1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/SwiftCallingConv.h"
30 #include "clang/Frontend/CodeGenOptions.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_Win64: return llvm::CallingConv::Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
63   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
64   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
65   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
66   case CC_Swift: return llvm::CallingConv::Swift;
67   }
68 }
69 
70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
71 /// qualification.
72 /// FIXME: address space qualification?
73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
74   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
75   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
76 }
77 
78 /// Returns the canonical formal type of the given C++ method.
79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
80   return MD->getType()->getCanonicalTypeUnqualified()
81            .getAs<FunctionProtoType>();
82 }
83 
84 /// Returns the "extra-canonicalized" return type, which discards
85 /// qualifiers on the return type.  Codegen doesn't care about them,
86 /// and it makes ABI code a little easier to be able to assume that
87 /// all parameter and return types are top-level unqualified.
88 static CanQualType GetReturnType(QualType RetTy) {
89   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
90 }
91 
92 /// Arrange the argument and result information for a value of the given
93 /// unprototyped freestanding function type.
94 const CGFunctionInfo &
95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
96   // When translating an unprototyped function type, always use a
97   // variadic type.
98   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
99                                  /*instanceMethod=*/false,
100                                  /*chainCall=*/false, None,
101                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
102 }
103 
104 static void addExtParameterInfosForCall(
105          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
106                                         const FunctionProtoType *proto,
107                                         unsigned prefixArgs,
108                                         unsigned totalArgs) {
109   assert(proto->hasExtParameterInfos());
110   assert(paramInfos.size() <= prefixArgs);
111   assert(proto->getNumParams() + prefixArgs <= totalArgs);
112 
113   paramInfos.reserve(totalArgs);
114 
115   // Add default infos for any prefix args that don't already have infos.
116   paramInfos.resize(prefixArgs);
117 
118   // Add infos for the prototype.
119   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
120     paramInfos.push_back(ParamInfo);
121     // pass_object_size params have no parameter info.
122     if (ParamInfo.hasPassObjectSize())
123       paramInfos.emplace_back();
124   }
125 
126   assert(paramInfos.size() <= totalArgs &&
127          "Did we forget to insert pass_object_size args?");
128   // Add default infos for the variadic and/or suffix arguments.
129   paramInfos.resize(totalArgs);
130 }
131 
132 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
133 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
134 static void appendParameterTypes(const CodeGenTypes &CGT,
135                                  SmallVectorImpl<CanQualType> &prefix,
136               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
137                                  CanQual<FunctionProtoType> FPT) {
138   // Fast path: don't touch param info if we don't need to.
139   if (!FPT->hasExtParameterInfos()) {
140     assert(paramInfos.empty() &&
141            "We have paramInfos, but the prototype doesn't?");
142     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
143     return;
144   }
145 
146   unsigned PrefixSize = prefix.size();
147   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
148   // parameters; the only thing that can change this is the presence of
149   // pass_object_size. So, we preallocate for the common case.
150   prefix.reserve(prefix.size() + FPT->getNumParams());
151 
152   auto ExtInfos = FPT->getExtParameterInfos();
153   assert(ExtInfos.size() == FPT->getNumParams());
154   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
155     prefix.push_back(FPT->getParamType(I));
156     if (ExtInfos[I].hasPassObjectSize())
157       prefix.push_back(CGT.getContext().getSizeType());
158   }
159 
160   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
161                               prefix.size());
162 }
163 
164 /// Arrange the LLVM function layout for a value of the given function
165 /// type, on top of any implicit parameters already stored.
166 static const CGFunctionInfo &
167 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
168                         SmallVectorImpl<CanQualType> &prefix,
169                         CanQual<FunctionProtoType> FTP,
170                         const FunctionDecl *FD) {
171   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
172   RequiredArgs Required =
173       RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD);
174   // FIXME: Kill copy.
175   appendParameterTypes(CGT, prefix, paramInfos, FTP);
176   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
177 
178   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
179                                      /*chainCall=*/false, prefix,
180                                      FTP->getExtInfo(), paramInfos,
181                                      Required);
182 }
183 
184 /// Arrange the argument and result information for a value of the
185 /// given freestanding function type.
186 const CGFunctionInfo &
187 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
188                                       const FunctionDecl *FD) {
189   SmallVector<CanQualType, 16> argTypes;
190   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
191                                    FTP, FD);
192 }
193 
194 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
195   // Set the appropriate calling convention for the Function.
196   if (D->hasAttr<StdCallAttr>())
197     return CC_X86StdCall;
198 
199   if (D->hasAttr<FastCallAttr>())
200     return CC_X86FastCall;
201 
202   if (D->hasAttr<RegCallAttr>())
203     return CC_X86RegCall;
204 
205   if (D->hasAttr<ThisCallAttr>())
206     return CC_X86ThisCall;
207 
208   if (D->hasAttr<VectorCallAttr>())
209     return CC_X86VectorCall;
210 
211   if (D->hasAttr<PascalAttr>())
212     return CC_X86Pascal;
213 
214   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
215     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
216 
217   if (D->hasAttr<IntelOclBiccAttr>())
218     return CC_IntelOclBicc;
219 
220   if (D->hasAttr<MSABIAttr>())
221     return IsWindows ? CC_C : CC_Win64;
222 
223   if (D->hasAttr<SysVABIAttr>())
224     return IsWindows ? CC_X86_64SysV : CC_C;
225 
226   if (D->hasAttr<PreserveMostAttr>())
227     return CC_PreserveMost;
228 
229   if (D->hasAttr<PreserveAllAttr>())
230     return CC_PreserveAll;
231 
232   return CC_C;
233 }
234 
235 /// Arrange the argument and result information for a call to an
236 /// unknown C++ non-static member function of the given abstract type.
237 /// (Zero value of RD means we don't have any meaningful "this" argument type,
238 ///  so fall back to a generic pointer type).
239 /// The member function must be an ordinary function, i.e. not a
240 /// constructor or destructor.
241 const CGFunctionInfo &
242 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
243                                    const FunctionProtoType *FTP,
244                                    const CXXMethodDecl *MD) {
245   SmallVector<CanQualType, 16> argTypes;
246 
247   // Add the 'this' pointer.
248   if (RD)
249     argTypes.push_back(GetThisType(Context, RD));
250   else
251     argTypes.push_back(Context.VoidPtrTy);
252 
253   return ::arrangeLLVMFunctionInfo(
254       *this, true, argTypes,
255       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
256 }
257 
258 /// Arrange the argument and result information for a declaration or
259 /// definition of the given C++ non-static member function.  The
260 /// member function must be an ordinary function, i.e. not a
261 /// constructor or destructor.
262 const CGFunctionInfo &
263 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
264   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
265   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
266 
267   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
268 
269   if (MD->isInstance()) {
270     // The abstract case is perfectly fine.
271     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
272     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
273   }
274 
275   return arrangeFreeFunctionType(prototype, MD);
276 }
277 
278 bool CodeGenTypes::inheritingCtorHasParams(
279     const InheritedConstructor &Inherited, CXXCtorType Type) {
280   // Parameters are unnecessary if we're constructing a base class subobject
281   // and the inherited constructor lives in a virtual base.
282   return Type == Ctor_Complete ||
283          !Inherited.getShadowDecl()->constructsVirtualBase() ||
284          !Target.getCXXABI().hasConstructorVariants();
285   }
286 
287 const CGFunctionInfo &
288 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
289                                             StructorType Type) {
290 
291   SmallVector<CanQualType, 16> argTypes;
292   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
293   argTypes.push_back(GetThisType(Context, MD->getParent()));
294 
295   bool PassParams = true;
296 
297   GlobalDecl GD;
298   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
299     GD = GlobalDecl(CD, toCXXCtorType(Type));
300 
301     // A base class inheriting constructor doesn't get forwarded arguments
302     // needed to construct a virtual base (or base class thereof).
303     if (auto Inherited = CD->getInheritedConstructor())
304       PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
305   } else {
306     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
307     GD = GlobalDecl(DD, toCXXDtorType(Type));
308   }
309 
310   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
311 
312   // Add the formal parameters.
313   if (PassParams)
314     appendParameterTypes(*this, argTypes, paramInfos, FTP);
315 
316   CGCXXABI::AddedStructorArgs AddedArgs =
317       TheCXXABI.buildStructorSignature(MD, Type, argTypes);
318   if (!paramInfos.empty()) {
319     // Note: prefix implies after the first param.
320     if (AddedArgs.Prefix)
321       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
322                         FunctionProtoType::ExtParameterInfo{});
323     if (AddedArgs.Suffix)
324       paramInfos.append(AddedArgs.Suffix,
325                         FunctionProtoType::ExtParameterInfo{});
326   }
327 
328   RequiredArgs required =
329       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
330                                       : RequiredArgs::All);
331 
332   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
333   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
334                                ? argTypes.front()
335                                : TheCXXABI.hasMostDerivedReturn(GD)
336                                      ? CGM.getContext().VoidPtrTy
337                                      : Context.VoidTy;
338   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
339                                  /*chainCall=*/false, argTypes, extInfo,
340                                  paramInfos, required);
341 }
342 
343 static SmallVector<CanQualType, 16>
344 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
345   SmallVector<CanQualType, 16> argTypes;
346   for (auto &arg : args)
347     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
348   return argTypes;
349 }
350 
351 static SmallVector<CanQualType, 16>
352 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
353   SmallVector<CanQualType, 16> argTypes;
354   for (auto &arg : args)
355     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
356   return argTypes;
357 }
358 
359 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
360 getExtParameterInfosForCall(const FunctionProtoType *proto,
361                             unsigned prefixArgs, unsigned totalArgs) {
362   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
363   if (proto->hasExtParameterInfos()) {
364     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
365   }
366   return result;
367 }
368 
369 /// Arrange a call to a C++ method, passing the given arguments.
370 ///
371 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
372 /// parameter.
373 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
374 /// args.
375 /// PassProtoArgs indicates whether `args` has args for the parameters in the
376 /// given CXXConstructorDecl.
377 const CGFunctionInfo &
378 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
379                                         const CXXConstructorDecl *D,
380                                         CXXCtorType CtorKind,
381                                         unsigned ExtraPrefixArgs,
382                                         unsigned ExtraSuffixArgs,
383                                         bool PassProtoArgs) {
384   // FIXME: Kill copy.
385   SmallVector<CanQualType, 16> ArgTypes;
386   for (const auto &Arg : args)
387     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
388 
389   // +1 for implicit this, which should always be args[0].
390   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
391 
392   CanQual<FunctionProtoType> FPT = GetFormalType(D);
393   RequiredArgs Required =
394       RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D);
395   GlobalDecl GD(D, CtorKind);
396   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
397                                ? ArgTypes.front()
398                                : TheCXXABI.hasMostDerivedReturn(GD)
399                                      ? CGM.getContext().VoidPtrTy
400                                      : Context.VoidTy;
401 
402   FunctionType::ExtInfo Info = FPT->getExtInfo();
403   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
404   // If the prototype args are elided, we should only have ABI-specific args,
405   // which never have param info.
406   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
407     // ABI-specific suffix arguments are treated the same as variadic arguments.
408     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
409                                 ArgTypes.size());
410   }
411   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
412                                  /*chainCall=*/false, ArgTypes, Info,
413                                  ParamInfos, Required);
414 }
415 
416 /// Arrange the argument and result information for the declaration or
417 /// definition of the given function.
418 const CGFunctionInfo &
419 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
420   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
421     if (MD->isInstance())
422       return arrangeCXXMethodDeclaration(MD);
423 
424   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
425 
426   assert(isa<FunctionType>(FTy));
427 
428   // When declaring a function without a prototype, always use a
429   // non-variadic type.
430   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
431     return arrangeLLVMFunctionInfo(
432         noProto->getReturnType(), /*instanceMethod=*/false,
433         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
434   }
435 
436   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD);
437 }
438 
439 /// Arrange the argument and result information for the declaration or
440 /// definition of an Objective-C method.
441 const CGFunctionInfo &
442 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
443   // It happens that this is the same as a call with no optional
444   // arguments, except also using the formal 'self' type.
445   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
446 }
447 
448 /// Arrange the argument and result information for the function type
449 /// through which to perform a send to the given Objective-C method,
450 /// using the given receiver type.  The receiver type is not always
451 /// the 'self' type of the method or even an Objective-C pointer type.
452 /// This is *not* the right method for actually performing such a
453 /// message send, due to the possibility of optional arguments.
454 const CGFunctionInfo &
455 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
456                                               QualType receiverType) {
457   SmallVector<CanQualType, 16> argTys;
458   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
459   argTys.push_back(Context.getCanonicalParamType(receiverType));
460   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
461   // FIXME: Kill copy?
462   for (const auto *I : MD->parameters()) {
463     argTys.push_back(Context.getCanonicalParamType(I->getType()));
464     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
465         I->hasAttr<NoEscapeAttr>());
466     extParamInfos.push_back(extParamInfo);
467   }
468 
469   FunctionType::ExtInfo einfo;
470   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
471   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
472 
473   if (getContext().getLangOpts().ObjCAutoRefCount &&
474       MD->hasAttr<NSReturnsRetainedAttr>())
475     einfo = einfo.withProducesResult(true);
476 
477   RequiredArgs required =
478     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
479 
480   return arrangeLLVMFunctionInfo(
481       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
482       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
483 }
484 
485 const CGFunctionInfo &
486 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
487                                                  const CallArgList &args) {
488   auto argTypes = getArgTypesForCall(Context, args);
489   FunctionType::ExtInfo einfo;
490 
491   return arrangeLLVMFunctionInfo(
492       GetReturnType(returnType), /*instanceMethod=*/false,
493       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
494 }
495 
496 const CGFunctionInfo &
497 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
498   // FIXME: Do we need to handle ObjCMethodDecl?
499   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
500 
501   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
502     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
503 
504   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
505     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
506 
507   return arrangeFunctionDeclaration(FD);
508 }
509 
510 /// Arrange a thunk that takes 'this' as the first parameter followed by
511 /// varargs.  Return a void pointer, regardless of the actual return type.
512 /// The body of the thunk will end in a musttail call to a function of the
513 /// correct type, and the caller will bitcast the function to the correct
514 /// prototype.
515 const CGFunctionInfo &
516 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
517   assert(MD->isVirtual() && "only virtual memptrs have thunks");
518   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
519   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
520   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
521                                  /*chainCall=*/false, ArgTys,
522                                  FTP->getExtInfo(), {}, RequiredArgs(1));
523 }
524 
525 const CGFunctionInfo &
526 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
527                                    CXXCtorType CT) {
528   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
529 
530   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
531   SmallVector<CanQualType, 2> ArgTys;
532   const CXXRecordDecl *RD = CD->getParent();
533   ArgTys.push_back(GetThisType(Context, RD));
534   if (CT == Ctor_CopyingClosure)
535     ArgTys.push_back(*FTP->param_type_begin());
536   if (RD->getNumVBases() > 0)
537     ArgTys.push_back(Context.IntTy);
538   CallingConv CC = Context.getDefaultCallingConvention(
539       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
540   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
541                                  /*chainCall=*/false, ArgTys,
542                                  FunctionType::ExtInfo(CC), {},
543                                  RequiredArgs::All);
544 }
545 
546 /// Arrange a call as unto a free function, except possibly with an
547 /// additional number of formal parameters considered required.
548 static const CGFunctionInfo &
549 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
550                             CodeGenModule &CGM,
551                             const CallArgList &args,
552                             const FunctionType *fnType,
553                             unsigned numExtraRequiredArgs,
554                             bool chainCall) {
555   assert(args.size() >= numExtraRequiredArgs);
556 
557   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
558 
559   // In most cases, there are no optional arguments.
560   RequiredArgs required = RequiredArgs::All;
561 
562   // If we have a variadic prototype, the required arguments are the
563   // extra prefix plus the arguments in the prototype.
564   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
565     if (proto->isVariadic())
566       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
567 
568     if (proto->hasExtParameterInfos())
569       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
570                                   args.size());
571 
572   // If we don't have a prototype at all, but we're supposed to
573   // explicitly use the variadic convention for unprototyped calls,
574   // treat all of the arguments as required but preserve the nominal
575   // possibility of variadics.
576   } else if (CGM.getTargetCodeGenInfo()
577                 .isNoProtoCallVariadic(args,
578                                        cast<FunctionNoProtoType>(fnType))) {
579     required = RequiredArgs(args.size());
580   }
581 
582   // FIXME: Kill copy.
583   SmallVector<CanQualType, 16> argTypes;
584   for (const auto &arg : args)
585     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
586   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
587                                      /*instanceMethod=*/false, chainCall,
588                                      argTypes, fnType->getExtInfo(), paramInfos,
589                                      required);
590 }
591 
592 /// Figure out the rules for calling a function with the given formal
593 /// type using the given arguments.  The arguments are necessary
594 /// because the function might be unprototyped, in which case it's
595 /// target-dependent in crazy ways.
596 const CGFunctionInfo &
597 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
598                                       const FunctionType *fnType,
599                                       bool chainCall) {
600   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
601                                      chainCall ? 1 : 0, chainCall);
602 }
603 
604 /// A block function is essentially a free function with an
605 /// extra implicit argument.
