1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCall.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGCleanup.h" 19 #include "CGRecordLayout.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Attr.h" 24 #include "clang/AST/Decl.h" 25 #include "clang/AST/DeclCXX.h" 26 #include "clang/AST/DeclObjC.h" 27 #include "clang/Basic/CodeGenOptions.h" 28 #include "clang/Basic/TargetBuiltins.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/CodeGen/CGFunctionInfo.h" 31 #include "clang/CodeGen/SwiftCallingConv.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/CallingConv.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_Win64: return llvm::CallingConv::Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall; 63 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 64 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 65 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 66 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 67 case CC_Swift: return llvm::CallingConv::Swift; 68 } 69 } 70 71 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR 72 /// qualification. Either or both of RD and MD may be null. A null RD indicates 73 /// that there is no meaningful 'this' type, and a null MD can occur when 74 /// calling a method pointer. 75 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD, 76 const CXXMethodDecl *MD) { 77 QualType RecTy; 78 if (RD) 79 RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 80 else 81 RecTy = Context.VoidTy; 82 83 if (MD) 84 RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace()); 85 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 86 } 87 88 /// Returns the canonical formal type of the given C++ method. 89 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 90 return MD->getType()->getCanonicalTypeUnqualified() 91 .getAs<FunctionProtoType>(); 92 } 93 94 /// Returns the "extra-canonicalized" return type, which discards 95 /// qualifiers on the return type. Codegen doesn't care about them, 96 /// and it makes ABI code a little easier to be able to assume that 97 /// all parameter and return types are top-level unqualified. 98 static CanQualType GetReturnType(QualType RetTy) { 99 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 100 } 101 102 /// Arrange the argument and result information for a value of the given 103 /// unprototyped freestanding function type. 104 const CGFunctionInfo & 105 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 106 // When translating an unprototyped function type, always use a 107 // variadic type. 108 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 109 /*instanceMethod=*/false, 110 /*chainCall=*/false, None, 111 FTNP->getExtInfo(), {}, RequiredArgs(0)); 112 } 113 114 static void addExtParameterInfosForCall( 115 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 116 const FunctionProtoType *proto, 117 unsigned prefixArgs, 118 unsigned totalArgs) { 119 assert(proto->hasExtParameterInfos()); 120 assert(paramInfos.size() <= prefixArgs); 121 assert(proto->getNumParams() + prefixArgs <= totalArgs); 122 123 paramInfos.reserve(totalArgs); 124 125 // Add default infos for any prefix args that don't already have infos. 126 paramInfos.resize(prefixArgs); 127 128 // Add infos for the prototype. 129 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 130 paramInfos.push_back(ParamInfo); 131 // pass_object_size params have no parameter info. 132 if (ParamInfo.hasPassObjectSize()) 133 paramInfos.emplace_back(); 134 } 135 136 assert(paramInfos.size() <= totalArgs && 137 "Did we forget to insert pass_object_size args?"); 138 // Add default infos for the variadic and/or suffix arguments. 139 paramInfos.resize(totalArgs); 140 } 141 142 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 143 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 144 static void appendParameterTypes(const CodeGenTypes &CGT, 145 SmallVectorImpl<CanQualType> &prefix, 146 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 147 CanQual<FunctionProtoType> FPT) { 148 // Fast path: don't touch param info if we don't need to. 149 if (!FPT->hasExtParameterInfos()) { 150 assert(paramInfos.empty() && 151 "We have paramInfos, but the prototype doesn't?"); 152 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 153 return; 154 } 155 156 unsigned PrefixSize = prefix.size(); 157 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 158 // parameters; the only thing that can change this is the presence of 159 // pass_object_size. So, we preallocate for the common case. 160 prefix.reserve(prefix.size() + FPT->getNumParams()); 161 162 auto ExtInfos = FPT->getExtParameterInfos(); 163 assert(ExtInfos.size() == FPT->getNumParams()); 164 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 165 prefix.push_back(FPT->getParamType(I)); 166 if (ExtInfos[I].hasPassObjectSize()) 167 prefix.push_back(CGT.getContext().getSizeType()); 168 } 169 170 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 171 prefix.size()); 172 } 173 174 /// Arrange the LLVM function layout for a value of the given function 175 /// type, on top of any implicit parameters already stored. 176 static const CGFunctionInfo & 177 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 178 SmallVectorImpl<CanQualType> &prefix, 179 CanQual<FunctionProtoType> FTP) { 180 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 181 RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size()); 182 // FIXME: Kill copy. 183 appendParameterTypes(CGT, prefix, paramInfos, FTP); 184 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 185 186 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 187 /*chainCall=*/false, prefix, 188 FTP->getExtInfo(), paramInfos, 189 Required); 190 } 191 192 /// Arrange the argument and result information for a value of the 193 /// given freestanding function type. 194 const CGFunctionInfo & 195 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) { 196 SmallVector<CanQualType, 16> argTypes; 197 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 198 FTP); 199 } 200 201 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 202 // Set the appropriate calling convention for the Function. 203 if (D->hasAttr<StdCallAttr>()) 204 return CC_X86StdCall; 205 206 if (D->hasAttr<FastCallAttr>()) 207 return CC_X86FastCall; 208 209 if (D->hasAttr<RegCallAttr>()) 210 return CC_X86RegCall; 211 212 if (D->hasAttr<ThisCallAttr>()) 213 return CC_X86ThisCall; 214 215 if (D->hasAttr<VectorCallAttr>()) 216 return CC_X86VectorCall; 217 218 if (D->hasAttr<PascalAttr>()) 219 return CC_X86Pascal; 220 221 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 222 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 223 224 if (D->hasAttr<AArch64VectorPcsAttr>()) 225 return CC_AArch64VectorCall; 226 227 if (D->hasAttr<IntelOclBiccAttr>()) 228 return CC_IntelOclBicc; 229 230 if (D->hasAttr<MSABIAttr>()) 231 return IsWindows ? CC_C : CC_Win64; 232 233 if (D->hasAttr<SysVABIAttr>()) 234 return IsWindows ? CC_X86_64SysV : CC_C; 235 236 if (D->hasAttr<PreserveMostAttr>()) 237 return CC_PreserveMost; 238 239 if (D->hasAttr<PreserveAllAttr>()) 240 return CC_PreserveAll; 241 242 return CC_C; 243 } 244 245 /// Arrange the argument and result information for a call to an 246 /// unknown C++ non-static member function of the given abstract type. 247 /// (A null RD means we don't have any meaningful "this" argument type, 248 /// so fall back to a generic pointer type). 249 /// The member function must be an ordinary function, i.e. not a 250 /// constructor or destructor. 251 const CGFunctionInfo & 252 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 253 const FunctionProtoType *FTP, 254 const CXXMethodDecl *MD) { 255 SmallVector<CanQualType, 16> argTypes; 256 257 // Add the 'this' pointer. 258 argTypes.push_back(DeriveThisType(RD, MD)); 259 260 return ::arrangeLLVMFunctionInfo( 261 *this, true, argTypes, 262 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>()); 263 } 264 265 /// Set calling convention for CUDA/HIP kernel. 266 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM, 267 const FunctionDecl *FD) { 268 if (FD->hasAttr<CUDAGlobalAttr>()) { 269 const FunctionType *FT = FTy->getAs<FunctionType>(); 270 CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT); 271 FTy = FT->getCanonicalTypeUnqualified(); 272 } 273 } 274 275 /// Arrange the argument and result information for a declaration or 276 /// definition of the given C++ non-static member function. The 277 /// member function must be an ordinary function, i.e. not a 278 /// constructor or destructor. 279 const CGFunctionInfo & 280 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 281 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 282 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 283 284 CanQualType FT = GetFormalType(MD).getAs<Type>(); 285 setCUDAKernelCallingConvention(FT, CGM, MD); 286 auto prototype = FT.getAs<FunctionProtoType>(); 287 288 if (MD->isInstance()) { 289 // The abstract case is perfectly fine. 290 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 291 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 292 } 293 294 return arrangeFreeFunctionType(prototype); 295 } 296 297 bool CodeGenTypes::inheritingCtorHasParams( 298 const InheritedConstructor &Inherited, CXXCtorType Type) { 299 // Parameters are unnecessary if we're constructing a base class subobject 300 // and the inherited constructor lives in a virtual base. 301 return Type == Ctor_Complete || 302 !Inherited.getShadowDecl()->constructsVirtualBase() || 303 !Target.getCXXABI().hasConstructorVariants(); 304 } 305 306 const CGFunctionInfo & 307 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) { 308 auto *MD = cast<CXXMethodDecl>(GD.getDecl()); 309 310 SmallVector<CanQualType, 16> argTypes; 311 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 312 argTypes.push_back(DeriveThisType(MD->getParent(), MD)); 313 314 bool PassParams = true; 315 316 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 317 // A base class inheriting constructor doesn't get forwarded arguments 318 // needed to construct a virtual base (or base class thereof). 319 if (auto Inherited = CD->getInheritedConstructor()) 320 PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType()); 321 } 322 323 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 324 325 // Add the formal parameters. 326 if (PassParams) 327 appendParameterTypes(*this, argTypes, paramInfos, FTP); 328 329 CGCXXABI::AddedStructorArgCounts AddedArgs = 330 TheCXXABI.buildStructorSignature(GD, argTypes); 331 if (!paramInfos.empty()) { 332 // Note: prefix implies after the first param. 333 if (AddedArgs.Prefix) 334 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 335 FunctionProtoType::ExtParameterInfo{}); 336 if (AddedArgs.Suffix) 337 paramInfos.append(AddedArgs.Suffix, 338 FunctionProtoType::ExtParameterInfo{}); 339 } 340 341 RequiredArgs required = 342 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 343 : RequiredArgs::All); 344 345 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 346 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 347 ? argTypes.front() 348 : TheCXXABI.hasMostDerivedReturn(GD) 349 ? CGM.getContext().VoidPtrTy 350 : Context.VoidTy; 351 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 352 /*chainCall=*/false, argTypes, extInfo, 353 paramInfos, required); 354 } 355 356 static SmallVector<CanQualType, 16> 357 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 358 SmallVector<CanQualType, 16> argTypes; 359 for (auto &arg : args) 360 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 361 return argTypes; 362 } 363 364 static SmallVector<CanQualType, 16> 365 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 366 SmallVector<CanQualType, 16> argTypes; 367 for (auto &arg : args) 368 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 369 return argTypes; 370 } 371 372 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 373 getExtParameterInfosForCall(const FunctionProtoType *proto, 374 unsigned prefixArgs, unsigned totalArgs) { 375 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 376 if (proto->hasExtParameterInfos()) { 377 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 378 } 379 return result; 380 } 381 382 /// Arrange a call to a C++ method, passing the given arguments. 383 /// 384 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 385 /// parameter. 386 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 387 /// args. 388 /// PassProtoArgs indicates whether `args` has args for the parameters in the 389 /// given CXXConstructorDecl. 390 const CGFunctionInfo & 391 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 392 const CXXConstructorDecl *D, 393 CXXCtorType CtorKind, 394 unsigned ExtraPrefixArgs, 395 unsigned ExtraSuffixArgs, 396 bool PassProtoArgs) { 397 // FIXME: Kill copy. 398 SmallVector<CanQualType, 16> ArgTypes; 399 for (const auto &Arg : args) 400 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 401 402 // +1 for implicit this, which should always be args[0]. 403 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 404 405 CanQual<FunctionProtoType> FPT = GetFormalType(D); 406 RequiredArgs Required = PassProtoArgs 407 ? RequiredArgs::forPrototypePlus( 408 FPT, TotalPrefixArgs + ExtraSuffixArgs) 409 : RequiredArgs::All; 410 411 GlobalDecl GD(D, CtorKind); 412 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 413 ? ArgTypes.front() 414 : TheCXXABI.hasMostDerivedReturn(GD) 415 ? CGM.getContext().VoidPtrTy 416 : Context.VoidTy; 417 418 FunctionType::ExtInfo Info = FPT->getExtInfo(); 419 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 420 // If the prototype args are elided, we should only have ABI-specific args, 421 // which never have param info. 422 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 423 // ABI-specific suffix arguments are treated the same as variadic arguments. 424 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 425 ArgTypes.size()); 426 } 427 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 428 /*chainCall=*/false, ArgTypes, Info, 429 ParamInfos, Required); 430 } 431 432 /// Arrange the argument and result information for the declaration or 433 /// definition of the given function. 434 const CGFunctionInfo & 435 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 436 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 437 if (MD->isInstance()) 438 return arrangeCXXMethodDeclaration(MD); 439 440 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 441 442 assert(isa<FunctionType>(FTy)); 443 setCUDAKernelCallingConvention(FTy, CGM, FD); 444 445 // When declaring a function without a prototype, always use a 446 // non-variadic type. 447 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 448 return arrangeLLVMFunctionInfo( 449 noProto->getReturnType(), /*instanceMethod=*/false, 450 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 451 } 452 453 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>()); 454 } 455 456 /// Arrange the argument and result information for the declaration or 457 /// definition of an Objective-C method. 458 const CGFunctionInfo & 459 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 460 // It happens that this is the same as a call with no optional 461 // arguments, except also using the formal 'self' type. 462 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 463 } 464 465 /// Arrange the argument and result information for the function type 466 /// through which to perform a send to the given Objective-C method, 467 /// using the given receiver type. The receiver type is not always 468 /// the 'self' type of the method or even an Objective-C pointer type. 469 /// This is *not* the right method for actually performing such a 470 /// message send, due to the possibility of optional arguments. 471 const CGFunctionInfo & 472 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 473 QualType receiverType) { 474 SmallVector<CanQualType, 16> argTys; 475 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 476 argTys.push_back(Context.getCanonicalParamType(receiverType)); 477 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 478 // FIXME: Kill copy? 479 for (const auto *I : MD->parameters()) { 480 argTys.push_back(Context.getCanonicalParamType(I->getType())); 481 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 482 I->hasAttr<NoEscapeAttr>()); 483 extParamInfos.push_back(extParamInfo); 484 } 485 486 FunctionType::ExtInfo einfo; 487 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 488 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 489 490 if (getContext().getLangOpts().ObjCAutoRefCount && 491 MD->hasAttr<NSReturnsRetainedAttr>()) 492 einfo = einfo.withProducesResult(true); 493 494 RequiredArgs required = 495 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 496 497 return arrangeLLVMFunctionInfo( 498 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 499 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 500 } 501 502 const CGFunctionInfo & 503 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 504 const CallArgList &args) { 505 auto argTypes = getArgTypesForCall(Context, args); 506 FunctionType::ExtInfo einfo; 507 508 return arrangeLLVMFunctionInfo( 509 GetReturnType(returnType), /*instanceMethod=*/false, 510 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 511 } 512 513 const CGFunctionInfo & 514 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 515 // FIXME: Do we need to handle ObjCMethodDecl? 516 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 517 518 if (isa<CXXConstructorDecl>(GD.getDecl()) || 519 isa<CXXDestructorDecl>(GD.getDecl())) 520 return arrangeCXXStructorDeclaration(GD); 521 522 return arrangeFunctionDeclaration(FD); 523 } 524 525 /// Arrange a thunk that takes 'this' as the first parameter followed by 526 /// varargs. Return a void pointer, regardless of the actual return type. 527 /// The body of the thunk will end in a musttail call to a function of the 528 /// correct type, and the caller will bitcast the function to the correct 529 /// prototype. 530 const CGFunctionInfo & 531 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) { 532 assert(MD->isVirtual() && "only methods have thunks"); 533 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 534 CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)}; 535 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 536 /*chainCall=*/false, ArgTys, 537 FTP->getExtInfo(), {}, RequiredArgs(1)); 538 } 539 540 const CGFunctionInfo & 541 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 542 CXXCtorType CT) { 543 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 544 545 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 546 SmallVector<CanQualType, 2> ArgTys; 547 const CXXRecordDecl *RD = CD->getParent(); 548 ArgTys.push_back(DeriveThisType(RD, CD)); 549 if (CT == Ctor_CopyingClosure) 550 ArgTys.push_back(*FTP->param_type_begin()); 551 if (RD->getNumVBases() > 0) 552 ArgTys.push_back(Context.IntTy); 553 CallingConv CC = Context.getDefaultCallingConvention( 554 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 555 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 556 /*chainCall=*/false, ArgTys, 557 FunctionType::ExtInfo(CC), {}, 558 RequiredArgs::All); 559 } 560 561 /// Arrange a call as unto a free function, except possibly with an 562 /// additional number of formal parameters considered required. 563 static const CGFunctionInfo & 564 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 565 CodeGenModule &CGM, 566 const CallArgList &args, 567 const FunctionType *fnType, 568 unsigned numExtraRequiredArgs, 569 bool chainCall) { 570 assert(args.size() >= numExtraRequiredArgs); 571 572 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 573 574 // In most cases, there are no optional arguments. 575 RequiredArgs required = RequiredArgs::All; 576 577 // If we have a variadic prototype, the required arguments are the 578 // extra prefix plus the arguments in the prototype. 579 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 580 if (proto->isVariadic()) 581 required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs); 582 583 if (proto->hasExtParameterInfos()) 584 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 585 args.size()); 586 587 // If we don't have a prototype at all, but we're supposed to 588 // explicitly use the variadic convention for unprototyped calls, 589 // treat all of the arguments as required but preserve the nominal 590 // possibility of variadics. 591 } else if (CGM.getTargetCodeGenInfo() 592 .isNoProtoCallVariadic(args, 593 cast<FunctionNoProtoType>(fnType))) { 594 required = RequiredArgs(args.size()); 595 } 596 597 // FIXME: Kill copy. 598 SmallVector<CanQualType, 16> argTypes; 599 for (const auto &arg : args) 600 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 601 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 602 /*instanceMethod=*/false, chainCall, 603 argTypes, fnType->getExtInfo(), paramInfos, 604 required); 605 } 606 607 /// Figure out the rules for calling a function with the given formal 608 /// type using the given arguments. The arguments are necessary 609 /// because the function might be unprototyped, in which case it's 610 /// target-dependent in crazy ways. 611 const CGFunctionInfo & 612 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 613 const FunctionType *fnType, 614 bool chainCall) { 615 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 616 chainCall ? 1 : 0, chainCall); 617 } 618 619 /// A block function is essentially a free function with an 620 /// extra implicit argument. 621 const CGFunctionInfo & 622 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 623 const FunctionType *fnType) { 624 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 625 /*chainCall=*/false); 626 } 627 628 const CGFunctionInfo & 629 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 630 const FunctionArgList ¶ms) { 631 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 632 auto argTypes = getArgTypesForDeclaration(Context, params); 633 634 return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()), 635 /*instanceMethod*/ false, /*chainCall*/ false, 636 argTypes, proto->getExtInfo(), paramInfos, 637 RequiredArgs::forPrototypePlus(proto, 1)); 638 } 639 640 const CGFunctionInfo & 641 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 642 const CallArgList &args) { 643 // FIXME: Kill copy. 644 SmallVector<CanQualType, 16> argTypes; 645 for (const auto &Arg : args) 646 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 647 return arrangeLLVMFunctionInfo( 648 GetReturnType(resultType), /*instanceMethod=*/false, 649 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 650 /*paramInfos=*/ {}, RequiredArgs::All); 651 } 652 653 const CGFunctionInfo & 654 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 655 const FunctionArgList &args) { 656 auto argTypes = getArgTypesForDeclaration(Context, args); 657 658 return arrangeLLVMFunctionInfo( 659 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 660 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 661 } 662 663 const CGFunctionInfo & 664 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 665 ArrayRef<CanQualType> argTypes) { 666 return arrangeLLVMFunctionInfo( 667 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 668 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 669 } 670 671 /// Arrange a call to a C++ method, passing the given arguments. 672 /// 673 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 674 /// does not count `this`. 675 const CGFunctionInfo & 676 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 677 const FunctionProtoType *proto, 678 RequiredArgs required, 679 unsigned numPrefixArgs) { 680 assert(numPrefixArgs + 1 <= args.size() && 681 "Emitting a call with less args than the required prefix?"); 682 // Add one to account for `this`. It's a bit awkward here, but we don't count 683 // `this` in similar places elsewhere. 