1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/SwiftCallingConv.h"
30 #include "clang/Frontend/CodeGenOptions.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/IR/Attributes.h"
33 #include "llvm/IR/CallSite.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/InlineAsm.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/Transforms/Utils/Local.h"
39 using namespace clang;
40 using namespace CodeGen;
41 
42 /***/
43 
44 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
45   switch (CC) {
46   default: return llvm::CallingConv::C;
47   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
48   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
49   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
50   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
51   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
52   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
53   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
54   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
55   // TODO: Add support for __pascal to LLVM.
56   case CC_X86Pascal: return llvm::CallingConv::C;
57   // TODO: Add support for __vectorcall to LLVM.
58   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
59   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
60   case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL;
61   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
62   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
63   case CC_Swift: return llvm::CallingConv::Swift;
64   }
65 }
66 
67 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
68 /// qualification.
69 /// FIXME: address space qualification?
70 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
71   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
72   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
73 }
74 
75 /// Returns the canonical formal type of the given C++ method.
76 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
77   return MD->getType()->getCanonicalTypeUnqualified()
78            .getAs<FunctionProtoType>();
79 }
80 
81 /// Returns the "extra-canonicalized" return type, which discards
82 /// qualifiers on the return type.  Codegen doesn't care about them,
83 /// and it makes ABI code a little easier to be able to assume that
84 /// all parameter and return types are top-level unqualified.
85 static CanQualType GetReturnType(QualType RetTy) {
86   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
87 }
88 
89 /// Arrange the argument and result information for a value of the given
90 /// unprototyped freestanding function type.
91 const CGFunctionInfo &
92 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
93   // When translating an unprototyped function type, always use a
94   // variadic type.
95   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
96                                  /*instanceMethod=*/false,
97                                  /*chainCall=*/false, None,
98                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
99 }
100 
101 /// Adds the formal paramaters in FPT to the given prefix. If any parameter in
102 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
103 static void appendParameterTypes(const CodeGenTypes &CGT,
104                                  SmallVectorImpl<CanQualType> &prefix,
105               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
106                                  CanQual<FunctionProtoType> FPT,
107                                  const FunctionDecl *FD) {
108   // Fill out paramInfos.
109   if (FPT->hasExtParameterInfos() || !paramInfos.empty()) {
110     assert(paramInfos.size() <= prefix.size());
111     auto protoParamInfos = FPT->getExtParameterInfos();
112     paramInfos.reserve(prefix.size() + protoParamInfos.size());
113     paramInfos.resize(prefix.size());
114     paramInfos.append(protoParamInfos.begin(), protoParamInfos.end());
115   }
116 
117   // Fast path: unknown target.
118   if (FD == nullptr) {
119     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
120     return;
121   }
122 
123   // In the vast majority cases, we'll have precisely FPT->getNumParams()
124   // parameters; the only thing that can change this is the presence of
125   // pass_object_size. So, we preallocate for the common case.
126   prefix.reserve(prefix.size() + FPT->getNumParams());
127 
128   assert(FD->getNumParams() == FPT->getNumParams());
129   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
130     prefix.push_back(FPT->getParamType(I));
131     if (FD->getParamDecl(I)->hasAttr<PassObjectSizeAttr>())
132       prefix.push_back(CGT.getContext().getSizeType());
133   }
134 }
135 
136 /// Arrange the LLVM function layout for a value of the given function
137 /// type, on top of any implicit parameters already stored.
138 static const CGFunctionInfo &
139 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
140                         SmallVectorImpl<CanQualType> &prefix,
141                         CanQual<FunctionProtoType> FTP,
142                         const FunctionDecl *FD) {
143   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
144   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
145   // FIXME: Kill copy.
146   appendParameterTypes(CGT, prefix, paramInfos, FTP, FD);
147   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
148 
149   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
150                                      /*chainCall=*/false, prefix,
151                                      FTP->getExtInfo(), paramInfos,
152                                      required);
153 }
154 
155 /// Arrange the argument and result information for a value of the
156 /// given freestanding function type.
157 const CGFunctionInfo &
158 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
159                                       const FunctionDecl *FD) {
160   SmallVector<CanQualType, 16> argTypes;
161   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
162                                    FTP, FD);
163 }
164 
165 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
166   // Set the appropriate calling convention for the Function.
167   if (D->hasAttr<StdCallAttr>())
168     return CC_X86StdCall;
169 
170   if (D->hasAttr<FastCallAttr>())
171     return CC_X86FastCall;
172 
173   if (D->hasAttr<ThisCallAttr>())
174     return CC_X86ThisCall;
175 
176   if (D->hasAttr<VectorCallAttr>())
177     return CC_X86VectorCall;
178 
179   if (D->hasAttr<PascalAttr>())
180     return CC_X86Pascal;
181 
182   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
183     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
184 
185   if (D->hasAttr<IntelOclBiccAttr>())
186     return CC_IntelOclBicc;
187 
188   if (D->hasAttr<MSABIAttr>())
189     return IsWindows ? CC_C : CC_X86_64Win64;
190 
191   if (D->hasAttr<SysVABIAttr>())
192     return IsWindows ? CC_X86_64SysV : CC_C;
193 
194   if (D->hasAttr<PreserveMostAttr>())
195     return CC_PreserveMost;
196 
197   if (D->hasAttr<PreserveAllAttr>())
198     return CC_PreserveAll;
199 
200   return CC_C;
201 }
202 
203 /// Arrange the argument and result information for a call to an
204 /// unknown C++ non-static member function of the given abstract type.
205 /// (Zero value of RD means we don't have any meaningful "this" argument type,
206 ///  so fall back to a generic pointer type).
207 /// The member function must be an ordinary function, i.e. not a
208 /// constructor or destructor.
209 const CGFunctionInfo &
210 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
211                                    const FunctionProtoType *FTP,
212                                    const CXXMethodDecl *MD) {
213   SmallVector<CanQualType, 16> argTypes;
214 
215   // Add the 'this' pointer.
216   if (RD)
217     argTypes.push_back(GetThisType(Context, RD));
218   else
219     argTypes.push_back(Context.VoidPtrTy);
220 
221   return ::arrangeLLVMFunctionInfo(
222       *this, true, argTypes,
223       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
224 }
225 
226 /// Arrange the argument and result information for a declaration or
227 /// definition of the given C++ non-static member function.  The
228 /// member function must be an ordinary function, i.e. not a
229 /// constructor or destructor.
230 const CGFunctionInfo &
231 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
232   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
233   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
234 
235   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
236 
237   if (MD->isInstance()) {
238     // The abstract case is perfectly fine.
239     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
240     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
241   }
242 
243   return arrangeFreeFunctionType(prototype, MD);
244 }
245 
246 const CGFunctionInfo &
247 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
248                                             StructorType Type) {
249 
250   SmallVector<CanQualType, 16> argTypes;
251   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
252   argTypes.push_back(GetThisType(Context, MD->getParent()));
253 
254   GlobalDecl GD;
255   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
256     GD = GlobalDecl(CD, toCXXCtorType(Type));
257   } else {
258     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
259     GD = GlobalDecl(DD, toCXXDtorType(Type));
260   }
261 
262   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
263 
264   // Add the formal parameters.
265   appendParameterTypes(*this, argTypes, paramInfos, FTP, MD);
266 
267   TheCXXABI.buildStructorSignature(MD, Type, argTypes);
268 
269   RequiredArgs required =
270       (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
271 
272   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
273   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
274                                ? argTypes.front()
275                                : TheCXXABI.hasMostDerivedReturn(GD)
276                                      ? CGM.getContext().VoidPtrTy
277                                      : Context.VoidTy;
278   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
279                                  /*chainCall=*/false, argTypes, extInfo,
280                                  paramInfos, required);
281 }
282 
283 static SmallVector<CanQualType, 16>
284 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
285   SmallVector<CanQualType, 16> argTypes;
286   for (auto &arg : args)
287     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
288   return argTypes;
289 }
290 
291 static SmallVector<CanQualType, 16>
292 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
293   SmallVector<CanQualType, 16> argTypes;
294   for (auto &arg : args)
295     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
296   return argTypes;
297 }
298 
299 static void addExtParameterInfosForCall(
300          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
301                                         const FunctionProtoType *proto,
302                                         unsigned prefixArgs,
303                                         unsigned totalArgs) {
304   assert(proto->hasExtParameterInfos());
305   assert(paramInfos.size() <= prefixArgs);
306   assert(proto->getNumParams() + prefixArgs <= totalArgs);
307 
308   // Add default infos for any prefix args that don't already have infos.
309   paramInfos.resize(prefixArgs);
310 
311   // Add infos for the prototype.
312   auto protoInfos = proto->getExtParameterInfos();
313   paramInfos.append(protoInfos.begin(), protoInfos.end());
314 
315   // Add default infos for the variadic arguments.
316   paramInfos.resize(totalArgs);
317 }
318 
319 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
320 getExtParameterInfosForCall(const FunctionProtoType *proto,
321                             unsigned prefixArgs, unsigned totalArgs) {
322   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
323   if (proto->hasExtParameterInfos()) {
324     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
325   }
326   return result;
327 }
328 
329 /// Arrange a call to a C++ method, passing the given arguments.
330 const CGFunctionInfo &
331 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
332                                         const CXXConstructorDecl *D,
333                                         CXXCtorType CtorKind,
334                                         unsigned ExtraArgs) {
335   // FIXME: Kill copy.
336   SmallVector<CanQualType, 16> ArgTypes;
337   for (const auto &Arg : args)
338     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
339 
340   CanQual<FunctionProtoType> FPT = GetFormalType(D);
341   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
342   GlobalDecl GD(D, CtorKind);
343   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
344                                ? ArgTypes.front()
345                                : TheCXXABI.hasMostDerivedReturn(GD)
346                                      ? CGM.getContext().VoidPtrTy
347                                      : Context.VoidTy;
348 
349   FunctionType::ExtInfo Info = FPT->getExtInfo();
350   auto ParamInfos = getExtParameterInfosForCall(FPT.getTypePtr(), 1 + ExtraArgs,
351                                                 ArgTypes.size());
352   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
353                                  /*chainCall=*/false, ArgTypes, Info,
354                                  ParamInfos, Required);
355 }
356 
357 /// Arrange the argument and result information for the declaration or
358 /// definition of the given function.
359 const CGFunctionInfo &
360 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
361   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
362     if (MD->isInstance())
363       return arrangeCXXMethodDeclaration(MD);
364 
365   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
366 
367   assert(isa<FunctionType>(FTy));
368 
369   // When declaring a function without a prototype, always use a
370   // non-variadic type.
371   if (isa<FunctionNoProtoType>(FTy)) {
372     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
373     return arrangeLLVMFunctionInfo(
374         noProto->getReturnType(), /*instanceMethod=*/false,
375         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
376   }
377 
378   assert(isa<FunctionProtoType>(FTy));
379   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>(), FD);
380 }
381 
382 /// Arrange the argument and result information for the declaration or
383 /// definition of an Objective-C method.
384 const CGFunctionInfo &
385 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
386   // It happens that this is the same as a call with no optional
387   // arguments, except also using the formal 'self' type.
388   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
389 }
390 
391 /// Arrange the argument and result information for the function type
392 /// through which to perform a send to the given Objective-C method,
393 /// using the given receiver type.  The receiver type is not always
394 /// the 'self' type of the method or even an Objective-C pointer type.
395 /// This is *not* the right method for actually performing such a
396 /// message send, due to the possibility of optional arguments.
397 const CGFunctionInfo &
398 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
399                                               QualType receiverType) {
400   SmallVector<CanQualType, 16> argTys;
401   argTys.push_back(Context.getCanonicalParamType(receiverType));
402   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
403   // FIXME: Kill copy?
404   for (const auto *I : MD->params()) {
405     argTys.push_back(Context.getCanonicalParamType(I->getType()));
406   }
407 
408   FunctionType::ExtInfo einfo;
409   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
410   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
411 
412   if (getContext().getLangOpts().ObjCAutoRefCount &&
413       MD->hasAttr<NSReturnsRetainedAttr>())
414     einfo = einfo.withProducesResult(true);
415 
416   RequiredArgs required =
417     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
418 
419   return arrangeLLVMFunctionInfo(
420       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
421       /*chainCall=*/false, argTys, einfo, {}, required);
422 }
423 
424 const CGFunctionInfo &
425 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
426                                                  const CallArgList &args) {
427   auto argTypes = getArgTypesForCall(Context, args);
428   FunctionType::ExtInfo einfo;
429 
430   return arrangeLLVMFunctionInfo(
431       GetReturnType(returnType), /*instanceMethod=*/false,
432       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
433 }
434 
435 const CGFunctionInfo &
436 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
437   // FIXME: Do we need to handle ObjCMethodDecl?
438   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
439 
440   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
441     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
442 
443   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
444     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
445 
446   return arrangeFunctionDeclaration(FD);
447 }
448 
449 /// Arrange a thunk that takes 'this' as the first parameter followed by
450 /// varargs.  Return a void pointer, regardless of the actual return type.
451 /// The body of the thunk will end in a musttail call to a function of the
452 /// correct type, and the caller will bitcast the function to the correct
453 /// prototype.
454 const CGFunctionInfo &
455 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
456   assert(MD->isVirtual() && "only virtual memptrs have thunks");
457   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
458   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
459   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
460                                  /*chainCall=*/false, ArgTys,
461                                  FTP->getExtInfo(), {}, RequiredArgs(1));
462 }
463 
464 const CGFunctionInfo &
465 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
466                                    CXXCtorType CT) {
467   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
468 
469   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
470   SmallVector<CanQualType, 2> ArgTys;
471   const CXXRecordDecl *RD = CD->getParent();
472   ArgTys.push_back(GetThisType(Context, RD));
473   if (CT == Ctor_CopyingClosure)
474     ArgTys.push_back(*FTP->param_type_begin());
475   if (RD->getNumVBases() > 0)
476     ArgTys.push_back(Context.IntTy);
477   CallingConv CC = Context.getDefaultCallingConvention(
478       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
479   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
480                                  /*chainCall=*/false, ArgTys,
481                                  FunctionType::ExtInfo(CC), {},
482                                  RequiredArgs::All);
483 }
484 
485 /// Arrange a call as unto a free function, except possibly with an
486 /// additional number of formal parameters considered required.
487 static const CGFunctionInfo &
488 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
489                             CodeGenModule &CGM,
490                             const CallArgList &args,
491                             const FunctionType *fnType,
492                             unsigned numExtraRequiredArgs,
493                             bool chainCall) {
494   assert(args.size() >= numExtraRequiredArgs);
495 
496   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
497 
498   // In most cases, there are no optional arguments.
499   RequiredArgs required = RequiredArgs::All;
500 
501   // If we have a variadic prototype, the required arguments are the
502   // extra prefix plus the arguments in the prototype.
503   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
504     if (proto->isVariadic())
505       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
506 
507     if (proto->hasExtParameterInfos())
508       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
509                                   args.size());
510 
511   // If we don't have a prototype at all, but we're supposed to
512   // explicitly use the variadic convention for unprototyped calls,
513   // treat all of the arguments as required but preserve the nominal
514   // possibility of variadics.
515   } else if (CGM.getTargetCodeGenInfo()
516                 .isNoProtoCallVariadic(args,
517                                        cast<FunctionNoProtoType>(fnType))) {
518     required = RequiredArgs(args.size());
519   }
520 
521   // FIXME: Kill copy.
522   SmallVector<CanQualType, 16> argTypes;
523   for (const auto &arg : args)
524     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
525   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
526                                      /*instanceMethod=*/false, chainCall,
527                                      argTypes, fnType->getExtInfo(), paramInfos,
528                                      required);
529 }
530 
531 /// Figure out the rules for calling a function with the given formal
532 /// type using the given arguments.  The arguments are necessary
533 /// because the function might be unprototyped, in which case it's
534 /// target-dependent in crazy ways.
535 const CGFunctionInfo &
536 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
537                                       const FunctionType *fnType,
538                                       bool chainCall) {
539   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
540                                      chainCall ? 1 : 0, chainCall);
541 }
542 
543 /// A block function is essentially a free function with an
544 /// extra implicit argument.
