1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/SwiftCallingConv.h"
30 #include "clang/Frontend/CodeGenOptions.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 using namespace clang;
42 using namespace CodeGen;
43 
44 /***/
45 
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_Win64: return llvm::CallingConv::Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
63   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
64   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
65   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
66   case CC_Swift: return llvm::CallingConv::Swift;
67   }
68 }
69 
70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
71 /// qualification.
72 /// FIXME: address space qualification?
73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
74   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
75   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
76 }
77 
78 /// Returns the canonical formal type of the given C++ method.
79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
80   return MD->getType()->getCanonicalTypeUnqualified()
81            .getAs<FunctionProtoType>();
82 }
83 
84 /// Returns the "extra-canonicalized" return type, which discards
85 /// qualifiers on the return type.  Codegen doesn't care about them,
86 /// and it makes ABI code a little easier to be able to assume that
87 /// all parameter and return types are top-level unqualified.
88 static CanQualType GetReturnType(QualType RetTy) {
89   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
90 }
91 
92 /// Arrange the argument and result information for a value of the given
93 /// unprototyped freestanding function type.
94 const CGFunctionInfo &
95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
96   // When translating an unprototyped function type, always use a
97   // variadic type.
98   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
99                                  /*instanceMethod=*/false,
100                                  /*chainCall=*/false, None,
101                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
102 }
103 
104 static void addExtParameterInfosForCall(
105          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
106                                         const FunctionProtoType *proto,
107                                         unsigned prefixArgs,
108                                         unsigned totalArgs) {
109   assert(proto->hasExtParameterInfos());
110   assert(paramInfos.size() <= prefixArgs);
111   assert(proto->getNumParams() + prefixArgs <= totalArgs);
112 
113   paramInfos.reserve(totalArgs);
114 
115   // Add default infos for any prefix args that don't already have infos.
116   paramInfos.resize(prefixArgs);
117 
118   // Add infos for the prototype.
119   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
120     paramInfos.push_back(ParamInfo);
121     // pass_object_size params have no parameter info.
122     if (ParamInfo.hasPassObjectSize())
123       paramInfos.emplace_back();
124   }
125 
126   assert(paramInfos.size() <= totalArgs &&
127          "Did we forget to insert pass_object_size args?");
128   // Add default infos for the variadic and/or suffix arguments.
129   paramInfos.resize(totalArgs);
130 }
131 
132 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
133 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
134 static void appendParameterTypes(const CodeGenTypes &CGT,
135                                  SmallVectorImpl<CanQualType> &prefix,
136               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
137                                  CanQual<FunctionProtoType> FPT) {
138   // Fast path: don't touch param info if we don't need to.
139   if (!FPT->hasExtParameterInfos()) {
140     assert(paramInfos.empty() &&
141            "We have paramInfos, but the prototype doesn't?");
142     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
143     return;
144   }
145 
146   unsigned PrefixSize = prefix.size();
147   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
148   // parameters; the only thing that can change this is the presence of
149   // pass_object_size. So, we preallocate for the common case.
150   prefix.reserve(prefix.size() + FPT->getNumParams());
151 
152   auto ExtInfos = FPT->getExtParameterInfos();
153   assert(ExtInfos.size() == FPT->getNumParams());
154   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
155     prefix.push_back(FPT->getParamType(I));
156     if (ExtInfos[I].hasPassObjectSize())
157       prefix.push_back(CGT.getContext().getSizeType());
158   }
159 
160   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
161                               prefix.size());
162 }
163 
164 /// Arrange the LLVM function layout for a value of the given function
165 /// type, on top of any implicit parameters already stored.
166 static const CGFunctionInfo &
167 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
168                         SmallVectorImpl<CanQualType> &prefix,
169                         CanQual<FunctionProtoType> FTP,
170                         const FunctionDecl *FD) {
171   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
172   RequiredArgs Required =
173       RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD);
174   // FIXME: Kill copy.
175   appendParameterTypes(CGT, prefix, paramInfos, FTP);
176   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
177 
178   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
179                                      /*chainCall=*/false, prefix,
180                                      FTP->getExtInfo(), paramInfos,
181                                      Required);
182 }
183 
184 /// Arrange the argument and result information for a value of the
185 /// given freestanding function type.
186 const CGFunctionInfo &
187 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
188                                       const FunctionDecl *FD) {
189   SmallVector<CanQualType, 16> argTypes;
190   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
191                                    FTP, FD);
192 }
193 
194 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
195   // Set the appropriate calling convention for the Function.
196   if (D->hasAttr<StdCallAttr>())
197     return CC_X86StdCall;
198 
199   if (D->hasAttr<FastCallAttr>())
200     return CC_X86FastCall;
201 
202   if (D->hasAttr<RegCallAttr>())
203     return CC_X86RegCall;
204 
205   if (D->hasAttr<ThisCallAttr>())
206     return CC_X86ThisCall;
207 
208   if (D->hasAttr<VectorCallAttr>())
209     return CC_X86VectorCall;
210 
211   if (D->hasAttr<PascalAttr>())
212     return CC_X86Pascal;
213 
214   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
215     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
216 
217   if (D->hasAttr<IntelOclBiccAttr>())
218     return CC_IntelOclBicc;
219 
220   if (D->hasAttr<MSABIAttr>())
221     return IsWindows ? CC_C : CC_Win64;
222 
223   if (D->hasAttr<SysVABIAttr>())
224     return IsWindows ? CC_X86_64SysV : CC_C;
225 
226   if (D->hasAttr<PreserveMostAttr>())
227     return CC_PreserveMost;
228 
229   if (D->hasAttr<PreserveAllAttr>())
230     return CC_PreserveAll;
231 
232   return CC_C;
233 }
234 
235 /// Arrange the argument and result information for a call to an
236 /// unknown C++ non-static member function of the given abstract type.
237 /// (Zero value of RD means we don't have any meaningful "this" argument type,
238 ///  so fall back to a generic pointer type).
239 /// The member function must be an ordinary function, i.e. not a
240 /// constructor or destructor.
241 const CGFunctionInfo &
242 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
243                                    const FunctionProtoType *FTP,
244                                    const CXXMethodDecl *MD) {
245   SmallVector<CanQualType, 16> argTypes;
246 
247   // Add the 'this' pointer.
248   if (RD)
249     argTypes.push_back(GetThisType(Context, RD));
250   else
251     argTypes.push_back(Context.VoidPtrTy);
252 
253   return ::arrangeLLVMFunctionInfo(
254       *this, true, argTypes,
255       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
256 }
257 
258 /// Arrange the argument and result information for a declaration or
259 /// definition of the given C++ non-static member function.  The
260 /// member function must be an ordinary function, i.e. not a
261 /// constructor or destructor.
262 const CGFunctionInfo &
263 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
264   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
265   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
266 
267   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
268 
269   if (MD->isInstance()) {
270     // The abstract case is perfectly fine.
271     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
272     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
273   }
274 
275   return arrangeFreeFunctionType(prototype, MD);
276 }
277 
278 bool CodeGenTypes::inheritingCtorHasParams(
279     const InheritedConstructor &Inherited, CXXCtorType Type) {
280   // Parameters are unnecessary if we're constructing a base class subobject
281   // and the inherited constructor lives in a virtual base.
282   return Type == Ctor_Complete ||
283          !Inherited.getShadowDecl()->constructsVirtualBase() ||
284          !Target.getCXXABI().hasConstructorVariants();
285   }
286 
287 const CGFunctionInfo &
288 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
289                                             StructorType Type) {
290 
291   SmallVector<CanQualType, 16> argTypes;
292   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
293   argTypes.push_back(GetThisType(Context, MD->getParent()));
294 
295   bool PassParams = true;
296 
297   GlobalDecl GD;
298   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
299     GD = GlobalDecl(CD, toCXXCtorType(Type));
300 
301     // A base class inheriting constructor doesn't get forwarded arguments
302     // needed to construct a virtual base (or base class thereof).
303     if (auto Inherited = CD->getInheritedConstructor())
304       PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
305   } else {
306     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
307     GD = GlobalDecl(DD, toCXXDtorType(Type));
308   }
309 
310   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
311 
312   // Add the formal parameters.
313   if (PassParams)
314     appendParameterTypes(*this, argTypes, paramInfos, FTP);
315 
316   CGCXXABI::AddedStructorArgs AddedArgs =
317       TheCXXABI.buildStructorSignature(MD, Type, argTypes);
318   if (!paramInfos.empty()) {
319     // Note: prefix implies after the first param.
320     if (AddedArgs.Prefix)
321       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
322                         FunctionProtoType::ExtParameterInfo{});
323     if (AddedArgs.Suffix)
324       paramInfos.append(AddedArgs.Suffix,
325                         FunctionProtoType::ExtParameterInfo{});
326   }
327 
328   RequiredArgs required =
329       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
330                                       : RequiredArgs::All);
331 
332   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
333   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
334                                ? argTypes.front()
335                                : TheCXXABI.hasMostDerivedReturn(GD)
336                                      ? CGM.getContext().VoidPtrTy
337                                      : Context.VoidTy;
338   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
339                                  /*chainCall=*/false, argTypes, extInfo,
340                                  paramInfos, required);
341 }
342 
343 static SmallVector<CanQualType, 16>
344 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
345   SmallVector<CanQualType, 16> argTypes;
346   for (auto &arg : args)
347     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
348   return argTypes;
349 }
350 
351 static SmallVector<CanQualType, 16>
352 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
353   SmallVector<CanQualType, 16> argTypes;
354   for (auto &arg : args)
355     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
356   return argTypes;
357 }
358 
359 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
360 getExtParameterInfosForCall(const FunctionProtoType *proto,
361                             unsigned prefixArgs, unsigned totalArgs) {
362   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
363   if (proto->hasExtParameterInfos()) {
364     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
365   }
366   return result;
367 }
368 
369 /// Arrange a call to a C++ method, passing the given arguments.
370 ///
371 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
372 /// parameter.
373 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
374 /// args.
375 /// PassProtoArgs indicates whether `args` has args for the parameters in the
376 /// given CXXConstructorDecl.
377 const CGFunctionInfo &
378 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
379                                         const CXXConstructorDecl *D,
380                                         CXXCtorType CtorKind,
381                                         unsigned ExtraPrefixArgs,
382                                         unsigned ExtraSuffixArgs,
383                                         bool PassProtoArgs) {
384   // FIXME: Kill copy.
385   SmallVector<CanQualType, 16> ArgTypes;
386   for (const auto &Arg : args)
387     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
388 
389   // +1 for implicit this, which should always be args[0].
390   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
391 
392   CanQual<FunctionProtoType> FPT = GetFormalType(D);
393   RequiredArgs Required =
394       RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D);
395   GlobalDecl GD(D, CtorKind);
396   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
397                                ? ArgTypes.front()
398                                : TheCXXABI.hasMostDerivedReturn(GD)
399                                      ? CGM.getContext().VoidPtrTy
400                                      : Context.VoidTy;
401 
402   FunctionType::ExtInfo Info = FPT->getExtInfo();
403   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
404   // If the prototype args are elided, we should only have ABI-specific args,
405   // which never have param info.
406   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
407     // ABI-specific suffix arguments are treated the same as variadic arguments.
408     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
409                                 ArgTypes.size());
410   }
411   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
412                                  /*chainCall=*/false, ArgTypes, Info,
413                                  ParamInfos, Required);
414 }
415 
416 /// Arrange the argument and result information for the declaration or
417 /// definition of the given function.
418 const CGFunctionInfo &
419 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
420   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
421     if (MD->isInstance())
422       return arrangeCXXMethodDeclaration(MD);
423 
424   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
425 
426   assert(isa<FunctionType>(FTy));
427 
428   // When declaring a function without a prototype, always use a
429   // non-variadic type.
430   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
431     return arrangeLLVMFunctionInfo(
432         noProto->getReturnType(), /*instanceMethod=*/false,
433         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
434   }
435 
436   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD);
437 }
438 
439 /// Arrange the argument and result information for the declaration or
440 /// definition of an Objective-C method.
441 const CGFunctionInfo &
442 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
443   // It happens that this is the same as a call with no optional
444   // arguments, except also using the formal 'self' type.
445   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
446 }
447 
448 /// Arrange the argument and result information for the function type
449 /// through which to perform a send to the given Objective-C method,
450 /// using the given receiver type.  The receiver type is not always
451 /// the 'self' type of the method or even an Objective-C pointer type.
452 /// This is *not* the right method for actually performing such a
453 /// message send, due to the possibility of optional arguments.
454 const CGFunctionInfo &
455 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
456                                               QualType receiverType) {
457   SmallVector<CanQualType, 16> argTys;
458   argTys.push_back(Context.getCanonicalParamType(receiverType));
459   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
460   // FIXME: Kill copy?
461   for (const auto *I : MD->parameters()) {
462     argTys.push_back(Context.getCanonicalParamType(I->getType()));
463   }
464 
465   FunctionType::ExtInfo einfo;
466   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
467   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
468 
469   if (getContext().getLangOpts().ObjCAutoRefCount &&
470       MD->hasAttr<NSReturnsRetainedAttr>())
471     einfo = einfo.withProducesResult(true);
472 
473   RequiredArgs required =
474     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
475 
476   return arrangeLLVMFunctionInfo(
477       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
478       /*chainCall=*/false, argTys, einfo, {}, required);
479 }
480 
481 const CGFunctionInfo &
482 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
483                                                  const CallArgList &args) {
484   auto argTypes = getArgTypesForCall(Context, args);
485   FunctionType::ExtInfo einfo;
486 
487   return arrangeLLVMFunctionInfo(
488       GetReturnType(returnType), /*instanceMethod=*/false,
489       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
490 }
491 
492 const CGFunctionInfo &
493 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
494   // FIXME: Do we need to handle ObjCMethodDecl?
495   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
496 
497   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
498     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
499 
500   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
501     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
502 
503   return arrangeFunctionDeclaration(FD);
504 }
505 
506 /// Arrange a thunk that takes 'this' as the first parameter followed by
507 /// varargs.  Return a void pointer, regardless of the actual return type.
508 /// The body of the thunk will end in a musttail call to a function of the
509 /// correct type, and the caller will bitcast the function to the correct
510 /// prototype.
511 const CGFunctionInfo &
512 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
513   assert(MD->isVirtual() && "only virtual memptrs have thunks");
514   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
515   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
516   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
517                                  /*chainCall=*/false, ArgTys,
518                                  FTP->getExtInfo(), {}, RequiredArgs(1));
519 }
520 
521 const CGFunctionInfo &
522 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
523                                    CXXCtorType CT) {
524   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
525 
526   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
527   SmallVector<CanQualType, 2> ArgTys;
528   const CXXRecordDecl *RD = CD->getParent();
529   ArgTys.push_back(GetThisType(Context, RD));
530   if (CT == Ctor_CopyingClosure)
531     ArgTys.push_back(*FTP->param_type_begin());
532   if (RD->getNumVBases() > 0)
533     ArgTys.push_back(Context.IntTy);
534   CallingConv CC = Context.getDefaultCallingConvention(
535       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
536   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
537                                  /*chainCall=*/false, ArgTys,
538                                  FunctionType::ExtInfo(CC), {},
539                                  RequiredArgs::All);
540 }
541 
542 /// Arrange a call as unto a free function, except possibly with an
543 /// additional number of formal parameters considered required.
544 static const CGFunctionInfo &
545 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
546                             CodeGenModule &CGM,
547                             const CallArgList &args,
548                             const FunctionType *fnType,
549                             unsigned numExtraRequiredArgs,
550                             bool chainCall) {
551   assert(args.size() >= numExtraRequiredArgs);
552 
553   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
554 
555   // In most cases, there are no optional arguments.
556   RequiredArgs required = RequiredArgs::All;
557 
558   // If we have a variadic prototype, the required arguments are the
559   // extra prefix plus the arguments in the prototype.
560   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
561     if (proto->isVariadic())
562       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
563 
564     if (proto->hasExtParameterInfos())
565       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
566                                   args.size());
567 
568   // If we don't have a prototype at all, but we're supposed to
569   // explicitly use the variadic convention for unprototyped calls,
570   // treat all of the arguments as required but preserve the nominal
571   // possibility of variadics.
572   } else if (CGM.getTargetCodeGenInfo()
573                 .isNoProtoCallVariadic(args,
574                                        cast<FunctionNoProtoType>(fnType))) {
575     required = RequiredArgs(args.size());
576   }
577 
578   // FIXME: Kill copy.
579   SmallVector<CanQualType, 16> argTypes;
580   for (const auto &arg : args)
581     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
582   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
583                                      /*instanceMethod=*/false, chainCall,
584                                      argTypes, fnType->getExtInfo(), paramInfos,
585                                      required);
586 }
587 
588 /// Figure out the rules for calling a function with the given formal
589 /// type using the given arguments.  The arguments are necessary
590 /// because the function might be unprototyped, in which case it's
591 /// target-dependent in crazy ways.
592 const CGFunctionInfo &
593 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
594                                       const FunctionType *fnType,
595                                       bool chainCall) {
596   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
597                                      chainCall ? 1 : 0, chainCall);
598 }
599 
600 /// A block function is essentially a free function with an
601 /// extra implicit argument.