684 auto paramInfos = 685 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 686 687 // FIXME: Kill copy. 688 auto argTypes = getArgTypesForCall(Context, args); 689 690 FunctionType::ExtInfo info = proto->getExtInfo(); 691 return arrangeLLVMFunctionInfo( 692 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 693 /*chainCall=*/false, argTypes, info, paramInfos, required); 694 } 695 696 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 697 return arrangeLLVMFunctionInfo( 698 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 699 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 700 } 701 702 const CGFunctionInfo & 703 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 704 const CallArgList &args) { 705 assert(signature.arg_size() <= args.size()); 706 if (signature.arg_size() == args.size()) 707 return signature; 708 709 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 710 auto sigParamInfos = signature.getExtParameterInfos(); 711 if (!sigParamInfos.empty()) { 712 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 713 paramInfos.resize(args.size()); 714 } 715 716 auto argTypes = getArgTypesForCall(Context, args); 717 718 assert(signature.getRequiredArgs().allowsOptionalArgs()); 719 return arrangeLLVMFunctionInfo(signature.getReturnType(), 720 signature.isInstanceMethod(), 721 signature.isChainCall(), 722 argTypes, 723 signature.getExtInfo(), 724 paramInfos, 725 signature.getRequiredArgs()); 726 } 727 728 namespace clang { 729 namespace CodeGen { 730 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 731 } 732 } 733 734 /// Arrange the argument and result information for an abstract value 735 /// of a given function type. This is the method which all of the 736 /// above functions ultimately defer to. 737 const CGFunctionInfo & 738 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 739 bool instanceMethod, 740 bool chainCall, 741 ArrayRef<CanQualType> argTypes, 742 FunctionType::ExtInfo info, 743 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 744 RequiredArgs required) { 745 assert(llvm::all_of(argTypes, 746 [](CanQualType T) { return T.isCanonicalAsParam(); })); 747 748 // Lookup or create unique function info. 749 llvm::FoldingSetNodeID ID; 750 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 751 required, resultType, argTypes); 752 753 void *insertPos = nullptr; 754 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 755 if (FI) 756 return *FI; 757 758 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 759 760 // Construct the function info. We co-allocate the ArgInfos. 761 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 762 paramInfos, resultType, argTypes, required); 763 FunctionInfos.InsertNode(FI, insertPos); 764 765 bool inserted = FunctionsBeingProcessed.insert(FI).second; 766 (void)inserted; 767 assert(inserted && "Recursively being processed?"); 768 769 // Compute ABI information. 770 if (CC == llvm::CallingConv::SPIR_KERNEL) { 771 // Force target independent argument handling for the host visible 772 // kernel functions. 773 computeSPIRKernelABIInfo(CGM, *FI); 774 } else if (info.getCC() == CC_Swift) { 775 swiftcall::computeABIInfo(CGM, *FI); 776 } else { 777 getABIInfo().computeInfo(*FI); 778 } 779 780 // Loop over all of the computed argument and return value info. If any of 781 // them are direct or extend without a specified coerce type, specify the 782 // default now. 783 ABIArgInfo &retInfo = FI->getReturnInfo(); 784 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 785 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 786 787 for (auto &I : FI->arguments()) 788 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 789 I.info.setCoerceToType(ConvertType(I.type)); 790 791 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 792 assert(erased && "Not in set?"); 793 794 return *FI; 795 } 796 797 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 798 bool instanceMethod, 799 bool chainCall, 800 const FunctionType::ExtInfo &info, 801 ArrayRef<ExtParameterInfo> paramInfos, 802 CanQualType resultType, 803 ArrayRef<CanQualType> argTypes, 804 RequiredArgs required) { 805 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 806 assert(!required.allowsOptionalArgs() || 807 required.getNumRequiredArgs() <= argTypes.size()); 808 809 void *buffer = 810 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 811 argTypes.size() + 1, paramInfos.size())); 812 813 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 814 FI->CallingConvention = llvmCC; 815 FI->EffectiveCallingConvention = llvmCC; 816 FI->ASTCallingConvention = info.getCC(); 817 FI->InstanceMethod = instanceMethod; 818 FI->ChainCall = chainCall; 819 FI->CmseNSCall = info.getCmseNSCall(); 820 FI->NoReturn = info.getNoReturn(); 821 FI->ReturnsRetained = info.getProducesResult(); 822 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 823 FI->NoCfCheck = info.getNoCfCheck(); 824 FI->Required = required; 825 FI->HasRegParm = info.getHasRegParm(); 826 FI->RegParm = info.getRegParm(); 827 FI->ArgStruct = nullptr; 828 FI->ArgStructAlign = 0; 829 FI->NumArgs = argTypes.size(); 830 FI->HasExtParameterInfos = !paramInfos.empty(); 831 FI->getArgsBuffer()[0].type = resultType; 832 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 833 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 834 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 835 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 836 return FI; 837 } 838 839 /***/ 840 841 namespace { 842 // ABIArgInfo::Expand implementation. 843 844 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 845 struct TypeExpansion { 846 enum TypeExpansionKind { 847 // Elements of constant arrays are expanded recursively. 848 TEK_ConstantArray, 849 // Record fields are expanded recursively (but if record is a union, only 850 // the field with the largest size is expanded). 851 TEK_Record, 852 // For complex types, real and imaginary parts are expanded recursively. 853 TEK_Complex, 854 // All other types are not expandable. 855 TEK_None 856 }; 857 858 const TypeExpansionKind Kind; 859 860 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 861 virtual ~TypeExpansion() {} 862 }; 863 864 struct ConstantArrayExpansion : TypeExpansion { 865 QualType EltTy; 866 uint64_t NumElts; 867 868 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 869 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 870 static bool classof(const TypeExpansion *TE) { 871 return TE->Kind == TEK_ConstantArray; 872 } 873 }; 874 875 struct RecordExpansion : TypeExpansion { 876 SmallVector<const CXXBaseSpecifier *, 1> Bases; 877 878 SmallVector<const FieldDecl *, 1> Fields; 879 880 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 881 SmallVector<const FieldDecl *, 1> &&Fields) 882 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 883 Fields(std::move(Fields)) {} 884 static bool classof(const TypeExpansion *TE) { 885 return TE->Kind == TEK_Record; 886 } 887 }; 888 889 struct ComplexExpansion : TypeExpansion { 890 QualType EltTy; 891 892 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 893 static bool classof(const TypeExpansion *TE) { 894 return TE->Kind == TEK_Complex; 895 } 896 }; 897 898 struct NoExpansion : TypeExpansion { 899 NoExpansion() : TypeExpansion(TEK_None) {} 900 static bool classof(const TypeExpansion *TE) { 901 return TE->Kind == TEK_None; 902 } 903 }; 904 } // namespace 905 906 static std::unique_ptr<TypeExpansion> 907 getTypeExpansion(QualType Ty, const ASTContext &Context) { 908 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 909 return std::make_unique<ConstantArrayExpansion>( 910 AT->getElementType(), AT->getSize().getZExtValue()); 911 } 912 if (const RecordType *RT = Ty->getAs<RecordType>()) { 913 SmallVector<const CXXBaseSpecifier *, 1> Bases; 914 SmallVector<const FieldDecl *, 1> Fields; 915 const RecordDecl *RD = RT->getDecl(); 916 assert(!RD->hasFlexibleArrayMember() && 917 "Cannot expand structure with flexible array."); 918 if (RD->isUnion()) { 919 // Unions can be here only in degenerative cases - all the fields are same 920 // after flattening. Thus we have to use the "largest" field. 921 const FieldDecl *LargestFD = nullptr; 922 CharUnits UnionSize = CharUnits::Zero(); 923 924 for (const auto *FD : RD->fields()) { 925 if (FD->isZeroLengthBitField(Context)) 926 continue; 927 assert(!FD->isBitField() && 928 "Cannot expand structure with bit-field members."); 929 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 930 if (UnionSize < FieldSize) { 931 UnionSize = FieldSize; 932 LargestFD = FD; 933 } 934 } 935 if (LargestFD) 936 Fields.push_back(LargestFD); 937 } else { 938 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 939 assert(!CXXRD->isDynamicClass() && 940 "cannot expand vtable pointers in dynamic classes"); 941 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 942 Bases.push_back(&BS); 943 } 944 945 for (const auto *FD : RD->fields()) { 946 if (FD->isZeroLengthBitField(Context)) 947 continue; 948 assert(!FD->isBitField() && 949 "Cannot expand structure with bit-field members."); 950 Fields.push_back(FD); 951 } 952 } 953 return std::make_unique<RecordExpansion>(std::move(Bases), 954 std::move(Fields)); 955 } 956 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 957 return std::make_unique<ComplexExpansion>(CT->getElementType()); 958 } 959 return std::make_unique<NoExpansion>(); 960 } 961 962 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 963 auto Exp = getTypeExpansion(Ty, Context); 964 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 965 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 966 } 967 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 968 int Res = 0; 969 for (auto BS : RExp->Bases) 970 Res += getExpansionSize(BS->getType(), Context); 971 for (auto FD : RExp->Fields) 972 Res += getExpansionSize(FD->getType(), Context); 973 return Res; 974 } 975 if (isa<ComplexExpansion>(Exp.get())) 976 return 2; 977 assert(isa<NoExpansion>(Exp.get())); 978 return 1; 979 } 980 981 void 982 CodeGenTypes::getExpandedTypes(QualType Ty, 983 SmallVectorImpl<llvm::Type *>::iterator &TI) { 984 auto Exp = getTypeExpansion(Ty, Context); 985 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 986 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 987 getExpandedTypes(CAExp->EltTy, TI); 988 } 989 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 990 for (auto BS : RExp->Bases) 991 getExpandedTypes(BS->getType(), TI); 992 for (auto FD : RExp->Fields) 993 getExpandedTypes(FD->getType(), TI); 994 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 995 llvm::Type *EltTy = ConvertType(CExp->EltTy); 996 *TI++ = EltTy; 997 *TI++ = EltTy; 998 } else { 999 assert(isa<NoExpansion>(Exp.get())); 1000 *TI++ = ConvertType(Ty); 1001 } 1002 } 1003 1004 static void forConstantArrayExpansion(CodeGenFunction &CGF, 1005 ConstantArrayExpansion *CAE, 1006 Address BaseAddr, 1007 llvm::function_ref<void(Address)> Fn) { 1008 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 1009 CharUnits EltAlign = 1010 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 1011 1012 for (int i = 0, n = CAE->NumElts; i < n; i++) { 1013 llvm::Value *EltAddr = 1014 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 1015 Fn(Address(EltAddr, EltAlign)); 1016 } 1017 } 1018 1019 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV, 1020 llvm::Function::arg_iterator &AI) { 1021 assert(LV.isSimple() && 1022 "Unexpected non-simple lvalue during struct expansion."); 1023 1024 auto Exp = getTypeExpansion(Ty, getContext()); 1025 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1026 forConstantArrayExpansion( 1027 *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) { 1028 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1029 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1030 }); 1031 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1032 Address This = LV.getAddress(*this); 1033 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1034 // Perform a single step derived-to-base conversion. 1035 Address Base = 1036 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1037 /*NullCheckValue=*/false, SourceLocation()); 1038 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1039 1040 // Recurse onto bases. 1041 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1042 } 1043 for (auto FD : RExp->Fields) { 1044 // FIXME: What are the right qualifiers here? 1045 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1046 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1047 } 1048 } else if (isa<ComplexExpansion>(Exp.get())) { 1049 auto realValue = &*AI++; 1050 auto imagValue = &*AI++; 1051 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1052 } else { 1053 // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a 1054 // primitive store. 1055 assert(isa<NoExpansion>(Exp.get())); 1056 if (LV.isBitField()) 1057 EmitStoreThroughLValue(RValue::get(&*AI++), LV); 1058 else 1059 EmitStoreOfScalar(&*AI++, LV); 1060 } 1061 } 1062 1063 void CodeGenFunction::ExpandTypeToArgs( 1064 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1065 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1066 auto Exp = getTypeExpansion(Ty, getContext()); 1067 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1068 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1069 : Arg.getKnownRValue().getAggregateAddress(); 1070 forConstantArrayExpansion( 1071 *this, CAExp, Addr, [&](Address EltAddr) { 1072 CallArg EltArg = CallArg( 1073 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1074 CAExp->EltTy); 1075 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1076 IRCallArgPos); 1077 }); 1078 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1079 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this) 1080 : Arg.getKnownRValue().getAggregateAddress(); 1081 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1082 // Perform a single step derived-to-base conversion. 1083 Address Base = 1084 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1085 /*NullCheckValue=*/false, SourceLocation()); 1086 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1087 1088 // Recurse onto bases. 1089 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1090 IRCallArgPos); 1091 } 1092 1093 LValue LV = MakeAddrLValue(This, Ty); 1094 for (auto FD : RExp->Fields) { 1095 CallArg FldArg = 1096 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1097 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1098 IRCallArgPos); 1099 } 1100 } else if (isa<ComplexExpansion>(Exp.get())) { 1101 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1102 IRCallArgs[IRCallArgPos++] = CV.first; 1103 IRCallArgs[IRCallArgPos++] = CV.second; 1104 } else { 1105 assert(isa<NoExpansion>(Exp.get())); 1106 auto RV = Arg.getKnownRValue(); 1107 assert(RV.isScalar() && 1108 "Unexpected non-scalar rvalue during struct expansion."); 1109 1110 // Insert a bitcast as needed. 1111 llvm::Value *V = RV.getScalarVal(); 1112 if (IRCallArgPos < IRFuncTy->getNumParams() && 1113 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1114 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1115 1116 IRCallArgs[IRCallArgPos++] = V; 1117 } 1118 } 1119 1120 /// Create a temporary allocation for the purposes of coercion. 1121 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1122 CharUnits MinAlign, 1123 const Twine &Name = "tmp") { 1124 // Don't use an alignment that's worse than what LLVM would prefer. 1125 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1126 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1127 1128 return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce"); 1129 } 1130 1131 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1132 /// accessing some number of bytes out of it, try to gep into the struct to get 1133 /// at its inner goodness. Dive as deep as possible without entering an element 1134 /// with an in-memory size smaller than DstSize. 1135 static Address 1136 EnterStructPointerForCoercedAccess(Address SrcPtr, 1137 llvm::StructType *SrcSTy, 1138 uint64_t DstSize, CodeGenFunction &CGF) { 1139 // We can't dive into a zero-element struct. 1140 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1141 1142 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1143 1144 // If the first elt is at least as large as what we're looking for, or if the 1145 // first element is the same size as the whole struct, we can enter it. The 1146 // comparison must be made on the store size and not the alloca size. Using 1147 // the alloca size may overstate the size of the load. 1148 uint64_t FirstEltSize = 1149 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1150 if (FirstEltSize < DstSize && 1151 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1152 return SrcPtr; 1153 1154 // GEP into the first element. 1155 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive"); 1156 1157 // If the first element is a struct, recurse. 1158 llvm::Type *SrcTy = SrcPtr.getElementType(); 1159 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1160 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1161 1162 return SrcPtr; 1163 } 1164 1165 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1166 /// are either integers or pointers. This does a truncation of the value if it 1167 /// is too large or a zero extension if it is too small. 1168 /// 1169 /// This behaves as if the value were coerced through memory, so on big-endian 1170 /// targets the high bits are preserved in a truncation, while little-endian 1171 /// targets preserve the low bits. 1172 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1173 llvm::Type *Ty, 1174 CodeGenFunction &CGF) { 1175 if (Val->getType() == Ty) 1176 return Val; 1177 1178 if (isa<llvm::PointerType>(Val->getType())) { 1179 // If this is Pointer->Pointer avoid conversion to and from int. 1180 if (isa<llvm::PointerType>(Ty)) 1181 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1182 1183 // Convert the pointer to an integer so we can play with its width. 1184 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1185 } 1186 1187 llvm::Type *DestIntTy = Ty; 1188 if (isa<llvm::PointerType>(DestIntTy)) 1189 DestIntTy = CGF.IntPtrTy; 1190 1191 if (Val->getType() != DestIntTy) { 1192 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1193 if (DL.isBigEndian()) { 1194 // Preserve the high bits on big-endian targets. 1195 // That is what memory coercion does. 1196 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1197 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1198 1199 if (SrcSize > DstSize) { 1200 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1201 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1202 } else { 1203 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1204 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1205 } 1206 } else { 1207 // Little-endian targets preserve the low bits. No shifts required. 1208 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1209 } 1210 } 1211 1212 if (isa<llvm::PointerType>(Ty)) 1213 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1214 return Val; 1215 } 1216 1217 1218 1219 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1220 /// a pointer to an object of type \arg Ty, known to be aligned to 1221 /// \arg SrcAlign bytes. 1222 /// 1223 /// This safely handles the case when the src type is smaller than the 1224 /// destination type; in this situation the values of bits which not 1225 /// present in the src are undefined. 1226 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1227 CodeGenFunction &CGF) { 1228 llvm::Type *SrcTy = Src.getElementType(); 1229 1230 // If SrcTy and Ty are the same, just do a load. 1231 if (SrcTy == Ty) 1232 return CGF.Builder.CreateLoad(Src); 1233 1234 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1235 1236 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1237 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, 1238 DstSize.getFixedSize(), CGF); 1239 SrcTy = Src.getElementType(); 1240 } 1241 1242 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1243 1244 // If the source and destination are integer or pointer types, just do an 1245 // extension or truncation to the desired type. 1246 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1247 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1248 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1249 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1250 } 1251 1252 // If load is legal, just bitcast the src pointer. 1253 if (!SrcSize.isScalable() && !DstSize.isScalable() && 1254 SrcSize.getFixedSize() >= DstSize.getFixedSize()) { 1255 // Generally SrcSize is never greater than DstSize, since this means we are 1256 // losing bits. However, this can happen in cases where the structure has 1257 // additional padding, for example due to a user specified alignment. 1258 // 1259 // FIXME: Assert that we aren't truncating non-padding bits when have access 1260 // to that information. 1261 Src = CGF.Builder.CreateBitCast(Src, 1262 Ty->getPointerTo(Src.getAddressSpace())); 1263 return CGF.Builder.CreateLoad(Src); 1264 } 1265 1266 // Otherwise do coercion through memory. This is stupid, but simple. 1267 Address Tmp = 1268 CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName()); 1269 CGF.Builder.CreateMemCpy( 1270 Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(), 1271 Src.getAlignment().getAsAlign(), 1272 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize())); 1273 return CGF.Builder.CreateLoad(Tmp); 1274 } 1275 1276 // Function to store a first-class aggregate into memory. We prefer to 1277 // store the elements rather than the aggregate to be more friendly to 1278 // fast-isel. 1279 // FIXME: Do we need to recurse here? 1280 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest, 1281 bool DestIsVolatile) { 1282 // Prefer scalar stores to first-class aggregate stores. 1283 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) { 1284 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1285 Address EltPtr = Builder.CreateStructGEP(Dest, i); 1286 llvm::Value *Elt = Builder.CreateExtractValue(Val, i); 1287 Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1288 } 1289 } else { 1290 Builder.CreateStore(Val, Dest, DestIsVolatile); 1291 } 1292 } 1293 1294 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1295 /// where the source and destination may have different types. The 1296 /// destination is known to be aligned to \arg DstAlign bytes. 1297 /// 1298 /// This safely handles the case when the src type is larger than the 1299 /// destination type; the upper bits of the src will be lost. 1300 static void CreateCoercedStore(llvm::Value *Src, 1301 Address Dst, 1302 bool DstIsVolatile, 1303 CodeGenFunction &CGF) { 1304 llvm::Type *SrcTy = Src->getType(); 1305 llvm::Type *DstTy = Dst.getElementType(); 1306 if (SrcTy == DstTy) { 1307 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1308 return; 1309 } 1310 1311 llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1312 1313 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1314 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, 1315 SrcSize.getFixedSize(), CGF); 1316 DstTy = Dst.getElementType(); 1317 } 1318 1319 llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy); 1320 llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy); 1321 if (SrcPtrTy && DstPtrTy && 1322 SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) { 1323 Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy); 1324 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1325 return; 1326 } 1327 1328 // If the source and destination are integer or pointer types, just do an 1329 // extension or truncation to the desired type. 1330 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1331 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1332 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1333 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1334 return; 1335 } 1336 1337 llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1338 1339 // If store is legal, just bitcast the src pointer. 