1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "clang/Frontend/CodeGenOptions.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_Win64: return llvm::CallingConv::Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 63 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 64 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 65 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 66 case CC_Swift: return llvm::CallingConv::Swift; 67 } 68 } 69 70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 71 /// qualification. 72 /// FIXME: address space qualification? 73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 74 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 75 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 76 } 77 78 /// Returns the canonical formal type of the given C++ method. 79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 80 return MD->getType()->getCanonicalTypeUnqualified() 81 .getAs<FunctionProtoType>(); 82 } 83 84 /// Returns the "extra-canonicalized" return type, which discards 85 /// qualifiers on the return type. Codegen doesn't care about them, 86 /// and it makes ABI code a little easier to be able to assume that 87 /// all parameter and return types are top-level unqualified. 88 static CanQualType GetReturnType(QualType RetTy) { 89 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 90 } 91 92 /// Arrange the argument and result information for a value of the given 93 /// unprototyped freestanding function type. 94 const CGFunctionInfo & 95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 96 // When translating an unprototyped function type, always use a 97 // variadic type. 98 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 99 /*instanceMethod=*/false, 100 /*chainCall=*/false, None, 101 FTNP->getExtInfo(), {}, RequiredArgs(0)); 102 } 103 104 static void addExtParameterInfosForCall( 105 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 106 const FunctionProtoType *proto, 107 unsigned prefixArgs, 108 unsigned totalArgs) { 109 assert(proto->hasExtParameterInfos()); 110 assert(paramInfos.size() <= prefixArgs); 111 assert(proto->getNumParams() + prefixArgs <= totalArgs); 112 113 paramInfos.reserve(totalArgs); 114 115 // Add default infos for any prefix args that don't already have infos. 116 paramInfos.resize(prefixArgs); 117 118 // Add infos for the prototype. 119 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 120 paramInfos.push_back(ParamInfo); 121 // pass_object_size params have no parameter info. 122 if (ParamInfo.hasPassObjectSize()) 123 paramInfos.emplace_back(); 124 } 125 126 assert(paramInfos.size() <= totalArgs && 127 "Did we forget to insert pass_object_size args?"); 128 // Add default infos for the variadic and/or suffix arguments. 129 paramInfos.resize(totalArgs); 130 } 131 132 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 133 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 134 static void appendParameterTypes(const CodeGenTypes &CGT, 135 SmallVectorImpl<CanQualType> &prefix, 136 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 137 CanQual<FunctionProtoType> FPT) { 138 // Fast path: don't touch param info if we don't need to. 139 if (!FPT->hasExtParameterInfos()) { 140 assert(paramInfos.empty() && 141 "We have paramInfos, but the prototype doesn't?"); 142 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 143 return; 144 } 145 146 unsigned PrefixSize = prefix.size(); 147 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 148 // parameters; the only thing that can change this is the presence of 149 // pass_object_size. So, we preallocate for the common case. 150 prefix.reserve(prefix.size() + FPT->getNumParams()); 151 152 auto ExtInfos = FPT->getExtParameterInfos(); 153 assert(ExtInfos.size() == FPT->getNumParams()); 154 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 155 prefix.push_back(FPT->getParamType(I)); 156 if (ExtInfos[I].hasPassObjectSize()) 157 prefix.push_back(CGT.getContext().getSizeType()); 158 } 159 160 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 161 prefix.size()); 162 } 163 164 /// Arrange the LLVM function layout for a value of the given function 165 /// type, on top of any implicit parameters already stored. 166 static const CGFunctionInfo & 167 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 168 SmallVectorImpl<CanQualType> &prefix, 169 CanQual<FunctionProtoType> FTP, 170 const FunctionDecl *FD) { 171 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 172 RequiredArgs Required = 173 RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD); 174 // FIXME: Kill copy. 175 appendParameterTypes(CGT, prefix, paramInfos, FTP); 176 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 177 178 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 179 /*chainCall=*/false, prefix, 180 FTP->getExtInfo(), paramInfos, 181 Required); 182 } 183 184 /// Arrange the argument and result information for a value of the 185 /// given freestanding function type. 186 const CGFunctionInfo & 187 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 188 const FunctionDecl *FD) { 189 SmallVector<CanQualType, 16> argTypes; 190 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 191 FTP, FD); 192 } 193 194 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 195 // Set the appropriate calling convention for the Function. 196 if (D->hasAttr<StdCallAttr>()) 197 return CC_X86StdCall; 198 199 if (D->hasAttr<FastCallAttr>()) 200 return CC_X86FastCall; 201 202 if (D->hasAttr<RegCallAttr>()) 203 return CC_X86RegCall; 204 205 if (D->hasAttr<ThisCallAttr>()) 206 return CC_X86ThisCall; 207 208 if (D->hasAttr<VectorCallAttr>()) 209 return CC_X86VectorCall; 210 211 if (D->hasAttr<PascalAttr>()) 212 return CC_X86Pascal; 213 214 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 215 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 216 217 if (D->hasAttr<IntelOclBiccAttr>()) 218 return CC_IntelOclBicc; 219 220 if (D->hasAttr<MSABIAttr>()) 221 return IsWindows ? CC_C : CC_Win64; 222 223 if (D->hasAttr<SysVABIAttr>()) 224 return IsWindows ? CC_X86_64SysV : CC_C; 225 226 if (D->hasAttr<PreserveMostAttr>()) 227 return CC_PreserveMost; 228 229 if (D->hasAttr<PreserveAllAttr>()) 230 return CC_PreserveAll; 231 232 return CC_C; 233 } 234 235 /// Arrange the argument and result information for a call to an 236 /// unknown C++ non-static member function of the given abstract type. 237 /// (Zero value of RD means we don't have any meaningful "this" argument type, 238 /// so fall back to a generic pointer type). 239 /// The member function must be an ordinary function, i.e. not a 240 /// constructor or destructor. 241 const CGFunctionInfo & 242 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 243 const FunctionProtoType *FTP, 244 const CXXMethodDecl *MD) { 245 SmallVector<CanQualType, 16> argTypes; 246 247 // Add the 'this' pointer. 248 if (RD) 249 argTypes.push_back(GetThisType(Context, RD)); 250 else 251 argTypes.push_back(Context.VoidPtrTy); 252 253 return ::arrangeLLVMFunctionInfo( 254 *this, true, argTypes, 255 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 256 } 257 258 /// Arrange the argument and result information for a declaration or 259 /// definition of the given C++ non-static member function. The 260 /// member function must be an ordinary function, i.e. not a 261 /// constructor or destructor. 262 const CGFunctionInfo & 263 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 264 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 265 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 266 267 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 268 269 if (MD->isInstance()) { 270 // The abstract case is perfectly fine. 271 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 272 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 273 } 274 275 return arrangeFreeFunctionType(prototype, MD); 276 } 277 278 bool CodeGenTypes::inheritingCtorHasParams( 279 const InheritedConstructor &Inherited, CXXCtorType Type) { 280 // Parameters are unnecessary if we're constructing a base class subobject 281 // and the inherited constructor lives in a virtual base. 282 return Type == Ctor_Complete || 283 !Inherited.getShadowDecl()->constructsVirtualBase() || 284 !Target.getCXXABI().hasConstructorVariants(); 285 } 286 287 const CGFunctionInfo & 288 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 289 StructorType Type) { 290 291 SmallVector<CanQualType, 16> argTypes; 292 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 293 argTypes.push_back(GetThisType(Context, MD->getParent())); 294 295 bool PassParams = true; 296 297 GlobalDecl GD; 298 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 299 GD = GlobalDecl(CD, toCXXCtorType(Type)); 300 301 // A base class inheriting constructor doesn't get forwarded arguments 302 // needed to construct a virtual base (or base class thereof). 303 if (auto Inherited = CD->getInheritedConstructor()) 304 PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); 305 } else { 306 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 307 GD = GlobalDecl(DD, toCXXDtorType(Type)); 308 } 309 310 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 311 312 // Add the formal parameters. 313 if (PassParams) 314 appendParameterTypes(*this, argTypes, paramInfos, FTP); 315 316 CGCXXABI::AddedStructorArgs AddedArgs = 317 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 318 if (!paramInfos.empty()) { 319 // Note: prefix implies after the first param. 320 if (AddedArgs.Prefix) 321 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 322 FunctionProtoType::ExtParameterInfo{}); 323 if (AddedArgs.Suffix) 324 paramInfos.append(AddedArgs.Suffix, 325 FunctionProtoType::ExtParameterInfo{}); 326 } 327 328 RequiredArgs required = 329 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 330 : RequiredArgs::All); 331 332 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 333 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 334 ? argTypes.front() 335 : TheCXXABI.hasMostDerivedReturn(GD) 336 ? CGM.getContext().VoidPtrTy 337 : Context.VoidTy; 338 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 339 /*chainCall=*/false, argTypes, extInfo, 340 paramInfos, required); 341 } 342 343 static SmallVector<CanQualType, 16> 344 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 345 SmallVector<CanQualType, 16> argTypes; 346 for (auto &arg : args) 347 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 348 return argTypes; 349 } 350 351 static SmallVector<CanQualType, 16> 352 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 353 SmallVector<CanQualType, 16> argTypes; 354 for (auto &arg : args) 355 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 356 return argTypes; 357 } 358 359 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 360 getExtParameterInfosForCall(const FunctionProtoType *proto, 361 unsigned prefixArgs, unsigned totalArgs) { 362 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 363 if (proto->hasExtParameterInfos()) { 364 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 365 } 366 return result; 367 } 368 369 /// Arrange a call to a C++ method, passing the given arguments. 370 /// 371 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 372 /// parameter. 373 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 374 /// args. 375 /// PassProtoArgs indicates whether `args` has args for the parameters in the 376 /// given CXXConstructorDecl. 377 const CGFunctionInfo & 378 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 379 const CXXConstructorDecl *D, 380 CXXCtorType CtorKind, 381 unsigned ExtraPrefixArgs, 382 unsigned ExtraSuffixArgs, 383 bool PassProtoArgs) { 384 // FIXME: Kill copy. 385 SmallVector<CanQualType, 16> ArgTypes; 386 for (const auto &Arg : args) 387 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 388 389 // +1 for implicit this, which should always be args[0]. 390 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 391 392 CanQual<FunctionProtoType> FPT = GetFormalType(D); 393 RequiredArgs Required = 394 RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D); 395 GlobalDecl GD(D, CtorKind); 396 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 397 ? ArgTypes.front() 398 : TheCXXABI.hasMostDerivedReturn(GD) 399 ? CGM.getContext().VoidPtrTy 400 : Context.VoidTy; 401 402 FunctionType::ExtInfo Info = FPT->getExtInfo(); 403 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 404 // If the prototype args are elided, we should only have ABI-specific args, 405 // which never have param info. 406 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 407 // ABI-specific suffix arguments are treated the same as variadic arguments. 408 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 409 ArgTypes.size()); 410 } 411 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 412 /*chainCall=*/false, ArgTypes, Info, 413 ParamInfos, Required); 414 } 415 416 /// Arrange the argument and result information for the declaration or 417 /// definition of the given function. 418 const CGFunctionInfo & 419 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 420 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 421 if (MD->isInstance()) 422 return arrangeCXXMethodDeclaration(MD); 423 424 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 425 426 assert(isa<FunctionType>(FTy)); 427 428 // When declaring a function without a prototype, always use a 429 // non-variadic type. 430 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 431 return arrangeLLVMFunctionInfo( 432 noProto->getReturnType(), /*instanceMethod=*/false, 433 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 434 } 435 436 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD); 437 } 438 439 /// Arrange the argument and result information for the declaration or 440 /// definition of an Objective-C method. 441 const CGFunctionInfo & 442 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 443 // It happens that this is the same as a call with no optional 444 // arguments, except also using the formal 'self' type. 445 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 446 } 447 448 /// Arrange the argument and result information for the function type 449 /// through which to perform a send to the given Objective-C method, 450 /// using the given receiver type. The receiver type is not always 451 /// the 'self' type of the method or even an Objective-C pointer type. 452 /// This is *not* the right method for actually performing such a 453 /// message send, due to the possibility of optional arguments. 454 const CGFunctionInfo & 455 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 456 QualType receiverType) { 457 SmallVector<CanQualType, 16> argTys; 458 argTys.push_back(Context.getCanonicalParamType(receiverType)); 459 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 460 // FIXME: Kill copy? 461 for (const auto *I : MD->parameters()) { 462 argTys.push_back(Context.getCanonicalParamType(I->getType())); 463 } 464 465 FunctionType::ExtInfo einfo; 466 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 467 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 468 469 if (getContext().getLangOpts().ObjCAutoRefCount && 470 MD->hasAttr<NSReturnsRetainedAttr>()) 471 einfo = einfo.withProducesResult(true); 472 473 RequiredArgs required = 474 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 475 476 return arrangeLLVMFunctionInfo( 477 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 478 /*chainCall=*/false, argTys, einfo, {}, required); 479 } 480 481 const CGFunctionInfo & 482 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 483 const CallArgList &args) { 484 auto argTypes = getArgTypesForCall(Context, args); 485 FunctionType::ExtInfo einfo; 486 487 return arrangeLLVMFunctionInfo( 488 GetReturnType(returnType), /*instanceMethod=*/false, 489 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 490 } 491 492 const CGFunctionInfo & 493 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 494 // FIXME: Do we need to handle ObjCMethodDecl? 495 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 496 497 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 498 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 499 500 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 501 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 502 503 return arrangeFunctionDeclaration(FD); 504 } 505 506 /// Arrange a thunk that takes 'this' as the first parameter followed by 507 /// varargs. Return a void pointer, regardless of the actual return type. 508 /// The body of the thunk will end in a musttail call to a function of the 509 /// correct type, and the caller will bitcast the function to the correct 510 /// prototype. 511 const CGFunctionInfo & 512 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) { 513 assert(MD->isVirtual() && "only virtual memptrs have thunks"); 514 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 515 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 516 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 517 /*chainCall=*/false, ArgTys, 518 FTP->getExtInfo(), {}, RequiredArgs(1)); 519 } 520 521 const CGFunctionInfo & 522 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 523 CXXCtorType CT) { 524 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 525 526 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 527 SmallVector<CanQualType, 2> ArgTys; 528 const CXXRecordDecl *RD = CD->getParent(); 529 ArgTys.push_back(GetThisType(Context, RD)); 530 if (CT == Ctor_CopyingClosure) 531 ArgTys.push_back(*FTP->param_type_begin()); 532 if (RD->getNumVBases() > 0) 533 ArgTys.push_back(Context.IntTy); 534 CallingConv CC = Context.getDefaultCallingConvention( 535 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 536 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 537 /*chainCall=*/false, ArgTys, 538 FunctionType::ExtInfo(CC), {}, 539 RequiredArgs::All); 540 } 541 542 /// Arrange a call as unto a free function, except possibly with an 543 /// additional number of formal parameters considered required. 544 static const CGFunctionInfo & 545 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 546 CodeGenModule &CGM, 547 const CallArgList &args, 548 const FunctionType *fnType, 549 unsigned numExtraRequiredArgs, 550 bool chainCall) { 551 assert(args.size() >= numExtraRequiredArgs); 552 553 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 554 555 // In most cases, there are no optional arguments. 556 RequiredArgs required = RequiredArgs::All; 557 558 // If we have a variadic prototype, the required arguments are the 559 // extra prefix plus the arguments in the prototype. 560 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 561 if (proto->isVariadic()) 562 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 563 564 if (proto->hasExtParameterInfos()) 565 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 566 args.size()); 567 568 // If we don't have a prototype at all, but we're supposed to 569 // explicitly use the variadic convention for unprototyped calls, 570 // treat all of the arguments as required but preserve the nominal 571 // possibility of variadics. 572 } else if (CGM.getTargetCodeGenInfo() 573 .isNoProtoCallVariadic(args, 574 cast<FunctionNoProtoType>(fnType))) { 575 required = RequiredArgs(args.size()); 576 } 577 578 // FIXME: Kill copy. 579 SmallVector<CanQualType, 16> argTypes; 580 for (const auto &arg : args) 581 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 582 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 583 /*instanceMethod=*/false, chainCall, 584 argTypes, fnType->getExtInfo(), paramInfos, 585 required); 586 } 587 588 /// Figure out the rules for calling a function with the given formal 589 /// type using the given arguments. The arguments are necessary 590 /// because the function might be unprototyped, in which case it's 591 /// target-dependent in crazy ways. 592 const CGFunctionInfo & 593 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 594 const FunctionType *fnType, 595 bool chainCall) { 596 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 597 chainCall ? 