1 //===--- CGCall.cpp - Encapsulate calling convention details ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGCXXABI.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "TargetInfo.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/DataLayout.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/MC/SubtargetFeature.h"
31 #include "llvm/Support/CallSite.h"
32 #include "llvm/Transforms/Utils/Local.h"
33 using namespace clang;
34 using namespace CodeGen;
35 
36 /***/
37 
38 static unsigned ClangCallConvToLLVMCallConv(CallingConv CC) {
39   switch (CC) {
40   default: return llvm::CallingConv::C;
41   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
42   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
43   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
44   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
45   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
46   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
47   // TODO: add support for CC_X86Pascal to llvm
48   }
49 }
50 
51 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
52 /// qualification.
53 /// FIXME: address space qualification?
54 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
55   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
56   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
57 }
58 
59 /// Returns the canonical formal type of the given C++ method.
60 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
61   return MD->getType()->getCanonicalTypeUnqualified()
62            .getAs<FunctionProtoType>();
63 }
64 
65 /// Returns the "extra-canonicalized" return type, which discards
66 /// qualifiers on the return type.  Codegen doesn't care about them,
67 /// and it makes ABI code a little easier to be able to assume that
68 /// all parameter and return types are top-level unqualified.
69 static CanQualType GetReturnType(QualType RetTy) {
70   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
71 }
72 
73 /// Arrange the argument and result information for a value of the given
74 /// unprototyped freestanding function type.
75 const CGFunctionInfo &
76 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
77   // When translating an unprototyped function type, always use a
78   // variadic type.
79   return arrangeLLVMFunctionInfo(FTNP->getResultType().getUnqualifiedType(),
80                                  None, FTNP->getExtInfo(), RequiredArgs(0));
81 }
82 
83 /// Arrange the LLVM function layout for a value of the given function
84 /// type, on top of any implicit parameters already stored.  Use the
85 /// given ExtInfo instead of the ExtInfo from the function type.
86 static const CGFunctionInfo &arrangeLLVMFunctionInfo(CodeGenTypes &CGT,
87                                        SmallVectorImpl<CanQualType> &prefix,
88                                              CanQual<FunctionProtoType> FTP,
89                                               FunctionType::ExtInfo extInfo) {
90   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
91   // FIXME: Kill copy.
92   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
93     prefix.push_back(FTP->getArgType(i));
94   CanQualType resultType = FTP->getResultType().getUnqualifiedType();
95   return CGT.arrangeLLVMFunctionInfo(resultType, prefix, extInfo, required);
96 }
97 
98 /// Arrange the argument and result information for a free function (i.e.
99 /// not a C++ or ObjC instance method) of the given type.
100 static const CGFunctionInfo &arrangeFreeFunctionType(CodeGenTypes &CGT,
101                                       SmallVectorImpl<CanQualType> &prefix,
102                                             CanQual<FunctionProtoType> FTP) {
103   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, FTP->getExtInfo());
104 }
105 
106 /// Given the formal ext-info of a C++ instance method, adjust it
107 /// according to the C++ ABI in effect.
108 static void adjustCXXMethodInfo(CodeGenTypes &CGT,
109                                 FunctionType::ExtInfo &extInfo,
110                                 bool isVariadic) {
111   if (extInfo.getCC() == CC_Default) {
112     CallingConv CC = CGT.getContext().getDefaultCXXMethodCallConv(isVariadic);
113     extInfo = extInfo.withCallingConv(CC);
114   }
115 }
116 
117 /// Arrange the argument and result information for a free function (i.e.
118 /// not a C++ or ObjC instance method) of the given type.
119 static const CGFunctionInfo &arrangeCXXMethodType(CodeGenTypes &CGT,
120                                       SmallVectorImpl<CanQualType> &prefix,
121                                             CanQual<FunctionProtoType> FTP) {
122   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
123   adjustCXXMethodInfo(CGT, extInfo, FTP->isVariadic());
124   return arrangeLLVMFunctionInfo(CGT, prefix, FTP, extInfo);
125 }
126 
127 /// Arrange the argument and result information for a value of the
128 /// given freestanding function type.
129 const CGFunctionInfo &
130 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
131   SmallVector<CanQualType, 16> argTypes;
132   return ::arrangeFreeFunctionType(*this, argTypes, FTP);
133 }
134 
135 static CallingConv getCallingConventionForDecl(const Decl *D) {
136   // Set the appropriate calling convention for the Function.
137   if (D->hasAttr<StdCallAttr>())
138     return CC_X86StdCall;
139 
140   if (D->hasAttr<FastCallAttr>())
141     return CC_X86FastCall;
142 
143   if (D->hasAttr<ThisCallAttr>())
144     return CC_X86ThisCall;
145 
146   if (D->hasAttr<PascalAttr>())
147     return CC_X86Pascal;
148 
149   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
150     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
151 
152   if (D->hasAttr<PnaclCallAttr>())
153     return CC_PnaclCall;
154 
155   if (D->hasAttr<IntelOclBiccAttr>())
156     return CC_IntelOclBicc;
157 
158   return CC_C;
159 }
160 
161 /// Arrange the argument and result information for a call to an
162 /// unknown C++ non-static member function of the given abstract type.
163 /// The member function must be an ordinary function, i.e. not a
164 /// constructor or destructor.
165 const CGFunctionInfo &
166 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
167                                    const FunctionProtoType *FTP) {
168   SmallVector<CanQualType, 16> argTypes;
169 
170   // Add the 'this' pointer.
171   argTypes.push_back(GetThisType(Context, RD));
172 
173   return ::arrangeCXXMethodType(*this, argTypes,
174               FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
175 }
176 
177 /// Arrange the argument and result information for a declaration or
178 /// definition of the given C++ non-static member function.  The
179 /// member function must be an ordinary function, i.e. not a
180 /// constructor or destructor.
181 const CGFunctionInfo &
182 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
183   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for contructors!");
184   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
185 
186   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
187 
188   if (MD->isInstance()) {
189     // The abstract case is perfectly fine.
190     return arrangeCXXMethodType(MD->getParent(), prototype.getTypePtr());
191   }
192 
193   return arrangeFreeFunctionType(prototype);
194 }
195 
196 /// Arrange the argument and result information for a declaration
197 /// or definition to the given constructor variant.
198 const CGFunctionInfo &
199 CodeGenTypes::arrangeCXXConstructorDeclaration(const CXXConstructorDecl *D,
200                                                CXXCtorType ctorKind) {
201   SmallVector<CanQualType, 16> argTypes;
202   argTypes.push_back(GetThisType(Context, D->getParent()));
203 
204   GlobalDecl GD(D, ctorKind);
205   CanQualType resultType =
206     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
207 
208   TheCXXABI.BuildConstructorSignature(D, ctorKind, resultType, argTypes);
209 
210   CanQual<FunctionProtoType> FTP = GetFormalType(D);
211 
212   RequiredArgs required = RequiredArgs::forPrototypePlus(FTP, argTypes.size());
213 
214   // Add the formal parameters.
215   for (unsigned i = 0, e = FTP->getNumArgs(); i != e; ++i)
216     argTypes.push_back(FTP->getArgType(i));
217 
218   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
219   adjustCXXMethodInfo(*this, extInfo, FTP->isVariadic());
220   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo, required);
221 }
222 
223 /// Arrange the argument and result information for a declaration,
224 /// definition, or call to the given destructor variant.  It so
225 /// happens that all three cases produce the same information.
226 const CGFunctionInfo &
227 CodeGenTypes::arrangeCXXDestructor(const CXXDestructorDecl *D,
228                                    CXXDtorType dtorKind) {
229   SmallVector<CanQualType, 2> argTypes;
230   argTypes.push_back(GetThisType(Context, D->getParent()));
231 
232   GlobalDecl GD(D, dtorKind);
233   CanQualType resultType =
234     TheCXXABI.HasThisReturn(GD) ? argTypes.front() : Context.VoidTy;
235 
236   TheCXXABI.BuildDestructorSignature(D, dtorKind, resultType, argTypes);
237 
238   CanQual<FunctionProtoType> FTP = GetFormalType(D);
239   assert(FTP->getNumArgs() == 0 && "dtor with formal parameters");
240   assert(FTP->isVariadic() == 0 && "dtor with formal parameters");
241 
242   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
243   adjustCXXMethodInfo(*this, extInfo, false);
244   return arrangeLLVMFunctionInfo(resultType, argTypes, extInfo,
245                                  RequiredArgs::All);
246 }
247 
248 /// Arrange the argument and result information for the declaration or
249 /// definition of the given function.
250 const CGFunctionInfo &
251 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
252   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
253     if (MD->isInstance())
254       return arrangeCXXMethodDeclaration(MD);
255 
256   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
257 
258   assert(isa<FunctionType>(FTy));
259 
260   // When declaring a function without a prototype, always use a
261   // non-variadic type.
262   if (isa<FunctionNoProtoType>(FTy)) {
263     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
264     return arrangeLLVMFunctionInfo(noProto->getResultType(), None,
265                                    noProto->getExtInfo(), RequiredArgs::All);
266   }
267 
268   assert(isa<FunctionProtoType>(FTy));
269   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>());
270 }
271 
272 /// Arrange the argument and result information for the declaration or
273 /// definition of an Objective-C method.
274 const CGFunctionInfo &
275 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
276   // It happens that this is the same as a call with no optional
277   // arguments, except also using the formal 'self' type.
278   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
279 }
280 
281 /// Arrange the argument and result information for the function type
282 /// through which to perform a send to the given Objective-C method,
283 /// using the given receiver type.  The receiver type is not always
284 /// the 'self' type of the method or even an Objective-C pointer type.
285 /// This is *not* the right method for actually performing such a
286 /// message send, due to the possibility of optional arguments.
287 const CGFunctionInfo &
288 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
289                                               QualType receiverType) {
290   SmallVector<CanQualType, 16> argTys;
291   argTys.push_back(Context.getCanonicalParamType(receiverType));
292   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
293   // FIXME: Kill copy?
294   for (ObjCMethodDecl::param_const_iterator i = MD->param_begin(),
295          e = MD->param_end(); i != e; ++i) {
296     argTys.push_back(Context.getCanonicalParamType((*i)->getType()));
297   }
298 
299   FunctionType::ExtInfo einfo;
300   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD));
301 
302   if (getContext().getLangOpts().ObjCAutoRefCount &&
303       MD->hasAttr<NSReturnsRetainedAttr>())
304     einfo = einfo.withProducesResult(true);
305 
306   RequiredArgs required =
307     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
308 
309   return arrangeLLVMFunctionInfo(GetReturnType(MD->getResultType()), argTys,
310                                  einfo, required);
311 }
312 
313 const CGFunctionInfo &
314 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
315   // FIXME: Do we need to handle ObjCMethodDecl?
316   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
317 
318   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
319     return arrangeCXXConstructorDeclaration(CD, GD.getCtorType());
320 
321   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
322     return arrangeCXXDestructor(DD, GD.getDtorType());
323 
324   return arrangeFunctionDeclaration(FD);
325 }
326 
327 /// Arrange a call as unto a free function, except possibly with an
328 /// additional number of formal parameters considered required.
329 static const CGFunctionInfo &
330 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
331                             const CallArgList &args,
332                             const FunctionType *fnType,
333                             unsigned numExtraRequiredArgs) {
334   assert(args.size() >= numExtraRequiredArgs);
335 
336   // In most cases, there are no optional arguments.
337   RequiredArgs required = RequiredArgs::All;
338 
339   // If we have a variadic prototype, the required arguments are the
340   // extra prefix plus the arguments in the prototype.
341   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
342     if (proto->isVariadic())
343       required = RequiredArgs(proto->getNumArgs() + numExtraRequiredArgs);
344 
345   // If we don't have a prototype at all, but we're supposed to
346   // explicitly use the variadic convention for unprototyped calls,
347   // treat all of the arguments as required but preserve the nominal
348   // possibility of variadics.
349   } else if (CGT.CGM.getTargetCodeGenInfo()
350                .isNoProtoCallVariadic(args, cast<FunctionNoProtoType>(fnType))) {
351     required = RequiredArgs(args.size());
352   }
353 
354   return CGT.arrangeFreeFunctionCall(fnType->getResultType(), args,
355                                      fnType->getExtInfo(), required);
356 }
357 
358 /// Figure out the rules for calling a function with the given formal
359 /// type using the given arguments.  The arguments are necessary
360 /// because the function might be unprototyped, in which case it's
361 /// target-dependent in crazy ways.
