1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/CodeGen/CGFunctionInfo.h"
27 #include "clang/Frontend/CodeGenOptions.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/Transforms/Utils/Local.h"
36 using namespace clang;
37 using namespace CodeGen;
38 
39 /***/
40 
41 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
42   switch (CC) {
43   default: return llvm::CallingConv::C;
44   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
45   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
46   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
47   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
48   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
49   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
50   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
51   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
52   // TODO: Add support for __pascal to LLVM.
53   case CC_X86Pascal: return llvm::CallingConv::C;
54   // TODO: Add support for __vectorcall to LLVM.
55   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
56   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
57   case CC_SpirKernel: return llvm::CallingConv::SPIR_KERNEL;
58   }
59 }
60 
61 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
62 /// qualification.
63 /// FIXME: address space qualification?
64 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
65   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
66   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
67 }
68 
69 /// Returns the canonical formal type of the given C++ method.
70 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
71   return MD->getType()->getCanonicalTypeUnqualified()
72            .getAs<FunctionProtoType>();
73 }
74 
75 /// Returns the "extra-canonicalized" return type, which discards
76 /// qualifiers on the return type.  Codegen doesn't care about them,
77 /// and it makes ABI code a little easier to be able to assume that
78 /// all parameter and return types are top-level unqualified.
79 static CanQualType GetReturnType(QualType RetTy) {
80   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
81 }
82 
83 /// Arrange the argument and result information for a value of the given
84 /// unprototyped freestanding function type.
85 const CGFunctionInfo &
86 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
87   // When translating an unprototyped function type, always use a
88   // variadic type.
89   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
90                                  /*instanceMethod=*/false,
91                                  /*chainCall=*/false, None,
92                                  FTNP->getExtInfo(), RequiredArgs(0));
93 }
94 
95 /// Arrange the LLVM function layout for a value of the given function
96 /// type, on top of any implicit parameters already stored.
97 static const CGFunctionInfo &
98 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
99                         SmallVectorImpl<CanQualType> &prefix,
100                         CanQual<FunctionProtoType> FTP) {
101   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
102   // FIXME: Kill copy.
103   prefix.append(FTP->param_type_begin(), FTP->param_type_end());
104   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
105   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
106                                      /*chainCall=*/false, prefix,
107                                      FTP->getExtInfo(), required);
108 }
109 
110 /// Arrange the argument and result information for a value of the
111 /// given freestanding function type.
112 const CGFunctionInfo &
113 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
114   SmallVector<CanQualType, 16> argTypes;
115   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
116                                    FTP);
117 }
118 
119 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
120   // Set the appropriate calling convention for the Function.
121   if (D->hasAttr<StdCallAttr>())
122     return CC_X86StdCall;
123 
124   if (D->hasAttr<FastCallAttr>())
125     return CC_X86FastCall;
126 
127   if (D->hasAttr<ThisCallAttr>())
128     return CC_X86ThisCall;
129 
130   if (D->hasAttr<VectorCallAttr>())
131     return CC_X86VectorCall;
132 
133   if (D->hasAttr<PascalAttr>())
134     return CC_X86Pascal;
135 
136   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
137     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
138 
139   if (D->hasAttr<IntelOclBiccAttr>())
140     return CC_IntelOclBicc;
141 
142   if (D->hasAttr<MSABIAttr>())
143     return IsWindows ? CC_C : CC_X86_64Win64;
144 
145   if (D->hasAttr<SysVABIAttr>())
146     return IsWindows ? CC_X86_64SysV : CC_C;
147 
148   return CC_C;
149 }
150 
151 /// Arrange the argument and result information for a call to an
152 /// unknown C++ non-static member function of the given abstract type.
153 /// (Zero value of RD means we don't have any meaningful "this" argument type,
154 ///  so fall back to a generic pointer type).
155 /// The member function must be an ordinary function, i.e. not a
156 /// constructor or destructor.
157 const CGFunctionInfo &
158 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
159                                    const FunctionProtoType *FTP) {
160   SmallVector<CanQualType, 16> argTypes;
161 
162   // Add the 'this' pointer.
163   if (RD)
164     argTypes.push_back(GetThisType(Context, RD));
165   else
166     argTypes.push_back(Context.VoidPtrTy);
167 
168   return ::arrangeLLVMFunctionInfo(
169       *this, true, argTypes,
170       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
171 }
172 
173 /// Arrange the argument and result information for a declaration or
174 /// definition of the given C++ non-static member function.  The
175 /// member function must be an ordinary function, i.e. not a
176 /// constructor or destructor.
177 const CGFunctionInfo &
178 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
179   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
180   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
181 
182   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
183 
184   if (MD->isInstance()) {
185     // The abstract case is perfectly fine.
186     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
187     return arrangeCXXMethodType(ThisType, prototype.getTypePtr());
188   }
189 
190   return arrangeFreeFunctionType(prototype);
191 }
192 
193 const CGFunctionInfo &
194 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
195                                             StructorType Type) {
196 
197   SmallVector<CanQualType, 16> argTypes;
198   argTypes.push_back(GetThisType(Context, MD->getParent()));
199 
200   GlobalDecl GD;
201   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
202     GD = GlobalDecl(CD, toCXXCtorType(Type));
203   } else {
204     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
205     GD = GlobalDecl(DD, toCXXDtorType(Type));
206   }
207 
208   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
209 
210   // Add the formal parameters.
211   argTypes.append(FTP->param_type_begin(), FTP->param_type_end());
212 
213   TheCXXABI.buildStructorSignature(MD, Type, argTypes);
214 
215   RequiredArgs required =
216       (MD->isVariadic() ? RequiredArgs(argTypes.size()) : RequiredArgs::All);
217 
218   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
219   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
220                                ? argTypes.front()
221                                : TheCXXABI.hasMostDerivedReturn(GD)
222                                      ? CGM.getContext().VoidPtrTy
223                                      : Context.VoidTy;
224   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
225                                  /*chainCall=*/false, argTypes, extInfo,
226                                  required);
227 }
228 
229 /// Arrange a call to a C++ method, passing the given arguments.
230 const CGFunctionInfo &
231 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
232                                         const CXXConstructorDecl *D,
233                                         CXXCtorType CtorKind,
234                                         unsigned ExtraArgs) {
235   // FIXME: Kill copy.
236   SmallVector<CanQualType, 16> ArgTypes;
237   for (const auto &Arg : args)
238     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
239 
240   CanQual<FunctionProtoType> FPT = GetFormalType(D);
241   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs);
242   GlobalDecl GD(D, CtorKind);
243   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
244                                ? ArgTypes.front()
245                                : TheCXXABI.hasMostDerivedReturn(GD)
246                                      ? CGM.getContext().VoidPtrTy
247                                      : Context.VoidTy;
248 
249   FunctionType::ExtInfo Info = FPT->getExtInfo();
250   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
251                                  /*chainCall=*/false, ArgTypes, Info,
252                                  Required);
253 }
254 
255 /// Arrange the argument and result information for the declaration or
256 /// definition of the given function.
257 const CGFunctionInfo &
258 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
259   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
260     if (MD->isInstance())
261       return arrangeCXXMethodDeclaration(MD);
262 
263   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
264 
265   assert(isa<FunctionType>(FTy));
266 
267   // When declaring a function without a prototype, always use a
268   // non-variadic type.
269   if (isa<FunctionNoProtoType>(FTy)) {
270     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
271     return arrangeLLVMFunctionInfo(
272         noProto->getReturnType(), /*instanceMethod=*/false,
273         /*chainCall=*/false, None, noProto->getExtInfo(), RequiredArgs::All);
274   }
275 
276   assert(isa<FunctionProtoType>(FTy));
277   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
278 }
279 
280 /// Arrange the argument and result information for the declaration or
281 /// definition of an Objective-C method.
282 const CGFunctionInfo &
283 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
284   // It happens that this is the same as a call with no optional
285   // arguments, except also using the formal 'self' type.
286   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
287 }
288 
289 /// Arrange the argument and result information for the function type
290 /// through which to perform a send to the given Objective-C method,
291 /// using the given receiver type.  The receiver type is not always
292 /// the 'self' type of the method or even an Objective-C pointer type.
293 /// This is *not* the right method for actually performing such a
294 /// message send, due to the possibility of optional arguments.
295 const CGFunctionInfo &
296 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
297                                               QualType receiverType) {
298   SmallVector<CanQualType, 16> argTys;
299   argTys.push_back(Context.getCanonicalParamType(receiverType));
300   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
301   // FIXME: Kill copy?
302   for (const auto *I : MD->params()) {
303     argTys.push_back(Context.getCanonicalParamType(I->getType()));
304   }
305 
306   FunctionType::ExtInfo einfo;
307   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
308   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
309 
310   if (getContext().getLangOpts().ObjCAutoRefCount &&
311       MD->hasAttr<NSReturnsRetainedAttr>())
312     einfo = einfo.withProducesResult(true);
313 
314   RequiredArgs required =
315     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
316 
317   return arrangeLLVMFunctionInfo(
318       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
319       /*chainCall=*/false, argTys, einfo, required);
320 }
321 
322 const CGFunctionInfo &
323 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
324   // FIXME: Do we need to handle ObjCMethodDecl?
325   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
326 
327   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
328     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
329 
330   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
331     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
332 
333   return arrangeFunctionDeclaration(FD);
334 }
335 
336 /// Arrange a thunk that takes 'this' as the first parameter followed by
337 /// varargs.  Return a void pointer, regardless of the actual return type.
338 /// The body of the thunk will end in a musttail call to a function of the
339 /// correct type, and the caller will bitcast the function to the correct
340 /// prototype.
341 const CGFunctionInfo &
342 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
343   assert(MD->isVirtual() && "only virtual memptrs have thunks");
344   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
345   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
346   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
347                                  /*chainCall=*/false, ArgTys,
348                                  FTP->getExtInfo(), RequiredArgs(1));
349 }
350 
351 const CGFunctionInfo &
352 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
353                                    CXXCtorType CT) {
354   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
355 
356   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
357   SmallVector<CanQualType, 2> ArgTys;
358   const CXXRecordDecl *RD = CD->getParent();
359   ArgTys.push_back(GetThisType(Context, RD));
360   if (CT == Ctor_CopyingClosure)
361     ArgTys.push_back(*FTP->param_type_begin());
362   if (RD->getNumVBases() > 0)
363     ArgTys.push_back(Context.IntTy);
364   CallingConv CC = Context.getDefaultCallingConvention(
365       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
366   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
367                                  /*chainCall=*/false, ArgTys,
368                                  FunctionType::ExtInfo(CC), RequiredArgs::All);
369 }
370 
371 /// Arrange a call as unto a free function, except possibly with an
372 /// additional number of formal parameters considered required.
373 static const CGFunctionInfo &
374 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
375                             CodeGenModule &CGM,
376                             const CallArgList &args,
377                             const FunctionType *fnType,
378                             unsigned numExtraRequiredArgs,
379                             bool chainCall) {
380   assert(args.size() >= numExtraRequiredArgs);
381 
382   // In most cases, there are no optional arguments.
383   RequiredArgs required = RequiredArgs::All;
384 
385   // If we have a variadic prototype, the required arguments are the
386   // extra prefix plus the arguments in the prototype.
387   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
388     if (proto->isVariadic())
389       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
390 
391   // If we don't have a prototype at all, but we're supposed to
392   // explicitly use the variadic convention for unprototyped calls,
393   // treat all of the arguments as required but preserve the nominal
394   // possibility of variadics.
395   } else if (CGM.getTargetCodeGenInfo()
396                 .isNoProtoCallVariadic(args,
397                                        cast<FunctionNoProtoType>(fnType))) {
398     required = RequiredArgs(args.size());
399   }
400 
401   // FIXME: Kill copy.
402   SmallVector<CanQualType, 16> argTypes;
403   for (const auto &arg : args)
404     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
405   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
406                                      /*instanceMethod=*/false, chainCall,
407                                      argTypes, fnType->getExtInfo(), required);
408 }
409 
410 /// Figure out the rules for calling a function with the given formal
411 /// type using the given arguments.  The arguments are necessary
412 /// because the function might be unprototyped, in which case it's
413 /// target-dependent in crazy ways.
414 const CGFunctionInfo &
415 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
416                                       const FunctionType *fnType,
417                                       bool chainCall) {
418   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
419                                      chainCall ? 1 : 0, chainCall);
420 }
421 
422 /// A block function call is essentially a free-function call with an
423 /// extra implicit argument.
424 const CGFunctionInfo &
425 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
426                                        const FunctionType *fnType) {
427   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
428                                      /*chainCall=*/false);
429 }
430 
431 const CGFunctionInfo &
432 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
433                                       const CallArgList &args,
434                                       FunctionType::ExtInfo info,
435                                       RequiredArgs required) {
436   // FIXME: Kill copy.
437   SmallVector<CanQualType, 16> argTypes;
438   for (const auto &Arg : args)
439     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
440   return arrangeLLVMFunctionInfo(
441       GetReturnType(resultType), /*instanceMethod=*/false,
442       /*chainCall=*/false, argTypes, info, required);
443 }
444 
445 /// Arrange a call to a C++ method, passing the given arguments.
446 const CGFunctionInfo &
447 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
448                                    const FunctionProtoType *FPT,
449                                    RequiredArgs required) {
450   // FIXME: Kill copy.
451   SmallVector<CanQualType, 16> argTypes;
452   for (const auto &Arg : args)
453     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
454 
455   FunctionType::ExtInfo info = FPT->getExtInfo();
456   return arrangeLLVMFunctionInfo(
457       GetReturnType(FPT->getReturnType()), /*instanceMethod=*/true,
458       /*chainCall=*/false, argTypes, info, required);
459 }
460 
461 const CGFunctionInfo &CodeGenTypes::arrangeFreeFunctionDeclaration(
462     QualType resultType, const FunctionArgList &args,
463     const FunctionType::ExtInfo &info, bool isVariadic) {
464   // FIXME: Kill copy.
465   SmallVector<CanQualType, 16> argTypes;
466   for (auto Arg : args)
467     argTypes.push_back(Context.getCanonicalParamType(Arg->getType()));
468 
469   RequiredArgs required =
470     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
471   return arrangeLLVMFunctionInfo(
472       GetReturnType(resultType), /*instanceMethod=*/false,
473       /*chainCall=*/false, argTypes, info, required);
474 }
475 
476 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
477   return arrangeLLVMFunctionInfo(
478       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
479       None, FunctionType::ExtInfo(), RequiredArgs::All);
480 }
481 
482 /// Arrange the argument and result information for an abstract value
483 /// of a given function type.  This is the method which all of the
484 /// above functions ultimately defer to.
