1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/Attr.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Basic/CodeGenOptions.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/CodeGen/CGFunctionInfo.h"
30 #include "clang/CodeGen/SwiftCallingConv.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 using namespace clang;
41 using namespace CodeGen;
42 
43 /***/
44 
45 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
46   switch (CC) {
47   default: return llvm::CallingConv::C;
48   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
49   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
50   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
51   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
52   case CC_Win64: return llvm::CallingConv::Win64;
53   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
54   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
55   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
56   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
57   // TODO: Add support for __pascal to LLVM.
58   case CC_X86Pascal: return llvm::CallingConv::C;
59   // TODO: Add support for __vectorcall to LLVM.
60   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
61   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
62   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
63   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
64   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
65   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
66   case CC_Swift: return llvm::CallingConv::Swift;
67   }
68 }
69 
70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
71 /// qualification. Either or both of RD and MD may be null. A null RD indicates
72 /// that there is no meaningful 'this' type, and a null MD can occur when
73 /// calling a method pointer.
74 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
75                                          const CXXMethodDecl *MD) {
76   QualType RecTy;
77   if (RD)
78     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
79   else
80     RecTy = Context.VoidTy;
81 
82   if (MD)
83     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
84   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
85 }
86 
87 /// Returns the canonical formal type of the given C++ method.
88 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
89   return MD->getType()->getCanonicalTypeUnqualified()
90            .getAs<FunctionProtoType>();
91 }
92 
93 /// Returns the "extra-canonicalized" return type, which discards
94 /// qualifiers on the return type.  Codegen doesn't care about them,
95 /// and it makes ABI code a little easier to be able to assume that
96 /// all parameter and return types are top-level unqualified.
97 static CanQualType GetReturnType(QualType RetTy) {
98   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
99 }
100 
101 /// Arrange the argument and result information for a value of the given
102 /// unprototyped freestanding function type.
103 const CGFunctionInfo &
104 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
105   // When translating an unprototyped function type, always use a
106   // variadic type.
107   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
108                                  /*instanceMethod=*/false,
109                                  /*chainCall=*/false, None,
110                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
111 }
112 
113 static void addExtParameterInfosForCall(
114          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
115                                         const FunctionProtoType *proto,
116                                         unsigned prefixArgs,
117                                         unsigned totalArgs) {
118   assert(proto->hasExtParameterInfos());
119   assert(paramInfos.size() <= prefixArgs);
120   assert(proto->getNumParams() + prefixArgs <= totalArgs);
121 
122   paramInfos.reserve(totalArgs);
123 
124   // Add default infos for any prefix args that don't already have infos.
125   paramInfos.resize(prefixArgs);
126 
127   // Add infos for the prototype.
128   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
129     paramInfos.push_back(ParamInfo);
130     // pass_object_size params have no parameter info.
131     if (ParamInfo.hasPassObjectSize())
132       paramInfos.emplace_back();
133   }
134 
135   assert(paramInfos.size() <= totalArgs &&
136          "Did we forget to insert pass_object_size args?");
137   // Add default infos for the variadic and/or suffix arguments.
138   paramInfos.resize(totalArgs);
139 }
140 
141 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
142 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
143 static void appendParameterTypes(const CodeGenTypes &CGT,
144                                  SmallVectorImpl<CanQualType> &prefix,
145               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
146                                  CanQual<FunctionProtoType> FPT) {
147   // Fast path: don't touch param info if we don't need to.
148   if (!FPT->hasExtParameterInfos()) {
149     assert(paramInfos.empty() &&
150            "We have paramInfos, but the prototype doesn't?");
151     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
152     return;
153   }
154 
155   unsigned PrefixSize = prefix.size();
156   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
157   // parameters; the only thing that can change this is the presence of
158   // pass_object_size. So, we preallocate for the common case.
159   prefix.reserve(prefix.size() + FPT->getNumParams());
160 
161   auto ExtInfos = FPT->getExtParameterInfos();
162   assert(ExtInfos.size() == FPT->getNumParams());
163   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
164     prefix.push_back(FPT->getParamType(I));
165     if (ExtInfos[I].hasPassObjectSize())
166       prefix.push_back(CGT.getContext().getSizeType());
167   }
168 
169   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
170                               prefix.size());
171 }
172 
173 /// Arrange the LLVM function layout for a value of the given function
174 /// type, on top of any implicit parameters already stored.
175 static const CGFunctionInfo &
176 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
177                         SmallVectorImpl<CanQualType> &prefix,
178                         CanQual<FunctionProtoType> FTP) {
179   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
180   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
181   // FIXME: Kill copy.
182   appendParameterTypes(CGT, prefix, paramInfos, FTP);
183   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
184 
185   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
186                                      /*chainCall=*/false, prefix,
187                                      FTP->getExtInfo(), paramInfos,
188                                      Required);
189 }
190 
191 /// Arrange the argument and result information for a value of the
192 /// given freestanding function type.
193 const CGFunctionInfo &
194 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
195   SmallVector<CanQualType, 16> argTypes;
196   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
197                                    FTP);
198 }
199 
200 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
201   // Set the appropriate calling convention for the Function.
202   if (D->hasAttr<StdCallAttr>())
203     return CC_X86StdCall;
204 
205   if (D->hasAttr<FastCallAttr>())
206     return CC_X86FastCall;
207 
208   if (D->hasAttr<RegCallAttr>())
209     return CC_X86RegCall;
210 
211   if (D->hasAttr<ThisCallAttr>())
212     return CC_X86ThisCall;
213 
214   if (D->hasAttr<VectorCallAttr>())
215     return CC_X86VectorCall;
216 
217   if (D->hasAttr<PascalAttr>())
218     return CC_X86Pascal;
219 
220   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
221     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
222 
223   if (D->hasAttr<AArch64VectorPcsAttr>())
224     return CC_AArch64VectorCall;
225 
226   if (D->hasAttr<IntelOclBiccAttr>())
227     return CC_IntelOclBicc;
228 
229   if (D->hasAttr<MSABIAttr>())
230     return IsWindows ? CC_C : CC_Win64;
231 
232   if (D->hasAttr<SysVABIAttr>())
233     return IsWindows ? CC_X86_64SysV : CC_C;
234 
235   if (D->hasAttr<PreserveMostAttr>())
236     return CC_PreserveMost;
237 
238   if (D->hasAttr<PreserveAllAttr>())
239     return CC_PreserveAll;
240 
241   return CC_C;
242 }
243 
244 /// Arrange the argument and result information for a call to an
245 /// unknown C++ non-static member function of the given abstract type.
246 /// (A null RD means we don't have any meaningful "this" argument type,
247 ///  so fall back to a generic pointer type).
248 /// The member function must be an ordinary function, i.e. not a
249 /// constructor or destructor.
250 const CGFunctionInfo &
251 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
252                                    const FunctionProtoType *FTP,
253                                    const CXXMethodDecl *MD) {
254   SmallVector<CanQualType, 16> argTypes;
255 
256   // Add the 'this' pointer.
257   argTypes.push_back(DeriveThisType(RD, MD));
258 
259   return ::arrangeLLVMFunctionInfo(
260       *this, true, argTypes,
261       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
262 }
263 
264 /// Set calling convention for CUDA/HIP kernel.
265 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
266                                            const FunctionDecl *FD) {
267   if (FD->hasAttr<CUDAGlobalAttr>()) {
268     const FunctionType *FT = FTy->getAs<FunctionType>();
269     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
270     FTy = FT->getCanonicalTypeUnqualified();
271   }
272 }
273 
274 /// Arrange the argument and result information for a declaration or
275 /// definition of the given C++ non-static member function.  The
276 /// member function must be an ordinary function, i.e. not a
277 /// constructor or destructor.
278 const CGFunctionInfo &
279 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
280   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
281   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
282 
283   CanQualType FT = GetFormalType(MD).getAs<Type>();
284   setCUDAKernelCallingConvention(FT, CGM, MD);
285   auto prototype = FT.getAs<FunctionProtoType>();
286 
287   if (MD->isInstance()) {
288     // The abstract case is perfectly fine.
289     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
290     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
291   }
292 
293   return arrangeFreeFunctionType(prototype);
294 }
295 
296 bool CodeGenTypes::inheritingCtorHasParams(
297     const InheritedConstructor &Inherited, CXXCtorType Type) {
298   // Parameters are unnecessary if we're constructing a base class subobject
299   // and the inherited constructor lives in a virtual base.
300   return Type == Ctor_Complete ||
301          !Inherited.getShadowDecl()->constructsVirtualBase() ||
302          !Target.getCXXABI().hasConstructorVariants();
303 }
304 
305 const CGFunctionInfo &
306 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
307   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
308 
309   SmallVector<CanQualType, 16> argTypes;
310   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
311   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
312 
313   bool PassParams = true;
314 
315   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
316     // A base class inheriting constructor doesn't get forwarded arguments
317     // needed to construct a virtual base (or base class thereof).
318     if (auto Inherited = CD->getInheritedConstructor())
319       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
320   }
321 
322   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
323 
324   // Add the formal parameters.
325   if (PassParams)
326     appendParameterTypes(*this, argTypes, paramInfos, FTP);
327 
328   CGCXXABI::AddedStructorArgs AddedArgs =
329       TheCXXABI.buildStructorSignature(GD, argTypes);
330   if (!paramInfos.empty()) {
331     // Note: prefix implies after the first param.
332     if (AddedArgs.Prefix)
333       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
334                         FunctionProtoType::ExtParameterInfo{});
335     if (AddedArgs.Suffix)
336       paramInfos.append(AddedArgs.Suffix,
337                         FunctionProtoType::ExtParameterInfo{});
338   }
339 
340   RequiredArgs required =
341       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
342                                       : RequiredArgs::All);
343 
344   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
345   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
346                                ? argTypes.front()
347                                : TheCXXABI.hasMostDerivedReturn(GD)
348                                      ? CGM.getContext().VoidPtrTy
349                                      : Context.VoidTy;
350   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
351                                  /*chainCall=*/false, argTypes, extInfo,
352                                  paramInfos, required);
353 }
354 
355 static SmallVector<CanQualType, 16>
356 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
357   SmallVector<CanQualType, 16> argTypes;
358   for (auto &arg : args)
359     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
360   return argTypes;
361 }
362 
363 static SmallVector<CanQualType, 16>
364 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
365   SmallVector<CanQualType, 16> argTypes;
366   for (auto &arg : args)
367     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
368   return argTypes;
369 }
370 
371 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
372 getExtParameterInfosForCall(const FunctionProtoType *proto,
373                             unsigned prefixArgs, unsigned totalArgs) {
374   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
375   if (proto->hasExtParameterInfos()) {
376     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
377   }
378   return result;
379 }
380 
381 /// Arrange a call to a C++ method, passing the given arguments.
382 ///
383 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
384 /// parameter.
385 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
386 /// args.
387 /// PassProtoArgs indicates whether `args` has args for the parameters in the
388 /// given CXXConstructorDecl.
389 const CGFunctionInfo &
390 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
391                                         const CXXConstructorDecl *D,
392                                         CXXCtorType CtorKind,
393                                         unsigned ExtraPrefixArgs,
394                                         unsigned ExtraSuffixArgs,
395                                         bool PassProtoArgs) {
396   // FIXME: Kill copy.
397   SmallVector<CanQualType, 16> ArgTypes;
398   for (const auto &Arg : args)
399     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
400 
401   // +1 for implicit this, which should always be args[0].
402   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
403 
404   CanQual<FunctionProtoType> FPT = GetFormalType(D);
405   RequiredArgs Required = PassProtoArgs
406                               ? RequiredArgs::forPrototypePlus(
407                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
408                               : RequiredArgs::All;
409 
410   GlobalDecl GD(D, CtorKind);
411   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
412                                ? ArgTypes.front()
413                                : TheCXXABI.hasMostDerivedReturn(GD)
414                                      ? CGM.getContext().VoidPtrTy
415                                      : Context.VoidTy;
416 
417   FunctionType::ExtInfo Info = FPT->getExtInfo();
418   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
419   // If the prototype args are elided, we should only have ABI-specific args,
420   // which never have param info.
421   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
422     // ABI-specific suffix arguments are treated the same as variadic arguments.
423     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
424                                 ArgTypes.size());
425   }
426   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
427                                  /*chainCall=*/false, ArgTypes, Info,
428                                  ParamInfos, Required);
429 }
430 
431 /// Arrange the argument and result information for the declaration or
432 /// definition of the given function.
433 const CGFunctionInfo &
434 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
435   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
436     if (MD->isInstance())
437       return arrangeCXXMethodDeclaration(MD);
438 
439   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
440 
441   assert(isa<FunctionType>(FTy));
442   setCUDAKernelCallingConvention(FTy, CGM, FD);
443 
444   // When declaring a function without a prototype, always use a
445   // non-variadic type.
446   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
447     return arrangeLLVMFunctionInfo(
448         noProto->getReturnType(), /*instanceMethod=*/false,
449         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
450   }
451 
452   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
453 }
454 
455 /// Arrange the argument and result information for the declaration or
456 /// definition of an Objective-C method.
457 const CGFunctionInfo &
458 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
459   // It happens that this is the same as a call with no optional
460   // arguments, except also using the formal 'self' type.
461   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
462 }
463 
464 /// Arrange the argument and result information for the function type
465 /// through which to perform a send to the given Objective-C method,
466 /// using the given receiver type.  The receiver type is not always
467 /// the 'self' type of the method or even an Objective-C pointer type.
468 /// This is *not* the right method for actually performing such a
469 /// message send, due to the possibility of optional arguments.
470 const CGFunctionInfo &
471 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
472                                               QualType receiverType) {
473   SmallVector<CanQualType, 16> argTys;
474   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
475   argTys.push_back(Context.getCanonicalParamType(receiverType));
476   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
477   // FIXME: Kill copy?
478   for (const auto *I : MD->parameters()) {
479     argTys.push_back(Context.getCanonicalParamType(I->getType()));
480     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
481         I->hasAttr<NoEscapeAttr>());
482     extParamInfos.push_back(extParamInfo);
483   }
484 
485   FunctionType::ExtInfo einfo;
486   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
487   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
488 
489   if (getContext().getLangOpts().ObjCAutoRefCount &&
490       MD->hasAttr<NSReturnsRetainedAttr>())
491     einfo = einfo.withProducesResult(true);
492 
493   RequiredArgs required =
494     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
495 
496   return arrangeLLVMFunctionInfo(
497       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
498       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
499 }
500 
501 const CGFunctionInfo &
502 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
503                                                  const CallArgList &args) {
504   auto argTypes = getArgTypesForCall(Context, args);
505   FunctionType::ExtInfo einfo;
506 
507   return arrangeLLVMFunctionInfo(
508       GetReturnType(returnType), /*instanceMethod=*/false,
509       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
510 }
511 
512 const CGFunctionInfo &
513 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
514   // FIXME: Do we need to handle ObjCMethodDecl?
515   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
516 
517   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
518       isa<CXXDestructorDecl>(GD.getDecl()))
519     return arrangeCXXStructorDeclaration(GD);
520 
521   return arrangeFunctionDeclaration(FD);
522 }
523 
524 /// Arrange a thunk that takes 'this' as the first parameter followed by
525 /// varargs.  Return a void pointer, regardless of the actual return type.
526 /// The body of the thunk will end in a musttail call to a function of the
527 /// correct type, and the caller will bitcast the function to the correct
528 /// prototype.
529 const CGFunctionInfo &
530 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
531   assert(MD->isVirtual() && "only methods have thunks");
532   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
533   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
534   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
535                                  /*chainCall=*/false, ArgTys,
536                                  FTP->getExtInfo(), {}, RequiredArgs(1));
537 }
538 
539 const CGFunctionInfo &
540 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
541                                    CXXCtorType CT) {
542   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
543 
544   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
545   SmallVector<CanQualType, 2> ArgTys;
546   const CXXRecordDecl *RD = CD->getParent();
547   ArgTys.push_back(DeriveThisType(RD, CD));
548   if (CT == Ctor_CopyingClosure)
549     ArgTys.push_back(*FTP->param_type_begin());
550   if (RD->getNumVBases() > 0)
551     ArgTys.push_back(Context.IntTy);
552   CallingConv CC = Context.getDefaultCallingConvention(
553       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
554   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
555                                  /*chainCall=*/false, ArgTys,
556                                  FunctionType::ExtInfo(CC), {},
557                                  RequiredArgs::All);
558 }
559 
560 /// Arrange a call as unto a free function, except possibly with an
561 /// additional number of formal parameters considered required.
562 static const CGFunctionInfo &
563 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
564                             CodeGenModule &CGM,
565                             const CallArgList &args,
566                             const FunctionType *fnType,
567                             unsigned numExtraRequiredArgs,
568                             bool chainCall) {
569   assert(args.size() >= numExtraRequiredArgs);
570 
571   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
572 
573   // In most cases, there are no optional arguments.
574   RequiredArgs required = RequiredArgs::All;
575 
576   // If we have a variadic prototype, the required arguments are the
577   // extra prefix plus the arguments in the prototype.
578   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
579     if (proto->isVariadic())
580       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
581 
582     if (proto->hasExtParameterInfos())
583       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
584                                   args.size());
585 
586   // If we don't have a prototype at all, but we're supposed to
587   // explicitly use the variadic convention for unprototyped calls,
588   // treat all of the arguments as required but preserve the nominal
589   // possibility of variadics.
590   } else if (CGM.getTargetCodeGenInfo()
591                 .isNoProtoCallVariadic(args,
592                                        cast<FunctionNoProtoType>(fnType))) {
593     required = RequiredArgs(args.size());
594   }
595 
596   // FIXME: Kill copy.
597   SmallVector<CanQualType, 16> argTypes;
598   for (const auto &arg : args)
599     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
600   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
601                                      /*instanceMethod=*/false, chainCall,
602                                      argTypes, fnType->getExtInfo(), paramInfos,
603                                      required);
604 }
605 
606 /// Figure out the rules for calling a function with the given formal
607 /// type using the given arguments.  The arguments are necessary
608 /// because the function might be unprototyped, in which case it's
609 /// target-dependent in crazy ways.
610 const CGFunctionInfo &
611 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
612                                       const FunctionType *fnType,
613                                       bool chainCall) {
614   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
615                                      chainCall ? 1 : 0, chainCall);
616 }
617 
618 /// A block function is essentially a free function with an
619 /// extra implicit argument.
620 const CGFunctionInfo &
621 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
622                                        const FunctionType *fnType) {
623   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
624                                      /*chainCall=*/false);
625 }
626 
627 const CGFunctionInfo &
628 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
629                                               const FunctionArgList &params) {
630   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
631   auto argTypes = getArgTypesForDeclaration(Context, params);
632 
633   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
634                                  /*instanceMethod*/ false, /*chainCall*/ false,
635                                  argTypes, proto->getExtInfo(), paramInfos,
636                                  RequiredArgs::forPrototypePlus(proto, 1));
637 }
638 
639 const CGFunctionInfo &
640 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
641                                          const CallArgList &args) {
642   // FIXME: Kill copy.