362 const CGFunctionInfo &
363 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
364                                       const FunctionType *fnType) {
365   return arrangeFreeFunctionLikeCall(*this, args, fnType, 0);
366 }
367 
368 /// A block function call is essentially a free-function call with an
369 /// extra implicit argument.
370 const CGFunctionInfo &
371 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
372                                        const FunctionType *fnType) {
373   return arrangeFreeFunctionLikeCall(*this, args, fnType, 1);
374 }
375 
376 const CGFunctionInfo &
377 CodeGenTypes::arrangeFreeFunctionCall(QualType resultType,
378                                       const CallArgList &args,
379                                       FunctionType::ExtInfo info,
380                                       RequiredArgs required) {
381   // FIXME: Kill copy.
382   SmallVector<CanQualType, 16> argTypes;
383   for (CallArgList::const_iterator i = args.begin(), e = args.end();
384        i != e; ++i)
385     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
386   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
387                                  required);
388 }
389 
390 /// Arrange a call to a C++ method, passing the given arguments.
391 const CGFunctionInfo &
392 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
393                                    const FunctionProtoType *FPT,
394                                    RequiredArgs required) {
395   // FIXME: Kill copy.
396   SmallVector<CanQualType, 16> argTypes;
397   for (CallArgList::const_iterator i = args.begin(), e = args.end();
398        i != e; ++i)
399     argTypes.push_back(Context.getCanonicalParamType(i->Ty));
400 
401   FunctionType::ExtInfo info = FPT->getExtInfo();
402   adjustCXXMethodInfo(*this, info, FPT->isVariadic());
403   return arrangeLLVMFunctionInfo(GetReturnType(FPT->getResultType()),
404                                  argTypes, info, required);
405 }
406 
407 const CGFunctionInfo &
408 CodeGenTypes::arrangeFunctionDeclaration(QualType resultType,
409                                          const FunctionArgList &args,
410                                          const FunctionType::ExtInfo &info,
411                                          bool isVariadic) {
412   // FIXME: Kill copy.
413   SmallVector<CanQualType, 16> argTypes;
414   for (FunctionArgList::const_iterator i = args.begin(), e = args.end();
415        i != e; ++i)
416     argTypes.push_back(Context.getCanonicalParamType((*i)->getType()));
417 
418   RequiredArgs required =
419     (isVariadic ? RequiredArgs(args.size()) : RequiredArgs::All);
420   return arrangeLLVMFunctionInfo(GetReturnType(resultType), argTypes, info,
421                                  required);
422 }
423 
424 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
425   return arrangeLLVMFunctionInfo(getContext().VoidTy, None,
426                                  FunctionType::ExtInfo(), RequiredArgs::All);
427 }
428 
429 /// Arrange the argument and result information for an abstract value
430 /// of a given function type.  This is the method which all of the
431 /// above functions ultimately defer to.
432 const CGFunctionInfo &
433 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
434                                       ArrayRef<CanQualType> argTypes,
435                                       FunctionType::ExtInfo info,
436                                       RequiredArgs required) {
437 #ifndef NDEBUG
438   for (ArrayRef<CanQualType>::const_iterator
439          I = argTypes.begin(), E = argTypes.end(); I != E; ++I)
440     assert(I->isCanonicalAsParam());
441 #endif
442 
443   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
444 
445   // Lookup or create unique function info.
446   llvm::FoldingSetNodeID ID;
447   CGFunctionInfo::Profile(ID, info, required, resultType, argTypes);
448 
449   void *insertPos = 0;
450   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
451   if (FI)
452     return *FI;
453 
454   // Construct the function info.  We co-allocate the ArgInfos.
455   FI = CGFunctionInfo::create(CC, info, resultType, argTypes, required);
456   FunctionInfos.InsertNode(FI, insertPos);
457 
458   bool inserted = FunctionsBeingProcessed.insert(FI); (void)inserted;
459   assert(inserted && "Recursively being processed?");
460 
461   // Compute ABI information.
462   getABIInfo().computeInfo(*FI);
463 
464   // Loop over all of the computed argument and return value info.  If any of
465   // them are direct or extend without a specified coerce type, specify the
466   // default now.
467   ABIArgInfo &retInfo = FI->getReturnInfo();
468   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == 0)
469     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
470 
471   for (CGFunctionInfo::arg_iterator I = FI->arg_begin(), E = FI->arg_end();
472        I != E; ++I)
473     if (I->info.canHaveCoerceToType() && I->info.getCoerceToType() == 0)
474       I->info.setCoerceToType(ConvertType(I->type));
475 
476   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
477   assert(erased && "Not in set?");
478 
479   return *FI;
480 }
481 
482 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
483                                        const FunctionType::ExtInfo &info,
484                                        CanQualType resultType,
485                                        ArrayRef<CanQualType> argTypes,
486                                        RequiredArgs required) {
487   void *buffer = operator new(sizeof(CGFunctionInfo) +
488                               sizeof(ArgInfo) * (argTypes.size() + 1));
489   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
490   FI->CallingConvention = llvmCC;
491   FI->EffectiveCallingConvention = llvmCC;
492   FI->ASTCallingConvention = info.getCC();
493   FI->NoReturn = info.getNoReturn();
494   FI->ReturnsRetained = info.getProducesResult();
495   FI->Required = required;
496   FI->HasRegParm = info.getHasRegParm();
497   FI->RegParm = info.getRegParm();
498   FI->NumArgs = argTypes.size();
499   FI->getArgsBuffer()[0].type = resultType;
500   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
501     FI->getArgsBuffer()[i + 1].type = argTypes[i];
502   return FI;
503 }
504 
505 /***/
506 
507 void CodeGenTypes::GetExpandedTypes(QualType type,
508                      SmallVectorImpl<llvm::Type*> &expandedTypes) {
509   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(type)) {
510     uint64_t NumElts = AT->getSize().getZExtValue();
511     for (uint64_t Elt = 0; Elt < NumElts; ++Elt)
512       GetExpandedTypes(AT->getElementType(), expandedTypes);
513   } else if (const RecordType *RT = type->getAs<RecordType>()) {
514     const RecordDecl *RD = RT->getDecl();
515     assert(!RD->hasFlexibleArrayMember() &&
516            "Cannot expand structure with flexible array.");
517     if (RD->isUnion()) {
518       // Unions can be here only in degenerative cases - all the fields are same
519       // after flattening. Thus we have to use the "largest" field.
520       const FieldDecl *LargestFD = 0;
521       CharUnits UnionSize = CharUnits::Zero();
522 
523       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
524            i != e; ++i) {
525         const FieldDecl *FD = *i;
526         assert(!FD->isBitField() &&
527                "Cannot expand structure with bit-field members.");
528         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
529         if (UnionSize < FieldSize) {
530           UnionSize = FieldSize;
531           LargestFD = FD;
532         }
533       }
534       if (LargestFD)
535         GetExpandedTypes(LargestFD->getType(), expandedTypes);
536     } else {
537       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
538            i != e; ++i) {
539         assert(!i->isBitField() &&
540                "Cannot expand structure with bit-field members.");
541         GetExpandedTypes(i->getType(), expandedTypes);
542       }
543     }
544   } else if (const ComplexType *CT = type->getAs<ComplexType>()) {
545     llvm::Type *EltTy = ConvertType(CT->getElementType());
546     expandedTypes.push_back(EltTy);
547     expandedTypes.push_back(EltTy);
548   } else
549     expandedTypes.push_back(ConvertType(type));
550 }
551 
552 llvm::Function::arg_iterator
553 CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
554                                     llvm::Function::arg_iterator AI) {
555   assert(LV.isSimple() &&
556          "Unexpected non-simple lvalue during struct expansion.");
557 
558   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
559     unsigned NumElts = AT->getSize().getZExtValue();
560     QualType EltTy = AT->getElementType();
561     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
562       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(LV.getAddress(), 0, Elt);
563       LValue LV = MakeAddrLValue(EltAddr, EltTy);
564       AI = ExpandTypeFromArgs(EltTy, LV, AI);
565     }
566   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
567     RecordDecl *RD = RT->getDecl();
568     if (RD->isUnion()) {
569       // Unions can be here only in degenerative cases - all the fields are same
570       // after flattening. Thus we have to use the "largest" field.
571       const FieldDecl *LargestFD = 0;
572       CharUnits UnionSize = CharUnits::Zero();
573 
574       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
575            i != e; ++i) {
576         const FieldDecl *FD = *i;
577         assert(!FD->isBitField() &&
578                "Cannot expand structure with bit-field members.");
579         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
580         if (UnionSize < FieldSize) {
581           UnionSize = FieldSize;
582           LargestFD = FD;
583         }
584       }
585       if (LargestFD) {
586         // FIXME: What are the right qualifiers here?
587         LValue SubLV = EmitLValueForField(LV, LargestFD);
588         AI = ExpandTypeFromArgs(LargestFD->getType(), SubLV, AI);
589       }
590     } else {
591       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
592            i != e; ++i) {
593         FieldDecl *FD = *i;
594         QualType FT = FD->getType();
595 
596         // FIXME: What are the right qualifiers here?
597         LValue SubLV = EmitLValueForField(LV, FD);
598         AI = ExpandTypeFromArgs(FT, SubLV, AI);
599       }
600     }
601   } else if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
602     QualType EltTy = CT->getElementType();
603     llvm::Value *RealAddr = Builder.CreateStructGEP(LV.getAddress(), 0, "real");
604     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(RealAddr, EltTy));
605     llvm::Value *ImagAddr = Builder.CreateStructGEP(LV.getAddress(), 1, "imag");
606     EmitStoreThroughLValue(RValue::get(AI++), MakeAddrLValue(ImagAddr, EltTy));
607   } else {
608     EmitStoreThroughLValue(RValue::get(AI), LV);
609     ++AI;
610   }
611 
612   return AI;
613 }
614 
615 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
616 /// accessing some number of bytes out of it, try to gep into the struct to get
617 /// at its inner goodness.  Dive as deep as possible without entering an element
618 /// with an in-memory size smaller than DstSize.
619 static llvm::Value *
620 EnterStructPointerForCoercedAccess(llvm::Value *SrcPtr,
621                                    llvm::StructType *SrcSTy,
622                                    uint64_t DstSize, CodeGenFunction &CGF) {
623   // We can't dive into a zero-element struct.
624   if (SrcSTy->getNumElements() == 0) return SrcPtr;
625 
626   llvm::Type *FirstElt = SrcSTy->getElementType(0);
627 
628   // If the first elt is at least as large as what we're looking for, or if the
629   // first element is the same size as the whole struct, we can enter it.
630   uint64_t FirstEltSize =
631     CGF.CGM.getDataLayout().getTypeAllocSize(FirstElt);
632   if (FirstEltSize < DstSize &&
633       FirstEltSize < CGF.CGM.getDataLayout().getTypeAllocSize(SrcSTy))
634     return SrcPtr;
635 
636   // GEP into the first element.
637   SrcPtr = CGF.Builder.CreateConstGEP2_32(SrcPtr, 0, 0, "coerce.dive");
638 
639   // If the first element is a struct, recurse.
640   llvm::Type *SrcTy =
641     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
642   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
643     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
644 
645   return SrcPtr;
646 }
647 
648 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
649 /// are either integers or pointers.  This does a truncation of the value if it
650 /// is too large or a zero extension if it is too small.
651 ///
652 /// This behaves as if the value were coerced through memory, so on big-endian
653 /// targets the high bits are preserved in a truncation, while little-endian
654 /// targets preserve the low bits.
655 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
656                                              llvm::Type *Ty,
657                                              CodeGenFunction &CGF) {
658   if (Val->getType() == Ty)
659     return Val;
660 
661   if (isa<llvm::PointerType>(Val->getType())) {
662     // If this is Pointer->Pointer avoid conversion to and from int.
663     if (isa<llvm::PointerType>(Ty))
664       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
665 
666     // Convert the pointer to an integer so we can play with its width.
667     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
668   }
669 
670   llvm::Type *DestIntTy = Ty;
671   if (isa<llvm::PointerType>(DestIntTy))
672     DestIntTy = CGF.IntPtrTy;
673 
674   if (Val->getType() != DestIntTy) {
675     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
676     if (DL.isBigEndian()) {
677       // Preserve the high bits on big-endian targets.
