1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CodeGenFunction.h" 20 #include "CodeGenModule.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/Decl.h" 23 #include "clang/AST/DeclCXX.h" 24 #include "clang/AST/DeclObjC.h" 25 #include "clang/Basic/CodeGenOptions.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "llvm/ADT/StringExtras.h" 31 #include "llvm/Transforms/Utils/Local.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/CallSite.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 using namespace clang; 41 using namespace CodeGen; 42 43 /***/ 44 45 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 46 switch (CC) { 47 default: return llvm::CallingConv::C; 48 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 49 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 50 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 51 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 52 case CC_Win64: return llvm::CallingConv::Win64; 53 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 54 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 55 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 56 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 57 // TODO: Add support for __pascal to LLVM. 58 case CC_X86Pascal: return llvm::CallingConv::C; 59 // TODO: Add support for __vectorcall to LLVM. 60 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 61 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 62 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 63 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 64 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 65 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 66 case CC_Swift: return llvm::CallingConv::Swift; 67 } 68 } 69 70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 71 /// qualification. 72 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD, 73 const CXXMethodDecl *MD) { 74 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 75 if (MD) 76 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getTypeQualifiers().getAddressSpace()); 77 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 78 } 79 80 /// Returns the canonical formal type of the given C++ method. 81 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 82 return MD->getType()->getCanonicalTypeUnqualified() 83 .getAs<FunctionProtoType>(); 84 } 85 86 /// Returns the "extra-canonicalized" return type, which discards 87 /// qualifiers on the return type. Codegen doesn't care about them, 88 /// and it makes ABI code a little easier to be able to assume that 89 /// all parameter and return types are top-level unqualified. 90 static CanQualType GetReturnType(QualType RetTy) { 91 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 92 } 93 94 /// Arrange the argument and result information for a value of the given 95 /// unprototyped freestanding function type. 96 const CGFunctionInfo & 97 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 98 // When translating an unprototyped function type, always use a 99 // variadic type. 100 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 101 /*instanceMethod=*/false, 102 /*chainCall=*/false, None, 103 FTNP->getExtInfo(), {}, RequiredArgs(0)); 104 } 105 106 static void addExtParameterInfosForCall( 107 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 108 const FunctionProtoType *proto, 109 unsigned prefixArgs, 110 unsigned totalArgs) { 111 assert(proto->hasExtParameterInfos()); 112 assert(paramInfos.size() <= prefixArgs); 113 assert(proto->getNumParams() + prefixArgs <= totalArgs); 114 115 paramInfos.reserve(totalArgs); 116 117 // Add default infos for any prefix args that don't already have infos. 118 paramInfos.resize(prefixArgs); 119 120 // Add infos for the prototype. 121 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 122 paramInfos.push_back(ParamInfo); 123 // pass_object_size params have no parameter info. 124 if (ParamInfo.hasPassObjectSize()) 125 paramInfos.emplace_back(); 126 } 127 128 assert(paramInfos.size() <= totalArgs && 129 "Did we forget to insert pass_object_size args?"); 130 // Add default infos for the variadic and/or suffix arguments. 131 paramInfos.resize(totalArgs); 132 } 133 134 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 135 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 136 static void appendParameterTypes(const CodeGenTypes &CGT, 137 SmallVectorImpl<CanQualType> &prefix, 138 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 139 CanQual<FunctionProtoType> FPT) { 140 // Fast path: don't touch param info if we don't need to. 141 if (!FPT->hasExtParameterInfos()) { 142 assert(paramInfos.empty() && 143 "We have paramInfos, but the prototype doesn't?"); 144 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 145 return; 146 } 147 148 unsigned PrefixSize = prefix.size(); 149 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 150 // parameters; the only thing that can change this is the presence of 151 // pass_object_size. So, we preallocate for the common case. 152 prefix.reserve(prefix.size() + FPT->getNumParams()); 153 154 auto ExtInfos = FPT->getExtParameterInfos(); 155 assert(ExtInfos.size() == FPT->getNumParams()); 156 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 157 prefix.push_back(FPT->getParamType(I)); 158 if (ExtInfos[I].hasPassObjectSize()) 159 prefix.push_back(CGT.getContext().getSizeType()); 160 } 161 162 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 163 prefix.size()); 164 } 165 166 /// Arrange the LLVM function layout for a value of the given function 167 /// type, on top of any implicit parameters already stored. 168 static const CGFunctionInfo & 169 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 170 SmallVectorImpl<CanQualType> &prefix, 171 CanQual<FunctionProtoType> FTP, 172 const FunctionDecl *FD) { 173 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 174 RequiredArgs Required = 175 RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD); 176 // FIXME: Kill copy. 177 appendParameterTypes(CGT, prefix, paramInfos, FTP); 178 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 179 180 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 181 /*chainCall=*/false, prefix, 182 FTP->getExtInfo(), paramInfos, 183 Required); 184 } 185 186 /// Arrange the argument and result information for a value of the 187 /// given freestanding function type. 188 const CGFunctionInfo & 189 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 190 const FunctionDecl *FD) { 191 SmallVector<CanQualType, 16> argTypes; 192 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 193 FTP, FD); 194 } 195 196 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 197 // Set the appropriate calling convention for the Function. 198 if (D->hasAttr<StdCallAttr>()) 199 return CC_X86StdCall; 200 201 if (D->hasAttr<FastCallAttr>()) 202 return CC_X86FastCall; 203 204 if (D->hasAttr<RegCallAttr>()) 205 return CC_X86RegCall; 206 207 if (D->hasAttr<ThisCallAttr>()) 208 return CC_X86ThisCall; 209 210 if (D->hasAttr<VectorCallAttr>()) 211 return CC_X86VectorCall; 212 213 if (D->hasAttr<PascalAttr>()) 214 return CC_X86Pascal; 215 216 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 217 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 218 219 if (D->hasAttr<AArch64VectorPcsAttr>()) 220 return CC_AArch64VectorCall; 221 222 if (D->hasAttr<IntelOclBiccAttr>()) 223 return CC_IntelOclBicc; 224 225 if (D->hasAttr<MSABIAttr>()) 226 return IsWindows ? CC_C : CC_Win64; 227 228 if (D->hasAttr<SysVABIAttr>()) 229 return IsWindows ? CC_X86_64SysV : CC_C; 230 231 if (D->hasAttr<PreserveMostAttr>()) 232 return CC_PreserveMost; 233 234 if (D->hasAttr<PreserveAllAttr>()) 235 return CC_PreserveAll; 236 237 return CC_C; 238 } 239 240 /// Arrange the argument and result information for a call to an 241 /// unknown C++ non-static member function of the given abstract type. 242 /// (Zero value of RD means we don't have any meaningful "this" argument type, 243 /// so fall back to a generic pointer type). 244 /// The member function must be an ordinary function, i.e. not a 245 /// constructor or destructor. 246 const CGFunctionInfo & 247 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 248 const FunctionProtoType *FTP, 249 const CXXMethodDecl *MD) { 250 SmallVector<CanQualType, 16> argTypes; 251 252 // Add the 'this' pointer. 253 if (RD) 254 argTypes.push_back(GetThisType(Context, RD, MD)); 255 else 256 argTypes.push_back(Context.VoidPtrTy); 257 258 return ::arrangeLLVMFunctionInfo( 259 *this, true, argTypes, 260 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 261 } 262 263 /// Set calling convention for CUDA/HIP kernel. 264 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 265 const FunctionDecl *FD) { 266 if (FD->hasAttr<CUDAGlobalAttr>()) { 267 const FunctionType *FT = FTy->getAs<FunctionType>(); 268 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 269 FTy = FT->getCanonicalTypeUnqualified(); 270 } 271 } 272 273 /// Arrange the argument and result information for a declaration or 274 /// definition of the given C++ non-static member function. The 275 /// member function must be an ordinary function, i.e. not a 276 /// constructor or destructor. 277 const CGFunctionInfo & 278 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 279 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 280 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 281 282 CanQualType FT = GetFormalType(MD).getAs<Type>(); 283 setCUDAKernelCallingConvention(FT, CGM, MD); 284 auto prototype = FT.getAs<FunctionProtoType>(); 285 286 if (MD->isInstance()) { 287 // The abstract case is perfectly fine. 288 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 289 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 290 } 291 292 return arrangeFreeFunctionType(prototype, MD); 293 } 294 295 bool CodeGenTypes::inheritingCtorHasParams( 296 const InheritedConstructor &Inherited, CXXCtorType Type) { 297 // Parameters are unnecessary if we're constructing a base class subobject 298 // and the inherited constructor lives in a virtual base. 299 return Type == Ctor_Complete || 300 !Inherited.getShadowDecl()->constructsVirtualBase() || 301 !Target.getCXXABI().hasConstructorVariants(); 302 } 303 304 const CGFunctionInfo & 305 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 306 StructorType Type) { 307 308 SmallVector<CanQualType, 16> argTypes; 309 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 310 argTypes.push_back(GetThisType(Context, MD->getParent(), MD)); 311 312 bool PassParams = true; 313 314 GlobalDecl GD; 315 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 316 GD = GlobalDecl(CD, toCXXCtorType(Type)); 317 318 // A base class inheriting constructor doesn't get forwarded arguments 319 // needed to construct a virtual base (or base class thereof). 320 if (auto Inherited = CD->getInheritedConstructor()) 321 PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); 322 } else { 323 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 324 GD = GlobalDecl(DD, toCXXDtorType(Type)); 325 } 326 327 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 328 329 // Add the formal parameters. 330 if (PassParams) 331 appendParameterTypes(*this, argTypes, paramInfos, FTP); 332 333 CGCXXABI::AddedStructorArgs AddedArgs = 334 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 335 if (!paramInfos.empty()) { 336 // Note: prefix implies after the first param. 337 if (AddedArgs.Prefix) 338 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 339 FunctionProtoType::ExtParameterInfo{}); 340 if (AddedArgs.Suffix) 341 paramInfos.append(AddedArgs.Suffix, 342 FunctionProtoType::ExtParameterInfo{}); 343 } 344 345 RequiredArgs required = 346 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 347 : RequiredArgs::All); 348 349 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 350 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 351 ? argTypes.front() 352 : TheCXXABI.hasMostDerivedReturn(GD) 353 ? CGM.getContext().VoidPtrTy 354 : Context.VoidTy; 355 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 356 /*chainCall=*/false, argTypes, extInfo, 357 paramInfos, required); 358 } 359 360 static SmallVector<CanQualType, 16> 361 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 362 SmallVector<CanQualType, 16> argTypes; 363 for (auto &arg : args) 364 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 365 return argTypes; 366 } 367 368 static SmallVector<CanQualType, 16> 369 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 370 SmallVector<CanQualType, 16> argTypes; 371 for (auto &arg : args) 372 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 373 return argTypes; 374 } 375 376 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 377 getExtParameterInfosForCall(const FunctionProtoType *proto, 378 unsigned prefixArgs, unsigned totalArgs) { 379 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 380 if (proto->hasExtParameterInfos()) { 381 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 382 } 383 return result; 384 } 385 386 /// Arrange a call to a C++ method, passing the given arguments. 387 /// 388 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 389 /// parameter. 390 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 391 /// args. 392 /// PassProtoArgs indicates whether `args` has args for the parameters in the 393 /// given CXXConstructorDecl. 394 const CGFunctionInfo & 395 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 396 const CXXConstructorDecl *D, 397 CXXCtorType CtorKind, 398 unsigned ExtraPrefixArgs, 399 unsigned ExtraSuffixArgs, 400 bool PassProtoArgs) { 401 // FIXME: Kill copy. 402 SmallVector<CanQualType, 16> ArgTypes; 403 for (const auto &Arg : args) 404 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 405 406 // +1 for implicit this, which should always be args[0]. 407 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 408 409 CanQual<FunctionProtoType> FPT = GetFormalType(D); 410 RequiredArgs Required = 411 RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D); 412 GlobalDecl GD(D, CtorKind); 413 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 414 ? ArgTypes.front() 415 : TheCXXABI.hasMostDerivedReturn(GD) 416 ? CGM.getContext().VoidPtrTy 417 : Context.VoidTy; 418 419 FunctionType::ExtInfo Info = FPT->getExtInfo(); 420 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 421 // If the prototype args are elided, we should only have ABI-specific args, 422 // which never have param info. 423 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 424 // ABI-specific suffix arguments are treated the same as variadic arguments. 425 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 426 ArgTypes.size()); 427 } 428 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 429 /*chainCall=*/false, ArgTypes, Info, 430 ParamInfos, Required); 431 } 432 433 /// Arrange the argument and result information for the declaration or 434 /// definition of the given function. 435 const CGFunctionInfo & 436 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 437 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 438 if (MD->isInstance()) 439 return arrangeCXXMethodDeclaration(MD); 440 441 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 442 443 assert(isa<FunctionType>(FTy)); 444 setCUDAKernelCallingConvention(FTy, CGM, FD); 445 446 // When declaring a function without a prototype, always use a 447 // non-variadic type. 448 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 449 return arrangeLLVMFunctionInfo( 450 noProto->getReturnType(), /*instanceMethod=*/false, 451 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 452 } 453 454 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD); 455 } 456 457 /// Arrange the argument and result information for the declaration or 458 /// definition of an Objective-C method. 459 const CGFunctionInfo & 460 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 461 // It happens that this is the same as a call with no optional 462 // arguments, except also using the formal 'self' type. 463 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 464 } 465 466 /// Arrange the argument and result information for the function type 467 /// through which to perform a send to the given Objective-C method, 468 /// using the given receiver type. The receiver type is not always 469 /// the 'self' type of the method or even an Objective-C pointer type. 470 /// This is *not* the right method for actually performing such a 471 /// message send, due to the possibility of optional arguments. 472 const CGFunctionInfo & 473 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 474 QualType receiverType) { 475 SmallVector<CanQualType, 16> argTys; 476 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 477 argTys.push_back(Context.getCanonicalParamType(receiverType)); 478 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 479 // FIXME: Kill copy? 480 for (const auto *I : MD->parameters()) { 481 argTys.push_back(Context.getCanonicalParamType(I->getType())); 482 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 483 I->hasAttr<NoEscapeAttr>()); 484 extParamInfos.push_back(extParamInfo); 485 } 486 487 FunctionType::ExtInfo einfo; 488 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 489 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 490 491 if (getContext().getLangOpts().ObjCAutoRefCount && 492 MD->hasAttr<NSReturnsRetainedAttr>()) 493 einfo = einfo.withProducesResult(true); 494 495 RequiredArgs required = 496 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 497 498 return arrangeLLVMFunctionInfo( 499 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 500 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 501 } 502 503 const CGFunctionInfo & 504 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 505 const CallArgList &args) { 506 auto argTypes = getArgTypesForCall(Context, args); 507 FunctionType::ExtInfo einfo; 508 509 return arrangeLLVMFunctionInfo( 510 GetReturnType(returnType), /*instanceMethod=*/false, 511 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 512 } 513 514 const CGFunctionInfo & 515 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 516 // FIXME: Do we need to handle ObjCMethodDecl? 517 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 518 519 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 520 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 521 522 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 523 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 524 525 return arrangeFunctionDeclaration(FD); 526 } 527 528 /// Arrange a thunk that takes 'this' as the first parameter followed by 529 /// varargs. Return a void pointer, regardless of the actual return type. 530 /// The body of the thunk will end in a musttail call to a function of the 531 /// correct type, and the caller will bitcast the function to the correct 532 /// prototype. 533 const CGFunctionInfo & 534 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 535 assert(MD->isVirtual() && "only methods have thunks"); 536 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 537 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent(), MD) }; 538 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 539 /*chainCall=*/false, ArgTys, 540 FTP->getExtInfo(), {}, RequiredArgs(1)); 541 } 542 543 const CGFunctionInfo & 544 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 545 CXXCtorType CT) { 546 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 547 548 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 549 SmallVector<CanQualType, 2> ArgTys; 550 const CXXRecordDecl *RD = CD->getParent(); 551 ArgTys.push_back(GetThisType(Context, RD, CD)); 552 if (CT == Ctor_CopyingClosure) 553 ArgTys.push_back(*FTP->param_type_begin()); 554 if (RD->getNumVBases() > 0) 555 ArgTys.push_back(Context.IntTy); 556 CallingConv CC = Context.getDefaultCallingConvention( 557 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 558 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 559 /*chainCall=*/false, ArgTys, 560 FunctionType::ExtInfo(CC), {}, 561 RequiredArgs::All); 562 } 563 564 /// Arrange a call as unto a free function, except possibly with an 565 /// additional number of formal parameters considered required. 566 static const CGFunctionInfo & 567 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 568 CodeGenModule &CGM, 569 const CallArgList &args, 570 const FunctionType *fnType, 571 unsigned numExtraRequiredArgs, 572 bool chainCall) { 573 assert(args.size() >= numExtraRequiredArgs); 574 575 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 576 577 // In most cases, there are no optional arguments. 578 RequiredArgs required = RequiredArgs::All; 579 580 // If we have a variadic prototype, the required arguments are the 581 // extra prefix plus the arguments in the prototype. 