643   SmallVector<CanQualType, 16> argTypes;
644   for (const auto &Arg : args)
645     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
646   return arrangeLLVMFunctionInfo(
647       GetReturnType(resultType), /*instanceMethod=*/false,
648       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
649       /*paramInfos=*/ {}, RequiredArgs::All);
650 }
651 
652 const CGFunctionInfo &
653 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
654                                                 const FunctionArgList &args) {
655   auto argTypes = getArgTypesForDeclaration(Context, args);
656 
657   return arrangeLLVMFunctionInfo(
658       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
659       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
660 }
661 
662 const CGFunctionInfo &
663 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
664                                               ArrayRef<CanQualType> argTypes) {
665   return arrangeLLVMFunctionInfo(
666       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
667       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
668 }
669 
670 /// Arrange a call to a C++ method, passing the given arguments.
671 ///
672 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
673 /// does not count `this`.
674 const CGFunctionInfo &
675 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
676                                    const FunctionProtoType *proto,
677                                    RequiredArgs required,
678                                    unsigned numPrefixArgs) {
679   assert(numPrefixArgs + 1 <= args.size() &&
680          "Emitting a call with less args than the required prefix?");
681   // Add one to account for `this`. It's a bit awkward here, but we don't count
682   // `this` in similar places elsewhere.
683   auto paramInfos =
684     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
685 
686   // FIXME: Kill copy.
687   auto argTypes = getArgTypesForCall(Context, args);
688 
689   FunctionType::ExtInfo info = proto->getExtInfo();
690   return arrangeLLVMFunctionInfo(
691       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
692       /*chainCall=*/false, argTypes, info, paramInfos, required);
693 }
694 
695 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
696   return arrangeLLVMFunctionInfo(
697       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
698       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
699 }
700 
701 const CGFunctionInfo &
702 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
703                           const CallArgList &args) {
704   assert(signature.arg_size() <= args.size());
705   if (signature.arg_size() == args.size())
706     return signature;
707 
708   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
709   auto sigParamInfos = signature.getExtParameterInfos();
710   if (!sigParamInfos.empty()) {
711     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
712     paramInfos.resize(args.size());
713   }
714 
715   auto argTypes = getArgTypesForCall(Context, args);
716 
717   assert(signature.getRequiredArgs().allowsOptionalArgs());
718   return arrangeLLVMFunctionInfo(signature.getReturnType(),
719                                  signature.isInstanceMethod(),
720                                  signature.isChainCall(),
721                                  argTypes,
722                                  signature.getExtInfo(),
723                                  paramInfos,
724                                  signature.getRequiredArgs());
725 }
726 
727 namespace clang {
728 namespace CodeGen {
729 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
730 }
731 }
732 
733 /// Arrange the argument and result information for an abstract value
734 /// of a given function type.  This is the method which all of the
735 /// above functions ultimately defer to.
736 const CGFunctionInfo &
737 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
738                                       bool instanceMethod,
739                                       bool chainCall,
740                                       ArrayRef<CanQualType> argTypes,
741                                       FunctionType::ExtInfo info,
742                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
743                                       RequiredArgs required) {
744   assert(llvm::all_of(argTypes,
745                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
746 
747   // Lookup or create unique function info.
748   llvm::FoldingSetNodeID ID;
749   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
750                           required, resultType, argTypes);
751 
752   void *insertPos = nullptr;
753   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
754   if (FI)
755     return *FI;
756 
757   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
758 
759   // Construct the function info.  We co-allocate the ArgInfos.
760   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
761                               paramInfos, resultType, argTypes, required);
762   FunctionInfos.InsertNode(FI, insertPos);
763 
764   bool inserted = FunctionsBeingProcessed.insert(FI).second;
765   (void)inserted;
766   assert(inserted && "Recursively being processed?");
767 
768   // Compute ABI information.
769   if (CC == llvm::CallingConv::SPIR_KERNEL) {
770     // Force target independent argument handling for the host visible
771     // kernel functions.
772     computeSPIRKernelABIInfo(CGM, *FI);
773   } else if (info.getCC() == CC_Swift) {
774     swiftcall::computeABIInfo(CGM, *FI);
775   } else {
776     getABIInfo().computeInfo(*FI);
777   }
778 
779   // Loop over all of the computed argument and return value info.  If any of
780   // them are direct or extend without a specified coerce type, specify the
781   // default now.
782   ABIArgInfo &retInfo = FI->getReturnInfo();
783   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
784     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
785 
786   for (auto &I : FI->arguments())
787     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
788       I.info.setCoerceToType(ConvertType(I.type));
789 
790   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
791   assert(erased && "Not in set?");
792 
793   return *FI;
794 }
795 
796 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
797                                        bool instanceMethod,
798                                        bool chainCall,
799                                        const FunctionType::ExtInfo &info,
800                                        ArrayRef<ExtParameterInfo> paramInfos,
801                                        CanQualType resultType,
802                                        ArrayRef<CanQualType> argTypes,
803                                        RequiredArgs required) {
804   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
805   assert(!required.allowsOptionalArgs() ||
806          required.getNumRequiredArgs() <= argTypes.size());
807 
808   void *buffer =
809     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
810                                   argTypes.size() + 1, paramInfos.size()));
811 
812   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
813   FI->CallingConvention = llvmCC;
814   FI->EffectiveCallingConvention = llvmCC;
815   FI->ASTCallingConvention = info.getCC();
816   FI->InstanceMethod = instanceMethod;
817   FI->ChainCall = chainCall;
818   FI->CmseNSCall = info.getCmseNSCall();
819   FI->NoReturn = info.getNoReturn();
820   FI->ReturnsRetained = info.getProducesResult();
821   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
822   FI->NoCfCheck = info.getNoCfCheck();
823   FI->Required = required;
824   FI->HasRegParm = info.getHasRegParm();
825   FI->RegParm = info.getRegParm();
826   FI->ArgStruct = nullptr;
827   FI->ArgStructAlign = 0;
828   FI->NumArgs = argTypes.size();
829   FI->HasExtParameterInfos = !paramInfos.empty();
830   FI->getArgsBuffer()[0].type = resultType;
831   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
832     FI->getArgsBuffer()[i + 1].type = argTypes[i];
833   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
834     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
835   return FI;
836 }
837 
838 /***/
839 
840 namespace {
841 // ABIArgInfo::Expand implementation.
842 
843 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
844 struct TypeExpansion {
845   enum TypeExpansionKind {
846     // Elements of constant arrays are expanded recursively.
847     TEK_ConstantArray,
848     // Record fields are expanded recursively (but if record is a union, only
849     // the field with the largest size is expanded).
850     TEK_Record,
851     // For complex types, real and imaginary parts are expanded recursively.
852     TEK_Complex,
853     // All other types are not expandable.
854     TEK_None
855   };
856 
857   const TypeExpansionKind Kind;
858 
859   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
860   virtual ~TypeExpansion() {}
861 };
862 
863 struct ConstantArrayExpansion : TypeExpansion {
864   QualType EltTy;
865   uint64_t NumElts;
866 
867   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
868       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
869   static bool classof(const TypeExpansion *TE) {
870     return TE->Kind == TEK_ConstantArray;
871   }
872 };
873 
874 struct RecordExpansion : TypeExpansion {
875   SmallVector<const CXXBaseSpecifier *, 1> Bases;
876 
877   SmallVector<const FieldDecl *, 1> Fields;
878 
879   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
880                   SmallVector<const FieldDecl *, 1> &&Fields)
881       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
882         Fields(std::move(Fields)) {}
883   static bool classof(const TypeExpansion *TE) {
884     return TE->Kind == TEK_Record;
885   }
886 };
887 
888 struct ComplexExpansion : TypeExpansion {
889   QualType EltTy;
890 
891   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
892   static bool classof(const TypeExpansion *TE) {
893     return TE->Kind == TEK_Complex;
894   }
895 };
896 
897 struct NoExpansion : TypeExpansion {
898   NoExpansion() : TypeExpansion(TEK_None) {}
899   static bool classof(const TypeExpansion *TE) {
900     return TE->Kind == TEK_None;
901   }
902 };
903 }  // namespace
904 
905 static std::unique_ptr<TypeExpansion>
906 getTypeExpansion(QualType Ty, const ASTContext &Context) {
907   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
908     return std::make_unique<ConstantArrayExpansion>(
909         AT->getElementType(), AT->getSize().getZExtValue());
910   }
911   if (const RecordType *RT = Ty->getAs<RecordType>()) {
912     SmallVector<const CXXBaseSpecifier *, 1> Bases;
913     SmallVector<const FieldDecl *, 1> Fields;
914     const RecordDecl *RD = RT->getDecl();
915     assert(!RD->hasFlexibleArrayMember() &&
916            "Cannot expand structure with flexible array.");
917     if (RD->isUnion()) {
918       // Unions can be here only in degenerative cases - all the fields are same
919       // after flattening. Thus we have to use the "largest" field.
920       const FieldDecl *LargestFD = nullptr;
921       CharUnits UnionSize = CharUnits::Zero();
922 
923       for (const auto *FD : RD->fields()) {
924         if (FD->isZeroLengthBitField(Context))
925           continue;
926         assert(!FD->isBitField() &&
927                "Cannot expand structure with bit-field members.");
928         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
929         if (UnionSize < FieldSize) {
930           UnionSize = FieldSize;
931           LargestFD = FD;
932         }
933       }
934       if (LargestFD)
935         Fields.push_back(LargestFD);
936     } else {
937       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
938         assert(!CXXRD->isDynamicClass() &&
939                "cannot expand vtable pointers in dynamic classes");
940         for (const CXXBaseSpecifier &BS : CXXRD->bases())
941           Bases.push_back(&BS);
942       }
943 
944       for (const auto *FD : RD->fields()) {
945         if (FD->isZeroLengthBitField(Context))
946           continue;
947         assert(!FD->isBitField() &&
948                "Cannot expand structure with bit-field members.");
949         Fields.push_back(FD);
950       }
951     }
952     return std::make_unique<RecordExpansion>(std::move(Bases),
953                                               std::move(Fields));
954   }
955   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
956     return std::make_unique<ComplexExpansion>(CT->getElementType());
957   }
958   return std::make_unique<NoExpansion>();
959 }
960 
961 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
962   auto Exp = getTypeExpansion(Ty, Context);
963   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
964     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
965   }
966   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
967     int Res = 0;
968     for (auto BS : RExp->Bases)
969       Res += getExpansionSize(BS->getType(), Context);
970     for (auto FD : RExp->Fields)
971       Res += getExpansionSize(FD->getType(), Context);
972     return Res;
973   }
974   if (isa<ComplexExpansion>(Exp.get()))
975     return 2;
976   assert(isa<NoExpansion>(Exp.get()));
977   return 1;
978 }
979 
980 void
981 CodeGenTypes::getExpandedTypes(QualType Ty,
982                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
983   auto Exp = getTypeExpansion(Ty, Context);
984   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
985     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
986       getExpandedTypes(CAExp->EltTy, TI);
987     }
988   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
989     for (auto BS : RExp->Bases)
990       getExpandedTypes(BS->getType(), TI);
991     for (auto FD : RExp->Fields)
992       getExpandedTypes(FD->getType(), TI);
993   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
994     llvm::Type *EltTy = ConvertType(CExp->EltTy);
995     *TI++ = EltTy;
996     *TI++ = EltTy;
997   } else {
998     assert(isa<NoExpansion>(Exp.get()));
999     *TI++ = ConvertType(Ty);
1000   }
1001 }
1002 
1003 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1004                                       ConstantArrayExpansion *CAE,
1005                                       Address BaseAddr,
1006                                       llvm::function_ref<void(Address)> Fn) {
1007   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1008   CharUnits EltAlign =
1009     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1010 
1011   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1012     llvm::Value *EltAddr =
1013       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1014     Fn(Address(EltAddr, EltAlign));
1015   }
1016 }
1017 
1018 void CodeGenFunction::ExpandTypeFromArgs(
1019     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1020   assert(LV.isSimple() &&
1021          "Unexpected non-simple lvalue during struct expansion.");
1022 
1023   auto Exp = getTypeExpansion(Ty, getContext());
1024   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1025     forConstantArrayExpansion(
1026         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1027           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1028           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1029         });
1030   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1031     Address This = LV.getAddress(*this);
1032     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1033       // Perform a single step derived-to-base conversion.
1034       Address Base =
1035           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1036                                 /*NullCheckValue=*/false, SourceLocation());
1037       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1038 
1039       // Recurse onto bases.
1040       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1041     }
1042     for (auto FD : RExp->Fields) {
1043       // FIXME: What are the right qualifiers here?
1044       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1045       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1046     }
1047   } else if (isa<ComplexExpansion>(Exp.get())) {
1048     auto realValue = *AI++;
1049     auto imagValue = *AI++;
1050     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1051   } else {
1052     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1053     // primitive store.
1054     assert(isa<NoExpansion>(Exp.get()));
1055     if (LV.isBitField())
1056       EmitStoreThroughLValue(RValue::get(*AI++), LV);
1057     else
1058       EmitStoreOfScalar(*AI++, LV);
1059   }
1060 }
1061 
1062 void CodeGenFunction::ExpandTypeToArgs(
1063     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1064     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1065   auto Exp = getTypeExpansion(Ty, getContext());
1066   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1067     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1068                                    : Arg.getKnownRValue().getAggregateAddress();
1069     forConstantArrayExpansion(
1070         *this, CAExp, Addr, [&](Address EltAddr) {
1071           CallArg EltArg = CallArg(
1072               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1073               CAExp->EltTy);
1074           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1075                            IRCallArgPos);
1076         });
1077   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1078     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1079                                    : Arg.getKnownRValue().getAggregateAddress();
1080     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1081       // Perform a single step derived-to-base conversion.
1082       Address Base =
1083           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1084                                 /*NullCheckValue=*/false, SourceLocation());
1085       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1086 
1087       // Recurse onto bases.
1088       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1089                        IRCallArgPos);
1090     }
1091 
1092     LValue LV = MakeAddrLValue(This, Ty);
1093     for (auto FD : RExp->Fields) {
1094       CallArg FldArg =
1095           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1096       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1097                        IRCallArgPos);
1098     }
1099   } else if (isa<ComplexExpansion>(Exp.get())) {
1100     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1101     IRCallArgs[IRCallArgPos++] = CV.first;
1102     IRCallArgs[IRCallArgPos++] = CV.second;
1103   } else {
1104     assert(isa<NoExpansion>(Exp.get()));
1105     auto RV = Arg.getKnownRValue();
1106     assert(RV.isScalar() &&
1107            "Unexpected non-scalar rvalue during struct expansion.");
1108 
1109     // Insert a bitcast as needed.
1110     llvm::Value *V = RV.getScalarVal();
1111     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1112         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1113       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1114 
1115     IRCallArgs[IRCallArgPos++] = V;
1116   }
1117 }
1118 
1119 /// Create a temporary allocation for the purposes of coercion.
1120 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1121                                            CharUnits MinAlign) {
1122   // Don't use an alignment that's worse than what LLVM would prefer.
1123   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1124   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1125 
1126   return CGF.CreateTempAlloca(Ty, Align);
1127 }
1128 
1129 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1130 /// accessing some number of bytes out of it, try to gep into the struct to get
1131 /// at its inner goodness.  Dive as deep as possible without entering an element
1132 /// with an in-memory size smaller than DstSize.
1133 static Address
1134 EnterStructPointerForCoercedAccess(Address SrcPtr,
1135                                    llvm::StructType *SrcSTy,
1136                                    uint64_t DstSize, CodeGenFunction &CGF) {
1137   // We can't dive into a zero-element struct.
1138   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1139 
1140   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1141 
1142   // If the first elt is at least as large as what we're looking for, or if the
1143   // first element is the same size as the whole struct, we can enter it. The
1144   // comparison must be made on the store size and not the alloca size. Using
1145   // the alloca size may overstate the size of the load.
1146   uint64_t FirstEltSize =
1147     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1148   if (FirstEltSize < DstSize &&
1149       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1150     return SrcPtr;
1151 
1152   // GEP into the first element.
1153   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1154 
1155   // If the first element is a struct, recurse.
1156   llvm::Type *SrcTy = SrcPtr.getElementType();
1157   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1158     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1159 
1160   return SrcPtr;
1161 }
1162 
1163 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1164 /// are either integers or pointers.  This does a truncation of the value if it
1165 /// is too large or a zero extension if it is too small.
1166 ///
1167 /// This behaves as if the value were coerced through memory, so on big-endian
1168 /// targets the high bits are preserved in a truncation, while little-endian
1169 /// targets preserve the low bits.
1170 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1171                                              llvm::Type *Ty,
1172                                              CodeGenFunction &CGF) {
1173   if (Val->getType() == Ty)
1174     return Val;
1175 
1176   if (isa<llvm::PointerType>(Val->getType())) {
1177     // If this is Pointer->Pointer avoid conversion to and from int.
1178     if (isa<llvm::PointerType>(Ty))
1179       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1180 
1181     // Convert the pointer to an integer so we can play with its width.
1182     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1183   }
1184 
1185   llvm::Type *DestIntTy = Ty;
1186   if (isa<llvm::PointerType>(DestIntTy))
1187     DestIntTy = CGF.IntPtrTy;
1188 
1189   if (Val->getType() != DestIntTy) {
1190     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1191     if (DL.isBigEndian()) {
1192       // Preserve the high bits on big-endian targets.
1193       // That is what memory coercion does.
1194       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1195       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1196 
1197       if (SrcSize > DstSize) {
1198         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1199         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1200       } else {
1201         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1202         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1203       }
1204     } else {
1205       // Little-endian targets preserve the low bits. No shifts required.
1206       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1207     }
1208   }
1209 
1210   if (isa<llvm::PointerType>(Ty))
1211     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1212   return Val;
1213 }
1214 
1215 
1216 
1217 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1218 /// a pointer to an object of type \arg Ty, known to be aligned to
1219 /// \arg SrcAlign bytes.
1220 ///
1221 /// This safely handles the case when the src type is smaller than the
1222 /// destination type; in this situation the values of bits which not
1223 /// present in the src are undefined.
1224 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1225                                       CodeGenFunction &CGF) {
1226   llvm::Type *SrcTy = Src.getElementType();
1227 
1228   // If SrcTy and Ty are the same, just do a load.
1229   if (SrcTy == Ty)
1230     return CGF.Builder.CreateLoad(Src);
1231 
1232   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1233 
1234   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1235     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1236     SrcTy = Src.getType()->getElementType();
1237   }
1238 
1239   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1240 
1241   // If the source and destination are integer or pointer types, just do an
1242   // extension or truncation to the desired type.
1243   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1244       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1245     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1246     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1247   }
1248 
1249   // If load is legal, just bitcast the src pointer.
1250   if (SrcSize >= DstSize) {
1251     // Generally SrcSize is never greater than DstSize, since this means we are
1252     // losing bits. However, this can happen in cases where the structure has
1253     // additional padding, for example due to a user specified alignment.