1 : 0, chainCall); 598 } 599 600 /// A block function is essentially a free function with an 601 /// extra implicit argument. 602 const CGFunctionInfo & 603 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 604 const FunctionType *fnType) { 605 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 606 /*chainCall=*/false); 607 } 608 609 const CGFunctionInfo & 610 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 611 const FunctionArgList ¶ms) { 612 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 613 auto argTypes = getArgTypesForDeclaration(Context, params); 614 615 return arrangeLLVMFunctionInfo( 616 GetReturnType(proto->getReturnType()), 617 /*instanceMethod*/ false, /*chainCall*/ false, argTypes, 618 proto->getExtInfo(), paramInfos, 619 RequiredArgs::forPrototypePlus(proto, 1, nullptr)); 620 } 621 622 const CGFunctionInfo & 623 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 624 const CallArgList &args) { 625 // FIXME: Kill copy. 626 SmallVector<CanQualType, 16> argTypes; 627 for (const auto &Arg : args) 628 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 629 return arrangeLLVMFunctionInfo( 630 GetReturnType(resultType), /*instanceMethod=*/false, 631 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 632 /*paramInfos=*/ {}, RequiredArgs::All); 633 } 634 635 const CGFunctionInfo & 636 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 637 const FunctionArgList &args) { 638 auto argTypes = getArgTypesForDeclaration(Context, args); 639 640 return arrangeLLVMFunctionInfo( 641 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 642 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 643 } 644 645 const CGFunctionInfo & 646 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 647 ArrayRef<CanQualType> argTypes) { 648 return arrangeLLVMFunctionInfo( 649 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 650 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 651 } 652 653 /// Arrange a call to a C++ method, passing the given arguments. 654 /// 655 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 656 /// does not count `this`. 657 const CGFunctionInfo & 658 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 659 const FunctionProtoType *proto, 660 RequiredArgs required, 661 unsigned numPrefixArgs) { 662 assert(numPrefixArgs + 1 <= args.size() && 663 "Emitting a call with less args than the required prefix?"); 664 // Add one to account for `this`. It's a bit awkward here, but we don't count 665 // `this` in similar places elsewhere. 666 auto paramInfos = 667 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 668 669 // FIXME: Kill copy. 670 auto argTypes = getArgTypesForCall(Context, args); 671 672 FunctionType::ExtInfo info = proto->getExtInfo(); 673 return arrangeLLVMFunctionInfo( 674 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 675 /*chainCall=*/false, argTypes, info, paramInfos, required); 676 } 677 678 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 679 return arrangeLLVMFunctionInfo( 680 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 681 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 682 } 683 684 const CGFunctionInfo & 685 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 686 const CallArgList &args) { 687 assert(signature.arg_size() <= args.size()); 688 if (signature.arg_size() == args.size()) 689 return signature; 690 691 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 692 auto sigParamInfos = signature.getExtParameterInfos(); 693 if (!sigParamInfos.empty()) { 694 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 695 paramInfos.resize(args.size()); 696 } 697 698 auto argTypes = getArgTypesForCall(Context, args); 699 700 assert(signature.getRequiredArgs().allowsOptionalArgs()); 701 return arrangeLLVMFunctionInfo(signature.getReturnType(), 702 signature.isInstanceMethod(), 703 signature.isChainCall(), 704 argTypes, 705 signature.getExtInfo(), 706 paramInfos, 707 signature.getRequiredArgs()); 708 } 709 710 namespace clang { 711 namespace CodeGen { 712 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 713 } 714 } 715 716 /// Arrange the argument and result information for an abstract value 717 /// of a given function type. This is the method which all of the 718 /// above functions ultimately defer to. 719 const CGFunctionInfo & 720 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 721 bool instanceMethod, 722 bool chainCall, 723 ArrayRef<CanQualType> argTypes, 724 FunctionType::ExtInfo info, 725 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 726 RequiredArgs required) { 727 assert(std::all_of(argTypes.begin(), argTypes.end(), 728 [](CanQualType T) { return T.isCanonicalAsParam(); })); 729 730 // Lookup or create unique function info. 731 llvm::FoldingSetNodeID ID; 732 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 733 required, resultType, argTypes); 734 735 void *insertPos = nullptr; 736 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 737 if (FI) 738 return *FI; 739 740 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 741 742 // Construct the function info. We co-allocate the ArgInfos. 743 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 744 paramInfos, resultType, argTypes, required); 745 FunctionInfos.InsertNode(FI, insertPos); 746 747 bool inserted = FunctionsBeingProcessed.insert(FI).second; 748 (void)inserted; 749 assert(inserted && "Recursively being processed?"); 750 751 // Compute ABI information. 752 if (CC == llvm::CallingConv::SPIR_KERNEL) { 753 // Force target independent argument handling for the host visible 754 // kernel functions. 755 computeSPIRKernelABIInfo(CGM, *FI); 756 } else if (info.getCC() == CC_Swift) { 757 swiftcall::computeABIInfo(CGM, *FI); 758 } else { 759 getABIInfo().computeInfo(*FI); 760 } 761 762 // Loop over all of the computed argument and return value info. If any of 763 // them are direct or extend without a specified coerce type, specify the 764 // default now. 765 ABIArgInfo &retInfo = FI->getReturnInfo(); 766 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 767 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 768 769 for (auto &I : FI->arguments()) 770 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 771 I.info.setCoerceToType(ConvertType(I.type)); 772 773 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 774 assert(erased && "Not in set?"); 775 776 return *FI; 777 } 778 779 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 780 bool instanceMethod, 781 bool chainCall, 782 const FunctionType::ExtInfo &info, 783 ArrayRef<ExtParameterInfo> paramInfos, 784 CanQualType resultType, 785 ArrayRef<CanQualType> argTypes, 786 RequiredArgs required) { 787 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 788 789 void *buffer = 790 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 791 argTypes.size() + 1, paramInfos.size())); 792 793 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 794 FI->CallingConvention = llvmCC; 795 FI->EffectiveCallingConvention = llvmCC; 796 FI->ASTCallingConvention = info.getCC(); 797 FI->InstanceMethod = instanceMethod; 798 FI->ChainCall = chainCall; 799 FI->NoReturn = info.getNoReturn(); 800 FI->ReturnsRetained = info.getProducesResult(); 801 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 802 FI->Required = required; 803 FI->HasRegParm = info.getHasRegParm(); 804 FI->RegParm = info.getRegParm(); 805 FI->ArgStruct = nullptr; 806 FI->ArgStructAlign = 0; 807 FI->NumArgs = argTypes.size(); 808 FI->HasExtParameterInfos = !paramInfos.empty(); 809 FI->getArgsBuffer()[0].type = resultType; 810 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 811 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 812 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 813 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 814 return FI; 815 } 816 817 /***/ 818 819 namespace { 820 // ABIArgInfo::Expand implementation. 821 822 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 823 struct TypeExpansion { 824 enum TypeExpansionKind { 825 // Elements of constant arrays are expanded recursively. 826 TEK_ConstantArray, 827 // Record fields are expanded recursively (but if record is a union, only 828 // the field with the largest size is expanded). 829 TEK_Record, 830 // For complex types, real and imaginary parts are expanded recursively. 831 TEK_Complex, 832 // All other types are not expandable. 833 TEK_None 834 }; 835 836 const TypeExpansionKind Kind; 837 838 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 839 virtual ~TypeExpansion() {} 840 }; 841 842 struct ConstantArrayExpansion : TypeExpansion { 843 QualType EltTy; 844 uint64_t NumElts; 845 846 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 847 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 848 static bool classof(const TypeExpansion *TE) { 849 return TE->Kind == TEK_ConstantArray; 850 } 851 }; 852 853 struct RecordExpansion : TypeExpansion { 854 SmallVector<const CXXBaseSpecifier *, 1> Bases; 855 856 SmallVector<const FieldDecl *, 1> Fields; 857 858 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 859 SmallVector<const FieldDecl *, 1> &&Fields) 860 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 861 Fields(std::move(Fields)) {} 862 static bool classof(const TypeExpansion *TE) { 863 return TE->Kind == TEK_Record; 864 } 865 }; 866 867 struct ComplexExpansion : TypeExpansion { 868 QualType EltTy; 869 870 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 871 static bool classof(const TypeExpansion *TE) { 872 return TE->Kind == TEK_Complex; 873 } 874 }; 875 876 struct NoExpansion : TypeExpansion { 877 NoExpansion() : TypeExpansion(TEK_None) {} 878 static bool classof(const TypeExpansion *TE) { 879 return TE->Kind == TEK_None; 880 } 881 }; 882 } // namespace 883 884 static std::unique_ptr<TypeExpansion> 885 getTypeExpansion(QualType Ty, const ASTContext &Context) { 886 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 887 return llvm::make_unique<ConstantArrayExpansion>( 888 AT->getElementType(), AT->getSize().getZExtValue()); 889 } 890 if (const RecordType *RT = Ty->getAs<RecordType>()) { 891 SmallVector<const CXXBaseSpecifier *, 1> Bases; 892 SmallVector<const FieldDecl *, 1> Fields; 893 const RecordDecl *RD = RT->getDecl(); 894 assert(!RD->hasFlexibleArrayMember() && 895 "Cannot expand structure with flexible array."); 896 if (RD->isUnion()) { 897 // Unions can be here only in degenerative cases - all the fields are same 898 // after flattening. Thus we have to use the "largest" field. 899 const FieldDecl *LargestFD = nullptr; 900 CharUnits UnionSize = CharUnits::Zero(); 901 902 for (const auto *FD : RD->fields()) { 903 // Skip zero length bitfields. 904 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 905 continue; 906 assert(!FD->isBitField() && 907 "Cannot expand structure with bit-field members."); 908 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 909 if (UnionSize < FieldSize) { 910 UnionSize = FieldSize; 911 LargestFD = FD; 912 } 913 } 914 if (LargestFD) 915 Fields.push_back(LargestFD); 916 } else { 917 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 918 assert(!CXXRD->isDynamicClass() && 919 "cannot expand vtable pointers in dynamic classes"); 920 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 921 Bases.push_back(&BS); 922 } 923 924 for (const auto *FD : RD->fields()) { 925 // Skip zero length bitfields. 926 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 927 continue; 928 assert(!FD->isBitField() && 929 "Cannot expand structure with bit-field members."); 930 Fields.push_back(FD); 931 } 932 } 933 return llvm::make_unique<RecordExpansion>(std::move(Bases), 934 std::move(Fields)); 935 } 936 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 937 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 938 } 939 return llvm::make_unique<NoExpansion>(); 940 } 941 942 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 943 auto Exp = getTypeExpansion(Ty, Context); 944 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 945 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 946 } 947 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 948 int Res = 0; 949 for (auto BS : RExp->Bases) 950 Res += getExpansionSize(BS->getType(), Context); 951 for (auto FD : RExp->Fields) 952 Res += getExpansionSize(FD->getType(), Context); 953 return Res; 954 } 955 if (isa<ComplexExpansion>(Exp.get())) 956 return 2; 957 assert(isa<NoExpansion>(Exp.get())); 958 return 1; 959 } 960 961 void 962 CodeGenTypes::getExpandedTypes(QualType Ty, 963 SmallVectorImpl<llvm::Type *>::iterator &TI) { 964 auto Exp = getTypeExpansion(Ty, Context); 965 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 966 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 967 getExpandedTypes(CAExp->EltTy, TI); 968 } 969 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 970 for (auto BS : RExp->Bases) 971 getExpandedTypes(BS->getType(), TI); 972 for (auto FD : RExp->Fields) 973 getExpandedTypes(FD->getType(), TI); 974 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 975 llvm::Type *EltTy = ConvertType(CExp->EltTy); 976 *TI++ = EltTy; 977 *TI++ = EltTy; 978 } else { 979 assert(isa<NoExpansion>(Exp.get())); 980 *TI++ = ConvertType(Ty); 981 } 982 } 983 984 static void forConstantArrayExpansion(CodeGenFunction &CGF, 985 ConstantArrayExpansion *CAE, 986 Address BaseAddr, 987 llvm::function_ref<void(Address)> Fn) { 988 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 989 CharUnits EltAlign = 990 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 991 992 for (int i = 0, n = CAE->NumElts; i < n; i++) { 993 llvm::Value *EltAddr = 994 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 995 Fn(Address(EltAddr, EltAlign)); 996 } 997 } 998 999 void CodeGenFunction::ExpandTypeFromArgs( 1000 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 1001 assert(LV.isSimple() && 1002 "Unexpected non-simple lvalue during struct expansion."); 1003 1004 auto Exp = getTypeExpansion(Ty, getContext()); 1005 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1006 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 1007 [&](Address EltAddr) { 1008 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1009 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1010 }); 1011 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1012 Address This = LV.getAddress(); 1013 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1014 // Perform a single step derived-to-base conversion. 1015 Address Base = 1016 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1017 /*NullCheckValue=*/false, SourceLocation()); 1018 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1019 1020 // Recurse onto bases. 1021 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1022 } 1023 for (auto FD : RExp->Fields) { 1024 // FIXME: What are the right qualifiers here? 1025 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1026 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1027 } 1028 } else if (isa<ComplexExpansion>(Exp.get())) { 1029 auto realValue = *AI++; 1030 auto imagValue = *AI++; 1031 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1032 } else { 1033 assert(isa<NoExpansion>(Exp.get())); 1034 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1035 } 1036 } 1037 1038 void CodeGenFunction::ExpandTypeToArgs( 1039 QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 1040 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1041 auto Exp = getTypeExpansion(Ty, getContext()); 1042 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1043 forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(), 1044 [&](Address EltAddr) { 1045 RValue EltRV = 1046 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()); 1047 ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos); 1048 }); 1049 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1050 Address This = RV.getAggregateAddress(); 1051 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1052 // Perform a single step derived-to-base conversion. 1053 Address Base = 1054 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1055 /*NullCheckValue=*/false, SourceLocation()); 1056 RValue BaseRV = RValue::getAggregate(Base); 1057 1058 // Recurse onto bases. 1059 ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs, 1060 IRCallArgPos); 1061 } 1062 1063 LValue LV = MakeAddrLValue(This, Ty); 1064 for (auto FD : RExp->Fields) { 1065 RValue FldRV = EmitRValueForField(LV, FD, SourceLocation()); 1066 ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs, 1067 IRCallArgPos); 1068 } 1069 } else if (isa<ComplexExpansion>(Exp.get())) { 1070 ComplexPairTy CV = RV.getComplexVal(); 1071 IRCallArgs[IRCallArgPos++] = CV.first; 1072 IRCallArgs[IRCallArgPos++] = CV.second; 1073 } else { 1074 assert(isa<NoExpansion>(Exp.get())); 1075 assert(RV.isScalar() && 1076 "Unexpected non-scalar rvalue during struct expansion."); 1077 1078 // Insert a bitcast as needed. 1079 llvm::Value *V = RV.getScalarVal(); 1080 if (IRCallArgPos < IRFuncTy->getNumParams() && 1081 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1082 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1083 1084 IRCallArgs[IRCallArgPos++] = V; 1085 } 1086 } 1087 1088 /// Create a temporary allocation for the purposes of coercion. 1089 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1090 CharUnits MinAlign) { 1091 // Don't use an alignment that's worse than what LLVM would prefer. 1092 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1093 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1094 1095 return CGF.CreateTempAlloca(Ty, Align); 1096 } 1097 1098 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1099 /// accessing some number of bytes out of it, try to gep into the struct to get 1100 /// at its inner goodness. Dive as deep as possible without entering an element 1101 /// with an in-memory size smaller than DstSize. 1102 static Address 1103 EnterStructPointerForCoercedAccess(Address SrcPtr, 1104 llvm::StructType *SrcSTy, 1105 uint64_t DstSize, CodeGenFunction &CGF) { 1106 // We can't dive into a zero-element struct. 1107 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1108 1109 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1110 1111 // If the first elt is at least as large as what we're looking for, or if the 1112 // first element is the same size as the whole struct, we can enter it. The 1113 // comparison must be made on the store size and not the alloca size. Using 1114 // the alloca size may overstate the size of the load. 1115 uint64_t FirstEltSize = 1116 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1117 if (FirstEltSize < DstSize && 1118 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1119 return SrcPtr; 1120 1121 // GEP into the first element. 1122 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 1123 1124 // If the first element is a struct, recurse. 1125 llvm::Type *SrcTy = SrcPtr.getElementType(); 1126 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1127 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1128 1129 return SrcPtr; 1130 } 1131 1132 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1133 /// are either integers or pointers. This does a truncation of the value if it 1134 /// is too large or a zero extension if it is too small. 1135 /// 1136 /// This behaves as if the value were coerced through memory, so on big-endian 1137 /// targets the high bits are preserved in a truncation, while little-endian 1138 /// targets preserve the low bits. 1139 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1140 llvm::Type *Ty, 1141 CodeGenFunction &CGF) { 1142 if (Val->getType() == Ty) 1143 return Val; 1144 1145 if (isa<llvm::PointerType>(Val->getType())) { 1146 // If this is Pointer->Pointer avoid conversion to and from int. 1147 if (isa<llvm::PointerType>(Ty)) 1148 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1149 1150 // Convert the pointer to an integer so we can play with its width. 