545 const CGFunctionInfo &
546 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
547                                        const FunctionType *fnType) {
548   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
549                                      /*chainCall=*/false);
550 }
551 
552 const CGFunctionInfo &
553 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
554                                               const FunctionArgList &params) {
555   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
556   auto argTypes = getArgTypesForDeclaration(Context, params);
557 
558   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
559                                  /*instanceMethod*/ false, /*chainCall*/ false,
560                                  argTypes, proto->getExtInfo(), paramInfos,
561                                  RequiredArgs::forPrototypePlus(proto, 1));
562 }
563 
564 const CGFunctionInfo &
565 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
566                                          const CallArgList &args) {
567   // FIXME: Kill copy.
568   SmallVector<CanQualType, 16> argTypes;
569   for (const auto &Arg : args)
570     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
571   return arrangeLLVMFunctionInfo(
572       GetReturnType(resultType), /*instanceMethod=*/false,
573       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
574       /*paramInfos=*/ {}, RequiredArgs::All);
575 }
576 
577 const CGFunctionInfo &
578 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
579                                                 const FunctionArgList &args) {
580   auto argTypes = getArgTypesForDeclaration(Context, args);
581 
582   return arrangeLLVMFunctionInfo(
583       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
584       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
585 }
586 
587 const CGFunctionInfo &
588 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
589                                               ArrayRef<CanQualType> argTypes) {
590   return arrangeLLVMFunctionInfo(
591       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
592       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
593 }
594 
595 /// Arrange a call to a C++ method, passing the given arguments.
596 const CGFunctionInfo &
597 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
598                                    const FunctionProtoType *proto,
599                                    RequiredArgs required) {
600   unsigned numRequiredArgs =
601     (proto->isVariadic() ? required.getNumRequiredArgs() : args.size());
602   unsigned numPrefixArgs = numRequiredArgs - proto->getNumParams();
603   auto paramInfos =
604     getExtParameterInfosForCall(proto, numPrefixArgs, args.size());
605 
606   // FIXME: Kill copy.
607   auto argTypes = getArgTypesForCall(Context, args);
608 
609   FunctionType::ExtInfo info = proto->getExtInfo();
610   return arrangeLLVMFunctionInfo(
611       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
612       /*chainCall=*/false, argTypes, info, paramInfos, required);
613 }
614 
615 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
616   return arrangeLLVMFunctionInfo(
617       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
618       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
619 }
620 
621 const CGFunctionInfo &
622 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
623                           const CallArgList &args) {
624   assert(signature.arg_size() <= args.size());
625   if (signature.arg_size() == args.size())
626     return signature;
627 
628   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
629   auto sigParamInfos = signature.getExtParameterInfos();
630   if (!sigParamInfos.empty()) {
631     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
632     paramInfos.resize(args.size());
633   }
634 
635   auto argTypes = getArgTypesForCall(Context, args);
636 
637   assert(signature.getRequiredArgs().allowsOptionalArgs());
638   return arrangeLLVMFunctionInfo(signature.getReturnType(),
639                                  signature.isInstanceMethod(),
640                                  signature.isChainCall(),
641                                  argTypes,
642                                  signature.getExtInfo(),
643                                  paramInfos,
644                                  signature.getRequiredArgs());
645 }
646 
647 /// Arrange the argument and result information for an abstract value
648 /// of a given function type.  This is the method which all of the
649 /// above functions ultimately defer to.
650 const CGFunctionInfo &
651 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
652                                       bool instanceMethod,
653                                       bool chainCall,
654                                       ArrayRef<CanQualType> argTypes,
655                                       FunctionType::ExtInfo info,
656                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
657                                       RequiredArgs required) {
658   assert(std::all_of(argTypes.begin(), argTypes.end(),
659                      std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
660 
661   // Lookup or create unique function info.
662   llvm::FoldingSetNodeID ID;
663   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
664                           required, resultType, argTypes);
665 
666   void *insertPos = nullptr;
667   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
668   if (FI)
669     return *FI;
670 
671   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
672 
673   // Construct the function info.  We co-allocate the ArgInfos.
674   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
675                               paramInfos, resultType, argTypes, required);
676   FunctionInfos.InsertNode(FI, insertPos);
677 
678   bool inserted = FunctionsBeingProcessed.insert(FI).second;
679   (void)inserted;
680   assert(inserted && "Recursively being processed?");
681 
682   // Compute ABI information.
683   if (info.getCC() != CC_Swift) {
684     getABIInfo().computeInfo(*FI);
685   } else {
686     swiftcall::computeABIInfo(CGM, *FI);
687   }
688 
689   // Loop over all of the computed argument and return value info.  If any of
690   // them are direct or extend without a specified coerce type, specify the
691   // default now.
692   ABIArgInfo &retInfo = FI->getReturnInfo();
693   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
694     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
695 
696   for (auto &I : FI->arguments())
697     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
698       I.info.setCoerceToType(ConvertType(I.type));
699 
700   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
701   assert(erased && "Not in set?");
702 
703   return *FI;
704 }
705 
706 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
707                                        bool instanceMethod,
708                                        bool chainCall,
709                                        const FunctionType::ExtInfo &info,
710                                        ArrayRef<ExtParameterInfo> paramInfos,
711                                        CanQualType resultType,
712                                        ArrayRef<CanQualType> argTypes,
713                                        RequiredArgs required) {
714   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
715 
716   void *buffer =
717     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
718                                   argTypes.size() + 1, paramInfos.size()));
719 
720   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
721   FI->CallingConvention = llvmCC;
722   FI->EffectiveCallingConvention = llvmCC;
723   FI->ASTCallingConvention = info.getCC();
724   FI->InstanceMethod = instanceMethod;
725   FI->ChainCall = chainCall;
726   FI->NoReturn = info.getNoReturn();
727   FI->ReturnsRetained = info.getProducesResult();
728   FI->Required = required;
729   FI->HasRegParm = info.getHasRegParm();
730   FI->RegParm = info.getRegParm();
731   FI->ArgStruct = nullptr;
732   FI->ArgStructAlign = 0;
733   FI->NumArgs = argTypes.size();
734   FI->HasExtParameterInfos = !paramInfos.empty();
735   FI->getArgsBuffer()[0].type = resultType;
736   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
737     FI->getArgsBuffer()[i + 1].type = argTypes[i];
738   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
739     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
740   return FI;
741 }
742 
743 /***/
744 
745 namespace {
746 // ABIArgInfo::Expand implementation.
747 
748 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
749 struct TypeExpansion {
750   enum TypeExpansionKind {
751     // Elements of constant arrays are expanded recursively.
752     TEK_ConstantArray,
753     // Record fields are expanded recursively (but if record is a union, only
754     // the field with the largest size is expanded).
755     TEK_Record,
756     // For complex types, real and imaginary parts are expanded recursively.
757     TEK_Complex,
758     // All other types are not expandable.
759     TEK_None
760   };
761 
762   const TypeExpansionKind Kind;
763 
764   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
765   virtual ~TypeExpansion() {}
766 };
767 
768 struct ConstantArrayExpansion : TypeExpansion {
769   QualType EltTy;
770   uint64_t NumElts;
771 
772   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
773       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
774   static bool classof(const TypeExpansion *TE) {
775     return TE->Kind == TEK_ConstantArray;
776   }
777 };
778 
779 struct RecordExpansion : TypeExpansion {
780   SmallVector<const CXXBaseSpecifier *, 1> Bases;
781 
782   SmallVector<const FieldDecl *, 1> Fields;
783 
784   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
785                   SmallVector<const FieldDecl *, 1> &&Fields)
786       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
787         Fields(std::move(Fields)) {}
788   static bool classof(const TypeExpansion *TE) {
789     return TE->Kind == TEK_Record;
790   }
791 };
792 
793 struct ComplexExpansion : TypeExpansion {
794   QualType EltTy;
795 
796   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
797   static bool classof(const TypeExpansion *TE) {
798     return TE->Kind == TEK_Complex;
799   }
800 };
801 
802 struct NoExpansion : TypeExpansion {
803   NoExpansion() : TypeExpansion(TEK_None) {}
804   static bool classof(const TypeExpansion *TE) {
805     return TE->Kind == TEK_None;
806   }
807 };
808 }  // namespace
809 
810 static std::unique_ptr<TypeExpansion>
811 getTypeExpansion(QualType Ty, const ASTContext &Context) {
812   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
813     return llvm::make_unique<ConstantArrayExpansion>(
814         AT->getElementType(), AT->getSize().getZExtValue());
815   }
816   if (const RecordType *RT = Ty->getAs<RecordType>()) {
817     SmallVector<const CXXBaseSpecifier *, 1> Bases;
818     SmallVector<const FieldDecl *, 1> Fields;
819     const RecordDecl *RD = RT->getDecl();
820     assert(!RD->hasFlexibleArrayMember() &&
821            "Cannot expand structure with flexible array.");
822     if (RD->isUnion()) {
823       // Unions can be here only in degenerative cases - all the fields are same
824       // after flattening. Thus we have to use the "largest" field.
825       const FieldDecl *LargestFD = nullptr;
826       CharUnits UnionSize = CharUnits::Zero();
827 
828       for (const auto *FD : RD->fields()) {
829         // Skip zero length bitfields.
830         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
831           continue;
832         assert(!FD->isBitField() &&
833                "Cannot expand structure with bit-field members.");
834         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
835         if (UnionSize < FieldSize) {
836           UnionSize = FieldSize;
837           LargestFD = FD;
838         }
839       }
840       if (LargestFD)
841         Fields.push_back(LargestFD);
842     } else {
843       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
844         assert(!CXXRD->isDynamicClass() &&
845                "cannot expand vtable pointers in dynamic classes");
846         for (const CXXBaseSpecifier &BS : CXXRD->bases())
847           Bases.push_back(&BS);
848       }
849 
850       for (const auto *FD : RD->fields()) {
851         // Skip zero length bitfields.
852         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
853           continue;
854         assert(!FD->isBitField() &&
855                "Cannot expand structure with bit-field members.");
856         Fields.push_back(FD);
857       }
858     }
859     return llvm::make_unique<RecordExpansion>(std::move(Bases),
860                                               std::move(Fields));
861   }
862   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
863     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
864   }
865   return llvm::make_unique<NoExpansion>();
866 }
867 
868 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
869   auto Exp = getTypeExpansion(Ty, Context);
870   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
871     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
872   }
873   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
874     int Res = 0;
875     for (auto BS : RExp->Bases)
876       Res += getExpansionSize(BS->getType(), Context);
877     for (auto FD : RExp->Fields)
878       Res += getExpansionSize(FD->getType(), Context);
879     return Res;
880   }
881   if (isa<ComplexExpansion>(Exp.get()))
882     return 2;
883   assert(isa<NoExpansion>(Exp.get()));
884   return 1;
885 }
886 
887 void
888 CodeGenTypes::getExpandedTypes(QualType Ty,
889                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
890   auto Exp = getTypeExpansion(Ty, Context);
891   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
892     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
893       getExpandedTypes(CAExp->EltTy, TI);
894     }
895   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
896     for (auto BS : RExp->Bases)
897       getExpandedTypes(BS->getType(), TI);
898     for (auto FD : RExp->Fields)
899       getExpandedTypes(FD->getType(), TI);
900   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
901     llvm::Type *EltTy = ConvertType(CExp->EltTy);
902     *TI++ = EltTy;
903     *TI++ = EltTy;
904   } else {
905     assert(isa<NoExpansion>(Exp.get()));
906     *TI++ = ConvertType(Ty);
907   }
908 }
909 
910 static void forConstantArrayExpansion(CodeGenFunction &CGF,
911                                       ConstantArrayExpansion *CAE,
912                                       Address BaseAddr,
913                                       llvm::function_ref<void(Address)> Fn) {
914   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
915   CharUnits EltAlign =
916     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
917 
918   for (int i = 0, n = CAE->NumElts; i < n; i++) {
919     llvm::Value *EltAddr =
920       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
921     Fn(Address(EltAddr, EltAlign));
922   }
923 }
924 
925 void CodeGenFunction::ExpandTypeFromArgs(
926     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
927   assert(LV.isSimple() &&
928          "Unexpected non-simple lvalue during struct expansion.");
929 
930   auto Exp = getTypeExpansion(Ty, getContext());
931   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
932     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
933                               [&](Address EltAddr) {
934       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
935       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
936     });
937   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
938     Address This = LV.getAddress();
939     for (const CXXBaseSpecifier *BS : RExp->Bases) {
940       // Perform a single step derived-to-base conversion.
941       Address Base =
942           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
943                                 /*NullCheckValue=*/false, SourceLocation());
944       LValue SubLV = MakeAddrLValue(Base, BS->getType());
945 
946       // Recurse onto bases.
947       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
948     }
949     for (auto FD : RExp->Fields) {
950       // FIXME: What are the right qualifiers here?
951       LValue SubLV = EmitLValueForField(LV, FD);
952       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
953     }
954   } else if (isa<ComplexExpansion>(Exp.get())) {
955     auto realValue = *AI++;
956     auto imagValue = *AI++;
957     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
958   } else {
959     assert(isa<NoExpansion>(Exp.get()));
960     EmitStoreThroughLValue(RValue::get(*AI++), LV);
961   }
962 }
963 
964 void CodeGenFunction::ExpandTypeToArgs(
965     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
966     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
967   auto Exp = getTypeExpansion(Ty, getContext());
968   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
969     forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
970                               [&](Address EltAddr) {
971       RValue EltRV =
972           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
973       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
974     });
975   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
976     Address This = RV.getAggregateAddress();
977     for (const CXXBaseSpecifier *BS : RExp->Bases) {
978       // Perform a single step derived-to-base conversion.
979       Address Base =
980           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
981                                 /*NullCheckValue=*/false, SourceLocation());
982       RValue BaseRV = RValue::getAggregate(Base);
983 
984       // Recurse onto bases.
985       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
986                        IRCallArgPos);
987     }
988 
989     LValue LV = MakeAddrLValue(This, Ty);
990     for (auto FD : RExp->Fields) {
991       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
992       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
993                        IRCallArgPos);
994     }
995   } else if (isa<ComplexExpansion>(Exp.get())) {
996     ComplexPairTy CV = RV.getComplexVal();
997     IRCallArgs[IRCallArgPos++] = CV.first;
998     IRCallArgs[IRCallArgPos++] = CV.second;
999   } else {
1000     assert(isa<NoExpansion>(Exp.get()));
1001     assert(RV.isScalar() &&
1002            "Unexpected non-scalar rvalue during struct expansion.");
1003 
1004     // Insert a bitcast as needed.
1005     llvm::Value *V = RV.getScalarVal();
1006     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1007         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1008       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1009 
1010     IRCallArgs[IRCallArgPos++] = V;
1011   }
1012 }
1013 
1014 /// Create a temporary allocation for the purposes of coercion.
1015 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1016                                            CharUnits MinAlign) {
1017   // Don't use an alignment that's worse than what LLVM would prefer.
1018   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1019   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1020 
1021   return CGF.CreateTempAlloca(Ty, Align);
1022 }
1023 
1024 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1025 /// accessing some number of bytes out of it, try to gep into the struct to get
1026 /// at its inner goodness.  Dive as deep as possible without entering an element
1027 /// with an in-memory size smaller than DstSize.
1028 static Address
1029 EnterStructPointerForCoercedAccess(Address SrcPtr,
1030                                    llvm::StructType *SrcSTy,
1031                                    uint64_t DstSize, CodeGenFunction &CGF) {
1032   // We can't dive into a zero-element struct.
1033   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1034 
1035   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1036 
1037   // If the first elt is at least as large as what we're looking for, or if the
1038   // first element is the same size as the whole struct, we can enter it. The
1039   // comparison must be made on the store size and not the alloca size. Using
1040   // the alloca size may overstate the size of the load.
1041   uint64_t FirstEltSize =
1042     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1043   if (FirstEltSize < DstSize &&
1044       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1045     return SrcPtr;
1046 
1047   // GEP into the first element.
1048   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
1049 
1050   // If the first element is a struct, recurse.
1051   llvm::Type *SrcTy = SrcPtr.getElementType();
1052   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1053     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1054 
1055   return SrcPtr;
1056 }
1057 
1058 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1059 /// are either integers or pointers.  This does a truncation of the value if it
1060 /// is too large or a zero extension if it is too small.