606 const CGFunctionInfo &
607 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
608                                        const FunctionType *fnType) {
609   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
610                                      /*chainCall=*/false);
611 }
612 
613 const CGFunctionInfo &
614 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
615                                               const FunctionArgList &params) {
616   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
617   auto argTypes = getArgTypesForDeclaration(Context, params);
618 
619   return arrangeLLVMFunctionInfo(
620       GetReturnType(proto->getReturnType()),
621       /*instanceMethod*/ false, /*chainCall*/ false, argTypes,
622       proto->getExtInfo(), paramInfos,
623       RequiredArgs::forPrototypePlus(proto, 1, nullptr));
624 }
625 
626 const CGFunctionInfo &
627 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
628                                          const CallArgList &args) {
629   // FIXME: Kill copy.
630   SmallVector<CanQualType, 16> argTypes;
631   for (const auto &Arg : args)
632     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
633   return arrangeLLVMFunctionInfo(
634       GetReturnType(resultType), /*instanceMethod=*/false,
635       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
636       /*paramInfos=*/ {}, RequiredArgs::All);
637 }
638 
639 const CGFunctionInfo &
640 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
641                                                 const FunctionArgList &args) {
642   auto argTypes = getArgTypesForDeclaration(Context, args);
643 
644   return arrangeLLVMFunctionInfo(
645       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
646       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
647 }
648 
649 const CGFunctionInfo &
650 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
651                                               ArrayRef<CanQualType> argTypes) {
652   return arrangeLLVMFunctionInfo(
653       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
654       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
655 }
656 
657 /// Arrange a call to a C++ method, passing the given arguments.
658 ///
659 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
660 /// does not count `this`.
661 const CGFunctionInfo &
662 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
663                                    const FunctionProtoType *proto,
664                                    RequiredArgs required,
665                                    unsigned numPrefixArgs) {
666   assert(numPrefixArgs + 1 <= args.size() &&
667          "Emitting a call with less args than the required prefix?");
668   // Add one to account for `this`. It's a bit awkward here, but we don't count
669   // `this` in similar places elsewhere.
670   auto paramInfos =
671     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
672 
673   // FIXME: Kill copy.
674   auto argTypes = getArgTypesForCall(Context, args);
675 
676   FunctionType::ExtInfo info = proto->getExtInfo();
677   return arrangeLLVMFunctionInfo(
678       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
679       /*chainCall=*/false, argTypes, info, paramInfos, required);
680 }
681 
682 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
683   return arrangeLLVMFunctionInfo(
684       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
685       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
686 }
687 
688 const CGFunctionInfo &
689 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
690                           const CallArgList &args) {
691   assert(signature.arg_size() <= args.size());
692   if (signature.arg_size() == args.size())
693     return signature;
694 
695   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
696   auto sigParamInfos = signature.getExtParameterInfos();
697   if (!sigParamInfos.empty()) {
698     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
699     paramInfos.resize(args.size());
700   }
701 
702   auto argTypes = getArgTypesForCall(Context, args);
703 
704   assert(signature.getRequiredArgs().allowsOptionalArgs());
705   return arrangeLLVMFunctionInfo(signature.getReturnType(),
706                                  signature.isInstanceMethod(),
707                                  signature.isChainCall(),
708                                  argTypes,
709                                  signature.getExtInfo(),
710                                  paramInfos,
711                                  signature.getRequiredArgs());
712 }
713 
714 namespace clang {
715 namespace CodeGen {
716 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
717 }
718 }
719 
720 /// Arrange the argument and result information for an abstract value
721 /// of a given function type.  This is the method which all of the
722 /// above functions ultimately defer to.
723 const CGFunctionInfo &
724 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
725                                       bool instanceMethod,
726                                       bool chainCall,
727                                       ArrayRef<CanQualType> argTypes,
728                                       FunctionType::ExtInfo info,
729                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
730                                       RequiredArgs required) {
731   assert(std::all_of(argTypes.begin(), argTypes.end(),
732                      [](CanQualType T) { return T.isCanonicalAsParam(); }));
733 
734   // Lookup or create unique function info.
735   llvm::FoldingSetNodeID ID;
736   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
737                           required, resultType, argTypes);
738 
739   void *insertPos = nullptr;
740   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
741   if (FI)
742     return *FI;
743 
744   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
745 
746   // Construct the function info.  We co-allocate the ArgInfos.
747   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
748                               paramInfos, resultType, argTypes, required);
749   FunctionInfos.InsertNode(FI, insertPos);
750 
751   bool inserted = FunctionsBeingProcessed.insert(FI).second;
752   (void)inserted;
753   assert(inserted && "Recursively being processed?");
754 
755   // Compute ABI information.
756   if (CC == llvm::CallingConv::SPIR_KERNEL) {
757     // Force target independent argument handling for the host visible
758     // kernel functions.
759     computeSPIRKernelABIInfo(CGM, *FI);
760   } else if (info.getCC() == CC_Swift) {
761     swiftcall::computeABIInfo(CGM, *FI);
762   } else {
763     getABIInfo().computeInfo(*FI);
764   }
765 
766   // Loop over all of the computed argument and return value info.  If any of
767   // them are direct or extend without a specified coerce type, specify the
768   // default now.
769   ABIArgInfo &retInfo = FI->getReturnInfo();
770   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
771     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
772 
773   for (auto &I : FI->arguments())
774     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
775       I.info.setCoerceToType(ConvertType(I.type));
776 
777   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
778   assert(erased && "Not in set?");
779 
780   return *FI;
781 }
782 
783 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
784                                        bool instanceMethod,
785                                        bool chainCall,
786                                        const FunctionType::ExtInfo &info,
787                                        ArrayRef<ExtParameterInfo> paramInfos,
788                                        CanQualType resultType,
789                                        ArrayRef<CanQualType> argTypes,
790                                        RequiredArgs required) {
791   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
792 
793   void *buffer =
794     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
795                                   argTypes.size() + 1, paramInfos.size()));
796 
797   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
798   FI->CallingConvention = llvmCC;
799   FI->EffectiveCallingConvention = llvmCC;
800   FI->ASTCallingConvention = info.getCC();
801   FI->InstanceMethod = instanceMethod;
802   FI->ChainCall = chainCall;
803   FI->NoReturn = info.getNoReturn();
804   FI->ReturnsRetained = info.getProducesResult();
805   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
806   FI->Required = required;
807   FI->HasRegParm = info.getHasRegParm();
808   FI->RegParm = info.getRegParm();
809   FI->ArgStruct = nullptr;
810   FI->ArgStructAlign = 0;
811   FI->NumArgs = argTypes.size();
812   FI->HasExtParameterInfos = !paramInfos.empty();
813   FI->getArgsBuffer()[0].type = resultType;
814   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
815     FI->getArgsBuffer()[i + 1].type = argTypes[i];
816   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
817     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
818   return FI;
819 }
820 
821 /***/
822 
823 namespace {
824 // ABIArgInfo::Expand implementation.
825 
826 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
827 struct TypeExpansion {
828   enum TypeExpansionKind {
829     // Elements of constant arrays are expanded recursively.
830     TEK_ConstantArray,
831     // Record fields are expanded recursively (but if record is a union, only
832     // the field with the largest size is expanded).
833     TEK_Record,
834     // For complex types, real and imaginary parts are expanded recursively.
835     TEK_Complex,
836     // All other types are not expandable.
837     TEK_None
838   };
839 
840   const TypeExpansionKind Kind;
841 
842   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
843   virtual ~TypeExpansion() {}
844 };
845 
846 struct ConstantArrayExpansion : TypeExpansion {
847   QualType EltTy;
848   uint64_t NumElts;
849 
850   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
851       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
852   static bool classof(const TypeExpansion *TE) {
853     return TE->Kind == TEK_ConstantArray;
854   }
855 };
856 
857 struct RecordExpansion : TypeExpansion {
858   SmallVector<const CXXBaseSpecifier *, 1> Bases;
859 
860   SmallVector<const FieldDecl *, 1> Fields;
861 
862   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
863                   SmallVector<const FieldDecl *, 1> &&Fields)
864       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
865         Fields(std::move(Fields)) {}
866   static bool classof(const TypeExpansion *TE) {
867     return TE->Kind == TEK_Record;
868   }
869 };
870 
871 struct ComplexExpansion : TypeExpansion {
872   QualType EltTy;
873 
874   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
875   static bool classof(const TypeExpansion *TE) {
876     return TE->Kind == TEK_Complex;
877   }
878 };
879 
880 struct NoExpansion : TypeExpansion {
881   NoExpansion() : TypeExpansion(TEK_None) {}
882   static bool classof(const TypeExpansion *TE) {
883     return TE->Kind == TEK_None;
884   }
885 };
886 }  // namespace
887 
888 static std::unique_ptr<TypeExpansion>
889 getTypeExpansion(QualType Ty, const ASTContext &Context) {
890   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
891     return llvm::make_unique<ConstantArrayExpansion>(
892         AT->getElementType(), AT->getSize().getZExtValue());
893   }
894   if (const RecordType *RT = Ty->getAs<RecordType>()) {
895     SmallVector<const CXXBaseSpecifier *, 1> Bases;
896     SmallVector<const FieldDecl *, 1> Fields;
897     const RecordDecl *RD = RT->getDecl();
898     assert(!RD->hasFlexibleArrayMember() &&
899            "Cannot expand structure with flexible array.");
900     if (RD->isUnion()) {
901       // Unions can be here only in degenerative cases - all the fields are same
902       // after flattening. Thus we have to use the "largest" field.
903       const FieldDecl *LargestFD = nullptr;
904       CharUnits UnionSize = CharUnits::Zero();
905 
906       for (const auto *FD : RD->fields()) {
907         // Skip zero length bitfields.
908         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
909           continue;
910         assert(!FD->isBitField() &&
911                "Cannot expand structure with bit-field members.");
912         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
913         if (UnionSize < FieldSize) {
914           UnionSize = FieldSize;
915           LargestFD = FD;
916         }
917       }
918       if (LargestFD)
919         Fields.push_back(LargestFD);
920     } else {
921       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
922         assert(!CXXRD->isDynamicClass() &&
923                "cannot expand vtable pointers in dynamic classes");
924         for (const CXXBaseSpecifier &BS : CXXRD->bases())
925           Bases.push_back(&BS);
926       }
927 
928       for (const auto *FD : RD->fields()) {
929         // Skip zero length bitfields.
930         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
931           continue;
932         assert(!FD->isBitField() &&
933                "Cannot expand structure with bit-field members.");
934         Fields.push_back(FD);
935       }
936     }
937     return llvm::make_unique<RecordExpansion>(std::move(Bases),
938                                               std::move(Fields));
939   }
940   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
941     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
942   }
943   return llvm::make_unique<NoExpansion>();
944 }
945 
946 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
947   auto Exp = getTypeExpansion(Ty, Context);
948   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
949     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
950   }
951   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
952     int Res = 0;
953     for (auto BS : RExp->Bases)
954       Res += getExpansionSize(BS->getType(), Context);
955     for (auto FD : RExp->Fields)
956       Res += getExpansionSize(FD->getType(), Context);
957     return Res;
958   }
959   if (isa<ComplexExpansion>(Exp.get()))
960     return 2;
961   assert(isa<NoExpansion>(Exp.get()));
962   return 1;
963 }
964 
965 void
966 CodeGenTypes::getExpandedTypes(QualType Ty,
967                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
968   auto Exp = getTypeExpansion(Ty, Context);
969   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
970     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
971       getExpandedTypes(CAExp->EltTy, TI);
972     }
973   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
974     for (auto BS : RExp->Bases)
975       getExpandedTypes(BS->getType(), TI);
976     for (auto FD : RExp->Fields)
977       getExpandedTypes(FD->getType(), TI);
978   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
979     llvm::Type *EltTy = ConvertType(CExp->EltTy);
980     *TI++ = EltTy;
981     *TI++ = EltTy;
982   } else {
983     assert(isa<NoExpansion>(Exp.get()));
984     *TI++ = ConvertType(Ty);
985   }
986 }
987 
988 static void forConstantArrayExpansion(CodeGenFunction &CGF,
989                                       ConstantArrayExpansion *CAE,
990                                       Address BaseAddr,
991                                       llvm::function_ref<void(Address)> Fn) {
992   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
993   CharUnits EltAlign =
994     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
995 
996   for (int i = 0, n = CAE->NumElts; i < n; i++) {
997     llvm::Value *EltAddr =
998       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
999     Fn(Address(EltAddr, EltAlign));
1000   }
1001 }
1002 
1003 void CodeGenFunction::ExpandTypeFromArgs(
1004     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1005   assert(LV.isSimple() &&
1006          "Unexpected non-simple lvalue during struct expansion.");
1007 
1008   auto Exp = getTypeExpansion(Ty, getContext());
1009   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1010     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
1011                               [&](Address EltAddr) {
1012       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1013       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1014     });
1015   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1016     Address This = LV.getAddress();
1017     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1018       // Perform a single step derived-to-base conversion.
1019       Address Base =
1020           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1021                                 /*NullCheckValue=*/false, SourceLocation());
1022       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1023 
1024       // Recurse onto bases.
1025       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1026     }
1027     for (auto FD : RExp->Fields) {
1028       // FIXME: What are the right qualifiers here?
1029       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1030       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1031     }
1032   } else if (isa<ComplexExpansion>(Exp.get())) {
1033     auto realValue = *AI++;
1034     auto imagValue = *AI++;
1035     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1036   } else {
1037     assert(isa<NoExpansion>(Exp.get()));
1038     EmitStoreThroughLValue(RValue::get(*AI++), LV);
1039   }
1040 }
1041 
1042 void CodeGenFunction::ExpandTypeToArgs(
1043     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
1044     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1045   auto Exp = getTypeExpansion(Ty, getContext());
1046   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1047     forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
1048                               [&](Address EltAddr) {
1049       RValue EltRV =
1050           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
1051       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
1052     });
1053   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1054     Address This = RV.getAggregateAddress();
1055     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1056       // Perform a single step derived-to-base conversion.
1057       Address Base =
1058           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1059                                 /*NullCheckValue=*/false, SourceLocation());
1060       RValue BaseRV = RValue::getAggregate(Base);
1061 
1062       // Recurse onto bases.
1063       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
1064                        IRCallArgPos);
1065     }
1066 
1067     LValue LV = MakeAddrLValue(This, Ty);
1068     for (auto FD : RExp->Fields) {
1069       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
1070       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
1071                        IRCallArgPos);
1072     }
1073   } else if (isa<ComplexExpansion>(Exp.get())) {
1074     ComplexPairTy CV = RV.getComplexVal();
1075     IRCallArgs[IRCallArgPos++] = CV.first;
1076     IRCallArgs[IRCallArgPos++] = CV.second;
1077   } else {
1078     assert(isa<NoExpansion>(Exp.get()));
1079     assert(RV.isScalar() &&
1080            "Unexpected non-scalar rvalue during struct expansion.");
1081 
1082     // Insert a bitcast as needed.
1083     llvm::Value *V = RV.getScalarVal();
1084     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1085         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1086       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1087 
1088     IRCallArgs[IRCallArgPos++] = V;
1089   }
1090 }
1091 
1092 /// Create a temporary allocation for the purposes of coercion.
1093 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1094                                            CharUnits MinAlign) {
1095   // Don't use an alignment that's worse than what LLVM would prefer.
1096   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1097   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1098 
1099   return CGF.CreateTempAlloca(Ty, Align);
1100 }
1101 
1102 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1103 /// accessing some number of bytes out of it, try to gep into the struct to get
1104 /// at its inner goodness.  Dive as deep as possible without entering an element
1105 /// with an in-memory size smaller than DstSize.
1106 static Address
1107 EnterStructPointerForCoercedAccess(Address SrcPtr,
1108                                    llvm::StructType *SrcSTy,
1109                                    uint64_t DstSize, CodeGenFunction &CGF) {
1110   // We can't dive into a zero-element struct.
1111   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1112 
1113   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1114 
1115   // If the first elt is at least as large as what we're looking for, or if the
1116   // first element is the same size as the whole struct, we can enter it. The
1117   // comparison must be made on the store size and not the alloca size. Using
1118   // the alloca size may overstate the size of the load.
1119   uint64_t FirstEltSize =
1120     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1121   if (FirstEltSize < DstSize &&
1122       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1123     return SrcPtr;
1124 
1125   // GEP into the first element.
1126   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
1127 
1128   // If the first element is a struct, recurse.
1129   llvm::Type *SrcTy = SrcPtr.getElementType();
1130   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1131     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1132 
1133   return SrcPtr;
1134 }
1135 
1136 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1137 /// are either integers or pointers.  This does a truncation of the value if it
1138 /// is too large or a zero extension if it is too small.
1139 ///
1140 /// This behaves as if the value were coerced through memory, so on big-endian
1141 /// targets the high bits are preserved in a truncation, while little-endian
1142 /// targets preserve the low bits.
1143 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1144                                              llvm::Type *Ty,
1145                                              CodeGenFunction &CGF) {
1146   if (Val->getType() == Ty)
1147     return Val;
1148 
1149   if (isa<llvm::PointerType>(Val->getType())) {
1150     // If this is Pointer->Pointer avoid conversion to and from int.
