1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // These classes wrap the information about a call or function 11 // definition used to handle ABI compliancy. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CGCall.h" 16 #include "ABIInfo.h" 17 #include "CGBlocks.h" 18 #include "CGCXXABI.h" 19 #include "CGCleanup.h" 20 #include "CodeGenFunction.h" 21 #include "CodeGenModule.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/DeclObjC.h" 26 #include "clang/Basic/TargetBuiltins.h" 27 #include "clang/Basic/TargetInfo.h" 28 #include "clang/CodeGen/CGFunctionInfo.h" 29 #include "clang/CodeGen/SwiftCallingConv.h" 30 #include "clang/Frontend/CodeGenOptions.h" 31 #include "llvm/ADT/StringExtras.h" 32 #include "llvm/Analysis/ValueTracking.h" 33 #include "llvm/IR/Attributes.h" 34 #include "llvm/IR/CallingConv.h" 35 #include "llvm/IR/CallSite.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/InlineAsm.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/Transforms/Utils/Local.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /***/ 45 46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) { 47 switch (CC) { 48 default: return llvm::CallingConv::C; 49 case CC_X86StdCall: return llvm::CallingConv::X86_StdCall; 50 case CC_X86FastCall: return llvm::CallingConv::X86_FastCall; 51 case CC_X86RegCall: return llvm::CallingConv::X86_RegCall; 52 case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall; 53 case CC_Win64: return llvm::CallingConv::Win64; 54 case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV; 55 case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS; 56 case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 57 case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI; 58 // TODO: Add support for __pascal to LLVM. 59 case CC_X86Pascal: return llvm::CallingConv::C; 60 // TODO: Add support for __vectorcall to LLVM. 61 case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall; 62 case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC; 63 case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv(); 64 case CC_PreserveMost: return llvm::CallingConv::PreserveMost; 65 case CC_PreserveAll: return llvm::CallingConv::PreserveAll; 66 case CC_Swift: return llvm::CallingConv::Swift; 67 } 68 } 69 70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method 71 /// qualification. 72 /// FIXME: address space qualification? 73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) { 74 QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal(); 75 return Context.getPointerType(CanQualType::CreateUnsafe(RecTy)); 76 } 77 78 /// Returns the canonical formal type of the given C++ method. 79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) { 80 return MD->getType()->getCanonicalTypeUnqualified() 81 .getAs<FunctionProtoType>(); 82 } 83 84 /// Returns the "extra-canonicalized" return type, which discards 85 /// qualifiers on the return type. Codegen doesn't care about them, 86 /// and it makes ABI code a little easier to be able to assume that 87 /// all parameter and return types are top-level unqualified. 88 static CanQualType GetReturnType(QualType RetTy) { 89 return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType(); 90 } 91 92 /// Arrange the argument and result information for a value of the given 93 /// unprototyped freestanding function type. 94 const CGFunctionInfo & 95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) { 96 // When translating an unprototyped function type, always use a 97 // variadic type. 98 return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(), 99 /*instanceMethod=*/false, 100 /*chainCall=*/false, None, 101 FTNP->getExtInfo(), {}, RequiredArgs(0)); 102 } 103 104 static void addExtParameterInfosForCall( 105 llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 106 const FunctionProtoType *proto, 107 unsigned prefixArgs, 108 unsigned totalArgs) { 109 assert(proto->hasExtParameterInfos()); 110 assert(paramInfos.size() <= prefixArgs); 111 assert(proto->getNumParams() + prefixArgs <= totalArgs); 112 113 paramInfos.reserve(totalArgs); 114 115 // Add default infos for any prefix args that don't already have infos. 116 paramInfos.resize(prefixArgs); 117 118 // Add infos for the prototype. 119 for (const auto &ParamInfo : proto->getExtParameterInfos()) { 120 paramInfos.push_back(ParamInfo); 121 // pass_object_size params have no parameter info. 122 if (ParamInfo.hasPassObjectSize()) 123 paramInfos.emplace_back(); 124 } 125 126 assert(paramInfos.size() <= totalArgs && 127 "Did we forget to insert pass_object_size args?"); 128 // Add default infos for the variadic and/or suffix arguments. 129 paramInfos.resize(totalArgs); 130 } 131 132 /// Adds the formal parameters in FPT to the given prefix. If any parameter in 133 /// FPT has pass_object_size attrs, then we'll add parameters for those, too. 134 static void appendParameterTypes(const CodeGenTypes &CGT, 135 SmallVectorImpl<CanQualType> &prefix, 136 SmallVectorImpl<FunctionProtoType::ExtParameterInfo> ¶mInfos, 137 CanQual<FunctionProtoType> FPT) { 138 // Fast path: don't touch param info if we don't need to. 139 if (!FPT->hasExtParameterInfos()) { 140 assert(paramInfos.empty() && 141 "We have paramInfos, but the prototype doesn't?"); 142 prefix.append(FPT->param_type_begin(), FPT->param_type_end()); 143 return; 144 } 145 146 unsigned PrefixSize = prefix.size(); 147 // In the vast majority of cases, we'll have precisely FPT->getNumParams() 148 // parameters; the only thing that can change this is the presence of 149 // pass_object_size. So, we preallocate for the common case. 150 prefix.reserve(prefix.size() + FPT->getNumParams()); 151 152 auto ExtInfos = FPT->getExtParameterInfos(); 153 assert(ExtInfos.size() == FPT->getNumParams()); 154 for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) { 155 prefix.push_back(FPT->getParamType(I)); 156 if (ExtInfos[I].hasPassObjectSize()) 157 prefix.push_back(CGT.getContext().getSizeType()); 158 } 159 160 addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize, 161 prefix.size()); 162 } 163 164 /// Arrange the LLVM function layout for a value of the given function 165 /// type, on top of any implicit parameters already stored. 166 static const CGFunctionInfo & 167 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod, 168 SmallVectorImpl<CanQualType> &prefix, 169 CanQual<FunctionProtoType> FTP, 170 const FunctionDecl *FD) { 171 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 172 RequiredArgs Required = 173 RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD); 174 // FIXME: Kill copy. 175 appendParameterTypes(CGT, prefix, paramInfos, FTP); 176 CanQualType resultType = FTP->getReturnType().getUnqualifiedType(); 177 178 return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod, 179 /*chainCall=*/false, prefix, 180 FTP->getExtInfo(), paramInfos, 181 Required); 182 } 183 184 /// Arrange the argument and result information for a value of the 185 /// given freestanding function type. 186 const CGFunctionInfo & 187 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP, 188 const FunctionDecl *FD) { 189 SmallVector<CanQualType, 16> argTypes; 190 return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes, 191 FTP, FD); 192 } 193 194 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) { 195 // Set the appropriate calling convention for the Function. 196 if (D->hasAttr<StdCallAttr>()) 197 return CC_X86StdCall; 198 199 if (D->hasAttr<FastCallAttr>()) 200 return CC_X86FastCall; 201 202 if (D->hasAttr<RegCallAttr>()) 203 return CC_X86RegCall; 204 205 if (D->hasAttr<ThisCallAttr>()) 206 return CC_X86ThisCall; 207 208 if (D->hasAttr<VectorCallAttr>()) 209 return CC_X86VectorCall; 210 211 if (D->hasAttr<PascalAttr>()) 212 return CC_X86Pascal; 213 214 if (PcsAttr *PCS = D->getAttr<PcsAttr>()) 215 return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP); 216 217 if (D->hasAttr<IntelOclBiccAttr>()) 218 return CC_IntelOclBicc; 219 220 if (D->hasAttr<MSABIAttr>()) 221 return IsWindows ? CC_C : CC_Win64; 222 223 if (D->hasAttr<SysVABIAttr>()) 224 return IsWindows ? CC_X86_64SysV : CC_C; 225 226 if (D->hasAttr<PreserveMostAttr>()) 227 return CC_PreserveMost; 228 229 if (D->hasAttr<PreserveAllAttr>()) 230 return CC_PreserveAll; 231 232 return CC_C; 233 } 234 235 /// Arrange the argument and result information for a call to an 236 /// unknown C++ non-static member function of the given abstract type. 237 /// (Zero value of RD means we don't have any meaningful "this" argument type, 238 /// so fall back to a generic pointer type). 239 /// The member function must be an ordinary function, i.e. not a 240 /// constructor or destructor. 241 const CGFunctionInfo & 242 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD, 243 const FunctionProtoType *FTP, 244 const CXXMethodDecl *MD) { 245 SmallVector<CanQualType, 16> argTypes; 246 247 // Add the 'this' pointer. 248 if (RD) 249 argTypes.push_back(GetThisType(Context, RD)); 250 else 251 argTypes.push_back(Context.VoidPtrTy); 252 253 return ::arrangeLLVMFunctionInfo( 254 *this, true, argTypes, 255 FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD); 256 } 257 258 /// Arrange the argument and result information for a declaration or 259 /// definition of the given C++ non-static member function. The 260 /// member function must be an ordinary function, i.e. not a 261 /// constructor or destructor. 262 const CGFunctionInfo & 263 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) { 264 assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!"); 265 assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!"); 266 267 CanQual<FunctionProtoType> prototype = GetFormalType(MD); 268 269 if (MD->isInstance()) { 270 // The abstract case is perfectly fine. 271 const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD); 272 return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD); 273 } 274 275 return arrangeFreeFunctionType(prototype, MD); 276 } 277 278 bool CodeGenTypes::inheritingCtorHasParams( 279 const InheritedConstructor &Inherited, CXXCtorType Type) { 280 // Parameters are unnecessary if we're constructing a base class subobject 281 // and the inherited constructor lives in a virtual base. 282 return Type == Ctor_Complete || 283 !Inherited.getShadowDecl()->constructsVirtualBase() || 284 !Target.getCXXABI().hasConstructorVariants(); 285 } 286 287 const CGFunctionInfo & 288 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD, 289 StructorType Type) { 290 291 SmallVector<CanQualType, 16> argTypes; 292 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 293 argTypes.push_back(GetThisType(Context, MD->getParent())); 294 295 bool PassParams = true; 296 297 GlobalDecl GD; 298 if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { 299 GD = GlobalDecl(CD, toCXXCtorType(Type)); 300 301 // A base class inheriting constructor doesn't get forwarded arguments 302 // needed to construct a virtual base (or base class thereof). 303 if (auto Inherited = CD->getInheritedConstructor()) 304 PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type)); 305 } else { 306 auto *DD = dyn_cast<CXXDestructorDecl>(MD); 307 GD = GlobalDecl(DD, toCXXDtorType(Type)); 308 } 309 310 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 311 312 // Add the formal parameters. 313 if (PassParams) 314 appendParameterTypes(*this, argTypes, paramInfos, FTP); 315 316 CGCXXABI::AddedStructorArgs AddedArgs = 317 TheCXXABI.buildStructorSignature(MD, Type, argTypes); 318 if (!paramInfos.empty()) { 319 // Note: prefix implies after the first param. 320 if (AddedArgs.Prefix) 321 paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix, 322 FunctionProtoType::ExtParameterInfo{}); 323 if (AddedArgs.Suffix) 324 paramInfos.append(AddedArgs.Suffix, 325 FunctionProtoType::ExtParameterInfo{}); 326 } 327 328 RequiredArgs required = 329 (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size()) 330 : RequiredArgs::All); 331 332 FunctionType::ExtInfo extInfo = FTP->getExtInfo(); 333 CanQualType resultType = TheCXXABI.HasThisReturn(GD) 334 ? argTypes.front() 335 : TheCXXABI.hasMostDerivedReturn(GD) 336 ? CGM.getContext().VoidPtrTy 337 : Context.VoidTy; 338 return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true, 339 /*chainCall=*/false, argTypes, extInfo, 340 paramInfos, required); 341 } 342 343 static SmallVector<CanQualType, 16> 344 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) { 345 SmallVector<CanQualType, 16> argTypes; 346 for (auto &arg : args) 347 argTypes.push_back(ctx.getCanonicalParamType(arg.Ty)); 348 return argTypes; 349 } 350 351 static SmallVector<CanQualType, 16> 352 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) { 353 SmallVector<CanQualType, 16> argTypes; 354 for (auto &arg : args) 355 argTypes.push_back(ctx.getCanonicalParamType(arg->getType())); 356 return argTypes; 357 } 358 359 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> 360 getExtParameterInfosForCall(const FunctionProtoType *proto, 361 unsigned prefixArgs, unsigned totalArgs) { 362 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result; 363 if (proto->hasExtParameterInfos()) { 364 addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs); 365 } 366 return result; 367 } 368 369 /// Arrange a call to a C++ method, passing the given arguments. 370 /// 371 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this` 372 /// parameter. 373 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of 374 /// args. 375 /// PassProtoArgs indicates whether `args` has args for the parameters in the 376 /// given CXXConstructorDecl. 377 const CGFunctionInfo & 378 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args, 379 const CXXConstructorDecl *D, 380 CXXCtorType CtorKind, 381 unsigned ExtraPrefixArgs, 382 unsigned ExtraSuffixArgs, 383 bool PassProtoArgs) { 384 // FIXME: Kill copy. 385 SmallVector<CanQualType, 16> ArgTypes; 386 for (const auto &Arg : args) 387 ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 388 389 // +1 for implicit this, which should always be args[0]. 390 unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs; 391 392 CanQual<FunctionProtoType> FPT = GetFormalType(D); 393 RequiredArgs Required = 394 RequiredArgs::forPrototypePlus(FPT, TotalPrefixArgs + ExtraSuffixArgs, D); 395 GlobalDecl GD(D, CtorKind); 396 CanQualType ResultType = TheCXXABI.HasThisReturn(GD) 397 ? ArgTypes.front() 398 : TheCXXABI.hasMostDerivedReturn(GD) 399 ? CGM.getContext().VoidPtrTy 400 : Context.VoidTy; 401 402 FunctionType::ExtInfo Info = FPT->getExtInfo(); 403 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos; 404 // If the prototype args are elided, we should only have ABI-specific args, 405 // which never have param info. 406 if (PassProtoArgs && FPT->hasExtParameterInfos()) { 407 // ABI-specific suffix arguments are treated the same as variadic arguments. 408 addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs, 409 ArgTypes.size()); 410 } 411 return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true, 412 /*chainCall=*/false, ArgTypes, Info, 413 ParamInfos, Required); 414 } 415 416 /// Arrange the argument and result information for the declaration or 417 /// definition of the given function. 418 const CGFunctionInfo & 419 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) { 420 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) 421 if (MD->isInstance()) 422 return arrangeCXXMethodDeclaration(MD); 423 424 CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified(); 425 426 assert(isa<FunctionType>(FTy)); 427 428 // When declaring a function without a prototype, always use a 429 // non-variadic type. 430 if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) { 431 return arrangeLLVMFunctionInfo( 432 noProto->getReturnType(), /*instanceMethod=*/false, 433 /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All); 434 } 435 436 return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>(), FD); 437 } 438 439 /// Arrange the argument and result information for the declaration or 440 /// definition of an Objective-C method. 441 const CGFunctionInfo & 442 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) { 443 // It happens that this is the same as a call with no optional 444 // arguments, except also using the formal 'self' type. 445 return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType()); 446 } 447 448 /// Arrange the argument and result information for the function type 449 /// through which to perform a send to the given Objective-C method, 450 /// using the given receiver type. The receiver type is not always 451 /// the 'self' type of the method or even an Objective-C pointer type. 452 /// This is *not* the right method for actually performing such a 453 /// message send, due to the possibility of optional arguments. 454 const CGFunctionInfo & 455 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD, 456 QualType receiverType) { 457 SmallVector<CanQualType, 16> argTys; 458 SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2); 459 argTys.push_back(Context.getCanonicalParamType(receiverType)); 460 argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType())); 461 // FIXME: Kill copy? 462 for (const auto *I : MD->parameters()) { 463 argTys.push_back(Context.getCanonicalParamType(I->getType())); 464 auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape( 465 I->hasAttr<NoEscapeAttr>()); 466 extParamInfos.push_back(extParamInfo); 467 } 468 469 FunctionType::ExtInfo einfo; 470 bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows(); 471 einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows)); 472 473 if (getContext().getLangOpts().ObjCAutoRefCount && 474 MD->hasAttr<NSReturnsRetainedAttr>()) 475 einfo = einfo.withProducesResult(true); 476 477 RequiredArgs required = 478 (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All); 479 480 return arrangeLLVMFunctionInfo( 481 GetReturnType(MD->getReturnType()), /*instanceMethod=*/false, 482 /*chainCall=*/false, argTys, einfo, extParamInfos, required); 483 } 484 485 const CGFunctionInfo & 486 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType, 487 const CallArgList &args) { 488 auto argTypes = getArgTypesForCall(Context, args); 489 FunctionType::ExtInfo einfo; 490 491 return arrangeLLVMFunctionInfo( 492 GetReturnType(returnType), /*instanceMethod=*/false, 493 /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All); 494 } 495 496 const CGFunctionInfo & 497 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) { 498 // FIXME: Do we need to handle ObjCMethodDecl? 499 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 500 501 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 502 return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType())); 503 504 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD)) 505 return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType())); 506 507 return arrangeFunctionDeclaration(FD); 508 } 509 510 /// Arrange a thunk that takes 'this' as the first parameter followed by 511 /// varargs. Return a void pointer, regardless of the actual return type. 512 /// The body of the thunk will end in a musttail call to a function of the 513 /// correct type, and the caller will bitcast the function to the correct 514 /// prototype. 515 const CGFunctionInfo & 516 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) { 517 assert(MD->isVirtual() && "only virtual memptrs have thunks"); 518 CanQual<FunctionProtoType> FTP = GetFormalType(MD); 519 CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) }; 520 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false, 521 /*chainCall=*/false, ArgTys, 522 FTP->getExtInfo(), {}, RequiredArgs(1)); 523 } 524 525 const CGFunctionInfo & 526 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD, 527 CXXCtorType CT) { 528 assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure); 529 530 CanQual<FunctionProtoType> FTP = GetFormalType(CD); 531 SmallVector<CanQualType, 2> ArgTys; 532 const CXXRecordDecl *RD = CD->getParent(); 533 ArgTys.push_back(GetThisType(Context, RD)); 534 if (CT == Ctor_CopyingClosure) 535 ArgTys.push_back(*FTP->param_type_begin()); 536 if (RD->getNumVBases() > 0) 537 ArgTys.push_back(Context.IntTy); 538 CallingConv CC = Context.getDefaultCallingConvention( 539 /*IsVariadic=*/false, /*IsCXXMethod=*/true); 540 return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true, 541 /*chainCall=*/false, ArgTys, 542 FunctionType::ExtInfo(CC), {}, 543 RequiredArgs::All); 544 } 545 546 /// Arrange a call as unto a free function, except possibly with an 547 /// additional number of formal parameters considered required. 548 static const CGFunctionInfo & 549 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT, 550 CodeGenModule &CGM, 551 const CallArgList &args, 552 const FunctionType *fnType, 553 unsigned numExtraRequiredArgs, 554 bool chainCall) { 555 assert(args.size() >= numExtraRequiredArgs); 556 557 llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 558 559 // In most cases, there are no optional arguments. 