1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Attr.h"
24 #include "clang/AST/Decl.h"
25 #include "clang/AST/DeclCXX.h"
26 #include "clang/AST/DeclObjC.h"
27 #include "clang/Basic/CodeGenOptions.h"
28 #include "clang/Basic/TargetBuiltins.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/CodeGen/CGFunctionInfo.h"
31 #include "clang/CodeGen/SwiftCallingConv.h"
32 #include "llvm/ADT/StringExtras.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/IR/Assumptions.h"
35 #include "llvm/IR/Attributes.h"
36 #include "llvm/IR/CallingConv.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/InlineAsm.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/Transforms/Utils/Local.h"
42 using namespace clang;
43 using namespace CodeGen;
44 
45 /***/
46 
47 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
48   switch (CC) {
49   default: return llvm::CallingConv::C;
50   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
51   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
52   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
53   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
54   case CC_Win64: return llvm::CallingConv::Win64;
55   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
56   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
57   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
58   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
59   // TODO: Add support for __pascal to LLVM.
60   case CC_X86Pascal: return llvm::CallingConv::C;
61   // TODO: Add support for __vectorcall to LLVM.
62   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
63   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
64   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
65   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
66   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
67   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
68   case CC_Swift: return llvm::CallingConv::Swift;
69   }
70 }
71 
72 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
73 /// qualification. Either or both of RD and MD may be null. A null RD indicates
74 /// that there is no meaningful 'this' type, and a null MD can occur when
75 /// calling a method pointer.
76 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
77                                          const CXXMethodDecl *MD) {
78   QualType RecTy;
79   if (RD)
80     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
81   else
82     RecTy = Context.VoidTy;
83 
84   if (MD)
85     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
86   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
87 }
88 
89 /// Returns the canonical formal type of the given C++ method.
90 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
91   return MD->getType()->getCanonicalTypeUnqualified()
92            .getAs<FunctionProtoType>();
93 }
94 
95 /// Returns the "extra-canonicalized" return type, which discards
96 /// qualifiers on the return type.  Codegen doesn't care about them,
97 /// and it makes ABI code a little easier to be able to assume that
98 /// all parameter and return types are top-level unqualified.
99 static CanQualType GetReturnType(QualType RetTy) {
100   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
101 }
102 
103 /// Arrange the argument and result information for a value of the given
104 /// unprototyped freestanding function type.
105 const CGFunctionInfo &
106 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
107   // When translating an unprototyped function type, always use a
108   // variadic type.
109   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
110                                  /*instanceMethod=*/false,
111                                  /*chainCall=*/false, None,
112                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
113 }
114 
115 static void addExtParameterInfosForCall(
116          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
117                                         const FunctionProtoType *proto,
118                                         unsigned prefixArgs,
119                                         unsigned totalArgs) {
120   assert(proto->hasExtParameterInfos());
121   assert(paramInfos.size() <= prefixArgs);
122   assert(proto->getNumParams() + prefixArgs <= totalArgs);
123 
124   paramInfos.reserve(totalArgs);
125 
126   // Add default infos for any prefix args that don't already have infos.
127   paramInfos.resize(prefixArgs);
128 
129   // Add infos for the prototype.
130   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
131     paramInfos.push_back(ParamInfo);
132     // pass_object_size params have no parameter info.
133     if (ParamInfo.hasPassObjectSize())
134       paramInfos.emplace_back();
135   }
136 
137   assert(paramInfos.size() <= totalArgs &&
138          "Did we forget to insert pass_object_size args?");
139   // Add default infos for the variadic and/or suffix arguments.
140   paramInfos.resize(totalArgs);
141 }
142 
143 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
144 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
145 static void appendParameterTypes(const CodeGenTypes &CGT,
146                                  SmallVectorImpl<CanQualType> &prefix,
147               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
148                                  CanQual<FunctionProtoType> FPT) {
149   // Fast path: don't touch param info if we don't need to.
150   if (!FPT->hasExtParameterInfos()) {
151     assert(paramInfos.empty() &&
152            "We have paramInfos, but the prototype doesn't?");
153     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
154     return;
155   }
156 
157   unsigned PrefixSize = prefix.size();
158   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
159   // parameters; the only thing that can change this is the presence of
160   // pass_object_size. So, we preallocate for the common case.