1340 if (isa<llvm::ScalableVectorType>(SrcTy) || 1341 isa<llvm::ScalableVectorType>(DstTy) || 1342 SrcSize.getFixedSize() <= DstSize.getFixedSize()) { 1343 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1344 CGF.EmitAggregateStore(Src, Dst, DstIsVolatile); 1345 } else { 1346 // Otherwise do coercion through memory. This is stupid, but 1347 // simple. 1348 1349 // Generally SrcSize is never greater than DstSize, since this means we are 1350 // losing bits. However, this can happen in cases where the structure has 1351 // additional padding, for example due to a user specified alignment. 1352 // 1353 // FIXME: Assert that we aren't truncating non-padding bits when have access 1354 // to that information. 1355 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1356 CGF.Builder.CreateStore(Src, Tmp); 1357 CGF.Builder.CreateMemCpy( 1358 Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(), 1359 Tmp.getAlignment().getAsAlign(), 1360 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize())); 1361 } 1362 } 1363 1364 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1365 const ABIArgInfo &info) { 1366 if (unsigned offset = info.getDirectOffset()) { 1367 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1368 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1369 CharUnits::fromQuantity(offset)); 1370 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1371 } 1372 return addr; 1373 } 1374 1375 namespace { 1376 1377 /// Encapsulates information about the way function arguments from 1378 /// CGFunctionInfo should be passed to actual LLVM IR function. 1379 class ClangToLLVMArgMapping { 1380 static const unsigned InvalidIndex = ~0U; 1381 unsigned InallocaArgNo; 1382 unsigned SRetArgNo; 1383 unsigned TotalIRArgs; 1384 1385 /// Arguments of LLVM IR function corresponding to single Clang argument. 1386 struct IRArgs { 1387 unsigned PaddingArgIndex; 1388 // Argument is expanded to IR arguments at positions 1389 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1390 unsigned FirstArgIndex; 1391 unsigned NumberOfArgs; 1392 1393 IRArgs() 1394 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1395 NumberOfArgs(0) {} 1396 }; 1397 1398 SmallVector<IRArgs, 8> ArgInfo; 1399 1400 public: 1401 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1402 bool OnlyRequiredArgs = false) 1403 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1404 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1405 construct(Context, FI, OnlyRequiredArgs); 1406 } 1407 1408 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1409 unsigned getInallocaArgNo() const { 1410 assert(hasInallocaArg()); 1411 return InallocaArgNo; 1412 } 1413 1414 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1415 unsigned getSRetArgNo() const { 1416 assert(hasSRetArg()); 1417 return SRetArgNo; 1418 } 1419 1420 unsigned totalIRArgs() const { return TotalIRArgs; } 1421 1422 bool hasPaddingArg(unsigned ArgNo) const { 1423 assert(ArgNo < ArgInfo.size()); 1424 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1425 } 1426 unsigned getPaddingArgNo(unsigned ArgNo) const { 1427 assert(hasPaddingArg(ArgNo)); 1428 return ArgInfo[ArgNo].PaddingArgIndex; 1429 } 1430 1431 /// Returns index of first IR argument corresponding to ArgNo, and their 1432 /// quantity. 1433 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1434 assert(ArgNo < ArgInfo.size()); 1435 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1436 ArgInfo[ArgNo].NumberOfArgs); 1437 } 1438 1439 private: 1440 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1441 bool OnlyRequiredArgs); 1442 }; 1443 1444 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1445 const CGFunctionInfo &FI, 1446 bool OnlyRequiredArgs) { 1447 unsigned IRArgNo = 0; 1448 bool SwapThisWithSRet = false; 1449 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1450 1451 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1452 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1453 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1454 } 1455 1456 unsigned ArgNo = 0; 1457 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1458 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1459 ++I, ++ArgNo) { 1460 assert(I != FI.arg_end()); 1461 QualType ArgType = I->type; 1462 const ABIArgInfo &AI = I->info; 1463 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1464 auto &IRArgs = ArgInfo[ArgNo]; 1465 1466 if (AI.getPaddingType()) 1467 IRArgs.PaddingArgIndex = IRArgNo++; 1468 1469 switch (AI.getKind()) { 1470 case ABIArgInfo::Extend: 1471 case ABIArgInfo::Direct: { 1472 // FIXME: handle sseregparm someday... 1473 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1474 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1475 IRArgs.NumberOfArgs = STy->getNumElements(); 1476 } else { 1477 IRArgs.NumberOfArgs = 1; 1478 } 1479 break; 1480 } 1481 case ABIArgInfo::Indirect: 1482 case ABIArgInfo::IndirectAliased: 1483 IRArgs.NumberOfArgs = 1; 1484 break; 1485 case ABIArgInfo::Ignore: 1486 case ABIArgInfo::InAlloca: 1487 // ignore and inalloca doesn't have matching LLVM parameters. 1488 IRArgs.NumberOfArgs = 0; 1489 break; 1490 case ABIArgInfo::CoerceAndExpand: 1491 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1492 break; 1493 case ABIArgInfo::Expand: 1494 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1495 break; 1496 } 1497 1498 if (IRArgs.NumberOfArgs > 0) { 1499 IRArgs.FirstArgIndex = IRArgNo; 1500 IRArgNo += IRArgs.NumberOfArgs; 1501 } 1502 1503 // Skip over the sret parameter when it comes second. We already handled it 1504 // above. 1505 if (IRArgNo == 1 && SwapThisWithSRet) 1506 IRArgNo++; 1507 } 1508 assert(ArgNo == ArgInfo.size()); 1509 1510 if (FI.usesInAlloca()) 1511 InallocaArgNo = IRArgNo++; 1512 1513 TotalIRArgs = IRArgNo; 1514 } 1515 } // namespace 1516 1517 /***/ 1518 1519 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1520 const auto &RI = FI.getReturnInfo(); 1521 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1522 } 1523 1524 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1525 return ReturnTypeUsesSRet(FI) && 1526 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1527 } 1528 1529 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1530 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1531 switch (BT->getKind()) { 1532 default: 1533 return false; 1534 case BuiltinType::Float: 1535 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1536 case BuiltinType::Double: 1537 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1538 case BuiltinType::LongDouble: 1539 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1540 } 1541 } 1542 1543 return false; 1544 } 1545 1546 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1547 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1548 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1549 if (BT->getKind() == BuiltinType::LongDouble) 1550 return getTarget().useObjCFP2RetForComplexLongDouble(); 1551 } 1552 } 1553 1554 return false; 1555 } 1556 1557 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1558 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1559 return GetFunctionType(FI); 1560 } 1561 1562 llvm::FunctionType * 1563 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1564 1565 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1566 (void)Inserted; 1567 assert(Inserted && "Recursively being processed?"); 1568 1569 llvm::Type *resultType = nullptr; 1570 const ABIArgInfo &retAI = FI.getReturnInfo(); 1571 switch (retAI.getKind()) { 1572 case ABIArgInfo::Expand: 1573 case ABIArgInfo::IndirectAliased: 1574 llvm_unreachable("Invalid ABI kind for return argument"); 1575 1576 case ABIArgInfo::Extend: 1577 case ABIArgInfo::Direct: 1578 resultType = retAI.getCoerceToType(); 1579 break; 1580 1581 case ABIArgInfo::InAlloca: 1582 if (retAI.getInAllocaSRet()) { 1583 // sret things on win32 aren't void, they return the sret pointer. 1584 QualType ret = FI.getReturnType(); 1585 llvm::Type *ty = ConvertType(ret); 1586 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1587 resultType = llvm::PointerType::get(ty, addressSpace); 1588 } else { 1589 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1590 } 1591 break; 1592 1593 case ABIArgInfo::Indirect: 1594 case ABIArgInfo::Ignore: 1595 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1596 break; 1597 1598 case ABIArgInfo::CoerceAndExpand: 1599 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1600 break; 1601 } 1602 1603 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1604 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1605 1606 // Add type for sret argument. 1607 if (IRFunctionArgs.hasSRetArg()) { 1608 QualType Ret = FI.getReturnType(); 1609 llvm::Type *Ty = ConvertType(Ret); 1610 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1611 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1612 llvm::PointerType::get(Ty, AddressSpace); 1613 } 1614 1615 // Add type for inalloca argument. 1616 if (IRFunctionArgs.hasInallocaArg()) { 1617 auto ArgStruct = FI.getArgStruct(); 1618 assert(ArgStruct); 1619 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1620 } 1621 1622 // Add in all of the required arguments. 1623 unsigned ArgNo = 0; 1624 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1625 ie = it + FI.getNumRequiredArgs(); 1626 for (; it != ie; ++it, ++ArgNo) { 1627 const ABIArgInfo &ArgInfo = it->info; 1628 1629 // Insert a padding type to ensure proper alignment. 1630 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1631 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1632 ArgInfo.getPaddingType(); 1633 1634 unsigned FirstIRArg, NumIRArgs; 1635 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1636 1637 switch (ArgInfo.getKind()) { 1638 case ABIArgInfo::Ignore: 1639 case ABIArgInfo::InAlloca: 1640 assert(NumIRArgs == 0); 1641 break; 1642 1643 case ABIArgInfo::Indirect: { 1644 assert(NumIRArgs == 1); 1645 // indirect arguments are always on the stack, which is alloca addr space. 1646 llvm::Type *LTy = ConvertTypeForMem(it->type); 1647 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1648 CGM.getDataLayout().getAllocaAddrSpace()); 1649 break; 1650 } 1651 case ABIArgInfo::IndirectAliased: { 1652 assert(NumIRArgs == 1); 1653 llvm::Type *LTy = ConvertTypeForMem(it->type); 1654 ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace()); 1655 break; 1656 } 1657 case ABIArgInfo::Extend: 1658 case ABIArgInfo::Direct: { 1659 // Fast-isel and the optimizer generally like scalar values better than 1660 // FCAs, so we flatten them if this is safe to do for this argument. 1661 llvm::Type *argType = ArgInfo.getCoerceToType(); 1662 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1663 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1664 assert(NumIRArgs == st->getNumElements()); 1665 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1666 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1667 } else { 1668 assert(NumIRArgs == 1); 1669 ArgTypes[FirstIRArg] = argType; 1670 } 1671 break; 1672 } 1673 1674 case ABIArgInfo::CoerceAndExpand: { 1675 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1676 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1677 *ArgTypesIter++ = EltTy; 1678 } 1679 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1680 break; 1681 } 1682 1683 case ABIArgInfo::Expand: 1684 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1685 getExpandedTypes(it->type, ArgTypesIter); 1686 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1687 break; 1688 } 1689 } 1690 1691 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1692 assert(Erased && "Not in set?"); 1693 1694 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1695 } 1696 1697 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1698 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1699 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1700 1701 if (!isFuncTypeConvertible(FPT)) 1702 return llvm::StructType::get(getLLVMContext()); 1703 1704 return GetFunctionType(GD); 1705 } 1706 1707 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1708 llvm::AttrBuilder &FuncAttrs, 1709 const FunctionProtoType *FPT) { 1710 if (!FPT) 1711 return; 1712 1713 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1714 FPT->isNothrow()) 1715 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1716 } 1717 1718 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name, 1719 bool HasOptnone, 1720 bool AttrOnCallSite, 1721 llvm::AttrBuilder &FuncAttrs) { 1722 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1723 if (!HasOptnone) { 1724 if (CodeGenOpts.OptimizeSize) 1725 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1726 if (CodeGenOpts.OptimizeSize == 2) 1727 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1728 } 1729 1730 if (CodeGenOpts.DisableRedZone) 1731 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1732 if (CodeGenOpts.IndirectTlsSegRefs) 1733 FuncAttrs.addAttribute("indirect-tls-seg-refs"); 1734 if (CodeGenOpts.NoImplicitFloat) 1735 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1736 1737 if (AttrOnCallSite) { 1738 // Attributes that should go on the call site only. 1739 if (!CodeGenOpts.SimplifyLibCalls || 1740 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1741 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1742 if (!CodeGenOpts.TrapFuncName.empty()) 1743 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1744 } else { 1745 StringRef FpKind; 1746 switch (CodeGenOpts.getFramePointer()) { 1747 case CodeGenOptions::FramePointerKind::None: 1748 FpKind = "none"; 1749 break; 1750 case CodeGenOptions::FramePointerKind::NonLeaf: 1751 FpKind = "non-leaf"; 1752 break; 1753 case CodeGenOptions::FramePointerKind::All: 1754 FpKind = "all"; 1755 break; 1756 } 1757 FuncAttrs.addAttribute("frame-pointer", FpKind); 1758 1759 FuncAttrs.addAttribute("less-precise-fpmad", 1760 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1761 1762 if (CodeGenOpts.NullPointerIsValid) 1763 FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid); 1764 1765 if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE()) 1766 FuncAttrs.addAttribute("denormal-fp-math", 1767 CodeGenOpts.FPDenormalMode.str()); 1768 if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) { 1769 FuncAttrs.addAttribute( 1770 "denormal-fp-math-f32", 1771 CodeGenOpts.FP32DenormalMode.str()); 1772 } 1773 1774 FuncAttrs.addAttribute("no-trapping-math", 1775 llvm::toStringRef(LangOpts.getFPExceptionMode() == 1776 LangOptions::FPE_Ignore)); 1777 1778 // Strict (compliant) code is the default, so only add this attribute to 1779 // indicate that we are trying to workaround a problem case. 1780 if (!CodeGenOpts.StrictFloatCastOverflow) 1781 FuncAttrs.addAttribute("strict-float-cast-overflow", "false"); 1782 1783 // TODO: Are these all needed? 1784 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1785 FuncAttrs.addAttribute("no-infs-fp-math", 1786 llvm::toStringRef(LangOpts.NoHonorInfs)); 1787 FuncAttrs.addAttribute("no-nans-fp-math", 1788 llvm::toStringRef(LangOpts.NoHonorNaNs)); 1789 FuncAttrs.addAttribute("unsafe-fp-math", 1790 llvm::toStringRef(LangOpts.UnsafeFPMath)); 1791 FuncAttrs.addAttribute("use-soft-float", 1792 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1793 FuncAttrs.addAttribute("stack-protector-buffer-size", 1794 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1795 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1796 llvm::toStringRef(LangOpts.NoSignedZero)); 1797 1798 // TODO: Reciprocal estimate codegen options should apply to instructions? 1799 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1800 if (!Recips.empty()) 1801 FuncAttrs.addAttribute("reciprocal-estimates", 1802 llvm::join(Recips, ",")); 1803 1804 if (!CodeGenOpts.PreferVectorWidth.empty() && 1805 CodeGenOpts.PreferVectorWidth != "none") 1806 FuncAttrs.addAttribute("prefer-vector-width", 1807 CodeGenOpts.PreferVectorWidth); 1808 1809 if (CodeGenOpts.StackRealignment) 1810 FuncAttrs.addAttribute("stackrealign"); 1811 if (CodeGenOpts.Backchain) 1812 FuncAttrs.addAttribute("backchain"); 1813 if (CodeGenOpts.EnableSegmentedStacks) 1814 FuncAttrs.addAttribute("split-stack"); 1815 1816 if (CodeGenOpts.SpeculativeLoadHardening) 1817 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 1818 } 1819 1820 if (getLangOpts().assumeFunctionsAreConvergent()) { 1821 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1822 // convergent (meaning, they may call an intrinsically convergent op, such 1823 // as __syncthreads() / barrier(), and so can't have certain optimizations 1824 // applied around them). LLVM will remove this attribute where it safely 1825 // can. 1826 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1827 } 1828 1829 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1830 // Exceptions aren't supported in CUDA device code. 1831 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1832 } 1833 1834 for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) { 1835 StringRef Var, Value; 1836 std::tie(Var, Value) = Attr.split('='); 1837 FuncAttrs.addAttribute(Var, Value); 1838 } 1839 } 1840 1841 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) { 1842 llvm::AttrBuilder FuncAttrs; 1843 getDefaultFunctionAttributes(F.getName(), F.hasOptNone(), 1844 /* AttrOnCallSite = */ false, FuncAttrs); 1845 // TODO: call GetCPUAndFeaturesAttributes? 1846 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1847 } 1848 1849 void CodeGenModule::addDefaultFunctionDefinitionAttributes( 1850 llvm::AttrBuilder &attrs) { 1851 getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false, 1852 /*for call*/ false, attrs); 1853 GetCPUAndFeaturesAttributes(GlobalDecl(), attrs); 1854 } 1855 1856 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs, 1857 const LangOptions &LangOpts, 1858 const NoBuiltinAttr *NBA = nullptr) { 1859 auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) { 1860 SmallString<32> AttributeName; 1861 AttributeName += "no-builtin-"; 1862 AttributeName += BuiltinName; 1863 FuncAttrs.addAttribute(AttributeName); 1864 }; 1865 1866 // First, handle the language options passed through -fno-builtin. 1867 if (LangOpts.NoBuiltin) { 1868 // -fno-builtin disables them all. 1869 FuncAttrs.addAttribute("no-builtins"); 1870 return; 1871 } 1872 1873 // Then, add attributes for builtins specified through -fno-builtin-<name>. 1874 llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr); 1875 1876 // Now, let's check the __attribute__((no_builtin("...")) attribute added to 1877 // the source. 1878 if (!NBA) 1879 return; 1880 1881 // If there is a wildcard in the builtin names specified through the 1882 // attribute, disable them all. 1883 if (llvm::is_contained(NBA->builtinNames(), "*")) { 1884 FuncAttrs.addAttribute("no-builtins"); 1885 return; 1886 } 1887 1888 // And last, add the rest of the builtin names. 1889 llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr); 1890 } 1891 1892 /// Construct the IR attribute list of a function or call. 1893 /// 1894 /// When adding an attribute, please consider where it should be handled: 1895 /// 1896 /// - getDefaultFunctionAttributes is for attributes that are essentially 1897 /// part of the global target configuration (but perhaps can be 1898 /// overridden on a per-function basis). Adding attributes there 1899 /// will cause them to also be set in frontends that build on Clang's 1900 /// target-configuration logic, as well as for code defined in library 1901 /// modules such as CUDA's libdevice. 1902 /// 1903 /// - ConstructAttributeList builds on top of getDefaultFunctionAttributes 1904 /// and adds declaration-specific, convention-specific, and 1905 /// frontend-specific logic. The last is of particular importance: 1906 /// attributes that restrict how the frontend generates code must be 1907 /// added here rather than getDefaultFunctionAttributes. 1908 /// 1909 void CodeGenModule::ConstructAttributeList( 1910 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1911 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1912 llvm::AttrBuilder FuncAttrs; 1913 llvm::AttrBuilder RetAttrs; 1914 1915 // Collect function IR attributes from the CC lowering. 1916 // We'll collect the paramete and result attributes later. 1917 CallingConv = FI.getEffectiveCallingConvention(); 1918 if (FI.isNoReturn()) 1919 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1920 if (FI.isCmseNSCall()) 1921 FuncAttrs.addAttribute("cmse_nonsecure_call"); 1922 1923 // Collect function IR attributes from the callee prototype if we have one. 1924 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1925 CalleeInfo.getCalleeFunctionProtoType()); 1926 1927 const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl(); 1928 1929 bool HasOptnone = false; 1930 // The NoBuiltinAttr attached to the target FunctionDecl. 1931 const NoBuiltinAttr *NBA = nullptr; 1932 1933 // Collect function IR attributes based on declaration-specific 1934 // information. 1935 // FIXME: handle sseregparm someday... 1936 if (TargetDecl) { 1937 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1938 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1939 if (TargetDecl->hasAttr<NoThrowAttr>()) 1940 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1941 if (TargetDecl->hasAttr<NoReturnAttr>()) 1942 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1943 if (TargetDecl->hasAttr<ColdAttr>()) 1944 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1945 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1946 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1947 if (TargetDecl->hasAttr<ConvergentAttr>()) 1948 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1949 1950 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1951 AddAttributesFromFunctionProtoType( 1952 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1953 if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) { 1954 // A sane operator new returns a non-aliasing pointer. 1955 auto Kind = Fn->getDeclName().getCXXOverloadedOperator(); 1956 if (getCodeGenOpts().AssumeSaneOperatorNew && 1957 (Kind == OO_New || Kind == OO_Array_New)) 1958 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1959 } 1960 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1961 const bool IsVirtualCall = MD && MD->isVirtual(); 1962 // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a 1963 // virtual function. These attributes are not inherited by overloads. 1964 if (!(AttrOnCallSite && IsVirtualCall)) { 1965 if (Fn->isNoReturn()) 1966 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1967 NBA = Fn->getAttr<NoBuiltinAttr>(); 1968 } 1969 } 1970 1971 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1972 if (TargetDecl->hasAttr<ConstAttr>()) { 1973 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1974 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1975 } else if (TargetDecl->hasAttr<PureAttr>()) { 1976 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1977 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1978 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1979 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1980 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1981 } 1982 if (TargetDecl->hasAttr<RestrictAttr>()) 1983 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1984 if (TargetDecl->hasAttr<ReturnsNonNullAttr>() && 1985 !CodeGenOpts.NullPointerIsValid) 1986 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1987 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1988 FuncAttrs.addAttribute("no_caller_saved_registers"); 1989 if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>()) 1990 FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck); 1991 1992 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1993 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1994 Optional<unsigned> NumElemsParam; 1995 if (AllocSize->getNumElemsParam().isValid()) 1996 NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex(); 1997 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(), 1998 NumElemsParam); 1999 } 2000 2001 if (TargetDecl->hasAttr<OpenCLKernelAttr>()) { 2002 if (getLangOpts().OpenCLVersion <= 120) { 2003 // OpenCL v1.2 Work groups are always uniform 2004 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 2005 } else { 2006 // OpenCL v2.0 Work groups may be whether uniform or not. 2007 // '-cl-uniform-work-group-size' compile option gets a hint 2008 // to the compiler that the global work-size be a multiple of 2009 // the work-group size specified to clEnqueueNDRangeKernel 2010 // (i.e. work groups are uniform). 