1254     //
1255     // FIXME: Assert that we aren't truncating non-padding bits when have access
1256     // to that information.
1257     Src = CGF.Builder.CreateBitCast(Src,
1258                                     Ty->getPointerTo(Src.getAddressSpace()));
1259     return CGF.Builder.CreateLoad(Src);
1260   }
1261 
1262   // Otherwise do coercion through memory. This is stupid, but simple.
1263   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1264   Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1265   Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty);
1266   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1267       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1268       false);
1269   return CGF.Builder.CreateLoad(Tmp);
1270 }
1271 
1272 // Function to store a first-class aggregate into memory.  We prefer to
1273 // store the elements rather than the aggregate to be more friendly to
1274 // fast-isel.
1275 // FIXME: Do we need to recurse here?
1276 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1277                           Address Dest, bool DestIsVolatile) {
1278   // Prefer scalar stores to first-class aggregate stores.
1279   if (llvm::StructType *STy =
1280         dyn_cast<llvm::StructType>(Val->getType())) {
1281     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1282       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i);
1283       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1284       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1285     }
1286   } else {
1287     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1288   }
1289 }
1290 
1291 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1292 /// where the source and destination may have different types.  The
1293 /// destination is known to be aligned to \arg DstAlign bytes.
1294 ///
1295 /// This safely handles the case when the src type is larger than the
1296 /// destination type; the upper bits of the src will be lost.
1297 static void CreateCoercedStore(llvm::Value *Src,
1298                                Address Dst,
1299                                bool DstIsVolatile,
1300                                CodeGenFunction &CGF) {
1301   llvm::Type *SrcTy = Src->getType();
1302   llvm::Type *DstTy = Dst.getType()->getElementType();
1303   if (SrcTy == DstTy) {
1304     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1305     return;
1306   }
1307 
1308   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1309 
1310   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1311     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1312     DstTy = Dst.getType()->getElementType();
1313   }
1314 
1315   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1316   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1317   if (SrcPtrTy && DstPtrTy &&
1318       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1319     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1320     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1321     return;
1322   }
1323 
1324   // If the source and destination are integer or pointer types, just do an
1325   // extension or truncation to the desired type.
1326   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1327       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1328     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1329     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1330     return;
1331   }
1332 
1333   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1334 
1335   // If store is legal, just bitcast the src pointer.
1336   if (SrcSize <= DstSize) {
1337     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1338     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1339   } else {
1340     // Otherwise do coercion through memory. This is stupid, but
1341     // simple.
1342 
1343     // Generally SrcSize is never greater than DstSize, since this means we are
1344     // losing bits. However, this can happen in cases where the structure has
1345     // additional padding, for example due to a user specified alignment.
1346     //
1347     // FIXME: Assert that we aren't truncating non-padding bits when have access
1348     // to that information.
1349     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1350     CGF.Builder.CreateStore(Src, Tmp);
1351     Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1352     Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty);
1353     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1354         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1355         false);
1356   }
1357 }
1358 
1359 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1360                                    const ABIArgInfo &info) {
1361   if (unsigned offset = info.getDirectOffset()) {
1362     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1363     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1364                                              CharUnits::fromQuantity(offset));
1365     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1366   }
1367   return addr;
1368 }
1369 
1370 namespace {
1371 
1372 /// Encapsulates information about the way function arguments from
1373 /// CGFunctionInfo should be passed to actual LLVM IR function.
1374 class ClangToLLVMArgMapping {
1375   static const unsigned InvalidIndex = ~0U;
1376   unsigned InallocaArgNo;
1377   unsigned SRetArgNo;
1378   unsigned TotalIRArgs;
1379 
1380   /// Arguments of LLVM IR function corresponding to single Clang argument.
1381   struct IRArgs {
1382     unsigned PaddingArgIndex;
1383     // Argument is expanded to IR arguments at positions
1384     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1385     unsigned FirstArgIndex;
1386     unsigned NumberOfArgs;
1387 
1388     IRArgs()
1389         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1390           NumberOfArgs(0) {}
1391   };
1392 
1393   SmallVector<IRArgs, 8> ArgInfo;
1394 
1395 public:
1396   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1397                         bool OnlyRequiredArgs = false)
1398       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1399         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1400     construct(Context, FI, OnlyRequiredArgs);
1401   }
1402 
1403   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1404   unsigned getInallocaArgNo() const {
1405     assert(hasInallocaArg());
1406     return InallocaArgNo;
1407   }
1408 
1409   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1410   unsigned getSRetArgNo() const {
1411     assert(hasSRetArg());
1412     return SRetArgNo;
1413   }
1414 
1415   unsigned totalIRArgs() const { return TotalIRArgs; }
1416 
1417   bool hasPaddingArg(unsigned ArgNo) const {
1418     assert(ArgNo < ArgInfo.size());
1419     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1420   }
1421   unsigned getPaddingArgNo(unsigned ArgNo) const {
1422     assert(hasPaddingArg(ArgNo));
1423     return ArgInfo[ArgNo].PaddingArgIndex;
1424   }
1425 
1426   /// Returns index of first IR argument corresponding to ArgNo, and their
1427   /// quantity.
1428   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1429     assert(ArgNo < ArgInfo.size());
1430     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1431                           ArgInfo[ArgNo].NumberOfArgs);
1432   }
1433 
1434 private:
1435   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1436                  bool OnlyRequiredArgs);
1437 };
1438 
1439 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1440                                       const CGFunctionInfo &FI,
1441                                       bool OnlyRequiredArgs) {
1442   unsigned IRArgNo = 0;
1443   bool SwapThisWithSRet = false;
1444   const ABIArgInfo &RetAI = FI.getReturnInfo();
1445 
1446   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1447     SwapThisWithSRet = RetAI.isSRetAfterThis();
1448     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1449   }
1450 
1451   unsigned ArgNo = 0;
1452   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1453   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1454        ++I, ++ArgNo) {
1455     assert(I != FI.arg_end());
1456     QualType ArgType = I->type;
1457     const ABIArgInfo &AI = I->info;
1458     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1459     auto &IRArgs = ArgInfo[ArgNo];
1460 
1461     if (AI.getPaddingType())
1462       IRArgs.PaddingArgIndex = IRArgNo++;
1463 
1464     switch (AI.getKind()) {
1465     case ABIArgInfo::Extend:
1466     case ABIArgInfo::Direct: {
1467       // FIXME: handle sseregparm someday...
1468       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1469       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1470         IRArgs.NumberOfArgs = STy->getNumElements();
1471       } else {
1472         IRArgs.NumberOfArgs = 1;
1473       }
1474       break;
1475     }
1476     case ABIArgInfo::Indirect:
1477       IRArgs.NumberOfArgs = 1;
1478       break;
1479     case ABIArgInfo::Ignore:
1480     case ABIArgInfo::InAlloca:
1481       // ignore and inalloca doesn't have matching LLVM parameters.
1482       IRArgs.NumberOfArgs = 0;
1483       break;
1484     case ABIArgInfo::CoerceAndExpand:
1485       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1486       break;
1487     case ABIArgInfo::Expand:
1488       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1489       break;
1490     }
1491 
1492     if (IRArgs.NumberOfArgs > 0) {
1493       IRArgs.FirstArgIndex = IRArgNo;
1494       IRArgNo += IRArgs.NumberOfArgs;
1495     }
1496 
1497     // Skip over the sret parameter when it comes second.  We already handled it
1498     // above.
1499     if (IRArgNo == 1 && SwapThisWithSRet)
1500       IRArgNo++;
1501   }
1502   assert(ArgNo == ArgInfo.size());
1503 
1504   if (FI.usesInAlloca())
1505     InallocaArgNo = IRArgNo++;
1506 
1507   TotalIRArgs = IRArgNo;
1508 }
1509 }  // namespace
1510 
1511 /***/
1512 
1513 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1514   const auto &RI = FI.getReturnInfo();
1515   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1516 }
1517 
1518 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1519   return ReturnTypeUsesSRet(FI) &&
1520          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1521 }
1522 
1523 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1524   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1525     switch (BT->getKind()) {
1526     default:
1527       return false;
1528     case BuiltinType::Float:
1529       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1530     case BuiltinType::Double:
1531       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1532     case BuiltinType::LongDouble:
1533       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1534     }
1535   }
1536 
1537   return false;
1538 }
1539 
1540 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1541   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1542     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1543       if (BT->getKind() == BuiltinType::LongDouble)
1544         return getTarget().useObjCFP2RetForComplexLongDouble();
1545     }
1546   }
1547 
1548   return false;
1549 }
1550 
1551 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1552   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1553   return GetFunctionType(FI);
1554 }
1555 
1556 llvm::FunctionType *
1557 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1558 
1559   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1560   (void)Inserted;
1561   assert(Inserted && "Recursively being processed?");
1562 
1563   llvm::Type *resultType = nullptr;
1564   const ABIArgInfo &retAI = FI.getReturnInfo();
1565   switch (retAI.getKind()) {
1566   case ABIArgInfo::Expand:
1567     llvm_unreachable("Invalid ABI kind for return argument");
1568 
1569   case ABIArgInfo::Extend:
1570   case ABIArgInfo::Direct:
1571     resultType = retAI.getCoerceToType();
1572     break;
1573 
1574   case ABIArgInfo::InAlloca:
1575     if (retAI.getInAllocaSRet()) {
1576       // sret things on win32 aren't void, they return the sret pointer.
1577       QualType ret = FI.getReturnType();
1578       llvm::Type *ty = ConvertType(ret);
1579       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1580       resultType = llvm::PointerType::get(ty, addressSpace);
1581     } else {
1582       resultType = llvm::Type::getVoidTy(getLLVMContext());
1583     }
1584     break;
1585 
1586   case ABIArgInfo::Indirect:
1587   case ABIArgInfo::Ignore:
1588     resultType = llvm::Type::getVoidTy(getLLVMContext());
1589     break;
1590 
1591   case ABIArgInfo::CoerceAndExpand:
1592     resultType = retAI.getUnpaddedCoerceAndExpandType();
1593     break;
1594   }
1595 
1596   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1597   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1598 
1599   // Add type for sret argument.
1600   if (IRFunctionArgs.hasSRetArg()) {
1601     QualType Ret = FI.getReturnType();
1602     llvm::Type *Ty = ConvertType(Ret);
1603     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1604     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1605         llvm::PointerType::get(Ty, AddressSpace);
1606   }
1607 
1608   // Add type for inalloca argument.
1609   if (IRFunctionArgs.hasInallocaArg()) {
1610     auto ArgStruct = FI.getArgStruct();
1611     assert(ArgStruct);
1612     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1613   }
1614 
1615   // Add in all of the required arguments.
1616   unsigned ArgNo = 0;
1617   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1618                                      ie = it + FI.getNumRequiredArgs();
1619   for (; it != ie; ++it, ++ArgNo) {
1620     const ABIArgInfo &ArgInfo = it->info;
1621 
1622     // Insert a padding type to ensure proper alignment.
1623     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1624       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1625           ArgInfo.getPaddingType();
1626 
1627     unsigned FirstIRArg, NumIRArgs;
1628     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1629 
1630     switch (ArgInfo.getKind()) {
1631     case ABIArgInfo::Ignore:
1632     case ABIArgInfo::InAlloca:
1633       assert(NumIRArgs == 0);
1634       break;
1635 
1636     case ABIArgInfo::Indirect: {
1637       assert(NumIRArgs == 1);
1638       // indirect arguments are always on the stack, which is alloca addr space.
1639       llvm::Type *LTy = ConvertTypeForMem(it->type);
1640       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1641           CGM.getDataLayout().getAllocaAddrSpace());
1642       break;
1643     }
1644 
1645     case ABIArgInfo::Extend:
1646     case ABIArgInfo::Direct: {
1647       // Fast-isel and the optimizer generally like scalar values better than
1648       // FCAs, so we flatten them if this is safe to do for this argument.
1649       llvm::Type *argType = ArgInfo.getCoerceToType();
1650       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1651       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1652         assert(NumIRArgs == st->getNumElements());
1653         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1654           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1655       } else {
1656         assert(NumIRArgs == 1);
1657         ArgTypes[FirstIRArg] = argType;
1658       }
1659       break;
1660     }
1661 
1662     case ABIArgInfo::CoerceAndExpand: {
1663       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1664       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1665         *ArgTypesIter++ = EltTy;
1666       }
1667       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1668       break;
1669     }
1670 
1671     case ABIArgInfo::Expand:
1672       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1673       getExpandedTypes(it->type, ArgTypesIter);
1674       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1675       break;
1676     }
1677   }
1678 
1679   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1680   assert(Erased && "Not in set?");
1681 
1682   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1683 }
1684 
1685 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1686   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1687   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1688 
1689   if (!isFuncTypeConvertible(FPT))
1690     return llvm::StructType::get(getLLVMContext());
1691 
1692   return GetFunctionType(GD);
1693 }
1694 
1695 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1696                                                llvm::AttrBuilder &FuncAttrs,
1697                                                const FunctionProtoType *FPT) {
1698   if (!FPT)
1699     return;
1700 
1701   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1702       FPT->isNothrow())
1703     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1704 }
1705 
1706 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1707                                                bool AttrOnCallSite,
1708                                                llvm::AttrBuilder &FuncAttrs) {
1709   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1710   if (!HasOptnone) {
1711     if (CodeGenOpts.OptimizeSize)
1712       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1713     if (CodeGenOpts.OptimizeSize == 2)
1714       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1715   }
1716 
1717   if (CodeGenOpts.DisableRedZone)
1718     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1719   if (CodeGenOpts.IndirectTlsSegRefs)
1720     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1721   if (CodeGenOpts.NoImplicitFloat)
1722     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1723 
1724   if (AttrOnCallSite) {
1725     // Attributes that should go on the call site only.
1726     if (!CodeGenOpts.SimplifyLibCalls ||
1727         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1728       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1729     if (!CodeGenOpts.TrapFuncName.empty())
1730       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1731   } else {
1732     StringRef FpKind;
1733     switch (CodeGenOpts.getFramePointer()) {
1734     case CodeGenOptions::FramePointerKind::None:
1735       FpKind = "none";
1736       break;
1737     case CodeGenOptions::FramePointerKind::NonLeaf:
1738       FpKind = "non-leaf";
1739       break;
1740     case CodeGenOptions::FramePointerKind::All:
1741       FpKind = "all";
1742       break;
1743     }
1744     FuncAttrs.addAttribute("frame-pointer", FpKind);
1745 
1746     FuncAttrs.addAttribute("less-precise-fpmad",
1747                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1748 
1749     if (CodeGenOpts.NullPointerIsValid)
1750       FuncAttrs.addAttribute("null-pointer-is-valid", "true");
1751 
1752     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1753       FuncAttrs.addAttribute("denormal-fp-math",
1754                              CodeGenOpts.FPDenormalMode.str());
1755     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1756       FuncAttrs.addAttribute(
1757           "denormal-fp-math-f32",
1758           CodeGenOpts.FP32DenormalMode.str());
1759     }
1760 
1761     FuncAttrs.addAttribute("no-trapping-math",
1762                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1763 
1764     // Strict (compliant) code is the default, so only add this attribute to
1765     // indicate that we are trying to workaround a problem case.
1766     if (!CodeGenOpts.StrictFloatCastOverflow)
1767       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1768 
1769     // TODO: Are these all needed?
1770     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1771     FuncAttrs.addAttribute("no-infs-fp-math",
1772                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1773     FuncAttrs.addAttribute("no-nans-fp-math",
1774                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1775     FuncAttrs.addAttribute("unsafe-fp-math",
1776                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1777     FuncAttrs.addAttribute("use-soft-float",
1778                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1779     FuncAttrs.addAttribute("stack-protector-buffer-size",
1780                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1781     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1782                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1783     FuncAttrs.addAttribute(
1784         "correctly-rounded-divide-sqrt-fp-math",
1785         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1786 
1787     // TODO: Reciprocal estimate codegen options should apply to instructions?
1788     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1789     if (!Recips.empty())
1790       FuncAttrs.addAttribute("reciprocal-estimates",
1791                              llvm::join(Recips, ","));
1792 
1793     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1794         CodeGenOpts.PreferVectorWidth != "none")
1795       FuncAttrs.addAttribute("prefer-vector-width",
1796                              CodeGenOpts.PreferVectorWidth);
1797 
1798     if (CodeGenOpts.StackRealignment)
1799       FuncAttrs.addAttribute("stackrealign");
1800     if (CodeGenOpts.Backchain)
1801       FuncAttrs.addAttribute("backchain");
1802 
1803     if (CodeGenOpts.SpeculativeLoadHardening)
1804       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1805   }
1806 
1807   if (getLangOpts().assumeFunctionsAreConvergent()) {
1808     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1809     // convergent (meaning, they may call an intrinsically convergent op, such
1810     // as __syncthreads() / barrier(), and so can't have certain optimizations
1811     // applied around them).  LLVM will remove this attribute where it safely
1812     // can.
1813     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1814   }
1815 
1816   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1817     // Exceptions aren't supported in CUDA device code.
1818     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1819   }
1820 
1821   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1822     StringRef Var, Value;
1823     std::tie(Var, Value) = Attr.split('=');
1824     FuncAttrs.addAttribute(Var, Value);
1825   }
1826 }
1827 
1828 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1829   llvm::AttrBuilder FuncAttrs;
1830   ConstructDefaultFnAttrList(F.getName(), F.hasOptNone(),
1831                              /* AttrOnCallSite = */ false, FuncAttrs);
1832   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1833 }
1834 
1835 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1836                                    const LangOptions &LangOpts,
1837                                    const NoBuiltinAttr *NBA = nullptr) {
1838   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1839     SmallString<32> AttributeName;
1840     AttributeName += "no-builtin-";
1841     AttributeName += BuiltinName;
1842     FuncAttrs.addAttribute(AttributeName);
1843   };
1844 
1845   // First, handle the language options passed through -fno-builtin.
1846   if (LangOpts.NoBuiltin) {
1847     // -fno-builtin disables them all.
1848     FuncAttrs.addAttribute("no-builtins");
1849     return;
1850   }
1851 
1852   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1853   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1854 
1855   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1856   // the source.
1857   if (!NBA)
1858     return;
1859 
1860   // If there is a wildcard in the builtin names specified through the
1861   // attribute, disable them all.
1862   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1863     FuncAttrs.addAttribute("no-builtins");
1864     return;
1865   }
1866 
1867   // And last, add the rest of the builtin names.
1868   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1869 }
1870 
1871 void CodeGenModule::ConstructAttributeList(
1872     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1873     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1874   llvm::AttrBuilder FuncAttrs;
1875   llvm::AttrBuilder RetAttrs;
1876 
1877   CallingConv = FI.getEffectiveCallingConvention();
1878   if (FI.isNoReturn())
1879     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1880 
1881   if (FI.isCmseNSCall())
1882     FuncAttrs.addAttribute("cmse_nonsecure_call");
1883 
1884   // If we have information about the function prototype, we can learn
1885   // attributes from there.