602 const CGFunctionInfo &
603 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
604                                        const FunctionType *fnType) {
605   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
606                                      /*chainCall=*/false);
607 }
608 
609 const CGFunctionInfo &
610 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
611                                               const FunctionArgList &params) {
612   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
613   auto argTypes = getArgTypesForDeclaration(Context, params);
614 
615   return arrangeLLVMFunctionInfo(
616       GetReturnType(proto->getReturnType()),
617       /*instanceMethod*/ false, /*chainCall*/ false, argTypes,
618       proto->getExtInfo(), paramInfos,
619       RequiredArgs::forPrototypePlus(proto, 1, nullptr));
620 }
621 
622 const CGFunctionInfo &
623 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
624                                          const CallArgList &args) {
625   // FIXME: Kill copy.
626   SmallVector<CanQualType, 16> argTypes;
627   for (const auto &Arg : args)
628     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
629   return arrangeLLVMFunctionInfo(
630       GetReturnType(resultType), /*instanceMethod=*/false,
631       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
632       /*paramInfos=*/ {}, RequiredArgs::All);
633 }
634 
635 const CGFunctionInfo &
636 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
637                                                 const FunctionArgList &args) {
638   auto argTypes = getArgTypesForDeclaration(Context, args);
639 
640   return arrangeLLVMFunctionInfo(
641       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
642       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
643 }
644 
645 const CGFunctionInfo &
646 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
647                                               ArrayRef<CanQualType> argTypes) {
648   return arrangeLLVMFunctionInfo(
649       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
650       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
651 }
652 
653 /// Arrange a call to a C++ method, passing the given arguments.
654 ///
655 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
656 /// does not count `this`.
657 const CGFunctionInfo &
658 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
659                                    const FunctionProtoType *proto,
660                                    RequiredArgs required,
661                                    unsigned numPrefixArgs) {
662   assert(numPrefixArgs + 1 <= args.size() &&
663          "Emitting a call with less args than the required prefix?");
664   // Add one to account for `this`. It's a bit awkward here, but we don't count
665   // `this` in similar places elsewhere.
666   auto paramInfos =
667     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
668 
669   // FIXME: Kill copy.
670   auto argTypes = getArgTypesForCall(Context, args);
671 
672   FunctionType::ExtInfo info = proto->getExtInfo();
673   return arrangeLLVMFunctionInfo(
674       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
675       /*chainCall=*/false, argTypes, info, paramInfos, required);
676 }
677 
678 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
679   return arrangeLLVMFunctionInfo(
680       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
681       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
682 }
683 
684 const CGFunctionInfo &
685 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
686                           const CallArgList &args) {
687   assert(signature.arg_size() <= args.size());
688   if (signature.arg_size() == args.size())
689     return signature;
690 
691   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
692   auto sigParamInfos = signature.getExtParameterInfos();
693   if (!sigParamInfos.empty()) {
694     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
695     paramInfos.resize(args.size());
696   }
697 
698   auto argTypes = getArgTypesForCall(Context, args);
699 
700   assert(signature.getRequiredArgs().allowsOptionalArgs());
701   return arrangeLLVMFunctionInfo(signature.getReturnType(),
702                                  signature.isInstanceMethod(),
703                                  signature.isChainCall(),
704                                  argTypes,
705                                  signature.getExtInfo(),
706                                  paramInfos,
707                                  signature.getRequiredArgs());
708 }
709 
710 namespace clang {
711 namespace CodeGen {
712 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
713 }
714 }
715 
716 /// Arrange the argument and result information for an abstract value
717 /// of a given function type.  This is the method which all of the
718 /// above functions ultimately defer to.
719 const CGFunctionInfo &
720 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
721                                       bool instanceMethod,
722                                       bool chainCall,
723                                       ArrayRef<CanQualType> argTypes,
724                                       FunctionType::ExtInfo info,
725                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
726                                       RequiredArgs required) {
727   assert(std::all_of(argTypes.begin(), argTypes.end(),
728                      [](CanQualType T) { return T.isCanonicalAsParam(); }));
729 
730   // Lookup or create unique function info.
731   llvm::FoldingSetNodeID ID;
732   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
733                           required, resultType, argTypes);
734 
735   void *insertPos = nullptr;
736   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
737   if (FI)
738     return *FI;
739 
740   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
741 
742   // Construct the function info.  We co-allocate the ArgInfos.
743   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
744                               paramInfos, resultType, argTypes, required);
745   FunctionInfos.InsertNode(FI, insertPos);
746 
747   bool inserted = FunctionsBeingProcessed.insert(FI).second;
748   (void)inserted;
749   assert(inserted && "Recursively being processed?");
750 
751   // Compute ABI information.
752   if (CC == llvm::CallingConv::SPIR_KERNEL) {
753     // Force target independent argument handling for the host visible
754     // kernel functions.
755     computeSPIRKernelABIInfo(CGM, *FI);
756   } else if (info.getCC() == CC_Swift) {
757     swiftcall::computeABIInfo(CGM, *FI);
758   } else {
759     getABIInfo().computeInfo(*FI);
760   }
761 
762   // Loop over all of the computed argument and return value info.  If any of
763   // them are direct or extend without a specified coerce type, specify the
764   // default now.
765   ABIArgInfo &retInfo = FI->getReturnInfo();
766   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
767     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
768 
769   for (auto &I : FI->arguments())
770     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
771       I.info.setCoerceToType(ConvertType(I.type));
772 
773   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
774   assert(erased && "Not in set?");
775 
776   return *FI;
777 }
778 
779 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
780                                        bool instanceMethod,
781                                        bool chainCall,
782                                        const FunctionType::ExtInfo &info,
783                                        ArrayRef<ExtParameterInfo> paramInfos,
784                                        CanQualType resultType,
785                                        ArrayRef<CanQualType> argTypes,
786                                        RequiredArgs required) {
787   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
788 
789   void *buffer =
790     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
791                                   argTypes.size() + 1, paramInfos.size()));
792 
793   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
794   FI->CallingConvention = llvmCC;
795   FI->EffectiveCallingConvention = llvmCC;
796   FI->ASTCallingConvention = info.getCC();
797   FI->InstanceMethod = instanceMethod;
798   FI->ChainCall = chainCall;
799   FI->NoReturn = info.getNoReturn();
800   FI->ReturnsRetained = info.getProducesResult();
801   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
802   FI->Required = required;
803   FI->HasRegParm = info.getHasRegParm();
804   FI->RegParm = info.getRegParm();
805   FI->ArgStruct = nullptr;
806   FI->ArgStructAlign = 0;
807   FI->NumArgs = argTypes.size();
808   FI->HasExtParameterInfos = !paramInfos.empty();
809   FI->getArgsBuffer()[0].type = resultType;
810   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
811     FI->getArgsBuffer()[i + 1].type = argTypes[i];
812   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
813     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
814   return FI;
815 }
816 
817 /***/
818 
819 namespace {
820 // ABIArgInfo::Expand implementation.
821 
822 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
823 struct TypeExpansion {
824   enum TypeExpansionKind {
825     // Elements of constant arrays are expanded recursively.
826     TEK_ConstantArray,
827     // Record fields are expanded recursively (but if record is a union, only
828     // the field with the largest size is expanded).
829     TEK_Record,
830     // For complex types, real and imaginary parts are expanded recursively.
831     TEK_Complex,
832     // All other types are not expandable.
833     TEK_None
834   };
835 
836   const TypeExpansionKind Kind;
837 
838   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
839   virtual ~TypeExpansion() {}
840 };
841 
842 struct ConstantArrayExpansion : TypeExpansion {
843   QualType EltTy;
844   uint64_t NumElts;
845 
846   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
847       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
848   static bool classof(const TypeExpansion *TE) {
849     return TE->Kind == TEK_ConstantArray;
850   }
851 };
852 
853 struct RecordExpansion : TypeExpansion {
854   SmallVector<const CXXBaseSpecifier *, 1> Bases;
855 
856   SmallVector<const FieldDecl *, 1> Fields;
857 
858   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
859                   SmallVector<const FieldDecl *, 1> &&Fields)
860       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
861         Fields(std::move(Fields)) {}
862   static bool classof(const TypeExpansion *TE) {
863     return TE->Kind == TEK_Record;
864   }
865 };
866 
867 struct ComplexExpansion : TypeExpansion {
868   QualType EltTy;
869 
870   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
871   static bool classof(const TypeExpansion *TE) {
872     return TE->Kind == TEK_Complex;
873   }
874 };
875 
876 struct NoExpansion : TypeExpansion {
877   NoExpansion() : TypeExpansion(TEK_None) {}
878   static bool classof(const TypeExpansion *TE) {
879     return TE->Kind == TEK_None;
880   }
881 };
882 }  // namespace
883 
884 static std::unique_ptr<TypeExpansion>
885 getTypeExpansion(QualType Ty, const ASTContext &Context) {
886   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
887     return llvm::make_unique<ConstantArrayExpansion>(
888         AT->getElementType(), AT->getSize().getZExtValue());
889   }
890   if (const RecordType *RT = Ty->getAs<RecordType>()) {
891     SmallVector<const CXXBaseSpecifier *, 1> Bases;
892     SmallVector<const FieldDecl *, 1> Fields;
893     const RecordDecl *RD = RT->getDecl();
894     assert(!RD->hasFlexibleArrayMember() &&
895            "Cannot expand structure with flexible array.");
896     if (RD->isUnion()) {
897       // Unions can be here only in degenerative cases - all the fields are same
898       // after flattening. Thus we have to use the "largest" field.
899       const FieldDecl *LargestFD = nullptr;
900       CharUnits UnionSize = CharUnits::Zero();
901 
902       for (const auto *FD : RD->fields()) {
903         // Skip zero length bitfields.
904         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
905           continue;
906         assert(!FD->isBitField() &&
907                "Cannot expand structure with bit-field members.");
908         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
909         if (UnionSize < FieldSize) {
910           UnionSize = FieldSize;
911           LargestFD = FD;
912         }
913       }
914       if (LargestFD)
915         Fields.push_back(LargestFD);
916     } else {
917       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
918         assert(!CXXRD->isDynamicClass() &&
919                "cannot expand vtable pointers in dynamic classes");
920         for (const CXXBaseSpecifier &BS : CXXRD->bases())
921           Bases.push_back(&BS);
922       }
923 
924       for (const auto *FD : RD->fields()) {
925         // Skip zero length bitfields.
926         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
927           continue;
928         assert(!FD->isBitField() &&
929                "Cannot expand structure with bit-field members.");
930         Fields.push_back(FD);
931       }
932     }
933     return llvm::make_unique<RecordExpansion>(std::move(Bases),
934                                               std::move(Fields));
935   }
936   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
937     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
938   }
939   return llvm::make_unique<NoExpansion>();
940 }
941 
942 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
943   auto Exp = getTypeExpansion(Ty, Context);
944   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
945     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
946   }
947   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
948     int Res = 0;
949     for (auto BS : RExp->Bases)
950       Res += getExpansionSize(BS->getType(), Context);
951     for (auto FD : RExp->Fields)
952       Res += getExpansionSize(FD->getType(), Context);
953     return Res;
954   }
955   if (isa<ComplexExpansion>(Exp.get()))
956     return 2;
957   assert(isa<NoExpansion>(Exp.get()));
958   return 1;
959 }
960 
961 void
962 CodeGenTypes::getExpandedTypes(QualType Ty,
963                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
964   auto Exp = getTypeExpansion(Ty, Context);
965   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
966     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
967       getExpandedTypes(CAExp->EltTy, TI);
968     }
969   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
970     for (auto BS : RExp->Bases)
971       getExpandedTypes(BS->getType(), TI);
972     for (auto FD : RExp->Fields)
973       getExpandedTypes(FD->getType(), TI);
974   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
975     llvm::Type *EltTy = ConvertType(CExp->EltTy);
976     *TI++ = EltTy;
977     *TI++ = EltTy;
978   } else {
979     assert(isa<NoExpansion>(Exp.get()));
980     *TI++ = ConvertType(Ty);
981   }
982 }
983 
984 static void forConstantArrayExpansion(CodeGenFunction &CGF,
985                                       ConstantArrayExpansion *CAE,
986                                       Address BaseAddr,
987                                       llvm::function_ref<void(Address)> Fn) {
988   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
989   CharUnits EltAlign =
990     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
991 
992   for (int i = 0, n = CAE->NumElts; i < n; i++) {
993     llvm::Value *EltAddr =
994       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
995     Fn(Address(EltAddr, EltAlign));
996   }
997 }
998 
999 void CodeGenFunction::ExpandTypeFromArgs(
1000     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1001   assert(LV.isSimple() &&
1002          "Unexpected non-simple lvalue during struct expansion.");
1003 
1004   auto Exp = getTypeExpansion(Ty, getContext());
1005   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1006     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
1007                               [&](Address EltAddr) {
1008       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1009       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1010     });
1011   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1012     Address This = LV.getAddress();
1013     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1014       // Perform a single step derived-to-base conversion.
1015       Address Base =
1016           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1017                                 /*NullCheckValue=*/false, SourceLocation());
1018       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1019 
1020       // Recurse onto bases.
1021       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1022     }
1023     for (auto FD : RExp->Fields) {
1024       // FIXME: What are the right qualifiers here?
1025       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1026       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1027     }
1028   } else if (isa<ComplexExpansion>(Exp.get())) {
1029     auto realValue = *AI++;
1030     auto imagValue = *AI++;
1031     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1032   } else {
1033     assert(isa<NoExpansion>(Exp.get()));
1034     EmitStoreThroughLValue(RValue::get(*AI++), LV);
1035   }
1036 }
1037 
1038 void CodeGenFunction::ExpandTypeToArgs(
1039     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
1040     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1041   auto Exp = getTypeExpansion(Ty, getContext());
1042   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1043     forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
1044                               [&](Address EltAddr) {
1045       RValue EltRV =
1046           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
1047       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
1048     });
1049   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1050     Address This = RV.getAggregateAddress();
1051     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1052       // Perform a single step derived-to-base conversion.
1053       Address Base =
1054           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1055                                 /*NullCheckValue=*/false, SourceLocation());
1056       RValue BaseRV = RValue::getAggregate(Base);
1057 
1058       // Recurse onto bases.
1059       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
1060                        IRCallArgPos);
1061     }
1062 
1063     LValue LV = MakeAddrLValue(This, Ty);
1064     for (auto FD : RExp->Fields) {
1065       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
1066       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
1067                        IRCallArgPos);
1068     }
1069   } else if (isa<ComplexExpansion>(Exp.get())) {
1070     ComplexPairTy CV = RV.getComplexVal();
1071     IRCallArgs[IRCallArgPos++] = CV.first;
1072     IRCallArgs[IRCallArgPos++] = CV.second;
1073   } else {
1074     assert(isa<NoExpansion>(Exp.get()));
1075     assert(RV.isScalar() &&
1076            "Unexpected non-scalar rvalue during struct expansion.");
1077 
1078     // Insert a bitcast as needed.
1079     llvm::Value *V = RV.getScalarVal();
1080     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1081         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1082       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1083 
1084     IRCallArgs[IRCallArgPos++] = V;
1085   }
1086 }
1087 
1088 /// Create a temporary allocation for the purposes of coercion.
1089 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1090                                            CharUnits MinAlign) {
1091   // Don't use an alignment that's worse than what LLVM would prefer.
1092   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1093   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1094 
1095   return CGF.CreateTempAlloca(Ty, Align);
1096 }
1097 
1098 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1099 /// accessing some number of bytes out of it, try to gep into the struct to get
1100 /// at its inner goodness.  Dive as deep as possible without entering an element
1101 /// with an in-memory size smaller than DstSize.
1102 static Address
1103 EnterStructPointerForCoercedAccess(Address SrcPtr,
1104                                    llvm::StructType *SrcSTy,
1105                                    uint64_t DstSize, CodeGenFunction &CGF) {
1106   // We can't dive into a zero-element struct.
1107   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1108 
1109   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1110 
1111   // If the first elt is at least as large as what we're looking for, or if the
1112   // first element is the same size as the whole struct, we can enter it. The
1113   // comparison must be made on the store size and not the alloca size. Using
1114   // the alloca size may overstate the size of the load.
1115   uint64_t FirstEltSize =
1116     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1117   if (FirstEltSize < DstSize &&
1118       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1119     return SrcPtr;
1120 
1121   // GEP into the first element.
1122   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
1123 
1124   // If the first element is a struct, recurse.
1125   llvm::Type *SrcTy = SrcPtr.getElementType();
1126   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1127     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1128 
1129   return SrcPtr;
1130 }
1131 
1132 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1133 /// are either integers or pointers.  This does a truncation of the value if it
1134 /// is too large or a zero extension if it is too small.
1135 ///
1136 /// This behaves as if the value were coerced through memory, so on big-endian
1137 /// targets the high bits are preserved in a truncation, while little-endian
1138 /// targets preserve the low bits.