2011 FuncAttrs.addAttribute("uniform-work-group-size", 2012 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 2013 } 2014 } 2015 } 2016 2017 // Attach "no-builtins" attributes to: 2018 // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>". 2019 // * definitions: "no-builtins" or "no-builtin-<name>" only. 2020 // The attributes can come from: 2021 // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name> 2022 // * FunctionDecl attributes: __attribute__((no_builtin(...))) 2023 addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA); 2024 2025 // Collect function IR attributes based on global settiings. 2026 getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 2027 2028 // Override some default IR attributes based on declaration-specific 2029 // information. 2030 if (TargetDecl) { 2031 if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>()) 2032 FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening); 2033 if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>()) 2034 FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening); 2035 if (TargetDecl->hasAttr<NoSplitStackAttr>()) 2036 FuncAttrs.removeAttribute("split-stack"); 2037 2038 // Add NonLazyBind attribute to function declarations when -fno-plt 2039 // is used. 2040 // FIXME: what if we just haven't processed the function definition 2041 // yet, or if it's an external definition like C99 inline? 2042 if (CodeGenOpts.NoPLT) { 2043 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 2044 if (!Fn->isDefined() && !AttrOnCallSite) { 2045 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 2046 } 2047 } 2048 } 2049 } 2050 2051 // Collect non-call-site function IR attributes from declaration-specific 2052 // information. 2053 if (!AttrOnCallSite) { 2054 if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>()) 2055 FuncAttrs.addAttribute("cmse_nonsecure_entry"); 2056 2057 // Whether tail calls are enabled. 2058 auto shouldDisableTailCalls = [&] { 2059 // Should this be honored in getDefaultFunctionAttributes? 2060 if (CodeGenOpts.DisableTailCalls) 2061 return true; 2062 2063 if (!TargetDecl) 2064 return false; 2065 2066 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 2067 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 2068 return true; 2069 2070 if (CodeGenOpts.NoEscapingBlockTailCalls) { 2071 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 2072 if (!BD->doesNotEscape()) 2073 return true; 2074 } 2075 2076 return false; 2077 }; 2078 FuncAttrs.addAttribute("disable-tail-calls", 2079 llvm::toStringRef(shouldDisableTailCalls())); 2080 2081 // CPU/feature overrides. addDefaultFunctionDefinitionAttributes 2082 // handles these separately to set them based on the global defaults. 2083 GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs); 2084 } 2085 2086 // Collect attributes from arguments and return values. 2087 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 2088 2089 QualType RetTy = FI.getReturnType(); 2090 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2091 switch (RetAI.getKind()) { 2092 case ABIArgInfo::Extend: 2093 if (RetAI.isSignExt()) 2094 RetAttrs.addAttribute(llvm::Attribute::SExt); 2095 else 2096 RetAttrs.addAttribute(llvm::Attribute::ZExt); 2097 LLVM_FALLTHROUGH; 2098 case ABIArgInfo::Direct: 2099 if (RetAI.getInReg()) 2100 RetAttrs.addAttribute(llvm::Attribute::InReg); 2101 break; 2102 case ABIArgInfo::Ignore: 2103 break; 2104 2105 case ABIArgInfo::InAlloca: 2106 case ABIArgInfo::Indirect: { 2107 // inalloca and sret disable readnone and readonly 2108 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2109 .removeAttribute(llvm::Attribute::ReadNone); 2110 break; 2111 } 2112 2113 case ABIArgInfo::CoerceAndExpand: 2114 break; 2115 2116 case ABIArgInfo::Expand: 2117 case ABIArgInfo::IndirectAliased: 2118 llvm_unreachable("Invalid ABI kind for return argument"); 2119 } 2120 2121 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 2122 QualType PTy = RefTy->getPointeeType(); 2123 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2124 RetAttrs.addDereferenceableAttr( 2125 getMinimumObjectSize(PTy).getQuantity()); 2126 if (getContext().getTargetAddressSpace(PTy) == 0 && 2127 !CodeGenOpts.NullPointerIsValid) 2128 RetAttrs.addAttribute(llvm::Attribute::NonNull); 2129 if (PTy->isObjectType()) { 2130 llvm::Align Alignment = 2131 getNaturalPointeeTypeAlignment(RetTy).getAsAlign(); 2132 RetAttrs.addAlignmentAttr(Alignment); 2133 } 2134 } 2135 2136 bool hasUsedSRet = false; 2137 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 2138 2139 // Attach attributes to sret. 2140 if (IRFunctionArgs.hasSRetArg()) { 2141 llvm::AttrBuilder SRETAttrs; 2142 SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy)); 2143 hasUsedSRet = true; 2144 if (RetAI.getInReg()) 2145 SRETAttrs.addAttribute(llvm::Attribute::InReg); 2146 SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity()); 2147 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 2148 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 2149 } 2150 2151 // Attach attributes to inalloca argument. 2152 if (IRFunctionArgs.hasInallocaArg()) { 2153 llvm::AttrBuilder Attrs; 2154 Attrs.addAttribute(llvm::Attribute::InAlloca); 2155 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 2156 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2157 } 2158 2159 unsigned ArgNo = 0; 2160 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 2161 E = FI.arg_end(); 2162 I != E; ++I, ++ArgNo) { 2163 QualType ParamType = I->type; 2164 const ABIArgInfo &AI = I->info; 2165 llvm::AttrBuilder Attrs; 2166 2167 // Add attribute for padding argument, if necessary. 2168 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 2169 if (AI.getPaddingInReg()) { 2170 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 2171 llvm::AttributeSet::get( 2172 getLLVMContext(), 2173 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 2174 } 2175 } 2176 2177 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2178 // have the corresponding parameter variable. It doesn't make 2179 // sense to do it here because parameters are so messed up. 2180 switch (AI.getKind()) { 2181 case ABIArgInfo::Extend: 2182 if (AI.isSignExt()) 2183 Attrs.addAttribute(llvm::Attribute::SExt); 2184 else 2185 Attrs.addAttribute(llvm::Attribute::ZExt); 2186 LLVM_FALLTHROUGH; 2187 case ABIArgInfo::Direct: 2188 if (ArgNo == 0 && FI.isChainCall()) 2189 Attrs.addAttribute(llvm::Attribute::Nest); 2190 else if (AI.getInReg()) 2191 Attrs.addAttribute(llvm::Attribute::InReg); 2192 break; 2193 2194 case ABIArgInfo::Indirect: { 2195 if (AI.getInReg()) 2196 Attrs.addAttribute(llvm::Attribute::InReg); 2197 2198 if (AI.getIndirectByVal()) 2199 Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType)); 2200 2201 auto *Decl = ParamType->getAsRecordDecl(); 2202 if (CodeGenOpts.PassByValueIsNoAlias && Decl && 2203 Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs) 2204 // When calling the function, the pointer passed in will be the only 2205 // reference to the underlying object. Mark it accordingly. 2206 Attrs.addAttribute(llvm::Attribute::NoAlias); 2207 2208 // TODO: We could add the byref attribute if not byval, but it would 2209 // require updating many testcases. 2210 2211 CharUnits Align = AI.getIndirectAlign(); 2212 2213 // In a byval argument, it is important that the required 2214 // alignment of the type is honored, as LLVM might be creating a 2215 // *new* stack object, and needs to know what alignment to give 2216 // it. (Sometimes it can deduce a sensible alignment on its own, 2217 // but not if clang decides it must emit a packed struct, or the 2218 // user specifies increased alignment requirements.) 2219 // 2220 // This is different from indirect *not* byval, where the object 2221 // exists already, and the align attribute is purely 2222 // informative. 2223 assert(!Align.isZero()); 2224 2225 // For now, only add this when we have a byval argument. 2226 // TODO: be less lazy about updating test cases. 2227 if (AI.getIndirectByVal()) 2228 Attrs.addAlignmentAttr(Align.getQuantity()); 2229 2230 // byval disables readnone and readonly. 2231 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2232 .removeAttribute(llvm::Attribute::ReadNone); 2233 2234 break; 2235 } 2236 case ABIArgInfo::IndirectAliased: { 2237 CharUnits Align = AI.getIndirectAlign(); 2238 Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType)); 2239 Attrs.addAlignmentAttr(Align.getQuantity()); 2240 break; 2241 } 2242 case ABIArgInfo::Ignore: 2243 case ABIArgInfo::Expand: 2244 case ABIArgInfo::CoerceAndExpand: 2245 break; 2246 2247 case ABIArgInfo::InAlloca: 2248 // inalloca disables readnone and readonly. 2249 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2250 .removeAttribute(llvm::Attribute::ReadNone); 2251 continue; 2252 } 2253 2254 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2255 QualType PTy = RefTy->getPointeeType(); 2256 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2257 Attrs.addDereferenceableAttr( 2258 getMinimumObjectSize(PTy).getQuantity()); 2259 if (getContext().getTargetAddressSpace(PTy) == 0 && 2260 !CodeGenOpts.NullPointerIsValid) 2261 Attrs.addAttribute(llvm::Attribute::NonNull); 2262 if (PTy->isObjectType()) { 2263 llvm::Align Alignment = 2264 getNaturalPointeeTypeAlignment(ParamType).getAsAlign(); 2265 Attrs.addAlignmentAttr(Alignment); 2266 } 2267 } 2268 2269 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2270 case ParameterABI::Ordinary: 2271 break; 2272 2273 case ParameterABI::SwiftIndirectResult: { 2274 // Add 'sret' if we haven't already used it for something, but 2275 // only if the result is void. 2276 if (!hasUsedSRet && RetTy->isVoidType()) { 2277 Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType)); 2278 hasUsedSRet = true; 2279 } 2280 2281 // Add 'noalias' in either case. 2282 Attrs.addAttribute(llvm::Attribute::NoAlias); 2283 2284 // Add 'dereferenceable' and 'alignment'. 2285 auto PTy = ParamType->getPointeeType(); 2286 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2287 auto info = getContext().getTypeInfoInChars(PTy); 2288 Attrs.addDereferenceableAttr(info.Width.getQuantity()); 2289 Attrs.addAlignmentAttr(info.Align.getAsAlign()); 2290 } 2291 break; 2292 } 2293 2294 case ParameterABI::SwiftErrorResult: 2295 Attrs.addAttribute(llvm::Attribute::SwiftError); 2296 break; 2297 2298 case ParameterABI::SwiftContext: 2299 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2300 break; 2301 } 2302 2303 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2304 Attrs.addAttribute(llvm::Attribute::NoCapture); 2305 2306 if (Attrs.hasAttributes()) { 2307 unsigned FirstIRArg, NumIRArgs; 2308 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2309 for (unsigned i = 0; i < NumIRArgs; i++) 2310 ArgAttrs[FirstIRArg + i] = 2311 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2312 } 2313 } 2314 assert(ArgNo == FI.arg_size()); 2315 2316 AttrList = llvm::AttributeList::get( 2317 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2318 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2319 } 2320 2321 /// An argument came in as a promoted argument; demote it back to its 2322 /// declared type. 2323 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2324 const VarDecl *var, 2325 llvm::Value *value) { 2326 llvm::Type *varType = CGF.ConvertType(var->getType()); 2327 2328 // This can happen with promotions that actually don't change the 2329 // underlying type, like the enum promotions. 2330 if (value->getType() == varType) return value; 2331 2332 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2333 && "unexpected promotion type"); 2334 2335 if (isa<llvm::IntegerType>(varType)) 2336 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2337 2338 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2339 } 2340 2341 /// Returns the attribute (either parameter attribute, or function 2342 /// attribute), which declares argument ArgNo to be non-null. 2343 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2344 QualType ArgType, unsigned ArgNo) { 2345 // FIXME: __attribute__((nonnull)) can also be applied to: 2346 // - references to pointers, where the pointee is known to be 2347 // nonnull (apparently a Clang extension) 2348 // - transparent unions containing pointers 2349 // In the former case, LLVM IR cannot represent the constraint. In 2350 // the latter case, we have no guarantee that the transparent union 2351 // is in fact passed as a pointer. 2352 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2353 return nullptr; 2354 // First, check attribute on parameter itself. 2355 if (PVD) { 2356 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2357 return ParmNNAttr; 2358 } 2359 // Check function attributes. 2360 if (!FD) 2361 return nullptr; 2362 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2363 if (NNAttr->isNonNull(ArgNo)) 2364 return NNAttr; 2365 } 2366 return nullptr; 2367 } 2368 2369 namespace { 2370 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2371 Address Temp; 2372 Address Arg; 2373 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2374 void Emit(CodeGenFunction &CGF, Flags flags) override { 2375 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2376 CGF.Builder.CreateStore(errorValue, Arg); 2377 } 2378 }; 2379 } 2380 2381 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2382 llvm::Function *Fn, 2383 const FunctionArgList &Args) { 2384 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2385 // Naked functions don't have prologues. 2386 return; 2387 2388 // If this is an implicit-return-zero function, go ahead and 2389 // initialize the return value. TODO: it might be nice to have 2390 // a more general mechanism for this that didn't require synthesized 2391 // return statements. 2392 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2393 if (FD->hasImplicitReturnZero()) { 2394 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2395 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2396 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2397 Builder.CreateStore(Zero, ReturnValue); 2398 } 2399 } 2400 2401 // FIXME: We no longer need the types from FunctionArgList; lift up and 2402 // simplify. 2403 2404 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2405 assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs()); 2406 2407 // If we're using inalloca, all the memory arguments are GEPs off of the last 2408 // parameter, which is a pointer to the complete memory area. 2409 Address ArgStruct = Address::invalid(); 2410 if (IRFunctionArgs.hasInallocaArg()) { 2411 ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()), 2412 FI.getArgStructAlignment()); 2413 2414 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2415 } 2416 2417 // Name the struct return parameter. 2418 if (IRFunctionArgs.hasSRetArg()) { 2419 auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo()); 2420 AI->setName("agg.result"); 2421 AI->addAttr(llvm::Attribute::NoAlias); 2422 } 2423 2424 // Track if we received the parameter as a pointer (indirect, byval, or 2425 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2426 // into a local alloca for us. 2427 SmallVector<ParamValue, 16> ArgVals; 2428 ArgVals.reserve(Args.size()); 2429 2430 // Create a pointer value for every parameter declaration. This usually 2431 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2432 // any cleanups or do anything that might unwind. We do that separately, so 2433 // we can push the cleanups in the correct order for the ABI. 2434 assert(FI.arg_size() == Args.size() && 2435 "Mismatch between function signature & arguments."); 2436 unsigned ArgNo = 0; 2437 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2438 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2439 i != e; ++i, ++info_it, ++ArgNo) { 2440 const VarDecl *Arg = *i; 2441 const ABIArgInfo &ArgI = info_it->info; 2442 2443 bool isPromoted = 2444 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2445 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2446 // the parameter is promoted. In this case we convert to 2447 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2448 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2449 assert(hasScalarEvaluationKind(Ty) == 2450 hasScalarEvaluationKind(Arg->getType())); 2451 2452 unsigned FirstIRArg, NumIRArgs; 2453 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2454 2455 switch (ArgI.getKind()) { 2456 case ABIArgInfo::InAlloca: { 2457 assert(NumIRArgs == 0); 2458 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2459 Address V = 2460 Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName()); 2461 if (ArgI.getInAllocaIndirect()) 2462 V = Address(Builder.CreateLoad(V), 2463 getContext().getTypeAlignInChars(Ty)); 2464 ArgVals.push_back(ParamValue::forIndirect(V)); 2465 break; 2466 } 2467 2468 case ABIArgInfo::Indirect: 2469 case ABIArgInfo::IndirectAliased: { 2470 assert(NumIRArgs == 1); 2471 Address ParamAddr = 2472 Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign()); 2473 2474 if (!hasScalarEvaluationKind(Ty)) { 2475 // Aggregates and complex variables are accessed by reference. All we 2476 // need to do is realign the value, if requested. Also, if the address 2477 // may be aliased, copy it to ensure that the parameter variable is 2478 // mutable and has a unique adress, as C requires. 2479 Address V = ParamAddr; 2480 if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) { 2481 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2482 2483 // Copy from the incoming argument pointer to the temporary with the 2484 // appropriate alignment. 2485 // 2486 // FIXME: We should have a common utility for generating an aggregate 2487 // copy. 2488 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2489 Builder.CreateMemCpy( 2490 AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(), 2491 ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(), 2492 llvm::ConstantInt::get(IntPtrTy, Size.getQuantity())); 2493 V = AlignedTemp; 2494 } 2495 ArgVals.push_back(ParamValue::forIndirect(V)); 2496 } else { 2497 // Load scalar value from indirect argument. 2498 llvm::Value *V = 2499 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc()); 2500 2501 if (isPromoted) 2502 V = emitArgumentDemotion(*this, Arg, V); 2503 ArgVals.push_back(ParamValue::forDirect(V)); 2504 } 2505 break; 2506 } 2507 2508 case ABIArgInfo::Extend: 2509 case ABIArgInfo::Direct: { 2510 auto AI = Fn->getArg(FirstIRArg); 2511 llvm::Type *LTy = ConvertType(Arg->getType()); 2512 2513 // Prepare parameter attributes. So far, only attributes for pointer 2514 // parameters are prepared. See 2515 // http://llvm.org/docs/LangRef.html#paramattrs. 2516 if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() && 2517 ArgI.getCoerceToType()->isPointerTy()) { 2518 assert(NumIRArgs == 1); 2519 2520 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2521 // Set `nonnull` attribute if any. 2522 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2523 PVD->getFunctionScopeIndex()) && 2524 !CGM.getCodeGenOpts().NullPointerIsValid) 2525 AI->addAttr(llvm::Attribute::NonNull); 2526 2527 QualType OTy = PVD->getOriginalType(); 2528 if (const auto *ArrTy = 2529 getContext().getAsConstantArrayType(OTy)) { 2530 // A C99 array parameter declaration with the static keyword also 2531 // indicates dereferenceability, and if the size is constant we can 2532 // use the dereferenceable attribute (which requires the size in 2533 // bytes). 2534 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2535 QualType ETy = ArrTy->getElementType(); 2536 llvm::Align Alignment = 2537 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2538 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2539 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2540 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2541 ArrSize) { 2542 llvm::AttrBuilder Attrs; 2543 Attrs.addDereferenceableAttr( 2544 getContext().getTypeSizeInChars(ETy).getQuantity() * 2545 ArrSize); 2546 AI->addAttrs(Attrs); 2547 } else if (getContext().getTargetInfo().getNullPointerValue( 2548 ETy.getAddressSpace()) == 0 && 2549 !CGM.getCodeGenOpts().NullPointerIsValid) { 2550 AI->addAttr(llvm::Attribute::NonNull); 2551 } 2552 } 2553 } else if (const auto *ArrTy = 2554 getContext().getAsVariableArrayType(OTy)) { 2555 // For C99 VLAs with the static keyword, we don't know the size so 2556 // we can't use the dereferenceable attribute, but in addrspace(0) 2557 // we know that it must be nonnull. 2558 if (ArrTy->getSizeModifier() == VariableArrayType::Static) { 2559 QualType ETy = ArrTy->getElementType(); 2560 llvm::Align Alignment = 2561 CGM.getNaturalTypeAlignment(ETy).getAsAlign(); 2562 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2563 if (!getContext().getTargetAddressSpace(ETy) && 2564 !CGM.getCodeGenOpts().NullPointerIsValid) 2565 AI->addAttr(llvm::Attribute::NonNull); 2566 } 2567 } 2568 2569 // Set `align` attribute if any. 2570 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2571 if (!AVAttr) 2572 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2573 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2574 if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) { 2575 // If alignment-assumption sanitizer is enabled, we do *not* add 2576 // alignment attribute here, but emit normal alignment assumption, 2577 // so the UBSAN check could function. 2578 llvm::ConstantInt *AlignmentCI = 2579 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment())); 2580 unsigned AlignmentInt = 2581 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment); 2582 if (AI->getParamAlign().valueOrOne() < AlignmentInt) { 2583 AI->removeAttr(llvm::Attribute::AttrKind::Alignment); 2584 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr( 2585 llvm::Align(AlignmentInt))); 2586 } 2587 } 2588 } 2589 2590 // Set 'noalias' if an argument type has the `restrict` qualifier. 2591 if (Arg->getType().isRestrictQualified()) 2592 AI->addAttr(llvm::Attribute::NoAlias); 2593 } 2594 2595 // Prepare the argument value. If we have the trivial case, handle it 2596 // with no muss and fuss. 2597 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2598 ArgI.getCoerceToType() == ConvertType(Ty) && 2599 ArgI.getDirectOffset() == 0) { 2600 assert(NumIRArgs == 1); 2601 2602 // LLVM expects swifterror parameters to be used in very restricted 2603 // ways. Copy the value into a less-restricted temporary. 2604 llvm::Value *V = AI; 2605 if (FI.getExtParameterInfo(ArgNo).getABI() 2606 == ParameterABI::SwiftErrorResult) { 2607 QualType pointeeTy = Ty->getPointeeType(); 2608 assert(pointeeTy->isPointerType()); 2609 Address temp = 2610 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2611 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2612 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2613 Builder.CreateStore(incomingErrorValue, temp); 2614 V = temp.getPointer(); 2615 2616 // Push a cleanup to copy the value back at the end of the function. 