1886   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1887                                      CalleeInfo.getCalleeFunctionProtoType());
1888 
1889   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1890 
1891   bool HasOptnone = false;
1892   // The NoBuiltinAttr attached to a TargetDecl (only allowed on FunctionDecls).
1893   const NoBuiltinAttr *NBA = nullptr;
1894   // FIXME: handle sseregparm someday...
1895   if (TargetDecl) {
1896     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1897       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1898     if (TargetDecl->hasAttr<NoThrowAttr>())
1899       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1900     if (TargetDecl->hasAttr<NoReturnAttr>())
1901       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1902     if (TargetDecl->hasAttr<ColdAttr>())
1903       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1904     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1905       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1906     if (TargetDecl->hasAttr<ConvergentAttr>())
1907       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1908 
1909     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1910       AddAttributesFromFunctionProtoType(
1911           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1912       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
1913         // A sane operator new returns a non-aliasing pointer.
1914         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
1915         if (getCodeGenOpts().AssumeSaneOperatorNew &&
1916             (Kind == OO_New || Kind == OO_Array_New))
1917           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1918       }
1919       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1920       const bool IsVirtualCall = MD && MD->isVirtual();
1921       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
1922       // virtual function. These attributes are not inherited by overloads.
1923       if (!(AttrOnCallSite && IsVirtualCall)) {
1924         if (Fn->isNoReturn())
1925           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1926         NBA = Fn->getAttr<NoBuiltinAttr>();
1927       }
1928     }
1929 
1930     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1931     if (TargetDecl->hasAttr<ConstAttr>()) {
1932       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1933       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1934     } else if (TargetDecl->hasAttr<PureAttr>()) {
1935       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1936       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1937     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1938       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1939       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1940     }
1941     if (TargetDecl->hasAttr<RestrictAttr>())
1942       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1943     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1944         !CodeGenOpts.NullPointerIsValid)
1945       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1946     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1947       FuncAttrs.addAttribute("no_caller_saved_registers");
1948     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1949       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1950 
1951     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1952     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1953       Optional<unsigned> NumElemsParam;
1954       if (AllocSize->getNumElemsParam().isValid())
1955         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1956       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1957                                  NumElemsParam);
1958     }
1959   }
1960 
1961   // Attach "no-builtins" attributes to:
1962   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
1963   // * definitions: "no-builtins" or "no-builtin-<name>" only.
1964   // The attributes can come from:
1965   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
1966   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
1967   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
1968 
1969   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1970 
1971   // This must run after constructing the default function attribute list
1972   // to ensure that the speculative load hardening attribute is removed
1973   // in the case where the -mspeculative-load-hardening flag was passed.
1974   if (TargetDecl) {
1975     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
1976       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
1977     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
1978       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1979   }
1980 
1981   if (CodeGenOpts.EnableSegmentedStacks &&
1982       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1983     FuncAttrs.addAttribute("split-stack");
1984 
1985   // Add NonLazyBind attribute to function declarations when -fno-plt
1986   // is used.
1987   if (TargetDecl && CodeGenOpts.NoPLT) {
1988     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1989       if (!Fn->isDefined() && !AttrOnCallSite) {
1990         FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1991       }
1992     }
1993   }
1994 
1995   if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1996     if (getLangOpts().OpenCLVersion <= 120) {
1997       // OpenCL v1.2 Work groups are always uniform
1998       FuncAttrs.addAttribute("uniform-work-group-size", "true");
1999     } else {
2000       // OpenCL v2.0 Work groups may be whether uniform or not.
2001       // '-cl-uniform-work-group-size' compile option gets a hint
2002       // to the compiler that the global work-size be a multiple of
2003       // the work-group size specified to clEnqueueNDRangeKernel
2004       // (i.e. work groups are uniform).
2005       FuncAttrs.addAttribute("uniform-work-group-size",
2006                              llvm::toStringRef(CodeGenOpts.UniformWGSize));
2007     }
2008   }
2009 
2010   if (!AttrOnCallSite) {
2011     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2012       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2013 
2014     bool DisableTailCalls = false;
2015 
2016     if (CodeGenOpts.DisableTailCalls)
2017       DisableTailCalls = true;
2018     else if (TargetDecl) {
2019       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2020           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2021         DisableTailCalls = true;
2022       else if (CodeGenOpts.NoEscapingBlockTailCalls) {
2023         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2024           if (!BD->doesNotEscape())
2025             DisableTailCalls = true;
2026       }
2027     }
2028 
2029     FuncAttrs.addAttribute("disable-tail-calls",
2030                            llvm::toStringRef(DisableTailCalls));
2031     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2032   }
2033 
2034   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2035 
2036   QualType RetTy = FI.getReturnType();
2037   const ABIArgInfo &RetAI = FI.getReturnInfo();
2038   switch (RetAI.getKind()) {
2039   case ABIArgInfo::Extend:
2040     if (RetAI.isSignExt())
2041       RetAttrs.addAttribute(llvm::Attribute::SExt);
2042     else
2043       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2044     LLVM_FALLTHROUGH;
2045   case ABIArgInfo::Direct:
2046     if (RetAI.getInReg())
2047       RetAttrs.addAttribute(llvm::Attribute::InReg);
2048     break;
2049   case ABIArgInfo::Ignore:
2050     break;
2051 
2052   case ABIArgInfo::InAlloca:
2053   case ABIArgInfo::Indirect: {
2054     // inalloca and sret disable readnone and readonly
2055     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2056       .removeAttribute(llvm::Attribute::ReadNone);
2057     break;
2058   }
2059 
2060   case ABIArgInfo::CoerceAndExpand:
2061     break;
2062 
2063   case ABIArgInfo::Expand:
2064     llvm_unreachable("Invalid ABI kind for return argument");
2065   }
2066 
2067   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2068     QualType PTy = RefTy->getPointeeType();
2069     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2070       RetAttrs.addDereferenceableAttr(
2071           getMinimumObjectSize(PTy).getQuantity());
2072     else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2073              !CodeGenOpts.NullPointerIsValid)
2074       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2075   }
2076 
2077   bool hasUsedSRet = false;
2078   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2079 
2080   // Attach attributes to sret.
2081   if (IRFunctionArgs.hasSRetArg()) {
2082     llvm::AttrBuilder SRETAttrs;
2083     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2084     hasUsedSRet = true;
2085     if (RetAI.getInReg())
2086       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2087     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2088         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2089   }
2090 
2091   // Attach attributes to inalloca argument.
2092   if (IRFunctionArgs.hasInallocaArg()) {
2093     llvm::AttrBuilder Attrs;
2094     Attrs.addAttribute(llvm::Attribute::InAlloca);
2095     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2096         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2097   }
2098 
2099   unsigned ArgNo = 0;
2100   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2101                                           E = FI.arg_end();
2102        I != E; ++I, ++ArgNo) {
2103     QualType ParamType = I->type;
2104     const ABIArgInfo &AI = I->info;
2105     llvm::AttrBuilder Attrs;
2106 
2107     // Add attribute for padding argument, if necessary.
2108     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2109       if (AI.getPaddingInReg()) {
2110         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2111             llvm::AttributeSet::get(
2112                 getLLVMContext(),
2113                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2114       }
2115     }
2116 
2117     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2118     // have the corresponding parameter variable.  It doesn't make
2119     // sense to do it here because parameters are so messed up.
2120     switch (AI.getKind()) {
2121     case ABIArgInfo::Extend:
2122       if (AI.isSignExt())
2123         Attrs.addAttribute(llvm::Attribute::SExt);
2124       else
2125         Attrs.addAttribute(llvm::Attribute::ZExt);
2126       LLVM_FALLTHROUGH;
2127     case ABIArgInfo::Direct:
2128       if (ArgNo == 0 && FI.isChainCall())
2129         Attrs.addAttribute(llvm::Attribute::Nest);
2130       else if (AI.getInReg())
2131         Attrs.addAttribute(llvm::Attribute::InReg);
2132       break;
2133 
2134     case ABIArgInfo::Indirect: {
2135       if (AI.getInReg())
2136         Attrs.addAttribute(llvm::Attribute::InReg);
2137 
2138       if (AI.getIndirectByVal())
2139         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2140 
2141       CharUnits Align = AI.getIndirectAlign();
2142 
2143       // In a byval argument, it is important that the required
2144       // alignment of the type is honored, as LLVM might be creating a
2145       // *new* stack object, and needs to know what alignment to give
2146       // it. (Sometimes it can deduce a sensible alignment on its own,
2147       // but not if clang decides it must emit a packed struct, or the
2148       // user specifies increased alignment requirements.)
2149       //
2150       // This is different from indirect *not* byval, where the object
2151       // exists already, and the align attribute is purely
2152       // informative.
2153       assert(!Align.isZero());
2154 
2155       // For now, only add this when we have a byval argument.
2156       // TODO: be less lazy about updating test cases.
2157       if (AI.getIndirectByVal())
2158         Attrs.addAlignmentAttr(Align.getQuantity());
2159 
2160       // byval disables readnone and readonly.
2161       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2162         .removeAttribute(llvm::Attribute::ReadNone);
2163       break;
2164     }
2165     case ABIArgInfo::Ignore:
2166     case ABIArgInfo::Expand:
2167     case ABIArgInfo::CoerceAndExpand:
2168       break;
2169 
2170     case ABIArgInfo::InAlloca:
2171       // inalloca disables readnone and readonly.
2172       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2173           .removeAttribute(llvm::Attribute::ReadNone);
2174       continue;
2175     }
2176 
2177     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2178       QualType PTy = RefTy->getPointeeType();
2179       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2180         Attrs.addDereferenceableAttr(
2181             getMinimumObjectSize(PTy).getQuantity());
2182       else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2183                !CodeGenOpts.NullPointerIsValid)
2184         Attrs.addAttribute(llvm::Attribute::NonNull);
2185     }
2186 
2187     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2188     case ParameterABI::Ordinary:
2189       break;
2190 
2191     case ParameterABI::SwiftIndirectResult: {
2192       // Add 'sret' if we haven't already used it for something, but
2193       // only if the result is void.
2194       if (!hasUsedSRet && RetTy->isVoidType()) {
2195         Attrs.addAttribute(llvm::Attribute::StructRet);
2196         hasUsedSRet = true;
2197       }
2198 
2199       // Add 'noalias' in either case.
2200       Attrs.addAttribute(llvm::Attribute::NoAlias);
2201 
2202       // Add 'dereferenceable' and 'alignment'.
2203       auto PTy = ParamType->getPointeeType();
2204       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2205         auto info = getContext().getTypeInfoInChars(PTy);
2206         Attrs.addDereferenceableAttr(info.first.getQuantity());
2207         Attrs.addAttribute(llvm::Attribute::getWithAlignment(
2208             getLLVMContext(), info.second.getAsAlign()));
2209       }
2210       break;
2211     }
2212 
2213     case ParameterABI::SwiftErrorResult:
2214       Attrs.addAttribute(llvm::Attribute::SwiftError);
2215       break;
2216 
2217     case ParameterABI::SwiftContext:
2218       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2219       break;
2220     }
2221 
2222     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2223       Attrs.addAttribute(llvm::Attribute::NoCapture);
2224 
2225     if (Attrs.hasAttributes()) {
2226       unsigned FirstIRArg, NumIRArgs;
2227       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2228       for (unsigned i = 0; i < NumIRArgs; i++)
2229         ArgAttrs[FirstIRArg + i] =
2230             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2231     }
2232   }
2233   assert(ArgNo == FI.arg_size());
2234 
2235   AttrList = llvm::AttributeList::get(
2236       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2237       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2238 }
2239 
2240 /// An argument came in as a promoted argument; demote it back to its
2241 /// declared type.
2242 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2243                                          const VarDecl *var,
2244                                          llvm::Value *value) {
2245   llvm::Type *varType = CGF.ConvertType(var->getType());
2246 
2247   // This can happen with promotions that actually don't change the
2248   // underlying type, like the enum promotions.
2249   if (value->getType() == varType) return value;
2250 
2251   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2252          && "unexpected promotion type");
2253 
2254   if (isa<llvm::IntegerType>(varType))
2255     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2256 
2257   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2258 }
2259 
2260 /// Returns the attribute (either parameter attribute, or function
2261 /// attribute), which declares argument ArgNo to be non-null.
2262 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2263                                          QualType ArgType, unsigned ArgNo) {
2264   // FIXME: __attribute__((nonnull)) can also be applied to:
2265   //   - references to pointers, where the pointee is known to be
2266   //     nonnull (apparently a Clang extension)
2267   //   - transparent unions containing pointers
2268   // In the former case, LLVM IR cannot represent the constraint. In
2269   // the latter case, we have no guarantee that the transparent union
2270   // is in fact passed as a pointer.
2271   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2272     return nullptr;
2273   // First, check attribute on parameter itself.
2274   if (PVD) {
2275     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2276       return ParmNNAttr;
2277   }
2278   // Check function attributes.
2279   if (!FD)
2280     return nullptr;
2281   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2282     if (NNAttr->isNonNull(ArgNo))
2283       return NNAttr;
2284   }
2285   return nullptr;
2286 }
2287 
2288 namespace {
2289   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2290     Address Temp;
2291     Address Arg;
2292     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2293     void Emit(CodeGenFunction &CGF, Flags flags) override {
2294       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2295       CGF.Builder.CreateStore(errorValue, Arg);
2296     }
2297   };
2298 }
2299 
2300 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2301                                          llvm::Function *Fn,
2302                                          const FunctionArgList &Args) {
2303   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2304     // Naked functions don't have prologues.
2305     return;
2306 
2307   // If this is an implicit-return-zero function, go ahead and
2308   // initialize the return value.  TODO: it might be nice to have
2309   // a more general mechanism for this that didn't require synthesized
2310   // return statements.
2311   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2312     if (FD->hasImplicitReturnZero()) {
2313       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2314       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2315       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2316       Builder.CreateStore(Zero, ReturnValue);
2317     }
2318   }
2319 
2320   // FIXME: We no longer need the types from FunctionArgList; lift up and
2321   // simplify.
2322 
2323   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2324   // Flattened function arguments.
2325   SmallVector<llvm::Value *, 16> FnArgs;
2326   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2327   for (auto &Arg : Fn->args()) {
2328     FnArgs.push_back(&Arg);
2329   }
2330   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2331 
2332   // If we're using inalloca, all the memory arguments are GEPs off of the last
2333   // parameter, which is a pointer to the complete memory area.
2334   Address ArgStruct = Address::invalid();
2335   if (IRFunctionArgs.hasInallocaArg()) {
2336     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2337                         FI.getArgStructAlignment());
2338 
2339     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2340   }
2341 
2342   // Name the struct return parameter.
2343   if (IRFunctionArgs.hasSRetArg()) {
2344     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2345     AI->setName("agg.result");
2346     AI->addAttr(llvm::Attribute::NoAlias);
2347   }
2348 
2349   // Track if we received the parameter as a pointer (indirect, byval, or
2350   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2351   // into a local alloca for us.
2352   SmallVector<ParamValue, 16> ArgVals;
2353   ArgVals.reserve(Args.size());
2354 
2355   // Create a pointer value for every parameter declaration.  This usually
2356   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2357   // any cleanups or do anything that might unwind.  We do that separately, so
2358   // we can push the cleanups in the correct order for the ABI.
2359   assert(FI.arg_size() == Args.size() &&
2360          "Mismatch between function signature & arguments.");
2361   unsigned ArgNo = 0;
2362   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2363   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2364        i != e; ++i, ++info_it, ++ArgNo) {
2365     const VarDecl *Arg = *i;
2366     const ABIArgInfo &ArgI = info_it->info;
2367 
2368     bool isPromoted =
2369       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2370     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2371     // the parameter is promoted. In this case we convert to
2372     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2373     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2374     assert(hasScalarEvaluationKind(Ty) ==
2375            hasScalarEvaluationKind(Arg->getType()));
2376 
2377     unsigned FirstIRArg, NumIRArgs;
2378     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2379 
2380     switch (ArgI.getKind()) {
2381     case ABIArgInfo::InAlloca: {
2382       assert(NumIRArgs == 0);
2383       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2384       Address V =
2385           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2386       if (ArgI.getInAllocaIndirect())
2387         V = Address(Builder.CreateLoad(V),
2388                     getContext().getTypeAlignInChars(Ty));
2389       ArgVals.push_back(ParamValue::forIndirect(V));
2390       break;
2391     }
2392 
2393     case ABIArgInfo::Indirect: {
2394       assert(NumIRArgs == 1);
2395       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2396 
2397       if (!hasScalarEvaluationKind(Ty)) {
2398         // Aggregates and complex variables are accessed by reference.  All we
2399         // need to do is realign the value, if requested.
2400         Address V = ParamAddr;
2401         if (ArgI.getIndirectRealign()) {
2402           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2403 
2404           // Copy from the incoming argument pointer to the temporary with the
2405           // appropriate alignment.
2406           //
2407           // FIXME: We should have a common utility for generating an aggregate
2408           // copy.
2409           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2410           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2411           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2412           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2413           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2414           V = AlignedTemp;
2415         }
2416         ArgVals.push_back(ParamValue::forIndirect(V));
2417       } else {
2418         // Load scalar value from indirect argument.
2419         llvm::Value *V =
2420             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2421 
2422         if (isPromoted)
2423           V = emitArgumentDemotion(*this, Arg, V);
2424         ArgVals.push_back(ParamValue::forDirect(V));
2425       }
2426       break;
2427     }
2428 
2429     case ABIArgInfo::Extend:
2430     case ABIArgInfo::Direct: {
2431 
2432       // If we have the trivial case, handle it with no muss and fuss.
2433       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2434           ArgI.getCoerceToType() == ConvertType(Ty) &&
2435           ArgI.getDirectOffset() == 0) {
2436         assert(NumIRArgs == 1);
2437         llvm::Value *V = FnArgs[FirstIRArg];
2438         auto AI = cast<llvm::Argument>(V);
2439 
2440         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2441           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2442                              PVD->getFunctionScopeIndex()) &&
2443               !CGM.getCodeGenOpts().NullPointerIsValid)
2444             AI->addAttr(llvm::Attribute::NonNull);
2445 
2446           QualType OTy = PVD->getOriginalType();
2447           if (const auto *ArrTy =
2448               getContext().getAsConstantArrayType(OTy)) {
2449             // A C99 array parameter declaration with the static keyword also
2450             // indicates dereferenceability, and if the size is constant we can
2451             // use the dereferenceable attribute (which requires the size in
2452             // bytes).
2453             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2454               QualType ETy = ArrTy->getElementType();
2455               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2456               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2457                   ArrSize) {
2458                 llvm::AttrBuilder Attrs;
2459                 Attrs.addDereferenceableAttr(
2460                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2461                 AI->addAttrs(Attrs);
2462               } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
2463                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2464                 AI->addAttr(llvm::Attribute::NonNull);
2465               }
2466             }
2467           } else if (const auto *ArrTy =
2468                      getContext().getAsVariableArrayType(OTy)) {
2469             // For C99 VLAs with the static keyword, we don't know the size so
2470             // we can't use the dereferenceable attribute, but in addrspace(0)
2471             // we know that it must be nonnull.