485 const CGFunctionInfo &
486 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
487                                       bool instanceMethod,
488                                       bool chainCall,
489                                       ArrayRef<CanQualType> argTypes,
490                                       FunctionType::ExtInfo info,
491                                       RequiredArgs required) {
492   assert(std::all_of(argTypes.begin(), argTypes.end(),
493                      std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
494 
495   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
496 
497   // Lookup or create unique function info.
498   llvm::FoldingSetNodeID ID;
499   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, required,
500                           resultType, argTypes);
501 
502   void *insertPos = nullptr;
503   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
504   if (FI)
505     return *FI;
506 
507   // Construct the function info.  We co-allocate the ArgInfos.
508   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
509                               resultType, argTypes, required);
510   FunctionInfos.InsertNode(FI, insertPos);
511 
512   bool inserted = FunctionsBeingProcessed.insert(FI).second;
513   (void)inserted;
514   assert(inserted && "Recursively being processed?");
515 
516   // Compute ABI information.
517   getABIInfo().computeInfo(*FI);
518 
519   // Loop over all of the computed argument and return value info.  If any of
520   // them are direct or extend without a specified coerce type, specify the
521   // default now.
522   ABIArgInfo &retInfo = FI->getReturnInfo();
523   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
524     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
525 
526   for (auto &I : FI->arguments())
527     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
528       I.info.setCoerceToType(ConvertType(I.type));
529 
530   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
531   assert(erased && "Not in set?");
532 
533   return *FI;
534 }
535 
536 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
537                                        bool instanceMethod,
538                                        bool chainCall,
539                                        const FunctionType::ExtInfo &info,
540                                        CanQualType resultType,
541                                        ArrayRef<CanQualType> argTypes,
542                                        RequiredArgs required) {
543   void *buffer = operator new(sizeof(CGFunctionInfo) +
544                               sizeof(ArgInfo) * (argTypes.size() + 1));
545   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
546   FI->CallingConvention = llvmCC;
547   FI->EffectiveCallingConvention = llvmCC;
548   FI->ASTCallingConvention = info.getCC();
549   FI->InstanceMethod = instanceMethod;
550   FI->ChainCall = chainCall;
551   FI->NoReturn = info.getNoReturn();
552   FI->ReturnsRetained = info.getProducesResult();
553   FI->Required = required;
554   FI->HasRegParm = info.getHasRegParm();
555   FI->RegParm = info.getRegParm();
556   FI->ArgStruct = nullptr;
557   FI->ArgStructAlign = 0;
558   FI->NumArgs = argTypes.size();
559   FI->getArgsBuffer()[0].type = resultType;
560   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
561     FI->getArgsBuffer()[i + 1].type = argTypes[i];
562   return FI;
563 }
564 
565 /***/
566 
567 namespace {
568 // ABIArgInfo::Expand implementation.
569 
570 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
571 struct TypeExpansion {
572   enum TypeExpansionKind {
573     // Elements of constant arrays are expanded recursively.
574     TEK_ConstantArray,
575     // Record fields are expanded recursively (but if record is a union, only
576     // the field with the largest size is expanded).
577     TEK_Record,
578     // For complex types, real and imaginary parts are expanded recursively.
579     TEK_Complex,
580     // All other types are not expandable.
581     TEK_None
582   };
583 
584   const TypeExpansionKind Kind;
585 
586   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
587   virtual ~TypeExpansion() {}
588 };
589 
590 struct ConstantArrayExpansion : TypeExpansion {
591   QualType EltTy;
592   uint64_t NumElts;
593 
594   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
595       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
596   static bool classof(const TypeExpansion *TE) {
597     return TE->Kind == TEK_ConstantArray;
598   }
599 };
600 
601 struct RecordExpansion : TypeExpansion {
602   SmallVector<const CXXBaseSpecifier *, 1> Bases;
603 
604   SmallVector<const FieldDecl *, 1> Fields;
605 
606   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
607                   SmallVector<const FieldDecl *, 1> &&Fields)
608       : TypeExpansion(TEK_Record), Bases(Bases), Fields(Fields) {}
609   static bool classof(const TypeExpansion *TE) {
610     return TE->Kind == TEK_Record;
611   }
612 };
613 
614 struct ComplexExpansion : TypeExpansion {
615   QualType EltTy;
616 
617   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
618   static bool classof(const TypeExpansion *TE) {
619     return TE->Kind == TEK_Complex;
620   }
621 };
622 
623 struct NoExpansion : TypeExpansion {
624   NoExpansion() : TypeExpansion(TEK_None) {}
625   static bool classof(const TypeExpansion *TE) {
626     return TE->Kind == TEK_None;
627   }
628 };
629 }  // namespace
630 
631 static std::unique_ptr<TypeExpansion>
632 getTypeExpansion(QualType Ty, const ASTContext &Context) {
633   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
634     return llvm::make_unique<ConstantArrayExpansion>(
635         AT->getElementType(), AT->getSize().getZExtValue());
636   }
637   if (const RecordType *RT = Ty->getAs<RecordType>()) {
638     SmallVector<const CXXBaseSpecifier *, 1> Bases;
639     SmallVector<const FieldDecl *, 1> Fields;
640     const RecordDecl *RD = RT->getDecl();
641     assert(!RD->hasFlexibleArrayMember() &&
642            "Cannot expand structure with flexible array.");
643     if (RD->isUnion()) {
644       // Unions can be here only in degenerative cases - all the fields are same
645       // after flattening. Thus we have to use the "largest" field.
646       const FieldDecl *LargestFD = nullptr;
647       CharUnits UnionSize = CharUnits::Zero();
648 
649       for (const auto *FD : RD->fields()) {
650         // Skip zero length bitfields.
651         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
652           continue;
653         assert(!FD->isBitField() &&
654                "Cannot expand structure with bit-field members.");
655         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
656         if (UnionSize < FieldSize) {
657           UnionSize = FieldSize;
658           LargestFD = FD;
659         }
660       }
661       if (LargestFD)
662         Fields.push_back(LargestFD);
663     } else {
664       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
665         assert(!CXXRD->isDynamicClass() &&
666                "cannot expand vtable pointers in dynamic classes");
667         for (const CXXBaseSpecifier &BS : CXXRD->bases())
668           Bases.push_back(&BS);
669       }
670 
671       for (const auto *FD : RD->fields()) {
672         // Skip zero length bitfields.
673         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
674           continue;
675         assert(!FD->isBitField() &&
676                "Cannot expand structure with bit-field members.");
677         Fields.push_back(FD);
678       }
679     }
680     return llvm::make_unique<RecordExpansion>(std::move(Bases),
681                                               std::move(Fields));
682   }
683   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
684     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
685   }
686   return llvm::make_unique<NoExpansion>();
687 }
688 
689 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
690   auto Exp = getTypeExpansion(Ty, Context);
691   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
692     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
693   }
694   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
695     int Res = 0;
696     for (auto BS : RExp->Bases)
697       Res += getExpansionSize(BS->getType(), Context);
698     for (auto FD : RExp->Fields)
699       Res += getExpansionSize(FD->getType(), Context);
700     return Res;
701   }
702   if (isa<ComplexExpansion>(Exp.get()))
703     return 2;
704   assert(isa<NoExpansion>(Exp.get()));
705   return 1;
706 }
707 
708 void
709 CodeGenTypes::getExpandedTypes(QualType Ty,
710                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
711   auto Exp = getTypeExpansion(Ty, Context);
712   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
713     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
714       getExpandedTypes(CAExp->EltTy, TI);
715     }
716   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
717     for (auto BS : RExp->Bases)
718       getExpandedTypes(BS->getType(), TI);
719     for (auto FD : RExp->Fields)
720       getExpandedTypes(FD->getType(), TI);
721   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
722     llvm::Type *EltTy = ConvertType(CExp->EltTy);
723     *TI++ = EltTy;
724     *TI++ = EltTy;
725   } else {
726     assert(isa<NoExpansion>(Exp.get()));
727     *TI++ = ConvertType(Ty);
728   }
729 }
730 
731 static void forConstantArrayExpansion(CodeGenFunction &CGF,
732                                       ConstantArrayExpansion *CAE,
733                                       Address BaseAddr,
734                                       llvm::function_ref<void(Address)> Fn) {
735   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
736   CharUnits EltAlign =
737     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
738 
739   for (int i = 0, n = CAE->NumElts; i < n; i++) {
740     llvm::Value *EltAddr =
741       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
742     Fn(Address(EltAddr, EltAlign));
743   }
744 }
745 
746 void CodeGenFunction::ExpandTypeFromArgs(
747     QualType Ty, LValue LV, SmallVectorImpl<llvm::Argument *>::iterator &AI) {
748   assert(LV.isSimple() &&
749          "Unexpected non-simple lvalue during struct expansion.");
750 
751   auto Exp = getTypeExpansion(Ty, getContext());
752   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
753     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
754                               [&](Address EltAddr) {
755       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
756       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
757     });
758   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
759     Address This = LV.getAddress();
760     for (const CXXBaseSpecifier *BS : RExp->Bases) {
761       // Perform a single step derived-to-base conversion.
762       Address Base =
763           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
764                                 /*NullCheckValue=*/false, SourceLocation());
765       LValue SubLV = MakeAddrLValue(Base, BS->getType());
766 
767       // Recurse onto bases.
768       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
769     }
770     for (auto FD : RExp->Fields) {
771       // FIXME: What are the right qualifiers here?
772       LValue SubLV = EmitLValueForField(LV, FD);
773       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
774     }
775   } else if (isa<ComplexExpansion>(Exp.get())) {
776     auto realValue = *AI++;
777     auto imagValue = *AI++;
778     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
779   } else {
780     assert(isa<NoExpansion>(Exp.get()));
781     EmitStoreThroughLValue(RValue::get(*AI++), LV);
782   }
783 }
784 
785 void CodeGenFunction::ExpandTypeToArgs(
786     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
787     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
788   auto Exp = getTypeExpansion(Ty, getContext());
789   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
790     forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
791                               [&](Address EltAddr) {
792       RValue EltRV =
793           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
794       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
795     });
796   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
797     Address This = RV.getAggregateAddress();
798     for (const CXXBaseSpecifier *BS : RExp->Bases) {
799       // Perform a single step derived-to-base conversion.
800       Address Base =
801           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
802                                 /*NullCheckValue=*/false, SourceLocation());
803       RValue BaseRV = RValue::getAggregate(Base);
804 
805       // Recurse onto bases.
806       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
807                        IRCallArgPos);
808     }
809 
810     LValue LV = MakeAddrLValue(This, Ty);
811     for (auto FD : RExp->Fields) {
812       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
813       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
814                        IRCallArgPos);
815     }
816   } else if (isa<ComplexExpansion>(Exp.get())) {
817     ComplexPairTy CV = RV.getComplexVal();
818     IRCallArgs[IRCallArgPos++] = CV.first;
819     IRCallArgs[IRCallArgPos++] = CV.second;
820   } else {
821     assert(isa<NoExpansion>(Exp.get()));
822     assert(RV.isScalar() &&
823            "Unexpected non-scalar rvalue during struct expansion.");
824 
825     // Insert a bitcast as needed.
826     llvm::Value *V = RV.getScalarVal();
827     if (IRCallArgPos < IRFuncTy->getNumParams() &&
828         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
829       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
830 
831     IRCallArgs[IRCallArgPos++] = V;
832   }
833 }
834 
835 /// Create a temporary allocation for the purposes of coercion.
836 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
837                                            CharUnits MinAlign) {
838   // Don't use an alignment that's worse than what LLVM would prefer.
839   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
840   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
841 
842   return CGF.CreateTempAlloca(Ty, Align);
843 }
844 
845 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
846 /// accessing some number of bytes out of it, try to gep into the struct to get
847 /// at its inner goodness.  Dive as deep as possible without entering an element
848 /// with an in-memory size smaller than DstSize.
849 static Address
850 EnterStructPointerForCoercedAccess(Address SrcPtr,
851                                    llvm::StructType *SrcSTy,
852                                    uint64_t DstSize, CodeGenFunction &CGF) {
853   // We can't dive into a zero-element struct.
854   if (SrcSTy->getNumElements() == 0) return SrcPtr;
855 
856   llvm::Type *FirstElt = SrcSTy->getElementType(0);
857 
858   // If the first elt is at least as large as what we're looking for, or if the
859   // first element is the same size as the whole struct, we can enter it. The
860   // comparison must be made on the store size and not the alloca size. Using
861   // the alloca size may overstate the size of the load.
862   uint64_t FirstEltSize =
863     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
864   if (FirstEltSize < DstSize &&
865       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
866     return SrcPtr;
867 
868   // GEP into the first element.
869   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
870 
871   // If the first element is a struct, recurse.
872   llvm::Type *SrcTy = SrcPtr.getElementType();
873   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
874     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
875 
876   return SrcPtr;
877 }
878 
879 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
880 /// are either integers or pointers.  This does a truncation of the value if it
881 /// is too large or a zero extension if it is too small.
882 ///
883 /// This behaves as if the value were coerced through memory, so on big-endian
884 /// targets the high bits are preserved in a truncation, while little-endian
885 /// targets preserve the low bits.
886 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
887                                              llvm::Type *Ty,
888                                              CodeGenFunction &CGF) {
889   if (Val->getType() == Ty)
890     return Val;
891 
892   if (isa<llvm::PointerType>(Val->getType())) {
893     // If this is Pointer->Pointer avoid conversion to and from int.
894     if (isa<llvm::PointerType>(Ty))
895       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
896 
897     // Convert the pointer to an integer so we can play with its width.
898     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
899   }
900 
901   llvm::Type *DestIntTy = Ty;
902   if (isa<llvm::PointerType>(DestIntTy))
903     DestIntTy = CGF.IntPtrTy;
904 
905   if (Val->getType() != DestIntTy) {
906     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
907     if (DL.isBigEndian()) {
908       // Preserve the high bits on big-endian targets.
909       // That is what memory coercion does.
910       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
911       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
912 
913       if (SrcSize > DstSize) {
914         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
915         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
916       } else {
917         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
918         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
919       }
920     } else {
921       // Little-endian targets preserve the low bits. No shifts required.
922       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
923     }
924   }
925 
926   if (isa<llvm::PointerType>(Ty))
927     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
928   return Val;
929 }
930 
931 
932 
933 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
934 /// a pointer to an object of type \arg Ty, known to be aligned to
935 /// \arg SrcAlign bytes.