1151     if (isa<llvm::PointerType>(Ty))
1152       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1153 
1154     // Convert the pointer to an integer so we can play with its width.
1155     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1156   }
1157 
1158   llvm::Type *DestIntTy = Ty;
1159   if (isa<llvm::PointerType>(DestIntTy))
1160     DestIntTy = CGF.IntPtrTy;
1161 
1162   if (Val->getType() != DestIntTy) {
1163     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1164     if (DL.isBigEndian()) {
1165       // Preserve the high bits on big-endian targets.
1166       // That is what memory coercion does.
1167       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1168       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1169 
1170       if (SrcSize > DstSize) {
1171         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1172         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1173       } else {
1174         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1175         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1176       }
1177     } else {
1178       // Little-endian targets preserve the low bits. No shifts required.
1179       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1180     }
1181   }
1182 
1183   if (isa<llvm::PointerType>(Ty))
1184     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1185   return Val;
1186 }
1187 
1188 
1189 
1190 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1191 /// a pointer to an object of type \arg Ty, known to be aligned to
1192 /// \arg SrcAlign bytes.
1193 ///
1194 /// This safely handles the case when the src type is smaller than the
1195 /// destination type; in this situation the values of bits which not
1196 /// present in the src are undefined.
1197 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1198                                       CodeGenFunction &CGF) {
1199   llvm::Type *SrcTy = Src.getElementType();
1200 
1201   // If SrcTy and Ty are the same, just do a load.
1202   if (SrcTy == Ty)
1203     return CGF.Builder.CreateLoad(Src);
1204 
1205   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1206 
1207   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1208     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1209     SrcTy = Src.getType()->getElementType();
1210   }
1211 
1212   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1213 
1214   // If the source and destination are integer or pointer types, just do an
1215   // extension or truncation to the desired type.
1216   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1217       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1218     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1219     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1220   }
1221 
1222   // If load is legal, just bitcast the src pointer.
1223   if (SrcSize >= DstSize) {
1224     // Generally SrcSize is never greater than DstSize, since this means we are
1225     // losing bits. However, this can happen in cases where the structure has
1226     // additional padding, for example due to a user specified alignment.
1227     //
1228     // FIXME: Assert that we aren't truncating non-padding bits when have access
1229     // to that information.
1230     Src = CGF.Builder.CreateBitCast(Src,
1231                                     Ty->getPointerTo(Src.getAddressSpace()));
1232     return CGF.Builder.CreateLoad(Src);
1233   }
1234 
1235   // Otherwise do coercion through memory. This is stupid, but simple.
1236   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1237   Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1238   Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy);
1239   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1240       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1241       false);
1242   return CGF.Builder.CreateLoad(Tmp);
1243 }
1244 
1245 // Function to store a first-class aggregate into memory.  We prefer to
1246 // store the elements rather than the aggregate to be more friendly to
1247 // fast-isel.
1248 // FIXME: Do we need to recurse here?
1249 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1250                           Address Dest, bool DestIsVolatile) {
1251   // Prefer scalar stores to first-class aggregate stores.
1252   if (llvm::StructType *STy =
1253         dyn_cast<llvm::StructType>(Val->getType())) {
1254     const llvm::StructLayout *Layout =
1255       CGF.CGM.getDataLayout().getStructLayout(STy);
1256 
1257     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1258       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1259       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1260       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1261       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1262     }
1263   } else {
1264     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1265   }
1266 }
1267 
1268 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1269 /// where the source and destination may have different types.  The
1270 /// destination is known to be aligned to \arg DstAlign bytes.
1271 ///
1272 /// This safely handles the case when the src type is larger than the
1273 /// destination type; the upper bits of the src will be lost.
1274 static void CreateCoercedStore(llvm::Value *Src,
1275                                Address Dst,
1276                                bool DstIsVolatile,
1277                                CodeGenFunction &CGF) {
1278   llvm::Type *SrcTy = Src->getType();
1279   llvm::Type *DstTy = Dst.getType()->getElementType();
1280   if (SrcTy == DstTy) {
1281     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1282     return;
1283   }
1284 
1285   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1286 
1287   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1288     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1289     DstTy = Dst.getType()->getElementType();
1290   }
1291 
1292   // If the source and destination are integer or pointer types, just do an
1293   // extension or truncation to the desired type.
1294   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1295       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1296     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1297     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1298     return;
1299   }
1300 
1301   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1302 
1303   // If store is legal, just bitcast the src pointer.
1304   if (SrcSize <= DstSize) {
1305     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1306     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1307   } else {
1308     // Otherwise do coercion through memory. This is stupid, but
1309     // simple.
1310 
1311     // Generally SrcSize is never greater than DstSize, since this means we are
1312     // losing bits. However, this can happen in cases where the structure has
1313     // additional padding, for example due to a user specified alignment.
1314     //
1315     // FIXME: Assert that we aren't truncating non-padding bits when have access
1316     // to that information.
1317     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1318     CGF.Builder.CreateStore(Src, Tmp);
1319     Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1320     Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy);
1321     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1322         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1323         false);
1324   }
1325 }
1326 
1327 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1328                                    const ABIArgInfo &info) {
1329   if (unsigned offset = info.getDirectOffset()) {
1330     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1331     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1332                                              CharUnits::fromQuantity(offset));
1333     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1334   }
1335   return addr;
1336 }
1337 
1338 namespace {
1339 
1340 /// Encapsulates information about the way function arguments from
1341 /// CGFunctionInfo should be passed to actual LLVM IR function.
1342 class ClangToLLVMArgMapping {
1343   static const unsigned InvalidIndex = ~0U;
1344   unsigned InallocaArgNo;
1345   unsigned SRetArgNo;
1346   unsigned TotalIRArgs;
1347 
1348   /// Arguments of LLVM IR function corresponding to single Clang argument.
1349   struct IRArgs {
1350     unsigned PaddingArgIndex;
1351     // Argument is expanded to IR arguments at positions
1352     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1353     unsigned FirstArgIndex;
1354     unsigned NumberOfArgs;
1355 
1356     IRArgs()
1357         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1358           NumberOfArgs(0) {}
1359   };
1360 
1361   SmallVector<IRArgs, 8> ArgInfo;
1362 
1363 public:
1364   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1365                         bool OnlyRequiredArgs = false)
1366       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1367         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1368     construct(Context, FI, OnlyRequiredArgs);
1369   }
1370 
1371   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1372   unsigned getInallocaArgNo() const {
1373     assert(hasInallocaArg());
1374     return InallocaArgNo;
1375   }
1376 
1377   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1378   unsigned getSRetArgNo() const {
1379     assert(hasSRetArg());
1380     return SRetArgNo;
1381   }
1382 
1383   unsigned totalIRArgs() const { return TotalIRArgs; }
1384 
1385   bool hasPaddingArg(unsigned ArgNo) const {
1386     assert(ArgNo < ArgInfo.size());
1387     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1388   }
1389   unsigned getPaddingArgNo(unsigned ArgNo) const {
1390     assert(hasPaddingArg(ArgNo));
1391     return ArgInfo[ArgNo].PaddingArgIndex;
1392   }
1393 
1394   /// Returns index of first IR argument corresponding to ArgNo, and their
1395   /// quantity.
1396   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1397     assert(ArgNo < ArgInfo.size());
1398     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1399                           ArgInfo[ArgNo].NumberOfArgs);
1400   }
1401 
1402 private:
1403   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1404                  bool OnlyRequiredArgs);
1405 };
1406 
1407 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1408                                       const CGFunctionInfo &FI,
1409                                       bool OnlyRequiredArgs) {
1410   unsigned IRArgNo = 0;
1411   bool SwapThisWithSRet = false;
1412   const ABIArgInfo &RetAI = FI.getReturnInfo();
1413 
1414   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1415     SwapThisWithSRet = RetAI.isSRetAfterThis();
1416     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1417   }
1418 
1419   unsigned ArgNo = 0;
1420   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1421   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1422        ++I, ++ArgNo) {
1423     assert(I != FI.arg_end());
1424     QualType ArgType = I->type;
1425     const ABIArgInfo &AI = I->info;
1426     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1427     auto &IRArgs = ArgInfo[ArgNo];
1428 
1429     if (AI.getPaddingType())
1430       IRArgs.PaddingArgIndex = IRArgNo++;
1431 
1432     switch (AI.getKind()) {
1433     case ABIArgInfo::Extend:
1434     case ABIArgInfo::Direct: {
1435       // FIXME: handle sseregparm someday...
1436       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1437       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1438         IRArgs.NumberOfArgs = STy->getNumElements();
1439       } else {
1440         IRArgs.NumberOfArgs = 1;
1441       }
1442       break;
1443     }
1444     case ABIArgInfo::Indirect:
1445       IRArgs.NumberOfArgs = 1;
1446       break;
1447     case ABIArgInfo::Ignore:
1448     case ABIArgInfo::InAlloca:
1449       // ignore and inalloca doesn't have matching LLVM parameters.
1450       IRArgs.NumberOfArgs = 0;
1451       break;
1452     case ABIArgInfo::CoerceAndExpand:
1453       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1454       break;
1455     case ABIArgInfo::Expand:
1456       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1457       break;
1458     }
1459 
1460     if (IRArgs.NumberOfArgs > 0) {
1461       IRArgs.FirstArgIndex = IRArgNo;
1462       IRArgNo += IRArgs.NumberOfArgs;
1463     }
1464 
1465     // Skip over the sret parameter when it comes second.  We already handled it
1466     // above.
1467     if (IRArgNo == 1 && SwapThisWithSRet)
1468       IRArgNo++;
1469   }
1470   assert(ArgNo == ArgInfo.size());
1471 
1472   if (FI.usesInAlloca())
1473     InallocaArgNo = IRArgNo++;
1474 
1475   TotalIRArgs = IRArgNo;
1476 }
1477 }  // namespace
1478 
1479 /***/
1480 
1481 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1482   return FI.getReturnInfo().isIndirect();
1483 }
1484 
1485 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1486   return ReturnTypeUsesSRet(FI) &&
1487          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1488 }
1489 
1490 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1491   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1492     switch (BT->getKind()) {
1493     default:
1494       return false;
1495     case BuiltinType::Float:
1496       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1497     case BuiltinType::Double:
1498       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1499     case BuiltinType::LongDouble:
1500       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1501     }
1502   }
1503 
1504   return false;
1505 }
1506 
1507 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1508   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1509     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1510       if (BT->getKind() == BuiltinType::LongDouble)
1511         return getTarget().useObjCFP2RetForComplexLongDouble();
1512     }
1513   }
1514 
1515   return false;
1516 }
1517 
1518 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1519   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1520   return GetFunctionType(FI);
1521 }
1522 
1523 llvm::FunctionType *
1524 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1525 
1526   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1527   (void)Inserted;
1528   assert(Inserted && "Recursively being processed?");
1529 
1530   llvm::Type *resultType = nullptr;
1531   const ABIArgInfo &retAI = FI.getReturnInfo();
1532   switch (retAI.getKind()) {
1533   case ABIArgInfo::Expand:
1534     llvm_unreachable("Invalid ABI kind for return argument");
1535 
1536   case ABIArgInfo::Extend:
1537   case ABIArgInfo::Direct:
1538     resultType = retAI.getCoerceToType();
1539     break;
1540 
1541   case ABIArgInfo::InAlloca:
1542     if (retAI.getInAllocaSRet()) {
1543       // sret things on win32 aren't void, they return the sret pointer.
1544       QualType ret = FI.getReturnType();
1545       llvm::Type *ty = ConvertType(ret);
1546       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1547       resultType = llvm::PointerType::get(ty, addressSpace);
1548     } else {
1549       resultType = llvm::Type::getVoidTy(getLLVMContext());
1550     }
1551     break;
1552 
1553   case ABIArgInfo::Indirect:
1554   case ABIArgInfo::Ignore:
1555     resultType = llvm::Type::getVoidTy(getLLVMContext());
1556     break;
1557 
1558   case ABIArgInfo::CoerceAndExpand:
1559     resultType = retAI.getUnpaddedCoerceAndExpandType();
1560     break;
1561   }
1562 
1563   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1564   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1565 
1566   // Add type for sret argument.
1567   if (IRFunctionArgs.hasSRetArg()) {
1568     QualType Ret = FI.getReturnType();
1569     llvm::Type *Ty = ConvertType(Ret);
1570     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1571     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1572         llvm::PointerType::get(Ty, AddressSpace);
1573   }
1574 
1575   // Add type for inalloca argument.
1576   if (IRFunctionArgs.hasInallocaArg()) {
1577     auto ArgStruct = FI.getArgStruct();
1578     assert(ArgStruct);
1579     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1580   }
1581 
1582   // Add in all of the required arguments.
1583   unsigned ArgNo = 0;
1584   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1585                                      ie = it + FI.getNumRequiredArgs();
1586   for (; it != ie; ++it, ++ArgNo) {
1587     const ABIArgInfo &ArgInfo = it->info;
1588 
1589     // Insert a padding type to ensure proper alignment.
1590     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1591       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1592           ArgInfo.getPaddingType();
1593 
1594     unsigned FirstIRArg, NumIRArgs;
1595     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1596 
1597     switch (ArgInfo.getKind()) {
1598     case ABIArgInfo::Ignore:
1599     case ABIArgInfo::InAlloca:
1600       assert(NumIRArgs == 0);
1601       break;
1602 
1603     case ABIArgInfo::Indirect: {
1604       assert(NumIRArgs == 1);
1605       // indirect arguments are always on the stack, which is alloca addr space.
1606       llvm::Type *LTy = ConvertTypeForMem(it->type);
1607       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1608           CGM.getDataLayout().getAllocaAddrSpace());
1609       break;
1610     }
1611 
1612     case ABIArgInfo::Extend:
1613     case ABIArgInfo::Direct: {
1614       // Fast-isel and the optimizer generally like scalar values better than
1615       // FCAs, so we flatten them if this is safe to do for this argument.
1616       llvm::Type *argType = ArgInfo.getCoerceToType();
1617       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1618       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1619         assert(NumIRArgs == st->getNumElements());
1620         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1621           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1622       } else {
1623         assert(NumIRArgs == 1);
1624         ArgTypes[FirstIRArg] = argType;
1625       }
1626       break;
1627     }
1628 
1629     case ABIArgInfo::CoerceAndExpand: {
1630       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1631       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1632         *ArgTypesIter++ = EltTy;
1633       }
1634       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1635       break;
1636     }
1637 
1638     case ABIArgInfo::Expand:
1639       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1640       getExpandedTypes(it->type, ArgTypesIter);
1641       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1642       break;
1643     }
1644   }
1645 
1646   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1647   assert(Erased && "Not in set?");
1648 
1649   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1650 }
1651 
1652 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1653   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1654   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1655 
1656   if (!isFuncTypeConvertible(FPT))
1657     return llvm::StructType::get(getLLVMContext());
1658 
1659   const CGFunctionInfo *Info;
1660   if (isa<CXXDestructorDecl>(MD))
1661     Info =
1662         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1663   else
1664     Info = &arrangeCXXMethodDeclaration(MD);
1665   return GetFunctionType(*Info);
1666 }
1667 
1668 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1669                                                llvm::AttrBuilder &FuncAttrs,
1670                                                const FunctionProtoType *FPT) {
1671   if (!FPT)
1672     return;
1673 
1674   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1675       FPT->isNothrow(Ctx))
1676     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1677 }
1678 
1679 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1680                                                bool AttrOnCallSite,
1681                                                llvm::AttrBuilder &FuncAttrs) {
1682   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1683   if (!HasOptnone) {
1684     if (CodeGenOpts.OptimizeSize)
1685       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1686     if (CodeGenOpts.OptimizeSize == 2)
1687       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1688   }
1689 
1690   if (CodeGenOpts.DisableRedZone)
1691     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1692   if (CodeGenOpts.NoImplicitFloat)
1693     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1694 
1695   if (AttrOnCallSite) {
1696     // Attributes that should go on the call site only.
1697     if (!CodeGenOpts.SimplifyLibCalls ||
1698         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1699       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1700     if (!CodeGenOpts.TrapFuncName.empty())
1701       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1702   } else {
1703     // Attributes that should go on the function, but not the call site.
1704     if (!CodeGenOpts.DisableFPElim) {
1705       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1706     } else if (CodeGenOpts.OmitLeafFramePointer) {
1707       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1708       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1709     } else {
1710       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1711       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1712     }
1713 
1714     FuncAttrs.addAttribute("less-precise-fpmad",
1715                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1716 
1717     if (!CodeGenOpts.FPDenormalMode.empty())
1718       FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
1719 
1720     FuncAttrs.addAttribute("no-trapping-math",
1721                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1722 
1723     // TODO: Are these all needed?
1724     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1725     FuncAttrs.addAttribute("no-infs-fp-math",
1726                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1727     FuncAttrs.addAttribute("no-nans-fp-math",
1728                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1729     FuncAttrs.addAttribute("unsafe-fp-math",
1730                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1731     FuncAttrs.addAttribute("use-soft-float",
1732                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1733     FuncAttrs.addAttribute("stack-protector-buffer-size",
1734                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1735     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1736                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1737     FuncAttrs.addAttribute(
1738         "correctly-rounded-divide-sqrt-fp-math",
1739         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1740 
1741     // TODO: Reciprocal estimate codegen options should apply to instructions?