1139 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1140                                              llvm::Type *Ty,
1141                                              CodeGenFunction &CGF) {
1142   if (Val->getType() == Ty)
1143     return Val;
1144 
1145   if (isa<llvm::PointerType>(Val->getType())) {
1146     // If this is Pointer->Pointer avoid conversion to and from int.
1147     if (isa<llvm::PointerType>(Ty))
1148       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1149 
1150     // Convert the pointer to an integer so we can play with its width.
1151     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1152   }
1153 
1154   llvm::Type *DestIntTy = Ty;
1155   if (isa<llvm::PointerType>(DestIntTy))
1156     DestIntTy = CGF.IntPtrTy;
1157 
1158   if (Val->getType() != DestIntTy) {
1159     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1160     if (DL.isBigEndian()) {
1161       // Preserve the high bits on big-endian targets.
1162       // That is what memory coercion does.
1163       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1164       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1165 
1166       if (SrcSize > DstSize) {
1167         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1168         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1169       } else {
1170         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1171         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1172       }
1173     } else {
1174       // Little-endian targets preserve the low bits. No shifts required.
1175       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1176     }
1177   }
1178 
1179   if (isa<llvm::PointerType>(Ty))
1180     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1181   return Val;
1182 }
1183 
1184 
1185 
1186 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1187 /// a pointer to an object of type \arg Ty, known to be aligned to
1188 /// \arg SrcAlign bytes.
1189 ///
1190 /// This safely handles the case when the src type is smaller than the
1191 /// destination type; in this situation the values of bits which not
1192 /// present in the src are undefined.
1193 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1194                                       CodeGenFunction &CGF) {
1195   llvm::Type *SrcTy = Src.getElementType();
1196 
1197   // If SrcTy and Ty are the same, just do a load.
1198   if (SrcTy == Ty)
1199     return CGF.Builder.CreateLoad(Src);
1200 
1201   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1202 
1203   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1204     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1205     SrcTy = Src.getType()->getElementType();
1206   }
1207 
1208   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1209 
1210   // If the source and destination are integer or pointer types, just do an
1211   // extension or truncation to the desired type.
1212   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1213       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1214     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1215     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1216   }
1217 
1218   // If load is legal, just bitcast the src pointer.
1219   if (SrcSize >= DstSize) {
1220     // Generally SrcSize is never greater than DstSize, since this means we are
1221     // losing bits. However, this can happen in cases where the structure has
1222     // additional padding, for example due to a user specified alignment.
1223     //
1224     // FIXME: Assert that we aren't truncating non-padding bits when have access
1225     // to that information.
1226     Src = CGF.Builder.CreateBitCast(Src,
1227                                     Ty->getPointerTo(Src.getAddressSpace()));
1228     return CGF.Builder.CreateLoad(Src);
1229   }
1230 
1231   // Otherwise do coercion through memory. This is stupid, but simple.
1232   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1233   Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1234   Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy);
1235   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1236       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1237       false);
1238   return CGF.Builder.CreateLoad(Tmp);
1239 }
1240 
1241 // Function to store a first-class aggregate into memory.  We prefer to
1242 // store the elements rather than the aggregate to be more friendly to
1243 // fast-isel.
1244 // FIXME: Do we need to recurse here?
1245 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1246                           Address Dest, bool DestIsVolatile) {
1247   // Prefer scalar stores to first-class aggregate stores.
1248   if (llvm::StructType *STy =
1249         dyn_cast<llvm::StructType>(Val->getType())) {
1250     const llvm::StructLayout *Layout =
1251       CGF.CGM.getDataLayout().getStructLayout(STy);
1252 
1253     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1254       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1255       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1256       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1257       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1258     }
1259   } else {
1260     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1261   }
1262 }
1263 
1264 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1265 /// where the source and destination may have different types.  The
1266 /// destination is known to be aligned to \arg DstAlign bytes.
1267 ///
1268 /// This safely handles the case when the src type is larger than the
1269 /// destination type; the upper bits of the src will be lost.
1270 static void CreateCoercedStore(llvm::Value *Src,
1271                                Address Dst,
1272                                bool DstIsVolatile,
1273                                CodeGenFunction &CGF) {
1274   llvm::Type *SrcTy = Src->getType();
1275   llvm::Type *DstTy = Dst.getType()->getElementType();
1276   if (SrcTy == DstTy) {
1277     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1278     return;
1279   }
1280 
1281   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1282 
1283   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1284     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1285     DstTy = Dst.getType()->getElementType();
1286   }
1287 
1288   // If the source and destination are integer or pointer types, just do an
1289   // extension or truncation to the desired type.
1290   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1291       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1292     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1293     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1294     return;
1295   }
1296 
1297   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1298 
1299   // If store is legal, just bitcast the src pointer.
1300   if (SrcSize <= DstSize) {
1301     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1302     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1303   } else {
1304     // Otherwise do coercion through memory. This is stupid, but
1305     // simple.
1306 
1307     // Generally SrcSize is never greater than DstSize, since this means we are
1308     // losing bits. However, this can happen in cases where the structure has
1309     // additional padding, for example due to a user specified alignment.
1310     //
1311     // FIXME: Assert that we aren't truncating non-padding bits when have access
1312     // to that information.
1313     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1314     CGF.Builder.CreateStore(Src, Tmp);
1315     Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1316     Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy);
1317     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1318         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1319         false);
1320   }
1321 }
1322 
1323 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1324                                    const ABIArgInfo &info) {
1325   if (unsigned offset = info.getDirectOffset()) {
1326     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1327     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1328                                              CharUnits::fromQuantity(offset));
1329     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1330   }
1331   return addr;
1332 }
1333 
1334 namespace {
1335 
1336 /// Encapsulates information about the way function arguments from
1337 /// CGFunctionInfo should be passed to actual LLVM IR function.
1338 class ClangToLLVMArgMapping {
1339   static const unsigned InvalidIndex = ~0U;
1340   unsigned InallocaArgNo;
1341   unsigned SRetArgNo;
1342   unsigned TotalIRArgs;
1343 
1344   /// Arguments of LLVM IR function corresponding to single Clang argument.
1345   struct IRArgs {
1346     unsigned PaddingArgIndex;
1347     // Argument is expanded to IR arguments at positions
1348     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1349     unsigned FirstArgIndex;
1350     unsigned NumberOfArgs;
1351 
1352     IRArgs()
1353         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1354           NumberOfArgs(0) {}
1355   };
1356 
1357   SmallVector<IRArgs, 8> ArgInfo;
1358 
1359 public:
1360   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1361                         bool OnlyRequiredArgs = false)
1362       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1363         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1364     construct(Context, FI, OnlyRequiredArgs);
1365   }
1366 
1367   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1368   unsigned getInallocaArgNo() const {
1369     assert(hasInallocaArg());
1370     return InallocaArgNo;
1371   }
1372 
1373   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1374   unsigned getSRetArgNo() const {
1375     assert(hasSRetArg());
1376     return SRetArgNo;
1377   }
1378 
1379   unsigned totalIRArgs() const { return TotalIRArgs; }
1380 
1381   bool hasPaddingArg(unsigned ArgNo) const {
1382     assert(ArgNo < ArgInfo.size());
1383     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1384   }
1385   unsigned getPaddingArgNo(unsigned ArgNo) const {
1386     assert(hasPaddingArg(ArgNo));
1387     return ArgInfo[ArgNo].PaddingArgIndex;
1388   }
1389 
1390   /// Returns index of first IR argument corresponding to ArgNo, and their
1391   /// quantity.
1392   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1393     assert(ArgNo < ArgInfo.size());
1394     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1395                           ArgInfo[ArgNo].NumberOfArgs);
1396   }
1397 
1398 private:
1399   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1400                  bool OnlyRequiredArgs);
1401 };
1402 
1403 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1404                                       const CGFunctionInfo &FI,
1405                                       bool OnlyRequiredArgs) {
1406   unsigned IRArgNo = 0;
1407   bool SwapThisWithSRet = false;
1408   const ABIArgInfo &RetAI = FI.getReturnInfo();
1409 
1410   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1411     SwapThisWithSRet = RetAI.isSRetAfterThis();
1412     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1413   }
1414 
1415   unsigned ArgNo = 0;
1416   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1417   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1418        ++I, ++ArgNo) {
1419     assert(I != FI.arg_end());
1420     QualType ArgType = I->type;
1421     const ABIArgInfo &AI = I->info;
1422     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1423     auto &IRArgs = ArgInfo[ArgNo];
1424 
1425     if (AI.getPaddingType())
1426       IRArgs.PaddingArgIndex = IRArgNo++;
1427 
1428     switch (AI.getKind()) {
1429     case ABIArgInfo::Extend:
1430     case ABIArgInfo::Direct: {
1431       // FIXME: handle sseregparm someday...
1432       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1433       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1434         IRArgs.NumberOfArgs = STy->getNumElements();
1435       } else {
1436         IRArgs.NumberOfArgs = 1;
1437       }
1438       break;
1439     }
1440     case ABIArgInfo::Indirect:
1441       IRArgs.NumberOfArgs = 1;
1442       break;
1443     case ABIArgInfo::Ignore:
1444     case ABIArgInfo::InAlloca:
1445       // ignore and inalloca doesn't have matching LLVM parameters.
1446       IRArgs.NumberOfArgs = 0;
1447       break;
1448     case ABIArgInfo::CoerceAndExpand:
1449       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1450       break;
1451     case ABIArgInfo::Expand:
1452       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1453       break;
1454     }
1455 
1456     if (IRArgs.NumberOfArgs > 0) {
1457       IRArgs.FirstArgIndex = IRArgNo;
1458       IRArgNo += IRArgs.NumberOfArgs;
1459     }
1460 
1461     // Skip over the sret parameter when it comes second.  We already handled it
1462     // above.
1463     if (IRArgNo == 1 && SwapThisWithSRet)
1464       IRArgNo++;
1465   }
1466   assert(ArgNo == ArgInfo.size());
1467 
1468   if (FI.usesInAlloca())
1469     InallocaArgNo = IRArgNo++;
1470 
1471   TotalIRArgs = IRArgNo;
1472 }
1473 }  // namespace
1474 
1475 /***/
1476 
1477 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1478   return FI.getReturnInfo().isIndirect();
1479 }
1480 
1481 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1482   return ReturnTypeUsesSRet(FI) &&
1483          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1484 }
1485 
1486 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1487   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1488     switch (BT->getKind()) {
1489     default:
1490       return false;
1491     case BuiltinType::Float:
1492       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1493     case BuiltinType::Double:
1494       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1495     case BuiltinType::LongDouble:
1496       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1497     }
1498   }
1499 
1500   return false;
1501 }
1502 
1503 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1504   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1505     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1506       if (BT->getKind() == BuiltinType::LongDouble)
1507         return getTarget().useObjCFP2RetForComplexLongDouble();
1508     }
1509   }
1510 
1511   return false;
1512 }
1513 
1514 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1515   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1516   return GetFunctionType(FI);
1517 }
1518 
1519 llvm::FunctionType *
1520 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1521 
1522   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1523   (void)Inserted;
1524   assert(Inserted && "Recursively being processed?");
1525 
1526   llvm::Type *resultType = nullptr;
1527   const ABIArgInfo &retAI = FI.getReturnInfo();
1528   switch (retAI.getKind()) {
1529   case ABIArgInfo::Expand:
1530     llvm_unreachable("Invalid ABI kind for return argument");
1531 
1532   case ABIArgInfo::Extend:
1533   case ABIArgInfo::Direct:
1534     resultType = retAI.getCoerceToType();
1535     break;
1536 
1537   case ABIArgInfo::InAlloca:
1538     if (retAI.getInAllocaSRet()) {
1539       // sret things on win32 aren't void, they return the sret pointer.
1540       QualType ret = FI.getReturnType();
1541       llvm::Type *ty = ConvertType(ret);
1542       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1543       resultType = llvm::PointerType::get(ty, addressSpace);
1544     } else {
1545       resultType = llvm::Type::getVoidTy(getLLVMContext());
1546     }
1547     break;
1548 
1549   case ABIArgInfo::Indirect:
1550   case ABIArgInfo::Ignore:
1551     resultType = llvm::Type::getVoidTy(getLLVMContext());
1552     break;
1553 
1554   case ABIArgInfo::CoerceAndExpand:
1555     resultType = retAI.getUnpaddedCoerceAndExpandType();
1556     break;
1557   }
1558 
1559   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1560   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1561 
1562   // Add type for sret argument.
1563   if (IRFunctionArgs.hasSRetArg()) {
1564     QualType Ret = FI.getReturnType();
1565     llvm::Type *Ty = ConvertType(Ret);
1566     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1567     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1568         llvm::PointerType::get(Ty, AddressSpace);
1569   }
1570 
1571   // Add type for inalloca argument.
1572   if (IRFunctionArgs.hasInallocaArg()) {
1573     auto ArgStruct = FI.getArgStruct();
1574     assert(ArgStruct);
1575     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1576   }
1577 
1578   // Add in all of the required arguments.
1579   unsigned ArgNo = 0;
1580   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1581                                      ie = it + FI.getNumRequiredArgs();
1582   for (; it != ie; ++it, ++ArgNo) {
1583     const ABIArgInfo &ArgInfo = it->info;
1584 
1585     // Insert a padding type to ensure proper alignment.
1586     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1587       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1588           ArgInfo.getPaddingType();
1589 
1590     unsigned FirstIRArg, NumIRArgs;
1591     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1592 
1593     switch (ArgInfo.getKind()) {
1594     case ABIArgInfo::Ignore:
1595     case ABIArgInfo::InAlloca:
1596       assert(NumIRArgs == 0);
1597       break;
1598 
1599     case ABIArgInfo::Indirect: {
1600       assert(NumIRArgs == 1);
1601       // indirect arguments are always on the stack, which is alloca addr space.
1602       llvm::Type *LTy = ConvertTypeForMem(it->type);
1603       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1604           CGM.getDataLayout().getAllocaAddrSpace());
1605       break;
1606     }
1607 
1608     case ABIArgInfo::Extend:
1609     case ABIArgInfo::Direct: {
1610       // Fast-isel and the optimizer generally like scalar values better than
1611       // FCAs, so we flatten them if this is safe to do for this argument.
1612       llvm::Type *argType = ArgInfo.getCoerceToType();
1613       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1614       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1615         assert(NumIRArgs == st->getNumElements());
1616         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1617           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1618       } else {
1619         assert(NumIRArgs == 1);
1620         ArgTypes[FirstIRArg] = argType;
1621       }
1622       break;
1623     }
1624 
1625     case ABIArgInfo::CoerceAndExpand: {
1626       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1627       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1628         *ArgTypesIter++ = EltTy;
1629       }
1630       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1631       break;
1632     }
1633 
1634     case ABIArgInfo::Expand:
1635       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1636       getExpandedTypes(it->type, ArgTypesIter);
1637       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1638       break;
1639     }
1640   }
1641 
1642   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1643   assert(Erased && "Not in set?");
1644 
1645   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1646 }
1647 
1648 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1649   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1650   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1651 
1652   if (!isFuncTypeConvertible(FPT))
1653     return llvm::StructType::get(getLLVMContext());
1654 
1655   const CGFunctionInfo *Info;
1656   if (isa<CXXDestructorDecl>(MD))
1657     Info =
1658         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1659   else
1660     Info = &arrangeCXXMethodDeclaration(MD);
1661   return GetFunctionType(*Info);
1662 }
1663 
1664 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1665                                                llvm::AttrBuilder &FuncAttrs,
1666                                                const FunctionProtoType *FPT) {
1667   if (!FPT)
1668     return;
1669 
1670   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1671       FPT->isNothrow(Ctx))
1672     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1673 }
1674 
1675 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1676                                                bool AttrOnCallSite,
1677                                                llvm::AttrBuilder &FuncAttrs) {
1678   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1679   if (!HasOptnone) {
1680     if (CodeGenOpts.OptimizeSize)
1681       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1682     if (CodeGenOpts.OptimizeSize == 2)
1683       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1684   }
1685 
1686   if (CodeGenOpts.DisableRedZone)
1687     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1688   if (CodeGenOpts.NoImplicitFloat)
1689     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1690 
1691   if (AttrOnCallSite) {
1692     // Attributes that should go on the call site only.
1693     if (!CodeGenOpts.SimplifyLibCalls ||
1694         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1695       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1696     if (!CodeGenOpts.TrapFuncName.empty())
1697       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1698   } else {
1699     // Attributes that should go on the function, but not the call site.
1700     if (!CodeGenOpts.DisableFPElim) {
1701       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1702     } else if (CodeGenOpts.OmitLeafFramePointer) {
1703       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1704       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1705     } else {
1706       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1707       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1708     }
1709 
1710     FuncAttrs.addAttribute("less-precise-fpmad",
1711                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1712 
1713     if (!CodeGenOpts.FPDenormalMode.empty())
1714       FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
1715 
1716     FuncAttrs.addAttribute("no-trapping-math",
1717                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1718 
1719     // TODO: Are these all needed?
