1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGCXXABI.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/DeclCXX.h" 23 #include "clang/AST/DeclObjC.h" 24 #include "clang/Basic/TargetBuiltins.h" 25 #include "clang/Basic/TargetInfo.h" 26 #include "clang/CodeGen/CGFunctionInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/StringExtras.h" 29 #include "llvm/IR/Attributes.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/Transforms/Utils/Local.h" 36 using namespace clang; 37 using namespace CodeGen; 38 39 /***/ 40 41 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) { 42 switch (CC) { 43 default: return llvm::CallingConv::C; 44 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 45 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 46 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 47 case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64; 48 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 49 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 50 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 51 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 52 // TODO: Add support for __pascal to LLVM. 53 case CC_X86Pascal: return llvm::CallingConv::C; 54 // TODO: Add support for __vectorcall to LLVM. 55 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 56 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 57 case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL; 58 } 59 } 60 61 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 62 /// qualification. 63 /// FIXME: address space qualification? 64 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 65 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 66 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 67 } 68 69 /// Returns the canonical formal type of the given C++ method. 70 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 71 return MD->getType()->getCanonicalTypeUnqualified() 72 .getAs<FunctionProtoType>(); 73 } 74 75 /// Returns the "extra-canonicalized" return type, which discards 76 /// qualifiers on the return type. Codegen doesn't care about them, 77 /// and it makes ABI code a little easier to be able to assume that 78 /// all parameter and return types are top-level unqualified. 79 static CanQualType GetReturnType(QualType RetTy) { 80 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 81 } 82 83 /// Arrange the argument and result information for a value of the given 84 /// unprototyped freestanding function type. 85 const CGFunctionInfo & 86 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 87 // When translating an unprototyped function type, always use a 88 // variadic type. 89 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 90 /*instanceMethod=*/false, 91 /*chainCall=*/false, None, 92 FTNP->getExtInfo(), RequiredArgs(0)); 93 } 94 95 /// Arrange the LLVM function layout for a value of the given function 96 /// type, on top of any implicit parameters already stored. 97 static const CGFunctionInfo & 98 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 99 SmallVectorImpl<CanQualType> &prefix, 100 CanQual<FunctionProtoType> FTP) { 101 RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 102 // FIXME: Kill copy. 103 prefix.append(FTP->param_type_begin(), FTP->param_type_end()); 104 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 105 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 106 /*chainCall=*/false, prefix, 107 FTP->getExtInfo(), required); 108 } 109 110 /// Arrange the argument and result information for a value of the 111 /// given freestanding function type. 112 const CGFunctionInfo & 113 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 114 SmallVector<CanQualType, 16> argTypes; 115 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 116 FTP); 117 } 118 119 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 120 // Set the appropriate calling convention for the Function. 121 if (D->hasAttr<StdCallAttr>()) 122 return CC_X86StdCall; 123 124 if (D->hasAttr<FastCallAttr>()) 125 return CC_X86FastCall; 126 127 if (D->hasAttr<ThisCallAttr>()) 128 return CC_X86ThisCall; 129 130 if (D->hasAttr<VectorCallAttr>()) 131 return CC_X86VectorCall; 132 133 if (D->hasAttr<PascalAttr>()) 134 return CC_X86Pascal; 135 136 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 137 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 138 139 if (D->hasAttr<IntelOclBiccAttr>()) 140 return CC_IntelOclBicc; 141 142 if (D->hasAttr<MSABIAttr>()) 143 return IsWindows ? CC_C : CC_X86_64Win64; 144 145 if (D->hasAttr<SysVABIAttr>()) 146 return IsWindows ? CC_X86_64SysV : CC_C; 147 148 return CC_C; 149 } 150 151 /// Arrange the argument and result information for a call to an 152 /// unknown C++ non-static member function of the given abstract type. 153 /// (Zero value of RD means we don't have any meaningful "this" argument type, 154 /// so fall back to a generic pointer type). 155 /// The member function must be an ordinary function, i.e. not a 156 /// constructor or destructor. 157 const CGFunctionInfo & 158 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 159 const FunctionProtoType *FTP) { 160 SmallVector<CanQualType, 16> argTypes; 161 162 // Add the 'this' pointer. 163 if (RD) 164 argTypes.push_back(GetThisType(Context, RD)); 165 else 166 argTypes.push_back(Context.VoidPtrTy); 167 168 return ::arrangeLLVMFunctionInfo( 169 *this, true, argTypes, 170 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 171 } 172 173 /// Arrange the argument and result information for a declaration or 174 /// definition of the given C++ non-static member function. The 175 /// member function must be an ordinary function, i.e. not a 176 /// constructor or destructor. 177 const CGFunctionInfo & 178 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 179 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 180 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 181 182 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 183 184 if (MD->isInstance()) { 185 // The abstract case is perfectly fine. 186 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 187 return arrangeCXXMethodType(ThisType, prototype.getTypePtr()); 188 } 189 190 return arrangeFreeFunctionType(prototype); 191 } 192 193 const CGFunctionInfo & 194 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 195 StructorType Type) { 196 197 SmallVector<CanQualType, 16> argTypes; 198 argTypes.push_back(GetThisType(Context, MD->getParent())); 199 200 GlobalDecl GD; 201 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 202 GD = GlobalDecl(CD, toCXXCtorType(Type)); 203 } else { 204 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 205 GD = GlobalDecl(DD, toCXXDtorType(Type)); 206 } 207 208 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 209 210 // Add the formal parameters. 211 argTypes.append(FTP->param_type_begin(), FTP->param_type_end()); 212 213 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 214 215 RequiredArgs required = 216 (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All); 217 218 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 219 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 220 ? argTypes.front() 221 : TheCXXABI.hasMostDerivedReturn(GD) 222 ? CGM.getContext().VoidPtrTy 223 : Context.VoidTy; 224 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 225 /*chainCall=*/false, argTypes, extInfo, 226 required); 227 } 228 229 /// Arrange a call to a C++ method, passing the given arguments. 230 const CGFunctionInfo & 231 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 232 const CXXConstructorDecl *D, 233 CXXCtorType CtorKind, 234 unsigned ExtraArgs) { 235 // FIXME: Kill copy. 236 SmallVector<CanQualType, 16> ArgTypes; 237 for (const auto &Arg : args) 238 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 239 240 CanQual<FunctionProtoType> FPT = GetFormalType(D); 241 RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs); 242 GlobalDecl GD(D, CtorKind); 243 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 244 ? ArgTypes.front() 245 : TheCXXABI.hasMostDerivedReturn(GD) 246 ? CGM.getContext().VoidPtrTy 247 : Context.VoidTy; 248 249 FunctionType::ExtInfo Info = FPT->getExtInfo(); 250 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 251 /*chainCall=*/false, ArgTypes, Info, 252 Required); 253 } 254 255 /// Arrange the argument and result information for the declaration or 256 /// definition of the given function. 257 const CGFunctionInfo & 258 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 259 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 260 if (MD->isInstance()) 261 return arrangeCXXMethodDeclaration(MD); 262 263 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 264 265 assert(isa<FunctionType>(FTy)); 266 267 // When declaring a function without a prototype, always use a 268 // non-variadic type. 269 if (isa<FunctionNoProtoType>(FTy)) { 270 CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>(); 271 return arrangeLLVMFunctionInfo( 272 noProto->getReturnType(), /*instanceMethod=*/false, 273 /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All); 274 } 275 276 assert(isa<FunctionProtoType>(FTy)); 277 return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>()); 278 } 279 280 /// Arrange the argument and result information for the declaration or 281 /// definition of an Objective-C method. 282 const CGFunctionInfo & 283 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 284 // It happens that this is the same as a call with no optional 285 // arguments, except also using the formal 'self' type. 286 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 287 } 288 289 /// Arrange the argument and result information for the function type 290 /// through which to perform a send to the given Objective-C method, 291 /// using the given receiver type. The receiver type is not always 292 /// the 'self' type of the method or even an Objective-C pointer type. 293 /// This is *not* the right method for actually performing such a 294 /// message send, due to the possibility of optional arguments. 295 const CGFunctionInfo & 296 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 297 QualType receiverType) { 298 SmallVector<CanQualType, 16> argTys; 299 argTys.push_back(Context.getCanonicalParamType(receiverType)); 300 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 301 // FIXME: Kill copy? 302 for (const auto *I : MD->params()) { 303 argTys.push_back(Context.getCanonicalParamType(I->getType())); 304 } 305 306 FunctionType::ExtInfo einfo; 307 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 308 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 309 310 if (getContext().getLangOpts().ObjCAutoRefCount && 311 MD->hasAttr<NSReturnsRetainedAttr>()) 312 einfo = einfo.withProducesResult(true); 313 314 RequiredArgs required = 315 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 316 317 return arrangeLLVMFunctionInfo( 318 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 319 /*chainCall=*/false, argTys, einfo, required); 320 } 321 322 const CGFunctionInfo & 323 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 324 // FIXME: Do we need to handle ObjCMethodDecl? 325 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 326 327 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 328 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 329 330 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 331 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 332 333 return arrangeFunctionDeclaration(FD); 334 } 335 336 /// Arrange a thunk that takes 'this' as the first parameter followed by 337 /// varargs. Return a void pointer, regardless of the actual return type. 338 /// The body of the thunk will end in a musttail call to a function of the 339 /// correct type, and the caller will bitcast the function to the correct 340 /// prototype. 341 const CGFunctionInfo & 342 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) { 343 assert(MD->isVirtual() && "only virtual memptrs have thunks"); 344 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 345 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 346 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 347 /*chainCall=*/false, ArgTys, 348 FTP->getExtInfo(), RequiredArgs(1)); 349 } 350 351 const CGFunctionInfo & 352 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 353 CXXCtorType CT) { 354 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 355 356 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 357 SmallVector<CanQualType, 2> ArgTys; 358 const CXXRecordDecl *RD = CD->getParent(); 359 ArgTys.push_back(GetThisType(Context, RD)); 360 if (CT == Ctor_CopyingClosure) 361 ArgTys.push_back(*FTP->param_type_begin()); 362 if (RD->getNumVBases() > 0) 363 ArgTys.push_back(Context.IntTy); 364 CallingConv CC = Context.getDefaultCallingConvention( 365 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 366 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 367 /*chainCall=*/false, ArgTys, 368 FunctionType::ExtInfo(CC), RequiredArgs::All); 369 } 370 371 /// Arrange a call as unto a free function, except possibly with an 372 /// additional number of formal parameters considered required. 373 static const CGFunctionInfo & 374 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 375 CodeGenModule &CGM, 376 const CallArgList &args, 377 const FunctionType *fnType, 378 unsigned numExtraRequiredArgs, 379 bool chainCall) { 380 assert(args.size() >= numExtraRequiredArgs); 381 382 // In most cases, there are no optional arguments. 383 RequiredArgs required = RequiredArgs::All; 384 385 // If we have a variadic prototype, the required arguments are the 386 // extra prefix plus the arguments in the prototype. 387 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 388 if (proto->isVariadic()) 389 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 390 391 // If we don't have a prototype at all, but we're supposed to 392 // explicitly use the variadic convention for unprototyped calls, 393 // treat all of the arguments as required but preserve the nominal 394 // possibility of variadics. 395 } else if (CGM.getTargetCodeGenInfo() 396 .isNoProtoCallVariadic(args, 397 cast<FunctionNoProtoType>(fnType))) { 398 required = RequiredArgs(args.size()); 399 } 400 401 // FIXME: Kill copy. 402 SmallVector<CanQualType, 16> argTypes; 403 for (const auto &arg : args) 404 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 405 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 406 /*instanceMethod=*/false, chainCall, 407 argTypes, fnType->getExtInfo(), required); 408 } 409 410 /// Figure out the rules for calling a function with the given formal 411 /// type using the given arguments. The arguments are necessary 412 /// because the function might be unprototyped, in which case it's 413 /// target-dependent in crazy ways. 414 const CGFunctionInfo & 415 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 416 const FunctionType *fnType, 417 bool chainCall) { 418 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 419 chainCall ? 1 : 0, chainCall); 420 } 421 422 /// A block function call is essentially a free-function call with an 423 /// extra implicit argument. 424 const CGFunctionInfo & 425 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 426 const FunctionType *fnType) { 427 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 428 /*chainCall=*/false); 429 } 430 431 const CGFunctionInfo & 432 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType, 433 const CallArgList &args, 434 FunctionType::ExtInfo info, 435 RequiredArgs required) { 436 // FIXME: Kill copy. 437 SmallVector<CanQualType, 16> argTypes; 438 for (const auto &Arg : args) 439 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 440 return arrangeLLVMFunctionInfo( 441 GetReturnType(resultType), /*instanceMethod=*/false, 442 /*chainCall=*/false, argTypes, info, required); 443 } 444 445 /// Arrange a call to a C++ method, passing the given arguments. 