936 ///
937 /// This safely handles the case when the src type is smaller than the
938 /// destination type; in this situation the values of bits which not
939 /// present in the src are undefined.
940 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
941                                       CodeGenFunction &CGF) {
942   llvm::Type *SrcTy = Src.getElementType();
943 
944   // If SrcTy and Ty are the same, just do a load.
945   if (SrcTy == Ty)
946     return CGF.Builder.CreateLoad(Src);
947 
948   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
949 
950   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
951     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
952     SrcTy = Src.getType()->getElementType();
953   }
954 
955   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
956 
957   // If the source and destination are integer or pointer types, just do an
958   // extension or truncation to the desired type.
959   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
960       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
961     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
962     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
963   }
964 
965   // If load is legal, just bitcast the src pointer.
966   if (SrcSize >= DstSize) {
967     // Generally SrcSize is never greater than DstSize, since this means we are
968     // losing bits. However, this can happen in cases where the structure has
969     // additional padding, for example due to a user specified alignment.
970     //
971     // FIXME: Assert that we aren't truncating non-padding bits when have access
972     // to that information.
973     Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty));
974     return CGF.Builder.CreateLoad(Src);
975   }
976 
977   // Otherwise do coercion through memory. This is stupid, but simple.
978   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
979   Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
980   Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy);
981   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
982       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
983       false);
984   return CGF.Builder.CreateLoad(Tmp);
985 }
986 
987 // Function to store a first-class aggregate into memory.  We prefer to
988 // store the elements rather than the aggregate to be more friendly to
989 // fast-isel.
990 // FIXME: Do we need to recurse here?
991 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
992                           Address Dest, bool DestIsVolatile) {
993   // Prefer scalar stores to first-class aggregate stores.
994   if (llvm::StructType *STy =
995         dyn_cast<llvm::StructType>(Val->getType())) {
996     const llvm::StructLayout *Layout =
997       CGF.CGM.getDataLayout().getStructLayout(STy);
998 
999     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1000       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1001       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1002       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1003       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1004     }
1005   } else {
1006     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1007   }
1008 }
1009 
1010 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1011 /// where the source and destination may have different types.  The
1012 /// destination is known to be aligned to \arg DstAlign bytes.
1013 ///
1014 /// This safely handles the case when the src type is larger than the
1015 /// destination type; the upper bits of the src will be lost.
1016 static void CreateCoercedStore(llvm::Value *Src,
1017                                Address Dst,
1018                                bool DstIsVolatile,
1019                                CodeGenFunction &CGF) {
1020   llvm::Type *SrcTy = Src->getType();
1021   llvm::Type *DstTy = Dst.getType()->getElementType();
1022   if (SrcTy == DstTy) {
1023     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1024     return;
1025   }
1026 
1027   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1028 
1029   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1030     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1031     DstTy = Dst.getType()->getElementType();
1032   }
1033 
1034   // If the source and destination are integer or pointer types, just do an
1035   // extension or truncation to the desired type.
1036   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1037       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1038     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1039     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1040     return;
1041   }
1042 
1043   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1044 
1045   // If store is legal, just bitcast the src pointer.
1046   if (SrcSize <= DstSize) {
1047     Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy));
1048     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1049   } else {
1050     // Otherwise do coercion through memory. This is stupid, but
1051     // simple.
1052 
1053     // Generally SrcSize is never greater than DstSize, since this means we are
1054     // losing bits. However, this can happen in cases where the structure has
1055     // additional padding, for example due to a user specified alignment.
1056     //
1057     // FIXME: Assert that we aren't truncating non-padding bits when have access
1058     // to that information.
1059     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1060     CGF.Builder.CreateStore(Src, Tmp);
1061     Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1062     Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy);
1063     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1064         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1065         false);
1066   }
1067 }
1068 
1069 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1070                                    const ABIArgInfo &info) {
1071   if (unsigned offset = info.getDirectOffset()) {
1072     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1073     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1074                                              CharUnits::fromQuantity(offset));
1075     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1076   }
1077   return addr;
1078 }
1079 
1080 namespace {
1081 
1082 /// Encapsulates information about the way function arguments from
1083 /// CGFunctionInfo should be passed to actual LLVM IR function.
1084 class ClangToLLVMArgMapping {
1085   static const unsigned InvalidIndex = ~0U;
1086   unsigned InallocaArgNo;
1087   unsigned SRetArgNo;
1088   unsigned TotalIRArgs;
1089 
1090   /// Arguments of LLVM IR function corresponding to single Clang argument.
1091   struct IRArgs {
1092     unsigned PaddingArgIndex;
1093     // Argument is expanded to IR arguments at positions
1094     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1095     unsigned FirstArgIndex;
1096     unsigned NumberOfArgs;
1097 
1098     IRArgs()
1099         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1100           NumberOfArgs(0) {}
1101   };
1102 
1103   SmallVector<IRArgs, 8> ArgInfo;
1104 
1105 public:
1106   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1107                         bool OnlyRequiredArgs = false)
1108       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1109         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1110     construct(Context, FI, OnlyRequiredArgs);
1111   }
1112 
1113   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1114   unsigned getInallocaArgNo() const {
1115     assert(hasInallocaArg());
1116     return InallocaArgNo;
1117   }
1118 
1119   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1120   unsigned getSRetArgNo() const {
1121     assert(hasSRetArg());
1122     return SRetArgNo;
1123   }
1124 
1125   unsigned totalIRArgs() const { return TotalIRArgs; }
1126 
1127   bool hasPaddingArg(unsigned ArgNo) const {
1128     assert(ArgNo < ArgInfo.size());
1129     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1130   }
1131   unsigned getPaddingArgNo(unsigned ArgNo) const {
1132     assert(hasPaddingArg(ArgNo));
1133     return ArgInfo[ArgNo].PaddingArgIndex;
1134   }
1135 
1136   /// Returns index of first IR argument corresponding to ArgNo, and their
1137   /// quantity.
1138   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1139     assert(ArgNo < ArgInfo.size());
1140     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1141                           ArgInfo[ArgNo].NumberOfArgs);
1142   }
1143 
1144 private:
1145   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1146                  bool OnlyRequiredArgs);
1147 };
1148 
1149 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1150                                       const CGFunctionInfo &FI,
1151                                       bool OnlyRequiredArgs) {
1152   unsigned IRArgNo = 0;
1153   bool SwapThisWithSRet = false;
1154   const ABIArgInfo &RetAI = FI.getReturnInfo();
1155 
1156   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1157     SwapThisWithSRet = RetAI.isSRetAfterThis();
1158     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1159   }
1160 
1161   unsigned ArgNo = 0;
1162   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1163   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1164        ++I, ++ArgNo) {
1165     assert(I != FI.arg_end());
1166     QualType ArgType = I->type;
1167     const ABIArgInfo &AI = I->info;
1168     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1169     auto &IRArgs = ArgInfo[ArgNo];
1170 
1171     if (AI.getPaddingType())
1172       IRArgs.PaddingArgIndex = IRArgNo++;
1173 
1174     switch (AI.getKind()) {
1175     case ABIArgInfo::Extend:
1176     case ABIArgInfo::Direct: {
1177       // FIXME: handle sseregparm someday...
1178       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1179       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1180         IRArgs.NumberOfArgs = STy->getNumElements();
1181       } else {
1182         IRArgs.NumberOfArgs = 1;
1183       }
1184       break;
1185     }
1186     case ABIArgInfo::Indirect:
1187       IRArgs.NumberOfArgs = 1;
1188       break;
1189     case ABIArgInfo::Ignore:
1190     case ABIArgInfo::InAlloca:
1191       // ignore and inalloca doesn't have matching LLVM parameters.
1192       IRArgs.NumberOfArgs = 0;
1193       break;
1194     case ABIArgInfo::Expand: {
1195       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1196       break;
1197     }
1198     }
1199 
1200     if (IRArgs.NumberOfArgs > 0) {
1201       IRArgs.FirstArgIndex = IRArgNo;
1202       IRArgNo += IRArgs.NumberOfArgs;
1203     }
1204 
1205     // Skip over the sret parameter when it comes second.  We already handled it
1206     // above.
1207     if (IRArgNo == 1 && SwapThisWithSRet)
1208       IRArgNo++;
1209   }
1210   assert(ArgNo == ArgInfo.size());
1211 
1212   if (FI.usesInAlloca())
1213     InallocaArgNo = IRArgNo++;
1214 
1215   TotalIRArgs = IRArgNo;
1216 }
1217 }  // namespace
1218 
1219 /***/
1220 
1221 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1222   return FI.getReturnInfo().isIndirect();
1223 }
1224 
1225 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1226   return ReturnTypeUsesSRet(FI) &&
1227          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1228 }
1229 
1230 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1231   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1232     switch (BT->getKind()) {
1233     default:
1234       return false;
1235     case BuiltinType::Float:
1236       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1237     case BuiltinType::Double:
1238       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1239     case BuiltinType::LongDouble:
1240       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1241     }
1242   }
1243 
1244   return false;
1245 }
1246 
1247 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1248   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1249     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1250       if (BT->getKind() == BuiltinType::LongDouble)
1251         return getTarget().useObjCFP2RetForComplexLongDouble();
1252     }
1253   }
1254 
1255   return false;
1256 }
1257 
1258 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1259   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1260   return GetFunctionType(FI);
1261 }
1262 
1263 llvm::FunctionType *
1264 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1265 
1266   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1267   (void)Inserted;
1268   assert(Inserted && "Recursively being processed?");
1269 
1270   llvm::Type *resultType = nullptr;
1271   const ABIArgInfo &retAI = FI.getReturnInfo();
1272   switch (retAI.getKind()) {
1273   case ABIArgInfo::Expand:
1274     llvm_unreachable("Invalid ABI kind for return argument");
1275 
1276   case ABIArgInfo::Extend:
1277   case ABIArgInfo::Direct:
1278     resultType = retAI.getCoerceToType();
1279     break;
1280 
1281   case ABIArgInfo::InAlloca:
1282     if (retAI.getInAllocaSRet()) {
1283       // sret things on win32 aren't void, they return the sret pointer.
1284       QualType ret = FI.getReturnType();
1285       llvm::Type *ty = ConvertType(ret);
1286       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1287       resultType = llvm::PointerType::get(ty, addressSpace);
1288     } else {
1289       resultType = llvm::Type::getVoidTy(getLLVMContext());
1290     }
1291     break;
1292 
1293   case ABIArgInfo::Indirect:
1294   case ABIArgInfo::Ignore:
1295     resultType = llvm::Type::getVoidTy(getLLVMContext());
1296     break;
1297   }
1298 
1299   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1300   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1301 
1302   // Add type for sret argument.
1303   if (IRFunctionArgs.hasSRetArg()) {
1304     QualType Ret = FI.getReturnType();
1305     llvm::Type *Ty = ConvertType(Ret);
1306     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1307     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1308         llvm::PointerType::get(Ty, AddressSpace);
1309   }
1310 
1311   // Add type for inalloca argument.
1312   if (IRFunctionArgs.hasInallocaArg()) {
1313     auto ArgStruct = FI.getArgStruct();
1314     assert(ArgStruct);
1315     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1316   }
1317 
1318   // Add in all of the required arguments.
1319   unsigned ArgNo = 0;
1320   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1321                                      ie = it + FI.getNumRequiredArgs();
1322   for (; it != ie; ++it, ++ArgNo) {
1323     const ABIArgInfo &ArgInfo = it->info;
1324 
1325     // Insert a padding type to ensure proper alignment.
1326     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1327       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1328           ArgInfo.getPaddingType();
1329 
1330     unsigned FirstIRArg, NumIRArgs;
1331     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1332 
1333     switch (ArgInfo.getKind()) {
1334     case ABIArgInfo::Ignore:
1335     case ABIArgInfo::InAlloca:
1336       assert(NumIRArgs == 0);
1337       break;
1338 
1339     case ABIArgInfo::Indirect: {
1340       assert(NumIRArgs == 1);
1341       // indirect arguments are always on the stack, which is addr space #0.
1342       llvm::Type *LTy = ConvertTypeForMem(it->type);
1343       ArgTypes[FirstIRArg] = LTy->getPointerTo();
1344       break;
1345     }
1346 
1347     case ABIArgInfo::Extend:
1348     case ABIArgInfo::Direct: {
1349       // Fast-isel and the optimizer generally like scalar values better than
1350       // FCAs, so we flatten them if this is safe to do for this argument.
1351       llvm::Type *argType = ArgInfo.getCoerceToType();
1352       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1353       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1354         assert(NumIRArgs == st->getNumElements());
1355         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1356           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1357       } else {
1358         assert(NumIRArgs == 1);
1359         ArgTypes[FirstIRArg] = argType;
1360       }
1361       break;
1362     }
1363 
1364     case ABIArgInfo::Expand:
1365       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1366       getExpandedTypes(it->type, ArgTypesIter);
1367       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1368       break;
1369     }
1370   }
1371 
1372   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1373   assert(Erased && "Not in set?");
1374 
1375   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1376 }
1377 
1378 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1379   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1380   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1381 
1382   if (!isFuncTypeConvertible(FPT))
1383     return llvm::StructType::get(getLLVMContext());
1384 
1385   const CGFunctionInfo *Info;
1386   if (isa<CXXDestructorDecl>(MD))
1387     Info =
1388         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1389   else
1390     Info = &arrangeCXXMethodDeclaration(MD);
1391   return GetFunctionType(*Info);
1392 }
1393 
1394 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1395                                                llvm::AttrBuilder &FuncAttrs,
1396                                                const FunctionProtoType *FPT) {
1397   if (!FPT)
1398     return;
1399 
1400   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1401       FPT->isNothrow(Ctx))
1402     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1403 }
1404 
1405 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
1406                                            CGCalleeInfo CalleeInfo,
1407                                            AttributeListType &PAL,
1408                                            unsigned &CallingConv,
1409                                            bool AttrOnCallSite) {
1410   llvm::AttrBuilder FuncAttrs;
1411   llvm::AttrBuilder RetAttrs;
1412   bool HasOptnone = false;
1413 
1414   CallingConv = FI.getEffectiveCallingConvention();
1415 
1416   if (FI.isNoReturn())
1417     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1418 
1419   // If we have information about the function prototype, we can learn
1420   // attributes form there.
1421   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1422                                      CalleeInfo.getCalleeFunctionProtoType());
1423 
1424   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
1425 
1426   // FIXME: handle sseregparm someday...
