075     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1076                                    : Arg.getKnownRValue().getAggregateAddress();
1077     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1078       // Perform a single step derived-to-base conversion.
1079       Address Base =
1080           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1081                                 /*NullCheckValue=*/false, SourceLocation());
1082       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1083 
1084       // Recurse onto bases.
1085       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1086                        IRCallArgPos);
1087     }
1088 
1089     LValue LV = MakeAddrLValue(This, Ty);
1090     for (auto FD : RExp->Fields) {
1091       CallArg FldArg =
1092           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1093       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1094                        IRCallArgPos);
1095     }
1096   } else if (isa<ComplexExpansion>(Exp.get())) {
1097     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1098     IRCallArgs[IRCallArgPos++] = CV.first;
1099     IRCallArgs[IRCallArgPos++] = CV.second;
1100   } else {
1101     assert(isa<NoExpansion>(Exp.get()));
1102     auto RV = Arg.getKnownRValue();
1103     assert(RV.isScalar() &&
1104            "Unexpected non-scalar rvalue during struct expansion.");
1105 
1106     // Insert a bitcast as needed.
1107     llvm::Value *V = RV.getScalarVal();
1108     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1109         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1110       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1111 
1112     IRCallArgs[IRCallArgPos++] = V;
1113   }
1114 }
1115 
1116 /// Create a temporary allocation for the purposes of coercion.
1117 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1118                                            CharUnits MinAlign) {
1119   // Don't use an alignment that's worse than what LLVM would prefer.
1120   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1121   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1122 
1123   return CGF.CreateTempAlloca(Ty, Align);
1124 }
1125 
1126 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1127 /// accessing some number of bytes out of it, try to gep into the struct to get
1128 /// at its inner goodness.  Dive as deep as possible without entering an element
1129 /// with an in-memory size smaller than DstSize.
1130 static Address
1131 EnterStructPointerForCoercedAccess(Address SrcPtr,
1132                                    llvm::StructType *SrcSTy,
1133                                    uint64_t DstSize, CodeGenFunction &CGF) {
1134   // We can't dive into a zero-element struct.
1135   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1136 
1137   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1138 
1139   // If the first elt is at least as large as what we're looking for, or if the
1140   // first element is the same size as the whole struct, we can enter it. The
1141   // comparison must be made on the store size and not the alloca size. Using
1142   // the alloca size may overstate the size of the load.
1143   uint64_t FirstEltSize =
1144     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1145   if (FirstEltSize < DstSize &&
1146       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1147     return SrcPtr;
1148 
1149   // GEP into the first element.
1150   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
1151 
1152   // If the first element is a struct, recurse.
1153   llvm::Type *SrcTy = SrcPtr.getElementType();
1154   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1155     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1156 
1157   return SrcPtr;
1158 }
1159 
1160 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1161 /// are either integers or pointers.  This does a truncation of the value if it
1162 /// is too large or a zero extension if it is too small.
1163 ///
1164 /// This behaves as if the value were coerced through memory, so on big-endian
1165 /// targets the high bits are preserved in a truncation, while little-endian
1166 /// targets preserve the low bits.
1167 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1168                                              llvm::Type *Ty,
1169                                              CodeGenFunction &CGF) {
1170   if (Val->getType() == Ty)
1171     return Val;
1172 
1173   if (isa<llvm::PointerType>(Val->getType())) {
1174     // If this is Pointer->Pointer avoid conversion to and from int.
1175     if (isa<llvm::PointerType>(Ty))
1176       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1177 
1178     // Convert the pointer to an integer so we can play with its width.
1179     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1180   }
1181 
1182   llvm::Type *DestIntTy = Ty;
1183   if (isa<llvm::PointerType>(DestIntTy))
1184     DestIntTy = CGF.IntPtrTy;
1185 
1186   if (Val->getType() != DestIntTy) {
1187     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1188     if (DL.isBigEndian()) {
1189       // Preserve the high bits on big-endian targets.
1190       // That is what memory coercion does.
1191       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1192       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1193 
1194       if (SrcSize > DstSize) {
1195         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1196         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1197       } else {
1198         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1199         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1200       }
1201     } else {
1202       // Little-endian targets preserve the low bits. No shifts required.
1203       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1204     }
1205   }
1206 
1207   if (isa<llvm::PointerType>(Ty))
1208     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1209   return Val;
1210 }
1211 
1212 
1213 
1214 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1215 /// a pointer to an object of type \arg Ty, known to be aligned to
1216 /// \arg SrcAlign bytes.
1217 ///
1218 /// This safely handles the case when the src type is smaller than the
1219 /// destination type; in this situation the values of bits which not
1220 /// present in the src are undefined.
1221 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1222                                       CodeGenFunction &CGF) {
1223   llvm::Type *SrcTy = Src.getElementType();
1224 
1225   // If SrcTy and Ty are the same, just do a load.
1226   if (SrcTy == Ty)
1227     return CGF.Builder.CreateLoad(Src);
1228 
1229   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1230 
1231   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1232     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1233     SrcTy = Src.getType()->getElementType();
1234   }
1235 
1236   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1237 
1238   // If the source and destination are integer or pointer types, just do an
1239   // extension or truncation to the desired type.
1240   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1241       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1242     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1243     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1244   }
1245 
1246   // If load is legal, just bitcast the src pointer.
1247   if (SrcSize >= DstSize) {
1248     // Generally SrcSize is never greater than DstSize, since this means we are
1249     // losing bits. However, this can happen in cases where the structure has
1250     // additional padding, for example due to a user specified alignment.
1251     //
1252     // FIXME: Assert that we aren't truncating non-padding bits when have access
1253     // to that information.
1254     Src = CGF.Builder.CreateBitCast(Src,
1255                                     Ty->getPointerTo(Src.getAddressSpace()));
1256     return CGF.Builder.CreateLoad(Src);
1257   }
1258 
1259   // Otherwise do coercion through memory. This is stupid, but simple.
1260   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1261   Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1262   Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty);
1263   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1264       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1265       false);
1266   return CGF.Builder.CreateLoad(Tmp);
1267 }
1268 
1269 // Function to store a first-class aggregate into memory.  We prefer to
1270 // store the elements rather than the aggregate to be more friendly to
1271 // fast-isel.
1272 // FIXME: Do we need to recurse here?
1273 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1274                           Address Dest, bool DestIsVolatile) {
1275   // Prefer scalar stores to first-class aggregate stores.
1276   if (llvm::StructType *STy =
1277         dyn_cast<llvm::StructType>(Val->getType())) {
1278     const llvm::StructLayout *Layout =
1279       CGF.CGM.getDataLayout().getStructLayout(STy);
1280 
1281     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1282       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1283       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1284       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1285       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1286     }
1287   } else {
1288     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1289   }
1290 }
1291 
1292 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1293 /// where the source and destination may have different types.  The
1294 /// destination is known to be aligned to \arg DstAlign bytes.
1295 ///
1296 /// This safely handles the case when the src type is larger than the
1297 /// destination type; the upper bits of the src will be lost.
1298 static void CreateCoercedStore(llvm::Value *Src,
1299                                Address Dst,
1300                                bool DstIsVolatile,
1301                                CodeGenFunction &CGF) {
1302   llvm::Type *SrcTy = Src->getType();
1303   llvm::Type *DstTy = Dst.getType()->getElementType();
1304   if (SrcTy == DstTy) {
1305     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1306     return;
1307   }
1308 
1309   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1310 
1311   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1312     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1313     DstTy = Dst.getType()->getElementType();
1314   }
1315 
1316   // If the source and destination are integer or pointer types, just do an
1317   // extension or truncation to the desired type.
1318   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1319       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1320     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1321     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1322     return;
1323   }
1324 
1325   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1326 
1327   // If store is legal, just bitcast the src pointer.
1328   if (SrcSize <= DstSize) {
1329     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1330     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1331   } else {
1332     // Otherwise do coercion through memory. This is stupid, but
1333     // simple.
1334 
1335     // Generally SrcSize is never greater than DstSize, since this means we are
1336     // losing bits. However, this can happen in cases where the structure has
1337     // additional padding, for example due to a user specified alignment.
1338     //
1339     // FIXME: Assert that we aren't truncating non-padding bits when have access
1340     // to that information.
1341     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1342     CGF.Builder.CreateStore(Src, Tmp);
1343     Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1344     Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty);
1345     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1346         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1347         false);
1348   }
1349 }
1350 
1351 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1352                                    const ABIArgInfo &info) {
1353   if (unsigned offset = info.getDirectOffset()) {
1354     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1355     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1356                                              CharUnits::fromQuantity(offset));
1357     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1358   }
1359   return addr;
1360 }
1361 
1362 namespace {
1363 
1364 /// Encapsulates information about the way function arguments from
1365 /// CGFunctionInfo should be passed to actual LLVM IR function.
1366 class ClangToLLVMArgMapping {
1367   static const unsigned InvalidIndex = ~0U;
1368   unsigned InallocaArgNo;
1369   unsigned SRetArgNo;
1370   unsigned TotalIRArgs;
1371 
1372   /// Arguments of LLVM IR function corresponding to single Clang argument.
1373   struct IRArgs {
1374     unsigned PaddingArgIndex;
1375     // Argument is expanded to IR arguments at positions
1376     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1377     unsigned FirstArgIndex;
1378     unsigned NumberOfArgs;
1379 
1380     IRArgs()
1381         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1382           NumberOfArgs(0) {}
1383   };
1384 
1385   SmallVector<IRArgs, 8> ArgInfo;
1386 
1387 public:
1388   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1389                         bool OnlyRequiredArgs = false)
1390       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1391         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1392     construct(Context, FI, OnlyRequiredArgs);
1393   }
1394 
1395   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1396   unsigned getInallocaArgNo() const {
1397     assert(hasInallocaArg());
1398     return InallocaArgNo;
1399   }
1400 
1401   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1402   unsigned getSRetArgNo() const {
1403     assert(hasSRetArg());
1404     return SRetArgNo;
1405   }
1406 
1407   unsigned totalIRArgs() const { return TotalIRArgs; }
1408 
1409   bool hasPaddingArg(unsigned ArgNo) const {
1410     assert(ArgNo < ArgInfo.size());
1411     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1412   }
1413   unsigned getPaddingArgNo(unsigned ArgNo) const {
1414     assert(hasPaddingArg(ArgNo));
1415     return ArgInfo[ArgNo].PaddingArgIndex;
1416   }
1417 
1418   /// Returns index of first IR argument corresponding to ArgNo, and their
1419   /// quantity.
1420   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1421     assert(ArgNo < ArgInfo.size());
1422     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1423                           ArgInfo[ArgNo].NumberOfArgs);
1424   }
1425 
1426 private:
1427   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1428                  bool OnlyRequiredArgs);
1429 };
1430 
1431 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1432                                       const CGFunctionInfo &FI,
1433                                       bool OnlyRequiredArgs) {
1434   unsigned IRArgNo = 0;
1435   bool SwapThisWithSRet = false;
1436   const ABIArgInfo &RetAI = FI.getReturnInfo();
1437 
1438   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1439     SwapThisWithSRet = RetAI.isSRetAfterThis();
1440     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1441   }
1442 
1443   unsigned ArgNo = 0;
1444   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1445   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1446        ++I, ++ArgNo) {
1447     assert(I != FI.arg_end());
1448     QualType ArgType = I->type;
1449     const ABIArgInfo &AI = I->info;
1450     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1451     auto &IRArgs = ArgInfo[ArgNo];
1452 
1453     if (AI.getPaddingType())
1454       IRArgs.PaddingArgIndex = IRArgNo++;
1455 
1456     switch (AI.getKind()) {
1457     case ABIArgInfo::Extend:
1458     case ABIArgInfo::Direct: {
1459       // FIXME: handle sseregparm someday...
1460       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1461       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1462         IRArgs.NumberOfArgs = STy->getNumElements();
1463       } else {
1464         IRArgs.NumberOfArgs = 1;
1465       }
1466       break;
1467     }
1468     case ABIArgInfo::Indirect:
1469       IRArgs.NumberOfArgs = 1;
1470       break;
1471     case ABIArgInfo::Ignore:
1472     case ABIArgInfo::InAlloca:
1473       // ignore and inalloca doesn't have matching LLVM parameters.
1474       IRArgs.NumberOfArgs = 0;
1475       break;
1476     case ABIArgInfo::CoerceAndExpand:
1477       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1478       break;
1479     case ABIArgInfo::Expand:
1480       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1481       break;
1482     }
1483 
1484     if (IRArgs.NumberOfArgs > 0) {
1485       IRArgs.FirstArgIndex = IRArgNo;
1486       IRArgNo += IRArgs.NumberOfArgs;
1487     }
1488 
1489     // Skip over the sret parameter when it comes second.  We already handled it
1490     // above.
1491     if (IRArgNo == 1 && SwapThisWithSRet)
1492       IRArgNo++;
1493   }
1494   assert(ArgNo == ArgInfo.size());
1495 
1496   if (FI.usesInAlloca())
1497     InallocaArgNo = IRArgNo++;
1498 
1499   TotalIRArgs = IRArgNo;
1500 }
1501 }  // namespace
1502 
1503 /***/
1504 
1505 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1506   const auto &RI = FI.getReturnInfo();
1507   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1508 }
1509 
1510 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1511   return ReturnTypeUsesSRet(FI) &&
1512          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1513 }
1514 
1515 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1516   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1517     switch (BT->getKind()) {
1518     default:
1519       return false;
1520     case BuiltinType::Float:
1521       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1522     case BuiltinType::Double:
1523       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1524     case BuiltinType::LongDouble:
1525       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1526     }
1527   }
1528 
1529   return false;
1530 }
1531 
1532 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1533   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1534     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1535       if (BT->getKind() == BuiltinType::LongDouble)
1536         return getTarget().useObjCFP2RetForComplexLongDouble();
1537     }
1538   }
1539 
1540   return false;
1541 }
1542 
1543 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1544   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1545   return GetFunctionType(FI);
1546 }
1547 
1548 llvm::FunctionType *
1549 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1550 
1551   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1552   (void)Inserted;
1553   assert(Inserted && "Recursively being processed?");
1554 
1555   llvm::Type *resultType = nullptr;
1556   const ABIArgInfo &retAI = FI.getReturnInfo();
1557   switch (retAI.getKind()) {
1558   case ABIArgInfo::Expand:
1559     llvm_unreachable("Invalid ABI kind for return argument");
1560 
1561   case ABIArgInfo::Extend:
1562   case ABIArgInfo::Direct:
1563     resultType = retAI.getCoerceToType();
1564     break;
1565 
1566   case ABIArgInfo::InAlloca:
1567     if (retAI.getInAllocaSRet()) {
1568       // sret things on win32 aren't void, they return the sret pointer.