560 RequiredArgs required = RequiredArgs::All; 561 562 // If we have a variadic prototype, the required arguments are the 563 // extra prefix plus the arguments in the prototype. 564 if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) { 565 if (proto->isVariadic()) 566 required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs); 567 568 if (proto->hasExtParameterInfos()) 569 addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs, 570 args.size()); 571 572 // If we don't have a prototype at all, but we're supposed to 573 // explicitly use the variadic convention for unprototyped calls, 574 // treat all of the arguments as required but preserve the nominal 575 // possibility of variadics. 576 } else if (CGM.getTargetCodeGenInfo() 577 .isNoProtoCallVariadic(args, 578 cast<FunctionNoProtoType>(fnType))) { 579 required = RequiredArgs(args.size()); 580 } 581 582 // FIXME: Kill copy. 583 SmallVector<CanQualType, 16> argTypes; 584 for (const auto &arg : args) 585 argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty)); 586 return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()), 587 /*instanceMethod=*/false, chainCall, 588 argTypes, fnType->getExtInfo(), paramInfos, 589 required); 590 } 591 592 /// Figure out the rules for calling a function with the given formal 593 /// type using the given arguments. The arguments are necessary 594 /// because the function might be unprototyped, in which case it's 595 /// target-dependent in crazy ways. 596 const CGFunctionInfo & 597 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args, 598 const FunctionType *fnType, 599 bool chainCall) { 600 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 601 chainCall ? 1 : 0, chainCall); 602 } 603 604 /// A block function is essentially a free function with an 605 /// extra implicit argument. 606 const CGFunctionInfo & 607 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args, 608 const FunctionType *fnType) { 609 return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1, 610 /*chainCall=*/false); 611 } 612 613 const CGFunctionInfo & 614 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto, 615 const FunctionArgList ¶ms) { 616 auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size()); 617 auto argTypes = getArgTypesForDeclaration(Context, params); 618 619 return arrangeLLVMFunctionInfo( 620 GetReturnType(proto->getReturnType()), 621 /*instanceMethod*/ false, /*chainCall*/ false, argTypes, 622 proto->getExtInfo(), paramInfos, 623 RequiredArgs::forPrototypePlus(proto, 1, nullptr)); 624 } 625 626 const CGFunctionInfo & 627 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType, 628 const CallArgList &args) { 629 // FIXME: Kill copy. 630 SmallVector<CanQualType, 16> argTypes; 631 for (const auto &Arg : args) 632 argTypes.push_back(Context.getCanonicalParamType(Arg.Ty)); 633 return arrangeLLVMFunctionInfo( 634 GetReturnType(resultType), /*instanceMethod=*/false, 635 /*chainCall=*/false, argTypes, FunctionType::ExtInfo(), 636 /*paramInfos=*/ {}, RequiredArgs::All); 637 } 638 639 const CGFunctionInfo & 640 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType, 641 const FunctionArgList &args) { 642 auto argTypes = getArgTypesForDeclaration(Context, args); 643 644 return arrangeLLVMFunctionInfo( 645 GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false, 646 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 647 } 648 649 const CGFunctionInfo & 650 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType, 651 ArrayRef<CanQualType> argTypes) { 652 return arrangeLLVMFunctionInfo( 653 resultType, /*instanceMethod=*/false, /*chainCall=*/false, 654 argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All); 655 } 656 657 /// Arrange a call to a C++ method, passing the given arguments. 658 /// 659 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It 660 /// does not count `this`. 661 const CGFunctionInfo & 662 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args, 663 const FunctionProtoType *proto, 664 RequiredArgs required, 665 unsigned numPrefixArgs) { 666 assert(numPrefixArgs + 1 <= args.size() && 667 "Emitting a call with less args than the required prefix?"); 668 // Add one to account for `this`. It's a bit awkward here, but we don't count 669 // `this` in similar places elsewhere. 670 auto paramInfos = 671 getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size()); 672 673 // FIXME: Kill copy. 674 auto argTypes = getArgTypesForCall(Context, args); 675 676 FunctionType::ExtInfo info = proto->getExtInfo(); 677 return arrangeLLVMFunctionInfo( 678 GetReturnType(proto->getReturnType()), /*instanceMethod=*/true, 679 /*chainCall=*/false, argTypes, info, paramInfos, required); 680 } 681 682 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() { 683 return arrangeLLVMFunctionInfo( 684 getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false, 685 None, FunctionType::ExtInfo(), {}, RequiredArgs::All); 686 } 687 688 const CGFunctionInfo & 689 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature, 690 const CallArgList &args) { 691 assert(signature.arg_size() <= args.size()); 692 if (signature.arg_size() == args.size()) 693 return signature; 694 695 SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos; 696 auto sigParamInfos = signature.getExtParameterInfos(); 697 if (!sigParamInfos.empty()) { 698 paramInfos.append(sigParamInfos.begin(), sigParamInfos.end()); 699 paramInfos.resize(args.size()); 700 } 701 702 auto argTypes = getArgTypesForCall(Context, args); 703 704 assert(signature.getRequiredArgs().allowsOptionalArgs()); 705 return arrangeLLVMFunctionInfo(signature.getReturnType(), 706 signature.isInstanceMethod(), 707 signature.isChainCall(), 708 argTypes, 709 signature.getExtInfo(), 710 paramInfos, 711 signature.getRequiredArgs()); 712 } 713 714 namespace clang { 715 namespace CodeGen { 716 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI); 717 } 718 } 719 720 /// Arrange the argument and result information for an abstract value 721 /// of a given function type. This is the method which all of the 722 /// above functions ultimately defer to. 723 const CGFunctionInfo & 724 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType, 725 bool instanceMethod, 726 bool chainCall, 727 ArrayRef<CanQualType> argTypes, 728 FunctionType::ExtInfo info, 729 ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos, 730 RequiredArgs required) { 731 assert(std::all_of(argTypes.begin(), argTypes.end(), 732 [](CanQualType T) { return T.isCanonicalAsParam(); })); 733 734 // Lookup or create unique function info. 735 llvm::FoldingSetNodeID ID; 736 CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos, 737 required, resultType, argTypes); 738 739 void *insertPos = nullptr; 740 CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos); 741 if (FI) 742 return *FI; 743 744 unsigned CC = ClangCallConvToLLVMCallConv(info.getCC()); 745 746 // Construct the function info. We co-allocate the ArgInfos. 747 FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info, 748 paramInfos, resultType, argTypes, required); 749 FunctionInfos.InsertNode(FI, insertPos); 750 751 bool inserted = FunctionsBeingProcessed.insert(FI).second; 752 (void)inserted; 753 assert(inserted && "Recursively being processed?"); 754 755 // Compute ABI information. 756 if (CC == llvm::CallingConv::SPIR_KERNEL) { 757 // Force target independent argument handling for the host visible 758 // kernel functions. 759 computeSPIRKernelABIInfo(CGM, *FI); 760 } else if (info.getCC() == CC_Swift) { 761 swiftcall::computeABIInfo(CGM, *FI); 762 } else { 763 getABIInfo().computeInfo(*FI); 764 } 765 766 // Loop over all of the computed argument and return value info. If any of 767 // them are direct or extend without a specified coerce type, specify the 768 // default now. 769 ABIArgInfo &retInfo = FI->getReturnInfo(); 770 if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr) 771 retInfo.setCoerceToType(ConvertType(FI->getReturnType())); 772 773 for (auto &I : FI->arguments()) 774 if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr) 775 I.info.setCoerceToType(ConvertType(I.type)); 776 777 bool erased = FunctionsBeingProcessed.erase(FI); (void)erased; 778 assert(erased && "Not in set?"); 779 780 return *FI; 781 } 782 783 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC, 784 bool instanceMethod, 785 bool chainCall, 786 const FunctionType::ExtInfo &info, 787 ArrayRef<ExtParameterInfo> paramInfos, 788 CanQualType resultType, 789 ArrayRef<CanQualType> argTypes, 790 RequiredArgs required) { 791 assert(paramInfos.empty() || paramInfos.size() == argTypes.size()); 792 793 void *buffer = 794 operator new(totalSizeToAlloc<ArgInfo, ExtParameterInfo>( 795 argTypes.size() + 1, paramInfos.size())); 796 797 CGFunctionInfo *FI = new(buffer) CGFunctionInfo(); 798 FI->CallingConvention = llvmCC; 799 FI->EffectiveCallingConvention = llvmCC; 800 FI->ASTCallingConvention = info.getCC(); 801 FI->InstanceMethod = instanceMethod; 802 FI->ChainCall = chainCall; 803 FI->NoReturn = info.getNoReturn(); 804 FI->ReturnsRetained = info.getProducesResult(); 805 FI->NoCallerSavedRegs = info.getNoCallerSavedRegs(); 806 FI->Required = required; 807 FI->HasRegParm = info.getHasRegParm(); 808 FI->RegParm = info.getRegParm(); 809 FI->ArgStruct = nullptr; 810 FI->ArgStructAlign = 0; 811 FI->NumArgs = argTypes.size(); 812 FI->HasExtParameterInfos = !paramInfos.empty(); 813 FI->getArgsBuffer()[0].type = resultType; 814 for (unsigned i = 0, e = argTypes.size(); i != e; ++i) 815 FI->getArgsBuffer()[i + 1].type = argTypes[i]; 816 for (unsigned i = 0, e = paramInfos.size(); i != e; ++i) 817 FI->getExtParameterInfosBuffer()[i] = paramInfos[i]; 818 return FI; 819 } 820 821 /***/ 822 823 namespace { 824 // ABIArgInfo::Expand implementation. 825 826 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded. 827 struct TypeExpansion { 828 enum TypeExpansionKind { 829 // Elements of constant arrays are expanded recursively. 830 TEK_ConstantArray, 831 // Record fields are expanded recursively (but if record is a union, only 832 // the field with the largest size is expanded). 833 TEK_Record, 834 // For complex types, real and imaginary parts are expanded recursively. 835 TEK_Complex, 836 // All other types are not expandable. 837 TEK_None 838 }; 839 840 const TypeExpansionKind Kind; 841 842 TypeExpansion(TypeExpansionKind K) : Kind(K) {} 843 virtual ~TypeExpansion() {} 844 }; 845 846 struct ConstantArrayExpansion : TypeExpansion { 847 QualType EltTy; 848 uint64_t NumElts; 849 850 ConstantArrayExpansion(QualType EltTy, uint64_t NumElts) 851 : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {} 852 static bool classof(const TypeExpansion *TE) { 853 return TE->Kind == TEK_ConstantArray; 854 } 855 }; 856 857 struct RecordExpansion : TypeExpansion { 858 SmallVector<const CXXBaseSpecifier *, 1> Bases; 859 860 SmallVector<const FieldDecl *, 1> Fields; 861 862 RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases, 863 SmallVector<const FieldDecl *, 1> &&Fields) 864 : TypeExpansion(TEK_Record), Bases(std::move(Bases)), 865 Fields(std::move(Fields)) {} 866 static bool classof(const TypeExpansion *TE) { 867 return TE->Kind == TEK_Record; 868 } 869 }; 870 871 struct ComplexExpansion : TypeExpansion { 872 QualType EltTy; 873 874 ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {} 875 static bool classof(const TypeExpansion *TE) { 876 return TE->Kind == TEK_Complex; 877 } 878 }; 879 880 struct NoExpansion : TypeExpansion { 881 NoExpansion() : TypeExpansion(TEK_None) {} 882 static bool classof(const TypeExpansion *TE) { 883 return TE->Kind == TEK_None; 884 } 885 }; 886 } // namespace 887 888 static std::unique_ptr<TypeExpansion> 889 getTypeExpansion(QualType Ty, const ASTContext &Context) { 890 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 891 return llvm::make_unique<ConstantArrayExpansion>( 892 AT->getElementType(), AT->getSize().getZExtValue()); 893 } 894 if (const RecordType *RT = Ty->getAs<RecordType>()) { 895 SmallVector<const CXXBaseSpecifier *, 1> Bases; 896 SmallVector<const FieldDecl *, 1> Fields; 897 const RecordDecl *RD = RT->getDecl(); 898 assert(!RD->hasFlexibleArrayMember() && 899 "Cannot expand structure with flexible array."); 900 if (RD->isUnion()) { 901 // Unions can be here only in degenerative cases - all the fields are same 902 // after flattening. Thus we have to use the "largest" field. 903 const FieldDecl *LargestFD = nullptr; 904 CharUnits UnionSize = CharUnits::Zero(); 905 906 for (const auto *FD : RD->fields()) { 907 // Skip zero length bitfields. 908 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 909 continue; 910 assert(!FD->isBitField() && 911 "Cannot expand structure with bit-field members."); 912 CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType()); 913 if (UnionSize < FieldSize) { 914 UnionSize = FieldSize; 915 LargestFD = FD; 916 } 917 } 918 if (LargestFD) 919 Fields.push_back(LargestFD); 920 } else { 921 if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 922 assert(!CXXRD->isDynamicClass() && 923 "cannot expand vtable pointers in dynamic classes"); 924 for (const CXXBaseSpecifier &BS : CXXRD->bases()) 925 Bases.push_back(&BS); 926 } 927 928 for (const auto *FD : RD->fields()) { 929 // Skip zero length bitfields. 930 if (FD->isBitField() && FD->getBitWidthValue(Context) == 0) 931 continue; 932 assert(!FD->isBitField() && 933 "Cannot expand structure with bit-field members."); 934 Fields.push_back(FD); 935 } 936 } 937 return llvm::make_unique<RecordExpansion>(std::move(Bases), 938 std::move(Fields)); 939 } 940 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 941 return llvm::make_unique<ComplexExpansion>(CT->getElementType()); 942 } 943 return llvm::make_unique<NoExpansion>(); 944 } 945 946 static int getExpansionSize(QualType Ty, const ASTContext &Context) { 947 auto Exp = getTypeExpansion(Ty, Context); 948 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 949 return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context); 950 } 951 if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 952 int Res = 0; 953 for (auto BS : RExp->Bases) 954 Res += getExpansionSize(BS->getType(), Context); 955 for (auto FD : RExp->Fields) 956 Res += getExpansionSize(FD->getType(), Context); 957 return Res; 958 } 959 if (isa<ComplexExpansion>(Exp.get())) 960 return 2; 961 assert(isa<NoExpansion>(Exp.get())); 962 return 1; 963 } 964 965 void 966 CodeGenTypes::getExpandedTypes(QualType Ty, 967 SmallVectorImpl<llvm::Type *>::iterator &TI) { 968 auto Exp = getTypeExpansion(Ty, Context); 969 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 970 for (int i = 0, n = CAExp->NumElts; i < n; i++) { 971 getExpandedTypes(CAExp->EltTy, TI); 972 } 973 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 974 for (auto BS : RExp->Bases) 975 getExpandedTypes(BS->getType(), TI); 976 for (auto FD : RExp->Fields) 977 getExpandedTypes(FD->getType(), TI); 978 } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) { 979 llvm::Type *EltTy = ConvertType(CExp->EltTy); 980 *TI++ = EltTy; 981 *TI++ = EltTy; 982 } else { 983 assert(isa<NoExpansion>(Exp.get())); 984 *TI++ = ConvertType(Ty); 985 } 986 } 987 988 static void forConstantArrayExpansion(CodeGenFunction &CGF, 989 ConstantArrayExpansion *CAE, 990 Address BaseAddr, 991 llvm::function_ref<void(Address)> Fn) { 992 CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy); 993 CharUnits EltAlign = 994 BaseAddr.getAlignment().alignmentOfArrayElement(EltSize); 995 996 for (int i = 0, n = CAE->NumElts; i < n; i++) { 997 llvm::Value *EltAddr = 998 CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i); 999 Fn(Address(EltAddr, EltAlign)); 1000 } 1001 } 1002 1003 void CodeGenFunction::ExpandTypeFromArgs( 1004 QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) { 1005 assert(LV.isSimple() && 1006 "Unexpected non-simple lvalue during struct expansion."); 1007 1008 auto Exp = getTypeExpansion(Ty, getContext()); 1009 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1010 forConstantArrayExpansion(*this, CAExp, LV.getAddress(), 1011 [&](Address EltAddr) { 1012 LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy); 1013 ExpandTypeFromArgs(CAExp->EltTy, LV, AI); 1014 }); 1015 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1016 Address This = LV.getAddress(); 1017 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1018 // Perform a single step derived-to-base conversion. 1019 Address Base = 1020 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1021 /*NullCheckValue=*/false, SourceLocation()); 1022 LValue SubLV = MakeAddrLValue(Base, BS->getType()); 1023 1024 // Recurse onto bases. 1025 ExpandTypeFromArgs(BS->getType(), SubLV, AI); 1026 } 1027 for (auto FD : RExp->Fields) { 1028 // FIXME: What are the right qualifiers here? 1029 LValue SubLV = EmitLValueForFieldInitialization(LV, FD); 1030 ExpandTypeFromArgs(FD->getType(), SubLV, AI); 1031 } 1032 } else if (isa<ComplexExpansion>(Exp.get())) { 1033 auto realValue = *AI++; 1034 auto imagValue = *AI++; 1035 EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true); 1036 } else { 1037 assert(isa<NoExpansion>(Exp.get())); 1038 EmitStoreThroughLValue(RValue::get(*AI++), LV); 1039 } 1040 } 1041 1042 void CodeGenFunction::ExpandTypeToArgs( 1043 QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy, 1044 SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) { 1045 auto Exp = getTypeExpansion(Ty, getContext()); 1046 if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) { 1047 Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1048 : Arg.getKnownRValue().getAggregateAddress(); 1049 forConstantArrayExpansion( 1050 *this, CAExp, Addr, [&](Address EltAddr) { 1051 CallArg EltArg = CallArg( 1052 convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()), 1053 CAExp->EltTy); 1054 ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs, 1055 IRCallArgPos); 1056 }); 1057 } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) { 1058 Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress() 1059 : Arg.getKnownRValue().getAggregateAddress(); 1060 for (const CXXBaseSpecifier *BS : RExp->Bases) { 1061 // Perform a single step derived-to-base conversion. 1062 Address Base = 1063 GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1, 1064 /*NullCheckValue=*/false, SourceLocation()); 1065 CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType()); 1066 1067 // Recurse onto bases. 1068 ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs, 1069 IRCallArgPos); 1070 } 1071 1072 LValue LV = MakeAddrLValue(This, Ty); 1073 for (auto FD : RExp->Fields) { 1074 CallArg FldArg = 1075 CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType()); 1076 ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs, 1077 IRCallArgPos); 1078 } 1079 } else if (isa<ComplexExpansion>(Exp.get())) { 1080 ComplexPairTy CV = Arg.getKnownRValue().getComplexVal(); 1081 IRCallArgs[IRCallArgPos++] = CV.first; 1082 IRCallArgs[IRCallArgPos++] = CV.second; 1083 } else { 1084 assert(isa<NoExpansion>(Exp.get())); 1085 auto RV = Arg.getKnownRValue(); 1086 assert(RV.isScalar() && 1087 "Unexpected non-scalar rvalue during struct expansion."); 1088 1089 // Insert a bitcast as needed. 1090 llvm::Value *V = RV.getScalarVal(); 1091 if (IRCallArgPos < IRFuncTy->getNumParams() && 1092 V->getType() != IRFuncTy->getParamType(IRCallArgPos)) 1093 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos)); 1094 1095 IRCallArgs[IRCallArgPos++] = V; 1096 } 1097 } 1098 1099 /// Create a temporary allocation for the purposes of coercion. 1100 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty, 1101 CharUnits MinAlign) { 1102 // Don't use an alignment that's worse than what LLVM would prefer. 1103 auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty); 1104 CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign)); 1105 1106 return CGF.CreateTempAlloca(Ty, Align); 1107 } 1108 1109 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are 1110 /// accessing some number of bytes out of it, try to gep into the struct to get 1111 /// at its inner goodness. Dive as deep as possible without entering an element 1112 /// with an in-memory size smaller than DstSize. 1113 static Address 1114 EnterStructPointerForCoercedAccess(Address SrcPtr, 1115 llvm::StructType *SrcSTy, 1116 uint64_t DstSize, CodeGenFunction &CGF) { 1117 // We can't dive into a zero-element struct. 1118 if (SrcSTy->getNumElements() == 0) return SrcPtr; 1119 1120 llvm::Type *FirstElt = SrcSTy->getElementType(0); 1121 1122 // If the first elt is at least as large as what we're looking for, or if the 1123 // first element is the same size as the whole struct, we can enter it. The 1124 // comparison must be made on the store size and not the alloca size. Using 1125 // the alloca size may overstate the size of the load. 1126 uint64_t FirstEltSize = 1127 CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt); 1128 if (FirstEltSize < DstSize && 1129 FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy)) 1130 return SrcPtr; 1131 1132 // GEP into the first element. 