1720     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1721     FuncAttrs.addAttribute("no-infs-fp-math",
1722                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1723     FuncAttrs.addAttribute("no-nans-fp-math",
1724                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1725     FuncAttrs.addAttribute("unsafe-fp-math",
1726                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1727     FuncAttrs.addAttribute("use-soft-float",
1728                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1729     FuncAttrs.addAttribute("stack-protector-buffer-size",
1730                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1731     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1732                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1733     FuncAttrs.addAttribute(
1734         "correctly-rounded-divide-sqrt-fp-math",
1735         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1736 
1737     // TODO: Reciprocal estimate codegen options should apply to instructions?
1738     std::vector<std::string> &Recips = getTarget().getTargetOpts().Reciprocals;
1739     if (!Recips.empty())
1740       FuncAttrs.addAttribute("reciprocal-estimates",
1741                              llvm::join(Recips.begin(), Recips.end(), ","));
1742 
1743     if (CodeGenOpts.StackRealignment)
1744       FuncAttrs.addAttribute("stackrealign");
1745     if (CodeGenOpts.Backchain)
1746       FuncAttrs.addAttribute("backchain");
1747   }
1748 
1749   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1750     // Conservatively, mark all functions and calls in CUDA as convergent
1751     // (meaning, they may call an intrinsically convergent op, such as
1752     // __syncthreads(), and so can't have certain optimizations applied around
1753     // them).  LLVM will remove this attribute where it safely can.
1754     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1755 
1756     // Exceptions aren't supported in CUDA device code.
1757     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1758 
1759     // Respect -fcuda-flush-denormals-to-zero.
1760     if (getLangOpts().CUDADeviceFlushDenormalsToZero)
1761       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1762   }
1763 }
1764 
1765 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1766   llvm::AttrBuilder FuncAttrs;
1767   ConstructDefaultFnAttrList(F.getName(),
1768                              F.hasFnAttribute(llvm::Attribute::OptimizeNone),
1769                              /* AttrOnCallsite = */ false, FuncAttrs);
1770   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1771 }
1772 
1773 void CodeGenModule::ConstructAttributeList(
1774     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1775     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1776   llvm::AttrBuilder FuncAttrs;
1777   llvm::AttrBuilder RetAttrs;
1778 
1779   CallingConv = FI.getEffectiveCallingConvention();
1780   if (FI.isNoReturn())
1781     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1782 
1783   // If we have information about the function prototype, we can learn
1784   // attributes form there.
1785   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1786                                      CalleeInfo.getCalleeFunctionProtoType());
1787 
1788   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
1789 
1790   bool HasOptnone = false;
1791   // FIXME: handle sseregparm someday...
1792   if (TargetDecl) {
1793     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1794       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1795     if (TargetDecl->hasAttr<NoThrowAttr>())
1796       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1797     if (TargetDecl->hasAttr<NoReturnAttr>())
1798       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1799     if (TargetDecl->hasAttr<ColdAttr>())
1800       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1801     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1802       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1803     if (TargetDecl->hasAttr<ConvergentAttr>())
1804       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1805 
1806     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1807       AddAttributesFromFunctionProtoType(
1808           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1809       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1810       // These attributes are not inherited by overloads.
1811       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1812       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1813         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1814     }
1815 
1816     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1817     if (TargetDecl->hasAttr<ConstAttr>()) {
1818       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1819       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1820     } else if (TargetDecl->hasAttr<PureAttr>()) {
1821       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1822       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1823     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1824       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1825       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1826     }
1827     if (TargetDecl->hasAttr<RestrictAttr>())
1828       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1829     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1830       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1831     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1832       FuncAttrs.addAttribute("no_caller_saved_registers");
1833 
1834     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1835     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1836       Optional<unsigned> NumElemsParam;
1837       // alloc_size args are base-1, 0 means not present.
1838       if (unsigned N = AllocSize->getNumElemsParam())
1839         NumElemsParam = N - 1;
1840       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam() - 1,
1841                                  NumElemsParam);
1842     }
1843   }
1844 
1845   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1846 
1847   if (CodeGenOpts.EnableSegmentedStacks &&
1848       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1849     FuncAttrs.addAttribute("split-stack");
1850 
1851   if (!AttrOnCallSite) {
1852     bool DisableTailCalls =
1853         CodeGenOpts.DisableTailCalls ||
1854         (TargetDecl && (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1855                         TargetDecl->hasAttr<AnyX86InterruptAttr>()));
1856     FuncAttrs.addAttribute("disable-tail-calls",
1857                            llvm::toStringRef(DisableTailCalls));
1858 
1859     // Add target-cpu and target-features attributes to functions. If
1860     // we have a decl for the function and it has a target attribute then
1861     // parse that and add it to the feature set.
1862     StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1863     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
1864     if (FD && FD->hasAttr<TargetAttr>()) {
1865       llvm::StringMap<bool> FeatureMap;
1866       getFunctionFeatureMap(FeatureMap, FD);
1867 
1868       // Produce the canonical string for this set of features.
1869       std::vector<std::string> Features;
1870       for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
1871                                                  ie = FeatureMap.end();
1872            it != ie; ++it)
1873         Features.push_back((it->second ? "+" : "-") + it->first().str());
1874 
1875       // Now add the target-cpu and target-features to the function.
1876       // While we populated the feature map above, we still need to
1877       // get and parse the target attribute so we can get the cpu for
1878       // the function.
1879       const auto *TD = FD->getAttr<TargetAttr>();
1880       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1881       if (ParsedAttr.Architecture != "")
1882         TargetCPU = ParsedAttr.Architecture;
1883       if (TargetCPU != "")
1884         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1885       if (!Features.empty()) {
1886         std::sort(Features.begin(), Features.end());
1887         FuncAttrs.addAttribute(
1888             "target-features",
1889             llvm::join(Features.begin(), Features.end(), ","));
1890       }
1891     } else {
1892       // Otherwise just add the existing target cpu and target features to the
1893       // function.
1894       std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
1895       if (TargetCPU != "")
1896         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1897       if (!Features.empty()) {
1898         std::sort(Features.begin(), Features.end());
1899         FuncAttrs.addAttribute(
1900             "target-features",
1901             llvm::join(Features.begin(), Features.end(), ","));
1902       }
1903     }
1904   }
1905 
1906   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1907 
1908   QualType RetTy = FI.getReturnType();
1909   const ABIArgInfo &RetAI = FI.getReturnInfo();
1910   switch (RetAI.getKind()) {
1911   case ABIArgInfo::Extend:
1912     if (RetTy->hasSignedIntegerRepresentation())
1913       RetAttrs.addAttribute(llvm::Attribute::SExt);
1914     else if (RetTy->hasUnsignedIntegerRepresentation())
1915       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1916     // FALL THROUGH
1917   case ABIArgInfo::Direct:
1918     if (RetAI.getInReg())
1919       RetAttrs.addAttribute(llvm::Attribute::InReg);
1920     break;
1921   case ABIArgInfo::Ignore:
1922     break;
1923 
1924   case ABIArgInfo::InAlloca:
1925   case ABIArgInfo::Indirect: {
1926     // inalloca and sret disable readnone and readonly
1927     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1928       .removeAttribute(llvm::Attribute::ReadNone);
1929     break;
1930   }
1931 
1932   case ABIArgInfo::CoerceAndExpand:
1933     break;
1934 
1935   case ABIArgInfo::Expand:
1936     llvm_unreachable("Invalid ABI kind for return argument");
1937   }
1938 
1939   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1940     QualType PTy = RefTy->getPointeeType();
1941     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1942       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1943                                         .getQuantity());
1944     else if (getContext().getTargetAddressSpace(PTy) == 0)
1945       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1946   }
1947 
1948   bool hasUsedSRet = false;
1949   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
1950 
1951   // Attach attributes to sret.
1952   if (IRFunctionArgs.hasSRetArg()) {
1953     llvm::AttrBuilder SRETAttrs;
1954     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1955     hasUsedSRet = true;
1956     if (RetAI.getInReg())
1957       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1958     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
1959         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
1960   }
1961 
1962   // Attach attributes to inalloca argument.
1963   if (IRFunctionArgs.hasInallocaArg()) {
1964     llvm::AttrBuilder Attrs;
1965     Attrs.addAttribute(llvm::Attribute::InAlloca);
1966     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
1967         llvm::AttributeSet::get(getLLVMContext(), Attrs);
1968   }
1969 
1970   unsigned ArgNo = 0;
1971   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1972                                           E = FI.arg_end();
1973        I != E; ++I, ++ArgNo) {
1974     QualType ParamType = I->type;
1975     const ABIArgInfo &AI = I->info;
1976     llvm::AttrBuilder Attrs;
1977 
1978     // Add attribute for padding argument, if necessary.
1979     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1980       if (AI.getPaddingInReg()) {
1981         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1982             llvm::AttributeSet::get(
1983                 getLLVMContext(),
1984                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
1985       }
1986     }
1987 
1988     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1989     // have the corresponding parameter variable.  It doesn't make
1990     // sense to do it here because parameters are so messed up.
1991     switch (AI.getKind()) {
1992     case ABIArgInfo::Extend:
1993       if (ParamType->isSignedIntegerOrEnumerationType())
1994         Attrs.addAttribute(llvm::Attribute::SExt);
1995       else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
1996         if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
1997           Attrs.addAttribute(llvm::Attribute::SExt);
1998         else
1999           Attrs.addAttribute(llvm::Attribute::ZExt);
2000       }
2001       // FALL THROUGH
2002     case ABIArgInfo::Direct:
2003       if (ArgNo == 0 && FI.isChainCall())
2004         Attrs.addAttribute(llvm::Attribute::Nest);
2005       else if (AI.getInReg())
2006         Attrs.addAttribute(llvm::Attribute::InReg);
2007       break;
2008 
2009     case ABIArgInfo::Indirect: {
2010       if (AI.getInReg())
2011         Attrs.addAttribute(llvm::Attribute::InReg);
2012 
2013       if (AI.getIndirectByVal())
2014         Attrs.addAttribute(llvm::Attribute::ByVal);
2015 
2016       CharUnits Align = AI.getIndirectAlign();
2017 
2018       // In a byval argument, it is important that the required
2019       // alignment of the type is honored, as LLVM might be creating a
2020       // *new* stack object, and needs to know what alignment to give
2021       // it. (Sometimes it can deduce a sensible alignment on its own,
2022       // but not if clang decides it must emit a packed struct, or the
2023       // user specifies increased alignment requirements.)
2024       //
2025       // This is different from indirect *not* byval, where the object
2026       // exists already, and the align attribute is purely
2027       // informative.
2028       assert(!Align.isZero());
2029 
2030       // For now, only add this when we have a byval argument.
2031       // TODO: be less lazy about updating test cases.
2032       if (AI.getIndirectByVal())
2033         Attrs.addAlignmentAttr(Align.getQuantity());
2034 
2035       // byval disables readnone and readonly.
2036       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2037         .removeAttribute(llvm::Attribute::ReadNone);
2038       break;
2039     }
2040     case ABIArgInfo::Ignore:
2041     case ABIArgInfo::Expand:
2042     case ABIArgInfo::CoerceAndExpand:
2043       break;
2044 
2045     case ABIArgInfo::InAlloca:
2046       // inalloca disables readnone and readonly.
2047       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2048           .removeAttribute(llvm::Attribute::ReadNone);
2049       continue;
2050     }
2051 
2052     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2053       QualType PTy = RefTy->getPointeeType();
2054       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2055         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2056                                        .getQuantity());
2057       else if (getContext().getTargetAddressSpace(PTy) == 0)
2058         Attrs.addAttribute(llvm::Attribute::NonNull);
2059     }
2060 
2061     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2062     case ParameterABI::Ordinary:
2063       break;
2064 
2065     case ParameterABI::SwiftIndirectResult: {
2066       // Add 'sret' if we haven't already used it for something, but
2067       // only if the result is void.
2068       if (!hasUsedSRet && RetTy->isVoidType()) {
2069         Attrs.addAttribute(llvm::Attribute::StructRet);
2070         hasUsedSRet = true;
2071       }
2072 
2073       // Add 'noalias' in either case.
2074       Attrs.addAttribute(llvm::Attribute::NoAlias);
2075 
2076       // Add 'dereferenceable' and 'alignment'.
2077       auto PTy = ParamType->getPointeeType();
2078       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2079         auto info = getContext().getTypeInfoInChars(PTy);
2080         Attrs.addDereferenceableAttr(info.first.getQuantity());
2081         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
2082                                                  info.second.getQuantity()));
2083       }
2084       break;
2085     }
2086 
2087     case ParameterABI::SwiftErrorResult:
2088       Attrs.addAttribute(llvm::Attribute::SwiftError);
2089       break;
2090 
2091     case ParameterABI::SwiftContext:
2092       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2093       break;
2094     }
2095 
2096     if (Attrs.hasAttributes()) {
2097       unsigned FirstIRArg, NumIRArgs;
2098       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2099       for (unsigned i = 0; i < NumIRArgs; i++)
2100         ArgAttrs[FirstIRArg + i] =
2101             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2102     }
2103   }
2104   assert(ArgNo == FI.arg_size());
2105 
2106   AttrList = llvm::AttributeList::get(
2107       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2108       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2109 }
2110 
2111 /// An argument came in as a promoted argument; demote it back to its
2112 /// declared type.
2113 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2114                                          const VarDecl *var,
2115                                          llvm::Value *value) {
2116   llvm::Type *varType = CGF.ConvertType(var->getType());
2117 
2118   // This can happen with promotions that actually don't change the
2119   // underlying type, like the enum promotions.
2120   if (value->getType() == varType) return value;
2121 
2122   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2123          && "unexpected promotion type");
2124 
2125   if (isa<llvm::IntegerType>(varType))
2126     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2127 
2128   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2129 }
2130 
2131 /// Returns the attribute (either parameter attribute, or function
2132 /// attribute), which declares argument ArgNo to be non-null.
2133 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2134                                          QualType ArgType, unsigned ArgNo) {
2135   // FIXME: __attribute__((nonnull)) can also be applied to:
2136   //   - references to pointers, where the pointee is known to be
2137   //     nonnull (apparently a Clang extension)
2138   //   - transparent unions containing pointers
2139   // In the former case, LLVM IR cannot represent the constraint. In
2140   // the latter case, we have no guarantee that the transparent union
2141   // is in fact passed as a pointer.
2142   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2143     return nullptr;
2144   // First, check attribute on parameter itself.
2145   if (PVD) {
2146     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2147       return ParmNNAttr;
2148   }
2149   // Check function attributes.
2150   if (!FD)
2151     return nullptr;
2152   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2153     if (NNAttr->isNonNull(ArgNo))
2154       return NNAttr;
2155   }
2156   return nullptr;
2157 }
2158 
2159 namespace {
2160   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2161     Address Temp;
2162     Address Arg;
2163     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2164     void Emit(CodeGenFunction &CGF, Flags flags) override {
2165       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2166       CGF.Builder.CreateStore(errorValue, Arg);
2167     }
2168   };
2169 }
2170 
2171 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2172                                          llvm::Function *Fn,
2173                                          const FunctionArgList &Args) {
2174   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2175     // Naked functions don't have prologues.
2176     return;
2177 
2178   // If this is an implicit-return-zero function, go ahead and
2179   // initialize the return value.  TODO: it might be nice to have
2180   // a more general mechanism for this that didn't require synthesized
2181   // return statements.
2182   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2183     if (FD->hasImplicitReturnZero()) {
2184       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2185       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2186       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2187       Builder.CreateStore(Zero, ReturnValue);
2188     }
2189   }
2190 
2191   // FIXME: We no longer need the types from FunctionArgList; lift up and
2192   // simplify.
2193 
2194   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2195   // Flattened function arguments.
2196   SmallVector<llvm::Value *, 16> FnArgs;
2197   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2198   for (auto &Arg : Fn->args()) {
2199     FnArgs.push_back(&Arg);
2200   }
2201   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2202 
2203   // If we're using inalloca, all the memory arguments are GEPs off of the last
2204   // parameter, which is a pointer to the complete memory area.
2205   Address ArgStruct = Address::invalid();
2206   const llvm::StructLayout *ArgStructLayout = nullptr;
2207   if (IRFunctionArgs.hasInallocaArg()) {
2208     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
2209     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2210                         FI.getArgStructAlignment());
2211 
2212     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2213   }
2214 
2215   // Name the struct return parameter.
2216   if (IRFunctionArgs.hasSRetArg()) {
2217     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2218     AI->setName("agg.result");
2219     AI->addAttr(llvm::Attribute::NoAlias);
2220   }
2221 
2222   // Track if we received the parameter as a pointer (indirect, byval, or
2223   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2224   // into a local alloca for us.
2225   SmallVector<ParamValue, 16> ArgVals;
2226   ArgVals.reserve(Args.size());
2227 
2228   // Create a pointer value for every parameter declaration.  This usually
2229   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2230   // any cleanups or do anything that might unwind.  We do that separately, so
2231   // we can push the cleanups in the correct order for the ABI.