1427   if (TargetDecl) {
1428     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1429       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1430     if (TargetDecl->hasAttr<NoThrowAttr>())
1431       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1432     if (TargetDecl->hasAttr<NoReturnAttr>())
1433       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1434     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1435       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1436 
1437     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1438       AddAttributesFromFunctionProtoType(
1439           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1440       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1441       // These attributes are not inherited by overloads.
1442       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1443       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1444         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1445     }
1446 
1447     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1448     if (TargetDecl->hasAttr<ConstAttr>()) {
1449       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1450       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1451     } else if (TargetDecl->hasAttr<PureAttr>()) {
1452       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1453       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1454     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1455       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1456       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1457     }
1458     if (TargetDecl->hasAttr<RestrictAttr>())
1459       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1460     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1461       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1462 
1463     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1464   }
1465 
1466   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1467   if (!HasOptnone) {
1468     if (CodeGenOpts.OptimizeSize)
1469       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1470     if (CodeGenOpts.OptimizeSize == 2)
1471       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1472   }
1473 
1474   if (CodeGenOpts.DisableRedZone)
1475     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1476   if (CodeGenOpts.NoImplicitFloat)
1477     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1478   if (CodeGenOpts.EnableSegmentedStacks &&
1479       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1480     FuncAttrs.addAttribute("split-stack");
1481 
1482   if (AttrOnCallSite) {
1483     // Attributes that should go on the call site only.
1484     if (!CodeGenOpts.SimplifyLibCalls)
1485       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1486     if (!CodeGenOpts.TrapFuncName.empty())
1487       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1488   } else {
1489     // Attributes that should go on the function, but not the call site.
1490     if (!CodeGenOpts.DisableFPElim) {
1491       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1492     } else if (CodeGenOpts.OmitLeafFramePointer) {
1493       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1494       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1495     } else {
1496       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1497       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1498     }
1499 
1500     bool DisableTailCalls =
1501         CodeGenOpts.DisableTailCalls ||
1502         (TargetDecl && TargetDecl->hasAttr<DisableTailCallsAttr>());
1503     FuncAttrs.addAttribute("disable-tail-calls",
1504                            llvm::toStringRef(DisableTailCalls));
1505 
1506     FuncAttrs.addAttribute("less-precise-fpmad",
1507                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1508     FuncAttrs.addAttribute("no-infs-fp-math",
1509                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1510     FuncAttrs.addAttribute("no-nans-fp-math",
1511                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1512     FuncAttrs.addAttribute("unsafe-fp-math",
1513                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1514     FuncAttrs.addAttribute("use-soft-float",
1515                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1516     FuncAttrs.addAttribute("stack-protector-buffer-size",
1517                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1518 
1519     if (CodeGenOpts.StackRealignment)
1520       FuncAttrs.addAttribute("stackrealign");
1521 
1522     // Add target-cpu and target-features attributes to functions. If
1523     // we have a decl for the function and it has a target attribute then
1524     // parse that and add it to the feature set.
1525     StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1526     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
1527     if (FD && FD->hasAttr<TargetAttr>()) {
1528       llvm::StringMap<bool> FeatureMap;
1529       getFunctionFeatureMap(FeatureMap, FD);
1530 
1531       // Produce the canonical string for this set of features.
1532       std::vector<std::string> Features;
1533       for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
1534                                                  ie = FeatureMap.end();
1535            it != ie; ++it)
1536         Features.push_back((it->second ? "+" : "-") + it->first().str());
1537 
1538       // Now add the target-cpu and target-features to the function.
1539       // While we populated the feature map above, we still need to
1540       // get and parse the target attribute so we can get the cpu for
1541       // the function.
1542       const auto *TD = FD->getAttr<TargetAttr>();
1543       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1544       if (ParsedAttr.second != "")
1545         TargetCPU = ParsedAttr.second;
1546       if (TargetCPU != "")
1547         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1548       if (!Features.empty()) {
1549         std::sort(Features.begin(), Features.end());
1550         FuncAttrs.addAttribute(
1551             "target-features",
1552             llvm::join(Features.begin(), Features.end(), ","));
1553       }
1554     } else {
1555       // Otherwise just add the existing target cpu and target features to the
1556       // function.
1557       std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
1558       if (TargetCPU != "")
1559         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1560       if (!Features.empty()) {
1561         std::sort(Features.begin(), Features.end());
1562         FuncAttrs.addAttribute(
1563             "target-features",
1564             llvm::join(Features.begin(), Features.end(), ","));
1565       }
1566     }
1567   }
1568 
1569   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1570 
1571   QualType RetTy = FI.getReturnType();
1572   const ABIArgInfo &RetAI = FI.getReturnInfo();
1573   switch (RetAI.getKind()) {
1574   case ABIArgInfo::Extend:
1575     if (RetTy->hasSignedIntegerRepresentation())
1576       RetAttrs.addAttribute(llvm::Attribute::SExt);
1577     else if (RetTy->hasUnsignedIntegerRepresentation())
1578       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1579     // FALL THROUGH
1580   case ABIArgInfo::Direct:
1581     if (RetAI.getInReg())
1582       RetAttrs.addAttribute(llvm::Attribute::InReg);
1583     break;
1584   case ABIArgInfo::Ignore:
1585     break;
1586 
1587   case ABIArgInfo::InAlloca:
1588   case ABIArgInfo::Indirect: {
1589     // inalloca and sret disable readnone and readonly
1590     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1591       .removeAttribute(llvm::Attribute::ReadNone);
1592     break;
1593   }
1594 
1595   case ABIArgInfo::Expand:
1596     llvm_unreachable("Invalid ABI kind for return argument");
1597   }
1598 
1599   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1600     QualType PTy = RefTy->getPointeeType();
1601     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1602       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1603                                         .getQuantity());
1604     else if (getContext().getTargetAddressSpace(PTy) == 0)
1605       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1606   }
1607 
1608   // Attach return attributes.
1609   if (RetAttrs.hasAttributes()) {
1610     PAL.push_back(llvm::AttributeSet::get(
1611         getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
1612   }
1613 
1614   // Attach attributes to sret.
1615   if (IRFunctionArgs.hasSRetArg()) {
1616     llvm::AttrBuilder SRETAttrs;
1617     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1618     if (RetAI.getInReg())
1619       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1620     PAL.push_back(llvm::AttributeSet::get(
1621         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1622   }
1623 
1624   // Attach attributes to inalloca argument.
1625   if (IRFunctionArgs.hasInallocaArg()) {
1626     llvm::AttrBuilder Attrs;
1627     Attrs.addAttribute(llvm::Attribute::InAlloca);
1628     PAL.push_back(llvm::AttributeSet::get(
1629         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1630   }
1631 
1632   unsigned ArgNo = 0;
1633   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1634                                           E = FI.arg_end();
1635        I != E; ++I, ++ArgNo) {
1636     QualType ParamType = I->type;
1637     const ABIArgInfo &AI = I->info;
1638     llvm::AttrBuilder Attrs;
1639 
1640     // Add attribute for padding argument, if necessary.
1641     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1642       if (AI.getPaddingInReg())
1643         PAL.push_back(llvm::AttributeSet::get(
1644             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1645             llvm::Attribute::InReg));
1646     }
1647 
1648     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1649     // have the corresponding parameter variable.  It doesn't make
1650     // sense to do it here because parameters are so messed up.
1651     switch (AI.getKind()) {
1652     case ABIArgInfo::Extend:
1653       if (ParamType->isSignedIntegerOrEnumerationType())
1654         Attrs.addAttribute(llvm::Attribute::SExt);
1655       else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
1656         if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
1657           Attrs.addAttribute(llvm::Attribute::SExt);
1658         else
1659           Attrs.addAttribute(llvm::Attribute::ZExt);
1660       }
1661       // FALL THROUGH
1662     case ABIArgInfo::Direct:
1663       if (ArgNo == 0 && FI.isChainCall())
1664         Attrs.addAttribute(llvm::Attribute::Nest);
1665       else if (AI.getInReg())
1666         Attrs.addAttribute(llvm::Attribute::InReg);
1667       break;
1668 
1669     case ABIArgInfo::Indirect: {
1670       if (AI.getInReg())
1671         Attrs.addAttribute(llvm::Attribute::InReg);
1672 
1673       if (AI.getIndirectByVal())
1674         Attrs.addAttribute(llvm::Attribute::ByVal);
1675 
1676       CharUnits Align = AI.getIndirectAlign();
1677 
1678       // In a byval argument, it is important that the required
1679       // alignment of the type is honored, as LLVM might be creating a
1680       // *new* stack object, and needs to know what alignment to give
1681       // it. (Sometimes it can deduce a sensible alignment on its own,
1682       // but not if clang decides it must emit a packed struct, or the
1683       // user specifies increased alignment requirements.)
1684       //
1685       // This is different from indirect *not* byval, where the object
1686       // exists already, and the align attribute is purely
1687       // informative.
1688       assert(!Align.isZero());
1689 
1690       // For now, only add this when we have a byval argument.
1691       // TODO: be less lazy about updating test cases.
1692       if (AI.getIndirectByVal())
1693         Attrs.addAlignmentAttr(Align.getQuantity());
1694 
1695       // byval disables readnone and readonly.
1696       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1697         .removeAttribute(llvm::Attribute::ReadNone);
1698       break;
1699     }
1700     case ABIArgInfo::Ignore:
1701     case ABIArgInfo::Expand:
1702       continue;
1703 
1704     case ABIArgInfo::InAlloca:
1705       // inalloca disables readnone and readonly.
1706       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1707           .removeAttribute(llvm::Attribute::ReadNone);
1708       continue;
1709     }
1710 
1711     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1712       QualType PTy = RefTy->getPointeeType();
1713       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1714         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1715                                        .getQuantity());
1716       else if (getContext().getTargetAddressSpace(PTy) == 0)
1717         Attrs.addAttribute(llvm::Attribute::NonNull);
1718     }
1719 
1720     if (Attrs.hasAttributes()) {
1721       unsigned FirstIRArg, NumIRArgs;
1722       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1723       for (unsigned i = 0; i < NumIRArgs; i++)
1724         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
1725                                               FirstIRArg + i + 1, Attrs));
1726     }
1727   }
1728   assert(ArgNo == FI.arg_size());
1729 
1730   if (FuncAttrs.hasAttributes())
1731     PAL.push_back(llvm::
1732                   AttributeSet::get(getLLVMContext(),
1733                                     llvm::AttributeSet::FunctionIndex,
1734                                     FuncAttrs));
1735 }
1736 
1737 /// An argument came in as a promoted argument; demote it back to its
1738 /// declared type.
1739 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1740                                          const VarDecl *var,
1741                                          llvm::Value *value) {
1742   llvm::Type *varType = CGF.ConvertType(var->getType());
1743 
1744   // This can happen with promotions that actually don't change the
1745   // underlying type, like the enum promotions.
1746   if (value->getType() == varType) return value;
1747 
1748   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1749          && "unexpected promotion type");
1750 
1751   if (isa<llvm::IntegerType>(varType))
1752     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1753 
1754   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1755 }
1756 
1757 /// Returns the attribute (either parameter attribute, or function
1758 /// attribute), which declares argument ArgNo to be non-null.
1759 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
1760                                          QualType ArgType, unsigned ArgNo) {
1761   // FIXME: __attribute__((nonnull)) can also be applied to:
1762   //   - references to pointers, where the pointee is known to be
1763   //     nonnull (apparently a Clang extension)
1764   //   - transparent unions containing pointers
1765   // In the former case, LLVM IR cannot represent the constraint. In
1766   // the latter case, we have no guarantee that the transparent union
1767   // is in fact passed as a pointer.
1768   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
1769     return nullptr;
1770   // First, check attribute on parameter itself.
1771   if (PVD) {
1772     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
1773       return ParmNNAttr;
1774   }
1775   // Check function attributes.
1776   if (!FD)
1777     return nullptr;
1778   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
1779     if (NNAttr->isNonNull(ArgNo))
1780       return NNAttr;
1781   }
1782   return nullptr;
1783 }
1784 
1785 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1786                                          llvm::Function *Fn,
1787                                          const FunctionArgList &Args) {
1788   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
1789     // Naked functions don't have prologues.
1790     return;
1791 
1792   // If this is an implicit-return-zero function, go ahead and
1793   // initialize the return value.  TODO: it might be nice to have
1794   // a more general mechanism for this that didn't require synthesized
1795   // return statements.
1796   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1797     if (FD->hasImplicitReturnZero()) {
1798       QualType RetTy = FD->getReturnType().getUnqualifiedType();
1799       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1800       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1801       Builder.CreateStore(Zero, ReturnValue);
1802     }
1803   }
1804 
1805   // FIXME: We no longer need the types from FunctionArgList; lift up and
1806   // simplify.
1807 
1808   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
1809   // Flattened function arguments.
1810   SmallVector<llvm::Argument *, 16> FnArgs;
1811   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
1812   for (auto &Arg : Fn->args()) {
1813     FnArgs.push_back(&Arg);
1814   }
1815   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
1816 
1817   // If we're using inalloca, all the memory arguments are GEPs off of the last
1818   // parameter, which is a pointer to the complete memory area.
1819   Address ArgStruct = Address::invalid();
1820   const llvm::StructLayout *ArgStructLayout = nullptr;
1821   if (IRFunctionArgs.hasInallocaArg()) {
1822     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
1823     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
1824                         FI.getArgStructAlignment());
1825 
1826     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
1827   }
1828 
1829   // Name the struct return parameter.
1830   if (IRFunctionArgs.hasSRetArg()) {
1831     auto AI = FnArgs[IRFunctionArgs.getSRetArgNo()];
1832     AI->setName("agg.result");
1833     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
1834                                         llvm::Attribute::NoAlias));
1835   }
1836 
1837   // Track if we received the parameter as a pointer (indirect, byval, or
1838   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
1839   // into a local alloca for us.
1840   SmallVector<ParamValue, 16> ArgVals;
1841   ArgVals.reserve(Args.size());
1842 
1843   // Create a pointer value for every parameter declaration.  This usually
1844   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
1845   // any cleanups or do anything that might unwind.  We do that separately, so
1846   // we can push the cleanups in the correct order for the ABI.