678       // That is what memory coercion does.
679       uint64_t SrcSize = DL.getTypeAllocSizeInBits(Val->getType());
680       uint64_t DstSize = DL.getTypeAllocSizeInBits(DestIntTy);
681       if (SrcSize > DstSize) {
682         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
683         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
684       } else {
685         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
686         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
687       }
688     } else {
689       // Little-endian targets preserve the low bits. No shifts required.
690       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
691     }
692   }
693 
694   if (isa<llvm::PointerType>(Ty))
695     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
696   return Val;
697 }
698 
699 
700 
701 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
702 /// a pointer to an object of type \arg Ty.
703 ///
704 /// This safely handles the case when the src type is smaller than the
705 /// destination type; in this situation the values of bits which not
706 /// present in the src are undefined.
707 static llvm::Value *CreateCoercedLoad(llvm::Value *SrcPtr,
708                                       llvm::Type *Ty,
709                                       CodeGenFunction &CGF) {
710   llvm::Type *SrcTy =
711     cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
712 
713   // If SrcTy and Ty are the same, just do a load.
714   if (SrcTy == Ty)
715     return CGF.Builder.CreateLoad(SrcPtr);
716 
717   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
718 
719   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
720     SrcPtr = EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
721     SrcTy = cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
722   }
723 
724   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
725 
726   // If the source and destination are integer or pointer types, just do an
727   // extension or truncation to the desired type.
728   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
729       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
730     llvm::LoadInst *Load = CGF.Builder.CreateLoad(SrcPtr);
731     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
732   }
733 
734   // If load is legal, just bitcast the src pointer.
735   if (SrcSize >= DstSize) {
736     // Generally SrcSize is never greater than DstSize, since this means we are
737     // losing bits. However, this can happen in cases where the structure has
738     // additional padding, for example due to a user specified alignment.
739     //
740     // FIXME: Assert that we aren't truncating non-padding bits when have access
741     // to that information.
742     llvm::Value *Casted =
743       CGF.Builder.CreateBitCast(SrcPtr, llvm::PointerType::getUnqual(Ty));
744     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Casted);
745     // FIXME: Use better alignment / avoid requiring aligned load.
746     Load->setAlignment(1);
747     return Load;
748   }
749 
750   // Otherwise do coercion through memory. This is stupid, but
751   // simple.
752   llvm::Value *Tmp = CGF.CreateTempAlloca(Ty);
753   llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
754   llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
755   llvm::Value *SrcCasted = CGF.Builder.CreateBitCast(SrcPtr, I8PtrTy);
756   // FIXME: Use better alignment.
757   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
758       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
759       1, false);
760   return CGF.Builder.CreateLoad(Tmp);
761 }
762 
763 // Function to store a first-class aggregate into memory.  We prefer to
764 // store the elements rather than the aggregate to be more friendly to
765 // fast-isel.
766 // FIXME: Do we need to recurse here?
767 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
768                           llvm::Value *DestPtr, bool DestIsVolatile,
769                           bool LowAlignment) {
770   // Prefer scalar stores to first-class aggregate stores.
771   if (llvm::StructType *STy =
772         dyn_cast<llvm::StructType>(Val->getType())) {
773     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
774       llvm::Value *EltPtr = CGF.Builder.CreateConstGEP2_32(DestPtr, 0, i);
775       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
776       llvm::StoreInst *SI = CGF.Builder.CreateStore(Elt, EltPtr,
777                                                     DestIsVolatile);
778       if (LowAlignment)
779         SI->setAlignment(1);
780     }
781   } else {
782     llvm::StoreInst *SI = CGF.Builder.CreateStore(Val, DestPtr, DestIsVolatile);
783     if (LowAlignment)
784       SI->setAlignment(1);
785   }
786 }
787 
788 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
789 /// where the source and destination may have different types.
790 ///
791 /// This safely handles the case when the src type is larger than the
792 /// destination type; the upper bits of the src will be lost.
793 static void CreateCoercedStore(llvm::Value *Src,
794                                llvm::Value *DstPtr,
795                                bool DstIsVolatile,
796                                CodeGenFunction &CGF) {
797   llvm::Type *SrcTy = Src->getType();
798   llvm::Type *DstTy =
799     cast<llvm::PointerType>(DstPtr->getType())->getElementType();
800   if (SrcTy == DstTy) {
801     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
802     return;
803   }
804 
805   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
806 
807   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
808     DstPtr = EnterStructPointerForCoercedAccess(DstPtr, DstSTy, SrcSize, CGF);
809     DstTy = cast<llvm::PointerType>(DstPtr->getType())->getElementType();
810   }
811 
812   // If the source and destination are integer or pointer types, just do an
813   // extension or truncation to the desired type.
814   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
815       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
816     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
817     CGF.Builder.CreateStore(Src, DstPtr, DstIsVolatile);
818     return;
819   }
820 
821   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
822 
823   // If store is legal, just bitcast the src pointer.
824   if (SrcSize <= DstSize) {
825     llvm::Value *Casted =
826       CGF.Builder.CreateBitCast(DstPtr, llvm::PointerType::getUnqual(SrcTy));
827     // FIXME: Use better alignment / avoid requiring aligned store.
828     BuildAggStore(CGF, Src, Casted, DstIsVolatile, true);
829   } else {
830     // Otherwise do coercion through memory. This is stupid, but
831     // simple.
832 
833     // Generally SrcSize is never greater than DstSize, since this means we are
834     // losing bits. However, this can happen in cases where the structure has
835     // additional padding, for example due to a user specified alignment.
836     //
837     // FIXME: Assert that we aren't truncating non-padding bits when have access
838     // to that information.
839     llvm::Value *Tmp = CGF.CreateTempAlloca(SrcTy);
840     CGF.Builder.CreateStore(Src, Tmp);
841     llvm::Type *I8PtrTy = CGF.Builder.getInt8PtrTy();
842     llvm::Value *Casted = CGF.Builder.CreateBitCast(Tmp, I8PtrTy);
843     llvm::Value *DstCasted = CGF.Builder.CreateBitCast(DstPtr, I8PtrTy);
844     // FIXME: Use better alignment.
845     CGF.Builder.CreateMemCpy(DstCasted, Casted,
846         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
847         1, false);
848   }
849 }
850 
851 /***/
852 
853 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
854   return FI.getReturnInfo().isIndirect();
855 }
856 
857 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
858   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
859     switch (BT->getKind()) {
860     default:
861       return false;
862     case BuiltinType::Float:
863       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
864     case BuiltinType::Double:
865       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
866     case BuiltinType::LongDouble:
867       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
868     }
869   }
870 
871   return false;
872 }
873 
874 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
875   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
876     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
877       if (BT->getKind() == BuiltinType::LongDouble)
878         return getTarget().useObjCFP2RetForComplexLongDouble();
879     }
880   }
881 
882   return false;
883 }
884 
885 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
886   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
887   return GetFunctionType(FI);
888 }
889 
890 llvm::FunctionType *
891 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
892 
893   bool Inserted = FunctionsBeingProcessed.insert(&FI); (void)Inserted;
894   assert(Inserted && "Recursively being processed?");
895 
896   SmallVector<llvm::Type*, 8> argTypes;
897   llvm::Type *resultType = 0;
898 
899   const ABIArgInfo &retAI = FI.getReturnInfo();
900   switch (retAI.getKind()) {
901   case ABIArgInfo::Expand:
902     llvm_unreachable("Invalid ABI kind for return argument");
903 
904   case ABIArgInfo::Extend:
905   case ABIArgInfo::Direct:
906     resultType = retAI.getCoerceToType();
907     break;
908 
909   case ABIArgInfo::Indirect: {
910     assert(!retAI.getIndirectAlign() && "Align unused on indirect return.");
911     resultType = llvm::Type::getVoidTy(getLLVMContext());
912 
913     QualType ret = FI.getReturnType();
914     llvm::Type *ty = ConvertType(ret);
915     unsigned addressSpace = Context.getTargetAddressSpace(ret);
916     argTypes.push_back(llvm::PointerType::get(ty, addressSpace));
917     break;
918   }
919 
920   case ABIArgInfo::Ignore:
921     resultType = llvm::Type::getVoidTy(getLLVMContext());
922     break;
923   }
924 
925   // Add in all of the required arguments.
926   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(), ie;
927   if (FI.isVariadic()) {
928     ie = it + FI.getRequiredArgs().getNumRequiredArgs();
929   } else {
930     ie = FI.arg_end();
931   }
932   for (; it != ie; ++it) {
933     const ABIArgInfo &argAI = it->info;
934 
935     // Insert a padding type to ensure proper alignment.
936     if (llvm::Type *PaddingType = argAI.getPaddingType())
937       argTypes.push_back(PaddingType);
938 
939     switch (argAI.getKind()) {
940     case ABIArgInfo::Ignore:
941       break;
942 
943     case ABIArgInfo::Indirect: {
944       // indirect arguments are always on the stack, which is addr space #0.
945       llvm::Type *LTy = ConvertTypeForMem(it->type);
946       argTypes.push_back(LTy->getPointerTo());
947       break;
948     }
949 
950     case ABIArgInfo::Extend:
951     case ABIArgInfo::Direct: {
952       // If the coerce-to type is a first class aggregate, flatten it.  Either
953       // way is semantically identical, but fast-isel and the optimizer
954       // generally likes scalar values better than FCAs.
955       llvm::Type *argType = argAI.getCoerceToType();
956       if (llvm::StructType *st = dyn_cast<llvm::StructType>(argType)) {
957         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
958           argTypes.push_back(st->getElementType(i));
959       } else {
960         argTypes.push_back(argType);
961       }
962       break;
963     }
964 
965     case ABIArgInfo::Expand:
966       GetExpandedTypes(it->type, argTypes);
967       break;
968     }
969   }
970 
971   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
972   assert(Erased && "Not in set?");
973 
974   return llvm::FunctionType::get(resultType, argTypes, FI.isVariadic());
975 }
976 
977 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
978   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
979   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
980 
981   if (!isFuncTypeConvertible(FPT))
982     return llvm::StructType::get(getLLVMContext());
983 
984   const CGFunctionInfo *Info;
985   if (isa<CXXDestructorDecl>(MD))
986     Info = &arrangeCXXDestructor(cast<CXXDestructorDecl>(MD), GD.getDtorType());
987   else
988     Info = &arrangeCXXMethodDeclaration(MD);
989   return GetFunctionType(*Info);
990 }
991 
992 void CodeGenModule::ConstructAttributeList(const CGFunctionInfo &FI,
993                                            const Decl *TargetDecl,
994                                            AttributeListType &PAL,
995                                            unsigned &CallingConv,
996                                            bool AttrOnCallSite) {
997   llvm::AttrBuilder FuncAttrs;
998   llvm::AttrBuilder RetAttrs;
999 
1000   CallingConv = FI.getEffectiveCallingConvention();
1001 
1002   if (FI.isNoReturn())
1003     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1004 
1005   // FIXME: handle sseregparm someday...
1006   if (TargetDecl) {
1007     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1008       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1009     if (TargetDecl->hasAttr<NoThrowAttr>())
1010       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1011     if (TargetDecl->hasAttr<NoReturnAttr>())
1012       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1013 
1014     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1015       const FunctionProtoType *FPT = Fn->getType()->getAs<FunctionProtoType>();
1016       if (FPT && FPT->isNothrow(getContext()))
1017         FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1018       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1019       // These attributes are not inherited by overloads.
1020       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1021       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1022         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1023     }
1024 
1025     // 'const' and 'pure' attribute functions are also nounwind.
1026     if (TargetDecl->hasAttr<ConstAttr>()) {
1027       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1028       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1029     } else if (TargetDecl->hasAttr<PureAttr>()) {
1030       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1031       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1032     }
1033     if (TargetDecl->hasAttr<MallocAttr>())
1034       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1035   }
1036 
1037   if (CodeGenOpts.OptimizeSize)
1038     FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1039   if (CodeGenOpts.OptimizeSize == 2)
1040     FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1041   if (CodeGenOpts.DisableRedZone)
1042     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1043   if (CodeGenOpts.NoImplicitFloat)
1044     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1045 
1046   if (AttrOnCallSite) {
1047     // Attributes that should go on the call site only.
1048     if (!CodeGenOpts.SimplifyLibCalls)
1049       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1050   } else {
1051     // Attributes that should go on the function, but not the call site.