446 const CGFunctionInfo & 447 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 448 const FunctionProtoType *FPT, 449 RequiredArgs required) { 450 // FIXME: Kill copy. 451 SmallVector<CanQualType, 16> argTypes; 452 for (const auto &Arg : args) 453 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 454 455 FunctionType::ExtInfo info = FPT->getExtInfo(); 456 return arrangeLLVMFunctionInfo( 457 GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true, 458 /*chainCall=*/false, argTypes, info, required); 459 } 460 461 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration( 462 QualType resultType, const FunctionArgList &args, 463 const FunctionType::ExtInfo &info, bool isVariadic) { 464 // FIXME: Kill copy. 465 SmallVector<CanQualType, 16> argTypes; 466 for (auto Arg : args) 467 argTypes.push_back(Context.getCanonicalParamType(Arg->getType())); 468 469 RequiredArgs required = 470 (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All); 471 return arrangeLLVMFunctionInfo( 472 GetReturnType(resultType), /*instanceMethod=*/false, 473 /*chainCall=*/false, argTypes, info, required); 474 } 475 476 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 477 return arrangeLLVMFunctionInfo( 478 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 479 None, FunctionType::ExtInfo(), RequiredArgs::All); 480 } 481 482 /// Arrange the argument and result information for an abstract value 483 /// of a given function type. This is the method which all of the 484 /// above functions ultimately defer to. 485 const CGFunctionInfo & 486 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 487 bool instanceMethod, 488 bool chainCall, 489 ArrayRef<CanQualType> argTypes, 490 FunctionType::ExtInfo info, 491 RequiredArgs required) { 492 assert(std::all_of(argTypes.begin(), argTypes.end(), 493 std::mem_fun_ref(&CanQualType::isCanonicalAsParam))); 494 495 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 496 497 // Lookup or create unique function info. 498 llvm::FoldingSetNodeID ID; 499 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required, 500 resultType, argTypes); 501 502 void *insertPos = nullptr; 503 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 504 if (FI) 505 return *FI; 506 507 // Construct the function info. We co-allocate the ArgInfos. 508 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 509 resultType, argTypes, required); 510 FunctionInfos.InsertNode(FI, insertPos); 511 512 bool inserted = FunctionsBeingProcessed.insert(FI).second; 513 (void)inserted; 514 assert(inserted && "Recursively being processed?"); 515 516 // Compute ABI information. 517 getABIInfo().computeInfo(*FI); 518 519 // Loop over all of the computed argument and return value info. If any of 520 // them are direct or extend without a specified coerce type, specify the 521 // default now. 522 ABIArgInfo &retInfo = FI->getReturnInfo(); 523 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 524 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 525 526 for (auto &I : FI->arguments()) 527 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 528 I.info.setCoerceToType(ConvertType(I.type)); 529 530 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 531 assert(erased && "Not in set?"); 532 533 return *FI; 534 } 535 536 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 537 bool instanceMethod, 538 bool chainCall, 539 const FunctionType::ExtInfo &info, 540 CanQualType resultType, 541 ArrayRef<CanQualType> argTypes, 542 RequiredArgs required) { 543 void *buffer = operator new(sizeof(CGFunctionInfo) + 544 sizeof(ArgInfo) * (argTypes.size() + 1)); 545 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 546 FI->CallingConvention = llvmCC; 547 FI->EffectiveCallingConvention = llvmCC; 548 FI->ASTCallingConvention = info.getCC(); 549 FI->InstanceMethod = instanceMethod; 550 FI->ChainCall = chainCall; 551 FI->NoReturn = info.getNoReturn(); 552 FI->ReturnsRetained = info.getProducesResult(); 553 FI->Required = required; 554 FI->HasRegParm = info.getHasRegParm(); 555 FI->RegParm = info.getRegParm(); 556 FI->ArgStruct = nullptr; 557 FI->ArgStructAlign = 0; 558 FI->NumArgs = argTypes.size(); 559 FI->getArgsBuffer()[0].type = resultType; 560 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 561 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 562 return FI; 563 } 564 565 /***/ 566 567 namespace { 568 // ABIArgInfo::Expand implementation. 569 570 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 571 struct TypeExpansion { 572 enum TypeExpansionKind { 573 // Elements of constant arrays are expanded recursively. 574 TEK_ConstantArray, 575 // Record fields are expanded recursively (but if record is a union, only 576 // the field with the largest size is expanded). 577 TEK_Record, 578 // For complex types, real and imaginary parts are expanded recursively. 579 TEK_Complex, 580 // All other types are not expandable. 581 TEK_None 582 }; 583 584 const TypeExpansionKind Kind; 585 586 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 587 virtual ~TypeExpansion() {} 588 }; 589 590 struct ConstantArrayExpansion : TypeExpansion { 591 QualType EltTy; 592 uint64_t NumElts; 593 594 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 595 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 596 static bool classof(const TypeExpansion *TE) { 597 return TE->Kind == TEK_ConstantArray; 598 } 599 }; 600 601 struct RecordExpansion : TypeExpansion { 602 SmallVector<const CXXBaseSpecifier *, 1> Bases; 603 604 SmallVector<const FieldDecl *, 1> Fields; 605 606 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 607 SmallVector<const FieldDecl *, 1> &&Fields) 608 : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {} 609 static bool classof(const TypeExpansion *TE) { 610 return TE->Kind == TEK_Record; 611 } 612 }; 613 614 struct ComplexExpansion : TypeExpansion { 615 QualType EltTy; 616 617 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 618 static bool classof(const TypeExpansion *TE) { 619 return TE->Kind == TEK_Complex; 620 } 621 }; 622 623 struct NoExpansion : TypeExpansion { 624 NoExpansion() : TypeExpansion(TEK_None) {} 625 static bool classof(const TypeExpansion *TE) { 626 return TE->Kind == TEK_None; 627 } 628 }; 629 } // namespace 630 631 static std::unique_ptr<TypeExpansion> 632 getTypeExpansion(QualType Ty, const ASTContext &Context) { 633 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 634 return llvm::make_unique<ConstantArrayExpansion>( 635 AT->getElementType(), AT->getSize().getZExtValue()); 636 } 637 if (const RecordType *RT = Ty->getAs<RecordType>()) { 638 SmallVector<const CXXBaseSpecifier *, 1> Bases; 639 SmallVector<const FieldDecl *, 1> Fields; 640 const RecordDecl *RD = RT->getDecl(); 641 assert(!RD->hasFlexibleArrayMember() && 642 "Cannot expand structure with flexible array."); 643 if (RD->isUnion()) { 644 // Unions can be here only in degenerative cases - all the fields are same 645 // after flattening. Thus we have to use the "largest" field. 646 const FieldDecl *LargestFD = nullptr; 647 CharUnits UnionSize = CharUnits::Zero(); 648 649 for (const auto *FD : RD->fields()) { 650 // Skip zero length bitfields. 651 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 652 continue; 653 assert(!FD->isBitField() && 654 "Cannot expand structure with bit-field members."); 655 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 656 if (UnionSize < FieldSize) { 657 UnionSize = FieldSize; 658 LargestFD = FD; 659 } 660 } 661 if (LargestFD) 662 Fields.push_back(LargestFD); 663 } else { 664 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 665 assert(!CXXRD->isDynamicClass() && 666 "cannot expand vtable pointers in dynamic classes"); 667 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 668 Bases.push_back(&BS); 669 } 670 671 for (const auto *FD : RD->fields()) { 672 // Skip zero length bitfields. 673 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 674 continue; 675 assert(!FD->isBitField() && 676 "Cannot expand structure with bit-field members."); 677 Fields.push_back(FD); 678 } 679 } 680 return llvm::make_unique<RecordExpansion>(std::move(Bases), 681 std::move(Fields)); 682 } 683 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 684 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 685 } 686 return llvm::make_unique<NoExpansion>(); 687 } 688 689 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 690 auto Exp = getTypeExpansion(Ty, Context); 691 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 692 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 693 } 694 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 695 int Res = 0; 696 for (auto BS : RExp->Bases) 697 Res += getExpansionSize(BS->getType(), Context); 698 for (auto FD : RExp->Fields) 699 Res += getExpansionSize(FD->getType(), Context); 700 return Res; 701 } 702 if (isa<ComplexExpansion>(Exp.get())) 703 return 2; 704 assert(isa<NoExpansion>(Exp.get())); 705 return 1; 706 } 707 708 void 709 CodeGenTypes::getExpandedTypes(QualType Ty, 710 SmallVectorImpl<llvm::Type *>::iterator &TI) { 711 auto Exp = getTypeExpansion(Ty, Context); 712 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 713 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 714 getExpandedTypes(CAExp->EltTy, TI); 715 } 716 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 717 for (auto BS : RExp->Bases) 718 getExpandedTypes(BS->getType(), TI); 719 for (auto FD : RExp->Fields) 720 getExpandedTypes(FD->getType(), TI); 721 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 722 llvm::Type *EltTy = ConvertType(CExp->EltTy); 723 *TI++ = EltTy; 724 *TI++ = EltTy; 725 } else { 726 assert(isa<NoExpansion>(Exp.get())); 727 *TI++ = ConvertType(Ty); 728 } 729 } 730 731 static void forConstantArrayExpansion(CodeGenFunction &CGF, 732 ConstantArrayExpansion *CAE, 733 Address BaseAddr, 734 llvm::function_ref<void(Address)> Fn) { 735 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 736 CharUnits EltAlign = 737 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 738 739 for (int i = 0, n = CAE->NumElts; i < n; i++) { 740 llvm::Value *EltAddr = 741 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 742 Fn(Address(EltAddr, EltAlign)); 743 } 744 } 745 746 void CodeGenFunction::ExpandTypeFromArgs( 747 QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) { 748 assert(LV.isSimple() && 749 "Unexpected non-simple lvalue during struct expansion."); 750 751 auto Exp = getTypeExpansion(Ty, getContext()); 752 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 753 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 754 [&](Address EltAddr) { 755 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 756 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 757 }); 758 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 759 Address This = LV.getAddress(); 760 for (const CXXBaseSpecifier *BS : RExp->Bases) { 761 // Perform a single step derived-to-base conversion. 762 Address Base = 763 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 764 /*NullCheckValue=*/false, SourceLocation()); 765 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 766 767 // Recurse onto bases. 768 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 769 } 770 for (auto FD : RExp->Fields) { 771 // FIXME: What are the right qualifiers here? 772 LValue SubLV = EmitLValueForField(LV, FD); 773 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 774 } 775 } else if (isa<ComplexExpansion>(Exp.get())) { 776 auto realValue = *AI++; 777 auto imagValue = *AI++; 778 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 779 } else { 780 assert(isa<NoExpansion>(Exp.get())); 781 EmitStoreThroughLValue(RValue::get(*AI++), LV); 782 } 783 } 784 785 void CodeGenFunction::ExpandTypeToArgs( 786 QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 787 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 788 auto Exp = getTypeExpansion(Ty, getContext()); 789 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 790 forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(), 791 [&](Address EltAddr) { 792 RValue EltRV = 793 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()); 794 ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos); 795 }); 796 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 797 Address This = RV.getAggregateAddress(); 798 for (const CXXBaseSpecifier *BS : RExp->Bases) { 799 // Perform a single step derived-to-base conversion. 800 Address Base = 801 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 802 /*NullCheckValue=*/false, SourceLocation()); 803 RValue BaseRV = RValue::getAggregate(Base); 804 805 // Recurse onto bases. 806 ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs, 807 IRCallArgPos); 808 } 809 810 LValue LV = MakeAddrLValue(This, Ty); 811 for (auto FD : RExp->Fields) { 812 RValue FldRV = EmitRValueForField(LV, FD, SourceLocation()); 813 ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs, 814 IRCallArgPos); 815 } 816 } else if (isa<ComplexExpansion>(Exp.get())) { 817 ComplexPairTy CV = RV.getComplexVal(); 818 IRCallArgs[IRCallArgPos++] = CV.first; 819 IRCallArgs[IRCallArgPos++] = CV.second; 820 } else { 821 assert(isa<NoExpansion>(Exp.get())); 822 assert(RV.isScalar() && 823 "Unexpected non-scalar rvalue during struct expansion."); 824 825 // Insert a bitcast as needed. 826 llvm::Value *V = RV.getScalarVal(); 827 if (IRCallArgPos < IRFuncTy->getNumParams() && 828 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 829 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 830 831 IRCallArgs[IRCallArgPos++] = V; 832 } 833 } 834 835 /// Create a temporary allocation for the purposes of coercion. 836 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 837 CharUnits MinAlign) { 838 // Don't use an alignment that's worse than what LLVM would prefer. 839 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 840 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 841 842 return CGF.CreateTempAlloca(Ty, Align); 843 } 844 845 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 846 /// accessing some number of bytes out of it, try to gep into the struct to get 847 /// at its inner goodness. Dive as deep as possible without entering an element 848 /// with an in-memory size smaller than DstSize. 849 static Address 850 EnterStructPointerForCoercedAccess(Address SrcPtr, 851 llvm::StructType *SrcSTy, 852 uint64_t DstSize, CodeGenFunction &CGF) { 853 // We can't dive into a zero-element struct. 854 if (SrcSTy->getNumElements() == 0) return SrcPtr; 855 856 llvm::Type *FirstElt = SrcSTy->getElementType(0); 857 858 // If the first elt is at least as large as what we're looking for, or if the 859 // first element is the same size as the whole struct, we can enter it. The 860 // comparison must be made on the store size and not the alloca size. Using 861 // the alloca size may overstate the size of the load. 862 uint64_t FirstEltSize = 863 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 864 if (FirstEltSize < DstSize && 865 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 866 return SrcPtr; 867 868 // GEP into the first element. 869 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 870 871 // If the first element is a struct, recurse. 872 llvm::Type *SrcTy = SrcPtr.getElementType(); 873 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 874 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 875 876 return SrcPtr; 877 } 878 879 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 880 /// are either integers or pointers. This does a truncation of the value if it 881 /// is too large or a zero extension if it is too small. 882 /// 883 /// This behaves as if the value were coerced through memory, so on big-endian 884 /// targets the high bits are preserved in a truncation, while little-endian 885 /// targets preserve the low bits. 886 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 887 llvm::Type *Ty, 888 CodeGenFunction &CGF) { 889 if (Val->getType() == Ty) 890 return Val; 891 892 if (isa<llvm::PointerType>(Val->getType())) { 893 // If this is Pointer->Pointer avoid conversion to and from int. 894 if (isa<llvm::PointerType>(Ty)) 895 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 896 897 // Convert the pointer to an integer so we can play with its width. 898 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 899 } 900 901 llvm::Type *DestIntTy = Ty; 902 if (isa<llvm::PointerType>(DestIntTy)) 903 DestIntTy = CGF.IntPtrTy; 904 905 if (Val->getType() != DestIntTy) { 906 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 907 if (DL.isBigEndian()) { 908 // Preserve the high bits on big-endian targets. 909 // That is what memory coercion does. 910 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 911 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 912 913 if (SrcSize > DstSize) { 914 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 915 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 916 } else { 917 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 918 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 919 } 920 } else { 921 // Little-endian targets preserve the low bits. No shifts required. 