2472             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2473                 !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2474                 !CGM.getCodeGenOpts().NullPointerIsValid)
2475               AI->addAttr(llvm::Attribute::NonNull);
2476           }
2477 
2478           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2479           if (!AVAttr)
2480             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2481               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2482           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2483             // If alignment-assumption sanitizer is enabled, we do *not* add
2484             // alignment attribute here, but emit normal alignment assumption,
2485             // so the UBSAN check could function.
2486             llvm::Value *AlignmentValue =
2487               EmitScalarExpr(AVAttr->getAlignment());
2488             llvm::ConstantInt *AlignmentCI =
2489               cast<llvm::ConstantInt>(AlignmentValue);
2490             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(llvm::MaybeAlign(
2491                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))));
2492           }
2493         }
2494 
2495         if (Arg->getType().isRestrictQualified())
2496           AI->addAttr(llvm::Attribute::NoAlias);
2497 
2498         // LLVM expects swifterror parameters to be used in very restricted
2499         // ways.  Copy the value into a less-restricted temporary.
2500         if (FI.getExtParameterInfo(ArgNo).getABI()
2501               == ParameterABI::SwiftErrorResult) {
2502           QualType pointeeTy = Ty->getPointeeType();
2503           assert(pointeeTy->isPointerType());
2504           Address temp =
2505             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2506           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2507           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2508           Builder.CreateStore(incomingErrorValue, temp);
2509           V = temp.getPointer();
2510 
2511           // Push a cleanup to copy the value back at the end of the function.
2512           // The convention does not guarantee that the value will be written
2513           // back if the function exits with an unwind exception.
2514           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2515         }
2516 
2517         // Ensure the argument is the correct type.
2518         if (V->getType() != ArgI.getCoerceToType())
2519           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2520 
2521         if (isPromoted)
2522           V = emitArgumentDemotion(*this, Arg, V);
2523 
2524         // Because of merging of function types from multiple decls it is
2525         // possible for the type of an argument to not match the corresponding
2526         // type in the function type. Since we are codegening the callee
2527         // in here, add a cast to the argument type.
2528         llvm::Type *LTy = ConvertType(Arg->getType());
2529         if (V->getType() != LTy)
2530           V = Builder.CreateBitCast(V, LTy);
2531 
2532         ArgVals.push_back(ParamValue::forDirect(V));
2533         break;
2534       }
2535 
2536       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2537                                      Arg->getName());
2538 
2539       // Pointer to store into.
2540       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2541 
2542       // Fast-isel and the optimizer generally like scalar values better than
2543       // FCAs, so we flatten them if this is safe to do for this argument.
2544       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2545       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2546           STy->getNumElements() > 1) {
2547         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2548         llvm::Type *DstTy = Ptr.getElementType();
2549         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2550 
2551         Address AddrToStoreInto = Address::invalid();
2552         if (SrcSize <= DstSize) {
2553           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2554         } else {
2555           AddrToStoreInto =
2556             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2557         }
2558 
2559         assert(STy->getNumElements() == NumIRArgs);
2560         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2561           auto AI = FnArgs[FirstIRArg + i];
2562           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2563           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2564           Builder.CreateStore(AI, EltPtr);
2565         }
2566 
2567         if (SrcSize > DstSize) {
2568           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2569         }
2570 
2571       } else {
2572         // Simple case, just do a coerced store of the argument into the alloca.
2573         assert(NumIRArgs == 1);
2574         auto AI = FnArgs[FirstIRArg];
2575         AI->setName(Arg->getName() + ".coerce");
2576         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2577       }
2578 
2579       // Match to what EmitParmDecl is expecting for this type.
2580       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2581         llvm::Value *V =
2582             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2583         if (isPromoted)
2584           V = emitArgumentDemotion(*this, Arg, V);
2585         ArgVals.push_back(ParamValue::forDirect(V));
2586       } else {
2587         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2588       }
2589       break;
2590     }
2591 
2592     case ABIArgInfo::CoerceAndExpand: {
2593       // Reconstruct into a temporary.
2594       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2595       ArgVals.push_back(ParamValue::forIndirect(alloca));
2596 
2597       auto coercionType = ArgI.getCoerceAndExpandType();
2598       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2599 
2600       unsigned argIndex = FirstIRArg;
2601       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2602         llvm::Type *eltType = coercionType->getElementType(i);
2603         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2604           continue;
2605 
2606         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2607         auto elt = FnArgs[argIndex++];
2608         Builder.CreateStore(elt, eltAddr);
2609       }
2610       assert(argIndex == FirstIRArg + NumIRArgs);
2611       break;
2612     }
2613 
2614     case ABIArgInfo::Expand: {
2615       // If this structure was expanded into multiple arguments then
2616       // we need to create a temporary and reconstruct it from the
2617       // arguments.
2618       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2619       LValue LV = MakeAddrLValue(Alloca, Ty);
2620       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2621 
2622       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2623       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2624       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2625       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2626         auto AI = FnArgs[FirstIRArg + i];
2627         AI->setName(Arg->getName() + "." + Twine(i));
2628       }
2629       break;
2630     }
2631 
2632     case ABIArgInfo::Ignore:
2633       assert(NumIRArgs == 0);
2634       // Initialize the local variable appropriately.
2635       if (!hasScalarEvaluationKind(Ty)) {
2636         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2637       } else {
2638         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2639         ArgVals.push_back(ParamValue::forDirect(U));
2640       }
2641       break;
2642     }
2643   }
2644 
2645   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2646     for (int I = Args.size() - 1; I >= 0; --I)
2647       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2648   } else {
2649     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2650       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2651   }
2652 }
2653 
2654 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2655   while (insn->use_empty()) {
2656     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2657     if (!bitcast) return;
2658 
2659     // This is "safe" because we would have used a ConstantExpr otherwise.
2660     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2661     bitcast->eraseFromParent();
2662   }
2663 }
2664 
2665 /// Try to emit a fused autorelease of a return result.
2666 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2667                                                     llvm::Value *result) {
2668   // We must be immediately followed the cast.
2669   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2670   if (BB->empty()) return nullptr;
2671   if (&BB->back() != result) return nullptr;
2672 
2673   llvm::Type *resultType = result->getType();
2674 
2675   // result is in a BasicBlock and is therefore an Instruction.
2676   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2677 
2678   SmallVector<llvm::Instruction *, 4> InstsToKill;
2679 
2680   // Look for:
2681   //  %generator = bitcast %type1* %generator2 to %type2*
2682   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2683     // We would have emitted this as a constant if the operand weren't
2684     // an Instruction.
2685     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2686 
2687     // Require the generator to be immediately followed by the cast.
2688     if (generator->getNextNode() != bitcast)
2689       return nullptr;
2690 
2691     InstsToKill.push_back(bitcast);
2692   }
2693 
2694   // Look for:
2695   //   %generator = call i8* @objc_retain(i8* %originalResult)
2696   // or
2697   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2698   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2699   if (!call) return nullptr;
2700 
2701   bool doRetainAutorelease;
2702 
2703   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2704     doRetainAutorelease = true;
2705   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2706                                           .objc_retainAutoreleasedReturnValue) {
2707     doRetainAutorelease = false;
2708 
2709     // If we emitted an assembly marker for this call (and the
2710     // ARCEntrypoints field should have been set if so), go looking
2711     // for that call.  If we can't find it, we can't do this
2712     // optimization.  But it should always be the immediately previous
2713     // instruction, unless we needed bitcasts around the call.
2714     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2715       llvm::Instruction *prev = call->getPrevNode();
2716       assert(prev);
2717       if (isa<llvm::BitCastInst>(prev)) {
2718         prev = prev->getPrevNode();
2719         assert(prev);
2720       }
2721       assert(isa<llvm::CallInst>(prev));
2722       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2723                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2724       InstsToKill.push_back(prev);
2725     }
2726   } else {
2727     return nullptr;
2728   }
2729 
2730   result = call->getArgOperand(0);
2731   InstsToKill.push_back(call);
2732 
2733   // Keep killing bitcasts, for sanity.  Note that we no longer care
2734   // about precise ordering as long as there's exactly one use.
2735   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2736     if (!bitcast->hasOneUse()) break;
2737     InstsToKill.push_back(bitcast);
2738     result = bitcast->getOperand(0);
2739   }
2740 
2741   // Delete all the unnecessary instructions, from latest to earliest.
2742   for (auto *I : InstsToKill)
2743     I->eraseFromParent();
2744 
2745   // Do the fused retain/autorelease if we were asked to.
2746   if (doRetainAutorelease)
2747     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2748 
2749   // Cast back to the result type.
2750   return CGF.Builder.CreateBitCast(result, resultType);
2751 }
2752 
2753 /// If this is a +1 of the value of an immutable 'self', remove it.
2754 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2755                                           llvm::Value *result) {
2756   // This is only applicable to a method with an immutable 'self'.
2757   const ObjCMethodDecl *method =
2758     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2759   if (!method) return nullptr;
2760   const VarDecl *self = method->getSelfDecl();
2761   if (!self->getType().isConstQualified()) return nullptr;
2762 
2763   // Look for a retain call.
2764   llvm::CallInst *retainCall =
2765     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2766   if (!retainCall ||
2767       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2768     return nullptr;
2769 
2770   // Look for an ordinary load of 'self'.
2771   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2772   llvm::LoadInst *load =
2773     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2774   if (!load || load->isAtomic() || load->isVolatile() ||
2775       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2776     return nullptr;
2777 
2778   // Okay!  Burn it all down.  This relies for correctness on the
2779   // assumption that the retain is emitted as part of the return and
2780   // that thereafter everything is used "linearly".
2781   llvm::Type *resultType = result->getType();
2782   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2783   assert(retainCall->use_empty());
2784   retainCall->eraseFromParent();
2785   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2786 
2787   return CGF.Builder.CreateBitCast(load, resultType);
2788 }
2789 
2790 /// Emit an ARC autorelease of the result of a function.
2791 ///
2792 /// \return the value to actually return from the function
2793 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2794                                             llvm::Value *result) {
2795   // If we're returning 'self', kill the initial retain.  This is a
2796   // heuristic attempt to "encourage correctness" in the really unfortunate
2797   // case where we have a return of self during a dealloc and we desperately
2798   // need to avoid the possible autorelease.
2799   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2800     return self;
2801 
2802   // At -O0, try to emit a fused retain/autorelease.
2803   if (CGF.shouldUseFusedARCCalls())
2804     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2805       return fused;
2806 
2807   return CGF.EmitARCAutoreleaseReturnValue(result);
2808 }
2809 
2810 /// Heuristically search for a dominating store to the return-value slot.
2811 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2812   // Check if a User is a store which pointerOperand is the ReturnValue.
2813   // We are looking for stores to the ReturnValue, not for stores of the
2814   // ReturnValue to some other location.
2815   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2816     auto *SI = dyn_cast<llvm::StoreInst>(U);
2817     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2818       return nullptr;
2819     // These aren't actually possible for non-coerced returns, and we
2820     // only care about non-coerced returns on this code path.
2821     assert(!SI->isAtomic() && !SI->isVolatile());
2822     return SI;
2823   };
2824   // If there are multiple uses of the return-value slot, just check
2825   // for something immediately preceding the IP.  Sometimes this can
2826   // happen with how we generate implicit-returns; it can also happen
2827   // with noreturn cleanups.
2828   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2829     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2830     if (IP->empty()) return nullptr;
2831     llvm::Instruction *I = &IP->back();
2832 
2833     // Skip lifetime markers
2834     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2835                                             IE = IP->rend();
2836          II != IE; ++II) {
2837       if (llvm::IntrinsicInst *Intrinsic =
2838               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2839         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2840           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2841           ++II;
2842           if (II == IE)
2843             break;
2844           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2845             continue;
2846         }
2847       }
2848       I = &*II;
2849       break;
2850     }
2851 
2852     return GetStoreIfValid(I);
2853   }
2854 
2855   llvm::StoreInst *store =
2856       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2857   if (!store) return nullptr;
2858 
2859   // Now do a first-and-dirty dominance check: just walk up the
2860   // single-predecessors chain from the current insertion point.
2861   llvm::BasicBlock *StoreBB = store->getParent();
2862   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2863   while (IP != StoreBB) {
2864     if (!(IP = IP->getSinglePredecessor()))
2865       return nullptr;
2866   }
2867 
2868   // Okay, the store's basic block dominates the insertion point; we
2869   // can do our thing.
2870   return store;
2871 }
2872 
2873 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2874                                          bool EmitRetDbgLoc,
2875                                          SourceLocation EndLoc) {
2876   if (FI.isNoReturn()) {
2877     // Noreturn functions don't return.
2878     EmitUnreachable(EndLoc);
2879     return;
2880   }
2881 
2882   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2883     // Naked functions don't have epilogues.
2884     Builder.CreateUnreachable();
2885     return;
2886   }
2887 
2888   // Functions with no result always return void.
2889   if (!ReturnValue.isValid()) {
2890     Builder.CreateRetVoid();
2891     return;
2892   }
2893 
2894   llvm::DebugLoc RetDbgLoc;
2895   llvm::Value *RV = nullptr;
2896   QualType RetTy = FI.getReturnType();
2897   const ABIArgInfo &RetAI = FI.getReturnInfo();
2898 
2899   switch (RetAI.getKind()) {
2900   case ABIArgInfo::InAlloca:
2901     // Aggregrates get evaluated directly into the destination.  Sometimes we
2902     // need to return the sret value in a register, though.
2903     assert(hasAggregateEvaluationKind(RetTy));
2904     if (RetAI.getInAllocaSRet()) {
2905       llvm::Function::arg_iterator EI = CurFn->arg_end();
2906       --EI;
2907       llvm::Value *ArgStruct = &*EI;
2908       llvm::Value *SRet = Builder.CreateStructGEP(
2909           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2910       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2911     }
2912     break;
2913 
2914   case ABIArgInfo::Indirect: {
2915     auto AI = CurFn->arg_begin();
2916     if (RetAI.isSRetAfterThis())
2917       ++AI;
2918     switch (getEvaluationKind(RetTy)) {
2919     case TEK_Complex: {
2920       ComplexPairTy RT =
2921         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2922       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2923                          /*isInit*/ true);
2924       break;
2925     }
2926     case TEK_Aggregate:
2927       // Do nothing; aggregrates get evaluated directly into the destination.
2928       break;
2929     case TEK_Scalar:
2930       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2931                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2932                         /*isInit*/ true);
2933       break;
2934     }
2935     break;
2936   }
2937 
2938   case ABIArgInfo::Extend:
2939   case ABIArgInfo::Direct:
2940     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2941         RetAI.getDirectOffset() == 0) {
2942       // The internal return value temp always will have pointer-to-return-type
2943       // type, just do a load.
2944 
2945       // If there is a dominating store to ReturnValue, we can elide
2946       // the load, zap the store, and usually zap the alloca.
2947       if (llvm::StoreInst *SI =
2948               findDominatingStoreToReturnValue(*this)) {
2949         // Reuse the debug location from the store unless there is
2950         // cleanup code to be emitted between the store and return
2951         // instruction.
2952         if (EmitRetDbgLoc && !AutoreleaseResult)
2953           RetDbgLoc = SI->getDebugLoc();
2954         // Get the stored value and nuke the now-dead store.
2955         RV = SI->getValueOperand();
2956         SI->eraseFromParent();
2957 
2958       // Otherwise, we have to do a simple load.
2959       } else {
2960         RV = Builder.CreateLoad(ReturnValue);
2961       }
2962     } else {
2963       // If the value is offset in memory, apply the offset now.
2964       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2965 
2966       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2967     }
2968 
2969     // In ARC, end functions that return a retainable type with a call
2970     // to objc_autoreleaseReturnValue.
2971     if (AutoreleaseResult) {
2972 #ifndef NDEBUG
2973       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2974       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2975       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2976       // CurCodeDecl or BlockInfo.
2977       QualType RT;
2978 
2979       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2980         RT = FD->getReturnType();
2981       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2982         RT = MD->getReturnType();
2983       else if (isa<BlockDecl>(CurCodeDecl))
2984         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2985       else
2986         llvm_unreachable("Unexpected function/method type");
2987 
2988       assert(getLangOpts().ObjCAutoRefCount &&
2989              !FI.isReturnsRetained() &&
2990              RT->isObjCRetainableType());
2991 #endif
2992       RV = emitAutoreleaseOfResult(*this, RV);
2993     }
2994 
2995     break;
2996 
2997   case ABIArgInfo::Ignore:
2998     break;
2999 
3000   case ABIArgInfo::CoerceAndExpand: {
3001     auto coercionType = RetAI.getCoerceAndExpandType();
3002 
3003     // Load all of the coerced elements out into results.
3004     llvm::SmallVector<llvm::Value*, 4> results;
3005     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3006     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3007       auto coercedEltType = coercionType->getElementType(i);
3008       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3009         continue;
3010 
3011       auto eltAddr = Builder.CreateStructGEP(addr, i);
3012       auto elt = Builder.CreateLoad(eltAddr);
3013       results.push_back(elt);
3014     }
3015 
3016     // If we have one result, it's the single direct result type.
3017     if (results.size() == 1) {
3018       RV = results[0];
3019 
3020     // Otherwise, we need to make a first-class aggregate.
3021     } else {
3022       // Construct a return type that lacks padding elements.
3023       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3024 
3025       RV = llvm::UndefValue::get(returnType);
3026       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3027         RV = Builder.CreateInsertValue(RV, results[i], i);
3028       }
3029     }
3030     break;
3031   }
3032 
3033   case ABIArgInfo::Expand:
3034     llvm_unreachable("Invalid ABI kind for return argument");
3035   }
3036 
3037   llvm::Instruction *Ret;
3038   if (RV) {
3039     EmitReturnValueCheck(RV);
3040     Ret = Builder.CreateRet(RV);
3041   } else {
3042     Ret = Builder.CreateRetVoid();
3043   }
3044 
3045   if (RetDbgLoc)
3046     Ret->setDebugLoc(std::move(RetDbgLoc));
3047 }
3048 
3049 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3050   // A current decl may not be available when emitting vtable thunks.
3051   if (!CurCodeDecl)
3052     return;
3053 
3054   // If the return block isn't reachable, neither is this check, so don't emit
3055   // it.
3056   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3057     return;
3058 
3059   ReturnsNonNullAttr *RetNNAttr = nullptr;
3060   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3061     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3062 
3063   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3064     return;
3065 
3066   // Prefer the returns_nonnull attribute if it's present.