582 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 583 if (proto->isVariadic()) 584 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 585 586 if (proto->hasExtParameterInfos()) 587 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 588 args.size()); 589 590 // If we don't have a prototype at all, but we're supposed to 591 // explicitly use the variadic convention for unprototyped calls, 592 // treat all of the arguments as required but preserve the nominal 593 // possibility of variadics. 594 } else if (CGM.getTargetCodeGenInfo() 595 .isNoProtoCallVariadic(args, 596 cast<FunctionNoProtoType>(fnType))) { 597 required = RequiredArgs(args.size()); 598 } 599 600 // FIXME: Kill copy. 601 SmallVector<CanQualType, 16> argTypes; 602 for (const auto &arg : args) 603 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 604 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 605 /*instanceMethod=*/false, chainCall, 606 argTypes, fnType->getExtInfo(), paramInfos, 607 required); 608 } 609 610 /// Figure out the rules for calling a function with the given formal 611 /// type using the given arguments. The arguments are necessary 612 /// because the function might be unprototyped, in which case it's 613 /// target-dependent in crazy ways. 614 const CGFunctionInfo & 615 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 616 const FunctionType *fnType, 617 bool chainCall) { 618 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 619 chainCall ? 1 : 0, chainCall); 620 } 621 622 /// A block function is essentially a free function with an 623 /// extra implicit argument. 624 const CGFunctionInfo & 625 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 626 const FunctionType *fnType) { 627 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 628 /*chainCall=*/false); 629 } 630 631 const CGFunctionInfo & 632 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 633 const FunctionArgList ¶ms) { 634 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 635 auto argTypes = getArgTypesForDeclaration(Context, params); 636 637 return arrangeLLVMFunctionInfo( 638 GetReturnType(proto->getReturnType()), 639 /*instanceMethod*/ false, /*chainCall*/ false, argTypes, 640 proto->getExtInfo(), paramInfos, 641 RequiredArgs::forPrototypePlus(proto, 1, nullptr)); 642 } 643 644 const CGFunctionInfo & 645 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 646 const CallArgList &args) { 647 // FIXME: Kill copy. 648 SmallVector<CanQualType, 16> argTypes; 649 for (const auto &Arg : args) 650 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 651 return arrangeLLVMFunctionInfo( 652 GetReturnType(resultType), /*instanceMethod=*/false, 653 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 654 /*paramInfos=*/ {}, RequiredArgs::All); 655 } 656 657 const CGFunctionInfo & 658 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 659 const FunctionArgList &args) { 660 auto argTypes = getArgTypesForDeclaration(Context, args); 661 662 return arrangeLLVMFunctionInfo( 663 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 664 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 665 } 666 667 const CGFunctionInfo & 668 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 669 ArrayRef<CanQualType> argTypes) { 670 return arrangeLLVMFunctionInfo( 671 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 672 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 673 } 674 675 /// Arrange a call to a C++ method, passing the given arguments. 676 /// 677 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 678 /// does not count `this`. 679 const CGFunctionInfo & 680 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 681 const FunctionProtoType *proto, 682 RequiredArgs required, 683 unsigned numPrefixArgs) { 684 assert(numPrefixArgs + 1 <= args.size() && 685 "Emitting a call with less args than the required prefix?"); 686 // Add one to account for `this`. It's a bit awkward here, but we don't count 687 // `this` in similar places elsewhere. 688 auto paramInfos = 689 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 690 691 // FIXME: Kill copy. 692 auto argTypes = getArgTypesForCall(Context, args); 693 694 FunctionType::ExtInfo info = proto->getExtInfo(); 695 return arrangeLLVMFunctionInfo( 696 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 697 /*chainCall=*/false, argTypes, info, paramInfos, required); 698 } 699 700 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 701 return arrangeLLVMFunctionInfo( 702 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 703 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 704 } 705 706 const CGFunctionInfo & 707 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 708 const CallArgList &args) { 709 assert(signature.arg_size() <= args.size()); 710 if (signature.arg_size() == args.size()) 711 return signature; 712 713 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 714 auto sigParamInfos = signature.getExtParameterInfos(); 715 if (!sigParamInfos.empty()) { 716 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 717 paramInfos.resize(args.size()); 718 } 719 720 auto argTypes = getArgTypesForCall(Context, args); 721 722 assert(signature.getRequiredArgs().allowsOptionalArgs()); 723 return arrangeLLVMFunctionInfo(signature.getReturnType(), 724 signature.isInstanceMethod(), 725 signature.isChainCall(), 726 argTypes, 727 signature.getExtInfo(), 728 paramInfos, 729 signature.getRequiredArgs()); 730 } 731 732 namespace clang { 733 namespace CodeGen { 734 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 735 } 736 } 737 738 /// Arrange the argument and result information for an abstract value 739 /// of a given function type. This is the method which all of the 740 /// above functions ultimately defer to. 741 const CGFunctionInfo & 742 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 743 bool instanceMethod, 744 bool chainCall, 745 ArrayRef<CanQualType> argTypes, 746 FunctionType::ExtInfo info, 747 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 748 RequiredArgs required) { 749 assert(llvm::all_of(argTypes, 750 [](CanQualType T) { return T.isCanonicalAsParam(); })); 751 752 // Lookup or create unique function info. 753 llvm::FoldingSetNodeID ID; 754 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 755 required, resultType, argTypes); 756 757 void *insertPos = nullptr; 758 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 759 if (FI) 760 return *FI; 761 762 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 763 764 // Construct the function info. We co-allocate the ArgInfos. 765 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 766 paramInfos, resultType, argTypes, required); 767 FunctionInfos.InsertNode(FI, insertPos); 768 769 bool inserted = FunctionsBeingProcessed.insert(FI).second; 770 (void)inserted; 771 assert(inserted && "Recursively being processed?"); 772 773 // Compute ABI information. 774 if (CC == llvm::CallingConv::SPIR_KERNEL) { 775 // Force target independent argument handling for the host visible 776 // kernel functions. 777 computeSPIRKernelABIInfo(CGM, *FI); 778 } else if (info.getCC() == CC_Swift) { 779 swiftcall::computeABIInfo(CGM, *FI); 780 } else { 781 getABIInfo().computeInfo(*FI); 782 } 783 784 // Loop over all of the computed argument and return value info. If any of 785 // them are direct or extend without a specified coerce type, specify the 786 // default now. 787 ABIArgInfo &retInfo = FI->getReturnInfo(); 788 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 789 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 790 791 for (auto &I : FI->arguments()) 792 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 793 I.info.setCoerceToType(ConvertType(I.type)); 794 795 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 796 assert(erased && "Not in set?"); 797 798 return *FI; 799 } 800 801 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 802 bool instanceMethod, 803 bool chainCall, 804 const FunctionType::ExtInfo &info, 805 ArrayRef<ExtParameterInfo> paramInfos, 806 CanQualType resultType, 807 ArrayRef<CanQualType> argTypes, 808 RequiredArgs required) { 809 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 810 811 void *buffer = 812 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 813 argTypes.size() + 1, paramInfos.size())); 814 815 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 816 FI->CallingConvention = llvmCC; 817 FI->EffectiveCallingConvention = llvmCC; 818 FI->ASTCallingConvention = info.getCC(); 819 FI->InstanceMethod = instanceMethod; 820 FI->ChainCall = chainCall; 821 FI->NoReturn = info.getNoReturn(); 822 FI->ReturnsRetained = info.getProducesResult(); 823 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 824 FI->NoCfCheck = info.getNoCfCheck(); 825 FI->Required = required; 826 FI->HasRegParm = info.getHasRegParm(); 827 FI->RegParm = info.getRegParm(); 828 FI->ArgStruct = nullptr; 829 FI->ArgStructAlign = 0; 830 FI->NumArgs = argTypes.size(); 831 FI->HasExtParameterInfos = !paramInfos.empty(); 832 FI->getArgsBuffer()[0].type = resultType; 833 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 834 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 835 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 836 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 837 return FI; 838 } 839 840 /***/ 841 842 namespace { 843 // ABIArgInfo::Expand implementation. 844 845 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 846 struct TypeExpansion { 847 enum TypeExpansionKind { 848 // Elements of constant arrays are expanded recursively. 849 TEK_ConstantArray, 850 // Record fields are expanded recursively (but if record is a union, only 851 // the field with the largest size is expanded). 852 TEK_Record, 853 // For complex types, real and imaginary parts are expanded recursively. 854 TEK_Complex, 855 // All other types are not expandable. 856 TEK_None 857 }; 858 859 const TypeExpansionKind Kind; 860 861 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 862 virtual ~TypeExpansion() {} 863 }; 864 865 struct ConstantArrayExpansion : TypeExpansion { 866 QualType EltTy; 867 uint64_t NumElts; 868 869 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 870 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 871 static bool classof(const TypeExpansion *TE) { 872 return TE->Kind == TEK_ConstantArray; 873 } 874 }; 875 876 struct RecordExpansion : TypeExpansion { 877 SmallVector<const CXXBaseSpecifier *, 1> Bases; 878 879 SmallVector<const FieldDecl *, 1> Fields; 880 881 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 882 SmallVector<const FieldDecl *, 1> &&Fields) 883 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 884 Fields(std::move(Fields)) {} 885 static bool classof(const TypeExpansion *TE) { 886 return TE->Kind == TEK_Record; 887 } 888 }; 889 890 struct ComplexExpansion : TypeExpansion { 891 QualType EltTy; 892 893 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 894 static bool classof(const TypeExpansion *TE) { 895 return TE->Kind == TEK_Complex; 896 } 897 }; 898 899 struct NoExpansion : TypeExpansion { 900 NoExpansion() : TypeExpansion(TEK_None) {} 901 static bool classof(const TypeExpansion *TE) { 902 return TE->Kind == TEK_None; 903 } 904 }; 905 } // namespace 906 907 static std::unique_ptr<TypeExpansion> 908 getTypeExpansion(QualType Ty, const ASTContext &Context) { 909 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 910 return llvm::make_unique<ConstantArrayExpansion>( 911 AT->getElementType(), AT->getSize().getZExtValue()); 912 } 913 if (const RecordType *RT = Ty->getAs<RecordType>()) { 914 SmallVector<const CXXBaseSpecifier *, 1> Bases; 915 SmallVector<const FieldDecl *, 1> Fields; 916 const RecordDecl *RD = RT->getDecl(); 917 assert(!RD->hasFlexibleArrayMember() && 918 "Cannot expand structure with flexible array."); 919 if (RD->isUnion()) { 920 // Unions can be here only in degenerative cases - all the fields are same 921 // after flattening. Thus we have to use the "largest" field. 922 const FieldDecl *LargestFD = nullptr; 923 CharUnits UnionSize = CharUnits::Zero(); 924 925 for (const auto *FD : RD->fields()) { 926 if (FD->isZeroLengthBitField(Context)) 927 continue; 928 assert(!FD->isBitField() && 929 "Cannot expand structure with bit-field members."); 930 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 931 if (UnionSize < FieldSize) { 932 UnionSize = FieldSize; 933 LargestFD = FD; 934 } 935 } 936 if (LargestFD) 937 Fields.push_back(LargestFD); 938 } else { 939 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 940 assert(!CXXRD->isDynamicClass() && 941 "cannot expand vtable pointers in dynamic classes"); 942 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 943 Bases.push_back(&BS); 944 } 945 946 for (const auto *FD : RD->fields()) { 947 if (FD->isZeroLengthBitField(Context)) 948 continue; 949 assert(!FD->isBitField() && 950 "Cannot expand structure with bit-field members."); 951 Fields.push_back(FD); 952 } 953 } 954 return llvm::make_unique<RecordExpansion>(std::move(Bases), 955 std::move(Fields)); 956 } 957 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 958 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 959 } 960 return llvm::make_unique<NoExpansion>(); 961 } 962 963 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 964 auto Exp = getTypeExpansion(Ty, Context); 965 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 966 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 967 } 968 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 969 int Res = 0; 970 for (auto BS : RExp->Bases) 971 Res += getExpansionSize(BS->getType(), Context); 972 for (auto FD : RExp->Fields) 973 Res += getExpansionSize(FD->getType(), Context); 974 return Res; 975 } 976 if (isa<ComplexExpansion>(Exp.get())) 977 return 2; 978 assert(isa<NoExpansion>(Exp.get())); 979 return 1; 980 } 981 982 void 983 CodeGenTypes::getExpandedTypes(QualType Ty, 984 SmallVectorImpl<llvm::Type *>::iterator &TI) { 985 auto Exp = getTypeExpansion(Ty, Context); 986 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 987 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 988 getExpandedTypes(CAExp->EltTy, TI); 989 } 990 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 991 for (auto BS : RExp->Bases) 992 getExpandedTypes(BS->getType(), TI); 993 for (auto FD : RExp->Fields) 994 getExpandedTypes(FD->getType(), TI); 995 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 996 llvm::Type *EltTy = ConvertType(CExp->EltTy); 997 *TI++ = EltTy; 998 *TI++ = EltTy; 999 } else { 1000 assert(isa<NoExpansion>(Exp.get())); 1001 *TI++ = ConvertType(Ty); 1002 } 1003 } 1004 1005 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1006 ConstantArrayExpansion *CAE, 1007 Address BaseAddr, 1008 llvm::function_ref<void(Address)> Fn) { 1009 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1010 CharUnits EltAlign = 1011 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1012 1013 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1014 llvm::Value *EltAddr = 1015 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1016 Fn(Address(EltAddr, EltAlign)); 1017 } 1018 } 1019 1020 void CodeGenFunction::ExpandTypeFromArgs( 1021 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 1022 assert(LV.isSimple() && 1023 "Unexpected non-simple lvalue during struct expansion."); 1024 1025 auto Exp = getTypeExpansion(Ty, getContext()); 1026 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1027 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 1028 [&](Address EltAddr) { 1029 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1030 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1031 }); 1032 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1033 Address This = LV.getAddress(); 1034 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1035 // Perform a single step derived-to-base conversion. 1036 Address Base = 1037 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1038 /*NullCheckValue=*/false, SourceLocation()); 1039 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1040 1041 // Recurse onto bases. 1042 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1043 } 1044 for (auto FD : RExp->Fields) { 1045 // FIXME: What are the right qualifiers here? 1046 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1047 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1048 } 1049 } else if (isa<ComplexExpansion>(Exp.get())) { 1050 auto realValue = *AI++; 1051 auto imagValue = *AI++; 1052 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1053 } else { 1054 assert(isa<NoExpansion>(Exp.get())); 1055 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1056 } 1057 } 1058 1059 void CodeGenFunction::ExpandTypeToArgs( 1060 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1061 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1062 auto Exp = getTypeExpansion(Ty, getContext()); 1063 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1064 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1065 : Arg.getKnownRValue().getAggregateAddress(); 1066 forConstantArrayExpansion( 1067 *this, CAExp, Addr, [&](Address EltAddr) { 1068 CallArg EltArg = CallArg( 1069 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1070 CAExp->EltTy); 1071 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1072 IRCallArgPos); 1073 }); 1074 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1075 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1076 : Arg.getKnownRValue().getAggregateAddress(); 1077 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1078 // Perform a single step derived-to-base conversion. 1079 Address Base = 1080 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1081 /*NullCheckValue=*/false, SourceLocation()); 1082 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1083 1084 // Recurse onto bases. 1085 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1086 IRCallArgPos); 1087 } 1088 1089 LValue LV = MakeAddrLValue(This, Ty); 1090 for (auto FD : RExp->Fields) { 1091 CallArg FldArg = 1092 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1093 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1094 IRCallArgPos); 1095 } 1096 } else if (isa<ComplexExpansion>(Exp.get())) { 1097 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1098 IRCallArgs[IRCallArgPos++] = CV.first; 1099 IRCallArgs[IRCallArgPos++] = CV.second; 1100 } else { 1101 assert(isa<NoExpansion>(Exp.get())); 1102 auto RV = Arg.getKnownRValue(); 1103 assert(RV.isScalar() && 1104 "Unexpected non-scalar rvalue during struct expansion."); 1105 1106 // Insert a bitcast as needed. 1107 llvm::Value *V = RV.getScalarVal(); 1108 if (IRCallArgPos < IRFuncTy->getNumParams() && 1109 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1110 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1111 1112 IRCallArgs[IRCallArgPos++] = V; 1113 } 1114 } 1115 1116 /// Create a temporary allocation for the purposes of coercion. 1117 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1118 CharUnits MinAlign) { 1119 // Don't use an alignment that's worse than what LLVM would prefer. 1120 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1121 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1122 1123 return CGF.CreateTempAlloca(Ty, Align); 1124 } 1125 1126 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1127 /// accessing some number of bytes out of it, try to gep into the struct to get 1128 /// at its inner goodness. Dive as deep as possible without entering an element 1129 /// with an in-memory size smaller than DstSize. 1130 static Address 1131 EnterStructPointerForCoercedAccess(Address SrcPtr, 1132 llvm::StructType *SrcSTy, 1133 uint64_t DstSize, CodeGenFunction &CGF) { 1134 // We can't dive into a zero-element struct. 1135 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1136 1137 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1138 1139 // If the first elt is at least as large as what we're looking for, or if the 1140 // first element is the same size as the whole struct, we can enter it. The 1141 // comparison must be made on the store size and not the alloca size. Using 1142 // the alloca size may overstate the size of the load. 1143 uint64_t FirstEltSize = 1144 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1145 if (FirstEltSize < DstSize && 1146 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1147 return SrcPtr; 1148 1149 // GEP into the first element. 1150 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 1151 1152 // If the first element is a struct, recurse. 1153 llvm::Type *SrcTy = SrcPtr.getElementType(); 1154 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1155 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1156 1157 return SrcPtr; 1158 } 1159 1160 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1161 /// are either integers or pointers. This does a truncation of the value if it 1162 /// is too large or a zero extension if it is too small. 