1133 SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive"); 1134 1135 // If the first element is a struct, recurse. 1136 llvm::Type *SrcTy = SrcPtr.getElementType(); 1137 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) 1138 return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF); 1139 1140 return SrcPtr; 1141 } 1142 1143 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both 1144 /// are either integers or pointers. This does a truncation of the value if it 1145 /// is too large or a zero extension if it is too small. 1146 /// 1147 /// This behaves as if the value were coerced through memory, so on big-endian 1148 /// targets the high bits are preserved in a truncation, while little-endian 1149 /// targets preserve the low bits. 1150 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val, 1151 llvm::Type *Ty, 1152 CodeGenFunction &CGF) { 1153 if (Val->getType() == Ty) 1154 return Val; 1155 1156 if (isa<llvm::PointerType>(Val->getType())) { 1157 // If this is Pointer->Pointer avoid conversion to and from int. 1158 if (isa<llvm::PointerType>(Ty)) 1159 return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val"); 1160 1161 // Convert the pointer to an integer so we can play with its width. 1162 Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi"); 1163 } 1164 1165 llvm::Type *DestIntTy = Ty; 1166 if (isa<llvm::PointerType>(DestIntTy)) 1167 DestIntTy = CGF.IntPtrTy; 1168 1169 if (Val->getType() != DestIntTy) { 1170 const llvm::DataLayout &DL = CGF.CGM.getDataLayout(); 1171 if (DL.isBigEndian()) { 1172 // Preserve the high bits on big-endian targets. 1173 // That is what memory coercion does. 1174 uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType()); 1175 uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy); 1176 1177 if (SrcSize > DstSize) { 1178 Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits"); 1179 Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii"); 1180 } else { 1181 Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii"); 1182 Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits"); 1183 } 1184 } else { 1185 // Little-endian targets preserve the low bits. No shifts required. 1186 Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii"); 1187 } 1188 } 1189 1190 if (isa<llvm::PointerType>(Ty)) 1191 Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip"); 1192 return Val; 1193 } 1194 1195 1196 1197 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as 1198 /// a pointer to an object of type \arg Ty, known to be aligned to 1199 /// \arg SrcAlign bytes. 1200 /// 1201 /// This safely handles the case when the src type is smaller than the 1202 /// destination type; in this situation the values of bits which not 1203 /// present in the src are undefined. 1204 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty, 1205 CodeGenFunction &CGF) { 1206 llvm::Type *SrcTy = Src.getElementType(); 1207 1208 // If SrcTy and Ty are the same, just do a load. 1209 if (SrcTy == Ty) 1210 return CGF.Builder.CreateLoad(Src); 1211 1212 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty); 1213 1214 if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) { 1215 Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF); 1216 SrcTy = Src.getType()->getElementType(); 1217 } 1218 1219 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1220 1221 // If the source and destination are integer or pointer types, just do an 1222 // extension or truncation to the desired type. 1223 if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) && 1224 (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) { 1225 llvm::Value *Load = CGF.Builder.CreateLoad(Src); 1226 return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF); 1227 } 1228 1229 // If load is legal, just bitcast the src pointer. 1230 if (SrcSize >= DstSize) { 1231 // Generally SrcSize is never greater than DstSize, since this means we are 1232 // losing bits. However, this can happen in cases where the structure has 1233 // additional padding, for example due to a user specified alignment. 1234 // 1235 // FIXME: Assert that we aren't truncating non-padding bits when have access 1236 // to that information. 1237 Src = CGF.Builder.CreateBitCast(Src, 1238 Ty->getPointerTo(Src.getAddressSpace())); 1239 return CGF.Builder.CreateLoad(Src); 1240 } 1241 1242 // Otherwise do coercion through memory. This is stupid, but simple. 1243 Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment()); 1244 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy); 1245 Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.AllocaInt8PtrTy); 1246 CGF.Builder.CreateMemCpy(Casted, SrcCasted, 1247 llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize), 1248 false); 1249 return CGF.Builder.CreateLoad(Tmp); 1250 } 1251 1252 // Function to store a first-class aggregate into memory. We prefer to 1253 // store the elements rather than the aggregate to be more friendly to 1254 // fast-isel. 1255 // FIXME: Do we need to recurse here? 1256 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val, 1257 Address Dest, bool DestIsVolatile) { 1258 // Prefer scalar stores to first-class aggregate stores. 1259 if (llvm::StructType *STy = 1260 dyn_cast<llvm::StructType>(Val->getType())) { 1261 const llvm::StructLayout *Layout = 1262 CGF.CGM.getDataLayout().getStructLayout(STy); 1263 1264 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 1265 auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i)); 1266 Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset); 1267 llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i); 1268 CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile); 1269 } 1270 } else { 1271 CGF.Builder.CreateStore(Val, Dest, DestIsVolatile); 1272 } 1273 } 1274 1275 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src, 1276 /// where the source and destination may have different types. The 1277 /// destination is known to be aligned to \arg DstAlign bytes. 1278 /// 1279 /// This safely handles the case when the src type is larger than the 1280 /// destination type; the upper bits of the src will be lost. 1281 static void CreateCoercedStore(llvm::Value *Src, 1282 Address Dst, 1283 bool DstIsVolatile, 1284 CodeGenFunction &CGF) { 1285 llvm::Type *SrcTy = Src->getType(); 1286 llvm::Type *DstTy = Dst.getType()->getElementType(); 1287 if (SrcTy == DstTy) { 1288 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1289 return; 1290 } 1291 1292 uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy); 1293 1294 if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) { 1295 Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF); 1296 DstTy = Dst.getType()->getElementType(); 1297 } 1298 1299 // If the source and destination are integer or pointer types, just do an 1300 // extension or truncation to the desired type. 1301 if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) && 1302 (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) { 1303 Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF); 1304 CGF.Builder.CreateStore(Src, Dst, DstIsVolatile); 1305 return; 1306 } 1307 1308 uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy); 1309 1310 // If store is legal, just bitcast the src pointer. 1311 if (SrcSize <= DstSize) { 1312 Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy); 1313 BuildAggStore(CGF, Src, Dst, DstIsVolatile); 1314 } else { 1315 // Otherwise do coercion through memory. This is stupid, but 1316 // simple. 1317 1318 // Generally SrcSize is never greater than DstSize, since this means we are 1319 // losing bits. However, this can happen in cases where the structure has 1320 // additional padding, for example due to a user specified alignment. 1321 // 1322 // FIXME: Assert that we aren't truncating non-padding bits when have access 1323 // to that information. 1324 Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment()); 1325 CGF.Builder.CreateStore(Src, Tmp); 1326 Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.AllocaInt8PtrTy); 1327 Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.AllocaInt8PtrTy); 1328 CGF.Builder.CreateMemCpy(DstCasted, Casted, 1329 llvm::ConstantInt::get(CGF.IntPtrTy, DstSize), 1330 false); 1331 } 1332 } 1333 1334 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr, 1335 const ABIArgInfo &info) { 1336 if (unsigned offset = info.getDirectOffset()) { 1337 addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty); 1338 addr = CGF.Builder.CreateConstInBoundsByteGEP(addr, 1339 CharUnits::fromQuantity(offset)); 1340 addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType()); 1341 } 1342 return addr; 1343 } 1344 1345 namespace { 1346 1347 /// Encapsulates information about the way function arguments from 1348 /// CGFunctionInfo should be passed to actual LLVM IR function. 1349 class ClangToLLVMArgMapping { 1350 static const unsigned InvalidIndex = ~0U; 1351 unsigned InallocaArgNo; 1352 unsigned SRetArgNo; 1353 unsigned TotalIRArgs; 1354 1355 /// Arguments of LLVM IR function corresponding to single Clang argument. 1356 struct IRArgs { 1357 unsigned PaddingArgIndex; 1358 // Argument is expanded to IR arguments at positions 1359 // [FirstArgIndex, FirstArgIndex + NumberOfArgs). 1360 unsigned FirstArgIndex; 1361 unsigned NumberOfArgs; 1362 1363 IRArgs() 1364 : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex), 1365 NumberOfArgs(0) {} 1366 }; 1367 1368 SmallVector<IRArgs, 8> ArgInfo; 1369 1370 public: 1371 ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI, 1372 bool OnlyRequiredArgs = false) 1373 : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0), 1374 ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) { 1375 construct(Context, FI, OnlyRequiredArgs); 1376 } 1377 1378 bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; } 1379 unsigned getInallocaArgNo() const { 1380 assert(hasInallocaArg()); 1381 return InallocaArgNo; 1382 } 1383 1384 bool hasSRetArg() const { return SRetArgNo != InvalidIndex; } 1385 unsigned getSRetArgNo() const { 1386 assert(hasSRetArg()); 1387 return SRetArgNo; 1388 } 1389 1390 unsigned totalIRArgs() const { return TotalIRArgs; } 1391 1392 bool hasPaddingArg(unsigned ArgNo) const { 1393 assert(ArgNo < ArgInfo.size()); 1394 return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex; 1395 } 1396 unsigned getPaddingArgNo(unsigned ArgNo) const { 1397 assert(hasPaddingArg(ArgNo)); 1398 return ArgInfo[ArgNo].PaddingArgIndex; 1399 } 1400 1401 /// Returns index of first IR argument corresponding to ArgNo, and their 1402 /// quantity. 1403 std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const { 1404 assert(ArgNo < ArgInfo.size()); 1405 return std::make_pair(ArgInfo[ArgNo].FirstArgIndex, 1406 ArgInfo[ArgNo].NumberOfArgs); 1407 } 1408 1409 private: 1410 void construct(const ASTContext &Context, const CGFunctionInfo &FI, 1411 bool OnlyRequiredArgs); 1412 }; 1413 1414 void ClangToLLVMArgMapping::construct(const ASTContext &Context, 1415 const CGFunctionInfo &FI, 1416 bool OnlyRequiredArgs) { 1417 unsigned IRArgNo = 0; 1418 bool SwapThisWithSRet = false; 1419 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1420 1421 if (RetAI.getKind() == ABIArgInfo::Indirect) { 1422 SwapThisWithSRet = RetAI.isSRetAfterThis(); 1423 SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++; 1424 } 1425 1426 unsigned ArgNo = 0; 1427 unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size(); 1428 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs; 1429 ++I, ++ArgNo) { 1430 assert(I != FI.arg_end()); 1431 QualType ArgType = I->type; 1432 const ABIArgInfo &AI = I->info; 1433 // Collect data about IR arguments corresponding to Clang argument ArgNo. 1434 auto &IRArgs = ArgInfo[ArgNo]; 1435 1436 if (AI.getPaddingType()) 1437 IRArgs.PaddingArgIndex = IRArgNo++; 1438 1439 switch (AI.getKind()) { 1440 case ABIArgInfo::Extend: 1441 case ABIArgInfo::Direct: { 1442 // FIXME: handle sseregparm someday... 1443 llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType()); 1444 if (AI.isDirect() && AI.getCanBeFlattened() && STy) { 1445 IRArgs.NumberOfArgs = STy->getNumElements(); 1446 } else { 1447 IRArgs.NumberOfArgs = 1; 1448 } 1449 break; 1450 } 1451 case ABIArgInfo::Indirect: 1452 IRArgs.NumberOfArgs = 1; 1453 break; 1454 case ABIArgInfo::Ignore: 1455 case ABIArgInfo::InAlloca: 1456 // ignore and inalloca doesn't have matching LLVM parameters. 1457 IRArgs.NumberOfArgs = 0; 1458 break; 1459 case ABIArgInfo::CoerceAndExpand: 1460 IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size(); 1461 break; 1462 case ABIArgInfo::Expand: 1463 IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context); 1464 break; 1465 } 1466 1467 if (IRArgs.NumberOfArgs > 0) { 1468 IRArgs.FirstArgIndex = IRArgNo; 1469 IRArgNo += IRArgs.NumberOfArgs; 1470 } 1471 1472 // Skip over the sret parameter when it comes second. We already handled it 1473 // above. 1474 if (IRArgNo == 1 && SwapThisWithSRet) 1475 IRArgNo++; 1476 } 1477 assert(ArgNo == ArgInfo.size()); 1478 1479 if (FI.usesInAlloca()) 1480 InallocaArgNo = IRArgNo++; 1481 1482 TotalIRArgs = IRArgNo; 1483 } 1484 } // namespace 1485 1486 /***/ 1487 1488 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) { 1489 const auto &RI = FI.getReturnInfo(); 1490 return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet()); 1491 } 1492 1493 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) { 1494 return ReturnTypeUsesSRet(FI) && 1495 getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs(); 1496 } 1497 1498 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) { 1499 if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) { 1500 switch (BT->getKind()) { 1501 default: 1502 return false; 1503 case BuiltinType::Float: 1504 return getTarget().useObjCFPRetForRealType(TargetInfo::Float); 1505 case BuiltinType::Double: 1506 return getTarget().useObjCFPRetForRealType(TargetInfo::Double); 1507 case BuiltinType::LongDouble: 1508 return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble); 1509 } 1510 } 1511 1512 return false; 1513 } 1514 1515 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) { 1516 if (const ComplexType *CT = ResultType->getAs<ComplexType>()) { 1517 if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) { 1518 if (BT->getKind() == BuiltinType::LongDouble) 1519 return getTarget().useObjCFP2RetForComplexLongDouble(); 1520 } 1521 } 1522 1523 return false; 1524 } 1525 1526 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) { 1527 const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD); 1528 return GetFunctionType(FI); 1529 } 1530 1531 llvm::FunctionType * 1532 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) { 1533 1534 bool Inserted = FunctionsBeingProcessed.insert(&FI).second; 1535 (void)Inserted; 1536 assert(Inserted && "Recursively being processed?"); 1537 1538 llvm::Type *resultType = nullptr; 1539 const ABIArgInfo &retAI = FI.getReturnInfo(); 1540 switch (retAI.getKind()) { 1541 case ABIArgInfo::Expand: 1542 llvm_unreachable("Invalid ABI kind for return argument"); 1543 1544 case ABIArgInfo::Extend: 1545 case ABIArgInfo::Direct: 1546 resultType = retAI.getCoerceToType(); 1547 break; 1548 1549 case ABIArgInfo::InAlloca: 1550 if (retAI.getInAllocaSRet()) { 1551 // sret things on win32 aren't void, they return the sret pointer. 1552 QualType ret = FI.getReturnType(); 1553 llvm::Type *ty = ConvertType(ret); 1554 unsigned addressSpace = Context.getTargetAddressSpace(ret); 1555 resultType = llvm::PointerType::get(ty, addressSpace); 1556 } else { 1557 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1558 } 1559 break; 1560 1561 case ABIArgInfo::Indirect: 1562 case ABIArgInfo::Ignore: 1563 resultType = llvm::Type::getVoidTy(getLLVMContext()); 1564 break; 1565 1566 case ABIArgInfo::CoerceAndExpand: 1567 resultType = retAI.getUnpaddedCoerceAndExpandType(); 1568 break; 1569 } 1570 1571 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true); 1572 SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs()); 1573 1574 // Add type for sret argument. 1575 if (IRFunctionArgs.hasSRetArg()) { 1576 QualType Ret = FI.getReturnType(); 1577 llvm::Type *Ty = ConvertType(Ret); 1578 unsigned AddressSpace = Context.getTargetAddressSpace(Ret); 1579 ArgTypes[IRFunctionArgs.getSRetArgNo()] = 1580 llvm::PointerType::get(Ty, AddressSpace); 1581 } 1582 1583 // Add type for inalloca argument. 1584 if (IRFunctionArgs.hasInallocaArg()) { 1585 auto ArgStruct = FI.getArgStruct(); 1586 assert(ArgStruct); 1587 ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo(); 1588 } 1589 1590 // Add in all of the required arguments. 1591 unsigned ArgNo = 0; 1592 CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), 1593 ie = it + FI.getNumRequiredArgs(); 1594 for (; it != ie; ++it, ++ArgNo) { 1595 const ABIArgInfo &ArgInfo = it->info; 1596 1597 // Insert a padding type to ensure proper alignment. 1598 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 1599 ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1600 ArgInfo.getPaddingType(); 1601 1602 unsigned FirstIRArg, NumIRArgs; 1603 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 1604 1605 switch (ArgInfo.getKind()) { 1606 case ABIArgInfo::Ignore: 1607 case ABIArgInfo::InAlloca: 1608 assert(NumIRArgs == 0); 1609 break; 1610 1611 case ABIArgInfo::Indirect: { 1612 assert(NumIRArgs == 1); 1613 // indirect arguments are always on the stack, which is alloca addr space. 1614 llvm::Type *LTy = ConvertTypeForMem(it->type); 1615 ArgTypes[FirstIRArg] = LTy->getPointerTo( 1616 CGM.getDataLayout().getAllocaAddrSpace()); 1617 break; 1618 } 1619 1620 case ABIArgInfo::Extend: 1621 case ABIArgInfo::Direct: { 1622 // Fast-isel and the optimizer generally like scalar values better than 1623 // FCAs, so we flatten them if this is safe to do for this argument. 1624 llvm::Type *argType = ArgInfo.getCoerceToType(); 1625 llvm::StructType *st = dyn_cast<llvm::StructType>(argType); 1626 if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 1627 assert(NumIRArgs == st->getNumElements()); 1628 for (unsigned i = 0, e = st->getNumElements(); i != e; ++i) 1629 ArgTypes[FirstIRArg + i] = st->getElementType(i); 1630 } else { 1631 assert(NumIRArgs == 1); 1632 ArgTypes[FirstIRArg] = argType; 1633 } 1634 break; 1635 } 1636 1637 case ABIArgInfo::CoerceAndExpand: { 1638 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1639 for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) { 1640 *ArgTypesIter++ = EltTy; 1641 } 1642 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1643 break; 1644 } 1645 1646 case ABIArgInfo::Expand: 1647 auto ArgTypesIter = ArgTypes.begin() + FirstIRArg; 1648 getExpandedTypes(it->type, ArgTypesIter); 1649 assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs); 1650 break; 1651 } 1652 } 1653 1654 bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased; 1655 assert(Erased && "Not in set?"); 1656 1657 return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic()); 1658 } 1659 1660 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) { 1661 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 1662 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 1663 1664 if (!isFuncTypeConvertible(FPT)) 1665 return llvm::StructType::get(getLLVMContext()); 1666 1667 const CGFunctionInfo *Info; 1668 if (isa<CXXDestructorDecl>(MD)) 1669 Info = 1670 &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType())); 1671 else 1672 Info = &arrangeCXXMethodDeclaration(MD); 1673 return GetFunctionType(*Info); 1674 } 1675 1676 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx, 1677 llvm::AttrBuilder &FuncAttrs, 1678 const FunctionProtoType *FPT) { 1679 if (!FPT) 1680 return; 1681 1682 if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) && 1683 FPT->isNothrow(Ctx)) 1684 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1685 } 1686 1687 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone, 1688 bool AttrOnCallSite, 1689 llvm::AttrBuilder &FuncAttrs) { 1690 // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed. 1691 if (!HasOptnone) { 1692 if (CodeGenOpts.OptimizeSize) 1693 FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize); 1694 if (CodeGenOpts.OptimizeSize == 2) 1695 FuncAttrs.addAttribute(llvm::Attribute::MinSize); 1696 } 1697 1698 if (CodeGenOpts.DisableRedZone) 1699 FuncAttrs.addAttribute(llvm::Attribute::NoRedZone); 1700 if (CodeGenOpts.NoImplicitFloat) 1701 FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat); 1702 1703 if (AttrOnCallSite) { 1704 // Attributes that should go on the call site only. 1705 if (!CodeGenOpts.SimplifyLibCalls || 1706 CodeGenOpts.isNoBuiltinFunc(Name.data())) 1707 FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin); 1708 if (!CodeGenOpts.TrapFuncName.empty()) 1709 FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName); 1710 } else { 1711 // Attributes that should go on the function, but not the call site. 1712 if (!CodeGenOpts.DisableFPElim) { 1713 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1714 } else if (CodeGenOpts.OmitLeafFramePointer) { 1715 FuncAttrs.addAttribute("no-frame-pointer-elim", "false"); 1716 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1717 } else { 1718 FuncAttrs.addAttribute("no-frame-pointer-elim", "true"); 1719 FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf"); 1720 } 1721 1722 FuncAttrs.addAttribute("less-precise-fpmad", 1723 llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD)); 1724 1725 if (!CodeGenOpts.FPDenormalMode.empty()) 1726 FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode); 1727 1728 FuncAttrs.addAttribute("no-trapping-math", 1729 llvm::toStringRef(CodeGenOpts.NoTrappingMath)); 1730 1731 // TODO: Are these all needed? 