1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "clang/Frontend/CodeGenOptions.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/IR/Attributes.h" 33 #include "llvm/IR/CallSite.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/InlineAsm.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/Transforms/Utils/Local.h" 39 using namespace clang; 40 using namespace CodeGen; 41 42 /***/ 43 44 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 45 switch (CC) { 46 default: return llvm::CallingConv::C; 47 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 48 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 49 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 50 case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64; 51 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 52 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 53 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 54 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 55 // TODO: Add support for __pascal to LLVM. 56 case CC_X86Pascal: return llvm::CallingConv::C; 57 // TODO: Add support for __vectorcall to LLVM. 58 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 59 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 60 case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL; 61 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 62 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 63 case CC_Swift: return llvm::CallingConv::Swift; 64 } 65 } 66 67 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 68 /// qualification. 69 /// FIXME: address space qualification? 70 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 71 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 72 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 73 } 74 75 /// Returns the canonical formal type of the given C++ method. 76 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 77 return MD->getType()->getCanonicalTypeUnqualified() 78 .getAs<FunctionProtoType>(); 79 } 80 81 /// Returns the "extra-canonicalized" return type, which discards 82 /// qualifiers on the return type. Codegen doesn't care about them, 83 /// and it makes ABI code a little easier to be able to assume that 84 /// all parameter and return types are top-level unqualified. 85 static CanQualType GetReturnType(QualType RetTy) { 86 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 87 } 88 89 /// Arrange the argument and result information for a value of the given 90 /// unprototyped freestanding function type. 91 const CGFunctionInfo & 92 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 93 // When translating an unprototyped function type, always use a 94 // variadic type. 95 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 96 /*instanceMethod=*/false, 97 /*chainCall=*/false, None, 98 FTNP->getExtInfo(), {}, RequiredArgs(0)); 99 } 100 101 /// Adds the formal paramaters in FPT to the given prefix. If any parameter in 102 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 103 static void appendParameterTypes(const CodeGenTypes &CGT, 104 SmallVectorImpl<CanQualType> &prefix, 105 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 106 CanQual<FunctionProtoType> FPT, 107 const FunctionDecl *FD) { 108 // Fill out paramInfos. 109 if (FPT->hasExtParameterInfos() || !paramInfos.empty()) { 110 assert(paramInfos.size() <= prefix.size()); 111 auto protoParamInfos = FPT->getExtParameterInfos(); 112 paramInfos.reserve(prefix.size() + protoParamInfos.size()); 113 paramInfos.resize(prefix.size()); 114 paramInfos.append(protoParamInfos.begin(), protoParamInfos.end()); 115 } 116 117 // Fast path: unknown target. 118 if (FD == nullptr) { 119 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 120 return; 121 } 122 123 // In the vast majority cases, we'll have precisely FPT->getNumParams() 124 // parameters; the only thing that can change this is the presence of 125 // pass_object_size. So, we preallocate for the common case. 126 prefix.reserve(prefix.size() + FPT->getNumParams()); 127 128 assert(FD->getNumParams() == FPT->getNumParams()); 129 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 130 prefix.push_back(FPT->getParamType(I)); 131 if (FD->getParamDecl(I)->hasAttr<PassObjectSizeAttr>()) 132 prefix.push_back(CGT.getContext().getSizeType()); 133 } 134 } 135 136 /// Arrange the LLVM function layout for a value of the given function 137 /// type, on top of any implicit parameters already stored. 138 static const CGFunctionInfo & 139 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 140 SmallVectorImpl<CanQualType> &prefix, 141 CanQual<FunctionProtoType> FTP, 142 const FunctionDecl *FD) { 143 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 144 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 145 // FIXME: Kill copy. 146 appendParameterTypes(CGT, prefix, paramInfos, FTP, FD); 147 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 148 149 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 150 /*chainCall=*/false, prefix, 151 FTP->getExtInfo(), paramInfos, 152 required); 153 } 154 155 /// Arrange the argument and result information for a value of the 156 /// given freestanding function type. 157 const CGFunctionInfo & 158 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 159 const FunctionDecl *FD) { 160 SmallVector<CanQualType, 16> argTypes; 161 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 162 FTP, FD); 163 } 164 165 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 166 // Set the appropriate calling convention for the Function. 167 if (D->hasAttr<StdCallAttr>()) 168 return CC_X86StdCall; 169 170 if (D->hasAttr<FastCallAttr>()) 171 return CC_X86FastCall; 172 173 if (D->hasAttr<ThisCallAttr>()) 174 return CC_X86ThisCall; 175 176 if (D->hasAttr<VectorCallAttr>()) 177 return CC_X86VectorCall; 178 179 if (D->hasAttr<PascalAttr>()) 180 return CC_X86Pascal; 181 182 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 183 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 184 185 if (D->hasAttr<IntelOclBiccAttr>()) 186 return CC_IntelOclBicc; 187 188 if (D->hasAttr<MSABIAttr>()) 189 return IsWindows ? CC_C : CC_X86_64Win64; 190 191 if (D->hasAttr<SysVABIAttr>()) 192 return IsWindows ? CC_X86_64SysV : CC_C; 193 194 if (D->hasAttr<PreserveMostAttr>()) 195 return CC_PreserveMost; 196 197 if (D->hasAttr<PreserveAllAttr>()) 198 return CC_PreserveAll; 199 200 return CC_C; 201 } 202 203 /// Arrange the argument and result information for a call to an 204 /// unknown C++ non-static member function of the given abstract type. 205 /// (Zero value of RD means we don't have any meaningful "this" argument type, 206 /// so fall back to a generic pointer type). 207 /// The member function must be an ordinary function, i.e. not a 208 /// constructor or destructor. 209 const CGFunctionInfo & 210 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 211 const FunctionProtoType *FTP, 212 const CXXMethodDecl *MD) { 213 SmallVector<CanQualType, 16> argTypes; 214 215 // Add the 'this' pointer. 216 if (RD) 217 argTypes.push_back(GetThisType(Context, RD)); 218 else 219 argTypes.push_back(Context.VoidPtrTy); 220 221 return ::arrangeLLVMFunctionInfo( 222 *this, true, argTypes, 223 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 224 } 225 226 /// Arrange the argument and result information for a declaration or 227 /// definition of the given C++ non-static member function. The 228 /// member function must be an ordinary function, i.e. not a 229 /// constructor or destructor. 230 const CGFunctionInfo & 231 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 232 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 233 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 234 235 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 236 237 if (MD->isInstance()) { 238 // The abstract case is perfectly fine. 239 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 240 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 241 } 242 243 return arrangeFreeFunctionType(prototype, MD); 244 } 245 246 const CGFunctionInfo & 247 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 248 StructorType Type) { 249 250 SmallVector<CanQualType, 16> argTypes; 251 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 252 argTypes.push_back(GetThisType(Context, MD->getParent())); 253 254 GlobalDecl GD; 255 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 256 GD = GlobalDecl(CD, toCXXCtorType(Type)); 257 } else { 258 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 259 GD = GlobalDecl(DD, toCXXDtorType(Type)); 260 } 261 262 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 263 264 // Add the formal parameters. 265 appendParameterTypes(*this, argTypes, paramInfos, FTP, MD); 266 267 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 268 269 RequiredArgs required = 270 (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All); 271 272 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 273 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 274 ? argTypes.front() 275 : TheCXXABI.hasMostDerivedReturn(GD) 276 ? CGM.getContext().VoidPtrTy 277 : Context.VoidTy; 278 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 279 /*chainCall=*/false, argTypes, extInfo, 280 paramInfos, required); 281 } 282 283 static SmallVector<CanQualType, 16> 284 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 285 SmallVector<CanQualType, 16> argTypes; 286 for (auto &arg : args) 287 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 288 return argTypes; 289 } 290 291 static SmallVector<CanQualType, 16> 292 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 293 SmallVector<CanQualType, 16> argTypes; 294 for (auto &arg : args) 295 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 296 return argTypes; 297 } 298 299 static void addExtParameterInfosForCall( 300 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 301 const FunctionProtoType *proto, 302 unsigned prefixArgs, 303 unsigned totalArgs) { 304 assert(proto->hasExtParameterInfos()); 305 assert(paramInfos.size() <= prefixArgs); 306 assert(proto->getNumParams() + prefixArgs <= totalArgs); 307 308 // Add default infos for any prefix args that don't already have infos. 309 paramInfos.resize(prefixArgs); 310 311 // Add infos for the prototype. 312 auto protoInfos = proto->getExtParameterInfos(); 313 paramInfos.append(protoInfos.begin(), protoInfos.end()); 314 315 // Add default infos for the variadic arguments. 316 paramInfos.resize(totalArgs); 317 } 318 319 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 320 getExtParameterInfosForCall(const FunctionProtoType *proto, 321 unsigned prefixArgs, unsigned totalArgs) { 322 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 323 if (proto->hasExtParameterInfos()) { 324 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 325 } 326 return result; 327 } 328 329 /// Arrange a call to a C++ method, passing the given arguments. 330 const CGFunctionInfo & 331 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 332 const CXXConstructorDecl *D, 333 CXXCtorType CtorKind, 334 unsigned ExtraArgs) { 335 // FIXME: Kill copy. 336 SmallVector<CanQualType, 16> ArgTypes; 337 for (const auto &Arg : args) 338 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 339 340 CanQual<FunctionProtoType> FPT = GetFormalType(D); 341 RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs); 342 GlobalDecl GD(D, CtorKind); 343 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 344 ? ArgTypes.front() 345 : TheCXXABI.hasMostDerivedReturn(GD) 346 ? CGM.getContext().VoidPtrTy 347 : Context.VoidTy; 348 349 FunctionType::ExtInfo Info = FPT->getExtInfo(); 350 auto ParamInfos = getExtParameterInfosForCall(FPT.getTypePtr(), 1 + ExtraArgs, 351 ArgTypes.size()); 352 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 353 /*chainCall=*/false, ArgTypes, Info, 354 ParamInfos, Required); 355 } 356 357 /// Arrange the argument and result information for the declaration or 358 /// definition of the given function. 359 const CGFunctionInfo & 360 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 361 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 362 if (MD->isInstance()) 363 return arrangeCXXMethodDeclaration(MD); 364 365 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 366 367 assert(isa<FunctionType>(FTy)); 368 369 // When declaring a function without a prototype, always use a 370 // non-variadic type. 371 if (isa<FunctionNoProtoType>(FTy)) { 372 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 373 return arrangeLLVMFunctionInfo( 374 noProto->getReturnType(), /*instanceMethod=*/false, 375 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 376 } 377 378 assert(isa<FunctionProtoType>(FTy)); 379 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>(), FD); 380 } 381 382 /// Arrange the argument and result information for the declaration or 383 /// definition of an Objective-C method. 384 const CGFunctionInfo & 385 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 386 // It happens that this is the same as a call with no optional 387 // arguments, except also using the formal 'self' type. 388 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 389 } 390 391 /// Arrange the argument and result information for the function type 392 /// through which to perform a send to the given Objective-C method, 393 /// using the given receiver type. The receiver type is not always 394 /// the 'self' type of the method or even an Objective-C pointer type. 395 /// This is *not* the right method for actually performing such a 396 /// message send, due to the possibility of optional arguments. 397 const CGFunctionInfo & 398 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 399 QualType receiverType) { 400 SmallVector<CanQualType, 16> argTys; 401 argTys.push_back(Context.getCanonicalParamType(receiverType)); 402 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 403 // FIXME: Kill copy? 404 for (const auto *I : MD->params()) { 405 argTys.push_back(Context.getCanonicalParamType(I->getType())); 406 } 407 408 FunctionType::ExtInfo einfo; 409 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 410 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 411 412 if (getContext().getLangOpts().ObjCAutoRefCount && 413 MD->hasAttr<NSReturnsRetainedAttr>()) 414 einfo = einfo.withProducesResult(true); 415 416 RequiredArgs required = 417 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 418 419 return arrangeLLVMFunctionInfo( 420 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 421 /*chainCall=*/false, argTys, einfo, {}, required); 422 } 423 424 const CGFunctionInfo & 425 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 426 const CallArgList &args) { 427 auto argTypes = getArgTypesForCall(Context, args); 428 FunctionType::ExtInfo einfo; 429 430 return arrangeLLVMFunctionInfo( 431 GetReturnType(returnType), /*instanceMethod=*/false, 432 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 433 } 434 435 const CGFunctionInfo & 436 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 437 // FIXME: Do we need to handle ObjCMethodDecl? 438 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 439 440 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 441 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 442 443 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 444 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 445 446 return arrangeFunctionDeclaration(FD); 447 } 448 449 /// Arrange a thunk that takes 'this' as the first parameter followed by 450 /// varargs. Return a void pointer, regardless of the actual return type. 451 /// The body of the thunk will end in a musttail call to a function of the 452 /// correct type, and the caller will bitcast the function to the correct 453 /// prototype. 454 const CGFunctionInfo & 455 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) { 456 assert(MD->isVirtual() && "only virtual memptrs have thunks"); 457 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 458 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 459 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 460 /*chainCall=*/false, ArgTys, 461 FTP->getExtInfo(), {}, RequiredArgs(1)); 462 } 463 464 const CGFunctionInfo & 465 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 466 CXXCtorType CT) { 467 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 468 469 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 470 SmallVector<CanQualType, 2> ArgTys; 471 const CXXRecordDecl *RD = CD->getParent(); 472 ArgTys.push_back(GetThisType(Context, RD)); 473 if (CT == Ctor_CopyingClosure) 474 ArgTys.push_back(*FTP->param_type_begin()); 475 if (RD->getNumVBases() > 0) 476 ArgTys.push_back(Context.IntTy); 477 CallingConv CC = Context.getDefaultCallingConvention( 478 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 479 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 480 /*chainCall=*/false, ArgTys, 481 FunctionType::ExtInfo(CC), {}, 482 RequiredArgs::All); 483 } 484 485 /// Arrange a call as unto a free function, except possibly with an 486 /// additional number of formal parameters considered required. 487 static const CGFunctionInfo & 488 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 489 CodeGenModule &CGM, 490 const CallArgList &args, 491 const FunctionType *fnType, 492 unsigned numExtraRequiredArgs, 493 bool chainCall) { 494 assert(args.size() >= numExtraRequiredArgs); 495 496 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 497 498 // In most cases, there are no optional arguments. 499 RequiredArgs required = RequiredArgs::All; 500 501 // If we have a variadic prototype, the required arguments are the 502 // extra prefix plus the arguments in the prototype. 503 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 504 if (proto->isVariadic()) 505 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 506 507 if (proto->hasExtParameterInfos()) 508 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 509 args.size()); 510 511 // If we don't have a prototype at all, but we're supposed to 512 // explicitly use the variadic convention for unprototyped calls, 513 // treat all of the arguments as required but preserve the nominal 514 // possibility of variadics. 515 } else if (CGM.getTargetCodeGenInfo() 516 .isNoProtoCallVariadic(args, 517 cast<FunctionNoProtoType>(fnType))) { 518 required = RequiredArgs(args.size()); 519 } 520 521 // FIXME: Kill copy. 522 SmallVector<CanQualType, 16> argTypes; 523 for (const auto &arg : args) 524 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 525 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 526 /*instanceMethod=*/false, chainCall, 527 argTypes, fnType->getExtInfo(), paramInfos, 528 required); 529 } 530 531 /// Figure out the rules for calling a function with the given formal 532 /// type using the given arguments. The arguments are necessary 533 /// because the function might be unprototyped, in which case it's 534 /// target-dependent in crazy ways. 535 const CGFunctionInfo & 536 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 537 const FunctionType *fnType, 538 bool chainCall) { 539 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 540 chainCall ? 