1163 /// 1164 /// This behaves as if the value were coerced through memory, so on big-endian 1165 /// targets the high bits are preserved in a truncation, while little-endian 1166 /// targets preserve the low bits. 1167 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1168 llvm::Type *Ty, 1169 CodeGenFunction &CGF) { 1170 if (Val->getType() == Ty) 1171 return Val; 1172 1173 if (isa<llvm::PointerType>(Val->getType())) { 1174 // If this is Pointer->Pointer avoid conversion to and from int. 1175 if (isa<llvm::PointerType>(Ty)) 1176 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1177 1178 // Convert the pointer to an integer so we can play with its width. 1179 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1180 } 1181 1182 llvm::Type *DestIntTy = Ty; 1183 if (isa<llvm::PointerType>(DestIntTy)) 1184 DestIntTy = CGF.IntPtrTy; 1185 1186 if (Val->getType() != DestIntTy) { 1187 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1188 if (DL.isBigEndian()) { 1189 // Preserve the high bits on big-endian targets. 1190 // That is what memory coercion does. 1191 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1192 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1193 1194 if (SrcSize > DstSize) { 1195 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1196 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1197 } else { 1198 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1199 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1200 } 1201 } else { 1202 // Little-endian targets preserve the low bits. No shifts required. 1203 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1204 } 1205 } 1206 1207 if (isa<llvm::PointerType>(Ty)) 1208 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1209 return Val; 1210 } 1211 1212 1213 1214 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1215 /// a pointer to an object of type \arg Ty, known to be aligned to 1216 /// \arg SrcAlign bytes. 1217 /// 1218 /// This safely handles the case when the src type is smaller than the 1219 /// destination type; in this situation the values of bits which not 1220 /// present in the src are undefined. 1221 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1222 CodeGenFunction &CGF) { 1223 llvm::Type *SrcTy = Src.getElementType(); 1224 1225 // If SrcTy and Ty are the same, just do a load. 1226 if (SrcTy == Ty) 1227 return CGF.Builder.CreateLoad(Src); 1228 1229 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1230 1231 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1232 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1233 SrcTy = Src.getType()->getElementType(); 1234 } 1235 1236 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1237 1238 // If the source and destination are integer or pointer types, just do an 1239 // extension or truncation to the desired type. 1240 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1241 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1242 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1243 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1244 } 1245 1246 // If load is legal, just bitcast the src pointer. 1247 if (SrcSize >= DstSize) { 1248 // Generally SrcSize is never greater than DstSize, since this means we are 1249 // losing bits. However, this can happen in cases where the structure has 1250 // additional padding, for example due to a user specified alignment. 1251 // 1252 // FIXME: Assert that we aren't truncating non-padding bits when have access 1253 // to that information. 1254 Src = CGF.Builder.CreateBitCast(Src, 1255 Ty->getPointerTo(Src.getAddressSpace())); 1256 return CGF.Builder.CreateLoad(Src); 1257 } 1258 1259 // Otherwise do coercion through memory. This is stupid, but simple. 1260 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1261 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); 1262 Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty); 1263 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1264 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1265 false); 1266 return CGF.Builder.CreateLoad(Tmp); 1267 } 1268 1269 // Function to store a first-class aggregate into memory. We prefer to 1270 // store the elements rather than the aggregate to be more friendly to 1271 // fast-isel. 1272 // FIXME: Do we need to recurse here? 1273 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1274 Address Dest, bool DestIsVolatile) { 1275 // Prefer scalar stores to first-class aggregate stores. 1276 if (llvm::StructType *STy = 1277 dyn_cast<llvm::StructType>(Val->getType())) { 1278 const llvm::StructLayout *Layout = 1279 CGF.CGM.getDataLayout().getStructLayout(STy); 1280 1281 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1282 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1283 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1284 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1285 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1286 } 1287 } else { 1288 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1289 } 1290 } 1291 1292 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1293 /// where the source and destination may have different types. The 1294 /// destination is known to be aligned to \arg DstAlign bytes. 1295 /// 1296 /// This safely handles the case when the src type is larger than the 1297 /// destination type; the upper bits of the src will be lost. 1298 static void CreateCoercedStore(llvm::Value *Src, 1299 Address Dst, 1300 bool DstIsVolatile, 1301 CodeGenFunction &CGF) { 1302 llvm::Type *SrcTy = Src->getType(); 1303 llvm::Type *DstTy = Dst.getType()->getElementType(); 1304 if (SrcTy == DstTy) { 1305 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1306 return; 1307 } 1308 1309 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1310 1311 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1312 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1313 DstTy = Dst.getType()->getElementType(); 1314 } 1315 1316 // If the source and destination are integer or pointer types, just do an 1317 // extension or truncation to the desired type. 1318 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1319 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1320 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1321 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1322 return; 1323 } 1324 1325 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1326 1327 // If store is legal, just bitcast the src pointer. 1328 if (SrcSize <= DstSize) { 1329 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1330 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1331 } else { 1332 // Otherwise do coercion through memory. This is stupid, but 1333 // simple. 1334 1335 // Generally SrcSize is never greater than DstSize, since this means we are 1336 // losing bits. However, this can happen in cases where the structure has 1337 // additional padding, for example due to a user specified alignment. 1338 // 1339 // FIXME: Assert that we aren't truncating non-padding bits when have access 1340 // to that information. 1341 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1342 CGF.Builder.CreateStore(Src, Tmp); 1343 Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty); 1344 Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty); 1345 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1346 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1347 false); 1348 } 1349 } 1350 1351 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1352 const ABIArgInfo &info) { 1353 if (unsigned offset = info.getDirectOffset()) { 1354 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1355 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1356 CharUnits::fromQuantity(offset)); 1357 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1358 } 1359 return addr; 1360 } 1361 1362 namespace { 1363 1364 /// Encapsulates information about the way function arguments from 1365 /// CGFunctionInfo should be passed to actual LLVM IR function. 1366 class ClangToLLVMArgMapping { 1367 static const unsigned InvalidIndex = ~0U; 1368 unsigned InallocaArgNo; 1369 unsigned SRetArgNo; 1370 unsigned TotalIRArgs; 1371 1372 /// Arguments of LLVM IR function corresponding to single Clang argument. 1373 struct IRArgs { 1374 unsigned PaddingArgIndex; 1375 // Argument is expanded to IR arguments at positions 1376 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1377 unsigned FirstArgIndex; 1378 unsigned NumberOfArgs; 1379 1380 IRArgs() 1381 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1382 NumberOfArgs(0) {} 1383 }; 1384 1385 SmallVector<IRArgs, 8> ArgInfo; 1386 1387 public: 1388 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1389 bool OnlyRequiredArgs = false) 1390 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1391 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1392 construct(Context, FI, OnlyRequiredArgs); 1393 } 1394 1395 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1396 unsigned getInallocaArgNo() const { 1397 assert(hasInallocaArg()); 1398 return InallocaArgNo; 1399 } 1400 1401 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1402 unsigned getSRetArgNo() const { 1403 assert(hasSRetArg()); 1404 return SRetArgNo; 1405 } 1406 1407 unsigned totalIRArgs() const { return TotalIRArgs; } 1408 1409 bool hasPaddingArg(unsigned ArgNo) const { 1410 assert(ArgNo < ArgInfo.size()); 1411 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1412 } 1413 unsigned getPaddingArgNo(unsigned ArgNo) const { 1414 assert(hasPaddingArg(ArgNo)); 1415 return ArgInfo[ArgNo].PaddingArgIndex; 1416 } 1417 1418 /// Returns index of first IR argument corresponding to ArgNo, and their 1419 /// quantity. 1420 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1421 assert(ArgNo < ArgInfo.size()); 1422 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1423 ArgInfo[ArgNo].NumberOfArgs); 1424 } 1425 1426 private: 1427 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1428 bool OnlyRequiredArgs); 1429 }; 1430 1431 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1432 const CGFunctionInfo &FI, 1433 bool OnlyRequiredArgs) { 1434 unsigned IRArgNo = 0; 1435 bool SwapThisWithSRet = false; 1436 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1437 1438 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1439 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1440 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1441 } 1442 1443 unsigned ArgNo = 0; 1444 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1445 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1446 ++I, ++ArgNo) { 1447 assert(I != FI.arg_end()); 1448 QualType ArgType = I->type; 1449 const ABIArgInfo &AI = I->info; 1450 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1451 auto &IRArgs = ArgInfo[ArgNo]; 1452 1453 if (AI.getPaddingType()) 1454 IRArgs.PaddingArgIndex = IRArgNo++; 1455 1456 switch (AI.getKind()) { 1457 case ABIArgInfo::Extend: 1458 case ABIArgInfo::Direct: { 1459 // FIXME: handle sseregparm someday... 1460 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1461 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1462 IRArgs.NumberOfArgs = STy->getNumElements(); 1463 } else { 1464 IRArgs.NumberOfArgs = 1; 1465 } 1466 break; 1467 } 1468 case ABIArgInfo::Indirect: 1469 IRArgs.NumberOfArgs = 1; 1470 break; 1471 case ABIArgInfo::Ignore: 1472 case ABIArgInfo::InAlloca: 1473 // ignore and inalloca doesn't have matching LLVM parameters. 1474 IRArgs.NumberOfArgs = 0; 1475 break; 1476 case ABIArgInfo::CoerceAndExpand: 1477 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1478 break; 1479 case ABIArgInfo::Expand: 1480 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1481 break; 1482 } 1483 1484 if (IRArgs.NumberOfArgs > 0) { 1485 IRArgs.FirstArgIndex = IRArgNo; 1486 IRArgNo += IRArgs.NumberOfArgs; 1487 } 1488 1489 // Skip over the sret parameter when it comes second. We already handled it 1490 // above. 1491 if (IRArgNo == 1 && SwapThisWithSRet) 1492 IRArgNo++; 1493 } 1494 assert(ArgNo == ArgInfo.size()); 1495 1496 if (FI.usesInAlloca()) 1497 InallocaArgNo = IRArgNo++; 1498 1499 TotalIRArgs = IRArgNo; 1500 } 1501 } // namespace 1502 1503 /***/ 1504 1505 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1506 const auto &RI = FI.getReturnInfo(); 1507 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1508 } 1509 1510 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1511 return ReturnTypeUsesSRet(FI) && 1512 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1513 } 1514 1515 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1516 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1517 switch (BT->getKind()) { 1518 default: 1519 return false; 1520 case BuiltinType::Float: 1521 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1522 case BuiltinType::Double: 1523 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1524 case BuiltinType::LongDouble: 1525 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1526 } 1527 } 1528 1529 return false; 1530 } 1531 1532 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1533 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1534 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1535 if (BT->getKind() == BuiltinType::LongDouble) 1536 return getTarget().useObjCFP2RetForComplexLongDouble(); 1537 } 1538 } 1539 1540 return false; 1541 } 1542 1543 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1544 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1545 return GetFunctionType(FI); 1546 } 1547 1548 llvm::FunctionType * 1549 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1550 1551 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1552 (void)Inserted; 1553 assert(Inserted && "Recursively being processed?"); 1554 1555 llvm::Type *resultType = nullptr; 1556 const ABIArgInfo &retAI = FI.getReturnInfo(); 1557 switch (retAI.getKind()) { 1558 case ABIArgInfo::Expand: 1559 llvm_unreachable("Invalid ABI kind for return argument"); 1560 1561 case ABIArgInfo::Extend: 1562 case ABIArgInfo::Direct: 1563 resultType = retAI.getCoerceToType(); 1564 break; 1565 1566 case ABIArgInfo::InAlloca: 1567 if (retAI.getInAllocaSRet()) { 1568 // sret things on win32 aren't void, they return the sret pointer. 1569 QualType ret = FI.getReturnType(); 1570 llvm::Type *ty = ConvertType(ret); 1571 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1572 resultType = llvm::PointerType::get(ty, addressSpace); 1573 } else { 1574 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1575 } 1576 break; 1577 1578 case ABIArgInfo::Indirect: 1579 case ABIArgInfo::Ignore: 1580 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1581 break; 1582 1583 case ABIArgInfo::CoerceAndExpand: 1584 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1585 break; 1586 } 1587 1588 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1589 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1590 1591 // Add type for sret argument. 1592 if (IRFunctionArgs.hasSRetArg()) { 1593 QualType Ret = FI.getReturnType(); 1594 llvm::Type *Ty = ConvertType(Ret); 1595 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1596 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1597 llvm::PointerType::get(Ty, AddressSpace); 1598 } 1599 1600 // Add type for inalloca argument. 1601 if (IRFunctionArgs.hasInallocaArg()) { 1602 auto ArgStruct = FI.getArgStruct(); 1603 assert(ArgStruct); 1604 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1605 } 1606 1607 // Add in all of the required arguments. 1608 unsigned ArgNo = 0; 1609 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1610 ie = it + FI.getNumRequiredArgs(); 1611 for (; it != ie; ++it, ++ArgNo) { 1612 const ABIArgInfo &ArgInfo = it->info; 1613 1614 // Insert a padding type to ensure proper alignment. 1615 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1616 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1617 ArgInfo.getPaddingType(); 1618 1619 unsigned FirstIRArg, NumIRArgs; 1620 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1621 1622 switch (ArgInfo.getKind()) { 1623 case ABIArgInfo::Ignore: 1624 case ABIArgInfo::InAlloca: 1625 assert(NumIRArgs == 0); 1626 break; 1627 1628 case ABIArgInfo::Indirect: { 1629 assert(NumIRArgs == 1); 1630 // indirect arguments are always on the stack, which is alloca addr space. 1631 llvm::Type *LTy = ConvertTypeForMem(it->type); 1632 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1633 CGM.getDataLayout().getAllocaAddrSpace()); 1634 break; 1635 } 1636 1637 case ABIArgInfo::Extend: 1638 case ABIArgInfo::Direct: { 1639 // Fast-isel and the optimizer generally like scalar values better than 1640 // FCAs, so we flatten them if this is safe to do for this argument. 1641 llvm::Type *argType = ArgInfo.getCoerceToType(); 1642 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1643 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1644 assert(NumIRArgs == st->getNumElements()); 1645 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1646 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1647 } else { 1648 assert(NumIRArgs == 1); 1649 ArgTypes[FirstIRArg] = argType; 1650 } 1651 break; 1652 } 1653 1654 case ABIArgInfo::CoerceAndExpand: { 1655 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1656 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1657 *ArgTypesIter++ = EltTy; 1658 } 1659 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1660 break; 1661 } 1662 1663 case ABIArgInfo::Expand: 1664 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1665 getExpandedTypes(it->type, ArgTypesIter); 1666 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1667 break; 1668 } 1669 } 1670 1671 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1672 assert(Erased && "Not in set?"); 1673 1674 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1675 } 1676 1677 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1678 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1679 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1680 1681 if (!isFuncTypeConvertible(FPT)) 1682 return llvm::StructType::get(getLLVMContext()); 1683 1684 const CGFunctionInfo *Info; 1685 if (isa<CXXDestructorDecl>(MD)) 1686 Info = 1687 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1688 else 1689 Info = &arrangeCXXMethodDeclaration(MD); 1690 return GetFunctionType(*Info); 1691 } 1692 1693 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1694 llvm::AttrBuilder &FuncAttrs, 1695 const FunctionProtoType *FPT) { 1696 if (!FPT) 1697 return; 1698 1699 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1700 FPT->isNothrow()) 1701 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1702 } 1703 1704 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1705 bool AttrOnCallSite, 1706 llvm::AttrBuilder &FuncAttrs) { 1707 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1708 if (!HasOptnone) { 1709 if (CodeGenOpts.OptimizeSize) 1710 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1711 if (CodeGenOpts.OptimizeSize == 2) 1712 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1713 } 1714 1715 if (CodeGenOpts.DisableRedZone) 1716 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1717 if (CodeGenOpts.IndirectTlsSegRefs) 1718 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1719 if (CodeGenOpts.NoImplicitFloat) 1720 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1721 1722 if (AttrOnCallSite) { 1723 // Attributes that should go on the call site only. 1724 if (!CodeGenOpts.SimplifyLibCalls || 1725 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1726 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1727 if (!CodeGenOpts.TrapFuncName.empty()) 1728 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1729 } else { 1730 // Attributes that should go on the function, but not the call site. 1731 if (!CodeGenOpts.DisableFPElim) { 1732 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1733 } else if (CodeGenOpts.OmitLeafFramePointer) { 1734 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1735 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1736 } else { 1737 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1738 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1739 } 1740 1741 FuncAttrs.addAttribute("less-precise-fpmad", 1742 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1743 1744 if (CodeGenOpts.NullPointerIsValid) 1745 FuncAttrs.addAttribute("null-pointer-is-valid", "true"); 1746 if (!CodeGenOpts.FPDenormalMode.empty()) 1747 FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); 1748 1749 FuncAttrs.addAttribute("no-trapping-math", 1750 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1751 1752 // Strict (compliant) code is the default, so only add this attribute to 1753 // indicate that we are trying to workaround a problem case. 1754 if (!CodeGenOpts.StrictFloatCastOverflow) 1755 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1756 1757 // TODO: Are these all needed? 