161   prefix.reserve(prefix.size() + FPT->getNumParams());
162 
163   auto ExtInfos = FPT->getExtParameterInfos();
164   assert(ExtInfos.size() == FPT->getNumParams());
165   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
166     prefix.push_back(FPT->getParamType(I));
167     if (ExtInfos[I].hasPassObjectSize())
168       prefix.push_back(CGT.getContext().getSizeType());
169   }
170 
171   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
172                               prefix.size());
173 }
174 
175 /// Arrange the LLVM function layout for a value of the given function
176 /// type, on top of any implicit parameters already stored.
177 static const CGFunctionInfo &
178 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
179                         SmallVectorImpl<CanQualType> &prefix,
180                         CanQual<FunctionProtoType> FTP) {
181   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
182   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
183   // FIXME: Kill copy.
184   appendParameterTypes(CGT, prefix, paramInfos, FTP);
185   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
186 
187   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
188                                      /*chainCall=*/false, prefix,
189                                      FTP->getExtInfo(), paramInfos,
190                                      Required);
191 }
192 
193 /// Arrange the argument and result information for a value of the
194 /// given freestanding function type.
195 const CGFunctionInfo &
196 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
197   SmallVector<CanQualType, 16> argTypes;
198   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
199                                    FTP);
200 }
201 
202 static CallingConv getCallingConventionForDecl(const ObjCMethodDecl *D,
203                                                bool IsWindows) {
204   // Set the appropriate calling convention for the Function.
205   if (D->hasAttr<StdCallAttr>())
206     return CC_X86StdCall;
207 
208   if (D->hasAttr<FastCallAttr>())
209     return CC_X86FastCall;
210 
211   if (D->hasAttr<RegCallAttr>())
212     return CC_X86RegCall;
213 
214   if (D->hasAttr<ThisCallAttr>())
215     return CC_X86ThisCall;
216 
217   if (D->hasAttr<VectorCallAttr>())
218     return CC_X86VectorCall;
219 
220   if (D->hasAttr<PascalAttr>())
221     return CC_X86Pascal;
222 
223   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
224     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
225 
226   if (D->hasAttr<AArch64VectorPcsAttr>())
227     return CC_AArch64VectorCall;
228 
229   if (D->hasAttr<IntelOclBiccAttr>())
230     return CC_IntelOclBicc;
231 
232   if (D->hasAttr<MSABIAttr>())
233     return IsWindows ? CC_C : CC_Win64;
234 
235   if (D->hasAttr<SysVABIAttr>())
236     return IsWindows ? CC_X86_64SysV : CC_C;
237 
238   if (D->hasAttr<PreserveMostAttr>())
239     return CC_PreserveMost;
240 
241   if (D->hasAttr<PreserveAllAttr>())
242     return CC_PreserveAll;
243 
244   return CC_C;
245 }
246 
247 /// Arrange the argument and result information for a call to an
248 /// unknown C++ non-static member function of the given abstract type.
249 /// (A null RD means we don't have any meaningful "this" argument type,
250 ///  so fall back to a generic pointer type).
251 /// The member function must be an ordinary function, i.e. not a
252 /// constructor or destructor.
253 const CGFunctionInfo &
254 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
255                                    const FunctionProtoType *FTP,
256                                    const CXXMethodDecl *MD) {
257   SmallVector<CanQualType, 16> argTypes;
258 
259   // Add the 'this' pointer.
260   argTypes.push_back(DeriveThisType(RD, MD));
261 
262   return ::arrangeLLVMFunctionInfo(
263       *this, true, argTypes,
264       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
265 }
266 
267 /// Set calling convention for CUDA/HIP kernel.
268 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
269                                            const FunctionDecl *FD) {
270   if (FD->hasAttr<CUDAGlobalAttr>()) {
271     const FunctionType *FT = FTy->getAs<FunctionType>();
272     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
273     FTy = FT->getCanonicalTypeUnqualified();
274   }
275 }
276 
277 /// Arrange the argument and result information for a declaration or
278 /// definition of the given C++ non-static member function.  The
279 /// member function must be an ordinary function, i.e. not a
280 /// constructor or destructor.