1061 ///
1062 /// This behaves as if the value were coerced through memory, so on big-endian
1063 /// targets the high bits are preserved in a truncation, while little-endian
1064 /// targets preserve the low bits.
1065 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1066                                              llvm::Type *Ty,
1067                                              CodeGenFunction &CGF) {
1068   if (Val->getType() == Ty)
1069     return Val;
1070 
1071   if (isa<llvm::PointerType>(Val->getType())) {
1072     // If this is Pointer->Pointer avoid conversion to and from int.
1073     if (isa<llvm::PointerType>(Ty))
1074       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1075 
1076     // Convert the pointer to an integer so we can play with its width.
1077     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1078   }
1079 
1080   llvm::Type *DestIntTy = Ty;
1081   if (isa<llvm::PointerType>(DestIntTy))
1082     DestIntTy = CGF.IntPtrTy;
1083 
1084   if (Val->getType() != DestIntTy) {
1085     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1086     if (DL.isBigEndian()) {
1087       // Preserve the high bits on big-endian targets.
1088       // That is what memory coercion does.
1089       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1090       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1091 
1092       if (SrcSize > DstSize) {
1093         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1094         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1095       } else {
1096         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1097         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1098       }
1099     } else {
1100       // Little-endian targets preserve the low bits. No shifts required.
1101       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1102     }
1103   }
1104 
1105   if (isa<llvm::PointerType>(Ty))
1106     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1107   return Val;
1108 }
1109 
1110 
1111 
1112 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1113 /// a pointer to an object of type \arg Ty, known to be aligned to
1114 /// \arg SrcAlign bytes.
1115 ///
1116 /// This safely handles the case when the src type is smaller than the
1117 /// destination type; in this situation the values of bits which not
1118 /// present in the src are undefined.
1119 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1120                                       CodeGenFunction &CGF) {
1121   llvm::Type *SrcTy = Src.getElementType();
1122 
1123   // If SrcTy and Ty are the same, just do a load.
1124   if (SrcTy == Ty)
1125     return CGF.Builder.CreateLoad(Src);
1126 
1127   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1128 
1129   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1130     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1131     SrcTy = Src.getType()->getElementType();
1132   }
1133 
1134   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1135 
1136   // If the source and destination are integer or pointer types, just do an
1137   // extension or truncation to the desired type.
1138   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1139       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1140     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1141     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1142   }
1143 
1144   // If load is legal, just bitcast the src pointer.
1145   if (SrcSize >= DstSize) {
1146     // Generally SrcSize is never greater than DstSize, since this means we are
1147     // losing bits. However, this can happen in cases where the structure has
1148     // additional padding, for example due to a user specified alignment.
1149     //
1150     // FIXME: Assert that we aren't truncating non-padding bits when have access
1151     // to that information.
1152     Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty));
1153     return CGF.Builder.CreateLoad(Src);
1154   }
1155 
1156   // Otherwise do coercion through memory. This is stupid, but simple.
1157   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1158   Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1159   Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy);
1160   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1161       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1162       false);
1163   return CGF.Builder.CreateLoad(Tmp);
1164 }
1165 
1166 // Function to store a first-class aggregate into memory.  We prefer to
1167 // store the elements rather than the aggregate to be more friendly to
1168 // fast-isel.
1169 // FIXME: Do we need to recurse here?
1170 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1171                           Address Dest, bool DestIsVolatile) {
1172   // Prefer scalar stores to first-class aggregate stores.
1173   if (llvm::StructType *STy =
1174         dyn_cast<llvm::StructType>(Val->getType())) {
1175     const llvm::StructLayout *Layout =
1176       CGF.CGM.getDataLayout().getStructLayout(STy);
1177 
1178     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1179       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1180       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1181       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1182       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1183     }
1184   } else {
1185     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1186   }
1187 }
1188 
1189 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1190 /// where the source and destination may have different types.  The
1191 /// destination is known to be aligned to \arg DstAlign bytes.
1192 ///
1193 /// This safely handles the case when the src type is larger than the
1194 /// destination type; the upper bits of the src will be lost.
1195 static void CreateCoercedStore(llvm::Value *Src,
1196                                Address Dst,
1197                                bool DstIsVolatile,
1198                                CodeGenFunction &CGF) {
1199   llvm::Type *SrcTy = Src->getType();
1200   llvm::Type *DstTy = Dst.getType()->getElementType();
1201   if (SrcTy == DstTy) {
1202     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1203     return;
1204   }
1205 
1206   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1207 
1208   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1209     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1210     DstTy = Dst.getType()->getElementType();
1211   }
1212 
1213   // If the source and destination are integer or pointer types, just do an
1214   // extension or truncation to the desired type.
1215   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1216       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1217     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1218     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1219     return;
1220   }
1221 
1222   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1223 
1224   // If store is legal, just bitcast the src pointer.
1225   if (SrcSize <= DstSize) {
1226     Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy));
1227     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1228   } else {
1229     // Otherwise do coercion through memory. This is stupid, but
1230     // simple.
1231 
1232     // Generally SrcSize is never greater than DstSize, since this means we are
1233     // losing bits. However, this can happen in cases where the structure has
1234     // additional padding, for example due to a user specified alignment.
1235     //
1236     // FIXME: Assert that we aren't truncating non-padding bits when have access
1237     // to that information.
1238     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1239     CGF.Builder.CreateStore(Src, Tmp);
1240     Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1241     Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy);
1242     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1243         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1244         false);
1245   }
1246 }
1247 
1248 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1249                                    const ABIArgInfo &info) {
1250   if (unsigned offset = info.getDirectOffset()) {
1251     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1252     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1253                                              CharUnits::fromQuantity(offset));
1254     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1255   }
1256   return addr;
1257 }
1258 
1259 namespace {
1260 
1261 /// Encapsulates information about the way function arguments from
1262 /// CGFunctionInfo should be passed to actual LLVM IR function.
1263 class ClangToLLVMArgMapping {
1264   static const unsigned InvalidIndex = ~0U;
1265   unsigned InallocaArgNo;
1266   unsigned SRetArgNo;
1267   unsigned TotalIRArgs;
1268 
1269   /// Arguments of LLVM IR function corresponding to single Clang argument.
1270   struct IRArgs {
1271     unsigned PaddingArgIndex;
1272     // Argument is expanded to IR arguments at positions
1273     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1274     unsigned FirstArgIndex;
1275     unsigned NumberOfArgs;
1276 
1277     IRArgs()
1278         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1279           NumberOfArgs(0) {}
1280   };
1281 
1282   SmallVector<IRArgs, 8> ArgInfo;
1283 
1284 public:
1285   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1286                         bool OnlyRequiredArgs = false)
1287       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1288         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1289     construct(Context, FI, OnlyRequiredArgs);
1290   }
1291 
1292   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1293   unsigned getInallocaArgNo() const {
1294     assert(hasInallocaArg());
1295     return InallocaArgNo;
1296   }
1297 
1298   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1299   unsigned getSRetArgNo() const {
1300     assert(hasSRetArg());
1301     return SRetArgNo;
1302   }
1303 
1304   unsigned totalIRArgs() const { return TotalIRArgs; }
1305 
1306   bool hasPaddingArg(unsigned ArgNo) const {
1307     assert(ArgNo < ArgInfo.size());
1308     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1309   }
1310   unsigned getPaddingArgNo(unsigned ArgNo) const {
1311     assert(hasPaddingArg(ArgNo));
1312     return ArgInfo[ArgNo].PaddingArgIndex;
1313   }
1314 
1315   /// Returns index of first IR argument corresponding to ArgNo, and their
1316   /// quantity.
1317   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1318     assert(ArgNo < ArgInfo.size());
1319     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1320                           ArgInfo[ArgNo].NumberOfArgs);
1321   }
1322 
1323 private:
1324   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1325                  bool OnlyRequiredArgs);
1326 };
1327 
1328 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1329                                       const CGFunctionInfo &FI,
1330                                       bool OnlyRequiredArgs) {
1331   unsigned IRArgNo = 0;
1332   bool SwapThisWithSRet = false;
1333   const ABIArgInfo &RetAI = FI.getReturnInfo();
1334 
1335   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1336     SwapThisWithSRet = RetAI.isSRetAfterThis();
1337     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1338   }
1339 
1340   unsigned ArgNo = 0;
1341   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1342   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1343        ++I, ++ArgNo) {
1344     assert(I != FI.arg_end());
1345     QualType ArgType = I->type;
1346     const ABIArgInfo &AI = I->info;
1347     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1348     auto &IRArgs = ArgInfo[ArgNo];
1349 
1350     if (AI.getPaddingType())
1351       IRArgs.PaddingArgIndex = IRArgNo++;
1352 
1353     switch (AI.getKind()) {
1354     case ABIArgInfo::Extend:
1355     case ABIArgInfo::Direct: {
1356       // FIXME: handle sseregparm someday...
1357       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1358       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1359         IRArgs.NumberOfArgs = STy->getNumElements();
1360       } else {
1361         IRArgs.NumberOfArgs = 1;
1362       }
1363       break;
1364     }
1365     case ABIArgInfo::Indirect:
1366       IRArgs.NumberOfArgs = 1;
1367       break;
1368     case ABIArgInfo::Ignore:
1369     case ABIArgInfo::InAlloca:
1370       // ignore and inalloca doesn't have matching LLVM parameters.
1371       IRArgs.NumberOfArgs = 0;
1372       break;
1373     case ABIArgInfo::CoerceAndExpand:
1374       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1375       break;
1376     case ABIArgInfo::Expand:
1377       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1378       break;
1379     }
1380 
1381     if (IRArgs.NumberOfArgs > 0) {
1382       IRArgs.FirstArgIndex = IRArgNo;
1383       IRArgNo += IRArgs.NumberOfArgs;
1384     }
1385 
1386     // Skip over the sret parameter when it comes second.  We already handled it
1387     // above.
1388     if (IRArgNo == 1 && SwapThisWithSRet)
1389       IRArgNo++;
1390   }
1391   assert(ArgNo == ArgInfo.size());
1392 
1393   if (FI.usesInAlloca())
1394     InallocaArgNo = IRArgNo++;
1395 
1396   TotalIRArgs = IRArgNo;
1397 }
1398 }  // namespace
1399 
1400 /***/
1401 
1402 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1403   return FI.getReturnInfo().isIndirect();
1404 }
1405 
1406 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1407   return ReturnTypeUsesSRet(FI) &&
1408          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1409 }
1410 
1411 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1412   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1413     switch (BT->getKind()) {
1414     default:
1415       return false;
1416     case BuiltinType::Float:
1417       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1418     case BuiltinType::Double:
1419       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1420     case BuiltinType::LongDouble:
1421       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1422     }
1423   }
1424 
1425   return false;
1426 }
1427 
1428 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1429   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1430     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1431       if (BT->getKind() == BuiltinType::LongDouble)
1432         return getTarget().useObjCFP2RetForComplexLongDouble();
1433     }
1434   }
1435 
1436   return false;
1437 }
1438 
1439 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1440   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1441   return GetFunctionType(FI);
1442 }
1443 
1444 llvm::FunctionType *
1445 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1446 
1447   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1448   (void)Inserted;
1449   assert(Inserted && "Recursively being processed?");
1450 
1451   llvm::Type *resultType = nullptr;
1452   const ABIArgInfo &retAI = FI.getReturnInfo();
1453   switch (retAI.getKind()) {
1454   case ABIArgInfo::Expand:
1455     llvm_unreachable("Invalid ABI kind for return argument");
1456 
1457   case ABIArgInfo::Extend:
1458   case ABIArgInfo::Direct:
1459     resultType = retAI.getCoerceToType();
1460     break;
1461 
1462   case ABIArgInfo::InAlloca:
1463     if (retAI.getInAllocaSRet()) {
1464       // sret things on win32 aren't void, they return the sret pointer.
1465       QualType ret = FI.getReturnType();
1466       llvm::Type *ty = ConvertType(ret);
1467       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1468       resultType = llvm::PointerType::get(ty, addressSpace);
1469     } else {
1470       resultType = llvm::Type::getVoidTy(getLLVMContext());
1471     }
1472     break;
1473 
1474   case ABIArgInfo::Indirect:
1475   case ABIArgInfo::Ignore:
1476     resultType = llvm::Type::getVoidTy(getLLVMContext());
1477     break;
1478 
1479   case ABIArgInfo::CoerceAndExpand:
1480     resultType = retAI.getUnpaddedCoerceAndExpandType();
1481     break;
1482   }
1483 
1484   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1485   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1486 
1487   // Add type for sret argument.
1488   if (IRFunctionArgs.hasSRetArg()) {
1489     QualType Ret = FI.getReturnType();
1490     llvm::Type *Ty = ConvertType(Ret);
1491     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1492     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1493         llvm::PointerType::get(Ty, AddressSpace);
1494   }
1495 
1496   // Add type for inalloca argument.
1497   if (IRFunctionArgs.hasInallocaArg()) {
1498     auto ArgStruct = FI.getArgStruct();
1499     assert(ArgStruct);
1500     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1501   }
1502 
1503   // Add in all of the required arguments.
1504   unsigned ArgNo = 0;
1505   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1506                                      ie = it + FI.getNumRequiredArgs();
1507   for (; it != ie; ++it, ++ArgNo) {
1508     const ABIArgInfo &ArgInfo = it->info;
1509 
1510     // Insert a padding type to ensure proper alignment.
1511     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1512       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1513           ArgInfo.getPaddingType();
1514 
1515     unsigned FirstIRArg, NumIRArgs;
1516     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1517 
1518     switch (ArgInfo.getKind()) {
1519     case ABIArgInfo::Ignore:
1520     case ABIArgInfo::InAlloca:
1521       assert(NumIRArgs == 0);
1522       break;
1523 
1524     case ABIArgInfo::Indirect: {
1525       assert(NumIRArgs == 1);
1526       // indirect arguments are always on the stack, which is addr space #0.
1527       llvm::Type *LTy = ConvertTypeForMem(it->type);
1528       ArgTypes[FirstIRArg] = LTy->getPointerTo();
1529       break;
1530     }
1531 
1532     case ABIArgInfo::Extend:
1533     case ABIArgInfo::Direct: {
1534       // Fast-isel and the optimizer generally like scalar values better than
1535       // FCAs, so we flatten them if this is safe to do for this argument.
1536       llvm::Type *argType = ArgInfo.getCoerceToType();
1537       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1538       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1539         assert(NumIRArgs == st->getNumElements());
1540         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1541           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1542       } else {
1543         assert(NumIRArgs == 1);
1544         ArgTypes[FirstIRArg] = argType;
1545       }
1546       break;
1547     }
1548 
1549     case ABIArgInfo::CoerceAndExpand: {
1550       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1551       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1552         *ArgTypesIter++ = EltTy;
1553       }
1554       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1555       break;
1556     }
1557 
1558     case ABIArgInfo::Expand:
1559       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1560       getExpandedTypes(it->type, ArgTypesIter);
1561       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1562       break;
1563     }
1564   }
1565 
1566   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1567   assert(Erased && "Not in set?");
1568 
1569   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1570 }
1571 
1572 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1573   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1574   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1575 
1576   if (!isFuncTypeConvertible(FPT))
1577     return llvm::StructType::get(getLLVMContext());
1578 
1579   const CGFunctionInfo *Info;
1580   if (isa<CXXDestructorDecl>(MD))
1581     Info =
1582         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1583   else
1584     Info = &arrangeCXXMethodDeclaration(MD);
1585   return GetFunctionType(*Info);
1586 }
1587 
1588 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1589                                                llvm::AttrBuilder &FuncAttrs,
1590                                                const FunctionProtoType *FPT) {
1591   if (!FPT)
1592     return;
1593 
1594   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1595       FPT->isNothrow(Ctx))
1596     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1597 }
1598 
1599 void CodeGenModule::ConstructAttributeList(
1600     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1601     AttributeListType &PAL, unsigned &CallingConv, bool AttrOnCallSite) {
1602   llvm::AttrBuilder FuncAttrs;
1603   llvm::AttrBuilder RetAttrs;
1604   bool HasOptnone = false;
1605 
1606   CallingConv = FI.getEffectiveCallingConvention();
1607 
1608   if (FI.isNoReturn())
1609     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1610 
1611   // If we have information about the function prototype, we can learn
1612   // attributes form there.