1758 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1759 FuncAttrs.addAttribute("no-infs-fp-math", 1760 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1761 FuncAttrs.addAttribute("no-nans-fp-math", 1762 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1763 FuncAttrs.addAttribute("unsafe-fp-math", 1764 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1765 FuncAttrs.addAttribute("use-soft-float", 1766 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1767 FuncAttrs.addAttribute("stack-protector-buffer-size", 1768 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1769 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1770 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1771 FuncAttrs.addAttribute( 1772 "correctly-rounded-divide-sqrt-fp-math", 1773 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1774 1775 if (getLangOpts().OpenCL) 1776 FuncAttrs.addAttribute("denorms-are-zero", 1777 llvm::toStringRef(CodeGenOpts.FlushDenorm)); 1778 1779 // TODO: Reciprocal estimate codegen options should apply to instructions? 1780 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1781 if (!Recips.empty()) 1782 FuncAttrs.addAttribute("reciprocal-estimates", 1783 llvm::join(Recips, ",")); 1784 1785 if (!CodeGenOpts.PreferVectorWidth.empty() && 1786 CodeGenOpts.PreferVectorWidth != "none") 1787 FuncAttrs.addAttribute("prefer-vector-width", 1788 CodeGenOpts.PreferVectorWidth); 1789 1790 if (CodeGenOpts.StackRealignment) 1791 FuncAttrs.addAttribute("stackrealign"); 1792 if (CodeGenOpts.Backchain) 1793 FuncAttrs.addAttribute("backchain"); 1794 1795 if (CodeGenOpts.SpeculativeLoadHardening) 1796 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1797 } 1798 1799 if (getLangOpts().assumeFunctionsAreConvergent()) { 1800 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1801 // convergent (meaning, they may call an intrinsically convergent op, such 1802 // as __syncthreads() / barrier(), and so can't have certain optimizations 1803 // applied around them). LLVM will remove this attribute where it safely 1804 // can. 1805 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1806 } 1807 1808 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1809 // Exceptions aren't supported in CUDA device code. 1810 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1811 1812 // Respect -fcuda-flush-denormals-to-zero. 1813 if (CodeGenOpts.FlushDenorm) 1814 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1815 } 1816 1817 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1818 StringRef Var, Value; 1819 std::tie(Var, Value) = Attr.split('='); 1820 FuncAttrs.addAttribute(Var, Value); 1821 } 1822 } 1823 1824 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1825 llvm::AttrBuilder FuncAttrs; 1826 ConstructDefaultFnAttrList(F.getName(), 1827 F.hasFnAttribute(llvm::Attribute::OptimizeNone), 1828 /* AttrOnCallsite = */ false, FuncAttrs); 1829 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1830 } 1831 1832 void CodeGenModule::ConstructAttributeList( 1833 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1834 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1835 llvm::AttrBuilder FuncAttrs; 1836 llvm::AttrBuilder RetAttrs; 1837 1838 CallingConv = FI.getEffectiveCallingConvention(); 1839 if (FI.isNoReturn()) 1840 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1841 1842 // If we have information about the function prototype, we can learn 1843 // attributes from there. 1844 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1845 CalleeInfo.getCalleeFunctionProtoType()); 1846 1847 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 1848 1849 bool HasOptnone = false; 1850 // FIXME: handle sseregparm someday... 1851 if (TargetDecl) { 1852 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1853 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1854 if (TargetDecl->hasAttr<NoThrowAttr>()) 1855 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1856 if (TargetDecl->hasAttr<NoReturnAttr>()) 1857 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1858 if (TargetDecl->hasAttr<ColdAttr>()) 1859 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1860 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1861 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1862 if (TargetDecl->hasAttr<ConvergentAttr>()) 1863 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1864 1865 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1866 AddAttributesFromFunctionProtoType( 1867 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1868 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1869 // These attributes are not inherited by overloads. 1870 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1871 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1872 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1873 } 1874 1875 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1876 if (TargetDecl->hasAttr<ConstAttr>()) { 1877 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1878 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1879 } else if (TargetDecl->hasAttr<PureAttr>()) { 1880 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1881 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1882 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1883 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1884 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1885 } 1886 if (TargetDecl->hasAttr<RestrictAttr>()) 1887 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1888 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1889 !CodeGenOpts.NullPointerIsValid) 1890 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1891 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1892 FuncAttrs.addAttribute("no_caller_saved_registers"); 1893 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1894 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1895 1896 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1897 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1898 Optional<unsigned> NumElemsParam; 1899 if (AllocSize->getNumElemsParam().isValid()) 1900 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 1901 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 1902 NumElemsParam); 1903 } 1904 } 1905 1906 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1907 1908 // This must run after constructing the default function attribute list 1909 // to ensure that the speculative load hardening attribute is removed 1910 // in the case where the -mspeculative-load-hardening flag was passed. 1911 if (TargetDecl) { 1912 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 1913 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 1914 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 1915 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1916 } 1917 1918 if (CodeGenOpts.EnableSegmentedStacks && 1919 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1920 FuncAttrs.addAttribute("split-stack"); 1921 1922 // Add NonLazyBind attribute to function declarations when -fno-plt 1923 // is used. 1924 if (TargetDecl && CodeGenOpts.NoPLT) { 1925 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1926 if (!Fn->isDefined() && !AttrOnCallSite) { 1927 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 1928 } 1929 } 1930 } 1931 1932 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) { 1933 if (getLangOpts().OpenCLVersion <= 120) { 1934 // OpenCL v1.2 Work groups are always uniform 1935 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 1936 } else { 1937 // OpenCL v2.0 Work groups may be whether uniform or not. 1938 // '-cl-uniform-work-group-size' compile option gets a hint 1939 // to the compiler that the global work-size be a multiple of 1940 // the work-group size specified to clEnqueueNDRangeKernel 1941 // (i.e. work groups are uniform). 1942 FuncAttrs.addAttribute("uniform-work-group-size", 1943 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 1944 } 1945 } 1946 1947 if (!AttrOnCallSite) { 1948 bool DisableTailCalls = false; 1949 1950 if (CodeGenOpts.DisableTailCalls) 1951 DisableTailCalls = true; 1952 else if (TargetDecl) { 1953 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 1954 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 1955 DisableTailCalls = true; 1956 else if (CodeGenOpts.NoEscapingBlockTailCalls) { 1957 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 1958 if (!BD->doesNotEscape()) 1959 DisableTailCalls = true; 1960 } 1961 } 1962 1963 FuncAttrs.addAttribute("disable-tail-calls", 1964 llvm::toStringRef(DisableTailCalls)); 1965 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 1966 } 1967 1968 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1969 1970 QualType RetTy = FI.getReturnType(); 1971 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1972 switch (RetAI.getKind()) { 1973 case ABIArgInfo::Extend: 1974 if (RetAI.isSignExt()) 1975 RetAttrs.addAttribute(llvm::Attribute::SExt); 1976 else 1977 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1978 LLVM_FALLTHROUGH; 1979 case ABIArgInfo::Direct: 1980 if (RetAI.getInReg()) 1981 RetAttrs.addAttribute(llvm::Attribute::InReg); 1982 break; 1983 case ABIArgInfo::Ignore: 1984 break; 1985 1986 case ABIArgInfo::InAlloca: 1987 case ABIArgInfo::Indirect: { 1988 // inalloca and sret disable readnone and readonly 1989 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1990 .removeAttribute(llvm::Attribute::ReadNone); 1991 break; 1992 } 1993 1994 case ABIArgInfo::CoerceAndExpand: 1995 break; 1996 1997 case ABIArgInfo::Expand: 1998 llvm_unreachable("Invalid ABI kind for return argument"); 1999 } 2000 2001 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2002 QualType PTy = RefTy->getPointeeType(); 2003 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2004 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2005 .getQuantity()); 2006 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2007 !CodeGenOpts.NullPointerIsValid) 2008 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2009 } 2010 2011 bool hasUsedSRet = false; 2012 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2013 2014 // Attach attributes to sret. 2015 if (IRFunctionArgs.hasSRetArg()) { 2016 llvm::AttrBuilder SRETAttrs; 2017 if (!RetAI.getSuppressSRet()) 2018 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 2019 hasUsedSRet = true; 2020 if (RetAI.getInReg()) 2021 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2022 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2023 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2024 } 2025 2026 // Attach attributes to inalloca argument. 2027 if (IRFunctionArgs.hasInallocaArg()) { 2028 llvm::AttrBuilder Attrs; 2029 Attrs.addAttribute(llvm::Attribute::InAlloca); 2030 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2031 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2032 } 2033 2034 unsigned ArgNo = 0; 2035 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2036 E = FI.arg_end(); 2037 I != E; ++I, ++ArgNo) { 2038 QualType ParamType = I->type; 2039 const ABIArgInfo &AI = I->info; 2040 llvm::AttrBuilder Attrs; 2041 2042 // Add attribute for padding argument, if necessary. 2043 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2044 if (AI.getPaddingInReg()) { 2045 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2046 llvm::AttributeSet::get( 2047 getLLVMContext(), 2048 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2049 } 2050 } 2051 2052 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2053 // have the corresponding parameter variable. It doesn't make 2054 // sense to do it here because parameters are so messed up. 2055 switch (AI.getKind()) { 2056 case ABIArgInfo::Extend: 2057 if (AI.isSignExt()) 2058 Attrs.addAttribute(llvm::Attribute::SExt); 2059 else 2060 Attrs.addAttribute(llvm::Attribute::ZExt); 2061 LLVM_FALLTHROUGH; 2062 case ABIArgInfo::Direct: 2063 if (ArgNo == 0 && FI.isChainCall()) 2064 Attrs.addAttribute(llvm::Attribute::Nest); 2065 else if (AI.getInReg()) 2066 Attrs.addAttribute(llvm::Attribute::InReg); 2067 break; 2068 2069 case ABIArgInfo::Indirect: { 2070 if (AI.getInReg()) 2071 Attrs.addAttribute(llvm::Attribute::InReg); 2072 2073 if (AI.getIndirectByVal()) 2074 Attrs.addAttribute(llvm::Attribute::ByVal); 2075 2076 CharUnits Align = AI.getIndirectAlign(); 2077 2078 // In a byval argument, it is important that the required 2079 // alignment of the type is honored, as LLVM might be creating a 2080 // *new* stack object, and needs to know what alignment to give 2081 // it. (Sometimes it can deduce a sensible alignment on its own, 2082 // but not if clang decides it must emit a packed struct, or the 2083 // user specifies increased alignment requirements.) 2084 // 2085 // This is different from indirect *not* byval, where the object 2086 // exists already, and the align attribute is purely 2087 // informative. 2088 assert(!Align.isZero()); 2089 2090 // For now, only add this when we have a byval argument. 2091 // TODO: be less lazy about updating test cases. 2092 if (AI.getIndirectByVal()) 2093 Attrs.addAlignmentAttr(Align.getQuantity()); 2094 2095 // byval disables readnone and readonly. 2096 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2097 .removeAttribute(llvm::Attribute::ReadNone); 2098 break; 2099 } 2100 case ABIArgInfo::Ignore: 2101 case ABIArgInfo::Expand: 2102 case ABIArgInfo::CoerceAndExpand: 2103 break; 2104 2105 case ABIArgInfo::InAlloca: 2106 // inalloca disables readnone and readonly. 2107 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2108 .removeAttribute(llvm::Attribute::ReadNone); 2109 continue; 2110 } 2111 2112 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2113 QualType PTy = RefTy->getPointeeType(); 2114 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2115 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2116 .getQuantity()); 2117 else if (getContext().getTargetAddressSpace(PTy) == 0 && 2118 !CodeGenOpts.NullPointerIsValid) 2119 Attrs.addAttribute(llvm::Attribute::NonNull); 2120 } 2121 2122 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2123 case ParameterABI::Ordinary: 2124 break; 2125 2126 case ParameterABI::SwiftIndirectResult: { 2127 // Add 'sret' if we haven't already used it for something, but 2128 // only if the result is void. 2129 if (!hasUsedSRet && RetTy->isVoidType()) { 2130 Attrs.addAttribute(llvm::Attribute::StructRet); 2131 hasUsedSRet = true; 2132 } 2133 2134 // Add 'noalias' in either case. 2135 Attrs.addAttribute(llvm::Attribute::NoAlias); 2136 2137 // Add 'dereferenceable' and 'alignment'. 2138 auto PTy = ParamType->getPointeeType(); 2139 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2140 auto info = getContext().getTypeInfoInChars(PTy); 2141 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2142 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 2143 info.second.getQuantity())); 2144 } 2145 break; 2146 } 2147 2148 case ParameterABI::SwiftErrorResult: 2149 Attrs.addAttribute(llvm::Attribute::SwiftError); 2150 break; 2151 2152 case ParameterABI::SwiftContext: 2153 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2154 break; 2155 } 2156 2157 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2158 Attrs.addAttribute(llvm::Attribute::NoCapture); 2159 2160 if (Attrs.hasAttributes()) { 2161 unsigned FirstIRArg, NumIRArgs; 2162 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2163 for (unsigned i = 0; i < NumIRArgs; i++) 2164 ArgAttrs[FirstIRArg + i] = 2165 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2166 } 2167 } 2168 assert(ArgNo == FI.arg_size()); 2169 2170 AttrList = llvm::AttributeList::get( 2171 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2172 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2173 } 2174 2175 /// An argument came in as a promoted argument; demote it back to its 2176 /// declared type. 2177 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2178 const VarDecl *var, 2179 llvm::Value *value) { 2180 llvm::Type *varType = CGF.ConvertType(var->getType()); 2181 2182 // This can happen with promotions that actually don't change the 2183 // underlying type, like the enum promotions. 2184 if (value->getType() == varType) return value; 2185 2186 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2187 && "unexpected promotion type"); 2188 2189 if (isa<llvm::IntegerType>(varType)) 2190 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2191 2192 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2193 } 2194 2195 /// Returns the attribute (either parameter attribute, or function 2196 /// attribute), which declares argument ArgNo to be non-null. 2197 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2198 QualType ArgType, unsigned ArgNo) { 2199 // FIXME: __attribute__((nonnull)) can also be applied to: 2200 // - references to pointers, where the pointee is known to be 2201 // nonnull (apparently a Clang extension) 2202 // - transparent unions containing pointers 2203 // In the former case, LLVM IR cannot represent the constraint. In 2204 // the latter case, we have no guarantee that the transparent union 2205 // is in fact passed as a pointer. 2206 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2207 return nullptr; 2208 // First, check attribute on parameter itself. 2209 if (PVD) { 2210 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2211 return ParmNNAttr; 2212 } 2213 // Check function attributes. 2214 if (!FD) 2215 return nullptr; 2216 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2217 if (NNAttr->isNonNull(ArgNo)) 2218 return NNAttr; 2219 } 2220 return nullptr; 2221 } 2222 2223 namespace { 2224 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2225 Address Temp; 2226 Address Arg; 2227 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2228 void Emit(CodeGenFunction &CGF, Flags flags) override { 2229 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2230 CGF.Builder.CreateStore(errorValue, Arg); 2231 } 2232 }; 2233 } 2234 2235 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2236 llvm::Function *Fn, 2237 const FunctionArgList &Args) { 2238 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2239 // Naked functions don't have prologues. 2240 return; 2241 2242 // If this is an implicit-return-zero function, go ahead and 2243 // initialize the return value. TODO: it might be nice to have 2244 // a more general mechanism for this that didn't require synthesized 2245 // return statements. 2246 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2247 if (FD->hasImplicitReturnZero()) { 2248 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2249 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2250 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2251 Builder.CreateStore(Zero, ReturnValue); 2252 } 2253 } 2254 2255 // FIXME: We no longer need the types from FunctionArgList; lift up and 2256 // simplify. 2257 2258 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2259 // Flattened function arguments. 2260 SmallVector<llvm::Value *, 16> FnArgs; 2261 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2262 for (auto &Arg : Fn->args()) { 2263 FnArgs.push_back(&Arg); 2264 } 2265 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2266 2267 // If we're using inalloca, all the memory arguments are GEPs off of the last 2268 // parameter, which is a pointer to the complete memory area. 2269 Address ArgStruct = Address::invalid(); 2270 const llvm::StructLayout *ArgStructLayout = nullptr; 2271 if (IRFunctionArgs.hasInallocaArg()) { 2272 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 2273 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2274 FI.getArgStructAlignment()); 2275 2276 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2277 } 2278 2279 // Name the struct return parameter. 2280 if (IRFunctionArgs.hasSRetArg()) { 2281 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2282 AI->setName("agg.result"); 2283 AI->addAttr(llvm::Attribute::NoAlias); 2284 } 2285 2286 // Track if we received the parameter as a pointer (indirect, byval, or 2287 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2288 // into a local alloca for us. 2289 SmallVector<ParamValue, 16> ArgVals; 2290 ArgVals.reserve(Args.size()); 2291 2292 // Create a pointer value for every parameter declaration. This usually 2293 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2294 // any cleanups or do anything that might unwind. We do that separately, so 2295 // we can push the cleanups in the correct order for the ABI. 2296 assert(FI.arg_size() == Args.size() && 2297 "Mismatch between function signature & arguments."); 2298 unsigned ArgNo = 0; 2299 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2300 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2301 i != e; ++i, ++info_it, ++ArgNo) { 2302 const VarDecl *Arg = *i; 2303 const ABIArgInfo &ArgI = info_it->info; 2304 2305 bool isPromoted = 2306 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2307 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2308 // the parameter is promoted. In this case we convert to 2309 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2310 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2311 assert(hasScalarEvaluationKind(Ty) == 2312 hasScalarEvaluationKind(Arg->getType())); 2313 2314 unsigned FirstIRArg, NumIRArgs; 2315 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2316 2317 switch (ArgI.getKind()) { 2318 case ABIArgInfo::InAlloca: { 2319 assert(NumIRArgs == 0); 2320 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2321 CharUnits FieldOffset = 2322 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 2323 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 2324 Arg->getName()); 2325 ArgVals.push_back(ParamValue::forIndirect(V)); 2326 break; 2327 } 2328 2329 case ABIArgInfo::Indirect: { 2330 assert(NumIRArgs == 1); 2331 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2332 2333 if (!hasScalarEvaluationKind(Ty)) { 2334 // Aggregates and complex variables are accessed by reference. All we 2335 // need to do is realign the value, if requested. 