1569       QualType ret = FI.getReturnType();
1570       llvm::Type *ty = ConvertType(ret);
1571       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1572       resultType = llvm::PointerType::get(ty, addressSpace);
1573     } else {
1574       resultType = llvm::Type::getVoidTy(getLLVMContext());
1575     }
1576     break;
1577 
1578   case ABIArgInfo::Indirect:
1579   case ABIArgInfo::Ignore:
1580     resultType = llvm::Type::getVoidTy(getLLVMContext());
1581     break;
1582 
1583   case ABIArgInfo::CoerceAndExpand:
1584     resultType = retAI.getUnpaddedCoerceAndExpandType();
1585     break;
1586   }
1587 
1588   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1589   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1590 
1591   // Add type for sret argument.
1592   if (IRFunctionArgs.hasSRetArg()) {
1593     QualType Ret = FI.getReturnType();
1594     llvm::Type *Ty = ConvertType(Ret);
1595     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1596     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1597         llvm::PointerType::get(Ty, AddressSpace);
1598   }
1599 
1600   // Add type for inalloca argument.
1601   if (IRFunctionArgs.hasInallocaArg()) {
1602     auto ArgStruct = FI.getArgStruct();
1603     assert(ArgStruct);
1604     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1605   }
1606 
1607   // Add in all of the required arguments.
1608   unsigned ArgNo = 0;
1609   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1610                                      ie = it + FI.getNumRequiredArgs();
1611   for (; it != ie; ++it, ++ArgNo) {
1612     const ABIArgInfo &ArgInfo = it->info;
1613 
1614     // Insert a padding type to ensure proper alignment.
1615     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1616       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1617           ArgInfo.getPaddingType();
1618 
1619     unsigned FirstIRArg, NumIRArgs;
1620     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1621 
1622     switch (ArgInfo.getKind()) {
1623     case ABIArgInfo::Ignore:
1624     case ABIArgInfo::InAlloca:
1625       assert(NumIRArgs == 0);
1626       break;
1627 
1628     case ABIArgInfo::Indirect: {
1629       assert(NumIRArgs == 1);
1630       // indirect arguments are always on the stack, which is alloca addr space.
1631       llvm::Type *LTy = ConvertTypeForMem(it->type);
1632       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1633           CGM.getDataLayout().getAllocaAddrSpace());
1634       break;
1635     }
1636 
1637     case ABIArgInfo::Extend:
1638     case ABIArgInfo::Direct: {
1639       // Fast-isel and the optimizer generally like scalar values better than
1640       // FCAs, so we flatten them if this is safe to do for this argument.
1641       llvm::Type *argType = ArgInfo.getCoerceToType();
1642       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1643       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1644         assert(NumIRArgs == st->getNumElements());
1645         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1646           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1647       } else {
1648         assert(NumIRArgs == 1);
1649         ArgTypes[FirstIRArg] = argType;
1650       }
1651       break;
1652     }
1653 
1654     case ABIArgInfo::CoerceAndExpand: {
1655       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1656       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1657         *ArgTypesIter++ = EltTy;
1658       }
1659       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1660       break;
1661     }
1662 
1663     case ABIArgInfo::Expand:
1664       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1665       getExpandedTypes(it->type, ArgTypesIter);
1666       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1667       break;
1668     }
1669   }
1670 
1671   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1672   assert(Erased && "Not in set?");
1673 
1674   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1675 }
1676 
1677 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1678   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1679   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1680 
1681   if (!isFuncTypeConvertible(FPT))
1682     return llvm::StructType::get(getLLVMContext());
1683 
1684   const CGFunctionInfo *Info;
1685   if (isa<CXXDestructorDecl>(MD))
1686     Info =
1687         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1688   else
1689     Info = &arrangeCXXMethodDeclaration(MD);
1690   return GetFunctionType(*Info);
1691 }
1692 
1693 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1694                                                llvm::AttrBuilder &FuncAttrs,
1695                                                const FunctionProtoType *FPT) {
1696   if (!FPT)
1697     return;
1698 
1699   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1700       FPT->isNothrow())
1701     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1702 }
1703 
1704 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1705                                                bool AttrOnCallSite,
1706                                                llvm::AttrBuilder &FuncAttrs) {
1707   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1708   if (!HasOptnone) {
1709     if (CodeGenOpts.OptimizeSize)
1710       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1711     if (CodeGenOpts.OptimizeSize == 2)
1712       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1713   }
1714 
1715   if (CodeGenOpts.DisableRedZone)
1716     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1717   if (CodeGenOpts.IndirectTlsSegRefs)
1718     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1719   if (CodeGenOpts.NoImplicitFloat)
1720     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1721 
1722   if (AttrOnCallSite) {
1723     // Attributes that should go on the call site only.
1724     if (!CodeGenOpts.SimplifyLibCalls ||
1725         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1726       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1727     if (!CodeGenOpts.TrapFuncName.empty())
1728       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1729   } else {
1730     // Attributes that should go on the function, but not the call site.
1731     if (!CodeGenOpts.DisableFPElim) {
1732       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1733     } else if (CodeGenOpts.OmitLeafFramePointer) {
1734       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1735       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1736     } else {
1737       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1738       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1739     }
1740 
1741     FuncAttrs.addAttribute("less-precise-fpmad",
1742                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1743 
1744     if (CodeGenOpts.NullPointerIsValid)
1745       FuncAttrs.addAttribute("null-pointer-is-valid", "true");
1746     if (!CodeGenOpts.FPDenormalMode.empty())
1747       FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
1748 
1749     FuncAttrs.addAttribute("no-trapping-math",
1750                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1751 
1752     // Strict (compliant) code is the default, so only add this attribute to
1753     // indicate that we are trying to workaround a problem case.
1754     if (!CodeGenOpts.StrictFloatCastOverflow)
1755       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1756 
1757     // TODO: Are these all needed?
1758     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1759     FuncAttrs.addAttribute("no-infs-fp-math",
1760                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1761     FuncAttrs.addAttribute("no-nans-fp-math",
1762                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1763     FuncAttrs.addAttribute("unsafe-fp-math",
1764                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1765     FuncAttrs.addAttribute("use-soft-float",
1766                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1767     FuncAttrs.addAttribute("stack-protector-buffer-size",
1768                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1769     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1770                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1771     FuncAttrs.addAttribute(
1772         "correctly-rounded-divide-sqrt-fp-math",
1773         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1774 
1775     if (getLangOpts().OpenCL)
1776       FuncAttrs.addAttribute("denorms-are-zero",
1777                              llvm::toStringRef(CodeGenOpts.FlushDenorm));
1778 
1779     // TODO: Reciprocal estimate codegen options should apply to instructions?
1780     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1781     if (!Recips.empty())
1782       FuncAttrs.addAttribute("reciprocal-estimates",
1783                              llvm::join(Recips, ","));
1784 
1785     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1786         CodeGenOpts.PreferVectorWidth != "none")
1787       FuncAttrs.addAttribute("prefer-vector-width",
1788                              CodeGenOpts.PreferVectorWidth);
1789 
1790     if (CodeGenOpts.StackRealignment)
1791       FuncAttrs.addAttribute("stackrealign");
1792     if (CodeGenOpts.Backchain)
1793       FuncAttrs.addAttribute("backchain");
1794 
1795     if (CodeGenOpts.SpeculativeLoadHardening)
1796       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1797   }
1798 
1799   if (getLangOpts().assumeFunctionsAreConvergent()) {
1800     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1801     // convergent (meaning, they may call an intrinsically convergent op, such
1802     // as __syncthreads() / barrier(), and so can't have certain optimizations
1803     // applied around them).  LLVM will remove this attribute where it safely
1804     // can.
1805     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1806   }
1807 
1808   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1809     // Exceptions aren't supported in CUDA device code.
1810     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1811 
1812     // Respect -fcuda-flush-denormals-to-zero.
1813     if (CodeGenOpts.FlushDenorm)
1814       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1815   }
1816 
1817   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1818     StringRef Var, Value;
1819     std::tie(Var, Value) = Attr.split('=');
1820     FuncAttrs.addAttribute(Var, Value);
1821   }
1822 }
1823 
1824 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1825   llvm::AttrBuilder FuncAttrs;
1826   ConstructDefaultFnAttrList(F.getName(),
1827                              F.hasFnAttribute(llvm::Attribute::OptimizeNone),
1828                              /* AttrOnCallsite = */ false, FuncAttrs);
1829   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1830 }
1831 
1832 void CodeGenModule::ConstructAttributeList(
1833     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1834     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1835   llvm::AttrBuilder FuncAttrs;
1836   llvm::AttrBuilder RetAttrs;
1837 
1838   CallingConv = FI.getEffectiveCallingConvention();
1839   if (FI.isNoReturn())
1840     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1841 
1842   // If we have information about the function prototype, we can learn
1843   // attributes from there.
1844   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1845                                      CalleeInfo.getCalleeFunctionProtoType());
1846 
1847   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1848 
1849   bool HasOptnone = false;
1850   // FIXME: handle sseregparm someday...
1851   if (TargetDecl) {
1852     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1853       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1854     if (TargetDecl->hasAttr<NoThrowAttr>())
1855       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1856     if (TargetDecl->hasAttr<NoReturnAttr>())
1857       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1858     if (TargetDecl->hasAttr<ColdAttr>())
1859       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1860     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1861       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1862     if (TargetDecl->hasAttr<ConvergentAttr>())
1863       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1864 
1865     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1866       AddAttributesFromFunctionProtoType(
1867           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1868       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1869       // These attributes are not inherited by overloads.
1870       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1871       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1872         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1873     }
1874 
1875     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1876     if (TargetDecl->hasAttr<ConstAttr>()) {
1877       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1878       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1879     } else if (TargetDecl->hasAttr<PureAttr>()) {
1880       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1881       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1882     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1883       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1884       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1885     }
1886     if (TargetDecl->hasAttr<RestrictAttr>())
1887       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1888     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1889         !CodeGenOpts.NullPointerIsValid)
1890       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1891     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1892       FuncAttrs.addAttribute("no_caller_saved_registers");
1893     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1894       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1895 
1896     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1897     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1898       Optional<unsigned> NumElemsParam;
1899       if (AllocSize->getNumElemsParam().isValid())
1900         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1901       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1902                                  NumElemsParam);
1903     }
1904   }
1905 
1906   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1907 
1908   // This must run after constructing the default function attribute list
1909   // to ensure that the speculative load hardening attribute is removed
1910   // in the case where the -mspeculative-load-hardening flag was passed.
1911   if (TargetDecl) {
1912     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
1913       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
1914     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
1915       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1916   }
1917 
1918   if (CodeGenOpts.EnableSegmentedStacks &&
1919       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1920     FuncAttrs.addAttribute("split-stack");
1921 
1922   // Add NonLazyBind attribute to function declarations when -fno-plt
1923   // is used.
1924   if (TargetDecl && CodeGenOpts.NoPLT) {
1925     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1926       if (!Fn->isDefined() && !AttrOnCallSite) {
1927         FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1928       }
1929     }
1930   }
1931 
1932   if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1933     if (getLangOpts().OpenCLVersion <= 120) {
1934       // OpenCL v1.2 Work groups are always uniform
1935       FuncAttrs.addAttribute("uniform-work-group-size", "true");
1936     } else {
1937       // OpenCL v2.0 Work groups may be whether uniform or not.
1938       // '-cl-uniform-work-group-size' compile option gets a hint
1939       // to the compiler that the global work-size be a multiple of
1940       // the work-group size specified to clEnqueueNDRangeKernel
1941       // (i.e. work groups are uniform).
1942       FuncAttrs.addAttribute("uniform-work-group-size",
1943                              llvm::toStringRef(CodeGenOpts.UniformWGSize));
1944     }
1945   }
1946 
1947   if (!AttrOnCallSite) {
1948     bool DisableTailCalls = false;
1949 
1950     if (CodeGenOpts.DisableTailCalls)
1951       DisableTailCalls = true;
1952     else if (TargetDecl) {
1953       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1954           TargetDecl->hasAttr<AnyX86InterruptAttr>())
1955         DisableTailCalls = true;
1956       else if (CodeGenOpts.NoEscapingBlockTailCalls) {
1957         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
1958           if (!BD->doesNotEscape())
1959             DisableTailCalls = true;
1960       }
1961     }
1962 
1963     FuncAttrs.addAttribute("disable-tail-calls",
1964                            llvm::toStringRef(DisableTailCalls));
1965     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
1966   }
1967 
1968   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1969 
1970   QualType RetTy = FI.getReturnType();
1971   const ABIArgInfo &RetAI = FI.getReturnInfo();
1972   switch (RetAI.getKind()) {
1973   case ABIArgInfo::Extend:
1974     if (RetAI.isSignExt())
1975       RetAttrs.addAttribute(llvm::Attribute::SExt);
1976     else
1977       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1978     LLVM_FALLTHROUGH;
1979   case ABIArgInfo::Direct:
1980     if (RetAI.getInReg())
1981       RetAttrs.addAttribute(llvm::Attribute::InReg);
1982     break;
1983   case ABIArgInfo::Ignore:
1984     break;
1985 
1986   case ABIArgInfo::InAlloca:
1987   case ABIArgInfo::Indirect: {
1988     // inalloca and sret disable readnone and readonly
1989     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1990       .removeAttribute(llvm::Attribute::ReadNone);
1991     break;
1992   }
1993 
1994   case ABIArgInfo::CoerceAndExpand:
1995     break;
1996 
1997   case ABIArgInfo::Expand:
1998     llvm_unreachable("Invalid ABI kind for return argument");
1999   }
2000 
2001   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2002     QualType PTy = RefTy->getPointeeType();
2003     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2004       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2005                                         .getQuantity());
2006     else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2007              !CodeGenOpts.NullPointerIsValid)
2008       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2009   }
2010 
2011   bool hasUsedSRet = false;
2012   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2013 
2014   // Attach attributes to sret.