3067   SourceLocation AttrLoc;
3068   SanitizerMask CheckKind;
3069   SanitizerHandler Handler;
3070   if (RetNNAttr) {
3071     assert(!requiresReturnValueNullabilityCheck() &&
3072            "Cannot check nullability and the nonnull attribute");
3073     AttrLoc = RetNNAttr->getLocation();
3074     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3075     Handler = SanitizerHandler::NonnullReturn;
3076   } else {
3077     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3078       if (auto *TSI = DD->getTypeSourceInfo())
3079         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3080           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3081     CheckKind = SanitizerKind::NullabilityReturn;
3082     Handler = SanitizerHandler::NullabilityReturn;
3083   }
3084 
3085   SanitizerScope SanScope(this);
3086 
3087   // Make sure the "return" source location is valid. If we're checking a
3088   // nullability annotation, make sure the preconditions for the check are met.
3089   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3090   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3091   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3092   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3093   if (requiresReturnValueNullabilityCheck())
3094     CanNullCheck =
3095         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3096   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3097   EmitBlock(Check);
3098 
3099   // Now do the null check.
3100   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3101   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3102   llvm::Value *DynamicData[] = {SLocPtr};
3103   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3104 
3105   EmitBlock(NoCheck);
3106 
3107 #ifndef NDEBUG
3108   // The return location should not be used after the check has been emitted.
3109   ReturnLocation = Address::invalid();
3110 #endif
3111 }
3112 
3113 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3114   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3115   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3116 }
3117 
3118 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3119                                           QualType Ty) {
3120   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3121   // placeholders.
3122   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3123   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3124   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3125 
3126   // FIXME: When we generate this IR in one pass, we shouldn't need
3127   // this win32-specific alignment hack.
3128   CharUnits Align = CharUnits::fromQuantity(4);
3129   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3130 
3131   return AggValueSlot::forAddr(Address(Placeholder, Align),
3132                                Ty.getQualifiers(),
3133                                AggValueSlot::IsNotDestructed,
3134                                AggValueSlot::DoesNotNeedGCBarriers,
3135                                AggValueSlot::IsNotAliased,
3136                                AggValueSlot::DoesNotOverlap);
3137 }
3138 
3139 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3140                                           const VarDecl *param,
3141                                           SourceLocation loc) {
3142   // StartFunction converted the ABI-lowered parameter(s) into a
3143   // local alloca.  We need to turn that into an r-value suitable
3144   // for EmitCall.
3145   Address local = GetAddrOfLocalVar(param);
3146 
3147   QualType type = param->getType();
3148 
3149   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3150     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3151   }
3152 
3153   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3154   // but the argument needs to be the original pointer.
3155   if (type->isReferenceType()) {
3156     args.add(RValue::get(Builder.CreateLoad(local)), type);
3157 
3158   // In ARC, move out of consumed arguments so that the release cleanup
3159   // entered by StartFunction doesn't cause an over-release.  This isn't
3160   // optimal -O0 code generation, but it should get cleaned up when
3161   // optimization is enabled.  This also assumes that delegate calls are
3162   // performed exactly once for a set of arguments, but that should be safe.
3163   } else if (getLangOpts().ObjCAutoRefCount &&
3164              param->hasAttr<NSConsumedAttr>() &&
3165              type->isObjCRetainableType()) {
3166     llvm::Value *ptr = Builder.CreateLoad(local);
3167     auto null =
3168       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3169     Builder.CreateStore(null, local);
3170     args.add(RValue::get(ptr), type);
3171 
3172   // For the most part, we just need to load the alloca, except that
3173   // aggregate r-values are actually pointers to temporaries.
3174   } else {
3175     args.add(convertTempToRValue(local, type, loc), type);
3176   }
3177 
3178   // Deactivate the cleanup for the callee-destructed param that was pushed.
3179   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3180       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3181       param->needsDestruction(getContext())) {
3182     EHScopeStack::stable_iterator cleanup =
3183         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3184     assert(cleanup.isValid() &&
3185            "cleanup for callee-destructed param not recorded");
3186     // This unreachable is a temporary marker which will be removed later.
3187     llvm::Instruction *isActive = Builder.CreateUnreachable();
3188     args.addArgCleanupDeactivation(cleanup, isActive);
3189   }
3190 }
3191 
3192 static bool isProvablyNull(llvm::Value *addr) {
3193   return isa<llvm::ConstantPointerNull>(addr);
3194 }
3195 
3196 /// Emit the actual writing-back of a writeback.
3197 static void emitWriteback(CodeGenFunction &CGF,
3198                           const CallArgList::Writeback &writeback) {
3199   const LValue &srcLV = writeback.Source;
3200   Address srcAddr = srcLV.getAddress(CGF);
3201   assert(!isProvablyNull(srcAddr.getPointer()) &&
3202          "shouldn't have writeback for provably null argument");
3203 
3204   llvm::BasicBlock *contBB = nullptr;
3205 
3206   // If the argument wasn't provably non-null, we need to null check
3207   // before doing the store.
3208   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3209                                               CGF.CGM.getDataLayout());
3210   if (!provablyNonNull) {
3211     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3212     contBB = CGF.createBasicBlock("icr.done");
3213 
3214     llvm::Value *isNull =
3215       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3216     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3217     CGF.EmitBlock(writebackBB);
3218   }
3219 
3220   // Load the value to writeback.
3221   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3222 
3223   // Cast it back, in case we're writing an id to a Foo* or something.
3224   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3225                                     "icr.writeback-cast");
3226 
3227   // Perform the writeback.
3228 
3229   // If we have a "to use" value, it's something we need to emit a use
3230   // of.  This has to be carefully threaded in: if it's done after the
3231   // release it's potentially undefined behavior (and the optimizer
3232   // will ignore it), and if it happens before the retain then the
3233   // optimizer could move the release there.
3234   if (writeback.ToUse) {
3235     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3236 
3237     // Retain the new value.  No need to block-copy here:  the block's
3238     // being passed up the stack.
3239     value = CGF.EmitARCRetainNonBlock(value);
3240 
3241     // Emit the intrinsic use here.
3242     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3243 
3244     // Load the old value (primitively).
3245     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3246 
3247     // Put the new value in place (primitively).
3248     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3249 
3250     // Release the old value.
3251     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3252 
3253   // Otherwise, we can just do a normal lvalue store.
3254   } else {
3255     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3256   }
3257 
3258   // Jump to the continuation block.
3259   if (!provablyNonNull)
3260     CGF.EmitBlock(contBB);
3261 }
3262 
3263 static void emitWritebacks(CodeGenFunction &CGF,
3264                            const CallArgList &args) {
3265   for (const auto &I : args.writebacks())
3266     emitWriteback(CGF, I);
3267 }
3268 
3269 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3270                                             const CallArgList &CallArgs) {
3271   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3272     CallArgs.getCleanupsToDeactivate();
3273   // Iterate in reverse to increase the likelihood of popping the cleanup.
3274   for (const auto &I : llvm::reverse(Cleanups)) {
3275     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3276     I.IsActiveIP->eraseFromParent();
3277   }
3278 }
3279 
3280 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3281   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3282     if (uop->getOpcode() == UO_AddrOf)
3283       return uop->getSubExpr();
3284   return nullptr;
3285 }
3286 
3287 /// Emit an argument that's being passed call-by-writeback.  That is,
3288 /// we are passing the address of an __autoreleased temporary; it
3289 /// might be copy-initialized with the current value of the given
3290 /// address, but it will definitely be copied out of after the call.
3291 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3292                              const ObjCIndirectCopyRestoreExpr *CRE) {
3293   LValue srcLV;
3294 
3295   // Make an optimistic effort to emit the address as an l-value.
3296   // This can fail if the argument expression is more complicated.
3297   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3298     srcLV = CGF.EmitLValue(lvExpr);
3299 
3300   // Otherwise, just emit it as a scalar.
3301   } else {
3302     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3303 
3304     QualType srcAddrType =
3305       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3306     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3307   }
3308   Address srcAddr = srcLV.getAddress(CGF);
3309 
3310   // The dest and src types don't necessarily match in LLVM terms
3311   // because of the crazy ObjC compatibility rules.
3312 
3313   llvm::PointerType *destType =
3314     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3315 
3316   // If the address is a constant null, just pass the appropriate null.
3317   if (isProvablyNull(srcAddr.getPointer())) {
3318     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3319              CRE->getType());
3320     return;
3321   }
3322 
3323   // Create the temporary.
3324   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3325                                       CGF.getPointerAlign(),
3326                                       "icr.temp");
3327   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3328   // and that cleanup will be conditional if we can't prove that the l-value
3329   // isn't null, so we need to register a dominating point so that the cleanups
3330   // system will make valid IR.
3331   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3332 
3333   // Zero-initialize it if we're not doing a copy-initialization.
3334   bool shouldCopy = CRE->shouldCopy();
3335   if (!shouldCopy) {
3336     llvm::Value *null =
3337       llvm::ConstantPointerNull::get(
3338         cast<llvm::PointerType>(destType->getElementType()));
3339     CGF.Builder.CreateStore(null, temp);
3340   }
3341 
3342   llvm::BasicBlock *contBB = nullptr;
3343   llvm::BasicBlock *originBB = nullptr;
3344 
3345   // If the address is *not* known to be non-null, we need to switch.
3346   llvm::Value *finalArgument;
3347 
3348   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3349                                               CGF.CGM.getDataLayout());
3350   if (provablyNonNull) {
3351     finalArgument = temp.getPointer();
3352   } else {
3353     llvm::Value *isNull =
3354       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3355 
3356     finalArgument = CGF.Builder.CreateSelect(isNull,
3357                                    llvm::ConstantPointerNull::get(destType),
3358                                              temp.getPointer(), "icr.argument");
3359 
3360     // If we need to copy, then the load has to be conditional, which
3361     // means we need control flow.
3362     if (shouldCopy) {
3363       originBB = CGF.Builder.GetInsertBlock();
3364       contBB = CGF.createBasicBlock("icr.cont");
3365       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3366       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3367       CGF.EmitBlock(copyBB);
3368       condEval.begin(CGF);
3369     }
3370   }
3371 
3372   llvm::Value *valueToUse = nullptr;
3373 
3374   // Perform a copy if necessary.
3375   if (shouldCopy) {
3376     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3377     assert(srcRV.isScalar());
3378 
3379     llvm::Value *src = srcRV.getScalarVal();
3380     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3381                                     "icr.cast");
3382 
3383     // Use an ordinary store, not a store-to-lvalue.
3384     CGF.Builder.CreateStore(src, temp);
3385 
3386     // If optimization is enabled, and the value was held in a
3387     // __strong variable, we need to tell the optimizer that this
3388     // value has to stay alive until we're doing the store back.
3389     // This is because the temporary is effectively unretained,
3390     // and so otherwise we can violate the high-level semantics.
3391     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3392         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3393       valueToUse = src;
3394     }
3395   }
3396 
3397   // Finish the control flow if we needed it.
3398   if (shouldCopy && !provablyNonNull) {
3399     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3400     CGF.EmitBlock(contBB);
3401 
3402     // Make a phi for the value to intrinsically use.
3403     if (valueToUse) {
3404       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3405                                                       "icr.to-use");
3406       phiToUse->addIncoming(valueToUse, copyBB);
3407       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3408                             originBB);
3409       valueToUse = phiToUse;
3410     }
3411 
3412     condEval.end(CGF);
3413   }
3414 
3415   args.addWriteback(srcLV, temp, valueToUse);
3416   args.add(RValue::get(finalArgument), CRE->getType());
3417 }
3418 
3419 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3420   assert(!StackBase);
3421 
3422   // Save the stack.
3423   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3424   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3425 }
3426 
3427 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3428   if (StackBase) {
3429     // Restore the stack after the call.
3430     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3431     CGF.Builder.CreateCall(F, StackBase);
3432   }
3433 }
3434 
3435 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3436                                           SourceLocation ArgLoc,
3437                                           AbstractCallee AC,
3438                                           unsigned ParmNum) {
3439   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3440                          SanOpts.has(SanitizerKind::NullabilityArg)))
3441     return;
3442 
3443   // The param decl may be missing in a variadic function.
3444   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3445   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3446 
3447   // Prefer the nonnull attribute if it's present.
3448   const NonNullAttr *NNAttr = nullptr;
3449   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3450     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3451 
3452   bool CanCheckNullability = false;
3453   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3454     auto Nullability = PVD->getType()->getNullability(getContext());
3455     CanCheckNullability = Nullability &&
3456                           *Nullability == NullabilityKind::NonNull &&
3457                           PVD->getTypeSourceInfo();
3458   }
3459 
3460   if (!NNAttr && !CanCheckNullability)
3461     return;
3462 
3463   SourceLocation AttrLoc;
3464   SanitizerMask CheckKind;
3465   SanitizerHandler Handler;
3466   if (NNAttr) {
3467     AttrLoc = NNAttr->getLocation();
3468     CheckKind = SanitizerKind::NonnullAttribute;
3469     Handler = SanitizerHandler::NonnullArg;
3470   } else {
3471     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3472     CheckKind = SanitizerKind::NullabilityArg;
3473     Handler = SanitizerHandler::NullabilityArg;
3474   }
3475 
3476   SanitizerScope SanScope(this);
3477   assert(RV.isScalar());
3478   llvm::Value *V = RV.getScalarVal();
3479   llvm::Value *Cond =
3480       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3481   llvm::Constant *StaticData[] = {
3482       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3483       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3484   };
3485   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3486 }
3487 
3488 void CodeGenFunction::EmitCallArgs(
3489     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3490     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3491     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3492   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3493 
3494   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3495   // because arguments are destroyed left to right in the callee. As a special
3496   // case, there are certain language constructs that require left-to-right
3497   // evaluation, and in those cases we consider the evaluation order requirement
3498   // to trump the "destruction order is reverse construction order" guarantee.
3499   bool LeftToRight =
3500       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3501           ? Order == EvaluationOrder::ForceLeftToRight
3502           : Order != EvaluationOrder::ForceRightToLeft;
3503 
3504   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3505                                          RValue EmittedArg) {
3506     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3507       return;
3508     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3509     if (PS == nullptr)
3510       return;
3511 
3512     const auto &Context = getContext();
3513     auto SizeTy = Context.getSizeType();
3514     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3515     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3516     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3517                                                      EmittedArg.getScalarVal(),
3518                                                      PS->isDynamic());
3519     Args.add(RValue::get(V), SizeTy);
3520     // If we're emitting args in reverse, be sure to do so with
3521     // pass_object_size, as well.
3522     if (!LeftToRight)
3523       std::swap(Args.back(), *(&Args.back() - 1));
3524   };
3525 
3526   // Insert a stack save if we're going to need any inalloca args.
3527   bool HasInAllocaArgs = false;
3528   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3529     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3530          I != E && !HasInAllocaArgs; ++I)
3531       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3532     if (HasInAllocaArgs) {
3533       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3534       Args.allocateArgumentMemory(*this);
3535     }
3536   }
3537 
3538   // Evaluate each argument in the appropriate order.
3539   size_t CallArgsStart = Args.size();
3540   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3541     unsigned Idx = LeftToRight ? I : E - I - 1;
3542     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3543     unsigned InitialArgSize = Args.size();
3544     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3545     // the argument and parameter match or the objc method is parameterized.
3546     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3547             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3548                                                 ArgTypes[Idx]) ||
3549             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3550              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3551            "Argument and parameter types don't match");
3552     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3553     // In particular, we depend on it being the last arg in Args, and the
3554     // objectsize bits depend on there only being one arg if !LeftToRight.
3555     assert(InitialArgSize + 1 == Args.size() &&
3556            "The code below depends on only adding one arg per EmitCallArg");
3557     (void)InitialArgSize;
3558     // Since pointer argument are never emitted as LValue, it is safe to emit
3559     // non-null argument check for r-value only.
3560     if (!Args.back().hasLValue()) {
3561       RValue RVArg = Args.back().getKnownRValue();
3562       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3563                           ParamsToSkip + Idx);
3564       // @llvm.objectsize should never have side-effects and shouldn't need
3565       // destruction/cleanups, so we can safely "emit" it after its arg,
3566       // regardless of right-to-leftness
3567       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3568     }
3569   }
3570 
3571   if (!LeftToRight) {
3572     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3573     // IR function.
3574     std::reverse(Args.begin() + CallArgsStart, Args.end());
3575   }
3576 }
3577 
3578 namespace {
3579 
3580 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3581   DestroyUnpassedArg(Address Addr, QualType Ty)
3582       : Addr(Addr), Ty(Ty) {}
3583 
3584   Address Addr;
3585   QualType Ty;
3586 
3587   void Emit(CodeGenFunction &CGF, Flags flags) override {
3588     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3589     if (DtorKind == QualType::DK_cxx_destructor) {
3590       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3591       assert(!Dtor->isTrivial());
3592       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3593                                 /*Delegating=*/false, Addr, Ty);
3594     } else {
3595       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3596     }
3597   }
3598 };
3599 
3600 struct DisableDebugLocationUpdates {
3601   CodeGenFunction &CGF;
3602   bool disabledDebugInfo;
3603   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3604     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3605       CGF.disableDebugInfo();
3606   }
3607   ~DisableDebugLocationUpdates() {
3608     if (disabledDebugInfo)
3609       CGF.enableDebugInfo();
3610   }
3611 };
3612 
3613 } // end anonymous namespace
3614 
3615 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3616   if (!HasLV)
3617     return RV;
3618   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3619   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3620                         LV.isVolatile());
3621   IsUsed = true;
3622   return RValue::getAggregate(Copy.getAddress(CGF));
3623 }
3624 
3625 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3626   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3627   if (!HasLV && RV.isScalar())
3628     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
3629   else if (!HasLV && RV.isComplex())
3630     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3631   else {
3632     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
3633     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3634     // We assume that call args are never copied into subobjects.
3635     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3636                           HasLV ? LV.isVolatileQualified()
3637                                 : RV.isVolatileQualified());
3638   }
3639   IsUsed = true;
3640 }
3641 
3642 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3643                                   QualType type) {
3644   DisableDebugLocationUpdates Dis(*this, E);
3645   if (const ObjCIndirectCopyRestoreExpr *CRE
3646         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3647     assert(getLangOpts().ObjCAutoRefCount);
3648     return emitWritebackArg(*this, args, CRE);
3649   }
3650 
3651   assert(type->isReferenceType() == E->isGLValue() &&
3652          "reference binding to unmaterialized r-value!");
3653 
3654   if (E->isGLValue()) {
3655     assert(E->getObjectKind() == OK_Ordinary);
3656     return args.add(EmitReferenceBindingToExpr(E), type);
3657   }
3658 
3659   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3660 
3661   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3662   // However, we still have to push an EH-only cleanup in case we unwind before
3663   // we make it to the call.
3664   if (HasAggregateEvalKind &&
3665       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3666     // If we're using inalloca, use the argument memory.  Otherwise, use a
3667     // temporary.
3668     AggValueSlot Slot;
3669     if (args.isUsingInAlloca())
3670       Slot = createPlaceholderSlot(*this, type);
3671     else
3672       Slot = CreateAggTemp(type, "agg.tmp");
3673 
3674     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3675     if (const auto *RD = type->getAsCXXRecordDecl())
3676       DestroyedInCallee = RD->hasNonTrivialDestructor();
3677     else
3678       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3679 
3680     if (DestroyedInCallee)
3681       Slot.setExternallyDestructed();
3682 
3683     EmitAggExpr(E, Slot);
3684     RValue RV = Slot.asRValue();
3685     args.add(RV, type);
3686 
3687     if (DestroyedInCallee && NeedsEHCleanup) {
3688       // Create a no-op GEP between the placeholder and the cleanup so we can
3689       // RAUW it successfully.  It also serves as a marker of the first
3690       // instruction where the cleanup is active.