2617 // The convention does not guarantee that the value will be written 2618 // back if the function exits with an unwind exception. 2619 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2620 } 2621 2622 // Ensure the argument is the correct type. 2623 if (V->getType() != ArgI.getCoerceToType()) 2624 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2625 2626 if (isPromoted) 2627 V = emitArgumentDemotion(*this, Arg, V); 2628 2629 // Because of merging of function types from multiple decls it is 2630 // possible for the type of an argument to not match the corresponding 2631 // type in the function type. Since we are codegening the callee 2632 // in here, add a cast to the argument type. 2633 llvm::Type *LTy = ConvertType(Arg->getType()); 2634 if (V->getType() != LTy) 2635 V = Builder.CreateBitCast(V, LTy); 2636 2637 ArgVals.push_back(ParamValue::forDirect(V)); 2638 break; 2639 } 2640 2641 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2642 Arg->getName()); 2643 2644 // Pointer to store into. 2645 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2646 2647 // Fast-isel and the optimizer generally like scalar values better than 2648 // FCAs, so we flatten them if this is safe to do for this argument. 2649 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2650 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2651 STy->getNumElements() > 1) { 2652 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2653 llvm::Type *DstTy = Ptr.getElementType(); 2654 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2655 2656 Address AddrToStoreInto = Address::invalid(); 2657 if (SrcSize <= DstSize) { 2658 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2659 } else { 2660 AddrToStoreInto = 2661 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2662 } 2663 2664 assert(STy->getNumElements() == NumIRArgs); 2665 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2666 auto AI = Fn->getArg(FirstIRArg + i); 2667 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2668 Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i); 2669 Builder.CreateStore(AI, EltPtr); 2670 } 2671 2672 if (SrcSize > DstSize) { 2673 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2674 } 2675 2676 } else { 2677 // Simple case, just do a coerced store of the argument into the alloca. 2678 assert(NumIRArgs == 1); 2679 auto AI = Fn->getArg(FirstIRArg); 2680 AI->setName(Arg->getName() + ".coerce"); 2681 CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this); 2682 } 2683 2684 // Match to what EmitParmDecl is expecting for this type. 2685 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2686 llvm::Value *V = 2687 EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc()); 2688 if (isPromoted) 2689 V = emitArgumentDemotion(*this, Arg, V); 2690 ArgVals.push_back(ParamValue::forDirect(V)); 2691 } else { 2692 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2693 } 2694 break; 2695 } 2696 2697 case ABIArgInfo::CoerceAndExpand: { 2698 // Reconstruct into a temporary. 2699 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2700 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2701 2702 auto coercionType = ArgI.getCoerceAndExpandType(); 2703 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2704 2705 unsigned argIndex = FirstIRArg; 2706 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2707 llvm::Type *eltType = coercionType->getElementType(i); 2708 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2709 continue; 2710 2711 auto eltAddr = Builder.CreateStructGEP(alloca, i); 2712 auto elt = Fn->getArg(argIndex++); 2713 Builder.CreateStore(elt, eltAddr); 2714 } 2715 assert(argIndex == FirstIRArg + NumIRArgs); 2716 break; 2717 } 2718 2719 case ABIArgInfo::Expand: { 2720 // If this structure was expanded into multiple arguments then 2721 // we need to create a temporary and reconstruct it from the 2722 // arguments. 2723 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2724 LValue LV = MakeAddrLValue(Alloca, Ty); 2725 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2726 2727 auto FnArgIter = Fn->arg_begin() + FirstIRArg; 2728 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2729 assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs); 2730 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2731 auto AI = Fn->getArg(FirstIRArg + i); 2732 AI->setName(Arg->getName() + "." + Twine(i)); 2733 } 2734 break; 2735 } 2736 2737 case ABIArgInfo::Ignore: 2738 assert(NumIRArgs == 0); 2739 // Initialize the local variable appropriately. 2740 if (!hasScalarEvaluationKind(Ty)) { 2741 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2742 } else { 2743 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2744 ArgVals.push_back(ParamValue::forDirect(U)); 2745 } 2746 break; 2747 } 2748 } 2749 2750 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2751 for (int I = Args.size() - 1; I >= 0; --I) 2752 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2753 } else { 2754 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2755 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2756 } 2757 } 2758 2759 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2760 while (insn->use_empty()) { 2761 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2762 if (!bitcast) return; 2763 2764 // This is "safe" because we would have used a ConstantExpr otherwise. 2765 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2766 bitcast->eraseFromParent(); 2767 } 2768 } 2769 2770 /// Try to emit a fused autorelease of a return result. 2771 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2772 llvm::Value *result) { 2773 // We must be immediately followed the cast. 2774 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2775 if (BB->empty()) return nullptr; 2776 if (&BB->back() != result) return nullptr; 2777 2778 llvm::Type *resultType = result->getType(); 2779 2780 // result is in a BasicBlock and is therefore an Instruction. 2781 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2782 2783 SmallVector<llvm::Instruction *, 4> InstsToKill; 2784 2785 // Look for: 2786 // %generator = bitcast %type1* %generator2 to %type2* 2787 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2788 // We would have emitted this as a constant if the operand weren't 2789 // an Instruction. 2790 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2791 2792 // Require the generator to be immediately followed by the cast. 2793 if (generator->getNextNode() != bitcast) 2794 return nullptr; 2795 2796 InstsToKill.push_back(bitcast); 2797 } 2798 2799 // Look for: 2800 // %generator = call i8* @objc_retain(i8* %originalResult) 2801 // or 2802 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2803 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2804 if (!call) return nullptr; 2805 2806 bool doRetainAutorelease; 2807 2808 if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2809 doRetainAutorelease = true; 2810 } else if (call->getCalledOperand() == 2811 CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) { 2812 doRetainAutorelease = false; 2813 2814 // If we emitted an assembly marker for this call (and the 2815 // ARCEntrypoints field should have been set if so), go looking 2816 // for that call. If we can't find it, we can't do this 2817 // optimization. But it should always be the immediately previous 2818 // instruction, unless we needed bitcasts around the call. 2819 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2820 llvm::Instruction *prev = call->getPrevNode(); 2821 assert(prev); 2822 if (isa<llvm::BitCastInst>(prev)) { 2823 prev = prev->getPrevNode(); 2824 assert(prev); 2825 } 2826 assert(isa<llvm::CallInst>(prev)); 2827 assert(cast<llvm::CallInst>(prev)->getCalledOperand() == 2828 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2829 InstsToKill.push_back(prev); 2830 } 2831 } else { 2832 return nullptr; 2833 } 2834 2835 result = call->getArgOperand(0); 2836 InstsToKill.push_back(call); 2837 2838 // Keep killing bitcasts, for sanity. Note that we no longer care 2839 // about precise ordering as long as there's exactly one use. 2840 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2841 if (!bitcast->hasOneUse()) break; 2842 InstsToKill.push_back(bitcast); 2843 result = bitcast->getOperand(0); 2844 } 2845 2846 // Delete all the unnecessary instructions, from latest to earliest. 2847 for (auto *I : InstsToKill) 2848 I->eraseFromParent(); 2849 2850 // Do the fused retain/autorelease if we were asked to. 2851 if (doRetainAutorelease) 2852 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2853 2854 // Cast back to the result type. 2855 return CGF.Builder.CreateBitCast(result, resultType); 2856 } 2857 2858 /// If this is a +1 of the value of an immutable 'self', remove it. 2859 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2860 llvm::Value *result) { 2861 // This is only applicable to a method with an immutable 'self'. 2862 const ObjCMethodDecl *method = 2863 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2864 if (!method) return nullptr; 2865 const VarDecl *self = method->getSelfDecl(); 2866 if (!self->getType().isConstQualified()) return nullptr; 2867 2868 // Look for a retain call. 2869 llvm::CallInst *retainCall = 2870 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2871 if (!retainCall || retainCall->getCalledOperand() != 2872 CGF.CGM.getObjCEntrypoints().objc_retain) 2873 return nullptr; 2874 2875 // Look for an ordinary load of 'self'. 2876 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2877 llvm::LoadInst *load = 2878 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2879 if (!load || load->isAtomic() || load->isVolatile() || 2880 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2881 return nullptr; 2882 2883 // Okay! Burn it all down. This relies for correctness on the 2884 // assumption that the retain is emitted as part of the return and 2885 // that thereafter everything is used "linearly". 2886 llvm::Type *resultType = result->getType(); 2887 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2888 assert(retainCall->use_empty()); 2889 retainCall->eraseFromParent(); 2890 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2891 2892 return CGF.Builder.CreateBitCast(load, resultType); 2893 } 2894 2895 /// Emit an ARC autorelease of the result of a function. 2896 /// 2897 /// \return the value to actually return from the function 2898 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2899 llvm::Value *result) { 2900 // If we're returning 'self', kill the initial retain. This is a 2901 // heuristic attempt to "encourage correctness" in the really unfortunate 2902 // case where we have a return of self during a dealloc and we desperately 2903 // need to avoid the possible autorelease. 2904 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2905 return self; 2906 2907 // At -O0, try to emit a fused retain/autorelease. 2908 if (CGF.shouldUseFusedARCCalls()) 2909 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2910 return fused; 2911 2912 return CGF.EmitARCAutoreleaseReturnValue(result); 2913 } 2914 2915 /// Heuristically search for a dominating store to the return-value slot. 2916 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2917 // Check if a User is a store which pointerOperand is the ReturnValue. 2918 // We are looking for stores to the ReturnValue, not for stores of the 2919 // ReturnValue to some other location. 2920 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2921 auto *SI = dyn_cast<llvm::StoreInst>(U); 2922 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2923 return nullptr; 2924 // These aren't actually possible for non-coerced returns, and we 2925 // only care about non-coerced returns on this code path. 2926 assert(!SI->isAtomic() && !SI->isVolatile()); 2927 return SI; 2928 }; 2929 // If there are multiple uses of the return-value slot, just check 2930 // for something immediately preceding the IP. Sometimes this can 2931 // happen with how we generate implicit-returns; it can also happen 2932 // with noreturn cleanups. 2933 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2934 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2935 if (IP->empty()) return nullptr; 2936 llvm::Instruction *I = &IP->back(); 2937 2938 // Skip lifetime markers 2939 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2940 IE = IP->rend(); 2941 II != IE; ++II) { 2942 if (llvm::IntrinsicInst *Intrinsic = 2943 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2944 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2945 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2946 ++II; 2947 if (II == IE) 2948 break; 2949 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2950 continue; 2951 } 2952 } 2953 I = &*II; 2954 break; 2955 } 2956 2957 return GetStoreIfValid(I); 2958 } 2959 2960 llvm::StoreInst *store = 2961 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2962 if (!store) return nullptr; 2963 2964 // Now do a first-and-dirty dominance check: just walk up the 2965 // single-predecessors chain from the current insertion point. 2966 llvm::BasicBlock *StoreBB = store->getParent(); 2967 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2968 while (IP != StoreBB) { 2969 if (!(IP = IP->getSinglePredecessor())) 2970 return nullptr; 2971 } 2972 2973 // Okay, the store's basic block dominates the insertion point; we 2974 // can do our thing. 2975 return store; 2976 } 2977 2978 // Helper functions for EmitCMSEClearRecord 2979 2980 // Set the bits corresponding to a field having width `BitWidth` and located at 2981 // offset `BitOffset` (from the least significant bit) within a storage unit of 2982 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte. 2983 // Use little-endian layout, i.e.`Bits[0]` is the LSB. 2984 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset, 2985 int BitWidth, int CharWidth) { 2986 assert(CharWidth <= 64); 2987 assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth); 2988 2989 int Pos = 0; 2990 if (BitOffset >= CharWidth) { 2991 Pos += BitOffset / CharWidth; 2992 BitOffset = BitOffset % CharWidth; 2993 } 2994 2995 const uint64_t Used = (uint64_t(1) << CharWidth) - 1; 2996 if (BitOffset + BitWidth >= CharWidth) { 2997 Bits[Pos++] |= (Used << BitOffset) & Used; 2998 BitWidth -= CharWidth - BitOffset; 2999 BitOffset = 0; 3000 } 3001 3002 while (BitWidth >= CharWidth) { 3003 Bits[Pos++] = Used; 3004 BitWidth -= CharWidth; 3005 } 3006 3007 if (BitWidth > 0) 3008 Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset; 3009 } 3010 3011 // Set the bits corresponding to a field having width `BitWidth` and located at 3012 // offset `BitOffset` (from the least significant bit) within a storage unit of 3013 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of 3014 // `Bits` corresponds to one target byte. Use target endian layout. 3015 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset, 3016 int StorageSize, int BitOffset, int BitWidth, 3017 int CharWidth, bool BigEndian) { 3018 3019 SmallVector<uint64_t, 8> TmpBits(StorageSize); 3020 setBitRange(TmpBits, BitOffset, BitWidth, CharWidth); 3021 3022 if (BigEndian) 3023 std::reverse(TmpBits.begin(), TmpBits.end()); 3024 3025 for (uint64_t V : TmpBits) 3026 Bits[StorageOffset++] |= V; 3027 } 3028 3029 static void setUsedBits(CodeGenModule &, QualType, int, 3030 SmallVectorImpl<uint64_t> &); 3031 3032 // Set the bits in `Bits`, which correspond to the value representations of 3033 // the actual members of the record type `RTy`. Note that this function does 3034 // not handle base classes, virtual tables, etc, since they cannot happen in 3035 // CMSE function arguments or return. The bit mask corresponds to the target 3036 // memory layout, i.e. it's endian dependent. 3037 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset, 3038 SmallVectorImpl<uint64_t> &Bits) { 3039 ASTContext &Context = CGM.getContext(); 3040 int CharWidth = Context.getCharWidth(); 3041 const RecordDecl *RD = RTy->getDecl()->getDefinition(); 3042 const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD); 3043 const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD); 3044 3045 int Idx = 0; 3046 for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) { 3047 const FieldDecl *F = *I; 3048 3049 if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) || 3050 F->getType()->isIncompleteArrayType()) 3051 continue; 3052 3053 if (F->isBitField()) { 3054 const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F); 3055 setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(), 3056 BFI.StorageSize / CharWidth, BFI.Offset, 3057 BFI.Size, CharWidth, 3058 CGM.getDataLayout().isBigEndian()); 3059 continue; 3060 } 3061 3062 setUsedBits(CGM, F->getType(), 3063 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits); 3064 } 3065 } 3066 3067 // Set the bits in `Bits`, which correspond to the value representations of 3068 // the elements of an array type `ATy`. 3069 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy, 3070 int Offset, SmallVectorImpl<uint64_t> &Bits) { 3071 const ASTContext &Context = CGM.getContext(); 3072 3073 QualType ETy = Context.getBaseElementType(ATy); 3074 int Size = Context.getTypeSizeInChars(ETy).getQuantity(); 3075 SmallVector<uint64_t, 4> TmpBits(Size); 3076 setUsedBits(CGM, ETy, 0, TmpBits); 3077 3078 for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) { 3079 auto Src = TmpBits.begin(); 3080 auto Dst = Bits.begin() + Offset + I * Size; 3081 for (int J = 0; J < Size; ++J) 3082 *Dst++ |= *Src++; 3083 } 3084 } 3085 3086 // Set the bits in `Bits`, which correspond to the value representations of 3087 // the type `QTy`. 3088 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset, 3089 SmallVectorImpl<uint64_t> &Bits) { 3090 if (const auto *RTy = QTy->getAs<RecordType>()) 3091 return setUsedBits(CGM, RTy, Offset, Bits); 3092 3093 ASTContext &Context = CGM.getContext(); 3094 if (const auto *ATy = Context.getAsConstantArrayType(QTy)) 3095 return setUsedBits(CGM, ATy, Offset, Bits); 3096 3097 int Size = Context.getTypeSizeInChars(QTy).getQuantity(); 3098 if (Size <= 0) 3099 return; 3100 3101 std::fill_n(Bits.begin() + Offset, Size, 3102 (uint64_t(1) << Context.getCharWidth()) - 1); 3103 } 3104 3105 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits, 3106 int Pos, int Size, int CharWidth, 3107 bool BigEndian) { 3108 assert(Size > 0); 3109 uint64_t Mask = 0; 3110 if (BigEndian) { 3111 for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E; 3112 ++P) 3113 Mask = (Mask << CharWidth) | *P; 3114 } else { 3115 auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos; 3116 do 3117 Mask = (Mask << CharWidth) | *--P; 3118 while (P != End); 3119 } 3120 return Mask; 3121 } 3122 3123 // Emit code to clear the bits in a record, which aren't a part of any user 3124 // declared member, when the record is a function return. 3125 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3126 llvm::IntegerType *ITy, 3127 QualType QTy) { 3128 assert(Src->getType() == ITy); 3129 assert(ITy->getScalarSizeInBits() <= 64); 3130 3131 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3132 int Size = DataLayout.getTypeStoreSize(ITy); 3133 SmallVector<uint64_t, 4> Bits(Size); 3134 setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits); 3135 3136 int CharWidth = CGM.getContext().getCharWidth(); 3137 uint64_t Mask = 3138 buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian()); 3139 3140 return Builder.CreateAnd(Src, Mask, "cmse.clear"); 3141 } 3142 3143 // Emit code to clear the bits in a record, which aren't a part of any user 3144 // declared member, when the record is a function argument. 3145 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src, 3146 llvm::ArrayType *ATy, 3147 QualType QTy) { 3148 const llvm::DataLayout &DataLayout = CGM.getDataLayout(); 3149 int Size = DataLayout.getTypeStoreSize(ATy); 3150 SmallVector<uint64_t, 16> Bits(Size); 3151 setUsedBits(CGM, QTy->getAs<RecordType>(), 0, Bits); 3152 3153 // Clear each element of the LLVM array. 3154 int CharWidth = CGM.getContext().getCharWidth(); 3155 int CharsPerElt = 3156 ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth; 3157 int MaskIndex = 0; 3158 llvm::Value *R = llvm::UndefValue::get(ATy); 3159 for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) { 3160 uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth, 3161 DataLayout.isBigEndian()); 3162 MaskIndex += CharsPerElt; 3163 llvm::Value *T0 = Builder.CreateExtractValue(Src, I); 3164 llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear"); 3165 R = Builder.CreateInsertValue(R, T1, I); 3166 } 3167 3168 return R; 3169 } 3170 3171 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 3172 bool EmitRetDbgLoc, 3173 SourceLocation EndLoc) { 3174 if (FI.isNoReturn()) { 3175 // Noreturn functions don't return. 3176 EmitUnreachable(EndLoc); 3177 return; 3178 } 3179 3180 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 3181 // Naked functions don't have epilogues. 3182 Builder.CreateUnreachable(); 3183 return; 3184 } 3185 3186 // Functions with no result always return void. 3187 if (!ReturnValue.isValid()) { 3188 Builder.CreateRetVoid(); 3189 return; 3190 } 3191 3192 llvm::DebugLoc RetDbgLoc; 3193 llvm::Value *RV = nullptr; 3194 QualType RetTy = FI.getReturnType(); 3195 const ABIArgInfo &RetAI = FI.getReturnInfo(); 3196 3197 switch (RetAI.getKind()) { 3198 case ABIArgInfo::InAlloca: 3199 // Aggregrates get evaluated directly into the destination. Sometimes we 3200 // need to return the sret value in a register, though. 3201 assert(hasAggregateEvaluationKind(RetTy)); 3202 if (RetAI.getInAllocaSRet()) { 3203 llvm::Function::arg_iterator EI = CurFn->arg_end(); 3204 --EI; 3205 llvm::Value *ArgStruct = &*EI; 3206 llvm::Value *SRet = Builder.CreateStructGEP( 3207 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 3208 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 3209 } 3210 break; 3211 3212 case ABIArgInfo::Indirect: { 3213 auto AI = CurFn->arg_begin(); 3214 if (RetAI.isSRetAfterThis()) 3215 ++AI; 3216 switch (getEvaluationKind(RetTy)) { 3217 case TEK_Complex: { 3218 ComplexPairTy RT = 3219 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 3220 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 3221 /*isInit*/ true); 3222 break; 3223 } 3224 case TEK_Aggregate: 3225 // Do nothing; aggregrates get evaluated directly into the destination. 3226 break; 3227 case TEK_Scalar: 3228 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 3229 MakeNaturalAlignAddrLValue(&*AI, RetTy), 3230 /*isInit*/ true); 3231 break; 3232 } 3233 break; 3234 } 3235 3236 case ABIArgInfo::Extend: 3237 case ABIArgInfo::Direct: 3238 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 3239 RetAI.getDirectOffset() == 0) { 3240 // The internal return value temp always will have pointer-to-return-type 3241 // type, just do a load. 3242 3243 // If there is a dominating store to ReturnValue, we can elide 3244 // the load, zap the store, and usually zap the alloca. 3245 if (llvm::StoreInst *SI = 3246 findDominatingStoreToReturnValue(*this)) { 3247 // Reuse the debug location from the store unless there is 3248 // cleanup code to be emitted between the store and return 3249 // instruction. 3250 if (EmitRetDbgLoc && !AutoreleaseResult) 3251 RetDbgLoc = SI->getDebugLoc(); 3252 // Get the stored value and nuke the now-dead store. 3253 RV = SI->getValueOperand(); 3254 SI->eraseFromParent(); 3255 3256 // Otherwise, we have to do a simple load. 3257 } else { 3258 RV = Builder.CreateLoad(ReturnValue); 3259 } 3260 } else { 3261 // If the value is offset in memory, apply the offset now. 3262 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 3263 3264 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 3265 } 3266 3267 // In ARC, end functions that return a retainable type with a call 3268 // to objc_autoreleaseReturnValue. 