2015   if (IRFunctionArgs.hasSRetArg()) {
2016     llvm::AttrBuilder SRETAttrs;
2017     if (!RetAI.getSuppressSRet())
2018       SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2019     hasUsedSRet = true;
2020     if (RetAI.getInReg())
2021       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2022     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2023         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2024   }
2025 
2026   // Attach attributes to inalloca argument.
2027   if (IRFunctionArgs.hasInallocaArg()) {
2028     llvm::AttrBuilder Attrs;
2029     Attrs.addAttribute(llvm::Attribute::InAlloca);
2030     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2031         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2032   }
2033 
2034   unsigned ArgNo = 0;
2035   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2036                                           E = FI.arg_end();
2037        I != E; ++I, ++ArgNo) {
2038     QualType ParamType = I->type;
2039     const ABIArgInfo &AI = I->info;
2040     llvm::AttrBuilder Attrs;
2041 
2042     // Add attribute for padding argument, if necessary.
2043     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2044       if (AI.getPaddingInReg()) {
2045         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2046             llvm::AttributeSet::get(
2047                 getLLVMContext(),
2048                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2049       }
2050     }
2051 
2052     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2053     // have the corresponding parameter variable.  It doesn't make
2054     // sense to do it here because parameters are so messed up.
2055     switch (AI.getKind()) {
2056     case ABIArgInfo::Extend:
2057       if (AI.isSignExt())
2058         Attrs.addAttribute(llvm::Attribute::SExt);
2059       else
2060         Attrs.addAttribute(llvm::Attribute::ZExt);
2061       LLVM_FALLTHROUGH;
2062     case ABIArgInfo::Direct:
2063       if (ArgNo == 0 && FI.isChainCall())
2064         Attrs.addAttribute(llvm::Attribute::Nest);
2065       else if (AI.getInReg())
2066         Attrs.addAttribute(llvm::Attribute::InReg);
2067       break;
2068 
2069     case ABIArgInfo::Indirect: {
2070       if (AI.getInReg())
2071         Attrs.addAttribute(llvm::Attribute::InReg);
2072 
2073       if (AI.getIndirectByVal())
2074         Attrs.addAttribute(llvm::Attribute::ByVal);
2075 
2076       CharUnits Align = AI.getIndirectAlign();
2077 
2078       // In a byval argument, it is important that the required
2079       // alignment of the type is honored, as LLVM might be creating a
2080       // *new* stack object, and needs to know what alignment to give
2081       // it. (Sometimes it can deduce a sensible alignment on its own,
2082       // but not if clang decides it must emit a packed struct, or the
2083       // user specifies increased alignment requirements.)
2084       //
2085       // This is different from indirect *not* byval, where the object
2086       // exists already, and the align attribute is purely
2087       // informative.
2088       assert(!Align.isZero());
2089 
2090       // For now, only add this when we have a byval argument.
2091       // TODO: be less lazy about updating test cases.
2092       if (AI.getIndirectByVal())
2093         Attrs.addAlignmentAttr(Align.getQuantity());
2094 
2095       // byval disables readnone and readonly.
2096       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2097         .removeAttribute(llvm::Attribute::ReadNone);
2098       break;
2099     }
2100     case ABIArgInfo::Ignore:
2101     case ABIArgInfo::Expand:
2102     case ABIArgInfo::CoerceAndExpand:
2103       break;
2104 
2105     case ABIArgInfo::InAlloca:
2106       // inalloca disables readnone and readonly.
2107       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2108           .removeAttribute(llvm::Attribute::ReadNone);
2109       continue;
2110     }
2111 
2112     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2113       QualType PTy = RefTy->getPointeeType();
2114       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2115         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2116                                        .getQuantity());
2117       else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2118                !CodeGenOpts.NullPointerIsValid)
2119         Attrs.addAttribute(llvm::Attribute::NonNull);
2120     }
2121 
2122     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2123     case ParameterABI::Ordinary:
2124       break;
2125 
2126     case ParameterABI::SwiftIndirectResult: {
2127       // Add 'sret' if we haven't already used it for something, but
2128       // only if the result is void.
2129       if (!hasUsedSRet && RetTy->isVoidType()) {
2130         Attrs.addAttribute(llvm::Attribute::StructRet);
2131         hasUsedSRet = true;
2132       }
2133 
2134       // Add 'noalias' in either case.
2135       Attrs.addAttribute(llvm::Attribute::NoAlias);
2136 
2137       // Add 'dereferenceable' and 'alignment'.
2138       auto PTy = ParamType->getPointeeType();
2139       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2140         auto info = getContext().getTypeInfoInChars(PTy);
2141         Attrs.addDereferenceableAttr(info.first.getQuantity());
2142         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
2143                                                  info.second.getQuantity()));
2144       }
2145       break;
2146     }
2147 
2148     case ParameterABI::SwiftErrorResult:
2149       Attrs.addAttribute(llvm::Attribute::SwiftError);
2150       break;
2151 
2152     case ParameterABI::SwiftContext:
2153       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2154       break;
2155     }
2156 
2157     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2158       Attrs.addAttribute(llvm::Attribute::NoCapture);
2159 
2160     if (Attrs.hasAttributes()) {
2161       unsigned FirstIRArg, NumIRArgs;
2162       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2163       for (unsigned i = 0; i < NumIRArgs; i++)
2164         ArgAttrs[FirstIRArg + i] =
2165             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2166     }
2167   }
2168   assert(ArgNo == FI.arg_size());
2169 
2170   AttrList = llvm::AttributeList::get(
2171       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2172       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2173 }
2174 
2175 /// An argument came in as a promoted argument; demote it back to its
2176 /// declared type.
2177 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2178                                          const VarDecl *var,
2179                                          llvm::Value *value) {
2180   llvm::Type *varType = CGF.ConvertType(var->getType());
2181 
2182   // This can happen with promotions that actually don't change the
2183   // underlying type, like the enum promotions.
2184   if (value->getType() == varType) return value;
2185 
2186   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2187          && "unexpected promotion type");
2188 
2189   if (isa<llvm::IntegerType>(varType))
2190     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2191 
2192   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2193 }
2194 
2195 /// Returns the attribute (either parameter attribute, or function
2196 /// attribute), which declares argument ArgNo to be non-null.
2197 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2198                                          QualType ArgType, unsigned ArgNo) {
2199   // FIXME: __attribute__((nonnull)) can also be applied to:
2200   //   - references to pointers, where the pointee is known to be
2201   //     nonnull (apparently a Clang extension)
2202   //   - transparent unions containing pointers
2203   // In the former case, LLVM IR cannot represent the constraint. In
2204   // the latter case, we have no guarantee that the transparent union
2205   // is in fact passed as a pointer.
2206   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2207     return nullptr;
2208   // First, check attribute on parameter itself.
2209   if (PVD) {
2210     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2211       return ParmNNAttr;
2212   }
2213   // Check function attributes.
2214   if (!FD)
2215     return nullptr;
2216   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2217     if (NNAttr->isNonNull(ArgNo))
2218       return NNAttr;
2219   }
2220   return nullptr;
2221 }
2222 
2223 namespace {
2224   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2225     Address Temp;
2226     Address Arg;
2227     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2228     void Emit(CodeGenFunction &CGF, Flags flags) override {
2229       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2230       CGF.Builder.CreateStore(errorValue, Arg);
2231     }
2232   };
2233 }
2234 
2235 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2236                                          llvm::Function *Fn,
2237                                          const FunctionArgList &Args) {
2238   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2239     // Naked functions don't have prologues.
2240     return;
2241 
2242   // If this is an implicit-return-zero function, go ahead and
2243   // initialize the return value.  TODO: it might be nice to have
2244   // a more general mechanism for this that didn't require synthesized
2245   // return statements.
2246   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2247     if (FD->hasImplicitReturnZero()) {
2248       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2249       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2250       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2251       Builder.CreateStore(Zero, ReturnValue);
2252     }
2253   }
2254 
2255   // FIXME: We no longer need the types from FunctionArgList; lift up and
2256   // simplify.
2257 
2258   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2259   // Flattened function arguments.
2260   SmallVector<llvm::Value *, 16> FnArgs;
2261   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2262   for (auto &Arg : Fn->args()) {
2263     FnArgs.push_back(&Arg);
2264   }
2265   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2266 
2267   // If we're using inalloca, all the memory arguments are GEPs off of the last
2268   // parameter, which is a pointer to the complete memory area.
2269   Address ArgStruct = Address::invalid();
2270   const llvm::StructLayout *ArgStructLayout = nullptr;
2271   if (IRFunctionArgs.hasInallocaArg()) {
2272     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
2273     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2274                         FI.getArgStructAlignment());
2275 
2276     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2277   }
2278 
2279   // Name the struct return parameter.
2280   if (IRFunctionArgs.hasSRetArg()) {
2281     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2282     AI->setName("agg.result");
2283     AI->addAttr(llvm::Attribute::NoAlias);
2284   }
2285 
2286   // Track if we received the parameter as a pointer (indirect, byval, or
2287   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2288   // into a local alloca for us.
2289   SmallVector<ParamValue, 16> ArgVals;
2290   ArgVals.reserve(Args.size());
2291 
2292   // Create a pointer value for every parameter declaration.  This usually
2293   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2294   // any cleanups or do anything that might unwind.  We do that separately, so
2295   // we can push the cleanups in the correct order for the ABI.
2296   assert(FI.arg_size() == Args.size() &&
2297          "Mismatch between function signature & arguments.");
2298   unsigned ArgNo = 0;
2299   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2300   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2301        i != e; ++i, ++info_it, ++ArgNo) {
2302     const VarDecl *Arg = *i;
2303     const ABIArgInfo &ArgI = info_it->info;
2304 
2305     bool isPromoted =
2306       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2307     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2308     // the parameter is promoted. In this case we convert to
2309     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2310     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2311     assert(hasScalarEvaluationKind(Ty) ==
2312            hasScalarEvaluationKind(Arg->getType()));
2313 
2314     unsigned FirstIRArg, NumIRArgs;
2315     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2316 
2317     switch (ArgI.getKind()) {
2318     case ABIArgInfo::InAlloca: {
2319       assert(NumIRArgs == 0);
2320       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2321       CharUnits FieldOffset =
2322         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
2323       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
2324                                           Arg->getName());
2325       ArgVals.push_back(ParamValue::forIndirect(V));
2326       break;
2327     }
2328 
2329     case ABIArgInfo::Indirect: {
2330       assert(NumIRArgs == 1);
2331       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2332 
2333       if (!hasScalarEvaluationKind(Ty)) {
2334         // Aggregates and complex variables are accessed by reference.  All we
2335         // need to do is realign the value, if requested.
2336         Address V = ParamAddr;
2337         if (ArgI.getIndirectRealign()) {
2338           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2339 
2340           // Copy from the incoming argument pointer to the temporary with the
2341           // appropriate alignment.
2342           //
2343           // FIXME: We should have a common utility for generating an aggregate
2344           // copy.
2345           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2346           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2347           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2348           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2349           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2350           V = AlignedTemp;
2351         }
2352         ArgVals.push_back(ParamValue::forIndirect(V));
2353       } else {
2354         // Load scalar value from indirect argument.
2355         llvm::Value *V =
2356             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2357 
2358         if (isPromoted)
2359           V = emitArgumentDemotion(*this, Arg, V);
2360         ArgVals.push_back(ParamValue::forDirect(V));
2361       }
2362       break;
2363     }
2364 
2365     case ABIArgInfo::Extend:
2366     case ABIArgInfo::Direct: {
2367 
2368       // If we have the trivial case, handle it with no muss and fuss.
2369       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2370           ArgI.getCoerceToType() == ConvertType(Ty) &&
2371           ArgI.getDirectOffset() == 0) {
2372         assert(NumIRArgs == 1);
2373         llvm::Value *V = FnArgs[FirstIRArg];
2374         auto AI = cast<llvm::Argument>(V);
2375 
2376         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2377           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2378                              PVD->getFunctionScopeIndex()) &&
2379               !CGM.getCodeGenOpts().NullPointerIsValid)
2380             AI->addAttr(llvm::Attribute::NonNull);
2381 
2382           QualType OTy = PVD->getOriginalType();
2383           if (const auto *ArrTy =
2384               getContext().getAsConstantArrayType(OTy)) {
2385             // A C99 array parameter declaration with the static keyword also
2386             // indicates dereferenceability, and if the size is constant we can
2387             // use the dereferenceable attribute (which requires the size in
2388             // bytes).
2389             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2390               QualType ETy = ArrTy->getElementType();
2391               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2392               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2393                   ArrSize) {
2394                 llvm::AttrBuilder Attrs;
2395                 Attrs.addDereferenceableAttr(
2396                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2397                 AI->addAttrs(Attrs);
2398               } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
2399                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2400                 AI->addAttr(llvm::Attribute::NonNull);
2401               }
2402             }
2403           } else if (const auto *ArrTy =
2404                      getContext().getAsVariableArrayType(OTy)) {
2405             // For C99 VLAs with the static keyword, we don't know the size so
2406             // we can't use the dereferenceable attribute, but in addrspace(0)
2407             // we know that it must be nonnull.