2336 Address V = ParamAddr; 2337 if (ArgI.getIndirectRealign()) { 2338 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2339 2340 // Copy from the incoming argument pointer to the temporary with the 2341 // appropriate alignment. 2342 // 2343 // FIXME: We should have a common utility for generating an aggregate 2344 // copy. 2345 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2346 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2347 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2348 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2349 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2350 V = AlignedTemp; 2351 } 2352 ArgVals.push_back(ParamValue::forIndirect(V)); 2353 } else { 2354 // Load scalar value from indirect argument. 2355 llvm::Value *V = 2356 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2357 2358 if (isPromoted) 2359 V = emitArgumentDemotion(*this, Arg, V); 2360 ArgVals.push_back(ParamValue::forDirect(V)); 2361 } 2362 break; 2363 } 2364 2365 case ABIArgInfo::Extend: 2366 case ABIArgInfo::Direct: { 2367 2368 // If we have the trivial case, handle it with no muss and fuss. 2369 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2370 ArgI.getCoerceToType() == ConvertType(Ty) && 2371 ArgI.getDirectOffset() == 0) { 2372 assert(NumIRArgs == 1); 2373 llvm::Value *V = FnArgs[FirstIRArg]; 2374 auto AI = cast<llvm::Argument>(V); 2375 2376 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2377 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2378 PVD->getFunctionScopeIndex()) && 2379 !CGM.getCodeGenOpts().NullPointerIsValid) 2380 AI->addAttr(llvm::Attribute::NonNull); 2381 2382 QualType OTy = PVD->getOriginalType(); 2383 if (const auto *ArrTy = 2384 getContext().getAsConstantArrayType(OTy)) { 2385 // A C99 array parameter declaration with the static keyword also 2386 // indicates dereferenceability, and if the size is constant we can 2387 // use the dereferenceable attribute (which requires the size in 2388 // bytes). 2389 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2390 QualType ETy = ArrTy->getElementType(); 2391 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2392 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2393 ArrSize) { 2394 llvm::AttrBuilder Attrs; 2395 Attrs.addDereferenceableAttr( 2396 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2397 AI->addAttrs(Attrs); 2398 } else if (getContext().getTargetAddressSpace(ETy) == 0 && 2399 !CGM.getCodeGenOpts().NullPointerIsValid) { 2400 AI->addAttr(llvm::Attribute::NonNull); 2401 } 2402 } 2403 } else if (const auto *ArrTy = 2404 getContext().getAsVariableArrayType(OTy)) { 2405 // For C99 VLAs with the static keyword, we don't know the size so 2406 // we can't use the dereferenceable attribute, but in addrspace(0) 2407 // we know that it must be nonnull. 2408 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2409 !getContext().getTargetAddressSpace(ArrTy->getElementType()) && 2410 !CGM.getCodeGenOpts().NullPointerIsValid) 2411 AI->addAttr(llvm::Attribute::NonNull); 2412 } 2413 2414 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2415 if (!AVAttr) 2416 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2417 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2418 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2419 // If alignment-assumption sanitizer is enabled, we do *not* add 2420 // alignment attribute here, but emit normal alignment assumption, 2421 // so the UBSAN check could function. 2422 llvm::Value *AlignmentValue = 2423 EmitScalarExpr(AVAttr->getAlignment()); 2424 llvm::ConstantInt *AlignmentCI = 2425 cast<llvm::ConstantInt>(AlignmentValue); 2426 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), 2427 +llvm::Value::MaximumAlignment); 2428 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2429 } 2430 } 2431 2432 if (Arg->getType().isRestrictQualified()) 2433 AI->addAttr(llvm::Attribute::NoAlias); 2434 2435 // LLVM expects swifterror parameters to be used in very restricted 2436 // ways. Copy the value into a less-restricted temporary. 2437 if (FI.getExtParameterInfo(ArgNo).getABI() 2438 == ParameterABI::SwiftErrorResult) { 2439 QualType pointeeTy = Ty->getPointeeType(); 2440 assert(pointeeTy->isPointerType()); 2441 Address temp = 2442 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2443 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2444 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2445 Builder.CreateStore(incomingErrorValue, temp); 2446 V = temp.getPointer(); 2447 2448 // Push a cleanup to copy the value back at the end of the function. 2449 // The convention does not guarantee that the value will be written 2450 // back if the function exits with an unwind exception. 2451 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2452 } 2453 2454 // Ensure the argument is the correct type. 2455 if (V->getType() != ArgI.getCoerceToType()) 2456 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2457 2458 if (isPromoted) 2459 V = emitArgumentDemotion(*this, Arg, V); 2460 2461 // Because of merging of function types from multiple decls it is 2462 // possible for the type of an argument to not match the corresponding 2463 // type in the function type. Since we are codegening the callee 2464 // in here, add a cast to the argument type. 2465 llvm::Type *LTy = ConvertType(Arg->getType()); 2466 if (V->getType() != LTy) 2467 V = Builder.CreateBitCast(V, LTy); 2468 2469 ArgVals.push_back(ParamValue::forDirect(V)); 2470 break; 2471 } 2472 2473 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2474 Arg->getName()); 2475 2476 // Pointer to store into. 2477 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2478 2479 // Fast-isel and the optimizer generally like scalar values better than 2480 // FCAs, so we flatten them if this is safe to do for this argument. 2481 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2482 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2483 STy->getNumElements() > 1) { 2484 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2485 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2486 llvm::Type *DstTy = Ptr.getElementType(); 2487 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2488 2489 Address AddrToStoreInto = Address::invalid(); 2490 if (SrcSize <= DstSize) { 2491 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2492 } else { 2493 AddrToStoreInto = 2494 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2495 } 2496 2497 assert(STy->getNumElements() == NumIRArgs); 2498 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2499 auto AI = FnArgs[FirstIRArg + i]; 2500 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2501 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2502 Address EltPtr = 2503 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2504 Builder.CreateStore(AI, EltPtr); 2505 } 2506 2507 if (SrcSize > DstSize) { 2508 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2509 } 2510 2511 } else { 2512 // Simple case, just do a coerced store of the argument into the alloca. 2513 assert(NumIRArgs == 1); 2514 auto AI = FnArgs[FirstIRArg]; 2515 AI->setName(Arg->getName() + ".coerce"); 2516 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2517 } 2518 2519 // Match to what EmitParmDecl is expecting for this type. 2520 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2521 llvm::Value *V = 2522 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2523 if (isPromoted) 2524 V = emitArgumentDemotion(*this, Arg, V); 2525 ArgVals.push_back(ParamValue::forDirect(V)); 2526 } else { 2527 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2528 } 2529 break; 2530 } 2531 2532 case ABIArgInfo::CoerceAndExpand: { 2533 // Reconstruct into a temporary. 2534 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2535 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2536 2537 auto coercionType = ArgI.getCoerceAndExpandType(); 2538 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2539 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2540 2541 unsigned argIndex = FirstIRArg; 2542 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2543 llvm::Type *eltType = coercionType->getElementType(i); 2544 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2545 continue; 2546 2547 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); 2548 auto elt = FnArgs[argIndex++]; 2549 Builder.CreateStore(elt, eltAddr); 2550 } 2551 assert(argIndex == FirstIRArg + NumIRArgs); 2552 break; 2553 } 2554 2555 case ABIArgInfo::Expand: { 2556 // If this structure was expanded into multiple arguments then 2557 // we need to create a temporary and reconstruct it from the 2558 // arguments. 2559 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2560 LValue LV = MakeAddrLValue(Alloca, Ty); 2561 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2562 2563 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2564 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2565 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2566 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2567 auto AI = FnArgs[FirstIRArg + i]; 2568 AI->setName(Arg->getName() + "." + Twine(i)); 2569 } 2570 break; 2571 } 2572 2573 case ABIArgInfo::Ignore: 2574 assert(NumIRArgs == 0); 2575 // Initialize the local variable appropriately. 2576 if (!hasScalarEvaluationKind(Ty)) { 2577 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2578 } else { 2579 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2580 ArgVals.push_back(ParamValue::forDirect(U)); 2581 } 2582 break; 2583 } 2584 } 2585 2586 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2587 for (int I = Args.size() - 1; I >= 0; --I) 2588 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2589 } else { 2590 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2591 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2592 } 2593 } 2594 2595 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2596 while (insn->use_empty()) { 2597 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2598 if (!bitcast) return; 2599 2600 // This is "safe" because we would have used a ConstantExpr otherwise. 2601 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2602 bitcast->eraseFromParent(); 2603 } 2604 } 2605 2606 /// Try to emit a fused autorelease of a return result. 2607 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2608 llvm::Value *result) { 2609 // We must be immediately followed the cast. 2610 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2611 if (BB->empty()) return nullptr; 2612 if (&BB->back() != result) return nullptr; 2613 2614 llvm::Type *resultType = result->getType(); 2615 2616 // result is in a BasicBlock and is therefore an Instruction. 2617 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2618 2619 SmallVector<llvm::Instruction *, 4> InstsToKill; 2620 2621 // Look for: 2622 // %generator = bitcast %type1* %generator2 to %type2* 2623 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2624 // We would have emitted this as a constant if the operand weren't 2625 // an Instruction. 2626 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2627 2628 // Require the generator to be immediately followed by the cast. 2629 if (generator->getNextNode() != bitcast) 2630 return nullptr; 2631 2632 InstsToKill.push_back(bitcast); 2633 } 2634 2635 // Look for: 2636 // %generator = call i8* @objc_retain(i8* %originalResult) 2637 // or 2638 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2639 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2640 if (!call) return nullptr; 2641 2642 bool doRetainAutorelease; 2643 2644 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2645 doRetainAutorelease = true; 2646 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2647 .objc_retainAutoreleasedReturnValue) { 2648 doRetainAutorelease = false; 2649 2650 // If we emitted an assembly marker for this call (and the 2651 // ARCEntrypoints field should have been set if so), go looking 2652 // for that call. If we can't find it, we can't do this 2653 // optimization. But it should always be the immediately previous 2654 // instruction, unless we needed bitcasts around the call. 2655 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2656 llvm::Instruction *prev = call->getPrevNode(); 2657 assert(prev); 2658 if (isa<llvm::BitCastInst>(prev)) { 2659 prev = prev->getPrevNode(); 2660 assert(prev); 2661 } 2662 assert(isa<llvm::CallInst>(prev)); 2663 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2664 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2665 InstsToKill.push_back(prev); 2666 } 2667 } else { 2668 return nullptr; 2669 } 2670 2671 result = call->getArgOperand(0); 2672 InstsToKill.push_back(call); 2673 2674 // Keep killing bitcasts, for sanity. Note that we no longer care 2675 // about precise ordering as long as there's exactly one use. 2676 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2677 if (!bitcast->hasOneUse()) break; 2678 InstsToKill.push_back(bitcast); 2679 result = bitcast->getOperand(0); 2680 } 2681 2682 // Delete all the unnecessary instructions, from latest to earliest. 2683 for (auto *I : InstsToKill) 2684 I->eraseFromParent(); 2685 2686 // Do the fused retain/autorelease if we were asked to. 2687 if (doRetainAutorelease) 2688 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2689 2690 // Cast back to the result type. 2691 return CGF.Builder.CreateBitCast(result, resultType); 2692 } 2693 2694 /// If this is a +1 of the value of an immutable 'self', remove it. 2695 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2696 llvm::Value *result) { 2697 // This is only applicable to a method with an immutable 'self'. 2698 const ObjCMethodDecl *method = 2699 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2700 if (!method) return nullptr; 2701 const VarDecl *self = method->getSelfDecl(); 2702 if (!self->getType().isConstQualified()) return nullptr; 2703 2704 // Look for a retain call. 2705 llvm::CallInst *retainCall = 2706 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2707 if (!retainCall || 2708 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2709 return nullptr; 2710 2711 // Look for an ordinary load of 'self'. 2712 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2713 llvm::LoadInst *load = 2714 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2715 if (!load || load->isAtomic() || load->isVolatile() || 2716 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2717 return nullptr; 2718 2719 // Okay! Burn it all down. This relies for correctness on the 2720 // assumption that the retain is emitted as part of the return and 2721 // that thereafter everything is used "linearly". 2722 llvm::Type *resultType = result->getType(); 2723 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2724 assert(retainCall->use_empty()); 2725 retainCall->eraseFromParent(); 2726 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2727 2728 return CGF.Builder.CreateBitCast(load, resultType); 2729 } 2730 2731 /// Emit an ARC autorelease of the result of a function. 2732 /// 2733 /// \return the value to actually return from the function 2734 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2735 llvm::Value *result) { 2736 // If we're returning 'self', kill the initial retain. This is a 2737 // heuristic attempt to "encourage correctness" in the really unfortunate 2738 // case where we have a return of self during a dealloc and we desperately 2739 // need to avoid the possible autorelease. 2740 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2741 return self; 2742 2743 // At -O0, try to emit a fused retain/autorelease. 2744 if (CGF.shouldUseFusedARCCalls()) 2745 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2746 return fused; 2747 2748 return CGF.EmitARCAutoreleaseReturnValue(result); 2749 } 2750 2751 /// Heuristically search for a dominating store to the return-value slot. 2752 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2753 // Check if a User is a store which pointerOperand is the ReturnValue. 2754 // We are looking for stores to the ReturnValue, not for stores of the 2755 // ReturnValue to some other location. 2756 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2757 auto *SI = dyn_cast<llvm::StoreInst>(U); 2758 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2759 return nullptr; 2760 // These aren't actually possible for non-coerced returns, and we 2761 // only care about non-coerced returns on this code path. 2762 assert(!SI->isAtomic() && !SI->isVolatile()); 2763 return SI; 2764 }; 2765 // If there are multiple uses of the return-value slot, just check 2766 // for something immediately preceding the IP. Sometimes this can 2767 // happen with how we generate implicit-returns; it can also happen 2768 // with noreturn cleanups. 2769 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2770 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2771 if (IP->empty()) return nullptr; 2772 llvm::Instruction *I = &IP->back(); 2773 2774 // Skip lifetime markers 2775 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2776 IE = IP->rend(); 2777 II != IE; ++II) { 2778 if (llvm::IntrinsicInst *Intrinsic = 2779 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2780 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2781 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2782 ++II; 2783 if (II == IE) 2784 break; 2785 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2786 continue; 2787 } 2788 } 2789 I = &*II; 2790 break; 2791 } 2792 2793 return GetStoreIfValid(I); 2794 } 2795 2796 llvm::StoreInst *store = 2797 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2798 if (!store) return nullptr; 2799 2800 // Now do a first-and-dirty dominance check: just walk up the 2801 // single-predecessors chain from the current insertion point. 2802 llvm::BasicBlock *StoreBB = store->getParent(); 2803 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2804 while (IP != StoreBB) { 2805 if (!(IP = IP->getSinglePredecessor())) 2806 return nullptr; 2807 } 2808 2809 // Okay, the store's basic block dominates the insertion point; we 2810 // can do our thing. 2811 return store; 2812 } 2813 2814 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2815 bool EmitRetDbgLoc, 2816 SourceLocation EndLoc) { 2817 if (FI.isNoReturn()) { 2818 // Noreturn functions don't return. 2819 EmitUnreachable(EndLoc); 2820 return; 2821 } 2822 2823 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2824 // Naked functions don't have epilogues. 2825 Builder.CreateUnreachable(); 2826 return; 2827 } 2828 2829 // Functions with no result always return void. 2830 if (!ReturnValue.isValid()) { 2831 Builder.CreateRetVoid(); 2832 return; 2833 } 2834 2835 llvm::DebugLoc RetDbgLoc; 2836 llvm::Value *RV = nullptr; 2837 QualType RetTy = FI.getReturnType(); 2838 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2839 2840 switch (RetAI.getKind()) { 2841 case ABIArgInfo::InAlloca: 2842 // Aggregrates get evaluated directly into the destination. Sometimes we 2843 // need to return the sret value in a register, though. 2844 assert(hasAggregateEvaluationKind(RetTy)); 2845 if (RetAI.getInAllocaSRet()) { 2846 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2847 --EI; 2848 llvm::Value *ArgStruct = &*EI; 2849 llvm::Value *SRet = Builder.CreateStructGEP( 2850 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2851 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2852 } 2853 break; 2854 2855 case ABIArgInfo::Indirect: { 2856 auto AI = CurFn->arg_begin(); 2857 if (RetAI.isSRetAfterThis()) 2858 ++AI; 2859 switch (getEvaluationKind(RetTy)) { 2860 case TEK_Complex: { 2861 ComplexPairTy RT = 2862 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2863 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2864 /*isInit*/ true); 2865 break; 2866 } 2867 case TEK_Aggregate: 2868 // Do nothing; aggregrates get evaluated directly into the destination. 