3691       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3692                                               type);
3693       // This unreachable is a temporary marker which will be removed later.
3694       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3695       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3696     }
3697     return;
3698   }
3699 
3700   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3701       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3702     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3703     assert(L.isSimple());
3704     args.addUncopiedAggregate(L, type);
3705     return;
3706   }
3707 
3708   args.add(EmitAnyExprToTemp(E), type);
3709 }
3710 
3711 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3712   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3713   // implicitly widens null pointer constants that are arguments to varargs
3714   // functions to pointer-sized ints.
3715   if (!getTarget().getTriple().isOSWindows())
3716     return Arg->getType();
3717 
3718   if (Arg->getType()->isIntegerType() &&
3719       getContext().getTypeSize(Arg->getType()) <
3720           getContext().getTargetInfo().getPointerWidth(0) &&
3721       Arg->isNullPointerConstant(getContext(),
3722                                  Expr::NPC_ValueDependentIsNotNull)) {
3723     return getContext().getIntPtrType();
3724   }
3725 
3726   return Arg->getType();
3727 }
3728 
3729 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3730 // optimizer it can aggressively ignore unwind edges.
3731 void
3732 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3733   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3734       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3735     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3736                       CGM.getNoObjCARCExceptionsMetadata());
3737 }
3738 
3739 /// Emits a call to the given no-arguments nounwind runtime function.
3740 llvm::CallInst *
3741 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3742                                          const llvm::Twine &name) {
3743   return EmitNounwindRuntimeCall(callee, None, name);
3744 }
3745 
3746 /// Emits a call to the given nounwind runtime function.
3747 llvm::CallInst *
3748 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3749                                          ArrayRef<llvm::Value *> args,
3750                                          const llvm::Twine &name) {
3751   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3752   call->setDoesNotThrow();
3753   return call;
3754 }
3755 
3756 /// Emits a simple call (never an invoke) to the given no-arguments
3757 /// runtime function.
3758 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
3759                                                  const llvm::Twine &name) {
3760   return EmitRuntimeCall(callee, None, name);
3761 }
3762 
3763 // Calls which may throw must have operand bundles indicating which funclet
3764 // they are nested within.
3765 SmallVector<llvm::OperandBundleDef, 1>
3766 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3767   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3768   // There is no need for a funclet operand bundle if we aren't inside a
3769   // funclet.
3770   if (!CurrentFuncletPad)
3771     return BundleList;
3772 
3773   // Skip intrinsics which cannot throw.
3774   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3775   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3776     return BundleList;
3777 
3778   BundleList.emplace_back("funclet", CurrentFuncletPad);
3779   return BundleList;
3780 }
3781 
3782 /// Emits a simple call (never an invoke) to the given runtime function.
3783 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
3784                                                  ArrayRef<llvm::Value *> args,
3785                                                  const llvm::Twine &name) {
3786   llvm::CallInst *call = Builder.CreateCall(
3787       callee, args, getBundlesForFunclet(callee.getCallee()), name);
3788   call->setCallingConv(getRuntimeCC());
3789   return call;
3790 }
3791 
3792 /// Emits a call or invoke to the given noreturn runtime function.
3793 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
3794     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
3795   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3796       getBundlesForFunclet(callee.getCallee());
3797 
3798   if (getInvokeDest()) {
3799     llvm::InvokeInst *invoke =
3800       Builder.CreateInvoke(callee,
3801                            getUnreachableBlock(),
3802                            getInvokeDest(),
3803                            args,
3804                            BundleList);
3805     invoke->setDoesNotReturn();
3806     invoke->setCallingConv(getRuntimeCC());
3807   } else {
3808     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3809     call->setDoesNotReturn();
3810     call->setCallingConv(getRuntimeCC());
3811     Builder.CreateUnreachable();
3812   }
3813 }
3814 
3815 /// Emits a call or invoke instruction to the given nullary runtime function.
3816 llvm::CallBase *
3817 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3818                                          const Twine &name) {
3819   return EmitRuntimeCallOrInvoke(callee, None, name);
3820 }
3821 
3822 /// Emits a call or invoke instruction to the given runtime function.
3823 llvm::CallBase *
3824 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3825                                          ArrayRef<llvm::Value *> args,
3826                                          const Twine &name) {
3827   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
3828   call->setCallingConv(getRuntimeCC());
3829   return call;
3830 }
3831 
3832 /// Emits a call or invoke instruction to the given function, depending
3833 /// on the current state of the EH stack.
3834 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
3835                                                   ArrayRef<llvm::Value *> Args,
3836                                                   const Twine &Name) {
3837   llvm::BasicBlock *InvokeDest = getInvokeDest();
3838   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3839       getBundlesForFunclet(Callee.getCallee());
3840 
3841   llvm::CallBase *Inst;
3842   if (!InvokeDest)
3843     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3844   else {
3845     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3846     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3847                                 Name);
3848     EmitBlock(ContBB);
3849   }
3850 
3851   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3852   // optimizer it can aggressively ignore unwind edges.
3853   if (CGM.getLangOpts().ObjCAutoRefCount)
3854     AddObjCARCExceptionMetadata(Inst);
3855 
3856   return Inst;
3857 }
3858 
3859 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3860                                                   llvm::Value *New) {
3861   DeferredReplacements.push_back(std::make_pair(Old, New));
3862 }
3863 
3864 namespace {
3865 
3866 /// Specify given \p NewAlign as the alignment of return value attribute. If
3867 /// such attribute already exists, re-set it to the maximal one of two options.
3868 LLVM_NODISCARD llvm::AttributeList
3869 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
3870                                 const llvm::AttributeList &Attrs,
3871                                 llvm::Align NewAlign) {
3872   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
3873   if (CurAlign >= NewAlign)
3874     return Attrs;
3875   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
3876   return Attrs
3877       .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex,
3878                        llvm::Attribute::AttrKind::Alignment)
3879       .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr);
3880 }
3881 
3882 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
3883 protected:
3884   CodeGenFunction &CGF;
3885 
3886   /// We do nothing if this is, or becomes, nullptr.
3887   const AlignedAttrTy *AA = nullptr;
3888 
3889   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
3890   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
3891 
3892   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
3893       : CGF(CGF_) {
3894     if (!FuncDecl)
3895       return;
3896     AA = FuncDecl->getAttr<AlignedAttrTy>();
3897   }
3898 
3899 public:
3900   /// If we can, materialize the alignment as an attribute on return value.
3901   LLVM_NODISCARD llvm::AttributeList
3902   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
3903     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
3904       return Attrs;
3905     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
3906     if (!AlignmentCI)
3907       return Attrs;
3908     // We may legitimately have non-power-of-2 alignment here.
3909     // If so, this is UB land, emit it via `@llvm.assume` instead.
3910     if (!AlignmentCI->getValue().isPowerOf2())
3911       return Attrs;
3912     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
3913         CGF.getLLVMContext(), Attrs,
3914         llvm::Align(
3915             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
3916     AA = nullptr; // We're done. Disallow doing anything else.
3917     return NewAttrs;
3918   }
3919 
3920   /// Emit alignment assumption.
3921   /// This is a general fallback that we take if either there is an offset,
3922   /// or the alignment is variable or we are sanitizing for alignment.
3923   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
3924     if (!AA)
3925       return;
3926     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
3927                                 AA->getLocation(), Alignment, OffsetCI);
3928     AA = nullptr; // We're done. Disallow doing anything else.
3929   }
3930 };
3931 
3932 /// Helper data structure to emit `AssumeAlignedAttr`.
3933 class AssumeAlignedAttrEmitter final
3934     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
3935 public:
3936   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
3937       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
3938     if (!AA)
3939       return;
3940     // It is guaranteed that the alignment/offset are constants.
3941     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
3942     if (Expr *Offset = AA->getOffset()) {
3943       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
3944       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
3945         OffsetCI = nullptr;
3946     }
3947   }
3948 };
3949 
3950 /// Helper data structure to emit `AllocAlignAttr`.
3951 class AllocAlignAttrEmitter final
3952     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
3953 public:
3954   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
3955                         const CallArgList &CallArgs)
3956       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
3957     if (!AA)
3958       return;
3959     // Alignment may or may not be a constant, and that is okay.
3960     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
3961                     .getRValue(CGF)
3962                     .getScalarVal();
3963   }
3964 };
3965 
3966 } // namespace
3967 
3968 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3969                                  const CGCallee &Callee,
3970                                  ReturnValueSlot ReturnValue,
3971                                  const CallArgList &CallArgs,
3972                                  llvm::CallBase **callOrInvoke,
3973                                  SourceLocation Loc) {
3974   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3975 
3976   assert(Callee.isOrdinary() || Callee.isVirtual());
3977 
3978   // Handle struct-return functions by passing a pointer to the
3979   // location that we would like to return into.
3980   QualType RetTy = CallInfo.getReturnType();
3981   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3982 
3983   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
3984 
3985   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
3986   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
3987     // We can only guarantee that a function is called from the correct
3988     // context/function based on the appropriate target attributes,
3989     // so only check in the case where we have both always_inline and target
3990     // since otherwise we could be making a conditional call after a check for
3991     // the proper cpu features (and it won't cause code generation issues due to
3992     // function based code generation).
3993     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
3994         TargetDecl->hasAttr<TargetAttr>())
3995       checkTargetFeatures(Loc, FD);
3996 
3997 #ifndef NDEBUG
3998   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
3999     // For an inalloca varargs function, we don't expect CallInfo to match the
4000     // function pointer's type, because the inalloca struct a will have extra
4001     // fields in it for the varargs parameters.  Code later in this function
4002     // bitcasts the function pointer to the type derived from CallInfo.
4003     //
4004     // In other cases, we assert that the types match up (until pointers stop
4005     // having pointee types).
4006     llvm::Type *TypeFromVal;
4007     if (Callee.isVirtual())
4008       TypeFromVal = Callee.getVirtualFunctionType();
4009     else
4010       TypeFromVal =
4011           Callee.getFunctionPointer()->getType()->getPointerElementType();
4012     assert(IRFuncTy == TypeFromVal);
4013   }
4014 #endif
4015 
4016   // 1. Set up the arguments.
4017 
4018   // If we're using inalloca, insert the allocation after the stack save.
4019   // FIXME: Do this earlier rather than hacking it in here!
4020   Address ArgMemory = Address::invalid();
4021   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4022     const llvm::DataLayout &DL = CGM.getDataLayout();
4023     llvm::Instruction *IP = CallArgs.getStackBase();
4024     llvm::AllocaInst *AI;
4025     if (IP) {
4026       IP = IP->getNextNode();
4027       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4028                                 "argmem", IP);
4029     } else {
4030       AI = CreateTempAlloca(ArgStruct, "argmem");
4031     }
4032     auto Align = CallInfo.getArgStructAlignment();
4033     AI->setAlignment(Align.getAsAlign());
4034     AI->setUsedWithInAlloca(true);
4035     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4036     ArgMemory = Address(AI, Align);
4037   }
4038 
4039   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4040   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4041 
4042   // If the call returns a temporary with struct return, create a temporary
4043   // alloca to hold the result, unless one is given to us.
4044   Address SRetPtr = Address::invalid();
4045   Address SRetAlloca = Address::invalid();
4046   llvm::Value *UnusedReturnSizePtr = nullptr;
4047   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4048     if (!ReturnValue.isNull()) {
4049       SRetPtr = ReturnValue.getValue();
4050     } else {
4051       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4052       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4053         uint64_t size =
4054             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4055         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4056       }
4057     }
4058     if (IRFunctionArgs.hasSRetArg()) {
4059       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4060     } else if (RetAI.isInAlloca()) {
4061       Address Addr =
4062           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4063       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4064     }
4065   }
4066 
4067   Address swiftErrorTemp = Address::invalid();
4068   Address swiftErrorArg = Address::invalid();
4069 
4070   // When passing arguments using temporary allocas, we need to add the
4071   // appropriate lifetime markers. This vector keeps track of all the lifetime
4072   // markers that need to be ended right after the call.
4073   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4074 
4075   // Translate all of the arguments as necessary to match the IR lowering.
4076   assert(CallInfo.arg_size() == CallArgs.size() &&
4077          "Mismatch between function signature & arguments.");
4078   unsigned ArgNo = 0;
4079   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4080   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4081        I != E; ++I, ++info_it, ++ArgNo) {
4082     const ABIArgInfo &ArgInfo = info_it->info;
4083 
4084     // Insert a padding argument to ensure proper alignment.
4085     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4086       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4087           llvm::UndefValue::get(ArgInfo.getPaddingType());
4088 
4089     unsigned FirstIRArg, NumIRArgs;
4090     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4091 
4092     switch (ArgInfo.getKind()) {
4093     case ABIArgInfo::InAlloca: {
4094       assert(NumIRArgs == 0);
4095       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4096       if (I->isAggregate()) {
4097         Address Addr = I->hasLValue()
4098                            ? I->getKnownLValue().getAddress(*this)
4099                            : I->getKnownRValue().getAggregateAddress();
4100         llvm::Instruction *Placeholder =
4101             cast<llvm::Instruction>(Addr.getPointer());
4102 
4103         if (!ArgInfo.getInAllocaIndirect()) {
4104           // Replace the placeholder with the appropriate argument slot GEP.
4105           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4106           Builder.SetInsertPoint(Placeholder);
4107           Addr = Builder.CreateStructGEP(ArgMemory,
4108                                          ArgInfo.getInAllocaFieldIndex());
4109           Builder.restoreIP(IP);
4110         } else {
4111           // For indirect things such as overaligned structs, replace the
4112           // placeholder with a regular aggregate temporary alloca. Store the
4113           // address of this alloca into the struct.
4114           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4115           Address ArgSlot = Builder.CreateStructGEP(
4116               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4117           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4118         }
4119         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4120       } else if (ArgInfo.getInAllocaIndirect()) {
4121         // Make a temporary alloca and store the address of it into the argument
4122         // struct.
4123         Address Addr = CreateMemTempWithoutCast(
4124             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4125             "indirect-arg-temp");
4126         I->copyInto(*this, Addr);
4127         Address ArgSlot =
4128             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4129         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4130       } else {
4131         // Store the RValue into the argument struct.
4132         Address Addr =
4133             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4134         unsigned AS = Addr.getType()->getPointerAddressSpace();
4135         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4136         // There are some cases where a trivial bitcast is not avoidable.  The
4137         // definition of a type later in a translation unit may change it's type
4138         // from {}* to (%struct.foo*)*.
4139         if (Addr.getType() != MemType)
4140           Addr = Builder.CreateBitCast(Addr, MemType);
4141         I->copyInto(*this, Addr);
4142       }
4143       break;
4144     }
4145 
4146     case ABIArgInfo::Indirect: {
4147       assert(NumIRArgs == 1);
4148       if (!I->isAggregate()) {
4149         // Make a temporary alloca to pass the argument.
4150         Address Addr = CreateMemTempWithoutCast(
4151             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4152         IRCallArgs[FirstIRArg] = Addr.getPointer();
4153 
4154         I->copyInto(*this, Addr);
4155       } else {
4156         // We want to avoid creating an unnecessary temporary+copy here;
4157         // however, we need one in three cases:
4158         // 1. If the argument is not byval, and we are required to copy the
4159         //    source.  (This case doesn't occur on any common architecture.)
4160         // 2. If the argument is byval, RV is not sufficiently aligned, and
4161         //    we cannot force it to be sufficiently aligned.
4162         // 3. If the argument is byval, but RV is not located in default
4163         //    or alloca address space.
4164         Address Addr = I->hasLValue()
4165                            ? I->getKnownLValue().getAddress(*this)
4166                            : I->getKnownRValue().getAggregateAddress();
4167         llvm::Value *V = Addr.getPointer();
4168         CharUnits Align = ArgInfo.getIndirectAlign();
4169         const llvm::DataLayout *TD = &CGM.getDataLayout();
4170 
4171         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4172                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4173                     TD->getAllocaAddrSpace()) &&
4174                "indirect argument must be in alloca address space");
4175 
4176         bool NeedCopy = false;
4177 
4178         if (Addr.getAlignment() < Align &&
4179             llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
4180                 Align.getQuantity()) {
4181           NeedCopy = true;
4182         } else if (I->hasLValue()) {
4183           auto LV = I->getKnownLValue();
4184           auto AS = LV.getAddressSpace();
4185 
4186           if (!ArgInfo.getIndirectByVal() ||
4187               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4188             NeedCopy = true;
4189           }
4190           if (!getLangOpts().OpenCL) {
4191             if ((ArgInfo.getIndirectByVal() &&
4192                 (AS != LangAS::Default &&
4193                  AS != CGM.getASTAllocaAddressSpace()))) {
4194               NeedCopy = true;
4195             }
4196           }
4197           // For OpenCL even if RV is located in default or alloca address space
4198           // we don't want to perform address space cast for it.
4199           else if ((ArgInfo.getIndirectByVal() &&
4200                     Addr.getType()->getAddressSpace() != IRFuncTy->
4201                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4202             NeedCopy = true;
4203           }
4204         }
4205 
4206         if (NeedCopy) {
4207           // Create an aligned temporary, and copy to it.
4208           Address AI = CreateMemTempWithoutCast(
4209               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4210           IRCallArgs[FirstIRArg] = AI.getPointer();
4211 
4212           // Emit lifetime markers for the temporary alloca.
4213           uint64_t ByvalTempElementSize =
4214               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4215           llvm::Value *LifetimeSize =
4216               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4217 
4218           // Add cleanup code to emit the end lifetime marker after the call.
4219           if (LifetimeSize) // In case we disabled lifetime markers.
4220             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4221 
4222           // Generate the copy.
4223           I->copyInto(*this, AI);
4224         } else {
4225           // Skip the extra memcpy call.
4226           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4227               CGM.getDataLayout().getAllocaAddrSpace());
4228           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4229               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4230               true);
4231         }
4232       }
4233       break;
4234     }
4235 
4236     case ABIArgInfo::Ignore:
4237       assert(NumIRArgs == 0);
4238       break;
4239 
4240     case ABIArgInfo::Extend:
4241     case ABIArgInfo::Direct: {
4242       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4243           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4244           ArgInfo.getDirectOffset() == 0) {
4245         assert(NumIRArgs == 1);
4246         llvm::Value *V;
4247         if (!I->isAggregate())
4248           V = I->getKnownRValue().getScalarVal();
4249         else
4250           V = Builder.CreateLoad(
4251               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4252                              : I->getKnownRValue().getAggregateAddress());
4253 
4254         // Implement swifterror by copying into a new swifterror argument.
4255         // We'll write back in the normal path out of the call.