1732 // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags. 1733 FuncAttrs.addAttribute("no-infs-fp-math", 1734 llvm::toStringRef(CodeGenOpts.NoInfsFPMath)); 1735 FuncAttrs.addAttribute("no-nans-fp-math", 1736 llvm::toStringRef(CodeGenOpts.NoNaNsFPMath)); 1737 FuncAttrs.addAttribute("unsafe-fp-math", 1738 llvm::toStringRef(CodeGenOpts.UnsafeFPMath)); 1739 FuncAttrs.addAttribute("use-soft-float", 1740 llvm::toStringRef(CodeGenOpts.SoftFloat)); 1741 FuncAttrs.addAttribute("stack-protector-buffer-size", 1742 llvm::utostr(CodeGenOpts.SSPBufferSize)); 1743 FuncAttrs.addAttribute("no-signed-zeros-fp-math", 1744 llvm::toStringRef(CodeGenOpts.NoSignedZeros)); 1745 FuncAttrs.addAttribute( 1746 "correctly-rounded-divide-sqrt-fp-math", 1747 llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt)); 1748 1749 // TODO: Reciprocal estimate codegen options should apply to instructions? 1750 const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals; 1751 if (!Recips.empty()) 1752 FuncAttrs.addAttribute("reciprocal-estimates", 1753 llvm::join(Recips, ",")); 1754 1755 if (!CodeGenOpts.PreferVectorWidth.empty() && 1756 CodeGenOpts.PreferVectorWidth != "none") 1757 FuncAttrs.addAttribute("prefer-vector-width", 1758 CodeGenOpts.PreferVectorWidth); 1759 1760 if (CodeGenOpts.StackRealignment) 1761 FuncAttrs.addAttribute("stackrealign"); 1762 if (CodeGenOpts.Backchain) 1763 FuncAttrs.addAttribute("backchain"); 1764 } 1765 1766 if (getLangOpts().assumeFunctionsAreConvergent()) { 1767 // Conservatively, mark all functions and calls in CUDA and OpenCL as 1768 // convergent (meaning, they may call an intrinsically convergent op, such 1769 // as __syncthreads() / barrier(), and so can't have certain optimizations 1770 // applied around them). LLVM will remove this attribute where it safely 1771 // can. 1772 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1773 } 1774 1775 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) { 1776 // Exceptions aren't supported in CUDA device code. 1777 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1778 1779 // Respect -fcuda-flush-denormals-to-zero. 1780 if (getLangOpts().CUDADeviceFlushDenormalsToZero) 1781 FuncAttrs.addAttribute("nvptx-f32ftz", "true"); 1782 } 1783 } 1784 1785 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) { 1786 llvm::AttrBuilder FuncAttrs; 1787 ConstructDefaultFnAttrList(F.getName(), 1788 F.hasFnAttribute(llvm::Attribute::OptimizeNone), 1789 /* AttrOnCallsite = */ false, FuncAttrs); 1790 F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs); 1791 } 1792 1793 void CodeGenModule::ConstructAttributeList( 1794 StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo, 1795 llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) { 1796 llvm::AttrBuilder FuncAttrs; 1797 llvm::AttrBuilder RetAttrs; 1798 1799 CallingConv = FI.getEffectiveCallingConvention(); 1800 if (FI.isNoReturn()) 1801 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1802 1803 // If we have information about the function prototype, we can learn 1804 // attributes form there. 1805 AddAttributesFromFunctionProtoType(getContext(), FuncAttrs, 1806 CalleeInfo.getCalleeFunctionProtoType()); 1807 1808 const Decl *TargetDecl = CalleeInfo.getCalleeDecl(); 1809 1810 bool HasOptnone = false; 1811 // FIXME: handle sseregparm someday... 1812 if (TargetDecl) { 1813 if (TargetDecl->hasAttr<ReturnsTwiceAttr>()) 1814 FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice); 1815 if (TargetDecl->hasAttr<NoThrowAttr>()) 1816 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1817 if (TargetDecl->hasAttr<NoReturnAttr>()) 1818 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1819 if (TargetDecl->hasAttr<ColdAttr>()) 1820 FuncAttrs.addAttribute(llvm::Attribute::Cold); 1821 if (TargetDecl->hasAttr<NoDuplicateAttr>()) 1822 FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate); 1823 if (TargetDecl->hasAttr<ConvergentAttr>()) 1824 FuncAttrs.addAttribute(llvm::Attribute::Convergent); 1825 1826 if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1827 AddAttributesFromFunctionProtoType( 1828 getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>()); 1829 // Don't use [[noreturn]] or _Noreturn for a call to a virtual function. 1830 // These attributes are not inherited by overloads. 1831 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn); 1832 if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual())) 1833 FuncAttrs.addAttribute(llvm::Attribute::NoReturn); 1834 } 1835 1836 // 'const', 'pure' and 'noalias' attributed functions are also nounwind. 1837 if (TargetDecl->hasAttr<ConstAttr>()) { 1838 FuncAttrs.addAttribute(llvm::Attribute::ReadNone); 1839 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1840 } else if (TargetDecl->hasAttr<PureAttr>()) { 1841 FuncAttrs.addAttribute(llvm::Attribute::ReadOnly); 1842 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1843 } else if (TargetDecl->hasAttr<NoAliasAttr>()) { 1844 FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly); 1845 FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); 1846 } 1847 if (TargetDecl->hasAttr<RestrictAttr>()) 1848 RetAttrs.addAttribute(llvm::Attribute::NoAlias); 1849 if (TargetDecl->hasAttr<ReturnsNonNullAttr>()) 1850 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1851 if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>()) 1852 FuncAttrs.addAttribute("no_caller_saved_registers"); 1853 1854 HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>(); 1855 if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) { 1856 Optional<unsigned> NumElemsParam; 1857 // alloc_size args are base-1, 0 means not present. 1858 if (unsigned N = AllocSize->getNumElemsParam()) 1859 NumElemsParam = N - 1; 1860 FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam() - 1, 1861 NumElemsParam); 1862 } 1863 } 1864 1865 ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs); 1866 1867 if (CodeGenOpts.EnableSegmentedStacks && 1868 !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>())) 1869 FuncAttrs.addAttribute("split-stack"); 1870 1871 // Add NonLazyBind attribute to function declarations when -fno-plt 1872 // is used. 1873 if (TargetDecl && CodeGenOpts.NoPLT) { 1874 if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) { 1875 if (!Fn->isDefined() && !AttrOnCallSite) { 1876 FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind); 1877 } 1878 } 1879 } 1880 1881 if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) { 1882 if (getLangOpts().OpenCLVersion <= 120) { 1883 // OpenCL v1.2 Work groups are always uniform 1884 FuncAttrs.addAttribute("uniform-work-group-size", "true"); 1885 } else { 1886 // OpenCL v2.0 Work groups may be whether uniform or not. 1887 // '-cl-uniform-work-group-size' compile option gets a hint 1888 // to the compiler that the global work-size be a multiple of 1889 // the work-group size specified to clEnqueueNDRangeKernel 1890 // (i.e. work groups are uniform). 1891 FuncAttrs.addAttribute("uniform-work-group-size", 1892 llvm::toStringRef(CodeGenOpts.UniformWGSize)); 1893 } 1894 } 1895 1896 if (!AttrOnCallSite) { 1897 bool DisableTailCalls = false; 1898 1899 if (CodeGenOpts.DisableTailCalls) 1900 DisableTailCalls = true; 1901 else if (TargetDecl) { 1902 if (TargetDecl->hasAttr<DisableTailCallsAttr>() || 1903 TargetDecl->hasAttr<AnyX86InterruptAttr>()) 1904 DisableTailCalls = true; 1905 else if (CodeGenOpts.NoEscapingBlockTailCalls) { 1906 if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl)) 1907 if (!BD->doesNotEscape()) 1908 DisableTailCalls = true; 1909 } 1910 } 1911 1912 FuncAttrs.addAttribute("disable-tail-calls", 1913 llvm::toStringRef(DisableTailCalls)); 1914 GetCPUAndFeaturesAttributes(TargetDecl, FuncAttrs); 1915 } 1916 1917 ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI); 1918 1919 QualType RetTy = FI.getReturnType(); 1920 const ABIArgInfo &RetAI = FI.getReturnInfo(); 1921 switch (RetAI.getKind()) { 1922 case ABIArgInfo::Extend: 1923 if (RetAI.isSignExt()) 1924 RetAttrs.addAttribute(llvm::Attribute::SExt); 1925 else 1926 RetAttrs.addAttribute(llvm::Attribute::ZExt); 1927 LLVM_FALLTHROUGH; 1928 case ABIArgInfo::Direct: 1929 if (RetAI.getInReg()) 1930 RetAttrs.addAttribute(llvm::Attribute::InReg); 1931 break; 1932 case ABIArgInfo::Ignore: 1933 break; 1934 1935 case ABIArgInfo::InAlloca: 1936 case ABIArgInfo::Indirect: { 1937 // inalloca and sret disable readnone and readonly 1938 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 1939 .removeAttribute(llvm::Attribute::ReadNone); 1940 break; 1941 } 1942 1943 case ABIArgInfo::CoerceAndExpand: 1944 break; 1945 1946 case ABIArgInfo::Expand: 1947 llvm_unreachable("Invalid ABI kind for return argument"); 1948 } 1949 1950 if (const auto *RefTy = RetTy->getAs<ReferenceType>()) { 1951 QualType PTy = RefTy->getPointeeType(); 1952 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 1953 RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 1954 .getQuantity()); 1955 else if (getContext().getTargetAddressSpace(PTy) == 0) 1956 RetAttrs.addAttribute(llvm::Attribute::NonNull); 1957 } 1958 1959 bool hasUsedSRet = false; 1960 SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs()); 1961 1962 // Attach attributes to sret. 1963 if (IRFunctionArgs.hasSRetArg()) { 1964 llvm::AttrBuilder SRETAttrs; 1965 SRETAttrs.addAttribute(llvm::Attribute::StructRet); 1966 hasUsedSRet = true; 1967 if (RetAI.getInReg()) 1968 SRETAttrs.addAttribute(llvm::Attribute::InReg); 1969 ArgAttrs[IRFunctionArgs.getSRetArgNo()] = 1970 llvm::AttributeSet::get(getLLVMContext(), SRETAttrs); 1971 } 1972 1973 // Attach attributes to inalloca argument. 1974 if (IRFunctionArgs.hasInallocaArg()) { 1975 llvm::AttrBuilder Attrs; 1976 Attrs.addAttribute(llvm::Attribute::InAlloca); 1977 ArgAttrs[IRFunctionArgs.getInallocaArgNo()] = 1978 llvm::AttributeSet::get(getLLVMContext(), Attrs); 1979 } 1980 1981 unsigned ArgNo = 0; 1982 for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(), 1983 E = FI.arg_end(); 1984 I != E; ++I, ++ArgNo) { 1985 QualType ParamType = I->type; 1986 const ABIArgInfo &AI = I->info; 1987 llvm::AttrBuilder Attrs; 1988 1989 // Add attribute for padding argument, if necessary. 1990 if (IRFunctionArgs.hasPaddingArg(ArgNo)) { 1991 if (AI.getPaddingInReg()) { 1992 ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 1993 llvm::AttributeSet::get( 1994 getLLVMContext(), 1995 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg)); 1996 } 1997 } 1998 1999 // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we 2000 // have the corresponding parameter variable. It doesn't make 2001 // sense to do it here because parameters are so messed up. 2002 switch (AI.getKind()) { 2003 case ABIArgInfo::Extend: 2004 if (AI.isSignExt()) 2005 Attrs.addAttribute(llvm::Attribute::SExt); 2006 else 2007 Attrs.addAttribute(llvm::Attribute::ZExt); 2008 LLVM_FALLTHROUGH; 2009 case ABIArgInfo::Direct: 2010 if (ArgNo == 0 && FI.isChainCall()) 2011 Attrs.addAttribute(llvm::Attribute::Nest); 2012 else if (AI.getInReg()) 2013 Attrs.addAttribute(llvm::Attribute::InReg); 2014 break; 2015 2016 case ABIArgInfo::Indirect: { 2017 if (AI.getInReg()) 2018 Attrs.addAttribute(llvm::Attribute::InReg); 2019 2020 if (AI.getIndirectByVal()) 2021 Attrs.addAttribute(llvm::Attribute::ByVal); 2022 2023 CharUnits Align = AI.getIndirectAlign(); 2024 2025 // In a byval argument, it is important that the required 2026 // alignment of the type is honored, as LLVM might be creating a 2027 // *new* stack object, and needs to know what alignment to give 2028 // it. (Sometimes it can deduce a sensible alignment on its own, 2029 // but not if clang decides it must emit a packed struct, or the 2030 // user specifies increased alignment requirements.) 2031 // 2032 // This is different from indirect *not* byval, where the object 2033 // exists already, and the align attribute is purely 2034 // informative. 2035 assert(!Align.isZero()); 2036 2037 // For now, only add this when we have a byval argument. 2038 // TODO: be less lazy about updating test cases. 2039 if (AI.getIndirectByVal()) 2040 Attrs.addAlignmentAttr(Align.getQuantity()); 2041 2042 // byval disables readnone and readonly. 2043 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2044 .removeAttribute(llvm::Attribute::ReadNone); 2045 break; 2046 } 2047 case ABIArgInfo::Ignore: 2048 case ABIArgInfo::Expand: 2049 case ABIArgInfo::CoerceAndExpand: 2050 break; 2051 2052 case ABIArgInfo::InAlloca: 2053 // inalloca disables readnone and readonly. 2054 FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly) 2055 .removeAttribute(llvm::Attribute::ReadNone); 2056 continue; 2057 } 2058 2059 if (const auto *RefTy = ParamType->getAs<ReferenceType>()) { 2060 QualType PTy = RefTy->getPointeeType(); 2061 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) 2062 Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy) 2063 .getQuantity()); 2064 else if (getContext().getTargetAddressSpace(PTy) == 0) 2065 Attrs.addAttribute(llvm::Attribute::NonNull); 2066 } 2067 2068 switch (FI.getExtParameterInfo(ArgNo).getABI()) { 2069 case ParameterABI::Ordinary: 2070 break; 2071 2072 case ParameterABI::SwiftIndirectResult: { 2073 // Add 'sret' if we haven't already used it for something, but 2074 // only if the result is void. 2075 if (!hasUsedSRet && RetTy->isVoidType()) { 2076 Attrs.addAttribute(llvm::Attribute::StructRet); 2077 hasUsedSRet = true; 2078 } 2079 2080 // Add 'noalias' in either case. 2081 Attrs.addAttribute(llvm::Attribute::NoAlias); 2082 2083 // Add 'dereferenceable' and 'alignment'. 2084 auto PTy = ParamType->getPointeeType(); 2085 if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) { 2086 auto info = getContext().getTypeInfoInChars(PTy); 2087 Attrs.addDereferenceableAttr(info.first.getQuantity()); 2088 Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(), 2089 info.second.getQuantity())); 2090 } 2091 break; 2092 } 2093 2094 case ParameterABI::SwiftErrorResult: 2095 Attrs.addAttribute(llvm::Attribute::SwiftError); 2096 break; 2097 2098 case ParameterABI::SwiftContext: 2099 Attrs.addAttribute(llvm::Attribute::SwiftSelf); 2100 break; 2101 } 2102 2103 if (FI.getExtParameterInfo(ArgNo).isNoEscape()) 2104 Attrs.addAttribute(llvm::Attribute::NoCapture); 2105 2106 if (Attrs.hasAttributes()) { 2107 unsigned FirstIRArg, NumIRArgs; 2108 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2109 for (unsigned i = 0; i < NumIRArgs; i++) 2110 ArgAttrs[FirstIRArg + i] = 2111 llvm::AttributeSet::get(getLLVMContext(), Attrs); 2112 } 2113 } 2114 assert(ArgNo == FI.arg_size()); 2115 2116 AttrList = llvm::AttributeList::get( 2117 getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs), 2118 llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs); 2119 } 2120 2121 /// An argument came in as a promoted argument; demote it back to its 2122 /// declared type. 2123 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF, 2124 const VarDecl *var, 2125 llvm::Value *value) { 2126 llvm::Type *varType = CGF.ConvertType(var->getType()); 2127 2128 // This can happen with promotions that actually don't change the 2129 // underlying type, like the enum promotions. 2130 if (value->getType() == varType) return value; 2131 2132 assert((varType->isIntegerTy() || varType->isFloatingPointTy()) 2133 && "unexpected promotion type"); 2134 2135 if (isa<llvm::IntegerType>(varType)) 2136 return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote"); 2137 2138 return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote"); 2139 } 2140 2141 /// Returns the attribute (either parameter attribute, or function 2142 /// attribute), which declares argument ArgNo to be non-null. 2143 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD, 2144 QualType ArgType, unsigned ArgNo) { 2145 // FIXME: __attribute__((nonnull)) can also be applied to: 2146 // - references to pointers, where the pointee is known to be 2147 // nonnull (apparently a Clang extension) 2148 // - transparent unions containing pointers 2149 // In the former case, LLVM IR cannot represent the constraint. In 2150 // the latter case, we have no guarantee that the transparent union 2151 // is in fact passed as a pointer. 2152 if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType()) 2153 return nullptr; 2154 // First, check attribute on parameter itself. 2155 if (PVD) { 2156 if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>()) 2157 return ParmNNAttr; 2158 } 2159 // Check function attributes. 2160 if (!FD) 2161 return nullptr; 2162 for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) { 2163 if (NNAttr->isNonNull(ArgNo)) 2164 return NNAttr; 2165 } 2166 return nullptr; 2167 } 2168 2169 namespace { 2170 struct CopyBackSwiftError final : EHScopeStack::Cleanup { 2171 Address Temp; 2172 Address Arg; 2173 CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {} 2174 void Emit(CodeGenFunction &CGF, Flags flags) override { 2175 llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp); 2176 CGF.Builder.CreateStore(errorValue, Arg); 2177 } 2178 }; 2179 } 2180 2181 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI, 2182 llvm::Function *Fn, 2183 const FunctionArgList &Args) { 2184 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) 2185 // Naked functions don't have prologues. 2186 return; 2187 2188 // If this is an implicit-return-zero function, go ahead and 2189 // initialize the return value. TODO: it might be nice to have 2190 // a more general mechanism for this that didn't require synthesized 2191 // return statements. 2192 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) { 2193 if (FD->hasImplicitReturnZero()) { 2194 QualType RetTy = FD->getReturnType().getUnqualifiedType(); 2195 llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy); 2196 llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy); 2197 Builder.CreateStore(Zero, ReturnValue); 2198 } 2199 } 2200 2201 // FIXME: We no longer need the types from FunctionArgList; lift up and 2202 // simplify. 2203 2204 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI); 2205 // Flattened function arguments. 2206 SmallVector<llvm::Value *, 16> FnArgs; 2207 FnArgs.reserve(IRFunctionArgs.totalIRArgs()); 2208 for (auto &Arg : Fn->args()) { 2209 FnArgs.push_back(&Arg); 2210 } 2211 assert(FnArgs.size() == IRFunctionArgs.totalIRArgs()); 2212 2213 // If we're using inalloca, all the memory arguments are GEPs off of the last 2214 // parameter, which is a pointer to the complete memory area. 2215 Address ArgStruct = Address::invalid(); 2216 const llvm::StructLayout *ArgStructLayout = nullptr; 2217 if (IRFunctionArgs.hasInallocaArg()) { 2218 ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct()); 2219 ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()], 2220 FI.getArgStructAlignment()); 2221 2222 assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo()); 2223 } 2224 2225 // Name the struct return parameter. 2226 if (IRFunctionArgs.hasSRetArg()) { 2227 auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]); 2228 AI->setName("agg.result"); 2229 AI->addAttr(llvm::Attribute::NoAlias); 2230 } 2231 2232 // Track if we received the parameter as a pointer (indirect, byval, or 2233 // inalloca). If already have a pointer, EmitParmDecl doesn't need to copy it 2234 // into a local alloca for us. 2235 SmallVector<ParamValue, 16> ArgVals; 2236 ArgVals.reserve(Args.size()); 2237 2238 // Create a pointer value for every parameter declaration. This usually 2239 // entails copying one or more LLVM IR arguments into an alloca. Don't push 2240 // any cleanups or do anything that might unwind. We do that separately, so 2241 // we can push the cleanups in the correct order for the ABI. 2242 assert(FI.arg_size() == Args.size() && 2243 "Mismatch between function signature & arguments."); 2244 unsigned ArgNo = 0; 2245 CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin(); 2246 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 2247 i != e; ++i, ++info_it, ++ArgNo) { 2248 const VarDecl *Arg = *i; 2249 const ABIArgInfo &ArgI = info_it->info; 2250 2251 bool isPromoted = 2252 isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted(); 2253 // We are converting from ABIArgInfo type to VarDecl type directly, unless 2254 // the parameter is promoted. In this case we convert to 2255 // CGFunctionInfo::ArgInfo type with subsequent argument demotion. 