922 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 923 } 924 } 925 926 if (isa<llvm::PointerType>(Ty)) 927 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 928 return Val; 929 } 930 931 932 933 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 934 /// a pointer to an object of type \arg Ty, known to be aligned to 935 /// \arg SrcAlign bytes. 936 /// 937 /// This safely handles the case when the src type is smaller than the 938 /// destination type; in this situation the values of bits which not 939 /// present in the src are undefined. 940 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 941 CodeGenFunction &CGF) { 942 llvm::Type *SrcTy = Src.getElementType(); 943 944 // If SrcTy and Ty are the same, just do a load. 945 if (SrcTy == Ty) 946 return CGF.Builder.CreateLoad(Src); 947 948 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 949 950 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 951 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 952 SrcTy = Src.getType()->getElementType(); 953 } 954 955 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 956 957 // If the source and destination are integer or pointer types, just do an 958 // extension or truncation to the desired type. 959 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 960 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 961 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 962 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 963 } 964 965 // If load is legal, just bitcast the src pointer. 966 if (SrcSize >= DstSize) { 967 // Generally SrcSize is never greater than DstSize, since this means we are 968 // losing bits. However, this can happen in cases where the structure has 969 // additional padding, for example due to a user specified alignment. 970 // 971 // FIXME: Assert that we aren't truncating non-padding bits when have access 972 // to that information. 973 Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty)); 974 return CGF.Builder.CreateLoad(Src); 975 } 976 977 // Otherwise do coercion through memory. This is stupid, but simple. 978 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 979 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 980 Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy); 981 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 982 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 983 false); 984 return CGF.Builder.CreateLoad(Tmp); 985 } 986 987 // Function to store a first-class aggregate into memory. We prefer to 988 // store the elements rather than the aggregate to be more friendly to 989 // fast-isel. 990 // FIXME: Do we need to recurse here? 991 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 992 Address Dest, bool DestIsVolatile) { 993 // Prefer scalar stores to first-class aggregate stores. 994 if (llvm::StructType *STy = 995 dyn_cast<llvm::StructType>(Val->getType())) { 996 const llvm::StructLayout *Layout = 997 CGF.CGM.getDataLayout().getStructLayout(STy); 998 999 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1000 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1001 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1002 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1003 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1004 } 1005 } else { 1006 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1007 } 1008 } 1009 1010 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1011 /// where the source and destination may have different types. The 1012 /// destination is known to be aligned to \arg DstAlign bytes. 1013 /// 1014 /// This safely handles the case when the src type is larger than the 1015 /// destination type; the upper bits of the src will be lost. 1016 static void CreateCoercedStore(llvm::Value *Src, 1017 Address Dst, 1018 bool DstIsVolatile, 1019 CodeGenFunction &CGF) { 1020 llvm::Type *SrcTy = Src->getType(); 1021 llvm::Type *DstTy = Dst.getType()->getElementType(); 1022 if (SrcTy == DstTy) { 1023 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1024 return; 1025 } 1026 1027 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1028 1029 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1030 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1031 DstTy = Dst.getType()->getElementType(); 1032 } 1033 1034 // If the source and destination are integer or pointer types, just do an 1035 // extension or truncation to the desired type. 1036 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1037 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1038 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1039 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1040 return; 1041 } 1042 1043 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1044 1045 // If store is legal, just bitcast the src pointer. 1046 if (SrcSize <= DstSize) { 1047 Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy)); 1048 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1049 } else { 1050 // Otherwise do coercion through memory. This is stupid, but 1051 // simple. 1052 1053 // Generally SrcSize is never greater than DstSize, since this means we are 1054 // losing bits. However, this can happen in cases where the structure has 1055 // additional padding, for example due to a user specified alignment. 1056 // 1057 // FIXME: Assert that we aren't truncating non-padding bits when have access 1058 // to that information. 1059 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1060 CGF.Builder.CreateStore(Src, Tmp); 1061 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1062 Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy); 1063 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1064 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1065 false); 1066 } 1067 } 1068 1069 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1070 const ABIArgInfo &info) { 1071 if (unsigned offset = info.getDirectOffset()) { 1072 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1073 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1074 CharUnits::fromQuantity(offset)); 1075 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1076 } 1077 return addr; 1078 } 1079 1080 namespace { 1081 1082 /// Encapsulates information about the way function arguments from 1083 /// CGFunctionInfo should be passed to actual LLVM IR function. 1084 class ClangToLLVMArgMapping { 1085 static const unsigned InvalidIndex = ~0U; 1086 unsigned InallocaArgNo; 1087 unsigned SRetArgNo; 1088 unsigned TotalIRArgs; 1089 1090 /// Arguments of LLVM IR function corresponding to single Clang argument. 1091 struct IRArgs { 1092 unsigned PaddingArgIndex; 1093 // Argument is expanded to IR arguments at positions 1094 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1095 unsigned FirstArgIndex; 1096 unsigned NumberOfArgs; 1097 1098 IRArgs() 1099 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1100 NumberOfArgs(0) {} 1101 }; 1102 1103 SmallVector<IRArgs, 8> ArgInfo; 1104 1105 public: 1106 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1107 bool OnlyRequiredArgs = false) 1108 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1109 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1110 construct(Context, FI, OnlyRequiredArgs); 1111 } 1112 1113 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1114 unsigned getInallocaArgNo() const { 1115 assert(hasInallocaArg()); 1116 return InallocaArgNo; 1117 } 1118 1119 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1120 unsigned getSRetArgNo() const { 1121 assert(hasSRetArg()); 1122 return SRetArgNo; 1123 } 1124 1125 unsigned totalIRArgs() const { return TotalIRArgs; } 1126 1127 bool hasPaddingArg(unsigned ArgNo) const { 1128 assert(ArgNo < ArgInfo.size()); 1129 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1130 } 1131 unsigned getPaddingArgNo(unsigned ArgNo) const { 1132 assert(hasPaddingArg(ArgNo)); 1133 return ArgInfo[ArgNo].PaddingArgIndex; 1134 } 1135 1136 /// Returns index of first IR argument corresponding to ArgNo, and their 1137 /// quantity. 1138 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1139 assert(ArgNo < ArgInfo.size()); 1140 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1141 ArgInfo[ArgNo].NumberOfArgs); 1142 } 1143 1144 private: 1145 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1146 bool OnlyRequiredArgs); 1147 }; 1148 1149 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1150 const CGFunctionInfo &FI, 1151 bool OnlyRequiredArgs) { 1152 unsigned IRArgNo = 0; 1153 bool SwapThisWithSRet = false; 1154 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1155 1156 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1157 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1158 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1159 } 1160 1161 unsigned ArgNo = 0; 1162 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1163 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1164 ++I, ++ArgNo) { 1165 assert(I != FI.arg_end()); 1166 QualType ArgType = I->type; 1167 const ABIArgInfo &AI = I->info; 1168 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1169 auto &IRArgs = ArgInfo[ArgNo]; 1170 1171 if (AI.getPaddingType()) 1172 IRArgs.PaddingArgIndex = IRArgNo++; 1173 1174 switch (AI.getKind()) { 1175 case ABIArgInfo::Extend: 1176 case ABIArgInfo::Direct: { 1177 // FIXME: handle sseregparm someday... 1178 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1179 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1180 IRArgs.NumberOfArgs = STy->getNumElements(); 1181 } else { 1182 IRArgs.NumberOfArgs = 1; 1183 } 1184 break; 1185 } 1186 case ABIArgInfo::Indirect: 1187 IRArgs.NumberOfArgs = 1; 1188 break; 1189 case ABIArgInfo::Ignore: 1190 case ABIArgInfo::InAlloca: 1191 // ignore and inalloca doesn't have matching LLVM parameters. 1192 IRArgs.NumberOfArgs = 0; 1193 break; 1194 case ABIArgInfo::Expand: { 1195 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1196 break; 1197 } 1198 } 1199 1200 if (IRArgs.NumberOfArgs > 0) { 1201 IRArgs.FirstArgIndex = IRArgNo; 1202 IRArgNo += IRArgs.NumberOfArgs; 1203 } 1204 1205 // Skip over the sret parameter when it comes second. We already handled it 1206 // above. 1207 if (IRArgNo == 1 && SwapThisWithSRet) 1208 IRArgNo++; 1209 } 1210 assert(ArgNo == ArgInfo.size()); 1211 1212 if (FI.usesInAlloca()) 1213 InallocaArgNo = IRArgNo++; 1214 1215 TotalIRArgs = IRArgNo; 1216 } 1217 } // namespace 1218 1219 /***/ 1220 1221 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1222 return FI.getReturnInfo().isIndirect(); 1223 } 1224 1225 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1226 return ReturnTypeUsesSRet(FI) && 1227 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1228 } 1229 1230 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1231 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1232 switch (BT->getKind()) { 1233 default: 1234 return false; 1235 case BuiltinType::Float: 1236 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1237 case BuiltinType::Double: 1238 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1239 case BuiltinType::LongDouble: 1240 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1241 } 1242 } 1243 1244 return false; 1245 } 1246 1247 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1248 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1249 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1250 if (BT->getKind() == BuiltinType::LongDouble) 1251 return getTarget().useObjCFP2RetForComplexLongDouble(); 1252 } 1253 } 1254 1255 return false; 1256 } 1257 1258 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1259 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1260 return GetFunctionType(FI); 1261 } 1262 1263 llvm::FunctionType * 1264 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1265 1266 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1267 (void)Inserted; 1268 assert(Inserted && "Recursively being processed?"); 1269 1270 llvm::Type *resultType = nullptr; 1271 const ABIArgInfo &retAI = FI.getReturnInfo(); 1272 switch (retAI.getKind()) { 1273 case ABIArgInfo::Expand: 1274 llvm_unreachable("Invalid ABI kind for return argument"); 1275 1276 case ABIArgInfo::Extend: 1277 case ABIArgInfo::Direct: 1278 resultType = retAI.getCoerceToType(); 1279 break; 1280 1281 case ABIArgInfo::InAlloca: 1282 if (retAI.getInAllocaSRet()) { 1283 // sret things on win32 aren't void, they return the sret pointer. 1284 QualType ret = FI.getReturnType(); 1285 llvm::Type *ty = ConvertType(ret); 1286 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1287 resultType = llvm::PointerType::get(ty, addressSpace); 1288 } else { 1289 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1290 } 1291 break; 1292 1293 case ABIArgInfo::Indirect: 1294 case ABIArgInfo::Ignore: 1295 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1296 break; 1297 } 1298 1299 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1300 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1301 1302 // Add type for sret argument. 1303 if (IRFunctionArgs.hasSRetArg()) { 1304 QualType Ret = FI.getReturnType(); 1305 llvm::Type *Ty = ConvertType(Ret); 1306 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1307 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1308 llvm::PointerType::get(Ty, AddressSpace); 1309 } 1310 1311 // Add type for inalloca argument. 1312 if (IRFunctionArgs.hasInallocaArg()) { 1313 auto ArgStruct = FI.getArgStruct(); 1314 assert(ArgStruct); 1315 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1316 } 1317 1318 // Add in all of the required arguments. 1319 unsigned ArgNo = 0; 1320 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1321 ie = it + FI.getNumRequiredArgs(); 1322 for (; it != ie; ++it, ++ArgNo) { 1323 const ABIArgInfo &ArgInfo = it->info; 1324 1325 // Insert a padding type to ensure proper alignment. 1326 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1327 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1328 ArgInfo.getPaddingType(); 1329 1330 unsigned FirstIRArg, NumIRArgs; 1331 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1332 1333 switch (ArgInfo.getKind()) { 1334 case ABIArgInfo::Ignore: 1335 case ABIArgInfo::InAlloca: 1336 assert(NumIRArgs == 0); 1337 break; 1338 1339 case ABIArgInfo::Indirect: { 1340 assert(NumIRArgs == 1); 1341 // indirect arguments are always on the stack, which is addr space #0. 1342 llvm::Type *LTy = ConvertTypeForMem(it->type); 1343 ArgTypes[FirstIRArg] = LTy->getPointerTo(); 1344 break; 1345 } 1346 1347 case ABIArgInfo::Extend: 1348 case ABIArgInfo::Direct: { 1349 // Fast-isel and the optimizer generally like scalar values better than 1350 // FCAs, so we flatten them if this is safe to do for this argument. 1351 llvm::Type *argType = ArgInfo.getCoerceToType(); 1352 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1353 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1354 assert(NumIRArgs == st->getNumElements()); 1355 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1356 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1357 } else { 1358 assert(NumIRArgs == 1); 1359 ArgTypes[FirstIRArg] = argType; 1360 } 1361 break; 1362 } 1363 1364 case ABIArgInfo::Expand: 1365 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1366 getExpandedTypes(it->type, ArgTypesIter); 1367 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1368 break; 1369 } 1370 } 1371 1372 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1373 assert(Erased && "Not in set?"); 1374 1375 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1376 } 1377 1378 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1379 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1380 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1381 1382 if (!isFuncTypeConvertible(FPT)) 1383 return llvm::StructType::get(getLLVMContext()); 1384 1385 const CGFunctionInfo *Info; 1386 if (isa<CXXDestructorDecl>(MD)) 1387 Info = 1388 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1389 else 1390 Info = &arrangeCXXMethodDeclaration(MD); 1391 return GetFunctionType(*Info); 1392 } 1393 1394 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1395 llvm::AttrBuilder &FuncAttrs, 1396 const FunctionProtoType *FPT) { 1397 if (!FPT) 1398 return; 1399 1400 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1401 FPT->isNothrow(Ctx)) 1402 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1403 } 1404 1405 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI, 1406 CGCalleeInfo CalleeInfo, 1407 AttributeListType &PAL, 1408 unsigned &CallingConv, 1409 bool AttrOnCallSite) { 1410 llvm::AttrBuilder FuncAttrs; 1411 llvm::AttrBuilder RetAttrs; 1412 bool HasOptnone = false; 1413 1414 CallingConv = FI.getEffectiveCallingConvention(); 1415 1416 if (FI.isNoReturn()) 1417 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1418 1419 // If we have information about the function prototype, we can learn 1420 // attributes form there. 