1 : 0, chainCall); 541 } 542 543 /// A block function is essentially a free function with an 544 /// extra implicit argument. 545 const CGFunctionInfo & 546 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 547 const FunctionType *fnType) { 548 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 549 /*chainCall=*/false); 550 } 551 552 const CGFunctionInfo & 553 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 554 const FunctionArgList ¶ms) { 555 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 556 auto argTypes = getArgTypesForDeclaration(Context, params); 557 558 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 559 /*instanceMethod*/ false, /*chainCall*/ false, 560 argTypes, proto->getExtInfo(), paramInfos, 561 RequiredArgs::forPrototypePlus(proto, 1)); 562 } 563 564 const CGFunctionInfo & 565 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 566 const CallArgList &args) { 567 // FIXME: Kill copy. 568 SmallVector<CanQualType, 16> argTypes; 569 for (const auto &Arg : args) 570 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 571 return arrangeLLVMFunctionInfo( 572 GetReturnType(resultType), /*instanceMethod=*/false, 573 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 574 /*paramInfos=*/ {}, RequiredArgs::All); 575 } 576 577 const CGFunctionInfo & 578 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 579 const FunctionArgList &args) { 580 auto argTypes = getArgTypesForDeclaration(Context, args); 581 582 return arrangeLLVMFunctionInfo( 583 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 584 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 585 } 586 587 const CGFunctionInfo & 588 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 589 ArrayRef<CanQualType> argTypes) { 590 return arrangeLLVMFunctionInfo( 591 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 592 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 593 } 594 595 /// Arrange a call to a C++ method, passing the given arguments. 596 const CGFunctionInfo & 597 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 598 const FunctionProtoType *proto, 599 RequiredArgs required) { 600 unsigned numRequiredArgs = 601 (proto->isVariadic() ? required.getNumRequiredArgs() : args.size()); 602 unsigned numPrefixArgs = numRequiredArgs - proto->getNumParams(); 603 auto paramInfos = 604 getExtParameterInfosForCall(proto, numPrefixArgs, args.size()); 605 606 // FIXME: Kill copy. 607 auto argTypes = getArgTypesForCall(Context, args); 608 609 FunctionType::ExtInfo info = proto->getExtInfo(); 610 return arrangeLLVMFunctionInfo( 611 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 612 /*chainCall=*/false, argTypes, info, paramInfos, required); 613 } 614 615 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 616 return arrangeLLVMFunctionInfo( 617 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 618 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 619 } 620 621 const CGFunctionInfo & 622 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 623 const CallArgList &args) { 624 assert(signature.arg_size() <= args.size()); 625 if (signature.arg_size() == args.size()) 626 return signature; 627 628 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 629 auto sigParamInfos = signature.getExtParameterInfos(); 630 if (!sigParamInfos.empty()) { 631 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 632 paramInfos.resize(args.size()); 633 } 634 635 auto argTypes = getArgTypesForCall(Context, args); 636 637 assert(signature.getRequiredArgs().allowsOptionalArgs()); 638 return arrangeLLVMFunctionInfo(signature.getReturnType(), 639 signature.isInstanceMethod(), 640 signature.isChainCall(), 641 argTypes, 642 signature.getExtInfo(), 643 paramInfos, 644 signature.getRequiredArgs()); 645 } 646 647 /// Arrange the argument and result information for an abstract value 648 /// of a given function type. This is the method which all of the 649 /// above functions ultimately defer to. 650 const CGFunctionInfo & 651 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 652 bool instanceMethod, 653 bool chainCall, 654 ArrayRef<CanQualType> argTypes, 655 FunctionType::ExtInfo info, 656 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 657 RequiredArgs required) { 658 assert(std::all_of(argTypes.begin(), argTypes.end(), 659 std::mem_fun_ref(&CanQualType::isCanonicalAsParam))); 660 661 // Lookup or create unique function info. 662 llvm::FoldingSetNodeID ID; 663 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 664 required, resultType, argTypes); 665 666 void *insertPos = nullptr; 667 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 668 if (FI) 669 return *FI; 670 671 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 672 673 // Construct the function info. We co-allocate the ArgInfos. 674 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 675 paramInfos, resultType, argTypes, required); 676 FunctionInfos.InsertNode(FI, insertPos); 677 678 bool inserted = FunctionsBeingProcessed.insert(FI).second; 679 (void)inserted; 680 assert(inserted && "Recursively being processed?"); 681 682 // Compute ABI information. 683 if (info.getCC() != CC_Swift) { 684 getABIInfo().computeInfo(*FI); 685 } else { 686 swiftcall::computeABIInfo(CGM, *FI); 687 } 688 689 // Loop over all of the computed argument and return value info. If any of 690 // them are direct or extend without a specified coerce type, specify the 691 // default now. 692 ABIArgInfo &retInfo = FI->getReturnInfo(); 693 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 694 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 695 696 for (auto &I : FI->arguments()) 697 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 698 I.info.setCoerceToType(ConvertType(I.type)); 699 700 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 701 assert(erased && "Not in set?"); 702 703 return *FI; 704 } 705 706 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 707 bool instanceMethod, 708 bool chainCall, 709 const FunctionType::ExtInfo &info, 710 ArrayRef<ExtParameterInfo> paramInfos, 711 CanQualType resultType, 712 ArrayRef<CanQualType> argTypes, 713 RequiredArgs required) { 714 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 715 716 void *buffer = 717 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 718 argTypes.size() + 1, paramInfos.size())); 719 720 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 721 FI->CallingConvention = llvmCC; 722 FI->EffectiveCallingConvention = llvmCC; 723 FI->ASTCallingConvention = info.getCC(); 724 FI->InstanceMethod = instanceMethod; 725 FI->ChainCall = chainCall; 726 FI->NoReturn = info.getNoReturn(); 727 FI->ReturnsRetained = info.getProducesResult(); 728 FI->Required = required; 729 FI->HasRegParm = info.getHasRegParm(); 730 FI->RegParm = info.getRegParm(); 731 FI->ArgStruct = nullptr; 732 FI->ArgStructAlign = 0; 733 FI->NumArgs = argTypes.size(); 734 FI->HasExtParameterInfos = !paramInfos.empty(); 735 FI->getArgsBuffer()[0].type = resultType; 736 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 737 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 738 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 739 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 740 return FI; 741 } 742 743 /***/ 744 745 namespace { 746 // ABIArgInfo::Expand implementation. 747 748 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 749 struct TypeExpansion { 750 enum TypeExpansionKind { 751 // Elements of constant arrays are expanded recursively. 752 TEK_ConstantArray, 753 // Record fields are expanded recursively (but if record is a union, only 754 // the field with the largest size is expanded). 755 TEK_Record, 756 // For complex types, real and imaginary parts are expanded recursively. 757 TEK_Complex, 758 // All other types are not expandable. 759 TEK_None 760 }; 761 762 const TypeExpansionKind Kind; 763 764 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 765 virtual ~TypeExpansion() {} 766 }; 767 768 struct ConstantArrayExpansion : TypeExpansion { 769 QualType EltTy; 770 uint64_t NumElts; 771 772 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 773 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 774 static bool classof(const TypeExpansion *TE) { 775 return TE->Kind == TEK_ConstantArray; 776 } 777 }; 778 779 struct RecordExpansion : TypeExpansion { 780 SmallVector<const CXXBaseSpecifier *, 1> Bases; 781 782 SmallVector<const FieldDecl *, 1> Fields; 783 784 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 785 SmallVector<const FieldDecl *, 1> &&Fields) 786 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 787 Fields(std::move(Fields)) {} 788 static bool classof(const TypeExpansion *TE) { 789 return TE->Kind == TEK_Record; 790 } 791 }; 792 793 struct ComplexExpansion : TypeExpansion { 794 QualType EltTy; 795 796 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 797 static bool classof(const TypeExpansion *TE) { 798 return TE->Kind == TEK_Complex; 799 } 800 }; 801 802 struct NoExpansion : TypeExpansion { 803 NoExpansion() : TypeExpansion(TEK_None) {} 804 static bool classof(const TypeExpansion *TE) { 805 return TE->Kind == TEK_None; 806 } 807 }; 808 } // namespace 809 810 static std::unique_ptr<TypeExpansion> 811 getTypeExpansion(QualType Ty, const ASTContext &Context) { 812 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 813 return llvm::make_unique<ConstantArrayExpansion>( 814 AT->getElementType(), AT->getSize().getZExtValue()); 815 } 816 if (const RecordType *RT = Ty->getAs<RecordType>()) { 817 SmallVector<const CXXBaseSpecifier *, 1> Bases; 818 SmallVector<const FieldDecl *, 1> Fields; 819 const RecordDecl *RD = RT->getDecl(); 820 assert(!RD->hasFlexibleArrayMember() && 821 "Cannot expand structure with flexible array."); 822 if (RD->isUnion()) { 823 // Unions can be here only in degenerative cases - all the fields are same 824 // after flattening. Thus we have to use the "largest" field. 825 const FieldDecl *LargestFD = nullptr; 826 CharUnits UnionSize = CharUnits::Zero(); 827 828 for (const auto *FD : RD->fields()) { 829 // Skip zero length bitfields. 830 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 831 continue; 832 assert(!FD->isBitField() && 833 "Cannot expand structure with bit-field members."); 834 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 835 if (UnionSize < FieldSize) { 836 UnionSize = FieldSize; 837 LargestFD = FD; 838 } 839 } 840 if (LargestFD) 841 Fields.push_back(LargestFD); 842 } else { 843 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 844 assert(!CXXRD->isDynamicClass() && 845 "cannot expand vtable pointers in dynamic classes"); 846 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 847 Bases.push_back(&BS); 848 } 849 850 for (const auto *FD : RD->fields()) { 851 // Skip zero length bitfields. 852 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 853 continue; 854 assert(!FD->isBitField() && 855 "Cannot expand structure with bit-field members."); 856 Fields.push_back(FD); 857 } 858 } 859 return llvm::make_unique<RecordExpansion>(std::move(Bases), 860 std::move(Fields)); 861 } 862 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 863 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 864 } 865 return llvm::make_unique<NoExpansion>(); 866 } 867 868 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 869 auto Exp = getTypeExpansion(Ty, Context); 870 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 871 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 872 } 873 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 874 int Res = 0; 875 for (auto BS : RExp->Bases) 876 Res += getExpansionSize(BS->getType(), Context); 877 for (auto FD : RExp->Fields) 878 Res += getExpansionSize(FD->getType(), Context); 879 return Res; 880 } 881 if (isa<ComplexExpansion>(Exp.get())) 882 return 2; 883 assert(isa<NoExpansion>(Exp.get())); 884 return 1; 885 } 886 887 void 888 CodeGenTypes::getExpandedTypes(QualType Ty, 889 SmallVectorImpl<llvm::Type *>::iterator &TI) { 890 auto Exp = getTypeExpansion(Ty, Context); 891 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 892 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 893 getExpandedTypes(CAExp->EltTy, TI); 894 } 895 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 896 for (auto BS : RExp->Bases) 897 getExpandedTypes(BS->getType(), TI); 898 for (auto FD : RExp->Fields) 899 getExpandedTypes(FD->getType(), TI); 900 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 901 llvm::Type *EltTy = ConvertType(CExp->EltTy); 902 *TI++ = EltTy; 903 *TI++ = EltTy; 904 } else { 905 assert(isa<NoExpansion>(Exp.get())); 906 *TI++ = ConvertType(Ty); 907 } 908 } 909 910 static void forConstantArrayExpansion(CodeGenFunction &CGF, 911 ConstantArrayExpansion *CAE, 912 Address BaseAddr, 913 llvm::function_ref<void(Address)> Fn) { 914 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 915 CharUnits EltAlign = 916 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 917 918 for (int i = 0, n = CAE->NumElts; i < n; i++) { 919 llvm::Value *EltAddr = 920 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 921 Fn(Address(EltAddr, EltAlign)); 922 } 923 } 924 925 void CodeGenFunction::ExpandTypeFromArgs( 926 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 927 assert(LV.isSimple() && 928 "Unexpected non-simple lvalue during struct expansion."); 929 930 auto Exp = getTypeExpansion(Ty, getContext()); 931 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 932 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 933 [&](Address EltAddr) { 934 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 935 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 936 }); 937 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 938 Address This = LV.getAddress(); 939 for (const CXXBaseSpecifier *BS : RExp->Bases) { 940 // Perform a single step derived-to-base conversion. 941 Address Base = 942 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 943 /*NullCheckValue=*/false, SourceLocation()); 944 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 945 946 // Recurse onto bases. 947 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 948 } 949 for (auto FD : RExp->Fields) { 950 // FIXME: What are the right qualifiers here? 951 LValue SubLV = EmitLValueForField(LV, FD); 952 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 953 } 954 } else if (isa<ComplexExpansion>(Exp.get())) { 955 auto realValue = *AI++; 956 auto imagValue = *AI++; 957 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 958 } else { 959 assert(isa<NoExpansion>(Exp.get())); 960 EmitStoreThroughLValue(RValue::get(*AI++), LV); 961 } 962 } 963 964 void CodeGenFunction::ExpandTypeToArgs( 965 QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 966 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 967 auto Exp = getTypeExpansion(Ty, getContext()); 968 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 969 forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(), 970 [&](Address EltAddr) { 971 RValue EltRV = 972 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()); 973 ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos); 974 }); 975 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 976 Address This = RV.getAggregateAddress(); 977 for (const CXXBaseSpecifier *BS : RExp->Bases) { 978 // Perform a single step derived-to-base conversion. 979 Address Base = 980 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 981 /*NullCheckValue=*/false, SourceLocation()); 982 RValue BaseRV = RValue::getAggregate(Base); 983 984 // Recurse onto bases. 985 ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs, 986 IRCallArgPos); 987 } 988 989 LValue LV = MakeAddrLValue(This, Ty); 990 for (auto FD : RExp->Fields) { 991 RValue FldRV = EmitRValueForField(LV, FD, SourceLocation()); 992 ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs, 993 IRCallArgPos); 994 } 995 } else if (isa<ComplexExpansion>(Exp.get())) { 996 ComplexPairTy CV = RV.getComplexVal(); 997 IRCallArgs[IRCallArgPos++] = CV.first; 998 IRCallArgs[IRCallArgPos++] = CV.second; 999 } else { 1000 assert(isa<NoExpansion>(Exp.get())); 1001 assert(RV.isScalar() && 1002 "Unexpected non-scalar rvalue during struct expansion."); 1003 1004 // Insert a bitcast as needed. 1005 llvm::Value *V = RV.getScalarVal(); 1006 if (IRCallArgPos < IRFuncTy->getNumParams() && 1007 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1008 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1009 1010 IRCallArgs[IRCallArgPos++] = V; 1011 } 1012 } 1013 1014 /// Create a temporary allocation for the purposes of coercion. 1015 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1016 CharUnits MinAlign) { 1017 // Don't use an alignment that's worse than what LLVM would prefer. 1018 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1019 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1020 1021 return CGF.CreateTempAlloca(Ty, Align); 1022 } 1023 1024 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1025 /// accessing some number of bytes out of it, try to gep into the struct to get 1026 /// at its inner goodness. Dive as deep as possible without entering an element 1027 /// with an in-memory size smaller than DstSize. 1028 static Address 1029 EnterStructPointerForCoercedAccess(Address SrcPtr, 1030 llvm::StructType *SrcSTy, 1031 uint64_t DstSize, CodeGenFunction &CGF) { 1032 // We can't dive into a zero-element struct. 1033 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1034 1035 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1036 1037 // If the first elt is at least as large as what we're looking for, or if the 1038 // first element is the same size as the whole struct, we can enter it. The 1039 // comparison must be made on the store size and not the alloca size. Using 1040 // the alloca size may overstate the size of the load. 1041 uint64_t FirstEltSize = 1042 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1043 if (FirstEltSize < DstSize && 1044 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1045 return SrcPtr; 1046 1047 // GEP into the first element. 1048 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 1049 1050 // If the first element is a struct, recurse. 