1742     std::vector<std::string> &Recips = getTarget().getTargetOpts().Reciprocals;
1743     if (!Recips.empty())
1744       FuncAttrs.addAttribute("reciprocal-estimates",
1745                              llvm::join(Recips, ","));
1746 
1747     if (CodeGenOpts.StackRealignment)
1748       FuncAttrs.addAttribute("stackrealign");
1749     if (CodeGenOpts.Backchain)
1750       FuncAttrs.addAttribute("backchain");
1751   }
1752 
1753   if (getLangOpts().assumeFunctionsAreConvergent()) {
1754     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1755     // convergent (meaning, they may call an intrinsically convergent op, such
1756     // as __syncthreads() / barrier(), and so can't have certain optimizations
1757     // applied around them).  LLVM will remove this attribute where it safely
1758     // can.
1759     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1760   }
1761 
1762   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1763     // Exceptions aren't supported in CUDA device code.
1764     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1765 
1766     // Respect -fcuda-flush-denormals-to-zero.
1767     if (getLangOpts().CUDADeviceFlushDenormalsToZero)
1768       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1769   }
1770 }
1771 
1772 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1773   llvm::AttrBuilder FuncAttrs;
1774   ConstructDefaultFnAttrList(F.getName(),
1775                              F.hasFnAttribute(llvm::Attribute::OptimizeNone),
1776                              /* AttrOnCallsite = */ false, FuncAttrs);
1777   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1778 }
1779 
1780 void CodeGenModule::ConstructAttributeList(
1781     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1782     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1783   llvm::AttrBuilder FuncAttrs;
1784   llvm::AttrBuilder RetAttrs;
1785 
1786   CallingConv = FI.getEffectiveCallingConvention();
1787   if (FI.isNoReturn())
1788     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1789 
1790   // If we have information about the function prototype, we can learn
1791   // attributes form there.
1792   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1793                                      CalleeInfo.getCalleeFunctionProtoType());
1794 
1795   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
1796 
1797   bool HasOptnone = false;
1798   // FIXME: handle sseregparm someday...
1799   if (TargetDecl) {
1800     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1801       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1802     if (TargetDecl->hasAttr<NoThrowAttr>())
1803       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1804     if (TargetDecl->hasAttr<NoReturnAttr>())
1805       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1806     if (TargetDecl->hasAttr<ColdAttr>())
1807       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1808     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1809       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1810     if (TargetDecl->hasAttr<ConvergentAttr>())
1811       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1812 
1813     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1814       AddAttributesFromFunctionProtoType(
1815           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1816       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1817       // These attributes are not inherited by overloads.
1818       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1819       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1820         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1821     }
1822 
1823     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1824     if (TargetDecl->hasAttr<ConstAttr>()) {
1825       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1826       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1827     } else if (TargetDecl->hasAttr<PureAttr>()) {
1828       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1829       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1830     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1831       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1832       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1833     }
1834     if (TargetDecl->hasAttr<RestrictAttr>())
1835       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1836     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1837       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1838     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1839       FuncAttrs.addAttribute("no_caller_saved_registers");
1840 
1841     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1842     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1843       Optional<unsigned> NumElemsParam;
1844       // alloc_size args are base-1, 0 means not present.
1845       if (unsigned N = AllocSize->getNumElemsParam())
1846         NumElemsParam = N - 1;
1847       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam() - 1,
1848                                  NumElemsParam);
1849     }
1850   }
1851 
1852   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1853 
1854   if (CodeGenOpts.EnableSegmentedStacks &&
1855       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1856     FuncAttrs.addAttribute("split-stack");
1857 
1858   if (!AttrOnCallSite) {
1859     bool DisableTailCalls =
1860         CodeGenOpts.DisableTailCalls ||
1861         (TargetDecl && (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1862                         TargetDecl->hasAttr<AnyX86InterruptAttr>()));
1863     FuncAttrs.addAttribute("disable-tail-calls",
1864                            llvm::toStringRef(DisableTailCalls));
1865 
1866     // Add target-cpu and target-features attributes to functions. If
1867     // we have a decl for the function and it has a target attribute then
1868     // parse that and add it to the feature set.
1869     StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1870     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
1871     if (FD && FD->hasAttr<TargetAttr>()) {
1872       llvm::StringMap<bool> FeatureMap;
1873       getFunctionFeatureMap(FeatureMap, FD);
1874 
1875       // Produce the canonical string for this set of features.
1876       std::vector<std::string> Features;
1877       for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
1878                                                  ie = FeatureMap.end();
1879            it != ie; ++it)
1880         Features.push_back((it->second ? "+" : "-") + it->first().str());
1881 
1882       // Now add the target-cpu and target-features to the function.
1883       // While we populated the feature map above, we still need to
1884       // get and parse the target attribute so we can get the cpu for
1885       // the function.
1886       const auto *TD = FD->getAttr<TargetAttr>();
1887       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1888       if (ParsedAttr.Architecture != "" &&
1889           getTarget().isValidCPUName(ParsedAttr.Architecture))
1890         TargetCPU = ParsedAttr.Architecture;
1891       if (TargetCPU != "")
1892          FuncAttrs.addAttribute("target-cpu", TargetCPU);
1893       if (!Features.empty()) {
1894         std::sort(Features.begin(), Features.end());
1895         FuncAttrs.addAttribute(
1896             "target-features",
1897             llvm::join(Features, ","));
1898       }
1899     } else {
1900       // Otherwise just add the existing target cpu and target features to the
1901       // function.
1902       std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
1903       if (TargetCPU != "")
1904         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1905       if (!Features.empty()) {
1906         std::sort(Features.begin(), Features.end());
1907         FuncAttrs.addAttribute(
1908             "target-features",
1909             llvm::join(Features, ","));
1910       }
1911     }
1912   }
1913 
1914   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1915 
1916   QualType RetTy = FI.getReturnType();
1917   const ABIArgInfo &RetAI = FI.getReturnInfo();
1918   switch (RetAI.getKind()) {
1919   case ABIArgInfo::Extend:
1920     if (RetTy->hasSignedIntegerRepresentation())
1921       RetAttrs.addAttribute(llvm::Attribute::SExt);
1922     else if (RetTy->hasUnsignedIntegerRepresentation())
1923       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1924     // FALL THROUGH
1925   case ABIArgInfo::Direct:
1926     if (RetAI.getInReg())
1927       RetAttrs.addAttribute(llvm::Attribute::InReg);
1928     break;
1929   case ABIArgInfo::Ignore:
1930     break;
1931 
1932   case ABIArgInfo::InAlloca:
1933   case ABIArgInfo::Indirect: {
1934     // inalloca and sret disable readnone and readonly
1935     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1936       .removeAttribute(llvm::Attribute::ReadNone);
1937     break;
1938   }
1939 
1940   case ABIArgInfo::CoerceAndExpand:
1941     break;
1942 
1943   case ABIArgInfo::Expand:
1944     llvm_unreachable("Invalid ABI kind for return argument");
1945   }
1946 
1947   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1948     QualType PTy = RefTy->getPointeeType();
1949     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1950       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1951                                         .getQuantity());
1952     else if (getContext().getTargetAddressSpace(PTy) == 0)
1953       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1954   }
1955 
1956   bool hasUsedSRet = false;
1957   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
1958 
1959   // Attach attributes to sret.
1960   if (IRFunctionArgs.hasSRetArg()) {
1961     llvm::AttrBuilder SRETAttrs;
1962     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1963     hasUsedSRet = true;
1964     if (RetAI.getInReg())
1965       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1966     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
1967         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
1968   }
1969 
1970   // Attach attributes to inalloca argument.
1971   if (IRFunctionArgs.hasInallocaArg()) {
1972     llvm::AttrBuilder Attrs;
1973     Attrs.addAttribute(llvm::Attribute::InAlloca);
1974     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
1975         llvm::AttributeSet::get(getLLVMContext(), Attrs);
1976   }
1977 
1978   unsigned ArgNo = 0;
1979   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1980                                           E = FI.arg_end();
1981        I != E; ++I, ++ArgNo) {
1982     QualType ParamType = I->type;
1983     const ABIArgInfo &AI = I->info;
1984     llvm::AttrBuilder Attrs;
1985 
1986     // Add attribute for padding argument, if necessary.
1987     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1988       if (AI.getPaddingInReg()) {
1989         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1990             llvm::AttributeSet::get(
1991                 getLLVMContext(),
1992                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
1993       }
1994     }
1995 
1996     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1997     // have the corresponding parameter variable.  It doesn't make
1998     // sense to do it here because parameters are so messed up.
1999     switch (AI.getKind()) {
2000     case ABIArgInfo::Extend:
2001       if (ParamType->isSignedIntegerOrEnumerationType())
2002         Attrs.addAttribute(llvm::Attribute::SExt);
2003       else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
2004         if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
2005           Attrs.addAttribute(llvm::Attribute::SExt);
2006         else
2007           Attrs.addAttribute(llvm::Attribute::ZExt);
2008       }
2009       // FALL THROUGH
2010     case ABIArgInfo::Direct:
2011       if (ArgNo == 0 && FI.isChainCall())
2012         Attrs.addAttribute(llvm::Attribute::Nest);
2013       else if (AI.getInReg())
2014         Attrs.addAttribute(llvm::Attribute::InReg);
2015       break;
2016 
2017     case ABIArgInfo::Indirect: {
2018       if (AI.getInReg())
2019         Attrs.addAttribute(llvm::Attribute::InReg);
2020 
2021       if (AI.getIndirectByVal())
2022         Attrs.addAttribute(llvm::Attribute::ByVal);
2023 
2024       CharUnits Align = AI.getIndirectAlign();
2025 
2026       // In a byval argument, it is important that the required
2027       // alignment of the type is honored, as LLVM might be creating a
2028       // *new* stack object, and needs to know what alignment to give
2029       // it. (Sometimes it can deduce a sensible alignment on its own,
2030       // but not if clang decides it must emit a packed struct, or the
2031       // user specifies increased alignment requirements.)
2032       //
2033       // This is different from indirect *not* byval, where the object
2034       // exists already, and the align attribute is purely
2035       // informative.
2036       assert(!Align.isZero());
2037 
2038       // For now, only add this when we have a byval argument.
2039       // TODO: be less lazy about updating test cases.
2040       if (AI.getIndirectByVal())
2041         Attrs.addAlignmentAttr(Align.getQuantity());
2042 
2043       // byval disables readnone and readonly.
2044       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2045         .removeAttribute(llvm::Attribute::ReadNone);
2046       break;
2047     }
2048     case ABIArgInfo::Ignore:
2049     case ABIArgInfo::Expand:
2050     case ABIArgInfo::CoerceAndExpand:
2051       break;
2052 
2053     case ABIArgInfo::InAlloca:
2054       // inalloca disables readnone and readonly.
2055       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2056           .removeAttribute(llvm::Attribute::ReadNone);
2057       continue;
2058     }
2059 
2060     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2061       QualType PTy = RefTy->getPointeeType();
2062       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2063         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2064                                        .getQuantity());
2065       else if (getContext().getTargetAddressSpace(PTy) == 0)
2066         Attrs.addAttribute(llvm::Attribute::NonNull);
2067     }
2068 
2069     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2070     case ParameterABI::Ordinary:
2071       break;
2072 
2073     case ParameterABI::SwiftIndirectResult: {
2074       // Add 'sret' if we haven't already used it for something, but
2075       // only if the result is void.
2076       if (!hasUsedSRet && RetTy->isVoidType()) {
2077         Attrs.addAttribute(llvm::Attribute::StructRet);
2078         hasUsedSRet = true;
2079       }
2080 
2081       // Add 'noalias' in either case.
2082       Attrs.addAttribute(llvm::Attribute::NoAlias);
2083 
2084       // Add 'dereferenceable' and 'alignment'.
2085       auto PTy = ParamType->getPointeeType();
2086       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2087         auto info = getContext().getTypeInfoInChars(PTy);
2088         Attrs.addDereferenceableAttr(info.first.getQuantity());
2089         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
2090                                                  info.second.getQuantity()));
2091       }
2092       break;
2093     }
2094 
2095     case ParameterABI::SwiftErrorResult:
2096       Attrs.addAttribute(llvm::Attribute::SwiftError);
2097       break;
2098 
2099     case ParameterABI::SwiftContext:
2100       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2101       break;
2102     }
2103 
2104     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2105       Attrs.addAttribute(llvm::Attribute::NoCapture);
2106 
2107     if (Attrs.hasAttributes()) {
2108       unsigned FirstIRArg, NumIRArgs;
2109       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2110       for (unsigned i = 0; i < NumIRArgs; i++)
2111         ArgAttrs[FirstIRArg + i] =
2112             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2113     }
2114   }
2115   assert(ArgNo == FI.arg_size());
2116 
2117   AttrList = llvm::AttributeList::get(
2118       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2119       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2120 }
2121 
2122 /// An argument came in as a promoted argument; demote it back to its
2123 /// declared type.
2124 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2125                                          const VarDecl *var,
2126                                          llvm::Value *value) {
2127   llvm::Type *varType = CGF.ConvertType(var->getType());
2128 
2129   // This can happen with promotions that actually don't change the
2130   // underlying type, like the enum promotions.
2131   if (value->getType() == varType) return value;
2132 
2133   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2134          && "unexpected promotion type");
2135 
2136   if (isa<llvm::IntegerType>(varType))
2137     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2138 
2139   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2140 }
2141 
2142 /// Returns the attribute (either parameter attribute, or function
2143 /// attribute), which declares argument ArgNo to be non-null.
2144 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2145                                          QualType ArgType, unsigned ArgNo) {
2146   // FIXME: __attribute__((nonnull)) can also be applied to:
2147   //   - references to pointers, where the pointee is known to be
2148   //     nonnull (apparently a Clang extension)
2149   //   - transparent unions containing pointers
2150   // In the former case, LLVM IR cannot represent the constraint. In
2151   // the latter case, we have no guarantee that the transparent union
2152   // is in fact passed as a pointer.
2153   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2154     return nullptr;
2155   // First, check attribute on parameter itself.
2156   if (PVD) {
2157     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2158       return ParmNNAttr;
2159   }
2160   // Check function attributes.
2161   if (!FD)
2162     return nullptr;
2163   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2164     if (NNAttr->isNonNull(ArgNo))
2165       return NNAttr;
2166   }
2167   return nullptr;
2168 }
2169 
2170 namespace {
2171   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2172     Address Temp;
2173     Address Arg;
2174     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2175     void Emit(CodeGenFunction &CGF, Flags flags) override {
2176       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2177       CGF.Builder.CreateStore(errorValue, Arg);
2178     }
2179   };
2180 }
2181 
2182 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2183                                          llvm::Function *Fn,
2184                                          const FunctionArgList &Args) {
2185   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2186     // Naked functions don't have prologues.
2187     return;
2188 
2189   // If this is an implicit-return-zero function, go ahead and
2190   // initialize the return value.  TODO: it might be nice to have
2191   // a more general mechanism for this that didn't require synthesized
2192   // return statements.
2193   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2194     if (FD->hasImplicitReturnZero()) {
2195       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2196       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2197       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2198       Builder.CreateStore(Zero, ReturnValue);
2199     }
2200   }
2201 
2202   // FIXME: We no longer need the types from FunctionArgList; lift up and
2203   // simplify.
2204 
2205   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2206   // Flattened function arguments.
2207   SmallVector<llvm::Value *, 16> FnArgs;
2208   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2209   for (auto &Arg : Fn->args()) {
2210     FnArgs.push_back(&Arg);
2211   }
2212   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2213 
2214   // If we're using inalloca, all the memory arguments are GEPs off of the last
2215   // parameter, which is a pointer to the complete memory area.
2216   Address ArgStruct = Address::invalid();
2217   const llvm::StructLayout *ArgStructLayout = nullptr;
2218   if (IRFunctionArgs.hasInallocaArg()) {
2219     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
2220     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2221                         FI.getArgStructAlignment());
2222 
2223     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2224   }
2225 
2226   // Name the struct return parameter.
2227   if (IRFunctionArgs.hasSRetArg()) {
2228     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2229     AI->setName("agg.result");
2230     AI->addAttr(llvm::Attribute::NoAlias);
2231   }
2232 
2233   // Track if we received the parameter as a pointer (indirect, byval, or
2234   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2235   // into a local alloca for us.
2236   SmallVector<ParamValue, 16> ArgVals;
2237   ArgVals.reserve(Args.size());
2238 
2239   // Create a pointer value for every parameter declaration.  This usually
2240   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2241   // any cleanups or do anything that might unwind.  We do that separately, so
2242   // we can push the cleanups in the correct order for the ABI.