281 const CGFunctionInfo &
282 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
283   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
284   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
285 
286   CanQualType FT = GetFormalType(MD).getAs<Type>();
287   setCUDAKernelCallingConvention(FT, CGM, MD);
288   auto prototype = FT.getAs<FunctionProtoType>();
289 
290   if (MD->isInstance()) {
291     // The abstract case is perfectly fine.
292     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
293     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
294   }
295 
296   return arrangeFreeFunctionType(prototype);
297 }
298 
299 bool CodeGenTypes::inheritingCtorHasParams(
300     const InheritedConstructor &Inherited, CXXCtorType Type) {
301   // Parameters are unnecessary if we're constructing a base class subobject
302   // and the inherited constructor lives in a virtual base.
303   return Type == Ctor_Complete ||
304          !Inherited.getShadowDecl()->constructsVirtualBase() ||
305          !Target.getCXXABI().hasConstructorVariants();
306 }
307 
308 const CGFunctionInfo &
309 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
310   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
311 
312   SmallVector<CanQualType, 16> argTypes;
313   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
314   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
315 
316   bool PassParams = true;
317 
318   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
319     // A base class inheriting constructor doesn't get forwarded arguments
320     // needed to construct a virtual base (or base class thereof).
321     if (auto Inherited = CD->getInheritedConstructor())
322       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
323   }
324 
325   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
326 
327   // Add the formal parameters.
328   if (PassParams)
329     appendParameterTypes(*this, argTypes, paramInfos, FTP);
330 
331   CGCXXABI::AddedStructorArgCounts AddedArgs =
332       TheCXXABI.buildStructorSignature(GD, argTypes);
333   if (!paramInfos.empty()) {
334     // Note: prefix implies after the first param.
335     if (AddedArgs.Prefix)
336       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
337                         FunctionProtoType::ExtParameterInfo{});
338     if (AddedArgs.Suffix)
339       paramInfos.append(AddedArgs.Suffix,
340                         FunctionProtoType::ExtParameterInfo{});
341   }
342 
343   RequiredArgs required =
344       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
345                                       : RequiredArgs::All);
346 
347   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
348   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
349                                ? argTypes.front()
350                                : TheCXXABI.hasMostDerivedReturn(GD)
351                                      ? CGM.getContext().VoidPtrTy
352                                      : Context.VoidTy;
353   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
354                                  /*chainCall=*/false, argTypes, extInfo,
355                                  paramInfos, required);
356 }
357 
358 static SmallVector<CanQualType, 16>
359 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
360   SmallVector<CanQualType, 16> argTypes;
361   for (auto &arg : args)
362     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
363   return argTypes;
364 }
365 
366 static SmallVector<CanQualType, 16>
367 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
368   SmallVector<CanQualType, 16> argTypes;
369   for (auto &arg : args)
370     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
371   return argTypes;
372 }
373 
374 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
375 getExtParameterInfosForCall(const FunctionProtoType *proto,
376                             unsigned prefixArgs, unsigned totalArgs) {
377   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
378   if (proto->hasExtParameterInfos()) {
379     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
380   }
381   return result;
382 }
383 
384 /// Arrange a call to a C++ method, passing the given arguments.
385 ///
386 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
387 /// parameter.
388 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
389 /// args.
390 /// PassProtoArgs indicates whether `args` has args for the parameters in the
391 /// given CXXConstructorDecl.
392 const CGFunctionInfo &
393 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
394                                         const CXXConstructorDecl *D,
395                                         CXXCtorType CtorKind,
396                                         unsigned ExtraPrefixArgs,
397                                         unsigned ExtraSuffixArgs,
398                                         bool PassProtoArgs) {
399   // FIXME: Kill copy.
400   SmallVector<CanQualType, 16> ArgTypes;
401   for (const auto &Arg : args)
402     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
403 
404   // +1 for implicit this, which should always be args[0].