2408             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2409                 !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2410                 !CGM.getCodeGenOpts().NullPointerIsValid)
2411               AI->addAttr(llvm::Attribute::NonNull);
2412           }
2413 
2414           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2415           if (!AVAttr)
2416             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2417               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2418           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2419             // If alignment-assumption sanitizer is enabled, we do *not* add
2420             // alignment attribute here, but emit normal alignment assumption,
2421             // so the UBSAN check could function.
2422             llvm::Value *AlignmentValue =
2423               EmitScalarExpr(AVAttr->getAlignment());
2424             llvm::ConstantInt *AlignmentCI =
2425               cast<llvm::ConstantInt>(AlignmentValue);
2426             unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
2427                                           +llvm::Value::MaximumAlignment);
2428             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2429           }
2430         }
2431 
2432         if (Arg->getType().isRestrictQualified())
2433           AI->addAttr(llvm::Attribute::NoAlias);
2434 
2435         // LLVM expects swifterror parameters to be used in very restricted
2436         // ways.  Copy the value into a less-restricted temporary.
2437         if (FI.getExtParameterInfo(ArgNo).getABI()
2438               == ParameterABI::SwiftErrorResult) {
2439           QualType pointeeTy = Ty->getPointeeType();
2440           assert(pointeeTy->isPointerType());
2441           Address temp =
2442             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2443           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2444           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2445           Builder.CreateStore(incomingErrorValue, temp);
2446           V = temp.getPointer();
2447 
2448           // Push a cleanup to copy the value back at the end of the function.
2449           // The convention does not guarantee that the value will be written
2450           // back if the function exits with an unwind exception.
2451           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2452         }
2453 
2454         // Ensure the argument is the correct type.
2455         if (V->getType() != ArgI.getCoerceToType())
2456           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2457 
2458         if (isPromoted)
2459           V = emitArgumentDemotion(*this, Arg, V);
2460 
2461         // Because of merging of function types from multiple decls it is
2462         // possible for the type of an argument to not match the corresponding
2463         // type in the function type. Since we are codegening the callee
2464         // in here, add a cast to the argument type.
2465         llvm::Type *LTy = ConvertType(Arg->getType());
2466         if (V->getType() != LTy)
2467           V = Builder.CreateBitCast(V, LTy);
2468 
2469         ArgVals.push_back(ParamValue::forDirect(V));
2470         break;
2471       }
2472 
2473       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2474                                      Arg->getName());
2475 
2476       // Pointer to store into.
2477       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2478 
2479       // Fast-isel and the optimizer generally like scalar values better than
2480       // FCAs, so we flatten them if this is safe to do for this argument.
2481       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2482       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2483           STy->getNumElements() > 1) {
2484         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2485         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2486         llvm::Type *DstTy = Ptr.getElementType();
2487         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2488 
2489         Address AddrToStoreInto = Address::invalid();
2490         if (SrcSize <= DstSize) {
2491           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2492         } else {
2493           AddrToStoreInto =
2494             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2495         }
2496 
2497         assert(STy->getNumElements() == NumIRArgs);
2498         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2499           auto AI = FnArgs[FirstIRArg + i];
2500           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2501           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2502           Address EltPtr =
2503             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2504           Builder.CreateStore(AI, EltPtr);
2505         }
2506 
2507         if (SrcSize > DstSize) {
2508           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2509         }
2510 
2511       } else {
2512         // Simple case, just do a coerced store of the argument into the alloca.
2513         assert(NumIRArgs == 1);
2514         auto AI = FnArgs[FirstIRArg];
2515         AI->setName(Arg->getName() + ".coerce");
2516         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2517       }
2518 
2519       // Match to what EmitParmDecl is expecting for this type.
2520       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2521         llvm::Value *V =
2522             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2523         if (isPromoted)
2524           V = emitArgumentDemotion(*this, Arg, V);
2525         ArgVals.push_back(ParamValue::forDirect(V));
2526       } else {
2527         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2528       }
2529       break;
2530     }
2531 
2532     case ABIArgInfo::CoerceAndExpand: {
2533       // Reconstruct into a temporary.
2534       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2535       ArgVals.push_back(ParamValue::forIndirect(alloca));
2536 
2537       auto coercionType = ArgI.getCoerceAndExpandType();
2538       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2539       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2540 
2541       unsigned argIndex = FirstIRArg;
2542       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2543         llvm::Type *eltType = coercionType->getElementType(i);
2544         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2545           continue;
2546 
2547         auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
2548         auto elt = FnArgs[argIndex++];
2549         Builder.CreateStore(elt, eltAddr);
2550       }
2551       assert(argIndex == FirstIRArg + NumIRArgs);
2552       break;
2553     }
2554 
2555     case ABIArgInfo::Expand: {
2556       // If this structure was expanded into multiple arguments then
2557       // we need to create a temporary and reconstruct it from the
2558       // arguments.
2559       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2560       LValue LV = MakeAddrLValue(Alloca, Ty);
2561       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2562 
2563       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2564       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2565       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2566       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2567         auto AI = FnArgs[FirstIRArg + i];
2568         AI->setName(Arg->getName() + "." + Twine(i));
2569       }
2570       break;
2571     }
2572 
2573     case ABIArgInfo::Ignore:
2574       assert(NumIRArgs == 0);
2575       // Initialize the local variable appropriately.
2576       if (!hasScalarEvaluationKind(Ty)) {
2577         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2578       } else {
2579         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2580         ArgVals.push_back(ParamValue::forDirect(U));
2581       }
2582       break;
2583     }
2584   }
2585 
2586   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2587     for (int I = Args.size() - 1; I >= 0; --I)
2588       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2589   } else {
2590     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2591       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2592   }
2593 }
2594 
2595 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2596   while (insn->use_empty()) {
2597     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2598     if (!bitcast) return;
2599 
2600     // This is "safe" because we would have used a ConstantExpr otherwise.
2601     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2602     bitcast->eraseFromParent();
2603   }
2604 }
2605 
2606 /// Try to emit a fused autorelease of a return result.
2607 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2608                                                     llvm::Value *result) {
2609   // We must be immediately followed the cast.
2610   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2611   if (BB->empty()) return nullptr;
2612   if (&BB->back() != result) return nullptr;
2613 
2614   llvm::Type *resultType = result->getType();
2615 
2616   // result is in a BasicBlock and is therefore an Instruction.
2617   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2618 
2619   SmallVector<llvm::Instruction *, 4> InstsToKill;
2620 
2621   // Look for:
2622   //  %generator = bitcast %type1* %generator2 to %type2*
2623   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2624     // We would have emitted this as a constant if the operand weren't
2625     // an Instruction.
2626     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2627 
2628     // Require the generator to be immediately followed by the cast.
2629     if (generator->getNextNode() != bitcast)
2630       return nullptr;
2631 
2632     InstsToKill.push_back(bitcast);
2633   }
2634 
2635   // Look for:
2636   //   %generator = call i8* @objc_retain(i8* %originalResult)
2637   // or
2638   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2639   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2640   if (!call) return nullptr;
2641 
2642   bool doRetainAutorelease;
2643 
2644   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2645     doRetainAutorelease = true;
2646   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2647                                           .objc_retainAutoreleasedReturnValue) {
2648     doRetainAutorelease = false;
2649 
2650     // If we emitted an assembly marker for this call (and the
2651     // ARCEntrypoints field should have been set if so), go looking
2652     // for that call.  If we can't find it, we can't do this
2653     // optimization.  But it should always be the immediately previous
2654     // instruction, unless we needed bitcasts around the call.
2655     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2656       llvm::Instruction *prev = call->getPrevNode();
2657       assert(prev);
2658       if (isa<llvm::BitCastInst>(prev)) {
2659         prev = prev->getPrevNode();
2660         assert(prev);
2661       }
2662       assert(isa<llvm::CallInst>(prev));
2663       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2664                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2665       InstsToKill.push_back(prev);
2666     }
2667   } else {
2668     return nullptr;
2669   }
2670 
2671   result = call->getArgOperand(0);
2672   InstsToKill.push_back(call);
2673 
2674   // Keep killing bitcasts, for sanity.  Note that we no longer care
2675   // about precise ordering as long as there's exactly one use.
2676   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2677     if (!bitcast->hasOneUse()) break;
2678     InstsToKill.push_back(bitcast);
2679     result = bitcast->getOperand(0);
2680   }
2681 
2682   // Delete all the unnecessary instructions, from latest to earliest.
2683   for (auto *I : InstsToKill)
2684     I->eraseFromParent();
2685 
2686   // Do the fused retain/autorelease if we were asked to.
2687   if (doRetainAutorelease)
2688     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2689 
2690   // Cast back to the result type.
2691   return CGF.Builder.CreateBitCast(result, resultType);
2692 }
2693 
2694 /// If this is a +1 of the value of an immutable 'self', remove it.
2695 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2696                                           llvm::Value *result) {
2697   // This is only applicable to a method with an immutable 'self'.
2698   const ObjCMethodDecl *method =
2699     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2700   if (!method) return nullptr;
2701   const VarDecl *self = method->getSelfDecl();
2702   if (!self->getType().isConstQualified()) return nullptr;
2703 
2704   // Look for a retain call.
2705   llvm::CallInst *retainCall =
2706     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2707   if (!retainCall ||
2708       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2709     return nullptr;
2710 
2711   // Look for an ordinary load of 'self'.
2712   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2713   llvm::LoadInst *load =
2714     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2715   if (!load || load->isAtomic() || load->isVolatile() ||
2716       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2717     return nullptr;
2718 
2719   // Okay!  Burn it all down.  This relies for correctness on the
2720   // assumption that the retain is emitted as part of the return and
2721   // that thereafter everything is used "linearly".
2722   llvm::Type *resultType = result->getType();
2723   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2724   assert(retainCall->use_empty());
2725   retainCall->eraseFromParent();
2726   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2727 
2728   return CGF.Builder.CreateBitCast(load, resultType);
2729 }
2730 
2731 /// Emit an ARC autorelease of the result of a function.
2732 ///
2733 /// \return the value to actually return from the function
2734 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2735                                             llvm::Value *result) {
2736   // If we're returning 'self', kill the initial retain.  This is a
2737   // heuristic attempt to "encourage correctness" in the really unfortunate
2738   // case where we have a return of self during a dealloc and we desperately
2739   // need to avoid the possible autorelease.
2740   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2741     return self;
2742 
2743   // At -O0, try to emit a fused retain/autorelease.
2744   if (CGF.shouldUseFusedARCCalls())
2745     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2746       return fused;
2747 
2748   return CGF.EmitARCAutoreleaseReturnValue(result);
2749 }
2750 
2751 /// Heuristically search for a dominating store to the return-value slot.
2752 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2753   // Check if a User is a store which pointerOperand is the ReturnValue.
2754   // We are looking for stores to the ReturnValue, not for stores of the
2755   // ReturnValue to some other location.
2756   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2757     auto *SI = dyn_cast<llvm::StoreInst>(U);
2758     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2759       return nullptr;
2760     // These aren't actually possible for non-coerced returns, and we
2761     // only care about non-coerced returns on this code path.
2762     assert(!SI->isAtomic() && !SI->isVolatile());
2763     return SI;
2764   };
2765   // If there are multiple uses of the return-value slot, just check
2766   // for something immediately preceding the IP.  Sometimes this can
2767   // happen with how we generate implicit-returns; it can also happen
2768   // with noreturn cleanups.
2769   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2770     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2771     if (IP->empty()) return nullptr;
2772     llvm::Instruction *I = &IP->back();
2773 
2774     // Skip lifetime markers
2775     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2776                                             IE = IP->rend();
2777          II != IE; ++II) {
2778       if (llvm::IntrinsicInst *Intrinsic =
2779               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2780         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2781           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2782           ++II;
2783           if (II == IE)
2784             break;
2785           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2786             continue;
2787         }
2788       }
2789       I = &*II;
2790       break;
2791     }
2792 
2793     return GetStoreIfValid(I);
2794   }
2795 
2796   llvm::StoreInst *store =
2797       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2798   if (!store) return nullptr;
2799 
2800   // Now do a first-and-dirty dominance check: just walk up the
2801   // single-predecessors chain from the current insertion point.
2802   llvm::BasicBlock *StoreBB = store->getParent();
2803   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2804   while (IP != StoreBB) {
2805     if (!(IP = IP->getSinglePredecessor()))
2806       return nullptr;
2807   }
2808 
2809   // Okay, the store's basic block dominates the insertion point; we
2810   // can do our thing.
2811   return store;
2812 }
2813 
2814 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2815                                          bool EmitRetDbgLoc,
2816                                          SourceLocation EndLoc) {
2817   if (FI.isNoReturn()) {
2818     // Noreturn functions don't return.
2819     EmitUnreachable(EndLoc);
2820     return;
2821   }
2822 
2823   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2824     // Naked functions don't have epilogues.
2825     Builder.CreateUnreachable();
2826     return;
2827   }
2828 
2829   // Functions with no result always return void.
2830   if (!ReturnValue.isValid()) {
2831     Builder.CreateRetVoid();
2832     return;
2833   }
2834 
2835   llvm::DebugLoc RetDbgLoc;
2836   llvm::Value *RV = nullptr;
2837   QualType RetTy = FI.getReturnType();
2838   const ABIArgInfo &RetAI = FI.getReturnInfo();
2839 
2840   switch (RetAI.getKind()) {
2841   case ABIArgInfo::InAlloca:
2842     // Aggregrates get evaluated directly into the destination.  Sometimes we
2843     // need to return the sret value in a register, though.
2844     assert(hasAggregateEvaluationKind(RetTy));
2845     if (RetAI.getInAllocaSRet()) {
2846       llvm::Function::arg_iterator EI = CurFn->arg_end();
2847       --EI;
2848       llvm::Value *ArgStruct = &*EI;
2849       llvm::Value *SRet = Builder.CreateStructGEP(
2850           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2851       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2852     }
2853     break;
2854 
2855   case ABIArgInfo::Indirect: {
2856     auto AI = CurFn->arg_begin();
2857     if (RetAI.isSRetAfterThis())
2858       ++AI;
2859     switch (getEvaluationKind(RetTy)) {
2860     case TEK_Complex: {
2861       ComplexPairTy RT =
2862         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2863       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2864                          /*isInit*/ true);
2865       break;
2866     }
2867     case TEK_Aggregate:
2868       // Do nothing; aggregrates get evaluated directly into the destination.