1613   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1614                                      CalleeInfo.getCalleeFunctionProtoType());
1615 
1616   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
1617 
1618   bool HasAnyX86InterruptAttr = false;
1619   // FIXME: handle sseregparm someday...
1620   if (TargetDecl) {
1621     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1622       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1623     if (TargetDecl->hasAttr<NoThrowAttr>())
1624       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1625     if (TargetDecl->hasAttr<NoReturnAttr>())
1626       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1627     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1628       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1629 
1630     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1631       AddAttributesFromFunctionProtoType(
1632           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1633       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1634       // These attributes are not inherited by overloads.
1635       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1636       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1637         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1638     }
1639 
1640     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1641     if (TargetDecl->hasAttr<ConstAttr>()) {
1642       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1643       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1644     } else if (TargetDecl->hasAttr<PureAttr>()) {
1645       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1646       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1647     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1648       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1649       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1650     }
1651     if (TargetDecl->hasAttr<RestrictAttr>())
1652       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1653     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1654       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1655 
1656     HasAnyX86InterruptAttr = TargetDecl->hasAttr<AnyX86InterruptAttr>();
1657     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1658   }
1659 
1660   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1661   if (!HasOptnone) {
1662     if (CodeGenOpts.OptimizeSize)
1663       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1664     if (CodeGenOpts.OptimizeSize == 2)
1665       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1666   }
1667 
1668   if (CodeGenOpts.DisableRedZone)
1669     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1670   if (CodeGenOpts.NoImplicitFloat)
1671     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1672   if (CodeGenOpts.EnableSegmentedStacks &&
1673       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1674     FuncAttrs.addAttribute("split-stack");
1675 
1676   if (AttrOnCallSite) {
1677     // Attributes that should go on the call site only.
1678     if (!CodeGenOpts.SimplifyLibCalls ||
1679         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1680       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1681     if (!CodeGenOpts.TrapFuncName.empty())
1682       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1683   } else {
1684     // Attributes that should go on the function, but not the call site.
1685     if (!CodeGenOpts.DisableFPElim) {
1686       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1687     } else if (CodeGenOpts.OmitLeafFramePointer) {
1688       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1689       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1690     } else {
1691       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1692       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1693     }
1694 
1695     bool DisableTailCalls =
1696         CodeGenOpts.DisableTailCalls || HasAnyX86InterruptAttr ||
1697         (TargetDecl && TargetDecl->hasAttr<DisableTailCallsAttr>());
1698     FuncAttrs.addAttribute(
1699         "disable-tail-calls",
1700         llvm::toStringRef(DisableTailCalls));
1701 
1702     FuncAttrs.addAttribute("less-precise-fpmad",
1703                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1704     FuncAttrs.addAttribute("no-infs-fp-math",
1705                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1706     FuncAttrs.addAttribute("no-nans-fp-math",
1707                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1708     FuncAttrs.addAttribute("unsafe-fp-math",
1709                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1710     FuncAttrs.addAttribute("use-soft-float",
1711                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1712     FuncAttrs.addAttribute("stack-protector-buffer-size",
1713                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1714 
1715     if (CodeGenOpts.StackRealignment)
1716       FuncAttrs.addAttribute("stackrealign");
1717 
1718     // Add target-cpu and target-features attributes to functions. If
1719     // we have a decl for the function and it has a target attribute then
1720     // parse that and add it to the feature set.
1721     StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1722     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
1723     if (FD && FD->hasAttr<TargetAttr>()) {
1724       llvm::StringMap<bool> FeatureMap;
1725       getFunctionFeatureMap(FeatureMap, FD);
1726 
1727       // Produce the canonical string for this set of features.
1728       std::vector<std::string> Features;
1729       for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
1730                                                  ie = FeatureMap.end();
1731            it != ie; ++it)
1732         Features.push_back((it->second ? "+" : "-") + it->first().str());
1733 
1734       // Now add the target-cpu and target-features to the function.
1735       // While we populated the feature map above, we still need to
1736       // get and parse the target attribute so we can get the cpu for
1737       // the function.
1738       const auto *TD = FD->getAttr<TargetAttr>();
1739       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1740       if (ParsedAttr.second != "")
1741         TargetCPU = ParsedAttr.second;
1742       if (TargetCPU != "")
1743         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1744       if (!Features.empty()) {
1745         std::sort(Features.begin(), Features.end());
1746         FuncAttrs.addAttribute(
1747             "target-features",
1748             llvm::join(Features.begin(), Features.end(), ","));
1749       }
1750     } else {
1751       // Otherwise just add the existing target cpu and target features to the
1752       // function.
1753       std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
1754       if (TargetCPU != "")
1755         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1756       if (!Features.empty()) {
1757         std::sort(Features.begin(), Features.end());
1758         FuncAttrs.addAttribute(
1759             "target-features",
1760             llvm::join(Features.begin(), Features.end(), ","));
1761       }
1762     }
1763   }
1764 
1765   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1766     // Conservatively, mark all functions and calls in CUDA as convergent
1767     // (meaning, they may call an intrinsically convergent op, such as
1768     // __syncthreads(), and so can't have certain optimizations applied around
1769     // them).  LLVM will remove this attribute where it safely can.
1770     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1771 
1772     // Respect -fcuda-flush-denormals-to-zero.
1773     if (getLangOpts().CUDADeviceFlushDenormalsToZero)
1774       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1775   }
1776 
1777   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1778 
1779   QualType RetTy = FI.getReturnType();
1780   const ABIArgInfo &RetAI = FI.getReturnInfo();
1781   switch (RetAI.getKind()) {
1782   case ABIArgInfo::Extend:
1783     if (RetTy->hasSignedIntegerRepresentation())
1784       RetAttrs.addAttribute(llvm::Attribute::SExt);
1785     else if (RetTy->hasUnsignedIntegerRepresentation())
1786       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1787     // FALL THROUGH
1788   case ABIArgInfo::Direct:
1789     if (RetAI.getInReg())
1790       RetAttrs.addAttribute(llvm::Attribute::InReg);
1791     break;
1792   case ABIArgInfo::Ignore:
1793     break;
1794 
1795   case ABIArgInfo::InAlloca:
1796   case ABIArgInfo::Indirect: {
1797     // inalloca and sret disable readnone and readonly
1798     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1799       .removeAttribute(llvm::Attribute::ReadNone);
1800     break;
1801   }
1802 
1803   case ABIArgInfo::CoerceAndExpand:
1804     break;
1805 
1806   case ABIArgInfo::Expand:
1807     llvm_unreachable("Invalid ABI kind for return argument");
1808   }
1809 
1810   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1811     QualType PTy = RefTy->getPointeeType();
1812     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1813       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1814                                         .getQuantity());
1815     else if (getContext().getTargetAddressSpace(PTy) == 0)
1816       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1817   }
1818 
1819   // Attach return attributes.
1820   if (RetAttrs.hasAttributes()) {
1821     PAL.push_back(llvm::AttributeSet::get(
1822         getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
1823   }
1824 
1825   bool hasUsedSRet = false;
1826 
1827   // Attach attributes to sret.
1828   if (IRFunctionArgs.hasSRetArg()) {
1829     llvm::AttrBuilder SRETAttrs;
1830     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1831     hasUsedSRet = true;
1832     if (RetAI.getInReg())
1833       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1834     PAL.push_back(llvm::AttributeSet::get(
1835         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1836   }
1837 
1838   // Attach attributes to inalloca argument.
1839   if (IRFunctionArgs.hasInallocaArg()) {
1840     llvm::AttrBuilder Attrs;
1841     Attrs.addAttribute(llvm::Attribute::InAlloca);
1842     PAL.push_back(llvm::AttributeSet::get(
1843         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1844   }
1845 
1846   unsigned ArgNo = 0;
1847   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1848                                           E = FI.arg_end();
1849        I != E; ++I, ++ArgNo) {
1850     QualType ParamType = I->type;
1851     const ABIArgInfo &AI = I->info;
1852     llvm::AttrBuilder Attrs;
1853 
1854     // Add attribute for padding argument, if necessary.
1855     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1856       if (AI.getPaddingInReg())
1857         PAL.push_back(llvm::AttributeSet::get(
1858             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1859             llvm::Attribute::InReg));
1860     }
1861 
1862     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1863     // have the corresponding parameter variable.  It doesn't make
1864     // sense to do it here because parameters are so messed up.
1865     switch (AI.getKind()) {
1866     case ABIArgInfo::Extend:
1867       if (ParamType->isSignedIntegerOrEnumerationType())
1868         Attrs.addAttribute(llvm::Attribute::SExt);
1869       else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
1870         if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
1871           Attrs.addAttribute(llvm::Attribute::SExt);
1872         else
1873           Attrs.addAttribute(llvm::Attribute::ZExt);
1874       }
1875       // FALL THROUGH
1876     case ABIArgInfo::Direct:
1877       if (ArgNo == 0 && FI.isChainCall())
1878         Attrs.addAttribute(llvm::Attribute::Nest);
1879       else if (AI.getInReg())
1880         Attrs.addAttribute(llvm::Attribute::InReg);
1881       break;
1882 
1883     case ABIArgInfo::Indirect: {
1884       if (AI.getInReg())
1885         Attrs.addAttribute(llvm::Attribute::InReg);
1886 
1887       if (AI.getIndirectByVal())
1888         Attrs.addAttribute(llvm::Attribute::ByVal);
1889 
1890       CharUnits Align = AI.getIndirectAlign();
1891 
1892       // In a byval argument, it is important that the required
1893       // alignment of the type is honored, as LLVM might be creating a
1894       // *new* stack object, and needs to know what alignment to give
1895       // it. (Sometimes it can deduce a sensible alignment on its own,
1896       // but not if clang decides it must emit a packed struct, or the
1897       // user specifies increased alignment requirements.)
1898       //
1899       // This is different from indirect *not* byval, where the object
1900       // exists already, and the align attribute is purely
1901       // informative.
1902       assert(!Align.isZero());
1903 
1904       // For now, only add this when we have a byval argument.
1905       // TODO: be less lazy about updating test cases.
1906       if (AI.getIndirectByVal())
1907         Attrs.addAlignmentAttr(Align.getQuantity());
1908 
1909       // byval disables readnone and readonly.
1910       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1911         .removeAttribute(llvm::Attribute::ReadNone);
1912       break;
1913     }
1914     case ABIArgInfo::Ignore:
1915     case ABIArgInfo::Expand:
1916     case ABIArgInfo::CoerceAndExpand:
1917       break;
1918 
1919     case ABIArgInfo::InAlloca:
1920       // inalloca disables readnone and readonly.
1921       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1922           .removeAttribute(llvm::Attribute::ReadNone);
1923       continue;
1924     }
1925 
1926     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1927       QualType PTy = RefTy->getPointeeType();
1928       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1929         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1930                                        .getQuantity());
1931       else if (getContext().getTargetAddressSpace(PTy) == 0)
1932         Attrs.addAttribute(llvm::Attribute::NonNull);
1933     }
1934 
1935     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
1936     case ParameterABI::Ordinary:
1937       break;
1938 
1939     case ParameterABI::SwiftIndirectResult: {
1940       // Add 'sret' if we haven't already used it for something, but
1941       // only if the result is void.
1942       if (!hasUsedSRet && RetTy->isVoidType()) {
1943         Attrs.addAttribute(llvm::Attribute::StructRet);
1944         hasUsedSRet = true;
1945       }
1946 
1947       // Add 'noalias' in either case.
1948       Attrs.addAttribute(llvm::Attribute::NoAlias);
1949 
1950       // Add 'dereferenceable' and 'alignment'.
1951       auto PTy = ParamType->getPointeeType();
1952       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
1953         auto info = getContext().getTypeInfoInChars(PTy);
1954         Attrs.addDereferenceableAttr(info.first.getQuantity());
1955         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
1956                                                  info.second.getQuantity()));
1957       }
1958       break;
1959     }
1960 
1961     case ParameterABI::SwiftErrorResult:
1962       Attrs.addAttribute(llvm::Attribute::SwiftError);
1963       break;
1964 
1965     case ParameterABI::SwiftContext:
1966       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
1967       break;
1968     }
1969 
1970     if (Attrs.hasAttributes()) {
1971       unsigned FirstIRArg, NumIRArgs;
1972       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1973       for (unsigned i = 0; i < NumIRArgs; i++)
1974         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
1975                                               FirstIRArg + i + 1, Attrs));
1976     }
1977   }
1978   assert(ArgNo == FI.arg_size());
1979 
1980   if (FuncAttrs.hasAttributes())
1981     PAL.push_back(llvm::
1982                   AttributeSet::get(getLLVMContext(),
1983                                     llvm::AttributeSet::FunctionIndex,
1984                                     FuncAttrs));
1985 }
1986 
1987 /// An argument came in as a promoted argument; demote it back to its
1988 /// declared type.
1989 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1990                                          const VarDecl *var,
1991                                          llvm::Value *value) {
1992   llvm::Type *varType = CGF.ConvertType(var->getType());
1993 
1994   // This can happen with promotions that actually don't change the
1995   // underlying type, like the enum promotions.
1996   if (value->getType() == varType) return value;
1997 
1998   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1999          && "unexpected promotion type");
2000 
2001   if (isa<llvm::IntegerType>(varType))
2002     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2003 
2004   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2005 }
2006 
2007 /// Returns the attribute (either parameter attribute, or function
2008 /// attribute), which declares argument ArgNo to be non-null.
2009 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2010                                          QualType ArgType, unsigned ArgNo) {
2011   // FIXME: __attribute__((nonnull)) can also be applied to:
2012   //   - references to pointers, where the pointee is known to be
2013   //     nonnull (apparently a Clang extension)
2014   //   - transparent unions containing pointers
2015   // In the former case, LLVM IR cannot represent the constraint. In
2016   // the latter case, we have no guarantee that the transparent union
2017   // is in fact passed as a pointer.
2018   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2019     return nullptr;
2020   // First, check attribute on parameter itself.
2021   if (PVD) {
2022     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2023       return ParmNNAttr;
2024   }
2025   // Check function attributes.
2026   if (!FD)
2027     return nullptr;
2028   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2029     if (NNAttr->isNonNull(ArgNo))
2030       return NNAttr;
2031   }
2032   return nullptr;
2033 }
2034 
2035 namespace {
2036   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2037     Address Temp;
2038     Address Arg;
2039     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2040     void Emit(CodeGenFunction &CGF, Flags flags) override {
2041       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2042       CGF.Builder.CreateStore(errorValue, Arg);
2043     }
2044   };
2045 }
2046 
2047 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2048                                          llvm::Function *Fn,
2049                                          const FunctionArgList &Args) {
2050   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2051     // Naked functions don't have prologues.
2052     return;
2053 
2054   // If this is an implicit-return-zero function, go ahead and
2055   // initialize the return value.  TODO: it might be nice to have
2056   // a more general mechanism for this that didn't require synthesized
2057   // return statements.
2058   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2059     if (FD->hasImplicitReturnZero()) {
2060       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2061       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2062       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2063       Builder.CreateStore(Zero, ReturnValue);
2064     }
2065   }
2066 
2067   // FIXME: We no longer need the types from FunctionArgList; lift up and
2068   // simplify.
2069 
2070   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2071   // Flattened function arguments.
2072   SmallVector<llvm::Value *, 16> FnArgs;
2073   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2074   for (auto &Arg : Fn->args()) {
2075     FnArgs.push_back(&Arg);
2076   }
2077   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2078 
2079   // If we're using inalloca, all the memory arguments are GEPs off of the last
2080   // parameter, which is a pointer to the complete memory area.
2081   Address ArgStruct = Address::invalid();
2082   const llvm::StructLayout *ArgStructLayout = nullptr;
2083   if (IRFunctionArgs.hasInallocaArg()) {
2084     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
2085     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2086                         FI.getArgStructAlignment());
2087 
2088     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2089   }
2090 
2091   // Name the struct return parameter.
2092   if (IRFunctionArgs.hasSRetArg()) {
2093     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2094     AI->setName("agg.result");
2095     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
2096                                         llvm::Attribute::NoAlias));
2097   }
2098 
2099   // Track if we received the parameter as a pointer (indirect, byval, or
2100   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2101   // into a local alloca for us.