2869 break; 2870 case TEK_Scalar: 2871 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2872 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2873 /*isInit*/ true); 2874 break; 2875 } 2876 break; 2877 } 2878 2879 case ABIArgInfo::Extend: 2880 case ABIArgInfo::Direct: 2881 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2882 RetAI.getDirectOffset() == 0) { 2883 // The internal return value temp always will have pointer-to-return-type 2884 // type, just do a load. 2885 2886 // If there is a dominating store to ReturnValue, we can elide 2887 // the load, zap the store, and usually zap the alloca. 2888 if (llvm::StoreInst *SI = 2889 findDominatingStoreToReturnValue(*this)) { 2890 // Reuse the debug location from the store unless there is 2891 // cleanup code to be emitted between the store and return 2892 // instruction. 2893 if (EmitRetDbgLoc && !AutoreleaseResult) 2894 RetDbgLoc = SI->getDebugLoc(); 2895 // Get the stored value and nuke the now-dead store. 2896 RV = SI->getValueOperand(); 2897 SI->eraseFromParent(); 2898 2899 // If that was the only use of the return value, nuke it as well now. 2900 auto returnValueInst = ReturnValue.getPointer(); 2901 if (returnValueInst->use_empty()) { 2902 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2903 alloca->eraseFromParent(); 2904 ReturnValue = Address::invalid(); 2905 } 2906 } 2907 2908 // Otherwise, we have to do a simple load. 2909 } else { 2910 RV = Builder.CreateLoad(ReturnValue); 2911 } 2912 } else { 2913 // If the value is offset in memory, apply the offset now. 2914 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2915 2916 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2917 } 2918 2919 // In ARC, end functions that return a retainable type with a call 2920 // to objc_autoreleaseReturnValue. 2921 if (AutoreleaseResult) { 2922 #ifndef NDEBUG 2923 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2924 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2925 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2926 // CurCodeDecl or BlockInfo. 2927 QualType RT; 2928 2929 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2930 RT = FD->getReturnType(); 2931 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2932 RT = MD->getReturnType(); 2933 else if (isa<BlockDecl>(CurCodeDecl)) 2934 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2935 else 2936 llvm_unreachable("Unexpected function/method type"); 2937 2938 assert(getLangOpts().ObjCAutoRefCount && 2939 !FI.isReturnsRetained() && 2940 RT->isObjCRetainableType()); 2941 #endif 2942 RV = emitAutoreleaseOfResult(*this, RV); 2943 } 2944 2945 break; 2946 2947 case ABIArgInfo::Ignore: 2948 break; 2949 2950 case ABIArgInfo::CoerceAndExpand: { 2951 auto coercionType = RetAI.getCoerceAndExpandType(); 2952 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2953 2954 // Load all of the coerced elements out into results. 2955 llvm::SmallVector<llvm::Value*, 4> results; 2956 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2957 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2958 auto coercedEltType = coercionType->getElementType(i); 2959 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2960 continue; 2961 2962 auto eltAddr = Builder.CreateStructGEP(addr, i, layout); 2963 auto elt = Builder.CreateLoad(eltAddr); 2964 results.push_back(elt); 2965 } 2966 2967 // If we have one result, it's the single direct result type. 2968 if (results.size() == 1) { 2969 RV = results[0]; 2970 2971 // Otherwise, we need to make a first-class aggregate. 2972 } else { 2973 // Construct a return type that lacks padding elements. 2974 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2975 2976 RV = llvm::UndefValue::get(returnType); 2977 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2978 RV = Builder.CreateInsertValue(RV, results[i], i); 2979 } 2980 } 2981 break; 2982 } 2983 2984 case ABIArgInfo::Expand: 2985 llvm_unreachable("Invalid ABI kind for return argument"); 2986 } 2987 2988 llvm::Instruction *Ret; 2989 if (RV) { 2990 EmitReturnValueCheck(RV); 2991 Ret = Builder.CreateRet(RV); 2992 } else { 2993 Ret = Builder.CreateRetVoid(); 2994 } 2995 2996 if (RetDbgLoc) 2997 Ret->setDebugLoc(std::move(RetDbgLoc)); 2998 } 2999 3000 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3001 // A current decl may not be available when emitting vtable thunks. 3002 if (!CurCodeDecl) 3003 return; 3004 3005 ReturnsNonNullAttr *RetNNAttr = nullptr; 3006 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3007 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3008 3009 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3010 return; 3011 3012 // Prefer the returns_nonnull attribute if it's present. 3013 SourceLocation AttrLoc; 3014 SanitizerMask CheckKind; 3015 SanitizerHandler Handler; 3016 if (RetNNAttr) { 3017 assert(!requiresReturnValueNullabilityCheck() && 3018 "Cannot check nullability and the nonnull attribute"); 3019 AttrLoc = RetNNAttr->getLocation(); 3020 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3021 Handler = SanitizerHandler::NonnullReturn; 3022 } else { 3023 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3024 if (auto *TSI = DD->getTypeSourceInfo()) 3025 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) 3026 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3027 CheckKind = SanitizerKind::NullabilityReturn; 3028 Handler = SanitizerHandler::NullabilityReturn; 3029 } 3030 3031 SanitizerScope SanScope(this); 3032 3033 // Make sure the "return" source location is valid. If we're checking a 3034 // nullability annotation, make sure the preconditions for the check are met. 3035 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3036 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3037 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3038 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3039 if (requiresReturnValueNullabilityCheck()) 3040 CanNullCheck = 3041 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3042 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3043 EmitBlock(Check); 3044 3045 // Now do the null check. 3046 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3047 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3048 llvm::Value *DynamicData[] = {SLocPtr}; 3049 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3050 3051 EmitBlock(NoCheck); 3052 3053 #ifndef NDEBUG 3054 // The return location should not be used after the check has been emitted. 3055 ReturnLocation = Address::invalid(); 3056 #endif 3057 } 3058 3059 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3060 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3061 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3062 } 3063 3064 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3065 QualType Ty) { 3066 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3067 // placeholders. 3068 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3069 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3070 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3071 3072 // FIXME: When we generate this IR in one pass, we shouldn't need 3073 // this win32-specific alignment hack. 3074 CharUnits Align = CharUnits::fromQuantity(4); 3075 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3076 3077 return AggValueSlot::forAddr(Address(Placeholder, Align), 3078 Ty.getQualifiers(), 3079 AggValueSlot::IsNotDestructed, 3080 AggValueSlot::DoesNotNeedGCBarriers, 3081 AggValueSlot::IsNotAliased, 3082 AggValueSlot::DoesNotOverlap); 3083 } 3084 3085 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3086 const VarDecl *param, 3087 SourceLocation loc) { 3088 // StartFunction converted the ABI-lowered parameter(s) into a 3089 // local alloca. We need to turn that into an r-value suitable 3090 // for EmitCall. 3091 Address local = GetAddrOfLocalVar(param); 3092 3093 QualType type = param->getType(); 3094 3095 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3096 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3097 } 3098 3099 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3100 // but the argument needs to be the original pointer. 3101 if (type->isReferenceType()) { 3102 args.add(RValue::get(Builder.CreateLoad(local)), type); 3103 3104 // In ARC, move out of consumed arguments so that the release cleanup 3105 // entered by StartFunction doesn't cause an over-release. This isn't 3106 // optimal -O0 code generation, but it should get cleaned up when 3107 // optimization is enabled. This also assumes that delegate calls are 3108 // performed exactly once for a set of arguments, but that should be safe. 3109 } else if (getLangOpts().ObjCAutoRefCount && 3110 param->hasAttr<NSConsumedAttr>() && 3111 type->isObjCRetainableType()) { 3112 llvm::Value *ptr = Builder.CreateLoad(local); 3113 auto null = 3114 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3115 Builder.CreateStore(null, local); 3116 args.add(RValue::get(ptr), type); 3117 3118 // For the most part, we just need to load the alloca, except that 3119 // aggregate r-values are actually pointers to temporaries. 3120 } else { 3121 args.add(convertTempToRValue(local, type, loc), type); 3122 } 3123 3124 // Deactivate the cleanup for the callee-destructed param that was pushed. 3125 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3126 type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3127 type.isDestructedType()) { 3128 EHScopeStack::stable_iterator cleanup = 3129 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3130 assert(cleanup.isValid() && 3131 "cleanup for callee-destructed param not recorded"); 3132 // This unreachable is a temporary marker which will be removed later. 3133 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3134 args.addArgCleanupDeactivation(cleanup, isActive); 3135 } 3136 } 3137 3138 static bool isProvablyNull(llvm::Value *addr) { 3139 return isa<llvm::ConstantPointerNull>(addr); 3140 } 3141 3142 /// Emit the actual writing-back of a writeback. 3143 static void emitWriteback(CodeGenFunction &CGF, 3144 const CallArgList::Writeback &writeback) { 3145 const LValue &srcLV = writeback.Source; 3146 Address srcAddr = srcLV.getAddress(); 3147 assert(!isProvablyNull(srcAddr.getPointer()) && 3148 "shouldn't have writeback for provably null argument"); 3149 3150 llvm::BasicBlock *contBB = nullptr; 3151 3152 // If the argument wasn't provably non-null, we need to null check 3153 // before doing the store. 3154 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3155 CGF.CGM.getDataLayout()); 3156 if (!provablyNonNull) { 3157 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3158 contBB = CGF.createBasicBlock("icr.done"); 3159 3160 llvm::Value *isNull = 3161 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3162 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3163 CGF.EmitBlock(writebackBB); 3164 } 3165 3166 // Load the value to writeback. 3167 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3168 3169 // Cast it back, in case we're writing an id to a Foo* or something. 3170 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3171 "icr.writeback-cast"); 3172 3173 // Perform the writeback. 3174 3175 // If we have a "to use" value, it's something we need to emit a use 3176 // of. This has to be carefully threaded in: if it's done after the 3177 // release it's potentially undefined behavior (and the optimizer 3178 // will ignore it), and if it happens before the retain then the 3179 // optimizer could move the release there. 3180 if (writeback.ToUse) { 3181 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3182 3183 // Retain the new value. No need to block-copy here: the block's 3184 // being passed up the stack. 3185 value = CGF.EmitARCRetainNonBlock(value); 3186 3187 // Emit the intrinsic use here. 3188 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3189 3190 // Load the old value (primitively). 3191 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3192 3193 // Put the new value in place (primitively). 3194 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3195 3196 // Release the old value. 3197 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3198 3199 // Otherwise, we can just do a normal lvalue store. 3200 } else { 3201 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3202 } 3203 3204 // Jump to the continuation block. 3205 if (!provablyNonNull) 3206 CGF.EmitBlock(contBB); 3207 } 3208 3209 static void emitWritebacks(CodeGenFunction &CGF, 3210 const CallArgList &args) { 3211 for (const auto &I : args.writebacks()) 3212 emitWriteback(CGF, I); 3213 } 3214 3215 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3216 const CallArgList &CallArgs) { 3217 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3218 CallArgs.getCleanupsToDeactivate(); 3219 // Iterate in reverse to increase the likelihood of popping the cleanup. 3220 for (const auto &I : llvm::reverse(Cleanups)) { 3221 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3222 I.IsActiveIP->eraseFromParent(); 3223 } 3224 } 3225 3226 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3227 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3228 if (uop->getOpcode() == UO_AddrOf) 3229 return uop->getSubExpr(); 3230 return nullptr; 3231 } 3232 3233 /// Emit an argument that's being passed call-by-writeback. That is, 3234 /// we are passing the address of an __autoreleased temporary; it 3235 /// might be copy-initialized with the current value of the given 3236 /// address, but it will definitely be copied out of after the call. 3237 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3238 const ObjCIndirectCopyRestoreExpr *CRE) { 3239 LValue srcLV; 3240 3241 // Make an optimistic effort to emit the address as an l-value. 3242 // This can fail if the argument expression is more complicated. 3243 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3244 srcLV = CGF.EmitLValue(lvExpr); 3245 3246 // Otherwise, just emit it as a scalar. 3247 } else { 3248 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3249 3250 QualType srcAddrType = 3251 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3252 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3253 } 3254 Address srcAddr = srcLV.getAddress(); 3255 3256 // The dest and src types don't necessarily match in LLVM terms 3257 // because of the crazy ObjC compatibility rules. 3258 3259 llvm::PointerType *destType = 3260 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3261 3262 // If the address is a constant null, just pass the appropriate null. 3263 if (isProvablyNull(srcAddr.getPointer())) { 3264 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3265 CRE->getType()); 3266 return; 3267 } 3268 3269 // Create the temporary. 3270 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3271 CGF.getPointerAlign(), 3272 "icr.temp"); 3273 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3274 // and that cleanup will be conditional if we can't prove that the l-value 3275 // isn't null, so we need to register a dominating point so that the cleanups 3276 // system will make valid IR. 3277 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3278 3279 // Zero-initialize it if we're not doing a copy-initialization. 3280 bool shouldCopy = CRE->shouldCopy(); 3281 if (!shouldCopy) { 3282 llvm::Value *null = 3283 llvm::ConstantPointerNull::get( 3284 cast<llvm::PointerType>(destType->getElementType())); 3285 CGF.Builder.CreateStore(null, temp); 3286 } 3287 3288 llvm::BasicBlock *contBB = nullptr; 3289 llvm::BasicBlock *originBB = nullptr; 3290 3291 // If the address is *not* known to be non-null, we need to switch. 3292 llvm::Value *finalArgument; 3293 3294 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3295 CGF.CGM.getDataLayout()); 3296 if (provablyNonNull) { 3297 finalArgument = temp.getPointer(); 3298 } else { 3299 llvm::Value *isNull = 3300 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3301 3302 finalArgument = CGF.Builder.CreateSelect(isNull, 3303 llvm::ConstantPointerNull::get(destType), 3304 temp.getPointer(), "icr.argument"); 3305 3306 // If we need to copy, then the load has to be conditional, which 3307 // means we need control flow. 3308 if (shouldCopy) { 3309 originBB = CGF.Builder.GetInsertBlock(); 3310 contBB = CGF.createBasicBlock("icr.cont"); 3311 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3312 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3313 CGF.EmitBlock(copyBB); 3314 condEval.begin(CGF); 3315 } 3316 } 3317 3318 llvm::Value *valueToUse = nullptr; 3319 3320 // Perform a copy if necessary. 3321 if (shouldCopy) { 3322 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3323 assert(srcRV.isScalar()); 3324 3325 llvm::Value *src = srcRV.getScalarVal(); 3326 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3327 "icr.cast"); 3328 3329 // Use an ordinary store, not a store-to-lvalue. 3330 CGF.Builder.CreateStore(src, temp); 3331 3332 // If optimization is enabled, and the value was held in a 3333 // __strong variable, we need to tell the optimizer that this 3334 // value has to stay alive until we're doing the store back. 3335 // This is because the temporary is effectively unretained, 3336 // and so otherwise we can violate the high-level semantics. 3337 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3338 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3339 valueToUse = src; 3340 } 3341 } 3342 3343 // Finish the control flow if we needed it. 3344 if (shouldCopy && !provablyNonNull) { 3345 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3346 CGF.EmitBlock(contBB); 3347 3348 // Make a phi for the value to intrinsically use. 3349 if (valueToUse) { 3350 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3351 "icr.to-use"); 3352 phiToUse->addIncoming(valueToUse, copyBB); 3353 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3354 originBB); 3355 valueToUse = phiToUse; 3356 } 3357 3358 condEval.end(CGF); 3359 } 3360 3361 args.addWriteback(srcLV, temp, valueToUse); 3362 args.add(RValue::get(finalArgument), CRE->getType()); 3363 } 3364 3365 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3366 assert(!StackBase); 3367 3368 // Save the stack. 3369 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3370 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3371 } 3372 3373 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3374 if (StackBase) { 3375 // Restore the stack after the call. 3376 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3377 CGF.Builder.CreateCall(F, StackBase); 3378 } 3379 } 3380 3381 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3382 SourceLocation ArgLoc, 3383 AbstractCallee AC, 3384 unsigned ParmNum) { 3385 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3386 SanOpts.has(SanitizerKind::NullabilityArg))) 3387 return; 3388 3389 // The param decl may be missing in a variadic function. 3390 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3391 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3392 3393 // Prefer the nonnull attribute if it's present. 3394 const NonNullAttr *NNAttr = nullptr; 3395 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3396 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3397 3398 bool CanCheckNullability = false; 3399 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3400 auto Nullability = PVD->getType()->getNullability(getContext()); 3401 CanCheckNullability = Nullability && 3402 *Nullability == NullabilityKind::NonNull && 3403 PVD->getTypeSourceInfo(); 3404 } 3405 3406 if (!NNAttr && !CanCheckNullability) 3407 return; 3408 3409 SourceLocation AttrLoc; 3410 SanitizerMask CheckKind; 3411 SanitizerHandler Handler; 3412 if (NNAttr) { 3413 AttrLoc = NNAttr->getLocation(); 3414 CheckKind = SanitizerKind::NonnullAttribute; 3415 Handler = SanitizerHandler::NonnullArg; 3416 } else { 3417 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3418 CheckKind = SanitizerKind::NullabilityArg; 3419 Handler = SanitizerHandler::NullabilityArg; 3420 } 3421 3422 SanitizerScope SanScope(this); 3423 assert(RV.isScalar()); 3424 llvm::Value *V = RV.getScalarVal(); 3425 llvm::Value *Cond = 3426 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3427 llvm::Constant *StaticData[] = { 3428 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3429 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3430 }; 3431 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3432 } 3433 3434 void CodeGenFunction::EmitCallArgs( 3435 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3436 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3437 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3438 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3439 3440 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3441 // because arguments are destroyed left to right in the callee. As a special 3442 // case, there are certain language constructs that require left-to-right 3443 // evaluation, and in those cases we consider the evaluation order requirement 3444 // to trump the "destruction order is reverse construction order" guarantee. 