2869       break;
2870     case TEK_Scalar:
2871       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2872                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2873                         /*isInit*/ true);
2874       break;
2875     }
2876     break;
2877   }
2878 
2879   case ABIArgInfo::Extend:
2880   case ABIArgInfo::Direct:
2881     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2882         RetAI.getDirectOffset() == 0) {
2883       // The internal return value temp always will have pointer-to-return-type
2884       // type, just do a load.
2885 
2886       // If there is a dominating store to ReturnValue, we can elide
2887       // the load, zap the store, and usually zap the alloca.
2888       if (llvm::StoreInst *SI =
2889               findDominatingStoreToReturnValue(*this)) {
2890         // Reuse the debug location from the store unless there is
2891         // cleanup code to be emitted between the store and return
2892         // instruction.
2893         if (EmitRetDbgLoc && !AutoreleaseResult)
2894           RetDbgLoc = SI->getDebugLoc();
2895         // Get the stored value and nuke the now-dead store.
2896         RV = SI->getValueOperand();
2897         SI->eraseFromParent();
2898 
2899         // If that was the only use of the return value, nuke it as well now.
2900         auto returnValueInst = ReturnValue.getPointer();
2901         if (returnValueInst->use_empty()) {
2902           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2903             alloca->eraseFromParent();
2904             ReturnValue = Address::invalid();
2905           }
2906         }
2907 
2908       // Otherwise, we have to do a simple load.
2909       } else {
2910         RV = Builder.CreateLoad(ReturnValue);
2911       }
2912     } else {
2913       // If the value is offset in memory, apply the offset now.
2914       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2915 
2916       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2917     }
2918 
2919     // In ARC, end functions that return a retainable type with a call
2920     // to objc_autoreleaseReturnValue.
2921     if (AutoreleaseResult) {
2922 #ifndef NDEBUG
2923       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2924       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2925       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2926       // CurCodeDecl or BlockInfo.
2927       QualType RT;
2928 
2929       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2930         RT = FD->getReturnType();
2931       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2932         RT = MD->getReturnType();
2933       else if (isa<BlockDecl>(CurCodeDecl))
2934         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2935       else
2936         llvm_unreachable("Unexpected function/method type");
2937 
2938       assert(getLangOpts().ObjCAutoRefCount &&
2939              !FI.isReturnsRetained() &&
2940              RT->isObjCRetainableType());
2941 #endif
2942       RV = emitAutoreleaseOfResult(*this, RV);
2943     }
2944 
2945     break;
2946 
2947   case ABIArgInfo::Ignore:
2948     break;
2949 
2950   case ABIArgInfo::CoerceAndExpand: {
2951     auto coercionType = RetAI.getCoerceAndExpandType();
2952     auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2953 
2954     // Load all of the coerced elements out into results.
2955     llvm::SmallVector<llvm::Value*, 4> results;
2956     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2957     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2958       auto coercedEltType = coercionType->getElementType(i);
2959       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2960         continue;
2961 
2962       auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
2963       auto elt = Builder.CreateLoad(eltAddr);
2964       results.push_back(elt);
2965     }
2966 
2967     // If we have one result, it's the single direct result type.
2968     if (results.size() == 1) {
2969       RV = results[0];
2970 
2971     // Otherwise, we need to make a first-class aggregate.
2972     } else {
2973       // Construct a return type that lacks padding elements.
2974       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2975 
2976       RV = llvm::UndefValue::get(returnType);
2977       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2978         RV = Builder.CreateInsertValue(RV, results[i], i);
2979       }
2980     }
2981     break;
2982   }
2983 
2984   case ABIArgInfo::Expand:
2985     llvm_unreachable("Invalid ABI kind for return argument");
2986   }
2987 
2988   llvm::Instruction *Ret;
2989   if (RV) {
2990     EmitReturnValueCheck(RV);
2991     Ret = Builder.CreateRet(RV);
2992   } else {
2993     Ret = Builder.CreateRetVoid();
2994   }
2995 
2996   if (RetDbgLoc)
2997     Ret->setDebugLoc(std::move(RetDbgLoc));
2998 }
2999 
3000 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3001   // A current decl may not be available when emitting vtable thunks.
3002   if (!CurCodeDecl)
3003     return;
3004 
3005   ReturnsNonNullAttr *RetNNAttr = nullptr;
3006   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3007     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3008 
3009   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3010     return;
3011 
3012   // Prefer the returns_nonnull attribute if it's present.
3013   SourceLocation AttrLoc;
3014   SanitizerMask CheckKind;
3015   SanitizerHandler Handler;
3016   if (RetNNAttr) {
3017     assert(!requiresReturnValueNullabilityCheck() &&
3018            "Cannot check nullability and the nonnull attribute");
3019     AttrLoc = RetNNAttr->getLocation();
3020     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3021     Handler = SanitizerHandler::NonnullReturn;
3022   } else {
3023     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3024       if (auto *TSI = DD->getTypeSourceInfo())
3025         if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
3026           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3027     CheckKind = SanitizerKind::NullabilityReturn;
3028     Handler = SanitizerHandler::NullabilityReturn;
3029   }
3030 
3031   SanitizerScope SanScope(this);
3032 
3033   // Make sure the "return" source location is valid. If we're checking a
3034   // nullability annotation, make sure the preconditions for the check are met.
3035   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3036   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3037   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3038   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3039   if (requiresReturnValueNullabilityCheck())
3040     CanNullCheck =
3041         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3042   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3043   EmitBlock(Check);
3044 
3045   // Now do the null check.
3046   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3047   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3048   llvm::Value *DynamicData[] = {SLocPtr};
3049   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3050 
3051   EmitBlock(NoCheck);
3052 
3053 #ifndef NDEBUG
3054   // The return location should not be used after the check has been emitted.
3055   ReturnLocation = Address::invalid();
3056 #endif
3057 }
3058 
3059 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3060   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3061   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3062 }
3063 
3064 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3065                                           QualType Ty) {
3066   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3067   // placeholders.
3068   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3069   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3070   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3071 
3072   // FIXME: When we generate this IR in one pass, we shouldn't need
3073   // this win32-specific alignment hack.
3074   CharUnits Align = CharUnits::fromQuantity(4);
3075   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3076 
3077   return AggValueSlot::forAddr(Address(Placeholder, Align),
3078                                Ty.getQualifiers(),
3079                                AggValueSlot::IsNotDestructed,
3080                                AggValueSlot::DoesNotNeedGCBarriers,
3081                                AggValueSlot::IsNotAliased,
3082                                AggValueSlot::DoesNotOverlap);
3083 }
3084 
3085 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3086                                           const VarDecl *param,
3087                                           SourceLocation loc) {
3088   // StartFunction converted the ABI-lowered parameter(s) into a
3089   // local alloca.  We need to turn that into an r-value suitable
3090   // for EmitCall.
3091   Address local = GetAddrOfLocalVar(param);
3092 
3093   QualType type = param->getType();
3094 
3095   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3096     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3097   }
3098 
3099   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3100   // but the argument needs to be the original pointer.
3101   if (type->isReferenceType()) {
3102     args.add(RValue::get(Builder.CreateLoad(local)), type);
3103 
3104   // In ARC, move out of consumed arguments so that the release cleanup
3105   // entered by StartFunction doesn't cause an over-release.  This isn't
3106   // optimal -O0 code generation, but it should get cleaned up when
3107   // optimization is enabled.  This also assumes that delegate calls are
3108   // performed exactly once for a set of arguments, but that should be safe.
3109   } else if (getLangOpts().ObjCAutoRefCount &&
3110              param->hasAttr<NSConsumedAttr>() &&
3111              type->isObjCRetainableType()) {
3112     llvm::Value *ptr = Builder.CreateLoad(local);
3113     auto null =
3114       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3115     Builder.CreateStore(null, local);
3116     args.add(RValue::get(ptr), type);
3117 
3118   // For the most part, we just need to load the alloca, except that
3119   // aggregate r-values are actually pointers to temporaries.
3120   } else {
3121     args.add(convertTempToRValue(local, type, loc), type);
3122   }
3123 
3124   // Deactivate the cleanup for the callee-destructed param that was pushed.
3125   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3126       type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3127       type.isDestructedType()) {
3128     EHScopeStack::stable_iterator cleanup =
3129         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3130     assert(cleanup.isValid() &&
3131            "cleanup for callee-destructed param not recorded");
3132     // This unreachable is a temporary marker which will be removed later.
3133     llvm::Instruction *isActive = Builder.CreateUnreachable();
3134     args.addArgCleanupDeactivation(cleanup, isActive);
3135   }
3136 }
3137 
3138 static bool isProvablyNull(llvm::Value *addr) {
3139   return isa<llvm::ConstantPointerNull>(addr);
3140 }
3141 
3142 /// Emit the actual writing-back of a writeback.
3143 static void emitWriteback(CodeGenFunction &CGF,
3144                           const CallArgList::Writeback &writeback) {
3145   const LValue &srcLV = writeback.Source;
3146   Address srcAddr = srcLV.getAddress();
3147   assert(!isProvablyNull(srcAddr.getPointer()) &&
3148          "shouldn't have writeback for provably null argument");
3149 
3150   llvm::BasicBlock *contBB = nullptr;
3151 
3152   // If the argument wasn't provably non-null, we need to null check
3153   // before doing the store.
3154   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3155                                               CGF.CGM.getDataLayout());
3156   if (!provablyNonNull) {
3157     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3158     contBB = CGF.createBasicBlock("icr.done");
3159 
3160     llvm::Value *isNull =
3161       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3162     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3163     CGF.EmitBlock(writebackBB);
3164   }
3165 
3166   // Load the value to writeback.
3167   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3168 
3169   // Cast it back, in case we're writing an id to a Foo* or something.
3170   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3171                                     "icr.writeback-cast");
3172 
3173   // Perform the writeback.
3174 
3175   // If we have a "to use" value, it's something we need to emit a use
3176   // of.  This has to be carefully threaded in: if it's done after the
3177   // release it's potentially undefined behavior (and the optimizer
3178   // will ignore it), and if it happens before the retain then the
3179   // optimizer could move the release there.
3180   if (writeback.ToUse) {
3181     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3182 
3183     // Retain the new value.  No need to block-copy here:  the block's
3184     // being passed up the stack.
3185     value = CGF.EmitARCRetainNonBlock(value);
3186 
3187     // Emit the intrinsic use here.
3188     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3189 
3190     // Load the old value (primitively).
3191     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3192 
3193     // Put the new value in place (primitively).
3194     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3195 
3196     // Release the old value.
3197     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3198 
3199   // Otherwise, we can just do a normal lvalue store.
3200   } else {
3201     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3202   }
3203 
3204   // Jump to the continuation block.
3205   if (!provablyNonNull)
3206     CGF.EmitBlock(contBB);
3207 }
3208 
3209 static void emitWritebacks(CodeGenFunction &CGF,
3210                            const CallArgList &args) {
3211   for (const auto &I : args.writebacks())
3212     emitWriteback(CGF, I);
3213 }
3214 
3215 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3216                                             const CallArgList &CallArgs) {
3217   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3218     CallArgs.getCleanupsToDeactivate();
3219   // Iterate in reverse to increase the likelihood of popping the cleanup.
3220   for (const auto &I : llvm::reverse(Cleanups)) {
3221     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3222     I.IsActiveIP->eraseFromParent();
3223   }
3224 }
3225 
3226 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3227   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3228     if (uop->getOpcode() == UO_AddrOf)
3229       return uop->getSubExpr();
3230   return nullptr;
3231 }
3232 
3233 /// Emit an argument that's being passed call-by-writeback.  That is,
3234 /// we are passing the address of an __autoreleased temporary; it
3235 /// might be copy-initialized with the current value of the given
3236 /// address, but it will definitely be copied out of after the call.
3237 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3238                              const ObjCIndirectCopyRestoreExpr *CRE) {
3239   LValue srcLV;
3240 
3241   // Make an optimistic effort to emit the address as an l-value.
3242   // This can fail if the argument expression is more complicated.
3243   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3244     srcLV = CGF.EmitLValue(lvExpr);
3245 
3246   // Otherwise, just emit it as a scalar.
3247   } else {
3248     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3249 
3250     QualType srcAddrType =
3251       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3252     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3253   }
3254   Address srcAddr = srcLV.getAddress();
3255 
3256   // The dest and src types don't necessarily match in LLVM terms
3257   // because of the crazy ObjC compatibility rules.
3258 
3259   llvm::PointerType *destType =
3260     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3261 
3262   // If the address is a constant null, just pass the appropriate null.
3263   if (isProvablyNull(srcAddr.getPointer())) {
3264     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3265              CRE->getType());
3266     return;
3267   }
3268 
3269   // Create the temporary.
3270   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3271                                       CGF.getPointerAlign(),
3272                                       "icr.temp");
3273   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3274   // and that cleanup will be conditional if we can't prove that the l-value
3275   // isn't null, so we need to register a dominating point so that the cleanups
3276   // system will make valid IR.
3277   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3278 
3279   // Zero-initialize it if we're not doing a copy-initialization.
3280   bool shouldCopy = CRE->shouldCopy();
3281   if (!shouldCopy) {
3282     llvm::Value *null =
3283       llvm::ConstantPointerNull::get(
3284         cast<llvm::PointerType>(destType->getElementType()));
3285     CGF.Builder.CreateStore(null, temp);
3286   }
3287 
3288   llvm::BasicBlock *contBB = nullptr;
3289   llvm::BasicBlock *originBB = nullptr;
3290 
3291   // If the address is *not* known to be non-null, we need to switch.