1052     if (!CodeGenOpts.DisableFPElim) {
1053       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1054       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "false");
1055     } else if (CodeGenOpts.OmitLeafFramePointer) {
1056       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1057       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
1058     } else {
1059       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1060       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf", "true");
1061     }
1062 
1063     FuncAttrs.addAttribute("less-precise-fpmad",
1064                            CodeGenOpts.LessPreciseFPMAD ? "true" : "false");
1065     FuncAttrs.addAttribute("no-infs-fp-math",
1066                            CodeGenOpts.NoInfsFPMath ? "true" : "false");
1067     FuncAttrs.addAttribute("no-nans-fp-math",
1068                            CodeGenOpts.NoNaNsFPMath ? "true" : "false");
1069     FuncAttrs.addAttribute("unsafe-fp-math",
1070                            CodeGenOpts.UnsafeFPMath ? "true" : "false");
1071     FuncAttrs.addAttribute("use-soft-float",
1072                            CodeGenOpts.SoftFloat ? "true" : "false");
1073   }
1074 
1075   QualType RetTy = FI.getReturnType();
1076   unsigned Index = 1;
1077   const ABIArgInfo &RetAI = FI.getReturnInfo();
1078   switch (RetAI.getKind()) {
1079   case ABIArgInfo::Extend:
1080     if (RetTy->hasSignedIntegerRepresentation())
1081       RetAttrs.addAttribute(llvm::Attribute::SExt);
1082     else if (RetTy->hasUnsignedIntegerRepresentation())
1083       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1084     // FALL THROUGH
1085   case ABIArgInfo::Direct:
1086     if (RetAI.getInReg())
1087       RetAttrs.addAttribute(llvm::Attribute::InReg);
1088     break;
1089   case ABIArgInfo::Ignore:
1090     break;
1091 
1092   case ABIArgInfo::Indirect: {
1093     llvm::AttrBuilder SRETAttrs;
1094     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1095     if (RetAI.getInReg())
1096       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1097     PAL.push_back(llvm::
1098                   AttributeSet::get(getLLVMContext(), Index, SRETAttrs));
1099 
1100     ++Index;
1101     // sret disables readnone and readonly
1102     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1103       .removeAttribute(llvm::Attribute::ReadNone);
1104     break;
1105   }
1106 
1107   case ABIArgInfo::Expand:
1108     llvm_unreachable("Invalid ABI kind for return argument");
1109   }
1110 
1111   if (RetAttrs.hasAttributes())
1112     PAL.push_back(llvm::
1113                   AttributeSet::get(getLLVMContext(),
1114                                     llvm::AttributeSet::ReturnIndex,
1115                                     RetAttrs));
1116 
1117   for (CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1118          ie = FI.arg_end(); it != ie; ++it) {
1119     QualType ParamType = it->type;
1120     const ABIArgInfo &AI = it->info;
1121     llvm::AttrBuilder Attrs;
1122 
1123     if (AI.getPaddingType()) {
1124       if (AI.getPaddingInReg())
1125         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index,
1126                                               llvm::Attribute::InReg));
1127       // Increment Index if there is padding.
1128       ++Index;
1129     }
1130 
1131     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1132     // have the corresponding parameter variable.  It doesn't make
1133     // sense to do it here because parameters are so messed up.
1134     switch (AI.getKind()) {
1135     case ABIArgInfo::Extend:
1136       if (ParamType->isSignedIntegerOrEnumerationType())
1137         Attrs.addAttribute(llvm::Attribute::SExt);
1138       else if (ParamType->isUnsignedIntegerOrEnumerationType())
1139         Attrs.addAttribute(llvm::Attribute::ZExt);
1140       // FALL THROUGH
1141     case ABIArgInfo::Direct:
1142       if (AI.getInReg())
1143         Attrs.addAttribute(llvm::Attribute::InReg);
1144 
1145       // FIXME: handle sseregparm someday...
1146 
1147       if (llvm::StructType *STy =
1148           dyn_cast<llvm::StructType>(AI.getCoerceToType())) {
1149         unsigned Extra = STy->getNumElements()-1;  // 1 will be added below.
1150         if (Attrs.hasAttributes())
1151           for (unsigned I = 0; I < Extra; ++I)
1152             PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index + I,
1153                                                   Attrs));
1154         Index += Extra;
1155       }
1156       break;
1157 
1158     case ABIArgInfo::Indirect:
1159       if (AI.getInReg())
1160         Attrs.addAttribute(llvm::Attribute::InReg);
1161 
1162       if (AI.getIndirectByVal())
1163         Attrs.addAttribute(llvm::Attribute::ByVal);
1164 
1165       Attrs.addAlignmentAttr(AI.getIndirectAlign());
1166 
1167       // byval disables readnone and readonly.
1168       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1169         .removeAttribute(llvm::Attribute::ReadNone);
1170       break;
1171 
1172     case ABIArgInfo::Ignore:
1173       // Skip increment, no matching LLVM parameter.
1174       continue;
1175 
1176     case ABIArgInfo::Expand: {
1177       SmallVector<llvm::Type*, 8> types;
1178       // FIXME: This is rather inefficient. Do we ever actually need to do
1179       // anything here? The result should be just reconstructed on the other
1180       // side, so extension should be a non-issue.
1181       getTypes().GetExpandedTypes(ParamType, types);
1182       Index += types.size();
1183       continue;
1184     }
1185     }
1186 
1187     if (Attrs.hasAttributes())
1188       PAL.push_back(llvm::AttributeSet::get(getLLVMContext(), Index, Attrs));
1189     ++Index;
1190   }
1191   if (FuncAttrs.hasAttributes())
1192     PAL.push_back(llvm::
1193                   AttributeSet::get(getLLVMContext(),
1194                                     llvm::AttributeSet::FunctionIndex,
1195                                     FuncAttrs));
1196 }
1197 
1198 /// An argument came in as a promoted argument; demote it back to its
1199 /// declared type.
1200 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
1201                                          const VarDecl *var,
1202                                          llvm::Value *value) {
1203   llvm::Type *varType = CGF.ConvertType(var->getType());
1204 
1205   // This can happen with promotions that actually don't change the
1206   // underlying type, like the enum promotions.
1207   if (value->getType() == varType) return value;
1208 
1209   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
1210          && "unexpected promotion type");
1211 
1212   if (isa<llvm::IntegerType>(varType))
1213     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
1214 
1215   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
1216 }
1217 
1218 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
1219                                          llvm::Function *Fn,
1220                                          const FunctionArgList &Args) {
1221   // If this is an implicit-return-zero function, go ahead and
1222   // initialize the return value.  TODO: it might be nice to have
1223   // a more general mechanism for this that didn't require synthesized
1224   // return statements.
1225   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
1226     if (FD->hasImplicitReturnZero()) {
1227       QualType RetTy = FD->getResultType().getUnqualifiedType();
1228       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
1229       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
1230       Builder.CreateStore(Zero, ReturnValue);
1231     }
1232   }
1233 
1234   // FIXME: We no longer need the types from FunctionArgList; lift up and
1235   // simplify.
1236 
1237   // Emit allocs for param decls.  Give the LLVM Argument nodes names.
1238   llvm::Function::arg_iterator AI = Fn->arg_begin();
1239 
1240   // Name the struct return argument.
1241   if (CGM.ReturnTypeUsesSRet(FI)) {
1242     AI->setName("agg.result");
1243     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1244                                         AI->getArgNo() + 1,
1245                                         llvm::Attribute::NoAlias));
1246     ++AI;
1247   }
1248 
1249   assert(FI.arg_size() == Args.size() &&
1250          "Mismatch between function signature & arguments.");
1251   unsigned ArgNo = 1;
1252   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
1253   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
1254        i != e; ++i, ++info_it, ++ArgNo) {
1255     const VarDecl *Arg = *i;
1256     QualType Ty = info_it->type;
1257     const ABIArgInfo &ArgI = info_it->info;
1258 
1259     bool isPromoted =
1260       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
1261 
1262     // Skip the dummy padding argument.
1263     if (ArgI.getPaddingType())
1264       ++AI;
1265 
1266     switch (ArgI.getKind()) {
1267     case ABIArgInfo::Indirect: {
1268       llvm::Value *V = AI;
1269 
1270       if (!hasScalarEvaluationKind(Ty)) {
1271         // Aggregates and complex variables are accessed by reference.  All we
1272         // need to do is realign the value, if requested
1273         if (ArgI.getIndirectRealign()) {
1274           llvm::Value *AlignedTemp = CreateMemTemp(Ty, "coerce");
1275 
1276           // Copy from the incoming argument pointer to the temporary with the
1277           // appropriate alignment.
1278           //
1279           // FIXME: We should have a common utility for generating an aggregate
1280           // copy.
1281           llvm::Type *I8PtrTy = Builder.getInt8PtrTy();
1282           CharUnits Size = getContext().getTypeSizeInChars(Ty);
1283           llvm::Value *Dst = Builder.CreateBitCast(AlignedTemp, I8PtrTy);
1284           llvm::Value *Src = Builder.CreateBitCast(V, I8PtrTy);
1285           Builder.CreateMemCpy(Dst,
1286                                Src,
1287                                llvm::ConstantInt::get(IntPtrTy,
1288                                                       Size.getQuantity()),
1289                                ArgI.getIndirectAlign(),
1290                                false);
1291           V = AlignedTemp;
1292         }
1293       } else {
1294         // Load scalar value from indirect argument.
1295         CharUnits Alignment = getContext().getTypeAlignInChars(Ty);
1296         V = EmitLoadOfScalar(V, false, Alignment.getQuantity(), Ty);
1297 
1298         if (isPromoted)
1299           V = emitArgumentDemotion(*this, Arg, V);
1300       }
1301       EmitParmDecl(*Arg, V, ArgNo);
1302       break;
1303     }
1304 
1305     case ABIArgInfo::Extend:
1306     case ABIArgInfo::Direct: {
1307 
1308       // If we have the trivial case, handle it with no muss and fuss.
1309       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
1310           ArgI.getCoerceToType() == ConvertType(Ty) &&
1311           ArgI.getDirectOffset() == 0) {
1312         assert(AI != Fn->arg_end() && "Argument mismatch!");
1313         llvm::Value *V = AI;
1314 
1315         if (Arg->getType().isRestrictQualified())
1316           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
1317                                               AI->getArgNo() + 1,
1318                                               llvm::Attribute::NoAlias));
1319 
1320         // Ensure the argument is the correct type.
1321         if (V->getType() != ArgI.getCoerceToType())
1322           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
1323 
1324         if (isPromoted)
1325           V = emitArgumentDemotion(*this, Arg, V);
1326 
1327         // Because of merging of function types from multiple decls it is
1328         // possible for the type of an argument to not match the corresponding
1329         // type in the function type. Since we are codegening the callee
1330         // in here, add a cast to the argument type.
1331         llvm::Type *LTy = ConvertType(Arg->getType());
1332         if (V->getType() != LTy)
1333           V = Builder.CreateBitCast(V, LTy);
1334 
1335         EmitParmDecl(*Arg, V, ArgNo);
1336         break;
1337       }
1338 
1339       llvm::AllocaInst *Alloca = CreateMemTemp(Ty, Arg->getName());
1340 
1341       // The alignment we need to use is the max of the requested alignment for
1342       // the argument plus the alignment required by our access code below.
1343       unsigned AlignmentToUse =
1344         CGM.getDataLayout().getABITypeAlignment(ArgI.getCoerceToType());
1345       AlignmentToUse = std::max(AlignmentToUse,
1346                         (unsigned)getContext().getDeclAlign(Arg).getQuantity());
1347 
1348       Alloca->setAlignment(AlignmentToUse);
1349       llvm::Value *V = Alloca;
1350       llvm::Value *Ptr = V;    // Pointer to store into.
1351 
1352       // If the value is offset in memory, apply the offset now.
1353       if (unsigned Offs = ArgI.getDirectOffset()) {
1354         Ptr = Builder.CreateBitCast(Ptr, Builder.getInt8PtrTy());
1355         Ptr = Builder.CreateConstGEP1_32(Ptr, Offs);
1356         Ptr = Builder.CreateBitCast(Ptr,
1357                           llvm::PointerType::getUnqual(ArgI.getCoerceToType()));
1358       }
1359 
1360       // If the coerce-to type is a first class aggregate, we flatten it and
1361       // pass the elements. Either way is semantically identical, but fast-isel
1362       // and the optimizer generally likes scalar values better than FCAs.