1051 llvm::Type *SrcTy = SrcPtr.getElementType(); 1052 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1053 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1054 1055 return SrcPtr; 1056 } 1057 1058 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1059 /// are either integers or pointers. This does a truncation of the value if it 1060 /// is too large or a zero extension if it is too small. 1061 /// 1062 /// This behaves as if the value were coerced through memory, so on big-endian 1063 /// targets the high bits are preserved in a truncation, while little-endian 1064 /// targets preserve the low bits. 1065 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1066 llvm::Type *Ty, 1067 CodeGenFunction &CGF) { 1068 if (Val->getType() == Ty) 1069 return Val; 1070 1071 if (isa<llvm::PointerType>(Val->getType())) { 1072 // If this is Pointer->Pointer avoid conversion to and from int. 1073 if (isa<llvm::PointerType>(Ty)) 1074 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1075 1076 // Convert the pointer to an integer so we can play with its width. 1077 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1078 } 1079 1080 llvm::Type *DestIntTy = Ty; 1081 if (isa<llvm::PointerType>(DestIntTy)) 1082 DestIntTy = CGF.IntPtrTy; 1083 1084 if (Val->getType() != DestIntTy) { 1085 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1086 if (DL.isBigEndian()) { 1087 // Preserve the high bits on big-endian targets. 1088 // That is what memory coercion does. 1089 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1090 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1091 1092 if (SrcSize > DstSize) { 1093 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1094 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1095 } else { 1096 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1097 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1098 } 1099 } else { 1100 // Little-endian targets preserve the low bits. No shifts required. 1101 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1102 } 1103 } 1104 1105 if (isa<llvm::PointerType>(Ty)) 1106 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1107 return Val; 1108 } 1109 1110 1111 1112 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1113 /// a pointer to an object of type \arg Ty, known to be aligned to 1114 /// \arg SrcAlign bytes. 1115 /// 1116 /// This safely handles the case when the src type is smaller than the 1117 /// destination type; in this situation the values of bits which not 1118 /// present in the src are undefined. 1119 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1120 CodeGenFunction &CGF) { 1121 llvm::Type *SrcTy = Src.getElementType(); 1122 1123 // If SrcTy and Ty are the same, just do a load. 1124 if (SrcTy == Ty) 1125 return CGF.Builder.CreateLoad(Src); 1126 1127 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1128 1129 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1130 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1131 SrcTy = Src.getType()->getElementType(); 1132 } 1133 1134 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1135 1136 // If the source and destination are integer or pointer types, just do an 1137 // extension or truncation to the desired type. 1138 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1139 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1140 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1141 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1142 } 1143 1144 // If load is legal, just bitcast the src pointer. 1145 if (SrcSize >= DstSize) { 1146 // Generally SrcSize is never greater than DstSize, since this means we are 1147 // losing bits. However, this can happen in cases where the structure has 1148 // additional padding, for example due to a user specified alignment. 1149 // 1150 // FIXME: Assert that we aren't truncating non-padding bits when have access 1151 // to that information. 1152 Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty)); 1153 return CGF.Builder.CreateLoad(Src); 1154 } 1155 1156 // Otherwise do coercion through memory. This is stupid, but simple. 1157 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1158 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1159 Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy); 1160 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1161 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1162 false); 1163 return CGF.Builder.CreateLoad(Tmp); 1164 } 1165 1166 // Function to store a first-class aggregate into memory. We prefer to 1167 // store the elements rather than the aggregate to be more friendly to 1168 // fast-isel. 1169 // FIXME: Do we need to recurse here? 1170 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1171 Address Dest, bool DestIsVolatile) { 1172 // Prefer scalar stores to first-class aggregate stores. 1173 if (llvm::StructType *STy = 1174 dyn_cast<llvm::StructType>(Val->getType())) { 1175 const llvm::StructLayout *Layout = 1176 CGF.CGM.getDataLayout().getStructLayout(STy); 1177 1178 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1179 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1180 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1181 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1182 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1183 } 1184 } else { 1185 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1186 } 1187 } 1188 1189 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1190 /// where the source and destination may have different types. The 1191 /// destination is known to be aligned to \arg DstAlign bytes. 1192 /// 1193 /// This safely handles the case when the src type is larger than the 1194 /// destination type; the upper bits of the src will be lost. 1195 static void CreateCoercedStore(llvm::Value *Src, 1196 Address Dst, 1197 bool DstIsVolatile, 1198 CodeGenFunction &CGF) { 1199 llvm::Type *SrcTy = Src->getType(); 1200 llvm::Type *DstTy = Dst.getType()->getElementType(); 1201 if (SrcTy == DstTy) { 1202 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1203 return; 1204 } 1205 1206 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1207 1208 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1209 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1210 DstTy = Dst.getType()->getElementType(); 1211 } 1212 1213 // If the source and destination are integer or pointer types, just do an 1214 // extension or truncation to the desired type. 1215 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1216 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1217 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1218 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1219 return; 1220 } 1221 1222 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1223 1224 // If store is legal, just bitcast the src pointer. 1225 if (SrcSize <= DstSize) { 1226 Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy)); 1227 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1228 } else { 1229 // Otherwise do coercion through memory. This is stupid, but 1230 // simple. 1231 1232 // Generally SrcSize is never greater than DstSize, since this means we are 1233 // losing bits. However, this can happen in cases where the structure has 1234 // additional padding, for example due to a user specified alignment. 1235 // 1236 // FIXME: Assert that we aren't truncating non-padding bits when have access 1237 // to that information. 1238 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1239 CGF.Builder.CreateStore(Src, Tmp); 1240 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1241 Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy); 1242 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1243 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1244 false); 1245 } 1246 } 1247 1248 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1249 const ABIArgInfo &info) { 1250 if (unsigned offset = info.getDirectOffset()) { 1251 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1252 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1253 CharUnits::fromQuantity(offset)); 1254 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1255 } 1256 return addr; 1257 } 1258 1259 namespace { 1260 1261 /// Encapsulates information about the way function arguments from 1262 /// CGFunctionInfo should be passed to actual LLVM IR function. 1263 class ClangToLLVMArgMapping { 1264 static const unsigned InvalidIndex = ~0U; 1265 unsigned InallocaArgNo; 1266 unsigned SRetArgNo; 1267 unsigned TotalIRArgs; 1268 1269 /// Arguments of LLVM IR function corresponding to single Clang argument. 1270 struct IRArgs { 1271 unsigned PaddingArgIndex; 1272 // Argument is expanded to IR arguments at positions 1273 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1274 unsigned FirstArgIndex; 1275 unsigned NumberOfArgs; 1276 1277 IRArgs() 1278 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1279 NumberOfArgs(0) {} 1280 }; 1281 1282 SmallVector<IRArgs, 8> ArgInfo; 1283 1284 public: 1285 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1286 bool OnlyRequiredArgs = false) 1287 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1288 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1289 construct(Context, FI, OnlyRequiredArgs); 1290 } 1291 1292 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1293 unsigned getInallocaArgNo() const { 1294 assert(hasInallocaArg()); 1295 return InallocaArgNo; 1296 } 1297 1298 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1299 unsigned getSRetArgNo() const { 1300 assert(hasSRetArg()); 1301 return SRetArgNo; 1302 } 1303 1304 unsigned totalIRArgs() const { return TotalIRArgs; } 1305 1306 bool hasPaddingArg(unsigned ArgNo) const { 1307 assert(ArgNo < ArgInfo.size()); 1308 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1309 } 1310 unsigned getPaddingArgNo(unsigned ArgNo) const { 1311 assert(hasPaddingArg(ArgNo)); 1312 return ArgInfo[ArgNo].PaddingArgIndex; 1313 } 1314 1315 /// Returns index of first IR argument corresponding to ArgNo, and their 1316 /// quantity. 1317 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1318 assert(ArgNo < ArgInfo.size()); 1319 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1320 ArgInfo[ArgNo].NumberOfArgs); 1321 } 1322 1323 private: 1324 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1325 bool OnlyRequiredArgs); 1326 }; 1327 1328 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1329 const CGFunctionInfo &FI, 1330 bool OnlyRequiredArgs) { 1331 unsigned IRArgNo = 0; 1332 bool SwapThisWithSRet = false; 1333 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1334 1335 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1336 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1337 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1338 } 1339 1340 unsigned ArgNo = 0; 1341 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1342 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1343 ++I, ++ArgNo) { 1344 assert(I != FI.arg_end()); 1345 QualType ArgType = I->type; 1346 const ABIArgInfo &AI = I->info; 1347 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1348 auto &IRArgs = ArgInfo[ArgNo]; 1349 1350 if (AI.getPaddingType()) 1351 IRArgs.PaddingArgIndex = IRArgNo++; 1352 1353 switch (AI.getKind()) { 1354 case ABIArgInfo::Extend: 1355 case ABIArgInfo::Direct: { 1356 // FIXME: handle sseregparm someday... 1357 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1358 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1359 IRArgs.NumberOfArgs = STy->getNumElements(); 1360 } else { 1361 IRArgs.NumberOfArgs = 1; 1362 } 1363 break; 1364 } 1365 case ABIArgInfo::Indirect: 1366 IRArgs.NumberOfArgs = 1; 1367 break; 1368 case ABIArgInfo::Ignore: 1369 case ABIArgInfo::InAlloca: 1370 // ignore and inalloca doesn't have matching LLVM parameters. 1371 IRArgs.NumberOfArgs = 0; 1372 break; 1373 case ABIArgInfo::CoerceAndExpand: 1374 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1375 break; 1376 case ABIArgInfo::Expand: 1377 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1378 break; 1379 } 1380 1381 if (IRArgs.NumberOfArgs > 0) { 1382 IRArgs.FirstArgIndex = IRArgNo; 1383 IRArgNo += IRArgs.NumberOfArgs; 1384 } 1385 1386 // Skip over the sret parameter when it comes second. We already handled it 1387 // above. 1388 if (IRArgNo == 1 && SwapThisWithSRet) 1389 IRArgNo++; 1390 } 1391 assert(ArgNo == ArgInfo.size()); 1392 1393 if (FI.usesInAlloca()) 1394 InallocaArgNo = IRArgNo++; 1395 1396 TotalIRArgs = IRArgNo; 1397 } 1398 } // namespace 1399 1400 /***/ 1401 1402 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1403 return FI.getReturnInfo().isIndirect(); 1404 } 1405 1406 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1407 return ReturnTypeUsesSRet(FI) && 1408 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1409 } 1410 1411 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1412 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1413 switch (BT->getKind()) { 1414 default: 1415 return false; 1416 case BuiltinType::Float: 1417 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1418 case BuiltinType::Double: 1419 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1420 case BuiltinType::LongDouble: 1421 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1422 } 1423 } 1424 1425 return false; 1426 } 1427 1428 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1429 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1430 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1431 if (BT->getKind() == BuiltinType::LongDouble) 1432 return getTarget().useObjCFP2RetForComplexLongDouble(); 1433 } 1434 } 1435 1436 return false; 1437 } 1438 1439 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1440 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1441 return GetFunctionType(FI); 1442 } 1443 1444 llvm::FunctionType * 1445 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1446 1447 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1448 (void)Inserted; 1449 assert(Inserted && "Recursively being processed?"); 1450 1451 llvm::Type *resultType = nullptr; 1452 const ABIArgInfo &retAI = FI.getReturnInfo(); 1453 switch (retAI.getKind()) { 1454 case ABIArgInfo::Expand: 1455 llvm_unreachable("Invalid ABI kind for return argument"); 1456 1457 case ABIArgInfo::Extend: 1458 case ABIArgInfo::Direct: 1459 resultType = retAI.getCoerceToType(); 1460 break; 1461 1462 case ABIArgInfo::InAlloca: 1463 if (retAI.getInAllocaSRet()) { 1464 // sret things on win32 aren't void, they return the sret pointer. 1465 QualType ret = FI.getReturnType(); 1466 llvm::Type *ty = ConvertType(ret); 1467 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1468 resultType = llvm::PointerType::get(ty, addressSpace); 1469 } else { 1470 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1471 } 1472 break; 1473 1474 case ABIArgInfo::Indirect: 1475 case ABIArgInfo::Ignore: 1476 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1477 break; 1478 1479 case ABIArgInfo::CoerceAndExpand: 1480 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1481 break; 1482 } 1483 1484 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1485 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1486 1487 // Add type for sret argument. 1488 if (IRFunctionArgs.hasSRetArg()) { 1489 QualType Ret = FI.getReturnType(); 1490 llvm::Type *Ty = ConvertType(Ret); 1491 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1492 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1493 llvm::PointerType::get(Ty, AddressSpace); 1494 } 1495 1496 // Add type for inalloca argument. 1497 if (IRFunctionArgs.hasInallocaArg()) { 1498 auto ArgStruct = FI.getArgStruct(); 1499 assert(ArgStruct); 1500 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1501 } 1502 1503 // Add in all of the required arguments. 1504 unsigned ArgNo = 0; 1505 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1506 ie = it + FI.getNumRequiredArgs(); 1507 for (; it != ie; ++it, ++ArgNo) { 1508 const ABIArgInfo &ArgInfo = it->info; 1509 1510 // Insert a padding type to ensure proper alignment. 1511 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1512 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1513 ArgInfo.getPaddingType(); 1514 1515 unsigned FirstIRArg, NumIRArgs; 1516 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1517 1518 switch (ArgInfo.getKind()) { 1519 case ABIArgInfo::Ignore: 1520 case ABIArgInfo::InAlloca: 1521 assert(NumIRArgs == 0); 1522 break; 1523 1524 case ABIArgInfo::Indirect: { 1525 assert(NumIRArgs == 1); 1526 // indirect arguments are always on the stack, which is addr space #0. 1527 llvm::Type *LTy = ConvertTypeForMem(it->type); 1528 ArgTypes[FirstIRArg] = LTy->getPointerTo(); 1529 break; 1530 } 1531 1532 case ABIArgInfo::Extend: 1533 case ABIArgInfo::Direct: { 1534 // Fast-isel and the optimizer generally like scalar values better than 1535 // FCAs, so we flatten them if this is safe to do for this argument. 1536 llvm::Type *argType = ArgInfo.getCoerceToType(); 1537 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1538 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1539 assert(NumIRArgs == st->getNumElements()); 1540 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1541 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1542 } else { 1543 assert(NumIRArgs == 1); 1544 ArgTypes[FirstIRArg] = argType; 1545 } 1546 break; 1547 } 1548 1549 case ABIArgInfo::CoerceAndExpand: { 1550 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1551 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1552 *ArgTypesIter++ = EltTy; 1553 } 1554 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1555 break; 1556 } 1557 1558 case ABIArgInfo::Expand: 1559 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1560 getExpandedTypes(it->type, ArgTypesIter); 1561 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1562 break; 1563 } 1564 } 1565 1566 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1567 assert(Erased && "Not in set?"); 1568 1569 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1570 } 1571 1572 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1573 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1574 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1575 1576 if (!isFuncTypeConvertible(FPT)) 1577 return llvm::StructType::get(getLLVMContext()); 1578 1579 const CGFunctionInfo *Info; 1580 if (isa<CXXDestructorDecl>(MD)) 1581 Info = 1582 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1583 else 1584 Info = &arrangeCXXMethodDeclaration(MD); 1585 return GetFunctionType(*Info); 1586 } 1587 1588 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1589 llvm::AttrBuilder &FuncAttrs, 1590 const FunctionProtoType *FPT) { 1591 if (!FPT) 1592 return; 1593 1594 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1595 FPT->isNothrow(Ctx)) 1596 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1597 } 1598 1599 void CodeGenModule::ConstructAttributeList( 1600 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1601 AttributeListType &PAL, unsigned &CallingConv, bool AttrOnCallSite) { 1602 llvm::AttrBuilder FuncAttrs; 1603 llvm::AttrBuilder RetAttrs; 1604 bool HasOptnone = false; 1605 1606 CallingConv = FI.getEffectiveCallingConvention(); 1607 1608 if (FI.isNoReturn()) 1609 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1610 1611 // If we have information about the function prototype, we can learn 1612 // attributes form there. 