2232   assert(FI.arg_size() == Args.size() &&
2233          "Mismatch between function signature & arguments.");
2234   unsigned ArgNo = 0;
2235   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2236   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2237        i != e; ++i, ++info_it, ++ArgNo) {
2238     const VarDecl *Arg = *i;
2239     QualType Ty = info_it->type;
2240     const ABIArgInfo &ArgI = info_it->info;
2241 
2242     bool isPromoted =
2243       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2244 
2245     unsigned FirstIRArg, NumIRArgs;
2246     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2247 
2248     switch (ArgI.getKind()) {
2249     case ABIArgInfo::InAlloca: {
2250       assert(NumIRArgs == 0);
2251       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2252       CharUnits FieldOffset =
2253         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
2254       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
2255                                           Arg->getName());
2256       ArgVals.push_back(ParamValue::forIndirect(V));
2257       break;
2258     }
2259 
2260     case ABIArgInfo::Indirect: {
2261       assert(NumIRArgs == 1);
2262       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2263 
2264       if (!hasScalarEvaluationKind(Ty)) {
2265         // Aggregates and complex variables are accessed by reference.  All we
2266         // need to do is realign the value, if requested.
2267         Address V = ParamAddr;
2268         if (ArgI.getIndirectRealign()) {
2269           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2270 
2271           // Copy from the incoming argument pointer to the temporary with the
2272           // appropriate alignment.
2273           //
2274           // FIXME: We should have a common utility for generating an aggregate
2275           // copy.
2276           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2277           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2278           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2279           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2280           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2281           V = AlignedTemp;
2282         }
2283         ArgVals.push_back(ParamValue::forIndirect(V));
2284       } else {
2285         // Load scalar value from indirect argument.
2286         llvm::Value *V =
2287           EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
2288 
2289         if (isPromoted)
2290           V = emitArgumentDemotion(*this, Arg, V);
2291         ArgVals.push_back(ParamValue::forDirect(V));
2292       }
2293       break;
2294     }
2295 
2296     case ABIArgInfo::Extend:
2297     case ABIArgInfo::Direct: {
2298 
2299       // If we have the trivial case, handle it with no muss and fuss.
2300       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2301           ArgI.getCoerceToType() == ConvertType(Ty) &&
2302           ArgI.getDirectOffset() == 0) {
2303         assert(NumIRArgs == 1);
2304         llvm::Value *V = FnArgs[FirstIRArg];
2305         auto AI = cast<llvm::Argument>(V);
2306 
2307         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2308           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2309                              PVD->getFunctionScopeIndex()))
2310             AI->addAttr(llvm::Attribute::NonNull);
2311 
2312           QualType OTy = PVD->getOriginalType();
2313           if (const auto *ArrTy =
2314               getContext().getAsConstantArrayType(OTy)) {
2315             // A C99 array parameter declaration with the static keyword also
2316             // indicates dereferenceability, and if the size is constant we can
2317             // use the dereferenceable attribute (which requires the size in
2318             // bytes).
2319             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2320               QualType ETy = ArrTy->getElementType();
2321               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2322               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2323                   ArrSize) {
2324                 llvm::AttrBuilder Attrs;
2325                 Attrs.addDereferenceableAttr(
2326                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2327                 AI->addAttrs(Attrs);
2328               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
2329                 AI->addAttr(llvm::Attribute::NonNull);
2330               }
2331             }
2332           } else if (const auto *ArrTy =
2333                      getContext().getAsVariableArrayType(OTy)) {
2334             // For C99 VLAs with the static keyword, we don't know the size so
2335             // we can't use the dereferenceable attribute, but in addrspace(0)
2336             // we know that it must be nonnull.
2337             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2338                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
2339               AI->addAttr(llvm::Attribute::NonNull);
2340           }
2341 
2342           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2343           if (!AVAttr)
2344             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2345               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2346           if (AVAttr) {
2347             llvm::Value *AlignmentValue =
2348               EmitScalarExpr(AVAttr->getAlignment());
2349             llvm::ConstantInt *AlignmentCI =
2350               cast<llvm::ConstantInt>(AlignmentValue);
2351             unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
2352                                           +llvm::Value::MaximumAlignment);
2353             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2354           }
2355         }
2356 
2357         if (Arg->getType().isRestrictQualified())
2358           AI->addAttr(llvm::Attribute::NoAlias);
2359 
2360         // LLVM expects swifterror parameters to be used in very restricted
2361         // ways.  Copy the value into a less-restricted temporary.
2362         if (FI.getExtParameterInfo(ArgNo).getABI()
2363               == ParameterABI::SwiftErrorResult) {
2364           QualType pointeeTy = Ty->getPointeeType();
2365           assert(pointeeTy->isPointerType());
2366           Address temp =
2367             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2368           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2369           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2370           Builder.CreateStore(incomingErrorValue, temp);
2371           V = temp.getPointer();
2372 
2373           // Push a cleanup to copy the value back at the end of the function.
2374           // The convention does not guarantee that the value will be written
2375           // back if the function exits with an unwind exception.
2376           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2377         }
2378 
2379         // Ensure the argument is the correct type.
2380         if (V->getType() != ArgI.getCoerceToType())
2381           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2382 
2383         if (isPromoted)
2384           V = emitArgumentDemotion(*this, Arg, V);
2385 
2386         // Because of merging of function types from multiple decls it is
2387         // possible for the type of an argument to not match the corresponding
2388         // type in the function type. Since we are codegening the callee
2389         // in here, add a cast to the argument type.
2390         llvm::Type *LTy = ConvertType(Arg->getType());
2391         if (V->getType() != LTy)
2392           V = Builder.CreateBitCast(V, LTy);
2393 
2394         ArgVals.push_back(ParamValue::forDirect(V));
2395         break;
2396       }
2397 
2398       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2399                                      Arg->getName());
2400 
2401       // Pointer to store into.
2402       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2403 
2404       // Fast-isel and the optimizer generally like scalar values better than
2405       // FCAs, so we flatten them if this is safe to do for this argument.
2406       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2407       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2408           STy->getNumElements() > 1) {
2409         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2410         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2411         llvm::Type *DstTy = Ptr.getElementType();
2412         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2413 
2414         Address AddrToStoreInto = Address::invalid();
2415         if (SrcSize <= DstSize) {
2416           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2417         } else {
2418           AddrToStoreInto =
2419             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2420         }
2421 
2422         assert(STy->getNumElements() == NumIRArgs);
2423         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2424           auto AI = FnArgs[FirstIRArg + i];
2425           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2426           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2427           Address EltPtr =
2428             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2429           Builder.CreateStore(AI, EltPtr);
2430         }
2431 
2432         if (SrcSize > DstSize) {
2433           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2434         }
2435 
2436       } else {
2437         // Simple case, just do a coerced store of the argument into the alloca.
2438         assert(NumIRArgs == 1);
2439         auto AI = FnArgs[FirstIRArg];
2440         AI->setName(Arg->getName() + ".coerce");
2441         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2442       }
2443 
2444       // Match to what EmitParmDecl is expecting for this type.
2445       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2446         llvm::Value *V =
2447           EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
2448         if (isPromoted)
2449           V = emitArgumentDemotion(*this, Arg, V);
2450         ArgVals.push_back(ParamValue::forDirect(V));
2451       } else {
2452         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2453       }
2454       break;
2455     }
2456 
2457     case ABIArgInfo::CoerceAndExpand: {
2458       // Reconstruct into a temporary.
2459       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2460       ArgVals.push_back(ParamValue::forIndirect(alloca));
2461 
2462       auto coercionType = ArgI.getCoerceAndExpandType();
2463       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2464       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2465 
2466       unsigned argIndex = FirstIRArg;
2467       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2468         llvm::Type *eltType = coercionType->getElementType(i);
2469         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2470           continue;
2471 
2472         auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
2473         auto elt = FnArgs[argIndex++];
2474         Builder.CreateStore(elt, eltAddr);
2475       }
2476       assert(argIndex == FirstIRArg + NumIRArgs);
2477       break;
2478     }
2479 
2480     case ABIArgInfo::Expand: {
2481       // If this structure was expanded into multiple arguments then
2482       // we need to create a temporary and reconstruct it from the
2483       // arguments.
2484       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2485       LValue LV = MakeAddrLValue(Alloca, Ty);
2486       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2487 
2488       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2489       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2490       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2491       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2492         auto AI = FnArgs[FirstIRArg + i];
2493         AI->setName(Arg->getName() + "." + Twine(i));
2494       }
2495       break;
2496     }
2497 
2498     case ABIArgInfo::Ignore:
2499       assert(NumIRArgs == 0);
2500       // Initialize the local variable appropriately.
2501       if (!hasScalarEvaluationKind(Ty)) {
2502         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2503       } else {
2504         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2505         ArgVals.push_back(ParamValue::forDirect(U));
2506       }
2507       break;
2508     }
2509   }
2510 
2511   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2512     for (int I = Args.size() - 1; I >= 0; --I)
2513       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2514   } else {
2515     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2516       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2517   }
2518 }
2519 
2520 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2521   while (insn->use_empty()) {
2522     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2523     if (!bitcast) return;
2524 
2525     // This is "safe" because we would have used a ConstantExpr otherwise.
2526     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2527     bitcast->eraseFromParent();
2528   }
2529 }
2530 
2531 /// Try to emit a fused autorelease of a return result.
2532 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2533                                                     llvm::Value *result) {
2534   // We must be immediately followed the cast.
2535   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2536   if (BB->empty()) return nullptr;
2537   if (&BB->back() != result) return nullptr;
2538 
2539   llvm::Type *resultType = result->getType();
2540 
2541   // result is in a BasicBlock and is therefore an Instruction.
2542   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2543 
2544   SmallVector<llvm::Instruction *, 4> InstsToKill;
2545 
2546   // Look for:
2547   //  %generator = bitcast %type1* %generator2 to %type2*
2548   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2549     // We would have emitted this as a constant if the operand weren't
2550     // an Instruction.
2551     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2552 
2553     // Require the generator to be immediately followed by the cast.
2554     if (generator->getNextNode() != bitcast)
2555       return nullptr;
2556 
2557     InstsToKill.push_back(bitcast);
2558   }
2559 
2560   // Look for:
2561   //   %generator = call i8* @objc_retain(i8* %originalResult)
2562   // or
2563   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2564   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2565   if (!call) return nullptr;
2566 
2567   bool doRetainAutorelease;
2568 
2569   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2570     doRetainAutorelease = true;
2571   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2572                                           .objc_retainAutoreleasedReturnValue) {
2573     doRetainAutorelease = false;
2574 
2575     // If we emitted an assembly marker for this call (and the
2576     // ARCEntrypoints field should have been set if so), go looking
2577     // for that call.  If we can't find it, we can't do this
2578     // optimization.  But it should always be the immediately previous
2579     // instruction, unless we needed bitcasts around the call.
2580     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2581       llvm::Instruction *prev = call->getPrevNode();
2582       assert(prev);
2583       if (isa<llvm::BitCastInst>(prev)) {
2584         prev = prev->getPrevNode();
2585         assert(prev);
2586       }
2587       assert(isa<llvm::CallInst>(prev));
2588       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2589                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2590       InstsToKill.push_back(prev);
2591     }
2592   } else {
2593     return nullptr;
2594   }
2595 
2596   result = call->getArgOperand(0);
2597   InstsToKill.push_back(call);
2598 
2599   // Keep killing bitcasts, for sanity.  Note that we no longer care
2600   // about precise ordering as long as there's exactly one use.
2601   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2602     if (!bitcast->hasOneUse()) break;
2603     InstsToKill.push_back(bitcast);
2604     result = bitcast->getOperand(0);
2605   }
2606 
2607   // Delete all the unnecessary instructions, from latest to earliest.
2608   for (auto *I : InstsToKill)
2609     I->eraseFromParent();
2610 
2611   // Do the fused retain/autorelease if we were asked to.
2612   if (doRetainAutorelease)
2613     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2614 
2615   // Cast back to the result type.
2616   return CGF.Builder.CreateBitCast(result, resultType);
2617 }
2618 
2619 /// If this is a +1 of the value of an immutable 'self', remove it.
2620 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2621                                           llvm::Value *result) {
2622   // This is only applicable to a method with an immutable 'self'.
2623   const ObjCMethodDecl *method =
2624     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2625   if (!method) return nullptr;
2626   const VarDecl *self = method->getSelfDecl();
2627   if (!self->getType().isConstQualified()) return nullptr;
2628 
2629   // Look for a retain call.
2630   llvm::CallInst *retainCall =
2631     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2632   if (!retainCall ||
2633       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2634     return nullptr;
2635 
2636   // Look for an ordinary load of 'self'.
2637   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2638   llvm::LoadInst *load =
2639     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2640   if (!load || load->isAtomic() || load->isVolatile() ||
2641       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2642     return nullptr;
2643 
2644   // Okay!  Burn it all down.  This relies for correctness on the
2645   // assumption that the retain is emitted as part of the return and
2646   // that thereafter everything is used "linearly".
2647   llvm::Type *resultType = result->getType();
2648   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2649   assert(retainCall->use_empty());
2650   retainCall->eraseFromParent();
2651   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2652 
2653   return CGF.Builder.CreateBitCast(load, resultType);
2654 }
2655 
2656 /// Emit an ARC autorelease of the result of a function.
2657 ///
2658 /// \return the value to actually return from the function
2659 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2660                                             llvm::Value *result) {
2661   // If we're returning 'self', kill the initial retain.  This is a
2662   // heuristic attempt to "encourage correctness" in the really unfortunate
2663   // case where we have a return of self during a dealloc and we desperately
2664   // need to avoid the possible autorelease.
2665   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2666     return self;
2667 
2668   // At -O0, try to emit a fused retain/autorelease.
2669   if (CGF.shouldUseFusedARCCalls())
2670     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2671       return fused;
2672 
2673   return CGF.EmitARCAutoreleaseReturnValue(result);
2674 }
2675 
2676 /// Heuristically search for a dominating store to the return-value slot.
2677 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2678   // Check if a User is a store which pointerOperand is the ReturnValue.
2679   // We are looking for stores to the ReturnValue, not for stores of the
2680   // ReturnValue to some other location.
2681   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2682     auto *SI = dyn_cast<llvm::StoreInst>(U);
2683     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2684       return nullptr;
2685     // These aren't actually possible for non-coerced returns, and we
2686     // only care about non-coerced returns on this code path.
2687     assert(!SI->isAtomic() && !SI->isVolatile());
2688     return SI;
2689   };
2690   // If there are multiple uses of the return-value slot, just check
2691   // for something immediately preceding the IP.  Sometimes this can
2692   // happen with how we generate implicit-returns; it can also happen
2693   // with noreturn cleanups.
2694   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2695     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2696     if (IP->empty()) return nullptr;
2697     llvm::Instruction *I = &IP->back();
2698 
2699     // Skip lifetime markers
2700     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2701                                             IE = IP->rend();
2702          II != IE; ++II) {
2703       if (llvm::IntrinsicInst *Intrinsic =
2704               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2705         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2706           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2707           ++II;
2708           if (II == IE)
2709             break;
2710           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2711             continue;
2712         }
2713       }
2714       I = &*II;
2715       break;
2716     }
2717 
2718     return GetStoreIfValid(I);
2719   }
2720 
2721   llvm::StoreInst *store =
2722       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2723   if (!store) return nullptr;
2724 
2725   // Now do a first-and-dirty dominance check: just walk up the
2726   // single-predecessors chain from the current insertion point.
2727   llvm::BasicBlock *StoreBB = store->getParent();
2728   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2729   while (IP != StoreBB) {
2730     if (!(IP = IP->getSinglePredecessor()))
2731       return nullptr;
2732   }
2733 
2734   // Okay, the store's basic block dominates the insertion point; we
2735   // can do our thing.
2736   return store;
2737 }
2738 
2739 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2740                                          bool EmitRetDbgLoc,
2741                                          SourceLocation EndLoc) {
2742   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2743     // Naked functions don't have epilogues.
2744     Builder.CreateUnreachable();
2745     return;
2746   }
2747 
2748   // Functions with no result always return void.
2749   if (!ReturnValue.isValid()) {
2750     Builder.CreateRetVoid();
2751     return;
2752   }
2753 
2754   llvm::DebugLoc RetDbgLoc;
2755   llvm::Value *RV = nullptr;
2756   QualType RetTy = FI.getReturnType();
2757   const ABIArgInfo &RetAI = FI.getReturnInfo();
2758 
2759   switch (RetAI.getKind()) {
2760   case ABIArgInfo::InAlloca:
2761     // Aggregrates get evaluated directly into the destination.  Sometimes we
2762     // need to return the sret value in a register, though.
2763     assert(hasAggregateEvaluationKind(RetTy));
2764     if (RetAI.getInAllocaSRet()) {
2765       llvm::Function::arg_iterator EI = CurFn->arg_end();
2766       --EI;
2767       llvm::Value *ArgStruct = &*EI;
2768       llvm::Value *SRet = Builder.CreateStructGEP(
2769           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2770       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2771     }
2772     break;
2773 
2774   case ABIArgInfo::Indirect: {
2775     auto AI = CurFn->arg_begin();
2776     if (RetAI.isSRetAfterThis())
2777       ++AI;
2778     switch (getEvaluationKind(RetTy)) {
2779     case TEK_Complex: {
2780       ComplexPairTy RT =
2781         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2782       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2783                          /*isInit*/ true);
2784       break;
2785     }
2786     case TEK_Aggregate:
2787       // Do nothing; aggregrates get evaluated directly into the destination.