1151 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1152 } 1153 1154 llvm::Type *DestIntTy = Ty; 1155 if (isa<llvm::PointerType>(DestIntTy)) 1156 DestIntTy = CGF.IntPtrTy; 1157 1158 if (Val->getType() != DestIntTy) { 1159 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1160 if (DL.isBigEndian()) { 1161 // Preserve the high bits on big-endian targets. 1162 // That is what memory coercion does. 1163 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1164 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1165 1166 if (SrcSize > DstSize) { 1167 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1168 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1169 } else { 1170 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1171 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1172 } 1173 } else { 1174 // Little-endian targets preserve the low bits. No shifts required. 1175 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1176 } 1177 } 1178 1179 if (isa<llvm::PointerType>(Ty)) 1180 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1181 return Val; 1182 } 1183 1184 1185 1186 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1187 /// a pointer to an object of type \arg Ty, known to be aligned to 1188 /// \arg SrcAlign bytes. 1189 /// 1190 /// This safely handles the case when the src type is smaller than the 1191 /// destination type; in this situation the values of bits which not 1192 /// present in the src are undefined. 1193 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1194 CodeGenFunction &CGF) { 1195 llvm::Type *SrcTy = Src.getElementType(); 1196 1197 // If SrcTy and Ty are the same, just do a load. 1198 if (SrcTy == Ty) 1199 return CGF.Builder.CreateLoad(Src); 1200 1201 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1202 1203 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1204 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1205 SrcTy = Src.getType()->getElementType(); 1206 } 1207 1208 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1209 1210 // If the source and destination are integer or pointer types, just do an 1211 // extension or truncation to the desired type. 1212 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1213 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1214 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1215 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1216 } 1217 1218 // If load is legal, just bitcast the src pointer. 1219 if (SrcSize >= DstSize) { 1220 // Generally SrcSize is never greater than DstSize, since this means we are 1221 // losing bits. However, this can happen in cases where the structure has 1222 // additional padding, for example due to a user specified alignment. 1223 // 1224 // FIXME: Assert that we aren't truncating non-padding bits when have access 1225 // to that information. 1226 Src = CGF.Builder.CreateBitCast(Src, 1227 Ty->getPointerTo(Src.getAddressSpace())); 1228 return CGF.Builder.CreateLoad(Src); 1229 } 1230 1231 // Otherwise do coercion through memory. This is stupid, but simple. 1232 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1233 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1234 Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy); 1235 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1236 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1237 false); 1238 return CGF.Builder.CreateLoad(Tmp); 1239 } 1240 1241 // Function to store a first-class aggregate into memory. We prefer to 1242 // store the elements rather than the aggregate to be more friendly to 1243 // fast-isel. 1244 // FIXME: Do we need to recurse here? 1245 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1246 Address Dest, bool DestIsVolatile) { 1247 // Prefer scalar stores to first-class aggregate stores. 1248 if (llvm::StructType *STy = 1249 dyn_cast<llvm::StructType>(Val->getType())) { 1250 const llvm::StructLayout *Layout = 1251 CGF.CGM.getDataLayout().getStructLayout(STy); 1252 1253 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1254 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1255 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1256 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1257 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1258 } 1259 } else { 1260 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1261 } 1262 } 1263 1264 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1265 /// where the source and destination may have different types. The 1266 /// destination is known to be aligned to \arg DstAlign bytes. 1267 /// 1268 /// This safely handles the case when the src type is larger than the 1269 /// destination type; the upper bits of the src will be lost. 1270 static void CreateCoercedStore(llvm::Value *Src, 1271 Address Dst, 1272 bool DstIsVolatile, 1273 CodeGenFunction &CGF) { 1274 llvm::Type *SrcTy = Src->getType(); 1275 llvm::Type *DstTy = Dst.getType()->getElementType(); 1276 if (SrcTy == DstTy) { 1277 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1278 return; 1279 } 1280 1281 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1282 1283 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1284 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1285 DstTy = Dst.getType()->getElementType(); 1286 } 1287 1288 // If the source and destination are integer or pointer types, just do an 1289 // extension or truncation to the desired type. 1290 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1291 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1292 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1293 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1294 return; 1295 } 1296 1297 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1298 1299 // If store is legal, just bitcast the src pointer. 1300 if (SrcSize <= DstSize) { 1301 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1302 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1303 } else { 1304 // Otherwise do coercion through memory. This is stupid, but 1305 // simple. 1306 1307 // Generally SrcSize is never greater than DstSize, since this means we are 1308 // losing bits. However, this can happen in cases where the structure has 1309 // additional padding, for example due to a user specified alignment. 1310 // 1311 // FIXME: Assert that we aren't truncating non-padding bits when have access 1312 // to that information. 1313 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1314 CGF.Builder.CreateStore(Src, Tmp); 1315 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy); 1316 Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy); 1317 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1318 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1319 false); 1320 } 1321 } 1322 1323 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1324 const ABIArgInfo &info) { 1325 if (unsigned offset = info.getDirectOffset()) { 1326 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1327 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1328 CharUnits::fromQuantity(offset)); 1329 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1330 } 1331 return addr; 1332 } 1333 1334 namespace { 1335 1336 /// Encapsulates information about the way function arguments from 1337 /// CGFunctionInfo should be passed to actual LLVM IR function. 1338 class ClangToLLVMArgMapping { 1339 static const unsigned InvalidIndex = ~0U; 1340 unsigned InallocaArgNo; 1341 unsigned SRetArgNo; 1342 unsigned TotalIRArgs; 1343 1344 /// Arguments of LLVM IR function corresponding to single Clang argument. 1345 struct IRArgs { 1346 unsigned PaddingArgIndex; 1347 // Argument is expanded to IR arguments at positions 1348 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1349 unsigned FirstArgIndex; 1350 unsigned NumberOfArgs; 1351 1352 IRArgs() 1353 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1354 NumberOfArgs(0) {} 1355 }; 1356 1357 SmallVector<IRArgs, 8> ArgInfo; 1358 1359 public: 1360 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1361 bool OnlyRequiredArgs = false) 1362 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1363 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1364 construct(Context, FI, OnlyRequiredArgs); 1365 } 1366 1367 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1368 unsigned getInallocaArgNo() const { 1369 assert(hasInallocaArg()); 1370 return InallocaArgNo; 1371 } 1372 1373 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1374 unsigned getSRetArgNo() const { 1375 assert(hasSRetArg()); 1376 return SRetArgNo; 1377 } 1378 1379 unsigned totalIRArgs() const { return TotalIRArgs; } 1380 1381 bool hasPaddingArg(unsigned ArgNo) const { 1382 assert(ArgNo < ArgInfo.size()); 1383 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1384 } 1385 unsigned getPaddingArgNo(unsigned ArgNo) const { 1386 assert(hasPaddingArg(ArgNo)); 1387 return ArgInfo[ArgNo].PaddingArgIndex; 1388 } 1389 1390 /// Returns index of first IR argument corresponding to ArgNo, and their 1391 /// quantity. 1392 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1393 assert(ArgNo < ArgInfo.size()); 1394 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1395 ArgInfo[ArgNo].NumberOfArgs); 1396 } 1397 1398 private: 1399 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1400 bool OnlyRequiredArgs); 1401 }; 1402 1403 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1404 const CGFunctionInfo &FI, 1405 bool OnlyRequiredArgs) { 1406 unsigned IRArgNo = 0; 1407 bool SwapThisWithSRet = false; 1408 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1409 1410 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1411 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1412 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1413 } 1414 1415 unsigned ArgNo = 0; 1416 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1417 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1418 ++I, ++ArgNo) { 1419 assert(I != FI.arg_end()); 1420 QualType ArgType = I->type; 1421 const ABIArgInfo &AI = I->info; 1422 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1423 auto &IRArgs = ArgInfo[ArgNo]; 1424 1425 if (AI.getPaddingType()) 1426 IRArgs.PaddingArgIndex = IRArgNo++; 1427 1428 switch (AI.getKind()) { 1429 case ABIArgInfo::Extend: 1430 case ABIArgInfo::Direct: { 1431 // FIXME: handle sseregparm someday... 1432 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1433 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1434 IRArgs.NumberOfArgs = STy->getNumElements(); 1435 } else { 1436 IRArgs.NumberOfArgs = 1; 1437 } 1438 break; 1439 } 1440 case ABIArgInfo::Indirect: 1441 IRArgs.NumberOfArgs = 1; 1442 break; 1443 case ABIArgInfo::Ignore: 1444 case ABIArgInfo::InAlloca: 1445 // ignore and inalloca doesn't have matching LLVM parameters. 1446 IRArgs.NumberOfArgs = 0; 1447 break; 1448 case ABIArgInfo::CoerceAndExpand: 1449 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1450 break; 1451 case ABIArgInfo::Expand: 1452 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1453 break; 1454 } 1455 1456 if (IRArgs.NumberOfArgs > 0) { 1457 IRArgs.FirstArgIndex = IRArgNo; 1458 IRArgNo += IRArgs.NumberOfArgs; 1459 } 1460 1461 // Skip over the sret parameter when it comes second. We already handled it 1462 // above. 1463 if (IRArgNo == 1 && SwapThisWithSRet) 1464 IRArgNo++; 1465 } 1466 assert(ArgNo == ArgInfo.size()); 1467 1468 if (FI.usesInAlloca()) 1469 InallocaArgNo = IRArgNo++; 1470 1471 TotalIRArgs = IRArgNo; 1472 } 1473 } // namespace 1474 1475 /***/ 1476 1477 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1478 return FI.getReturnInfo().isIndirect(); 1479 } 1480 1481 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1482 return ReturnTypeUsesSRet(FI) && 1483 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1484 } 1485 1486 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1487 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1488 switch (BT->getKind()) { 1489 default: 1490 return false; 1491 case BuiltinType::Float: 1492 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1493 case BuiltinType::Double: 1494 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1495 case BuiltinType::LongDouble: 1496 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1497 } 1498 } 1499 1500 return false; 1501 } 1502 1503 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1504 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1505 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1506 if (BT->getKind() == BuiltinType::LongDouble) 1507 return getTarget().useObjCFP2RetForComplexLongDouble(); 1508 } 1509 } 1510 1511 return false; 1512 } 1513 1514 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1515 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1516 return GetFunctionType(FI); 1517 } 1518 1519 llvm::FunctionType * 1520 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1521 1522 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1523 (void)Inserted; 1524 assert(Inserted && "Recursively being processed?"); 1525 1526 llvm::Type *resultType = nullptr; 1527 const ABIArgInfo &retAI = FI.getReturnInfo(); 1528 switch (retAI.getKind()) { 1529 case ABIArgInfo::Expand: 1530 llvm_unreachable("Invalid ABI kind for return argument"); 1531 1532 case ABIArgInfo::Extend: 1533 case ABIArgInfo::Direct: 1534 resultType = retAI.getCoerceToType(); 1535 break; 1536 1537 case ABIArgInfo::InAlloca: 1538 if (retAI.getInAllocaSRet()) { 1539 // sret things on win32 aren't void, they return the sret pointer. 1540 QualType ret = FI.getReturnType(); 1541 llvm::Type *ty = ConvertType(ret); 1542 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1543 resultType = llvm::PointerType::get(ty, addressSpace); 1544 } else { 1545 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1546 } 1547 break; 1548 1549 case ABIArgInfo::Indirect: 1550 case ABIArgInfo::Ignore: 1551 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1552 break; 1553 1554 case ABIArgInfo::CoerceAndExpand: 1555 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1556 break; 1557 } 1558 1559 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1560 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1561 1562 // Add type for sret argument. 1563 if (IRFunctionArgs.hasSRetArg()) { 1564 QualType Ret = FI.getReturnType(); 1565 llvm::Type *Ty = ConvertType(Ret); 1566 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1567 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1568 llvm::PointerType::get(Ty, AddressSpace); 1569 } 1570 1571 // Add type for inalloca argument. 1572 if (IRFunctionArgs.hasInallocaArg()) { 1573 auto ArgStruct = FI.getArgStruct(); 1574 assert(ArgStruct); 1575 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1576 } 1577 1578 // Add in all of the required arguments. 1579 unsigned ArgNo = 0; 1580 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1581 ie = it + FI.getNumRequiredArgs(); 1582 for (; it != ie; ++it, ++ArgNo) { 1583 const ABIArgInfo &ArgInfo = it->info; 1584 1585 // Insert a padding type to ensure proper alignment. 1586 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1587 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1588 ArgInfo.getPaddingType(); 1589 1590 unsigned FirstIRArg, NumIRArgs; 1591 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1592 1593 switch (ArgInfo.getKind()) { 1594 case ABIArgInfo::Ignore: 1595 case ABIArgInfo::InAlloca: 1596 assert(NumIRArgs == 0); 1597 break; 1598 1599 case ABIArgInfo::Indirect: { 1600 assert(NumIRArgs == 1); 1601 // indirect arguments are always on the stack, which is alloca addr space. 1602 llvm::Type *LTy = ConvertTypeForMem(it->type); 1603 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1604 CGM.getDataLayout().getAllocaAddrSpace()); 1605 break; 1606 } 1607 1608 case ABIArgInfo::Extend: 1609 case ABIArgInfo::Direct: { 1610 // Fast-isel and the optimizer generally like scalar values better than 1611 // FCAs, so we flatten them if this is safe to do for this argument. 1612 llvm::Type *argType = ArgInfo.getCoerceToType(); 1613 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1614 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1615 assert(NumIRArgs == st->getNumElements()); 1616 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1617 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1618 } else { 1619 assert(NumIRArgs == 1); 1620 ArgTypes[FirstIRArg] = argType; 1621 } 1622 break; 1623 } 1624 1625 case ABIArgInfo::CoerceAndExpand: { 1626 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1627 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1628 *ArgTypesIter++ = EltTy; 1629 } 1630 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1631 break; 1632 } 1633 1634 case ABIArgInfo::Expand: 1635 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1636 getExpandedTypes(it->type, ArgTypesIter); 1637 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1638 break; 1639 } 1640 } 1641 1642 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1643 assert(Erased && "Not in set?"); 1644 1645 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1646 } 1647 1648 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1649 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1650 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1651 1652 if (!isFuncTypeConvertible(FPT)) 1653 return llvm::StructType::get(getLLVMContext()); 1654 1655 const CGFunctionInfo *Info; 1656 if (isa<CXXDestructorDecl>(MD)) 1657 Info = 1658 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1659 else 1660 Info = &arrangeCXXMethodDeclaration(MD); 1661 return GetFunctionType(*Info); 1662 } 1663 1664 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1665 llvm::AttrBuilder &FuncAttrs, 1666 const FunctionProtoType *FPT) { 1667 if (!FPT) 1668 return; 1669 1670 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1671 FPT->isNothrow(Ctx)) 1672 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1673 } 1674 1675 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1676 bool AttrOnCallSite, 1677 llvm::AttrBuilder &FuncAttrs) { 1678 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1679 if (!HasOptnone) { 1680 if (CodeGenOpts.OptimizeSize) 1681 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1682 if (CodeGenOpts.OptimizeSize == 2) 1683 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1684 } 1685 1686 if (CodeGenOpts.DisableRedZone) 1687 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1688 if (CodeGenOpts.NoImplicitFloat) 1689 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1690 1691 if (AttrOnCallSite) { 1692 // Attributes that should go on the call site only. 1693 if (!CodeGenOpts.SimplifyLibCalls || 1694 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1695 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1696 if (!CodeGenOpts.TrapFuncName.empty()) 1697 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1698 } else { 1699 // Attributes that should go on the function, but not the call site. 1700 if (!CodeGenOpts.DisableFPElim) { 1701 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1702 } else if (CodeGenOpts.OmitLeafFramePointer) { 1703 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1704 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1705 } else { 1706 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1707 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1708 } 1709 1710 FuncAttrs.addAttribute("less-precise-fpmad", 1711 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1712 1713 if (!CodeGenOpts.FPDenormalMode.empty()) 1714 FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); 1715 1716 FuncAttrs.addAttribute("no-trapping-math", 1717 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1718 1719 // TODO: Are these all needed? 