1613 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1614 CalleeInfo.getCalleeFunctionProtoType()); 1615 1616 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 1617 1618 bool HasAnyX86InterruptAttr = false; 1619 // FIXME: handle sseregparm someday... 1620 if (TargetDecl) { 1621 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1622 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1623 if (TargetDecl->hasAttr<NoThrowAttr>()) 1624 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1625 if (TargetDecl->hasAttr<NoReturnAttr>()) 1626 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1627 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1628 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1629 1630 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1631 AddAttributesFromFunctionProtoType( 1632 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1633 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1634 // These attributes are not inherited by overloads. 1635 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1636 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1637 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1638 } 1639 1640 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1641 if (TargetDecl->hasAttr<ConstAttr>()) { 1642 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1643 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1644 } else if (TargetDecl->hasAttr<PureAttr>()) { 1645 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1646 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1647 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1648 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1649 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1650 } 1651 if (TargetDecl->hasAttr<RestrictAttr>()) 1652 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1653 if (TargetDecl->hasAttr<ReturnsNonNullAttr>()) 1654 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1655 1656 HasAnyX86InterruptAttr = TargetDecl->hasAttr<AnyX86InterruptAttr>(); 1657 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1658 } 1659 1660 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1661 if (!HasOptnone) { 1662 if (CodeGenOpts.OptimizeSize) 1663 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1664 if (CodeGenOpts.OptimizeSize == 2) 1665 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1666 } 1667 1668 if (CodeGenOpts.DisableRedZone) 1669 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1670 if (CodeGenOpts.NoImplicitFloat) 1671 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1672 if (CodeGenOpts.EnableSegmentedStacks && 1673 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1674 FuncAttrs.addAttribute("split-stack"); 1675 1676 if (AttrOnCallSite) { 1677 // Attributes that should go on the call site only. 1678 if (!CodeGenOpts.SimplifyLibCalls || 1679 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1680 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1681 if (!CodeGenOpts.TrapFuncName.empty()) 1682 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1683 } else { 1684 // Attributes that should go on the function, but not the call site. 1685 if (!CodeGenOpts.DisableFPElim) { 1686 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1687 } else if (CodeGenOpts.OmitLeafFramePointer) { 1688 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1689 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1690 } else { 1691 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1692 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1693 } 1694 1695 bool DisableTailCalls = 1696 CodeGenOpts.DisableTailCalls || HasAnyX86InterruptAttr || 1697 (TargetDecl && TargetDecl->hasAttr<DisableTailCallsAttr>()); 1698 FuncAttrs.addAttribute( 1699 "disable-tail-calls", 1700 llvm::toStringRef(DisableTailCalls)); 1701 1702 FuncAttrs.addAttribute("less-precise-fpmad", 1703 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1704 FuncAttrs.addAttribute("no-infs-fp-math", 1705 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1706 FuncAttrs.addAttribute("no-nans-fp-math", 1707 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1708 FuncAttrs.addAttribute("unsafe-fp-math", 1709 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1710 FuncAttrs.addAttribute("use-soft-float", 1711 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1712 FuncAttrs.addAttribute("stack-protector-buffer-size", 1713 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1714 1715 if (CodeGenOpts.StackRealignment) 1716 FuncAttrs.addAttribute("stackrealign"); 1717 1718 // Add target-cpu and target-features attributes to functions. If 1719 // we have a decl for the function and it has a target attribute then 1720 // parse that and add it to the feature set. 1721 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1722 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 1723 if (FD && FD->hasAttr<TargetAttr>()) { 1724 llvm::StringMap<bool> FeatureMap; 1725 getFunctionFeatureMap(FeatureMap, FD); 1726 1727 // Produce the canonical string for this set of features. 1728 std::vector<std::string> Features; 1729 for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(), 1730 ie = FeatureMap.end(); 1731 it != ie; ++it) 1732 Features.push_back((it->second ? "+" : "-") + it->first().str()); 1733 1734 // Now add the target-cpu and target-features to the function. 1735 // While we populated the feature map above, we still need to 1736 // get and parse the target attribute so we can get the cpu for 1737 // the function. 1738 const auto *TD = FD->getAttr<TargetAttr>(); 1739 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1740 if (ParsedAttr.second != "") 1741 TargetCPU = ParsedAttr.second; 1742 if (TargetCPU != "") 1743 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1744 if (!Features.empty()) { 1745 std::sort(Features.begin(), Features.end()); 1746 FuncAttrs.addAttribute( 1747 "target-features", 1748 llvm::join(Features.begin(), Features.end(), ",")); 1749 } 1750 } else { 1751 // Otherwise just add the existing target cpu and target features to the 1752 // function. 1753 std::vector<std::string> &Features = getTarget().getTargetOpts().Features; 1754 if (TargetCPU != "") 1755 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1756 if (!Features.empty()) { 1757 std::sort(Features.begin(), Features.end()); 1758 FuncAttrs.addAttribute( 1759 "target-features", 1760 llvm::join(Features.begin(), Features.end(), ",")); 1761 } 1762 } 1763 } 1764 1765 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1766 // Conservatively, mark all functions and calls in CUDA as convergent 1767 // (meaning, they may call an intrinsically convergent op, such as 1768 // __syncthreads(), and so can't have certain optimizations applied around 1769 // them). LLVM will remove this attribute where it safely can. 1770 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1771 1772 // Respect -fcuda-flush-denormals-to-zero. 1773 if (getLangOpts().CUDADeviceFlushDenormalsToZero) 1774 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1775 } 1776 1777 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1778 1779 QualType RetTy = FI.getReturnType(); 1780 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1781 switch (RetAI.getKind()) { 1782 case ABIArgInfo::Extend: 1783 if (RetTy->hasSignedIntegerRepresentation()) 1784 RetAttrs.addAttribute(llvm::Attribute::SExt); 1785 else if (RetTy->hasUnsignedIntegerRepresentation()) 1786 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1787 // FALL THROUGH 1788 case ABIArgInfo::Direct: 1789 if (RetAI.getInReg()) 1790 RetAttrs.addAttribute(llvm::Attribute::InReg); 1791 break; 1792 case ABIArgInfo::Ignore: 1793 break; 1794 1795 case ABIArgInfo::InAlloca: 1796 case ABIArgInfo::Indirect: { 1797 // inalloca and sret disable readnone and readonly 1798 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1799 .removeAttribute(llvm::Attribute::ReadNone); 1800 break; 1801 } 1802 1803 case ABIArgInfo::CoerceAndExpand: 1804 break; 1805 1806 case ABIArgInfo::Expand: 1807 llvm_unreachable("Invalid ABI kind for return argument"); 1808 } 1809 1810 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1811 QualType PTy = RefTy->getPointeeType(); 1812 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1813 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1814 .getQuantity()); 1815 else if (getContext().getTargetAddressSpace(PTy) == 0) 1816 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1817 } 1818 1819 // Attach return attributes. 1820 if (RetAttrs.hasAttributes()) { 1821 PAL.push_back(llvm::AttributeSet::get( 1822 getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs)); 1823 } 1824 1825 bool hasUsedSRet = false; 1826 1827 // Attach attributes to sret. 1828 if (IRFunctionArgs.hasSRetArg()) { 1829 llvm::AttrBuilder SRETAttrs; 1830 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1831 hasUsedSRet = true; 1832 if (RetAI.getInReg()) 1833 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1834 PAL.push_back(llvm::AttributeSet::get( 1835 getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs)); 1836 } 1837 1838 // Attach attributes to inalloca argument. 1839 if (IRFunctionArgs.hasInallocaArg()) { 1840 llvm::AttrBuilder Attrs; 1841 Attrs.addAttribute(llvm::Attribute::InAlloca); 1842 PAL.push_back(llvm::AttributeSet::get( 1843 getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs)); 1844 } 1845 1846 unsigned ArgNo = 0; 1847 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 1848 E = FI.arg_end(); 1849 I != E; ++I, ++ArgNo) { 1850 QualType ParamType = I->type; 1851 const ABIArgInfo &AI = I->info; 1852 llvm::AttrBuilder Attrs; 1853 1854 // Add attribute for padding argument, if necessary. 1855 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 1856 if (AI.getPaddingInReg()) 1857 PAL.push_back(llvm::AttributeSet::get( 1858 getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1, 1859 llvm::Attribute::InReg)); 1860 } 1861 1862 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1863 // have the corresponding parameter variable. It doesn't make 1864 // sense to do it here because parameters are so messed up. 1865 switch (AI.getKind()) { 1866 case ABIArgInfo::Extend: 1867 if (ParamType->isSignedIntegerOrEnumerationType()) 1868 Attrs.addAttribute(llvm::Attribute::SExt); 1869 else if (ParamType->isUnsignedIntegerOrEnumerationType()) { 1870 if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType)) 1871 Attrs.addAttribute(llvm::Attribute::SExt); 1872 else 1873 Attrs.addAttribute(llvm::Attribute::ZExt); 1874 } 1875 // FALL THROUGH 1876 case ABIArgInfo::Direct: 1877 if (ArgNo == 0 && FI.isChainCall()) 1878 Attrs.addAttribute(llvm::Attribute::Nest); 1879 else if (AI.getInReg()) 1880 Attrs.addAttribute(llvm::Attribute::InReg); 1881 break; 1882 1883 case ABIArgInfo::Indirect: { 1884 if (AI.getInReg()) 1885 Attrs.addAttribute(llvm::Attribute::InReg); 1886 1887 if (AI.getIndirectByVal()) 1888 Attrs.addAttribute(llvm::Attribute::ByVal); 1889 1890 CharUnits Align = AI.getIndirectAlign(); 1891 1892 // In a byval argument, it is important that the required 1893 // alignment of the type is honored, as LLVM might be creating a 1894 // *new* stack object, and needs to know what alignment to give 1895 // it. (Sometimes it can deduce a sensible alignment on its own, 1896 // but not if clang decides it must emit a packed struct, or the 1897 // user specifies increased alignment requirements.) 1898 // 1899 // This is different from indirect *not* byval, where the object 1900 // exists already, and the align attribute is purely 1901 // informative. 1902 assert(!Align.isZero()); 1903 1904 // For now, only add this when we have a byval argument. 1905 // TODO: be less lazy about updating test cases. 1906 if (AI.getIndirectByVal()) 1907 Attrs.addAlignmentAttr(Align.getQuantity()); 1908 1909 // byval disables readnone and readonly. 1910 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1911 .removeAttribute(llvm::Attribute::ReadNone); 1912 break; 1913 } 1914 case ABIArgInfo::Ignore: 1915 case ABIArgInfo::Expand: 1916 case ABIArgInfo::CoerceAndExpand: 1917 break; 1918 1919 case ABIArgInfo::InAlloca: 1920 // inalloca disables readnone and readonly. 1921 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1922 .removeAttribute(llvm::Attribute::ReadNone); 1923 continue; 1924 } 1925 1926 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 1927 QualType PTy = RefTy->getPointeeType(); 1928 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1929 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1930 .getQuantity()); 1931 else if (getContext().getTargetAddressSpace(PTy) == 0) 1932 Attrs.addAttribute(llvm::Attribute::NonNull); 1933 } 1934 1935 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 1936 case ParameterABI::Ordinary: 1937 break; 1938 1939 case ParameterABI::SwiftIndirectResult: { 1940 // Add 'sret' if we haven't already used it for something, but 1941 // only if the result is void. 1942 if (!hasUsedSRet && RetTy->isVoidType()) { 1943 Attrs.addAttribute(llvm::Attribute::StructRet); 1944 hasUsedSRet = true; 1945 } 1946 1947 // Add 'noalias' in either case. 1948 Attrs.addAttribute(llvm::Attribute::NoAlias); 1949 1950 // Add 'dereferenceable' and 'alignment'. 1951 auto PTy = ParamType->getPointeeType(); 1952 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 1953 auto info = getContext().getTypeInfoInChars(PTy); 1954 Attrs.addDereferenceableAttr(info.first.getQuantity()); 1955 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 1956 info.second.getQuantity())); 1957 } 1958 break; 1959 } 1960 1961 case ParameterABI::SwiftErrorResult: 1962 Attrs.addAttribute(llvm::Attribute::SwiftError); 1963 break; 1964 1965 case ParameterABI::SwiftContext: 1966 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 1967 break; 1968 } 1969 1970 if (Attrs.hasAttributes()) { 1971 unsigned FirstIRArg, NumIRArgs; 1972 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1973 for (unsigned i = 0; i < NumIRArgs; i++) 1974 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), 1975 FirstIRArg + i + 1, Attrs)); 1976 } 1977 } 1978 assert(ArgNo == FI.arg_size()); 1979 1980 if (FuncAttrs.hasAttributes()) 1981 PAL.push_back(llvm:: 1982 AttributeSet::get(getLLVMContext(), 1983 llvm::AttributeSet::FunctionIndex, 1984 FuncAttrs)); 1985 } 1986 1987 /// An argument came in as a promoted argument; demote it back to its 1988 /// declared type. 1989 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 1990 const VarDecl *var, 1991 llvm::Value *value) { 1992 llvm::Type *varType = CGF.ConvertType(var->getType()); 1993 1994 // This can happen with promotions that actually don't change the 1995 // underlying type, like the enum promotions. 1996 if (value->getType() == varType) return value; 1997 1998 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 1999 && "unexpected promotion type"); 2000 2001 if (isa<llvm::IntegerType>(varType)) 2002 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2003 2004 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2005 } 2006 2007 /// Returns the attribute (either parameter attribute, or function 2008 /// attribute), which declares argument ArgNo to be non-null. 2009 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2010 QualType ArgType, unsigned ArgNo) { 2011 // FIXME: __attribute__((nonnull)) can also be applied to: 2012 // - references to pointers, where the pointee is known to be 2013 // nonnull (apparently a Clang extension) 2014 // - transparent unions containing pointers 2015 // In the former case, LLVM IR cannot represent the constraint. In 2016 // the latter case, we have no guarantee that the transparent union 2017 // is in fact passed as a pointer. 2018 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2019 return nullptr; 2020 // First, check attribute on parameter itself. 2021 if (PVD) { 2022 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2023 return ParmNNAttr; 2024 } 2025 // Check function attributes. 2026 if (!FD) 2027 return nullptr; 2028 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2029 if (NNAttr->isNonNull(ArgNo)) 2030 return NNAttr; 2031 } 2032 return nullptr; 2033 } 2034 2035 namespace { 2036 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2037 Address Temp; 2038 Address Arg; 2039 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2040 void Emit(CodeGenFunction &CGF, Flags flags) override { 2041 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2042 CGF.Builder.CreateStore(errorValue, Arg); 2043 } 2044 }; 2045 } 2046 2047 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2048 llvm::Function *Fn, 2049 const FunctionArgList &Args) { 2050 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2051 // Naked functions don't have prologues. 2052 return; 2053 2054 // If this is an implicit-return-zero function, go ahead and 2055 // initialize the return value. TODO: it might be nice to have 2056 // a more general mechanism for this that didn't require synthesized 2057 // return statements. 2058 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2059 if (FD->hasImplicitReturnZero()) { 2060 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2061 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2062 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2063 Builder.CreateStore(Zero, ReturnValue); 2064 } 2065 } 2066 2067 // FIXME: We no longer need the types from FunctionArgList; lift up and 2068 // simplify. 2069 2070 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2071 // Flattened function arguments. 2072 SmallVector<llvm::Value *, 16> FnArgs; 2073 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2074 for (auto &Arg : Fn->args()) { 2075 FnArgs.push_back(&Arg); 2076 } 2077 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2078 2079 // If we're using inalloca, all the memory arguments are GEPs off of the last 2080 // parameter, which is a pointer to the complete memory area. 2081 Address ArgStruct = Address::invalid(); 2082 const llvm::StructLayout *ArgStructLayout = nullptr; 2083 if (IRFunctionArgs.hasInallocaArg()) { 2084 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 2085 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2086 FI.getArgStructAlignment()); 2087 2088 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2089 } 2090 2091 // Name the struct return parameter. 