2243   assert(FI.arg_size() == Args.size() &&
2244          "Mismatch between function signature & arguments.");
2245   unsigned ArgNo = 0;
2246   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2247   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2248        i != e; ++i, ++info_it, ++ArgNo) {
2249     const VarDecl *Arg = *i;
2250     QualType Ty = info_it->type;
2251     const ABIArgInfo &ArgI = info_it->info;
2252 
2253     bool isPromoted =
2254       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2255 
2256     unsigned FirstIRArg, NumIRArgs;
2257     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2258 
2259     switch (ArgI.getKind()) {
2260     case ABIArgInfo::InAlloca: {
2261       assert(NumIRArgs == 0);
2262       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2263       CharUnits FieldOffset =
2264         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
2265       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
2266                                           Arg->getName());
2267       ArgVals.push_back(ParamValue::forIndirect(V));
2268       break;
2269     }
2270 
2271     case ABIArgInfo::Indirect: {
2272       assert(NumIRArgs == 1);
2273       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2274 
2275       if (!hasScalarEvaluationKind(Ty)) {
2276         // Aggregates and complex variables are accessed by reference.  All we
2277         // need to do is realign the value, if requested.
2278         Address V = ParamAddr;
2279         if (ArgI.getIndirectRealign()) {
2280           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2281 
2282           // Copy from the incoming argument pointer to the temporary with the
2283           // appropriate alignment.
2284           //
2285           // FIXME: We should have a common utility for generating an aggregate
2286           // copy.
2287           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2288           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2289           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2290           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2291           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2292           V = AlignedTemp;
2293         }
2294         ArgVals.push_back(ParamValue::forIndirect(V));
2295       } else {
2296         // Load scalar value from indirect argument.
2297         llvm::Value *V =
2298           EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
2299 
2300         if (isPromoted)
2301           V = emitArgumentDemotion(*this, Arg, V);
2302         ArgVals.push_back(ParamValue::forDirect(V));
2303       }
2304       break;
2305     }
2306 
2307     case ABIArgInfo::Extend:
2308     case ABIArgInfo::Direct: {
2309 
2310       // If we have the trivial case, handle it with no muss and fuss.
2311       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2312           ArgI.getCoerceToType() == ConvertType(Ty) &&
2313           ArgI.getDirectOffset() == 0) {
2314         assert(NumIRArgs == 1);
2315         llvm::Value *V = FnArgs[FirstIRArg];
2316         auto AI = cast<llvm::Argument>(V);
2317 
2318         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2319           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2320                              PVD->getFunctionScopeIndex()))
2321             AI->addAttr(llvm::Attribute::NonNull);
2322 
2323           QualType OTy = PVD->getOriginalType();
2324           if (const auto *ArrTy =
2325               getContext().getAsConstantArrayType(OTy)) {
2326             // A C99 array parameter declaration with the static keyword also
2327             // indicates dereferenceability, and if the size is constant we can
2328             // use the dereferenceable attribute (which requires the size in
2329             // bytes).
2330             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2331               QualType ETy = ArrTy->getElementType();
2332               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2333               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2334                   ArrSize) {
2335                 llvm::AttrBuilder Attrs;
2336                 Attrs.addDereferenceableAttr(
2337                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2338                 AI->addAttrs(Attrs);
2339               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
2340                 AI->addAttr(llvm::Attribute::NonNull);
2341               }
2342             }
2343           } else if (const auto *ArrTy =
2344                      getContext().getAsVariableArrayType(OTy)) {
2345             // For C99 VLAs with the static keyword, we don't know the size so
2346             // we can't use the dereferenceable attribute, but in addrspace(0)
2347             // we know that it must be nonnull.
2348             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2349                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
2350               AI->addAttr(llvm::Attribute::NonNull);
2351           }
2352 
2353           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2354           if (!AVAttr)
2355             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2356               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2357           if (AVAttr) {
2358             llvm::Value *AlignmentValue =
2359               EmitScalarExpr(AVAttr->getAlignment());
2360             llvm::ConstantInt *AlignmentCI =
2361               cast<llvm::ConstantInt>(AlignmentValue);
2362             unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
2363                                           +llvm::Value::MaximumAlignment);
2364             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2365           }
2366         }
2367 
2368         if (Arg->getType().isRestrictQualified())
2369           AI->addAttr(llvm::Attribute::NoAlias);
2370 
2371         // LLVM expects swifterror parameters to be used in very restricted
2372         // ways.  Copy the value into a less-restricted temporary.
2373         if (FI.getExtParameterInfo(ArgNo).getABI()
2374               == ParameterABI::SwiftErrorResult) {
2375           QualType pointeeTy = Ty->getPointeeType();
2376           assert(pointeeTy->isPointerType());
2377           Address temp =
2378             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2379           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2380           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2381           Builder.CreateStore(incomingErrorValue, temp);
2382           V = temp.getPointer();
2383 
2384           // Push a cleanup to copy the value back at the end of the function.
2385           // The convention does not guarantee that the value will be written
2386           // back if the function exits with an unwind exception.
2387           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2388         }
2389 
2390         // Ensure the argument is the correct type.
2391         if (V->getType() != ArgI.getCoerceToType())
2392           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2393 
2394         if (isPromoted)
2395           V = emitArgumentDemotion(*this, Arg, V);
2396 
2397         // Because of merging of function types from multiple decls it is
2398         // possible for the type of an argument to not match the corresponding
2399         // type in the function type. Since we are codegening the callee
2400         // in here, add a cast to the argument type.
2401         llvm::Type *LTy = ConvertType(Arg->getType());
2402         if (V->getType() != LTy)
2403           V = Builder.CreateBitCast(V, LTy);
2404 
2405         ArgVals.push_back(ParamValue::forDirect(V));
2406         break;
2407       }
2408 
2409       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2410                                      Arg->getName());
2411 
2412       // Pointer to store into.
2413       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2414 
2415       // Fast-isel and the optimizer generally like scalar values better than
2416       // FCAs, so we flatten them if this is safe to do for this argument.
2417       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2418       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2419           STy->getNumElements() > 1) {
2420         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2421         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2422         llvm::Type *DstTy = Ptr.getElementType();
2423         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2424 
2425         Address AddrToStoreInto = Address::invalid();
2426         if (SrcSize <= DstSize) {
2427           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2428         } else {
2429           AddrToStoreInto =
2430             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2431         }
2432 
2433         assert(STy->getNumElements() == NumIRArgs);
2434         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2435           auto AI = FnArgs[FirstIRArg + i];
2436           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2437           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2438           Address EltPtr =
2439             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2440           Builder.CreateStore(AI, EltPtr);
2441         }
2442 
2443         if (SrcSize > DstSize) {
2444           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2445         }
2446 
2447       } else {
2448         // Simple case, just do a coerced store of the argument into the alloca.
2449         assert(NumIRArgs == 1);
2450         auto AI = FnArgs[FirstIRArg];
2451         AI->setName(Arg->getName() + ".coerce");
2452         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2453       }
2454 
2455       // Match to what EmitParmDecl is expecting for this type.
2456       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2457         llvm::Value *V =
2458           EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
2459         if (isPromoted)
2460           V = emitArgumentDemotion(*this, Arg, V);
2461         ArgVals.push_back(ParamValue::forDirect(V));
2462       } else {
2463         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2464       }
2465       break;
2466     }
2467 
2468     case ABIArgInfo::CoerceAndExpand: {
2469       // Reconstruct into a temporary.
2470       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2471       ArgVals.push_back(ParamValue::forIndirect(alloca));
2472 
2473       auto coercionType = ArgI.getCoerceAndExpandType();
2474       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2475       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2476 
2477       unsigned argIndex = FirstIRArg;
2478       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2479         llvm::Type *eltType = coercionType->getElementType(i);
2480         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2481           continue;
2482 
2483         auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
2484         auto elt = FnArgs[argIndex++];
2485         Builder.CreateStore(elt, eltAddr);
2486       }
2487       assert(argIndex == FirstIRArg + NumIRArgs);
2488       break;
2489     }
2490 
2491     case ABIArgInfo::Expand: {
2492       // If this structure was expanded into multiple arguments then
2493       // we need to create a temporary and reconstruct it from the
2494       // arguments.
2495       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2496       LValue LV = MakeAddrLValue(Alloca, Ty);
2497       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2498 
2499       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2500       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2501       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2502       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2503         auto AI = FnArgs[FirstIRArg + i];
2504         AI->setName(Arg->getName() + "." + Twine(i));
2505       }
2506       break;
2507     }
2508 
2509     case ABIArgInfo::Ignore:
2510       assert(NumIRArgs == 0);
2511       // Initialize the local variable appropriately.
2512       if (!hasScalarEvaluationKind(Ty)) {
2513         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2514       } else {
2515         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2516         ArgVals.push_back(ParamValue::forDirect(U));
2517       }
2518       break;
2519     }
2520   }
2521 
2522   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2523     for (int I = Args.size() - 1; I >= 0; --I)
2524       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2525   } else {
2526     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2527       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2528   }
2529 }
2530 
2531 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2532   while (insn->use_empty()) {
2533     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2534     if (!bitcast) return;
2535 
2536     // This is "safe" because we would have used a ConstantExpr otherwise.
2537     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2538     bitcast->eraseFromParent();
2539   }
2540 }
2541 
2542 /// Try to emit a fused autorelease of a return result.
2543 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2544                                                     llvm::Value *result) {
2545   // We must be immediately followed the cast.
2546   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2547   if (BB->empty()) return nullptr;
2548   if (&BB->back() != result) return nullptr;
2549 
2550   llvm::Type *resultType = result->getType();
2551 
2552   // result is in a BasicBlock and is therefore an Instruction.
2553   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2554 
2555   SmallVector<llvm::Instruction *, 4> InstsToKill;
2556 
2557   // Look for:
2558   //  %generator = bitcast %type1* %generator2 to %type2*
2559   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2560     // We would have emitted this as a constant if the operand weren't
2561     // an Instruction.
2562     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2563 
2564     // Require the generator to be immediately followed by the cast.
2565     if (generator->getNextNode() != bitcast)
2566       return nullptr;
2567 
2568     InstsToKill.push_back(bitcast);
2569   }
2570 
2571   // Look for:
2572   //   %generator = call i8* @objc_retain(i8* %originalResult)
2573   // or
2574   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2575   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2576   if (!call) return nullptr;
2577 
2578   bool doRetainAutorelease;
2579 
2580   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2581     doRetainAutorelease = true;
2582   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2583                                           .objc_retainAutoreleasedReturnValue) {
2584     doRetainAutorelease = false;
2585 
2586     // If we emitted an assembly marker for this call (and the
2587     // ARCEntrypoints field should have been set if so), go looking
2588     // for that call.  If we can't find it, we can't do this
2589     // optimization.  But it should always be the immediately previous
2590     // instruction, unless we needed bitcasts around the call.
2591     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2592       llvm::Instruction *prev = call->getPrevNode();
2593       assert(prev);
2594       if (isa<llvm::BitCastInst>(prev)) {
2595         prev = prev->getPrevNode();
2596         assert(prev);
2597       }
2598       assert(isa<llvm::CallInst>(prev));
2599       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2600                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2601       InstsToKill.push_back(prev);
2602     }
2603   } else {
2604     return nullptr;
2605   }
2606 
2607   result = call->getArgOperand(0);
2608   InstsToKill.push_back(call);
2609 
2610   // Keep killing bitcasts, for sanity.  Note that we no longer care
2611   // about precise ordering as long as there's exactly one use.
2612   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2613     if (!bitcast->hasOneUse()) break;
2614     InstsToKill.push_back(bitcast);
2615     result = bitcast->getOperand(0);
2616   }
2617 
2618   // Delete all the unnecessary instructions, from latest to earliest.
2619   for (auto *I : InstsToKill)
2620     I->eraseFromParent();
2621 
2622   // Do the fused retain/autorelease if we were asked to.
2623   if (doRetainAutorelease)
2624     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2625 
2626   // Cast back to the result type.
2627   return CGF.Builder.CreateBitCast(result, resultType);
2628 }
2629 
2630 /// If this is a +1 of the value of an immutable 'self', remove it.
2631 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2632                                           llvm::Value *result) {
2633   // This is only applicable to a method with an immutable 'self'.
2634   const ObjCMethodDecl *method =
2635     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2636   if (!method) return nullptr;
2637   const VarDecl *self = method->getSelfDecl();
2638   if (!self->getType().isConstQualified()) return nullptr;
2639 
2640   // Look for a retain call.
2641   llvm::CallInst *retainCall =
2642     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2643   if (!retainCall ||
2644       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2645     return nullptr;
2646 
2647   // Look for an ordinary load of 'self'.
2648   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2649   llvm::LoadInst *load =
2650     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2651   if (!load || load->isAtomic() || load->isVolatile() ||
2652       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2653     return nullptr;
2654 
2655   // Okay!  Burn it all down.  This relies for correctness on the
2656   // assumption that the retain is emitted as part of the return and
2657   // that thereafter everything is used "linearly".
2658   llvm::Type *resultType = result->getType();
2659   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2660   assert(retainCall->use_empty());
2661   retainCall->eraseFromParent();
2662   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2663 
2664   return CGF.Builder.CreateBitCast(load, resultType);
2665 }
2666 
2667 /// Emit an ARC autorelease of the result of a function.
2668 ///
2669 /// \return the value to actually return from the function
2670 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2671                                             llvm::Value *result) {
2672   // If we're returning 'self', kill the initial retain.  This is a
2673   // heuristic attempt to "encourage correctness" in the really unfortunate
2674   // case where we have a return of self during a dealloc and we desperately
2675   // need to avoid the possible autorelease.
2676   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2677     return self;
2678 
2679   // At -O0, try to emit a fused retain/autorelease.
2680   if (CGF.shouldUseFusedARCCalls())
2681     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2682       return fused;
2683 
2684   return CGF.EmitARCAutoreleaseReturnValue(result);
2685 }
2686 
2687 /// Heuristically search for a dominating store to the return-value slot.
2688 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2689   // Check if a User is a store which pointerOperand is the ReturnValue.
2690   // We are looking for stores to the ReturnValue, not for stores of the
2691   // ReturnValue to some other location.
2692   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2693     auto *SI = dyn_cast<llvm::StoreInst>(U);
2694     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2695       return nullptr;
2696     // These aren't actually possible for non-coerced returns, and we
2697     // only care about non-coerced returns on this code path.
2698     assert(!SI->isAtomic() && !SI->isVolatile());
2699     return SI;
2700   };
2701   // If there are multiple uses of the return-value slot, just check
2702   // for something immediately preceding the IP.  Sometimes this can
2703   // happen with how we generate implicit-returns; it can also happen
2704   // with noreturn cleanups.
2705   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2706     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2707     if (IP->empty()) return nullptr;
2708     llvm::Instruction *I = &IP->back();
2709 
2710     // Skip lifetime markers
2711     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2712                                             IE = IP->rend();
2713          II != IE; ++II) {
2714       if (llvm::IntrinsicInst *Intrinsic =
2715               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2716         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2717           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2718           ++II;
2719           if (II == IE)
2720             break;
2721           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2722             continue;
2723         }
2724       }
2725       I = &*II;
2726       break;
2727     }
2728 
2729     return GetStoreIfValid(I);
2730   }
2731 
2732   llvm::StoreInst *store =
2733       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2734   if (!store) return nullptr;
2735 
2736   // Now do a first-and-dirty dominance check: just walk up the
2737   // single-predecessors chain from the current insertion point.
2738   llvm::BasicBlock *StoreBB = store->getParent();
2739   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2740   while (IP != StoreBB) {
2741     if (!(IP = IP->getSinglePredecessor()))
2742       return nullptr;
2743   }
2744 
2745   // Okay, the store's basic block dominates the insertion point; we
2746   // can do our thing.
2747   return store;
2748 }
2749 
2750 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2751                                          bool EmitRetDbgLoc,
2752                                          SourceLocation EndLoc) {
2753   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2754     // Naked functions don't have epilogues.
2755     Builder.CreateUnreachable();
2756     return;
2757   }
2758 
2759   // Functions with no result always return void.
2760   if (!ReturnValue.isValid()) {
2761     Builder.CreateRetVoid();
2762     return;
2763   }
2764 
2765   llvm::DebugLoc RetDbgLoc;
2766   llvm::Value *RV = nullptr;
2767   QualType RetTy = FI.getReturnType();
2768   const ABIArgInfo &RetAI = FI.getReturnInfo();
2769 
2770   switch (RetAI.getKind()) {
2771   case ABIArgInfo::InAlloca:
2772     // Aggregrates get evaluated directly into the destination.  Sometimes we
2773     // need to return the sret value in a register, though.
2774     assert(hasAggregateEvaluationKind(RetTy));
2775     if (RetAI.getInAllocaSRet()) {
2776       llvm::Function::arg_iterator EI = CurFn->arg_end();
2777       --EI;
2778       llvm::Value *ArgStruct = &*EI;
2779       llvm::Value *SRet = Builder.CreateStructGEP(
2780           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2781       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2782     }
2783     break;
2784 
2785   case ABIArgInfo::Indirect: {
2786     auto AI = CurFn->arg_begin();
2787     if (RetAI.isSRetAfterThis())
2788       ++AI;
2789     switch (getEvaluationKind(RetTy)) {
2790     case TEK_Complex: {
2791       ComplexPairTy RT =
2792         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2793       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2794                          /*isInit*/ true);
2795       break;
2796     }
2797     case TEK_Aggregate:
2798       // Do nothing; aggregrates get evaluated directly into the destination.