405   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
406 
407   CanQual<FunctionProtoType> FPT = GetFormalType(D);
408   RequiredArgs Required = PassProtoArgs
409                               ? RequiredArgs::forPrototypePlus(
410                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
411                               : RequiredArgs::All;
412 
413   GlobalDecl GD(D, CtorKind);
414   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
415                                ? ArgTypes.front()
416                                : TheCXXABI.hasMostDerivedReturn(GD)
417                                      ? CGM.getContext().VoidPtrTy
418                                      : Context.VoidTy;
419 
420   FunctionType::ExtInfo Info = FPT->getExtInfo();
421   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
422   // If the prototype args are elided, we should only have ABI-specific args,
423   // which never have param info.
424   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
425     // ABI-specific suffix arguments are treated the same as variadic arguments.
426     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
427                                 ArgTypes.size());
428   }
429   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
430                                  /*chainCall=*/false, ArgTypes, Info,
431                                  ParamInfos, Required);
432 }
433 
434 /// Arrange the argument and result information for the declaration or
435 /// definition of the given function.
436 const CGFunctionInfo &
437 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
438   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
439     if (MD->isInstance())
440       return arrangeCXXMethodDeclaration(MD);
441 
442   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
443 
444   assert(isa<FunctionType>(FTy));
445   setCUDAKernelCallingConvention(FTy, CGM, FD);
446 
447   // When declaring a function without a prototype, always use a
448   // non-variadic type.
449   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
450     return arrangeLLVMFunctionInfo(
451         noProto->getReturnType(), /*instanceMethod=*/false,
452         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
453   }
454 
455   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
456 }
457 
458 /// Arrange the argument and result information for the declaration or
459 /// definition of an Objective-C method.
460 const CGFunctionInfo &
461 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
462   // It happens that this is the same as a call with no optional
463   // arguments, except also using the formal 'self' type.
464   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
465 }
466 
467 /// Arrange the argument and result information for the function type
468 /// through which to perform a send to the given Objective-C method,
469 /// using the given receiver type.  The receiver type is not always
470 /// the 'self' type of the method or even an Objective-C pointer type.
471 /// This is *not* the right method for actually performing such a
472 /// message send, due to the possibility of optional arguments.
473 const CGFunctionInfo &
474 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
475                                               QualType receiverType) {
476   SmallVector<CanQualType, 16> argTys;
477   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
478   argTys.push_back(Context.getCanonicalParamType(receiverType));
479   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
480   // FIXME: Kill copy?
481   for (const auto *I : MD->parameters()) {
482     argTys.push_back(Context.getCanonicalParamType(I->getType()));
483     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
484         I->hasAttr<NoEscapeAttr>());
485     extParamInfos.push_back(extParamInfo);
486   }
487 
488   FunctionType::ExtInfo einfo;
489   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
490   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
491 
492   if (getContext().getLangOpts().ObjCAutoRefCount &&
493       MD->hasAttr<NSReturnsRetainedAttr>())
494     einfo = einfo.withProducesResult(true);
495 
496   RequiredArgs required =
497     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
498 
499   return arrangeLLVMFunctionInfo(
500       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
501       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
502 }
503 
504 const CGFunctionInfo &
505 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
506                                                  const CallArgList &args) {
507   auto argTypes = getArgTypesForCall(Context, args);
508   FunctionType::ExtInfo einfo;
509 
510   return arrangeLLVMFunctionInfo(
511       GetReturnType(returnType), /*instanceMethod=*/false,
512       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
513 }
514 
515 const CGFunctionInfo &
516 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
517   // FIXME: Do we need to handle ObjCMethodDecl?
518   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
519 
520   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
521       isa<CXXDestructorDecl>(GD.getDecl()))
522     return arrangeCXXStructorDeclaration(GD);
523 
524   return arrangeFunctionDeclaration(FD);
525 }
526 
527 /// Arrange a thunk that takes 'this' as the first parameter followed by
528 /// varargs.  Return a void pointer, regardless of the actual return type.
529 /// The body of the thunk will end in a musttail call to a function of the
530 /// correct type, and the caller will bitcast the function to the correct
531 /// prototype.