2102   SmallVector<ParamValue, 16> ArgVals;
2103   ArgVals.reserve(Args.size());
2104 
2105   // Create a pointer value for every parameter declaration.  This usually
2106   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2107   // any cleanups or do anything that might unwind.  We do that separately, so
2108   // we can push the cleanups in the correct order for the ABI.
2109   assert(FI.arg_size() == Args.size() &&
2110          "Mismatch between function signature & arguments.");
2111   unsigned ArgNo = 0;
2112   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2113   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2114        i != e; ++i, ++info_it, ++ArgNo) {
2115     const VarDecl *Arg = *i;
2116     QualType Ty = info_it->type;
2117     const ABIArgInfo &ArgI = info_it->info;
2118 
2119     bool isPromoted =
2120       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2121 
2122     unsigned FirstIRArg, NumIRArgs;
2123     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2124 
2125     switch (ArgI.getKind()) {
2126     case ABIArgInfo::InAlloca: {
2127       assert(NumIRArgs == 0);
2128       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2129       CharUnits FieldOffset =
2130         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
2131       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
2132                                           Arg->getName());
2133       ArgVals.push_back(ParamValue::forIndirect(V));
2134       break;
2135     }
2136 
2137     case ABIArgInfo::Indirect: {
2138       assert(NumIRArgs == 1);
2139       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2140 
2141       if (!hasScalarEvaluationKind(Ty)) {
2142         // Aggregates and complex variables are accessed by reference.  All we
2143         // need to do is realign the value, if requested.
2144         Address V = ParamAddr;
2145         if (ArgI.getIndirectRealign()) {
2146           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2147 
2148           // Copy from the incoming argument pointer to the temporary with the
2149           // appropriate alignment.
2150           //
2151           // FIXME: We should have a common utility for generating an aggregate
2152           // copy.
2153           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2154           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2155           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2156           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2157           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2158           V = AlignedTemp;
2159         }
2160         ArgVals.push_back(ParamValue::forIndirect(V));
2161       } else {
2162         // Load scalar value from indirect argument.
2163         llvm::Value *V =
2164           EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
2165 
2166         if (isPromoted)
2167           V = emitArgumentDemotion(*this, Arg, V);
2168         ArgVals.push_back(ParamValue::forDirect(V));
2169       }
2170       break;
2171     }
2172 
2173     case ABIArgInfo::Extend:
2174     case ABIArgInfo::Direct: {
2175 
2176       // If we have the trivial case, handle it with no muss and fuss.
2177       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2178           ArgI.getCoerceToType() == ConvertType(Ty) &&
2179           ArgI.getDirectOffset() == 0) {
2180         assert(NumIRArgs == 1);
2181         llvm::Value *V = FnArgs[FirstIRArg];
2182         auto AI = cast<llvm::Argument>(V);
2183 
2184         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2185           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2186                              PVD->getFunctionScopeIndex()))
2187             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2188                                                 AI->getArgNo() + 1,
2189                                                 llvm::Attribute::NonNull));
2190 
2191           QualType OTy = PVD->getOriginalType();
2192           if (const auto *ArrTy =
2193               getContext().getAsConstantArrayType(OTy)) {
2194             // A C99 array parameter declaration with the static keyword also
2195             // indicates dereferenceability, and if the size is constant we can
2196             // use the dereferenceable attribute (which requires the size in
2197             // bytes).
2198             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2199               QualType ETy = ArrTy->getElementType();
2200               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2201               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2202                   ArrSize) {
2203                 llvm::AttrBuilder Attrs;
2204                 Attrs.addDereferenceableAttr(
2205                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2206                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2207                                                     AI->getArgNo() + 1, Attrs));
2208               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
2209                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2210                                                     AI->getArgNo() + 1,
2211                                                     llvm::Attribute::NonNull));
2212               }
2213             }
2214           } else if (const auto *ArrTy =
2215                      getContext().getAsVariableArrayType(OTy)) {
2216             // For C99 VLAs with the static keyword, we don't know the size so
2217             // we can't use the dereferenceable attribute, but in addrspace(0)
2218             // we know that it must be nonnull.
2219             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2220                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
2221               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2222                                                   AI->getArgNo() + 1,
2223                                                   llvm::Attribute::NonNull));
2224           }
2225 
2226           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2227           if (!AVAttr)
2228             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2229               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2230           if (AVAttr) {
2231             llvm::Value *AlignmentValue =
2232               EmitScalarExpr(AVAttr->getAlignment());
2233             llvm::ConstantInt *AlignmentCI =
2234               cast<llvm::ConstantInt>(AlignmentValue);
2235             unsigned Alignment =
2236               std::min((unsigned) AlignmentCI->getZExtValue(),
2237                        +llvm::Value::MaximumAlignment);
2238 
2239             llvm::AttrBuilder Attrs;
2240             Attrs.addAlignmentAttr(Alignment);
2241             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2242                                                 AI->getArgNo() + 1, Attrs));
2243           }
2244         }
2245 
2246         if (Arg->getType().isRestrictQualified())
2247           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2248                                               AI->getArgNo() + 1,
2249                                               llvm::Attribute::NoAlias));
2250 
2251         // LLVM expects swifterror parameters to be used in very restricted
2252         // ways.  Copy the value into a less-restricted temporary.
2253         if (FI.getExtParameterInfo(ArgNo).getABI()
2254               == ParameterABI::SwiftErrorResult) {
2255           QualType pointeeTy = Ty->getPointeeType();
2256           assert(pointeeTy->isPointerType());
2257           Address temp =
2258             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2259           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2260           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2261           Builder.CreateStore(incomingErrorValue, temp);
2262           V = temp.getPointer();
2263 
2264           // Push a cleanup to copy the value back at the end of the function.
2265           // The convention does not guarantee that the value will be written
2266           // back if the function exits with an unwind exception.
2267           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2268         }
2269 
2270         // Ensure the argument is the correct type.
2271         if (V->getType() != ArgI.getCoerceToType())
2272           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2273 
2274         if (isPromoted)
2275           V = emitArgumentDemotion(*this, Arg, V);
2276 
2277         if (const CXXMethodDecl *MD =
2278             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
2279           if (MD->isVirtual() && Arg == CXXABIThisDecl)
2280             V = CGM.getCXXABI().
2281                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
2282         }
2283 
2284         // Because of merging of function types from multiple decls it is
2285         // possible for the type of an argument to not match the corresponding
2286         // type in the function type. Since we are codegening the callee
2287         // in here, add a cast to the argument type.
2288         llvm::Type *LTy = ConvertType(Arg->getType());
2289         if (V->getType() != LTy)
2290           V = Builder.CreateBitCast(V, LTy);
2291 
2292         ArgVals.push_back(ParamValue::forDirect(V));
2293         break;
2294       }
2295 
2296       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2297                                      Arg->getName());
2298 
2299       // Pointer to store into.
2300       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2301 
2302       // Fast-isel and the optimizer generally like scalar values better than
2303       // FCAs, so we flatten them if this is safe to do for this argument.
2304       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2305       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2306           STy->getNumElements() > 1) {
2307         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2308         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2309         llvm::Type *DstTy = Ptr.getElementType();
2310         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2311 
2312         Address AddrToStoreInto = Address::invalid();
2313         if (SrcSize <= DstSize) {
2314           AddrToStoreInto =
2315             Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
2316         } else {
2317           AddrToStoreInto =
2318             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2319         }
2320 
2321         assert(STy->getNumElements() == NumIRArgs);
2322         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2323           auto AI = FnArgs[FirstIRArg + i];
2324           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2325           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2326           Address EltPtr =
2327             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2328           Builder.CreateStore(AI, EltPtr);
2329         }
2330 
2331         if (SrcSize > DstSize) {
2332           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2333         }
2334 
2335       } else {
2336         // Simple case, just do a coerced store of the argument into the alloca.
2337         assert(NumIRArgs == 1);
2338         auto AI = FnArgs[FirstIRArg];
2339         AI->setName(Arg->getName() + ".coerce");
2340         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2341       }
2342 
2343       // Match to what EmitParmDecl is expecting for this type.
2344       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2345         llvm::Value *V =
2346           EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
2347         if (isPromoted)
2348           V = emitArgumentDemotion(*this, Arg, V);
2349         ArgVals.push_back(ParamValue::forDirect(V));
2350       } else {
2351         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2352       }
2353       break;
2354     }
2355 
2356     case ABIArgInfo::CoerceAndExpand: {
2357       // Reconstruct into a temporary.
2358       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2359       ArgVals.push_back(ParamValue::forIndirect(alloca));
2360 
2361       auto coercionType = ArgI.getCoerceAndExpandType();
2362       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2363       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2364 
2365       unsigned argIndex = FirstIRArg;
2366       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2367         llvm::Type *eltType = coercionType->getElementType(i);
2368         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2369           continue;
2370 
2371         auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
2372         auto elt = FnArgs[argIndex++];
2373         Builder.CreateStore(elt, eltAddr);
2374       }
2375       assert(argIndex == FirstIRArg + NumIRArgs);
2376       break;
2377     }
2378 
2379     case ABIArgInfo::Expand: {
2380       // If this structure was expanded into multiple arguments then
2381       // we need to create a temporary and reconstruct it from the
2382       // arguments.
2383       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2384       LValue LV = MakeAddrLValue(Alloca, Ty);
2385       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2386 
2387       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2388       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2389       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2390       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2391         auto AI = FnArgs[FirstIRArg + i];
2392         AI->setName(Arg->getName() + "." + Twine(i));
2393       }
2394       break;
2395     }
2396 
2397     case ABIArgInfo::Ignore:
2398       assert(NumIRArgs == 0);
2399       // Initialize the local variable appropriately.
2400       if (!hasScalarEvaluationKind(Ty)) {
2401         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2402       } else {
2403         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2404         ArgVals.push_back(ParamValue::forDirect(U));
2405       }
2406       break;
2407     }
2408   }
2409 
2410   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2411     for (int I = Args.size() - 1; I >= 0; --I)
2412       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2413   } else {
2414     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2415       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2416   }
2417 }
2418 
2419 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2420   while (insn->use_empty()) {
2421     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2422     if (!bitcast) return;
2423 
2424     // This is "safe" because we would have used a ConstantExpr otherwise.
2425     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2426     bitcast->eraseFromParent();
2427   }
2428 }
2429 
2430 /// Try to emit a fused autorelease of a return result.
2431 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2432                                                     llvm::Value *result) {
2433   // We must be immediately followed the cast.
2434   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2435   if (BB->empty()) return nullptr;
2436   if (&BB->back() != result) return nullptr;
2437 
2438   llvm::Type *resultType = result->getType();
2439 
2440   // result is in a BasicBlock and is therefore an Instruction.
2441   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2442 
2443   SmallVector<llvm::Instruction*,4> insnsToKill;
2444 
2445   // Look for:
2446   //  %generator = bitcast %type1* %generator2 to %type2*
2447   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2448     // We would have emitted this as a constant if the operand weren't
2449     // an Instruction.
2450     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2451 
2452     // Require the generator to be immediately followed by the cast.
2453     if (generator->getNextNode() != bitcast)
2454       return nullptr;
2455 
2456     insnsToKill.push_back(bitcast);
2457   }
2458 
2459   // Look for:
2460   //   %generator = call i8* @objc_retain(i8* %originalResult)
2461   // or
2462   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2463   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2464   if (!call) return nullptr;
2465 
2466   bool doRetainAutorelease;
2467 
2468   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2469     doRetainAutorelease = true;
2470   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2471                                           .objc_retainAutoreleasedReturnValue) {
2472     doRetainAutorelease = false;
2473 
2474     // If we emitted an assembly marker for this call (and the
2475     // ARCEntrypoints field should have been set if so), go looking
2476     // for that call.  If we can't find it, we can't do this
2477     // optimization.  But it should always be the immediately previous
2478     // instruction, unless we needed bitcasts around the call.
2479     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2480       llvm::Instruction *prev = call->getPrevNode();
2481       assert(prev);
2482       if (isa<llvm::BitCastInst>(prev)) {
2483         prev = prev->getPrevNode();
2484         assert(prev);
2485       }
2486       assert(isa<llvm::CallInst>(prev));
2487       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2488                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2489       insnsToKill.push_back(prev);
2490     }
2491   } else {
2492     return nullptr;
2493   }
2494 
2495   result = call->getArgOperand(0);
2496   insnsToKill.push_back(call);
2497 
2498   // Keep killing bitcasts, for sanity.  Note that we no longer care
2499   // about precise ordering as long as there's exactly one use.
2500   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2501     if (!bitcast->hasOneUse()) break;
2502     insnsToKill.push_back(bitcast);
2503     result = bitcast->getOperand(0);
2504   }
2505 
2506   // Delete all the unnecessary instructions, from latest to earliest.
2507   for (SmallVectorImpl<llvm::Instruction*>::iterator
2508          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
2509     (*i)->eraseFromParent();
2510 
2511   // Do the fused retain/autorelease if we were asked to.
2512   if (doRetainAutorelease)
2513     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2514 
2515   // Cast back to the result type.
2516   return CGF.Builder.CreateBitCast(result, resultType);
2517 }
2518 
2519 /// If this is a +1 of the value of an immutable 'self', remove it.
2520 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2521                                           llvm::Value *result) {
2522   // This is only applicable to a method with an immutable 'self'.
2523   const ObjCMethodDecl *method =
2524     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2525   if (!method) return nullptr;
2526   const VarDecl *self = method->getSelfDecl();
2527   if (!self->getType().isConstQualified()) return nullptr;
2528 
2529   // Look for a retain call.
2530   llvm::CallInst *retainCall =
2531     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2532   if (!retainCall ||
2533       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2534     return nullptr;
2535 
2536   // Look for an ordinary load of 'self'.
2537   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2538   llvm::LoadInst *load =
2539     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2540   if (!load || load->isAtomic() || load->isVolatile() ||
2541       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2542     return nullptr;
2543 
2544   // Okay!  Burn it all down.  This relies for correctness on the
2545   // assumption that the retain is emitted as part of the return and
2546   // that thereafter everything is used "linearly".
2547   llvm::Type *resultType = result->getType();
2548   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2549   assert(retainCall->use_empty());
2550   retainCall->eraseFromParent();
2551   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2552 
2553   return CGF.Builder.CreateBitCast(load, resultType);
2554 }
2555 
2556 /// Emit an ARC autorelease of the result of a function.
2557 ///
2558 /// \return the value to actually return from the function
2559 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2560                                             llvm::Value *result) {
2561   // If we're returning 'self', kill the initial retain.  This is a
2562   // heuristic attempt to "encourage correctness" in the really unfortunate
2563   // case where we have a return of self during a dealloc and we desperately
2564   // need to avoid the possible autorelease.
2565   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2566     return self;
2567 
2568   // At -O0, try to emit a fused retain/autorelease.
2569   if (CGF.shouldUseFusedARCCalls())
2570     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2571       return fused;
2572 
2573   return CGF.EmitARCAutoreleaseReturnValue(result);
2574 }
2575 
2576 /// Heuristically search for a dominating store to the return-value slot.
2577 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2578   // Check if a User is a store which pointerOperand is the ReturnValue.
2579   // We are looking for stores to the ReturnValue, not for stores of the
2580   // ReturnValue to some other location.
2581   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2582     auto *SI = dyn_cast<llvm::StoreInst>(U);
2583     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2584       return nullptr;
2585     // These aren't actually possible for non-coerced returns, and we
2586     // only care about non-coerced returns on this code path.
2587     assert(!SI->isAtomic() && !SI->isVolatile());
2588     return SI;
2589   };
2590   // If there are multiple uses of the return-value slot, just check
2591   // for something immediately preceding the IP.  Sometimes this can
2592   // happen with how we generate implicit-returns; it can also happen
2593   // with noreturn cleanups.
2594   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2595     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2596     if (IP->empty()) return nullptr;
2597     llvm::Instruction *I = &IP->back();
2598 
2599     // Skip lifetime markers
2600     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2601                                             IE = IP->rend();
2602          II != IE; ++II) {
2603       if (llvm::IntrinsicInst *Intrinsic =
2604               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2605         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2606           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2607           ++II;
2608           if (II == IE)
2609             break;
2610           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2611             continue;
2612         }
2613       }
2614       I = &*II;
2615       break;
2616     }
2617 
2618     return GetStoreIfValid(I);
2619   }
2620 
2621   llvm::StoreInst *store =
2622       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2623   if (!store) return nullptr;
2624 
2625   // Now do a first-and-dirty dominance check: just walk up the
2626   // single-predecessors chain from the current insertion point.