2256 QualType Ty = isPromoted ? info_it->type : Arg->getType(); 2257 assert(hasScalarEvaluationKind(Ty) == 2258 hasScalarEvaluationKind(Arg->getType())); 2259 2260 unsigned FirstIRArg, NumIRArgs; 2261 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 2262 2263 switch (ArgI.getKind()) { 2264 case ABIArgInfo::InAlloca: { 2265 assert(NumIRArgs == 0); 2266 auto FieldIndex = ArgI.getInAllocaFieldIndex(); 2267 CharUnits FieldOffset = 2268 CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex)); 2269 Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset, 2270 Arg->getName()); 2271 ArgVals.push_back(ParamValue::forIndirect(V)); 2272 break; 2273 } 2274 2275 case ABIArgInfo::Indirect: { 2276 assert(NumIRArgs == 1); 2277 Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign()); 2278 2279 if (!hasScalarEvaluationKind(Ty)) { 2280 // Aggregates and complex variables are accessed by reference. All we 2281 // need to do is realign the value, if requested. 2282 Address V = ParamAddr; 2283 if (ArgI.getIndirectRealign()) { 2284 Address AlignedTemp = CreateMemTemp(Ty, "coerce"); 2285 2286 // Copy from the incoming argument pointer to the temporary with the 2287 // appropriate alignment. 2288 // 2289 // FIXME: We should have a common utility for generating an aggregate 2290 // copy. 2291 CharUnits Size = getContext().getTypeSizeInChars(Ty); 2292 auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()); 2293 Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy); 2294 Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy); 2295 Builder.CreateMemCpy(Dst, Src, SizeVal, false); 2296 V = AlignedTemp; 2297 } 2298 ArgVals.push_back(ParamValue::forIndirect(V)); 2299 } else { 2300 // Load scalar value from indirect argument. 2301 llvm::Value *V = 2302 EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart()); 2303 2304 if (isPromoted) 2305 V = emitArgumentDemotion(*this, Arg, V); 2306 ArgVals.push_back(ParamValue::forDirect(V)); 2307 } 2308 break; 2309 } 2310 2311 case ABIArgInfo::Extend: 2312 case ABIArgInfo::Direct: { 2313 2314 // If we have the trivial case, handle it with no muss and fuss. 2315 if (!isa<llvm::StructType>(ArgI.getCoerceToType()) && 2316 ArgI.getCoerceToType() == ConvertType(Ty) && 2317 ArgI.getDirectOffset() == 0) { 2318 assert(NumIRArgs == 1); 2319 llvm::Value *V = FnArgs[FirstIRArg]; 2320 auto AI = cast<llvm::Argument>(V); 2321 2322 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) { 2323 if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(), 2324 PVD->getFunctionScopeIndex())) 2325 AI->addAttr(llvm::Attribute::NonNull); 2326 2327 QualType OTy = PVD->getOriginalType(); 2328 if (const auto *ArrTy = 2329 getContext().getAsConstantArrayType(OTy)) { 2330 // A C99 array parameter declaration with the static keyword also 2331 // indicates dereferenceability, and if the size is constant we can 2332 // use the dereferenceable attribute (which requires the size in 2333 // bytes). 2334 if (ArrTy->getSizeModifier() == ArrayType::Static) { 2335 QualType ETy = ArrTy->getElementType(); 2336 uint64_t ArrSize = ArrTy->getSize().getZExtValue(); 2337 if (!ETy->isIncompleteType() && ETy->isConstantSizeType() && 2338 ArrSize) { 2339 llvm::AttrBuilder Attrs; 2340 Attrs.addDereferenceableAttr( 2341 getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize); 2342 AI->addAttrs(Attrs); 2343 } else if (getContext().getTargetAddressSpace(ETy) == 0) { 2344 AI->addAttr(llvm::Attribute::NonNull); 2345 } 2346 } 2347 } else if (const auto *ArrTy = 2348 getContext().getAsVariableArrayType(OTy)) { 2349 // For C99 VLAs with the static keyword, we don't know the size so 2350 // we can't use the dereferenceable attribute, but in addrspace(0) 2351 // we know that it must be nonnull. 2352 if (ArrTy->getSizeModifier() == VariableArrayType::Static && 2353 !getContext().getTargetAddressSpace(ArrTy->getElementType())) 2354 AI->addAttr(llvm::Attribute::NonNull); 2355 } 2356 2357 const auto *AVAttr = PVD->getAttr<AlignValueAttr>(); 2358 if (!AVAttr) 2359 if (const auto *TOTy = dyn_cast<TypedefType>(OTy)) 2360 AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>(); 2361 if (AVAttr) { 2362 llvm::Value *AlignmentValue = 2363 EmitScalarExpr(AVAttr->getAlignment()); 2364 llvm::ConstantInt *AlignmentCI = 2365 cast<llvm::ConstantInt>(AlignmentValue); 2366 unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(), 2367 +llvm::Value::MaximumAlignment); 2368 AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment)); 2369 } 2370 } 2371 2372 if (Arg->getType().isRestrictQualified()) 2373 AI->addAttr(llvm::Attribute::NoAlias); 2374 2375 // LLVM expects swifterror parameters to be used in very restricted 2376 // ways. Copy the value into a less-restricted temporary. 2377 if (FI.getExtParameterInfo(ArgNo).getABI() 2378 == ParameterABI::SwiftErrorResult) { 2379 QualType pointeeTy = Ty->getPointeeType(); 2380 assert(pointeeTy->isPointerType()); 2381 Address temp = 2382 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 2383 Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy)); 2384 llvm::Value *incomingErrorValue = Builder.CreateLoad(arg); 2385 Builder.CreateStore(incomingErrorValue, temp); 2386 V = temp.getPointer(); 2387 2388 // Push a cleanup to copy the value back at the end of the function. 2389 // The convention does not guarantee that the value will be written 2390 // back if the function exits with an unwind exception. 2391 EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg); 2392 } 2393 2394 // Ensure the argument is the correct type. 2395 if (V->getType() != ArgI.getCoerceToType()) 2396 V = Builder.CreateBitCast(V, ArgI.getCoerceToType()); 2397 2398 if (isPromoted) 2399 V = emitArgumentDemotion(*this, Arg, V); 2400 2401 // Because of merging of function types from multiple decls it is 2402 // possible for the type of an argument to not match the corresponding 2403 // type in the function type. Since we are codegening the callee 2404 // in here, add a cast to the argument type. 2405 llvm::Type *LTy = ConvertType(Arg->getType()); 2406 if (V->getType() != LTy) 2407 V = Builder.CreateBitCast(V, LTy); 2408 2409 ArgVals.push_back(ParamValue::forDirect(V)); 2410 break; 2411 } 2412 2413 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg), 2414 Arg->getName()); 2415 2416 // Pointer to store into. 2417 Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI); 2418 2419 // Fast-isel and the optimizer generally like scalar values better than 2420 // FCAs, so we flatten them if this is safe to do for this argument. 2421 llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType()); 2422 if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy && 2423 STy->getNumElements() > 1) { 2424 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 2425 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy); 2426 llvm::Type *DstTy = Ptr.getElementType(); 2427 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy); 2428 2429 Address AddrToStoreInto = Address::invalid(); 2430 if (SrcSize <= DstSize) { 2431 AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy); 2432 } else { 2433 AddrToStoreInto = 2434 CreateTempAlloca(STy, Alloca.getAlignment(), "coerce"); 2435 } 2436 2437 assert(STy->getNumElements() == NumIRArgs); 2438 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 2439 auto AI = FnArgs[FirstIRArg + i]; 2440 AI->setName(Arg->getName() + ".coerce" + Twine(i)); 2441 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 2442 Address EltPtr = 2443 Builder.CreateStructGEP(AddrToStoreInto, i, Offset); 2444 Builder.CreateStore(AI, EltPtr); 2445 } 2446 2447 if (SrcSize > DstSize) { 2448 Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize); 2449 } 2450 2451 } else { 2452 // Simple case, just do a coerced store of the argument into the alloca. 2453 assert(NumIRArgs == 1); 2454 auto AI = FnArgs[FirstIRArg]; 2455 AI->setName(Arg->getName() + ".coerce"); 2456 CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this); 2457 } 2458 2459 // Match to what EmitParmDecl is expecting for this type. 2460 if (CodeGenFunction::hasScalarEvaluationKind(Ty)) { 2461 llvm::Value *V = 2462 EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart()); 2463 if (isPromoted) 2464 V = emitArgumentDemotion(*this, Arg, V); 2465 ArgVals.push_back(ParamValue::forDirect(V)); 2466 } else { 2467 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2468 } 2469 break; 2470 } 2471 2472 case ABIArgInfo::CoerceAndExpand: { 2473 // Reconstruct into a temporary. 2474 Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2475 ArgVals.push_back(ParamValue::forIndirect(alloca)); 2476 2477 auto coercionType = ArgI.getCoerceAndExpandType(); 2478 alloca = Builder.CreateElementBitCast(alloca, coercionType); 2479 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2480 2481 unsigned argIndex = FirstIRArg; 2482 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2483 llvm::Type *eltType = coercionType->getElementType(i); 2484 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) 2485 continue; 2486 2487 auto eltAddr = Builder.CreateStructGEP(alloca, i, layout); 2488 auto elt = FnArgs[argIndex++]; 2489 Builder.CreateStore(elt, eltAddr); 2490 } 2491 assert(argIndex == FirstIRArg + NumIRArgs); 2492 break; 2493 } 2494 2495 case ABIArgInfo::Expand: { 2496 // If this structure was expanded into multiple arguments then 2497 // we need to create a temporary and reconstruct it from the 2498 // arguments. 2499 Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg)); 2500 LValue LV = MakeAddrLValue(Alloca, Ty); 2501 ArgVals.push_back(ParamValue::forIndirect(Alloca)); 2502 2503 auto FnArgIter = FnArgs.begin() + FirstIRArg; 2504 ExpandTypeFromArgs(Ty, LV, FnArgIter); 2505 assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs); 2506 for (unsigned i = 0, e = NumIRArgs; i != e; ++i) { 2507 auto AI = FnArgs[FirstIRArg + i]; 2508 AI->setName(Arg->getName() + "." + Twine(i)); 2509 } 2510 break; 2511 } 2512 2513 case ABIArgInfo::Ignore: 2514 assert(NumIRArgs == 0); 2515 // Initialize the local variable appropriately. 2516 if (!hasScalarEvaluationKind(Ty)) { 2517 ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty))); 2518 } else { 2519 llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType())); 2520 ArgVals.push_back(ParamValue::forDirect(U)); 2521 } 2522 break; 2523 } 2524 } 2525 2526 if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) { 2527 for (int I = Args.size() - 1; I >= 0; --I) 2528 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2529 } else { 2530 for (unsigned I = 0, E = Args.size(); I != E; ++I) 2531 EmitParmDecl(*Args[I], ArgVals[I], I + 1); 2532 } 2533 } 2534 2535 static void eraseUnusedBitCasts(llvm::Instruction *insn) { 2536 while (insn->use_empty()) { 2537 llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn); 2538 if (!bitcast) return; 2539 2540 // This is "safe" because we would have used a ConstantExpr otherwise. 2541 insn = cast<llvm::Instruction>(bitcast->getOperand(0)); 2542 bitcast->eraseFromParent(); 2543 } 2544 } 2545 2546 /// Try to emit a fused autorelease of a return result. 2547 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF, 2548 llvm::Value *result) { 2549 // We must be immediately followed the cast. 2550 llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock(); 2551 if (BB->empty()) return nullptr; 2552 if (&BB->back() != result) return nullptr; 2553 2554 llvm::Type *resultType = result->getType(); 2555 2556 // result is in a BasicBlock and is therefore an Instruction. 2557 llvm::Instruction *generator = cast<llvm::Instruction>(result); 2558 2559 SmallVector<llvm::Instruction *, 4> InstsToKill; 2560 2561 // Look for: 2562 // %generator = bitcast %type1* %generator2 to %type2* 2563 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) { 2564 // We would have emitted this as a constant if the operand weren't 2565 // an Instruction. 2566 generator = cast<llvm::Instruction>(bitcast->getOperand(0)); 2567 2568 // Require the generator to be immediately followed by the cast. 2569 if (generator->getNextNode() != bitcast) 2570 return nullptr; 2571 2572 InstsToKill.push_back(bitcast); 2573 } 2574 2575 // Look for: 2576 // %generator = call i8* @objc_retain(i8* %originalResult) 2577 // or 2578 // %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult) 2579 llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator); 2580 if (!call) return nullptr; 2581 2582 bool doRetainAutorelease; 2583 2584 if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) { 2585 doRetainAutorelease = true; 2586 } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints() 2587 .objc_retainAutoreleasedReturnValue) { 2588 doRetainAutorelease = false; 2589 2590 // If we emitted an assembly marker for this call (and the 2591 // ARCEntrypoints field should have been set if so), go looking 2592 // for that call. If we can't find it, we can't do this 2593 // optimization. But it should always be the immediately previous 2594 // instruction, unless we needed bitcasts around the call. 2595 if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) { 2596 llvm::Instruction *prev = call->getPrevNode(); 2597 assert(prev); 2598 if (isa<llvm::BitCastInst>(prev)) { 2599 prev = prev->getPrevNode(); 2600 assert(prev); 2601 } 2602 assert(isa<llvm::CallInst>(prev)); 2603 assert(cast<llvm::CallInst>(prev)->getCalledValue() == 2604 CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker); 2605 InstsToKill.push_back(prev); 2606 } 2607 } else { 2608 return nullptr; 2609 } 2610 2611 result = call->getArgOperand(0); 2612 InstsToKill.push_back(call); 2613 2614 // Keep killing bitcasts, for sanity. Note that we no longer care 2615 // about precise ordering as long as there's exactly one use. 2616 while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) { 2617 if (!bitcast->hasOneUse()) break; 2618 InstsToKill.push_back(bitcast); 2619 result = bitcast->getOperand(0); 2620 } 2621 2622 // Delete all the unnecessary instructions, from latest to earliest. 2623 for (auto *I : InstsToKill) 2624 I->eraseFromParent(); 2625 2626 // Do the fused retain/autorelease if we were asked to. 2627 if (doRetainAutorelease) 2628 result = CGF.EmitARCRetainAutoreleaseReturnValue(result); 2629 2630 // Cast back to the result type. 2631 return CGF.Builder.CreateBitCast(result, resultType); 2632 } 2633 2634 /// If this is a +1 of the value of an immutable 'self', remove it. 2635 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF, 2636 llvm::Value *result) { 2637 // This is only applicable to a method with an immutable 'self'. 2638 const ObjCMethodDecl *method = 2639 dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl); 2640 if (!method) return nullptr; 2641 const VarDecl *self = method->getSelfDecl(); 2642 if (!self->getType().isConstQualified()) return nullptr; 2643 2644 // Look for a retain call. 2645 llvm::CallInst *retainCall = 2646 dyn_cast<llvm::CallInst>(result->stripPointerCasts()); 2647 if (!retainCall || 2648 retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain) 2649 return nullptr; 2650 2651 // Look for an ordinary load of 'self'. 2652 llvm::Value *retainedValue = retainCall->getArgOperand(0); 2653 llvm::LoadInst *load = 2654 dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts()); 2655 if (!load || load->isAtomic() || load->isVolatile() || 2656 load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer()) 2657 return nullptr; 2658 2659 // Okay! Burn it all down. This relies for correctness on the 2660 // assumption that the retain is emitted as part of the return and 2661 // that thereafter everything is used "linearly". 2662 llvm::Type *resultType = result->getType(); 2663 eraseUnusedBitCasts(cast<llvm::Instruction>(result)); 2664 assert(retainCall->use_empty()); 2665 retainCall->eraseFromParent(); 2666 eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue)); 2667 2668 return CGF.Builder.CreateBitCast(load, resultType); 2669 } 2670 2671 /// Emit an ARC autorelease of the result of a function. 2672 /// 2673 /// \return the value to actually return from the function 2674 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF, 2675 llvm::Value *result) { 2676 // If we're returning 'self', kill the initial retain. This is a 2677 // heuristic attempt to "encourage correctness" in the really unfortunate 2678 // case where we have a return of self during a dealloc and we desperately 2679 // need to avoid the possible autorelease. 2680 if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result)) 2681 return self; 2682 2683 // At -O0, try to emit a fused retain/autorelease. 2684 if (CGF.shouldUseFusedARCCalls()) 2685 if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result)) 2686 return fused; 2687 2688 return CGF.EmitARCAutoreleaseReturnValue(result); 2689 } 2690 2691 /// Heuristically search for a dominating store to the return-value slot. 2692 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) { 2693 // Check if a User is a store which pointerOperand is the ReturnValue. 2694 // We are looking for stores to the ReturnValue, not for stores of the 2695 // ReturnValue to some other location. 2696 auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * { 2697 auto *SI = dyn_cast<llvm::StoreInst>(U); 2698 if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer()) 2699 return nullptr; 2700 // These aren't actually possible for non-coerced returns, and we 2701 // only care about non-coerced returns on this code path. 2702 assert(!SI->isAtomic() && !SI->isVolatile()); 2703 return SI; 2704 }; 2705 // If there are multiple uses of the return-value slot, just check 2706 // for something immediately preceding the IP. Sometimes this can 2707 // happen with how we generate implicit-returns; it can also happen 2708 // with noreturn cleanups. 2709 if (!CGF.ReturnValue.getPointer()->hasOneUse()) { 2710 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2711 if (IP->empty()) return nullptr; 2712 llvm::Instruction *I = &IP->back(); 2713 2714 // Skip lifetime markers 2715 for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(), 2716 IE = IP->rend(); 2717 II != IE; ++II) { 2718 if (llvm::IntrinsicInst *Intrinsic = 2719 dyn_cast<llvm::IntrinsicInst>(&*II)) { 2720 if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) { 2721 const llvm::Value *CastAddr = Intrinsic->getArgOperand(1); 2722 ++II; 2723 if (II == IE) 2724 break; 2725 if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II)) 2726 continue; 2727 } 2728 } 2729 I = &*II; 2730 break; 2731 } 2732 2733 return GetStoreIfValid(I); 2734 } 2735 2736 llvm::StoreInst *store = 2737 GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back()); 2738 if (!store) return nullptr; 2739 2740 // Now do a first-and-dirty dominance check: just walk up the 2741 // single-predecessors chain from the current insertion point. 2742 llvm::BasicBlock *StoreBB = store->getParent(); 2743 llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock(); 2744 while (IP != StoreBB) { 2745 if (!(IP = IP->getSinglePredecessor())) 2746 return nullptr; 2747 } 2748 2749 // Okay, the store's basic block dominates the insertion point; we 2750 // can do our thing. 2751 return store; 2752 } 2753 2754 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI, 2755 bool EmitRetDbgLoc, 2756 SourceLocation EndLoc) { 2757 if (FI.isNoReturn()) { 2758 // Noreturn functions don't return. 2759 EmitUnreachable(EndLoc); 2760 return; 2761 } 2762 2763 if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) { 2764 // Naked functions don't have epilogues. 2765 Builder.CreateUnreachable(); 2766 return; 2767 } 2768 2769 // Functions with no result always return void. 2770 if (!ReturnValue.isValid()) { 2771 Builder.CreateRetVoid(); 2772 return; 2773 } 2774 2775 llvm::DebugLoc RetDbgLoc; 2776 llvm::Value *RV = nullptr; 2777 QualType RetTy = FI.getReturnType(); 2778 const ABIArgInfo &RetAI = FI.getReturnInfo(); 2779 2780 switch (RetAI.getKind()) { 2781 case ABIArgInfo::InAlloca: 2782 // Aggregrates get evaluated directly into the destination. Sometimes we 2783 // need to return the sret value in a register, though. 2784 assert(hasAggregateEvaluationKind(RetTy)); 2785 if (RetAI.getInAllocaSRet()) { 2786 llvm::Function::arg_iterator EI = CurFn->arg_end(); 2787 --EI; 2788 llvm::Value *ArgStruct = &*EI; 2789 llvm::Value *SRet = Builder.CreateStructGEP( 2790 nullptr, ArgStruct, RetAI.getInAllocaFieldIndex()); 2791 RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret"); 2792 } 2793 break; 2794 2795 case ABIArgInfo::Indirect: { 2796 auto AI = CurFn->arg_begin(); 2797 if (RetAI.isSRetAfterThis()) 2798 ++AI; 2799 switch (getEvaluationKind(RetTy)) { 2800 case TEK_Complex: { 2801 ComplexPairTy RT = 2802 EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc); 2803 EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy), 2804 /*isInit*/ true); 2805 break; 2806 } 2807 case TEK_Aggregate: 2808 // Do nothing; aggregrates get evaluated directly into the destination. 