1421 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1422 CalleeInfo.getCalleeFunctionProtoType()); 1423 1424 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 1425 1426 // FIXME: handle sseregparm someday... 1427 if (TargetDecl) { 1428 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1429 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1430 if (TargetDecl->hasAttr<NoThrowAttr>()) 1431 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1432 if (TargetDecl->hasAttr<NoReturnAttr>()) 1433 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1434 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1435 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1436 1437 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1438 AddAttributesFromFunctionProtoType( 1439 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1440 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1441 // These attributes are not inherited by overloads. 1442 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1443 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1444 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1445 } 1446 1447 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1448 if (TargetDecl->hasAttr<ConstAttr>()) { 1449 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1450 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1451 } else if (TargetDecl->hasAttr<PureAttr>()) { 1452 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1453 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1454 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1455 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1456 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1457 } 1458 if (TargetDecl->hasAttr<RestrictAttr>()) 1459 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1460 if (TargetDecl->hasAttr<ReturnsNonNullAttr>()) 1461 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1462 1463 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1464 } 1465 1466 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1467 if (!HasOptnone) { 1468 if (CodeGenOpts.OptimizeSize) 1469 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1470 if (CodeGenOpts.OptimizeSize == 2) 1471 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1472 } 1473 1474 if (CodeGenOpts.DisableRedZone) 1475 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1476 if (CodeGenOpts.NoImplicitFloat) 1477 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1478 if (CodeGenOpts.EnableSegmentedStacks && 1479 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1480 FuncAttrs.addAttribute("split-stack"); 1481 1482 if (AttrOnCallSite) { 1483 // Attributes that should go on the call site only. 1484 if (!CodeGenOpts.SimplifyLibCalls) 1485 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1486 if (!CodeGenOpts.TrapFuncName.empty()) 1487 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1488 } else { 1489 // Attributes that should go on the function, but not the call site. 1490 if (!CodeGenOpts.DisableFPElim) { 1491 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1492 } else if (CodeGenOpts.OmitLeafFramePointer) { 1493 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1494 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1495 } else { 1496 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1497 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1498 } 1499 1500 bool DisableTailCalls = 1501 CodeGenOpts.DisableTailCalls || 1502 (TargetDecl && TargetDecl->hasAttr<DisableTailCallsAttr>()); 1503 FuncAttrs.addAttribute("disable-tail-calls", 1504 llvm::toStringRef(DisableTailCalls)); 1505 1506 FuncAttrs.addAttribute("less-precise-fpmad", 1507 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1508 FuncAttrs.addAttribute("no-infs-fp-math", 1509 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1510 FuncAttrs.addAttribute("no-nans-fp-math", 1511 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1512 FuncAttrs.addAttribute("unsafe-fp-math", 1513 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1514 FuncAttrs.addAttribute("use-soft-float", 1515 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1516 FuncAttrs.addAttribute("stack-protector-buffer-size", 1517 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1518 1519 if (CodeGenOpts.StackRealignment) 1520 FuncAttrs.addAttribute("stackrealign"); 1521 1522 // Add target-cpu and target-features attributes to functions. If 1523 // we have a decl for the function and it has a target attribute then 1524 // parse that and add it to the feature set. 1525 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1526 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 1527 if (FD && FD->hasAttr<TargetAttr>()) { 1528 llvm::StringMap<bool> FeatureMap; 1529 getFunctionFeatureMap(FeatureMap, FD); 1530 1531 // Produce the canonical string for this set of features. 1532 std::vector<std::string> Features; 1533 for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(), 1534 ie = FeatureMap.end(); 1535 it != ie; ++it) 1536 Features.push_back((it->second ? "+" : "-") + it->first().str()); 1537 1538 // Now add the target-cpu and target-features to the function. 1539 // While we populated the feature map above, we still need to 1540 // get and parse the target attribute so we can get the cpu for 1541 // the function. 1542 const auto *TD = FD->getAttr<TargetAttr>(); 1543 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1544 if (ParsedAttr.second != "") 1545 TargetCPU = ParsedAttr.second; 1546 if (TargetCPU != "") 1547 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1548 if (!Features.empty()) { 1549 std::sort(Features.begin(), Features.end()); 1550 FuncAttrs.addAttribute( 1551 "target-features", 1552 llvm::join(Features.begin(), Features.end(), ",")); 1553 } 1554 } else { 1555 // Otherwise just add the existing target cpu and target features to the 1556 // function. 1557 std::vector<std::string> &Features = getTarget().getTargetOpts().Features; 1558 if (TargetCPU != "") 1559 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1560 if (!Features.empty()) { 1561 std::sort(Features.begin(), Features.end()); 1562 FuncAttrs.addAttribute( 1563 "target-features", 1564 llvm::join(Features.begin(), Features.end(), ",")); 1565 } 1566 } 1567 } 1568 1569 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1570 1571 QualType RetTy = FI.getReturnType(); 1572 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1573 switch (RetAI.getKind()) { 1574 case ABIArgInfo::Extend: 1575 if (RetTy->hasSignedIntegerRepresentation()) 1576 RetAttrs.addAttribute(llvm::Attribute::SExt); 1577 else if (RetTy->hasUnsignedIntegerRepresentation()) 1578 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1579 // FALL THROUGH 1580 case ABIArgInfo::Direct: 1581 if (RetAI.getInReg()) 1582 RetAttrs.addAttribute(llvm::Attribute::InReg); 1583 break; 1584 case ABIArgInfo::Ignore: 1585 break; 1586 1587 case ABIArgInfo::InAlloca: 1588 case ABIArgInfo::Indirect: { 1589 // inalloca and sret disable readnone and readonly 1590 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1591 .removeAttribute(llvm::Attribute::ReadNone); 1592 break; 1593 } 1594 1595 case ABIArgInfo::Expand: 1596 llvm_unreachable("Invalid ABI kind for return argument"); 1597 } 1598 1599 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1600 QualType PTy = RefTy->getPointeeType(); 1601 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1602 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1603 .getQuantity()); 1604 else if (getContext().getTargetAddressSpace(PTy) == 0) 1605 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1606 } 1607 1608 // Attach return attributes. 1609 if (RetAttrs.hasAttributes()) { 1610 PAL.push_back(llvm::AttributeSet::get( 1611 getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs)); 1612 } 1613 1614 // Attach attributes to sret. 1615 if (IRFunctionArgs.hasSRetArg()) { 1616 llvm::AttrBuilder SRETAttrs; 1617 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1618 if (RetAI.getInReg()) 1619 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1620 PAL.push_back(llvm::AttributeSet::get( 1621 getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs)); 1622 } 1623 1624 // Attach attributes to inalloca argument. 1625 if (IRFunctionArgs.hasInallocaArg()) { 1626 llvm::AttrBuilder Attrs; 1627 Attrs.addAttribute(llvm::Attribute::InAlloca); 1628 PAL.push_back(llvm::AttributeSet::get( 1629 getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs)); 1630 } 1631 1632 unsigned ArgNo = 0; 1633 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 1634 E = FI.arg_end(); 1635 I != E; ++I, ++ArgNo) { 1636 QualType ParamType = I->type; 1637 const ABIArgInfo &AI = I->info; 1638 llvm::AttrBuilder Attrs; 1639 1640 // Add attribute for padding argument, if necessary. 1641 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 1642 if (AI.getPaddingInReg()) 1643 PAL.push_back(llvm::AttributeSet::get( 1644 getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1, 1645 llvm::Attribute::InReg)); 1646 } 1647 1648 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1649 // have the corresponding parameter variable. It doesn't make 1650 // sense to do it here because parameters are so messed up. 1651 switch (AI.getKind()) { 1652 case ABIArgInfo::Extend: 1653 if (ParamType->isSignedIntegerOrEnumerationType()) 1654 Attrs.addAttribute(llvm::Attribute::SExt); 1655 else if (ParamType->isUnsignedIntegerOrEnumerationType()) { 1656 if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType)) 1657 Attrs.addAttribute(llvm::Attribute::SExt); 1658 else 1659 Attrs.addAttribute(llvm::Attribute::ZExt); 1660 } 1661 // FALL THROUGH 1662 case ABIArgInfo::Direct: 1663 if (ArgNo == 0 && FI.isChainCall()) 1664 Attrs.addAttribute(llvm::Attribute::Nest); 1665 else if (AI.getInReg()) 1666 Attrs.addAttribute(llvm::Attribute::InReg); 1667 break; 1668 1669 case ABIArgInfo::Indirect: { 1670 if (AI.getInReg()) 1671 Attrs.addAttribute(llvm::Attribute::InReg); 1672 1673 if (AI.getIndirectByVal()) 1674 Attrs.addAttribute(llvm::Attribute::ByVal); 1675 1676 CharUnits Align = AI.getIndirectAlign(); 1677 1678 // In a byval argument, it is important that the required 1679 // alignment of the type is honored, as LLVM might be creating a 1680 // *new* stack object, and needs to know what alignment to give 1681 // it. (Sometimes it can deduce a sensible alignment on its own, 1682 // but not if clang decides it must emit a packed struct, or the 1683 // user specifies increased alignment requirements.) 1684 // 1685 // This is different from indirect *not* byval, where the object 1686 // exists already, and the align attribute is purely 1687 // informative. 1688 assert(!Align.isZero()); 1689 1690 // For now, only add this when we have a byval argument. 1691 // TODO: be less lazy about updating test cases. 1692 if (AI.getIndirectByVal()) 1693 Attrs.addAlignmentAttr(Align.getQuantity()); 1694 1695 // byval disables readnone and readonly. 1696 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1697 .removeAttribute(llvm::Attribute::ReadNone); 1698 break; 1699 } 1700 case ABIArgInfo::Ignore: 1701 case ABIArgInfo::Expand: 1702 continue; 1703 1704 case ABIArgInfo::InAlloca: 1705 // inalloca disables readnone and readonly. 1706 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1707 .removeAttribute(llvm::Attribute::ReadNone); 1708 continue; 1709 } 1710 1711 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 1712 QualType PTy = RefTy->getPointeeType(); 1713 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1714 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1715 .getQuantity()); 1716 else if (getContext().getTargetAddressSpace(PTy) == 0) 1717 Attrs.addAttribute(llvm::Attribute::NonNull); 1718 } 1719 1720 if (Attrs.hasAttributes()) { 1721 unsigned FirstIRArg, NumIRArgs; 1722 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1723 for (unsigned i = 0; i < NumIRArgs; i++) 1724 PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), 1725 FirstIRArg + i + 1, Attrs)); 1726 } 1727 } 1728 assert(ArgNo == FI.arg_size()); 1729 1730 if (FuncAttrs.hasAttributes()) 1731 PAL.push_back(llvm:: 1732 AttributeSet::get(getLLVMContext(), 1733 llvm::AttributeSet::FunctionIndex, 1734 FuncAttrs)); 1735 } 1736 1737 /// An argument came in as a promoted argument; demote it back to its 1738 /// declared type. 1739 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 1740 const VarDecl *var, 1741 llvm::Value *value) { 1742 llvm::Type *varType = CGF.ConvertType(var->getType()); 1743 1744 // This can happen with promotions that actually don't change the 1745 // underlying type, like the enum promotions. 1746 if (value->getType() == varType) return value; 1747 1748 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 1749 && "unexpected promotion type"); 1750 1751 if (isa<llvm::IntegerType>(varType)) 1752 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 1753 1754 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 1755 } 1756 1757 /// Returns the attribute (either parameter attribute, or function 1758 /// attribute), which declares argument ArgNo to be non-null. 1759 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 1760 QualType ArgType, unsigned ArgNo) { 1761 // FIXME: __attribute__((nonnull)) can also be applied to: 1762 // - references to pointers, where the pointee is known to be 1763 // nonnull (apparently a Clang extension) 1764 // - transparent unions containing pointers 1765 // In the former case, LLVM IR cannot represent the constraint. In 1766 // the latter case, we have no guarantee that the transparent union 1767 // is in fact passed as a pointer. 1768 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 1769 return nullptr; 1770 // First, check attribute on parameter itself. 1771 if (PVD) { 1772 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 1773 return ParmNNAttr; 1774 } 1775 // Check function attributes. 1776 if (!FD) 1777 return nullptr; 1778 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 1779 if (NNAttr->isNonNull(ArgNo)) 1780 return NNAttr; 1781 } 1782 return nullptr; 1783 } 1784 1785 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 1786 llvm::Function *Fn, 1787 const FunctionArgList &Args) { 1788 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 1789 // Naked functions don't have prologues. 1790 return; 1791 1792 // If this is an implicit-return-zero function, go ahead and 1793 // initialize the return value. TODO: it might be nice to have 1794 // a more general mechanism for this that didn't require synthesized 1795 // return statements. 1796 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 1797 if (FD->hasImplicitReturnZero()) { 1798 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 1799 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 1800 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 1801 Builder.CreateStore(Zero, ReturnValue); 1802 } 1803 } 1804 1805 // FIXME: We no longer need the types from FunctionArgList; lift up and 1806 // simplify. 1807 1808 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 1809 // Flattened function arguments. 1810 SmallVector<llvm::Argument *, 16> FnArgs; 1811 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 1812 for (auto &Arg : Fn->args()) { 1813 FnArgs.push_back(&Arg); 1814 } 1815 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 1816 1817 // If we're using inalloca, all the memory arguments are GEPs off of the last 1818 // parameter, which is a pointer to the complete memory area. 1819 Address ArgStruct = Address::invalid(); 1820 const llvm::StructLayout *ArgStructLayout = nullptr; 1821 if (IRFunctionArgs.hasInallocaArg()) { 1822 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 1823 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 1824 FI.getArgStructAlignment()); 1825 1826 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 1827 } 1828 1829 // Name the struct return parameter. 