2627   llvm::BasicBlock *StoreBB = store->getParent();
2628   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2629   while (IP != StoreBB) {
2630     if (!(IP = IP->getSinglePredecessor()))
2631       return nullptr;
2632   }
2633 
2634   // Okay, the store's basic block dominates the insertion point; we
2635   // can do our thing.
2636   return store;
2637 }
2638 
2639 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2640                                          bool EmitRetDbgLoc,
2641                                          SourceLocation EndLoc) {
2642   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2643     // Naked functions don't have epilogues.
2644     Builder.CreateUnreachable();
2645     return;
2646   }
2647 
2648   // Functions with no result always return void.
2649   if (!ReturnValue.isValid()) {
2650     Builder.CreateRetVoid();
2651     return;
2652   }
2653 
2654   llvm::DebugLoc RetDbgLoc;
2655   llvm::Value *RV = nullptr;
2656   QualType RetTy = FI.getReturnType();
2657   const ABIArgInfo &RetAI = FI.getReturnInfo();
2658 
2659   switch (RetAI.getKind()) {
2660   case ABIArgInfo::InAlloca:
2661     // Aggregrates get evaluated directly into the destination.  Sometimes we
2662     // need to return the sret value in a register, though.
2663     assert(hasAggregateEvaluationKind(RetTy));
2664     if (RetAI.getInAllocaSRet()) {
2665       llvm::Function::arg_iterator EI = CurFn->arg_end();
2666       --EI;
2667       llvm::Value *ArgStruct = &*EI;
2668       llvm::Value *SRet = Builder.CreateStructGEP(
2669           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2670       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2671     }
2672     break;
2673 
2674   case ABIArgInfo::Indirect: {
2675     auto AI = CurFn->arg_begin();
2676     if (RetAI.isSRetAfterThis())
2677       ++AI;
2678     switch (getEvaluationKind(RetTy)) {
2679     case TEK_Complex: {
2680       ComplexPairTy RT =
2681         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2682       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2683                          /*isInit*/ true);
2684       break;
2685     }
2686     case TEK_Aggregate:
2687       // Do nothing; aggregrates get evaluated directly into the destination.
2688       break;
2689     case TEK_Scalar:
2690       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2691                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2692                         /*isInit*/ true);
2693       break;
2694     }
2695     break;
2696   }
2697 
2698   case ABIArgInfo::Extend:
2699   case ABIArgInfo::Direct:
2700     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2701         RetAI.getDirectOffset() == 0) {
2702       // The internal return value temp always will have pointer-to-return-type
2703       // type, just do a load.
2704 
2705       // If there is a dominating store to ReturnValue, we can elide
2706       // the load, zap the store, and usually zap the alloca.
2707       if (llvm::StoreInst *SI =
2708               findDominatingStoreToReturnValue(*this)) {
2709         // Reuse the debug location from the store unless there is
2710         // cleanup code to be emitted between the store and return
2711         // instruction.
2712         if (EmitRetDbgLoc && !AutoreleaseResult)
2713           RetDbgLoc = SI->getDebugLoc();
2714         // Get the stored value and nuke the now-dead store.
2715         RV = SI->getValueOperand();
2716         SI->eraseFromParent();
2717 
2718         // If that was the only use of the return value, nuke it as well now.
2719         auto returnValueInst = ReturnValue.getPointer();
2720         if (returnValueInst->use_empty()) {
2721           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2722             alloca->eraseFromParent();
2723             ReturnValue = Address::invalid();
2724           }
2725         }
2726 
2727       // Otherwise, we have to do a simple load.
2728       } else {
2729         RV = Builder.CreateLoad(ReturnValue);
2730       }
2731     } else {
2732       // If the value is offset in memory, apply the offset now.
2733       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2734 
2735       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2736     }
2737 
2738     // In ARC, end functions that return a retainable type with a call
2739     // to objc_autoreleaseReturnValue.
2740     if (AutoreleaseResult) {
2741 #ifndef NDEBUG
2742       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2743       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2744       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2745       // CurCodeDecl or BlockInfo.
2746       QualType RT;
2747 
2748       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2749         RT = FD->getReturnType();
2750       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2751         RT = MD->getReturnType();
2752       else if (isa<BlockDecl>(CurCodeDecl))
2753         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2754       else
2755         llvm_unreachable("Unexpected function/method type");
2756 
2757       assert(getLangOpts().ObjCAutoRefCount &&
2758              !FI.isReturnsRetained() &&
2759              RT->isObjCRetainableType());
2760 #endif
2761       RV = emitAutoreleaseOfResult(*this, RV);
2762     }
2763 
2764     break;
2765 
2766   case ABIArgInfo::Ignore:
2767     break;
2768 
2769   case ABIArgInfo::CoerceAndExpand: {
2770     auto coercionType = RetAI.getCoerceAndExpandType();
2771     auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2772 
2773     // Load all of the coerced elements out into results.
2774     llvm::SmallVector<llvm::Value*, 4> results;
2775     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2776     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2777       auto coercedEltType = coercionType->getElementType(i);
2778       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2779         continue;
2780 
2781       auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
2782       auto elt = Builder.CreateLoad(eltAddr);
2783       results.push_back(elt);
2784     }
2785 
2786     // If we have one result, it's the single direct result type.
2787     if (results.size() == 1) {
2788       RV = results[0];
2789 
2790     // Otherwise, we need to make a first-class aggregate.
2791     } else {
2792       // Construct a return type that lacks padding elements.
2793       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2794 
2795       RV = llvm::UndefValue::get(returnType);
2796       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2797         RV = Builder.CreateInsertValue(RV, results[i], i);
2798       }
2799     }
2800     break;
2801   }
2802 
2803   case ABIArgInfo::Expand:
2804     llvm_unreachable("Invalid ABI kind for return argument");
2805   }
2806 
2807   llvm::Instruction *Ret;
2808   if (RV) {
2809     if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
2810       if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) {
2811         SanitizerScope SanScope(this);
2812         llvm::Value *Cond = Builder.CreateICmpNE(
2813             RV, llvm::Constant::getNullValue(RV->getType()));
2814         llvm::Constant *StaticData[] = {
2815             EmitCheckSourceLocation(EndLoc),
2816             EmitCheckSourceLocation(RetNNAttr->getLocation()),
2817         };
2818         EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
2819                   "nonnull_return", StaticData, None);
2820       }
2821     }
2822     Ret = Builder.CreateRet(RV);
2823   } else {
2824     Ret = Builder.CreateRetVoid();
2825   }
2826 
2827   if (RetDbgLoc)
2828     Ret->setDebugLoc(std::move(RetDbgLoc));
2829 }
2830 
2831 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2832   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2833   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2834 }
2835 
2836 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
2837                                           QualType Ty) {
2838   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2839   // placeholders.
2840   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2841   llvm::Value *Placeholder =
2842     llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
2843   Placeholder = CGF.Builder.CreateDefaultAlignedLoad(Placeholder);
2844 
2845   // FIXME: When we generate this IR in one pass, we shouldn't need
2846   // this win32-specific alignment hack.
2847   CharUnits Align = CharUnits::fromQuantity(4);
2848 
2849   return AggValueSlot::forAddr(Address(Placeholder, Align),
2850                                Ty.getQualifiers(),
2851                                AggValueSlot::IsNotDestructed,
2852                                AggValueSlot::DoesNotNeedGCBarriers,
2853                                AggValueSlot::IsNotAliased);
2854 }
2855 
2856 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2857                                           const VarDecl *param,
2858                                           SourceLocation loc) {
2859   // StartFunction converted the ABI-lowered parameter(s) into a
2860   // local alloca.  We need to turn that into an r-value suitable
2861   // for EmitCall.
2862   Address local = GetAddrOfLocalVar(param);
2863 
2864   QualType type = param->getType();
2865 
2866   // For the most part, we just need to load the alloca, except:
2867   // 1) aggregate r-values are actually pointers to temporaries, and
2868   // 2) references to non-scalars are pointers directly to the aggregate.
2869   // I don't know why references to scalars are different here.
2870   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
2871     if (!hasScalarEvaluationKind(ref->getPointeeType()))
2872       return args.add(RValue::getAggregate(local), type);
2873 
2874     // Locals which are references to scalars are represented
2875     // with allocas holding the pointer.
2876     return args.add(RValue::get(Builder.CreateLoad(local)), type);
2877   }
2878 
2879   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2880          "cannot emit delegate call arguments for inalloca arguments!");
2881 
2882   args.add(convertTempToRValue(local, type, loc), type);
2883 }
2884 
2885 static bool isProvablyNull(llvm::Value *addr) {
2886   return isa<llvm::ConstantPointerNull>(addr);
2887 }
2888 
2889 static bool isProvablyNonNull(llvm::Value *addr) {
2890   return isa<llvm::AllocaInst>(addr);
2891 }
2892 
2893 /// Emit the actual writing-back of a writeback.
2894 static void emitWriteback(CodeGenFunction &CGF,
2895                           const CallArgList::Writeback &writeback) {
2896   const LValue &srcLV = writeback.Source;
2897   Address srcAddr = srcLV.getAddress();
2898   assert(!isProvablyNull(srcAddr.getPointer()) &&
2899          "shouldn't have writeback for provably null argument");
2900 
2901   llvm::BasicBlock *contBB = nullptr;
2902 
2903   // If the argument wasn't provably non-null, we need to null check
2904   // before doing the store.
2905   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
2906   if (!provablyNonNull) {
2907     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2908     contBB = CGF.createBasicBlock("icr.done");
2909 
2910     llvm::Value *isNull =
2911       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
2912     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2913     CGF.EmitBlock(writebackBB);
2914   }
2915 
2916   // Load the value to writeback.
2917   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2918 
2919   // Cast it back, in case we're writing an id to a Foo* or something.
2920   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
2921                                     "icr.writeback-cast");
2922 
2923   // Perform the writeback.
2924 
2925   // If we have a "to use" value, it's something we need to emit a use
2926   // of.  This has to be carefully threaded in: if it's done after the
2927   // release it's potentially undefined behavior (and the optimizer
2928   // will ignore it), and if it happens before the retain then the
2929   // optimizer could move the release there.
2930   if (writeback.ToUse) {
2931     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2932 
2933     // Retain the new value.  No need to block-copy here:  the block's
2934     // being passed up the stack.
2935     value = CGF.EmitARCRetainNonBlock(value);
2936 
2937     // Emit the intrinsic use here.
2938     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2939 
2940     // Load the old value (primitively).
2941     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2942 
2943     // Put the new value in place (primitively).
2944     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2945 
2946     // Release the old value.
2947     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2948 
2949   // Otherwise, we can just do a normal lvalue store.
2950   } else {
2951     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2952   }
2953 
2954   // Jump to the continuation block.
2955   if (!provablyNonNull)
2956     CGF.EmitBlock(contBB);
2957 }
2958 
2959 static void emitWritebacks(CodeGenFunction &CGF,
2960                            const CallArgList &args) {
2961   for (const auto &I : args.writebacks())
2962     emitWriteback(CGF, I);
2963 }
2964 
2965 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2966                                             const CallArgList &CallArgs) {
2967   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2968   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2969     CallArgs.getCleanupsToDeactivate();
2970   // Iterate in reverse to increase the likelihood of popping the cleanup.
2971   for (const auto &I : llvm::reverse(Cleanups)) {
2972     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
2973     I.IsActiveIP->eraseFromParent();
2974   }
2975 }
2976 
2977 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2978   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2979     if (uop->getOpcode() == UO_AddrOf)
2980       return uop->getSubExpr();
2981   return nullptr;
2982 }
2983 
2984 /// Emit an argument that's being passed call-by-writeback.  That is,
2985 /// we are passing the address of an __autoreleased temporary; it
2986 /// might be copy-initialized with the current value of the given
2987 /// address, but it will definitely be copied out of after the call.
2988 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2989                              const ObjCIndirectCopyRestoreExpr *CRE) {
2990   LValue srcLV;
2991 
2992   // Make an optimistic effort to emit the address as an l-value.
2993   // This can fail if the argument expression is more complicated.
2994   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2995     srcLV = CGF.EmitLValue(lvExpr);
2996 
2997   // Otherwise, just emit it as a scalar.
2998   } else {
2999     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3000 
3001     QualType srcAddrType =
3002       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3003     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3004   }
3005   Address srcAddr = srcLV.getAddress();
3006 
3007   // The dest and src types don't necessarily match in LLVM terms
3008   // because of the crazy ObjC compatibility rules.
3009 
3010   llvm::PointerType *destType =
3011     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3012 
3013   // If the address is a constant null, just pass the appropriate null.
3014   if (isProvablyNull(srcAddr.getPointer())) {
3015     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3016              CRE->getType());
3017     return;
3018   }
3019 
3020   // Create the temporary.
3021   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3022                                       CGF.getPointerAlign(),
3023                                       "icr.temp");
3024   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3025   // and that cleanup will be conditional if we can't prove that the l-value
3026   // isn't null, so we need to register a dominating point so that the cleanups
3027   // system will make valid IR.
3028   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3029 
3030   // Zero-initialize it if we're not doing a copy-initialization.
3031   bool shouldCopy = CRE->shouldCopy();
3032   if (!shouldCopy) {
3033     llvm::Value *null =
3034       llvm::ConstantPointerNull::get(
3035         cast<llvm::PointerType>(destType->getElementType()));
3036     CGF.Builder.CreateStore(null, temp);
3037   }
3038 
3039   llvm::BasicBlock *contBB = nullptr;
3040   llvm::BasicBlock *originBB = nullptr;
3041 
3042   // If the address is *not* known to be non-null, we need to switch.
3043   llvm::Value *finalArgument;
3044 
3045   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
3046   if (provablyNonNull) {
3047     finalArgument = temp.getPointer();
3048   } else {
3049     llvm::Value *isNull =
3050       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3051 
3052     finalArgument = CGF.Builder.CreateSelect(isNull,
3053                                    llvm::ConstantPointerNull::get(destType),
3054                                              temp.getPointer(), "icr.argument");
3055 
3056     // If we need to copy, then the load has to be conditional, which
3057     // means we need control flow.
3058     if (shouldCopy) {
3059       originBB = CGF.Builder.GetInsertBlock();
3060       contBB = CGF.createBasicBlock("icr.cont");
3061       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3062       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3063       CGF.EmitBlock(copyBB);
3064       condEval.begin(CGF);
3065     }
3066   }
3067 
3068   llvm::Value *valueToUse = nullptr;
3069 
3070   // Perform a copy if necessary.
3071   if (shouldCopy) {
3072     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3073     assert(srcRV.isScalar());
3074 
3075     llvm::Value *src = srcRV.getScalarVal();
3076     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3077                                     "icr.cast");
3078 
3079     // Use an ordinary store, not a store-to-lvalue.
3080     CGF.Builder.CreateStore(src, temp);
3081 
3082     // If optimization is enabled, and the value was held in a
3083     // __strong variable, we need to tell the optimizer that this
3084     // value has to stay alive until we're doing the store back.
3085     // This is because the temporary is effectively unretained,
3086     // and so otherwise we can violate the high-level semantics.
3087     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3088         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3089       valueToUse = src;
3090     }
3091   }
3092 
3093   // Finish the control flow if we needed it.
3094   if (shouldCopy && !provablyNonNull) {
3095     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3096     CGF.EmitBlock(contBB);
3097 
3098     // Make a phi for the value to intrinsically use.
3099     if (valueToUse) {
3100       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3101                                                       "icr.to-use");
3102       phiToUse->addIncoming(valueToUse, copyBB);
3103       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3104                             originBB);
3105       valueToUse = phiToUse;
3106     }
3107 
3108     condEval.end(CGF);
3109   }
3110 
3111   args.addWriteback(srcLV, temp, valueToUse);
3112   args.add(RValue::get(finalArgument), CRE->getType());
3113 }
3114 
3115 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3116   assert(!StackBase && !StackCleanup.isValid());
3117 
3118   // Save the stack.