1720 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1721 FuncAttrs.addAttribute("no-infs-fp-math", 1722 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1723 FuncAttrs.addAttribute("no-nans-fp-math", 1724 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1725 FuncAttrs.addAttribute("unsafe-fp-math", 1726 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1727 FuncAttrs.addAttribute("use-soft-float", 1728 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1729 FuncAttrs.addAttribute("stack-protector-buffer-size", 1730 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1731 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1732 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1733 FuncAttrs.addAttribute( 1734 "correctly-rounded-divide-sqrt-fp-math", 1735 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1736 1737 // TODO: Reciprocal estimate codegen options should apply to instructions? 1738 std::vector<std::string> &Recips = getTarget().getTargetOpts().Reciprocals; 1739 if (!Recips.empty()) 1740 FuncAttrs.addAttribute("reciprocal-estimates", 1741 llvm::join(Recips.begin(), Recips.end(), ",")); 1742 1743 if (CodeGenOpts.StackRealignment) 1744 FuncAttrs.addAttribute("stackrealign"); 1745 if (CodeGenOpts.Backchain) 1746 FuncAttrs.addAttribute("backchain"); 1747 } 1748 1749 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1750 // Conservatively, mark all functions and calls in CUDA as convergent 1751 // (meaning, they may call an intrinsically convergent op, such as 1752 // __syncthreads(), and so can't have certain optimizations applied around 1753 // them). LLVM will remove this attribute where it safely can. 1754 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1755 1756 // Exceptions aren't supported in CUDA device code. 1757 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1758 1759 // Respect -fcuda-flush-denormals-to-zero. 1760 if (getLangOpts().CUDADeviceFlushDenormalsToZero) 1761 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1762 } 1763 } 1764 1765 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1766 llvm::AttrBuilder FuncAttrs; 1767 ConstructDefaultFnAttrList(F.getName(), 1768 F.hasFnAttribute(llvm::Attribute::OptimizeNone), 1769 /* AttrOnCallsite = */ false, FuncAttrs); 1770 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1771 } 1772 1773 void CodeGenModule::ConstructAttributeList( 1774 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1775 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1776 llvm::AttrBuilder FuncAttrs; 1777 llvm::AttrBuilder RetAttrs; 1778 1779 CallingConv = FI.getEffectiveCallingConvention(); 1780 if (FI.isNoReturn()) 1781 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1782 1783 // If we have information about the function prototype, we can learn 1784 // attributes form there. 1785 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1786 CalleeInfo.getCalleeFunctionProtoType()); 1787 1788 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 1789 1790 bool HasOptnone = false; 1791 // FIXME: handle sseregparm someday... 1792 if (TargetDecl) { 1793 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1794 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1795 if (TargetDecl->hasAttr<NoThrowAttr>()) 1796 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1797 if (TargetDecl->hasAttr<NoReturnAttr>()) 1798 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1799 if (TargetDecl->hasAttr<ColdAttr>()) 1800 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1801 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1802 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1803 if (TargetDecl->hasAttr<ConvergentAttr>()) 1804 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1805 1806 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1807 AddAttributesFromFunctionProtoType( 1808 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1809 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1810 // These attributes are not inherited by overloads. 1811 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1812 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1813 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1814 } 1815 1816 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1817 if (TargetDecl->hasAttr<ConstAttr>()) { 1818 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1819 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1820 } else if (TargetDecl->hasAttr<PureAttr>()) { 1821 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1822 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1823 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1824 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1825 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1826 } 1827 if (TargetDecl->hasAttr<RestrictAttr>()) 1828 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1829 if (TargetDecl->hasAttr<ReturnsNonNullAttr>()) 1830 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1831 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1832 FuncAttrs.addAttribute("no_caller_saved_registers"); 1833 1834 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1835 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1836 Optional<unsigned> NumElemsParam; 1837 // alloc_size args are base-1, 0 means not present. 1838 if (unsigned N = AllocSize->getNumElemsParam()) 1839 NumElemsParam = N - 1; 1840 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam() - 1, 1841 NumElemsParam); 1842 } 1843 } 1844 1845 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1846 1847 if (CodeGenOpts.EnableSegmentedStacks && 1848 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1849 FuncAttrs.addAttribute("split-stack"); 1850 1851 if (!AttrOnCallSite) { 1852 bool DisableTailCalls = 1853 CodeGenOpts.DisableTailCalls || 1854 (TargetDecl && (TargetDecl->hasAttr<DisableTailCallsAttr>() || 1855 TargetDecl->hasAttr<AnyX86InterruptAttr>())); 1856 FuncAttrs.addAttribute("disable-tail-calls", 1857 llvm::toStringRef(DisableTailCalls)); 1858 1859 // Add target-cpu and target-features attributes to functions. If 1860 // we have a decl for the function and it has a target attribute then 1861 // parse that and add it to the feature set. 1862 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1863 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl); 1864 if (FD && FD->hasAttr<TargetAttr>()) { 1865 llvm::StringMap<bool> FeatureMap; 1866 getFunctionFeatureMap(FeatureMap, FD); 1867 1868 // Produce the canonical string for this set of features. 1869 std::vector<std::string> Features; 1870 for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(), 1871 ie = FeatureMap.end(); 1872 it != ie; ++it) 1873 Features.push_back((it->second ? "+" : "-") + it->first().str()); 1874 1875 // Now add the target-cpu and target-features to the function. 1876 // While we populated the feature map above, we still need to 1877 // get and parse the target attribute so we can get the cpu for 1878 // the function. 1879 const auto *TD = FD->getAttr<TargetAttr>(); 1880 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1881 if (ParsedAttr.Architecture != "") 1882 TargetCPU = ParsedAttr.Architecture; 1883 if (TargetCPU != "") 1884 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1885 if (!Features.empty()) { 1886 std::sort(Features.begin(), Features.end()); 1887 FuncAttrs.addAttribute( 1888 "target-features", 1889 llvm::join(Features.begin(), Features.end(), ",")); 1890 } 1891 } else { 1892 // Otherwise just add the existing target cpu and target features to the 1893 // function. 1894 std::vector<std::string> &Features = getTarget().getTargetOpts().Features; 1895 if (TargetCPU != "") 1896 FuncAttrs.addAttribute("target-cpu", TargetCPU); 1897 if (!Features.empty()) { 1898 std::sort(Features.begin(), Features.end()); 1899 FuncAttrs.addAttribute( 1900 "target-features", 1901 llvm::join(Features.begin(), Features.end(), ",")); 1902 } 1903 } 1904 } 1905 1906 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1907 1908 QualType RetTy = FI.getReturnType(); 1909 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1910 switch (RetAI.getKind()) { 1911 case ABIArgInfo::Extend: 1912 if (RetTy->hasSignedIntegerRepresentation()) 1913 RetAttrs.addAttribute(llvm::Attribute::SExt); 1914 else if (RetTy->hasUnsignedIntegerRepresentation()) 1915 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1916 // FALL THROUGH 1917 case ABIArgInfo::Direct: 1918 if (RetAI.getInReg()) 1919 RetAttrs.addAttribute(llvm::Attribute::InReg); 1920 break; 1921 case ABIArgInfo::Ignore: 1922 break; 1923 1924 case ABIArgInfo::InAlloca: 1925 case ABIArgInfo::Indirect: { 1926 // inalloca and sret disable readnone and readonly 1927 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1928 .removeAttribute(llvm::Attribute::ReadNone); 1929 break; 1930 } 1931 1932 case ABIArgInfo::CoerceAndExpand: 1933 break; 1934 1935 case ABIArgInfo::Expand: 1936 llvm_unreachable("Invalid ABI kind for return argument"); 1937 } 1938 1939 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1940 QualType PTy = RefTy->getPointeeType(); 1941 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1942 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1943 .getQuantity()); 1944 else if (getContext().getTargetAddressSpace(PTy) == 0) 1945 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1946 } 1947 1948 bool hasUsedSRet = false; 1949 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 1950 1951 // Attach attributes to sret. 1952 if (IRFunctionArgs.hasSRetArg()) { 1953 llvm::AttrBuilder SRETAttrs; 1954 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1955 hasUsedSRet = true; 1956 if (RetAI.getInReg()) 1957 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1958 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 1959 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 1960 } 1961 1962 // Attach attributes to inalloca argument. 1963 if (IRFunctionArgs.hasInallocaArg()) { 1964 llvm::AttrBuilder Attrs; 1965 Attrs.addAttribute(llvm::Attribute::InAlloca); 1966 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 1967 llvm::AttributeSet::get(getLLVMContext(), Attrs); 1968 } 1969 1970 unsigned ArgNo = 0; 1971 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 1972 E = FI.arg_end(); 1973 I != E; ++I, ++ArgNo) { 1974 QualType ParamType = I->type; 1975 const ABIArgInfo &AI = I->info; 1976 llvm::AttrBuilder Attrs; 1977 1978 // Add attribute for padding argument, if necessary. 1979 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 1980 if (AI.getPaddingInReg()) { 1981 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1982 llvm::AttributeSet::get( 1983 getLLVMContext(), 1984 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 1985 } 1986 } 1987 1988 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 1989 // have the corresponding parameter variable. It doesn't make 1990 // sense to do it here because parameters are so messed up. 1991 switch (AI.getKind()) { 1992 case ABIArgInfo::Extend: 1993 if (ParamType->isSignedIntegerOrEnumerationType()) 1994 Attrs.addAttribute(llvm::Attribute::SExt); 1995 else if (ParamType->isUnsignedIntegerOrEnumerationType()) { 1996 if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType)) 1997 Attrs.addAttribute(llvm::Attribute::SExt); 1998 else 1999 Attrs.addAttribute(llvm::Attribute::ZExt); 2000 } 2001 // FALL THROUGH 2002 case ABIArgInfo::Direct: 2003 if (ArgNo == 0 && FI.isChainCall()) 2004 Attrs.addAttribute(llvm::Attribute::Nest); 2005 else if (AI.getInReg()) 2006 Attrs.addAttribute(llvm::Attribute::InReg); 2007 break; 2008 2009 case ABIArgInfo::Indirect: { 2010 if (AI.getInReg()) 2011 Attrs.addAttribute(llvm::Attribute::InReg); 2012 2013 if (AI.getIndirectByVal()) 2014 Attrs.addAttribute(llvm::Attribute::ByVal); 2015 2016 CharUnits Align = AI.getIndirectAlign(); 2017 2018 // In a byval argument, it is important that the required 2019 // alignment of the type is honored, as LLVM might be creating a 2020 // *new* stack object, and needs to know what alignment to give 2021 // it. (Sometimes it can deduce a sensible alignment on its own, 2022 // but not if clang decides it must emit a packed struct, or the 2023 // user specifies increased alignment requirements.) 2024 // 2025 // This is different from indirect *not* byval, where the object 2026 // exists already, and the align attribute is purely 2027 // informative. 2028 assert(!Align.isZero()); 2029 2030 // For now, only add this when we have a byval argument. 2031 // TODO: be less lazy about updating test cases. 2032 if (AI.getIndirectByVal()) 2033 Attrs.addAlignmentAttr(Align.getQuantity()); 2034 2035 // byval disables readnone and readonly. 2036 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2037 .removeAttribute(llvm::Attribute::ReadNone); 2038 break; 2039 } 2040 case ABIArgInfo::Ignore: 2041 case ABIArgInfo::Expand: 2042 case ABIArgInfo::CoerceAndExpand: 2043 break; 2044 2045 case ABIArgInfo::InAlloca: 2046 // inalloca disables readnone and readonly. 2047 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2048 .removeAttribute(llvm::Attribute::ReadNone); 2049 continue; 2050 } 2051 2052 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2053 QualType PTy = RefTy->getPointeeType(); 2054 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2055 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2056 .getQuantity()); 2057 else if (getContext().getTargetAddressSpace(PTy) == 0) 2058 Attrs.addAttribute(llvm::Attribute::NonNull); 2059 } 2060 2061 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2062 case ParameterABI::Ordinary: 2063 break; 2064 2065 case ParameterABI::SwiftIndirectResult: { 2066 // Add 'sret' if we haven't already used it for something, but 2067 // only if the result is void. 2068 if (!hasUsedSRet && RetTy->isVoidType()) { 2069 Attrs.addAttribute(llvm::Attribute::StructRet); 2070 hasUsedSRet = true; 2071 } 2072 2073 // Add 'noalias' in either case. 2074 Attrs.addAttribute(llvm::Attribute::NoAlias); 2075 2076 // Add 'dereferenceable' and 'alignment'. 2077 auto PTy = ParamType->getPointeeType(); 2078 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2079 auto info = getContext().getTypeInfoInChars(PTy); 2080 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2081 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 2082 info.second.getQuantity())); 2083 } 2084 break; 2085 } 2086 2087 case ParameterABI::SwiftErrorResult: 2088 Attrs.addAttribute(llvm::Attribute::SwiftError); 2089 break; 2090 2091 case ParameterABI::SwiftContext: 2092 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2093 break; 2094 } 2095 2096 if (Attrs.hasAttributes()) { 2097 unsigned FirstIRArg, NumIRArgs; 2098 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2099 for (unsigned i = 0; i < NumIRArgs; i++) 2100 ArgAttrs[FirstIRArg + i] = 2101 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2102 } 2103 } 2104 assert(ArgNo == FI.arg_size()); 2105 2106 AttrList = llvm::AttributeList::get( 2107 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2108 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2109 } 2110 2111 /// An argument came in as a promoted argument; demote it back to its 2112 /// declared type. 2113 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2114 const VarDecl *var, 2115 llvm::Value *value) { 2116 llvm::Type *varType = CGF.ConvertType(var->getType()); 2117 2118 // This can happen with promotions that actually don't change the 2119 // underlying type, like the enum promotions. 2120 if (value->getType() == varType) return value; 2121 2122 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2123 && "unexpected promotion type"); 2124 2125 if (isa<llvm::IntegerType>(varType)) 2126 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2127 2128 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2129 } 2130 2131 /// Returns the attribute (either parameter attribute, or function 2132 /// attribute), which declares argument ArgNo to be non-null. 2133 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2134 QualType ArgType, unsigned ArgNo) { 2135 // FIXME: __attribute__((nonnull)) can also be applied to: 2136 // - references to pointers, where the pointee is known to be 2137 // nonnull (apparently a Clang extension) 2138 // - transparent unions containing pointers 2139 // In the former case, LLVM IR cannot represent the constraint. In 2140 // the latter case, we have no guarantee that the transparent union 2141 // is in fact passed as a pointer. 2142 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2143 return nullptr; 2144 // First, check attribute on parameter itself. 2145 if (PVD) { 2146 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2147 return ParmNNAttr; 2148 } 2149 // Check function attributes. 2150 if (!FD) 2151 return nullptr; 2152 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2153 if (NNAttr->isNonNull(ArgNo)) 2154 return NNAttr; 2155 } 2156 return nullptr; 2157 } 2158 2159 namespace { 2160 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2161 Address Temp; 2162 Address Arg; 2163 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2164 void Emit(CodeGenFunction &CGF, Flags flags) override { 2165 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2166 CGF.Builder.CreateStore(errorValue, Arg); 2167 } 2168 }; 2169 } 2170 2171 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2172 llvm::Function *Fn, 2173 const FunctionArgList &Args) { 2174 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2175 // Naked functions don't have prologues. 2176 return; 2177 2178 // If this is an implicit-return-zero function, go ahead and 2179 // initialize the return value. TODO: it might be nice to have 2180 // a more general mechanism for this that didn't require synthesized 2181 // return statements. 2182 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2183 if (FD->hasImplicitReturnZero()) { 2184 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2185 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2186 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2187 Builder.CreateStore(Zero, ReturnValue); 2188 } 2189 } 2190 2191 // FIXME: We no longer need the types from FunctionArgList; lift up and 2192 // simplify. 2193 2194 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2195 // Flattened function arguments. 2196 SmallVector<llvm::Value *, 16> FnArgs; 2197 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2198 for (auto &Arg : Fn->args()) { 2199 FnArgs.push_back(&Arg); 2200 } 2201 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2202 2203 // If we're using inalloca, all the memory arguments are GEPs off of the last 2204 // parameter, which is a pointer to the complete memory area. 2205 Address ArgStruct = Address::invalid(); 2206 const llvm::StructLayout *ArgStructLayout = nullptr; 2207 if (IRFunctionArgs.hasInallocaArg()) { 2208 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 2209 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2210 FI.getArgStructAlignment()); 2211 2212 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2213 } 2214 2215 // Name the struct return parameter. 