2788       break;
2789     case TEK_Scalar:
2790       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2791                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2792                         /*isInit*/ true);
2793       break;
2794     }
2795     break;
2796   }
2797 
2798   case ABIArgInfo::Extend:
2799   case ABIArgInfo::Direct:
2800     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2801         RetAI.getDirectOffset() == 0) {
2802       // The internal return value temp always will have pointer-to-return-type
2803       // type, just do a load.
2804 
2805       // If there is a dominating store to ReturnValue, we can elide
2806       // the load, zap the store, and usually zap the alloca.
2807       if (llvm::StoreInst *SI =
2808               findDominatingStoreToReturnValue(*this)) {
2809         // Reuse the debug location from the store unless there is
2810         // cleanup code to be emitted between the store and return
2811         // instruction.
2812         if (EmitRetDbgLoc && !AutoreleaseResult)
2813           RetDbgLoc = SI->getDebugLoc();
2814         // Get the stored value and nuke the now-dead store.
2815         RV = SI->getValueOperand();
2816         SI->eraseFromParent();
2817 
2818         // If that was the only use of the return value, nuke it as well now.
2819         auto returnValueInst = ReturnValue.getPointer();
2820         if (returnValueInst->use_empty()) {
2821           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2822             alloca->eraseFromParent();
2823             ReturnValue = Address::invalid();
2824           }
2825         }
2826 
2827       // Otherwise, we have to do a simple load.
2828       } else {
2829         RV = Builder.CreateLoad(ReturnValue);
2830       }
2831     } else {
2832       // If the value is offset in memory, apply the offset now.
2833       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2834 
2835       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2836     }
2837 
2838     // In ARC, end functions that return a retainable type with a call
2839     // to objc_autoreleaseReturnValue.
2840     if (AutoreleaseResult) {
2841 #ifndef NDEBUG
2842       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2843       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2844       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2845       // CurCodeDecl or BlockInfo.
2846       QualType RT;
2847 
2848       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2849         RT = FD->getReturnType();
2850       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2851         RT = MD->getReturnType();
2852       else if (isa<BlockDecl>(CurCodeDecl))
2853         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2854       else
2855         llvm_unreachable("Unexpected function/method type");
2856 
2857       assert(getLangOpts().ObjCAutoRefCount &&
2858              !FI.isReturnsRetained() &&
2859              RT->isObjCRetainableType());
2860 #endif
2861       RV = emitAutoreleaseOfResult(*this, RV);
2862     }
2863 
2864     break;
2865 
2866   case ABIArgInfo::Ignore:
2867     break;
2868 
2869   case ABIArgInfo::CoerceAndExpand: {
2870     auto coercionType = RetAI.getCoerceAndExpandType();
2871     auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2872 
2873     // Load all of the coerced elements out into results.
2874     llvm::SmallVector<llvm::Value*, 4> results;
2875     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2876     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2877       auto coercedEltType = coercionType->getElementType(i);
2878       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2879         continue;
2880 
2881       auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
2882       auto elt = Builder.CreateLoad(eltAddr);
2883       results.push_back(elt);
2884     }
2885 
2886     // If we have one result, it's the single direct result type.
2887     if (results.size() == 1) {
2888       RV = results[0];
2889 
2890     // Otherwise, we need to make a first-class aggregate.
2891     } else {
2892       // Construct a return type that lacks padding elements.
2893       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2894 
2895       RV = llvm::UndefValue::get(returnType);
2896       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2897         RV = Builder.CreateInsertValue(RV, results[i], i);
2898       }
2899     }
2900     break;
2901   }
2902 
2903   case ABIArgInfo::Expand:
2904     llvm_unreachable("Invalid ABI kind for return argument");
2905   }
2906 
2907   llvm::Instruction *Ret;
2908   if (RV) {
2909     EmitReturnValueCheck(RV);
2910     Ret = Builder.CreateRet(RV);
2911   } else {
2912     Ret = Builder.CreateRetVoid();
2913   }
2914 
2915   if (RetDbgLoc)
2916     Ret->setDebugLoc(std::move(RetDbgLoc));
2917 }
2918 
2919 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
2920   // A current decl may not be available when emitting vtable thunks.
2921   if (!CurCodeDecl)
2922     return;
2923 
2924   ReturnsNonNullAttr *RetNNAttr = nullptr;
2925   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
2926     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
2927 
2928   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
2929     return;
2930 
2931   // Prefer the returns_nonnull attribute if it's present.
2932   SourceLocation AttrLoc;
2933   SanitizerMask CheckKind;
2934   SanitizerHandler Handler;
2935   if (RetNNAttr) {
2936     assert(!requiresReturnValueNullabilityCheck() &&
2937            "Cannot check nullability and the nonnull attribute");
2938     AttrLoc = RetNNAttr->getLocation();
2939     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
2940     Handler = SanitizerHandler::NonnullReturn;
2941   } else {
2942     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
2943       if (auto *TSI = DD->getTypeSourceInfo())
2944         if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
2945           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
2946     CheckKind = SanitizerKind::NullabilityReturn;
2947     Handler = SanitizerHandler::NullabilityReturn;
2948   }
2949 
2950   SanitizerScope SanScope(this);
2951 
2952   // Make sure the "return" source location is valid. If we're checking a
2953   // nullability annotation, make sure the preconditions for the check are met.
2954   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
2955   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
2956   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
2957   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
2958   if (requiresReturnValueNullabilityCheck())
2959     CanNullCheck =
2960         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
2961   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
2962   EmitBlock(Check);
2963 
2964   // Now do the null check.
2965   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
2966   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
2967   llvm::Value *DynamicData[] = {SLocPtr};
2968   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
2969 
2970   EmitBlock(NoCheck);
2971 
2972 #ifndef NDEBUG
2973   // The return location should not be used after the check has been emitted.
2974   ReturnLocation = Address::invalid();
2975 #endif
2976 }
2977 
2978 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2979   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2980   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2981 }
2982 
2983 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
2984                                           QualType Ty) {
2985   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2986   // placeholders.
2987   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2988   llvm::Type *IRPtrTy = IRTy->getPointerTo();
2989   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
2990 
2991   // FIXME: When we generate this IR in one pass, we shouldn't need
2992   // this win32-specific alignment hack.
2993   CharUnits Align = CharUnits::fromQuantity(4);
2994   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
2995 
2996   return AggValueSlot::forAddr(Address(Placeholder, Align),
2997                                Ty.getQualifiers(),
2998                                AggValueSlot::IsNotDestructed,
2999                                AggValueSlot::DoesNotNeedGCBarriers,
3000                                AggValueSlot::IsNotAliased);
3001 }
3002 
3003 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3004                                           const VarDecl *param,
3005                                           SourceLocation loc) {
3006   // StartFunction converted the ABI-lowered parameter(s) into a
3007   // local alloca.  We need to turn that into an r-value suitable
3008   // for EmitCall.
3009   Address local = GetAddrOfLocalVar(param);
3010 
3011   QualType type = param->getType();
3012 
3013   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
3014          "cannot emit delegate call arguments for inalloca arguments!");
3015 
3016   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3017   // but the argument needs to be the original pointer.
3018   if (type->isReferenceType()) {
3019     args.add(RValue::get(Builder.CreateLoad(local)), type);
3020 
3021   // In ARC, move out of consumed arguments so that the release cleanup
3022   // entered by StartFunction doesn't cause an over-release.  This isn't
3023   // optimal -O0 code generation, but it should get cleaned up when
3024   // optimization is enabled.  This also assumes that delegate calls are
3025   // performed exactly once for a set of arguments, but that should be safe.
3026   } else if (getLangOpts().ObjCAutoRefCount &&
3027              param->hasAttr<NSConsumedAttr>() &&
3028              type->isObjCRetainableType()) {
3029     llvm::Value *ptr = Builder.CreateLoad(local);
3030     auto null =
3031       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3032     Builder.CreateStore(null, local);
3033     args.add(RValue::get(ptr), type);
3034 
3035   // For the most part, we just need to load the alloca, except that
3036   // aggregate r-values are actually pointers to temporaries.
3037   } else {
3038     args.add(convertTempToRValue(local, type, loc), type);
3039   }
3040 }
3041 
3042 static bool isProvablyNull(llvm::Value *addr) {
3043   return isa<llvm::ConstantPointerNull>(addr);
3044 }
3045 
3046 /// Emit the actual writing-back of a writeback.
3047 static void emitWriteback(CodeGenFunction &CGF,
3048                           const CallArgList::Writeback &writeback) {
3049   const LValue &srcLV = writeback.Source;
3050   Address srcAddr = srcLV.getAddress();
3051   assert(!isProvablyNull(srcAddr.getPointer()) &&
3052          "shouldn't have writeback for provably null argument");
3053 
3054   llvm::BasicBlock *contBB = nullptr;
3055 
3056   // If the argument wasn't provably non-null, we need to null check
3057   // before doing the store.
3058   bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer());
3059   if (!provablyNonNull) {
3060     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3061     contBB = CGF.createBasicBlock("icr.done");
3062 
3063     llvm::Value *isNull =
3064       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3065     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3066     CGF.EmitBlock(writebackBB);
3067   }
3068 
3069   // Load the value to writeback.
3070   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3071 
3072   // Cast it back, in case we're writing an id to a Foo* or something.
3073   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3074                                     "icr.writeback-cast");
3075 
3076   // Perform the writeback.
3077 
3078   // If we have a "to use" value, it's something we need to emit a use
3079   // of.  This has to be carefully threaded in: if it's done after the
3080   // release it's potentially undefined behavior (and the optimizer
3081   // will ignore it), and if it happens before the retain then the
3082   // optimizer could move the release there.
3083   if (writeback.ToUse) {
3084     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3085 
3086     // Retain the new value.  No need to block-copy here:  the block's
3087     // being passed up the stack.
3088     value = CGF.EmitARCRetainNonBlock(value);
3089 
3090     // Emit the intrinsic use here.
3091     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3092 
3093     // Load the old value (primitively).
3094     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3095 
3096     // Put the new value in place (primitively).
3097     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3098 
3099     // Release the old value.
3100     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3101 
3102   // Otherwise, we can just do a normal lvalue store.
3103   } else {
3104     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3105   }
3106 
3107   // Jump to the continuation block.
3108   if (!provablyNonNull)
3109     CGF.EmitBlock(contBB);
3110 }
3111 
3112 static void emitWritebacks(CodeGenFunction &CGF,
3113                            const CallArgList &args) {
3114   for (const auto &I : args.writebacks())
3115     emitWriteback(CGF, I);
3116 }
3117 
3118 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3119                                             const CallArgList &CallArgs) {
3120   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
3121   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3122     CallArgs.getCleanupsToDeactivate();
3123   // Iterate in reverse to increase the likelihood of popping the cleanup.
3124   for (const auto &I : llvm::reverse(Cleanups)) {
3125     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3126     I.IsActiveIP->eraseFromParent();
3127   }
3128 }
3129 
3130 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3131   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3132     if (uop->getOpcode() == UO_AddrOf)
3133       return uop->getSubExpr();
3134   return nullptr;
3135 }
3136 
3137 /// Emit an argument that's being passed call-by-writeback.  That is,
3138 /// we are passing the address of an __autoreleased temporary; it
3139 /// might be copy-initialized with the current value of the given
3140 /// address, but it will definitely be copied out of after the call.
3141 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3142                              const ObjCIndirectCopyRestoreExpr *CRE) {
3143   LValue srcLV;
3144 
3145   // Make an optimistic effort to emit the address as an l-value.
3146   // This can fail if the argument expression is more complicated.
3147   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3148     srcLV = CGF.EmitLValue(lvExpr);
3149 
3150   // Otherwise, just emit it as a scalar.
3151   } else {
3152     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3153 
3154     QualType srcAddrType =
3155       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3156     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3157   }
3158   Address srcAddr = srcLV.getAddress();
3159 
3160   // The dest and src types don't necessarily match in LLVM terms
3161   // because of the crazy ObjC compatibility rules.
3162 
3163   llvm::PointerType *destType =
3164     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3165 
3166   // If the address is a constant null, just pass the appropriate null.
3167   if (isProvablyNull(srcAddr.getPointer())) {
3168     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3169              CRE->getType());
3170     return;
3171   }
3172 
3173   // Create the temporary.
3174   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3175                                       CGF.getPointerAlign(),
3176                                       "icr.temp");
3177   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3178   // and that cleanup will be conditional if we can't prove that the l-value
3179   // isn't null, so we need to register a dominating point so that the cleanups
3180   // system will make valid IR.
3181   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3182 
3183   // Zero-initialize it if we're not doing a copy-initialization.
3184   bool shouldCopy = CRE->shouldCopy();
3185   if (!shouldCopy) {
3186     llvm::Value *null =
3187       llvm::ConstantPointerNull::get(
3188         cast<llvm::PointerType>(destType->getElementType()));
3189     CGF.Builder.CreateStore(null, temp);
3190   }
3191 
3192   llvm::BasicBlock *contBB = nullptr;
3193   llvm::BasicBlock *originBB = nullptr;
3194 
3195   // If the address is *not* known to be non-null, we need to switch.
3196   llvm::Value *finalArgument;
3197 
3198   bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer());
3199   if (provablyNonNull) {
3200     finalArgument = temp.getPointer();
3201   } else {
3202     llvm::Value *isNull =
3203       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3204 
3205     finalArgument = CGF.Builder.CreateSelect(isNull,
3206                                    llvm::ConstantPointerNull::get(destType),
3207                                              temp.getPointer(), "icr.argument");
3208 
3209     // If we need to copy, then the load has to be conditional, which
3210     // means we need control flow.
3211     if (shouldCopy) {
3212       originBB = CGF.Builder.GetInsertBlock();
3213       contBB = CGF.createBasicBlock("icr.cont");
3214       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3215       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3216       CGF.EmitBlock(copyBB);
3217       condEval.begin(CGF);
3218     }
3219   }
3220 
3221   llvm::Value *valueToUse = nullptr;
3222 
3223   // Perform a copy if necessary.
3224   if (shouldCopy) {
3225     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3226     assert(srcRV.isScalar());
3227 
3228     llvm::Value *src = srcRV.getScalarVal();
3229     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3230                                     "icr.cast");
3231 
3232     // Use an ordinary store, not a store-to-lvalue.
3233     CGF.Builder.CreateStore(src, temp);
3234 
3235     // If optimization is enabled, and the value was held in a
3236     // __strong variable, we need to tell the optimizer that this
3237     // value has to stay alive until we're doing the store back.
3238     // This is because the temporary is effectively unretained,
3239     // and so otherwise we can violate the high-level semantics.
3240     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3241         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3242       valueToUse = src;
3243     }
3244   }
3245 
3246   // Finish the control flow if we needed it.
3247   if (shouldCopy && !provablyNonNull) {
3248     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3249     CGF.EmitBlock(contBB);
3250 
3251     // Make a phi for the value to intrinsically use.
3252     if (valueToUse) {
3253       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3254                                                       "icr.to-use");
3255       phiToUse->addIncoming(valueToUse, copyBB);
3256       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3257                             originBB);
3258       valueToUse = phiToUse;
3259     }
3260 
3261     condEval.end(CGF);
3262   }
3263 
3264   args.addWriteback(srcLV, temp, valueToUse);
3265   args.add(RValue::get(finalArgument), CRE->getType());
3266 }
3267 
3268 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3269   assert(!StackBase);
3270 
3271   // Save the stack.
3272   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3273   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3274 }
3275 
3276 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3277   if (StackBase) {
3278     // Restore the stack after the call.
3279     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3280     CGF.Builder.CreateCall(F, StackBase);
3281   }
3282 }
3283 
3284 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3285                                           SourceLocation ArgLoc,
3286                                           AbstractCallee AC,
3287                                           unsigned ParmNum) {
3288   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3289                          SanOpts.has(SanitizerKind::NullabilityArg)))
3290     return;
3291 
3292   // The param decl may be missing in a variadic function.
3293   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3294   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3295 
3296   // Prefer the nonnull attribute if it's present.
3297   const NonNullAttr *NNAttr = nullptr;
3298   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3299     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3300 
3301   bool CanCheckNullability = false;
3302   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3303     auto Nullability = PVD->getType()->getNullability(getContext());
3304     CanCheckNullability = Nullability &&
3305                           *Nullability == NullabilityKind::NonNull &&
3306                           PVD->getTypeSourceInfo();
3307   }
3308 
3309   if (!NNAttr && !CanCheckNullability)
3310     return;
3311 
3312   SourceLocation AttrLoc;
3313   SanitizerMask CheckKind;
3314   SanitizerHandler Handler;
3315   if (NNAttr) {
3316     AttrLoc = NNAttr->getLocation();
3317     CheckKind = SanitizerKind::NonnullAttribute;
3318     Handler = SanitizerHandler::NonnullArg;
3319   } else {
3320     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3321     CheckKind = SanitizerKind::NullabilityArg;
3322     Handler = SanitizerHandler::NullabilityArg;
3323   }
3324 
3325   SanitizerScope SanScope(this);
3326   assert(RV.isScalar());
3327   llvm::Value *V = RV.getScalarVal();
3328   llvm::Value *Cond =
3329       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3330   llvm::Constant *StaticData[] = {
3331       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3332       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3333   };
3334   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3335 }
3336 
3337 void CodeGenFunction::EmitCallArgs(
3338     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3339     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3340     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3341   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3342 
3343   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3344   // because arguments are destroyed left to right in the callee. As a special
3345   // case, there are certain language constructs that require left-to-right
3346   // evaluation, and in those cases we consider the evaluation order requirement
3347   // to trump the "destruction order is reverse construction order" guarantee.