1363       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
1364       if (STy && STy->getNumElements() > 1) {
1365         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
1366         llvm::Type *DstTy =
1367           cast<llvm::PointerType>(Ptr->getType())->getElementType();
1368         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
1369 
1370         if (SrcSize <= DstSize) {
1371           Ptr = Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
1372 
1373           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1374             assert(AI != Fn->arg_end() && "Argument mismatch!");
1375             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1376             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(Ptr, 0, i);
1377             Builder.CreateStore(AI++, EltPtr);
1378           }
1379         } else {
1380           llvm::AllocaInst *TempAlloca =
1381             CreateTempAlloca(ArgI.getCoerceToType(), "coerce");
1382           TempAlloca->setAlignment(AlignmentToUse);
1383           llvm::Value *TempV = TempAlloca;
1384 
1385           for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1386             assert(AI != Fn->arg_end() && "Argument mismatch!");
1387             AI->setName(Arg->getName() + ".coerce" + Twine(i));
1388             llvm::Value *EltPtr = Builder.CreateConstGEP2_32(TempV, 0, i);
1389             Builder.CreateStore(AI++, EltPtr);
1390           }
1391 
1392           Builder.CreateMemCpy(Ptr, TempV, DstSize, AlignmentToUse);
1393         }
1394       } else {
1395         // Simple case, just do a coerced store of the argument into the alloca.
1396         assert(AI != Fn->arg_end() && "Argument mismatch!");
1397         AI->setName(Arg->getName() + ".coerce");
1398         CreateCoercedStore(AI++, Ptr, /*DestIsVolatile=*/false, *this);
1399       }
1400 
1401 
1402       // Match to what EmitParmDecl is expecting for this type.
1403       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
1404         V = EmitLoadOfScalar(V, false, AlignmentToUse, Ty);
1405         if (isPromoted)
1406           V = emitArgumentDemotion(*this, Arg, V);
1407       }
1408       EmitParmDecl(*Arg, V, ArgNo);
1409       continue;  // Skip ++AI increment, already done.
1410     }
1411 
1412     case ABIArgInfo::Expand: {
1413       // If this structure was expanded into multiple arguments then
1414       // we need to create a temporary and reconstruct it from the
1415       // arguments.
1416       llvm::AllocaInst *Alloca = CreateMemTemp(Ty);
1417       CharUnits Align = getContext().getDeclAlign(Arg);
1418       Alloca->setAlignment(Align.getQuantity());
1419       LValue LV = MakeAddrLValue(Alloca, Ty, Align);
1420       llvm::Function::arg_iterator End = ExpandTypeFromArgs(Ty, LV, AI);
1421       EmitParmDecl(*Arg, Alloca, ArgNo);
1422 
1423       // Name the arguments used in expansion and increment AI.
1424       unsigned Index = 0;
1425       for (; AI != End; ++AI, ++Index)
1426         AI->setName(Arg->getName() + "." + Twine(Index));
1427       continue;
1428     }
1429 
1430     case ABIArgInfo::Ignore:
1431       // Initialize the local variable appropriately.
1432       if (!hasScalarEvaluationKind(Ty))
1433         EmitParmDecl(*Arg, CreateMemTemp(Ty), ArgNo);
1434       else
1435         EmitParmDecl(*Arg, llvm::UndefValue::get(ConvertType(Arg->getType())),
1436                      ArgNo);
1437 
1438       // Skip increment, no matching LLVM parameter.
1439       continue;
1440     }
1441 
1442     ++AI;
1443   }
1444   assert(AI == Fn->arg_end() && "Argument mismatch!");
1445 }
1446 
1447 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
1448   while (insn->use_empty()) {
1449     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
1450     if (!bitcast) return;
1451 
1452     // This is "safe" because we would have used a ConstantExpr otherwise.
1453     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
1454     bitcast->eraseFromParent();
1455   }
1456 }
1457 
1458 /// Try to emit a fused autorelease of a return result.
1459 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
1460                                                     llvm::Value *result) {
1461   // We must be immediately followed the cast.
1462   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
1463   if (BB->empty()) return 0;
1464   if (&BB->back() != result) return 0;
1465 
1466   llvm::Type *resultType = result->getType();
1467 
1468   // result is in a BasicBlock and is therefore an Instruction.
1469   llvm::Instruction *generator = cast<llvm::Instruction>(result);
1470 
1471   SmallVector<llvm::Instruction*,4> insnsToKill;
1472 
1473   // Look for:
1474   //  %generator = bitcast %type1* %generator2 to %type2*
1475   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
1476     // We would have emitted this as a constant if the operand weren't
1477     // an Instruction.
1478     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
1479 
1480     // Require the generator to be immediately followed by the cast.
1481     if (generator->getNextNode() != bitcast)
1482       return 0;
1483 
1484     insnsToKill.push_back(bitcast);
1485   }
1486 
1487   // Look for:
1488   //   %generator = call i8* @objc_retain(i8* %originalResult)
1489   // or
1490   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
1491   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
1492   if (!call) return 0;
1493 
1494   bool doRetainAutorelease;
1495 
1496   if (call->getCalledValue() == CGF.CGM.getARCEntrypoints().objc_retain) {
1497     doRetainAutorelease = true;
1498   } else if (call->getCalledValue() == CGF.CGM.getARCEntrypoints()
1499                                           .objc_retainAutoreleasedReturnValue) {
1500     doRetainAutorelease = false;
1501 
1502     // If we emitted an assembly marker for this call (and the
1503     // ARCEntrypoints field should have been set if so), go looking
1504     // for that call.  If we can't find it, we can't do this
1505     // optimization.  But it should always be the immediately previous
1506     // instruction, unless we needed bitcasts around the call.
1507     if (CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker) {
1508       llvm::Instruction *prev = call->getPrevNode();
1509       assert(prev);
1510       if (isa<llvm::BitCastInst>(prev)) {
1511         prev = prev->getPrevNode();
1512         assert(prev);
1513       }
1514       assert(isa<llvm::CallInst>(prev));
1515       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
1516                CGF.CGM.getARCEntrypoints().retainAutoreleasedReturnValueMarker);
1517       insnsToKill.push_back(prev);
1518     }
1519   } else {
1520     return 0;
1521   }
1522 
1523   result = call->getArgOperand(0);
1524   insnsToKill.push_back(call);
1525 
1526   // Keep killing bitcasts, for sanity.  Note that we no longer care
1527   // about precise ordering as long as there's exactly one use.
1528   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
1529     if (!bitcast->hasOneUse()) break;
1530     insnsToKill.push_back(bitcast);
1531     result = bitcast->getOperand(0);
1532   }
1533 
1534   // Delete all the unnecessary instructions, from latest to earliest.
1535   for (SmallVectorImpl<llvm::Instruction*>::iterator
1536          i = insnsToKill.begin(), e = insnsToKill.end(); i != e; ++i)
1537     (*i)->eraseFromParent();
1538 
1539   // Do the fused retain/autorelease if we were asked to.
1540   if (doRetainAutorelease)
1541     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
1542 
1543   // Cast back to the result type.
1544   return CGF.Builder.CreateBitCast(result, resultType);
1545 }
1546 
1547 /// If this is a +1 of the value of an immutable 'self', remove it.
1548 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
1549                                           llvm::Value *result) {
1550   // This is only applicable to a method with an immutable 'self'.
1551   const ObjCMethodDecl *method =
1552     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
1553   if (!method) return 0;
1554   const VarDecl *self = method->getSelfDecl();
1555   if (!self->getType().isConstQualified()) return 0;
1556 
1557   // Look for a retain call.
1558   llvm::CallInst *retainCall =
1559     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
1560   if (!retainCall ||
1561       retainCall->getCalledValue() != CGF.CGM.getARCEntrypoints().objc_retain)
1562     return 0;
1563 
1564   // Look for an ordinary load of 'self'.
1565   llvm::Value *retainedValue = retainCall->getArgOperand(0);
1566   llvm::LoadInst *load =
1567     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
1568   if (!load || load->isAtomic() || load->isVolatile() ||
1569       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self))
1570     return 0;
1571 
1572   // Okay!  Burn it all down.  This relies for correctness on the
1573   // assumption that the retain is emitted as part of the return and
1574   // that thereafter everything is used "linearly".
1575   llvm::Type *resultType = result->getType();
1576   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
1577   assert(retainCall->use_empty());
1578   retainCall->eraseFromParent();
1579   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
1580 
1581   return CGF.Builder.CreateBitCast(load, resultType);
1582 }
1583 
1584 /// Emit an ARC autorelease of the result of a function.
1585 ///
1586 /// \return the value to actually return from the function
1587 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
1588                                             llvm::Value *result) {
1589   // If we're returning 'self', kill the initial retain.  This is a
1590   // heuristic attempt to "encourage correctness" in the really unfortunate
1591   // case where we have a return of self during a dealloc and we desperately
1592   // need to avoid the possible autorelease.
1593   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
1594     return self;
1595 
1596   // At -O0, try to emit a fused retain/autorelease.
1597   if (CGF.shouldUseFusedARCCalls())
1598     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
1599       return fused;
1600 
1601   return CGF.EmitARCAutoreleaseReturnValue(result);
1602 }
1603 
1604 /// Heuristically search for a dominating store to the return-value slot.
1605 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
1606   // If there are multiple uses of the return-value slot, just check
1607   // for something immediately preceding the IP.  Sometimes this can
1608   // happen with how we generate implicit-returns; it can also happen
1609   // with noreturn cleanups.
1610   if (!CGF.ReturnValue->hasOneUse()) {
1611     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1612     if (IP->empty()) return 0;
1613     llvm::StoreInst *store = dyn_cast<llvm::StoreInst>(&IP->back());
1614     if (!store) return 0;
1615     if (store->getPointerOperand() != CGF.ReturnValue) return 0;
1616     assert(!store->isAtomic() && !store->isVolatile()); // see below
1617     return store;
1618   }
1619 
1620   llvm::StoreInst *store =
1621     dyn_cast<llvm::StoreInst>(CGF.ReturnValue->use_back());
1622   if (!store) return 0;
1623 
1624   // These aren't actually possible for non-coerced returns, and we
1625   // only care about non-coerced returns on this code path.
1626   assert(!store->isAtomic() && !store->isVolatile());
1627 
1628   // Now do a first-and-dirty dominance check: just walk up the
1629   // single-predecessors chain from the current insertion point.
1630   llvm::BasicBlock *StoreBB = store->getParent();
1631   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
1632   while (IP != StoreBB) {
1633     if (!(IP = IP->getSinglePredecessor()))
1634       return 0;
1635   }
1636 
1637   // Okay, the store's basic block dominates the insertion point; we
1638   // can do our thing.
1639   return store;
1640 }
1641 
1642 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
1643                                          bool EmitRetDbgLoc) {
1644   // Functions with no result always return void.
1645   if (ReturnValue == 0) {
1646     Builder.CreateRetVoid();
1647     return;
1648   }
1649 
1650   llvm::DebugLoc RetDbgLoc;
1651   llvm::Value *RV = 0;
1652   QualType RetTy = FI.getReturnType();
1653   const ABIArgInfo &RetAI = FI.getReturnInfo();
1654 
1655   switch (RetAI.getKind()) {
1656   case ABIArgInfo::Indirect: {
1657     switch (getEvaluationKind(RetTy)) {
1658     case TEK_Complex: {
1659       ComplexPairTy RT =
1660         EmitLoadOfComplex(MakeNaturalAlignAddrLValue(ReturnValue, RetTy));
1661       EmitStoreOfComplex(RT,
1662                        MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1663                          /*isInit*/ true);
1664       break;
1665     }
1666     case TEK_Aggregate:
1667       // Do nothing; aggregrates get evaluated directly into the destination.
1668       break;
1669     case TEK_Scalar:
1670       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
1671                         MakeNaturalAlignAddrLValue(CurFn->arg_begin(), RetTy),
1672                         /*isInit*/ true);
1673       break;
1674     }
1675     break;
1676   }
1677 
1678   case ABIArgInfo::Extend:
1679   case ABIArgInfo::Direct:
1680     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
1681         RetAI.getDirectOffset() == 0) {
1682       // The internal return value temp always will have pointer-to-return-type
1683       // type, just do a load.