3269 if (AutoreleaseResult) { 3270 #ifndef NDEBUG 3271 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 3272 // been stripped of the typedefs, so we cannot use RetTy here. Get the 3273 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 3274 // CurCodeDecl or BlockInfo. 3275 QualType RT; 3276 3277 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 3278 RT = FD->getReturnType(); 3279 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 3280 RT = MD->getReturnType(); 3281 else if (isa<BlockDecl>(CurCodeDecl)) 3282 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 3283 else 3284 llvm_unreachable("Unexpected function/method type"); 3285 3286 assert(getLangOpts().ObjCAutoRefCount && 3287 !FI.isReturnsRetained() && 3288 RT->isObjCRetainableType()); 3289 #endif 3290 RV = emitAutoreleaseOfResult(*this, RV); 3291 } 3292 3293 break; 3294 3295 case ABIArgInfo::Ignore: 3296 break; 3297 3298 case ABIArgInfo::CoerceAndExpand: { 3299 auto coercionType = RetAI.getCoerceAndExpandType(); 3300 3301 // Load all of the coerced elements out into results. 3302 llvm::SmallVector<llvm::Value*, 4> results; 3303 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 3304 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 3305 auto coercedEltType = coercionType->getElementType(i); 3306 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 3307 continue; 3308 3309 auto eltAddr = Builder.CreateStructGEP(addr, i); 3310 auto elt = Builder.CreateLoad(eltAddr); 3311 results.push_back(elt); 3312 } 3313 3314 // If we have one result, it's the single direct result type. 3315 if (results.size() == 1) { 3316 RV = results[0]; 3317 3318 // Otherwise, we need to make a first-class aggregate. 3319 } else { 3320 // Construct a return type that lacks padding elements. 3321 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 3322 3323 RV = llvm::UndefValue::get(returnType); 3324 for (unsigned i = 0, e = results.size(); i != e; ++i) { 3325 RV = Builder.CreateInsertValue(RV, results[i], i); 3326 } 3327 } 3328 break; 3329 } 3330 case ABIArgInfo::Expand: 3331 case ABIArgInfo::IndirectAliased: 3332 llvm_unreachable("Invalid ABI kind for return argument"); 3333 } 3334 3335 llvm::Instruction *Ret; 3336 if (RV) { 3337 if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) { 3338 // For certain return types, clear padding bits, as they may reveal 3339 // sensitive information. 3340 // Small struct/union types are passed as integers. 3341 auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType()); 3342 if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType())) 3343 RV = EmitCMSEClearRecord(RV, ITy, RetTy); 3344 } 3345 EmitReturnValueCheck(RV); 3346 Ret = Builder.CreateRet(RV); 3347 } else { 3348 Ret = Builder.CreateRetVoid(); 3349 } 3350 3351 if (RetDbgLoc) 3352 Ret->setDebugLoc(std::move(RetDbgLoc)); 3353 } 3354 3355 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 3356 // A current decl may not be available when emitting vtable thunks. 3357 if (!CurCodeDecl) 3358 return; 3359 3360 // If the return block isn't reachable, neither is this check, so don't emit 3361 // it. 3362 if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) 3363 return; 3364 3365 ReturnsNonNullAttr *RetNNAttr = nullptr; 3366 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 3367 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 3368 3369 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 3370 return; 3371 3372 // Prefer the returns_nonnull attribute if it's present. 3373 SourceLocation AttrLoc; 3374 SanitizerMask CheckKind; 3375 SanitizerHandler Handler; 3376 if (RetNNAttr) { 3377 assert(!requiresReturnValueNullabilityCheck() && 3378 "Cannot check nullability and the nonnull attribute"); 3379 AttrLoc = RetNNAttr->getLocation(); 3380 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 3381 Handler = SanitizerHandler::NonnullReturn; 3382 } else { 3383 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 3384 if (auto *TSI = DD->getTypeSourceInfo()) 3385 if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>()) 3386 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 3387 CheckKind = SanitizerKind::NullabilityReturn; 3388 Handler = SanitizerHandler::NullabilityReturn; 3389 } 3390 3391 SanitizerScope SanScope(this); 3392 3393 // Make sure the "return" source location is valid. If we're checking a 3394 // nullability annotation, make sure the preconditions for the check are met. 3395 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 3396 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 3397 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 3398 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 3399 if (requiresReturnValueNullabilityCheck()) 3400 CanNullCheck = 3401 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 3402 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 3403 EmitBlock(Check); 3404 3405 // Now do the null check. 3406 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 3407 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 3408 llvm::Value *DynamicData[] = {SLocPtr}; 3409 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 3410 3411 EmitBlock(NoCheck); 3412 3413 #ifndef NDEBUG 3414 // The return location should not be used after the check has been emitted. 3415 ReturnLocation = Address::invalid(); 3416 #endif 3417 } 3418 3419 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3420 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3421 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3422 } 3423 3424 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3425 QualType Ty) { 3426 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3427 // placeholders. 3428 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3429 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3430 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3431 3432 // FIXME: When we generate this IR in one pass, we shouldn't need 3433 // this win32-specific alignment hack. 3434 CharUnits Align = CharUnits::fromQuantity(4); 3435 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3436 3437 return AggValueSlot::forAddr(Address(Placeholder, Align), 3438 Ty.getQualifiers(), 3439 AggValueSlot::IsNotDestructed, 3440 AggValueSlot::DoesNotNeedGCBarriers, 3441 AggValueSlot::IsNotAliased, 3442 AggValueSlot::DoesNotOverlap); 3443 } 3444 3445 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3446 const VarDecl *param, 3447 SourceLocation loc) { 3448 // StartFunction converted the ABI-lowered parameter(s) into a 3449 // local alloca. We need to turn that into an r-value suitable 3450 // for EmitCall. 3451 Address local = GetAddrOfLocalVar(param); 3452 3453 QualType type = param->getType(); 3454 3455 if (isInAllocaArgument(CGM.getCXXABI(), type)) { 3456 CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter"); 3457 } 3458 3459 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3460 // but the argument needs to be the original pointer. 3461 if (type->isReferenceType()) { 3462 args.add(RValue::get(Builder.CreateLoad(local)), type); 3463 3464 // In ARC, move out of consumed arguments so that the release cleanup 3465 // entered by StartFunction doesn't cause an over-release. This isn't 3466 // optimal -O0 code generation, but it should get cleaned up when 3467 // optimization is enabled. This also assumes that delegate calls are 3468 // performed exactly once for a set of arguments, but that should be safe. 3469 } else if (getLangOpts().ObjCAutoRefCount && 3470 param->hasAttr<NSConsumedAttr>() && 3471 type->isObjCRetainableType()) { 3472 llvm::Value *ptr = Builder.CreateLoad(local); 3473 auto null = 3474 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3475 Builder.CreateStore(null, local); 3476 args.add(RValue::get(ptr), type); 3477 3478 // For the most part, we just need to load the alloca, except that 3479 // aggregate r-values are actually pointers to temporaries. 3480 } else { 3481 args.add(convertTempToRValue(local, type, loc), type); 3482 } 3483 3484 // Deactivate the cleanup for the callee-destructed param that was pushed. 3485 if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk && 3486 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() && 3487 param->needsDestruction(getContext())) { 3488 EHScopeStack::stable_iterator cleanup = 3489 CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param)); 3490 assert(cleanup.isValid() && 3491 "cleanup for callee-destructed param not recorded"); 3492 // This unreachable is a temporary marker which will be removed later. 3493 llvm::Instruction *isActive = Builder.CreateUnreachable(); 3494 args.addArgCleanupDeactivation(cleanup, isActive); 3495 } 3496 } 3497 3498 static bool isProvablyNull(llvm::Value *addr) { 3499 return isa<llvm::ConstantPointerNull>(addr); 3500 } 3501 3502 /// Emit the actual writing-back of a writeback. 3503 static void emitWriteback(CodeGenFunction &CGF, 3504 const CallArgList::Writeback &writeback) { 3505 const LValue &srcLV = writeback.Source; 3506 Address srcAddr = srcLV.getAddress(CGF); 3507 assert(!isProvablyNull(srcAddr.getPointer()) && 3508 "shouldn't have writeback for provably null argument"); 3509 3510 llvm::BasicBlock *contBB = nullptr; 3511 3512 // If the argument wasn't provably non-null, we need to null check 3513 // before doing the store. 3514 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3515 CGF.CGM.getDataLayout()); 3516 if (!provablyNonNull) { 3517 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3518 contBB = CGF.createBasicBlock("icr.done"); 3519 3520 llvm::Value *isNull = 3521 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3522 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3523 CGF.EmitBlock(writebackBB); 3524 } 3525 3526 // Load the value to writeback. 3527 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3528 3529 // Cast it back, in case we're writing an id to a Foo* or something. 3530 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3531 "icr.writeback-cast"); 3532 3533 // Perform the writeback. 3534 3535 // If we have a "to use" value, it's something we need to emit a use 3536 // of. This has to be carefully threaded in: if it's done after the 3537 // release it's potentially undefined behavior (and the optimizer 3538 // will ignore it), and if it happens before the retain then the 3539 // optimizer could move the release there. 3540 if (writeback.ToUse) { 3541 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3542 3543 // Retain the new value. No need to block-copy here: the block's 3544 // being passed up the stack. 3545 value = CGF.EmitARCRetainNonBlock(value); 3546 3547 // Emit the intrinsic use here. 3548 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3549 3550 // Load the old value (primitively). 3551 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3552 3553 // Put the new value in place (primitively). 3554 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3555 3556 // Release the old value. 3557 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3558 3559 // Otherwise, we can just do a normal lvalue store. 3560 } else { 3561 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3562 } 3563 3564 // Jump to the continuation block. 3565 if (!provablyNonNull) 3566 CGF.EmitBlock(contBB); 3567 } 3568 3569 static void emitWritebacks(CodeGenFunction &CGF, 3570 const CallArgList &args) { 3571 for (const auto &I : args.writebacks()) 3572 emitWriteback(CGF, I); 3573 } 3574 3575 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3576 const CallArgList &CallArgs) { 3577 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3578 CallArgs.getCleanupsToDeactivate(); 3579 // Iterate in reverse to increase the likelihood of popping the cleanup. 3580 for (const auto &I : llvm::reverse(Cleanups)) { 3581 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3582 I.IsActiveIP->eraseFromParent(); 3583 } 3584 } 3585 3586 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3587 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3588 if (uop->getOpcode() == UO_AddrOf) 3589 return uop->getSubExpr(); 3590 return nullptr; 3591 } 3592 3593 /// Emit an argument that's being passed call-by-writeback. That is, 3594 /// we are passing the address of an __autoreleased temporary; it 3595 /// might be copy-initialized with the current value of the given 3596 /// address, but it will definitely be copied out of after the call. 3597 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3598 const ObjCIndirectCopyRestoreExpr *CRE) { 3599 LValue srcLV; 3600 3601 // Make an optimistic effort to emit the address as an l-value. 3602 // This can fail if the argument expression is more complicated. 3603 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3604 srcLV = CGF.EmitLValue(lvExpr); 3605 3606 // Otherwise, just emit it as a scalar. 3607 } else { 3608 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3609 3610 QualType srcAddrType = 3611 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3612 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3613 } 3614 Address srcAddr = srcLV.getAddress(CGF); 3615 3616 // The dest and src types don't necessarily match in LLVM terms 3617 // because of the crazy ObjC compatibility rules. 3618 3619 llvm::PointerType *destType = 3620 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3621 3622 // If the address is a constant null, just pass the appropriate null. 3623 if (isProvablyNull(srcAddr.getPointer())) { 3624 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3625 CRE->getType()); 3626 return; 3627 } 3628 3629 // Create the temporary. 3630 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3631 CGF.getPointerAlign(), 3632 "icr.temp"); 3633 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3634 // and that cleanup will be conditional if we can't prove that the l-value 3635 // isn't null, so we need to register a dominating point so that the cleanups 3636 // system will make valid IR. 3637 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3638 3639 // Zero-initialize it if we're not doing a copy-initialization. 3640 bool shouldCopy = CRE->shouldCopy(); 3641 if (!shouldCopy) { 3642 llvm::Value *null = 3643 llvm::ConstantPointerNull::get( 3644 cast<llvm::PointerType>(destType->getElementType())); 3645 CGF.Builder.CreateStore(null, temp); 3646 } 3647 3648 llvm::BasicBlock *contBB = nullptr; 3649 llvm::BasicBlock *originBB = nullptr; 3650 3651 // If the address is *not* known to be non-null, we need to switch. 3652 llvm::Value *finalArgument; 3653 3654 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3655 CGF.CGM.getDataLayout()); 3656 if (provablyNonNull) { 3657 finalArgument = temp.getPointer(); 3658 } else { 3659 llvm::Value *isNull = 3660 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3661 3662 finalArgument = CGF.Builder.CreateSelect(isNull, 3663 llvm::ConstantPointerNull::get(destType), 3664 temp.getPointer(), "icr.argument"); 3665 3666 // If we need to copy, then the load has to be conditional, which 3667 // means we need control flow. 3668 if (shouldCopy) { 3669 originBB = CGF.Builder.GetInsertBlock(); 3670 contBB = CGF.createBasicBlock("icr.cont"); 3671 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3672 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3673 CGF.EmitBlock(copyBB); 3674 condEval.begin(CGF); 3675 } 3676 } 3677 3678 llvm::Value *valueToUse = nullptr; 3679 3680 // Perform a copy if necessary. 3681 if (shouldCopy) { 3682 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3683 assert(srcRV.isScalar()); 3684 3685 llvm::Value *src = srcRV.getScalarVal(); 3686 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3687 "icr.cast"); 3688 3689 // Use an ordinary store, not a store-to-lvalue. 3690 CGF.Builder.CreateStore(src, temp); 3691 3692 // If optimization is enabled, and the value was held in a 3693 // __strong variable, we need to tell the optimizer that this 3694 // value has to stay alive until we're doing the store back. 3695 // This is because the temporary is effectively unretained, 3696 // and so otherwise we can violate the high-level semantics. 3697 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3698 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3699 valueToUse = src; 3700 } 3701 } 3702 3703 // Finish the control flow if we needed it. 3704 if (shouldCopy && !provablyNonNull) { 3705 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3706 CGF.EmitBlock(contBB); 3707 3708 // Make a phi for the value to intrinsically use. 3709 if (valueToUse) { 3710 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3711 "icr.to-use"); 3712 phiToUse->addIncoming(valueToUse, copyBB); 3713 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3714 originBB); 3715 valueToUse = phiToUse; 3716 } 3717 3718 condEval.end(CGF); 3719 } 3720 3721 args.addWriteback(srcLV, temp, valueToUse); 3722 args.add(RValue::get(finalArgument), CRE->getType()); 3723 } 3724 3725 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3726 assert(!StackBase); 3727 3728 // Save the stack. 3729 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3730 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3731 } 3732 3733 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3734 if (StackBase) { 3735 // Restore the stack after the call. 3736 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3737 CGF.Builder.CreateCall(F, StackBase); 3738 } 3739 } 3740 3741 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3742 SourceLocation ArgLoc, 3743 AbstractCallee AC, 3744 unsigned ParmNum) { 3745 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3746 SanOpts.has(SanitizerKind::NullabilityArg))) 3747 return; 3748 3749 // The param decl may be missing in a variadic function. 3750 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3751 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3752 3753 // Prefer the nonnull attribute if it's present. 3754 const NonNullAttr *NNAttr = nullptr; 3755 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3756 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3757 3758 bool CanCheckNullability = false; 3759 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3760 auto Nullability = PVD->getType()->getNullability(getContext()); 3761 CanCheckNullability = Nullability && 3762 *Nullability == NullabilityKind::NonNull && 3763 PVD->getTypeSourceInfo(); 3764 } 3765 3766 if (!NNAttr && !CanCheckNullability) 3767 return; 3768 3769 SourceLocation AttrLoc; 3770 SanitizerMask CheckKind; 3771 SanitizerHandler Handler; 3772 if (NNAttr) { 3773 AttrLoc = NNAttr->getLocation(); 3774 CheckKind = SanitizerKind::NonnullAttribute; 3775 Handler = SanitizerHandler::NonnullArg; 3776 } else { 3777 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3778 CheckKind = SanitizerKind::NullabilityArg; 3779 Handler = SanitizerHandler::NullabilityArg; 3780 } 3781 3782 SanitizerScope SanScope(this); 3783 llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType); 3784 llvm::Constant *StaticData[] = { 3785 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3786 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3787 }; 3788 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3789 } 3790 3791 void CodeGenFunction::EmitCallArgs( 3792 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3793 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3794 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3795 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3796 3797 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3798 // because arguments are destroyed left to right in the callee. As a special 3799 // case, there are certain language constructs that require left-to-right 3800 // evaluation, and in those cases we consider the evaluation order requirement 3801 // to trump the "destruction order is reverse construction order" guarantee. 3802 bool LeftToRight = 3803 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3804 ? Order == EvaluationOrder::ForceLeftToRight 3805 : Order != EvaluationOrder::ForceRightToLeft; 3806 3807 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3808 RValue EmittedArg) { 3809 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3810 return; 3811 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3812 if (PS == nullptr) 3813 return; 3814 3815 const auto &Context = getContext(); 3816 auto SizeTy = Context.getSizeType(); 3817 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3818 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3819 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3820 EmittedArg.getScalarVal(), 3821 PS->isDynamic()); 3822 Args.add(RValue::get(V), SizeTy); 3823 // If we're emitting args in reverse, be sure to do so with 3824 // pass_object_size, as well. 3825 if (!LeftToRight) 3826 std::swap(Args.back(), *(&Args.back() - 1)); 3827 }; 3828 3829 // Insert a stack save if we're going to need any inalloca args. 3830 bool HasInAllocaArgs = false; 3831 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3832 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3833 I != E && !HasInAllocaArgs; ++I) 3834 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3835 if (HasInAllocaArgs) { 3836 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3837 Args.allocateArgumentMemory(*this); 3838 } 3839 } 3840 3841 // Evaluate each argument in the appropriate order. 3842 size_t CallArgsStart = Args.size(); 3843 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3844 unsigned Idx = LeftToRight ? I : E - I - 1; 3845 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3846 unsigned InitialArgSize = Args.size(); 3847 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3848 // the argument and parameter match or the objc method is parameterized. 3849 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3850 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3851 ArgTypes[Idx]) || 3852 (isa<ObjCMethodDecl>(AC.getDecl()) && 3853 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3854 "Argument and parameter types don't match"); 3855 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3856 // In particular, we depend on it being the last arg in Args, and the 3857 // objectsize bits depend on there only being one arg if !LeftToRight. 3858 assert(InitialArgSize + 1 == Args.size() && 3859 "The code below depends on only adding one arg per EmitCallArg"); 3860 (void)InitialArgSize; 3861 // Since pointer argument are never emitted as LValue, it is safe to emit 3862 // non-null argument check for r-value only. 3863 if (!Args.back().hasLValue()) { 3864 RValue RVArg = Args.back().getKnownRValue(); 3865 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3866 ParamsToSkip + Idx); 3867 // @llvm.objectsize should never have side-effects and shouldn't need 3868 // destruction/cleanups, so we can safely "emit" it after its arg, 3869 // regardless of right-to-leftness 3870 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3871 } 3872 } 3873 3874 if (!LeftToRight) { 3875 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3876 // IR function. 