532 const CGFunctionInfo &
533 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
534   assert(MD->isVirtual() && "only methods have thunks");
535   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
536   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
537   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
538                                  /*chainCall=*/false, ArgTys,
539                                  FTP->getExtInfo(), {}, RequiredArgs(1));
540 }
541 
542 const CGFunctionInfo &
543 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
544                                    CXXCtorType CT) {
545   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
546 
547   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
548   SmallVector<CanQualType, 2> ArgTys;
549   const CXXRecordDecl *RD = CD->getParent();
550   ArgTys.push_back(DeriveThisType(RD, CD));
551   if (CT == Ctor_CopyingClosure)
552     ArgTys.push_back(*FTP->param_type_begin());
553   if (RD->getNumVBases() > 0)
554     ArgTys.push_back(Context.IntTy);
555   CallingConv CC = Context.getDefaultCallingConvention(
556       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
557   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
558                                  /*chainCall=*/false, ArgTys,
559                                  FunctionType::ExtInfo(CC), {},
560                                  RequiredArgs::All);
561 }
562 
563 /// Arrange a call as unto a free function, except possibly with an
564 /// additional number of formal parameters considered required.
565 static const CGFunctionInfo &
566 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
567                             CodeGenModule &CGM,
568                             const CallArgList &args,
569                             const FunctionType *fnType,
570                             unsigned numExtraRequiredArgs,
571                             bool chainCall) {
572   assert(args.size() >= numExtraRequiredArgs);
573 
574   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
575 
576   // In most cases, there are no optional arguments.
577   RequiredArgs required = RequiredArgs::All;
578 
579   // If we have a variadic prototype, the required arguments are the
580   // extra prefix plus the arguments in the prototype.
581   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
582     if (proto->isVariadic())
583       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
584 
585     if (proto->hasExtParameterInfos())
586       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
587                                   args.size());
588 
589   // If we don't have a prototype at all, but we're supposed to
590   // explicitly use the variadic convention for unprototyped calls,
591   // treat all of the arguments as required but preserve the nominal
592   // possibility of variadics.
593   } else if (CGM.getTargetCodeGenInfo()
594                 .isNoProtoCallVariadic(args,
595                                        cast<FunctionNoProtoType>(fnType))) {
596     required = RequiredArgs(args.size());
597   }
598 
599   // FIXME: Kill copy.
600   SmallVector<CanQualType, 16> argTypes;
601   for (const auto &arg : args)
602     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
603   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
604                                      /*instanceMethod=*/false, chainCall,
605                                      argTypes, fnType->getExtInfo(), paramInfos,
606                                      required);
607 }
608 
609 /// Figure out the rules for calling a function with the given formal
610 /// type using the given arguments.  The arguments are necessary
611 /// because the function might be unprototyped, in which case it's
612 /// target-dependent in crazy ways.
613 const CGFunctionInfo &
614 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
615                                       const FunctionType *fnType,
616                                       bool chainCall) {
617   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
618                                      chainCall ? 1 : 0, chainCall);
619 }
620 
621 /// A block function is essentially a free function with an
622 /// extra implicit argument.
623 const CGFunctionInfo &
624 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
625                                        const FunctionType *fnType) {
626   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
627                                      /*chainCall=*/false);
628 }
629 
630 const CGFunctionInfo &
631 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
632                                               const FunctionArgList &params) {
633   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
634   auto argTypes = getArgTypesForDeclaration(Context, params);
635 
636   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
637                                  /*instanceMethod*/ false, /*chainCall*/ false,
638                                  argTypes, proto->getExtInfo(), paramInfos,
639                                  RequiredArgs::forPrototypePlus(proto, 1));
640 }
641 
642 const CGFunctionInfo &
643 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
644                                          const CallArgList &args) {
645   // FIXME: Kill copy.
646   SmallVector<CanQualType, 16> argTypes;
647   for (const auto &Arg : args)
648     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
649   return arrangeLLVMFunctionInfo(
650       GetReturnType(resultType), /*instanceMethod=*/false,
651       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
652       /*paramInfos=*/ {}, RequiredArgs::All);
653 }
654 
655 const CGFunctionInfo &
656 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
657                                                 const FunctionArgList &args) {
658   auto argTypes = getArgTypesForDeclaration(Context, args);
659 
660   return arrangeLLVMFunctionInfo(
661       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
662       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
663 }
664 
665 const CGFunctionInfo &
666 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
667                                               ArrayRef<CanQualType> argTypes) {
668   return arrangeLLVMFunctionInfo(
669       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
670       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
671 }
672 
673 /// Arrange a call to a C++ method, passing the given arguments.