1684 
1685       // If there is a dominating store to ReturnValue, we can elide
1686       // the load, zap the store, and usually zap the alloca.
1687       if (llvm::StoreInst *SI = findDominatingStoreToReturnValue(*this)) {
1688         // Reuse the debug location from the store unless there is
1689         // cleanup code to be emitted between the store and return
1690         // instruction.
1691         if (EmitRetDbgLoc && !AutoreleaseResult)
1692           RetDbgLoc = SI->getDebugLoc();
1693         // Get the stored value and nuke the now-dead store.
1694         RV = SI->getValueOperand();
1695         SI->eraseFromParent();
1696 
1697         // If that was the only use of the return value, nuke it as well now.
1698         if (ReturnValue->use_empty() && isa<llvm::AllocaInst>(ReturnValue)) {
1699           cast<llvm::AllocaInst>(ReturnValue)->eraseFromParent();
1700           ReturnValue = 0;
1701         }
1702 
1703       // Otherwise, we have to do a simple load.
1704       } else {
1705         RV = Builder.CreateLoad(ReturnValue);
1706       }
1707     } else {
1708       llvm::Value *V = ReturnValue;
1709       // If the value is offset in memory, apply the offset now.
1710       if (unsigned Offs = RetAI.getDirectOffset()) {
1711         V = Builder.CreateBitCast(V, Builder.getInt8PtrTy());
1712         V = Builder.CreateConstGEP1_32(V, Offs);
1713         V = Builder.CreateBitCast(V,
1714                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
1715       }
1716 
1717       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
1718     }
1719 
1720     // In ARC, end functions that return a retainable type with a call
1721     // to objc_autoreleaseReturnValue.
1722     if (AutoreleaseResult) {
1723       assert(getLangOpts().ObjCAutoRefCount &&
1724              !FI.isReturnsRetained() &&
1725              RetTy->isObjCRetainableType());
1726       RV = emitAutoreleaseOfResult(*this, RV);
1727     }
1728 
1729     break;
1730 
1731   case ABIArgInfo::Ignore:
1732     break;
1733 
1734   case ABIArgInfo::Expand:
1735     llvm_unreachable("Invalid ABI kind for return argument");
1736   }
1737 
1738   llvm::Instruction *Ret = RV ? Builder.CreateRet(RV) : Builder.CreateRetVoid();
1739   if (!RetDbgLoc.isUnknown())
1740     Ret->setDebugLoc(RetDbgLoc);
1741 }
1742 
1743 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
1744                                           const VarDecl *param) {
1745   // StartFunction converted the ABI-lowered parameter(s) into a
1746   // local alloca.  We need to turn that into an r-value suitable
1747   // for EmitCall.
1748   llvm::Value *local = GetAddrOfLocalVar(param);
1749 
1750   QualType type = param->getType();
1751 
1752   // For the most part, we just need to load the alloca, except:
1753   // 1) aggregate r-values are actually pointers to temporaries, and
1754   // 2) references to non-scalars are pointers directly to the aggregate.
1755   // I don't know why references to scalars are different here.
1756   if (const ReferenceType *ref = type->getAs<ReferenceType>()) {
1757     if (!hasScalarEvaluationKind(ref->getPointeeType()))
1758       return args.add(RValue::getAggregate(local), type);
1759 
1760     // Locals which are references to scalars are represented
1761     // with allocas holding the pointer.
1762     return args.add(RValue::get(Builder.CreateLoad(local)), type);
1763   }
1764 
1765   args.add(convertTempToRValue(local, type), type);
1766 }
1767 
1768 static bool isProvablyNull(llvm::Value *addr) {
1769   return isa<llvm::ConstantPointerNull>(addr);
1770 }
1771 
1772 static bool isProvablyNonNull(llvm::Value *addr) {
1773   return isa<llvm::AllocaInst>(addr);
1774 }
1775 
1776 /// Emit the actual writing-back of a writeback.
1777 static void emitWriteback(CodeGenFunction &CGF,
1778                           const CallArgList::Writeback &writeback) {
1779   const LValue &srcLV = writeback.Source;
1780   llvm::Value *srcAddr = srcLV.getAddress();
1781   assert(!isProvablyNull(srcAddr) &&
1782          "shouldn't have writeback for provably null argument");
1783 
1784   llvm::BasicBlock *contBB = 0;
1785 
1786   // If the argument wasn't provably non-null, we need to null check
1787   // before doing the store.
1788   bool provablyNonNull = isProvablyNonNull(srcAddr);
1789   if (!provablyNonNull) {
1790     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
1791     contBB = CGF.createBasicBlock("icr.done");
1792 
1793     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1794     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
1795     CGF.EmitBlock(writebackBB);
1796   }
1797 
1798   // Load the value to writeback.
1799   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
1800 
1801   // Cast it back, in case we're writing an id to a Foo* or something.
1802   value = CGF.Builder.CreateBitCast(value,
1803                cast<llvm::PointerType>(srcAddr->getType())->getElementType(),
1804                             "icr.writeback-cast");
1805 
1806   // Perform the writeback.
1807 
1808   // If we have a "to use" value, it's something we need to emit a use
1809   // of.  This has to be carefully threaded in: if it's done after the
1810   // release it's potentially undefined behavior (and the optimizer
1811   // will ignore it), and if it happens before the retain then the
1812   // optimizer could move the release there.
1813   if (writeback.ToUse) {
1814     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
1815 
1816     // Retain the new value.  No need to block-copy here:  the block's
1817     // being passed up the stack.
1818     value = CGF.EmitARCRetainNonBlock(value);
1819 
1820     // Emit the intrinsic use here.
1821     CGF.EmitARCIntrinsicUse(writeback.ToUse);
1822 
1823     // Load the old value (primitively).
1824     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV);
1825 
1826     // Put the new value in place (primitively).
1827     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
1828 
1829     // Release the old value.
1830     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
1831 
1832   // Otherwise, we can just do a normal lvalue store.
1833   } else {
1834     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
1835   }
1836 
1837   // Jump to the continuation block.
1838   if (!provablyNonNull)
1839     CGF.EmitBlock(contBB);
1840 }
1841 
1842 static void emitWritebacks(CodeGenFunction &CGF,
1843                            const CallArgList &args) {
1844   for (CallArgList::writeback_iterator
1845          i = args.writeback_begin(), e = args.writeback_end(); i != e; ++i)
1846     emitWriteback(CGF, *i);
1847 }
1848 
1849 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
1850                                             const CallArgList &CallArgs) {
1851   assert(CGF.getTarget().getCXXABI().isArgumentDestroyedByCallee());
1852   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
1853     CallArgs.getCleanupsToDeactivate();
1854   // Iterate in reverse to increase the likelihood of popping the cleanup.
1855   for (ArrayRef<CallArgList::CallArgCleanup>::reverse_iterator
1856          I = Cleanups.rbegin(), E = Cleanups.rend(); I != E; ++I) {
1857     CGF.DeactivateCleanupBlock(I->Cleanup, I->IsActiveIP);
1858     I->IsActiveIP->eraseFromParent();
1859   }
1860 }
1861 
1862 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
1863   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
1864     if (uop->getOpcode() == UO_AddrOf)
1865       return uop->getSubExpr();
1866   return 0;
1867 }
1868 
1869 /// Emit an argument that's being passed call-by-writeback.  That is,
1870 /// we are passing the address of
1871 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
1872                              const ObjCIndirectCopyRestoreExpr *CRE) {
1873   LValue srcLV;
1874 
1875   // Make an optimistic effort to emit the address as an l-value.
1876   // This can fail if the the argument expression is more complicated.
1877   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
1878     srcLV = CGF.EmitLValue(lvExpr);
1879 
1880   // Otherwise, just emit it as a scalar.
1881   } else {
1882     llvm::Value *srcAddr = CGF.EmitScalarExpr(CRE->getSubExpr());
1883 
1884     QualType srcAddrType =
1885       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
1886     srcLV = CGF.MakeNaturalAlignAddrLValue(srcAddr, srcAddrType);
1887   }
1888   llvm::Value *srcAddr = srcLV.getAddress();
1889 
1890   // The dest and src types don't necessarily match in LLVM terms
1891   // because of the crazy ObjC compatibility rules.
1892 
1893   llvm::PointerType *destType =
1894     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
1895 
1896   // If the address is a constant null, just pass the appropriate null.
1897   if (isProvablyNull(srcAddr)) {
1898     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
1899              CRE->getType());
1900     return;
1901   }
1902 
1903   // Create the temporary.
1904   llvm::Value *temp = CGF.CreateTempAlloca(destType->getElementType(),
1905                                            "icr.temp");
1906   // Loading an l-value can introduce a cleanup if the l-value is __weak,
1907   // and that cleanup will be conditional if we can't prove that the l-value
1908   // isn't null, so we need to register a dominating point so that the cleanups
1909   // system will make valid IR.
1910   CodeGenFunction::ConditionalEvaluation condEval(CGF);
1911 
1912   // Zero-initialize it if we're not doing a copy-initialization.
1913   bool shouldCopy = CRE->shouldCopy();
1914   if (!shouldCopy) {
1915     llvm::Value *null =
1916       llvm::ConstantPointerNull::get(
1917         cast<llvm::PointerType>(destType->getElementType()));
1918     CGF.Builder.CreateStore(null, temp);
1919   }
1920 
1921   llvm::BasicBlock *contBB = 0;
1922   llvm::BasicBlock *originBB = 0;
1923 
1924   // If the address is *not* known to be non-null, we need to switch.
1925   llvm::Value *finalArgument;
1926 
1927   bool provablyNonNull = isProvablyNonNull(srcAddr);
1928   if (provablyNonNull) {
1929     finalArgument = temp;
1930   } else {
1931     llvm::Value *isNull = CGF.Builder.CreateIsNull(srcAddr, "icr.isnull");
1932 
1933     finalArgument = CGF.Builder.CreateSelect(isNull,
1934                                    llvm::ConstantPointerNull::get(destType),
1935                                              temp, "icr.argument");
1936 
1937     // If we need to copy, then the load has to be conditional, which
1938     // means we need control flow.
1939     if (shouldCopy) {
1940       originBB = CGF.Builder.GetInsertBlock();
1941       contBB = CGF.createBasicBlock("icr.cont");
1942       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
1943       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
1944       CGF.EmitBlock(copyBB);
1945       condEval.begin(CGF);
1946     }
1947   }
1948 
1949   llvm::Value *valueToUse = 0;
1950 
1951   // Perform a copy if necessary.
1952   if (shouldCopy) {
1953     RValue srcRV = CGF.EmitLoadOfLValue(srcLV);
1954     assert(srcRV.isScalar());
1955 
1956     llvm::Value *src = srcRV.getScalarVal();
1957     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
1958                                     "icr.cast");
1959 
1960     // Use an ordinary store, not a store-to-lvalue.
1961     CGF.Builder.CreateStore(src, temp);
1962 
1963     // If optimization is enabled, and the value was held in a
1964     // __strong variable, we need to tell the optimizer that this
1965     // value has to stay alive until we're doing the store back.
1966     // This is because the temporary is effectively unretained,
1967     // and so otherwise we can violate the high-level semantics.
1968     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
1969         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
1970       valueToUse = src;
1971     }
1972   }
1973 
1974   // Finish the control flow if we needed it.
1975   if (shouldCopy && !provablyNonNull) {
1976     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
1977     CGF.EmitBlock(contBB);
1978 
1979     // Make a phi for the value to intrinsically use.
1980     if (valueToUse) {
1981       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
1982                                                       "icr.to-use");
1983       phiToUse->addIncoming(valueToUse, copyBB);
1984       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
1985                             originBB);
1986       valueToUse = phiToUse;
1987     }
1988 
1989     condEval.end(CGF);
1990   }
1991 
1992   args.addWriteback(srcLV, temp, valueToUse);
1993   args.add(RValue::get(finalArgument), CRE->getType());
1994 }
1995 
1996 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
1997                                   QualType type) {
1998   if (const ObjCIndirectCopyRestoreExpr *CRE
1999         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
2000     assert(getLangOpts().ObjCAutoRefCount);
2001     assert(getContext().hasSameType(E->getType(), type));
2002     return emitWritebackArg(*this, args, CRE);
2003   }
2004 
2005   assert(type->isReferenceType() == E->isGLValue() &&
2006          "reference binding to unmaterialized r-value!");
2007 
2008   if (E->isGLValue()) {
2009     assert(E->getObjectKind() == OK_Ordinary);
2010     return args.add(EmitReferenceBindingToExpr(E), type);
2011   }
2012 
2013   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
2014 
2015   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
2016   // However, we still have to push an EH-only cleanup in case we unwind before
2017   // we make it to the call.