3445 bool LeftToRight = 3446 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3447 ? Order == EvaluationOrder::ForceLeftToRight 3448 : Order != EvaluationOrder::ForceRightToLeft; 3449 3450 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3451 RValue EmittedArg) { 3452 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3453 return; 3454 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3455 if (PS == nullptr) 3456 return; 3457 3458 const auto &Context = getContext(); 3459 auto SizeTy = Context.getSizeType(); 3460 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3461 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3462 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3463 EmittedArg.getScalarVal()); 3464 Args.add(RValue::get(V), SizeTy); 3465 // If we're emitting args in reverse, be sure to do so with 3466 // pass_object_size, as well. 3467 if (!LeftToRight) 3468 std::swap(Args.back(), *(&Args.back() - 1)); 3469 }; 3470 3471 // Insert a stack save if we're going to need any inalloca args. 3472 bool HasInAllocaArgs = false; 3473 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3474 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3475 I != E && !HasInAllocaArgs; ++I) 3476 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3477 if (HasInAllocaArgs) { 3478 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3479 Args.allocateArgumentMemory(*this); 3480 } 3481 } 3482 3483 // Evaluate each argument in the appropriate order. 3484 size_t CallArgsStart = Args.size(); 3485 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3486 unsigned Idx = LeftToRight ? I : E - I - 1; 3487 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3488 unsigned InitialArgSize = Args.size(); 3489 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3490 // the argument and parameter match or the objc method is parameterized. 3491 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3492 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3493 ArgTypes[Idx]) || 3494 (isa<ObjCMethodDecl>(AC.getDecl()) && 3495 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3496 "Argument and parameter types don't match"); 3497 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3498 // In particular, we depend on it being the last arg in Args, and the 3499 // objectsize bits depend on there only being one arg if !LeftToRight. 3500 assert(InitialArgSize + 1 == Args.size() && 3501 "The code below depends on only adding one arg per EmitCallArg"); 3502 (void)InitialArgSize; 3503 // Since pointer argument are never emitted as LValue, it is safe to emit 3504 // non-null argument check for r-value only. 3505 if (!Args.back().hasLValue()) { 3506 RValue RVArg = Args.back().getKnownRValue(); 3507 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3508 ParamsToSkip + Idx); 3509 // @llvm.objectsize should never have side-effects and shouldn't need 3510 // destruction/cleanups, so we can safely "emit" it after its arg, 3511 // regardless of right-to-leftness 3512 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3513 } 3514 } 3515 3516 if (!LeftToRight) { 3517 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3518 // IR function. 3519 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3520 } 3521 } 3522 3523 namespace { 3524 3525 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3526 DestroyUnpassedArg(Address Addr, QualType Ty) 3527 : Addr(Addr), Ty(Ty) {} 3528 3529 Address Addr; 3530 QualType Ty; 3531 3532 void Emit(CodeGenFunction &CGF, Flags flags) override { 3533 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3534 if (DtorKind == QualType::DK_cxx_destructor) { 3535 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3536 assert(!Dtor->isTrivial()); 3537 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3538 /*Delegating=*/false, Addr); 3539 } else { 3540 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3541 } 3542 } 3543 }; 3544 3545 struct DisableDebugLocationUpdates { 3546 CodeGenFunction &CGF; 3547 bool disabledDebugInfo; 3548 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3549 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3550 CGF.disableDebugInfo(); 3551 } 3552 ~DisableDebugLocationUpdates() { 3553 if (disabledDebugInfo) 3554 CGF.enableDebugInfo(); 3555 } 3556 }; 3557 3558 } // end anonymous namespace 3559 3560 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3561 if (!HasLV) 3562 return RV; 3563 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3564 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 3565 LV.isVolatile()); 3566 IsUsed = true; 3567 return RValue::getAggregate(Copy.getAddress()); 3568 } 3569 3570 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3571 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3572 if (!HasLV && RV.isScalar()) 3573 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true); 3574 else if (!HasLV && RV.isComplex()) 3575 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3576 else { 3577 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); 3578 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3579 // We assume that call args are never copied into subobjects. 3580 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 3581 HasLV ? LV.isVolatileQualified() 3582 : RV.isVolatileQualified()); 3583 } 3584 IsUsed = true; 3585 } 3586 3587 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3588 QualType type) { 3589 DisableDebugLocationUpdates Dis(*this, E); 3590 if (const ObjCIndirectCopyRestoreExpr *CRE 3591 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3592 assert(getLangOpts().ObjCAutoRefCount); 3593 return emitWritebackArg(*this, args, CRE); 3594 } 3595 3596 assert(type->isReferenceType() == E->isGLValue() && 3597 "reference binding to unmaterialized r-value!"); 3598 3599 if (E->isGLValue()) { 3600 assert(E->getObjectKind() == OK_Ordinary); 3601 return args.add(EmitReferenceBindingToExpr(E), type); 3602 } 3603 3604 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3605 3606 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3607 // However, we still have to push an EH-only cleanup in case we unwind before 3608 // we make it to the call. 3609 if (HasAggregateEvalKind && 3610 type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 3611 // If we're using inalloca, use the argument memory. Otherwise, use a 3612 // temporary. 3613 AggValueSlot Slot; 3614 if (args.isUsingInAlloca()) 3615 Slot = createPlaceholderSlot(*this, type); 3616 else 3617 Slot = CreateAggTemp(type, "agg.tmp"); 3618 3619 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3620 if (const auto *RD = type->getAsCXXRecordDecl()) 3621 DestroyedInCallee = RD->hasNonTrivialDestructor(); 3622 else 3623 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3624 3625 if (DestroyedInCallee) 3626 Slot.setExternallyDestructed(); 3627 3628 EmitAggExpr(E, Slot); 3629 RValue RV = Slot.asRValue(); 3630 args.add(RV, type); 3631 3632 if (DestroyedInCallee && NeedsEHCleanup) { 3633 // Create a no-op GEP between the placeholder and the cleanup so we can 3634 // RAUW it successfully. It also serves as a marker of the first 3635 // instruction where the cleanup is active. 3636 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3637 type); 3638 // This unreachable is a temporary marker which will be removed later. 3639 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3640 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3641 } 3642 return; 3643 } 3644 3645 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3646 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3647 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3648 assert(L.isSimple()); 3649 args.addUncopiedAggregate(L, type); 3650 return; 3651 } 3652 3653 args.add(EmitAnyExprToTemp(E), type); 3654 } 3655 3656 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3657 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3658 // implicitly widens null pointer constants that are arguments to varargs 3659 // functions to pointer-sized ints. 3660 if (!getTarget().getTriple().isOSWindows()) 3661 return Arg->getType(); 3662 3663 if (Arg->getType()->isIntegerType() && 3664 getContext().getTypeSize(Arg->getType()) < 3665 getContext().getTargetInfo().getPointerWidth(0) && 3666 Arg->isNullPointerConstant(getContext(), 3667 Expr::NPC_ValueDependentIsNotNull)) { 3668 return getContext().getIntPtrType(); 3669 } 3670 3671 return Arg->getType(); 3672 } 3673 3674 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3675 // optimizer it can aggressively ignore unwind edges. 3676 void 3677 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3678 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3679 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3680 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3681 CGM.getNoObjCARCExceptionsMetadata()); 3682 } 3683 3684 /// Emits a call to the given no-arguments nounwind runtime function. 3685 llvm::CallInst * 3686 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3687 const llvm::Twine &name) { 3688 return EmitNounwindRuntimeCall(callee, None, name); 3689 } 3690 3691 /// Emits a call to the given nounwind runtime function. 3692 llvm::CallInst * 3693 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3694 ArrayRef<llvm::Value*> args, 3695 const llvm::Twine &name) { 3696 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3697 call->setDoesNotThrow(); 3698 return call; 3699 } 3700 3701 /// Emits a simple call (never an invoke) to the given no-arguments 3702 /// runtime function. 3703 llvm::CallInst * 3704 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3705 const llvm::Twine &name) { 3706 return EmitRuntimeCall(callee, None, name); 3707 } 3708 3709 // Calls which may throw must have operand bundles indicating which funclet 3710 // they are nested within. 3711 SmallVector<llvm::OperandBundleDef, 1> 3712 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 3713 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3714 // There is no need for a funclet operand bundle if we aren't inside a 3715 // funclet. 3716 if (!CurrentFuncletPad) 3717 return BundleList; 3718 3719 // Skip intrinsics which cannot throw. 3720 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3721 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3722 return BundleList; 3723 3724 BundleList.emplace_back("funclet", CurrentFuncletPad); 3725 return BundleList; 3726 } 3727 3728 /// Emits a simple call (never an invoke) to the given runtime function. 3729 llvm::CallInst * 3730 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3731 ArrayRef<llvm::Value*> args, 3732 const llvm::Twine &name) { 3733 llvm::CallInst *call = 3734 Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name); 3735 call->setCallingConv(getRuntimeCC()); 3736 return call; 3737 } 3738 3739 /// Emits a call or invoke to the given noreturn runtime function. 3740 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3741 ArrayRef<llvm::Value*> args) { 3742 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3743 getBundlesForFunclet(callee); 3744 3745 if (getInvokeDest()) { 3746 llvm::InvokeInst *invoke = 3747 Builder.CreateInvoke(callee, 3748 getUnreachableBlock(), 3749 getInvokeDest(), 3750 args, 3751 BundleList); 3752 invoke->setDoesNotReturn(); 3753 invoke->setCallingConv(getRuntimeCC()); 3754 } else { 3755 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3756 call->setDoesNotReturn(); 3757 call->setCallingConv(getRuntimeCC()); 3758 Builder.CreateUnreachable(); 3759 } 3760 } 3761 3762 /// Emits a call or invoke instruction to the given nullary runtime function. 3763 llvm::CallSite 3764 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3765 const Twine &name) { 3766 return EmitRuntimeCallOrInvoke(callee, None, name); 3767 } 3768 3769 /// Emits a call or invoke instruction to the given runtime function. 3770 llvm::CallSite 3771 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3772 ArrayRef<llvm::Value*> args, 3773 const Twine &name) { 3774 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3775 callSite.setCallingConv(getRuntimeCC()); 3776 return callSite; 3777 } 3778 3779 /// Emits a call or invoke instruction to the given function, depending 3780 /// on the current state of the EH stack. 3781 llvm::CallSite 3782 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3783 ArrayRef<llvm::Value *> Args, 3784 const Twine &Name) { 3785 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3786 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3787 getBundlesForFunclet(Callee); 3788 3789 llvm::Instruction *Inst; 3790 if (!InvokeDest) 3791 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3792 else { 3793 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3794 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3795 Name); 3796 EmitBlock(ContBB); 3797 } 3798 3799 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3800 // optimizer it can aggressively ignore unwind edges. 3801 if (CGM.getLangOpts().ObjCAutoRefCount) 3802 AddObjCARCExceptionMetadata(Inst); 3803 3804 return llvm::CallSite(Inst); 3805 } 3806 3807 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3808 llvm::Value *New) { 3809 DeferredReplacements.push_back(std::make_pair(Old, New)); 3810 } 3811 3812 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3813 const CGCallee &Callee, 3814 ReturnValueSlot ReturnValue, 3815 const CallArgList &CallArgs, 3816 llvm::Instruction **callOrInvoke, 3817 SourceLocation Loc) { 3818 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3819 3820 assert(Callee.isOrdinary() || Callee.isVirtual()); 3821 3822 // Handle struct-return functions by passing a pointer to the 3823 // location that we would like to return into. 3824 QualType RetTy = CallInfo.getReturnType(); 3825 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3826 3827 llvm::FunctionType *IRFuncTy = Callee.getFunctionType(); 3828 3829 // 1. Set up the arguments. 3830 3831 // If we're using inalloca, insert the allocation after the stack save. 3832 // FIXME: Do this earlier rather than hacking it in here! 3833 Address ArgMemory = Address::invalid(); 3834 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3835 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3836 const llvm::DataLayout &DL = CGM.getDataLayout(); 3837 ArgMemoryLayout = DL.getStructLayout(ArgStruct); 3838 llvm::Instruction *IP = CallArgs.getStackBase(); 3839 llvm::AllocaInst *AI; 3840 if (IP) { 3841 IP = IP->getNextNode(); 3842 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 3843 "argmem", IP); 3844 } else { 3845 AI = CreateTempAlloca(ArgStruct, "argmem"); 3846 } 3847 auto Align = CallInfo.getArgStructAlignment(); 3848 AI->setAlignment(Align.getQuantity()); 3849 AI->setUsedWithInAlloca(true); 3850 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3851 ArgMemory = Address(AI, Align); 3852 } 3853 3854 // Helper function to drill into the inalloca allocation. 3855 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3856 auto FieldOffset = 3857 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3858 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3859 }; 3860 3861 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3862 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3863 3864 // If the call returns a temporary with struct return, create a temporary 3865 // alloca to hold the result, unless one is given to us. 3866 Address SRetPtr = Address::invalid(); 3867 Address SRetAlloca = Address::invalid(); 3868 llvm::Value *UnusedReturnSizePtr = nullptr; 3869 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3870 if (!ReturnValue.isNull()) { 3871 SRetPtr = ReturnValue.getValue(); 3872 } else { 3873 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 3874 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3875 uint64_t size = 3876 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3877 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 3878 } 3879 } 3880 if (IRFunctionArgs.hasSRetArg()) { 3881 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3882 } else if (RetAI.isInAlloca()) { 3883 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3884 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3885 } 3886 } 3887 3888 Address swiftErrorTemp = Address::invalid(); 3889 Address swiftErrorArg = Address::invalid(); 3890 3891 // Translate all of the arguments as necessary to match the IR lowering. 3892 assert(CallInfo.arg_size() == CallArgs.size() && 3893 "Mismatch between function signature & arguments."); 3894 unsigned ArgNo = 0; 3895 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3896 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3897 I != E; ++I, ++info_it, ++ArgNo) { 3898 const ABIArgInfo &ArgInfo = info_it->info; 3899 3900 // Insert a padding argument to ensure proper alignment. 3901 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3902 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3903 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3904 3905 unsigned FirstIRArg, NumIRArgs; 3906 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3907 3908 switch (ArgInfo.getKind()) { 3909 case ABIArgInfo::InAlloca: { 3910 assert(NumIRArgs == 0); 3911 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3912 if (I->isAggregate()) { 3913 // Replace the placeholder with the appropriate argument slot GEP. 3914 Address Addr = I->hasLValue() 3915 ? I->getKnownLValue().getAddress() 3916 : I->getKnownRValue().getAggregateAddress(); 3917 llvm::Instruction *Placeholder = 3918 cast<llvm::Instruction>(Addr.getPointer()); 3919 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3920 Builder.SetInsertPoint(Placeholder); 3921 Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3922 Builder.restoreIP(IP); 3923 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3924 } else { 3925 // Store the RValue into the argument struct. 3926 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3927 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3928 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3929 // There are some cases where a trivial bitcast is not avoidable. The 3930 // definition of a type later in a translation unit may change it's type 3931 // from {}* to (%struct.foo*)*. 3932 if (Addr.getType() != MemType) 3933 Addr = Builder.CreateBitCast(Addr, MemType); 3934 I->copyInto(*this, Addr); 3935 } 3936 break; 3937 } 3938 3939 case ABIArgInfo::Indirect: { 3940 assert(NumIRArgs == 1); 3941 if (!I->isAggregate()) { 3942 // Make a temporary alloca to pass the argument. 3943 Address Addr = CreateMemTempWithoutCast( 3944 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 3945 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3946 3947 I->copyInto(*this, Addr); 3948 } else { 3949 // We want to avoid creating an unnecessary temporary+copy here; 3950 // however, we need one in three cases: 3951 // 1. If the argument is not byval, and we are required to copy the 3952 // source. (This case doesn't occur on any common architecture.) 3953 // 2. If the argument is byval, RV is not sufficiently aligned, and 3954 // we cannot force it to be sufficiently aligned. 3955 // 3. If the argument is byval, but RV is not located in default 3956 // or alloca address space. 3957 Address Addr = I->hasLValue() 3958 ? I->getKnownLValue().getAddress() 3959 : I->getKnownRValue().getAggregateAddress(); 3960 llvm::Value *V = Addr.getPointer(); 3961 CharUnits Align = ArgInfo.getIndirectAlign(); 3962 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3963 3964 assert((FirstIRArg >= IRFuncTy->getNumParams() || 3965 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 3966 TD->getAllocaAddrSpace()) && 3967 "indirect argument must be in alloca address space"); 3968 3969 bool NeedCopy = false; 3970 3971 if (Addr.getAlignment() < Align && 3972 llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) < 3973 Align.getQuantity()) { 3974 NeedCopy = true; 3975 } else if (I->hasLValue()) { 3976 auto LV = I->getKnownLValue(); 3977 auto AS = LV.getAddressSpace(); 3978 3979 if ((!ArgInfo.getIndirectByVal() && 3980 (LV.getAlignment() >= 3981 getContext().getTypeAlignInChars(I->Ty)))) { 3982 NeedCopy = true; 3983 } 3984 if (!getLangOpts().OpenCL) { 3985 if ((ArgInfo.getIndirectByVal() && 3986 (AS != LangAS::Default && 3987 AS != CGM.getASTAllocaAddressSpace()))) { 3988 NeedCopy = true; 3989 } 3990 } 3991 // For OpenCL even if RV is located in default or alloca address space 3992 // we don't want to perform address space cast for it. 3993 else if ((ArgInfo.getIndirectByVal() && 3994 Addr.getType()->getAddressSpace() != IRFuncTy-> 3995 getParamType(FirstIRArg)->getPointerAddressSpace())) { 3996 NeedCopy = true; 3997 } 3998 } 3999 4000 if (NeedCopy) { 4001 // Create an aligned temporary, and copy to it. 4002 Address AI = CreateMemTempWithoutCast( 4003 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4004 IRCallArgs[FirstIRArg] = AI.getPointer(); 4005 I->copyInto(*this, AI); 4006 } else { 4007 // Skip the extra memcpy call. 4008 auto *T = V->getType()->getPointerElementType()->getPointerTo( 4009 CGM.getDataLayout().getAllocaAddrSpace()); 4010 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4011 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4012 true); 4013 } 4014 } 4015 break; 4016 } 4017 4018 case ABIArgInfo::Ignore: 4019 assert(NumIRArgs == 0); 4020 break; 4021 4022 case ABIArgInfo::Extend: 4023 case ABIArgInfo::Direct: { 4024 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4025 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4026 ArgInfo.getDirectOffset() == 0) { 4027 assert(NumIRArgs == 1); 4028 llvm::Value *V; 4029 if (!I->isAggregate()) 4030 V = I->getKnownRValue().getScalarVal(); 4031 else 4032 V = Builder.CreateLoad( 4033 I->hasLValue() ? I->getKnownLValue().getAddress() 4034 : I->getKnownRValue().getAggregateAddress()); 4035 4036 // Implement swifterror by copying into a new swifterror argument. 