3877 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3878 } 3879 } 3880 3881 namespace { 3882 3883 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3884 DestroyUnpassedArg(Address Addr, QualType Ty) 3885 : Addr(Addr), Ty(Ty) {} 3886 3887 Address Addr; 3888 QualType Ty; 3889 3890 void Emit(CodeGenFunction &CGF, Flags flags) override { 3891 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3892 if (DtorKind == QualType::DK_cxx_destructor) { 3893 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3894 assert(!Dtor->isTrivial()); 3895 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3896 /*Delegating=*/false, Addr, Ty); 3897 } else { 3898 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3899 } 3900 } 3901 }; 3902 3903 struct DisableDebugLocationUpdates { 3904 CodeGenFunction &CGF; 3905 bool disabledDebugInfo; 3906 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3907 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3908 CGF.disableDebugInfo(); 3909 } 3910 ~DisableDebugLocationUpdates() { 3911 if (disabledDebugInfo) 3912 CGF.enableDebugInfo(); 3913 } 3914 }; 3915 3916 } // end anonymous namespace 3917 3918 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3919 if (!HasLV) 3920 return RV; 3921 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3922 CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap, 3923 LV.isVolatile()); 3924 IsUsed = true; 3925 return RValue::getAggregate(Copy.getAddress(CGF)); 3926 } 3927 3928 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3929 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3930 if (!HasLV && RV.isScalar()) 3931 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true); 3932 else if (!HasLV && RV.isComplex()) 3933 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3934 else { 3935 auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress(); 3936 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3937 // We assume that call args are never copied into subobjects. 3938 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap, 3939 HasLV ? LV.isVolatileQualified() 3940 : RV.isVolatileQualified()); 3941 } 3942 IsUsed = true; 3943 } 3944 3945 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3946 QualType type) { 3947 DisableDebugLocationUpdates Dis(*this, E); 3948 if (const ObjCIndirectCopyRestoreExpr *CRE 3949 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3950 assert(getLangOpts().ObjCAutoRefCount); 3951 return emitWritebackArg(*this, args, CRE); 3952 } 3953 3954 assert(type->isReferenceType() == E->isGLValue() && 3955 "reference binding to unmaterialized r-value!"); 3956 3957 if (E->isGLValue()) { 3958 assert(E->getObjectKind() == OK_Ordinary); 3959 return args.add(EmitReferenceBindingToExpr(E), type); 3960 } 3961 3962 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3963 3964 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3965 // However, we still have to push an EH-only cleanup in case we unwind before 3966 // we make it to the call. 3967 if (HasAggregateEvalKind && 3968 type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { 3969 // If we're using inalloca, use the argument memory. Otherwise, use a 3970 // temporary. 3971 AggValueSlot Slot; 3972 if (args.isUsingInAlloca()) 3973 Slot = createPlaceholderSlot(*this, type); 3974 else 3975 Slot = CreateAggTemp(type, "agg.tmp"); 3976 3977 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3978 if (const auto *RD = type->getAsCXXRecordDecl()) 3979 DestroyedInCallee = RD->hasNonTrivialDestructor(); 3980 else 3981 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3982 3983 if (DestroyedInCallee) 3984 Slot.setExternallyDestructed(); 3985 3986 EmitAggExpr(E, Slot); 3987 RValue RV = Slot.asRValue(); 3988 args.add(RV, type); 3989 3990 if (DestroyedInCallee && NeedsEHCleanup) { 3991 // Create a no-op GEP between the placeholder and the cleanup so we can 3992 // RAUW it successfully. It also serves as a marker of the first 3993 // instruction where the cleanup is active. 3994 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3995 type); 3996 // This unreachable is a temporary marker which will be removed later. 3997 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3998 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3999 } 4000 return; 4001 } 4002 4003 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 4004 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 4005 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 4006 assert(L.isSimple()); 4007 args.addUncopiedAggregate(L, type); 4008 return; 4009 } 4010 4011 args.add(EmitAnyExprToTemp(E), type); 4012 } 4013 4014 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 4015 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 4016 // implicitly widens null pointer constants that are arguments to varargs 4017 // functions to pointer-sized ints. 4018 if (!getTarget().getTriple().isOSWindows()) 4019 return Arg->getType(); 4020 4021 if (Arg->getType()->isIntegerType() && 4022 getContext().getTypeSize(Arg->getType()) < 4023 getContext().getTargetInfo().getPointerWidth(0) && 4024 Arg->isNullPointerConstant(getContext(), 4025 Expr::NPC_ValueDependentIsNotNull)) { 4026 return getContext().getIntPtrType(); 4027 } 4028 4029 return Arg->getType(); 4030 } 4031 4032 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4033 // optimizer it can aggressively ignore unwind edges. 4034 void 4035 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 4036 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 4037 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 4038 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 4039 CGM.getNoObjCARCExceptionsMetadata()); 4040 } 4041 4042 /// Emits a call to the given no-arguments nounwind runtime function. 4043 llvm::CallInst * 4044 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4045 const llvm::Twine &name) { 4046 return EmitNounwindRuntimeCall(callee, None, name); 4047 } 4048 4049 /// Emits a call to the given nounwind runtime function. 4050 llvm::CallInst * 4051 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee, 4052 ArrayRef<llvm::Value *> args, 4053 const llvm::Twine &name) { 4054 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 4055 call->setDoesNotThrow(); 4056 return call; 4057 } 4058 4059 /// Emits a simple call (never an invoke) to the given no-arguments 4060 /// runtime function. 4061 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4062 const llvm::Twine &name) { 4063 return EmitRuntimeCall(callee, None, name); 4064 } 4065 4066 // Calls which may throw must have operand bundles indicating which funclet 4067 // they are nested within. 4068 SmallVector<llvm::OperandBundleDef, 1> 4069 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 4070 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4071 // There is no need for a funclet operand bundle if we aren't inside a 4072 // funclet. 4073 if (!CurrentFuncletPad) 4074 return BundleList; 4075 4076 // Skip intrinsics which cannot throw. 4077 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 4078 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 4079 return BundleList; 4080 4081 BundleList.emplace_back("funclet", CurrentFuncletPad); 4082 return BundleList; 4083 } 4084 4085 /// Emits a simple call (never an invoke) to the given runtime function. 4086 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee, 4087 ArrayRef<llvm::Value *> args, 4088 const llvm::Twine &name) { 4089 llvm::CallInst *call = Builder.CreateCall( 4090 callee, args, getBundlesForFunclet(callee.getCallee()), name); 4091 call->setCallingConv(getRuntimeCC()); 4092 return call; 4093 } 4094 4095 /// Emits a call or invoke to the given noreturn runtime function. 4096 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke( 4097 llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) { 4098 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4099 getBundlesForFunclet(callee.getCallee()); 4100 4101 if (getInvokeDest()) { 4102 llvm::InvokeInst *invoke = 4103 Builder.CreateInvoke(callee, 4104 getUnreachableBlock(), 4105 getInvokeDest(), 4106 args, 4107 BundleList); 4108 invoke->setDoesNotReturn(); 4109 invoke->setCallingConv(getRuntimeCC()); 4110 } else { 4111 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 4112 call->setDoesNotReturn(); 4113 call->setCallingConv(getRuntimeCC()); 4114 Builder.CreateUnreachable(); 4115 } 4116 } 4117 4118 /// Emits a call or invoke instruction to the given nullary runtime function. 4119 llvm::CallBase * 4120 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4121 const Twine &name) { 4122 return EmitRuntimeCallOrInvoke(callee, None, name); 4123 } 4124 4125 /// Emits a call or invoke instruction to the given runtime function. 4126 llvm::CallBase * 4127 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee, 4128 ArrayRef<llvm::Value *> args, 4129 const Twine &name) { 4130 llvm::CallBase *call = EmitCallOrInvoke(callee, args, name); 4131 call->setCallingConv(getRuntimeCC()); 4132 return call; 4133 } 4134 4135 /// Emits a call or invoke instruction to the given function, depending 4136 /// on the current state of the EH stack. 4137 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee, 4138 ArrayRef<llvm::Value *> Args, 4139 const Twine &Name) { 4140 llvm::BasicBlock *InvokeDest = getInvokeDest(); 4141 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4142 getBundlesForFunclet(Callee.getCallee()); 4143 4144 llvm::CallBase *Inst; 4145 if (!InvokeDest) 4146 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 4147 else { 4148 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 4149 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 4150 Name); 4151 EmitBlock(ContBB); 4152 } 4153 4154 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4155 // optimizer it can aggressively ignore unwind edges. 4156 if (CGM.getLangOpts().ObjCAutoRefCount) 4157 AddObjCARCExceptionMetadata(Inst); 4158 4159 return Inst; 4160 } 4161 4162 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 4163 llvm::Value *New) { 4164 DeferredReplacements.push_back(std::make_pair(Old, New)); 4165 } 4166 4167 namespace { 4168 4169 /// Specify given \p NewAlign as the alignment of return value attribute. If 4170 /// such attribute already exists, re-set it to the maximal one of two options. 4171 LLVM_NODISCARD llvm::AttributeList 4172 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx, 4173 const llvm::AttributeList &Attrs, 4174 llvm::Align NewAlign) { 4175 llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne(); 4176 if (CurAlign >= NewAlign) 4177 return Attrs; 4178 llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign); 4179 return Attrs 4180 .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex, 4181 llvm::Attribute::AttrKind::Alignment) 4182 .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr); 4183 } 4184 4185 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter { 4186 protected: 4187 CodeGenFunction &CGF; 4188 4189 /// We do nothing if this is, or becomes, nullptr. 4190 const AlignedAttrTy *AA = nullptr; 4191 4192 llvm::Value *Alignment = nullptr; // May or may not be a constant. 4193 llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero. 4194 4195 AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4196 : CGF(CGF_) { 4197 if (!FuncDecl) 4198 return; 4199 AA = FuncDecl->getAttr<AlignedAttrTy>(); 4200 } 4201 4202 public: 4203 /// If we can, materialize the alignment as an attribute on return value. 4204 LLVM_NODISCARD llvm::AttributeList 4205 TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) { 4206 if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment)) 4207 return Attrs; 4208 const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment); 4209 if (!AlignmentCI) 4210 return Attrs; 4211 // We may legitimately have non-power-of-2 alignment here. 4212 // If so, this is UB land, emit it via `@llvm.assume` instead. 4213 if (!AlignmentCI->getValue().isPowerOf2()) 4214 return Attrs; 4215 llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute( 4216 CGF.getLLVMContext(), Attrs, 4217 llvm::Align( 4218 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment))); 4219 AA = nullptr; // We're done. Disallow doing anything else. 4220 return NewAttrs; 4221 } 4222 4223 /// Emit alignment assumption. 4224 /// This is a general fallback that we take if either there is an offset, 4225 /// or the alignment is variable or we are sanitizing for alignment. 4226 void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) { 4227 if (!AA) 4228 return; 4229 CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, 4230 AA->getLocation(), Alignment, OffsetCI); 4231 AA = nullptr; // We're done. Disallow doing anything else. 4232 } 4233 }; 4234 4235 /// Helper data structure to emit `AssumeAlignedAttr`. 4236 class AssumeAlignedAttrEmitter final 4237 : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> { 4238 public: 4239 AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl) 4240 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4241 if (!AA) 4242 return; 4243 // It is guaranteed that the alignment/offset are constants. 4244 Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment())); 4245 if (Expr *Offset = AA->getOffset()) { 4246 OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset)); 4247 if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset. 4248 OffsetCI = nullptr; 4249 } 4250 } 4251 }; 4252 4253 /// Helper data structure to emit `AllocAlignAttr`. 4254 class AllocAlignAttrEmitter final 4255 : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> { 4256 public: 4257 AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl, 4258 const CallArgList &CallArgs) 4259 : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) { 4260 if (!AA) 4261 return; 4262 // Alignment may or may not be a constant, and that is okay. 4263 Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()] 4264 .getRValue(CGF) 4265 .getScalarVal(); 4266 } 4267 }; 4268 4269 } // namespace 4270 4271 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 4272 const CGCallee &Callee, 4273 ReturnValueSlot ReturnValue, 4274 const CallArgList &CallArgs, 4275 llvm::CallBase **callOrInvoke, 4276 SourceLocation Loc) { 4277 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 4278 4279 assert(Callee.isOrdinary() || Callee.isVirtual()); 4280 4281 // Handle struct-return functions by passing a pointer to the 4282 // location that we would like to return into. 4283 QualType RetTy = CallInfo.getReturnType(); 4284 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 4285 4286 llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo); 4287 4288 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl(); 4289 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) { 4290 // We can only guarantee that a function is called from the correct 4291 // context/function based on the appropriate target attributes, 4292 // so only check in the case where we have both always_inline and target 4293 // since otherwise we could be making a conditional call after a check for 4294 // the proper cpu features (and it won't cause code generation issues due to 4295 // function based code generation). 4296 if (TargetDecl->hasAttr<AlwaysInlineAttr>() && 4297 TargetDecl->hasAttr<TargetAttr>()) 4298 checkTargetFeatures(Loc, FD); 4299 4300 // Some architectures (such as x86-64) have the ABI changed based on 4301 // attribute-target/features. Give them a chance to diagnose. 4302 CGM.getTargetCodeGenInfo().checkFunctionCallABI( 4303 CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs); 4304 } 4305 4306 #ifndef NDEBUG 4307 if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) { 4308 // For an inalloca varargs function, we don't expect CallInfo to match the 4309 // function pointer's type, because the inalloca struct a will have extra 4310 // fields in it for the varargs parameters. Code later in this function 4311 // bitcasts the function pointer to the type derived from CallInfo. 4312 // 4313 // In other cases, we assert that the types match up (until pointers stop 4314 // having pointee types). 4315 llvm::Type *TypeFromVal; 4316 if (Callee.isVirtual()) 4317 TypeFromVal = Callee.getVirtualFunctionType(); 4318 else 4319 TypeFromVal = 4320 Callee.getFunctionPointer()->getType()->getPointerElementType(); 4321 assert(IRFuncTy == TypeFromVal); 4322 } 4323 #endif 4324 4325 // 1. Set up the arguments. 4326 4327 // If we're using inalloca, insert the allocation after the stack save. 4328 // FIXME: Do this earlier rather than hacking it in here! 4329 Address ArgMemory = Address::invalid(); 4330 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 4331 const llvm::DataLayout &DL = CGM.getDataLayout(); 4332 llvm::Instruction *IP = CallArgs.getStackBase(); 4333 llvm::AllocaInst *AI; 4334 if (IP) { 4335 IP = IP->getNextNode(); 4336 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 4337 "argmem", IP); 4338 } else { 4339 AI = CreateTempAlloca(ArgStruct, "argmem"); 4340 } 4341 auto Align = CallInfo.getArgStructAlignment(); 4342 AI->setAlignment(Align.getAsAlign()); 4343 AI->setUsedWithInAlloca(true); 4344 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 4345 ArgMemory = Address(AI, Align); 4346 } 4347 4348 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 4349 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 4350 4351 // If the call returns a temporary with struct return, create a temporary 4352 // alloca to hold the result, unless one is given to us. 4353 Address SRetPtr = Address::invalid(); 4354 Address SRetAlloca = Address::invalid(); 4355 llvm::Value *UnusedReturnSizePtr = nullptr; 4356 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 4357 if (!ReturnValue.isNull()) { 4358 SRetPtr = ReturnValue.getValue(); 4359 } else { 4360 SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca); 4361 if (HaveInsertPoint() && ReturnValue.isUnused()) { 4362 uint64_t size = 4363 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 4364 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer()); 4365 } 4366 } 4367 if (IRFunctionArgs.hasSRetArg()) { 4368 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 4369 } else if (RetAI.isInAlloca()) { 4370 Address Addr = 4371 Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex()); 4372 Builder.CreateStore(SRetPtr.getPointer(), Addr); 4373 } 4374 } 4375 4376 Address swiftErrorTemp = Address::invalid(); 4377 Address swiftErrorArg = Address::invalid(); 4378 4379 // When passing arguments using temporary allocas, we need to add the 4380 // appropriate lifetime markers. This vector keeps track of all the lifetime 4381 // markers that need to be ended right after the call. 4382 SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall; 4383 4384 // Translate all of the arguments as necessary to match the IR lowering. 4385 assert(CallInfo.arg_size() == CallArgs.size() && 4386 "Mismatch between function signature & arguments."); 4387 unsigned ArgNo = 0; 4388 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 4389 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 4390 I != E; ++I, ++info_it, ++ArgNo) { 4391 const ABIArgInfo &ArgInfo = info_it->info; 4392 4393 // Insert a padding argument to ensure proper alignment. 4394 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 4395 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 4396 llvm::UndefValue::get(ArgInfo.getPaddingType()); 4397 4398 unsigned FirstIRArg, NumIRArgs; 4399 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 4400 4401 switch (ArgInfo.getKind()) { 4402 case ABIArgInfo::InAlloca: { 4403 assert(NumIRArgs == 0); 4404 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 4405 if (I->isAggregate()) { 4406 Address Addr = I->hasLValue() 4407 ? I->getKnownLValue().getAddress(*this) 4408 : I->getKnownRValue().getAggregateAddress(); 4409 llvm::Instruction *Placeholder = 4410 cast<llvm::Instruction>(Addr.getPointer()); 4411 4412 if (!ArgInfo.getInAllocaIndirect()) { 4413 // Replace the placeholder with the appropriate argument slot GEP. 4414 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 4415 Builder.SetInsertPoint(Placeholder); 4416 Addr = Builder.CreateStructGEP(ArgMemory, 4417 ArgInfo.getInAllocaFieldIndex()); 4418 Builder.restoreIP(IP); 4419 } else { 4420 // For indirect things such as overaligned structs, replace the 4421 // placeholder with a regular aggregate temporary alloca. Store the 4422 // address of this alloca into the struct. 4423 Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp"); 4424 Address ArgSlot = Builder.CreateStructGEP( 4425 ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4426 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4427 } 4428 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 4429 } else if (ArgInfo.getInAllocaIndirect()) { 4430 // Make a temporary alloca and store the address of it into the argument 4431 // struct. 4432 Address Addr = CreateMemTempWithoutCast( 4433 I->Ty, getContext().getTypeAlignInChars(I->Ty), 4434 "indirect-arg-temp"); 4435 I->copyInto(*this, Addr); 4436 Address ArgSlot = 4437 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4438 Builder.CreateStore(Addr.getPointer(), ArgSlot); 4439 } else { 4440 // Store the RValue into the argument struct. 4441 Address Addr = 4442 Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex()); 4443 unsigned AS = Addr.getType()->getPointerAddressSpace(); 4444 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 4445 // There are some cases where a trivial bitcast is not avoidable. The 4446 // definition of a type later in a translation unit may change it's type 4447 // from {}* to (%struct.foo*)*. 4448 if (Addr.getType() != MemType) 4449 Addr = Builder.CreateBitCast(Addr, MemType); 4450 I->copyInto(*this, Addr); 4451 } 4452 break; 4453 } 4454 4455 case ABIArgInfo::Indirect: 4456 case ABIArgInfo::IndirectAliased: { 4457 assert(NumIRArgs == 1); 4458 if (!I->isAggregate()) { 4459 // Make a temporary alloca to pass the argument. 4460 Address Addr = CreateMemTempWithoutCast( 4461 I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp"); 4462 IRCallArgs[FirstIRArg] = Addr.getPointer(); 4463 4464 I->copyInto(*this, Addr); 4465 } else { 4466 // We want to avoid creating an unnecessary temporary+copy here; 4467 // however, we need one in three cases: 4468 // 1. If the argument is not byval, and we are required to copy the 4469 // source. (This case doesn't occur on any common architecture.) 4470 // 2. If the argument is byval, RV is not sufficiently aligned, and 4471 // we cannot force it to be sufficiently aligned. 4472 // 3. If the argument is byval, but RV is not located in default 4473 // or alloca address space. 4474 Address Addr = I->hasLValue() 4475 ? I->getKnownLValue().getAddress(*this) 4476 : I->getKnownRValue().getAggregateAddress(); 4477 llvm::Value *V = Addr.getPointer(); 4478 CharUnits Align = ArgInfo.getIndirectAlign(); 4479 const llvm::DataLayout *TD = &CGM.getDataLayout(); 4480 4481 assert((FirstIRArg >= IRFuncTy->getNumParams() || 4482 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 4483 TD->getAllocaAddrSpace()) && 4484 "indirect argument must be in alloca address space"); 4485 4486 bool NeedCopy = false; 4487 4488 if (Addr.getAlignment() < Align && 4489 llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) < 4490 Align.getAsAlign()) { 4491 NeedCopy = true; 4492 } else if (I->hasLValue()) { 4493 auto LV = I->getKnownLValue(); 4494 auto AS = LV.getAddressSpace(); 4495 4496 if (!ArgInfo.getIndirectByVal() || 4497 (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) { 4498 NeedCopy = true; 4499 } 4500 if (!getLangOpts().OpenCL) { 4501 if ((ArgInfo.getIndirectByVal() && 4502 (AS != LangAS::Default && 4503 AS != CGM.getASTAllocaAddressSpace()))) { 4504 NeedCopy = true; 4505 } 4506 } 4507 // For OpenCL even if RV is located in default or alloca address space 4508 // we don't want to perform address space cast for it. 4509 else if ((ArgInfo.getIndirectByVal() && 4510 Addr.getType()->getAddressSpace() != IRFuncTy-> 4511 getParamType(FirstIRArg)->getPointerAddressSpace())) { 4512 NeedCopy = true; 4513 } 4514 } 4515 4516 if (NeedCopy) { 4517 // Create an aligned temporary, and copy to it. 4518 Address AI = CreateMemTempWithoutCast( 4519 I->Ty, ArgInfo.getIndirectAlign(), "byval-temp"); 4520 IRCallArgs[FirstIRArg] = AI.getPointer(); 4521 4522 // Emit lifetime markers for the temporary alloca. 4523 uint64_t ByvalTempElementSize = 4524 CGM.getDataLayout().getTypeAllocSize(AI.getElementType()); 4525 llvm::Value *LifetimeSize = 4526 EmitLifetimeStart(ByvalTempElementSize, AI.getPointer()); 4527 4528 // Add cleanup code to emit the end lifetime marker after the call. 4529 if (LifetimeSize) // In case we disabled lifetime markers. 