2216 if (IRFunctionArgs.hasSRetArg()) { 2217 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2218 AI->setName("agg.result"); 2219 AI->addAttr(llvm::Attribute::NoAlias); 2220 } 2221 2222 // Track if we received the parameter as a pointer (indirect, byval, or 2223 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2224 // into a local alloca for us. 2225 SmallVector<ParamValue, 16> ArgVals; 2226 ArgVals.reserve(Args.size()); 2227 2228 // Create a pointer value for every parameter declaration. This usually 2229 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2230 // any cleanups or do anything that might unwind. We do that separately, so 2231 // we can push the cleanups in the correct order for the ABI. 2232 assert(FI.arg_size() == Args.size() && 2233 "Mismatch between function signature & arguments."); 2234 unsigned ArgNo = 0; 2235 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2236 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2237 i != e; ++i, ++info_it, ++ArgNo) { 2238 const VarDecl *Arg = *i; 2239 QualType Ty = info_it->type; 2240 const ABIArgInfo &ArgI = info_it->info; 2241 2242 bool isPromoted = 2243 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2244 2245 unsigned FirstIRArg, NumIRArgs; 2246 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2247 2248 switch (ArgI.getKind()) { 2249 case ABIArgInfo::InAlloca: { 2250 assert(NumIRArgs == 0); 2251 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2252 CharUnits FieldOffset = 2253 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 2254 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 2255 Arg->getName()); 2256 ArgVals.push_back(ParamValue::forIndirect(V)); 2257 break; 2258 } 2259 2260 case ABIArgInfo::Indirect: { 2261 assert(NumIRArgs == 1); 2262 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2263 2264 if (!hasScalarEvaluationKind(Ty)) { 2265 // Aggregates and complex variables are accessed by reference. All we 2266 // need to do is realign the value, if requested. 2267 Address V = ParamAddr; 2268 if (ArgI.getIndirectRealign()) { 2269 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2270 2271 // Copy from the incoming argument pointer to the temporary with the 2272 // appropriate alignment. 2273 // 2274 // FIXME: We should have a common utility for generating an aggregate 2275 // copy. 2276 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2277 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2278 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2279 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2280 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2281 V = AlignedTemp; 2282 } 2283 ArgVals.push_back(ParamValue::forIndirect(V)); 2284 } else { 2285 // Load scalar value from indirect argument. 2286 llvm::Value *V = 2287 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart()); 2288 2289 if (isPromoted) 2290 V = emitArgumentDemotion(*this, Arg, V); 2291 ArgVals.push_back(ParamValue::forDirect(V)); 2292 } 2293 break; 2294 } 2295 2296 case ABIArgInfo::Extend: 2297 case ABIArgInfo::Direct: { 2298 2299 // If we have the trivial case, handle it with no muss and fuss. 2300 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2301 ArgI.getCoerceToType() == ConvertType(Ty) && 2302 ArgI.getDirectOffset() == 0) { 2303 assert(NumIRArgs == 1); 2304 llvm::Value *V = FnArgs[FirstIRArg]; 2305 auto AI = cast<llvm::Argument>(V); 2306 2307 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2308 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2309 PVD->getFunctionScopeIndex())) 2310 AI->addAttr(llvm::Attribute::NonNull); 2311 2312 QualType OTy = PVD->getOriginalType(); 2313 if (const auto *ArrTy = 2314 getContext().getAsConstantArrayType(OTy)) { 2315 // A C99 array parameter declaration with the static keyword also 2316 // indicates dereferenceability, and if the size is constant we can 2317 // use the dereferenceable attribute (which requires the size in 2318 // bytes). 2319 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2320 QualType ETy = ArrTy->getElementType(); 2321 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2322 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2323 ArrSize) { 2324 llvm::AttrBuilder Attrs; 2325 Attrs.addDereferenceableAttr( 2326 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2327 AI->addAttrs(Attrs); 2328 } else if (getContext().getTargetAddressSpace(ETy) == 0) { 2329 AI->addAttr(llvm::Attribute::NonNull); 2330 } 2331 } 2332 } else if (const auto *ArrTy = 2333 getContext().getAsVariableArrayType(OTy)) { 2334 // For C99 VLAs with the static keyword, we don't know the size so 2335 // we can't use the dereferenceable attribute, but in addrspace(0) 2336 // we know that it must be nonnull. 2337 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2338 !getContext().getTargetAddressSpace(ArrTy->getElementType())) 2339 AI->addAttr(llvm::Attribute::NonNull); 2340 } 2341 2342 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2343 if (!AVAttr) 2344 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2345 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2346 if (AVAttr) { 2347 llvm::Value *AlignmentValue = 2348 EmitScalarExpr(AVAttr->getAlignment()); 2349 llvm::ConstantInt *AlignmentCI = 2350 cast<llvm::ConstantInt>(AlignmentValue); 2351 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), 2352 +llvm::Value::MaximumAlignment); 2353 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2354 } 2355 } 2356 2357 if (Arg->getType().isRestrictQualified()) 2358 AI->addAttr(llvm::Attribute::NoAlias); 2359 2360 // LLVM expects swifterror parameters to be used in very restricted 2361 // ways. Copy the value into a less-restricted temporary. 2362 if (FI.getExtParameterInfo(ArgNo).getABI() 2363 == ParameterABI::SwiftErrorResult) { 2364 QualType pointeeTy = Ty->getPointeeType(); 2365 assert(pointeeTy->isPointerType()); 2366 Address temp = 2367 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2368 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2369 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2370 Builder.CreateStore(incomingErrorValue, temp); 2371 V = temp.getPointer(); 2372 2373 // Push a cleanup to copy the value back at the end of the function. 2374 // The convention does not guarantee that the value will be written 2375 // back if the function exits with an unwind exception. 2376 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2377 } 2378 2379 // Ensure the argument is the correct type. 2380 if (V->getType() != ArgI.getCoerceToType()) 2381 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2382 2383 if (isPromoted) 2384 V = emitArgumentDemotion(*this, Arg, V); 2385 2386 // Because of merging of function types from multiple decls it is 2387 // possible for the type of an argument to not match the corresponding 2388 // type in the function type. Since we are codegening the callee 2389 // in here, add a cast to the argument type. 2390 llvm::Type *LTy = ConvertType(Arg->getType()); 2391 if (V->getType() != LTy) 2392 V = Builder.CreateBitCast(V, LTy); 2393 2394 ArgVals.push_back(ParamValue::forDirect(V)); 2395 break; 2396 } 2397 2398 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2399 Arg->getName()); 2400 2401 // Pointer to store into. 2402 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2403 2404 // Fast-isel and the optimizer generally like scalar values better than 2405 // FCAs, so we flatten them if this is safe to do for this argument. 2406 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2407 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2408 STy->getNumElements() > 1) { 2409 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2410 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2411 llvm::Type *DstTy = Ptr.getElementType(); 2412 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2413 2414 Address AddrToStoreInto = Address::invalid(); 2415 if (SrcSize <= DstSize) { 2416 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2417 } else { 2418 AddrToStoreInto = 2419 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2420 } 2421 2422 assert(STy->getNumElements() == NumIRArgs); 2423 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2424 auto AI = FnArgs[FirstIRArg + i]; 2425 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2426 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2427 Address EltPtr = 2428 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2429 Builder.CreateStore(AI, EltPtr); 2430 } 2431 2432 if (SrcSize > DstSize) { 2433 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2434 } 2435 2436 } else { 2437 // Simple case, just do a coerced store of the argument into the alloca. 2438 assert(NumIRArgs == 1); 2439 auto AI = FnArgs[FirstIRArg]; 2440 AI->setName(Arg->getName() + ".coerce"); 2441 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2442 } 2443 2444 // Match to what EmitParmDecl is expecting for this type. 2445 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2446 llvm::Value *V = 2447 EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart()); 2448 if (isPromoted) 2449 V = emitArgumentDemotion(*this, Arg, V); 2450 ArgVals.push_back(ParamValue::forDirect(V)); 2451 } else { 2452 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2453 } 2454 break; 2455 } 2456 2457 case ABIArgInfo::CoerceAndExpand: { 2458 // Reconstruct into a temporary. 2459 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2460 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2461 2462 auto coercionType = ArgI.getCoerceAndExpandType(); 2463 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2464 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2465 2466 unsigned argIndex = FirstIRArg; 2467 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2468 llvm::Type *eltType = coercionType->getElementType(i); 2469 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2470 continue; 2471 2472 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); 2473 auto elt = FnArgs[argIndex++]; 2474 Builder.CreateStore(elt, eltAddr); 2475 } 2476 assert(argIndex == FirstIRArg + NumIRArgs); 2477 break; 2478 } 2479 2480 case ABIArgInfo::Expand: { 2481 // If this structure was expanded into multiple arguments then 2482 // we need to create a temporary and reconstruct it from the 2483 // arguments. 2484 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2485 LValue LV = MakeAddrLValue(Alloca, Ty); 2486 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2487 2488 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2489 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2490 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2491 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2492 auto AI = FnArgs[FirstIRArg + i]; 2493 AI->setName(Arg->getName() + "." + Twine(i)); 2494 } 2495 break; 2496 } 2497 2498 case ABIArgInfo::Ignore: 2499 assert(NumIRArgs == 0); 2500 // Initialize the local variable appropriately. 2501 if (!hasScalarEvaluationKind(Ty)) { 2502 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2503 } else { 2504 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2505 ArgVals.push_back(ParamValue::forDirect(U)); 2506 } 2507 break; 2508 } 2509 } 2510 2511 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2512 for (int I = Args.size() - 1; I >= 0; --I) 2513 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2514 } else { 2515 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2516 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2517 } 2518 } 2519 2520 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2521 while (insn->use_empty()) { 2522 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2523 if (!bitcast) return; 2524 2525 // This is "safe" because we would have used a ConstantExpr otherwise. 2526 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2527 bitcast->eraseFromParent(); 2528 } 2529 } 2530 2531 /// Try to emit a fused autorelease of a return result. 2532 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2533 llvm::Value *result) { 2534 // We must be immediately followed the cast. 2535 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2536 if (BB->empty()) return nullptr; 2537 if (&BB->back() != result) return nullptr; 2538 2539 llvm::Type *resultType = result->getType(); 2540 2541 // result is in a BasicBlock and is therefore an Instruction. 2542 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2543 2544 SmallVector<llvm::Instruction *, 4> InstsToKill; 2545 2546 // Look for: 2547 // %generator = bitcast %type1* %generator2 to %type2* 2548 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2549 // We would have emitted this as a constant if the operand weren't 2550 // an Instruction. 2551 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2552 2553 // Require the generator to be immediately followed by the cast. 2554 if (generator->getNextNode() != bitcast) 2555 return nullptr; 2556 2557 InstsToKill.push_back(bitcast); 2558 } 2559 2560 // Look for: 2561 // %generator = call i8* @objc_retain(i8* %originalResult) 2562 // or 2563 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2564 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2565 if (!call) return nullptr; 2566 2567 bool doRetainAutorelease; 2568 2569 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2570 doRetainAutorelease = true; 2571 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2572 .objc_retainAutoreleasedReturnValue) { 2573 doRetainAutorelease = false; 2574 2575 // If we emitted an assembly marker for this call (and the 2576 // ARCEntrypoints field should have been set if so), go looking 2577 // for that call. If we can't find it, we can't do this 2578 // optimization. But it should always be the immediately previous 2579 // instruction, unless we needed bitcasts around the call. 2580 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2581 llvm::Instruction *prev = call->getPrevNode(); 2582 assert(prev); 2583 if (isa<llvm::BitCastInst>(prev)) { 2584 prev = prev->getPrevNode(); 2585 assert(prev); 2586 } 2587 assert(isa<llvm::CallInst>(prev)); 2588 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2589 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2590 InstsToKill.push_back(prev); 2591 } 2592 } else { 2593 return nullptr; 2594 } 2595 2596 result = call->getArgOperand(0); 2597 InstsToKill.push_back(call); 2598 2599 // Keep killing bitcasts, for sanity. Note that we no longer care 2600 // about precise ordering as long as there's exactly one use. 2601 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2602 if (!bitcast->hasOneUse()) break; 2603 InstsToKill.push_back(bitcast); 2604 result = bitcast->getOperand(0); 2605 } 2606 2607 // Delete all the unnecessary instructions, from latest to earliest. 2608 for (auto *I : InstsToKill) 2609 I->eraseFromParent(); 2610 2611 // Do the fused retain/autorelease if we were asked to. 2612 if (doRetainAutorelease) 2613 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2614 2615 // Cast back to the result type. 2616 return CGF.Builder.CreateBitCast(result, resultType); 2617 } 2618 2619 /// If this is a +1 of the value of an immutable 'self', remove it. 2620 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2621 llvm::Value *result) { 2622 // This is only applicable to a method with an immutable 'self'. 2623 const ObjCMethodDecl *method = 2624 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2625 if (!method) return nullptr; 2626 const VarDecl *self = method->getSelfDecl(); 2627 if (!self->getType().isConstQualified()) return nullptr; 2628 2629 // Look for a retain call. 2630 llvm::CallInst *retainCall = 2631 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2632 if (!retainCall || 2633 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2634 return nullptr; 2635 2636 // Look for an ordinary load of 'self'. 2637 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2638 llvm::LoadInst *load = 2639 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2640 if (!load || load->isAtomic() || load->isVolatile() || 2641 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2642 return nullptr; 2643 2644 // Okay! Burn it all down. This relies for correctness on the 2645 // assumption that the retain is emitted as part of the return and 2646 // that thereafter everything is used "linearly". 2647 llvm::Type *resultType = result->getType(); 2648 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2649 assert(retainCall->use_empty()); 2650 retainCall->eraseFromParent(); 2651 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2652 2653 return CGF.Builder.CreateBitCast(load, resultType); 2654 } 2655 2656 /// Emit an ARC autorelease of the result of a function. 2657 /// 2658 /// \return the value to actually return from the function 2659 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2660 llvm::Value *result) { 2661 // If we're returning 'self', kill the initial retain. This is a 2662 // heuristic attempt to "encourage correctness" in the really unfortunate 2663 // case where we have a return of self during a dealloc and we desperately 2664 // need to avoid the possible autorelease. 2665 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2666 return self; 2667 2668 // At -O0, try to emit a fused retain/autorelease. 2669 if (CGF.shouldUseFusedARCCalls()) 2670 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2671 return fused; 2672 2673 return CGF.EmitARCAutoreleaseReturnValue(result); 2674 } 2675 2676 /// Heuristically search for a dominating store to the return-value slot. 2677 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2678 // Check if a User is a store which pointerOperand is the ReturnValue. 2679 // We are looking for stores to the ReturnValue, not for stores of the 2680 // ReturnValue to some other location. 2681 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2682 auto *SI = dyn_cast<llvm::StoreInst>(U); 2683 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2684 return nullptr; 2685 // These aren't actually possible for non-coerced returns, and we 2686 // only care about non-coerced returns on this code path. 2687 assert(!SI->isAtomic() && !SI->isVolatile()); 2688 return SI; 2689 }; 2690 // If there are multiple uses of the return-value slot, just check 2691 // for something immediately preceding the IP. Sometimes this can 2692 // happen with how we generate implicit-returns; it can also happen 2693 // with noreturn cleanups. 2694 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2695 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2696 if (IP->empty()) return nullptr; 2697 llvm::Instruction *I = &IP->back(); 2698 2699 // Skip lifetime markers 2700 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2701 IE = IP->rend(); 2702 II != IE; ++II) { 2703 if (llvm::IntrinsicInst *Intrinsic = 2704 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2705 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2706 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2707 ++II; 2708 if (II == IE) 2709 break; 2710 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2711 continue; 2712 } 2713 } 2714 I = &*II; 2715 break; 2716 } 2717 2718 return GetStoreIfValid(I); 2719 } 2720 2721 llvm::StoreInst *store = 2722 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2723 if (!store) return nullptr; 2724 2725 // Now do a first-and-dirty dominance check: just walk up the 2726 // single-predecessors chain from the current insertion point. 2727 llvm::BasicBlock *StoreBB = store->getParent(); 2728 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2729 while (IP != StoreBB) { 2730 if (!(IP = IP->getSinglePredecessor())) 2731 return nullptr; 2732 } 2733 2734 // Okay, the store's basic block dominates the insertion point; we 2735 // can do our thing. 2736 return store; 2737 } 2738 2739 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2740 bool EmitRetDbgLoc, 2741 SourceLocation EndLoc) { 2742 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2743 // Naked functions don't have epilogues. 2744 Builder.CreateUnreachable(); 2745 return; 2746 } 2747 2748 // Functions with no result always return void. 2749 if (!ReturnValue.isValid()) { 2750 Builder.CreateRetVoid(); 2751 return; 2752 } 2753 2754 llvm::DebugLoc RetDbgLoc; 2755 llvm::Value *RV = nullptr; 2756 QualType RetTy = FI.getReturnType(); 2757 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2758 2759 switch (RetAI.getKind()) { 2760 case ABIArgInfo::InAlloca: 2761 // Aggregrates get evaluated directly into the destination. Sometimes we 2762 // need to return the sret value in a register, though. 