4037 // We'll write back in the normal path out of the call. 4038 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4039 == ParameterABI::SwiftErrorResult) { 4040 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4041 4042 QualType pointeeTy = I->Ty->getPointeeType(); 4043 swiftErrorArg = 4044 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4045 4046 swiftErrorTemp = 4047 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4048 V = swiftErrorTemp.getPointer(); 4049 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4050 4051 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4052 Builder.CreateStore(errorValue, swiftErrorTemp); 4053 } 4054 4055 // We might have to widen integers, but we should never truncate. 4056 if (ArgInfo.getCoerceToType() != V->getType() && 4057 V->getType()->isIntegerTy()) 4058 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4059 4060 // If the argument doesn't match, perform a bitcast to coerce it. This 4061 // can happen due to trivial type mismatches. 4062 if (FirstIRArg < IRFuncTy->getNumParams() && 4063 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4064 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4065 4066 IRCallArgs[FirstIRArg] = V; 4067 break; 4068 } 4069 4070 // FIXME: Avoid the conversion through memory if possible. 4071 Address Src = Address::invalid(); 4072 if (!I->isAggregate()) { 4073 Src = CreateMemTemp(I->Ty, "coerce"); 4074 I->copyInto(*this, Src); 4075 } else { 4076 Src = I->hasLValue() ? I->getKnownLValue().getAddress() 4077 : I->getKnownRValue().getAggregateAddress(); 4078 } 4079 4080 // If the value is offset in memory, apply the offset now. 4081 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4082 4083 // Fast-isel and the optimizer generally like scalar values better than 4084 // FCAs, so we flatten them if this is safe to do for this argument. 4085 llvm::StructType *STy = 4086 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4087 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4088 llvm::Type *SrcTy = Src.getType()->getElementType(); 4089 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4090 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4091 4092 // If the source type is smaller than the destination type of the 4093 // coerce-to logic, copy the source value into a temp alloca the size 4094 // of the destination type to allow loading all of it. The bits past 4095 // the source value are left undef. 4096 if (SrcSize < DstSize) { 4097 Address TempAlloca 4098 = CreateTempAlloca(STy, Src.getAlignment(), 4099 Src.getName() + ".coerce"); 4100 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4101 Src = TempAlloca; 4102 } else { 4103 Src = Builder.CreateBitCast(Src, 4104 STy->getPointerTo(Src.getAddressSpace())); 4105 } 4106 4107 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 4108 assert(NumIRArgs == STy->getNumElements()); 4109 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4110 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 4111 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 4112 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4113 IRCallArgs[FirstIRArg + i] = LI; 4114 } 4115 } else { 4116 // In the simple case, just pass the coerced loaded value. 4117 assert(NumIRArgs == 1); 4118 IRCallArgs[FirstIRArg] = 4119 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4120 } 4121 4122 break; 4123 } 4124 4125 case ABIArgInfo::CoerceAndExpand: { 4126 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4127 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4128 4129 llvm::Value *tempSize = nullptr; 4130 Address addr = Address::invalid(); 4131 Address AllocaAddr = Address::invalid(); 4132 if (I->isAggregate()) { 4133 addr = I->hasLValue() ? I->getKnownLValue().getAddress() 4134 : I->getKnownRValue().getAggregateAddress(); 4135 4136 } else { 4137 RValue RV = I->getKnownRValue(); 4138 assert(RV.isScalar()); // complex should always just be direct 4139 4140 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4141 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4142 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4143 4144 // Materialize to a temporary. 4145 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 4146 CharUnits::fromQuantity(std::max( 4147 layout->getAlignment(), scalarAlign)), 4148 "tmp", 4149 /*ArraySize=*/nullptr, &AllocaAddr); 4150 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4151 4152 Builder.CreateStore(RV.getScalarVal(), addr); 4153 } 4154 4155 addr = Builder.CreateElementBitCast(addr, coercionType); 4156 4157 unsigned IRArgPos = FirstIRArg; 4158 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4159 llvm::Type *eltType = coercionType->getElementType(i); 4160 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4161 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4162 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4163 IRCallArgs[IRArgPos++] = elt; 4164 } 4165 assert(IRArgPos == FirstIRArg + NumIRArgs); 4166 4167 if (tempSize) { 4168 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4169 } 4170 4171 break; 4172 } 4173 4174 case ABIArgInfo::Expand: 4175 unsigned IRArgPos = FirstIRArg; 4176 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4177 assert(IRArgPos == FirstIRArg + NumIRArgs); 4178 break; 4179 } 4180 } 4181 4182 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4183 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4184 4185 // If we're using inalloca, set up that argument. 4186 if (ArgMemory.isValid()) { 4187 llvm::Value *Arg = ArgMemory.getPointer(); 4188 if (CallInfo.isVariadic()) { 4189 // When passing non-POD arguments by value to variadic functions, we will 4190 // end up with a variadic prototype and an inalloca call site. In such 4191 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4192 // the callee. 4193 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4194 auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS); 4195 CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy); 4196 } else { 4197 llvm::Type *LastParamTy = 4198 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4199 if (Arg->getType() != LastParamTy) { 4200 #ifndef NDEBUG 4201 // Assert that these structs have equivalent element types. 4202 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4203 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4204 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4205 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4206 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4207 DE = DeclaredTy->element_end(), 4208 FI = FullTy->element_begin(); 4209 DI != DE; ++DI, ++FI) 4210 assert(*DI == *FI); 4211 #endif 4212 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4213 } 4214 } 4215 assert(IRFunctionArgs.hasInallocaArg()); 4216 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4217 } 4218 4219 // 2. Prepare the function pointer. 4220 4221 // If the callee is a bitcast of a non-variadic function to have a 4222 // variadic function pointer type, check to see if we can remove the 4223 // bitcast. This comes up with unprototyped functions. 4224 // 4225 // This makes the IR nicer, but more importantly it ensures that we 4226 // can inline the function at -O0 if it is marked always_inline. 4227 auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* { 4228 llvm::FunctionType *CalleeFT = 4229 cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType()); 4230 if (!CalleeFT->isVarArg()) 4231 return Ptr; 4232 4233 llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr); 4234 if (!CE || CE->getOpcode() != llvm::Instruction::BitCast) 4235 return Ptr; 4236 4237 llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0)); 4238 if (!OrigFn) 4239 return Ptr; 4240 4241 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4242 4243 // If the original type is variadic, or if any of the component types 4244 // disagree, we cannot remove the cast. 4245 if (OrigFT->isVarArg() || 4246 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4247 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4248 return Ptr; 4249 4250 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4251 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4252 return Ptr; 4253 4254 return OrigFn; 4255 }; 4256 CalleePtr = simplifyVariadicCallee(CalleePtr); 4257 4258 // 3. Perform the actual call. 4259 4260 // Deactivate any cleanups that we're supposed to do immediately before 4261 // the call. 4262 if (!CallArgs.getCleanupsToDeactivate().empty()) 4263 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4264 4265 // Assert that the arguments we computed match up. The IR verifier 4266 // will catch this, but this is a common enough source of problems 4267 // during IRGen changes that it's way better for debugging to catch 4268 // it ourselves here. 4269 #ifndef NDEBUG 4270 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4271 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4272 // Inalloca argument can have different type. 4273 if (IRFunctionArgs.hasInallocaArg() && 4274 i == IRFunctionArgs.getInallocaArgNo()) 4275 continue; 4276 if (i < IRFuncTy->getNumParams()) 4277 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4278 } 4279 #endif 4280 4281 // Update the largest vector width if any arguments have vector types. 4282 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4283 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 4284 LargestVectorWidth = std::max(LargestVectorWidth, 4285 VT->getPrimitiveSizeInBits()); 4286 } 4287 4288 // Compute the calling convention and attributes. 4289 unsigned CallingConv; 4290 llvm::AttributeList Attrs; 4291 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4292 Callee.getAbstractInfo(), Attrs, CallingConv, 4293 /*AttrOnCallSite=*/true); 4294 4295 // Apply some call-site-specific attributes. 4296 // TODO: work this into building the attribute set. 4297 4298 // Apply always_inline to all calls within flatten functions. 4299 // FIXME: should this really take priority over __try, below? 4300 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4301 !(Callee.getAbstractInfo().getCalleeDecl().getDecl() && 4302 Callee.getAbstractInfo() 4303 .getCalleeDecl() 4304 .getDecl() 4305 ->hasAttr<NoInlineAttr>())) { 4306 Attrs = 4307 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4308 llvm::Attribute::AlwaysInline); 4309 } 4310 4311 // Disable inlining inside SEH __try blocks. 4312 if (isSEHTryScope()) { 4313 Attrs = 4314 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4315 llvm::Attribute::NoInline); 4316 } 4317 4318 // Decide whether to use a call or an invoke. 4319 bool CannotThrow; 4320 if (currentFunctionUsesSEHTry()) { 4321 // SEH cares about asynchronous exceptions, so everything can "throw." 4322 CannotThrow = false; 4323 } else if (isCleanupPadScope() && 4324 EHPersonality::get(*this).isMSVCXXPersonality()) { 4325 // The MSVC++ personality will implicitly terminate the program if an 4326 // exception is thrown during a cleanup outside of a try/catch. 4327 // We don't need to model anything in IR to get this behavior. 4328 CannotThrow = true; 4329 } else { 4330 // Otherwise, nounwind call sites will never throw. 4331 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4332 llvm::Attribute::NoUnwind); 4333 } 4334 4335 // If we made a temporary, be sure to clean up after ourselves. Note that we 4336 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4337 // pop this cleanup later on. Being eager about this is OK, since this 4338 // temporary is 'invisible' outside of the callee. 4339 if (UnusedReturnSizePtr) 4340 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 4341 UnusedReturnSizePtr); 4342 4343 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4344 4345 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4346 getBundlesForFunclet(CalleePtr); 4347 4348 // Emit the actual call/invoke instruction. 4349 llvm::CallSite CS; 4350 if (!InvokeDest) { 4351 CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList); 4352 } else { 4353 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4354 CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs, 4355 BundleList); 4356 EmitBlock(Cont); 4357 } 4358 llvm::Instruction *CI = CS.getInstruction(); 4359 if (callOrInvoke) 4360 *callOrInvoke = CI; 4361 4362 // Apply the attributes and calling convention. 4363 CS.setAttributes(Attrs); 4364 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4365 4366 // Apply various metadata. 4367 4368 if (!CI->getType()->isVoidTy()) 4369 CI->setName("call"); 4370 4371 // Update largest vector width from the return type. 4372 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 4373 LargestVectorWidth = std::max(LargestVectorWidth, 4374 VT->getPrimitiveSizeInBits()); 4375 4376 // Insert instrumentation or attach profile metadata at indirect call sites. 4377 // For more details, see the comment before the definition of 4378 // IPVK_IndirectCallTarget in InstrProfData.inc. 4379 if (!CS.getCalledFunction()) 4380 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4381 CI, CalleePtr); 4382 4383 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4384 // optimizer it can aggressively ignore unwind edges. 4385 if (CGM.getLangOpts().ObjCAutoRefCount) 4386 AddObjCARCExceptionMetadata(CI); 4387 4388 // Suppress tail calls if requested. 4389 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4390 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4391 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4392 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4393 } 4394 4395 // 4. Finish the call. 4396 4397 // If the call doesn't return, finish the basic block and clear the 4398 // insertion point; this allows the rest of IRGen to discard 4399 // unreachable code. 4400 if (CS.doesNotReturn()) { 4401 if (UnusedReturnSizePtr) 4402 PopCleanupBlock(); 4403 4404 // Strip away the noreturn attribute to better diagnose unreachable UB. 4405 if (SanOpts.has(SanitizerKind::Unreachable)) { 4406 if (auto *F = CS.getCalledFunction()) 4407 F->removeFnAttr(llvm::Attribute::NoReturn); 4408 CS.removeAttribute(llvm::AttributeList::FunctionIndex, 4409 llvm::Attribute::NoReturn); 4410 } 4411 4412 EmitUnreachable(Loc); 4413 Builder.ClearInsertionPoint(); 4414 4415 // FIXME: For now, emit a dummy basic block because expr emitters in 4416 // generally are not ready to handle emitting expressions at unreachable 4417 // points. 4418 EnsureInsertPoint(); 4419 4420 // Return a reasonable RValue. 4421 return GetUndefRValue(RetTy); 4422 } 4423 4424 // Perform the swifterror writeback. 4425 if (swiftErrorTemp.isValid()) { 4426 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4427 Builder.CreateStore(errorResult, swiftErrorArg); 4428 } 4429 4430 // Emit any call-associated writebacks immediately. Arguably this 4431 // should happen after any return-value munging. 4432 if (CallArgs.hasWritebacks()) 4433 emitWritebacks(*this, CallArgs); 4434 4435 // The stack cleanup for inalloca arguments has to run out of the normal 4436 // lexical order, so deactivate it and run it manually here. 4437 CallArgs.freeArgumentMemory(*this); 4438 4439 // Extract the return value. 4440 RValue Ret = [&] { 4441 switch (RetAI.getKind()) { 4442 case ABIArgInfo::CoerceAndExpand: { 4443 auto coercionType = RetAI.getCoerceAndExpandType(); 4444 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4445 4446 Address addr = SRetPtr; 4447 addr = Builder.CreateElementBitCast(addr, coercionType); 4448 4449 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4450 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4451 4452 unsigned unpaddedIndex = 0; 4453 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4454 llvm::Type *eltType = coercionType->getElementType(i); 4455 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4456 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4457 llvm::Value *elt = CI; 4458 if (requiresExtract) 4459 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4460 else 4461 assert(unpaddedIndex == 0); 4462 Builder.CreateStore(elt, eltAddr); 4463 } 4464 // FALLTHROUGH 4465 LLVM_FALLTHROUGH; 4466 } 4467 4468 case ABIArgInfo::InAlloca: 4469 case ABIArgInfo::Indirect: { 4470 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4471 if (UnusedReturnSizePtr) 4472 PopCleanupBlock(); 4473 return ret; 4474 } 4475 4476 case ABIArgInfo::Ignore: 4477 // If we are ignoring an argument that had a result, make sure to 4478 // construct the appropriate return value for our caller. 4479 return GetUndefRValue(RetTy); 4480 4481 case ABIArgInfo::Extend: 4482 case ABIArgInfo::Direct: { 4483 llvm::Type *RetIRTy = ConvertType(RetTy); 4484 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4485 switch (getEvaluationKind(RetTy)) { 4486 case TEK_Complex: { 4487 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4488 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4489 return RValue::getComplex(std::make_pair(Real, Imag)); 4490 } 4491 case TEK_Aggregate: { 4492 Address DestPtr = ReturnValue.getValue(); 4493 bool DestIsVolatile = ReturnValue.isVolatile(); 4494 4495 if (!DestPtr.isValid()) { 4496 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4497 DestIsVolatile = false; 4498 } 4499 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4500 return RValue::getAggregate(DestPtr); 4501 } 4502 case TEK_Scalar: { 4503 // If the argument doesn't match, perform a bitcast to coerce it. This 4504 // can happen due to trivial type mismatches. 4505 llvm::Value *V = CI; 4506 if (V->getType() != RetIRTy) 4507 V = Builder.CreateBitCast(V, RetIRTy); 4508 return RValue::get(V); 4509 } 4510 } 4511 llvm_unreachable("bad evaluation kind"); 4512 } 4513 4514 Address DestPtr = ReturnValue.getValue(); 4515 bool DestIsVolatile = ReturnValue.isVolatile(); 4516 4517 if (!DestPtr.isValid()) { 4518 DestPtr = CreateMemTemp(RetTy, "coerce"); 4519 DestIsVolatile = false; 4520 } 4521 4522 // If the value is offset in memory, apply the offset now. 4523 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4524 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4525 4526 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4527 } 4528 4529 case ABIArgInfo::Expand: 4530 llvm_unreachable("Invalid ABI kind for return argument"); 4531 } 4532 4533 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4534 } (); 4535 4536 // Emit the assume_aligned check on the return value. 4537 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4538 if (Ret.isScalar() && TargetDecl) { 4539 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4540 llvm::Value *OffsetValue = nullptr; 4541 if (const auto *Offset = AA->getOffset()) 4542 OffsetValue = EmitScalarExpr(Offset); 4543 4544 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4545 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4546 EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(), 4547 AlignmentCI->getZExtValue(), OffsetValue); 4548 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { 4549 llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()] 4550 .getRValue(*this) 4551 .getScalarVal(); 4552 EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(), 4553 AlignmentVal); 4554 } 4555 } 4556 4557 return Ret; 4558 } 4559 4560 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 4561 if (isVirtual()) { 4562 const CallExpr *CE = getVirtualCallExpr(); 4563 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 4564 CGF, getVirtualMethodDecl(), getThisAddress(), getFunctionType(), 4565 CE ? CE->getBeginLoc() : SourceLocation()); 4566 } 4567 4568 return *this; 4569 } 4570 4571 /* VarArg handling */ 4572 4573 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4574 VAListAddr = VE->isMicrosoftABI() 4575 ? EmitMSVAListRef(VE->getSubExpr()) 4576 : EmitVAListRef(VE->getSubExpr()); 4577 QualType Ty = VE->getType(); 4578 if (VE->isMicrosoftABI()) 4579 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4580 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4581 } 4582