3348   bool LeftToRight =
3349       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3350           ? Order == EvaluationOrder::ForceLeftToRight
3351           : Order != EvaluationOrder::ForceRightToLeft;
3352 
3353   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3354                                          RValue EmittedArg) {
3355     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3356       return;
3357     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3358     if (PS == nullptr)
3359       return;
3360 
3361     const auto &Context = getContext();
3362     auto SizeTy = Context.getSizeType();
3363     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3364     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3365     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3366                                                      EmittedArg.getScalarVal());
3367     Args.add(RValue::get(V), SizeTy);
3368     // If we're emitting args in reverse, be sure to do so with
3369     // pass_object_size, as well.
3370     if (!LeftToRight)
3371       std::swap(Args.back(), *(&Args.back() - 1));
3372   };
3373 
3374   // Insert a stack save if we're going to need any inalloca args.
3375   bool HasInAllocaArgs = false;
3376   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3377     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3378          I != E && !HasInAllocaArgs; ++I)
3379       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3380     if (HasInAllocaArgs) {
3381       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3382       Args.allocateArgumentMemory(*this);
3383     }
3384   }
3385 
3386   // Evaluate each argument in the appropriate order.
3387   size_t CallArgsStart = Args.size();
3388   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3389     unsigned Idx = LeftToRight ? I : E - I - 1;
3390     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3391     unsigned InitialArgSize = Args.size();
3392     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3393     // the argument and parameter match or the objc method is parameterized.
3394     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3395             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3396                                                 ArgTypes[Idx]) ||
3397             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3398              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3399            "Argument and parameter types don't match");
3400     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3401     // In particular, we depend on it being the last arg in Args, and the
3402     // objectsize bits depend on there only being one arg if !LeftToRight.
3403     assert(InitialArgSize + 1 == Args.size() &&
3404            "The code below depends on only adding one arg per EmitCallArg");
3405     (void)InitialArgSize;
3406     RValue RVArg = Args.back().RV;
3407     EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3408                         ParamsToSkip + Idx);
3409     // @llvm.objectsize should never have side-effects and shouldn't need
3410     // destruction/cleanups, so we can safely "emit" it after its arg,
3411     // regardless of right-to-leftness
3412     MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3413   }
3414 
3415   if (!LeftToRight) {
3416     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3417     // IR function.
3418     std::reverse(Args.begin() + CallArgsStart, Args.end());
3419   }
3420 }
3421 
3422 namespace {
3423 
3424 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3425   DestroyUnpassedArg(Address Addr, QualType Ty)
3426       : Addr(Addr), Ty(Ty) {}
3427 
3428   Address Addr;
3429   QualType Ty;
3430 
3431   void Emit(CodeGenFunction &CGF, Flags flags) override {
3432     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3433     assert(!Dtor->isTrivial());
3434     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3435                               /*Delegating=*/false, Addr);
3436   }
3437 };
3438 
3439 struct DisableDebugLocationUpdates {
3440   CodeGenFunction &CGF;
3441   bool disabledDebugInfo;
3442   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3443     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3444       CGF.disableDebugInfo();
3445   }
3446   ~DisableDebugLocationUpdates() {
3447     if (disabledDebugInfo)
3448       CGF.enableDebugInfo();
3449   }
3450 };
3451 
3452 } // end anonymous namespace
3453 
3454 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3455                                   QualType type) {
3456   DisableDebugLocationUpdates Dis(*this, E);
3457   if (const ObjCIndirectCopyRestoreExpr *CRE
3458         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3459     assert(getLangOpts().ObjCAutoRefCount);
3460     return emitWritebackArg(*this, args, CRE);
3461   }
3462 
3463   assert(type->isReferenceType() == E->isGLValue() &&
3464          "reference binding to unmaterialized r-value!");
3465 
3466   if (E->isGLValue()) {
3467     assert(E->getObjectKind() == OK_Ordinary);
3468     return args.add(EmitReferenceBindingToExpr(E), type);
3469   }
3470 
3471   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3472 
3473   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3474   // However, we still have to push an EH-only cleanup in case we unwind before
3475   // we make it to the call.
3476   if (HasAggregateEvalKind &&
3477       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3478     // If we're using inalloca, use the argument memory.  Otherwise, use a
3479     // temporary.
3480     AggValueSlot Slot;
3481     if (args.isUsingInAlloca())
3482       Slot = createPlaceholderSlot(*this, type);
3483     else
3484       Slot = CreateAggTemp(type, "agg.tmp");
3485 
3486     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3487     bool DestroyedInCallee =
3488         RD && RD->hasNonTrivialDestructor() &&
3489         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
3490     if (DestroyedInCallee)
3491       Slot.setExternallyDestructed();
3492 
3493     EmitAggExpr(E, Slot);
3494     RValue RV = Slot.asRValue();
3495     args.add(RV, type);
3496 
3497     if (DestroyedInCallee) {
3498       // Create a no-op GEP between the placeholder and the cleanup so we can
3499       // RAUW it successfully.  It also serves as a marker of the first
3500       // instruction where the cleanup is active.
3501       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3502                                               type);
3503       // This unreachable is a temporary marker which will be removed later.
3504       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3505       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3506     }
3507     return;
3508   }
3509 
3510   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3511       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3512     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3513     assert(L.isSimple());
3514     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
3515       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
3516     } else {
3517       // We can't represent a misaligned lvalue in the CallArgList, so copy
3518       // to an aligned temporary now.
3519       Address tmp = CreateMemTemp(type);
3520       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile());
3521       args.add(RValue::getAggregate(tmp), type);
3522     }
3523     return;
3524   }
3525 
3526   args.add(EmitAnyExprToTemp(E), type);
3527 }
3528 
3529 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3530   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3531   // implicitly widens null pointer constants that are arguments to varargs
3532   // functions to pointer-sized ints.
3533   if (!getTarget().getTriple().isOSWindows())
3534     return Arg->getType();
3535 
3536   if (Arg->getType()->isIntegerType() &&
3537       getContext().getTypeSize(Arg->getType()) <
3538           getContext().getTargetInfo().getPointerWidth(0) &&
3539       Arg->isNullPointerConstant(getContext(),
3540                                  Expr::NPC_ValueDependentIsNotNull)) {
3541     return getContext().getIntPtrType();
3542   }
3543 
3544   return Arg->getType();
3545 }
3546 
3547 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3548 // optimizer it can aggressively ignore unwind edges.
3549 void
3550 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3551   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3552       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3553     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3554                       CGM.getNoObjCARCExceptionsMetadata());
3555 }
3556 
3557 /// Emits a call to the given no-arguments nounwind runtime function.
3558 llvm::CallInst *
3559 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3560                                          const llvm::Twine &name) {
3561   return EmitNounwindRuntimeCall(callee, None, name);
3562 }
3563 
3564 /// Emits a call to the given nounwind runtime function.
3565 llvm::CallInst *
3566 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3567                                          ArrayRef<llvm::Value*> args,
3568                                          const llvm::Twine &name) {
3569   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3570   call->setDoesNotThrow();
3571   return call;
3572 }
3573 
3574 /// Emits a simple call (never an invoke) to the given no-arguments
3575 /// runtime function.
3576 llvm::CallInst *
3577 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3578                                  const llvm::Twine &name) {
3579   return EmitRuntimeCall(callee, None, name);
3580 }
3581 
3582 // Calls which may throw must have operand bundles indicating which funclet
3583 // they are nested within.
3584 static void
3585 getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad,
3586                      SmallVectorImpl<llvm::OperandBundleDef> &BundleList) {
3587   // There is no need for a funclet operand bundle if we aren't inside a
3588   // funclet.
3589   if (!CurrentFuncletPad)
3590     return;
3591 
3592   // Skip intrinsics which cannot throw.
3593   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3594   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3595     return;
3596 
3597   BundleList.emplace_back("funclet", CurrentFuncletPad);
3598 }
3599 
3600 /// Emits a simple call (never an invoke) to the given runtime function.
3601 llvm::CallInst *
3602 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3603                                  ArrayRef<llvm::Value*> args,
3604                                  const llvm::Twine &name) {
3605   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3606   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
3607 
3608   llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name);
3609   call->setCallingConv(getRuntimeCC());
3610   return call;
3611 }
3612 
3613 /// Emits a call or invoke to the given noreturn runtime function.
3614 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3615                                                ArrayRef<llvm::Value*> args) {
3616   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3617   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
3618 
3619   if (getInvokeDest()) {
3620     llvm::InvokeInst *invoke =
3621       Builder.CreateInvoke(callee,
3622                            getUnreachableBlock(),
3623                            getInvokeDest(),
3624                            args,
3625                            BundleList);
3626     invoke->setDoesNotReturn();
3627     invoke->setCallingConv(getRuntimeCC());
3628   } else {
3629     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3630     call->setDoesNotReturn();
3631     call->setCallingConv(getRuntimeCC());
3632     Builder.CreateUnreachable();
3633   }
3634 }
3635 
3636 /// Emits a call or invoke instruction to the given nullary runtime function.
3637 llvm::CallSite
3638 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3639                                          const Twine &name) {
3640   return EmitRuntimeCallOrInvoke(callee, None, name);
3641 }
3642 
3643 /// Emits a call or invoke instruction to the given runtime function.
3644 llvm::CallSite
3645 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3646                                          ArrayRef<llvm::Value*> args,
3647                                          const Twine &name) {
3648   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3649   callSite.setCallingConv(getRuntimeCC());
3650   return callSite;
3651 }
3652 
3653 /// Emits a call or invoke instruction to the given function, depending
3654 /// on the current state of the EH stack.
3655 llvm::CallSite
3656 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3657                                   ArrayRef<llvm::Value *> Args,
3658                                   const Twine &Name) {
3659   llvm::BasicBlock *InvokeDest = getInvokeDest();
3660   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3661   getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList);
3662 
3663   llvm::Instruction *Inst;
3664   if (!InvokeDest)
3665     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3666   else {
3667     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3668     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3669                                 Name);
3670     EmitBlock(ContBB);
3671   }
3672 
3673   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3674   // optimizer it can aggressively ignore unwind edges.
3675   if (CGM.getLangOpts().ObjCAutoRefCount)
3676     AddObjCARCExceptionMetadata(Inst);
3677 
3678   return llvm::CallSite(Inst);
3679 }
3680 
3681 /// \brief Store a non-aggregate value to an address to initialize it.  For
3682 /// initialization, a non-atomic store will be used.
3683 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3684                                         LValue Dst) {
3685   if (Src.isScalar())
3686     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3687   else
3688     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3689 }
3690 
3691 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3692                                                   llvm::Value *New) {
3693   DeferredReplacements.push_back(std::make_pair(Old, New));
3694 }
3695 
3696 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3697                                  const CGCallee &Callee,
3698                                  ReturnValueSlot ReturnValue,
3699                                  const CallArgList &CallArgs,
3700                                  llvm::Instruction **callOrInvoke) {
3701   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3702 
3703   assert(Callee.isOrdinary());
3704 
3705   // Handle struct-return functions by passing a pointer to the
3706   // location that we would like to return into.
3707   QualType RetTy = CallInfo.getReturnType();
3708   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3709 
3710   llvm::FunctionType *IRFuncTy = Callee.getFunctionType();
3711 
3712   // 1. Set up the arguments.
3713 
3714   // If we're using inalloca, insert the allocation after the stack save.
3715   // FIXME: Do this earlier rather than hacking it in here!
3716   Address ArgMemory = Address::invalid();
3717   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3718   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3719     const llvm::DataLayout &DL = CGM.getDataLayout();
3720     ArgMemoryLayout = DL.getStructLayout(ArgStruct);
3721     llvm::Instruction *IP = CallArgs.getStackBase();
3722     llvm::AllocaInst *AI;
3723     if (IP) {
3724       IP = IP->getNextNode();
3725       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3726                                 "argmem", IP);
3727     } else {
3728       AI = CreateTempAlloca(ArgStruct, "argmem");
3729     }
3730     auto Align = CallInfo.getArgStructAlignment();
3731     AI->setAlignment(Align.getQuantity());
3732     AI->setUsedWithInAlloca(true);
3733     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3734     ArgMemory = Address(AI, Align);
3735   }
3736 
3737   // Helper function to drill into the inalloca allocation.
3738   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3739     auto FieldOffset =
3740       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3741     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3742   };
3743 
3744   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3745   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3746 
3747   // If the call returns a temporary with struct return, create a temporary
3748   // alloca to hold the result, unless one is given to us.
3749   Address SRetPtr = Address::invalid();
3750   size_t UnusedReturnSize = 0;
3751   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3752     if (!ReturnValue.isNull()) {
3753       SRetPtr = ReturnValue.getValue();
3754     } else {
3755       SRetPtr = CreateMemTemp(RetTy);
3756       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3757         uint64_t size =
3758             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3759         if (EmitLifetimeStart(size, SRetPtr.getPointer()))
3760           UnusedReturnSize = size;
3761       }
3762     }
3763     if (IRFunctionArgs.hasSRetArg()) {
3764       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3765     } else if (RetAI.isInAlloca()) {
3766       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3767       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3768     }
3769   }
3770 
3771   Address swiftErrorTemp = Address::invalid();
3772   Address swiftErrorArg = Address::invalid();
3773 
3774   // Translate all of the arguments as necessary to match the IR lowering.
3775   assert(CallInfo.arg_size() == CallArgs.size() &&
3776          "Mismatch between function signature & arguments.");
3777   unsigned ArgNo = 0;
3778   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3779   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3780        I != E; ++I, ++info_it, ++ArgNo) {
3781     const ABIArgInfo &ArgInfo = info_it->info;
3782     RValue RV = I->RV;
3783 
3784     // Insert a padding argument to ensure proper alignment.
3785     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3786       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3787           llvm::UndefValue::get(ArgInfo.getPaddingType());
3788 
3789     unsigned FirstIRArg, NumIRArgs;
3790     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3791 
3792     switch (ArgInfo.getKind()) {
3793     case ABIArgInfo::InAlloca: {
3794       assert(NumIRArgs == 0);
3795       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3796       if (RV.isAggregate()) {
3797         // Replace the placeholder with the appropriate argument slot GEP.
3798         llvm::Instruction *Placeholder =
3799             cast<llvm::Instruction>(RV.getAggregatePointer());
3800         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3801         Builder.SetInsertPoint(Placeholder);
3802         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3803         Builder.restoreIP(IP);
3804         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3805       } else {
3806         // Store the RValue into the argument struct.
3807         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3808         unsigned AS = Addr.getType()->getPointerAddressSpace();
3809         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3810         // There are some cases where a trivial bitcast is not avoidable.  The
3811         // definition of a type later in a translation unit may change it's type
3812         // from {}* to (%struct.foo*)*.
3813         if (Addr.getType() != MemType)
3814           Addr = Builder.CreateBitCast(Addr, MemType);
3815         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3816         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3817       }
3818       break;
3819     }
3820 
3821     case ABIArgInfo::Indirect: {
3822       assert(NumIRArgs == 1);
3823       if (RV.isScalar() || RV.isComplex()) {
3824         // Make a temporary alloca to pass the argument.
3825         Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(),
3826                                      "indirect-arg-temp", false);
3827         IRCallArgs[FirstIRArg] = Addr.getPointer();
3828 
3829         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3830         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3831       } else {
3832         // We want to avoid creating an unnecessary temporary+copy here;
3833         // however, we need one in three cases:
3834         // 1. If the argument is not byval, and we are required to copy the
3835         //    source.  (This case doesn't occur on any common architecture.)
3836         // 2. If the argument is byval, RV is not sufficiently aligned, and
3837         //    we cannot force it to be sufficiently aligned.
3838         // 3. If the argument is byval, but RV is located in an address space
3839         //    different than that of the argument (0).
3840         Address Addr = RV.getAggregateAddress();
3841         CharUnits Align = ArgInfo.getIndirectAlign();
3842         const llvm::DataLayout *TD = &CGM.getDataLayout();
3843         const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
3844         const unsigned ArgAddrSpace =
3845             (FirstIRArg < IRFuncTy->getNumParams()
3846                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3847                  : 0);
3848         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3849             (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
3850              llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
3851                                               Align.getQuantity(), *TD)
3852                < Align.getQuantity()) ||
3853             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3854           // Create an aligned temporary, and copy to it.
3855           Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(),
3856                                      "byval-temp", false);
3857           IRCallArgs[FirstIRArg] = AI.getPointer();
3858           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3859         } else {
3860           // Skip the extra memcpy call.