2092 if (IRFunctionArgs.hasSRetArg()) { 2093 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2094 AI->setName("agg.result"); 2095 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1, 2096 llvm::Attribute::NoAlias)); 2097 } 2098 2099 // Track if we received the parameter as a pointer (indirect, byval, or 2100 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2101 // into a local alloca for us. 2102 SmallVector<ParamValue, 16> ArgVals; 2103 ArgVals.reserve(Args.size()); 2104 2105 // Create a pointer value for every parameter declaration. This usually 2106 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2107 // any cleanups or do anything that might unwind. We do that separately, so 2108 // we can push the cleanups in the correct order for the ABI. 2109 assert(FI.arg_size() == Args.size() && 2110 "Mismatch between function signature & arguments."); 2111 unsigned ArgNo = 0; 2112 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2113 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2114 i != e; ++i, ++info_it, ++ArgNo) { 2115 const VarDecl *Arg = *i; 2116 QualType Ty = info_it->type; 2117 const ABIArgInfo &ArgI = info_it->info; 2118 2119 bool isPromoted = 2120 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2121 2122 unsigned FirstIRArg, NumIRArgs; 2123 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2124 2125 switch (ArgI.getKind()) { 2126 case ABIArgInfo::InAlloca: { 2127 assert(NumIRArgs == 0); 2128 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2129 CharUnits FieldOffset = 2130 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 2131 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 2132 Arg->getName()); 2133 ArgVals.push_back(ParamValue::forIndirect(V)); 2134 break; 2135 } 2136 2137 case ABIArgInfo::Indirect: { 2138 assert(NumIRArgs == 1); 2139 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2140 2141 if (!hasScalarEvaluationKind(Ty)) { 2142 // Aggregates and complex variables are accessed by reference. All we 2143 // need to do is realign the value, if requested. 2144 Address V = ParamAddr; 2145 if (ArgI.getIndirectRealign()) { 2146 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2147 2148 // Copy from the incoming argument pointer to the temporary with the 2149 // appropriate alignment. 2150 // 2151 // FIXME: We should have a common utility for generating an aggregate 2152 // copy. 2153 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2154 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2155 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2156 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2157 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2158 V = AlignedTemp; 2159 } 2160 ArgVals.push_back(ParamValue::forIndirect(V)); 2161 } else { 2162 // Load scalar value from indirect argument. 2163 llvm::Value *V = 2164 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart()); 2165 2166 if (isPromoted) 2167 V = emitArgumentDemotion(*this, Arg, V); 2168 ArgVals.push_back(ParamValue::forDirect(V)); 2169 } 2170 break; 2171 } 2172 2173 case ABIArgInfo::Extend: 2174 case ABIArgInfo::Direct: { 2175 2176 // If we have the trivial case, handle it with no muss and fuss. 2177 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2178 ArgI.getCoerceToType() == ConvertType(Ty) && 2179 ArgI.getDirectOffset() == 0) { 2180 assert(NumIRArgs == 1); 2181 llvm::Value *V = FnArgs[FirstIRArg]; 2182 auto AI = cast<llvm::Argument>(V); 2183 2184 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2185 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2186 PVD->getFunctionScopeIndex())) 2187 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2188 AI->getArgNo() + 1, 2189 llvm::Attribute::NonNull)); 2190 2191 QualType OTy = PVD->getOriginalType(); 2192 if (const auto *ArrTy = 2193 getContext().getAsConstantArrayType(OTy)) { 2194 // A C99 array parameter declaration with the static keyword also 2195 // indicates dereferenceability, and if the size is constant we can 2196 // use the dereferenceable attribute (which requires the size in 2197 // bytes). 2198 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2199 QualType ETy = ArrTy->getElementType(); 2200 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2201 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2202 ArrSize) { 2203 llvm::AttrBuilder Attrs; 2204 Attrs.addDereferenceableAttr( 2205 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2206 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2207 AI->getArgNo() + 1, Attrs)); 2208 } else if (getContext().getTargetAddressSpace(ETy) == 0) { 2209 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2210 AI->getArgNo() + 1, 2211 llvm::Attribute::NonNull)); 2212 } 2213 } 2214 } else if (const auto *ArrTy = 2215 getContext().getAsVariableArrayType(OTy)) { 2216 // For C99 VLAs with the static keyword, we don't know the size so 2217 // we can't use the dereferenceable attribute, but in addrspace(0) 2218 // we know that it must be nonnull. 2219 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2220 !getContext().getTargetAddressSpace(ArrTy->getElementType())) 2221 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2222 AI->getArgNo() + 1, 2223 llvm::Attribute::NonNull)); 2224 } 2225 2226 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2227 if (!AVAttr) 2228 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2229 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2230 if (AVAttr) { 2231 llvm::Value *AlignmentValue = 2232 EmitScalarExpr(AVAttr->getAlignment()); 2233 llvm::ConstantInt *AlignmentCI = 2234 cast<llvm::ConstantInt>(AlignmentValue); 2235 unsigned Alignment = 2236 std::min((unsigned) AlignmentCI->getZExtValue(), 2237 +llvm::Value::MaximumAlignment); 2238 2239 llvm::AttrBuilder Attrs; 2240 Attrs.addAlignmentAttr(Alignment); 2241 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2242 AI->getArgNo() + 1, Attrs)); 2243 } 2244 } 2245 2246 if (Arg->getType().isRestrictQualified()) 2247 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 2248 AI->getArgNo() + 1, 2249 llvm::Attribute::NoAlias)); 2250 2251 // LLVM expects swifterror parameters to be used in very restricted 2252 // ways. Copy the value into a less-restricted temporary. 2253 if (FI.getExtParameterInfo(ArgNo).getABI() 2254 == ParameterABI::SwiftErrorResult) { 2255 QualType pointeeTy = Ty->getPointeeType(); 2256 assert(pointeeTy->isPointerType()); 2257 Address temp = 2258 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2259 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2260 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2261 Builder.CreateStore(incomingErrorValue, temp); 2262 V = temp.getPointer(); 2263 2264 // Push a cleanup to copy the value back at the end of the function. 2265 // The convention does not guarantee that the value will be written 2266 // back if the function exits with an unwind exception. 2267 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2268 } 2269 2270 // Ensure the argument is the correct type. 2271 if (V->getType() != ArgI.getCoerceToType()) 2272 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2273 2274 if (isPromoted) 2275 V = emitArgumentDemotion(*this, Arg, V); 2276 2277 if (const CXXMethodDecl *MD = 2278 dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) { 2279 if (MD->isVirtual() && Arg == CXXABIThisDecl) 2280 V = CGM.getCXXABI(). 2281 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V); 2282 } 2283 2284 // Because of merging of function types from multiple decls it is 2285 // possible for the type of an argument to not match the corresponding 2286 // type in the function type. Since we are codegening the callee 2287 // in here, add a cast to the argument type. 2288 llvm::Type *LTy = ConvertType(Arg->getType()); 2289 if (V->getType() != LTy) 2290 V = Builder.CreateBitCast(V, LTy); 2291 2292 ArgVals.push_back(ParamValue::forDirect(V)); 2293 break; 2294 } 2295 2296 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2297 Arg->getName()); 2298 2299 // Pointer to store into. 2300 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2301 2302 // Fast-isel and the optimizer generally like scalar values better than 2303 // FCAs, so we flatten them if this is safe to do for this argument. 2304 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2305 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2306 STy->getNumElements() > 1) { 2307 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2308 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2309 llvm::Type *DstTy = Ptr.getElementType(); 2310 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2311 2312 Address AddrToStoreInto = Address::invalid(); 2313 if (SrcSize <= DstSize) { 2314 AddrToStoreInto = 2315 Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 2316 } else { 2317 AddrToStoreInto = 2318 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2319 } 2320 2321 assert(STy->getNumElements() == NumIRArgs); 2322 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2323 auto AI = FnArgs[FirstIRArg + i]; 2324 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2325 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2326 Address EltPtr = 2327 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2328 Builder.CreateStore(AI, EltPtr); 2329 } 2330 2331 if (SrcSize > DstSize) { 2332 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2333 } 2334 2335 } else { 2336 // Simple case, just do a coerced store of the argument into the alloca. 2337 assert(NumIRArgs == 1); 2338 auto AI = FnArgs[FirstIRArg]; 2339 AI->setName(Arg->getName() + ".coerce"); 2340 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2341 } 2342 2343 // Match to what EmitParmDecl is expecting for this type. 2344 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2345 llvm::Value *V = 2346 EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart()); 2347 if (isPromoted) 2348 V = emitArgumentDemotion(*this, Arg, V); 2349 ArgVals.push_back(ParamValue::forDirect(V)); 2350 } else { 2351 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2352 } 2353 break; 2354 } 2355 2356 case ABIArgInfo::CoerceAndExpand: { 2357 // Reconstruct into a temporary. 2358 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2359 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2360 2361 auto coercionType = ArgI.getCoerceAndExpandType(); 2362 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2363 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2364 2365 unsigned argIndex = FirstIRArg; 2366 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2367 llvm::Type *eltType = coercionType->getElementType(i); 2368 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2369 continue; 2370 2371 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); 2372 auto elt = FnArgs[argIndex++]; 2373 Builder.CreateStore(elt, eltAddr); 2374 } 2375 assert(argIndex == FirstIRArg + NumIRArgs); 2376 break; 2377 } 2378 2379 case ABIArgInfo::Expand: { 2380 // If this structure was expanded into multiple arguments then 2381 // we need to create a temporary and reconstruct it from the 2382 // arguments. 2383 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2384 LValue LV = MakeAddrLValue(Alloca, Ty); 2385 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2386 2387 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2388 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2389 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2390 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2391 auto AI = FnArgs[FirstIRArg + i]; 2392 AI->setName(Arg->getName() + "." + Twine(i)); 2393 } 2394 break; 2395 } 2396 2397 case ABIArgInfo::Ignore: 2398 assert(NumIRArgs == 0); 2399 // Initialize the local variable appropriately. 2400 if (!hasScalarEvaluationKind(Ty)) { 2401 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2402 } else { 2403 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2404 ArgVals.push_back(ParamValue::forDirect(U)); 2405 } 2406 break; 2407 } 2408 } 2409 2410 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2411 for (int I = Args.size() - 1; I >= 0; --I) 2412 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2413 } else { 2414 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2415 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2416 } 2417 } 2418 2419 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2420 while (insn->use_empty()) { 2421 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2422 if (!bitcast) return; 2423 2424 // This is "safe" because we would have used a ConstantExpr otherwise. 2425 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2426 bitcast->eraseFromParent(); 2427 } 2428 } 2429 2430 /// Try to emit a fused autorelease of a return result. 2431 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2432 llvm::Value *result) { 2433 // We must be immediately followed the cast. 2434 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2435 if (BB->empty()) return nullptr; 2436 if (&BB->back() != result) return nullptr; 2437 2438 llvm::Type *resultType = result->getType(); 2439 2440 // result is in a BasicBlock and is therefore an Instruction. 2441 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2442 2443 SmallVector<llvm::Instruction*,4> insnsToKill; 2444 2445 // Look for: 2446 // %generator = bitcast %type1* %generator2 to %type2* 2447 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2448 // We would have emitted this as a constant if the operand weren't 2449 // an Instruction. 2450 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2451 2452 // Require the generator to be immediately followed by the cast. 2453 if (generator->getNextNode() != bitcast) 2454 return nullptr; 2455 2456 insnsToKill.push_back(bitcast); 2457 } 2458 2459 // Look for: 2460 // %generator = call i8* @objc_retain(i8* %originalResult) 2461 // or 2462 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2463 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2464 if (!call) return nullptr; 2465 2466 bool doRetainAutorelease; 2467 2468 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2469 doRetainAutorelease = true; 2470 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2471 .objc_retainAutoreleasedReturnValue) { 2472 doRetainAutorelease = false; 2473 2474 // If we emitted an assembly marker for this call (and the 2475 // ARCEntrypoints field should have been set if so), go looking 2476 // for that call. If we can't find it, we can't do this 2477 // optimization. But it should always be the immediately previous 2478 // instruction, unless we needed bitcasts around the call. 2479 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2480 llvm::Instruction *prev = call->getPrevNode(); 2481 assert(prev); 2482 if (isa<llvm::BitCastInst>(prev)) { 2483 prev = prev->getPrevNode(); 2484 assert(prev); 2485 } 2486 assert(isa<llvm::CallInst>(prev)); 2487 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2488 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2489 insnsToKill.push_back(prev); 2490 } 2491 } else { 2492 return nullptr; 2493 } 2494 2495 result = call->getArgOperand(0); 2496 insnsToKill.push_back(call); 2497 2498 // Keep killing bitcasts, for sanity. Note that we no longer care 2499 // about precise ordering as long as there's exactly one use. 2500 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2501 if (!bitcast->hasOneUse()) break; 2502 insnsToKill.push_back(bitcast); 2503 result = bitcast->getOperand(0); 2504 } 2505 2506 // Delete all the unnecessary instructions, from latest to earliest. 2507 for (SmallVectorImpl<llvm::Instruction*>::iterator 2508 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 2509 (*i)->eraseFromParent(); 2510 2511 // Do the fused retain/autorelease if we were asked to. 2512 if (doRetainAutorelease) 2513 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2514 2515 // Cast back to the result type. 2516 return CGF.Builder.CreateBitCast(result, resultType); 2517 } 2518 2519 /// If this is a +1 of the value of an immutable 'self', remove it. 2520 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2521 llvm::Value *result) { 2522 // This is only applicable to a method with an immutable 'self'. 2523 const ObjCMethodDecl *method = 2524 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2525 if (!method) return nullptr; 2526 const VarDecl *self = method->getSelfDecl(); 2527 if (!self->getType().isConstQualified()) return nullptr; 2528 2529 // Look for a retain call. 2530 llvm::CallInst *retainCall = 2531 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2532 if (!retainCall || 2533 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2534 return nullptr; 2535 2536 // Look for an ordinary load of 'self'. 2537 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2538 llvm::LoadInst *load = 2539 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2540 if (!load || load->isAtomic() || load->isVolatile() || 2541 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2542 return nullptr; 2543 2544 // Okay! Burn it all down. This relies for correctness on the 2545 // assumption that the retain is emitted as part of the return and 2546 // that thereafter everything is used "linearly". 2547 llvm::Type *resultType = result->getType(); 2548 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2549 assert(retainCall->use_empty()); 2550 retainCall->eraseFromParent(); 2551 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2552 2553 return CGF.Builder.CreateBitCast(load, resultType); 2554 } 2555 2556 /// Emit an ARC autorelease of the result of a function. 2557 /// 2558 /// \return the value to actually return from the function 2559 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2560 llvm::Value *result) { 2561 // If we're returning 'self', kill the initial retain. This is a 2562 // heuristic attempt to "encourage correctness" in the really unfortunate 2563 // case where we have a return of self during a dealloc and we desperately 2564 // need to avoid the possible autorelease. 2565 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2566 return self; 2567 2568 // At -O0, try to emit a fused retain/autorelease. 2569 if (CGF.shouldUseFusedARCCalls()) 2570 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2571 return fused; 2572 2573 return CGF.EmitARCAutoreleaseReturnValue(result); 2574 } 2575 2576 /// Heuristically search for a dominating store to the return-value slot. 2577 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2578 // Check if a User is a store which pointerOperand is the ReturnValue. 2579 // We are looking for stores to the ReturnValue, not for stores of the 2580 // ReturnValue to some other location. 