2763 assert(hasAggregateEvaluationKind(RetTy)); 2764 if (RetAI.getInAllocaSRet()) { 2765 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2766 --EI; 2767 llvm::Value *ArgStruct = &*EI; 2768 llvm::Value *SRet = Builder.CreateStructGEP( 2769 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2770 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2771 } 2772 break; 2773 2774 case ABIArgInfo::Indirect: { 2775 auto AI = CurFn->arg_begin(); 2776 if (RetAI.isSRetAfterThis()) 2777 ++AI; 2778 switch (getEvaluationKind(RetTy)) { 2779 case TEK_Complex: { 2780 ComplexPairTy RT = 2781 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2782 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2783 /*isInit*/ true); 2784 break; 2785 } 2786 case TEK_Aggregate: 2787 // Do nothing; aggregrates get evaluated directly into the destination. 2788 break; 2789 case TEK_Scalar: 2790 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2791 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2792 /*isInit*/ true); 2793 break; 2794 } 2795 break; 2796 } 2797 2798 case ABIArgInfo::Extend: 2799 case ABIArgInfo::Direct: 2800 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2801 RetAI.getDirectOffset() == 0) { 2802 // The internal return value temp always will have pointer-to-return-type 2803 // type, just do a load. 2804 2805 // If there is a dominating store to ReturnValue, we can elide 2806 // the load, zap the store, and usually zap the alloca. 2807 if (llvm::StoreInst *SI = 2808 findDominatingStoreToReturnValue(*this)) { 2809 // Reuse the debug location from the store unless there is 2810 // cleanup code to be emitted between the store and return 2811 // instruction. 2812 if (EmitRetDbgLoc && !AutoreleaseResult) 2813 RetDbgLoc = SI->getDebugLoc(); 2814 // Get the stored value and nuke the now-dead store. 2815 RV = SI->getValueOperand(); 2816 SI->eraseFromParent(); 2817 2818 // If that was the only use of the return value, nuke it as well now. 2819 auto returnValueInst = ReturnValue.getPointer(); 2820 if (returnValueInst->use_empty()) { 2821 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2822 alloca->eraseFromParent(); 2823 ReturnValue = Address::invalid(); 2824 } 2825 } 2826 2827 // Otherwise, we have to do a simple load. 2828 } else { 2829 RV = Builder.CreateLoad(ReturnValue); 2830 } 2831 } else { 2832 // If the value is offset in memory, apply the offset now. 2833 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2834 2835 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2836 } 2837 2838 // In ARC, end functions that return a retainable type with a call 2839 // to objc_autoreleaseReturnValue. 2840 if (AutoreleaseResult) { 2841 #ifndef NDEBUG 2842 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2843 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2844 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2845 // CurCodeDecl or BlockInfo. 2846 QualType RT; 2847 2848 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2849 RT = FD->getReturnType(); 2850 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2851 RT = MD->getReturnType(); 2852 else if (isa<BlockDecl>(CurCodeDecl)) 2853 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2854 else 2855 llvm_unreachable("Unexpected function/method type"); 2856 2857 assert(getLangOpts().ObjCAutoRefCount && 2858 !FI.isReturnsRetained() && 2859 RT->isObjCRetainableType()); 2860 #endif 2861 RV = emitAutoreleaseOfResult(*this, RV); 2862 } 2863 2864 break; 2865 2866 case ABIArgInfo::Ignore: 2867 break; 2868 2869 case ABIArgInfo::CoerceAndExpand: { 2870 auto coercionType = RetAI.getCoerceAndExpandType(); 2871 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2872 2873 // Load all of the coerced elements out into results. 2874 llvm::SmallVector<llvm::Value*, 4> results; 2875 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2876 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2877 auto coercedEltType = coercionType->getElementType(i); 2878 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2879 continue; 2880 2881 auto eltAddr = Builder.CreateStructGEP(addr, i, layout); 2882 auto elt = Builder.CreateLoad(eltAddr); 2883 results.push_back(elt); 2884 } 2885 2886 // If we have one result, it's the single direct result type. 2887 if (results.size() == 1) { 2888 RV = results[0]; 2889 2890 // Otherwise, we need to make a first-class aggregate. 2891 } else { 2892 // Construct a return type that lacks padding elements. 2893 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2894 2895 RV = llvm::UndefValue::get(returnType); 2896 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2897 RV = Builder.CreateInsertValue(RV, results[i], i); 2898 } 2899 } 2900 break; 2901 } 2902 2903 case ABIArgInfo::Expand: 2904 llvm_unreachable("Invalid ABI kind for return argument"); 2905 } 2906 2907 llvm::Instruction *Ret; 2908 if (RV) { 2909 EmitReturnValueCheck(RV); 2910 Ret = Builder.CreateRet(RV); 2911 } else { 2912 Ret = Builder.CreateRetVoid(); 2913 } 2914 2915 if (RetDbgLoc) 2916 Ret->setDebugLoc(std::move(RetDbgLoc)); 2917 } 2918 2919 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 2920 // A current decl may not be available when emitting vtable thunks. 2921 if (!CurCodeDecl) 2922 return; 2923 2924 ReturnsNonNullAttr *RetNNAttr = nullptr; 2925 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 2926 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 2927 2928 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 2929 return; 2930 2931 // Prefer the returns_nonnull attribute if it's present. 2932 SourceLocation AttrLoc; 2933 SanitizerMask CheckKind; 2934 SanitizerHandler Handler; 2935 if (RetNNAttr) { 2936 assert(!requiresReturnValueNullabilityCheck() && 2937 "Cannot check nullability and the nonnull attribute"); 2938 AttrLoc = RetNNAttr->getLocation(); 2939 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 2940 Handler = SanitizerHandler::NonnullReturn; 2941 } else { 2942 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 2943 if (auto *TSI = DD->getTypeSourceInfo()) 2944 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) 2945 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 2946 CheckKind = SanitizerKind::NullabilityReturn; 2947 Handler = SanitizerHandler::NullabilityReturn; 2948 } 2949 2950 SanitizerScope SanScope(this); 2951 2952 // Make sure the "return" source location is valid. If we're checking a 2953 // nullability annotation, make sure the preconditions for the check are met. 2954 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 2955 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 2956 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 2957 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 2958 if (requiresReturnValueNullabilityCheck()) 2959 CanNullCheck = 2960 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 2961 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 2962 EmitBlock(Check); 2963 2964 // Now do the null check. 2965 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 2966 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 2967 llvm::Value *DynamicData[] = {SLocPtr}; 2968 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 2969 2970 EmitBlock(NoCheck); 2971 2972 #ifndef NDEBUG 2973 // The return location should not be used after the check has been emitted. 2974 ReturnLocation = Address::invalid(); 2975 #endif 2976 } 2977 2978 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 2979 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 2980 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 2981 } 2982 2983 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 2984 QualType Ty) { 2985 // FIXME: Generate IR in one pass, rather than going back and fixing up these 2986 // placeholders. 2987 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 2988 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 2989 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 2990 2991 // FIXME: When we generate this IR in one pass, we shouldn't need 2992 // this win32-specific alignment hack. 2993 CharUnits Align = CharUnits::fromQuantity(4); 2994 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 2995 2996 return AggValueSlot::forAddr(Address(Placeholder, Align), 2997 Ty.getQualifiers(), 2998 AggValueSlot::IsNotDestructed, 2999 AggValueSlot::DoesNotNeedGCBarriers, 3000 AggValueSlot::IsNotAliased); 3001 } 3002 3003 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3004 const VarDecl *param, 3005 SourceLocation loc) { 3006 // StartFunction converted the ABI-lowered parameter(s) into a 3007 // local alloca. We need to turn that into an r-value suitable 3008 // for EmitCall. 3009 Address local = GetAddrOfLocalVar(param); 3010 3011 QualType type = param->getType(); 3012 3013 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 3014 "cannot emit delegate call arguments for inalloca arguments!"); 3015 3016 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3017 // but the argument needs to be the original pointer. 3018 if (type->isReferenceType()) { 3019 args.add(RValue::get(Builder.CreateLoad(local)), type); 3020 3021 // In ARC, move out of consumed arguments so that the release cleanup 3022 // entered by StartFunction doesn't cause an over-release. This isn't 3023 // optimal -O0 code generation, but it should get cleaned up when 3024 // optimization is enabled. This also assumes that delegate calls are 3025 // performed exactly once for a set of arguments, but that should be safe. 3026 } else if (getLangOpts().ObjCAutoRefCount && 3027 param->hasAttr<NSConsumedAttr>() && 3028 type->isObjCRetainableType()) { 3029 llvm::Value *ptr = Builder.CreateLoad(local); 3030 auto null = 3031 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3032 Builder.CreateStore(null, local); 3033 args.add(RValue::get(ptr), type); 3034 3035 // For the most part, we just need to load the alloca, except that 3036 // aggregate r-values are actually pointers to temporaries. 3037 } else { 3038 args.add(convertTempToRValue(local, type, loc), type); 3039 } 3040 } 3041 3042 static bool isProvablyNull(llvm::Value *addr) { 3043 return isa<llvm::ConstantPointerNull>(addr); 3044 } 3045 3046 /// Emit the actual writing-back of a writeback. 3047 static void emitWriteback(CodeGenFunction &CGF, 3048 const CallArgList::Writeback &writeback) { 3049 const LValue &srcLV = writeback.Source; 3050 Address srcAddr = srcLV.getAddress(); 3051 assert(!isProvablyNull(srcAddr.getPointer()) && 3052 "shouldn't have writeback for provably null argument"); 3053 3054 llvm::BasicBlock *contBB = nullptr; 3055 3056 // If the argument wasn't provably non-null, we need to null check 3057 // before doing the store. 3058 bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer()); 3059 if (!provablyNonNull) { 3060 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3061 contBB = CGF.createBasicBlock("icr.done"); 3062 3063 llvm::Value *isNull = 3064 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3065 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3066 CGF.EmitBlock(writebackBB); 3067 } 3068 3069 // Load the value to writeback. 3070 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3071 3072 // Cast it back, in case we're writing an id to a Foo* or something. 3073 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3074 "icr.writeback-cast"); 3075 3076 // Perform the writeback. 3077 3078 // If we have a "to use" value, it's something we need to emit a use 3079 // of. This has to be carefully threaded in: if it's done after the 3080 // release it's potentially undefined behavior (and the optimizer 3081 // will ignore it), and if it happens before the retain then the 3082 // optimizer could move the release there. 3083 if (writeback.ToUse) { 3084 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3085 3086 // Retain the new value. No need to block-copy here: the block's 3087 // being passed up the stack. 3088 value = CGF.EmitARCRetainNonBlock(value); 3089 3090 // Emit the intrinsic use here. 3091 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3092 3093 // Load the old value (primitively). 3094 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3095 3096 // Put the new value in place (primitively). 3097 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3098 3099 // Release the old value. 3100 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3101 3102 // Otherwise, we can just do a normal lvalue store. 3103 } else { 3104 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3105 } 3106 3107 // Jump to the continuation block. 3108 if (!provablyNonNull) 3109 CGF.EmitBlock(contBB); 3110 } 3111 3112 static void emitWritebacks(CodeGenFunction &CGF, 3113 const CallArgList &args) { 3114 for (const auto &I : args.writebacks()) 3115 emitWriteback(CGF, I); 3116 } 3117 3118 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3119 const CallArgList &CallArgs) { 3120 assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()); 3121 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3122 CallArgs.getCleanupsToDeactivate(); 3123 // Iterate in reverse to increase the likelihood of popping the cleanup. 3124 for (const auto &I : llvm::reverse(Cleanups)) { 3125 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3126 I.IsActiveIP->eraseFromParent(); 3127 } 3128 } 3129 3130 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3131 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3132 if (uop->getOpcode() == UO_AddrOf) 3133 return uop->getSubExpr(); 3134 return nullptr; 3135 } 3136 3137 /// Emit an argument that's being passed call-by-writeback. That is, 3138 /// we are passing the address of an __autoreleased temporary; it 3139 /// might be copy-initialized with the current value of the given 3140 /// address, but it will definitely be copied out of after the call. 3141 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3142 const ObjCIndirectCopyRestoreExpr *CRE) { 3143 LValue srcLV; 3144 3145 // Make an optimistic effort to emit the address as an l-value. 3146 // This can fail if the argument expression is more complicated. 3147 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3148 srcLV = CGF.EmitLValue(lvExpr); 3149 3150 // Otherwise, just emit it as a scalar. 3151 } else { 3152 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3153 3154 QualType srcAddrType = 3155 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3156 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3157 } 3158 Address srcAddr = srcLV.getAddress(); 3159 3160 // The dest and src types don't necessarily match in LLVM terms 3161 // because of the crazy ObjC compatibility rules. 3162 3163 llvm::PointerType *destType = 3164 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3165 3166 // If the address is a constant null, just pass the appropriate null. 3167 if (isProvablyNull(srcAddr.getPointer())) { 3168 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3169 CRE->getType()); 3170 return; 3171 } 3172 3173 // Create the temporary. 3174 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3175 CGF.getPointerAlign(), 3176 "icr.temp"); 3177 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3178 // and that cleanup will be conditional if we can't prove that the l-value 3179 // isn't null, so we need to register a dominating point so that the cleanups 3180 // system will make valid IR. 3181 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3182 3183 // Zero-initialize it if we're not doing a copy-initialization. 3184 bool shouldCopy = CRE->shouldCopy(); 3185 if (!shouldCopy) { 3186 llvm::Value *null = 3187 llvm::ConstantPointerNull::get( 3188 cast<llvm::PointerType>(destType->getElementType())); 3189 CGF.Builder.CreateStore(null, temp); 3190 } 3191 3192 llvm::BasicBlock *contBB = nullptr; 3193 llvm::BasicBlock *originBB = nullptr; 3194 3195 // If the address is *not* known to be non-null, we need to switch. 3196 llvm::Value *finalArgument; 3197 3198 bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer()); 3199 if (provablyNonNull) { 3200 finalArgument = temp.getPointer(); 3201 } else { 3202 llvm::Value *isNull = 3203 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3204 3205 finalArgument = CGF.Builder.CreateSelect(isNull, 3206 llvm::ConstantPointerNull::get(destType), 3207 temp.getPointer(), "icr.argument"); 3208 3209 // If we need to copy, then the load has to be conditional, which 3210 // means we need control flow. 3211 if (shouldCopy) { 3212 originBB = CGF.Builder.GetInsertBlock(); 3213 contBB = CGF.createBasicBlock("icr.cont"); 3214 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3215 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3216 CGF.EmitBlock(copyBB); 3217 condEval.begin(CGF); 3218 } 3219 } 3220 3221 llvm::Value *valueToUse = nullptr; 3222 3223 // Perform a copy if necessary. 3224 if (shouldCopy) { 3225 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3226 assert(srcRV.isScalar()); 3227 3228 llvm::Value *src = srcRV.getScalarVal(); 3229 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3230 "icr.cast"); 3231 3232 // Use an ordinary store, not a store-to-lvalue. 3233 CGF.Builder.CreateStore(src, temp); 3234 3235 // If optimization is enabled, and the value was held in a 3236 // __strong variable, we need to tell the optimizer that this 3237 // value has to stay alive until we're doing the store back. 3238 // This is because the temporary is effectively unretained, 3239 // and so otherwise we can violate the high-level semantics. 3240 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3241 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3242 valueToUse = src; 3243 } 3244 } 3245 3246 // Finish the control flow if we needed it. 3247 if (shouldCopy && !provablyNonNull) { 3248 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3249 CGF.EmitBlock(contBB); 3250 3251 // Make a phi for the value to intrinsically use. 3252 if (valueToUse) { 3253 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3254 "icr.to-use"); 3255 phiToUse->addIncoming(valueToUse, copyBB); 3256 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3257 originBB); 3258 valueToUse = phiToUse; 3259 } 3260 3261 condEval.end(CGF); 3262 } 3263 3264 args.addWriteback(srcLV, temp, valueToUse); 3265 args.add(RValue::get(finalArgument), CRE->getType()); 3266 } 3267 3268 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3269 assert(!StackBase); 3270 3271 // Save the stack. 3272 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3273 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3274 } 3275 3276 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3277 if (StackBase) { 3278 // Restore the stack after the call. 3279 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3280 CGF.Builder.CreateCall(F, StackBase); 3281 } 3282 } 3283 3284 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3285 SourceLocation ArgLoc, 3286 AbstractCallee AC, 3287 unsigned ParmNum) { 3288 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3289 SanOpts.has(SanitizerKind::NullabilityArg))) 3290 return; 3291 3292 // The param decl may be missing in a variadic function. 3293 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3294 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3295 3296 // Prefer the nonnull attribute if it's present. 