1830 if (IRFunctionArgs.hasSRetArg()) { 1831 auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()]; 1832 AI->setName("agg.result"); 1833 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1, 1834 llvm::Attribute::NoAlias)); 1835 } 1836 1837 // Track if we received the parameter as a pointer (indirect, byval, or 1838 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 1839 // into a local alloca for us. 1840 SmallVector<ParamValue, 16> ArgVals; 1841 ArgVals.reserve(Args.size()); 1842 1843 // Create a pointer value for every parameter declaration. This usually 1844 // entails copying one or more LLVM IR arguments into an alloca. Don't push 1845 // any cleanups or do anything that might unwind. We do that separately, so 1846 // we can push the cleanups in the correct order for the ABI. 1847 assert(FI.arg_size() == Args.size() && 1848 "Mismatch between function signature & arguments."); 1849 unsigned ArgNo = 0; 1850 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 1851 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1852 i != e; ++i, ++info_it, ++ArgNo) { 1853 const VarDecl *Arg = *i; 1854 QualType Ty = info_it->type; 1855 const ABIArgInfo &ArgI = info_it->info; 1856 1857 bool isPromoted = 1858 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 1859 1860 unsigned FirstIRArg, NumIRArgs; 1861 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1862 1863 switch (ArgI.getKind()) { 1864 case ABIArgInfo::InAlloca: { 1865 assert(NumIRArgs == 0); 1866 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 1867 CharUnits FieldOffset = 1868 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 1869 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 1870 Arg->getName()); 1871 ArgVals.push_back(ParamValue::forIndirect(V)); 1872 break; 1873 } 1874 1875 case ABIArgInfo::Indirect: { 1876 assert(NumIRArgs == 1); 1877 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 1878 1879 if (!hasScalarEvaluationKind(Ty)) { 1880 // Aggregates and complex variables are accessed by reference. All we 1881 // need to do is realign the value, if requested. 1882 Address V = ParamAddr; 1883 if (ArgI.getIndirectRealign()) { 1884 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 1885 1886 // Copy from the incoming argument pointer to the temporary with the 1887 // appropriate alignment. 1888 // 1889 // FIXME: We should have a common utility for generating an aggregate 1890 // copy. 1891 CharUnits Size = getContext().getTypeSizeInChars(Ty); 1892 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 1893 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 1894 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 1895 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 1896 V = AlignedTemp; 1897 } 1898 ArgVals.push_back(ParamValue::forIndirect(V)); 1899 } else { 1900 // Load scalar value from indirect argument. 1901 llvm::Value *V = 1902 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart()); 1903 1904 if (isPromoted) 1905 V = emitArgumentDemotion(*this, Arg, V); 1906 ArgVals.push_back(ParamValue::forDirect(V)); 1907 } 1908 break; 1909 } 1910 1911 case ABIArgInfo::Extend: 1912 case ABIArgInfo::Direct: { 1913 1914 // If we have the trivial case, handle it with no muss and fuss. 1915 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 1916 ArgI.getCoerceToType() == ConvertType(Ty) && 1917 ArgI.getDirectOffset() == 0) { 1918 assert(NumIRArgs == 1); 1919 auto AI = FnArgs[FirstIRArg]; 1920 llvm::Value *V = AI; 1921 1922 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 1923 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 1924 PVD->getFunctionScopeIndex())) 1925 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1926 AI->getArgNo() + 1, 1927 llvm::Attribute::NonNull)); 1928 1929 QualType OTy = PVD->getOriginalType(); 1930 if (const auto *ArrTy = 1931 getContext().getAsConstantArrayType(OTy)) { 1932 // A C99 array parameter declaration with the static keyword also 1933 // indicates dereferenceability, and if the size is constant we can 1934 // use the dereferenceable attribute (which requires the size in 1935 // bytes). 1936 if (ArrTy->getSizeModifier() == ArrayType::Static) { 1937 QualType ETy = ArrTy->getElementType(); 1938 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 1939 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 1940 ArrSize) { 1941 llvm::AttrBuilder Attrs; 1942 Attrs.addDereferenceableAttr( 1943 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 1944 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1945 AI->getArgNo() + 1, Attrs)); 1946 } else if (getContext().getTargetAddressSpace(ETy) == 0) { 1947 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1948 AI->getArgNo() + 1, 1949 llvm::Attribute::NonNull)); 1950 } 1951 } 1952 } else if (const auto *ArrTy = 1953 getContext().getAsVariableArrayType(OTy)) { 1954 // For C99 VLAs with the static keyword, we don't know the size so 1955 // we can't use the dereferenceable attribute, but in addrspace(0) 1956 // we know that it must be nonnull. 1957 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 1958 !getContext().getTargetAddressSpace(ArrTy->getElementType())) 1959 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1960 AI->getArgNo() + 1, 1961 llvm::Attribute::NonNull)); 1962 } 1963 1964 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 1965 if (!AVAttr) 1966 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 1967 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 1968 if (AVAttr) { 1969 llvm::Value *AlignmentValue = 1970 EmitScalarExpr(AVAttr->getAlignment()); 1971 llvm::ConstantInt *AlignmentCI = 1972 cast<llvm::ConstantInt>(AlignmentValue); 1973 unsigned Alignment = 1974 std::min((unsigned) AlignmentCI->getZExtValue(), 1975 +llvm::Value::MaximumAlignment); 1976 1977 llvm::AttrBuilder Attrs; 1978 Attrs.addAlignmentAttr(Alignment); 1979 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1980 AI->getArgNo() + 1, Attrs)); 1981 } 1982 } 1983 1984 if (Arg->getType().isRestrictQualified()) 1985 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), 1986 AI->getArgNo() + 1, 1987 llvm::Attribute::NoAlias)); 1988 1989 // Ensure the argument is the correct type. 1990 if (V->getType() != ArgI.getCoerceToType()) 1991 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 1992 1993 if (isPromoted) 1994 V = emitArgumentDemotion(*this, Arg, V); 1995 1996 if (const CXXMethodDecl *MD = 1997 dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) { 1998 if (MD->isVirtual() && Arg == CXXABIThisDecl) 1999 V = CGM.getCXXABI(). 2000 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V); 2001 } 2002 2003 // Because of merging of function types from multiple decls it is 2004 // possible for the type of an argument to not match the corresponding 2005 // type in the function type. Since we are codegening the callee 2006 // in here, add a cast to the argument type. 2007 llvm::Type *LTy = ConvertType(Arg->getType()); 2008 if (V->getType() != LTy) 2009 V = Builder.CreateBitCast(V, LTy); 2010 2011 ArgVals.push_back(ParamValue::forDirect(V)); 2012 break; 2013 } 2014 2015 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2016 Arg->getName()); 2017 2018 // Pointer to store into. 2019 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2020 2021 // Fast-isel and the optimizer generally like scalar values better than 2022 // FCAs, so we flatten them if this is safe to do for this argument. 2023 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2024 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2025 STy->getNumElements() > 1) { 2026 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2027 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2028 llvm::Type *DstTy = Ptr.getElementType(); 2029 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2030 2031 Address AddrToStoreInto = Address::invalid(); 2032 if (SrcSize <= DstSize) { 2033 AddrToStoreInto = 2034 Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy)); 2035 } else { 2036 AddrToStoreInto = 2037 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2038 } 2039 2040 assert(STy->getNumElements() == NumIRArgs); 2041 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2042 auto AI = FnArgs[FirstIRArg + i]; 2043 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2044 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2045 Address EltPtr = 2046 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2047 Builder.CreateStore(AI, EltPtr); 2048 } 2049 2050 if (SrcSize > DstSize) { 2051 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2052 } 2053 2054 } else { 2055 // Simple case, just do a coerced store of the argument into the alloca. 2056 assert(NumIRArgs == 1); 2057 auto AI = FnArgs[FirstIRArg]; 2058 AI->setName(Arg->getName() + ".coerce"); 2059 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2060 } 2061 2062 // Match to what EmitParmDecl is expecting for this type. 2063 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2064 llvm::Value *V = 2065 EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart()); 2066 if (isPromoted) 2067 V = emitArgumentDemotion(*this, Arg, V); 2068 ArgVals.push_back(ParamValue::forDirect(V)); 2069 } else { 2070 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2071 } 2072 break; 2073 } 2074 2075 case ABIArgInfo::Expand: { 2076 // If this structure was expanded into multiple arguments then 2077 // we need to create a temporary and reconstruct it from the 2078 // arguments. 2079 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2080 LValue LV = MakeAddrLValue(Alloca, Ty); 2081 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2082 2083 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2084 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2085 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2086 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2087 auto AI = FnArgs[FirstIRArg + i]; 2088 AI->setName(Arg->getName() + "." + Twine(i)); 2089 } 2090 break; 2091 } 2092 2093 case ABIArgInfo::Ignore: 2094 assert(NumIRArgs == 0); 2095 // Initialize the local variable appropriately. 2096 if (!hasScalarEvaluationKind(Ty)) { 2097 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2098 } else { 2099 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2100 ArgVals.push_back(ParamValue::forDirect(U)); 2101 } 2102 break; 2103 } 2104 } 2105 2106 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2107 for (int I = Args.size() - 1; I >= 0; --I) 2108 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2109 } else { 2110 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2111 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2112 } 2113 } 2114 2115 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2116 while (insn->use_empty()) { 2117 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2118 if (!bitcast) return; 2119 2120 // This is "safe" because we would have used a ConstantExpr otherwise. 2121 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2122 bitcast->eraseFromParent(); 2123 } 2124 } 2125 2126 /// Try to emit a fused autorelease of a return result. 2127 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2128 llvm::Value *result) { 2129 // We must be immediately followed the cast. 2130 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2131 if (BB->empty()) return nullptr; 2132 if (&BB->back() != result) return nullptr; 2133 2134 llvm::Type *resultType = result->getType(); 2135 2136 // result is in a BasicBlock and is therefore an Instruction. 2137 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2138 2139 SmallVector<llvm::Instruction*,4> insnsToKill; 2140 2141 // Look for: 2142 // %generator = bitcast %type1* %generator2 to %type2* 2143 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2144 // We would have emitted this as a constant if the operand weren't 2145 // an Instruction. 2146 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2147 2148 // Require the generator to be immediately followed by the cast. 2149 if (generator->getNextNode() != bitcast) 2150 return nullptr; 2151 2152 insnsToKill.push_back(bitcast); 2153 } 2154 2155 // Look for: 2156 // %generator = call i8* @objc_retain(i8* %originalResult) 2157 // or 2158 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2159 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2160 if (!call) return nullptr; 2161 2162 bool doRetainAutorelease; 2163 2164 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2165 doRetainAutorelease = true; 2166 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2167 .objc_retainAutoreleasedReturnValue) { 2168 doRetainAutorelease = false; 2169 2170 // If we emitted an assembly marker for this call (and the 2171 // ARCEntrypoints field should have been set if so), go looking 2172 // for that call. If we can't find it, we can't do this 2173 // optimization. But it should always be the immediately previous 2174 // instruction, unless we needed bitcasts around the call. 2175 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2176 llvm::Instruction *prev = call->getPrevNode(); 2177 assert(prev); 2178 if (isa<llvm::BitCastInst>(prev)) { 2179 prev = prev->getPrevNode(); 2180 assert(prev); 2181 } 2182 assert(isa<llvm::CallInst>(prev)); 2183 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2184 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2185 insnsToKill.push_back(prev); 2186 } 2187 } else { 2188 return nullptr; 2189 } 2190 2191 result = call->getArgOperand(0); 2192 insnsToKill.push_back(call); 2193 2194 // Keep killing bitcasts, for sanity. Note that we no longer care 2195 // about precise ordering as long as there's exactly one use. 2196 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2197 if (!bitcast->hasOneUse()) break; 2198 insnsToKill.push_back(bitcast); 2199 result = bitcast->getOperand(0); 2200 } 2201 2202 // Delete all the unnecessary instructions, from latest to earliest. 2203 for (SmallVectorImpl<llvm::Instruction*>::iterator 2204 i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i) 2205 (*i)->eraseFromParent(); 2206 2207 // Do the fused retain/autorelease if we were asked to. 2208 if (doRetainAutorelease) 2209 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2210 2211 // Cast back to the result type. 2212 return CGF.Builder.CreateBitCast(result, resultType); 2213 } 2214 2215 /// If this is a +1 of the value of an immutable 'self', remove it. 2216 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2217 llvm::Value *result) { 2218 // This is only applicable to a method with an immutable 'self'. 2219 const ObjCMethodDecl *method = 2220 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2221 if (!method) return nullptr; 2222 const VarDecl *self = method->getSelfDecl(); 2223 if (!self->getType().isConstQualified()) return nullptr; 2224 2225 // Look for a retain call. 2226 llvm::CallInst *retainCall = 2227 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2228 if (!retainCall || 2229 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2230 return nullptr; 2231 2232 // Look for an ordinary load of 'self'. 2233 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2234 llvm::LoadInst *load = 2235 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2236 if (!load || load->isAtomic() || load->isVolatile() || 2237 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2238 return nullptr; 2239 2240 // Okay! Burn it all down. This relies for correctness on the 2241 // assumption that the retain is emitted as part of the return and 2242 // that thereafter everything is used "linearly". 2243 llvm::Type *resultType = result->getType(); 2244 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2245 assert(retainCall->use_empty()); 2246 retainCall->eraseFromParent(); 2247 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2248 2249 return CGF.Builder.CreateBitCast(load, resultType); 2250 } 2251 2252 /// Emit an ARC autorelease of the result of a function. 2253 /// 2254 /// \return the value to actually return from the function 2255 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2256 llvm::Value *result) { 2257 // If we're returning 'self', kill the initial retain. This is a 2258 // heuristic attempt to "encourage correctness" in the really unfortunate 2259 // case where we have a return of self during a dealloc and we desperately 2260 // need to avoid the possible autorelease. 2261 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2262 return self; 2263 2264 // At -O0, try to emit a fused retain/autorelease. 