3119   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3120   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3121 }
3122 
3123 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3124   if (StackBase) {
3125     // Restore the stack after the call.
3126     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3127     CGF.Builder.CreateCall(F, StackBase);
3128   }
3129 }
3130 
3131 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3132                                           SourceLocation ArgLoc,
3133                                           const FunctionDecl *FD,
3134                                           unsigned ParmNum) {
3135   if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
3136     return;
3137   auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
3138   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3139   auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
3140   if (!NNAttr)
3141     return;
3142   SanitizerScope SanScope(this);
3143   assert(RV.isScalar());
3144   llvm::Value *V = RV.getScalarVal();
3145   llvm::Value *Cond =
3146       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3147   llvm::Constant *StaticData[] = {
3148       EmitCheckSourceLocation(ArgLoc),
3149       EmitCheckSourceLocation(NNAttr->getLocation()),
3150       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3151   };
3152   EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
3153                 "nonnull_arg", StaticData, None);
3154 }
3155 
3156 void CodeGenFunction::EmitCallArgs(
3157     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3158     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3159     const FunctionDecl *CalleeDecl, unsigned ParamsToSkip) {
3160   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3161 
3162   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg) {
3163     if (CalleeDecl == nullptr || I >= CalleeDecl->getNumParams())
3164       return;
3165     auto *PS = CalleeDecl->getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3166     if (PS == nullptr)
3167       return;
3168 
3169     const auto &Context = getContext();
3170     auto SizeTy = Context.getSizeType();
3171     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3172     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T);
3173     Args.add(RValue::get(V), SizeTy);
3174   };
3175 
3176   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3177   // because arguments are destroyed left to right in the callee.
3178   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3179     // Insert a stack save if we're going to need any inalloca args.
3180     bool HasInAllocaArgs = false;
3181     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3182          I != E && !HasInAllocaArgs; ++I)
3183       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3184     if (HasInAllocaArgs) {
3185       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3186       Args.allocateArgumentMemory(*this);
3187     }
3188 
3189     // Evaluate each argument.
3190     size_t CallArgsStart = Args.size();
3191     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
3192       CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
3193       EmitCallArg(Args, *Arg, ArgTypes[I]);
3194       EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
3195                           CalleeDecl, ParamsToSkip + I);
3196       MaybeEmitImplicitObjectSize(I, *Arg);
3197     }
3198 
3199     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3200     // IR function.
3201     std::reverse(Args.begin() + CallArgsStart, Args.end());
3202     return;
3203   }
3204 
3205   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3206     CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
3207     assert(Arg != ArgRange.end());
3208     EmitCallArg(Args, *Arg, ArgTypes[I]);
3209     EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
3210                         CalleeDecl, ParamsToSkip + I);
3211     MaybeEmitImplicitObjectSize(I, *Arg);
3212   }
3213 }
3214 
3215 namespace {
3216 
3217 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3218   DestroyUnpassedArg(Address Addr, QualType Ty)
3219       : Addr(Addr), Ty(Ty) {}
3220 
3221   Address Addr;
3222   QualType Ty;
3223 
3224   void Emit(CodeGenFunction &CGF, Flags flags) override {
3225     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3226     assert(!Dtor->isTrivial());
3227     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3228                               /*Delegating=*/false, Addr);
3229   }
3230 };
3231 
3232 struct DisableDebugLocationUpdates {
3233   CodeGenFunction &CGF;
3234   bool disabledDebugInfo;
3235   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3236     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3237       CGF.disableDebugInfo();
3238   }
3239   ~DisableDebugLocationUpdates() {
3240     if (disabledDebugInfo)
3241       CGF.enableDebugInfo();
3242   }
3243 };
3244 
3245 } // end anonymous namespace
3246 
3247 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3248                                   QualType type) {
3249   DisableDebugLocationUpdates Dis(*this, E);
3250   if (const ObjCIndirectCopyRestoreExpr *CRE
3251         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3252     assert(getLangOpts().ObjCAutoRefCount);
3253     assert(getContext().hasSameType(E->getType(), type));
3254     return emitWritebackArg(*this, args, CRE);
3255   }
3256 
3257   assert(type->isReferenceType() == E->isGLValue() &&
3258          "reference binding to unmaterialized r-value!");
3259 
3260   if (E->isGLValue()) {
3261     assert(E->getObjectKind() == OK_Ordinary);
3262     return args.add(EmitReferenceBindingToExpr(E), type);
3263   }
3264 
3265   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3266 
3267   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3268   // However, we still have to push an EH-only cleanup in case we unwind before
3269   // we make it to the call.
3270   if (HasAggregateEvalKind &&
3271       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3272     // If we're using inalloca, use the argument memory.  Otherwise, use a
3273     // temporary.
3274     AggValueSlot Slot;
3275     if (args.isUsingInAlloca())
3276       Slot = createPlaceholderSlot(*this, type);
3277     else
3278       Slot = CreateAggTemp(type, "agg.tmp");
3279 
3280     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3281     bool DestroyedInCallee =
3282         RD && RD->hasNonTrivialDestructor() &&
3283         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
3284     if (DestroyedInCallee)
3285       Slot.setExternallyDestructed();
3286 
3287     EmitAggExpr(E, Slot);
3288     RValue RV = Slot.asRValue();
3289     args.add(RV, type);
3290 
3291     if (DestroyedInCallee) {
3292       // Create a no-op GEP between the placeholder and the cleanup so we can
3293       // RAUW it successfully.  It also serves as a marker of the first
3294       // instruction where the cleanup is active.
3295       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3296                                               type);
3297       // This unreachable is a temporary marker which will be removed later.
3298       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3299       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3300     }
3301     return;
3302   }
3303 
3304   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3305       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3306     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3307     assert(L.isSimple());
3308     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
3309       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
3310     } else {
3311       // We can't represent a misaligned lvalue in the CallArgList, so copy
3312       // to an aligned temporary now.
3313       Address tmp = CreateMemTemp(type);
3314       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile());
3315       args.add(RValue::getAggregate(tmp), type);
3316     }
3317     return;
3318   }
3319 
3320   args.add(EmitAnyExprToTemp(E), type);
3321 }
3322 
3323 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3324   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3325   // implicitly widens null pointer constants that are arguments to varargs
3326   // functions to pointer-sized ints.
3327   if (!getTarget().getTriple().isOSWindows())
3328     return Arg->getType();
3329 
3330   if (Arg->getType()->isIntegerType() &&
3331       getContext().getTypeSize(Arg->getType()) <
3332           getContext().getTargetInfo().getPointerWidth(0) &&
3333       Arg->isNullPointerConstant(getContext(),
3334                                  Expr::NPC_ValueDependentIsNotNull)) {
3335     return getContext().getIntPtrType();
3336   }
3337 
3338   return Arg->getType();
3339 }
3340 
3341 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3342 // optimizer it can aggressively ignore unwind edges.
3343 void
3344 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3345   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3346       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3347     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3348                       CGM.getNoObjCARCExceptionsMetadata());
3349 }
3350 
3351 /// Emits a call to the given no-arguments nounwind runtime function.
3352 llvm::CallInst *
3353 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3354                                          const llvm::Twine &name) {
3355   return EmitNounwindRuntimeCall(callee, None, name);
3356 }
3357 
3358 /// Emits a call to the given nounwind runtime function.
3359 llvm::CallInst *
3360 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3361                                          ArrayRef<llvm::Value*> args,
3362                                          const llvm::Twine &name) {
3363   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3364   call->setDoesNotThrow();
3365   return call;
3366 }
3367 
3368 /// Emits a simple call (never an invoke) to the given no-arguments
3369 /// runtime function.
3370 llvm::CallInst *
3371 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3372                                  const llvm::Twine &name) {
3373   return EmitRuntimeCall(callee, None, name);
3374 }
3375 
3376 // Calls which may throw must have operand bundles indicating which funclet
3377 // they are nested within.
3378 static void
3379 getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad,
3380                      SmallVectorImpl<llvm::OperandBundleDef> &BundleList) {
3381   // There is no need for a funclet operand bundle if we aren't inside a
3382   // funclet.
3383   if (!CurrentFuncletPad)
3384     return;
3385 
3386   // Skip intrinsics which cannot throw.
3387   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3388   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3389     return;
3390 
3391   BundleList.emplace_back("funclet", CurrentFuncletPad);
3392 }
3393 
3394 /// Emits a simple call (never an invoke) to the given runtime function.
3395 llvm::CallInst *
3396 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3397                                  ArrayRef<llvm::Value*> args,
3398                                  const llvm::Twine &name) {
3399   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3400   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
3401 
3402   llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name);
3403   call->setCallingConv(getRuntimeCC());
3404   return call;
3405 }
3406 
3407 /// Emits a call or invoke to the given noreturn runtime function.
3408 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3409                                                ArrayRef<llvm::Value*> args) {
3410   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3411   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
3412 
3413   if (getInvokeDest()) {
3414     llvm::InvokeInst *invoke =
3415       Builder.CreateInvoke(callee,
3416                            getUnreachableBlock(),
3417                            getInvokeDest(),
3418                            args,
3419                            BundleList);
3420     invoke->setDoesNotReturn();
3421     invoke->setCallingConv(getRuntimeCC());
3422   } else {
3423     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3424     call->setDoesNotReturn();
3425     call->setCallingConv(getRuntimeCC());
3426     Builder.CreateUnreachable();
3427   }
3428 }
3429 
3430 /// Emits a call or invoke instruction to the given nullary runtime function.
3431 llvm::CallSite
3432 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3433                                          const Twine &name) {
3434   return EmitRuntimeCallOrInvoke(callee, None, name);
3435 }
3436 
3437 /// Emits a call or invoke instruction to the given runtime function.
3438 llvm::CallSite
3439 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3440                                          ArrayRef<llvm::Value*> args,
3441                                          const Twine &name) {
3442   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3443   callSite.setCallingConv(getRuntimeCC());
3444   return callSite;
3445 }
3446 
3447 /// Emits a call or invoke instruction to the given function, depending
3448 /// on the current state of the EH stack.
3449 llvm::CallSite
3450 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3451                                   ArrayRef<llvm::Value *> Args,
3452                                   const Twine &Name) {
3453   llvm::BasicBlock *InvokeDest = getInvokeDest();
3454   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3455   getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList);
3456 
3457   llvm::Instruction *Inst;
3458   if (!InvokeDest)
3459     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3460   else {
3461     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3462     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3463                                 Name);
3464     EmitBlock(ContBB);
3465   }
3466 
3467   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3468   // optimizer it can aggressively ignore unwind edges.
3469   if (CGM.getLangOpts().ObjCAutoRefCount)
3470     AddObjCARCExceptionMetadata(Inst);
3471 
3472   return llvm::CallSite(Inst);
3473 }
3474 
3475 /// \brief Store a non-aggregate value to an address to initialize it.  For
3476 /// initialization, a non-atomic store will be used.
3477 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3478                                         LValue Dst) {
3479   if (Src.isScalar())
3480     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3481   else
3482     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3483 }
3484 
3485 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3486                                                   llvm::Value *New) {
3487   DeferredReplacements.push_back(std::make_pair(Old, New));
3488 }
3489 
3490 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3491                                  llvm::Value *Callee,
3492                                  ReturnValueSlot ReturnValue,
3493                                  const CallArgList &CallArgs,
3494                                  CGCalleeInfo CalleeInfo,
3495                                  llvm::Instruction **callOrInvoke) {
3496   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3497 
3498   // Handle struct-return functions by passing a pointer to the
3499   // location that we would like to return into.
3500   QualType RetTy = CallInfo.getReturnType();
3501   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3502 
3503   llvm::FunctionType *IRFuncTy =
3504     cast<llvm::FunctionType>(
3505                   cast<llvm::PointerType>(Callee->getType())->getElementType());
3506 
3507   // If we're using inalloca, insert the allocation after the stack save.
3508   // FIXME: Do this earlier rather than hacking it in here!
3509   Address ArgMemory = Address::invalid();
3510   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3511   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3512     ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct);
3513     llvm::Instruction *IP = CallArgs.getStackBase();
3514     llvm::AllocaInst *AI;
3515     if (IP) {
3516       IP = IP->getNextNode();
3517       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
3518     } else {
3519       AI = CreateTempAlloca(ArgStruct, "argmem");
3520     }
3521     auto Align = CallInfo.getArgStructAlignment();
3522     AI->setAlignment(Align.getQuantity());
3523     AI->setUsedWithInAlloca(true);
3524     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3525     ArgMemory = Address(AI, Align);
3526   }
3527 
3528   // Helper function to drill into the inalloca allocation.
3529   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3530     auto FieldOffset =
3531       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3532     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3533   };
3534 
3535   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3536   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3537 
3538   // If the call returns a temporary with struct return, create a temporary
3539   // alloca to hold the result, unless one is given to us.
3540   Address SRetPtr = Address::invalid();
3541   size_t UnusedReturnSize = 0;
3542   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3543     if (!ReturnValue.isNull()) {
3544       SRetPtr = ReturnValue.getValue();
3545     } else {
3546       SRetPtr = CreateMemTemp(RetTy);
3547       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3548         uint64_t size =
3549             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3550         if (EmitLifetimeStart(size, SRetPtr.getPointer()))
3551           UnusedReturnSize = size;
3552       }
3553     }
3554     if (IRFunctionArgs.hasSRetArg()) {
3555       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3556     } else if (RetAI.isInAlloca()) {
3557       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3558       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3559     }
3560   }
3561 
3562   Address swiftErrorTemp = Address::invalid();
3563   Address swiftErrorArg = Address::invalid();
3564 
3565   assert(CallInfo.arg_size() == CallArgs.size() &&
3566          "Mismatch between function signature & arguments.");
3567   unsigned ArgNo = 0;
3568   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3569   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3570        I != E; ++I, ++info_it, ++ArgNo) {
3571     const ABIArgInfo &ArgInfo = info_it->info;
3572     RValue RV = I->RV;
3573 
3574     // Insert a padding argument to ensure proper alignment.
3575     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3576       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3577           llvm::UndefValue::get(ArgInfo.getPaddingType());
3578 
3579     unsigned FirstIRArg, NumIRArgs;
3580     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3581 
3582     switch (ArgInfo.getKind()) {
3583     case ABIArgInfo::InAlloca: {
3584       assert(NumIRArgs == 0);
3585       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3586       if (RV.isAggregate()) {
3587         // Replace the placeholder with the appropriate argument slot GEP.
3588         llvm::Instruction *Placeholder =
3589             cast<llvm::Instruction>(RV.getAggregatePointer());
3590         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3591         Builder.SetInsertPoint(Placeholder);
3592         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3593         Builder.restoreIP(IP);
3594         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3595       } else {
3596         // Store the RValue into the argument struct.
3597         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3598         unsigned AS = Addr.getType()->getPointerAddressSpace();
3599         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3600         // There are some cases where a trivial bitcast is not avoidable.  The
3601         // definition of a type later in a translation unit may change it's type
3602         // from {}* to (%struct.foo*)*.
3603         if (Addr.getType() != MemType)
3604           Addr = Builder.CreateBitCast(Addr, MemType);
3605         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3606         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3607       }
3608       break;
3609     }
3610 
3611     case ABIArgInfo::Indirect: {
3612       assert(NumIRArgs == 1);
3613       if (RV.isScalar() || RV.isComplex()) {
3614         // Make a temporary alloca to pass the argument.
3615         Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3616         IRCallArgs[FirstIRArg] = Addr.getPointer();
3617 
3618         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3619         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3620       } else {
3621         // We want to avoid creating an unnecessary temporary+copy here;
3622         // however, we need one in three cases:
3623         // 1. If the argument is not byval, and we are required to copy the
3624         //    source.  (This case doesn't occur on any common architecture.)
3625         // 2. If the argument is byval, RV is not sufficiently aligned, and
3626         //    we cannot force it to be sufficiently aligned.
3627         // 3. If the argument is byval, but RV is located in an address space
3628         //    different than that of the argument (0).
3629         Address Addr = RV.getAggregateAddress();
3630         CharUnits Align = ArgInfo.getIndirectAlign();
3631         const llvm::DataLayout *TD = &CGM.getDataLayout();
3632         const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
3633         const unsigned ArgAddrSpace =
3634             (FirstIRArg < IRFuncTy->getNumParams()
3635                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3636                  : 0);
3637         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3638             (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
3639              llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
3640                                               Align.getQuantity(), *TD)
3641                < Align.getQuantity()) ||
3642             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3643           // Create an aligned temporary, and copy to it.