2809 break; 2810 case TEK_Scalar: 2811 EmitStoreOfScalar(Builder.CreateLoad(ReturnValue), 2812 MakeNaturalAlignAddrLValue(&*AI, RetTy), 2813 /*isInit*/ true); 2814 break; 2815 } 2816 break; 2817 } 2818 2819 case ABIArgInfo::Extend: 2820 case ABIArgInfo::Direct: 2821 if (RetAI.getCoerceToType() == ConvertType(RetTy) && 2822 RetAI.getDirectOffset() == 0) { 2823 // The internal return value temp always will have pointer-to-return-type 2824 // type, just do a load. 2825 2826 // If there is a dominating store to ReturnValue, we can elide 2827 // the load, zap the store, and usually zap the alloca. 2828 if (llvm::StoreInst *SI = 2829 findDominatingStoreToReturnValue(*this)) { 2830 // Reuse the debug location from the store unless there is 2831 // cleanup code to be emitted between the store and return 2832 // instruction. 2833 if (EmitRetDbgLoc && !AutoreleaseResult) 2834 RetDbgLoc = SI->getDebugLoc(); 2835 // Get the stored value and nuke the now-dead store. 2836 RV = SI->getValueOperand(); 2837 SI->eraseFromParent(); 2838 2839 // If that was the only use of the return value, nuke it as well now. 2840 auto returnValueInst = ReturnValue.getPointer(); 2841 if (returnValueInst->use_empty()) { 2842 if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) { 2843 alloca->eraseFromParent(); 2844 ReturnValue = Address::invalid(); 2845 } 2846 } 2847 2848 // Otherwise, we have to do a simple load. 2849 } else { 2850 RV = Builder.CreateLoad(ReturnValue); 2851 } 2852 } else { 2853 // If the value is offset in memory, apply the offset now. 2854 Address V = emitAddressAtOffset(*this, ReturnValue, RetAI); 2855 2856 RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this); 2857 } 2858 2859 // In ARC, end functions that return a retainable type with a call 2860 // to objc_autoreleaseReturnValue. 2861 if (AutoreleaseResult) { 2862 #ifndef NDEBUG 2863 // Type::isObjCRetainabletype has to be called on a QualType that hasn't 2864 // been stripped of the typedefs, so we cannot use RetTy here. Get the 2865 // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from 2866 // CurCodeDecl or BlockInfo. 2867 QualType RT; 2868 2869 if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl)) 2870 RT = FD->getReturnType(); 2871 else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl)) 2872 RT = MD->getReturnType(); 2873 else if (isa<BlockDecl>(CurCodeDecl)) 2874 RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType(); 2875 else 2876 llvm_unreachable("Unexpected function/method type"); 2877 2878 assert(getLangOpts().ObjCAutoRefCount && 2879 !FI.isReturnsRetained() && 2880 RT->isObjCRetainableType()); 2881 #endif 2882 RV = emitAutoreleaseOfResult(*this, RV); 2883 } 2884 2885 break; 2886 2887 case ABIArgInfo::Ignore: 2888 break; 2889 2890 case ABIArgInfo::CoerceAndExpand: { 2891 auto coercionType = RetAI.getCoerceAndExpandType(); 2892 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 2893 2894 // Load all of the coerced elements out into results. 2895 llvm::SmallVector<llvm::Value*, 4> results; 2896 Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType); 2897 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 2898 auto coercedEltType = coercionType->getElementType(i); 2899 if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType)) 2900 continue; 2901 2902 auto eltAddr = Builder.CreateStructGEP(addr, i, layout); 2903 auto elt = Builder.CreateLoad(eltAddr); 2904 results.push_back(elt); 2905 } 2906 2907 // If we have one result, it's the single direct result type. 2908 if (results.size() == 1) { 2909 RV = results[0]; 2910 2911 // Otherwise, we need to make a first-class aggregate. 2912 } else { 2913 // Construct a return type that lacks padding elements. 2914 llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType(); 2915 2916 RV = llvm::UndefValue::get(returnType); 2917 for (unsigned i = 0, e = results.size(); i != e; ++i) { 2918 RV = Builder.CreateInsertValue(RV, results[i], i); 2919 } 2920 } 2921 break; 2922 } 2923 2924 case ABIArgInfo::Expand: 2925 llvm_unreachable("Invalid ABI kind for return argument"); 2926 } 2927 2928 llvm::Instruction *Ret; 2929 if (RV) { 2930 EmitReturnValueCheck(RV); 2931 Ret = Builder.CreateRet(RV); 2932 } else { 2933 Ret = Builder.CreateRetVoid(); 2934 } 2935 2936 if (RetDbgLoc) 2937 Ret->setDebugLoc(std::move(RetDbgLoc)); 2938 } 2939 2940 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) { 2941 // A current decl may not be available when emitting vtable thunks. 2942 if (!CurCodeDecl) 2943 return; 2944 2945 ReturnsNonNullAttr *RetNNAttr = nullptr; 2946 if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) 2947 RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>(); 2948 2949 if (!RetNNAttr && !requiresReturnValueNullabilityCheck()) 2950 return; 2951 2952 // Prefer the returns_nonnull attribute if it's present. 2953 SourceLocation AttrLoc; 2954 SanitizerMask CheckKind; 2955 SanitizerHandler Handler; 2956 if (RetNNAttr) { 2957 assert(!requiresReturnValueNullabilityCheck() && 2958 "Cannot check nullability and the nonnull attribute"); 2959 AttrLoc = RetNNAttr->getLocation(); 2960 CheckKind = SanitizerKind::ReturnsNonnullAttribute; 2961 Handler = SanitizerHandler::NonnullReturn; 2962 } else { 2963 if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl)) 2964 if (auto *TSI = DD->getTypeSourceInfo()) 2965 if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>()) 2966 AttrLoc = FTL.getReturnLoc().findNullabilityLoc(); 2967 CheckKind = SanitizerKind::NullabilityReturn; 2968 Handler = SanitizerHandler::NullabilityReturn; 2969 } 2970 2971 SanitizerScope SanScope(this); 2972 2973 // Make sure the "return" source location is valid. If we're checking a 2974 // nullability annotation, make sure the preconditions for the check are met. 2975 llvm::BasicBlock *Check = createBasicBlock("nullcheck"); 2976 llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck"); 2977 llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load"); 2978 llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr); 2979 if (requiresReturnValueNullabilityCheck()) 2980 CanNullCheck = 2981 Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition); 2982 Builder.CreateCondBr(CanNullCheck, Check, NoCheck); 2983 EmitBlock(Check); 2984 2985 // Now do the null check. 2986 llvm::Value *Cond = Builder.CreateIsNotNull(RV); 2987 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)}; 2988 llvm::Value *DynamicData[] = {SLocPtr}; 2989 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData); 2990 2991 EmitBlock(NoCheck); 2992 2993 #ifndef NDEBUG 2994 // The return location should not be used after the check has been emitted. 2995 ReturnLocation = Address::invalid(); 2996 #endif 2997 } 2998 2999 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) { 3000 const CXXRecordDecl *RD = type->getAsCXXRecordDecl(); 3001 return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; 3002 } 3003 3004 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF, 3005 QualType Ty) { 3006 // FIXME: Generate IR in one pass, rather than going back and fixing up these 3007 // placeholders. 3008 llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty); 3009 llvm::Type *IRPtrTy = IRTy->getPointerTo(); 3010 llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo()); 3011 3012 // FIXME: When we generate this IR in one pass, we shouldn't need 3013 // this win32-specific alignment hack. 3014 CharUnits Align = CharUnits::fromQuantity(4); 3015 Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align); 3016 3017 return AggValueSlot::forAddr(Address(Placeholder, Align), 3018 Ty.getQualifiers(), 3019 AggValueSlot::IsNotDestructed, 3020 AggValueSlot::DoesNotNeedGCBarriers, 3021 AggValueSlot::IsNotAliased); 3022 } 3023 3024 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args, 3025 const VarDecl *param, 3026 SourceLocation loc) { 3027 // StartFunction converted the ABI-lowered parameter(s) into a 3028 // local alloca. We need to turn that into an r-value suitable 3029 // for EmitCall. 3030 Address local = GetAddrOfLocalVar(param); 3031 3032 QualType type = param->getType(); 3033 3034 assert(!isInAllocaArgument(CGM.getCXXABI(), type) && 3035 "cannot emit delegate call arguments for inalloca arguments!"); 3036 3037 // GetAddrOfLocalVar returns a pointer-to-pointer for references, 3038 // but the argument needs to be the original pointer. 3039 if (type->isReferenceType()) { 3040 args.add(RValue::get(Builder.CreateLoad(local)), type); 3041 3042 // In ARC, move out of consumed arguments so that the release cleanup 3043 // entered by StartFunction doesn't cause an over-release. This isn't 3044 // optimal -O0 code generation, but it should get cleaned up when 3045 // optimization is enabled. This also assumes that delegate calls are 3046 // performed exactly once for a set of arguments, but that should be safe. 3047 } else if (getLangOpts().ObjCAutoRefCount && 3048 param->hasAttr<NSConsumedAttr>() && 3049 type->isObjCRetainableType()) { 3050 llvm::Value *ptr = Builder.CreateLoad(local); 3051 auto null = 3052 llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType())); 3053 Builder.CreateStore(null, local); 3054 args.add(RValue::get(ptr), type); 3055 3056 // For the most part, we just need to load the alloca, except that 3057 // aggregate r-values are actually pointers to temporaries. 3058 } else { 3059 args.add(convertTempToRValue(local, type, loc), type); 3060 } 3061 } 3062 3063 static bool isProvablyNull(llvm::Value *addr) { 3064 return isa<llvm::ConstantPointerNull>(addr); 3065 } 3066 3067 /// Emit the actual writing-back of a writeback. 3068 static void emitWriteback(CodeGenFunction &CGF, 3069 const CallArgList::Writeback &writeback) { 3070 const LValue &srcLV = writeback.Source; 3071 Address srcAddr = srcLV.getAddress(); 3072 assert(!isProvablyNull(srcAddr.getPointer()) && 3073 "shouldn't have writeback for provably null argument"); 3074 3075 llvm::BasicBlock *contBB = nullptr; 3076 3077 // If the argument wasn't provably non-null, we need to null check 3078 // before doing the store. 3079 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3080 CGF.CGM.getDataLayout()); 3081 if (!provablyNonNull) { 3082 llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback"); 3083 contBB = CGF.createBasicBlock("icr.done"); 3084 3085 llvm::Value *isNull = 3086 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3087 CGF.Builder.CreateCondBr(isNull, contBB, writebackBB); 3088 CGF.EmitBlock(writebackBB); 3089 } 3090 3091 // Load the value to writeback. 3092 llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary); 3093 3094 // Cast it back, in case we're writing an id to a Foo* or something. 3095 value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(), 3096 "icr.writeback-cast"); 3097 3098 // Perform the writeback. 3099 3100 // If we have a "to use" value, it's something we need to emit a use 3101 // of. This has to be carefully threaded in: if it's done after the 3102 // release it's potentially undefined behavior (and the optimizer 3103 // will ignore it), and if it happens before the retain then the 3104 // optimizer could move the release there. 3105 if (writeback.ToUse) { 3106 assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong); 3107 3108 // Retain the new value. No need to block-copy here: the block's 3109 // being passed up the stack. 3110 value = CGF.EmitARCRetainNonBlock(value); 3111 3112 // Emit the intrinsic use here. 3113 CGF.EmitARCIntrinsicUse(writeback.ToUse); 3114 3115 // Load the old value (primitively). 3116 llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation()); 3117 3118 // Put the new value in place (primitively). 3119 CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false); 3120 3121 // Release the old value. 3122 CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime()); 3123 3124 // Otherwise, we can just do a normal lvalue store. 3125 } else { 3126 CGF.EmitStoreThroughLValue(RValue::get(value), srcLV); 3127 } 3128 3129 // Jump to the continuation block. 3130 if (!provablyNonNull) 3131 CGF.EmitBlock(contBB); 3132 } 3133 3134 static void emitWritebacks(CodeGenFunction &CGF, 3135 const CallArgList &args) { 3136 for (const auto &I : args.writebacks()) 3137 emitWriteback(CGF, I); 3138 } 3139 3140 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF, 3141 const CallArgList &CallArgs) { 3142 ArrayRef<CallArgList::CallArgCleanup> Cleanups = 3143 CallArgs.getCleanupsToDeactivate(); 3144 // Iterate in reverse to increase the likelihood of popping the cleanup. 3145 for (const auto &I : llvm::reverse(Cleanups)) { 3146 CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP); 3147 I.IsActiveIP->eraseFromParent(); 3148 } 3149 } 3150 3151 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) { 3152 if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens())) 3153 if (uop->getOpcode() == UO_AddrOf) 3154 return uop->getSubExpr(); 3155 return nullptr; 3156 } 3157 3158 /// Emit an argument that's being passed call-by-writeback. That is, 3159 /// we are passing the address of an __autoreleased temporary; it 3160 /// might be copy-initialized with the current value of the given 3161 /// address, but it will definitely be copied out of after the call. 3162 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args, 3163 const ObjCIndirectCopyRestoreExpr *CRE) { 3164 LValue srcLV; 3165 3166 // Make an optimistic effort to emit the address as an l-value. 3167 // This can fail if the argument expression is more complicated. 3168 if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) { 3169 srcLV = CGF.EmitLValue(lvExpr); 3170 3171 // Otherwise, just emit it as a scalar. 3172 } else { 3173 Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr()); 3174 3175 QualType srcAddrType = 3176 CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType(); 3177 srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType); 3178 } 3179 Address srcAddr = srcLV.getAddress(); 3180 3181 // The dest and src types don't necessarily match in LLVM terms 3182 // because of the crazy ObjC compatibility rules. 3183 3184 llvm::PointerType *destType = 3185 cast<llvm::PointerType>(CGF.ConvertType(CRE->getType())); 3186 3187 // If the address is a constant null, just pass the appropriate null. 3188 if (isProvablyNull(srcAddr.getPointer())) { 3189 args.add(RValue::get(llvm::ConstantPointerNull::get(destType)), 3190 CRE->getType()); 3191 return; 3192 } 3193 3194 // Create the temporary. 3195 Address temp = CGF.CreateTempAlloca(destType->getElementType(), 3196 CGF.getPointerAlign(), 3197 "icr.temp"); 3198 // Loading an l-value can introduce a cleanup if the l-value is __weak, 3199 // and that cleanup will be conditional if we can't prove that the l-value 3200 // isn't null, so we need to register a dominating point so that the cleanups 3201 // system will make valid IR. 3202 CodeGenFunction::ConditionalEvaluation condEval(CGF); 3203 3204 // Zero-initialize it if we're not doing a copy-initialization. 3205 bool shouldCopy = CRE->shouldCopy(); 3206 if (!shouldCopy) { 3207 llvm::Value *null = 3208 llvm::ConstantPointerNull::get( 3209 cast<llvm::PointerType>(destType->getElementType())); 3210 CGF.Builder.CreateStore(null, temp); 3211 } 3212 3213 llvm::BasicBlock *contBB = nullptr; 3214 llvm::BasicBlock *originBB = nullptr; 3215 3216 // If the address is *not* known to be non-null, we need to switch. 3217 llvm::Value *finalArgument; 3218 3219 bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(), 3220 CGF.CGM.getDataLayout()); 3221 if (provablyNonNull) { 3222 finalArgument = temp.getPointer(); 3223 } else { 3224 llvm::Value *isNull = 3225 CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull"); 3226 3227 finalArgument = CGF.Builder.CreateSelect(isNull, 3228 llvm::ConstantPointerNull::get(destType), 3229 temp.getPointer(), "icr.argument"); 3230 3231 // If we need to copy, then the load has to be conditional, which 3232 // means we need control flow. 3233 if (shouldCopy) { 3234 originBB = CGF.Builder.GetInsertBlock(); 3235 contBB = CGF.createBasicBlock("icr.cont"); 3236 llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy"); 3237 CGF.Builder.CreateCondBr(isNull, contBB, copyBB); 3238 CGF.EmitBlock(copyBB); 3239 condEval.begin(CGF); 3240 } 3241 } 3242 3243 llvm::Value *valueToUse = nullptr; 3244 3245 // Perform a copy if necessary. 3246 if (shouldCopy) { 3247 RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation()); 3248 assert(srcRV.isScalar()); 3249 3250 llvm::Value *src = srcRV.getScalarVal(); 3251 src = CGF.Builder.CreateBitCast(src, destType->getElementType(), 3252 "icr.cast"); 3253 3254 // Use an ordinary store, not a store-to-lvalue. 3255 CGF.Builder.CreateStore(src, temp); 3256 3257 // If optimization is enabled, and the value was held in a 3258 // __strong variable, we need to tell the optimizer that this 3259 // value has to stay alive until we're doing the store back. 3260 // This is because the temporary is effectively unretained, 3261 // and so otherwise we can violate the high-level semantics. 3262 if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 && 3263 srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) { 3264 valueToUse = src; 3265 } 3266 } 3267 3268 // Finish the control flow if we needed it. 3269 if (shouldCopy && !provablyNonNull) { 3270 llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock(); 3271 CGF.EmitBlock(contBB); 3272 3273 // Make a phi for the value to intrinsically use. 3274 if (valueToUse) { 3275 llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2, 3276 "icr.to-use"); 3277 phiToUse->addIncoming(valueToUse, copyBB); 3278 phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()), 3279 originBB); 3280 valueToUse = phiToUse; 3281 } 3282 3283 condEval.end(CGF); 3284 } 3285 3286 args.addWriteback(srcLV, temp, valueToUse); 3287 args.add(RValue::get(finalArgument), CRE->getType()); 3288 } 3289 3290 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) { 3291 assert(!StackBase); 3292 3293 // Save the stack. 3294 llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave); 3295 StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save"); 3296 } 3297 3298 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const { 3299 if (StackBase) { 3300 // Restore the stack after the call. 3301 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); 3302 CGF.Builder.CreateCall(F, StackBase); 3303 } 3304 } 3305 3306 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType, 3307 SourceLocation ArgLoc, 3308 AbstractCallee AC, 3309 unsigned ParmNum) { 3310 if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) || 3311 SanOpts.has(SanitizerKind::NullabilityArg))) 3312 return; 3313 3314 // The param decl may be missing in a variadic function. 3315 auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr; 3316 unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum; 3317 3318 // Prefer the nonnull attribute if it's present. 3319 const NonNullAttr *NNAttr = nullptr; 3320 if (SanOpts.has(SanitizerKind::NonnullAttribute)) 3321 NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo); 3322 3323 bool CanCheckNullability = false; 3324 if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) { 3325 auto Nullability = PVD->getType()->getNullability(getContext()); 3326 CanCheckNullability = Nullability && 3327 *Nullability == NullabilityKind::NonNull && 3328 PVD->getTypeSourceInfo(); 3329 } 3330 3331 if (!NNAttr && !CanCheckNullability) 3332 return; 3333 3334 SourceLocation AttrLoc; 3335 SanitizerMask CheckKind; 3336 SanitizerHandler Handler; 3337 if (NNAttr) { 3338 AttrLoc = NNAttr->getLocation(); 3339 CheckKind = SanitizerKind::NonnullAttribute; 3340 Handler = SanitizerHandler::NonnullArg; 3341 } else { 3342 AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc(); 3343 CheckKind = SanitizerKind::NullabilityArg; 3344 Handler = SanitizerHandler::NullabilityArg; 3345 } 3346 3347 SanitizerScope SanScope(this); 3348 assert(RV.isScalar()); 3349 llvm::Value *V = RV.getScalarVal(); 3350 llvm::Value *Cond = 3351 Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType())); 3352 llvm::Constant *StaticData[] = { 3353 EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc), 3354 llvm::ConstantInt::get(Int32Ty, ArgNo + 1), 3355 }; 3356 EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None); 3357 } 3358 3359 void CodeGenFunction::EmitCallArgs( 3360 CallArgList &Args, ArrayRef<QualType> ArgTypes, 3361 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3362 AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) { 3363 assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin())); 3364 3365 // We *have* to evaluate arguments from right to left in the MS C++ ABI, 3366 // because arguments are destroyed left to right in the callee. As a special 3367 // case, there are certain language constructs that require left-to-right 3368 // evaluation, and in those cases we consider the evaluation order requirement 3369 // to trump the "destruction order is reverse construction order" guarantee. 