2265 if (CGF.shouldUseFusedARCCalls()) 2266 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2267 return fused; 2268 2269 return CGF.EmitARCAutoreleaseReturnValue(result); 2270 } 2271 2272 /// Heuristically search for a dominating store to the return-value slot. 2273 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2274 // Check if a User is a store which pointerOperand is the ReturnValue. 2275 // We are looking for stores to the ReturnValue, not for stores of the 2276 // ReturnValue to some other location. 2277 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2278 auto *SI = dyn_cast<llvm::StoreInst>(U); 2279 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2280 return nullptr; 2281 // These aren't actually possible for non-coerced returns, and we 2282 // only care about non-coerced returns on this code path. 2283 assert(!SI->isAtomic() && !SI->isVolatile()); 2284 return SI; 2285 }; 2286 // If there are multiple uses of the return-value slot, just check 2287 // for something immediately preceding the IP. Sometimes this can 2288 // happen with how we generate implicit-returns; it can also happen 2289 // with noreturn cleanups. 2290 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2291 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2292 if (IP->empty()) return nullptr; 2293 llvm::Instruction *I = &IP->back(); 2294 2295 // Skip lifetime markers 2296 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2297 IE = IP->rend(); 2298 II != IE; ++II) { 2299 if (llvm::IntrinsicInst *Intrinsic = 2300 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2301 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2302 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2303 ++II; 2304 if (II == IE) 2305 break; 2306 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2307 continue; 2308 } 2309 } 2310 I = &*II; 2311 break; 2312 } 2313 2314 return GetStoreIfValid(I); 2315 } 2316 2317 llvm::StoreInst *store = 2318 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2319 if (!store) return nullptr; 2320 2321 // Now do a first-and-dirty dominance check: just walk up the 2322 // single-predecessors chain from the current insertion point. 2323 llvm::BasicBlock *StoreBB = store->getParent(); 2324 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2325 while (IP != StoreBB) { 2326 if (!(IP = IP->getSinglePredecessor())) 2327 return nullptr; 2328 } 2329 2330 // Okay, the store's basic block dominates the insertion point; we 2331 // can do our thing. 2332 return store; 2333 } 2334 2335 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2336 bool EmitRetDbgLoc, 2337 SourceLocation EndLoc) { 2338 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2339 // Naked functions don't have epilogues. 2340 Builder.CreateUnreachable(); 2341 return; 2342 } 2343 2344 // Functions with no result always return void. 2345 if (!ReturnValue.isValid()) { 2346 Builder.CreateRetVoid(); 2347 return; 2348 } 2349 2350 llvm::DebugLoc RetDbgLoc; 2351 llvm::Value *RV = nullptr; 2352 QualType RetTy = FI.getReturnType(); 2353 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2354 2355 switch (RetAI.getKind()) { 2356 case ABIArgInfo::InAlloca: 2357 // Aggregrates get evaluated directly into the destination. Sometimes we 2358 // need to return the sret value in a register, though. 2359 assert(hasAggregateEvaluationKind(RetTy)); 2360 if (RetAI.getInAllocaSRet()) { 2361 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2362 --EI; 2363 llvm::Value *ArgStruct = &*EI; 2364 llvm::Value *SRet = Builder.CreateStructGEP( 2365 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2366 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2367 } 2368 break; 2369 2370 case ABIArgInfo::Indirect: { 2371 auto AI = CurFn->arg_begin(); 2372 if (RetAI.isSRetAfterThis()) 2373 ++AI; 2374 switch (getEvaluationKind(RetTy)) { 2375 case TEK_Complex: { 2376 ComplexPairTy RT = 2377 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2378 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2379 /*isInit*/ true); 2380 break; 2381 } 2382 case TEK_Aggregate: 2383 // Do nothing; aggregrates get evaluated directly into the destination. 2384 break; 2385 case TEK_Scalar: 2386 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2387 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2388 /*isInit*/ true); 2389 break; 2390 } 2391 break; 2392 } 2393 2394 case ABIArgInfo::Extend: 2395 case ABIArgInfo::Direct: 2396 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2397 RetAI.getDirectOffset() == 0) { 2398 // The internal return value temp always will have pointer-to-return-type 2399 // type, just do a load. 2400 2401 // If there is a dominating store to ReturnValue, we can elide 2402 // the load, zap the store, and usually zap the alloca. 2403 if (llvm::StoreInst *SI = 2404 findDominatingStoreToReturnValue(*this)) { 2405 // Reuse the debug location from the store unless there is 2406 // cleanup code to be emitted between the store and return 2407 // instruction. 2408 if (EmitRetDbgLoc && !AutoreleaseResult) 2409 RetDbgLoc = SI->getDebugLoc(); 2410 // Get the stored value and nuke the now-dead store. 2411 RV = SI->getValueOperand(); 2412 SI->eraseFromParent(); 2413 2414 // If that was the only use of the return value, nuke it as well now. 2415 auto returnValueInst = ReturnValue.getPointer(); 2416 if (returnValueInst->use_empty()) { 2417 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2418 alloca->eraseFromParent(); 2419 ReturnValue = Address::invalid(); 2420 } 2421 } 2422 2423 // Otherwise, we have to do a simple load. 2424 } else { 2425 RV = Builder.CreateLoad(ReturnValue); 2426 } 2427 } else { 2428 // If the value is offset in memory, apply the offset now. 2429 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2430 2431 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2432 } 2433 2434 // In ARC, end functions that return a retainable type with a call 2435 // to objc_autoreleaseReturnValue. 2436 if (AutoreleaseResult) { 2437 assert(getLangOpts().ObjCAutoRefCount && 2438 !FI.isReturnsRetained() && 2439 RetTy->isObjCRetainableType()); 2440 RV = emitAutoreleaseOfResult(*this, RV); 2441 } 2442 2443 break; 2444 2445 case ABIArgInfo::Ignore: 2446 break; 2447 2448 case ABIArgInfo::Expand: 2449 llvm_unreachable("Invalid ABI kind for return argument"); 2450 } 2451 2452 llvm::Instruction *Ret; 2453 if (RV) { 2454 if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) { 2455 if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) { 2456 SanitizerScope SanScope(this); 2457 llvm::Value *Cond = Builder.CreateICmpNE( 2458 RV, llvm::Constant::getNullValue(RV->getType())); 2459 llvm::Constant *StaticData[] = { 2460 EmitCheckSourceLocation(EndLoc), 2461 EmitCheckSourceLocation(RetNNAttr->getLocation()), 2462 }; 2463 EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute), 2464 "nonnull_return", StaticData, None); 2465 } 2466 } 2467 Ret = Builder.CreateRet(RV); 2468 } else { 2469 Ret = Builder.CreateRetVoid(); 2470 } 2471 2472 if (RetDbgLoc) 2473 Ret->setDebugLoc(std::move(RetDbgLoc)); 2474 } 2475 2476 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 2477 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2478 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 2479 } 2480 2481 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 2482 QualType Ty) { 2483 // FIXME: Generate IR in one pass, rather than going back and fixing up these 2484 // placeholders. 2485 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 2486 llvm::Value *Placeholder = 2487 llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo()); 2488 Placeholder = CGF.Builder.CreateDefaultAlignedLoad(Placeholder); 2489 2490 // FIXME: When we generate this IR in one pass, we shouldn't need 2491 // this win32-specific alignment hack. 2492 CharUnits Align = CharUnits::fromQuantity(4); 2493 2494 return AggValueSlot::forAddr(Address(Placeholder, Align), 2495 Ty.getQualifiers(), 2496 AggValueSlot::IsNotDestructed, 2497 AggValueSlot::DoesNotNeedGCBarriers, 2498 AggValueSlot::IsNotAliased); 2499 } 2500 2501 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 2502 const VarDecl *param, 2503 SourceLocation loc) { 2504 // StartFunction converted the ABI-lowered parameter(s) into a 2505 // local alloca. We need to turn that into an r-value suitable 2506 // for EmitCall. 2507 Address local = GetAddrOfLocalVar(param); 2508 2509 QualType type = param->getType(); 2510 2511 // For the most part, we just need to load the alloca, except: 2512 // 1) aggregate r-values are actually pointers to temporaries, and 2513 // 2) references to non-scalars are pointers directly to the aggregate. 2514 // I don't know why references to scalars are different here. 2515 if (const ReferenceType *ref = type->getAs<ReferenceType>()) { 2516 if (!hasScalarEvaluationKind(ref->getPointeeType())) 2517 return args.add(RValue::getAggregate(local), type); 2518 2519 // Locals which are references to scalars are represented 2520 // with allocas holding the pointer. 2521 return args.add(RValue::get(Builder.CreateLoad(local)), type); 2522 } 2523 2524 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 2525 "cannot emit delegate call arguments for inalloca arguments!"); 2526 2527 args.add(convertTempToRValue(local, type, loc), type); 2528 } 2529 2530 static bool isProvablyNull(llvm::Value *addr) { 2531 return isa<llvm::ConstantPointerNull>(addr); 2532 } 2533 2534 static bool isProvablyNonNull(llvm::Value *addr) { 2535 return isa<llvm::AllocaInst>(addr); 2536 } 2537 2538 /// Emit the actual writing-back of a writeback. 2539 static void emitWriteback(CodeGenFunction &CGF, 2540 const CallArgList::Writeback &writeback) { 2541 const LValue &srcLV = writeback.Source; 2542 Address srcAddr = srcLV.getAddress(); 2543 assert(!isProvablyNull(srcAddr.getPointer()) && 2544 "shouldn't have writeback for provably null argument"); 2545 2546 llvm::BasicBlock *contBB = nullptr; 2547 2548 // If the argument wasn't provably non-null, we need to null check 2549 // before doing the store. 2550 bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer()); 2551 if (!provablyNonNull) { 2552 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 2553 contBB = CGF.createBasicBlock("icr.done"); 2554 2555 llvm::Value *isNull = 2556 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 2557 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 2558 CGF.EmitBlock(writebackBB); 2559 } 2560 2561 // Load the value to writeback. 2562 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 2563 2564 // Cast it back, in case we're writing an id to a Foo* or something. 2565 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 2566 "icr.writeback-cast"); 2567 2568 // Perform the writeback. 2569 2570 // If we have a "to use" value, it's something we need to emit a use 2571 // of. This has to be carefully threaded in: if it's done after the 2572 // release it's potentially undefined behavior (and the optimizer 2573 // will ignore it), and if it happens before the retain then the 2574 // optimizer could move the release there. 2575 if (writeback.ToUse) { 2576 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 2577 2578 // Retain the new value. No need to block-copy here: the block's 2579 // being passed up the stack. 2580 value = CGF.EmitARCRetainNonBlock(value); 2581 2582 // Emit the intrinsic use here. 2583 CGF.EmitARCIntrinsicUse(writeback.ToUse); 2584 2585 // Load the old value (primitively). 2586 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 2587 2588 // Put the new value in place (primitively). 2589 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 2590 2591 // Release the old value. 2592 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 2593 2594 // Otherwise, we can just do a normal lvalue store. 2595 } else { 2596 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 2597 } 2598 2599 // Jump to the continuation block. 2600 if (!provablyNonNull) 2601 CGF.EmitBlock(contBB); 2602 } 2603 2604 static void emitWritebacks(CodeGenFunction &CGF, 2605 const CallArgList &args) { 2606 for (const auto &I : args.writebacks()) 2607 emitWriteback(CGF, I); 2608 } 2609 2610 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 2611 const CallArgList &CallArgs) { 2612 assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()); 2613 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 2614 CallArgs.getCleanupsToDeactivate(); 2615 // Iterate in reverse to increase the likelihood of popping the cleanup. 2616 for (const auto &I : llvm::reverse(Cleanups)) { 2617 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 2618 I.IsActiveIP->eraseFromParent(); 2619 } 2620 } 2621 2622 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 2623 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 2624 if (uop->getOpcode() == UO_AddrOf) 2625 return uop->getSubExpr(); 2626 return nullptr; 2627 } 2628 2629 /// Emit an argument that's being passed call-by-writeback. That is, 2630 /// we are passing the address of an __autoreleased temporary; it 2631 /// might be copy-initialized with the current value of the given 2632 /// address, but it will definitely be copied out of after the call. 2633 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 2634 const ObjCIndirectCopyRestoreExpr *CRE) { 2635 LValue srcLV; 2636 2637 // Make an optimistic effort to emit the address as an l-value. 2638 // This can fail if the argument expression is more complicated. 2639 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 2640 srcLV = CGF.EmitLValue(lvExpr); 2641 2642 // Otherwise, just emit it as a scalar. 2643 } else { 2644 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 2645 2646 QualType srcAddrType = 2647 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 2648 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 2649 } 2650 Address srcAddr = srcLV.getAddress(); 2651 2652 // The dest and src types don't necessarily match in LLVM terms 2653 // because of the crazy ObjC compatibility rules. 2654 2655 llvm::PointerType *destType = 2656 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 2657 2658 // If the address is a constant null, just pass the appropriate null. 2659 if (isProvablyNull(srcAddr.getPointer())) { 2660 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 2661 CRE->getType()); 2662 return; 2663 } 2664 2665 // Create the temporary. 2666 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 2667 CGF.getPointerAlign(), 2668 "icr.temp"); 2669 // Loading an l-value can introduce a cleanup if the l-value is __weak, 2670 // and that cleanup will be conditional if we can't prove that the l-value 2671 // isn't null, so we need to register a dominating point so that the cleanups 2672 // system will make valid IR. 2673 CodeGenFunction::ConditionalEvaluation condEval(CGF); 2674 2675 // Zero-initialize it if we're not doing a copy-initialization. 2676 bool shouldCopy = CRE->shouldCopy(); 2677 if (!shouldCopy) { 2678 llvm::Value *null = 2679 llvm::ConstantPointerNull::get( 2680 cast<llvm::PointerType>(destType->getElementType())); 2681 CGF.Builder.CreateStore(null, temp); 2682 } 2683 2684 llvm::BasicBlock *contBB = nullptr; 2685 llvm::BasicBlock *originBB = nullptr; 2686 2687 // If the address is *not* known to be non-null, we need to switch. 2688 llvm::Value *finalArgument; 2689 2690 bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer()); 2691 if (provablyNonNull) { 2692 finalArgument = temp.getPointer(); 2693 } else { 2694 llvm::Value *isNull = 2695 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 2696 2697 finalArgument = CGF.Builder.CreateSelect(isNull, 2698 llvm::ConstantPointerNull::get(destType), 2699 temp.getPointer(), "icr.argument"); 2700 2701 // If we need to copy, then the load has to be conditional, which 2702 // means we need control flow. 2703 if (shouldCopy) { 2704 originBB = CGF.Builder.GetInsertBlock(); 2705 contBB = CGF.createBasicBlock("icr.cont"); 2706 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 2707 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 2708 CGF.EmitBlock(copyBB); 2709 condEval.begin(CGF); 2710 } 2711 } 2712 2713 llvm::Value *valueToUse = nullptr; 2714 2715 // Perform a copy if necessary. 2716 if (shouldCopy) { 2717 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 2718 assert(srcRV.isScalar()); 2719 2720 llvm::Value *src = srcRV.getScalarVal(); 2721 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 2722 "icr.cast"); 2723 2724 // Use an ordinary store, not a store-to-lvalue. 