3644           Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3645           IRCallArgs[FirstIRArg] = AI.getPointer();
3646           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3647         } else {
3648           // Skip the extra memcpy call.
3649           IRCallArgs[FirstIRArg] = Addr.getPointer();
3650         }
3651       }
3652       break;
3653     }
3654 
3655     case ABIArgInfo::Ignore:
3656       assert(NumIRArgs == 0);
3657       break;
3658 
3659     case ABIArgInfo::Extend:
3660     case ABIArgInfo::Direct: {
3661       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3662           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3663           ArgInfo.getDirectOffset() == 0) {
3664         assert(NumIRArgs == 1);
3665         llvm::Value *V;
3666         if (RV.isScalar())
3667           V = RV.getScalarVal();
3668         else
3669           V = Builder.CreateLoad(RV.getAggregateAddress());
3670 
3671         // Implement swifterror by copying into a new swifterror argument.
3672         // We'll write back in the normal path out of the call.
3673         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
3674               == ParameterABI::SwiftErrorResult) {
3675           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
3676 
3677           QualType pointeeTy = I->Ty->getPointeeType();
3678           swiftErrorArg =
3679             Address(V, getContext().getTypeAlignInChars(pointeeTy));
3680 
3681           swiftErrorTemp =
3682             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
3683           V = swiftErrorTemp.getPointer();
3684           cast<llvm::AllocaInst>(V)->setSwiftError(true);
3685 
3686           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
3687           Builder.CreateStore(errorValue, swiftErrorTemp);
3688         }
3689 
3690         // We might have to widen integers, but we should never truncate.
3691         if (ArgInfo.getCoerceToType() != V->getType() &&
3692             V->getType()->isIntegerTy())
3693           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3694 
3695         // If the argument doesn't match, perform a bitcast to coerce it.  This
3696         // can happen due to trivial type mismatches.
3697         if (FirstIRArg < IRFuncTy->getNumParams() &&
3698             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3699           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3700 
3701         IRCallArgs[FirstIRArg] = V;
3702         break;
3703       }
3704 
3705       // FIXME: Avoid the conversion through memory if possible.
3706       Address Src = Address::invalid();
3707       if (RV.isScalar() || RV.isComplex()) {
3708         Src = CreateMemTemp(I->Ty, "coerce");
3709         LValue SrcLV = MakeAddrLValue(Src, I->Ty);
3710         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3711       } else {
3712         Src = RV.getAggregateAddress();
3713       }
3714 
3715       // If the value is offset in memory, apply the offset now.
3716       Src = emitAddressAtOffset(*this, Src, ArgInfo);
3717 
3718       // Fast-isel and the optimizer generally like scalar values better than
3719       // FCAs, so we flatten them if this is safe to do for this argument.
3720       llvm::StructType *STy =
3721             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3722       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3723         llvm::Type *SrcTy = Src.getType()->getElementType();
3724         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3725         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3726 
3727         // If the source type is smaller than the destination type of the
3728         // coerce-to logic, copy the source value into a temp alloca the size
3729         // of the destination type to allow loading all of it. The bits past
3730         // the source value are left undef.
3731         if (SrcSize < DstSize) {
3732           Address TempAlloca
3733             = CreateTempAlloca(STy, Src.getAlignment(),
3734                                Src.getName() + ".coerce");
3735           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
3736           Src = TempAlloca;
3737         } else {
3738           Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy));
3739         }
3740 
3741         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
3742         assert(NumIRArgs == STy->getNumElements());
3743         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3744           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
3745           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
3746           llvm::Value *LI = Builder.CreateLoad(EltPtr);
3747           IRCallArgs[FirstIRArg + i] = LI;
3748         }
3749       } else {
3750         // In the simple case, just pass the coerced loaded value.
3751         assert(NumIRArgs == 1);
3752         IRCallArgs[FirstIRArg] =
3753           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
3754       }
3755 
3756       break;
3757     }
3758 
3759     case ABIArgInfo::CoerceAndExpand: {
3760       auto coercionType = ArgInfo.getCoerceAndExpandType();
3761       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
3762 
3763       llvm::Value *tempSize = nullptr;
3764       Address addr = Address::invalid();
3765       if (RV.isAggregate()) {
3766         addr = RV.getAggregateAddress();
3767       } else {
3768         assert(RV.isScalar()); // complex should always just be direct
3769 
3770         llvm::Type *scalarType = RV.getScalarVal()->getType();
3771         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
3772         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
3773 
3774         tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize);
3775 
3776         // Materialize to a temporary.
3777         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
3778                  CharUnits::fromQuantity(std::max(layout->getAlignment(),
3779                                                   scalarAlign)));
3780         EmitLifetimeStart(scalarSize, addr.getPointer());
3781 
3782         Builder.CreateStore(RV.getScalarVal(), addr);
3783       }
3784 
3785       addr = Builder.CreateElementBitCast(addr, coercionType);
3786 
3787       unsigned IRArgPos = FirstIRArg;
3788       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3789         llvm::Type *eltType = coercionType->getElementType(i);
3790         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
3791         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
3792         llvm::Value *elt = Builder.CreateLoad(eltAddr);
3793         IRCallArgs[IRArgPos++] = elt;
3794       }
3795       assert(IRArgPos == FirstIRArg + NumIRArgs);
3796 
3797       if (tempSize) {
3798         EmitLifetimeEnd(tempSize, addr.getPointer());
3799       }
3800 
3801       break;
3802     }
3803 
3804     case ABIArgInfo::Expand:
3805       unsigned IRArgPos = FirstIRArg;
3806       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
3807       assert(IRArgPos == FirstIRArg + NumIRArgs);
3808       break;
3809     }
3810   }
3811 
3812   if (ArgMemory.isValid()) {
3813     llvm::Value *Arg = ArgMemory.getPointer();
3814     if (CallInfo.isVariadic()) {
3815       // When passing non-POD arguments by value to variadic functions, we will
3816       // end up with a variadic prototype and an inalloca call site.  In such
3817       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
3818       // the callee.
3819       unsigned CalleeAS =
3820           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
3821       Callee = Builder.CreateBitCast(
3822           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
3823     } else {
3824       llvm::Type *LastParamTy =
3825           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
3826       if (Arg->getType() != LastParamTy) {
3827 #ifndef NDEBUG
3828         // Assert that these structs have equivalent element types.
3829         llvm::StructType *FullTy = CallInfo.getArgStruct();
3830         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
3831             cast<llvm::PointerType>(LastParamTy)->getElementType());
3832         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
3833         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
3834                                                 DE = DeclaredTy->element_end(),
3835                                                 FI = FullTy->element_begin();
3836              DI != DE; ++DI, ++FI)
3837           assert(*DI == *FI);
3838 #endif
3839         Arg = Builder.CreateBitCast(Arg, LastParamTy);
3840       }
3841     }
3842     assert(IRFunctionArgs.hasInallocaArg());
3843     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
3844   }
3845 
3846   if (!CallArgs.getCleanupsToDeactivate().empty())
3847     deactivateArgCleanupsBeforeCall(*this, CallArgs);
3848 
3849   // If the callee is a bitcast of a function to a varargs pointer to function
3850   // type, check to see if we can remove the bitcast.  This handles some cases
3851   // with unprototyped functions.
3852   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
3853     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
3854       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
3855       llvm::FunctionType *CurFT =
3856         cast<llvm::FunctionType>(CurPT->getElementType());
3857       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
3858 
3859       if (CE->getOpcode() == llvm::Instruction::BitCast &&
3860           ActualFT->getReturnType() == CurFT->getReturnType() &&
3861           ActualFT->getNumParams() == CurFT->getNumParams() &&
3862           ActualFT->getNumParams() == IRCallArgs.size() &&
3863           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
3864         bool ArgsMatch = true;
3865         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
3866           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
3867             ArgsMatch = false;
3868             break;
3869           }
3870 
3871         // Strip the cast if we can get away with it.  This is a nice cleanup,
3872         // but also allows us to inline the function at -O0 if it is marked
3873         // always_inline.
3874         if (ArgsMatch)
3875           Callee = CalleeF;
3876       }
3877     }
3878 
3879   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
3880   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
3881     // Inalloca argument can have different type.
3882     if (IRFunctionArgs.hasInallocaArg() &&
3883         i == IRFunctionArgs.getInallocaArgNo())
3884       continue;
3885     if (i < IRFuncTy->getNumParams())
3886       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
3887   }
3888 
3889   unsigned CallingConv;
3890   CodeGen::AttributeListType AttributeList;
3891   CGM.ConstructAttributeList(Callee->getName(), CallInfo, CalleeInfo,
3892                              AttributeList, CallingConv,
3893                              /*AttrOnCallSite=*/true);
3894   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
3895                                                      AttributeList);
3896 
3897   bool CannotThrow;
3898   if (currentFunctionUsesSEHTry()) {
3899     // SEH cares about asynchronous exceptions, everything can "throw."
3900     CannotThrow = false;
3901   } else if (isCleanupPadScope() &&
3902              EHPersonality::get(*this).isMSVCXXPersonality()) {
3903     // The MSVC++ personality will implicitly terminate the program if an
3904     // exception is thrown.  An unwind edge cannot be reached.
3905     CannotThrow = true;
3906   } else {
3907     // Otherwise, nowunind callsites will never throw.
3908     CannotThrow = Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
3909                                      llvm::Attribute::NoUnwind);
3910   }
3911   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
3912 
3913   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3914   getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList);
3915 
3916   llvm::CallSite CS;
3917   if (!InvokeDest) {
3918     CS = Builder.CreateCall(Callee, IRCallArgs, BundleList);
3919   } else {
3920     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
3921     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs,
3922                               BundleList);
3923     EmitBlock(Cont);
3924   }
3925   if (callOrInvoke)
3926     *callOrInvoke = CS.getInstruction();
3927 
3928   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
3929       !CS.hasFnAttr(llvm::Attribute::NoInline))
3930     Attrs =
3931         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3932                            llvm::Attribute::AlwaysInline);
3933 
3934   // Disable inlining inside SEH __try blocks.
3935   if (isSEHTryScope())
3936     Attrs =
3937         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3938                            llvm::Attribute::NoInline);
3939 
3940   CS.setAttributes(Attrs);
3941   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
3942 
3943   // Insert instrumentation or attach profile metadata at indirect call sites.
3944   // For more details, see the comment before the definition of
3945   // IPVK_IndirectCallTarget in InstrProfData.inc.
3946   if (!CS.getCalledFunction())
3947     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
3948                      CS.getInstruction(), Callee);
3949 
3950   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3951   // optimizer it can aggressively ignore unwind edges.
3952   if (CGM.getLangOpts().ObjCAutoRefCount)
3953     AddObjCARCExceptionMetadata(CS.getInstruction());
3954 
3955   // If the call doesn't return, finish the basic block and clear the
3956   // insertion point; this allows the rest of IRgen to discard
3957   // unreachable code.
3958   if (CS.doesNotReturn()) {
3959     if (UnusedReturnSize)
3960       EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
3961                       SRetPtr.getPointer());
3962 
3963     Builder.CreateUnreachable();
3964     Builder.ClearInsertionPoint();
3965 
3966     // FIXME: For now, emit a dummy basic block because expr emitters in
3967     // generally are not ready to handle emitting expressions at unreachable
3968     // points.
3969     EnsureInsertPoint();
3970 
3971     // Return a reasonable RValue.
3972     return GetUndefRValue(RetTy);
3973   }
3974 
3975   llvm::Instruction *CI = CS.getInstruction();
3976   if (!CI->getType()->isVoidTy())
3977     CI->setName("call");
3978 
3979   // Perform the swifterror writeback.
3980   if (swiftErrorTemp.isValid()) {
3981     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
3982     Builder.CreateStore(errorResult, swiftErrorArg);
3983   }
3984 
3985   // Emit any writebacks immediately.  Arguably this should happen
3986   // after any return-value munging.
3987   if (CallArgs.hasWritebacks())
3988     emitWritebacks(*this, CallArgs);
3989 
3990   // The stack cleanup for inalloca arguments has to run out of the normal
3991   // lexical order, so deactivate it and run it manually here.
3992   CallArgs.freeArgumentMemory(*this);
3993 
3994   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
3995     const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
3996     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
3997       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
3998   }
3999 
4000   RValue Ret = [&] {
4001     switch (RetAI.getKind()) {
4002     case ABIArgInfo::CoerceAndExpand: {
4003       auto coercionType = RetAI.getCoerceAndExpandType();
4004       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4005 
4006       Address addr = SRetPtr;
4007       addr = Builder.CreateElementBitCast(addr, coercionType);
4008 
4009       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4010       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4011 
4012       unsigned unpaddedIndex = 0;
4013       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4014         llvm::Type *eltType = coercionType->getElementType(i);
4015         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4016         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4017         llvm::Value *elt = CI;
4018         if (requiresExtract)
4019           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4020         else
4021           assert(unpaddedIndex == 0);
4022         Builder.CreateStore(elt, eltAddr);
4023       }
4024       // FALLTHROUGH
4025     }
4026 
4027     case ABIArgInfo::InAlloca:
4028     case ABIArgInfo::Indirect: {
4029       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4030       if (UnusedReturnSize)
4031         EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
4032                         SRetPtr.getPointer());
4033       return ret;
4034     }
4035 
4036     case ABIArgInfo::Ignore:
4037       // If we are ignoring an argument that had a result, make sure to
4038       // construct the appropriate return value for our caller.
4039       return GetUndefRValue(RetTy);
4040 
4041     case ABIArgInfo::Extend:
4042     case ABIArgInfo::Direct: {
4043       llvm::Type *RetIRTy = ConvertType(RetTy);
4044       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4045         switch (getEvaluationKind(RetTy)) {
4046         case TEK_Complex: {
4047           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4048           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4049           return RValue::getComplex(std::make_pair(Real, Imag));
4050         }
4051         case TEK_Aggregate: {
4052           Address DestPtr = ReturnValue.getValue();
4053           bool DestIsVolatile = ReturnValue.isVolatile();
4054 
4055           if (!DestPtr.isValid()) {
4056             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4057             DestIsVolatile = false;
4058           }
4059           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4060           return RValue::getAggregate(DestPtr);
4061         }
4062         case TEK_Scalar: {
4063           // If the argument doesn't match, perform a bitcast to coerce it.  This
4064           // can happen due to trivial type mismatches.
4065           llvm::Value *V = CI;
4066           if (V->getType() != RetIRTy)
4067             V = Builder.CreateBitCast(V, RetIRTy);
4068           return RValue::get(V);
4069         }
4070         }
4071         llvm_unreachable("bad evaluation kind");
4072       }
4073 
4074       Address DestPtr = ReturnValue.getValue();
4075       bool DestIsVolatile = ReturnValue.isVolatile();
4076 
4077       if (!DestPtr.isValid()) {
4078         DestPtr = CreateMemTemp(RetTy, "coerce");
4079         DestIsVolatile = false;
4080       }
4081 
4082       // If the value is offset in memory, apply the offset now.
4083       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4084       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4085 
4086       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4087     }
4088 
4089     case ABIArgInfo::Expand:
4090       llvm_unreachable("Invalid ABI kind for return argument");
4091     }
4092 
4093     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4094   } ();
4095 
4096   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
4097 
4098   if (Ret.isScalar() && TargetDecl) {
4099     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4100       llvm::Value *OffsetValue = nullptr;
4101       if (const auto *Offset = AA->getOffset())
4102         OffsetValue = EmitScalarExpr(Offset);
4103 
4104       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4105       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4106       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
4107                               OffsetValue);
4108     }
4109   }
4110 
4111   return Ret;
4112 }
4113 
4114 /* VarArg handling */
4115 
4116 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4117   VAListAddr = VE->isMicrosoftABI()
4118                  ? EmitMSVAListRef(VE->getSubExpr())
4119                  : EmitVAListRef(VE->getSubExpr());
4120   QualType Ty = VE->getType();
4121   if (VE->isMicrosoftABI())
4122     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4123   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4124 }
4125