1847   assert(FI.arg_size() == Args.size() &&
1848          "Mismatch between function signature & arguments.");
1849   unsigned ArgNo = 0;
1850   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1851   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1852        i != e; ++i, ++info_it, ++ArgNo) {
1853     const VarDecl *Arg = *i;
1854     QualType Ty = info_it->type;
1855     const ABIArgInfo &ArgI = info_it->info;
1856 
1857     bool isPromoted =
1858       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1859 
1860     unsigned FirstIRArg, NumIRArgs;
1861     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1862 
1863     switch (ArgI.getKind()) {
1864     case ABIArgInfo::InAlloca: {
1865       assert(NumIRArgs == 0);
1866       auto FieldIndex = ArgI.getInAllocaFieldIndex();
1867       CharUnits FieldOffset =
1868         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
1869       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
1870                                           Arg->getName());
1871       ArgVals.push_back(ParamValue::forIndirect(V));
1872       break;
1873     }
1874 
1875     case ABIArgInfo::Indirect: {
1876       assert(NumIRArgs == 1);
1877       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
1878 
1879       if (!hasScalarEvaluationKind(Ty)) {
1880         // Aggregates and complex variables are accessed by reference.  All we
1881         // need to do is realign the value, if requested.
1882         Address V = ParamAddr;
1883         if (ArgI.getIndirectRealign()) {
1884           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
1885 
1886           // Copy from the incoming argument pointer to the temporary with the
1887           // appropriate alignment.
1888           //
1889           // FIXME: We should have a common utility for generating an aggregate
1890           // copy.
1891           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1892           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
1893           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
1894           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
1895           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
1896           V = AlignedTemp;
1897         }
1898         ArgVals.push_back(ParamValue::forIndirect(V));
1899       } else {
1900         // Load scalar value from indirect argument.
1901         llvm::Value *V =
1902           EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
1903 
1904         if (isPromoted)
1905           V = emitArgumentDemotion(*this, Arg, V);
1906         ArgVals.push_back(ParamValue::forDirect(V));
1907       }
1908       break;
1909     }
1910 
1911     case ABIArgInfo::Extend:
1912     case ABIArgInfo::Direct: {
1913 
1914       // If we have the trivial case, handle it with no muss and fuss.
1915       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1916           ArgI.getCoerceToType() == ConvertType(Ty) &&
1917           ArgI.getDirectOffset() == 0) {
1918         assert(NumIRArgs == 1);
1919         auto AI = FnArgs[FirstIRArg];
1920         llvm::Value *V = AI;
1921 
1922         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
1923           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
1924                              PVD->getFunctionScopeIndex()))
1925             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1926                                                 AI->getArgNo() + 1,
1927                                                 llvm::Attribute::NonNull));
1928 
1929           QualType OTy = PVD->getOriginalType();
1930           if (const auto *ArrTy =
1931               getContext().getAsConstantArrayType(OTy)) {
1932             // A C99 array parameter declaration with the static keyword also
1933             // indicates dereferenceability, and if the size is constant we can
1934             // use the dereferenceable attribute (which requires the size in
1935             // bytes).
1936             if (ArrTy->getSizeModifier() == ArrayType::Static) {
1937               QualType ETy = ArrTy->getElementType();
1938               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
1939               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
1940                   ArrSize) {
1941                 llvm::AttrBuilder Attrs;
1942                 Attrs.addDereferenceableAttr(
1943                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
1944                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1945                                                     AI->getArgNo() + 1, Attrs));
1946               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
1947                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1948                                                     AI->getArgNo() + 1,
1949                                                     llvm::Attribute::NonNull));
1950               }
1951             }
1952           } else if (const auto *ArrTy =
1953                      getContext().getAsVariableArrayType(OTy)) {
1954             // For C99 VLAs with the static keyword, we don't know the size so
1955             // we can't use the dereferenceable attribute, but in addrspace(0)
1956             // we know that it must be nonnull.
1957             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
1958                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
1959               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1960                                                   AI->getArgNo() + 1,
1961                                                   llvm::Attribute::NonNull));
1962           }
1963 
1964           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
1965           if (!AVAttr)
1966             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
1967               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
1968           if (AVAttr) {
1969             llvm::Value *AlignmentValue =
1970               EmitScalarExpr(AVAttr->getAlignment());
1971             llvm::ConstantInt *AlignmentCI =
1972               cast<llvm::ConstantInt>(AlignmentValue);
1973             unsigned Alignment =
1974               std::min((unsigned) AlignmentCI->getZExtValue(),
1975                        +llvm::Value::MaximumAlignment);
1976 
1977             llvm::AttrBuilder Attrs;
1978             Attrs.addAlignmentAttr(Alignment);
1979             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1980                                                 AI->getArgNo() + 1, Attrs));
1981           }
1982         }
1983 
1984         if (Arg->getType().isRestrictQualified())
1985           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1986                                               AI->getArgNo() + 1,
1987                                               llvm::Attribute::NoAlias));
1988 
1989         // Ensure the argument is the correct type.
1990         if (V->getType() != ArgI.getCoerceToType())
1991           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1992 
1993         if (isPromoted)
1994           V = emitArgumentDemotion(*this, Arg, V);
1995 
1996         if (const CXXMethodDecl *MD =
1997             dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl)) {
1998           if (MD->isVirtual() && Arg == CXXABIThisDecl)
1999             V = CGM.getCXXABI().
2000                 adjustThisParameterInVirtualFunctionPrologue(*this, CurGD, V);
2001         }
2002 
2003         // Because of merging of function types from multiple decls it is
2004         // possible for the type of an argument to not match the corresponding
2005         // type in the function type. Since we are codegening the callee
2006         // in here, add a cast to the argument type.
2007         llvm::Type *LTy = ConvertType(Arg->getType());
2008         if (V->getType() != LTy)
2009           V = Builder.CreateBitCast(V, LTy);
2010 
2011         ArgVals.push_back(ParamValue::forDirect(V));
2012         break;
2013       }
2014 
2015       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2016                                      Arg->getName());
2017 
2018       // Pointer to store into.
2019       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2020 
2021       // Fast-isel and the optimizer generally like scalar values better than
2022       // FCAs, so we flatten them if this is safe to do for this argument.
2023       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2024       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2025           STy->getNumElements() > 1) {
2026         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2027         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2028         llvm::Type *DstTy = Ptr.getElementType();
2029         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2030 
2031         Address AddrToStoreInto = Address::invalid();
2032         if (SrcSize <= DstSize) {
2033           AddrToStoreInto =
2034             Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
2035         } else {
2036           AddrToStoreInto =
2037             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2038         }
2039 
2040         assert(STy->getNumElements() == NumIRArgs);
2041         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2042           auto AI = FnArgs[FirstIRArg + i];
2043           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2044           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2045           Address EltPtr =
2046             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2047           Builder.CreateStore(AI, EltPtr);
2048         }
2049 
2050         if (SrcSize > DstSize) {
2051           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2052         }
2053 
2054       } else {
2055         // Simple case, just do a coerced store of the argument into the alloca.
2056         assert(NumIRArgs == 1);
2057         auto AI = FnArgs[FirstIRArg];
2058         AI->setName(Arg->getName() + ".coerce");
2059         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2060       }
2061 
2062       // Match to what EmitParmDecl is expecting for this type.
2063       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2064         llvm::Value *V =
2065           EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
2066         if (isPromoted)
2067           V = emitArgumentDemotion(*this, Arg, V);
2068         ArgVals.push_back(ParamValue::forDirect(V));
2069       } else {
2070         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2071       }
2072       break;
2073     }
2074 
2075     case ABIArgInfo::Expand: {
2076       // If this structure was expanded into multiple arguments then
2077       // we need to create a temporary and reconstruct it from the
2078       // arguments.
2079       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2080       LValue LV = MakeAddrLValue(Alloca, Ty);
2081       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2082 
2083       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2084       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2085       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2086       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2087         auto AI = FnArgs[FirstIRArg + i];
2088         AI->setName(Arg->getName() + "." + Twine(i));
2089       }
2090       break;
2091     }
2092 
2093     case ABIArgInfo::Ignore:
2094       assert(NumIRArgs == 0);
2095       // Initialize the local variable appropriately.
2096       if (!hasScalarEvaluationKind(Ty)) {
2097         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2098       } else {
2099         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2100         ArgVals.push_back(ParamValue::forDirect(U));
2101       }
2102       break;
2103     }
2104   }
2105 
2106   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2107     for (int I = Args.size() - 1; I >= 0; --I)
2108       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2109   } else {
2110     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2111       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2112   }
2113 }
2114 
2115 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2116   while (insn->use_empty()) {
2117     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2118     if (!bitcast) return;
2119 
2120     // This is "safe" because we would have used a ConstantExpr otherwise.
2121     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2122     bitcast->eraseFromParent();
2123   }
2124 }
2125 
2126 /// Try to emit a fused autorelease of a return result.
2127 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2128                                                     llvm::Value *result) {
2129   // We must be immediately followed the cast.
2130   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2131   if (BB->empty()) return nullptr;
2132   if (&BB->back() != result) return nullptr;
2133 
2134   llvm::Type *resultType = result->getType();
2135 
2136   // result is in a BasicBlock and is therefore an Instruction.
2137   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2138 
2139   SmallVector<llvm::Instruction*,4> insnsToKill;
2140 
2141   // Look for:
2142   //  %generator = bitcast %type1* %generator2 to %type2*
2143   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2144     // We would have emitted this as a constant if the operand weren't
2145     // an Instruction.
2146     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2147 
2148     // Require the generator to be immediately followed by the cast.
2149     if (generator->getNextNode() != bitcast)
2150       return nullptr;
2151 
2152     insnsToKill.push_back(bitcast);
2153   }
2154 
2155   // Look for:
2156   //   %generator = call i8* @objc_retain(i8* %originalResult)
2157   // or
2158   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2159   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2160   if (!call) return nullptr;
2161 
2162   bool doRetainAutorelease;
2163 
2164   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2165     doRetainAutorelease = true;
2166   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2167                                           .objc_retainAutoreleasedReturnValue) {
2168     doRetainAutorelease = false;
2169 
2170     // If we emitted an assembly marker for this call (and the
2171     // ARCEntrypoints field should have been set if so), go looking
2172     // for that call.  If we can't find it, we can't do this
2173     // optimization.  But it should always be the immediately previous
2174     // instruction, unless we needed bitcasts around the call.
2175     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2176       llvm::Instruction *prev = call->getPrevNode();
2177       assert(prev);
2178       if (isa<llvm::BitCastInst>(prev)) {
2179         prev = prev->getPrevNode();
2180         assert(prev);
2181       }
2182       assert(isa<llvm::CallInst>(prev));
2183       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2184                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2185       insnsToKill.push_back(prev);
2186     }
2187   } else {
2188     return nullptr;
2189   }
2190 
2191   result = call->getArgOperand(0);
2192   insnsToKill.push_back(call);
2193 
2194   // Keep killing bitcasts, for sanity.  Note that we no longer care
2195   // about precise ordering as long as there's exactly one use.
2196   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2197     if (!bitcast->hasOneUse()) break;
2198     insnsToKill.push_back(bitcast);
2199     result = bitcast->getOperand(0);
2200   }
2201 
2202   // Delete all the unnecessary instructions, from latest to earliest.
2203   for (SmallVectorImpl<llvm::Instruction*>::iterator
2204          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
2205     (*i)->eraseFromParent();
2206 
2207   // Do the fused retain/autorelease if we were asked to.
2208   if (doRetainAutorelease)
2209     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2210 
2211   // Cast back to the result type.
2212   return CGF.Builder.CreateBitCast(result, resultType);
2213 }
2214 
2215 /// If this is a +1 of the value of an immutable 'self', remove it.
2216 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2217                                           llvm::Value *result) {
2218   // This is only applicable to a method with an immutable 'self'.
2219   const ObjCMethodDecl *method =
2220     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2221   if (!method) return nullptr;
2222   const VarDecl *self = method->getSelfDecl();
2223   if (!self->getType().isConstQualified()) return nullptr;
2224 
2225   // Look for a retain call.
2226   llvm::CallInst *retainCall =
2227     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2228   if (!retainCall ||
2229       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2230     return nullptr;
2231 
2232   // Look for an ordinary load of 'self'.
2233   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2234   llvm::LoadInst *load =
2235     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2236   if (!load || load->isAtomic() || load->isVolatile() ||
2237       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2238     return nullptr;
2239 
2240   // Okay!  Burn it all down.  This relies for correctness on the
2241   // assumption that the retain is emitted as part of the return and
2242   // that thereafter everything is used "linearly".
2243   llvm::Type *resultType = result->getType();
2244   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2245   assert(retainCall->use_empty());
2246   retainCall->eraseFromParent();
2247   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2248 
2249   return CGF.Builder.CreateBitCast(load, resultType);
2250 }
2251 
2252 /// Emit an ARC autorelease of the result of a function.
2253 ///
2254 /// \return the value to actually return from the function
2255 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2256                                             llvm::Value *result) {
2257   // If we're returning 'self', kill the initial retain.  This is a
2258   // heuristic attempt to "encourage correctness" in the really unfortunate
2259   // case where we have a return of self during a dealloc and we desperately
2260   // need to avoid the possible autorelease.
2261   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2262     return self;
2263 
2264   // At -O0, try to emit a fused retain/autorelease.
2265   if (CGF.shouldUseFusedARCCalls())
2266     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2267       return fused;
2268 
2269   return CGF.EmitARCAutoreleaseReturnValue(result);
2270 }
2271 
2272 /// Heuristically search for a dominating store to the return-value slot.
2273 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2274   // Check if a User is a store which pointerOperand is the ReturnValue.
2275   // We are looking for stores to the ReturnValue, not for stores of the
2276   // ReturnValue to some other location.
2277   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2278     auto *SI = dyn_cast<llvm::StoreInst>(U);
2279     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2280       return nullptr;
2281     // These aren't actually possible for non-coerced returns, and we
2282     // only care about non-coerced returns on this code path.
2283     assert(!SI->isAtomic() && !SI->isVolatile());
2284     return SI;
2285   };
2286   // If there are multiple uses of the return-value slot, just check
2287   // for something immediately preceding the IP.  Sometimes this can
2288   // happen with how we generate implicit-returns; it can also happen
2289   // with noreturn cleanups.
2290   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2291     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2292     if (IP->empty()) return nullptr;
2293     llvm::Instruction *I = &IP->back();
2294 
2295     // Skip lifetime markers
2296     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2297                                             IE = IP->rend();
2298          II != IE; ++II) {
2299       if (llvm::IntrinsicInst *Intrinsic =
2300               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2301         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2302           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2303           ++II;
2304           if (II == IE)
2305             break;
2306           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2307             continue;
2308         }
2309       }
2310       I = &*II;
2311       break;
2312     }
2313 
2314     return GetStoreIfValid(I);
2315   }
2316 
2317   llvm::StoreInst *store =
2318       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2319   if (!store) return nullptr;
2320 
2321   // Now do a first-and-dirty dominance check: just walk up the
2322   // single-predecessors chain from the current insertion point.