2725 CGF.Builder.CreateStore(src, temp); 2726 2727 // If optimization is enabled, and the value was held in a 2728 // __strong variable, we need to tell the optimizer that this 2729 // value has to stay alive until we're doing the store back. 2730 // This is because the temporary is effectively unretained, 2731 // and so otherwise we can violate the high-level semantics. 2732 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 2733 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 2734 valueToUse = src; 2735 } 2736 } 2737 2738 // Finish the control flow if we needed it. 2739 if (shouldCopy && !provablyNonNull) { 2740 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 2741 CGF.EmitBlock(contBB); 2742 2743 // Make a phi for the value to intrinsically use. 2744 if (valueToUse) { 2745 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 2746 "icr.to-use"); 2747 phiToUse->addIncoming(valueToUse, copyBB); 2748 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 2749 originBB); 2750 valueToUse = phiToUse; 2751 } 2752 2753 condEval.end(CGF); 2754 } 2755 2756 args.addWriteback(srcLV, temp, valueToUse); 2757 args.add(RValue::get(finalArgument), CRE->getType()); 2758 } 2759 2760 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 2761 assert(!StackBase && !StackCleanup.isValid()); 2762 2763 // Save the stack. 2764 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 2765 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 2766 } 2767 2768 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 2769 if (StackBase) { 2770 // Restore the stack after the call. 2771 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 2772 CGF.Builder.CreateCall(F, StackBase); 2773 } 2774 } 2775 2776 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 2777 SourceLocation ArgLoc, 2778 const FunctionDecl *FD, 2779 unsigned ParmNum) { 2780 if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD) 2781 return; 2782 auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr; 2783 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 2784 auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo); 2785 if (!NNAttr) 2786 return; 2787 SanitizerScope SanScope(this); 2788 assert(RV.isScalar()); 2789 llvm::Value *V = RV.getScalarVal(); 2790 llvm::Value *Cond = 2791 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 2792 llvm::Constant *StaticData[] = { 2793 EmitCheckSourceLocation(ArgLoc), 2794 EmitCheckSourceLocation(NNAttr->getLocation()), 2795 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 2796 }; 2797 EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute), 2798 "nonnull_arg", StaticData, None); 2799 } 2800 2801 void CodeGenFunction::EmitCallArgs( 2802 CallArgList &Args, ArrayRef<QualType> ArgTypes, 2803 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 2804 const FunctionDecl *CalleeDecl, unsigned ParamsToSkip) { 2805 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 2806 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 2807 // because arguments are destroyed left to right in the callee. 2808 if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2809 // Insert a stack save if we're going to need any inalloca args. 2810 bool HasInAllocaArgs = false; 2811 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 2812 I != E && !HasInAllocaArgs; ++I) 2813 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 2814 if (HasInAllocaArgs) { 2815 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 2816 Args.allocateArgumentMemory(*this); 2817 } 2818 2819 // Evaluate each argument. 2820 size_t CallArgsStart = Args.size(); 2821 for (int I = ArgTypes.size() - 1; I >= 0; --I) { 2822 CallExpr::const_arg_iterator Arg = ArgRange.begin() + I; 2823 EmitCallArg(Args, *Arg, ArgTypes[I]); 2824 EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(), 2825 CalleeDecl, ParamsToSkip + I); 2826 } 2827 2828 // Un-reverse the arguments we just evaluated so they match up with the LLVM 2829 // IR function. 2830 std::reverse(Args.begin() + CallArgsStart, Args.end()); 2831 return; 2832 } 2833 2834 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 2835 CallExpr::const_arg_iterator Arg = ArgRange.begin() + I; 2836 assert(Arg != ArgRange.end()); 2837 EmitCallArg(Args, *Arg, ArgTypes[I]); 2838 EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(), 2839 CalleeDecl, ParamsToSkip + I); 2840 } 2841 } 2842 2843 namespace { 2844 2845 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 2846 DestroyUnpassedArg(Address Addr, QualType Ty) 2847 : Addr(Addr), Ty(Ty) {} 2848 2849 Address Addr; 2850 QualType Ty; 2851 2852 void Emit(CodeGenFunction &CGF, Flags flags) override { 2853 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 2854 assert(!Dtor->isTrivial()); 2855 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 2856 /*Delegating=*/false, Addr); 2857 } 2858 }; 2859 2860 struct DisableDebugLocationUpdates { 2861 CodeGenFunction &CGF; 2862 bool disabledDebugInfo; 2863 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 2864 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 2865 CGF.disableDebugInfo(); 2866 } 2867 ~DisableDebugLocationUpdates() { 2868 if (disabledDebugInfo) 2869 CGF.enableDebugInfo(); 2870 } 2871 }; 2872 2873 } // end anonymous namespace 2874 2875 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 2876 QualType type) { 2877 DisableDebugLocationUpdates Dis(*this, E); 2878 if (const ObjCIndirectCopyRestoreExpr *CRE 2879 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 2880 assert(getLangOpts().ObjCAutoRefCount); 2881 assert(getContext().hasSameType(E->getType(), type)); 2882 return emitWritebackArg(*this, args, CRE); 2883 } 2884 2885 assert(type->isReferenceType() == E->isGLValue() && 2886 "reference binding to unmaterialized r-value!"); 2887 2888 if (E->isGLValue()) { 2889 assert(E->getObjectKind() == OK_Ordinary); 2890 return args.add(EmitReferenceBindingToExpr(E), type); 2891 } 2892 2893 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 2894 2895 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 2896 // However, we still have to push an EH-only cleanup in case we unwind before 2897 // we make it to the call. 2898 if (HasAggregateEvalKind && 2899 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2900 // If we're using inalloca, use the argument memory. Otherwise, use a 2901 // temporary. 2902 AggValueSlot Slot; 2903 if (args.isUsingInAlloca()) 2904 Slot = createPlaceholderSlot(*this, type); 2905 else 2906 Slot = CreateAggTemp(type, "agg.tmp"); 2907 2908 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2909 bool DestroyedInCallee = 2910 RD && RD->hasNonTrivialDestructor() && 2911 CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default; 2912 if (DestroyedInCallee) 2913 Slot.setExternallyDestructed(); 2914 2915 EmitAggExpr(E, Slot); 2916 RValue RV = Slot.asRValue(); 2917 args.add(RV, type); 2918 2919 if (DestroyedInCallee) { 2920 // Create a no-op GEP between the placeholder and the cleanup so we can 2921 // RAUW it successfully. It also serves as a marker of the first 2922 // instruction where the cleanup is active. 2923 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 2924 type); 2925 // This unreachable is a temporary marker which will be removed later. 2926 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 2927 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 2928 } 2929 return; 2930 } 2931 2932 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 2933 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 2934 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 2935 assert(L.isSimple()); 2936 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 2937 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 2938 } else { 2939 // We can't represent a misaligned lvalue in the CallArgList, so copy 2940 // to an aligned temporary now. 2941 Address tmp = CreateMemTemp(type); 2942 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile()); 2943 args.add(RValue::getAggregate(tmp), type); 2944 } 2945 return; 2946 } 2947 2948 args.add(EmitAnyExprToTemp(E), type); 2949 } 2950 2951 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 2952 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 2953 // implicitly widens null pointer constants that are arguments to varargs 2954 // functions to pointer-sized ints. 2955 if (!getTarget().getTriple().isOSWindows()) 2956 return Arg->getType(); 2957 2958 if (Arg->getType()->isIntegerType() && 2959 getContext().getTypeSize(Arg->getType()) < 2960 getContext().getTargetInfo().getPointerWidth(0) && 2961 Arg->isNullPointerConstant(getContext(), 2962 Expr::NPC_ValueDependentIsNotNull)) { 2963 return getContext().getIntPtrType(); 2964 } 2965 2966 return Arg->getType(); 2967 } 2968 2969 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 2970 // optimizer it can aggressively ignore unwind edges. 2971 void 2972 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 2973 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 2974 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 2975 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 2976 CGM.getNoObjCARCExceptionsMetadata()); 2977 } 2978 2979 /// Emits a call to the given no-arguments nounwind runtime function. 2980 llvm::CallInst * 2981 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 2982 const llvm::Twine &name) { 2983 return EmitNounwindRuntimeCall(callee, None, name); 2984 } 2985 2986 /// Emits a call to the given nounwind runtime function. 2987 llvm::CallInst * 2988 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 2989 ArrayRef<llvm::Value*> args, 2990 const llvm::Twine &name) { 2991 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 2992 call->setDoesNotThrow(); 2993 return call; 2994 } 2995 2996 /// Emits a simple call (never an invoke) to the given no-arguments 2997 /// runtime function. 2998 llvm::CallInst * 2999 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3000 const llvm::Twine &name) { 3001 return EmitRuntimeCall(callee, None, name); 3002 } 3003 3004 /// Emits a simple call (never an invoke) to the given runtime 3005 /// function. 3006 llvm::CallInst * 3007 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3008 ArrayRef<llvm::Value*> args, 3009 const llvm::Twine &name) { 3010 llvm::CallInst *call = Builder.CreateCall(callee, args, name); 3011 call->setCallingConv(getRuntimeCC()); 3012 return call; 3013 } 3014 3015 /// Emits a call or invoke to the given noreturn runtime function. 3016 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3017 ArrayRef<llvm::Value*> args) { 3018 if (getInvokeDest()) { 3019 llvm::InvokeInst *invoke = 3020 Builder.CreateInvoke(callee, 3021 getUnreachableBlock(), 3022 getInvokeDest(), 3023 args); 3024 invoke->setDoesNotReturn(); 3025 invoke->setCallingConv(getRuntimeCC()); 3026 } else { 3027 llvm::CallInst *call = Builder.CreateCall(callee, args); 3028 call->setDoesNotReturn(); 3029 call->setCallingConv(getRuntimeCC()); 3030 Builder.CreateUnreachable(); 3031 } 3032 } 3033 3034 /// Emits a call or invoke instruction to the given nullary runtime 3035 /// function. 3036 llvm::CallSite 3037 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3038 const Twine &name) { 3039 return EmitRuntimeCallOrInvoke(callee, None, name); 3040 } 3041 3042 /// Emits a call or invoke instruction to the given runtime function. 3043 llvm::CallSite 3044 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3045 ArrayRef<llvm::Value*> args, 3046 const Twine &name) { 3047 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3048 callSite.setCallingConv(getRuntimeCC()); 3049 return callSite; 3050 } 3051 3052 /// Emits a call or invoke instruction to the given function, depending 3053 /// on the current state of the EH stack. 3054 llvm::CallSite 3055 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3056 ArrayRef<llvm::Value *> Args, 3057 const Twine &Name) { 3058 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3059 3060 llvm::Instruction *Inst; 3061 if (!InvokeDest) 3062 Inst = Builder.CreateCall(Callee, Args, Name); 3063 else { 3064 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3065 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name); 3066 EmitBlock(ContBB); 3067 } 3068 3069 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3070 // optimizer it can aggressively ignore unwind edges. 3071 if (CGM.getLangOpts().ObjCAutoRefCount) 3072 AddObjCARCExceptionMetadata(Inst); 3073 3074 return llvm::CallSite(Inst); 3075 } 3076 3077 /// \brief Store a non-aggregate value to an address to initialize it. For 3078 /// initialization, a non-atomic store will be used. 3079 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src, 3080 LValue Dst) { 3081 if (Src.isScalar()) 3082 CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true); 3083 else 3084 CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true); 3085 } 3086 3087 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3088 llvm::Value *New) { 3089 DeferredReplacements.push_back(std::make_pair(Old, New)); 3090 } 3091 3092 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3093 llvm::Value *Callee, 3094 ReturnValueSlot ReturnValue, 3095 const CallArgList &CallArgs, 3096 CGCalleeInfo CalleeInfo, 3097 llvm::Instruction **callOrInvoke) { 3098 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3099 3100 // Handle struct-return functions by passing a pointer to the 3101 // location that we would like to return into. 3102 QualType RetTy = CallInfo.getReturnType(); 3103 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3104 3105 llvm::FunctionType *IRFuncTy = 3106 cast<llvm::FunctionType>( 3107 cast<llvm::PointerType>(Callee->getType())->getElementType()); 3108 3109 // If we're using inalloca, insert the allocation after the stack save. 3110 // FIXME: Do this earlier rather than hacking it in here! 3111 Address ArgMemory = Address::invalid(); 3112 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3113 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3114 ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct); 3115 llvm::Instruction *IP = CallArgs.getStackBase(); 3116 llvm::AllocaInst *AI; 3117 if (IP) { 3118 IP = IP->getNextNode(); 3119 AI = new llvm::AllocaInst(ArgStruct, "argmem", IP); 3120 } else { 3121 AI = CreateTempAlloca(ArgStruct, "argmem"); 3122 } 3123 auto Align = CallInfo.getArgStructAlignment(); 3124 AI->setAlignment(Align.getQuantity()); 3125 AI->setUsedWithInAlloca(true); 3126 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3127 ArgMemory = Address(AI, Align); 3128 } 3129 3130 // Helper function to drill into the inalloca allocation. 3131 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3132 auto FieldOffset = 3133 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3134 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3135 }; 3136 3137 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3138 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3139 3140 // If the call returns a temporary with struct return, create a temporary 3141 // alloca to hold the result, unless one is given to us. 3142 Address SRetPtr = Address::invalid(); 3143 size_t UnusedReturnSize = 0; 3144 if (RetAI.isIndirect() || RetAI.isInAlloca()) { 3145 if (!ReturnValue.isNull()) { 3146 SRetPtr = ReturnValue.getValue(); 3147 } else { 3148 SRetPtr = CreateMemTemp(RetTy); 3149 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3150 uint64_t size = 3151 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3152 if (EmitLifetimeStart(size, SRetPtr.getPointer())) 3153 UnusedReturnSize = size; 3154 } 3155 } 3156 if (IRFunctionArgs.hasSRetArg()) { 3157 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3158 } else { 3159 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3160 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3161 } 3162 } 3163 3164 assert(CallInfo.arg_size() == CallArgs.size() && 3165 "Mismatch between function signature & arguments."); 3166 unsigned ArgNo = 0; 3167 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3168 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3169 I != E; ++I, ++info_it, ++ArgNo) { 3170 const ABIArgInfo &ArgInfo = info_it->info; 3171 RValue RV = I->RV; 3172 3173 // Insert a padding argument to ensure proper alignment. 