3292   llvm::Value *finalArgument;
3293 
3294   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3295                                               CGF.CGM.getDataLayout());
3296   if (provablyNonNull) {
3297     finalArgument = temp.getPointer();
3298   } else {
3299     llvm::Value *isNull =
3300       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3301 
3302     finalArgument = CGF.Builder.CreateSelect(isNull,
3303                                    llvm::ConstantPointerNull::get(destType),
3304                                              temp.getPointer(), "icr.argument");
3305 
3306     // If we need to copy, then the load has to be conditional, which
3307     // means we need control flow.
3308     if (shouldCopy) {
3309       originBB = CGF.Builder.GetInsertBlock();
3310       contBB = CGF.createBasicBlock("icr.cont");
3311       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3312       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3313       CGF.EmitBlock(copyBB);
3314       condEval.begin(CGF);
3315     }
3316   }
3317 
3318   llvm::Value *valueToUse = nullptr;
3319 
3320   // Perform a copy if necessary.
3321   if (shouldCopy) {
3322     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3323     assert(srcRV.isScalar());
3324 
3325     llvm::Value *src = srcRV.getScalarVal();
3326     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3327                                     "icr.cast");
3328 
3329     // Use an ordinary store, not a store-to-lvalue.
3330     CGF.Builder.CreateStore(src, temp);
3331 
3332     // If optimization is enabled, and the value was held in a
3333     // __strong variable, we need to tell the optimizer that this
3334     // value has to stay alive until we're doing the store back.
3335     // This is because the temporary is effectively unretained,
3336     // and so otherwise we can violate the high-level semantics.
3337     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3338         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3339       valueToUse = src;
3340     }
3341   }
3342 
3343   // Finish the control flow if we needed it.
3344   if (shouldCopy && !provablyNonNull) {
3345     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3346     CGF.EmitBlock(contBB);
3347 
3348     // Make a phi for the value to intrinsically use.
3349     if (valueToUse) {
3350       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3351                                                       "icr.to-use");
3352       phiToUse->addIncoming(valueToUse, copyBB);
3353       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3354                             originBB);
3355       valueToUse = phiToUse;
3356     }
3357 
3358     condEval.end(CGF);
3359   }
3360 
3361   args.addWriteback(srcLV, temp, valueToUse);
3362   args.add(RValue::get(finalArgument), CRE->getType());
3363 }
3364 
3365 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3366   assert(!StackBase);
3367 
3368   // Save the stack.
3369   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3370   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3371 }
3372 
3373 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3374   if (StackBase) {
3375     // Restore the stack after the call.
3376     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3377     CGF.Builder.CreateCall(F, StackBase);
3378   }
3379 }
3380 
3381 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3382                                           SourceLocation ArgLoc,
3383                                           AbstractCallee AC,
3384                                           unsigned ParmNum) {
3385   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3386                          SanOpts.has(SanitizerKind::NullabilityArg)))
3387     return;
3388 
3389   // The param decl may be missing in a variadic function.
3390   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3391   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3392 
3393   // Prefer the nonnull attribute if it's present.
3394   const NonNullAttr *NNAttr = nullptr;
3395   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3396     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3397 
3398   bool CanCheckNullability = false;
3399   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3400     auto Nullability = PVD->getType()->getNullability(getContext());
3401     CanCheckNullability = Nullability &&
3402                           *Nullability == NullabilityKind::NonNull &&
3403                           PVD->getTypeSourceInfo();
3404   }
3405 
3406   if (!NNAttr && !CanCheckNullability)
3407     return;
3408 
3409   SourceLocation AttrLoc;
3410   SanitizerMask CheckKind;
3411   SanitizerHandler Handler;
3412   if (NNAttr) {
3413     AttrLoc = NNAttr->getLocation();
3414     CheckKind = SanitizerKind::NonnullAttribute;
3415     Handler = SanitizerHandler::NonnullArg;
3416   } else {
3417     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3418     CheckKind = SanitizerKind::NullabilityArg;
3419     Handler = SanitizerHandler::NullabilityArg;
3420   }
3421 
3422   SanitizerScope SanScope(this);
3423   assert(RV.isScalar());
3424   llvm::Value *V = RV.getScalarVal();
3425   llvm::Value *Cond =
3426       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3427   llvm::Constant *StaticData[] = {
3428       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3429       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3430   };
3431   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3432 }
3433 
3434 void CodeGenFunction::EmitCallArgs(
3435     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3436     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3437     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3438   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3439 
3440   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3441   // because arguments are destroyed left to right in the callee. As a special
3442   // case, there are certain language constructs that require left-to-right
3443   // evaluation, and in those cases we consider the evaluation order requirement
3444   // to trump the "destruction order is reverse construction order" guarantee.
3445   bool LeftToRight =
3446       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3447           ? Order == EvaluationOrder::ForceLeftToRight
3448           : Order != EvaluationOrder::ForceRightToLeft;
3449 
3450   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3451                                          RValue EmittedArg) {
3452     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3453       return;
3454     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3455     if (PS == nullptr)
3456       return;
3457 
3458     const auto &Context = getContext();
3459     auto SizeTy = Context.getSizeType();
3460     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3461     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3462     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3463                                                      EmittedArg.getScalarVal());
3464     Args.add(RValue::get(V), SizeTy);
3465     // If we're emitting args in reverse, be sure to do so with
3466     // pass_object_size, as well.
3467     if (!LeftToRight)
3468       std::swap(Args.back(), *(&Args.back() - 1));
3469   };
3470 
3471   // Insert a stack save if we're going to need any inalloca args.
3472   bool HasInAllocaArgs = false;
3473   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3474     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3475          I != E && !HasInAllocaArgs; ++I)
3476       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3477     if (HasInAllocaArgs) {
3478       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3479       Args.allocateArgumentMemory(*this);
3480     }
3481   }
3482 
3483   // Evaluate each argument in the appropriate order.
3484   size_t CallArgsStart = Args.size();
3485   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3486     unsigned Idx = LeftToRight ? I : E - I - 1;
3487     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3488     unsigned InitialArgSize = Args.size();
3489     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3490     // the argument and parameter match or the objc method is parameterized.
3491     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3492             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3493                                                 ArgTypes[Idx]) ||
3494             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3495              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3496            "Argument and parameter types don't match");
3497     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3498     // In particular, we depend on it being the last arg in Args, and the
3499     // objectsize bits depend on there only being one arg if !LeftToRight.
3500     assert(InitialArgSize + 1 == Args.size() &&
3501            "The code below depends on only adding one arg per EmitCallArg");
3502     (void)InitialArgSize;
3503     // Since pointer argument are never emitted as LValue, it is safe to emit
3504     // non-null argument check for r-value only.
3505     if (!Args.back().hasLValue()) {
3506       RValue RVArg = Args.back().getKnownRValue();
3507       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3508                           ParamsToSkip + Idx);
3509       // @llvm.objectsize should never have side-effects and shouldn't need
3510       // destruction/cleanups, so we can safely "emit" it after its arg,
3511       // regardless of right-to-leftness
3512       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3513     }
3514   }
3515 
3516   if (!LeftToRight) {
3517     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3518     // IR function.
3519     std::reverse(Args.begin() + CallArgsStart, Args.end());
3520   }
3521 }
3522 
3523 namespace {
3524 
3525 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3526   DestroyUnpassedArg(Address Addr, QualType Ty)
3527       : Addr(Addr), Ty(Ty) {}
3528 
3529   Address Addr;
3530   QualType Ty;
3531 
3532   void Emit(CodeGenFunction &CGF, Flags flags) override {
3533     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3534     if (DtorKind == QualType::DK_cxx_destructor) {
3535       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3536       assert(!Dtor->isTrivial());
3537       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3538                                 /*Delegating=*/false, Addr);
3539     } else {
3540       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3541     }
3542   }
3543 };
3544 
3545 struct DisableDebugLocationUpdates {
3546   CodeGenFunction &CGF;
3547   bool disabledDebugInfo;
3548   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3549     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3550       CGF.disableDebugInfo();
3551   }
3552   ~DisableDebugLocationUpdates() {
3553     if (disabledDebugInfo)
3554       CGF.enableDebugInfo();
3555   }
3556 };
3557 
3558 } // end anonymous namespace
3559 
3560 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3561   if (!HasLV)
3562     return RV;
3563   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3564   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3565                         LV.isVolatile());
3566   IsUsed = true;
3567   return RValue::getAggregate(Copy.getAddress());
3568 }
3569 
3570 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3571   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3572   if (!HasLV && RV.isScalar())
3573     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true);
3574   else if (!HasLV && RV.isComplex())
3575     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3576   else {
3577     auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress();
3578     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3579     // We assume that call args are never copied into subobjects.
3580     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3581                           HasLV ? LV.isVolatileQualified()
3582                                 : RV.isVolatileQualified());
3583   }
3584   IsUsed = true;
3585 }
3586 
3587 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3588                                   QualType type) {
3589   DisableDebugLocationUpdates Dis(*this, E);
3590   if (const ObjCIndirectCopyRestoreExpr *CRE
3591         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3592     assert(getLangOpts().ObjCAutoRefCount);
3593     return emitWritebackArg(*this, args, CRE);
3594   }
3595 
3596   assert(type->isReferenceType() == E->isGLValue() &&
3597          "reference binding to unmaterialized r-value!");
3598 
3599   if (E->isGLValue()) {
3600     assert(E->getObjectKind() == OK_Ordinary);
3601     return args.add(EmitReferenceBindingToExpr(E), type);
3602   }
3603 
3604   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3605 
3606   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3607   // However, we still have to push an EH-only cleanup in case we unwind before
3608   // we make it to the call.
3609   if (HasAggregateEvalKind &&
3610       type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3611     // If we're using inalloca, use the argument memory.  Otherwise, use a
3612     // temporary.
3613     AggValueSlot Slot;
3614     if (args.isUsingInAlloca())
3615       Slot = createPlaceholderSlot(*this, type);
3616     else
3617       Slot = CreateAggTemp(type, "agg.tmp");
3618 
3619     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3620     if (const auto *RD = type->getAsCXXRecordDecl())
3621       DestroyedInCallee = RD->hasNonTrivialDestructor();
3622     else
3623       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3624 
3625     if (DestroyedInCallee)
3626       Slot.setExternallyDestructed();
3627 
3628     EmitAggExpr(E, Slot);
3629     RValue RV = Slot.asRValue();
3630     args.add(RV, type);
3631 
3632     if (DestroyedInCallee && NeedsEHCleanup) {
3633       // Create a no-op GEP between the placeholder and the cleanup so we can
3634       // RAUW it successfully.  It also serves as a marker of the first
3635       // instruction where the cleanup is active.
3636       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3637                                               type);
3638       // This unreachable is a temporary marker which will be removed later.
3639       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3640       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3641     }
3642     return;
3643   }
3644 
3645   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3646       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3647     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3648     assert(L.isSimple());
3649     args.addUncopiedAggregate(L, type);
3650     return;
3651   }
3652 
3653   args.add(EmitAnyExprToTemp(E), type);
3654 }
3655 
3656 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3657   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3658   // implicitly widens null pointer constants that are arguments to varargs
3659   // functions to pointer-sized ints.
3660   if (!getTarget().getTriple().isOSWindows())
3661     return Arg->getType();
3662 
3663   if (Arg->getType()->isIntegerType() &&
3664       getContext().getTypeSize(Arg->getType()) <
3665           getContext().getTargetInfo().getPointerWidth(0) &&
3666       Arg->isNullPointerConstant(getContext(),
3667                                  Expr::NPC_ValueDependentIsNotNull)) {
3668     return getContext().getIntPtrType();
3669   }
3670 
3671   return Arg->getType();
3672 }
3673 
3674 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3675 // optimizer it can aggressively ignore unwind edges.
3676 void
3677 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3678   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3679       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3680     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3681                       CGM.getNoObjCARCExceptionsMetadata());
3682 }
3683 
3684 /// Emits a call to the given no-arguments nounwind runtime function.
3685 llvm::CallInst *
3686 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3687                                          const llvm::Twine &name) {
3688   return EmitNounwindRuntimeCall(callee, None, name);
3689 }
3690 
3691 /// Emits a call to the given nounwind runtime function.
3692 llvm::CallInst *
3693 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3694                                          ArrayRef<llvm::Value*> args,
3695                                          const llvm::Twine &name) {
3696   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3697   call->setDoesNotThrow();
3698   return call;
3699 }
3700 
3701 /// Emits a simple call (never an invoke) to the given no-arguments
3702 /// runtime function.
3703 llvm::CallInst *
3704 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3705                                  const llvm::Twine &name) {
3706   return EmitRuntimeCall(callee, None, name);
3707 }
3708 
3709 // Calls which may throw must have operand bundles indicating which funclet
3710 // they are nested within.
3711 SmallVector<llvm::OperandBundleDef, 1>
3712 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3713   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3714   // There is no need for a funclet operand bundle if we aren't inside a
3715   // funclet.
3716   if (!CurrentFuncletPad)
3717     return BundleList;
3718 
3719   // Skip intrinsics which cannot throw.
3720   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3721   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3722     return BundleList;
3723 
3724   BundleList.emplace_back("funclet", CurrentFuncletPad);
3725   return BundleList;
3726 }
3727 
3728 /// Emits a simple call (never an invoke) to the given runtime function.
3729 llvm::CallInst *
3730 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3731                                  ArrayRef<llvm::Value*> args,
3732                                  const llvm::Twine &name) {
3733   llvm::CallInst *call =
3734       Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name);
3735   call->setCallingConv(getRuntimeCC());
3736   return call;
3737 }
3738 
3739 /// Emits a call or invoke to the given noreturn runtime function.