2323   llvm::BasicBlock *StoreBB = store->getParent();
2324   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2325   while (IP != StoreBB) {
2326     if (!(IP = IP->getSinglePredecessor()))
2327       return nullptr;
2328   }
2329 
2330   // Okay, the store's basic block dominates the insertion point; we
2331   // can do our thing.
2332   return store;
2333 }
2334 
2335 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2336                                          bool EmitRetDbgLoc,
2337                                          SourceLocation EndLoc) {
2338   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2339     // Naked functions don't have epilogues.
2340     Builder.CreateUnreachable();
2341     return;
2342   }
2343 
2344   // Functions with no result always return void.
2345   if (!ReturnValue.isValid()) {
2346     Builder.CreateRetVoid();
2347     return;
2348   }
2349 
2350   llvm::DebugLoc RetDbgLoc;
2351   llvm::Value *RV = nullptr;
2352   QualType RetTy = FI.getReturnType();
2353   const ABIArgInfo &RetAI = FI.getReturnInfo();
2354 
2355   switch (RetAI.getKind()) {
2356   case ABIArgInfo::InAlloca:
2357     // Aggregrates get evaluated directly into the destination.  Sometimes we
2358     // need to return the sret value in a register, though.
2359     assert(hasAggregateEvaluationKind(RetTy));
2360     if (RetAI.getInAllocaSRet()) {
2361       llvm::Function::arg_iterator EI = CurFn->arg_end();
2362       --EI;
2363       llvm::Value *ArgStruct = &*EI;
2364       llvm::Value *SRet = Builder.CreateStructGEP(
2365           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2366       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2367     }
2368     break;
2369 
2370   case ABIArgInfo::Indirect: {
2371     auto AI = CurFn->arg_begin();
2372     if (RetAI.isSRetAfterThis())
2373       ++AI;
2374     switch (getEvaluationKind(RetTy)) {
2375     case TEK_Complex: {
2376       ComplexPairTy RT =
2377         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2378       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2379                          /*isInit*/ true);
2380       break;
2381     }
2382     case TEK_Aggregate:
2383       // Do nothing; aggregrates get evaluated directly into the destination.
2384       break;
2385     case TEK_Scalar:
2386       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2387                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2388                         /*isInit*/ true);
2389       break;
2390     }
2391     break;
2392   }
2393 
2394   case ABIArgInfo::Extend:
2395   case ABIArgInfo::Direct:
2396     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2397         RetAI.getDirectOffset() == 0) {
2398       // The internal return value temp always will have pointer-to-return-type
2399       // type, just do a load.
2400 
2401       // If there is a dominating store to ReturnValue, we can elide
2402       // the load, zap the store, and usually zap the alloca.
2403       if (llvm::StoreInst *SI =
2404               findDominatingStoreToReturnValue(*this)) {
2405         // Reuse the debug location from the store unless there is
2406         // cleanup code to be emitted between the store and return
2407         // instruction.
2408         if (EmitRetDbgLoc && !AutoreleaseResult)
2409           RetDbgLoc = SI->getDebugLoc();
2410         // Get the stored value and nuke the now-dead store.
2411         RV = SI->getValueOperand();
2412         SI->eraseFromParent();
2413 
2414         // If that was the only use of the return value, nuke it as well now.
2415         auto returnValueInst = ReturnValue.getPointer();
2416         if (returnValueInst->use_empty()) {
2417           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2418             alloca->eraseFromParent();
2419             ReturnValue = Address::invalid();
2420           }
2421         }
2422 
2423       // Otherwise, we have to do a simple load.
2424       } else {
2425         RV = Builder.CreateLoad(ReturnValue);
2426       }
2427     } else {
2428       // If the value is offset in memory, apply the offset now.
2429       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2430 
2431       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2432     }
2433 
2434     // In ARC, end functions that return a retainable type with a call
2435     // to objc_autoreleaseReturnValue.
2436     if (AutoreleaseResult) {
2437       assert(getLangOpts().ObjCAutoRefCount &&
2438              !FI.isReturnsRetained() &&
2439              RetTy->isObjCRetainableType());
2440       RV = emitAutoreleaseOfResult(*this, RV);
2441     }
2442 
2443     break;
2444 
2445   case ABIArgInfo::Ignore:
2446     break;
2447 
2448   case ABIArgInfo::Expand:
2449     llvm_unreachable("Invalid ABI kind for return argument");
2450   }
2451 
2452   llvm::Instruction *Ret;
2453   if (RV) {
2454     if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
2455       if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) {
2456         SanitizerScope SanScope(this);
2457         llvm::Value *Cond = Builder.CreateICmpNE(
2458             RV, llvm::Constant::getNullValue(RV->getType()));
2459         llvm::Constant *StaticData[] = {
2460             EmitCheckSourceLocation(EndLoc),
2461             EmitCheckSourceLocation(RetNNAttr->getLocation()),
2462         };
2463         EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
2464                   "nonnull_return", StaticData, None);
2465       }
2466     }
2467     Ret = Builder.CreateRet(RV);
2468   } else {
2469     Ret = Builder.CreateRetVoid();
2470   }
2471 
2472   if (RetDbgLoc)
2473     Ret->setDebugLoc(std::move(RetDbgLoc));
2474 }
2475 
2476 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2477   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2478   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2479 }
2480 
2481 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
2482                                           QualType Ty) {
2483   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2484   // placeholders.
2485   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2486   llvm::Value *Placeholder =
2487     llvm::UndefValue::get(IRTy->getPointerTo()->getPointerTo());
2488   Placeholder = CGF.Builder.CreateDefaultAlignedLoad(Placeholder);
2489 
2490   // FIXME: When we generate this IR in one pass, we shouldn't need
2491   // this win32-specific alignment hack.
2492   CharUnits Align = CharUnits::fromQuantity(4);
2493 
2494   return AggValueSlot::forAddr(Address(Placeholder, Align),
2495                                Ty.getQualifiers(),
2496                                AggValueSlot::IsNotDestructed,
2497                                AggValueSlot::DoesNotNeedGCBarriers,
2498                                AggValueSlot::IsNotAliased);
2499 }
2500 
2501 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2502                                           const VarDecl *param,
2503                                           SourceLocation loc) {
2504   // StartFunction converted the ABI-lowered parameter(s) into a
2505   // local alloca.  We need to turn that into an r-value suitable
2506   // for EmitCall.
2507   Address local = GetAddrOfLocalVar(param);
2508 
2509   QualType type = param->getType();
2510 
2511   // For the most part, we just need to load the alloca, except:
2512   // 1) aggregate r-values are actually pointers to temporaries, and
2513   // 2) references to non-scalars are pointers directly to the aggregate.
2514   // I don't know why references to scalars are different here.
2515   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
2516     if (!hasScalarEvaluationKind(ref->getPointeeType()))
2517       return args.add(RValue::getAggregate(local), type);
2518 
2519     // Locals which are references to scalars are represented
2520     // with allocas holding the pointer.
2521     return args.add(RValue::get(Builder.CreateLoad(local)), type);
2522   }
2523 
2524   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2525          "cannot emit delegate call arguments for inalloca arguments!");
2526 
2527   args.add(convertTempToRValue(local, type, loc), type);
2528 }
2529 
2530 static bool isProvablyNull(llvm::Value *addr) {
2531   return isa<llvm::ConstantPointerNull>(addr);
2532 }
2533 
2534 static bool isProvablyNonNull(llvm::Value *addr) {
2535   return isa<llvm::AllocaInst>(addr);
2536 }
2537 
2538 /// Emit the actual writing-back of a writeback.
2539 static void emitWriteback(CodeGenFunction &CGF,
2540                           const CallArgList::Writeback &writeback) {
2541   const LValue &srcLV = writeback.Source;
2542   Address srcAddr = srcLV.getAddress();
2543   assert(!isProvablyNull(srcAddr.getPointer()) &&
2544          "shouldn't have writeback for provably null argument");
2545 
2546   llvm::BasicBlock *contBB = nullptr;
2547 
2548   // If the argument wasn't provably non-null, we need to null check
2549   // before doing the store.
2550   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
2551   if (!provablyNonNull) {
2552     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2553     contBB = CGF.createBasicBlock("icr.done");
2554 
2555     llvm::Value *isNull =
2556       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
2557     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2558     CGF.EmitBlock(writebackBB);
2559   }
2560 
2561   // Load the value to writeback.
2562   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2563 
2564   // Cast it back, in case we're writing an id to a Foo* or something.
2565   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
2566                                     "icr.writeback-cast");
2567 
2568   // Perform the writeback.
2569 
2570   // If we have a "to use" value, it's something we need to emit a use
2571   // of.  This has to be carefully threaded in: if it's done after the
2572   // release it's potentially undefined behavior (and the optimizer
2573   // will ignore it), and if it happens before the retain then the
2574   // optimizer could move the release there.
2575   if (writeback.ToUse) {
2576     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2577 
2578     // Retain the new value.  No need to block-copy here:  the block's
2579     // being passed up the stack.
2580     value = CGF.EmitARCRetainNonBlock(value);
2581 
2582     // Emit the intrinsic use here.
2583     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2584 
2585     // Load the old value (primitively).
2586     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
2587 
2588     // Put the new value in place (primitively).
2589     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
2590 
2591     // Release the old value.
2592     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
2593 
2594   // Otherwise, we can just do a normal lvalue store.
2595   } else {
2596     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
2597   }
2598 
2599   // Jump to the continuation block.
2600   if (!provablyNonNull)
2601     CGF.EmitBlock(contBB);
2602 }
2603 
2604 static void emitWritebacks(CodeGenFunction &CGF,
2605                            const CallArgList &args) {
2606   for (const auto &I : args.writebacks())
2607     emitWriteback(CGF, I);
2608 }
2609 
2610 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
2611                                             const CallArgList &CallArgs) {
2612   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
2613   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
2614     CallArgs.getCleanupsToDeactivate();
2615   // Iterate in reverse to increase the likelihood of popping the cleanup.
2616   for (const auto &I : llvm::reverse(Cleanups)) {
2617     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
2618     I.IsActiveIP->eraseFromParent();
2619   }
2620 }
2621 
2622 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
2623   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
2624     if (uop->getOpcode() == UO_AddrOf)
2625       return uop->getSubExpr();
2626   return nullptr;
2627 }
2628 
2629 /// Emit an argument that's being passed call-by-writeback.  That is,
2630 /// we are passing the address of an __autoreleased temporary; it
2631 /// might be copy-initialized with the current value of the given
2632 /// address, but it will definitely be copied out of after the call.
2633 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
2634                              const ObjCIndirectCopyRestoreExpr *CRE) {
2635   LValue srcLV;
2636 
2637   // Make an optimistic effort to emit the address as an l-value.
2638   // This can fail if the argument expression is more complicated.
2639   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
2640     srcLV = CGF.EmitLValue(lvExpr);
2641 
2642   // Otherwise, just emit it as a scalar.
2643   } else {
2644     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
2645 
2646     QualType srcAddrType =
2647       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
2648     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
2649   }
2650   Address srcAddr = srcLV.getAddress();
2651 
2652   // The dest and src types don't necessarily match in LLVM terms
2653   // because of the crazy ObjC compatibility rules.
2654 
2655   llvm::PointerType *destType =
2656     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
2657 
2658   // If the address is a constant null, just pass the appropriate null.
2659   if (isProvablyNull(srcAddr.getPointer())) {
2660     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
2661              CRE->getType());
2662     return;
2663   }
2664 
2665   // Create the temporary.
2666   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
2667                                       CGF.getPointerAlign(),
2668                                       "icr.temp");
2669   // Loading an l-value can introduce a cleanup if the l-value is __weak,
2670   // and that cleanup will be conditional if we can't prove that the l-value
2671   // isn't null, so we need to register a dominating point so that the cleanups
2672   // system will make valid IR.
2673   CodeGenFunction::ConditionalEvaluation condEval(CGF);
2674 
2675   // Zero-initialize it if we're not doing a copy-initialization.
2676   bool shouldCopy = CRE->shouldCopy();
2677   if (!shouldCopy) {
2678     llvm::Value *null =
2679       llvm::ConstantPointerNull::get(
2680         cast<llvm::PointerType>(destType->getElementType()));
2681     CGF.Builder.CreateStore(null, temp);
2682   }
2683 
2684   llvm::BasicBlock *contBB = nullptr;
2685   llvm::BasicBlock *originBB = nullptr;
2686 
2687   // If the address is *not* known to be non-null, we need to switch.
2688   llvm::Value *finalArgument;
2689 
2690   bool provablyNonNull = isProvablyNonNull(srcAddr.getPointer());
2691   if (provablyNonNull) {
2692     finalArgument = temp.getPointer();
2693   } else {
2694     llvm::Value *isNull =
2695       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
2696 
2697     finalArgument = CGF.Builder.CreateSelect(isNull,
2698                                    llvm::ConstantPointerNull::get(destType),
2699                                              temp.getPointer(), "icr.argument");
2700 
2701     // If we need to copy, then the load has to be conditional, which
2702     // means we need control flow.
2703     if (shouldCopy) {
2704       originBB = CGF.Builder.GetInsertBlock();
2705       contBB = CGF.createBasicBlock("icr.cont");
2706       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
2707       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
2708       CGF.EmitBlock(copyBB);
2709       condEval.begin(CGF);
2710     }
2711   }
2712 
2713   llvm::Value *valueToUse = nullptr;
2714 
2715   // Perform a copy if necessary.
2716   if (shouldCopy) {
2717     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
2718     assert(srcRV.isScalar());
2719 
2720     llvm::Value *src = srcRV.getScalarVal();
2721     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
2722                                     "icr.cast");
2723 
2724     // Use an ordinary store, not a store-to-lvalue.
2725     CGF.Builder.CreateStore(src, temp);
2726 
2727     // If optimization is enabled, and the value was held in a
2728     // __strong variable, we need to tell the optimizer that this
2729     // value has to stay alive until we're doing the store back.
2730     // This is because the temporary is effectively unretained,
2731     // and so otherwise we can violate the high-level semantics.
2732     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2733         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
2734       valueToUse = src;
2735     }
2736   }
2737 
2738   // Finish the control flow if we needed it.