3861           IRCallArgs[FirstIRArg] = Addr.getPointer();
3862         }
3863       }
3864       break;
3865     }
3866 
3867     case ABIArgInfo::Ignore:
3868       assert(NumIRArgs == 0);
3869       break;
3870 
3871     case ABIArgInfo::Extend:
3872     case ABIArgInfo::Direct: {
3873       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3874           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3875           ArgInfo.getDirectOffset() == 0) {
3876         assert(NumIRArgs == 1);
3877         llvm::Value *V;
3878         if (RV.isScalar())
3879           V = RV.getScalarVal();
3880         else
3881           V = Builder.CreateLoad(RV.getAggregateAddress());
3882 
3883         // Implement swifterror by copying into a new swifterror argument.
3884         // We'll write back in the normal path out of the call.
3885         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
3886               == ParameterABI::SwiftErrorResult) {
3887           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
3888 
3889           QualType pointeeTy = I->Ty->getPointeeType();
3890           swiftErrorArg =
3891             Address(V, getContext().getTypeAlignInChars(pointeeTy));
3892 
3893           swiftErrorTemp =
3894             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
3895           V = swiftErrorTemp.getPointer();
3896           cast<llvm::AllocaInst>(V)->setSwiftError(true);
3897 
3898           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
3899           Builder.CreateStore(errorValue, swiftErrorTemp);
3900         }
3901 
3902         // We might have to widen integers, but we should never truncate.
3903         if (ArgInfo.getCoerceToType() != V->getType() &&
3904             V->getType()->isIntegerTy())
3905           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3906 
3907         // If the argument doesn't match, perform a bitcast to coerce it.  This
3908         // can happen due to trivial type mismatches.
3909         if (FirstIRArg < IRFuncTy->getNumParams() &&
3910             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3911           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3912 
3913         IRCallArgs[FirstIRArg] = V;
3914         break;
3915       }
3916 
3917       // FIXME: Avoid the conversion through memory if possible.
3918       Address Src = Address::invalid();
3919       if (RV.isScalar() || RV.isComplex()) {
3920         Src = CreateMemTemp(I->Ty, "coerce");
3921         LValue SrcLV = MakeAddrLValue(Src, I->Ty);
3922         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3923       } else {
3924         Src = RV.getAggregateAddress();
3925       }
3926 
3927       // If the value is offset in memory, apply the offset now.
3928       Src = emitAddressAtOffset(*this, Src, ArgInfo);
3929 
3930       // Fast-isel and the optimizer generally like scalar values better than
3931       // FCAs, so we flatten them if this is safe to do for this argument.
3932       llvm::StructType *STy =
3933             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3934       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3935         llvm::Type *SrcTy = Src.getType()->getElementType();
3936         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3937         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3938 
3939         // If the source type is smaller than the destination type of the
3940         // coerce-to logic, copy the source value into a temp alloca the size
3941         // of the destination type to allow loading all of it. The bits past
3942         // the source value are left undef.
3943         if (SrcSize < DstSize) {
3944           Address TempAlloca
3945             = CreateTempAlloca(STy, Src.getAlignment(),
3946                                Src.getName() + ".coerce");
3947           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
3948           Src = TempAlloca;
3949         } else {
3950           Src = Builder.CreateBitCast(Src,
3951                                       STy->getPointerTo(Src.getAddressSpace()));
3952         }
3953 
3954         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
3955         assert(NumIRArgs == STy->getNumElements());
3956         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3957           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
3958           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
3959           llvm::Value *LI = Builder.CreateLoad(EltPtr);
3960           IRCallArgs[FirstIRArg + i] = LI;
3961         }
3962       } else {
3963         // In the simple case, just pass the coerced loaded value.
3964         assert(NumIRArgs == 1);
3965         IRCallArgs[FirstIRArg] =
3966           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
3967       }
3968 
3969       break;
3970     }
3971 
3972     case ABIArgInfo::CoerceAndExpand: {
3973       auto coercionType = ArgInfo.getCoerceAndExpandType();
3974       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
3975 
3976       llvm::Value *tempSize = nullptr;
3977       Address addr = Address::invalid();
3978       if (RV.isAggregate()) {
3979         addr = RV.getAggregateAddress();
3980       } else {
3981         assert(RV.isScalar()); // complex should always just be direct
3982 
3983         llvm::Type *scalarType = RV.getScalarVal()->getType();
3984         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
3985         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
3986 
3987         tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize);
3988 
3989         // Materialize to a temporary.
3990         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
3991                  CharUnits::fromQuantity(std::max(layout->getAlignment(),
3992                                                   scalarAlign)));
3993         EmitLifetimeStart(scalarSize, addr.getPointer());
3994 
3995         Builder.CreateStore(RV.getScalarVal(), addr);
3996       }
3997 
3998       addr = Builder.CreateElementBitCast(addr, coercionType);
3999 
4000       unsigned IRArgPos = FirstIRArg;
4001       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4002         llvm::Type *eltType = coercionType->getElementType(i);
4003         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4004         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4005         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4006         IRCallArgs[IRArgPos++] = elt;
4007       }
4008       assert(IRArgPos == FirstIRArg + NumIRArgs);
4009 
4010       if (tempSize) {
4011         EmitLifetimeEnd(tempSize, addr.getPointer());
4012       }
4013 
4014       break;
4015     }
4016 
4017     case ABIArgInfo::Expand:
4018       unsigned IRArgPos = FirstIRArg;
4019       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
4020       assert(IRArgPos == FirstIRArg + NumIRArgs);
4021       break;
4022     }
4023   }
4024 
4025   llvm::Value *CalleePtr = Callee.getFunctionPointer();
4026 
4027   // If we're using inalloca, set up that argument.
4028   if (ArgMemory.isValid()) {
4029     llvm::Value *Arg = ArgMemory.getPointer();
4030     if (CallInfo.isVariadic()) {
4031       // When passing non-POD arguments by value to variadic functions, we will
4032       // end up with a variadic prototype and an inalloca call site.  In such
4033       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4034       // the callee.
4035       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4036       auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS);
4037       CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy);
4038     } else {
4039       llvm::Type *LastParamTy =
4040           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4041       if (Arg->getType() != LastParamTy) {
4042 #ifndef NDEBUG
4043         // Assert that these structs have equivalent element types.
4044         llvm::StructType *FullTy = CallInfo.getArgStruct();
4045         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4046             cast<llvm::PointerType>(LastParamTy)->getElementType());
4047         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4048         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4049                                                 DE = DeclaredTy->element_end(),
4050                                                 FI = FullTy->element_begin();
4051              DI != DE; ++DI, ++FI)
4052           assert(*DI == *FI);
4053 #endif
4054         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4055       }
4056     }
4057     assert(IRFunctionArgs.hasInallocaArg());
4058     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4059   }
4060 
4061   // 2. Prepare the function pointer.
4062 
4063   // If the callee is a bitcast of a non-variadic function to have a
4064   // variadic function pointer type, check to see if we can remove the
4065   // bitcast.  This comes up with unprototyped functions.
4066   //
4067   // This makes the IR nicer, but more importantly it ensures that we
4068   // can inline the function at -O0 if it is marked always_inline.
4069   auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* {
4070     llvm::FunctionType *CalleeFT =
4071       cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType());
4072     if (!CalleeFT->isVarArg())
4073       return Ptr;
4074 
4075     llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr);
4076     if (!CE || CE->getOpcode() != llvm::Instruction::BitCast)
4077       return Ptr;
4078 
4079     llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0));
4080     if (!OrigFn)
4081       return Ptr;
4082 
4083     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4084 
4085     // If the original type is variadic, or if any of the component types
4086     // disagree, we cannot remove the cast.
4087     if (OrigFT->isVarArg() ||
4088         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4089         OrigFT->getReturnType() != CalleeFT->getReturnType())
4090       return Ptr;
4091 
4092     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4093       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4094         return Ptr;
4095 
4096     return OrigFn;
4097   };
4098   CalleePtr = simplifyVariadicCallee(CalleePtr);
4099 
4100   // 3. Perform the actual call.
4101 
4102   // Deactivate any cleanups that we're supposed to do immediately before
4103   // the call.
4104   if (!CallArgs.getCleanupsToDeactivate().empty())
4105     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4106 
4107   // Assert that the arguments we computed match up.  The IR verifier
4108   // will catch this, but this is a common enough source of problems
4109   // during IRGen changes that it's way better for debugging to catch
4110   // it ourselves here.
4111 #ifndef NDEBUG
4112   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4113   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4114     // Inalloca argument can have different type.
4115     if (IRFunctionArgs.hasInallocaArg() &&
4116         i == IRFunctionArgs.getInallocaArgNo())
4117       continue;
4118     if (i < IRFuncTy->getNumParams())
4119       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4120   }
4121 #endif
4122 
4123   // Compute the calling convention and attributes.
4124   unsigned CallingConv;
4125   llvm::AttributeList Attrs;
4126   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4127                              Callee.getAbstractInfo(), Attrs, CallingConv,
4128                              /*AttrOnCallSite=*/true);
4129 
4130   // Apply some call-site-specific attributes.
4131   // TODO: work this into building the attribute set.
4132 
4133   // Apply always_inline to all calls within flatten functions.
4134   // FIXME: should this really take priority over __try, below?
4135   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4136       !(Callee.getAbstractInfo().getCalleeDecl() &&
4137         Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) {
4138     Attrs =
4139         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4140                            llvm::Attribute::AlwaysInline);
4141   }
4142 
4143   // Disable inlining inside SEH __try blocks.
4144   if (isSEHTryScope()) {
4145     Attrs =
4146         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4147                            llvm::Attribute::NoInline);
4148   }
4149 
4150   // Decide whether to use a call or an invoke.
4151   bool CannotThrow;
4152   if (currentFunctionUsesSEHTry()) {
4153     // SEH cares about asynchronous exceptions, so everything can "throw."
4154     CannotThrow = false;
4155   } else if (isCleanupPadScope() &&
4156              EHPersonality::get(*this).isMSVCXXPersonality()) {
4157     // The MSVC++ personality will implicitly terminate the program if an
4158     // exception is thrown during a cleanup outside of a try/catch.
4159     // We don't need to model anything in IR to get this behavior.
4160     CannotThrow = true;
4161   } else {
4162     // Otherwise, nounwind call sites will never throw.
4163     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4164                                      llvm::Attribute::NoUnwind);
4165   }
4166   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4167 
4168   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4169   getBundlesForFunclet(CalleePtr, CurrentFuncletPad, BundleList);
4170 
4171   // Emit the actual call/invoke instruction.
4172   llvm::CallSite CS;
4173   if (!InvokeDest) {
4174     CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList);
4175   } else {
4176     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4177     CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs,
4178                               BundleList);
4179     EmitBlock(Cont);
4180   }
4181   llvm::Instruction *CI = CS.getInstruction();
4182   if (callOrInvoke)
4183     *callOrInvoke = CI;
4184 
4185   // Apply the attributes and calling convention.
4186   CS.setAttributes(Attrs);
4187   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4188 
4189   // Apply various metadata.
4190 
4191   if (!CI->getType()->isVoidTy())
4192     CI->setName("call");
4193 
4194   // Insert instrumentation or attach profile metadata at indirect call sites.
4195   // For more details, see the comment before the definition of
4196   // IPVK_IndirectCallTarget in InstrProfData.inc.
4197   if (!CS.getCalledFunction())
4198     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4199                      CI, CalleePtr);
4200 
4201   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4202   // optimizer it can aggressively ignore unwind edges.
4203   if (CGM.getLangOpts().ObjCAutoRefCount)
4204     AddObjCARCExceptionMetadata(CI);
4205 
4206   // Suppress tail calls if requested.
4207   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4208     const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl();
4209     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4210       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4211   }
4212 
4213   // 4. Finish the call.
4214 
4215   // If the call doesn't return, finish the basic block and clear the
4216   // insertion point; this allows the rest of IRGen to discard
4217   // unreachable code.
4218   if (CS.doesNotReturn()) {
4219     if (UnusedReturnSize)
4220       EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
4221                       SRetPtr.getPointer());
4222 
4223     Builder.CreateUnreachable();
4224     Builder.ClearInsertionPoint();
4225 
4226     // FIXME: For now, emit a dummy basic block because expr emitters in
4227     // generally are not ready to handle emitting expressions at unreachable
4228     // points.
4229     EnsureInsertPoint();
4230 
4231     // Return a reasonable RValue.
4232     return GetUndefRValue(RetTy);
4233   }
4234 
4235   // Perform the swifterror writeback.
4236   if (swiftErrorTemp.isValid()) {
4237     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4238     Builder.CreateStore(errorResult, swiftErrorArg);
4239   }
4240 
4241   // Emit any call-associated writebacks immediately.  Arguably this
4242   // should happen after any return-value munging.
4243   if (CallArgs.hasWritebacks())
4244     emitWritebacks(*this, CallArgs);
4245 
4246   // The stack cleanup for inalloca arguments has to run out of the normal
4247   // lexical order, so deactivate it and run it manually here.
4248   CallArgs.freeArgumentMemory(*this);
4249 
4250   // Extract the return value.
4251   RValue Ret = [&] {
4252     switch (RetAI.getKind()) {
4253     case ABIArgInfo::CoerceAndExpand: {
4254       auto coercionType = RetAI.getCoerceAndExpandType();
4255       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4256 
4257       Address addr = SRetPtr;
4258       addr = Builder.CreateElementBitCast(addr, coercionType);
4259 
4260       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4261       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4262 
4263       unsigned unpaddedIndex = 0;
4264       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4265         llvm::Type *eltType = coercionType->getElementType(i);
4266         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4267         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4268         llvm::Value *elt = CI;
4269         if (requiresExtract)
4270           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4271         else
4272           assert(unpaddedIndex == 0);
4273         Builder.CreateStore(elt, eltAddr);
4274       }
4275       // FALLTHROUGH
4276       LLVM_FALLTHROUGH;
4277     }
4278 
4279     case ABIArgInfo::InAlloca:
4280     case ABIArgInfo::Indirect: {
4281       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4282       if (UnusedReturnSize)
4283         EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
4284                         SRetPtr.getPointer());
4285       return ret;
4286     }
4287 
4288     case ABIArgInfo::Ignore:
4289       // If we are ignoring an argument that had a result, make sure to
4290       // construct the appropriate return value for our caller.
4291       return GetUndefRValue(RetTy);
4292 
4293     case ABIArgInfo::Extend:
4294     case ABIArgInfo::Direct: {
4295       llvm::Type *RetIRTy = ConvertType(RetTy);
4296       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4297         switch (getEvaluationKind(RetTy)) {
4298         case TEK_Complex: {
4299           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4300           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4301           return RValue::getComplex(std::make_pair(Real, Imag));
4302         }
4303         case TEK_Aggregate: {
4304           Address DestPtr = ReturnValue.getValue();
4305           bool DestIsVolatile = ReturnValue.isVolatile();
4306 
4307           if (!DestPtr.isValid()) {
4308             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4309             DestIsVolatile = false;
4310           }
4311           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4312           return RValue::getAggregate(DestPtr);
4313         }
4314         case TEK_Scalar: {
4315           // If the argument doesn't match, perform a bitcast to coerce it.  This
4316           // can happen due to trivial type mismatches.
4317           llvm::Value *V = CI;
4318           if (V->getType() != RetIRTy)
4319             V = Builder.CreateBitCast(V, RetIRTy);
4320           return RValue::get(V);
4321         }
4322         }
4323         llvm_unreachable("bad evaluation kind");
4324       }
4325 
4326       Address DestPtr = ReturnValue.getValue();
4327       bool DestIsVolatile = ReturnValue.isVolatile();
4328 
4329       if (!DestPtr.isValid()) {
4330         DestPtr = CreateMemTemp(RetTy, "coerce");
4331         DestIsVolatile = false;
4332       }
4333 
4334       // If the value is offset in memory, apply the offset now.
4335       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4336       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4337 
4338       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4339     }
4340 
4341     case ABIArgInfo::Expand:
4342       llvm_unreachable("Invalid ABI kind for return argument");
4343     }
4344 
4345     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4346   } ();
4347 
4348   // Emit the assume_aligned check on the return value.
4349   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl();
4350   if (Ret.isScalar() && TargetDecl) {
4351     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4352       llvm::Value *OffsetValue = nullptr;
4353       if (const auto *Offset = AA->getOffset())
4354         OffsetValue = EmitScalarExpr(Offset);
4355 
4356       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4357       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4358       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
4359                               OffsetValue);
4360     } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4361       llvm::Value *ParamVal =
4362           CallArgs[AA->getParamIndex() - 1].RV.getScalarVal();
4363       EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal);
4364     }
4365   }
4366 
4367   return Ret;
4368 }
4369 
4370 /* VarArg handling */
4371 
4372 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4373   VAListAddr = VE->isMicrosoftABI()
4374                  ? EmitMSVAListRef(VE->getSubExpr())
4375                  : EmitVAListRef(VE->getSubExpr());
4376   QualType Ty = VE->getType();
4377   if (VE->isMicrosoftABI())
4378     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4379   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4380 }
4381