2581 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2582 auto *SI = dyn_cast<llvm::StoreInst>(U); 2583 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2584 return nullptr; 2585 // These aren't actually possible for non-coerced returns, and we 2586 // only care about non-coerced returns on this code path. 2587 assert(!SI->isAtomic() && !SI->isVolatile()); 2588 return SI; 2589 }; 2590 // If there are multiple uses of the return-value slot, just check 2591 // for something immediately preceding the IP. Sometimes this can 2592 // happen with how we generate implicit-returns; it can also happen 2593 // with noreturn cleanups. 2594 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2595 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2596 if (IP->empty()) return nullptr; 2597 llvm::Instruction *I = &IP->back(); 2598 2599 // Skip lifetime markers 2600 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2601 IE = IP->rend(); 2602 II != IE; ++II) { 2603 if (llvm::IntrinsicInst *Intrinsic = 2604 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2605 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2606 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2607 ++II; 2608 if (II == IE) 2609 break; 2610 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2611 continue; 2612 } 2613 } 2614 I = &*II; 2615 break; 2616 } 2617 2618 return GetStoreIfValid(I); 2619 } 2620 2621 llvm::StoreInst *store = 2622 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2623 if (!store) return nullptr; 2624 2625 // Now do a first-and-dirty dominance check: just walk up the 2626 // single-predecessors chain from the current insertion point. 2627 llvm::BasicBlock *StoreBB = store->getParent(); 2628 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2629 while (IP != StoreBB) { 2630 if (!(IP = IP->getSinglePredecessor())) 2631 return nullptr; 2632 } 2633 2634 // Okay, the store's basic block dominates the insertion point; we 2635 // can do our thing. 2636 return store; 2637 } 2638 2639 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2640 bool EmitRetDbgLoc, 2641 SourceLocation EndLoc) { 2642 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2643 // Naked functions don't have epilogues. 2644 Builder.CreateUnreachable(); 2645 return; 2646 } 2647 2648 // Functions with no result always return void. 2649 if (!ReturnValue.isValid()) { 2650 Builder.CreateRetVoid(); 2651 return; 2652 } 2653 2654 llvm::DebugLoc RetDbgLoc; 2655 llvm::Value *RV = nullptr; 2656 QualType RetTy = FI.getReturnType(); 2657 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2658 2659 switch (RetAI.getKind()) { 2660 case ABIArgInfo::InAlloca: 2661 // Aggregrates get evaluated directly into the destination. Sometimes we 2662 // need to return the sret value in a register, though. 2663 assert(hasAggregateEvaluationKind(RetTy)); 2664 if (RetAI.getInAllocaSRet()) { 2665 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2666 --EI; 2667 llvm::Value *ArgStruct = &*EI; 2668 llvm::Value *SRet = Builder.CreateStructGEP( 2669 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2670 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2671 } 2672 break; 2673 2674 case ABIArgInfo::Indirect: { 2675 auto AI = CurFn->arg_begin(); 2676 if (RetAI.isSRetAfterThis()) 2677 ++AI; 2678 switch (getEvaluationKind(RetTy)) { 2679 case TEK_Complex: { 2680 ComplexPairTy RT = 2681 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2682 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2683 /*isInit*/ true); 2684 break; 2685 } 2686 case TEK_Aggregate: 2687 // Do nothing; aggregrates get evaluated directly into the destination. 2688 break; 2689 case TEK_Scalar: 2690 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2691 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2692 /*isInit*/ true); 2693 break; 2694 } 2695 break; 2696 } 2697 2698 case ABIArgInfo::Extend: 2699 case ABIArgInfo::Direct: 2700 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2701 RetAI.getDirectOffset() == 0) { 2702 // The internal return value temp always will have pointer-to-return-type 2703 // type, just do a load. 2704 2705 // If there is a dominating store to ReturnValue, we can elide 2706 // the load, zap the store, and usually zap the alloca. 2707 if (llvm::StoreInst *SI = 2708 findDominatingStoreToReturnValue(*this)) { 2709 // Reuse the debug location from the store unless there is 2710 // cleanup code to be emitted between the store and return 2711 // instruction. 2712 if (EmitRetDbgLoc && !AutoreleaseResult) 2713 RetDbgLoc = SI->getDebugLoc(); 2714 // Get the stored value and nuke the now-dead store. 2715 RV = SI->getValueOperand(); 2716 SI->eraseFromParent(); 2717 2718 // If that was the only use of the return value, nuke it as well now. 2719 auto returnValueInst = ReturnValue.getPointer(); 2720 if (returnValueInst->use_empty()) { 2721 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2722 alloca->eraseFromParent(); 2723 ReturnValue = Address::invalid(); 2724 } 2725 } 2726 2727 // Otherwise, we have to do a simple load. 2728 } else { 2729 RV = Builder.CreateLoad(ReturnValue); 2730 } 2731 } else { 2732 // If the value is offset in memory, apply the offset now. 2733 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2734 2735 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2736 } 2737 2738 // In ARC, end functions that return a retainable type with a call 2739 // to objc_autoreleaseReturnValue. 2740 if (AutoreleaseResult) { 2741 #ifndef NDEBUG 2742 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2743 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2744 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2745 // CurCodeDecl or BlockInfo. 2746 QualType RT; 2747 2748 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2749 RT = FD->getReturnType(); 2750 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2751 RT = MD->getReturnType(); 2752 else if (isa<BlockDecl>(CurCodeDecl)) 2753 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2754 else 2755 llvm_unreachable("Unexpected function/method type"); 2756 2757 assert(getLangOpts().ObjCAutoRefCount && 2758 !FI.isReturnsRetained() && 2759 RT->isObjCRetainableType()); 2760 #endif 2761 RV = emitAutoreleaseOfResult(*this, RV); 2762 } 2763 2764 break; 2765 2766 case ABIArgInfo::Ignore: 2767 break; 2768 2769 case ABIArgInfo::CoerceAndExpand: { 2770 auto coercionType = RetAI.getCoerceAndExpandType(); 2771 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2772 2773 // Load all of the coerced elements out into results. 2774 llvm::SmallVector<llvm::Value*, 4> results; 2775 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2776 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2777 auto coercedEltType = coercionType->getElementType(i); 2778 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2779 continue; 2780 2781 auto eltAddr = Builder.CreateStructGEP(addr, i, layout); 2782 auto elt = Builder.CreateLoad(eltAddr); 2783 results.push_back(elt); 2784 } 2785 2786 // If we have one result, it's the single direct result type. 2787 if (results.size() == 1) { 2788 RV = results[0]; 2789 2790 // Otherwise, we need to make a first-class aggregate. 2791 } else { 2792 // Construct a return type that lacks padding elements. 2793 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2794 2795 RV = llvm::UndefValue::get(returnType); 2796 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2797 RV = Builder.CreateInsertValue(RV, results[i], i); 2798 } 2799 } 2800 break; 2801 } 2802 2803 case ABIArgInfo::Expand: 2804 llvm_unreachable("Invalid ABI kind for return argument"); 2805 } 2806 2807 llvm::Instruction *Ret; 2808 if (RV) { 2809 if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) { 2810 if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) { 2811 SanitizerScope SanScope(this); 2812 llvm::Value *Cond = Builder.CreateICmpNE( 2813 RV, llvm::Constant::getNullValue(RV->getType())); 2814 llvm::Constant *StaticData[] = { 2815 EmitCheckSourceLocation(EndLoc), 2816 EmitCheckSourceLocation(RetNNAttr->getLocation()), 2817 }; 2818 EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute), 2819 "nonnull_return", StaticData, None); 2820 } 2821 } 2822 Ret = Builder.CreateRet(RV); 2823 } else { 2824 Ret = Builder.CreateRetVoid(); 2825 } 2826 2827 if (RetDbgLoc) 2828 Ret->setDebugLoc(std::move(RetDbgLoc)); 2829 } 2830 2831 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 2832 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2833 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 2834 } 2835 2836 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 2837 QualType Ty) { 2838 // FIXME: Generate IR in one pass, rather than going back and fixing up these 2839 // placeholders. 2840 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 2841 llvm::Value *Placeholder = 2842 llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo()); 2843 Placeholder = CGF.Builder.CreateDefaultAlignedLoad(Placeholder); 2844 2845 // FIXME: When we generate this IR in one pass, we shouldn't need 2846 // this win32-specific alignment hack. 2847 CharUnits Align = CharUnits::fromQuantity(4); 2848 2849 return AggValueSlot::forAddr(Address(Placeholder, Align), 2850 Ty.getQualifiers(), 2851 AggValueSlot::IsNotDestructed, 2852 AggValueSlot::DoesNotNeedGCBarriers, 2853 AggValueSlot::IsNotAliased); 2854 } 2855 2856 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 2857 const VarDecl *param, 2858 SourceLocation loc) { 2859 // StartFunction converted the ABI-lowered parameter(s) into a 2860 // local alloca. We need to turn that into an r-value suitable 2861 // for EmitCall. 2862 Address local = GetAddrOfLocalVar(param); 2863 2864 QualType type = param->getType(); 2865 2866 // For the most part, we just need to load the alloca, except: 2867 // 1) aggregate r-values are actually pointers to temporaries, and 2868 // 2) references to non-scalars are pointers directly to the aggregate. 2869 // I don't know why references to scalars are different here. 2870 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 2871 if (!hasScalarEvaluationKind(ref->getPointeeType())) 2872 return args.add(RValue::getAggregate(local), type); 2873 2874 // Locals which are references to scalars are represented 2875 // with allocas holding the pointer. 2876 return args.add(RValue::get(Builder.CreateLoad(local)), type); 2877 } 2878 2879 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 2880 "cannot emit delegate call arguments for inalloca arguments!"); 2881 2882 args.add(convertTempToRValue(local, type, loc), type); 2883 } 2884 2885 static bool isProvablyNull(llvm::Value *addr) { 2886 return isa<llvm::ConstantPointerNull>(addr); 2887 } 2888 2889 static bool isProvablyNonNull(llvm::Value *addr) { 2890 return isa<llvm::AllocaInst>(addr); 2891 } 2892 2893 /// Emit the actual writing-back of a writeback. 2894 static void emitWriteback(CodeGenFunction &CGF, 2895 const CallArgList::Writeback &writeback) { 2896 const LValue &srcLV = writeback.Source; 2897 Address srcAddr = srcLV.getAddress(); 2898 assert(!isProvablyNull(srcAddr.getPointer()) && 2899 "shouldn't have writeback for provably null argument"); 2900 2901 llvm::BasicBlock *contBB = nullptr; 2902 2903 // If the argument wasn't provably non-null, we need to null check 2904 // before doing the store. 2905 bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer()); 2906 if (!provablyNonNull) { 2907 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 2908 contBB = CGF.createBasicBlock("icr.done"); 2909 2910 llvm::Value *isNull = 2911 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 2912 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 2913 CGF.EmitBlock(writebackBB); 2914 } 2915 2916 // Load the value to writeback. 2917 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 2918 2919 // Cast it back, in case we're writing an id to a Foo* or something. 2920 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 2921 "icr.writeback-cast"); 2922 2923 // Perform the writeback. 2924 2925 // If we have a "to use" value, it's something we need to emit a use 2926 // of. This has to be carefully threaded in: if it's done after the 2927 // release it's potentially undefined behavior (and the optimizer 2928 // will ignore it), and if it happens before the retain then the 2929 // optimizer could move the release there. 2930 if (writeback.ToUse) { 2931 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 2932 2933 // Retain the new value. No need to block-copy here: the block's 2934 // being passed up the stack. 2935 value = CGF.EmitARCRetainNonBlock(value); 2936 2937 // Emit the intrinsic use here. 2938 CGF.EmitARCIntrinsicUse(writeback.ToUse); 2939 2940 // Load the old value (primitively). 2941 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 2942 2943 // Put the new value in place (primitively). 2944 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 2945 2946 // Release the old value. 2947 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 2948 2949 // Otherwise, we can just do a normal lvalue store. 2950 } else { 2951 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 2952 } 2953 2954 // Jump to the continuation block. 2955 if (!provablyNonNull) 2956 CGF.EmitBlock(contBB); 2957 } 2958 2959 static void emitWritebacks(CodeGenFunction &CGF, 2960 const CallArgList &args) { 2961 for (const auto &I : args.writebacks()) 2962 emitWriteback(CGF, I); 2963 } 2964 2965 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 2966 const CallArgList &CallArgs) { 2967 assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()); 2968 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 2969 CallArgs.getCleanupsToDeactivate(); 2970 // Iterate in reverse to increase the likelihood of popping the cleanup. 2971 for (const auto &I : llvm::reverse(Cleanups)) { 2972 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 2973 I.IsActiveIP->eraseFromParent(); 2974 } 2975 } 2976 2977 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 2978 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 2979 if (uop->getOpcode() == UO_AddrOf) 2980 return uop->getSubExpr(); 2981 return nullptr; 2982 } 2983 2984 /// Emit an argument that's being passed call-by-writeback. That is, 2985 /// we are passing the address of an __autoreleased temporary; it 2986 /// might be copy-initialized with the current value of the given 2987 /// address, but it will definitely be copied out of after the call. 2988 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 2989 const ObjCIndirectCopyRestoreExpr *CRE) { 2990 LValue srcLV; 2991 2992 // Make an optimistic effort to emit the address as an l-value. 2993 // This can fail if the argument expression is more complicated. 2994 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 2995 srcLV = CGF.EmitLValue(lvExpr); 2996 2997 // Otherwise, just emit it as a scalar. 2998 } else { 2999 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3000 3001 QualType srcAddrType = 3002 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3003 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3004 } 3005 Address srcAddr = srcLV.getAddress(); 3006 3007 // The dest and src types don't necessarily match in LLVM terms 3008 // because of the crazy ObjC compatibility rules. 3009 3010 llvm::PointerType *destType = 3011 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3012 3013 // If the address is a constant null, just pass the appropriate null. 3014 if (isProvablyNull(srcAddr.getPointer())) { 3015 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3016 CRE->getType()); 3017 return; 3018 } 3019 3020 // Create the temporary. 3021 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3022 CGF.getPointerAlign(), 3023 "icr.temp"); 3024 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3025 // and that cleanup will be conditional if we can't prove that the l-value 3026 // isn't null, so we need to register a dominating point so that the cleanups 3027 // system will make valid IR. 3028 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3029 3030 // Zero-initialize it if we're not doing a copy-initialization. 3031 bool shouldCopy = CRE->shouldCopy(); 3032 if (!shouldCopy) { 3033 llvm::Value *null = 3034 llvm::ConstantPointerNull::get( 3035 cast<llvm::PointerType>(destType->getElementType())); 3036 CGF.Builder.CreateStore(null, temp); 3037 } 3038 3039 llvm::BasicBlock *contBB = nullptr; 3040 llvm::BasicBlock *originBB = nullptr; 3041 3042 // If the address is *not* known to be non-null, we need to switch. 3043 llvm::Value *finalArgument; 3044 3045 bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer()); 3046 if (provablyNonNull) { 3047 finalArgument = temp.getPointer(); 3048 } else { 3049 llvm::Value *isNull = 3050 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3051 3052 finalArgument = CGF.Builder.CreateSelect(isNull, 3053 llvm::ConstantPointerNull::get(destType), 3054 temp.getPointer(), "icr.argument"); 3055 3056 // If we need to copy, then the load has to be conditional, which 3057 // means we need control flow. 3058 if (shouldCopy) { 3059 originBB = CGF.Builder.GetInsertBlock(); 3060 contBB = CGF.createBasicBlock("icr.cont"); 3061 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3062 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3063 CGF.EmitBlock(copyBB); 3064 condEval.begin(CGF); 3065 } 3066 } 3067 3068 llvm::Value *valueToUse = nullptr; 3069 3070 // Perform a copy if necessary. 3071 if (shouldCopy) { 3072 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3073 assert(srcRV.isScalar()); 3074 3075 llvm::Value *src = srcRV.getScalarVal(); 3076 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3077 "icr.cast"); 3078 3079 // Use an ordinary store, not a store-to-lvalue. 3080 CGF.Builder.CreateStore(src, temp); 3081 3082 // If optimization is enabled, and the value was held in a 3083 // __strong variable, we need to tell the optimizer that this 3084 // value has to stay alive until we're doing the store back. 3085 // This is because the temporary is effectively unretained, 3086 // and so otherwise we can violate the high-level semantics. 3087 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3088 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3089 valueToUse = src; 3090 } 3091 } 3092 3093 // Finish the control flow if we needed it. 3094 if (shouldCopy && !provablyNonNull) { 3095 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3096 CGF.EmitBlock(contBB); 3097 3098 // Make a phi for the value to intrinsically use. 3099 if (valueToUse) { 3100 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3101 "icr.to-use"); 3102 phiToUse->addIncoming(valueToUse, copyBB); 3103 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3104 originBB); 3105 valueToUse = phiToUse; 3106 } 3107 3108 condEval.end(CGF); 3109 } 3110 3111 args.addWriteback(srcLV, temp, valueToUse); 3112 args.add(RValue::get(finalArgument), CRE->getType()); 3113 } 3114 3115 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3116 assert(!StackBase && !StackCleanup.isValid()); 3117 3118 // Save the stack. 