2739   if (shouldCopy && !provablyNonNull) {
2740     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
2741     CGF.EmitBlock(contBB);
2742 
2743     // Make a phi for the value to intrinsically use.
2744     if (valueToUse) {
2745       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
2746                                                       "icr.to-use");
2747       phiToUse->addIncoming(valueToUse, copyBB);
2748       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
2749                             originBB);
2750       valueToUse = phiToUse;
2751     }
2752 
2753     condEval.end(CGF);
2754   }
2755 
2756   args.addWriteback(srcLV, temp, valueToUse);
2757   args.add(RValue::get(finalArgument), CRE->getType());
2758 }
2759 
2760 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
2761   assert(!StackBase && !StackCleanup.isValid());
2762 
2763   // Save the stack.
2764   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
2765   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
2766 }
2767 
2768 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
2769   if (StackBase) {
2770     // Restore the stack after the call.
2771     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
2772     CGF.Builder.CreateCall(F, StackBase);
2773   }
2774 }
2775 
2776 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
2777                                           SourceLocation ArgLoc,
2778                                           const FunctionDecl *FD,
2779                                           unsigned ParmNum) {
2780   if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
2781     return;
2782   auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
2783   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
2784   auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
2785   if (!NNAttr)
2786     return;
2787   SanitizerScope SanScope(this);
2788   assert(RV.isScalar());
2789   llvm::Value *V = RV.getScalarVal();
2790   llvm::Value *Cond =
2791       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
2792   llvm::Constant *StaticData[] = {
2793       EmitCheckSourceLocation(ArgLoc),
2794       EmitCheckSourceLocation(NNAttr->getLocation()),
2795       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
2796   };
2797   EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
2798                 "nonnull_arg", StaticData, None);
2799 }
2800 
2801 void CodeGenFunction::EmitCallArgs(
2802     CallArgList &Args, ArrayRef<QualType> ArgTypes,
2803     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
2804     const FunctionDecl *CalleeDecl, unsigned ParamsToSkip) {
2805   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
2806   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
2807   // because arguments are destroyed left to right in the callee.
2808   if (CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2809     // Insert a stack save if we're going to need any inalloca args.
2810     bool HasInAllocaArgs = false;
2811     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
2812          I != E && !HasInAllocaArgs; ++I)
2813       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
2814     if (HasInAllocaArgs) {
2815       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
2816       Args.allocateArgumentMemory(*this);
2817     }
2818 
2819     // Evaluate each argument.
2820     size_t CallArgsStart = Args.size();
2821     for (int I = ArgTypes.size() - 1; I >= 0; --I) {
2822       CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
2823       EmitCallArg(Args, *Arg, ArgTypes[I]);
2824       EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
2825                           CalleeDecl, ParamsToSkip + I);
2826     }
2827 
2828     // Un-reverse the arguments we just evaluated so they match up with the LLVM
2829     // IR function.
2830     std::reverse(Args.begin() + CallArgsStart, Args.end());
2831     return;
2832   }
2833 
2834   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
2835     CallExpr::const_arg_iterator Arg = ArgRange.begin() + I;
2836     assert(Arg != ArgRange.end());
2837     EmitCallArg(Args, *Arg, ArgTypes[I]);
2838     EmitNonNullArgCheck(Args.back().RV, ArgTypes[I], (*Arg)->getExprLoc(),
2839                         CalleeDecl, ParamsToSkip + I);
2840   }
2841 }
2842 
2843 namespace {
2844 
2845 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
2846   DestroyUnpassedArg(Address Addr, QualType Ty)
2847       : Addr(Addr), Ty(Ty) {}
2848 
2849   Address Addr;
2850   QualType Ty;
2851 
2852   void Emit(CodeGenFunction &CGF, Flags flags) override {
2853     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
2854     assert(!Dtor->isTrivial());
2855     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
2856                               /*Delegating=*/false, Addr);
2857   }
2858 };
2859 
2860 struct DisableDebugLocationUpdates {
2861   CodeGenFunction &CGF;
2862   bool disabledDebugInfo;
2863   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
2864     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
2865       CGF.disableDebugInfo();
2866   }
2867   ~DisableDebugLocationUpdates() {
2868     if (disabledDebugInfo)
2869       CGF.enableDebugInfo();
2870   }
2871 };
2872 
2873 } // end anonymous namespace
2874 
2875 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
2876                                   QualType type) {
2877   DisableDebugLocationUpdates Dis(*this, E);
2878   if (const ObjCIndirectCopyRestoreExpr *CRE
2879         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2880     assert(getLangOpts().ObjCAutoRefCount);
2881     assert(getContext().hasSameType(E->getType(), type));
2882     return emitWritebackArg(*this, args, CRE);
2883   }
2884 
2885   assert(type->isReferenceType() == E->isGLValue() &&
2886          "reference binding to unmaterialized r-value!");
2887 
2888   if (E->isGLValue()) {
2889     assert(E->getObjectKind() == OK_Ordinary);
2890     return args.add(EmitReferenceBindingToExpr(E), type);
2891   }
2892 
2893   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2894 
2895   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2896   // However, we still have to push an EH-only cleanup in case we unwind before
2897   // we make it to the call.
2898   if (HasAggregateEvalKind &&
2899       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2900     // If we're using inalloca, use the argument memory.  Otherwise, use a
2901     // temporary.
2902     AggValueSlot Slot;
2903     if (args.isUsingInAlloca())
2904       Slot = createPlaceholderSlot(*this, type);
2905     else
2906       Slot = CreateAggTemp(type, "agg.tmp");
2907 
2908     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2909     bool DestroyedInCallee =
2910         RD && RD->hasNonTrivialDestructor() &&
2911         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
2912     if (DestroyedInCallee)
2913       Slot.setExternallyDestructed();
2914 
2915     EmitAggExpr(E, Slot);
2916     RValue RV = Slot.asRValue();
2917     args.add(RV, type);
2918 
2919     if (DestroyedInCallee) {
2920       // Create a no-op GEP between the placeholder and the cleanup so we can
2921       // RAUW it successfully.  It also serves as a marker of the first
2922       // instruction where the cleanup is active.
2923       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
2924                                               type);
2925       // This unreachable is a temporary marker which will be removed later.
2926       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2927       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2928     }
2929     return;
2930   }
2931 
2932   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2933       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2934     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2935     assert(L.isSimple());
2936     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2937       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2938     } else {
2939       // We can't represent a misaligned lvalue in the CallArgList, so copy
2940       // to an aligned temporary now.
2941       Address tmp = CreateMemTemp(type);
2942       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile());
2943       args.add(RValue::getAggregate(tmp), type);
2944     }
2945     return;
2946   }
2947 
2948   args.add(EmitAnyExprToTemp(E), type);
2949 }
2950 
2951 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
2952   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
2953   // implicitly widens null pointer constants that are arguments to varargs
2954   // functions to pointer-sized ints.
2955   if (!getTarget().getTriple().isOSWindows())
2956     return Arg->getType();
2957 
2958   if (Arg->getType()->isIntegerType() &&
2959       getContext().getTypeSize(Arg->getType()) <
2960           getContext().getTargetInfo().getPointerWidth(0) &&
2961       Arg->isNullPointerConstant(getContext(),
2962                                  Expr::NPC_ValueDependentIsNotNull)) {
2963     return getContext().getIntPtrType();
2964   }
2965 
2966   return Arg->getType();
2967 }
2968 
2969 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2970 // optimizer it can aggressively ignore unwind edges.
2971 void
2972 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2973   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2974       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2975     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2976                       CGM.getNoObjCARCExceptionsMetadata());
2977 }
2978 
2979 /// Emits a call to the given no-arguments nounwind runtime function.
2980 llvm::CallInst *
2981 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2982                                          const llvm::Twine &name) {
2983   return EmitNounwindRuntimeCall(callee, None, name);
2984 }
2985 
2986 /// Emits a call to the given nounwind runtime function.
2987 llvm::CallInst *
2988 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2989                                          ArrayRef<llvm::Value*> args,
2990                                          const llvm::Twine &name) {
2991   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2992   call->setDoesNotThrow();
2993   return call;
2994 }
2995 
2996 /// Emits a simple call (never an invoke) to the given no-arguments
2997 /// runtime function.
2998 llvm::CallInst *
2999 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3000                                  const llvm::Twine &name) {
3001   return EmitRuntimeCall(callee, None, name);
3002 }
3003 
3004 /// Emits a simple call (never an invoke) to the given runtime
3005 /// function.
3006 llvm::CallInst *
3007 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3008                                  ArrayRef<llvm::Value*> args,
3009                                  const llvm::Twine &name) {
3010   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
3011   call->setCallingConv(getRuntimeCC());
3012   return call;
3013 }
3014 
3015 /// Emits a call or invoke to the given noreturn runtime function.
3016 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3017                                                ArrayRef<llvm::Value*> args) {
3018   if (getInvokeDest()) {
3019     llvm::InvokeInst *invoke =
3020       Builder.CreateInvoke(callee,
3021                            getUnreachableBlock(),
3022                            getInvokeDest(),
3023                            args);
3024     invoke->setDoesNotReturn();
3025     invoke->setCallingConv(getRuntimeCC());
3026   } else {
3027     llvm::CallInst *call = Builder.CreateCall(callee, args);
3028     call->setDoesNotReturn();
3029     call->setCallingConv(getRuntimeCC());
3030     Builder.CreateUnreachable();
3031   }
3032 }
3033 
3034 /// Emits a call or invoke instruction to the given nullary runtime
3035 /// function.
3036 llvm::CallSite
3037 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3038                                          const Twine &name) {
3039   return EmitRuntimeCallOrInvoke(callee, None, name);
3040 }
3041 
3042 /// Emits a call or invoke instruction to the given runtime function.
3043 llvm::CallSite
3044 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3045                                          ArrayRef<llvm::Value*> args,
3046                                          const Twine &name) {
3047   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3048   callSite.setCallingConv(getRuntimeCC());
3049   return callSite;
3050 }
3051 
3052 /// Emits a call or invoke instruction to the given function, depending
3053 /// on the current state of the EH stack.
3054 llvm::CallSite
3055 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3056                                   ArrayRef<llvm::Value *> Args,
3057                                   const Twine &Name) {
3058   llvm::BasicBlock *InvokeDest = getInvokeDest();
3059 
3060   llvm::Instruction *Inst;
3061   if (!InvokeDest)
3062     Inst = Builder.CreateCall(Callee, Args, Name);
3063   else {
3064     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3065     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
3066     EmitBlock(ContBB);
3067   }
3068 
3069   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3070   // optimizer it can aggressively ignore unwind edges.
3071   if (CGM.getLangOpts().ObjCAutoRefCount)
3072     AddObjCARCExceptionMetadata(Inst);
3073 
3074   return llvm::CallSite(Inst);
3075 }
3076 
3077 /// \brief Store a non-aggregate value to an address to initialize it.  For
3078 /// initialization, a non-atomic store will be used.
3079 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3080                                         LValue Dst) {
3081   if (Src.isScalar())
3082     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3083   else
3084     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3085 }
3086 
3087 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3088                                                   llvm::Value *New) {
3089   DeferredReplacements.push_back(std::make_pair(Old, New));
3090 }
3091 
3092 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3093                                  llvm::Value *Callee,
3094                                  ReturnValueSlot ReturnValue,
3095                                  const CallArgList &CallArgs,
3096                                  CGCalleeInfo CalleeInfo,
3097                                  llvm::Instruction **callOrInvoke) {
3098   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3099 
3100   // Handle struct-return functions by passing a pointer to the
3101   // location that we would like to return into.
3102   QualType RetTy = CallInfo.getReturnType();
3103   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3104 
3105   llvm::FunctionType *IRFuncTy =
3106     cast<llvm::FunctionType>(
3107                   cast<llvm::PointerType>(Callee->getType())->getElementType());
3108 
3109   // If we're using inalloca, insert the allocation after the stack save.
3110   // FIXME: Do this earlier rather than hacking it in here!
3111   Address ArgMemory = Address::invalid();
3112   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3113   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3114     ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct);
3115     llvm::Instruction *IP = CallArgs.getStackBase();
3116     llvm::AllocaInst *AI;
3117     if (IP) {
3118       IP = IP->getNextNode();
3119       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
3120     } else {
3121       AI = CreateTempAlloca(ArgStruct, "argmem");
3122     }
3123     auto Align = CallInfo.getArgStructAlignment();
3124     AI->setAlignment(Align.getQuantity());
3125     AI->setUsedWithInAlloca(true);
3126     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3127     ArgMemory = Address(AI, Align);
3128   }
3129 
3130   // Helper function to drill into the inalloca allocation.
3131   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3132     auto FieldOffset =
3133       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3134     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3135   };
3136 
3137   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3138   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3139 
3140   // If the call returns a temporary with struct return, create a temporary
3141   // alloca to hold the result, unless one is given to us.
3142   Address SRetPtr = Address::invalid();
3143   size_t UnusedReturnSize = 0;
3144   if (RetAI.isIndirect() || RetAI.isInAlloca()) {
3145     if (!ReturnValue.isNull()) {
3146       SRetPtr = ReturnValue.getValue();
3147     } else {
3148       SRetPtr = CreateMemTemp(RetTy);
3149       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3150         uint64_t size =
3151             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3152         if (EmitLifetimeStart(size, SRetPtr.getPointer()))
3153           UnusedReturnSize = size;
3154       }
3155     }
3156     if (IRFunctionArgs.hasSRetArg()) {
3157       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3158     } else {
3159       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3160       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3161     }
3162   }
3163 
3164   assert(CallInfo.arg_size() == CallArgs.size() &&
3165          "Mismatch between function signature & arguments.");
3166   unsigned ArgNo = 0;
3167   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3168   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3169        I != E; ++I, ++info_it, ++ArgNo) {
3170     const ABIArgInfo &ArgInfo = info_it->info;
3171     RValue RV = I->RV;
3172 
3173     // Insert a padding argument to ensure proper alignment.
3174     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3175       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3176           llvm::UndefValue::get(ArgInfo.getPaddingType());
3177 
3178     unsigned FirstIRArg, NumIRArgs;
3179     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3180 
3181     switch (ArgInfo.getKind()) {
3182     case ABIArgInfo::InAlloca: {
3183       assert(NumIRArgs == 0);
3184       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3185       if (RV.isAggregate()) {
3186         // Replace the placeholder with the appropriate argument slot GEP.
3187         llvm::Instruction *Placeholder =
3188             cast<llvm::Instruction>(RV.getAggregatePointer());
3189         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3190         Builder.SetInsertPoint(Placeholder);
3191         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3192         Builder.restoreIP(IP);
3193         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3194       } else {
3195         // Store the RValue into the argument struct.