2799       break;
2800     case TEK_Scalar:
2801       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2802                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2803                         /*isInit*/ true);
2804       break;
2805     }
2806     break;
2807   }
2808 
2809   case ABIArgInfo::Extend:
2810   case ABIArgInfo::Direct:
2811     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2812         RetAI.getDirectOffset() == 0) {
2813       // The internal return value temp always will have pointer-to-return-type
2814       // type, just do a load.
2815 
2816       // If there is a dominating store to ReturnValue, we can elide
2817       // the load, zap the store, and usually zap the alloca.
2818       if (llvm::StoreInst *SI =
2819               findDominatingStoreToReturnValue(*this)) {
2820         // Reuse the debug location from the store unless there is
2821         // cleanup code to be emitted between the store and return
2822         // instruction.
2823         if (EmitRetDbgLoc && !AutoreleaseResult)
2824           RetDbgLoc = SI->getDebugLoc();
2825         // Get the stored value and nuke the now-dead store.
2826         RV = SI->getValueOperand();
2827         SI->eraseFromParent();
2828 
2829         // If that was the only use of the return value, nuke it as well now.
2830         auto returnValueInst = ReturnValue.getPointer();
2831         if (returnValueInst->use_empty()) {
2832           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2833             alloca->eraseFromParent();
2834             ReturnValue = Address::invalid();
2835           }
2836         }
2837 
2838       // Otherwise, we have to do a simple load.
2839       } else {
2840         RV = Builder.CreateLoad(ReturnValue);
2841       }
2842     } else {
2843       // If the value is offset in memory, apply the offset now.
2844       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2845 
2846       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2847     }
2848 
2849     // In ARC, end functions that return a retainable type with a call
2850     // to objc_autoreleaseReturnValue.
2851     if (AutoreleaseResult) {
2852 #ifndef NDEBUG
2853       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2854       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2855       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2856       // CurCodeDecl or BlockInfo.
2857       QualType RT;
2858 
2859       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2860         RT = FD->getReturnType();
2861       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2862         RT = MD->getReturnType();
2863       else if (isa<BlockDecl>(CurCodeDecl))
2864         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2865       else
2866         llvm_unreachable("Unexpected function/method type");
2867 
2868       assert(getLangOpts().ObjCAutoRefCount &&
2869              !FI.isReturnsRetained() &&
2870              RT->isObjCRetainableType());
2871 #endif
2872       RV = emitAutoreleaseOfResult(*this, RV);
2873     }
2874 
2875     break;
2876 
2877   case ABIArgInfo::Ignore:
2878     break;
2879 
2880   case ABIArgInfo::CoerceAndExpand: {
2881     auto coercionType = RetAI.getCoerceAndExpandType();
2882     auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2883 
2884     // Load all of the coerced elements out into results.
2885     llvm::SmallVector<llvm::Value*, 4> results;
2886     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2887     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2888       auto coercedEltType = coercionType->getElementType(i);
2889       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2890         continue;
2891 
2892       auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
2893       auto elt = Builder.CreateLoad(eltAddr);
2894       results.push_back(elt);
2895     }
2896 
2897     // If we have one result, it's the single direct result type.
2898     if (results.size() == 1) {
2899       RV = results[0];
2900 
2901     // Otherwise, we need to make a first-class aggregate.
2902     } else {
2903       // Construct a return type that lacks padding elements.
2904       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2905 
2906       RV = llvm::UndefValue::get(returnType);
2907       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2908         RV = Builder.CreateInsertValue(RV, results[i], i);
2909       }
2910     }
2911     break;
2912   }
2913 
2914   case ABIArgInfo::Expand:
2915     llvm_unreachable("Invalid ABI kind for return argument");
2916   }
2917 
2918   llvm::Instruction *Ret;
2919   if (RV) {
2920     EmitReturnValueCheck(RV);
2921     Ret = Builder.CreateRet(RV);
2922   } else {
2923     Ret = Builder.CreateRetVoid();
2924   }
2925 
2926   if (RetDbgLoc)
2927     Ret->setDebugLoc(std::move(RetDbgLoc));
2928 }
2929 
2930 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
2931   // A current decl may not be available when emitting vtable thunks.
2932   if (!CurCodeDecl)
2933     return;
2934 
2935   ReturnsNonNullAttr *RetNNAttr = nullptr;
2936   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
2937     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
2938 
2939   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
2940     return;
2941 
2942   // Prefer the returns_nonnull attribute if it's present.
2943   SourceLocation AttrLoc;
2944   SanitizerMask CheckKind;
2945   SanitizerHandler Handler;
2946   if (RetNNAttr) {
2947     assert(!requiresReturnValueNullabilityCheck() &&
2948            "Cannot check nullability and the nonnull attribute");
2949     AttrLoc = RetNNAttr->getLocation();
2950     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
2951     Handler = SanitizerHandler::NonnullReturn;
2952   } else {
2953     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
2954       if (auto *TSI = DD->getTypeSourceInfo())
2955         if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
2956           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
2957     CheckKind = SanitizerKind::NullabilityReturn;
2958     Handler = SanitizerHandler::NullabilityReturn;
2959   }
2960 
2961   SanitizerScope SanScope(this);
2962 
2963   // Make sure the "return" source location is valid. If we're checking a
2964   // nullability annotation, make sure the preconditions for the check are met.
2965   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
2966   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
2967   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
2968   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
2969   if (requiresReturnValueNullabilityCheck())
2970     CanNullCheck =
2971         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
2972   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
2973   EmitBlock(Check);
2974 
2975   // Now do the null check.
2976   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
2977   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
2978   llvm::Value *DynamicData[] = {SLocPtr};
2979   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
2980 
2981   EmitBlock(NoCheck);
2982 
2983 #ifndef NDEBUG
2984   // The return location should not be used after the check has been emitted.
2985   ReturnLocation = Address::invalid();
2986 #endif
2987 }
2988 
2989 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2990   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2991   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2992 }
2993 
2994 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
2995                                           QualType Ty) {
2996   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2997   // placeholders.
2998   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2999   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3000   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3001 
3002   // FIXME: When we generate this IR in one pass, we shouldn't need
3003   // this win32-specific alignment hack.
3004   CharUnits Align = CharUnits::fromQuantity(4);
3005   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3006 
3007   return AggValueSlot::forAddr(Address(Placeholder, Align),
3008                                Ty.getQualifiers(),
3009                                AggValueSlot::IsNotDestructed,
3010                                AggValueSlot::DoesNotNeedGCBarriers,
3011                                AggValueSlot::IsNotAliased);
3012 }
3013 
3014 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3015                                           const VarDecl *param,
3016                                           SourceLocation loc) {
3017   // StartFunction converted the ABI-lowered parameter(s) into a
3018   // local alloca.  We need to turn that into an r-value suitable
3019   // for EmitCall.
3020   Address local = GetAddrOfLocalVar(param);
3021 
3022   QualType type = param->getType();
3023 
3024   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
3025          "cannot emit delegate call arguments for inalloca arguments!");
3026 
3027   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3028   // but the argument needs to be the original pointer.
3029   if (type->isReferenceType()) {
3030     args.add(RValue::get(Builder.CreateLoad(local)), type);
3031 
3032   // In ARC, move out of consumed arguments so that the release cleanup
3033   // entered by StartFunction doesn't cause an over-release.  This isn't
3034   // optimal -O0 code generation, but it should get cleaned up when
3035   // optimization is enabled.  This also assumes that delegate calls are
3036   // performed exactly once for a set of arguments, but that should be safe.
3037   } else if (getLangOpts().ObjCAutoRefCount &&
3038              param->hasAttr<NSConsumedAttr>() &&
3039              type->isObjCRetainableType()) {
3040     llvm::Value *ptr = Builder.CreateLoad(local);
3041     auto null =
3042       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3043     Builder.CreateStore(null, local);
3044     args.add(RValue::get(ptr), type);
3045 
3046   // For the most part, we just need to load the alloca, except that
3047   // aggregate r-values are actually pointers to temporaries.
3048   } else {
3049     args.add(convertTempToRValue(local, type, loc), type);
3050   }
3051 }
3052 
3053 static bool isProvablyNull(llvm::Value *addr) {
3054   return isa<llvm::ConstantPointerNull>(addr);
3055 }
3056 
3057 /// Emit the actual writing-back of a writeback.
3058 static void emitWriteback(CodeGenFunction &CGF,
3059                           const CallArgList::Writeback &writeback) {
3060   const LValue &srcLV = writeback.Source;
3061   Address srcAddr = srcLV.getAddress();
3062   assert(!isProvablyNull(srcAddr.getPointer()) &&
3063          "shouldn't have writeback for provably null argument");
3064 
3065   llvm::BasicBlock *contBB = nullptr;
3066 
3067   // If the argument wasn't provably non-null, we need to null check
3068   // before doing the store.
3069   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3070                                               CGF.CGM.getDataLayout());
3071   if (!provablyNonNull) {
3072     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3073     contBB = CGF.createBasicBlock("icr.done");
3074 
3075     llvm::Value *isNull =
3076       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3077     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3078     CGF.EmitBlock(writebackBB);
3079   }
3080 
3081   // Load the value to writeback.
3082   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3083 
3084   // Cast it back, in case we're writing an id to a Foo* or something.
3085   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3086                                     "icr.writeback-cast");
3087 
3088   // Perform the writeback.
3089 
3090   // If we have a "to use" value, it's something we need to emit a use
3091   // of.  This has to be carefully threaded in: if it's done after the
3092   // release it's potentially undefined behavior (and the optimizer
3093   // will ignore it), and if it happens before the retain then the
3094   // optimizer could move the release there.
3095   if (writeback.ToUse) {
3096     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3097 
3098     // Retain the new value.  No need to block-copy here:  the block's
3099     // being passed up the stack.
3100     value = CGF.EmitARCRetainNonBlock(value);
3101 
3102     // Emit the intrinsic use here.
3103     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3104 
3105     // Load the old value (primitively).
3106     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3107 
3108     // Put the new value in place (primitively).
3109     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3110 
3111     // Release the old value.
3112     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3113 
3114   // Otherwise, we can just do a normal lvalue store.
3115   } else {
3116     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3117   }
3118 
3119   // Jump to the continuation block.
3120   if (!provablyNonNull)
3121     CGF.EmitBlock(contBB);
3122 }
3123 
3124 static void emitWritebacks(CodeGenFunction &CGF,
3125                            const CallArgList &args) {
3126   for (const auto &I : args.writebacks())
3127     emitWriteback(CGF, I);
3128 }
3129 
3130 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3131                                             const CallArgList &CallArgs) {
3132   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
3133   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3134     CallArgs.getCleanupsToDeactivate();
3135   // Iterate in reverse to increase the likelihood of popping the cleanup.
3136   for (const auto &I : llvm::reverse(Cleanups)) {
3137     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3138     I.IsActiveIP->eraseFromParent();
3139   }
3140 }
3141 
3142 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3143   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3144     if (uop->getOpcode() == UO_AddrOf)
3145       return uop->getSubExpr();
3146   return nullptr;
3147 }
3148 
3149 /// Emit an argument that's being passed call-by-writeback.  That is,
3150 /// we are passing the address of an __autoreleased temporary; it
3151 /// might be copy-initialized with the current value of the given
3152 /// address, but it will definitely be copied out of after the call.
3153 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3154                              const ObjCIndirectCopyRestoreExpr *CRE) {
3155   LValue srcLV;
3156 
3157   // Make an optimistic effort to emit the address as an l-value.
3158   // This can fail if the argument expression is more complicated.
3159   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3160     srcLV = CGF.EmitLValue(lvExpr);
3161 
3162   // Otherwise, just emit it as a scalar.
3163   } else {
3164     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3165 
3166     QualType srcAddrType =
3167       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3168     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3169   }
3170   Address srcAddr = srcLV.getAddress();
3171 
3172   // The dest and src types don't necessarily match in LLVM terms
3173   // because of the crazy ObjC compatibility rules.
3174 
3175   llvm::PointerType *destType =
3176     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3177 
3178   // If the address is a constant null, just pass the appropriate null.
3179   if (isProvablyNull(srcAddr.getPointer())) {
3180     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3181              CRE->getType());
3182     return;
3183   }
3184 
3185   // Create the temporary.
3186   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3187                                       CGF.getPointerAlign(),
3188                                       "icr.temp");
3189   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3190   // and that cleanup will be conditional if we can't prove that the l-value
3191   // isn't null, so we need to register a dominating point so that the cleanups
3192   // system will make valid IR.
3193   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3194 
3195   // Zero-initialize it if we're not doing a copy-initialization.
3196   bool shouldCopy = CRE->shouldCopy();
3197   if (!shouldCopy) {
3198     llvm::Value *null =
3199       llvm::ConstantPointerNull::get(
3200         cast<llvm::PointerType>(destType->getElementType()));
3201     CGF.Builder.CreateStore(null, temp);
3202   }
3203 
3204   llvm::BasicBlock *contBB = nullptr;
3205   llvm::BasicBlock *originBB = nullptr;
3206 
3207   // If the address is *not* known to be non-null, we need to switch.
3208   llvm::Value *finalArgument;
3209 
3210   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3211                                               CGF.CGM.getDataLayout());
3212   if (provablyNonNull) {
3213     finalArgument = temp.getPointer();
3214   } else {
3215     llvm::Value *isNull =
3216       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3217 
3218     finalArgument = CGF.Builder.CreateSelect(isNull,
3219                                    llvm::ConstantPointerNull::get(destType),
3220                                              temp.getPointer(), "icr.argument");
3221 
3222     // If we need to copy, then the load has to be conditional, which
3223     // means we need control flow.
3224     if (shouldCopy) {
3225       originBB = CGF.Builder.GetInsertBlock();
3226       contBB = CGF.createBasicBlock("icr.cont");
3227       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3228       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3229       CGF.EmitBlock(copyBB);
3230       condEval.begin(CGF);
3231     }
3232   }
3233 
3234   llvm::Value *valueToUse = nullptr;
3235 
3236   // Perform a copy if necessary.
3237   if (shouldCopy) {
3238     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3239     assert(srcRV.isScalar());
3240 
3241     llvm::Value *src = srcRV.getScalarVal();
3242     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3243                                     "icr.cast");
3244 
3245     // Use an ordinary store, not a store-to-lvalue.
3246     CGF.Builder.CreateStore(src, temp);
3247 
3248     // If optimization is enabled, and the value was held in a
3249     // __strong variable, we need to tell the optimizer that this
3250     // value has to stay alive until we're doing the store back.
3251     // This is because the temporary is effectively unretained,
3252     // and so otherwise we can violate the high-level semantics.
3253     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3254         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3255       valueToUse = src;
3256     }
3257   }
3258 
3259   // Finish the control flow if we needed it.
3260   if (shouldCopy && !provablyNonNull) {
3261     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3262     CGF.EmitBlock(contBB);
3263 
3264     // Make a phi for the value to intrinsically use.
3265     if (valueToUse) {
3266       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3267                                                       "icr.to-use");
3268       phiToUse->addIncoming(valueToUse, copyBB);
3269       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3270                             originBB);
3271       valueToUse = phiToUse;
3272     }
3273 
3274     condEval.end(CGF);
3275   }
3276 
3277   args.addWriteback(srcLV, temp, valueToUse);
3278   args.add(RValue::get(finalArgument), CRE->getType());
3279 }
3280 
3281 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3282   assert(!StackBase);
3283 
3284   // Save the stack.
3285   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3286   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3287 }
3288 
3289 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3290   if (StackBase) {
3291     // Restore the stack after the call.
3292     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3293     CGF.Builder.CreateCall(F, StackBase);
3294   }
3295 }
3296 
3297 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3298                                           SourceLocation ArgLoc,
3299                                           AbstractCallee AC,
3300                                           unsigned ParmNum) {
3301   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3302                          SanOpts.has(SanitizerKind::NullabilityArg)))
3303     return;
3304 
3305   // The param decl may be missing in a variadic function.
3306   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3307   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3308 
3309   // Prefer the nonnull attribute if it's present.
3310   const NonNullAttr *NNAttr = nullptr;
3311   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3312     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3313 
3314   bool CanCheckNullability = false;
3315   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3316     auto Nullability = PVD->getType()->getNullability(getContext());
3317     CanCheckNullability = Nullability &&
3318                           *Nullability == NullabilityKind::NonNull &&
3319                           PVD->getTypeSourceInfo();
3320   }
3321 
3322   if (!NNAttr && !CanCheckNullability)
3323     return;
3324 
3325   SourceLocation AttrLoc;
3326   SanitizerMask CheckKind;
3327   SanitizerHandler Handler;
3328   if (NNAttr) {
3329     AttrLoc = NNAttr->getLocation();
3330     CheckKind = SanitizerKind::NonnullAttribute;
3331     Handler = SanitizerHandler::NonnullArg;
3332   } else {
3333     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3334     CheckKind = SanitizerKind::NullabilityArg;
3335     Handler = SanitizerHandler::NullabilityArg;
3336   }
3337 
3338   SanitizerScope SanScope(this);
3339   assert(RV.isScalar());
3340   llvm::Value *V = RV.getScalarVal();
3341   llvm::Value *Cond =
3342       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3343   llvm::Constant *StaticData[] = {
3344       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3345       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3346   };
3347   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3348 }
3349 
3350 void CodeGenFunction::EmitCallArgs(
3351     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3352     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3353     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3354   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3355 
3356   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3357   // because arguments are destroyed left to right in the callee. As a special
3358   // case, there are certain language constructs that require left-to-right
3359   // evaluation, and in those cases we consider the evaluation order requirement
3360   // to trump the "destruction order is reverse construction order" guarantee.