674 ///
675 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
676 /// does not count `this`.
677 const CGFunctionInfo &
678 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
679                                    const FunctionProtoType *proto,
680                                    RequiredArgs required,
681                                    unsigned numPrefixArgs) {
682   assert(numPrefixArgs + 1 <= args.size() &&
683          "Emitting a call with less args than the required prefix?");
684   // Add one to account for `this`. It's a bit awkward here, but we don't count
685   // `this` in similar places elsewhere.
686   auto paramInfos =
687     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
688 
689   // FIXME: Kill copy.
690   auto argTypes = getArgTypesForCall(Context, args);
691 
692   FunctionType::ExtInfo info = proto->getExtInfo();
693   return arrangeLLVMFunctionInfo(
694       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
695       /*chainCall=*/false, argTypes, info, paramInfos, required);
696 }
697 
698 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
699   return arrangeLLVMFunctionInfo(
700       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
701       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
702 }
703 
704 const CGFunctionInfo &
705 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
706                           const CallArgList &args) {
707   assert(signature.arg_size() <= args.size());
708   if (signature.arg_size() == args.size())
709     return signature;
710 
711   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
712   auto sigParamInfos = signature.getExtParameterInfos();
713   if (!sigParamInfos.empty()) {
714     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
715     paramInfos.resize(args.size());
716   }
717 
718   auto argTypes = getArgTypesForCall(Context, args);
719 
720   assert(signature.getRequiredArgs().allowsOptionalArgs());
721   return arrangeLLVMFunctionInfo(signature.getReturnType(),
722                                  signature.isInstanceMethod(),
723                                  signature.isChainCall(),
724                                  argTypes,
725                                  signature.getExtInfo(),
726                                  paramInfos,
727                                  signature.getRequiredArgs());
728 }
729 
730 namespace clang {
731 namespace CodeGen {
732 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
733 }
734 }
735 
736 /// Arrange the argument and result information for an abstract value
737 /// of a given function type.  This is the method which all of the
738 /// above functions ultimately defer to.
739 const CGFunctionInfo &
740 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
741                                       bool instanceMethod,
742                                       bool chainCall,
743                                       ArrayRef<CanQualType> argTypes,
744                                       FunctionType::ExtInfo info,
745                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
746                                       RequiredArgs required) {
747   assert(llvm::all_of(argTypes,
748                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
749 
750   // Lookup or create unique function info.
751   llvm::FoldingSetNodeID ID;
752   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
753                           required, resultType, argTypes);
754 
755   void *insertPos = nullptr;
756   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
757   if (FI)
758     return *FI;
759 
760   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
761 
762   // Construct the function info.  We co-allocate the ArgInfos.
763   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
764                               paramInfos, resultType, argTypes, required);
765   FunctionInfos.InsertNode(FI, insertPos);
766 
767   bool inserted = FunctionsBeingProcessed.insert(FI).second;
768   (void)inserted;
769   assert(inserted && "Recursively being processed?");
770 
771   // Compute ABI information.
772   if (CC == llvm::CallingConv::SPIR_KERNEL) {
773     // Force target independent argument handling for the host visible
774     // kernel functions.
775     computeSPIRKernelABIInfo(CGM, *FI);
776   } else if (info.getCC() == CC_Swift) {
777     swiftcall::computeABIInfo(CGM, *FI);
778   } else {
779     getABIInfo().computeInfo(*FI);
780   }
781 
782   // Loop over all of the computed argument and return value info.  If any of
783   // them are direct or extend without a specified coerce type, specify the
784   // default now.