3196         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3197         unsigned AS = Addr.getType()->getPointerAddressSpace();
3198         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3199         // There are some cases where a trivial bitcast is not avoidable.  The
3200         // definition of a type later in a translation unit may change it's type
3201         // from {}* to (%struct.foo*)*.
3202         if (Addr.getType() != MemType)
3203           Addr = Builder.CreateBitCast(Addr, MemType);
3204         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3205         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3206       }
3207       break;
3208     }
3209 
3210     case ABIArgInfo::Indirect: {
3211       assert(NumIRArgs == 1);
3212       if (RV.isScalar() || RV.isComplex()) {
3213         // Make a temporary alloca to pass the argument.
3214         Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3215         IRCallArgs[FirstIRArg] = Addr.getPointer();
3216 
3217         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3218         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3219       } else {
3220         // We want to avoid creating an unnecessary temporary+copy here;
3221         // however, we need one in three cases:
3222         // 1. If the argument is not byval, and we are required to copy the
3223         //    source.  (This case doesn't occur on any common architecture.)
3224         // 2. If the argument is byval, RV is not sufficiently aligned, and
3225         //    we cannot force it to be sufficiently aligned.
3226         // 3. If the argument is byval, but RV is located in an address space
3227         //    different than that of the argument (0).
3228         Address Addr = RV.getAggregateAddress();
3229         CharUnits Align = ArgInfo.getIndirectAlign();
3230         const llvm::DataLayout *TD = &CGM.getDataLayout();
3231         const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
3232         const unsigned ArgAddrSpace =
3233             (FirstIRArg < IRFuncTy->getNumParams()
3234                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3235                  : 0);
3236         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3237             (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
3238              llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
3239                                               Align.getQuantity(), *TD)
3240                < Align.getQuantity()) ||
3241             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3242           // Create an aligned temporary, and copy to it.
3243           Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3244           IRCallArgs[FirstIRArg] = AI.getPointer();
3245           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3246         } else {
3247           // Skip the extra memcpy call.
3248           IRCallArgs[FirstIRArg] = Addr.getPointer();
3249         }
3250       }
3251       break;
3252     }
3253 
3254     case ABIArgInfo::Ignore:
3255       assert(NumIRArgs == 0);
3256       break;
3257 
3258     case ABIArgInfo::Extend:
3259     case ABIArgInfo::Direct: {
3260       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3261           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3262           ArgInfo.getDirectOffset() == 0) {
3263         assert(NumIRArgs == 1);
3264         llvm::Value *V;
3265         if (RV.isScalar())
3266           V = RV.getScalarVal();
3267         else
3268           V = Builder.CreateLoad(RV.getAggregateAddress());
3269 
3270         // We might have to widen integers, but we should never truncate.
3271         if (ArgInfo.getCoerceToType() != V->getType() &&
3272             V->getType()->isIntegerTy())
3273           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3274 
3275         // If the argument doesn't match, perform a bitcast to coerce it.  This
3276         // can happen due to trivial type mismatches.
3277         if (FirstIRArg < IRFuncTy->getNumParams() &&
3278             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3279           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3280         IRCallArgs[FirstIRArg] = V;
3281         break;
3282       }
3283 
3284       // FIXME: Avoid the conversion through memory if possible.
3285       Address Src = Address::invalid();
3286       if (RV.isScalar() || RV.isComplex()) {
3287         Src = CreateMemTemp(I->Ty, "coerce");
3288         LValue SrcLV = MakeAddrLValue(Src, I->Ty);
3289         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3290       } else {
3291         Src = RV.getAggregateAddress();
3292       }
3293 
3294       // If the value is offset in memory, apply the offset now.
3295       Src = emitAddressAtOffset(*this, Src, ArgInfo);
3296 
3297       // Fast-isel and the optimizer generally like scalar values better than
3298       // FCAs, so we flatten them if this is safe to do for this argument.
3299       llvm::StructType *STy =
3300             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3301       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3302         llvm::Type *SrcTy = Src.getType()->getElementType();
3303         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3304         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3305 
3306         // If the source type is smaller than the destination type of the
3307         // coerce-to logic, copy the source value into a temp alloca the size
3308         // of the destination type to allow loading all of it. The bits past
3309         // the source value are left undef.
3310         if (SrcSize < DstSize) {
3311           Address TempAlloca
3312             = CreateTempAlloca(STy, Src.getAlignment(),
3313                                Src.getName() + ".coerce");
3314           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
3315           Src = TempAlloca;
3316         } else {
3317           Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy));
3318         }
3319 
3320         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
3321         assert(NumIRArgs == STy->getNumElements());
3322         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3323           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
3324           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
3325           llvm::Value *LI = Builder.CreateLoad(EltPtr);
3326           IRCallArgs[FirstIRArg + i] = LI;
3327         }
3328       } else {
3329         // In the simple case, just pass the coerced loaded value.
3330         assert(NumIRArgs == 1);
3331         IRCallArgs[FirstIRArg] =
3332           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
3333       }
3334 
3335       break;
3336     }
3337 
3338     case ABIArgInfo::Expand:
3339       unsigned IRArgPos = FirstIRArg;
3340       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
3341       assert(IRArgPos == FirstIRArg + NumIRArgs);
3342       break;
3343     }
3344   }
3345 
3346   if (ArgMemory.isValid()) {
3347     llvm::Value *Arg = ArgMemory.getPointer();
3348     if (CallInfo.isVariadic()) {
3349       // When passing non-POD arguments by value to variadic functions, we will
3350       // end up with a variadic prototype and an inalloca call site.  In such
3351       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
3352       // the callee.
3353       unsigned CalleeAS =
3354           cast<llvm::PointerType>(Callee->getType())->getAddressSpace();
3355       Callee = Builder.CreateBitCast(
3356           Callee, getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS));
3357     } else {
3358       llvm::Type *LastParamTy =
3359           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
3360       if (Arg->getType() != LastParamTy) {
3361 #ifndef NDEBUG
3362         // Assert that these structs have equivalent element types.
3363         llvm::StructType *FullTy = CallInfo.getArgStruct();
3364         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
3365             cast<llvm::PointerType>(LastParamTy)->getElementType());
3366         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
3367         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
3368                                                 DE = DeclaredTy->element_end(),
3369                                                 FI = FullTy->element_begin();
3370              DI != DE; ++DI, ++FI)
3371           assert(*DI == *FI);
3372 #endif
3373         Arg = Builder.CreateBitCast(Arg, LastParamTy);
3374       }
3375     }
3376     assert(IRFunctionArgs.hasInallocaArg());
3377     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
3378   }
3379 
3380   if (!CallArgs.getCleanupsToDeactivate().empty())
3381     deactivateArgCleanupsBeforeCall(*this, CallArgs);
3382 
3383   // If the callee is a bitcast of a function to a varargs pointer to function
3384   // type, check to see if we can remove the bitcast.  This handles some cases
3385   // with unprototyped functions.
3386   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
3387     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
3388       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
3389       llvm::FunctionType *CurFT =
3390         cast<llvm::FunctionType>(CurPT->getElementType());
3391       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
3392 
3393       if (CE->getOpcode() == llvm::Instruction::BitCast &&
3394           ActualFT->getReturnType() == CurFT->getReturnType() &&
3395           ActualFT->getNumParams() == CurFT->getNumParams() &&
3396           ActualFT->getNumParams() == IRCallArgs.size() &&
3397           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
3398         bool ArgsMatch = true;
3399         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
3400           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
3401             ArgsMatch = false;
3402             break;
3403           }
3404 
3405         // Strip the cast if we can get away with it.  This is a nice cleanup,
3406         // but also allows us to inline the function at -O0 if it is marked
3407         // always_inline.
3408         if (ArgsMatch)
3409           Callee = CalleeF;
3410       }
3411     }
3412 
3413   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
3414   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
3415     // Inalloca argument can have different type.
3416     if (IRFunctionArgs.hasInallocaArg() &&
3417         i == IRFunctionArgs.getInallocaArgNo())
3418       continue;
3419     if (i < IRFuncTy->getNumParams())
3420       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
3421   }
3422 
3423   unsigned CallingConv;
3424   CodeGen::AttributeListType AttributeList;
3425   CGM.ConstructAttributeList(CallInfo, CalleeInfo, AttributeList, CallingConv,
3426                              true);
3427   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
3428                                                      AttributeList);
3429 
3430   llvm::BasicBlock *InvokeDest = nullptr;
3431   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
3432                           llvm::Attribute::NoUnwind) ||
3433       currentFunctionUsesSEHTry())
3434     InvokeDest = getInvokeDest();
3435 
3436   llvm::CallSite CS;
3437   if (!InvokeDest) {
3438     CS = Builder.CreateCall(Callee, IRCallArgs);
3439   } else {
3440     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
3441     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, IRCallArgs);
3442     EmitBlock(Cont);
3443   }
3444   if (callOrInvoke)
3445     *callOrInvoke = CS.getInstruction();
3446 
3447   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
3448       !CS.hasFnAttr(llvm::Attribute::NoInline))
3449     Attrs =
3450         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3451                            llvm::Attribute::AlwaysInline);
3452 
3453   // Disable inlining inside SEH __try blocks and cleanup funclets. None of the
3454   // funclet EH personalities that clang supports have tables that are
3455   // expressive enough to describe catching an exception inside a cleanup.
3456   // __CxxFrameHandler3, for example, will terminate the program without
3457   // catching it.
3458   // FIXME: Move this decision to the LLVM inliner. Before we can do that, the
3459   // inliner needs to know if a given call site is part of a cleanuppad.
3460   if (isSEHTryScope() || isCleanupPadScope())
3461     Attrs =
3462         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
3463                            llvm::Attribute::NoInline);
3464 
3465   CS.setAttributes(Attrs);
3466   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
3467 
3468   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3469   // optimizer it can aggressively ignore unwind edges.
3470   if (CGM.getLangOpts().ObjCAutoRefCount)
3471     AddObjCARCExceptionMetadata(CS.getInstruction());
3472 
3473   // If the call doesn't return, finish the basic block and clear the
3474   // insertion point; this allows the rest of IRgen to discard
3475   // unreachable code.
3476   if (CS.doesNotReturn()) {
3477     if (UnusedReturnSize)
3478       EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
3479                       SRetPtr.getPointer());
3480 
3481     Builder.CreateUnreachable();
3482     Builder.ClearInsertionPoint();
3483 
3484     // FIXME: For now, emit a dummy basic block because expr emitters in
3485     // generally are not ready to handle emitting expressions at unreachable
3486     // points.
3487     EnsureInsertPoint();
3488 
3489     // Return a reasonable RValue.
3490     return GetUndefRValue(RetTy);
3491   }
3492 
3493   llvm::Instruction *CI = CS.getInstruction();
3494   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
3495     CI->setName("call");
3496 
3497   // Emit any writebacks immediately.  Arguably this should happen
3498   // after any return-value munging.
3499   if (CallArgs.hasWritebacks())
3500     emitWritebacks(*this, CallArgs);
3501 
3502   // The stack cleanup for inalloca arguments has to run out of the normal
3503   // lexical order, so deactivate it and run it manually here.
3504   CallArgs.freeArgumentMemory(*this);
3505 
3506   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
3507     const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
3508     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
3509       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
3510   }
3511 
3512   RValue Ret = [&] {
3513     switch (RetAI.getKind()) {
3514     case ABIArgInfo::InAlloca:
3515     case ABIArgInfo::Indirect: {
3516       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
3517       if (UnusedReturnSize)
3518         EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
3519                         SRetPtr.getPointer());
3520       return ret;
3521     }
3522 
3523     case ABIArgInfo::Ignore:
3524       // If we are ignoring an argument that had a result, make sure to
3525       // construct the appropriate return value for our caller.
3526       return GetUndefRValue(RetTy);
3527 
3528     case ABIArgInfo::Extend:
3529     case ABIArgInfo::Direct: {
3530       llvm::Type *RetIRTy = ConvertType(RetTy);
3531       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
3532         switch (getEvaluationKind(RetTy)) {
3533         case TEK_Complex: {
3534           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
3535           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
3536           return RValue::getComplex(std::make_pair(Real, Imag));
3537         }
3538         case TEK_Aggregate: {
3539           Address DestPtr = ReturnValue.getValue();
3540           bool DestIsVolatile = ReturnValue.isVolatile();
3541 
3542           if (!DestPtr.isValid()) {
3543             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
3544             DestIsVolatile = false;
3545           }
3546           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
3547           return RValue::getAggregate(DestPtr);
3548         }
3549         case TEK_Scalar: {
3550           // If the argument doesn't match, perform a bitcast to coerce it.  This
3551           // can happen due to trivial type mismatches.
3552           llvm::Value *V = CI;
3553           if (V->getType() != RetIRTy)
3554             V = Builder.CreateBitCast(V, RetIRTy);
3555           return RValue::get(V);
3556         }
3557         }
3558         llvm_unreachable("bad evaluation kind");
3559       }
3560 
3561       Address DestPtr = ReturnValue.getValue();
3562       bool DestIsVolatile = ReturnValue.isVolatile();
3563 
3564       if (!DestPtr.isValid()) {
3565         DestPtr = CreateMemTemp(RetTy, "coerce");
3566         DestIsVolatile = false;
3567       }
3568 
3569       // If the value is offset in memory, apply the offset now.
3570       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
3571       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
3572 
3573       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
3574     }
3575 
3576     case ABIArgInfo::Expand:
3577       llvm_unreachable("Invalid ABI kind for return argument");
3578     }
3579 
3580     llvm_unreachable("Unhandled ABIArgInfo::Kind");
3581   } ();
3582 
3583   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
3584 
3585   if (Ret.isScalar() && TargetDecl) {
3586     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
3587       llvm::Value *OffsetValue = nullptr;
3588       if (const auto *Offset = AA->getOffset())
3589         OffsetValue = EmitScalarExpr(Offset);
3590 
3591       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
3592       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
3593       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
3594                               OffsetValue);
3595     }
3596   }
3597 
3598   return Ret;
3599 }
3600 
3601 /* VarArg handling */
3602 
3603 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
3604   VAListAddr = VE->isMicrosoftABI()
3605                  ? EmitMSVAListRef(VE->getSubExpr())
3606                  : EmitVAListRef(VE->getSubExpr());
3607   QualType Ty = VE->getType();
3608   if (VE->isMicrosoftABI())
3609     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
3610   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
3611 }
3612