3361   bool LeftToRight =
3362       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3363           ? Order == EvaluationOrder::ForceLeftToRight
3364           : Order != EvaluationOrder::ForceRightToLeft;
3365 
3366   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3367                                          RValue EmittedArg) {
3368     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3369       return;
3370     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3371     if (PS == nullptr)
3372       return;
3373 
3374     const auto &Context = getContext();
3375     auto SizeTy = Context.getSizeType();
3376     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3377     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3378     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3379                                                      EmittedArg.getScalarVal());
3380     Args.add(RValue::get(V), SizeTy);
3381     // If we're emitting args in reverse, be sure to do so with
3382     // pass_object_size, as well.
3383     if (!LeftToRight)
3384       std::swap(Args.back(), *(&Args.back() - 1));
3385   };
3386 
3387   // Insert a stack save if we're going to need any inalloca args.
3388   bool HasInAllocaArgs = false;
3389   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3390     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3391          I != E && !HasInAllocaArgs; ++I)
3392       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3393     if (HasInAllocaArgs) {
3394       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3395       Args.allocateArgumentMemory(*this);
3396     }
3397   }
3398 
3399   // Evaluate each argument in the appropriate order.
3400   size_t CallArgsStart = Args.size();
3401   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3402     unsigned Idx = LeftToRight ? I : E - I - 1;
3403     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3404     unsigned InitialArgSize = Args.size();
3405     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3406     // the argument and parameter match or the objc method is parameterized.
3407     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3408             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3409                                                 ArgTypes[Idx]) ||
3410             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3411              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3412            "Argument and parameter types don't match");
3413     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3414     // In particular, we depend on it being the last arg in Args, and the
3415     // objectsize bits depend on there only being one arg if !LeftToRight.
3416     assert(InitialArgSize + 1 == Args.size() &&
3417            "The code below depends on only adding one arg per EmitCallArg");
3418     (void)InitialArgSize;
3419     RValue RVArg = Args.back().RV;
3420     EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3421                         ParamsToSkip + Idx);
3422     // @llvm.objectsize should never have side-effects and shouldn't need
3423     // destruction/cleanups, so we can safely "emit" it after its arg,
3424     // regardless of right-to-leftness
3425     MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3426   }
3427 
3428   if (!LeftToRight) {
3429     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3430     // IR function.
3431     std::reverse(Args.begin() + CallArgsStart, Args.end());
3432   }
3433 }
3434 
3435 namespace {
3436 
3437 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3438   DestroyUnpassedArg(Address Addr, QualType Ty)
3439       : Addr(Addr), Ty(Ty) {}
3440 
3441   Address Addr;
3442   QualType Ty;
3443 
3444   void Emit(CodeGenFunction &CGF, Flags flags) override {
3445     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3446     assert(!Dtor->isTrivial());
3447     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3448                               /*Delegating=*/false, Addr);
3449   }
3450 };
3451 
3452 struct DisableDebugLocationUpdates {
3453   CodeGenFunction &CGF;
3454   bool disabledDebugInfo;
3455   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3456     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3457       CGF.disableDebugInfo();
3458   }
3459   ~DisableDebugLocationUpdates() {
3460     if (disabledDebugInfo)
3461       CGF.enableDebugInfo();
3462   }
3463 };
3464 
3465 } // end anonymous namespace
3466 
3467 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3468                                   QualType type) {
3469   DisableDebugLocationUpdates Dis(*this, E);
3470   if (const ObjCIndirectCopyRestoreExpr *CRE
3471         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3472     assert(getLangOpts().ObjCAutoRefCount);
3473     return emitWritebackArg(*this, args, CRE);
3474   }
3475 
3476   assert(type->isReferenceType() == E->isGLValue() &&
3477          "reference binding to unmaterialized r-value!");
3478 
3479   if (E->isGLValue()) {
3480     assert(E->getObjectKind() == OK_Ordinary);
3481     return args.add(EmitReferenceBindingToExpr(E), type);
3482   }
3483 
3484   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3485 
3486   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3487   // However, we still have to push an EH-only cleanup in case we unwind before
3488   // we make it to the call.
3489   if (HasAggregateEvalKind &&
3490       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3491     // If we're using inalloca, use the argument memory.  Otherwise, use a
3492     // temporary.
3493     AggValueSlot Slot;
3494     if (args.isUsingInAlloca())
3495       Slot = createPlaceholderSlot(*this, type);
3496     else
3497       Slot = CreateAggTemp(type, "agg.tmp");
3498 
3499     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3500     bool DestroyedInCallee =
3501         RD && RD->hasNonTrivialDestructor() &&
3502         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
3503     if (DestroyedInCallee)
3504       Slot.setExternallyDestructed();
3505 
3506     EmitAggExpr(E, Slot);
3507     RValue RV = Slot.asRValue();
3508     args.add(RV, type);
3509 
3510     if (DestroyedInCallee) {
3511       // Create a no-op GEP between the placeholder and the cleanup so we can
3512       // RAUW it successfully.  It also serves as a marker of the first
3513       // instruction where the cleanup is active.
3514       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3515                                               type);
3516       // This unreachable is a temporary marker which will be removed later.
3517       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3518       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3519     }
3520     return;
3521   }
3522 
3523   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3524       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3525     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3526     assert(L.isSimple());
3527     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
3528       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
3529     } else {
3530       // We can't represent a misaligned lvalue in the CallArgList, so copy
3531       // to an aligned temporary now.
3532       Address tmp = CreateMemTemp(type);
3533       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile());
3534       args.add(RValue::getAggregate(tmp), type);
3535     }
3536     return;
3537   }
3538 
3539   args.add(EmitAnyExprToTemp(E), type);
3540 }
3541 
3542 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3543   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3544   // implicitly widens null pointer constants that are arguments to varargs
3545   // functions to pointer-sized ints.
3546   if (!getTarget().getTriple().isOSWindows())
3547     return Arg->getType();
3548 
3549   if (Arg->getType()->isIntegerType() &&
3550       getContext().getTypeSize(Arg->getType()) <
3551           getContext().getTargetInfo().getPointerWidth(0) &&
3552       Arg->isNullPointerConstant(getContext(),
3553                                  Expr::NPC_ValueDependentIsNotNull)) {
3554     return getContext().getIntPtrType();
3555   }
3556 
3557   return Arg->getType();
3558 }
3559 
3560 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3561 // optimizer it can aggressively ignore unwind edges.
3562 void
3563 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3564   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3565       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3566     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3567                       CGM.getNoObjCARCExceptionsMetadata());
3568 }
3569 
3570 /// Emits a call to the given no-arguments nounwind runtime function.
3571 llvm::CallInst *
3572 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3573                                          const llvm::Twine &name) {
3574   return EmitNounwindRuntimeCall(callee, None, name);
3575 }
3576 
3577 /// Emits a call to the given nounwind runtime function.
3578 llvm::CallInst *
3579 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3580                                          ArrayRef<llvm::Value*> args,
3581                                          const llvm::Twine &name) {
3582   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3583   call->setDoesNotThrow();
3584   return call;
3585 }
3586 
3587 /// Emits a simple call (never an invoke) to the given no-arguments
3588 /// runtime function.
3589 llvm::CallInst *
3590 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3591                                  const llvm::Twine &name) {
3592   return EmitRuntimeCall(callee, None, name);
3593 }
3594 
3595 // Calls which may throw must have operand bundles indicating which funclet
3596 // they are nested within.
3597 static void
3598 getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad,
3599                      SmallVectorImpl<llvm::OperandBundleDef> &BundleList) {
3600   // There is no need for a funclet operand bundle if we aren't inside a
3601   // funclet.
3602   if (!CurrentFuncletPad)
3603     return;
3604 
3605   // Skip intrinsics which cannot throw.
3606   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3607   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3608     return;
3609 
3610   BundleList.emplace_back("funclet", CurrentFuncletPad);
3611 }
3612 
3613 /// Emits a simple call (never an invoke) to the given runtime function.
3614 llvm::CallInst *
3615 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3616                                  ArrayRef<llvm::Value*> args,
3617                                  const llvm::Twine &name) {
3618   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3619   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
3620 
3621   llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name);
3622   call->setCallingConv(getRuntimeCC());
3623   return call;
3624 }
3625 
3626 /// Emits a call or invoke to the given noreturn runtime function.
3627 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3628                                                ArrayRef<llvm::Value*> args) {
3629   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3630   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
3631 
3632   if (getInvokeDest()) {
3633     llvm::InvokeInst *invoke =
3634       Builder.CreateInvoke(callee,
3635                            getUnreachableBlock(),
3636                            getInvokeDest(),
3637                            args,
3638                            BundleList);
3639     invoke->setDoesNotReturn();
3640     invoke->setCallingConv(getRuntimeCC());
3641   } else {
3642     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3643     call->setDoesNotReturn();
3644     call->setCallingConv(getRuntimeCC());
3645     Builder.CreateUnreachable();
3646   }
3647 }
3648 
3649 /// Emits a call or invoke instruction to the given nullary runtime function.
3650 llvm::CallSite
3651 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3652                                          const Twine &name) {
3653   return EmitRuntimeCallOrInvoke(callee, None, name);
3654 }
3655 
3656 /// Emits a call or invoke instruction to the given runtime function.
3657 llvm::CallSite
3658 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3659                                          ArrayRef<llvm::Value*> args,
3660                                          const Twine &name) {
3661   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3662   callSite.setCallingConv(getRuntimeCC());
3663   return callSite;
3664 }
3665 
3666 /// Emits a call or invoke instruction to the given function, depending
3667 /// on the current state of the EH stack.
3668 llvm::CallSite
3669 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3670                                   ArrayRef<llvm::Value *> Args,
3671                                   const Twine &Name) {
3672   llvm::BasicBlock *InvokeDest = getInvokeDest();
3673   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3674   getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList);
3675 
3676   llvm::Instruction *Inst;
3677   if (!InvokeDest)
3678     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3679   else {
3680     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3681     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3682                                 Name);
3683     EmitBlock(ContBB);
3684   }
3685 
3686   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3687   // optimizer it can aggressively ignore unwind edges.
3688   if (CGM.getLangOpts().ObjCAutoRefCount)
3689     AddObjCARCExceptionMetadata(Inst);
3690 
3691   return llvm::CallSite(Inst);
3692 }
3693 
3694 /// \brief Store a non-aggregate value to an address to initialize it.  For
3695 /// initialization, a non-atomic store will be used.
3696 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3697                                         LValue Dst) {
3698   if (Src.isScalar())
3699     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3700   else
3701     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3702 }
3703 
3704 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3705                                                   llvm::Value *New) {
3706   DeferredReplacements.push_back(std::make_pair(Old, New));
3707 }
3708 
3709 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3710                                  const CGCallee &Callee,
3711                                  ReturnValueSlot ReturnValue,
3712                                  const CallArgList &CallArgs,
3713                                  llvm::Instruction **callOrInvoke) {
3714   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3715 
3716   assert(Callee.isOrdinary());
3717 
3718   // Handle struct-return functions by passing a pointer to the
3719   // location that we would like to return into.
3720   QualType RetTy = CallInfo.getReturnType();
3721   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3722 
3723   llvm::FunctionType *IRFuncTy = Callee.getFunctionType();
3724 
3725   // 1. Set up the arguments.
3726 
3727   // If we're using inalloca, insert the allocation after the stack save.
3728   // FIXME: Do this earlier rather than hacking it in here!
3729   Address ArgMemory = Address::invalid();
3730   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3731   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3732     const llvm::DataLayout &DL = CGM.getDataLayout();
3733     ArgMemoryLayout = DL.getStructLayout(ArgStruct);
3734     llvm::Instruction *IP = CallArgs.getStackBase();
3735     llvm::AllocaInst *AI;
3736     if (IP) {
3737       IP = IP->getNextNode();
3738       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3739                                 "argmem", IP);
3740     } else {
3741       AI = CreateTempAlloca(ArgStruct, "argmem");
3742     }
3743     auto Align = CallInfo.getArgStructAlignment();
3744     AI->setAlignment(Align.getQuantity());
3745     AI->setUsedWithInAlloca(true);
3746     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3747     ArgMemory = Address(AI, Align);
3748   }
3749 
3750   // Helper function to drill into the inalloca allocation.
3751   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3752     auto FieldOffset =
3753       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3754     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3755   };
3756 
3757   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3758   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3759 
3760   // If the call returns a temporary with struct return, create a temporary
3761   // alloca to hold the result, unless one is given to us.
3762   Address SRetPtr = Address::invalid();
3763   size_t UnusedReturnSize = 0;
3764   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3765     if (!ReturnValue.isNull()) {
3766       SRetPtr = ReturnValue.getValue();
3767     } else {
3768       SRetPtr = CreateMemTemp(RetTy);
3769       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3770         uint64_t size =
3771             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3772         if (EmitLifetimeStart(size, SRetPtr.getPointer()))
3773           UnusedReturnSize = size;
3774       }
3775     }
3776     if (IRFunctionArgs.hasSRetArg()) {
3777       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3778     } else if (RetAI.isInAlloca()) {
3779       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3780       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3781     }
3782   }
3783 
3784   Address swiftErrorTemp = Address::invalid();
3785   Address swiftErrorArg = Address::invalid();
3786 
3787   // Translate all of the arguments as necessary to match the IR lowering.
3788   assert(CallInfo.arg_size() == CallArgs.size() &&
3789          "Mismatch between function signature & arguments.");
3790   unsigned ArgNo = 0;
3791   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3792   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3793        I != E; ++I, ++info_it, ++ArgNo) {
3794     const ABIArgInfo &ArgInfo = info_it->info;
3795     RValue RV = I->RV;
3796 
3797     // Insert a padding argument to ensure proper alignment.
3798     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3799       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3800           llvm::UndefValue::get(ArgInfo.getPaddingType());
3801 
3802     unsigned FirstIRArg, NumIRArgs;
3803     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3804 
3805     switch (ArgInfo.getKind()) {
3806     case ABIArgInfo::InAlloca: {
3807       assert(NumIRArgs == 0);
3808       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3809       if (RV.isAggregate()) {
3810         // Replace the placeholder with the appropriate argument slot GEP.
3811         llvm::Instruction *Placeholder =
3812             cast<llvm::Instruction>(RV.getAggregatePointer());
3813         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3814         Builder.SetInsertPoint(Placeholder);
3815         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3816         Builder.restoreIP(IP);
3817         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3818       } else {
3819         // Store the RValue into the argument struct.
3820         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3821         unsigned AS = Addr.getType()->getPointerAddressSpace();
3822         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3823         // There are some cases where a trivial bitcast is not avoidable.  The
3824         // definition of a type later in a translation unit may change it's type
3825         // from {}* to (%struct.foo*)*.
3826         if (Addr.getType() != MemType)
3827           Addr = Builder.CreateBitCast(Addr, MemType);
3828         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3829         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3830       }
3831       break;
3832     }
3833 
3834     case ABIArgInfo::Indirect: {
3835       assert(NumIRArgs == 1);
3836       if (RV.isScalar() || RV.isComplex()) {
3837         // Make a temporary alloca to pass the argument.
3838         Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(),
3839                                      "indirect-arg-temp", false);
3840         IRCallArgs[FirstIRArg] = Addr.getPointer();
3841 
3842         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3843         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3844       } else {
3845         // We want to avoid creating an unnecessary temporary+copy here;
3846         // however, we need one in three cases:
3847         // 1. If the argument is not byval, and we are required to copy the
3848         //    source.  (This case doesn't occur on any common architecture.)
3849         // 2. If the argument is byval, RV is not sufficiently aligned, and
3850         //    we cannot force it to be sufficiently aligned.
3851         // 3. If the argument is byval, but RV is located in an address space
3852         //    different than that of the argument (0).
3853         Address Addr = RV.getAggregateAddress();
3854         CharUnits Align = ArgInfo.getIndirectAlign();
3855         const llvm::DataLayout *TD = &CGM.getDataLayout();
3856         const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
3857         const unsigned ArgAddrSpace =
3858             (FirstIRArg < IRFuncTy->getNumParams()
3859                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3860                  : 0);
3861         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3862             (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
3863              llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
3864                                               Align.getQuantity(), *TD)
3865                < Align.getQuantity()) ||
3866             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3867           // Create an aligned temporary, and copy to it.
3868           Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(),
3869                                      "byval-temp", false);
3870           IRCallArgs[FirstIRArg] = AI.getPointer();
3871           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3872         } else {
3873           // Skip the extra memcpy call.