4256         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4257               == ParameterABI::SwiftErrorResult) {
4258           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4259 
4260           QualType pointeeTy = I->Ty->getPointeeType();
4261           swiftErrorArg =
4262             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4263 
4264           swiftErrorTemp =
4265             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4266           V = swiftErrorTemp.getPointer();
4267           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4268 
4269           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4270           Builder.CreateStore(errorValue, swiftErrorTemp);
4271         }
4272 
4273         // We might have to widen integers, but we should never truncate.
4274         if (ArgInfo.getCoerceToType() != V->getType() &&
4275             V->getType()->isIntegerTy())
4276           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4277 
4278         // If the argument doesn't match, perform a bitcast to coerce it.  This
4279         // can happen due to trivial type mismatches.
4280         if (FirstIRArg < IRFuncTy->getNumParams() &&
4281             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4282           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4283 
4284         IRCallArgs[FirstIRArg] = V;
4285         break;
4286       }
4287 
4288       // FIXME: Avoid the conversion through memory if possible.
4289       Address Src = Address::invalid();
4290       if (!I->isAggregate()) {
4291         Src = CreateMemTemp(I->Ty, "coerce");
4292         I->copyInto(*this, Src);
4293       } else {
4294         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4295                              : I->getKnownRValue().getAggregateAddress();
4296       }
4297 
4298       // If the value is offset in memory, apply the offset now.
4299       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4300 
4301       // Fast-isel and the optimizer generally like scalar values better than
4302       // FCAs, so we flatten them if this is safe to do for this argument.
4303       llvm::StructType *STy =
4304             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4305       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4306         llvm::Type *SrcTy = Src.getType()->getElementType();
4307         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4308         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4309 
4310         // If the source type is smaller than the destination type of the
4311         // coerce-to logic, copy the source value into a temp alloca the size
4312         // of the destination type to allow loading all of it. The bits past
4313         // the source value are left undef.
4314         if (SrcSize < DstSize) {
4315           Address TempAlloca
4316             = CreateTempAlloca(STy, Src.getAlignment(),
4317                                Src.getName() + ".coerce");
4318           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4319           Src = TempAlloca;
4320         } else {
4321           Src = Builder.CreateBitCast(Src,
4322                                       STy->getPointerTo(Src.getAddressSpace()));
4323         }
4324 
4325         assert(NumIRArgs == STy->getNumElements());
4326         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4327           Address EltPtr = Builder.CreateStructGEP(Src, i);
4328           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4329           IRCallArgs[FirstIRArg + i] = LI;
4330         }
4331       } else {
4332         // In the simple case, just pass the coerced loaded value.
4333         assert(NumIRArgs == 1);
4334         IRCallArgs[FirstIRArg] =
4335           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4336       }
4337 
4338       break;
4339     }
4340 
4341     case ABIArgInfo::CoerceAndExpand: {
4342       auto coercionType = ArgInfo.getCoerceAndExpandType();
4343       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4344 
4345       llvm::Value *tempSize = nullptr;
4346       Address addr = Address::invalid();
4347       Address AllocaAddr = Address::invalid();
4348       if (I->isAggregate()) {
4349         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4350                               : I->getKnownRValue().getAggregateAddress();
4351 
4352       } else {
4353         RValue RV = I->getKnownRValue();
4354         assert(RV.isScalar()); // complex should always just be direct
4355 
4356         llvm::Type *scalarType = RV.getScalarVal()->getType();
4357         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4358         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4359 
4360         // Materialize to a temporary.
4361         addr = CreateTempAlloca(
4362             RV.getScalarVal()->getType(),
4363             CharUnits::fromQuantity(std::max(
4364                 (unsigned)layout->getAlignment().value(), scalarAlign)),
4365             "tmp",
4366             /*ArraySize=*/nullptr, &AllocaAddr);
4367         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4368 
4369         Builder.CreateStore(RV.getScalarVal(), addr);
4370       }
4371 
4372       addr = Builder.CreateElementBitCast(addr, coercionType);
4373 
4374       unsigned IRArgPos = FirstIRArg;
4375       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4376         llvm::Type *eltType = coercionType->getElementType(i);
4377         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4378         Address eltAddr = Builder.CreateStructGEP(addr, i);
4379         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4380         IRCallArgs[IRArgPos++] = elt;
4381       }
4382       assert(IRArgPos == FirstIRArg + NumIRArgs);
4383 
4384       if (tempSize) {
4385         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4386       }
4387 
4388       break;
4389     }
4390 
4391     case ABIArgInfo::Expand:
4392       unsigned IRArgPos = FirstIRArg;
4393       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4394       assert(IRArgPos == FirstIRArg + NumIRArgs);
4395       break;
4396     }
4397   }
4398 
4399   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4400   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4401 
4402   // If we're using inalloca, set up that argument.
4403   if (ArgMemory.isValid()) {
4404     llvm::Value *Arg = ArgMemory.getPointer();
4405     if (CallInfo.isVariadic()) {
4406       // When passing non-POD arguments by value to variadic functions, we will
4407       // end up with a variadic prototype and an inalloca call site.  In such
4408       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4409       // the callee.
4410       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4411       CalleePtr =
4412           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4413     } else {
4414       llvm::Type *LastParamTy =
4415           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4416       if (Arg->getType() != LastParamTy) {
4417 #ifndef NDEBUG
4418         // Assert that these structs have equivalent element types.
4419         llvm::StructType *FullTy = CallInfo.getArgStruct();
4420         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4421             cast<llvm::PointerType>(LastParamTy)->getElementType());
4422         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4423         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4424                                                 DE = DeclaredTy->element_end(),
4425                                                 FI = FullTy->element_begin();
4426              DI != DE; ++DI, ++FI)
4427           assert(*DI == *FI);
4428 #endif
4429         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4430       }
4431     }
4432     assert(IRFunctionArgs.hasInallocaArg());
4433     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4434   }
4435 
4436   // 2. Prepare the function pointer.
4437 
4438   // If the callee is a bitcast of a non-variadic function to have a
4439   // variadic function pointer type, check to see if we can remove the
4440   // bitcast.  This comes up with unprototyped functions.
4441   //
4442   // This makes the IR nicer, but more importantly it ensures that we
4443   // can inline the function at -O0 if it is marked always_inline.
4444   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4445                                    llvm::Value *Ptr) -> llvm::Function * {
4446     if (!CalleeFT->isVarArg())
4447       return nullptr;
4448 
4449     // Get underlying value if it's a bitcast
4450     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4451       if (CE->getOpcode() == llvm::Instruction::BitCast)
4452         Ptr = CE->getOperand(0);
4453     }
4454 
4455     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4456     if (!OrigFn)
4457       return nullptr;
4458 
4459     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4460 
4461     // If the original type is variadic, or if any of the component types
4462     // disagree, we cannot remove the cast.
4463     if (OrigFT->isVarArg() ||
4464         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4465         OrigFT->getReturnType() != CalleeFT->getReturnType())
4466       return nullptr;
4467 
4468     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4469       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4470         return nullptr;
4471 
4472     return OrigFn;
4473   };
4474 
4475   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4476     CalleePtr = OrigFn;
4477     IRFuncTy = OrigFn->getFunctionType();
4478   }
4479 
4480   // 3. Perform the actual call.
4481 
4482   // Deactivate any cleanups that we're supposed to do immediately before
4483   // the call.
4484   if (!CallArgs.getCleanupsToDeactivate().empty())
4485     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4486 
4487   // Assert that the arguments we computed match up.  The IR verifier
4488   // will catch this, but this is a common enough source of problems
4489   // during IRGen changes that it's way better for debugging to catch
4490   // it ourselves here.
4491 #ifndef NDEBUG
4492   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4493   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4494     // Inalloca argument can have different type.
4495     if (IRFunctionArgs.hasInallocaArg() &&
4496         i == IRFunctionArgs.getInallocaArgNo())
4497       continue;
4498     if (i < IRFuncTy->getNumParams())
4499       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4500   }
4501 #endif
4502 
4503   // Update the largest vector width if any arguments have vector types.
4504   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4505     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4506       LargestVectorWidth =
4507           std::max((uint64_t)LargestVectorWidth,
4508                    VT->getPrimitiveSizeInBits().getKnownMinSize());
4509   }
4510 
4511   // Compute the calling convention and attributes.
4512   unsigned CallingConv;
4513   llvm::AttributeList Attrs;
4514   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4515                              Callee.getAbstractInfo(), Attrs, CallingConv,
4516                              /*AttrOnCallSite=*/true);
4517 
4518   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4519     if (FD->usesFPIntrin())
4520       // All calls within a strictfp function are marked strictfp
4521       Attrs =
4522         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4523                            llvm::Attribute::StrictFP);
4524 
4525   // Apply some call-site-specific attributes.
4526   // TODO: work this into building the attribute set.
4527 
4528   // Apply always_inline to all calls within flatten functions.
4529   // FIXME: should this really take priority over __try, below?
4530   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4531       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
4532     Attrs =
4533         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4534                            llvm::Attribute::AlwaysInline);
4535   }
4536 
4537   // Disable inlining inside SEH __try blocks.
4538   if (isSEHTryScope()) {
4539     Attrs =
4540         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4541                            llvm::Attribute::NoInline);
4542   }
4543 
4544   // Decide whether to use a call or an invoke.
4545   bool CannotThrow;
4546   if (currentFunctionUsesSEHTry()) {
4547     // SEH cares about asynchronous exceptions, so everything can "throw."
4548     CannotThrow = false;
4549   } else if (isCleanupPadScope() &&
4550              EHPersonality::get(*this).isMSVCXXPersonality()) {
4551     // The MSVC++ personality will implicitly terminate the program if an
4552     // exception is thrown during a cleanup outside of a try/catch.
4553     // We don't need to model anything in IR to get this behavior.
4554     CannotThrow = true;
4555   } else {
4556     // Otherwise, nounwind call sites will never throw.
4557     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4558                                      llvm::Attribute::NoUnwind);
4559   }
4560 
4561   // If we made a temporary, be sure to clean up after ourselves. Note that we
4562   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4563   // pop this cleanup later on. Being eager about this is OK, since this
4564   // temporary is 'invisible' outside of the callee.
4565   if (UnusedReturnSizePtr)
4566     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4567                                          UnusedReturnSizePtr);
4568 
4569   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4570 
4571   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4572       getBundlesForFunclet(CalleePtr);
4573 
4574   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
4575     if (FD->usesFPIntrin())
4576       // All calls within a strictfp function are marked strictfp
4577       Attrs =
4578         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4579                            llvm::Attribute::StrictFP);
4580 
4581   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
4582   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4583 
4584   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
4585   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
4586 
4587   // Emit the actual call/invoke instruction.
4588   llvm::CallBase *CI;
4589   if (!InvokeDest) {
4590     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
4591   } else {
4592     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4593     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
4594                               BundleList);
4595     EmitBlock(Cont);
4596   }
4597   if (callOrInvoke)
4598     *callOrInvoke = CI;
4599 
4600   // If this is within a function that has the guard(nocf) attribute and is an
4601   // indirect call, add the "guard_nocf" attribute to this call to indicate that
4602   // Control Flow Guard checks should not be added, even if the call is inlined.
4603   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
4604     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
4605       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
4606         Attrs = Attrs.addAttribute(
4607             getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
4608     }
4609   }
4610 
4611   // Apply the attributes and calling convention.
4612   CI->setAttributes(Attrs);
4613   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4614 
4615   // Apply various metadata.
4616 
4617   if (!CI->getType()->isVoidTy())
4618     CI->setName("call");
4619 
4620   // Update largest vector width from the return type.
4621   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4622     LargestVectorWidth =
4623         std::max((uint64_t)LargestVectorWidth,
4624                  VT->getPrimitiveSizeInBits().getKnownMinSize());
4625 
4626   // Insert instrumentation or attach profile metadata at indirect call sites.
4627   // For more details, see the comment before the definition of
4628   // IPVK_IndirectCallTarget in InstrProfData.inc.
4629   if (!CI->getCalledFunction())
4630     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4631                      CI, CalleePtr);
4632 
4633   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4634   // optimizer it can aggressively ignore unwind edges.
4635   if (CGM.getLangOpts().ObjCAutoRefCount)
4636     AddObjCARCExceptionMetadata(CI);
4637 
4638   // Suppress tail calls if requested.
4639   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4640     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4641       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4642   }
4643 
4644   // Add metadata for calls to MSAllocator functions
4645   if (getDebugInfo() && TargetDecl &&
4646       TargetDecl->hasAttr<MSAllocatorAttr>())
4647     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy, Loc);
4648 
4649   // 4. Finish the call.
4650 
4651   // If the call doesn't return, finish the basic block and clear the
4652   // insertion point; this allows the rest of IRGen to discard
4653   // unreachable code.
4654   if (CI->doesNotReturn()) {
4655     if (UnusedReturnSizePtr)
4656       PopCleanupBlock();
4657 
4658     // Strip away the noreturn attribute to better diagnose unreachable UB.
4659     if (SanOpts.has(SanitizerKind::Unreachable)) {
4660       // Also remove from function since CallBase::hasFnAttr additionally checks
4661       // attributes of the called function.
4662       if (auto *F = CI->getCalledFunction())
4663         F->removeFnAttr(llvm::Attribute::NoReturn);
4664       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
4665                           llvm::Attribute::NoReturn);
4666 
4667       // Avoid incompatibility with ASan which relies on the `noreturn`
4668       // attribute to insert handler calls.
4669       if (SanOpts.hasOneOf(SanitizerKind::Address |
4670                            SanitizerKind::KernelAddress)) {
4671         SanitizerScope SanScope(this);
4672         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
4673         Builder.SetInsertPoint(CI);
4674         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
4675         llvm::FunctionCallee Fn =
4676             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
4677         EmitNounwindRuntimeCall(Fn);
4678       }
4679     }
4680 
4681     EmitUnreachable(Loc);
4682     Builder.ClearInsertionPoint();
4683 
4684     // FIXME: For now, emit a dummy basic block because expr emitters in
4685     // generally are not ready to handle emitting expressions at unreachable
4686     // points.
4687     EnsureInsertPoint();
4688 
4689     // Return a reasonable RValue.
4690     return GetUndefRValue(RetTy);
4691   }
4692 
4693   // Perform the swifterror writeback.
4694   if (swiftErrorTemp.isValid()) {
4695     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4696     Builder.CreateStore(errorResult, swiftErrorArg);
4697   }
4698 
4699   // Emit any call-associated writebacks immediately.  Arguably this
4700   // should happen after any return-value munging.
4701   if (CallArgs.hasWritebacks())
4702     emitWritebacks(*this, CallArgs);
4703 
4704   // The stack cleanup for inalloca arguments has to run out of the normal
4705   // lexical order, so deactivate it and run it manually here.
4706   CallArgs.freeArgumentMemory(*this);
4707 
4708   // Extract the return value.
4709   RValue Ret = [&] {
4710     switch (RetAI.getKind()) {
4711     case ABIArgInfo::CoerceAndExpand: {
4712       auto coercionType = RetAI.getCoerceAndExpandType();
4713 
4714       Address addr = SRetPtr;
4715       addr = Builder.CreateElementBitCast(addr, coercionType);
4716 
4717       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4718       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4719 
4720       unsigned unpaddedIndex = 0;
4721       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4722         llvm::Type *eltType = coercionType->getElementType(i);
4723         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4724         Address eltAddr = Builder.CreateStructGEP(addr, i);
4725         llvm::Value *elt = CI;
4726         if (requiresExtract)
4727           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4728         else
4729           assert(unpaddedIndex == 0);
4730         Builder.CreateStore(elt, eltAddr);
4731       }
4732       // FALLTHROUGH
4733       LLVM_FALLTHROUGH;
4734     }
4735 
4736     case ABIArgInfo::InAlloca:
4737     case ABIArgInfo::Indirect: {
4738       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4739       if (UnusedReturnSizePtr)
4740         PopCleanupBlock();
4741       return ret;
4742     }
4743 
4744     case ABIArgInfo::Ignore:
4745       // If we are ignoring an argument that had a result, make sure to
4746       // construct the appropriate return value for our caller.
4747       return GetUndefRValue(RetTy);
4748 
4749     case ABIArgInfo::Extend:
4750     case ABIArgInfo::Direct: {
4751       llvm::Type *RetIRTy = ConvertType(RetTy);
4752       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4753         switch (getEvaluationKind(RetTy)) {
4754         case TEK_Complex: {
4755           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4756           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4757           return RValue::getComplex(std::make_pair(Real, Imag));
4758         }
4759         case TEK_Aggregate: {
4760           Address DestPtr = ReturnValue.getValue();
4761           bool DestIsVolatile = ReturnValue.isVolatile();
4762 
4763           if (!DestPtr.isValid()) {
4764             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4765             DestIsVolatile = false;
4766           }
4767           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4768           return RValue::getAggregate(DestPtr);
4769         }
4770         case TEK_Scalar: {
4771           // If the argument doesn't match, perform a bitcast to coerce it.  This
4772           // can happen due to trivial type mismatches.
4773           llvm::Value *V = CI;
4774           if (V->getType() != RetIRTy)
4775             V = Builder.CreateBitCast(V, RetIRTy);
4776           return RValue::get(V);
4777         }
4778         }
4779         llvm_unreachable("bad evaluation kind");
4780       }
4781 
4782       Address DestPtr = ReturnValue.getValue();
4783       bool DestIsVolatile = ReturnValue.isVolatile();
4784 
4785       if (!DestPtr.isValid()) {
4786         DestPtr = CreateMemTemp(RetTy, "coerce");
4787         DestIsVolatile = false;
4788       }
4789 
4790       // If the value is offset in memory, apply the offset now.
4791       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4792       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4793 
4794       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4795     }
4796 
4797     case ABIArgInfo::Expand:
4798       llvm_unreachable("Invalid ABI kind for return argument");
4799     }
4800 
4801     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4802   } ();
4803 
4804   // Emit the assume_aligned check on the return value.
4805   if (Ret.isScalar() && TargetDecl) {
4806     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
4807     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
4808   }
4809 
4810   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
4811   // we can't use the full cleanup mechanism.
4812   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
4813     LifetimeEnd.Emit(*this, /*Flags=*/{});
4814 
4815   if (!ReturnValue.isExternallyDestructed() &&
4816       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
4817     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
4818                 RetTy);
4819 
4820   return Ret;
4821 }
4822 
4823 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
4824   if (isVirtual()) {
4825     const CallExpr *CE = getVirtualCallExpr();
4826     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
4827         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
4828         CE ? CE->getBeginLoc() : SourceLocation());
4829   }
4830 
4831   return *this;
4832 }
4833 
4834 /* VarArg handling */
4835 
4836 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4837   VAListAddr = VE->isMicrosoftABI()
4838                  ? EmitMSVAListRef(VE->getSubExpr())
4839                  : EmitVAListRef(VE->getSubExpr());
4840   QualType Ty = VE->getType();
4841   if (VE->isMicrosoftABI())
4842     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4843   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4844 }
4845