3297 const NonNullAttr *NNAttr = nullptr; 3298 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3299 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3300 3301 bool CanCheckNullability = false; 3302 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3303 auto Nullability = PVD->getType()->getNullability(getContext()); 3304 CanCheckNullability = Nullability && 3305 *Nullability == NullabilityKind::NonNull && 3306 PVD->getTypeSourceInfo(); 3307 } 3308 3309 if (!NNAttr && !CanCheckNullability) 3310 return; 3311 3312 SourceLocation AttrLoc; 3313 SanitizerMask CheckKind; 3314 SanitizerHandler Handler; 3315 if (NNAttr) { 3316 AttrLoc = NNAttr->getLocation(); 3317 CheckKind = SanitizerKind::NonnullAttribute; 3318 Handler = SanitizerHandler::NonnullArg; 3319 } else { 3320 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3321 CheckKind = SanitizerKind::NullabilityArg; 3322 Handler = SanitizerHandler::NullabilityArg; 3323 } 3324 3325 SanitizerScope SanScope(this); 3326 assert(RV.isScalar()); 3327 llvm::Value *V = RV.getScalarVal(); 3328 llvm::Value *Cond = 3329 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3330 llvm::Constant *StaticData[] = { 3331 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3332 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3333 }; 3334 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3335 } 3336 3337 void CodeGenFunction::EmitCallArgs( 3338 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3339 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3340 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3341 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3342 3343 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3344 // because arguments are destroyed left to right in the callee. As a special 3345 // case, there are certain language constructs that require left-to-right 3346 // evaluation, and in those cases we consider the evaluation order requirement 3347 // to trump the "destruction order is reverse construction order" guarantee. 3348 bool LeftToRight = 3349 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3350 ? Order == EvaluationOrder::ForceLeftToRight 3351 : Order != EvaluationOrder::ForceRightToLeft; 3352 3353 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3354 RValue EmittedArg) { 3355 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3356 return; 3357 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3358 if (PS == nullptr) 3359 return; 3360 3361 const auto &Context = getContext(); 3362 auto SizeTy = Context.getSizeType(); 3363 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3364 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3365 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3366 EmittedArg.getScalarVal()); 3367 Args.add(RValue::get(V), SizeTy); 3368 // If we're emitting args in reverse, be sure to do so with 3369 // pass_object_size, as well. 3370 if (!LeftToRight) 3371 std::swap(Args.back(), *(&Args.back() - 1)); 3372 }; 3373 3374 // Insert a stack save if we're going to need any inalloca args. 3375 bool HasInAllocaArgs = false; 3376 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3377 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3378 I != E && !HasInAllocaArgs; ++I) 3379 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3380 if (HasInAllocaArgs) { 3381 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3382 Args.allocateArgumentMemory(*this); 3383 } 3384 } 3385 3386 // Evaluate each argument in the appropriate order. 3387 size_t CallArgsStart = Args.size(); 3388 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3389 unsigned Idx = LeftToRight ? I : E - I - 1; 3390 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3391 unsigned InitialArgSize = Args.size(); 3392 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3393 // the argument and parameter match or the objc method is parameterized. 3394 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3395 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3396 ArgTypes[Idx]) || 3397 (isa<ObjCMethodDecl>(AC.getDecl()) && 3398 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3399 "Argument and parameter types don't match"); 3400 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3401 // In particular, we depend on it being the last arg in Args, and the 3402 // objectsize bits depend on there only being one arg if !LeftToRight. 3403 assert(InitialArgSize + 1 == Args.size() && 3404 "The code below depends on only adding one arg per EmitCallArg"); 3405 (void)InitialArgSize; 3406 RValue RVArg = Args.back().RV; 3407 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3408 ParamsToSkip + Idx); 3409 // @llvm.objectsize should never have side-effects and shouldn't need 3410 // destruction/cleanups, so we can safely "emit" it after its arg, 3411 // regardless of right-to-leftness 3412 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3413 } 3414 3415 if (!LeftToRight) { 3416 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3417 // IR function. 3418 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3419 } 3420 } 3421 3422 namespace { 3423 3424 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3425 DestroyUnpassedArg(Address Addr, QualType Ty) 3426 : Addr(Addr), Ty(Ty) {} 3427 3428 Address Addr; 3429 QualType Ty; 3430 3431 void Emit(CodeGenFunction &CGF, Flags flags) override { 3432 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3433 assert(!Dtor->isTrivial()); 3434 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3435 /*Delegating=*/false, Addr); 3436 } 3437 }; 3438 3439 struct DisableDebugLocationUpdates { 3440 CodeGenFunction &CGF; 3441 bool disabledDebugInfo; 3442 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3443 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3444 CGF.disableDebugInfo(); 3445 } 3446 ~DisableDebugLocationUpdates() { 3447 if (disabledDebugInfo) 3448 CGF.enableDebugInfo(); 3449 } 3450 }; 3451 3452 } // end anonymous namespace 3453 3454 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3455 QualType type) { 3456 DisableDebugLocationUpdates Dis(*this, E); 3457 if (const ObjCIndirectCopyRestoreExpr *CRE 3458 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3459 assert(getLangOpts().ObjCAutoRefCount); 3460 return emitWritebackArg(*this, args, CRE); 3461 } 3462 3463 assert(type->isReferenceType() == E->isGLValue() && 3464 "reference binding to unmaterialized r-value!"); 3465 3466 if (E->isGLValue()) { 3467 assert(E->getObjectKind() == OK_Ordinary); 3468 return args.add(EmitReferenceBindingToExpr(E), type); 3469 } 3470 3471 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3472 3473 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3474 // However, we still have to push an EH-only cleanup in case we unwind before 3475 // we make it to the call. 3476 if (HasAggregateEvalKind && 3477 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 3478 // If we're using inalloca, use the argument memory. Otherwise, use a 3479 // temporary. 3480 AggValueSlot Slot; 3481 if (args.isUsingInAlloca()) 3482 Slot = createPlaceholderSlot(*this, type); 3483 else 3484 Slot = CreateAggTemp(type, "agg.tmp"); 3485 3486 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3487 bool DestroyedInCallee = 3488 RD && RD->hasNonTrivialDestructor() && 3489 CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default; 3490 if (DestroyedInCallee) 3491 Slot.setExternallyDestructed(); 3492 3493 EmitAggExpr(E, Slot); 3494 RValue RV = Slot.asRValue(); 3495 args.add(RV, type); 3496 3497 if (DestroyedInCallee) { 3498 // Create a no-op GEP between the placeholder and the cleanup so we can 3499 // RAUW it successfully. It also serves as a marker of the first 3500 // instruction where the cleanup is active. 3501 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3502 type); 3503 // This unreachable is a temporary marker which will be removed later. 3504 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3505 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3506 } 3507 return; 3508 } 3509 3510 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3511 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3512 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3513 assert(L.isSimple()); 3514 if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) { 3515 args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true); 3516 } else { 3517 // We can't represent a misaligned lvalue in the CallArgList, so copy 3518 // to an aligned temporary now. 3519 Address tmp = CreateMemTemp(type); 3520 EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile()); 3521 args.add(RValue::getAggregate(tmp), type); 3522 } 3523 return; 3524 } 3525 3526 args.add(EmitAnyExprToTemp(E), type); 3527 } 3528 3529 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3530 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3531 // implicitly widens null pointer constants that are arguments to varargs 3532 // functions to pointer-sized ints. 3533 if (!getTarget().getTriple().isOSWindows()) 3534 return Arg->getType(); 3535 3536 if (Arg->getType()->isIntegerType() && 3537 getContext().getTypeSize(Arg->getType()) < 3538 getContext().getTargetInfo().getPointerWidth(0) && 3539 Arg->isNullPointerConstant(getContext(), 3540 Expr::NPC_ValueDependentIsNotNull)) { 3541 return getContext().getIntPtrType(); 3542 } 3543 3544 return Arg->getType(); 3545 } 3546 3547 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3548 // optimizer it can aggressively ignore unwind edges. 3549 void 3550 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3551 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3552 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3553 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3554 CGM.getNoObjCARCExceptionsMetadata()); 3555 } 3556 3557 /// Emits a call to the given no-arguments nounwind runtime function. 3558 llvm::CallInst * 3559 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3560 const llvm::Twine &name) { 3561 return EmitNounwindRuntimeCall(callee, None, name); 3562 } 3563 3564 /// Emits a call to the given nounwind runtime function. 3565 llvm::CallInst * 3566 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3567 ArrayRef<llvm::Value*> args, 3568 const llvm::Twine &name) { 3569 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3570 call->setDoesNotThrow(); 3571 return call; 3572 } 3573 3574 /// Emits a simple call (never an invoke) to the given no-arguments 3575 /// runtime function. 3576 llvm::CallInst * 3577 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3578 const llvm::Twine &name) { 3579 return EmitRuntimeCall(callee, None, name); 3580 } 3581 3582 // Calls which may throw must have operand bundles indicating which funclet 3583 // they are nested within. 3584 static void 3585 getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad, 3586 SmallVectorImpl<llvm::OperandBundleDef> &BundleList) { 3587 // There is no need for a funclet operand bundle if we aren't inside a 3588 // funclet. 3589 if (!CurrentFuncletPad) 3590 return; 3591 3592 // Skip intrinsics which cannot throw. 3593 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3594 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3595 return; 3596 3597 BundleList.emplace_back("funclet", CurrentFuncletPad); 3598 } 3599 3600 /// Emits a simple call (never an invoke) to the given runtime function. 3601 llvm::CallInst * 3602 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3603 ArrayRef<llvm::Value*> args, 3604 const llvm::Twine &name) { 3605 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3606 getBundlesForFunclet(callee, CurrentFuncletPad, BundleList); 3607 3608 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name); 3609 call->setCallingConv(getRuntimeCC()); 3610 return call; 3611 } 3612 3613 /// Emits a call or invoke to the given noreturn runtime function. 3614 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3615 ArrayRef<llvm::Value*> args) { 3616 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3617 getBundlesForFunclet(callee, CurrentFuncletPad, BundleList); 3618 3619 if (getInvokeDest()) { 3620 llvm::InvokeInst *invoke = 3621 Builder.CreateInvoke(callee, 3622 getUnreachableBlock(), 3623 getInvokeDest(), 3624 args, 3625 BundleList); 3626 invoke->setDoesNotReturn(); 3627 invoke->setCallingConv(getRuntimeCC()); 3628 } else { 3629 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3630 call->setDoesNotReturn(); 3631 call->setCallingConv(getRuntimeCC()); 3632 Builder.CreateUnreachable(); 3633 } 3634 } 3635 3636 /// Emits a call or invoke instruction to the given nullary runtime function. 3637 llvm::CallSite 3638 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3639 const Twine &name) { 3640 return EmitRuntimeCallOrInvoke(callee, None, name); 3641 } 3642 3643 /// Emits a call or invoke instruction to the given runtime function. 3644 llvm::CallSite 3645 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3646 ArrayRef<llvm::Value*> args, 3647 const Twine &name) { 3648 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3649 callSite.setCallingConv(getRuntimeCC()); 3650 return callSite; 3651 } 3652 3653 /// Emits a call or invoke instruction to the given function, depending 3654 /// on the current state of the EH stack. 3655 llvm::CallSite 3656 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3657 ArrayRef<llvm::Value *> Args, 3658 const Twine &Name) { 3659 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3660 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3661 getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList); 3662 3663 llvm::Instruction *Inst; 3664 if (!InvokeDest) 3665 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3666 else { 3667 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3668 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3669 Name); 3670 EmitBlock(ContBB); 3671 } 3672 3673 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3674 // optimizer it can aggressively ignore unwind edges. 3675 if (CGM.getLangOpts().ObjCAutoRefCount) 3676 AddObjCARCExceptionMetadata(Inst); 3677 3678 return llvm::CallSite(Inst); 3679 } 3680 3681 /// \brief Store a non-aggregate value to an address to initialize it. For 3682 /// initialization, a non-atomic store will be used. 3683 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src, 3684 LValue Dst) { 3685 if (Src.isScalar()) 3686 CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true); 3687 else 3688 CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true); 3689 } 3690 3691 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3692 llvm::Value *New) { 3693 DeferredReplacements.push_back(std::make_pair(Old, New)); 3694 } 3695 3696 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3697 const CGCallee &Callee, 3698 ReturnValueSlot ReturnValue, 3699 const CallArgList &CallArgs, 3700 llvm::Instruction **callOrInvoke) { 3701 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3702 3703 assert(Callee.isOrdinary()); 3704 3705 // Handle struct-return functions by passing a pointer to the 3706 // location that we would like to return into. 3707 QualType RetTy = CallInfo.getReturnType(); 3708 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3709 3710 llvm::FunctionType *IRFuncTy = Callee.getFunctionType(); 3711 3712 // 1. Set up the arguments. 3713 3714 // If we're using inalloca, insert the allocation after the stack save. 3715 // FIXME: Do this earlier rather than hacking it in here! 3716 Address ArgMemory = Address::invalid(); 3717 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3718 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3719 const llvm::DataLayout &DL = CGM.getDataLayout(); 3720 ArgMemoryLayout = DL.getStructLayout(ArgStruct); 3721 llvm::Instruction *IP = CallArgs.getStackBase(); 3722 llvm::AllocaInst *AI; 3723 if (IP) { 3724 IP = IP->getNextNode(); 3725 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 3726 "argmem", IP); 3727 } else { 3728 AI = CreateTempAlloca(ArgStruct, "argmem"); 3729 } 3730 auto Align = CallInfo.getArgStructAlignment(); 3731 AI->setAlignment(Align.getQuantity()); 3732 AI->setUsedWithInAlloca(true); 3733 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3734 ArgMemory = Address(AI, Align); 3735 } 3736 3737 // Helper function to drill into the inalloca allocation. 3738 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3739 auto FieldOffset = 3740 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3741 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3742 }; 3743 3744 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3745 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3746 3747 // If the call returns a temporary with struct return, create a temporary 3748 // alloca to hold the result, unless one is given to us. 3749 Address SRetPtr = Address::invalid(); 3750 size_t UnusedReturnSize = 0; 3751 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3752 if (!ReturnValue.isNull()) { 3753 SRetPtr = ReturnValue.getValue(); 3754 } else { 3755 SRetPtr = CreateMemTemp(RetTy); 3756 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3757 uint64_t size = 3758 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3759 if (EmitLifetimeStart(size, SRetPtr.getPointer())) 3760 UnusedReturnSize = size; 3761 } 3762 } 3763 if (IRFunctionArgs.hasSRetArg()) { 3764 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3765 } else if (RetAI.isInAlloca()) { 3766 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3767 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3768 } 3769 } 3770 3771 Address swiftErrorTemp = Address::invalid(); 3772 Address swiftErrorArg = Address::invalid(); 3773 3774 // Translate all of the arguments as necessary to match the IR lowering. 3775 assert(CallInfo.arg_size() == CallArgs.size() && 3776 "Mismatch between function signature & arguments."); 3777 unsigned ArgNo = 0; 3778 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3779 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3780 I != E; ++I, ++info_it, ++ArgNo) { 3781 const ABIArgInfo &ArgInfo = info_it->info; 3782 RValue RV = I->RV; 3783 3784 // Insert a padding argument to ensure proper alignment. 3785 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3786 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3787 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3788 3789 unsigned FirstIRArg, NumIRArgs; 3790 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3791 3792 switch (ArgInfo.getKind()) { 3793 case ABIArgInfo::InAlloca: { 3794 assert(NumIRArgs == 0); 3795 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3796 if (RV.isAggregate()) { 3797 // Replace the placeholder with the appropriate argument slot GEP. 3798 llvm::Instruction *Placeholder = 3799 cast<llvm::Instruction>(RV.getAggregatePointer()); 3800 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3801 Builder.SetInsertPoint(Placeholder); 3802 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3803 Builder.restoreIP(IP); 3804 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3805 } else { 3806 // Store the RValue into the argument struct. 3807 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3808 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3809 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3810 // There are some cases where a trivial bitcast is not avoidable. The 3811 // definition of a type later in a translation unit may change it's type 3812 // from {}* to (%struct.foo*)*. 3813 if (Addr.getType() != MemType) 3814 Addr = Builder.CreateBitCast(Addr, MemType); 3815 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3816 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3817 } 3818 break; 3819 } 3820 3821 case ABIArgInfo::Indirect: { 3822 assert(NumIRArgs == 1); 3823 if (RV.isScalar() || RV.isComplex()) { 3824 // Make a temporary alloca to pass the argument. 3825 Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(), 3826 "indirect-arg-temp", false); 3827 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3828 3829 LValue argLV = MakeAddrLValue(Addr, I->Ty); 3830 EmitInitStoreOfNonAggregate(*this, RV, argLV); 3831 } else { 3832 // We want to avoid creating an unnecessary temporary+copy here; 3833 // however, we need one in three cases: 3834 // 1. If the argument is not byval, and we are required to copy the 3835 // source. (This case doesn't occur on any common architecture.) 3836 // 2. If the argument is byval, RV is not sufficiently aligned, and 3837 // we cannot force it to be sufficiently aligned. 