3740 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3741                                                ArrayRef<llvm::Value*> args) {
3742   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3743       getBundlesForFunclet(callee);
3744 
3745   if (getInvokeDest()) {
3746     llvm::InvokeInst *invoke =
3747       Builder.CreateInvoke(callee,
3748                            getUnreachableBlock(),
3749                            getInvokeDest(),
3750                            args,
3751                            BundleList);
3752     invoke->setDoesNotReturn();
3753     invoke->setCallingConv(getRuntimeCC());
3754   } else {
3755     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3756     call->setDoesNotReturn();
3757     call->setCallingConv(getRuntimeCC());
3758     Builder.CreateUnreachable();
3759   }
3760 }
3761 
3762 /// Emits a call or invoke instruction to the given nullary runtime function.
3763 llvm::CallSite
3764 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3765                                          const Twine &name) {
3766   return EmitRuntimeCallOrInvoke(callee, None, name);
3767 }
3768 
3769 /// Emits a call or invoke instruction to the given runtime function.
3770 llvm::CallSite
3771 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3772                                          ArrayRef<llvm::Value*> args,
3773                                          const Twine &name) {
3774   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3775   callSite.setCallingConv(getRuntimeCC());
3776   return callSite;
3777 }
3778 
3779 /// Emits a call or invoke instruction to the given function, depending
3780 /// on the current state of the EH stack.
3781 llvm::CallSite
3782 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3783                                   ArrayRef<llvm::Value *> Args,
3784                                   const Twine &Name) {
3785   llvm::BasicBlock *InvokeDest = getInvokeDest();
3786   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3787       getBundlesForFunclet(Callee);
3788 
3789   llvm::Instruction *Inst;
3790   if (!InvokeDest)
3791     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3792   else {
3793     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3794     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3795                                 Name);
3796     EmitBlock(ContBB);
3797   }
3798 
3799   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3800   // optimizer it can aggressively ignore unwind edges.
3801   if (CGM.getLangOpts().ObjCAutoRefCount)
3802     AddObjCARCExceptionMetadata(Inst);
3803 
3804   return llvm::CallSite(Inst);
3805 }
3806 
3807 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3808                                                   llvm::Value *New) {
3809   DeferredReplacements.push_back(std::make_pair(Old, New));
3810 }
3811 
3812 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3813                                  const CGCallee &Callee,
3814                                  ReturnValueSlot ReturnValue,
3815                                  const CallArgList &CallArgs,
3816                                  llvm::Instruction **callOrInvoke,
3817                                  SourceLocation Loc) {
3818   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3819 
3820   assert(Callee.isOrdinary() || Callee.isVirtual());
3821 
3822   // Handle struct-return functions by passing a pointer to the
3823   // location that we would like to return into.
3824   QualType RetTy = CallInfo.getReturnType();
3825   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3826 
3827   llvm::FunctionType *IRFuncTy = Callee.getFunctionType();
3828 
3829   // 1. Set up the arguments.
3830 
3831   // If we're using inalloca, insert the allocation after the stack save.
3832   // FIXME: Do this earlier rather than hacking it in here!
3833   Address ArgMemory = Address::invalid();
3834   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3835   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3836     const llvm::DataLayout &DL = CGM.getDataLayout();
3837     ArgMemoryLayout = DL.getStructLayout(ArgStruct);
3838     llvm::Instruction *IP = CallArgs.getStackBase();
3839     llvm::AllocaInst *AI;
3840     if (IP) {
3841       IP = IP->getNextNode();
3842       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3843                                 "argmem", IP);
3844     } else {
3845       AI = CreateTempAlloca(ArgStruct, "argmem");
3846     }
3847     auto Align = CallInfo.getArgStructAlignment();
3848     AI->setAlignment(Align.getQuantity());
3849     AI->setUsedWithInAlloca(true);
3850     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3851     ArgMemory = Address(AI, Align);
3852   }
3853 
3854   // Helper function to drill into the inalloca allocation.
3855   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3856     auto FieldOffset =
3857       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3858     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3859   };
3860 
3861   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3862   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3863 
3864   // If the call returns a temporary with struct return, create a temporary
3865   // alloca to hold the result, unless one is given to us.
3866   Address SRetPtr = Address::invalid();
3867   Address SRetAlloca = Address::invalid();
3868   llvm::Value *UnusedReturnSizePtr = nullptr;
3869   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3870     if (!ReturnValue.isNull()) {
3871       SRetPtr = ReturnValue.getValue();
3872     } else {
3873       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
3874       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3875         uint64_t size =
3876             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3877         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
3878       }
3879     }
3880     if (IRFunctionArgs.hasSRetArg()) {
3881       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3882     } else if (RetAI.isInAlloca()) {
3883       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3884       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3885     }
3886   }
3887 
3888   Address swiftErrorTemp = Address::invalid();
3889   Address swiftErrorArg = Address::invalid();
3890 
3891   // Translate all of the arguments as necessary to match the IR lowering.
3892   assert(CallInfo.arg_size() == CallArgs.size() &&
3893          "Mismatch between function signature & arguments.");
3894   unsigned ArgNo = 0;
3895   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3896   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3897        I != E; ++I, ++info_it, ++ArgNo) {
3898     const ABIArgInfo &ArgInfo = info_it->info;
3899 
3900     // Insert a padding argument to ensure proper alignment.
3901     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3902       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3903           llvm::UndefValue::get(ArgInfo.getPaddingType());
3904 
3905     unsigned FirstIRArg, NumIRArgs;
3906     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3907 
3908     switch (ArgInfo.getKind()) {
3909     case ABIArgInfo::InAlloca: {
3910       assert(NumIRArgs == 0);
3911       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3912       if (I->isAggregate()) {
3913         // Replace the placeholder with the appropriate argument slot GEP.
3914         Address Addr = I->hasLValue()
3915                            ? I->getKnownLValue().getAddress()
3916                            : I->getKnownRValue().getAggregateAddress();
3917         llvm::Instruction *Placeholder =
3918             cast<llvm::Instruction>(Addr.getPointer());
3919         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3920         Builder.SetInsertPoint(Placeholder);
3921         Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3922         Builder.restoreIP(IP);
3923         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3924       } else {
3925         // Store the RValue into the argument struct.
3926         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3927         unsigned AS = Addr.getType()->getPointerAddressSpace();
3928         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3929         // There are some cases where a trivial bitcast is not avoidable.  The
3930         // definition of a type later in a translation unit may change it's type
3931         // from {}* to (%struct.foo*)*.
3932         if (Addr.getType() != MemType)
3933           Addr = Builder.CreateBitCast(Addr, MemType);
3934         I->copyInto(*this, Addr);
3935       }
3936       break;
3937     }
3938 
3939     case ABIArgInfo::Indirect: {
3940       assert(NumIRArgs == 1);
3941       if (!I->isAggregate()) {
3942         // Make a temporary alloca to pass the argument.
3943         Address Addr = CreateMemTempWithoutCast(
3944             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
3945         IRCallArgs[FirstIRArg] = Addr.getPointer();
3946 
3947         I->copyInto(*this, Addr);
3948       } else {
3949         // We want to avoid creating an unnecessary temporary+copy here;
3950         // however, we need one in three cases:
3951         // 1. If the argument is not byval, and we are required to copy the
3952         //    source.  (This case doesn't occur on any common architecture.)
3953         // 2. If the argument is byval, RV is not sufficiently aligned, and
3954         //    we cannot force it to be sufficiently aligned.
3955         // 3. If the argument is byval, but RV is not located in default
3956         //    or alloca address space.
3957         Address Addr = I->hasLValue()
3958                            ? I->getKnownLValue().getAddress()
3959                            : I->getKnownRValue().getAggregateAddress();
3960         llvm::Value *V = Addr.getPointer();
3961         CharUnits Align = ArgInfo.getIndirectAlign();
3962         const llvm::DataLayout *TD = &CGM.getDataLayout();
3963 
3964         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
3965                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
3966                     TD->getAllocaAddrSpace()) &&
3967                "indirect argument must be in alloca address space");
3968 
3969         bool NeedCopy = false;
3970 
3971         if (Addr.getAlignment() < Align &&
3972             llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
3973                 Align.getQuantity()) {
3974           NeedCopy = true;
3975         } else if (I->hasLValue()) {
3976           auto LV = I->getKnownLValue();
3977           auto AS = LV.getAddressSpace();
3978 
3979           if ((!ArgInfo.getIndirectByVal() &&
3980                (LV.getAlignment() >=
3981                 getContext().getTypeAlignInChars(I->Ty)))) {
3982             NeedCopy = true;
3983           }
3984           if (!getLangOpts().OpenCL) {
3985             if ((ArgInfo.getIndirectByVal() &&
3986                 (AS != LangAS::Default &&
3987                  AS != CGM.getASTAllocaAddressSpace()))) {
3988               NeedCopy = true;
3989             }
3990           }
3991           // For OpenCL even if RV is located in default or alloca address space
3992           // we don't want to perform address space cast for it.
3993           else if ((ArgInfo.getIndirectByVal() &&
3994                     Addr.getType()->getAddressSpace() != IRFuncTy->
3995                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
3996             NeedCopy = true;
3997           }
3998         }
3999 
4000         if (NeedCopy) {
4001           // Create an aligned temporary, and copy to it.
4002           Address AI = CreateMemTempWithoutCast(
4003               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4004           IRCallArgs[FirstIRArg] = AI.getPointer();
4005           I->copyInto(*this, AI);
4006         } else {
4007           // Skip the extra memcpy call.
4008           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4009               CGM.getDataLayout().getAllocaAddrSpace());
4010           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4011               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4012               true);
4013         }
4014       }
4015       break;
4016     }
4017 
4018     case ABIArgInfo::Ignore:
4019       assert(NumIRArgs == 0);
4020       break;
4021 
4022     case ABIArgInfo::Extend:
4023     case ABIArgInfo::Direct: {
4024       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4025           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4026           ArgInfo.getDirectOffset() == 0) {
4027         assert(NumIRArgs == 1);
4028         llvm::Value *V;
4029         if (!I->isAggregate())
4030           V = I->getKnownRValue().getScalarVal();
4031         else
4032           V = Builder.CreateLoad(
4033               I->hasLValue() ? I->getKnownLValue().getAddress()
4034                              : I->getKnownRValue().getAggregateAddress());
4035 
4036         // Implement swifterror by copying into a new swifterror argument.
4037         // We'll write back in the normal path out of the call.
4038         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4039               == ParameterABI::SwiftErrorResult) {
4040           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4041 
4042           QualType pointeeTy = I->Ty->getPointeeType();
4043           swiftErrorArg =
4044             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4045 
4046           swiftErrorTemp =
4047             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4048           V = swiftErrorTemp.getPointer();
4049           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4050 
4051           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4052           Builder.CreateStore(errorValue, swiftErrorTemp);
4053         }
4054 
4055         // We might have to widen integers, but we should never truncate.
4056         if (ArgInfo.getCoerceToType() != V->getType() &&
4057             V->getType()->isIntegerTy())
4058           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4059 
4060         // If the argument doesn't match, perform a bitcast to coerce it.  This
4061         // can happen due to trivial type mismatches.
4062         if (FirstIRArg < IRFuncTy->getNumParams() &&
4063             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4064           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4065 
4066         IRCallArgs[FirstIRArg] = V;
4067         break;
4068       }
4069 
4070       // FIXME: Avoid the conversion through memory if possible.
4071       Address Src = Address::invalid();
4072       if (!I->isAggregate()) {
4073         Src = CreateMemTemp(I->Ty, "coerce");
4074         I->copyInto(*this, Src);
4075       } else {
4076         Src = I->hasLValue() ? I->getKnownLValue().getAddress()
4077                              : I->getKnownRValue().getAggregateAddress();
4078       }
4079 
4080       // If the value is offset in memory, apply the offset now.
4081       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4082 
4083       // Fast-isel and the optimizer generally like scalar values better than
4084       // FCAs, so we flatten them if this is safe to do for this argument.
4085       llvm::StructType *STy =
4086             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4087       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4088         llvm::Type *SrcTy = Src.getType()->getElementType();
4089         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4090         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4091 
4092         // If the source type is smaller than the destination type of the
4093         // coerce-to logic, copy the source value into a temp alloca the size
4094         // of the destination type to allow loading all of it. The bits past
4095         // the source value are left undef.
4096         if (SrcSize < DstSize) {
4097           Address TempAlloca
4098             = CreateTempAlloca(STy, Src.getAlignment(),
4099                                Src.getName() + ".coerce");
4100           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4101           Src = TempAlloca;
4102         } else {
4103           Src = Builder.CreateBitCast(Src,
4104                                       STy->getPointerTo(Src.getAddressSpace()));
4105         }
4106 
4107         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
4108         assert(NumIRArgs == STy->getNumElements());
4109         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4110           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
4111           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
4112           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4113           IRCallArgs[FirstIRArg + i] = LI;
4114         }
4115       } else {
4116         // In the simple case, just pass the coerced loaded value.
4117         assert(NumIRArgs == 1);
4118         IRCallArgs[FirstIRArg] =
4119           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4120       }
4121 
4122       break;
4123     }
4124 
4125     case ABIArgInfo::CoerceAndExpand: {
4126       auto coercionType = ArgInfo.getCoerceAndExpandType();
4127       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4128 
4129       llvm::Value *tempSize = nullptr;
4130       Address addr = Address::invalid();
4131       Address AllocaAddr = Address::invalid();
4132       if (I->isAggregate()) {
4133         addr = I->hasLValue() ? I->getKnownLValue().getAddress()
4134                               : I->getKnownRValue().getAggregateAddress();
4135 
4136       } else {
4137         RValue RV = I->getKnownRValue();
4138         assert(RV.isScalar()); // complex should always just be direct
4139 
4140         llvm::Type *scalarType = RV.getScalarVal()->getType();
4141         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4142         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4143 
4144         // Materialize to a temporary.