785   ABIArgInfo &retInfo = FI->getReturnInfo();
786   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
787     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
788 
789   for (auto &I : FI->arguments())
790     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
791       I.info.setCoerceToType(ConvertType(I.type));
792 
793   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
794   assert(erased && "Not in set?");
795 
796   return *FI;
797 }
798 
799 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
800                                        bool instanceMethod,
801                                        bool chainCall,
802                                        const FunctionType::ExtInfo &info,
803                                        ArrayRef<ExtParameterInfo> paramInfos,
804                                        CanQualType resultType,
805                                        ArrayRef<CanQualType> argTypes,
806                                        RequiredArgs required) {
807   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
808   assert(!required.allowsOptionalArgs() ||
809          required.getNumRequiredArgs() <= argTypes.size());
810 
811   void *buffer =
812     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
813                                   argTypes.size() + 1, paramInfos.size()));
814 
815   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
816   FI->CallingConvention = llvmCC;
817   FI->EffectiveCallingConvention = llvmCC;
818   FI->ASTCallingConvention = info.getCC();
819   FI->InstanceMethod = instanceMethod;
820   FI->ChainCall = chainCall;
821   FI->CmseNSCall = info.getCmseNSCall();
822   FI->NoReturn = info.getNoReturn();
823   FI->ReturnsRetained = info.getProducesResult();
824   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
825   FI->NoCfCheck = info.getNoCfCheck();
826   FI->Required = required;
827   FI->HasRegParm = info.getHasRegParm();
828   FI->RegParm = info.getRegParm();
829   FI->ArgStruct = nullptr;
830   FI->ArgStructAlign = 0;
831   FI->NumArgs = argTypes.size();
832   FI->HasExtParameterInfos = !paramInfos.empty();
833   FI->getArgsBuffer()[0].type = resultType;
834   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
835     FI->getArgsBuffer()[i + 1].type = argTypes[i];
836   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
837     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
838   return FI;
839 }
840 
841 /***/
842 
843 namespace {
844 // ABIArgInfo::Expand implementation.
845 
846 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
847 struct TypeExpansion {
848   enum TypeExpansionKind {
849     // Elements of constant arrays are expanded recursively.
850     TEK_ConstantArray,
851     // Record fields are expanded recursively (but if record is a union, only
852     // the field with the largest size is expanded).
853     TEK_Record,
854     // For complex types, real and imaginary parts are expanded recursively.
855     TEK_Complex,
856     // All other types are not expandable.
857     TEK_None
858   };
859 
860   const TypeExpansionKind Kind;
861 
862   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
863   virtual ~TypeExpansion() {}
864 };
865 
866 struct ConstantArrayExpansion : TypeExpansion {
867   QualType EltTy;
868   uint64_t NumElts;
869 
870   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
871       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
872   static bool classof(const TypeExpansion *TE) {
873     return TE->Kind == TEK_ConstantArray;
874   }
875 };
876 
877 struct RecordExpansion : TypeExpansion {
878   SmallVector<const CXXBaseSpecifier *, 1> Bases;
879 
880   SmallVector<const FieldDecl *, 1> Fields;
881 
882   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
883                   SmallVector<const FieldDecl *, 1> &&Fields)
884       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
885         Fields(std::move(Fields)) {}
886   static bool classof(const TypeExpansion *TE) {
887     return TE->Kind == TEK_Record;
888   }
889 };
890 
891 struct ComplexExpansion : TypeExpansion {
892   QualType EltTy;
893 
894   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
895   static bool classof(const TypeExpansion *TE) {
896     return TE->Kind == TEK_Complex;
897   }
898 };
899 
900 struct NoExpansion : TypeExpansion {
901   NoExpansion() : TypeExpansion(TEK_None) {}
902   static bool classof(const TypeExpansion *TE) {
903     return TE->Kind == TEK_None;
904   }
905 };
906 }  // namespace
907 
908 static std::unique_ptr<TypeExpansion>
909 getTypeExpansion(QualType Ty, const ASTContext &Context) {
910   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
911     return std::make_unique<ConstantArrayExpansion>(
912         AT->getElementType(), AT->getSize().getZExtValue());
913   }
914   if (const RecordType *RT = Ty->getAs<RecordType>()) {
915     SmallVector<const CXXBaseSpecifier *, 1> Bases;
916     SmallVector<const FieldDecl *, 1> Fields;
917     const RecordDecl *RD = RT->getDecl();
918     assert(!RD->hasFlexibleArrayMember() &&
919            "Cannot expand structure with flexible array.");
920     if (RD->isUnion()) {
921       // Unions can be here only in degenerative cases - all the fields are same
922       // after flattening. Thus we have to use the "largest" field.