3838 // 3. If the argument is byval, but RV is located in an address space 3839 // different than that of the argument (0). 3840 Address Addr = RV.getAggregateAddress(); 3841 CharUnits Align = ArgInfo.getIndirectAlign(); 3842 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3843 const unsigned RVAddrSpace = Addr.getType()->getAddressSpace(); 3844 const unsigned ArgAddrSpace = 3845 (FirstIRArg < IRFuncTy->getNumParams() 3846 ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() 3847 : 0); 3848 if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) || 3849 (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align && 3850 llvm::getOrEnforceKnownAlignment(Addr.getPointer(), 3851 Align.getQuantity(), *TD) 3852 < Align.getQuantity()) || 3853 (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) { 3854 // Create an aligned temporary, and copy to it. 3855 Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(), 3856 "byval-temp", false); 3857 IRCallArgs[FirstIRArg] = AI.getPointer(); 3858 EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified()); 3859 } else { 3860 // Skip the extra memcpy call. 3861 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3862 } 3863 } 3864 break; 3865 } 3866 3867 case ABIArgInfo::Ignore: 3868 assert(NumIRArgs == 0); 3869 break; 3870 3871 case ABIArgInfo::Extend: 3872 case ABIArgInfo::Direct: { 3873 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3874 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3875 ArgInfo.getDirectOffset() == 0) { 3876 assert(NumIRArgs == 1); 3877 llvm::Value *V; 3878 if (RV.isScalar()) 3879 V = RV.getScalarVal(); 3880 else 3881 V = Builder.CreateLoad(RV.getAggregateAddress()); 3882 3883 // Implement swifterror by copying into a new swifterror argument. 3884 // We'll write back in the normal path out of the call. 3885 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 3886 == ParameterABI::SwiftErrorResult) { 3887 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 3888 3889 QualType pointeeTy = I->Ty->getPointeeType(); 3890 swiftErrorArg = 3891 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 3892 3893 swiftErrorTemp = 3894 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 3895 V = swiftErrorTemp.getPointer(); 3896 cast<llvm::AllocaInst>(V)->setSwiftError(true); 3897 3898 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 3899 Builder.CreateStore(errorValue, swiftErrorTemp); 3900 } 3901 3902 // We might have to widen integers, but we should never truncate. 3903 if (ArgInfo.getCoerceToType() != V->getType() && 3904 V->getType()->isIntegerTy()) 3905 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 3906 3907 // If the argument doesn't match, perform a bitcast to coerce it. This 3908 // can happen due to trivial type mismatches. 3909 if (FirstIRArg < IRFuncTy->getNumParams() && 3910 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 3911 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 3912 3913 IRCallArgs[FirstIRArg] = V; 3914 break; 3915 } 3916 3917 // FIXME: Avoid the conversion through memory if possible. 3918 Address Src = Address::invalid(); 3919 if (RV.isScalar() || RV.isComplex()) { 3920 Src = CreateMemTemp(I->Ty, "coerce"); 3921 LValue SrcLV = MakeAddrLValue(Src, I->Ty); 3922 EmitInitStoreOfNonAggregate(*this, RV, SrcLV); 3923 } else { 3924 Src = RV.getAggregateAddress(); 3925 } 3926 3927 // If the value is offset in memory, apply the offset now. 3928 Src = emitAddressAtOffset(*this, Src, ArgInfo); 3929 3930 // Fast-isel and the optimizer generally like scalar values better than 3931 // FCAs, so we flatten them if this is safe to do for this argument. 3932 llvm::StructType *STy = 3933 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 3934 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 3935 llvm::Type *SrcTy = Src.getType()->getElementType(); 3936 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 3937 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 3938 3939 // If the source type is smaller than the destination type of the 3940 // coerce-to logic, copy the source value into a temp alloca the size 3941 // of the destination type to allow loading all of it. The bits past 3942 // the source value are left undef. 3943 if (SrcSize < DstSize) { 3944 Address TempAlloca 3945 = CreateTempAlloca(STy, Src.getAlignment(), 3946 Src.getName() + ".coerce"); 3947 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 3948 Src = TempAlloca; 3949 } else { 3950 Src = Builder.CreateBitCast(Src, 3951 STy->getPointerTo(Src.getAddressSpace())); 3952 } 3953 3954 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 3955 assert(NumIRArgs == STy->getNumElements()); 3956 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 3957 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 3958 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 3959 llvm::Value *LI = Builder.CreateLoad(EltPtr); 3960 IRCallArgs[FirstIRArg + i] = LI; 3961 } 3962 } else { 3963 // In the simple case, just pass the coerced loaded value. 3964 assert(NumIRArgs == 1); 3965 IRCallArgs[FirstIRArg] = 3966 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 3967 } 3968 3969 break; 3970 } 3971 3972 case ABIArgInfo::CoerceAndExpand: { 3973 auto coercionType = ArgInfo.getCoerceAndExpandType(); 3974 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 3975 3976 llvm::Value *tempSize = nullptr; 3977 Address addr = Address::invalid(); 3978 if (RV.isAggregate()) { 3979 addr = RV.getAggregateAddress(); 3980 } else { 3981 assert(RV.isScalar()); // complex should always just be direct 3982 3983 llvm::Type *scalarType = RV.getScalarVal()->getType(); 3984 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 3985 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 3986 3987 tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize); 3988 3989 // Materialize to a temporary. 3990 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 3991 CharUnits::fromQuantity(std::max(layout->getAlignment(), 3992 scalarAlign))); 3993 EmitLifetimeStart(scalarSize, addr.getPointer()); 3994 3995 Builder.CreateStore(RV.getScalarVal(), addr); 3996 } 3997 3998 addr = Builder.CreateElementBitCast(addr, coercionType); 3999 4000 unsigned IRArgPos = FirstIRArg; 4001 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4002 llvm::Type *eltType = coercionType->getElementType(i); 4003 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4004 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4005 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4006 IRCallArgs[IRArgPos++] = elt; 4007 } 4008 assert(IRArgPos == FirstIRArg + NumIRArgs); 4009 4010 if (tempSize) { 4011 EmitLifetimeEnd(tempSize, addr.getPointer()); 4012 } 4013 4014 break; 4015 } 4016 4017 case ABIArgInfo::Expand: 4018 unsigned IRArgPos = FirstIRArg; 4019 ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos); 4020 assert(IRArgPos == FirstIRArg + NumIRArgs); 4021 break; 4022 } 4023 } 4024 4025 llvm::Value *CalleePtr = Callee.getFunctionPointer(); 4026 4027 // If we're using inalloca, set up that argument. 4028 if (ArgMemory.isValid()) { 4029 llvm::Value *Arg = ArgMemory.getPointer(); 4030 if (CallInfo.isVariadic()) { 4031 // When passing non-POD arguments by value to variadic functions, we will 4032 // end up with a variadic prototype and an inalloca call site. In such 4033 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4034 // the callee. 4035 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4036 auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS); 4037 CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy); 4038 } else { 4039 llvm::Type *LastParamTy = 4040 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4041 if (Arg->getType() != LastParamTy) { 4042 #ifndef NDEBUG 4043 // Assert that these structs have equivalent element types. 4044 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4045 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4046 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4047 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4048 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4049 DE = DeclaredTy->element_end(), 4050 FI = FullTy->element_begin(); 4051 DI != DE; ++DI, ++FI) 4052 assert(*DI == *FI); 4053 #endif 4054 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4055 } 4056 } 4057 assert(IRFunctionArgs.hasInallocaArg()); 4058 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4059 } 4060 4061 // 2. Prepare the function pointer. 4062 4063 // If the callee is a bitcast of a non-variadic function to have a 4064 // variadic function pointer type, check to see if we can remove the 4065 // bitcast. This comes up with unprototyped functions. 4066 // 4067 // This makes the IR nicer, but more importantly it ensures that we 4068 // can inline the function at -O0 if it is marked always_inline. 4069 auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* { 4070 llvm::FunctionType *CalleeFT = 4071 cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType()); 4072 if (!CalleeFT->isVarArg()) 4073 return Ptr; 4074 4075 llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr); 4076 if (!CE || CE->getOpcode() != llvm::Instruction::BitCast) 4077 return Ptr; 4078 4079 llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0)); 4080 if (!OrigFn) 4081 return Ptr; 4082 4083 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4084 4085 // If the original type is variadic, or if any of the component types 4086 // disagree, we cannot remove the cast. 4087 if (OrigFT->isVarArg() || 4088 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4089 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4090 return Ptr; 4091 4092 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4093 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4094 return Ptr; 4095 4096 return OrigFn; 4097 }; 4098 CalleePtr = simplifyVariadicCallee(CalleePtr); 4099 4100 // 3. Perform the actual call. 4101 4102 // Deactivate any cleanups that we're supposed to do immediately before 4103 // the call. 4104 if (!CallArgs.getCleanupsToDeactivate().empty()) 4105 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4106 4107 // Assert that the arguments we computed match up. The IR verifier 4108 // will catch this, but this is a common enough source of problems 4109 // during IRGen changes that it's way better for debugging to catch 4110 // it ourselves here. 4111 #ifndef NDEBUG 4112 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4113 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4114 // Inalloca argument can have different type. 4115 if (IRFunctionArgs.hasInallocaArg() && 4116 i == IRFunctionArgs.getInallocaArgNo()) 4117 continue; 4118 if (i < IRFuncTy->getNumParams()) 4119 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4120 } 4121 #endif 4122 4123 // Compute the calling convention and attributes. 4124 unsigned CallingConv; 4125 llvm::AttributeList Attrs; 4126 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4127 Callee.getAbstractInfo(), Attrs, CallingConv, 4128 /*AttrOnCallSite=*/true); 4129 4130 // Apply some call-site-specific attributes. 4131 // TODO: work this into building the attribute set. 4132 4133 // Apply always_inline to all calls within flatten functions. 4134 // FIXME: should this really take priority over __try, below? 4135 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4136 !(Callee.getAbstractInfo().getCalleeDecl() && 4137 Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) { 4138 Attrs = 4139 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4140 llvm::Attribute::AlwaysInline); 4141 } 4142 4143 // Disable inlining inside SEH __try blocks. 4144 if (isSEHTryScope()) { 4145 Attrs = 4146 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4147 llvm::Attribute::NoInline); 4148 } 4149 4150 // Decide whether to use a call or an invoke. 4151 bool CannotThrow; 4152 if (currentFunctionUsesSEHTry()) { 4153 // SEH cares about asynchronous exceptions, so everything can "throw." 4154 CannotThrow = false; 4155 } else if (isCleanupPadScope() && 4156 EHPersonality::get(*this).isMSVCXXPersonality()) { 4157 // The MSVC++ personality will implicitly terminate the program if an 4158 // exception is thrown during a cleanup outside of a try/catch. 4159 // We don't need to model anything in IR to get this behavior. 4160 CannotThrow = true; 4161 } else { 4162 // Otherwise, nounwind call sites will never throw. 4163 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4164 llvm::Attribute::NoUnwind); 4165 } 4166 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4167 4168 SmallVector<llvm::OperandBundleDef, 1> BundleList; 4169 getBundlesForFunclet(CalleePtr, CurrentFuncletPad, BundleList); 4170 4171 // Emit the actual call/invoke instruction. 4172 llvm::CallSite CS; 4173 if (!InvokeDest) { 4174 CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList); 4175 } else { 4176 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4177 CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs, 4178 BundleList); 4179 EmitBlock(Cont); 4180 } 4181 llvm::Instruction *CI = CS.getInstruction(); 4182 if (callOrInvoke) 4183 *callOrInvoke = CI; 4184 4185 // Apply the attributes and calling convention. 4186 CS.setAttributes(Attrs); 4187 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4188 4189 // Apply various metadata. 4190 4191 if (!CI->getType()->isVoidTy()) 4192 CI->setName("call"); 4193 4194 // Insert instrumentation or attach profile metadata at indirect call sites. 4195 // For more details, see the comment before the definition of 4196 // IPVK_IndirectCallTarget in InstrProfData.inc. 4197 if (!CS.getCalledFunction()) 4198 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4199 CI, CalleePtr); 4200 4201 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4202 // optimizer it can aggressively ignore unwind edges. 4203 if (CGM.getLangOpts().ObjCAutoRefCount) 4204 AddObjCARCExceptionMetadata(CI); 4205 4206 // Suppress tail calls if requested. 4207 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4208 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4209 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4210 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4211 } 4212 4213 // 4. Finish the call. 4214 4215 // If the call doesn't return, finish the basic block and clear the 4216 // insertion point; this allows the rest of IRGen to discard 4217 // unreachable code. 4218 if (CS.doesNotReturn()) { 4219 if (UnusedReturnSize) 4220 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 4221 SRetPtr.getPointer()); 4222 4223 Builder.CreateUnreachable(); 4224 Builder.ClearInsertionPoint(); 4225 4226 // FIXME: For now, emit a dummy basic block because expr emitters in 4227 // generally are not ready to handle emitting expressions at unreachable 4228 // points. 4229 EnsureInsertPoint(); 4230 4231 // Return a reasonable RValue. 4232 return GetUndefRValue(RetTy); 4233 } 4234 4235 // Perform the swifterror writeback. 4236 if (swiftErrorTemp.isValid()) { 4237 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4238 Builder.CreateStore(errorResult, swiftErrorArg); 4239 } 4240 4241 // Emit any call-associated writebacks immediately. Arguably this 4242 // should happen after any return-value munging. 4243 if (CallArgs.hasWritebacks()) 4244 emitWritebacks(*this, CallArgs); 4245 4246 // The stack cleanup for inalloca arguments has to run out of the normal 4247 // lexical order, so deactivate it and run it manually here. 4248 CallArgs.freeArgumentMemory(*this); 4249 4250 // Extract the return value. 4251 RValue Ret = [&] { 4252 switch (RetAI.getKind()) { 4253 case ABIArgInfo::CoerceAndExpand: { 4254 auto coercionType = RetAI.getCoerceAndExpandType(); 4255 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4256 4257 Address addr = SRetPtr; 4258 addr = Builder.CreateElementBitCast(addr, coercionType); 4259 4260 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4261 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4262 4263 unsigned unpaddedIndex = 0; 4264 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4265 llvm::Type *eltType = coercionType->getElementType(i); 4266 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4267 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4268 llvm::Value *elt = CI; 4269 if (requiresExtract) 4270 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4271 else 4272 assert(unpaddedIndex == 0); 4273 Builder.CreateStore(elt, eltAddr); 4274 } 4275 // FALLTHROUGH 4276 LLVM_FALLTHROUGH; 4277 } 4278 4279 case ABIArgInfo::InAlloca: 4280 case ABIArgInfo::Indirect: { 4281 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4282 if (UnusedReturnSize) 4283 EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize), 4284 SRetPtr.getPointer()); 4285 return ret; 4286 } 4287 4288 case ABIArgInfo::Ignore: 4289 // If we are ignoring an argument that had a result, make sure to 4290 // construct the appropriate return value for our caller. 4291 return GetUndefRValue(RetTy); 4292 4293 case ABIArgInfo::Extend: 4294 case ABIArgInfo::Direct: { 4295 llvm::Type *RetIRTy = ConvertType(RetTy); 4296 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4297 switch (getEvaluationKind(RetTy)) { 4298 case TEK_Complex: { 4299 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4300 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4301 return RValue::getComplex(std::make_pair(Real, Imag)); 4302 } 4303 case TEK_Aggregate: { 4304 Address DestPtr = ReturnValue.getValue(); 4305 bool DestIsVolatile = ReturnValue.isVolatile(); 4306 4307 if (!DestPtr.isValid()) { 4308 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4309 DestIsVolatile = false; 4310 } 4311 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4312 return RValue::getAggregate(DestPtr); 4313 } 4314 case TEK_Scalar: { 4315 // If the argument doesn't match, perform a bitcast to coerce it. This 4316 // can happen due to trivial type mismatches. 4317 llvm::Value *V = CI; 4318 if (V->getType() != RetIRTy) 4319 V = Builder.CreateBitCast(V, RetIRTy); 4320 return RValue::get(V); 4321 } 4322 } 4323 llvm_unreachable("bad evaluation kind"); 4324 } 4325 4326 Address DestPtr = ReturnValue.getValue(); 4327 bool DestIsVolatile = ReturnValue.isVolatile(); 4328 4329 if (!DestPtr.isValid()) { 4330 DestPtr = CreateMemTemp(RetTy, "coerce"); 4331 DestIsVolatile = false; 4332 } 4333 4334 // If the value is offset in memory, apply the offset now. 4335 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4336 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4337 4338 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4339 } 4340 4341 case ABIArgInfo::Expand: 4342 llvm_unreachable("Invalid ABI kind for return argument"); 4343 } 4344 4345 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4346 } (); 4347 4348 // Emit the assume_aligned check on the return value. 4349 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4350 if (Ret.isScalar() && TargetDecl) { 4351 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4352 llvm::Value *OffsetValue = nullptr; 4353 if (const auto *Offset = AA->getOffset()) 4354 OffsetValue = EmitScalarExpr(Offset); 4355 4356 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4357 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4358 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 4359 OffsetValue); 4360 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { 4361 llvm::Value *ParamVal = 4362 CallArgs[AA->getParamIndex() - 1].RV.getScalarVal(); 4363 EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal); 4364 } 4365 } 4366 4367 return Ret; 4368 } 4369 4370 /* VarArg handling */ 4371 4372 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4373 VAListAddr = VE->isMicrosoftABI() 4374 ? EmitMSVAListRef(VE->getSubExpr()) 4375 : EmitVAListRef(VE->getSubExpr()); 4376 QualType Ty = VE->getType(); 4377 if (VE->isMicrosoftABI()) 4378 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4379 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4380 } 4381