4145         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
4146                                 CharUnits::fromQuantity(std::max(
4147                                     layout->getAlignment(), scalarAlign)),
4148                                 "tmp",
4149                                 /*ArraySize=*/nullptr, &AllocaAddr);
4150         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4151 
4152         Builder.CreateStore(RV.getScalarVal(), addr);
4153       }
4154 
4155       addr = Builder.CreateElementBitCast(addr, coercionType);
4156 
4157       unsigned IRArgPos = FirstIRArg;
4158       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4159         llvm::Type *eltType = coercionType->getElementType(i);
4160         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4161         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4162         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4163         IRCallArgs[IRArgPos++] = elt;
4164       }
4165       assert(IRArgPos == FirstIRArg + NumIRArgs);
4166 
4167       if (tempSize) {
4168         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4169       }
4170 
4171       break;
4172     }
4173 
4174     case ABIArgInfo::Expand:
4175       unsigned IRArgPos = FirstIRArg;
4176       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4177       assert(IRArgPos == FirstIRArg + NumIRArgs);
4178       break;
4179     }
4180   }
4181 
4182   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4183   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4184 
4185   // If we're using inalloca, set up that argument.
4186   if (ArgMemory.isValid()) {
4187     llvm::Value *Arg = ArgMemory.getPointer();
4188     if (CallInfo.isVariadic()) {
4189       // When passing non-POD arguments by value to variadic functions, we will
4190       // end up with a variadic prototype and an inalloca call site.  In such
4191       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4192       // the callee.
4193       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4194       auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS);
4195       CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy);
4196     } else {
4197       llvm::Type *LastParamTy =
4198           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4199       if (Arg->getType() != LastParamTy) {
4200 #ifndef NDEBUG
4201         // Assert that these structs have equivalent element types.
4202         llvm::StructType *FullTy = CallInfo.getArgStruct();
4203         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4204             cast<llvm::PointerType>(LastParamTy)->getElementType());
4205         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4206         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4207                                                 DE = DeclaredTy->element_end(),
4208                                                 FI = FullTy->element_begin();
4209              DI != DE; ++DI, ++FI)
4210           assert(*DI == *FI);
4211 #endif
4212         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4213       }
4214     }
4215     assert(IRFunctionArgs.hasInallocaArg());
4216     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4217   }
4218 
4219   // 2. Prepare the function pointer.
4220 
4221   // If the callee is a bitcast of a non-variadic function to have a
4222   // variadic function pointer type, check to see if we can remove the
4223   // bitcast.  This comes up with unprototyped functions.
4224   //
4225   // This makes the IR nicer, but more importantly it ensures that we
4226   // can inline the function at -O0 if it is marked always_inline.
4227   auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* {
4228     llvm::FunctionType *CalleeFT =
4229       cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType());
4230     if (!CalleeFT->isVarArg())
4231       return Ptr;
4232 
4233     llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr);
4234     if (!CE || CE->getOpcode() != llvm::Instruction::BitCast)
4235       return Ptr;
4236 
4237     llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0));
4238     if (!OrigFn)
4239       return Ptr;
4240 
4241     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4242 
4243     // If the original type is variadic, or if any of the component types
4244     // disagree, we cannot remove the cast.
4245     if (OrigFT->isVarArg() ||
4246         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4247         OrigFT->getReturnType() != CalleeFT->getReturnType())
4248       return Ptr;
4249 
4250     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4251       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4252         return Ptr;
4253 
4254     return OrigFn;
4255   };
4256   CalleePtr = simplifyVariadicCallee(CalleePtr);
4257 
4258   // 3. Perform the actual call.
4259 
4260   // Deactivate any cleanups that we're supposed to do immediately before
4261   // the call.
4262   if (!CallArgs.getCleanupsToDeactivate().empty())
4263     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4264 
4265   // Assert that the arguments we computed match up.  The IR verifier
4266   // will catch this, but this is a common enough source of problems
4267   // during IRGen changes that it's way better for debugging to catch
4268   // it ourselves here.
4269 #ifndef NDEBUG
4270   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4271   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4272     // Inalloca argument can have different type.
4273     if (IRFunctionArgs.hasInallocaArg() &&
4274         i == IRFunctionArgs.getInallocaArgNo())
4275       continue;
4276     if (i < IRFuncTy->getNumParams())
4277       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4278   }
4279 #endif
4280 
4281   // Update the largest vector width if any arguments have vector types.
4282   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4283     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4284       LargestVectorWidth = std::max(LargestVectorWidth,
4285                                     VT->getPrimitiveSizeInBits());
4286   }
4287 
4288   // Compute the calling convention and attributes.
4289   unsigned CallingConv;
4290   llvm::AttributeList Attrs;
4291   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4292                              Callee.getAbstractInfo(), Attrs, CallingConv,
4293                              /*AttrOnCallSite=*/true);
4294 
4295   // Apply some call-site-specific attributes.
4296   // TODO: work this into building the attribute set.
4297 
4298   // Apply always_inline to all calls within flatten functions.
4299   // FIXME: should this really take priority over __try, below?
4300   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4301       !(Callee.getAbstractInfo().getCalleeDecl().getDecl() &&
4302         Callee.getAbstractInfo()
4303             .getCalleeDecl()
4304             .getDecl()
4305             ->hasAttr<NoInlineAttr>())) {
4306     Attrs =
4307         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4308                            llvm::Attribute::AlwaysInline);
4309   }
4310 
4311   // Disable inlining inside SEH __try blocks.
4312   if (isSEHTryScope()) {
4313     Attrs =
4314         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4315                            llvm::Attribute::NoInline);
4316   }
4317 
4318   // Decide whether to use a call or an invoke.
4319   bool CannotThrow;
4320   if (currentFunctionUsesSEHTry()) {
4321     // SEH cares about asynchronous exceptions, so everything can "throw."
4322     CannotThrow = false;
4323   } else if (isCleanupPadScope() &&
4324              EHPersonality::get(*this).isMSVCXXPersonality()) {
4325     // The MSVC++ personality will implicitly terminate the program if an
4326     // exception is thrown during a cleanup outside of a try/catch.
4327     // We don't need to model anything in IR to get this behavior.
4328     CannotThrow = true;
4329   } else {
4330     // Otherwise, nounwind call sites will never throw.
4331     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4332                                      llvm::Attribute::NoUnwind);
4333   }
4334 
4335   // If we made a temporary, be sure to clean up after ourselves. Note that we
4336   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4337   // pop this cleanup later on. Being eager about this is OK, since this
4338   // temporary is 'invisible' outside of the callee.
4339   if (UnusedReturnSizePtr)
4340     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4341                                          UnusedReturnSizePtr);
4342 
4343   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4344 
4345   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4346       getBundlesForFunclet(CalleePtr);
4347 
4348   // Emit the actual call/invoke instruction.
4349   llvm::CallSite CS;
4350   if (!InvokeDest) {
4351     CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList);
4352   } else {
4353     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4354     CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs,
4355                               BundleList);
4356     EmitBlock(Cont);
4357   }
4358   llvm::Instruction *CI = CS.getInstruction();
4359   if (callOrInvoke)
4360     *callOrInvoke = CI;
4361 
4362   // Apply the attributes and calling convention.
4363   CS.setAttributes(Attrs);
4364   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4365 
4366   // Apply various metadata.
4367 
4368   if (!CI->getType()->isVoidTy())
4369     CI->setName("call");
4370 
4371   // Update largest vector width from the return type.
4372   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4373     LargestVectorWidth = std::max(LargestVectorWidth,
4374                                   VT->getPrimitiveSizeInBits());
4375 
4376   // Insert instrumentation or attach profile metadata at indirect call sites.
4377   // For more details, see the comment before the definition of
4378   // IPVK_IndirectCallTarget in InstrProfData.inc.
4379   if (!CS.getCalledFunction())
4380     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4381                      CI, CalleePtr);
4382 
4383   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4384   // optimizer it can aggressively ignore unwind edges.
4385   if (CGM.getLangOpts().ObjCAutoRefCount)
4386     AddObjCARCExceptionMetadata(CI);
4387 
4388   // Suppress tail calls if requested.
4389   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4390     const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4391     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4392       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4393   }
4394 
4395   // 4. Finish the call.
4396 
4397   // If the call doesn't return, finish the basic block and clear the
4398   // insertion point; this allows the rest of IRGen to discard
4399   // unreachable code.
4400   if (CS.doesNotReturn()) {
4401     if (UnusedReturnSizePtr)
4402       PopCleanupBlock();
4403 
4404     // Strip away the noreturn attribute to better diagnose unreachable UB.
4405     if (SanOpts.has(SanitizerKind::Unreachable)) {
4406       if (auto *F = CS.getCalledFunction())
4407         F->removeFnAttr(llvm::Attribute::NoReturn);
4408       CS.removeAttribute(llvm::AttributeList::FunctionIndex,
4409                          llvm::Attribute::NoReturn);
4410     }
4411 
4412     EmitUnreachable(Loc);
4413     Builder.ClearInsertionPoint();
4414 
4415     // FIXME: For now, emit a dummy basic block because expr emitters in
4416     // generally are not ready to handle emitting expressions at unreachable
4417     // points.
4418     EnsureInsertPoint();
4419 
4420     // Return a reasonable RValue.
4421     return GetUndefRValue(RetTy);
4422   }
4423 
4424   // Perform the swifterror writeback.
4425   if (swiftErrorTemp.isValid()) {
4426     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4427     Builder.CreateStore(errorResult, swiftErrorArg);
4428   }
4429 
4430   // Emit any call-associated writebacks immediately.  Arguably this
4431   // should happen after any return-value munging.
4432   if (CallArgs.hasWritebacks())
4433     emitWritebacks(*this, CallArgs);
4434 
4435   // The stack cleanup for inalloca arguments has to run out of the normal
4436   // lexical order, so deactivate it and run it manually here.
4437   CallArgs.freeArgumentMemory(*this);
4438 
4439   // Extract the return value.
4440   RValue Ret = [&] {
4441     switch (RetAI.getKind()) {
4442     case ABIArgInfo::CoerceAndExpand: {
4443       auto coercionType = RetAI.getCoerceAndExpandType();
4444       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4445 
4446       Address addr = SRetPtr;
4447       addr = Builder.CreateElementBitCast(addr, coercionType);
4448 
4449       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4450       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4451 
4452       unsigned unpaddedIndex = 0;
4453       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4454         llvm::Type *eltType = coercionType->getElementType(i);
4455         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4456         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4457         llvm::Value *elt = CI;
4458         if (requiresExtract)
4459           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4460         else
4461           assert(unpaddedIndex == 0);
4462         Builder.CreateStore(elt, eltAddr);
4463       }
4464       // FALLTHROUGH
4465       LLVM_FALLTHROUGH;
4466     }
4467 
4468     case ABIArgInfo::InAlloca:
4469     case ABIArgInfo::Indirect: {
4470       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4471       if (UnusedReturnSizePtr)
4472         PopCleanupBlock();
4473       return ret;
4474     }
4475 
4476     case ABIArgInfo::Ignore:
4477       // If we are ignoring an argument that had a result, make sure to
4478       // construct the appropriate return value for our caller.
4479       return GetUndefRValue(RetTy);
4480 
4481     case ABIArgInfo::Extend:
4482     case ABIArgInfo::Direct: {
4483       llvm::Type *RetIRTy = ConvertType(RetTy);
4484       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4485         switch (getEvaluationKind(RetTy)) {
4486         case TEK_Complex: {
4487           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4488           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4489           return RValue::getComplex(std::make_pair(Real, Imag));
4490         }
4491         case TEK_Aggregate: {
4492           Address DestPtr = ReturnValue.getValue();
4493           bool DestIsVolatile = ReturnValue.isVolatile();
4494 
4495           if (!DestPtr.isValid()) {
4496             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4497             DestIsVolatile = false;
4498           }
4499           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4500           return RValue::getAggregate(DestPtr);
4501         }
4502         case TEK_Scalar: {
4503           // If the argument doesn't match, perform a bitcast to coerce it.  This
4504           // can happen due to trivial type mismatches.
4505           llvm::Value *V = CI;
4506           if (V->getType() != RetIRTy)
4507             V = Builder.CreateBitCast(V, RetIRTy);
4508           return RValue::get(V);
4509         }
4510         }
4511         llvm_unreachable("bad evaluation kind");
4512       }
4513 
4514       Address DestPtr = ReturnValue.getValue();
4515       bool DestIsVolatile = ReturnValue.isVolatile();
4516 
4517       if (!DestPtr.isValid()) {
4518         DestPtr = CreateMemTemp(RetTy, "coerce");
4519         DestIsVolatile = false;
4520       }
4521 
4522       // If the value is offset in memory, apply the offset now.
4523       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4524       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4525 
4526       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4527     }
4528 
4529     case ABIArgInfo::Expand:
4530       llvm_unreachable("Invalid ABI kind for return argument");
4531     }
4532 
4533     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4534   } ();
4535 
4536   // Emit the assume_aligned check on the return value.
4537   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4538   if (Ret.isScalar() && TargetDecl) {
4539     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4540       llvm::Value *OffsetValue = nullptr;
4541       if (const auto *Offset = AA->getOffset())
4542         OffsetValue = EmitScalarExpr(Offset);
4543 
4544       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4545       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4546       EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4547                               AlignmentCI->getZExtValue(), OffsetValue);
4548     } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4549       llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()]
4550                                       .getRValue(*this)
4551                                       .getScalarVal();
4552       EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4553                               AlignmentVal);
4554     }
4555   }
4556 
4557   return Ret;
4558 }
4559 
4560 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
4561   if (isVirtual()) {
4562     const CallExpr *CE = getVirtualCallExpr();
4563     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
4564         CGF, getVirtualMethodDecl(), getThisAddress(), getFunctionType(),
4565         CE ? CE->getBeginLoc() : SourceLocation());
4566   }
4567 
4568   return *this;
4569 }
4570 
4571 /* VarArg handling */
4572 
4573 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4574   VAListAddr = VE->isMicrosoftABI()
4575                  ? EmitMSVAListRef(VE->getSubExpr())
4576                  : EmitVAListRef(VE->getSubExpr());
4577   QualType Ty = VE->getType();
4578   if (VE->isMicrosoftABI())
4579     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4580   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4581 }
4582