2018   if (HasAggregateEvalKind &&
2019       CGM.getTarget().getCXXABI().isArgumentDestroyedByCallee()) {
2020     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2021     if (RD && RD->hasNonTrivialDestructor()) {
2022       AggValueSlot Slot = CreateAggTemp(type, "agg.arg.tmp");
2023       Slot.setExternallyDestructed();
2024       EmitAggExpr(E, Slot);
2025       RValue RV = Slot.asRValue();
2026       args.add(RV, type);
2027 
2028       pushDestroy(EHCleanup, RV.getAggregateAddr(), type, destroyCXXObject,
2029                   /*useEHCleanupForArray*/ true);
2030       // This unreachable is a temporary marker which will be removed later.
2031       llvm::Instruction *IsActive = Builder.CreateUnreachable();
2032       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
2033       return;
2034     }
2035   }
2036 
2037   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
2038       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
2039     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
2040     assert(L.isSimple());
2041     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
2042       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
2043     } else {
2044       // We can't represent a misaligned lvalue in the CallArgList, so copy
2045       // to an aligned temporary now.
2046       llvm::Value *tmp = CreateMemTemp(type);
2047       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile(),
2048                         L.getAlignment());
2049       args.add(RValue::getAggregate(tmp), type);
2050     }
2051     return;
2052   }
2053 
2054   args.add(EmitAnyExprToTemp(E), type);
2055 }
2056 
2057 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2058 // optimizer it can aggressively ignore unwind edges.
2059 void
2060 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
2061   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
2062       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
2063     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
2064                       CGM.getNoObjCARCExceptionsMetadata());
2065 }
2066 
2067 /// Emits a call to the given no-arguments nounwind runtime function.
2068 llvm::CallInst *
2069 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2070                                          const llvm::Twine &name) {
2071   return EmitNounwindRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2072 }
2073 
2074 /// Emits a call to the given nounwind runtime function.
2075 llvm::CallInst *
2076 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
2077                                          ArrayRef<llvm::Value*> args,
2078                                          const llvm::Twine &name) {
2079   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
2080   call->setDoesNotThrow();
2081   return call;
2082 }
2083 
2084 /// Emits a simple call (never an invoke) to the given no-arguments
2085 /// runtime function.
2086 llvm::CallInst *
2087 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2088                                  const llvm::Twine &name) {
2089   return EmitRuntimeCall(callee, ArrayRef<llvm::Value*>(), name);
2090 }
2091 
2092 /// Emits a simple call (never an invoke) to the given runtime
2093 /// function.
2094 llvm::CallInst *
2095 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
2096                                  ArrayRef<llvm::Value*> args,
2097                                  const llvm::Twine &name) {
2098   llvm::CallInst *call = Builder.CreateCall(callee, args, name);
2099   call->setCallingConv(getRuntimeCC());
2100   return call;
2101 }
2102 
2103 /// Emits a call or invoke to the given noreturn runtime function.
2104 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
2105                                                ArrayRef<llvm::Value*> args) {
2106   if (getInvokeDest()) {
2107     llvm::InvokeInst *invoke =
2108       Builder.CreateInvoke(callee,
2109                            getUnreachableBlock(),
2110                            getInvokeDest(),
2111                            args);
2112     invoke->setDoesNotReturn();
2113     invoke->setCallingConv(getRuntimeCC());
2114   } else {
2115     llvm::CallInst *call = Builder.CreateCall(callee, args);
2116     call->setDoesNotReturn();
2117     call->setCallingConv(getRuntimeCC());
2118     Builder.CreateUnreachable();
2119   }
2120 }
2121 
2122 /// Emits a call or invoke instruction to the given nullary runtime
2123 /// function.
2124 llvm::CallSite
2125 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2126                                          const Twine &name) {
2127   return EmitRuntimeCallOrInvoke(callee, ArrayRef<llvm::Value*>(), name);
2128 }
2129 
2130 /// Emits a call or invoke instruction to the given runtime function.
2131 llvm::CallSite
2132 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
2133                                          ArrayRef<llvm::Value*> args,
2134                                          const Twine &name) {
2135   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
2136   callSite.setCallingConv(getRuntimeCC());
2137   return callSite;
2138 }
2139 
2140 llvm::CallSite
2141 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2142                                   const Twine &Name) {
2143   return EmitCallOrInvoke(Callee, ArrayRef<llvm::Value *>(), Name);
2144 }
2145 
2146 /// Emits a call or invoke instruction to the given function, depending
2147 /// on the current state of the EH stack.
2148 llvm::CallSite
2149 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
2150                                   ArrayRef<llvm::Value *> Args,
2151                                   const Twine &Name) {
2152   llvm::BasicBlock *InvokeDest = getInvokeDest();
2153 
2154   llvm::Instruction *Inst;
2155   if (!InvokeDest)
2156     Inst = Builder.CreateCall(Callee, Args, Name);
2157   else {
2158     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
2159     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, Name);
2160     EmitBlock(ContBB);
2161   }
2162 
2163   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2164   // optimizer it can aggressively ignore unwind edges.
2165   if (CGM.getLangOpts().ObjCAutoRefCount)
2166     AddObjCARCExceptionMetadata(Inst);
2167 
2168   return Inst;
2169 }
2170 
2171 static void checkArgMatches(llvm::Value *Elt, unsigned &ArgNo,
2172                             llvm::FunctionType *FTy) {
2173   if (ArgNo < FTy->getNumParams())
2174     assert(Elt->getType() == FTy->getParamType(ArgNo));
2175   else
2176     assert(FTy->isVarArg());
2177   ++ArgNo;
2178 }
2179 
2180 void CodeGenFunction::ExpandTypeToArgs(QualType Ty, RValue RV,
2181                                        SmallVectorImpl<llvm::Value *> &Args,
2182                                        llvm::FunctionType *IRFuncTy) {
2183   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2184     unsigned NumElts = AT->getSize().getZExtValue();
2185     QualType EltTy = AT->getElementType();
2186     llvm::Value *Addr = RV.getAggregateAddr();
2187     for (unsigned Elt = 0; Elt < NumElts; ++Elt) {
2188       llvm::Value *EltAddr = Builder.CreateConstGEP2_32(Addr, 0, Elt);
2189       RValue EltRV = convertTempToRValue(EltAddr, EltTy);
2190       ExpandTypeToArgs(EltTy, EltRV, Args, IRFuncTy);
2191     }
2192   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
2193     RecordDecl *RD = RT->getDecl();
2194     assert(RV.isAggregate() && "Unexpected rvalue during struct expansion");
2195     LValue LV = MakeAddrLValue(RV.getAggregateAddr(), Ty);
2196 
2197     if (RD->isUnion()) {
2198       const FieldDecl *LargestFD = 0;
2199       CharUnits UnionSize = CharUnits::Zero();
2200 
2201       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2202            i != e; ++i) {
2203         const FieldDecl *FD = *i;
2204         assert(!FD->isBitField() &&
2205                "Cannot expand structure with bit-field members.");
2206         CharUnits FieldSize = getContext().getTypeSizeInChars(FD->getType());
2207         if (UnionSize < FieldSize) {
2208           UnionSize = FieldSize;
2209           LargestFD = FD;
2210         }
2211       }
2212       if (LargestFD) {
2213         RValue FldRV = EmitRValueForField(LV, LargestFD);
2214         ExpandTypeToArgs(LargestFD->getType(), FldRV, Args, IRFuncTy);
2215       }
2216     } else {
2217       for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2218            i != e; ++i) {
2219         FieldDecl *FD = *i;
2220 
2221         RValue FldRV = EmitRValueForField(LV, FD);
2222         ExpandTypeToArgs(FD->getType(), FldRV, Args, IRFuncTy);
2223       }
2224     }
2225   } else if (Ty->isAnyComplexType()) {
2226     ComplexPairTy CV = RV.getComplexVal();
2227     Args.push_back(CV.first);
2228     Args.push_back(CV.second);
2229   } else {
2230     assert(RV.isScalar() &&
2231            "Unexpected non-scalar rvalue during struct expansion.");
2232 
2233     // Insert a bitcast as needed.
2234     llvm::Value *V = RV.getScalarVal();
2235     if (Args.size() < IRFuncTy->getNumParams() &&
2236         V->getType() != IRFuncTy->getParamType(Args.size()))
2237       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(Args.size()));
2238 
2239     Args.push_back(V);
2240   }
2241 }
2242 
2243 
2244 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
2245                                  llvm::Value *Callee,
2246                                  ReturnValueSlot ReturnValue,
2247                                  const CallArgList &CallArgs,
2248                                  const Decl *TargetDecl,
2249                                  llvm::Instruction **callOrInvoke) {
2250   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
2251   SmallVector<llvm::Value*, 16> Args;
2252 
2253   // Handle struct-return functions by passing a pointer to the
2254   // location that we would like to return into.
2255   QualType RetTy = CallInfo.getReturnType();
2256   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
2257 
2258   // IRArgNo - Keep track of the argument number in the callee we're looking at.
2259   unsigned IRArgNo = 0;
2260   llvm::FunctionType *IRFuncTy =
2261     cast<llvm::FunctionType>(
2262                   cast<llvm::PointerType>(Callee->getType())->getElementType());
2263 
2264   // If the call returns a temporary with struct return, create a temporary
2265   // alloca to hold the result, unless one is given to us.
2266   if (CGM.ReturnTypeUsesSRet(CallInfo)) {
2267     llvm::Value *Value = ReturnValue.getValue();
2268     if (!Value)
2269       Value = CreateMemTemp(RetTy);
2270     Args.push_back(Value);
2271     checkArgMatches(Value, IRArgNo, IRFuncTy);
2272   }
2273 
2274   assert(CallInfo.arg_size() == CallArgs.size() &&
2275          "Mismatch between function signature & arguments.");
2276   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
2277   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
2278        I != E; ++I, ++info_it) {
2279     const ABIArgInfo &ArgInfo = info_it->info;
2280     RValue RV = I->RV;
2281 
2282     CharUnits TypeAlign = getContext().getTypeAlignInChars(I->Ty);
2283 
2284     // Insert a padding argument to ensure proper alignment.
2285     if (llvm::Type *PaddingType = ArgInfo.getPaddingType()) {
2286       Args.push_back(llvm::UndefValue::get(PaddingType));
2287       ++IRArgNo;
2288     }
2289 
2290     switch (ArgInfo.getKind()) {
2291     case ABIArgInfo::Indirect: {
2292       if (RV.isScalar() || RV.isComplex()) {
2293         // Make a temporary alloca to pass the argument.
2294         llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2295         if (ArgInfo.getIndirectAlign() > AI->getAlignment())
2296           AI->setAlignment(ArgInfo.getIndirectAlign());
2297         Args.push_back(AI);
2298 
2299         LValue argLV =
2300           MakeAddrLValue(Args.back(), I->Ty, TypeAlign);
2301 
2302         if (RV.isScalar())
2303           EmitStoreOfScalar(RV.getScalarVal(), argLV, /*init*/ true);
2304         else
2305           EmitStoreOfComplex(RV.getComplexVal(), argLV, /*init*/ true);
2306 
2307         // Validate argument match.
2308         checkArgMatches(AI, IRArgNo, IRFuncTy);
2309       } else {
2310         // We want to avoid creating an unnecessary temporary+copy here;
2311         // however, we need one in three cases:
2312         // 1. If the argument is not byval, and we are required to copy the
2313         //    source.  (This case doesn't occur on any common architecture.)
2314         // 2. If the argument is byval, RV is not sufficiently aligned, and
2315         //    we cannot force it to be sufficiently aligned.
2316         // 3. If the argument is byval, but RV is located in an address space
2317         //    different than that of the argument (0).
2318         llvm::Value *Addr = RV.getAggregateAddr();
2319         unsigned Align = ArgInfo.getIndirectAlign();
2320         const llvm::DataLayout *TD = &CGM.getDataLayout();
2321         const unsigned RVAddrSpace = Addr->getType()->getPointerAddressSpace();
2322         const unsigned ArgAddrSpace = (IRArgNo < IRFuncTy->getNumParams() ?