3119 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3120 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3121 } 3122 3123 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3124 if (StackBase) { 3125 // Restore the stack after the call. 3126 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3127 CGF.Builder.CreateCall(F, StackBase); 3128 } 3129 } 3130 3131 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3132 SourceLocation ArgLoc, 3133 const FunctionDecl *FD, 3134 unsigned ParmNum) { 3135 if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD) 3136 return; 3137 auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr; 3138 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3139 auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo); 3140 if (!NNAttr) 3141 return; 3142 SanitizerScope SanScope(this); 3143 assert(RV.isScalar()); 3144 llvm::Value *V = RV.getScalarVal(); 3145 llvm::Value *Cond = 3146 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3147 llvm::Constant *StaticData[] = { 3148 EmitCheckSourceLocation(ArgLoc), 3149 EmitCheckSourceLocation(NNAttr->getLocation()), 3150 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3151 }; 3152 EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute), 3153 "nonnull_arg", StaticData, None); 3154 } 3155 3156 void CodeGenFunction::EmitCallArgs( 3157 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3158 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3159 const FunctionDecl *CalleeDecl, unsigned ParamsToSkip) { 3160 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3161 3162 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg) { 3163 if (CalleeDecl == nullptr || I >= CalleeDecl->getNumParams()) 3164 return; 3165 auto *PS = CalleeDecl->getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3166 if (PS == nullptr) 3167 return; 3168 3169 const auto &Context = getContext(); 3170 auto SizeTy = Context.getSizeType(); 3171 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3172 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T); 3173 Args.add(RValue::get(V), SizeTy); 3174 }; 3175 3176 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3177 // because arguments are destroyed left to right in the callee. 3178 if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3179 // Insert a stack save if we're going to need any inalloca args. 3180 bool HasInAllocaArgs = false; 3181 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3182 I != E && !HasInAllocaArgs; ++I) 3183 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3184 if (HasInAllocaArgs) { 3185 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3186 Args.allocateArgumentMemory(*this); 3187 } 3188 3189 // Evaluate each argument. 3190 size_t CallArgsStart = Args.size(); 3191 for (int I = ArgTypes.size() - 1; I >= 0; --I) { 3192 CallExpr::const_arg_iterator Arg = ArgRange.begin() + I; 3193 EmitCallArg(Args, *Arg, ArgTypes[I]); 3194 EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(), 3195 CalleeDecl, ParamsToSkip + I); 3196 MaybeEmitImplicitObjectSize(I, *Arg); 3197 } 3198 3199 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3200 // IR function. 3201 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3202 return; 3203 } 3204 3205 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3206 CallExpr::const_arg_iterator Arg = ArgRange.begin() + I; 3207 assert(Arg != ArgRange.end()); 3208 EmitCallArg(Args, *Arg, ArgTypes[I]); 3209 EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(), 3210 CalleeDecl, ParamsToSkip + I); 3211 MaybeEmitImplicitObjectSize(I, *Arg); 3212 } 3213 } 3214 3215 namespace { 3216 3217 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3218 DestroyUnpassedArg(Address Addr, QualType Ty) 3219 : Addr(Addr), Ty(Ty) {} 3220 3221 Address Addr; 3222 QualType Ty; 3223 3224 void Emit(CodeGenFunction &CGF, Flags flags) override { 3225 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3226 assert(!Dtor->isTrivial()); 3227 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3228 /*Delegating=*/false, Addr); 3229 } 3230 }; 3231 3232 struct DisableDebugLocationUpdates { 3233 CodeGenFunction &CGF; 3234 bool disabledDebugInfo; 3235 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3236 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3237 CGF.disableDebugInfo(); 3238 } 3239 ~DisableDebugLocationUpdates() { 3240 if (disabledDebugInfo) 3241 CGF.enableDebugInfo(); 3242 } 3243 }; 3244 3245 } // end anonymous namespace 3246 3247 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3248 QualType type) { 3249 DisableDebugLocationUpdates Dis(*this, E); 3250 if (const ObjCIndirectCopyRestoreExpr *CRE 3251 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3252 assert(getLangOpts().ObjCAutoRefCount); 3253 assert(getContext().hasSameType(E->getType(), type)); 3254 return emitWritebackArg(*this, args, CRE); 3255 } 3256 3257 assert(type->isReferenceType() == E->isGLValue() && 3258 "reference binding to unmaterialized r-value!"); 3259 3260 if (E->isGLValue()) { 3261 assert(E->getObjectKind() == OK_Ordinary); 3262 return args.add(EmitReferenceBindingToExpr(E), type); 3263 } 3264 3265 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3266 3267 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3268 // However, we still have to push an EH-only cleanup in case we unwind before 3269 // we make it to the call. 3270 if (HasAggregateEvalKind && 3271 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3272 // If we're using inalloca, use the argument memory. Otherwise, use a 3273 // temporary. 3274 AggValueSlot Slot; 3275 if (args.isUsingInAlloca()) 3276 Slot = createPlaceholderSlot(*this, type); 3277 else 3278 Slot = CreateAggTemp(type, "agg.tmp"); 3279 3280 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3281 bool DestroyedInCallee = 3282 RD && RD->hasNonTrivialDestructor() && 3283 CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default; 3284 if (DestroyedInCallee) 3285 Slot.setExternallyDestructed(); 3286 3287 EmitAggExpr(E, Slot); 3288 RValue RV = Slot.asRValue(); 3289 args.add(RV, type); 3290 3291 if (DestroyedInCallee) { 3292 // Create a no-op GEP between the placeholder and the cleanup so we can 3293 // RAUW it successfully. It also serves as a marker of the first 3294 // instruction where the cleanup is active. 3295 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3296 type); 3297 // This unreachable is a temporary marker which will be removed later. 3298 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3299 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3300 } 3301 return; 3302 } 3303 3304 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3305 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3306 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3307 assert(L.isSimple()); 3308 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 3309 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 3310 } else { 3311 // We can't represent a misaligned lvalue in the CallArgList, so copy 3312 // to an aligned temporary now. 3313 Address tmp = CreateMemTemp(type); 3314 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile()); 3315 args.add(RValue::getAggregate(tmp), type); 3316 } 3317 return; 3318 } 3319 3320 args.add(EmitAnyExprToTemp(E), type); 3321 } 3322 3323 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3324 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3325 // implicitly widens null pointer constants that are arguments to varargs 3326 // functions to pointer-sized ints. 3327 if (!getTarget().getTriple().isOSWindows()) 3328 return Arg->getType(); 3329 3330 if (Arg->getType()->isIntegerType() && 3331 getContext().getTypeSize(Arg->getType()) < 3332 getContext().getTargetInfo().getPointerWidth(0) && 3333 Arg->isNullPointerConstant(getContext(), 3334 Expr::NPC_ValueDependentIsNotNull)) { 3335 return getContext().getIntPtrType(); 3336 } 3337 3338 return Arg->getType(); 3339 } 3340 3341 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3342 // optimizer it can aggressively ignore unwind edges. 3343 void 3344 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3345 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3346 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3347 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3348 CGM.getNoObjCARCExceptionsMetadata()); 3349 } 3350 3351 /// Emits a call to the given no-arguments nounwind runtime function. 3352 llvm::CallInst * 3353 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3354 const llvm::Twine &name) { 3355 return EmitNounwindRuntimeCall(callee, None, name); 3356 } 3357 3358 /// Emits a call to the given nounwind runtime function. 3359 llvm::CallInst * 3360 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3361 ArrayRef<llvm::Value*> args, 3362 const llvm::Twine &name) { 3363 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3364 call->setDoesNotThrow(); 3365 return call; 3366 } 3367 3368 /// Emits a simple call (never an invoke) to the given no-arguments 3369 /// runtime function. 3370 llvm::CallInst * 3371 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3372 const llvm::Twine &name) { 3373 return EmitRuntimeCall(callee, None, name); 3374 } 3375 3376 // Calls which may throw must have operand bundles indicating which funclet 3377 // they are nested within. 3378 static void 3379 getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad, 3380 SmallVectorImpl<llvm::OperandBundleDef> &BundleList) { 3381 // There is no need for a funclet operand bundle if we aren't inside a 3382 // funclet. 3383 if (!CurrentFuncletPad) 3384 return; 3385 3386 // Skip intrinsics which cannot throw. 3387 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3388 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3389 return; 3390 3391 BundleList.emplace_back("funclet", CurrentFuncletPad); 3392 } 3393 3394 /// Emits a simple call (never an invoke) to the given runtime function. 3395 llvm::CallInst * 3396 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3397 ArrayRef<llvm::Value*> args, 3398 const llvm::Twine &name) { 3399 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3400 getBundlesForFunclet(callee, CurrentFuncletPad, BundleList); 3401 3402 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name); 3403 call->setCallingConv(getRuntimeCC()); 3404 return call; 3405 } 3406 3407 /// Emits a call or invoke to the given noreturn runtime function. 3408 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3409 ArrayRef<llvm::Value*> args) { 3410 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3411 getBundlesForFunclet(callee, CurrentFuncletPad, BundleList); 3412 3413 if (getInvokeDest()) { 3414 llvm::InvokeInst *invoke = 3415 Builder.CreateInvoke(callee, 3416 getUnreachableBlock(), 3417 getInvokeDest(), 3418 args, 3419 BundleList); 3420 invoke->setDoesNotReturn(); 3421 invoke->setCallingConv(getRuntimeCC()); 3422 } else { 3423 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3424 call->setDoesNotReturn(); 3425 call->setCallingConv(getRuntimeCC()); 3426 Builder.CreateUnreachable(); 3427 } 3428 } 3429 3430 /// Emits a call or invoke instruction to the given nullary runtime function. 3431 llvm::CallSite 3432 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3433 const Twine &name) { 3434 return EmitRuntimeCallOrInvoke(callee, None, name); 3435 } 3436 3437 /// Emits a call or invoke instruction to the given runtime function. 3438 llvm::CallSite 3439 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3440 ArrayRef<llvm::Value*> args, 3441 const Twine &name) { 3442 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3443 callSite.setCallingConv(getRuntimeCC()); 3444 return callSite; 3445 } 3446 3447 /// Emits a call or invoke instruction to the given function, depending 3448 /// on the current state of the EH stack. 3449 llvm::CallSite 3450 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3451 ArrayRef<llvm::Value *> Args, 3452 const Twine &Name) { 3453 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3454 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3455 getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList); 3456 3457 llvm::Instruction *Inst; 3458 if (!InvokeDest) 3459 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3460 else { 3461 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3462 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3463 Name); 3464 EmitBlock(ContBB); 3465 } 3466 3467 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3468 // optimizer it can aggressively ignore unwind edges. 3469 if (CGM.getLangOpts().ObjCAutoRefCount) 3470 AddObjCARCExceptionMetadata(Inst); 3471 3472 return llvm::CallSite(Inst); 3473 } 3474 3475 /// \brief Store a non-aggregate value to an address to initialize it. For 3476 /// initialization, a non-atomic store will be used. 3477 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src, 3478 LValue Dst) { 3479 if (Src.isScalar()) 3480 CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true); 3481 else 3482 CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true); 3483 } 3484 3485 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3486 llvm::Value *New) { 3487 DeferredReplacements.push_back(std::make_pair(Old, New)); 3488 } 3489 3490 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3491 llvm::Value *Callee, 3492 ReturnValueSlot ReturnValue, 3493 const CallArgList &CallArgs, 3494 CGCalleeInfo CalleeInfo, 3495 llvm::Instruction **callOrInvoke) { 3496 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3497 3498 // Handle struct-return functions by passing a pointer to the 3499 // location that we would like to return into. 3500 QualType RetTy = CallInfo.getReturnType(); 3501 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3502 3503 llvm::FunctionType *IRFuncTy = 3504 cast<llvm::FunctionType>( 3505 cast<llvm::PointerType>(Callee->getType())->getElementType()); 3506 3507 // If we're using inalloca, insert the allocation after the stack save. 3508 // FIXME: Do this earlier rather than hacking it in here! 3509 Address ArgMemory = Address::invalid(); 3510 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3511 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3512 ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct); 3513 llvm::Instruction *IP = CallArgs.getStackBase(); 3514 llvm::AllocaInst *AI; 3515 if (IP) { 3516 IP = IP->getNextNode(); 3517 AI = new llvm::AllocaInst(ArgStruct, "argmem", IP); 3518 } else { 3519 AI = CreateTempAlloca(ArgStruct, "argmem"); 3520 } 3521 auto Align = CallInfo.getArgStructAlignment(); 3522 AI->setAlignment(Align.getQuantity()); 3523 AI->setUsedWithInAlloca(true); 3524 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3525 ArgMemory = Address(AI, Align); 3526 } 3527 3528 // Helper function to drill into the inalloca allocation. 3529 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3530 auto FieldOffset = 3531 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3532 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3533 }; 3534 3535 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3536 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3537 3538 // If the call returns a temporary with struct return, create a temporary 3539 // alloca to hold the result, unless one is given to us. 3540 Address SRetPtr = Address::invalid(); 3541 size_t UnusedReturnSize = 0; 3542 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3543 if (!ReturnValue.isNull()) { 3544 SRetPtr = ReturnValue.getValue(); 3545 } else { 3546 SRetPtr = CreateMemTemp(RetTy); 3547 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3548 uint64_t size = 3549 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3550 if (EmitLifetimeStart(size, SRetPtr.getPointer())) 3551 UnusedReturnSize = size; 3552 } 3553 } 3554 if (IRFunctionArgs.hasSRetArg()) { 3555 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3556 } else if (RetAI.isInAlloca()) { 3557 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3558 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3559 } 3560 } 3561 3562 Address swiftErrorTemp = Address::invalid(); 3563 Address swiftErrorArg = Address::invalid(); 3564 3565 assert(CallInfo.arg_size() == CallArgs.size() && 3566 "Mismatch between function signature & arguments."); 3567 unsigned ArgNo = 0; 3568 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3569 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3570 I != E; ++I, ++info_it, ++ArgNo) { 3571 const ABIArgInfo &ArgInfo = info_it->info; 3572 RValue RV = I->RV; 3573 3574 // Insert a padding argument to ensure proper alignment. 3575 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3576 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3577 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3578 3579 unsigned FirstIRArg, NumIRArgs; 3580 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3581 3582 switch (ArgInfo.getKind()) { 3583 case ABIArgInfo::InAlloca: { 3584 assert(NumIRArgs == 0); 3585 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3586 if (RV.isAggregate()) { 3587 // Replace the placeholder with the appropriate argument slot GEP. 3588 llvm::Instruction *Placeholder = 3589 cast<llvm::Instruction>(RV.getAggregatePointer()); 3590 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3591 Builder.SetInsertPoint(Placeholder); 3592 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3593 Builder.restoreIP(IP); 3594 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3595 } else { 3596 // Store the RValue into the argument struct. 3597 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3598 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3599 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3600 // There are some cases where a trivial bitcast is not avoidable. The 3601 // definition of a type later in a translation unit may change it's type 3602 // from {}* to (%struct.foo*)*. 3603 if (Addr.getType() != MemType) 3604 Addr = Builder.CreateBitCast(Addr, MemType); 3605 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3606 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3607 } 3608 break; 3609 } 3610 3611 case ABIArgInfo::Indirect: { 3612 assert(NumIRArgs == 1); 3613 if (RV.isScalar() || RV.isComplex()) { 3614 // Make a temporary alloca to pass the argument. 