3370 bool LeftToRight = 3371 CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee() 3372 ? Order == EvaluationOrder::ForceLeftToRight 3373 : Order != EvaluationOrder::ForceRightToLeft; 3374 3375 auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg, 3376 RValue EmittedArg) { 3377 if (!AC.hasFunctionDecl() || I >= AC.getNumParams()) 3378 return; 3379 auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>(); 3380 if (PS == nullptr) 3381 return; 3382 3383 const auto &Context = getContext(); 3384 auto SizeTy = Context.getSizeType(); 3385 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 3386 assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?"); 3387 llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T, 3388 EmittedArg.getScalarVal()); 3389 Args.add(RValue::get(V), SizeTy); 3390 // If we're emitting args in reverse, be sure to do so with 3391 // pass_object_size, as well. 3392 if (!LeftToRight) 3393 std::swap(Args.back(), *(&Args.back() - 1)); 3394 }; 3395 3396 // Insert a stack save if we're going to need any inalloca args. 3397 bool HasInAllocaArgs = false; 3398 if (CGM.getTarget().getCXXABI().isMicrosoft()) { 3399 for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end(); 3400 I != E && !HasInAllocaArgs; ++I) 3401 HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I); 3402 if (HasInAllocaArgs) { 3403 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3404 Args.allocateArgumentMemory(*this); 3405 } 3406 } 3407 3408 // Evaluate each argument in the appropriate order. 3409 size_t CallArgsStart = Args.size(); 3410 for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) { 3411 unsigned Idx = LeftToRight ? I : E - I - 1; 3412 CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx; 3413 unsigned InitialArgSize = Args.size(); 3414 // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of 3415 // the argument and parameter match or the objc method is parameterized. 3416 assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) || 3417 getContext().hasSameUnqualifiedType((*Arg)->getType(), 3418 ArgTypes[Idx]) || 3419 (isa<ObjCMethodDecl>(AC.getDecl()) && 3420 isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) && 3421 "Argument and parameter types don't match"); 3422 EmitCallArg(Args, *Arg, ArgTypes[Idx]); 3423 // In particular, we depend on it being the last arg in Args, and the 3424 // objectsize bits depend on there only being one arg if !LeftToRight. 3425 assert(InitialArgSize + 1 == Args.size() && 3426 "The code below depends on only adding one arg per EmitCallArg"); 3427 (void)InitialArgSize; 3428 // Since pointer argument are never emitted as LValue, it is safe to emit 3429 // non-null argument check for r-value only. 3430 if (!Args.back().hasLValue()) { 3431 RValue RVArg = Args.back().getKnownRValue(); 3432 EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC, 3433 ParamsToSkip + Idx); 3434 // @llvm.objectsize should never have side-effects and shouldn't need 3435 // destruction/cleanups, so we can safely "emit" it after its arg, 3436 // regardless of right-to-leftness 3437 MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg); 3438 } 3439 } 3440 3441 if (!LeftToRight) { 3442 // Un-reverse the arguments we just evaluated so they match up with the LLVM 3443 // IR function. 3444 std::reverse(Args.begin() + CallArgsStart, Args.end()); 3445 } 3446 } 3447 3448 namespace { 3449 3450 struct DestroyUnpassedArg final : EHScopeStack::Cleanup { 3451 DestroyUnpassedArg(Address Addr, QualType Ty) 3452 : Addr(Addr), Ty(Ty) {} 3453 3454 Address Addr; 3455 QualType Ty; 3456 3457 void Emit(CodeGenFunction &CGF, Flags flags) override { 3458 QualType::DestructionKind DtorKind = Ty.isDestructedType(); 3459 if (DtorKind == QualType::DK_cxx_destructor) { 3460 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor(); 3461 assert(!Dtor->isTrivial()); 3462 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false, 3463 /*Delegating=*/false, Addr); 3464 } else { 3465 CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty)); 3466 } 3467 } 3468 }; 3469 3470 struct DisableDebugLocationUpdates { 3471 CodeGenFunction &CGF; 3472 bool disabledDebugInfo; 3473 DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) { 3474 if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo())) 3475 CGF.disableDebugInfo(); 3476 } 3477 ~DisableDebugLocationUpdates() { 3478 if (disabledDebugInfo) 3479 CGF.enableDebugInfo(); 3480 } 3481 }; 3482 3483 } // end anonymous namespace 3484 3485 RValue CallArg::getRValue(CodeGenFunction &CGF) const { 3486 if (!HasLV) 3487 return RV; 3488 LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty); 3489 CGF.EmitAggregateCopy(Copy, LV, Ty, LV.isVolatile()); 3490 IsUsed = true; 3491 return RValue::getAggregate(Copy.getAddress()); 3492 } 3493 3494 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const { 3495 LValue Dst = CGF.MakeAddrLValue(Addr, Ty); 3496 if (!HasLV && RV.isScalar()) 3497 CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*init=*/true); 3498 else if (!HasLV && RV.isComplex()) 3499 CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true); 3500 else { 3501 auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress(); 3502 LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty); 3503 CGF.EmitAggregateCopy(Dst, SrcLV, Ty, 3504 HasLV ? LV.isVolatileQualified() 3505 : RV.isVolatileQualified()); 3506 } 3507 IsUsed = true; 3508 } 3509 3510 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E, 3511 QualType type) { 3512 DisableDebugLocationUpdates Dis(*this, E); 3513 if (const ObjCIndirectCopyRestoreExpr *CRE 3514 = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) { 3515 assert(getLangOpts().ObjCAutoRefCount); 3516 return emitWritebackArg(*this, args, CRE); 3517 } 3518 3519 assert(type->isReferenceType() == E->isGLValue() && 3520 "reference binding to unmaterialized r-value!"); 3521 3522 if (E->isGLValue()) { 3523 assert(E->getObjectKind() == OK_Ordinary); 3524 return args.add(EmitReferenceBindingToExpr(E), type); 3525 } 3526 3527 bool HasAggregateEvalKind = hasAggregateEvaluationKind(type); 3528 3529 // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee. 3530 // However, we still have to push an EH-only cleanup in case we unwind before 3531 // we make it to the call. 3532 if (HasAggregateEvalKind && getContext().isParamDestroyedInCallee(type)) { 3533 // If we're using inalloca, use the argument memory. Otherwise, use a 3534 // temporary. 3535 AggValueSlot Slot; 3536 if (args.isUsingInAlloca()) 3537 Slot = createPlaceholderSlot(*this, type); 3538 else 3539 Slot = CreateAggTemp(type, "agg.tmp"); 3540 3541 bool DestroyedInCallee = true, NeedsEHCleanup = true; 3542 if (const auto *RD = type->getAsCXXRecordDecl()) { 3543 DestroyedInCallee = 3544 RD && RD->hasNonTrivialDestructor() && 3545 (CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default || 3546 RD->hasTrivialABIOverride()); 3547 } else { 3548 NeedsEHCleanup = needsEHCleanup(type.isDestructedType()); 3549 } 3550 3551 if (DestroyedInCallee) 3552 Slot.setExternallyDestructed(); 3553 3554 EmitAggExpr(E, Slot); 3555 RValue RV = Slot.asRValue(); 3556 args.add(RV, type); 3557 3558 if (DestroyedInCallee && NeedsEHCleanup) { 3559 // Create a no-op GEP between the placeholder and the cleanup so we can 3560 // RAUW it successfully. It also serves as a marker of the first 3561 // instruction where the cleanup is active. 3562 pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(), 3563 type); 3564 // This unreachable is a temporary marker which will be removed later. 3565 llvm::Instruction *IsActive = Builder.CreateUnreachable(); 3566 args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive); 3567 } 3568 return; 3569 } 3570 3571 if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) && 3572 cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) { 3573 LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr()); 3574 assert(L.isSimple()); 3575 args.addUncopiedAggregate(L, type); 3576 return; 3577 } 3578 3579 args.add(EmitAnyExprToTemp(E), type); 3580 } 3581 3582 QualType CodeGenFunction::getVarArgType(const Expr *Arg) { 3583 // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC 3584 // implicitly widens null pointer constants that are arguments to varargs 3585 // functions to pointer-sized ints. 3586 if (!getTarget().getTriple().isOSWindows()) 3587 return Arg->getType(); 3588 3589 if (Arg->getType()->isIntegerType() && 3590 getContext().getTypeSize(Arg->getType()) < 3591 getContext().getTargetInfo().getPointerWidth(0) && 3592 Arg->isNullPointerConstant(getContext(), 3593 Expr::NPC_ValueDependentIsNotNull)) { 3594 return getContext().getIntPtrType(); 3595 } 3596 3597 return Arg->getType(); 3598 } 3599 3600 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3601 // optimizer it can aggressively ignore unwind edges. 3602 void 3603 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) { 3604 if (CGM.getCodeGenOpts().OptimizationLevel != 0 && 3605 !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions) 3606 Inst->setMetadata("clang.arc.no_objc_arc_exceptions", 3607 CGM.getNoObjCARCExceptionsMetadata()); 3608 } 3609 3610 /// Emits a call to the given no-arguments nounwind runtime function. 3611 llvm::CallInst * 3612 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3613 const llvm::Twine &name) { 3614 return EmitNounwindRuntimeCall(callee, None, name); 3615 } 3616 3617 /// Emits a call to the given nounwind runtime function. 3618 llvm::CallInst * 3619 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee, 3620 ArrayRef<llvm::Value*> args, 3621 const llvm::Twine &name) { 3622 llvm::CallInst *call = EmitRuntimeCall(callee, args, name); 3623 call->setDoesNotThrow(); 3624 return call; 3625 } 3626 3627 /// Emits a simple call (never an invoke) to the given no-arguments 3628 /// runtime function. 3629 llvm::CallInst * 3630 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3631 const llvm::Twine &name) { 3632 return EmitRuntimeCall(callee, None, name); 3633 } 3634 3635 // Calls which may throw must have operand bundles indicating which funclet 3636 // they are nested within. 3637 SmallVector<llvm::OperandBundleDef, 1> 3638 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) { 3639 SmallVector<llvm::OperandBundleDef, 1> BundleList; 3640 // There is no need for a funclet operand bundle if we aren't inside a 3641 // funclet. 3642 if (!CurrentFuncletPad) 3643 return BundleList; 3644 3645 // Skip intrinsics which cannot throw. 3646 auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts()); 3647 if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow()) 3648 return BundleList; 3649 3650 BundleList.emplace_back("funclet", CurrentFuncletPad); 3651 return BundleList; 3652 } 3653 3654 /// Emits a simple call (never an invoke) to the given runtime function. 3655 llvm::CallInst * 3656 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee, 3657 ArrayRef<llvm::Value*> args, 3658 const llvm::Twine &name) { 3659 llvm::CallInst *call = 3660 Builder.CreateCall(callee, args, getBundlesForFunclet(callee), name); 3661 call->setCallingConv(getRuntimeCC()); 3662 return call; 3663 } 3664 3665 /// Emits a call or invoke to the given noreturn runtime function. 3666 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 3667 ArrayRef<llvm::Value*> args) { 3668 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3669 getBundlesForFunclet(callee); 3670 3671 if (getInvokeDest()) { 3672 llvm::InvokeInst *invoke = 3673 Builder.CreateInvoke(callee, 3674 getUnreachableBlock(), 3675 getInvokeDest(), 3676 args, 3677 BundleList); 3678 invoke->setDoesNotReturn(); 3679 invoke->setCallingConv(getRuntimeCC()); 3680 } else { 3681 llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList); 3682 call->setDoesNotReturn(); 3683 call->setCallingConv(getRuntimeCC()); 3684 Builder.CreateUnreachable(); 3685 } 3686 } 3687 3688 /// Emits a call or invoke instruction to the given nullary runtime function. 3689 llvm::CallSite 3690 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3691 const Twine &name) { 3692 return EmitRuntimeCallOrInvoke(callee, None, name); 3693 } 3694 3695 /// Emits a call or invoke instruction to the given runtime function. 3696 llvm::CallSite 3697 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee, 3698 ArrayRef<llvm::Value*> args, 3699 const Twine &name) { 3700 llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name); 3701 callSite.setCallingConv(getRuntimeCC()); 3702 return callSite; 3703 } 3704 3705 /// Emits a call or invoke instruction to the given function, depending 3706 /// on the current state of the EH stack. 3707 llvm::CallSite 3708 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee, 3709 ArrayRef<llvm::Value *> Args, 3710 const Twine &Name) { 3711 llvm::BasicBlock *InvokeDest = getInvokeDest(); 3712 SmallVector<llvm::OperandBundleDef, 1> BundleList = 3713 getBundlesForFunclet(Callee); 3714 3715 llvm::Instruction *Inst; 3716 if (!InvokeDest) 3717 Inst = Builder.CreateCall(Callee, Args, BundleList, Name); 3718 else { 3719 llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont"); 3720 Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList, 3721 Name); 3722 EmitBlock(ContBB); 3723 } 3724 3725 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 3726 // optimizer it can aggressively ignore unwind edges. 3727 if (CGM.getLangOpts().ObjCAutoRefCount) 3728 AddObjCARCExceptionMetadata(Inst); 3729 3730 return llvm::CallSite(Inst); 3731 } 3732 3733 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old, 3734 llvm::Value *New) { 3735 DeferredReplacements.push_back(std::make_pair(Old, New)); 3736 } 3737 3738 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo, 3739 const CGCallee &Callee, 3740 ReturnValueSlot ReturnValue, 3741 const CallArgList &CallArgs, 3742 llvm::Instruction **callOrInvoke, 3743 SourceLocation Loc) { 3744 // FIXME: We no longer need the types from CallArgs; lift up and simplify. 3745 3746 assert(Callee.isOrdinary() || Callee.isVirtual()); 3747 3748 // Handle struct-return functions by passing a pointer to the 3749 // location that we would like to return into. 3750 QualType RetTy = CallInfo.getReturnType(); 3751 const ABIArgInfo &RetAI = CallInfo.getReturnInfo(); 3752 3753 llvm::FunctionType *IRFuncTy = Callee.getFunctionType(); 3754 3755 // 1. Set up the arguments. 3756 3757 // If we're using inalloca, insert the allocation after the stack save. 3758 // FIXME: Do this earlier rather than hacking it in here! 3759 Address ArgMemory = Address::invalid(); 3760 const llvm::StructLayout *ArgMemoryLayout = nullptr; 3761 if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) { 3762 const llvm::DataLayout &DL = CGM.getDataLayout(); 3763 ArgMemoryLayout = DL.getStructLayout(ArgStruct); 3764 llvm::Instruction *IP = CallArgs.getStackBase(); 3765 llvm::AllocaInst *AI; 3766 if (IP) { 3767 IP = IP->getNextNode(); 3768 AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(), 3769 "argmem", IP); 3770 } else { 3771 AI = CreateTempAlloca(ArgStruct, "argmem"); 3772 } 3773 auto Align = CallInfo.getArgStructAlignment(); 3774 AI->setAlignment(Align.getQuantity()); 3775 AI->setUsedWithInAlloca(true); 3776 assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca()); 3777 ArgMemory = Address(AI, Align); 3778 } 3779 3780 // Helper function to drill into the inalloca allocation. 3781 auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address { 3782 auto FieldOffset = 3783 CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex)); 3784 return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset); 3785 }; 3786 3787 ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo); 3788 SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs()); 3789 3790 // If the call returns a temporary with struct return, create a temporary 3791 // alloca to hold the result, unless one is given to us. 3792 Address SRetPtr = Address::invalid(); 3793 llvm::Value *UnusedReturnSizePtr = nullptr; 3794 if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) { 3795 if (!ReturnValue.isNull()) { 3796 SRetPtr = ReturnValue.getValue(); 3797 } else { 3798 SRetPtr = CreateMemTemp(RetTy); 3799 if (HaveInsertPoint() && ReturnValue.isUnused()) { 3800 uint64_t size = 3801 CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy)); 3802 UnusedReturnSizePtr = EmitLifetimeStart(size, SRetPtr.getPointer()); 3803 } 3804 } 3805 if (IRFunctionArgs.hasSRetArg()) { 3806 IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer(); 3807 } else if (RetAI.isInAlloca()) { 3808 Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex()); 3809 Builder.CreateStore(SRetPtr.getPointer(), Addr); 3810 } 3811 } 3812 3813 Address swiftErrorTemp = Address::invalid(); 3814 Address swiftErrorArg = Address::invalid(); 3815 3816 // Translate all of the arguments as necessary to match the IR lowering. 3817 assert(CallInfo.arg_size() == CallArgs.size() && 3818 "Mismatch between function signature & arguments."); 3819 unsigned ArgNo = 0; 3820 CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin(); 3821 for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end(); 3822 I != E; ++I, ++info_it, ++ArgNo) { 3823 const ABIArgInfo &ArgInfo = info_it->info; 3824 3825 // Insert a padding argument to ensure proper alignment. 3826 if (IRFunctionArgs.hasPaddingArg(ArgNo)) 3827 IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] = 3828 llvm::UndefValue::get(ArgInfo.getPaddingType()); 3829 3830 unsigned FirstIRArg, NumIRArgs; 3831 std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo); 3832 3833 switch (ArgInfo.getKind()) { 3834 case ABIArgInfo::InAlloca: { 3835 assert(NumIRArgs == 0); 3836 assert(getTarget().getTriple().getArch() == llvm::Triple::x86); 3837 if (I->isAggregate()) { 3838 // Replace the placeholder with the appropriate argument slot GEP. 3839 Address Addr = I->hasLValue() 3840 ? I->getKnownLValue().getAddress() 3841 : I->getKnownRValue().getAggregateAddress(); 3842 llvm::Instruction *Placeholder = 3843 cast<llvm::Instruction>(Addr.getPointer()); 3844 CGBuilderTy::InsertPoint IP = Builder.saveIP(); 3845 Builder.SetInsertPoint(Placeholder); 3846 Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3847 Builder.restoreIP(IP); 3848 deferPlaceholderReplacement(Placeholder, Addr.getPointer()); 3849 } else { 3850 // Store the RValue into the argument struct. 3851 Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex()); 3852 unsigned AS = Addr.getType()->getPointerAddressSpace(); 3853 llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS); 3854 // There are some cases where a trivial bitcast is not avoidable. The 3855 // definition of a type later in a translation unit may change it's type 3856 // from {}* to (%struct.foo*)*. 3857 if (Addr.getType() != MemType) 3858 Addr = Builder.CreateBitCast(Addr, MemType); 3859 I->copyInto(*this, Addr); 3860 } 3861 break; 3862 } 3863 3864 case ABIArgInfo::Indirect: { 3865 assert(NumIRArgs == 1); 3866 if (!I->isAggregate()) { 3867 // Make a temporary alloca to pass the argument. 3868 Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(), 3869 "indirect-arg-temp", false); 3870 IRCallArgs[FirstIRArg] = Addr.getPointer(); 3871 3872 I->copyInto(*this, Addr); 3873 } else { 3874 // We want to avoid creating an unnecessary temporary+copy here; 3875 // however, we need one in three cases: 3876 // 1. If the argument is not byval, and we are required to copy the 3877 // source. (This case doesn't occur on any common architecture.) 3878 // 2. If the argument is byval, RV is not sufficiently aligned, and 3879 // we cannot force it to be sufficiently aligned. 3880 // 3. If the argument is byval, but RV is not located in default 3881 // or alloca address space. 