3874           IRCallArgs[FirstIRArg] = Addr.getPointer();
3875         }
3876       }
3877       break;
3878     }
3879 
3880     case ABIArgInfo::Ignore:
3881       assert(NumIRArgs == 0);
3882       break;
3883 
3884     case ABIArgInfo::Extend:
3885     case ABIArgInfo::Direct: {
3886       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3887           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3888           ArgInfo.getDirectOffset() == 0) {
3889         assert(NumIRArgs == 1);
3890         llvm::Value *V;
3891         if (RV.isScalar())
3892           V = RV.getScalarVal();
3893         else
3894           V = Builder.CreateLoad(RV.getAggregateAddress());
3895 
3896         // Implement swifterror by copying into a new swifterror argument.
3897         // We'll write back in the normal path out of the call.
3898         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
3899               == ParameterABI::SwiftErrorResult) {
3900           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
3901 
3902           QualType pointeeTy = I->Ty->getPointeeType();
3903           swiftErrorArg =
3904             Address(V, getContext().getTypeAlignInChars(pointeeTy));
3905 
3906           swiftErrorTemp =
3907             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
3908           V = swiftErrorTemp.getPointer();
3909           cast<llvm::AllocaInst>(V)->setSwiftError(true);
3910 
3911           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
3912           Builder.CreateStore(errorValue, swiftErrorTemp);
3913         }
3914 
3915         // We might have to widen integers, but we should never truncate.
3916         if (ArgInfo.getCoerceToType() != V->getType() &&
3917             V->getType()->isIntegerTy())
3918           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3919 
3920         // If the argument doesn't match, perform a bitcast to coerce it.  This
3921         // can happen due to trivial type mismatches.
3922         if (FirstIRArg < IRFuncTy->getNumParams() &&
3923             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3924           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3925 
3926         IRCallArgs[FirstIRArg] = V;
3927         break;
3928       }
3929 
3930       // FIXME: Avoid the conversion through memory if possible.
3931       Address Src = Address::invalid();
3932       if (RV.isScalar() || RV.isComplex()) {
3933         Src = CreateMemTemp(I->Ty, "coerce");
3934         LValue SrcLV = MakeAddrLValue(Src, I->Ty);
3935         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3936       } else {
3937         Src = RV.getAggregateAddress();
3938       }
3939 
3940       // If the value is offset in memory, apply the offset now.
3941       Src = emitAddressAtOffset(*this, Src, ArgInfo);
3942 
3943       // Fast-isel and the optimizer generally like scalar values better than
3944       // FCAs, so we flatten them if this is safe to do for this argument.
3945       llvm::StructType *STy =
3946             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3947       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3948         llvm::Type *SrcTy = Src.getType()->getElementType();
3949         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3950         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3951 
3952         // If the source type is smaller than the destination type of the
3953         // coerce-to logic, copy the source value into a temp alloca the size
3954         // of the destination type to allow loading all of it. The bits past
3955         // the source value are left undef.
3956         if (SrcSize < DstSize) {
3957           Address TempAlloca
3958             = CreateTempAlloca(STy, Src.getAlignment(),
3959                                Src.getName() + ".coerce");
3960           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
3961           Src = TempAlloca;
3962         } else {
3963           Src = Builder.CreateBitCast(Src,
3964                                       STy->getPointerTo(Src.getAddressSpace()));
3965         }
3966 
3967         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
3968         assert(NumIRArgs == STy->getNumElements());
3969         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3970           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
3971           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
3972           llvm::Value *LI = Builder.CreateLoad(EltPtr);
3973           IRCallArgs[FirstIRArg + i] = LI;
3974         }
3975       } else {
3976         // In the simple case, just pass the coerced loaded value.
3977         assert(NumIRArgs == 1);
3978         IRCallArgs[FirstIRArg] =
3979           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
3980       }
3981 
3982       break;
3983     }
3984 
3985     case ABIArgInfo::CoerceAndExpand: {
3986       auto coercionType = ArgInfo.getCoerceAndExpandType();
3987       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
3988 
3989       llvm::Value *tempSize = nullptr;
3990       Address addr = Address::invalid();
3991       if (RV.isAggregate()) {
3992         addr = RV.getAggregateAddress();
3993       } else {
3994         assert(RV.isScalar()); // complex should always just be direct
3995 
3996         llvm::Type *scalarType = RV.getScalarVal()->getType();
3997         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
3998         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
3999 
4000         tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize);
4001 
4002         // Materialize to a temporary.
4003         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
4004                  CharUnits::fromQuantity(std::max(layout->getAlignment(),
4005                                                   scalarAlign)));
4006         EmitLifetimeStart(scalarSize, addr.getPointer());
4007 
4008         Builder.CreateStore(RV.getScalarVal(), addr);
4009       }
4010 
4011       addr = Builder.CreateElementBitCast(addr, coercionType);
4012 
4013       unsigned IRArgPos = FirstIRArg;
4014       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4015         llvm::Type *eltType = coercionType->getElementType(i);
4016         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4017         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4018         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4019         IRCallArgs[IRArgPos++] = elt;
4020       }
4021       assert(IRArgPos == FirstIRArg + NumIRArgs);
4022 
4023       if (tempSize) {
4024         EmitLifetimeEnd(tempSize, addr.getPointer());
4025       }
4026 
4027       break;
4028     }
4029 
4030     case ABIArgInfo::Expand:
4031       unsigned IRArgPos = FirstIRArg;
4032       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
4033       assert(IRArgPos == FirstIRArg + NumIRArgs);
4034       break;
4035     }
4036   }
4037 
4038   llvm::Value *CalleePtr = Callee.getFunctionPointer();
4039 
4040   // If we're using inalloca, set up that argument.
4041   if (ArgMemory.isValid()) {
4042     llvm::Value *Arg = ArgMemory.getPointer();
4043     if (CallInfo.isVariadic()) {
4044       // When passing non-POD arguments by value to variadic functions, we will
4045       // end up with a variadic prototype and an inalloca call site.  In such
4046       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4047       // the callee.
4048       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4049       auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS);
4050       CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy);
4051     } else {
4052       llvm::Type *LastParamTy =
4053           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4054       if (Arg->getType() != LastParamTy) {
4055 #ifndef NDEBUG
4056         // Assert that these structs have equivalent element types.
4057         llvm::StructType *FullTy = CallInfo.getArgStruct();
4058         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4059             cast<llvm::PointerType>(LastParamTy)->getElementType());
4060         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4061         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4062                                                 DE = DeclaredTy->element_end(),
4063                                                 FI = FullTy->element_begin();
4064              DI != DE; ++DI, ++FI)
4065           assert(*DI == *FI);
4066 #endif
4067         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4068       }
4069     }
4070     assert(IRFunctionArgs.hasInallocaArg());
4071     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4072   }
4073 
4074   // 2. Prepare the function pointer.
4075 
4076   // If the callee is a bitcast of a non-variadic function to have a
4077   // variadic function pointer type, check to see if we can remove the
4078   // bitcast.  This comes up with unprototyped functions.
4079   //
4080   // This makes the IR nicer, but more importantly it ensures that we
4081   // can inline the function at -O0 if it is marked always_inline.
4082   auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* {
4083     llvm::FunctionType *CalleeFT =
4084       cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType());
4085     if (!CalleeFT->isVarArg())
4086       return Ptr;
4087 
4088     llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr);
4089     if (!CE || CE->getOpcode() != llvm::Instruction::BitCast)
4090       return Ptr;
4091 
4092     llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0));
4093     if (!OrigFn)
4094       return Ptr;
4095 
4096     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4097 
4098     // If the original type is variadic, or if any of the component types
4099     // disagree, we cannot remove the cast.
4100     if (OrigFT->isVarArg() ||
4101         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4102         OrigFT->getReturnType() != CalleeFT->getReturnType())
4103       return Ptr;
4104 
4105     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4106       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4107         return Ptr;
4108 
4109     return OrigFn;
4110   };
4111   CalleePtr = simplifyVariadicCallee(CalleePtr);
4112 
4113   // 3. Perform the actual call.
4114 
4115   // Deactivate any cleanups that we're supposed to do immediately before
4116   // the call.
4117   if (!CallArgs.getCleanupsToDeactivate().empty())
4118     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4119 
4120   // Assert that the arguments we computed match up.  The IR verifier
4121   // will catch this, but this is a common enough source of problems
4122   // during IRGen changes that it's way better for debugging to catch
4123   // it ourselves here.
4124 #ifndef NDEBUG
4125   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4126   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4127     // Inalloca argument can have different type.
4128     if (IRFunctionArgs.hasInallocaArg() &&
4129         i == IRFunctionArgs.getInallocaArgNo())
4130       continue;
4131     if (i < IRFuncTy->getNumParams())
4132       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4133   }
4134 #endif
4135 
4136   // Compute the calling convention and attributes.
4137   unsigned CallingConv;
4138   llvm::AttributeList Attrs;
4139   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4140                              Callee.getAbstractInfo(), Attrs, CallingConv,
4141                              /*AttrOnCallSite=*/true);
4142 
4143   // Apply some call-site-specific attributes.
4144   // TODO: work this into building the attribute set.
4145 
4146   // Apply always_inline to all calls within flatten functions.
4147   // FIXME: should this really take priority over __try, below?
4148   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4149       !(Callee.getAbstractInfo().getCalleeDecl() &&
4150         Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) {
4151     Attrs =
4152         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4153                            llvm::Attribute::AlwaysInline);
4154   }
4155 
4156   // Disable inlining inside SEH __try blocks.
4157   if (isSEHTryScope()) {
4158     Attrs =
4159         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4160                            llvm::Attribute::NoInline);
4161   }
4162 
4163   // Decide whether to use a call or an invoke.
4164   bool CannotThrow;
4165   if (currentFunctionUsesSEHTry()) {
4166     // SEH cares about asynchronous exceptions, so everything can "throw."
4167     CannotThrow = false;
4168   } else if (isCleanupPadScope() &&
4169              EHPersonality::get(*this).isMSVCXXPersonality()) {
4170     // The MSVC++ personality will implicitly terminate the program if an
4171     // exception is thrown during a cleanup outside of a try/catch.
4172     // We don't need to model anything in IR to get this behavior.
4173     CannotThrow = true;
4174   } else {
4175     // Otherwise, nounwind call sites will never throw.
4176     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4177                                      llvm::Attribute::NoUnwind);
4178   }
4179   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4180 
4181   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4182   getBundlesForFunclet(CalleePtr, CurrentFuncletPad, BundleList);
4183 
4184   // Emit the actual call/invoke instruction.
4185   llvm::CallSite CS;
4186   if (!InvokeDest) {
4187     CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList);
4188   } else {
4189     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4190     CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs,
4191                               BundleList);
4192     EmitBlock(Cont);
4193   }
4194   llvm::Instruction *CI = CS.getInstruction();
4195   if (callOrInvoke)
4196     *callOrInvoke = CI;
4197 
4198   // Apply the attributes and calling convention.
4199   CS.setAttributes(Attrs);
4200   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4201 
4202   // Apply various metadata.
4203 
4204   if (!CI->getType()->isVoidTy())
4205     CI->setName("call");
4206 
4207   // Insert instrumentation or attach profile metadata at indirect call sites.
4208   // For more details, see the comment before the definition of
4209   // IPVK_IndirectCallTarget in InstrProfData.inc.
4210   if (!CS.getCalledFunction())
4211     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4212                      CI, CalleePtr);
4213 
4214   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4215   // optimizer it can aggressively ignore unwind edges.
4216   if (CGM.getLangOpts().ObjCAutoRefCount)
4217     AddObjCARCExceptionMetadata(CI);
4218 
4219   // Suppress tail calls if requested.
4220   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4221     const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl();
4222     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4223       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4224   }
4225 
4226   // 4. Finish the call.
4227 
4228   // If the call doesn't return, finish the basic block and clear the
4229   // insertion point; this allows the rest of IRGen to discard
4230   // unreachable code.
4231   if (CS.doesNotReturn()) {
4232     if (UnusedReturnSize)
4233       EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
4234                       SRetPtr.getPointer());
4235 
4236     Builder.CreateUnreachable();
4237     Builder.ClearInsertionPoint();
4238 
4239     // FIXME: For now, emit a dummy basic block because expr emitters in
4240     // generally are not ready to handle emitting expressions at unreachable
4241     // points.
4242     EnsureInsertPoint();
4243 
4244     // Return a reasonable RValue.
4245     return GetUndefRValue(RetTy);
4246   }
4247 
4248   // Perform the swifterror writeback.
4249   if (swiftErrorTemp.isValid()) {
4250     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4251     Builder.CreateStore(errorResult, swiftErrorArg);
4252   }
4253 
4254   // Emit any call-associated writebacks immediately.  Arguably this
4255   // should happen after any return-value munging.
4256   if (CallArgs.hasWritebacks())
4257     emitWritebacks(*this, CallArgs);
4258 
4259   // The stack cleanup for inalloca arguments has to run out of the normal
4260   // lexical order, so deactivate it and run it manually here.
4261   CallArgs.freeArgumentMemory(*this);
4262 
4263   // Extract the return value.
4264   RValue Ret = [&] {
4265     switch (RetAI.getKind()) {
4266     case ABIArgInfo::CoerceAndExpand: {
4267       auto coercionType = RetAI.getCoerceAndExpandType();
4268       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4269 
4270       Address addr = SRetPtr;
4271       addr = Builder.CreateElementBitCast(addr, coercionType);
4272 
4273       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4274       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4275 
4276       unsigned unpaddedIndex = 0;
4277       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4278         llvm::Type *eltType = coercionType->getElementType(i);
4279         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4280         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4281         llvm::Value *elt = CI;
4282         if (requiresExtract)
4283           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4284         else
4285           assert(unpaddedIndex == 0);
4286         Builder.CreateStore(elt, eltAddr);
4287       }
4288       // FALLTHROUGH
4289       LLVM_FALLTHROUGH;
4290     }
4291 
4292     case ABIArgInfo::InAlloca:
4293     case ABIArgInfo::Indirect: {
4294       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4295       if (UnusedReturnSize)
4296         EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
4297                         SRetPtr.getPointer());
4298       return ret;
4299     }
4300 
4301     case ABIArgInfo::Ignore:
4302       // If we are ignoring an argument that had a result, make sure to
4303       // construct the appropriate return value for our caller.
4304       return GetUndefRValue(RetTy);
4305 
4306     case ABIArgInfo::Extend:
4307     case ABIArgInfo::Direct: {
4308       llvm::Type *RetIRTy = ConvertType(RetTy);
4309       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4310         switch (getEvaluationKind(RetTy)) {
4311         case TEK_Complex: {
4312           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4313           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4314           return RValue::getComplex(std::make_pair(Real, Imag));
4315         }
4316         case TEK_Aggregate: {
4317           Address DestPtr = ReturnValue.getValue();
4318           bool DestIsVolatile = ReturnValue.isVolatile();
4319 
4320           if (!DestPtr.isValid()) {
4321             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4322             DestIsVolatile = false;
4323           }
4324           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4325           return RValue::getAggregate(DestPtr);
4326         }
4327         case TEK_Scalar: {
4328           // If the argument doesn't match, perform a bitcast to coerce it.  This
4329           // can happen due to trivial type mismatches.
4330           llvm::Value *V = CI;
4331           if (V->getType() != RetIRTy)
4332             V = Builder.CreateBitCast(V, RetIRTy);
4333           return RValue::get(V);
4334         }
4335         }
4336         llvm_unreachable("bad evaluation kind");
4337       }
4338 
4339       Address DestPtr = ReturnValue.getValue();
4340       bool DestIsVolatile = ReturnValue.isVolatile();
4341 
4342       if (!DestPtr.isValid()) {
4343         DestPtr = CreateMemTemp(RetTy, "coerce");
4344         DestIsVolatile = false;
4345       }
4346 
4347       // If the value is offset in memory, apply the offset now.
4348       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4349       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4350 
4351       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4352     }
4353 
4354     case ABIArgInfo::Expand:
4355       llvm_unreachable("Invalid ABI kind for return argument");
4356     }
4357 
4358     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4359   } ();
4360 
4361   // Emit the assume_aligned check on the return value.
4362   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl();
4363   if (Ret.isScalar() && TargetDecl) {
4364     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4365       llvm::Value *OffsetValue = nullptr;
4366       if (const auto *Offset = AA->getOffset())
4367         OffsetValue = EmitScalarExpr(Offset);
4368 
4369       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4370       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4371       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
4372                               OffsetValue);
4373     } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4374       llvm::Value *ParamVal =
4375           CallArgs[AA->getParamIndex() - 1].RV.getScalarVal();
4376       EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal);
4377     }
4378   }
4379 
4380   return Ret;
4381 }
4382 
4383 /* VarArg handling */
4384 
4385 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4386   VAListAddr = VE->isMicrosoftABI()
4387                  ? EmitMSVAListRef(VE->getSubExpr())
4388                  : EmitVAListRef(VE->getSubExpr());
4389   QualType Ty = VE->getType();
4390   if (VE->isMicrosoftABI())
4391     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4392   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4393 }
4394