3615 Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3616 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3617 3618 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3619 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3620 } else { 3621 // We want to avoid creating an unnecessary temporary+copy here; 3622 // however, we need one in three cases: 3623 // 1. If the argument is not byval, and we are required to copy the 3624 // source. (This case doesn't occur on any common architecture.) 3625 // 2. If the argument is byval, RV is not sufficiently aligned, and 3626 // we cannot force it to be sufficiently aligned. 3627 // 3. If the argument is byval, but RV is located in an address space 3628 // different than that of the argument (0). 3629 Address Addr = RV.getAggregateAddress(); 3630 CharUnits Align = ArgInfo.getIndirectAlign(); 3631 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3632 const unsigned RVAddrSpace = Addr.getType()->getAddressSpace(); 3633 const unsigned ArgAddrSpace = 3634 (FirstIRArg < IRFuncTy->getNumParams() 3635 ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() 3636 : 0); 3637 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 3638 (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align && 3639 llvm::getOrEnforceKnownAlignment(Addr.getPointer(), 3640 Align.getQuantity(), *TD) 3641 < Align.getQuantity()) || 3642 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 3643 // Create an aligned temporary, and copy to it. 3644 Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3645 IRCallArgs[FirstIRArg] = AI.getPointer(); 3646 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 3647 } else { 3648 // Skip the extra memcpy call. 3649 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3650 } 3651 } 3652 break; 3653 } 3654 3655 case ABIArgInfo::Ignore: 3656 assert(NumIRArgs == 0); 3657 break; 3658 3659 case ABIArgInfo::Extend: 3660 case ABIArgInfo::Direct: { 3661 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3662 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3663 ArgInfo.getDirectOffset() == 0) { 3664 assert(NumIRArgs == 1); 3665 llvm::Value *V; 3666 if (RV.isScalar()) 3667 V = RV.getScalarVal(); 3668 else 3669 V = Builder.CreateLoad(RV.getAggregateAddress()); 3670 3671 // Implement swifterror by copying into a new swifterror argument. 3672 // We'll write back in the normal path out of the call. 3673 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 3674 == ParameterABI::SwiftErrorResult) { 3675 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 3676 3677 QualType pointeeTy = I->Ty->getPointeeType(); 3678 swiftErrorArg = 3679 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 3680 3681 swiftErrorTemp = 3682 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 3683 V = swiftErrorTemp.getPointer(); 3684 cast<llvm::AllocaInst>(V)->setSwiftError(true); 3685 3686 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 3687 Builder.CreateStore(errorValue, swiftErrorTemp); 3688 } 3689 3690 // We might have to widen integers, but we should never truncate. 3691 if (ArgInfo.getCoerceToType() != V->getType() && 3692 V->getType()->isIntegerTy()) 3693 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 3694 3695 // If the argument doesn't match, perform a bitcast to coerce it. This 3696 // can happen due to trivial type mismatches. 3697 if (FirstIRArg < IRFuncTy->getNumParams() && 3698 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 3699 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 3700 3701 IRCallArgs[FirstIRArg] = V; 3702 break; 3703 } 3704 3705 // FIXME: Avoid the conversion through memory if possible. 3706 Address Src = Address::invalid(); 3707 if (RV.isScalar() || RV.isComplex()) { 3708 Src = CreateMemTemp(I->Ty, "coerce"); 3709 LValue SrcLV = MakeAddrLValue(Src, I->Ty); 3710 EmitInitStoreOfNonAggregate(*this, RV, SrcLV); 3711 } else { 3712 Src = RV.getAggregateAddress(); 3713 } 3714 3715 // If the value is offset in memory, apply the offset now. 3716 Src = emitAddressAtOffset(*this, Src, ArgInfo); 3717 3718 // Fast-isel and the optimizer generally like scalar values better than 3719 // FCAs, so we flatten them if this is safe to do for this argument. 3720 llvm::StructType *STy = 3721 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 3722 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 3723 llvm::Type *SrcTy = Src.getType()->getElementType(); 3724 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 3725 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 3726 3727 // If the source type is smaller than the destination type of the 3728 // coerce-to logic, copy the source value into a temp alloca the size 3729 // of the destination type to allow loading all of it. The bits past 3730 // the source value are left undef. 3731 if (SrcSize < DstSize) { 3732 Address TempAlloca 3733 = CreateTempAlloca(STy, Src.getAlignment(), 3734 Src.getName() + ".coerce"); 3735 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 3736 Src = TempAlloca; 3737 } else { 3738 Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy)); 3739 } 3740 3741 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 3742 assert(NumIRArgs == STy->getNumElements()); 3743 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3744 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 3745 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 3746 llvm::Value *LI = Builder.CreateLoad(EltPtr); 3747 IRCallArgs[FirstIRArg + i] = LI; 3748 } 3749 } else { 3750 // In the simple case, just pass the coerced loaded value. 3751 assert(NumIRArgs == 1); 3752 IRCallArgs[FirstIRArg] = 3753 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 3754 } 3755 3756 break; 3757 } 3758 3759 case ABIArgInfo::CoerceAndExpand: { 3760 auto coercionType = ArgInfo.getCoerceAndExpandType(); 3761 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 3762 3763 llvm::Value *tempSize = nullptr; 3764 Address addr = Address::invalid(); 3765 if (RV.isAggregate()) { 3766 addr = RV.getAggregateAddress(); 3767 } else { 3768 assert(RV.isScalar()); // complex should always just be direct 3769 3770 llvm::Type *scalarType = RV.getScalarVal()->getType(); 3771 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 3772 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 3773 3774 tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize); 3775 3776 // Materialize to a temporary. 3777 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 3778 CharUnits::fromQuantity(std::max(layout->getAlignment(), 3779 scalarAlign))); 3780 EmitLifetimeStart(scalarSize, addr.getPointer()); 3781 3782 Builder.CreateStore(RV.getScalarVal(), addr); 3783 } 3784 3785 addr = Builder.CreateElementBitCast(addr, coercionType); 3786 3787 unsigned IRArgPos = FirstIRArg; 3788 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3789 llvm::Type *eltType = coercionType->getElementType(i); 3790 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 3791 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 3792 llvm::Value *elt = Builder.CreateLoad(eltAddr); 3793 IRCallArgs[IRArgPos++] = elt; 3794 } 3795 assert(IRArgPos == FirstIRArg + NumIRArgs); 3796 3797 if (tempSize) { 3798 EmitLifetimeEnd(tempSize, addr.getPointer()); 3799 } 3800 3801 break; 3802 } 3803 3804 case ABIArgInfo::Expand: 3805 unsigned IRArgPos = FirstIRArg; 3806 ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos); 3807 assert(IRArgPos == FirstIRArg + NumIRArgs); 3808 break; 3809 } 3810 } 3811 3812 if (ArgMemory.isValid()) { 3813 llvm::Value *Arg = ArgMemory.getPointer(); 3814 if (CallInfo.isVariadic()) { 3815 // When passing non-POD arguments by value to variadic functions, we will 3816 // end up with a variadic prototype and an inalloca call site. In such 3817 // cases, we can't do any parameter mismatch checks. Give up and bitcast 3818 // the callee. 3819 unsigned CalleeAS = 3820 cast<llvm::PointerType>(Callee->getType())->getAddressSpace(); 3821 Callee = Builder.CreateBitCast( 3822 Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS)); 3823 } else { 3824 llvm::Type *LastParamTy = 3825 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 3826 if (Arg->getType() != LastParamTy) { 3827 #ifndef NDEBUG 3828 // Assert that these structs have equivalent element types. 3829 llvm::StructType *FullTy = CallInfo.getArgStruct(); 3830 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 3831 cast<llvm::PointerType>(LastParamTy)->getElementType()); 3832 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 3833 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 3834 DE = DeclaredTy->element_end(), 3835 FI = FullTy->element_begin(); 3836 DI != DE; ++DI, ++FI) 3837 assert(*DI == *FI); 3838 #endif 3839 Arg = Builder.CreateBitCast(Arg, LastParamTy); 3840 } 3841 } 3842 assert(IRFunctionArgs.hasInallocaArg()); 3843 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 3844 } 3845 3846 if (!CallArgs.getCleanupsToDeactivate().empty()) 3847 deactivateArgCleanupsBeforeCall(*this, CallArgs); 3848 3849 // If the callee is a bitcast of a function to a varargs pointer to function 3850 // type, check to see if we can remove the bitcast. This handles some cases 3851 // with unprototyped functions. 3852 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 3853 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 3854 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 3855 llvm::FunctionType *CurFT = 3856 cast<llvm::FunctionType>(CurPT->getElementType()); 3857 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 3858 3859 if (CE->getOpcode() == llvm::Instruction::BitCast && 3860 ActualFT->getReturnType() == CurFT->getReturnType() && 3861 ActualFT->getNumParams() == CurFT->getNumParams() && 3862 ActualFT->getNumParams() == IRCallArgs.size() && 3863 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 3864 bool ArgsMatch = true; 3865 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 3866 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 3867 ArgsMatch = false; 3868 break; 3869 } 3870 3871 // Strip the cast if we can get away with it. This is a nice cleanup, 3872 // but also allows us to inline the function at -O0 if it is marked 3873 // always_inline. 3874 if (ArgsMatch) 3875 Callee = CalleeF; 3876 } 3877 } 3878 3879 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 3880 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 3881 // Inalloca argument can have different type. 3882 if (IRFunctionArgs.hasInallocaArg() && 3883 i == IRFunctionArgs.getInallocaArgNo()) 3884 continue; 3885 if (i < IRFuncTy->getNumParams()) 3886 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 3887 } 3888 3889 unsigned CallingConv; 3890 CodeGen::AttributeListType AttributeList; 3891 CGM.ConstructAttributeList(Callee->getName(), CallInfo, CalleeInfo, 3892 AttributeList, CallingConv, 3893 /*AttrOnCallSite=*/true); 3894 llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(), 3895 AttributeList); 3896 3897 bool CannotThrow; 3898 if (currentFunctionUsesSEHTry()) { 3899 // SEH cares about asynchronous exceptions, everything can "throw." 3900 CannotThrow = false; 3901 } else if (isCleanupPadScope() && 3902 EHPersonality::get(*this).isMSVCXXPersonality()) { 3903 // The MSVC++ personality will implicitly terminate the program if an 3904 // exception is thrown. An unwind edge cannot be reached. 3905 CannotThrow = true; 3906 } else { 3907 // Otherwise, nowunind callsites will never throw. 3908 CannotThrow = Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex, 3909 llvm::Attribute::NoUnwind); 3910 } 3911 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 3912 3913 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3914 getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList); 3915 3916 llvm::CallSite CS; 3917 if (!InvokeDest) { 3918 CS = Builder.CreateCall(Callee, IRCallArgs, BundleList); 3919 } else { 3920 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 3921 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs, 3922 BundleList); 3923 EmitBlock(Cont); 3924 } 3925 if (callOrInvoke) 3926 *callOrInvoke = CS.getInstruction(); 3927 3928 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 3929 !CS.hasFnAttr(llvm::Attribute::NoInline)) 3930 Attrs = 3931 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 3932 llvm::Attribute::AlwaysInline); 3933 3934 // Disable inlining inside SEH __try blocks. 3935 if (isSEHTryScope()) 3936 Attrs = 3937 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 3938 llvm::Attribute::NoInline); 3939 3940 CS.setAttributes(Attrs); 3941 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 3942 3943 // Insert instrumentation or attach profile metadata at indirect call sites. 3944 // For more details, see the comment before the definition of 3945 // IPVK_IndirectCallTarget in InstrProfData.inc. 3946 if (!CS.getCalledFunction()) 3947 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 3948 CS.getInstruction(), Callee); 3949 3950 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3951 // optimizer it can aggressively ignore unwind edges. 3952 if (CGM.getLangOpts().ObjCAutoRefCount) 3953 AddObjCARCExceptionMetadata(CS.getInstruction()); 3954 3955 // If the call doesn't return, finish the basic block and clear the 3956 // insertion point; this allows the rest of IRgen to discard 3957 // unreachable code. 3958 if (CS.doesNotReturn()) { 3959 if (UnusedReturnSize) 3960 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 3961 SRetPtr.getPointer()); 3962 3963 Builder.CreateUnreachable(); 3964 Builder.ClearInsertionPoint(); 3965 3966 // FIXME: For now, emit a dummy basic block because expr emitters in 3967 // generally are not ready to handle emitting expressions at unreachable 3968 // points. 3969 EnsureInsertPoint(); 3970 3971 // Return a reasonable RValue. 3972 return GetUndefRValue(RetTy); 3973 } 3974 3975 llvm::Instruction *CI = CS.getInstruction(); 3976 if (!CI->getType()->isVoidTy()) 3977 CI->setName("call"); 3978 3979 // Perform the swifterror writeback. 3980 if (swiftErrorTemp.isValid()) { 3981 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 3982 Builder.CreateStore(errorResult, swiftErrorArg); 3983 } 3984 3985 // Emit any writebacks immediately. Arguably this should happen 3986 // after any return-value munging. 3987 if (CallArgs.hasWritebacks()) 3988 emitWritebacks(*this, CallArgs); 3989 3990 // The stack cleanup for inalloca arguments has to run out of the normal 3991 // lexical order, so deactivate it and run it manually here. 3992 CallArgs.freeArgumentMemory(*this); 3993 3994 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 3995 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 3996 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 3997 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 3998 } 3999 4000 RValue Ret = [&] { 4001 switch (RetAI.getKind()) { 4002 case ABIArgInfo::CoerceAndExpand: { 4003 auto coercionType = RetAI.getCoerceAndExpandType(); 4004 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4005 4006 Address addr = SRetPtr; 4007 addr = Builder.CreateElementBitCast(addr, coercionType); 4008 4009 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4010 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4011 4012 unsigned unpaddedIndex = 0; 4013 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4014 llvm::Type *eltType = coercionType->getElementType(i); 4015 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4016 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4017 llvm::Value *elt = CI; 4018 if (requiresExtract) 4019 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4020 else 4021 assert(unpaddedIndex == 0); 4022 Builder.CreateStore(elt, eltAddr); 4023 } 4024 // FALLTHROUGH 4025 } 4026 4027 case ABIArgInfo::InAlloca: 4028 case ABIArgInfo::Indirect: { 4029 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4030 if (UnusedReturnSize) 4031 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 4032 SRetPtr.getPointer()); 4033 return ret; 4034 } 4035 4036 case ABIArgInfo::Ignore: 4037 // If we are ignoring an argument that had a result, make sure to 4038 // construct the appropriate return value for our caller. 4039 return GetUndefRValue(RetTy); 4040 4041 case ABIArgInfo::Extend: 4042 case ABIArgInfo::Direct: { 4043 llvm::Type *RetIRTy = ConvertType(RetTy); 4044 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4045 switch (getEvaluationKind(RetTy)) { 4046 case TEK_Complex: { 4047 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4048 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4049 return RValue::getComplex(std::make_pair(Real, Imag)); 4050 } 4051 case TEK_Aggregate: { 4052 Address DestPtr = ReturnValue.getValue(); 4053 bool DestIsVolatile = ReturnValue.isVolatile(); 4054 4055 if (!DestPtr.isValid()) { 4056 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4057 DestIsVolatile = false; 4058 } 4059 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4060 return RValue::getAggregate(DestPtr); 4061 } 4062 case TEK_Scalar: { 4063 // If the argument doesn't match, perform a bitcast to coerce it. This 4064 // can happen due to trivial type mismatches. 4065 llvm::Value *V = CI; 4066 if (V->getType() != RetIRTy) 4067 V = Builder.CreateBitCast(V, RetIRTy); 4068 return RValue::get(V); 4069 } 4070 } 4071 llvm_unreachable("bad evaluation kind"); 4072 } 4073 4074 Address DestPtr = ReturnValue.getValue(); 4075 bool DestIsVolatile = ReturnValue.isVolatile(); 4076 4077 if (!DestPtr.isValid()) { 4078 DestPtr = CreateMemTemp(RetTy, "coerce"); 4079 DestIsVolatile = false; 4080 } 4081 4082 // If the value is offset in memory, apply the offset now. 4083 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4084 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4085 4086 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4087 } 4088 4089 case ABIArgInfo::Expand: 4090 llvm_unreachable("Invalid ABI kind for return argument"); 4091 } 4092 4093 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4094 } (); 4095 4096 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 4097 4098 if (Ret.isScalar() && TargetDecl) { 4099 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4100 llvm::Value *OffsetValue = nullptr; 4101 if (const auto *Offset = AA->getOffset()) 4102 OffsetValue = EmitScalarExpr(Offset); 4103 4104 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4105 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4106 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 4107 OffsetValue); 4108 } 4109 } 4110 4111 return Ret; 4112 } 4113 4114 /* VarArg handling */ 4115 4116 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4117 VAListAddr = VE->isMicrosoftABI() 4118 ? EmitMSVAListRef(VE->getSubExpr()) 4119 : EmitVAListRef(VE->getSubExpr()); 4120 QualType Ty = VE->getType(); 4121 if (VE->isMicrosoftABI()) 4122 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4123 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4124 } 4125