2323           IRFuncTy->getParamType(IRArgNo)->getPointerAddressSpace() : 0);
2324         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
2325             (ArgInfo.getIndirectByVal() && TypeAlign.getQuantity() < Align &&
2326              llvm::getOrEnforceKnownAlignment(Addr, Align, TD) < Align) ||
2327              (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
2328           // Create an aligned temporary, and copy to it.
2329           llvm::AllocaInst *AI = CreateMemTemp(I->Ty);
2330           if (Align > AI->getAlignment())
2331             AI->setAlignment(Align);
2332           Args.push_back(AI);
2333           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
2334 
2335           // Validate argument match.
2336           checkArgMatches(AI, IRArgNo, IRFuncTy);
2337         } else {
2338           // Skip the extra memcpy call.
2339           Args.push_back(Addr);
2340 
2341           // Validate argument match.
2342           checkArgMatches(Addr, IRArgNo, IRFuncTy);
2343         }
2344       }
2345       break;
2346     }
2347 
2348     case ABIArgInfo::Ignore:
2349       break;
2350 
2351     case ABIArgInfo::Extend:
2352     case ABIArgInfo::Direct: {
2353       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
2354           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
2355           ArgInfo.getDirectOffset() == 0) {
2356         llvm::Value *V;
2357         if (RV.isScalar())
2358           V = RV.getScalarVal();
2359         else
2360           V = Builder.CreateLoad(RV.getAggregateAddr());
2361 
2362         // If the argument doesn't match, perform a bitcast to coerce it.  This
2363         // can happen due to trivial type mismatches.
2364         if (IRArgNo < IRFuncTy->getNumParams() &&
2365             V->getType() != IRFuncTy->getParamType(IRArgNo))
2366           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRArgNo));
2367         Args.push_back(V);
2368 
2369         checkArgMatches(V, IRArgNo, IRFuncTy);
2370         break;
2371       }
2372 
2373       // FIXME: Avoid the conversion through memory if possible.
2374       llvm::Value *SrcPtr;
2375       if (RV.isScalar() || RV.isComplex()) {
2376         SrcPtr = CreateMemTemp(I->Ty, "coerce");
2377         LValue SrcLV = MakeAddrLValue(SrcPtr, I->Ty, TypeAlign);
2378         if (RV.isScalar()) {
2379           EmitStoreOfScalar(RV.getScalarVal(), SrcLV, /*init*/ true);
2380         } else {
2381           EmitStoreOfComplex(RV.getComplexVal(), SrcLV, /*init*/ true);
2382         }
2383       } else
2384         SrcPtr = RV.getAggregateAddr();
2385 
2386       // If the value is offset in memory, apply the offset now.
2387       if (unsigned Offs = ArgInfo.getDirectOffset()) {
2388         SrcPtr = Builder.CreateBitCast(SrcPtr, Builder.getInt8PtrTy());
2389         SrcPtr = Builder.CreateConstGEP1_32(SrcPtr, Offs);
2390         SrcPtr = Builder.CreateBitCast(SrcPtr,
2391                        llvm::PointerType::getUnqual(ArgInfo.getCoerceToType()));
2392 
2393       }
2394 
2395       // If the coerce-to type is a first class aggregate, we flatten it and
2396       // pass the elements. Either way is semantically identical, but fast-isel
2397       // and the optimizer generally likes scalar values better than FCAs.
2398       if (llvm::StructType *STy =
2399             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType())) {
2400         llvm::Type *SrcTy =
2401           cast<llvm::PointerType>(SrcPtr->getType())->getElementType();
2402         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
2403         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
2404 
2405         // If the source type is smaller than the destination type of the
2406         // coerce-to logic, copy the source value into a temp alloca the size
2407         // of the destination type to allow loading all of it. The bits past
2408         // the source value are left undef.
2409         if (SrcSize < DstSize) {
2410           llvm::AllocaInst *TempAlloca
2411             = CreateTempAlloca(STy, SrcPtr->getName() + ".coerce");
2412           Builder.CreateMemCpy(TempAlloca, SrcPtr, SrcSize, 0);
2413           SrcPtr = TempAlloca;
2414         } else {
2415           SrcPtr = Builder.CreateBitCast(SrcPtr,
2416                                          llvm::PointerType::getUnqual(STy));
2417         }
2418 
2419         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2420           llvm::Value *EltPtr = Builder.CreateConstGEP2_32(SrcPtr, 0, i);
2421           llvm::LoadInst *LI = Builder.CreateLoad(EltPtr);
2422           // We don't know what we're loading from.
2423           LI->setAlignment(1);
2424           Args.push_back(LI);
2425 
2426           // Validate argument match.
2427           checkArgMatches(LI, IRArgNo, IRFuncTy);
2428         }
2429       } else {
2430         // In the simple case, just pass the coerced loaded value.
2431         Args.push_back(CreateCoercedLoad(SrcPtr, ArgInfo.getCoerceToType(),
2432                                          *this));
2433 
2434         // Validate argument match.
2435         checkArgMatches(Args.back(), IRArgNo, IRFuncTy);
2436       }
2437 
2438       break;
2439     }
2440 
2441     case ABIArgInfo::Expand:
2442       ExpandTypeToArgs(I->Ty, RV, Args, IRFuncTy);
2443       IRArgNo = Args.size();
2444       break;
2445     }
2446   }
2447 
2448   if (!CallArgs.getCleanupsToDeactivate().empty())
2449     deactivateArgCleanupsBeforeCall(*this, CallArgs);
2450 
2451   // If the callee is a bitcast of a function to a varargs pointer to function
2452   // type, check to see if we can remove the bitcast.  This handles some cases
2453   // with unprototyped functions.
2454   if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Callee))
2455     if (llvm::Function *CalleeF = dyn_cast<llvm::Function>(CE->getOperand(0))) {
2456       llvm::PointerType *CurPT=cast<llvm::PointerType>(Callee->getType());
2457       llvm::FunctionType *CurFT =
2458         cast<llvm::FunctionType>(CurPT->getElementType());
2459       llvm::FunctionType *ActualFT = CalleeF->getFunctionType();
2460 
2461       if (CE->getOpcode() == llvm::Instruction::BitCast &&
2462           ActualFT->getReturnType() == CurFT->getReturnType() &&
2463           ActualFT->getNumParams() == CurFT->getNumParams() &&
2464           ActualFT->getNumParams() == Args.size() &&
2465           (CurFT->isVarArg() || !ActualFT->isVarArg())) {
2466         bool ArgsMatch = true;
2467         for (unsigned i = 0, e = ActualFT->getNumParams(); i != e; ++i)
2468           if (ActualFT->getParamType(i) != CurFT->getParamType(i)) {
2469             ArgsMatch = false;
2470             break;
2471           }
2472 
2473         // Strip the cast if we can get away with it.  This is a nice cleanup,
2474         // but also allows us to inline the function at -O0 if it is marked
2475         // always_inline.
2476         if (ArgsMatch)
2477           Callee = CalleeF;
2478       }
2479     }
2480 
2481   unsigned CallingConv;
2482   CodeGen::AttributeListType AttributeList;
2483   CGM.ConstructAttributeList(CallInfo, TargetDecl, AttributeList,
2484                              CallingConv, true);
2485   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
2486                                                      AttributeList);
2487 
2488   llvm::BasicBlock *InvokeDest = 0;
2489   if (!Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
2490                           llvm::Attribute::NoUnwind))
2491     InvokeDest = getInvokeDest();
2492 
2493   llvm::CallSite CS;
2494   if (!InvokeDest) {
2495     CS = Builder.CreateCall(Callee, Args);
2496   } else {
2497     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
2498     CS = Builder.CreateInvoke(Callee, Cont, InvokeDest, Args);
2499     EmitBlock(Cont);
2500   }
2501   if (callOrInvoke)
2502     *callOrInvoke = CS.getInstruction();
2503 
2504   CS.setAttributes(Attrs);
2505   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2506 
2507   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
2508   // optimizer it can aggressively ignore unwind edges.
2509   if (CGM.getLangOpts().ObjCAutoRefCount)
2510     AddObjCARCExceptionMetadata(CS.getInstruction());
2511 
2512   // If the call doesn't return, finish the basic block and clear the
2513   // insertion point; this allows the rest of IRgen to discard
2514   // unreachable code.
2515   if (CS.doesNotReturn()) {
2516     Builder.CreateUnreachable();
2517     Builder.ClearInsertionPoint();
2518 
2519     // FIXME: For now, emit a dummy basic block because expr emitters in
2520     // generally are not ready to handle emitting expressions at unreachable
2521     // points.
2522     EnsureInsertPoint();
2523 
2524     // Return a reasonable RValue.
2525     return GetUndefRValue(RetTy);
2526   }
2527 
2528   llvm::Instruction *CI = CS.getInstruction();
2529   if (Builder.isNamePreserving() && !CI->getType()->isVoidTy())
2530     CI->setName("call");
2531 
2532   // Emit any writebacks immediately.  Arguably this should happen
2533   // after any return-value munging.
2534   if (CallArgs.hasWritebacks())
2535     emitWritebacks(*this, CallArgs);
2536 
2537   switch (RetAI.getKind()) {
2538   case ABIArgInfo::Indirect:
2539     return convertTempToRValue(Args[0], RetTy);
2540 
2541   case ABIArgInfo::Ignore:
2542     // If we are ignoring an argument that had a result, make sure to
2543     // construct the appropriate return value for our caller.
2544     return GetUndefRValue(RetTy);
2545 
2546   case ABIArgInfo::Extend:
2547   case ABIArgInfo::Direct: {
2548     llvm::Type *RetIRTy = ConvertType(RetTy);
2549     if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
2550       switch (getEvaluationKind(RetTy)) {
2551       case TEK_Complex: {
2552         llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
2553         llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
2554         return RValue::getComplex(std::make_pair(Real, Imag));
2555       }
2556       case TEK_Aggregate: {
2557         llvm::Value *DestPtr = ReturnValue.getValue();
2558         bool DestIsVolatile = ReturnValue.isVolatile();
2559 
2560         if (!DestPtr) {
2561           DestPtr = CreateMemTemp(RetTy, "agg.tmp");
2562           DestIsVolatile = false;
2563         }
2564         BuildAggStore(*this, CI, DestPtr, DestIsVolatile, false);
2565         return RValue::getAggregate(DestPtr);
2566       }
2567       case TEK_Scalar: {
2568         // If the argument doesn't match, perform a bitcast to coerce it.  This
2569         // can happen due to trivial type mismatches.
2570         llvm::Value *V = CI;
2571         if (V->getType() != RetIRTy)
2572           V = Builder.CreateBitCast(V, RetIRTy);
2573         return RValue::get(V);
2574       }
2575       }
2576       llvm_unreachable("bad evaluation kind");
2577     }
2578 
2579     llvm::Value *DestPtr = ReturnValue.getValue();
2580     bool DestIsVolatile = ReturnValue.isVolatile();
2581 
2582     if (!DestPtr) {
2583       DestPtr = CreateMemTemp(RetTy, "coerce");
2584       DestIsVolatile = false;
2585     }
2586 
2587     // If the value is offset in memory, apply the offset now.
2588     llvm::Value *StorePtr = DestPtr;
2589     if (unsigned Offs = RetAI.getDirectOffset()) {
2590       StorePtr = Builder.CreateBitCast(StorePtr, Builder.getInt8PtrTy());
2591       StorePtr = Builder.CreateConstGEP1_32(StorePtr, Offs);
2592       StorePtr = Builder.CreateBitCast(StorePtr,
2593                          llvm::PointerType::getUnqual(RetAI.getCoerceToType()));
2594     }
2595     CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
2596 
2597     return convertTempToRValue(DestPtr, RetTy);
2598   }
2599 
2600   case ABIArgInfo::Expand:
2601     llvm_unreachable("Invalid ABI kind for return argument");
2602   }
2603 
2604   llvm_unreachable("Unhandled ABIArgInfo::Kind");
2605 }
2606 
2607 /* VarArg handling */
2608 
2609 llvm::Value *CodeGenFunction::EmitVAArg(llvm::Value *VAListAddr, QualType Ty) {
2610   return CGM.getTypes().getABIInfo().EmitVAArg(VAListAddr, Ty, *this);
2611 }
2612