4530 CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize); 4531 4532 // Generate the copy. 4533 I->copyInto(*this, AI); 4534 } else { 4535 // Skip the extra memcpy call. 4536 auto *T = V->getType()->getPointerElementType()->getPointerTo( 4537 CGM.getDataLayout().getAllocaAddrSpace()); 4538 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 4539 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 4540 true); 4541 } 4542 } 4543 break; 4544 } 4545 4546 case ABIArgInfo::Ignore: 4547 assert(NumIRArgs == 0); 4548 break; 4549 4550 case ABIArgInfo::Extend: 4551 case ABIArgInfo::Direct: { 4552 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 4553 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 4554 ArgInfo.getDirectOffset() == 0) { 4555 assert(NumIRArgs == 1); 4556 llvm::Value *V; 4557 if (!I->isAggregate()) 4558 V = I->getKnownRValue().getScalarVal(); 4559 else 4560 V = Builder.CreateLoad( 4561 I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4562 : I->getKnownRValue().getAggregateAddress()); 4563 4564 // Implement swifterror by copying into a new swifterror argument. 4565 // We'll write back in the normal path out of the call. 4566 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 4567 == ParameterABI::SwiftErrorResult) { 4568 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 4569 4570 QualType pointeeTy = I->Ty->getPointeeType(); 4571 swiftErrorArg = 4572 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 4573 4574 swiftErrorTemp = 4575 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 4576 V = swiftErrorTemp.getPointer(); 4577 cast<llvm::AllocaInst>(V)->setSwiftError(true); 4578 4579 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 4580 Builder.CreateStore(errorValue, swiftErrorTemp); 4581 } 4582 4583 // We might have to widen integers, but we should never truncate. 4584 if (ArgInfo.getCoerceToType() != V->getType() && 4585 V->getType()->isIntegerTy()) 4586 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 4587 4588 // If the argument doesn't match, perform a bitcast to coerce it. This 4589 // can happen due to trivial type mismatches. 4590 if (FirstIRArg < IRFuncTy->getNumParams() && 4591 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 4592 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 4593 4594 IRCallArgs[FirstIRArg] = V; 4595 break; 4596 } 4597 4598 // FIXME: Avoid the conversion through memory if possible. 4599 Address Src = Address::invalid(); 4600 if (!I->isAggregate()) { 4601 Src = CreateMemTemp(I->Ty, "coerce"); 4602 I->copyInto(*this, Src); 4603 } else { 4604 Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4605 : I->getKnownRValue().getAggregateAddress(); 4606 } 4607 4608 // If the value is offset in memory, apply the offset now. 4609 Src = emitAddressAtOffset(*this, Src, ArgInfo); 4610 4611 // Fast-isel and the optimizer generally like scalar values better than 4612 // FCAs, so we flatten them if this is safe to do for this argument. 4613 llvm::StructType *STy = 4614 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 4615 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4616 llvm::Type *SrcTy = Src.getElementType(); 4617 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4618 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4619 4620 // If the source type is smaller than the destination type of the 4621 // coerce-to logic, copy the source value into a temp alloca the size 4622 // of the destination type to allow loading all of it. The bits past 4623 // the source value are left undef. 4624 if (SrcSize < DstSize) { 4625 Address TempAlloca 4626 = CreateTempAlloca(STy, Src.getAlignment(), 4627 Src.getName() + ".coerce"); 4628 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4629 Src = TempAlloca; 4630 } else { 4631 Src = Builder.CreateBitCast(Src, 4632 STy->getPointerTo(Src.getAddressSpace())); 4633 } 4634 4635 assert(NumIRArgs == STy->getNumElements()); 4636 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4637 Address EltPtr = Builder.CreateStructGEP(Src, i); 4638 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4639 IRCallArgs[FirstIRArg + i] = LI; 4640 } 4641 } else { 4642 // In the simple case, just pass the coerced loaded value. 4643 assert(NumIRArgs == 1); 4644 llvm::Value *Load = 4645 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4646 4647 if (CallInfo.isCmseNSCall()) { 4648 // For certain parameter types, clear padding bits, as they may reveal 4649 // sensitive information. 4650 // Small struct/union types are passed as integer arrays. 4651 auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType()); 4652 if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType())) 4653 Load = EmitCMSEClearRecord(Load, ATy, I->Ty); 4654 } 4655 IRCallArgs[FirstIRArg] = Load; 4656 } 4657 4658 break; 4659 } 4660 4661 case ABIArgInfo::CoerceAndExpand: { 4662 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4663 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4664 4665 llvm::Value *tempSize = nullptr; 4666 Address addr = Address::invalid(); 4667 Address AllocaAddr = Address::invalid(); 4668 if (I->isAggregate()) { 4669 addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this) 4670 : I->getKnownRValue().getAggregateAddress(); 4671 4672 } else { 4673 RValue RV = I->getKnownRValue(); 4674 assert(RV.isScalar()); // complex should always just be direct 4675 4676 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4677 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4678 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4679 4680 // Materialize to a temporary. 4681 addr = CreateTempAlloca( 4682 RV.getScalarVal()->getType(), 4683 CharUnits::fromQuantity(std::max( 4684 (unsigned)layout->getAlignment().value(), scalarAlign)), 4685 "tmp", 4686 /*ArraySize=*/nullptr, &AllocaAddr); 4687 tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer()); 4688 4689 Builder.CreateStore(RV.getScalarVal(), addr); 4690 } 4691 4692 addr = Builder.CreateElementBitCast(addr, coercionType); 4693 4694 unsigned IRArgPos = FirstIRArg; 4695 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4696 llvm::Type *eltType = coercionType->getElementType(i); 4697 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4698 Address eltAddr = Builder.CreateStructGEP(addr, i); 4699 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4700 IRCallArgs[IRArgPos++] = elt; 4701 } 4702 assert(IRArgPos == FirstIRArg + NumIRArgs); 4703 4704 if (tempSize) { 4705 EmitLifetimeEnd(tempSize, AllocaAddr.getPointer()); 4706 } 4707 4708 break; 4709 } 4710 4711 case ABIArgInfo::Expand: { 4712 unsigned IRArgPos = FirstIRArg; 4713 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4714 assert(IRArgPos == FirstIRArg + NumIRArgs); 4715 break; 4716 } 4717 } 4718 } 4719 4720 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4721 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4722 4723 // If we're using inalloca, set up that argument. 4724 if (ArgMemory.isValid()) { 4725 llvm::Value *Arg = ArgMemory.getPointer(); 4726 if (CallInfo.isVariadic()) { 4727 // When passing non-POD arguments by value to variadic functions, we will 4728 // end up with a variadic prototype and an inalloca call site. In such 4729 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4730 // the callee. 4731 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4732 CalleePtr = 4733 Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS)); 4734 } else { 4735 llvm::Type *LastParamTy = 4736 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4737 if (Arg->getType() != LastParamTy) { 4738 #ifndef NDEBUG 4739 // Assert that these structs have equivalent element types. 4740 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4741 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4742 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4743 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4744 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4745 DE = DeclaredTy->element_end(), 4746 FI = FullTy->element_begin(); 4747 DI != DE; ++DI, ++FI) 4748 assert(*DI == *FI); 4749 #endif 4750 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4751 } 4752 } 4753 assert(IRFunctionArgs.hasInallocaArg()); 4754 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4755 } 4756 4757 // 2. Prepare the function pointer. 4758 4759 // If the callee is a bitcast of a non-variadic function to have a 4760 // variadic function pointer type, check to see if we can remove the 4761 // bitcast. This comes up with unprototyped functions. 4762 // 4763 // This makes the IR nicer, but more importantly it ensures that we 4764 // can inline the function at -O0 if it is marked always_inline. 4765 auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT, 4766 llvm::Value *Ptr) -> llvm::Function * { 4767 if (!CalleeFT->isVarArg()) 4768 return nullptr; 4769 4770 // Get underlying value if it's a bitcast 4771 if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) { 4772 if (CE->getOpcode() == llvm::Instruction::BitCast) 4773 Ptr = CE->getOperand(0); 4774 } 4775 4776 llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr); 4777 if (!OrigFn) 4778 return nullptr; 4779 4780 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4781 4782 // If the original type is variadic, or if any of the component types 4783 // disagree, we cannot remove the cast. 4784 if (OrigFT->isVarArg() || 4785 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4786 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4787 return nullptr; 4788 4789 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4790 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4791 return nullptr; 4792 4793 return OrigFn; 4794 }; 4795 4796 if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) { 4797 CalleePtr = OrigFn; 4798 IRFuncTy = OrigFn->getFunctionType(); 4799 } 4800 4801 // 3. Perform the actual call. 4802 4803 // Deactivate any cleanups that we're supposed to do immediately before 4804 // the call. 4805 if (!CallArgs.getCleanupsToDeactivate().empty()) 4806 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4807 4808 // Assert that the arguments we computed match up. The IR verifier 4809 // will catch this, but this is a common enough source of problems 4810 // during IRGen changes that it's way better for debugging to catch 4811 // it ourselves here. 4812 #ifndef NDEBUG 4813 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4814 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4815 // Inalloca argument can have different type. 4816 if (IRFunctionArgs.hasInallocaArg() && 4817 i == IRFunctionArgs.getInallocaArgNo()) 4818 continue; 4819 if (i < IRFuncTy->getNumParams()) 4820 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4821 } 4822 #endif 4823 4824 // Update the largest vector width if any arguments have vector types. 4825 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4826 if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType())) 4827 LargestVectorWidth = 4828 std::max((uint64_t)LargestVectorWidth, 4829 VT->getPrimitiveSizeInBits().getKnownMinSize()); 4830 } 4831 4832 // Compute the calling convention and attributes. 4833 unsigned CallingConv; 4834 llvm::AttributeList Attrs; 4835 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4836 Callee.getAbstractInfo(), Attrs, CallingConv, 4837 /*AttrOnCallSite=*/true); 4838 4839 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 4840 if (FD->hasAttr<StrictFPAttr>()) 4841 // All calls within a strictfp function are marked strictfp 4842 Attrs = 4843 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4844 llvm::Attribute::StrictFP); 4845 4846 // Add call-site nomerge attribute if exists. 4847 if (InNoMergeAttributedStmt) 4848 Attrs = 4849 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4850 llvm::Attribute::NoMerge); 4851 4852 // Apply some call-site-specific attributes. 4853 // TODO: work this into building the attribute set. 4854 4855 // Apply always_inline to all calls within flatten functions. 4856 // FIXME: should this really take priority over __try, below? 4857 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4858 !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) { 4859 Attrs = 4860 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4861 llvm::Attribute::AlwaysInline); 4862 } 4863 4864 // Disable inlining inside SEH __try blocks. 4865 if (isSEHTryScope()) { 4866 Attrs = 4867 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4868 llvm::Attribute::NoInline); 4869 } 4870 4871 // Decide whether to use a call or an invoke. 4872 bool CannotThrow; 4873 if (currentFunctionUsesSEHTry()) { 4874 // SEH cares about asynchronous exceptions, so everything can "throw." 4875 CannotThrow = false; 4876 } else if (isCleanupPadScope() && 4877 EHPersonality::get(*this).isMSVCXXPersonality()) { 4878 // The MSVC++ personality will implicitly terminate the program if an 4879 // exception is thrown during a cleanup outside of a try/catch. 4880 // We don't need to model anything in IR to get this behavior. 4881 CannotThrow = true; 4882 } else { 4883 // Otherwise, nounwind call sites will never throw. 4884 CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind); 4885 4886 if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr)) 4887 if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind)) 4888 CannotThrow = true; 4889 } 4890 4891 // If we made a temporary, be sure to clean up after ourselves. Note that we 4892 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4893 // pop this cleanup later on. Being eager about this is OK, since this 4894 // temporary is 'invisible' outside of the callee. 4895 if (UnusedReturnSizePtr) 4896 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca, 4897 UnusedReturnSizePtr); 4898 4899 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4900 4901 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4902 getBundlesForFunclet(CalleePtr); 4903 4904 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) 4905 if (FD->hasAttr<StrictFPAttr>()) 4906 // All calls within a strictfp function are marked strictfp 4907 Attrs = 4908 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4909 llvm::Attribute::StrictFP); 4910 4911 AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl); 4912 Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 4913 4914 AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs); 4915 Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs); 4916 4917 // Emit the actual call/invoke instruction. 4918 llvm::CallBase *CI; 4919 if (!InvokeDest) { 4920 CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList); 4921 } else { 4922 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4923 CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs, 4924 BundleList); 4925 EmitBlock(Cont); 4926 } 4927 if (callOrInvoke) 4928 *callOrInvoke = CI; 4929 4930 // If this is within a function that has the guard(nocf) attribute and is an 4931 // indirect call, add the "guard_nocf" attribute to this call to indicate that 4932 // Control Flow Guard checks should not be added, even if the call is inlined. 4933 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) { 4934 if (const auto *A = FD->getAttr<CFGuardAttr>()) { 4935 if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction()) 4936 Attrs = Attrs.addAttribute( 4937 getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf"); 4938 } 4939 } 4940 4941 // Apply the attributes and calling convention. 4942 CI->setAttributes(Attrs); 4943 CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4944 4945 // Apply various metadata. 4946 4947 if (!CI->getType()->isVoidTy()) 4948 CI->setName("call"); 4949 4950 // Update largest vector width from the return type. 4951 if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType())) 4952 LargestVectorWidth = 4953 std::max((uint64_t)LargestVectorWidth, 4954 VT->getPrimitiveSizeInBits().getKnownMinSize()); 4955 4956 // Insert instrumentation or attach profile metadata at indirect call sites. 4957 // For more details, see the comment before the definition of 4958 // IPVK_IndirectCallTarget in InstrProfData.inc. 4959 if (!CI->getCalledFunction()) 4960 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4961 CI, CalleePtr); 4962 4963 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4964 // optimizer it can aggressively ignore unwind edges. 4965 if (CGM.getLangOpts().ObjCAutoRefCount) 4966 AddObjCARCExceptionMetadata(CI); 4967 4968 // Suppress tail calls if requested. 4969 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4970 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4971 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4972 } 4973 4974 // Add metadata for calls to MSAllocator functions 4975 if (getDebugInfo() && TargetDecl && 4976 TargetDecl->hasAttr<MSAllocatorAttr>()) 4977 getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc); 4978 4979 // 4. Finish the call. 4980 4981 // If the call doesn't return, finish the basic block and clear the 4982 // insertion point; this allows the rest of IRGen to discard 4983 // unreachable code. 4984 if (CI->doesNotReturn()) { 4985 if (UnusedReturnSizePtr) 4986 PopCleanupBlock(); 4987 4988 // Strip away the noreturn attribute to better diagnose unreachable UB. 4989 if (SanOpts.has(SanitizerKind::Unreachable)) { 4990 // Also remove from function since CallBase::hasFnAttr additionally checks 4991 // attributes of the called function. 4992 if (auto *F = CI->getCalledFunction()) 4993 F->removeFnAttr(llvm::Attribute::NoReturn); 4994 CI->removeAttribute(llvm::AttributeList::FunctionIndex, 4995 llvm::Attribute::NoReturn); 4996 4997 // Avoid incompatibility with ASan which relies on the `noreturn` 4998 // attribute to insert handler calls. 4999 if (SanOpts.hasOneOf(SanitizerKind::Address | 5000 SanitizerKind::KernelAddress)) { 5001 SanitizerScope SanScope(this); 5002 llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder); 5003 Builder.SetInsertPoint(CI); 5004 auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 5005 llvm::FunctionCallee Fn = 5006 CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return"); 5007 EmitNounwindRuntimeCall(Fn); 5008 } 5009 } 5010 5011 EmitUnreachable(Loc); 5012 Builder.ClearInsertionPoint(); 5013 5014 // FIXME: For now, emit a dummy basic block because expr emitters in 5015 // generally are not ready to handle emitting expressions at unreachable 5016 // points. 5017 EnsureInsertPoint(); 5018 5019 // Return a reasonable RValue. 5020 return GetUndefRValue(RetTy); 5021 } 5022 5023 // Perform the swifterror writeback. 5024 if (swiftErrorTemp.isValid()) { 5025 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 5026 Builder.CreateStore(errorResult, swiftErrorArg); 5027 } 5028 5029 // Emit any call-associated writebacks immediately. Arguably this 5030 // should happen after any return-value munging. 5031 if (CallArgs.hasWritebacks()) 5032 emitWritebacks(*this, CallArgs); 5033 5034 // The stack cleanup for inalloca arguments has to run out of the normal 5035 // lexical order, so deactivate it and run it manually here. 5036 CallArgs.freeArgumentMemory(*this); 5037 5038 // Extract the return value. 5039 RValue Ret = [&] { 5040 switch (RetAI.getKind()) { 5041 case ABIArgInfo::CoerceAndExpand: { 5042 auto coercionType = RetAI.getCoerceAndExpandType(); 5043 5044 Address addr = SRetPtr; 5045 addr = Builder.CreateElementBitCast(addr, coercionType); 5046 5047 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 5048 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 5049 5050 unsigned unpaddedIndex = 0; 5051 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 5052 llvm::Type *eltType = coercionType->getElementType(i); 5053 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 5054 Address eltAddr = Builder.CreateStructGEP(addr, i); 5055 llvm::Value *elt = CI; 5056 if (requiresExtract) 5057 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 5058 else 5059 assert(unpaddedIndex == 0); 5060 Builder.CreateStore(elt, eltAddr); 5061 } 5062 // FALLTHROUGH 5063 LLVM_FALLTHROUGH; 5064 } 5065 5066 case ABIArgInfo::InAlloca: 5067 case ABIArgInfo::Indirect: { 5068 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 5069 if (UnusedReturnSizePtr) 5070 PopCleanupBlock(); 5071 return ret; 5072 } 5073 5074 case ABIArgInfo::Ignore: 5075 // If we are ignoring an argument that had a result, make sure to 5076 // construct the appropriate return value for our caller. 5077 return GetUndefRValue(RetTy); 5078 5079 case ABIArgInfo::Extend: 5080 case ABIArgInfo::Direct: { 5081 llvm::Type *RetIRTy = ConvertType(RetTy); 5082 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 5083 switch (getEvaluationKind(RetTy)) { 5084 case TEK_Complex: { 5085 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 5086 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 5087 return RValue::getComplex(std::make_pair(Real, Imag)); 5088 } 5089 case TEK_Aggregate: { 5090 Address DestPtr = ReturnValue.getValue(); 5091 bool DestIsVolatile = ReturnValue.isVolatile(); 5092 5093 if (!DestPtr.isValid()) { 5094 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 5095 DestIsVolatile = false; 5096 } 5097 EmitAggregateStore(CI, DestPtr, DestIsVolatile); 5098 return RValue::getAggregate(DestPtr); 5099 } 5100 case TEK_Scalar: { 5101 // If the argument doesn't match, perform a bitcast to coerce it. This 5102 // can happen due to trivial type mismatches. 5103 llvm::Value *V = CI; 5104 if (V->getType() != RetIRTy) 5105 V = Builder.CreateBitCast(V, RetIRTy); 5106 return RValue::get(V); 5107 } 5108 } 5109 llvm_unreachable("bad evaluation kind"); 5110 } 5111 5112 Address DestPtr = ReturnValue.getValue(); 5113 bool DestIsVolatile = ReturnValue.isVolatile(); 5114 5115 if (!DestPtr.isValid()) { 5116 DestPtr = CreateMemTemp(RetTy, "coerce"); 5117 DestIsVolatile = false; 5118 } 5119 5120 // If the value is offset in memory, apply the offset now. 5121 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 5122 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 5123 5124 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 5125 } 5126 5127 case ABIArgInfo::Expand: 5128 case ABIArgInfo::IndirectAliased: 5129 llvm_unreachable("Invalid ABI kind for return argument"); 5130 } 5131 5132 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 5133 } (); 5134 5135 // Emit the assume_aligned check on the return value. 5136 if (Ret.isScalar() && TargetDecl) { 5137 AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5138 AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret); 5139 } 5140 5141 // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though 5142 // we can't use the full cleanup mechanism. 5143 for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall) 5144 LifetimeEnd.Emit(*this, /*Flags=*/{}); 5145 5146 if (!ReturnValue.isExternallyDestructed() && 5147 RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct) 5148 pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(), 5149 RetTy); 5150 5151 return Ret; 5152 } 5153 5154 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 5155 if (isVirtual()) { 5156 const CallExpr *CE = getVirtualCallExpr(); 5157 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 5158 CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(), 5159 CE ? CE->getBeginLoc() : SourceLocation()); 5160 } 5161 5162 return *this; 5163 } 5164 5165 /* VarArg handling */ 5166 5167 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 5168 VAListAddr = VE->isMicrosoftABI() 5169 ? EmitMSVAListRef(VE->getSubExpr()) 5170 : EmitVAListRef(VE->getSubExpr()); 5171 QualType Ty = VE->getType(); 5172 if (VE->isMicrosoftABI()) 5173 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 5174 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 5175 } 5176