3882 Address Addr = I->hasLValue() 3883 ? I->getKnownLValue().getAddress() 3884 : I->getKnownRValue().getAggregateAddress(); 3885 llvm::Value *V = Addr.getPointer(); 3886 CharUnits Align = ArgInfo.getIndirectAlign(); 3887 const llvm::DataLayout *TD = &CGM.getDataLayout(); 3888 3889 assert((FirstIRArg >= IRFuncTy->getNumParams() || 3890 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() == 3891 TD->getAllocaAddrSpace()) && 3892 "indirect argument must be in alloca address space"); 3893 3894 bool NeedCopy = false; 3895 3896 if (Addr.getAlignment() < Align && 3897 llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) < 3898 Align.getQuantity()) { 3899 NeedCopy = true; 3900 } else if (I->hasLValue()) { 3901 auto LV = I->getKnownLValue(); 3902 auto AS = LV.getAddressSpace(); 3903 if ((!ArgInfo.getIndirectByVal() && 3904 (LV.getAlignment() >= 3905 getContext().getTypeAlignInChars(I->Ty))) || 3906 (ArgInfo.getIndirectByVal() && 3907 ((AS != LangAS::Default && AS != LangAS::opencl_private && 3908 AS != CGM.getASTAllocaAddressSpace())))) { 3909 NeedCopy = true; 3910 } 3911 } 3912 if (NeedCopy) { 3913 // Create an aligned temporary, and copy to it. 3914 Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign(), 3915 "byval-temp", false); 3916 IRCallArgs[FirstIRArg] = AI.getPointer(); 3917 I->copyInto(*this, AI); 3918 } else { 3919 // Skip the extra memcpy call. 3920 auto *T = V->getType()->getPointerElementType()->getPointerTo( 3921 CGM.getDataLayout().getAllocaAddrSpace()); 3922 IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast( 3923 *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T, 3924 true); 3925 } 3926 } 3927 break; 3928 } 3929 3930 case ABIArgInfo::Ignore: 3931 assert(NumIRArgs == 0); 3932 break; 3933 3934 case ABIArgInfo::Extend: 3935 case ABIArgInfo::Direct: { 3936 if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) && 3937 ArgInfo.getCoerceToType() == ConvertType(info_it->type) && 3938 ArgInfo.getDirectOffset() == 0) { 3939 assert(NumIRArgs == 1); 3940 llvm::Value *V; 3941 if (!I->isAggregate()) 3942 V = I->getKnownRValue().getScalarVal(); 3943 else 3944 V = Builder.CreateLoad( 3945 I->hasLValue() ? I->getKnownLValue().getAddress() 3946 : I->getKnownRValue().getAggregateAddress()); 3947 3948 // Implement swifterror by copying into a new swifterror argument. 3949 // We'll write back in the normal path out of the call. 3950 if (CallInfo.getExtParameterInfo(ArgNo).getABI() 3951 == ParameterABI::SwiftErrorResult) { 3952 assert(!swiftErrorTemp.isValid() && "multiple swifterror args"); 3953 3954 QualType pointeeTy = I->Ty->getPointeeType(); 3955 swiftErrorArg = 3956 Address(V, getContext().getTypeAlignInChars(pointeeTy)); 3957 3958 swiftErrorTemp = 3959 CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp"); 3960 V = swiftErrorTemp.getPointer(); 3961 cast<llvm::AllocaInst>(V)->setSwiftError(true); 3962 3963 llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg); 3964 Builder.CreateStore(errorValue, swiftErrorTemp); 3965 } 3966 3967 // We might have to widen integers, but we should never truncate. 3968 if (ArgInfo.getCoerceToType() != V->getType() && 3969 V->getType()->isIntegerTy()) 3970 V = Builder.CreateZExt(V, ArgInfo.getCoerceToType()); 3971 3972 // If the argument doesn't match, perform a bitcast to coerce it. This 3973 // can happen due to trivial type mismatches. 3974 if (FirstIRArg < IRFuncTy->getNumParams() && 3975 V->getType() != IRFuncTy->getParamType(FirstIRArg)) 3976 V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg)); 3977 3978 IRCallArgs[FirstIRArg] = V; 3979 break; 3980 } 3981 3982 // FIXME: Avoid the conversion through memory if possible. 3983 Address Src = Address::invalid(); 3984 if (!I->isAggregate()) { 3985 Src = CreateMemTemp(I->Ty, "coerce"); 3986 I->copyInto(*this, Src); 3987 } else { 3988 Src = I->hasLValue() ? I->getKnownLValue().getAddress() 3989 : I->getKnownRValue().getAggregateAddress(); 3990 } 3991 3992 // If the value is offset in memory, apply the offset now. 3993 Src = emitAddressAtOffset(*this, Src, ArgInfo); 3994 3995 // Fast-isel and the optimizer generally like scalar values better than 3996 // FCAs, so we flatten them if this is safe to do for this argument. 3997 llvm::StructType *STy = 3998 dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType()); 3999 if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) { 4000 llvm::Type *SrcTy = Src.getType()->getElementType(); 4001 uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy); 4002 uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy); 4003 4004 // If the source type is smaller than the destination type of the 4005 // coerce-to logic, copy the source value into a temp alloca the size 4006 // of the destination type to allow loading all of it. The bits past 4007 // the source value are left undef. 4008 if (SrcSize < DstSize) { 4009 Address TempAlloca 4010 = CreateTempAlloca(STy, Src.getAlignment(), 4011 Src.getName() + ".coerce"); 4012 Builder.CreateMemCpy(TempAlloca, Src, SrcSize); 4013 Src = TempAlloca; 4014 } else { 4015 Src = Builder.CreateBitCast(Src, 4016 STy->getPointerTo(Src.getAddressSpace())); 4017 } 4018 4019 auto SrcLayout = CGM.getDataLayout().getStructLayout(STy); 4020 assert(NumIRArgs == STy->getNumElements()); 4021 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { 4022 auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i)); 4023 Address EltPtr = Builder.CreateStructGEP(Src, i, Offset); 4024 llvm::Value *LI = Builder.CreateLoad(EltPtr); 4025 IRCallArgs[FirstIRArg + i] = LI; 4026 } 4027 } else { 4028 // In the simple case, just pass the coerced loaded value. 4029 assert(NumIRArgs == 1); 4030 IRCallArgs[FirstIRArg] = 4031 CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this); 4032 } 4033 4034 break; 4035 } 4036 4037 case ABIArgInfo::CoerceAndExpand: { 4038 auto coercionType = ArgInfo.getCoerceAndExpandType(); 4039 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4040 4041 llvm::Value *tempSize = nullptr; 4042 Address addr = Address::invalid(); 4043 if (I->isAggregate()) { 4044 addr = I->hasLValue() ? I->getKnownLValue().getAddress() 4045 : I->getKnownRValue().getAggregateAddress(); 4046 4047 } else { 4048 RValue RV = I->getKnownRValue(); 4049 assert(RV.isScalar()); // complex should always just be direct 4050 4051 llvm::Type *scalarType = RV.getScalarVal()->getType(); 4052 auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType); 4053 auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType); 4054 4055 // Materialize to a temporary. 4056 addr = CreateTempAlloca(RV.getScalarVal()->getType(), 4057 CharUnits::fromQuantity(std::max(layout->getAlignment(), 4058 scalarAlign))); 4059 tempSize = EmitLifetimeStart(scalarSize, addr.getPointer()); 4060 4061 Builder.CreateStore(RV.getScalarVal(), addr); 4062 } 4063 4064 addr = Builder.CreateElementBitCast(addr, coercionType); 4065 4066 unsigned IRArgPos = FirstIRArg; 4067 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4068 llvm::Type *eltType = coercionType->getElementType(i); 4069 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4070 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4071 llvm::Value *elt = Builder.CreateLoad(eltAddr); 4072 IRCallArgs[IRArgPos++] = elt; 4073 } 4074 assert(IRArgPos == FirstIRArg + NumIRArgs); 4075 4076 if (tempSize) { 4077 EmitLifetimeEnd(tempSize, addr.getPointer()); 4078 } 4079 4080 break; 4081 } 4082 4083 case ABIArgInfo::Expand: 4084 unsigned IRArgPos = FirstIRArg; 4085 ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos); 4086 assert(IRArgPos == FirstIRArg + NumIRArgs); 4087 break; 4088 } 4089 } 4090 4091 const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this); 4092 llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer(); 4093 4094 // If we're using inalloca, set up that argument. 4095 if (ArgMemory.isValid()) { 4096 llvm::Value *Arg = ArgMemory.getPointer(); 4097 if (CallInfo.isVariadic()) { 4098 // When passing non-POD arguments by value to variadic functions, we will 4099 // end up with a variadic prototype and an inalloca call site. In such 4100 // cases, we can't do any parameter mismatch checks. Give up and bitcast 4101 // the callee. 4102 unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace(); 4103 auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS); 4104 CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy); 4105 } else { 4106 llvm::Type *LastParamTy = 4107 IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1); 4108 if (Arg->getType() != LastParamTy) { 4109 #ifndef NDEBUG 4110 // Assert that these structs have equivalent element types. 4111 llvm::StructType *FullTy = CallInfo.getArgStruct(); 4112 llvm::StructType *DeclaredTy = cast<llvm::StructType>( 4113 cast<llvm::PointerType>(LastParamTy)->getElementType()); 4114 assert(DeclaredTy->getNumElements() == FullTy->getNumElements()); 4115 for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(), 4116 DE = DeclaredTy->element_end(), 4117 FI = FullTy->element_begin(); 4118 DI != DE; ++DI, ++FI) 4119 assert(*DI == *FI); 4120 #endif 4121 Arg = Builder.CreateBitCast(Arg, LastParamTy); 4122 } 4123 } 4124 assert(IRFunctionArgs.hasInallocaArg()); 4125 IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg; 4126 } 4127 4128 // 2. Prepare the function pointer. 4129 4130 // If the callee is a bitcast of a non-variadic function to have a 4131 // variadic function pointer type, check to see if we can remove the 4132 // bitcast. This comes up with unprototyped functions. 4133 // 4134 // This makes the IR nicer, but more importantly it ensures that we 4135 // can inline the function at -O0 if it is marked always_inline. 4136 auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* { 4137 llvm::FunctionType *CalleeFT = 4138 cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType()); 4139 if (!CalleeFT->isVarArg()) 4140 return Ptr; 4141 4142 llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr); 4143 if (!CE || CE->getOpcode() != llvm::Instruction::BitCast) 4144 return Ptr; 4145 4146 llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0)); 4147 if (!OrigFn) 4148 return Ptr; 4149 4150 llvm::FunctionType *OrigFT = OrigFn->getFunctionType(); 4151 4152 // If the original type is variadic, or if any of the component types 4153 // disagree, we cannot remove the cast. 4154 if (OrigFT->isVarArg() || 4155 OrigFT->getNumParams() != CalleeFT->getNumParams() || 4156 OrigFT->getReturnType() != CalleeFT->getReturnType()) 4157 return Ptr; 4158 4159 for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i) 4160 if (OrigFT->getParamType(i) != CalleeFT->getParamType(i)) 4161 return Ptr; 4162 4163 return OrigFn; 4164 }; 4165 CalleePtr = simplifyVariadicCallee(CalleePtr); 4166 4167 // 3. Perform the actual call. 4168 4169 // Deactivate any cleanups that we're supposed to do immediately before 4170 // the call. 4171 if (!CallArgs.getCleanupsToDeactivate().empty()) 4172 deactivateArgCleanupsBeforeCall(*this, CallArgs); 4173 4174 // Assert that the arguments we computed match up. The IR verifier 4175 // will catch this, but this is a common enough source of problems 4176 // during IRGen changes that it's way better for debugging to catch 4177 // it ourselves here. 4178 #ifndef NDEBUG 4179 assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg()); 4180 for (unsigned i = 0; i < IRCallArgs.size(); ++i) { 4181 // Inalloca argument can have different type. 4182 if (IRFunctionArgs.hasInallocaArg() && 4183 i == IRFunctionArgs.getInallocaArgNo()) 4184 continue; 4185 if (i < IRFuncTy->getNumParams()) 4186 assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i)); 4187 } 4188 #endif 4189 4190 // Compute the calling convention and attributes. 4191 unsigned CallingConv; 4192 llvm::AttributeList Attrs; 4193 CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo, 4194 Callee.getAbstractInfo(), Attrs, CallingConv, 4195 /*AttrOnCallSite=*/true); 4196 4197 // Apply some call-site-specific attributes. 4198 // TODO: work this into building the attribute set. 4199 4200 // Apply always_inline to all calls within flatten functions. 4201 // FIXME: should this really take priority over __try, below? 4202 if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() && 4203 !(Callee.getAbstractInfo().getCalleeDecl() && 4204 Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) { 4205 Attrs = 4206 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4207 llvm::Attribute::AlwaysInline); 4208 } 4209 4210 // Disable inlining inside SEH __try blocks. 4211 if (isSEHTryScope()) { 4212 Attrs = 4213 Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex, 4214 llvm::Attribute::NoInline); 4215 } 4216 4217 // Decide whether to use a call or an invoke. 4218 bool CannotThrow; 4219 if (currentFunctionUsesSEHTry()) { 4220 // SEH cares about asynchronous exceptions, so everything can "throw." 4221 CannotThrow = false; 4222 } else if (isCleanupPadScope() && 4223 EHPersonality::get(*this).isMSVCXXPersonality()) { 4224 // The MSVC++ personality will implicitly terminate the program if an 4225 // exception is thrown during a cleanup outside of a try/catch. 4226 // We don't need to model anything in IR to get this behavior. 4227 CannotThrow = true; 4228 } else { 4229 // Otherwise, nounwind call sites will never throw. 4230 CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex, 4231 llvm::Attribute::NoUnwind); 4232 } 4233 4234 // If we made a temporary, be sure to clean up after ourselves. Note that we 4235 // can't depend on being inside of an ExprWithCleanups, so we need to manually 4236 // pop this cleanup later on. Being eager about this is OK, since this 4237 // temporary is 'invisible' outside of the callee. 4238 if (UnusedReturnSizePtr) 4239 pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetPtr, 4240 UnusedReturnSizePtr); 4241 4242 llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest(); 4243 4244 SmallVector<llvm::OperandBundleDef, 1> BundleList = 4245 getBundlesForFunclet(CalleePtr); 4246 4247 // Emit the actual call/invoke instruction. 4248 llvm::CallSite CS; 4249 if (!InvokeDest) { 4250 CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList); 4251 } else { 4252 llvm::BasicBlock *Cont = createBasicBlock("invoke.cont"); 4253 CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs, 4254 BundleList); 4255 EmitBlock(Cont); 4256 } 4257 llvm::Instruction *CI = CS.getInstruction(); 4258 if (callOrInvoke) 4259 *callOrInvoke = CI; 4260 4261 // Apply the attributes and calling convention. 4262 CS.setAttributes(Attrs); 4263 CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 4264 4265 // Apply various metadata. 4266 4267 if (!CI->getType()->isVoidTy()) 4268 CI->setName("call"); 4269 4270 // Insert instrumentation or attach profile metadata at indirect call sites. 4271 // For more details, see the comment before the definition of 4272 // IPVK_IndirectCallTarget in InstrProfData.inc. 4273 if (!CS.getCalledFunction()) 4274 PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget, 4275 CI, CalleePtr); 4276 4277 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC 4278 // optimizer it can aggressively ignore unwind edges. 4279 if (CGM.getLangOpts().ObjCAutoRefCount) 4280 AddObjCARCExceptionMetadata(CI); 4281 4282 // Suppress tail calls if requested. 4283 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) { 4284 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4285 if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>()) 4286 Call->setTailCallKind(llvm::CallInst::TCK_NoTail); 4287 } 4288 4289 // 4. Finish the call. 4290 4291 // If the call doesn't return, finish the basic block and clear the 4292 // insertion point; this allows the rest of IRGen to discard 4293 // unreachable code. 4294 if (CS.doesNotReturn()) { 4295 if (UnusedReturnSizePtr) 4296 PopCleanupBlock(); 4297 4298 // Strip away the noreturn attribute to better diagnose unreachable UB. 4299 if (SanOpts.has(SanitizerKind::Unreachable)) { 4300 if (auto *F = CS.getCalledFunction()) 4301 F->removeFnAttr(llvm::Attribute::NoReturn); 4302 CS.removeAttribute(llvm::AttributeList::FunctionIndex, 4303 llvm::Attribute::NoReturn); 4304 } 4305 4306 EmitUnreachable(Loc); 4307 Builder.ClearInsertionPoint(); 4308 4309 // FIXME: For now, emit a dummy basic block because expr emitters in 4310 // generally are not ready to handle emitting expressions at unreachable 4311 // points. 4312 EnsureInsertPoint(); 4313 4314 // Return a reasonable RValue. 4315 return GetUndefRValue(RetTy); 4316 } 4317 4318 // Perform the swifterror writeback. 4319 if (swiftErrorTemp.isValid()) { 4320 llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp); 4321 Builder.CreateStore(errorResult, swiftErrorArg); 4322 } 4323 4324 // Emit any call-associated writebacks immediately. Arguably this 4325 // should happen after any return-value munging. 4326 if (CallArgs.hasWritebacks()) 4327 emitWritebacks(*this, CallArgs); 4328 4329 // The stack cleanup for inalloca arguments has to run out of the normal 4330 // lexical order, so deactivate it and run it manually here. 4331 CallArgs.freeArgumentMemory(*this); 4332 4333 // Extract the return value. 4334 RValue Ret = [&] { 4335 switch (RetAI.getKind()) { 4336 case ABIArgInfo::CoerceAndExpand: { 4337 auto coercionType = RetAI.getCoerceAndExpandType(); 4338 auto layout = CGM.getDataLayout().getStructLayout(coercionType); 4339 4340 Address addr = SRetPtr; 4341 addr = Builder.CreateElementBitCast(addr, coercionType); 4342 4343 assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType()); 4344 bool requiresExtract = isa<llvm::StructType>(CI->getType()); 4345 4346 unsigned unpaddedIndex = 0; 4347 for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) { 4348 llvm::Type *eltType = coercionType->getElementType(i); 4349 if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue; 4350 Address eltAddr = Builder.CreateStructGEP(addr, i, layout); 4351 llvm::Value *elt = CI; 4352 if (requiresExtract) 4353 elt = Builder.CreateExtractValue(elt, unpaddedIndex++); 4354 else 4355 assert(unpaddedIndex == 0); 4356 Builder.CreateStore(elt, eltAddr); 4357 } 4358 // FALLTHROUGH 4359 LLVM_FALLTHROUGH; 4360 } 4361 4362 case ABIArgInfo::InAlloca: 4363 case ABIArgInfo::Indirect: { 4364 RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation()); 4365 if (UnusedReturnSizePtr) 4366 PopCleanupBlock(); 4367 return ret; 4368 } 4369 4370 case ABIArgInfo::Ignore: 4371 // If we are ignoring an argument that had a result, make sure to 4372 // construct the appropriate return value for our caller. 4373 return GetUndefRValue(RetTy); 4374 4375 case ABIArgInfo::Extend: 4376 case ABIArgInfo::Direct: { 4377 llvm::Type *RetIRTy = ConvertType(RetTy); 4378 if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) { 4379 switch (getEvaluationKind(RetTy)) { 4380 case TEK_Complex: { 4381 llvm::Value *Real = Builder.CreateExtractValue(CI, 0); 4382 llvm::Value *Imag = Builder.CreateExtractValue(CI, 1); 4383 return RValue::getComplex(std::make_pair(Real, Imag)); 4384 } 4385 case TEK_Aggregate: { 4386 Address DestPtr = ReturnValue.getValue(); 4387 bool DestIsVolatile = ReturnValue.isVolatile(); 4388 4389 if (!DestPtr.isValid()) { 4390 DestPtr = CreateMemTemp(RetTy, "agg.tmp"); 4391 DestIsVolatile = false; 4392 } 4393 BuildAggStore(*this, CI, DestPtr, DestIsVolatile); 4394 return RValue::getAggregate(DestPtr); 4395 } 4396 case TEK_Scalar: { 4397 // If the argument doesn't match, perform a bitcast to coerce it. This 4398 // can happen due to trivial type mismatches. 4399 llvm::Value *V = CI; 4400 if (V->getType() != RetIRTy) 4401 V = Builder.CreateBitCast(V, RetIRTy); 4402 return RValue::get(V); 4403 } 4404 } 4405 llvm_unreachable("bad evaluation kind"); 4406 } 4407 4408 Address DestPtr = ReturnValue.getValue(); 4409 bool DestIsVolatile = ReturnValue.isVolatile(); 4410 4411 if (!DestPtr.isValid()) { 4412 DestPtr = CreateMemTemp(RetTy, "coerce"); 4413 DestIsVolatile = false; 4414 } 4415 4416 // If the value is offset in memory, apply the offset now. 4417 Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI); 4418 CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this); 4419 4420 return convertTempToRValue(DestPtr, RetTy, SourceLocation()); 4421 } 4422 4423 case ABIArgInfo::Expand: 4424 llvm_unreachable("Invalid ABI kind for return argument"); 4425 } 4426 4427 llvm_unreachable("Unhandled ABIArgInfo::Kind"); 4428 } (); 4429 4430 // Emit the assume_aligned check on the return value. 4431 const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl(); 4432 if (Ret.isScalar() && TargetDecl) { 4433 if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) { 4434 llvm::Value *OffsetValue = nullptr; 4435 if (const auto *Offset = AA->getOffset()) 4436 OffsetValue = EmitScalarExpr(Offset); 4437 4438 llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment()); 4439 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment); 4440 EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(), 4441 OffsetValue); 4442 } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) { 4443 llvm::Value *ParamVal = 4444 CallArgs[AA->getParamIndex() - 1].getRValue(*this).getScalarVal(); 4445 EmitAlignmentAssumption(Ret.getScalarVal(), ParamVal); 4446 } 4447 } 4448 4449 return Ret; 4450 } 4451 4452 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const { 4453 if (isVirtual()) { 4454 const CallExpr *CE = getVirtualCallExpr(); 4455 return CGF.CGM.getCXXABI().getVirtualFunctionPointer( 4456 CGF, getVirtualMethodDecl(), getThisAddress(), 4457 getFunctionType(), CE ? CE->getLocStart() : SourceLocation()); 4458 } 4459 4460 return *this; 4461 } 4462 4463 /* VarArg handling */ 4464 4465 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) { 4466 VAListAddr = VE->isMicrosoftABI() 4467 ? EmitMSVAListRef(VE->getSubExpr()) 4468 : EmitVAListRef(VE->getSubExpr()); 4469 QualType Ty = VE->getType(); 4470 if (VE->isMicrosoftABI()) 4471 return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty); 4472 return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty); 4473 } 4474