3174 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3175 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3176 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3177 3178 unsigned FirstIRArg, NumIRArgs; 3179 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3180 3181 switch (ArgInfo.getKind()) { 3182 case ABIArgInfo::InAlloca: { 3183 assert(NumIRArgs == 0); 3184 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3185 if (RV.isAggregate()) { 3186 // Replace the placeholder with the appropriate argument slot GEP. 3187 llvm::Instruction *Placeholder = 3188 cast<llvm::Instruction>(RV.getAggregatePointer()); 3189 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3190 Builder.SetInsertPoint(Placeholder); 3191 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3192 Builder.restoreIP(IP); 3193 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3194 } else { 3195 // Store the RValue into the argument struct. 3196 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3197 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3198 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3199 // There are some cases where a trivial bitcast is not avoidable. The 3200 // definition of a type later in a translation unit may change it's type 3201 // from {}* to (%struct.foo*)*. 3202 if (Addr.getType() != MemType) 3203 Addr = Builder.CreateBitCast(Addr, MemType); 3204 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3205 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3206 } 3207 break; 3208 } 3209 3210 case ABIArgInfo::Indirect: { 3211 assert(NumIRArgs == 1); 3212 if (RV.isScalar() || RV.isComplex()) { 3213 // Make a temporary alloca to pass the argument. 3214 Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3215 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3216 3217 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3218 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3219 } else { 3220 // We want to avoid creating an unnecessary temporary+copy here; 3221 // however, we need one in three cases: 3222 // 1. If the argument is not byval, and we are required to copy the 3223 // source. (This case doesn't occur on any common architecture.) 3224 // 2. If the argument is byval, RV is not sufficiently aligned, and 3225 // we cannot force it to be sufficiently aligned. 3226 // 3. If the argument is byval, but RV is located in an address space 3227 // different than that of the argument (0). 3228 Address Addr = RV.getAggregateAddress(); 3229 CharUnits Align = ArgInfo.getIndirectAlign(); 3230 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3231 const unsigned RVAddrSpace = Addr.getType()->getAddressSpace(); 3232 const unsigned ArgAddrSpace = 3233 (FirstIRArg < IRFuncTy->getNumParams() 3234 ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() 3235 : 0); 3236 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 3237 (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align && 3238 llvm::getOrEnforceKnownAlignment(Addr.getPointer(), 3239 Align.getQuantity(), *TD) 3240 < Align.getQuantity()) || 3241 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 3242 // Create an aligned temporary, and copy to it. 3243 Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign()); 3244 IRCallArgs[FirstIRArg] = AI.getPointer(); 3245 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 3246 } else { 3247 // Skip the extra memcpy call. 3248 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3249 } 3250 } 3251 break; 3252 } 3253 3254 case ABIArgInfo::Ignore: 3255 assert(NumIRArgs == 0); 3256 break; 3257 3258 case ABIArgInfo::Extend: 3259 case ABIArgInfo::Direct: { 3260 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3261 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3262 ArgInfo.getDirectOffset() == 0) { 3263 assert(NumIRArgs == 1); 3264 llvm::Value *V; 3265 if (RV.isScalar()) 3266 V = RV.getScalarVal(); 3267 else 3268 V = Builder.CreateLoad(RV.getAggregateAddress()); 3269 3270 // We might have to widen integers, but we should never truncate. 3271 if (ArgInfo.getCoerceToType() != V->getType() && 3272 V->getType()->isIntegerTy()) 3273 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 3274 3275 // If the argument doesn't match, perform a bitcast to coerce it. This 3276 // can happen due to trivial type mismatches. 3277 if (FirstIRArg < IRFuncTy->getNumParams() && 3278 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 3279 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 3280 IRCallArgs[FirstIRArg] = V; 3281 break; 3282 } 3283 3284 // FIXME: Avoid the conversion through memory if possible. 3285 Address Src = Address::invalid(); 3286 if (RV.isScalar() || RV.isComplex()) { 3287 Src = CreateMemTemp(I->Ty, "coerce"); 3288 LValue SrcLV = MakeAddrLValue(Src, I->Ty); 3289 EmitInitStoreOfNonAggregate(*this, RV, SrcLV); 3290 } else { 3291 Src = RV.getAggregateAddress(); 3292 } 3293 3294 // If the value is offset in memory, apply the offset now. 3295 Src = emitAddressAtOffset(*this, Src, ArgInfo); 3296 3297 // Fast-isel and the optimizer generally like scalar values better than 3298 // FCAs, so we flatten them if this is safe to do for this argument. 3299 llvm::StructType *STy = 3300 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 3301 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 3302 llvm::Type *SrcTy = Src.getType()->getElementType(); 3303 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 3304 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 3305 3306 // If the source type is smaller than the destination type of the 3307 // coerce-to logic, copy the source value into a temp alloca the size 3308 // of the destination type to allow loading all of it. The bits past 3309 // the source value are left undef. 3310 if (SrcSize < DstSize) { 3311 Address TempAlloca 3312 = CreateTempAlloca(STy, Src.getAlignment(), 3313 Src.getName() + ".coerce"); 3314 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 3315 Src = TempAlloca; 3316 } else { 3317 Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy)); 3318 } 3319 3320 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 3321 assert(NumIRArgs == STy->getNumElements()); 3322 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3323 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 3324 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 3325 llvm::Value *LI = Builder.CreateLoad(EltPtr); 3326 IRCallArgs[FirstIRArg + i] = LI; 3327 } 3328 } else { 3329 // In the simple case, just pass the coerced loaded value. 3330 assert(NumIRArgs == 1); 3331 IRCallArgs[FirstIRArg] = 3332 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 3333 } 3334 3335 break; 3336 } 3337 3338 case ABIArgInfo::Expand: 3339 unsigned IRArgPos = FirstIRArg; 3340 ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos); 3341 assert(IRArgPos == FirstIRArg + NumIRArgs); 3342 break; 3343 } 3344 } 3345 3346 if (ArgMemory.isValid()) { 3347 llvm::Value *Arg = ArgMemory.getPointer(); 3348 if (CallInfo.isVariadic()) { 3349 // When passing non-POD arguments by value to variadic functions, we will 3350 // end up with a variadic prototype and an inalloca call site. In such 3351 // cases, we can't do any parameter mismatch checks. Give up and bitcast 3352 // the callee. 3353 unsigned CalleeAS = 3354 cast<llvm::PointerType>(Callee->getType())->getAddressSpace(); 3355 Callee = Builder.CreateBitCast( 3356 Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS)); 3357 } else { 3358 llvm::Type *LastParamTy = 3359 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 3360 if (Arg->getType() != LastParamTy) { 3361 #ifndef NDEBUG 3362 // Assert that these structs have equivalent element types. 3363 llvm::StructType *FullTy = CallInfo.getArgStruct(); 3364 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 3365 cast<llvm::PointerType>(LastParamTy)->getElementType()); 3366 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 3367 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 3368 DE = DeclaredTy->element_end(), 3369 FI = FullTy->element_begin(); 3370 DI != DE; ++DI, ++FI) 3371 assert(*DI == *FI); 3372 #endif 3373 Arg = Builder.CreateBitCast(Arg, LastParamTy); 3374 } 3375 } 3376 assert(IRFunctionArgs.hasInallocaArg()); 3377 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 3378 } 3379 3380 if (!CallArgs.getCleanupsToDeactivate().empty()) 3381 deactivateArgCleanupsBeforeCall(*this, CallArgs); 3382 3383 // If the callee is a bitcast of a function to a varargs pointer to function 3384 // type, check to see if we can remove the bitcast. This handles some cases 3385 // with unprototyped functions. 3386 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee)) 3387 if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) { 3388 llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType()); 3389 llvm::FunctionType *CurFT = 3390 cast<llvm::FunctionType>(CurPT->getElementType()); 3391 llvm::FunctionType *ActualFT = CalleeF->getFunctionType(); 3392 3393 if (CE->getOpcode() == llvm::Instruction::BitCast && 3394 ActualFT->getReturnType() == CurFT->getReturnType() && 3395 ActualFT->getNumParams() == CurFT->getNumParams() && 3396 ActualFT->getNumParams() == IRCallArgs.size() && 3397 (CurFT->isVarArg() || !ActualFT->isVarArg())) { 3398 bool ArgsMatch = true; 3399 for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i) 3400 if (ActualFT->getParamType(i) != CurFT->getParamType(i)) { 3401 ArgsMatch = false; 3402 break; 3403 } 3404 3405 // Strip the cast if we can get away with it. This is a nice cleanup, 3406 // but also allows us to inline the function at -O0 if it is marked 3407 // always_inline. 3408 if (ArgsMatch) 3409 Callee = CalleeF; 3410 } 3411 } 3412 3413 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 3414 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 3415 // Inalloca argument can have different type. 3416 if (IRFunctionArgs.hasInallocaArg() && 3417 i == IRFunctionArgs.getInallocaArgNo()) 3418 continue; 3419 if (i < IRFuncTy->getNumParams()) 3420 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 3421 } 3422 3423 unsigned CallingConv; 3424 CodeGen::AttributeListType AttributeList; 3425 CGM.ConstructAttributeList(CallInfo, CalleeInfo, AttributeList, CallingConv, 3426 true); 3427 llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(), 3428 AttributeList); 3429 3430 llvm::BasicBlock *InvokeDest = nullptr; 3431 if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex, 3432 llvm::Attribute::NoUnwind) || 3433 currentFunctionUsesSEHTry()) 3434 InvokeDest = getInvokeDest(); 3435 3436 llvm::CallSite CS; 3437 if (!InvokeDest) { 3438 CS = Builder.CreateCall(Callee, IRCallArgs); 3439 } else { 3440 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 3441 CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs); 3442 EmitBlock(Cont); 3443 } 3444 if (callOrInvoke) 3445 *callOrInvoke = CS.getInstruction(); 3446 3447 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 3448 !CS.hasFnAttr(llvm::Attribute::NoInline)) 3449 Attrs = 3450 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 3451 llvm::Attribute::AlwaysInline); 3452 3453 // Disable inlining inside SEH __try blocks and cleanup funclets. None of the 3454 // funclet EH personalities that clang supports have tables that are 3455 // expressive enough to describe catching an exception inside a cleanup. 3456 // __CxxFrameHandler3, for example, will terminate the program without 3457 // catching it. 3458 // FIXME: Move this decision to the LLVM inliner. Before we can do that, the 3459 // inliner needs to know if a given call site is part of a cleanuppad. 3460 if (isSEHTryScope() || isCleanupPadScope()) 3461 Attrs = 3462 Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex, 3463 llvm::Attribute::NoInline); 3464 3465 CS.setAttributes(Attrs); 3466 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 3467 3468 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3469 // optimizer it can aggressively ignore unwind edges. 3470 if (CGM.getLangOpts().ObjCAutoRefCount) 3471 AddObjCARCExceptionMetadata(CS.getInstruction()); 3472 3473 // If the call doesn't return, finish the basic block and clear the 3474 // insertion point; this allows the rest of IRgen to discard 3475 // unreachable code. 3476 if (CS.doesNotReturn()) { 3477 if (UnusedReturnSize) 3478 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 3479 SRetPtr.getPointer()); 3480 3481 Builder.CreateUnreachable(); 3482 Builder.ClearInsertionPoint(); 3483 3484 // FIXME: For now, emit a dummy basic block because expr emitters in 3485 // generally are not ready to handle emitting expressions at unreachable 3486 // points. 3487 EnsureInsertPoint(); 3488 3489 // Return a reasonable RValue. 3490 return GetUndefRValue(RetTy); 3491 } 3492 3493 llvm::Instruction *CI = CS.getInstruction(); 3494 if (Builder.isNamePreserving() && !CI->getType()->isVoidTy()) 3495 CI->setName("call"); 3496 3497 // Emit any writebacks immediately. Arguably this should happen 3498 // after any return-value munging. 3499 if (CallArgs.hasWritebacks()) 3500 emitWritebacks(*this, CallArgs); 3501 3502 // The stack cleanup for inalloca arguments has to run out of the normal 3503 // lexical order, so deactivate it and run it manually here. 3504 CallArgs.freeArgumentMemory(*this); 3505 3506 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 3507 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 3508 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 3509 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 3510 } 3511 3512 RValue Ret = [&] { 3513 switch (RetAI.getKind()) { 3514 case ABIArgInfo::InAlloca: 3515 case ABIArgInfo::Indirect: { 3516 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 3517 if (UnusedReturnSize) 3518 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 3519 SRetPtr.getPointer()); 3520 return ret; 3521 } 3522 3523 case ABIArgInfo::Ignore: 3524 // If we are ignoring an argument that had a result, make sure to 3525 // construct the appropriate return value for our caller. 3526 return GetUndefRValue(RetTy); 3527 3528 case ABIArgInfo::Extend: 3529 case ABIArgInfo::Direct: { 3530 llvm::Type *RetIRTy = ConvertType(RetTy); 3531 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 3532 switch (getEvaluationKind(RetTy)) { 3533 case TEK_Complex: { 3534 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 3535 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 3536 return RValue::getComplex(std::make_pair(Real, Imag)); 3537 } 3538 case TEK_Aggregate: { 3539 Address DestPtr = ReturnValue.getValue(); 3540 bool DestIsVolatile = ReturnValue.isVolatile(); 3541 3542 if (!DestPtr.isValid()) { 3543 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 3544 DestIsVolatile = false; 3545 } 3546 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 3547 return RValue::getAggregate(DestPtr); 3548 } 3549 case TEK_Scalar: { 3550 // If the argument doesn't match, perform a bitcast to coerce it. This 3551 // can happen due to trivial type mismatches. 3552 llvm::Value *V = CI; 3553 if (V->getType() != RetIRTy) 3554 V = Builder.CreateBitCast(V, RetIRTy); 3555 return RValue::get(V); 3556 } 3557 } 3558 llvm_unreachable("bad evaluation kind"); 3559 } 3560 3561 Address DestPtr = ReturnValue.getValue(); 3562 bool DestIsVolatile = ReturnValue.isVolatile(); 3563 3564 if (!DestPtr.isValid()) { 3565 DestPtr = CreateMemTemp(RetTy, "coerce"); 3566 DestIsVolatile = false; 3567 } 3568 3569 // If the value is offset in memory, apply the offset now. 3570 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 3571 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 3572 3573 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 3574 } 3575 3576 case ABIArgInfo::Expand: 3577 llvm_unreachable("Invalid ABI kind for return argument"); 3578 } 3579 3580 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 3581 } (); 3582 3583 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 3584 3585 if (Ret.isScalar() && TargetDecl) { 3586 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 3587 llvm::Value *OffsetValue = nullptr; 3588 if (const auto *Offset = AA->getOffset()) 3589 OffsetValue = EmitScalarExpr(Offset); 3590 3591 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 3592 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 3593 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 3594 OffsetValue); 3595 } 3596 } 3597 3598 return Ret; 3599 } 3600 3601 /* VarArg handling */ 3602 3603 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 3604 VAListAddr = VE->isMicrosoftABI() 3605 ? EmitMSVAListRef(VE->getSubExpr()) 3606 : EmitVAListRef(VE->getSubExpr()); 3607 QualType Ty = VE->getType(); 3608 if (VE->isMicrosoftABI()) 3609 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 3610 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 3611 } 3612