923       const FieldDecl *LargestFD = nullptr;
924       CharUnits UnionSize = CharUnits::Zero();
925 
926       for (const auto *FD : RD->fields()) {
927         if (FD->isZeroLengthBitField(Context))
928           continue;
929         assert(!FD->isBitField() &&
930                "Cannot expand structure with bit-field members.");
931         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
932         if (UnionSize < FieldSize) {
933           UnionSize = FieldSize;
934           LargestFD = FD;
935         }
936       }
937       if (LargestFD)
938         Fields.push_back(LargestFD);
939     } else {
940       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
941         assert(!CXXRD->isDynamicClass() &&
942                "cannot expand vtable pointers in dynamic classes");
943         for (const CXXBaseSpecifier &BS : CXXRD->bases())
944           Bases.push_back(&BS);
945       }
946 
947       for (const auto *FD : RD->fields()) {
948         if (FD->isZeroLengthBitField(Context))
949           continue;
950         assert(!FD->isBitField() &&
951                "Cannot expand structure with bit-field members.");
952         Fields.push_back(FD);
953       }
954     }
955     return std::make_unique<RecordExpansion>(std::move(Bases),
956                                               std::move(Fields));
957   }
958   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
959     return std::make_unique<ComplexExpansion>(CT->getElementType());
960   }
961   return std::make_unique<NoExpansion>();
962 }
963 
964 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
965   auto Exp = getTypeExpansion(Ty, Context);
966   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
967     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
968   }
969   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
970     int Res = 0;
971     for (auto BS : RExp->Bases)
972       Res += getExpansionSize(BS->getType(), Context);
973     for (auto FD : RExp->Fields)
974       Res += getExpansionSize(FD->getType(), Context);
975     return Res;
976   }
977   if (isa<ComplexExpansion>(Exp.get()))
978     return 2;
979   assert(isa<NoExpansion>(Exp.get()));
980   return 1;
981 }
982 
983 void
984 CodeGenTypes::getExpandedTypes(QualType Ty,
985                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
986   auto Exp = getTypeExpansion(Ty, Context);
987   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
988     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
989       getExpandedTypes(CAExp->EltTy, TI);
990     }
991   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
992     for (auto BS : RExp->Bases)
993       getExpandedTypes(BS->getType(), TI);
994     for (auto FD : RExp->Fields)
995       getExpandedTypes(FD->getType(), TI);
996   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
997     llvm::Type *EltTy = ConvertType(CExp->EltTy);
998     *TI++ = EltTy;
999     *TI++ = EltTy;
1000   } else {
1001     assert(isa<NoExpansion>(Exp.get()));
1002     *TI++ = ConvertType(Ty);
1003   }
1004 }
1005 
1006 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1007                                       ConstantArrayExpansion *CAE,
1008                                       Address BaseAddr,
1009                                       llvm::function_ref<void(Address)> Fn) {
1010   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1011   CharUnits EltAlign =
1012     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1013 
1014   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1015     llvm::Value *EltAddr =
1016       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1017     Fn(Address(EltAddr, EltAlign));
1018   }
1019 }
1020 
1021 void CodeGenFunction::ExpandTypeFromArgs(QualType Ty, LValue LV,
1022                                          llvm::Function::arg_iterator &AI) {
1023   assert(LV.isSimple() &&
1024          "Unexpected non-simple lvalue during struct expansion.");
1025 
1026   auto Exp = getTypeExpansion(Ty, getContext());
1027   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1028     forConstantArrayExpansion(
1029         *this, CAExp, LV.getAddress(*this), [&](Address EltAddr) {
1030           LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1031           ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1032         });
1033   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1034     Address This = LV.getAddress(*this);
1035     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1036       // Perform a single step derived-to-base conversion.
1037       Address Base =
1038           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1039                                 /*NullCheckValue=*/false, SourceLocation());
1040       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1041 
1042       // Recurse onto bases.
1043       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1044     }
1045     for (auto FD : RExp->Fields) {
1046       // FIXME: What are the right qualifiers here?
1047       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1048       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1049     }
1050   } else if (isa<ComplexExpansion>(Exp.get())) {
1051     auto realValue = &*AI++;
1052     auto imagValue = &*AI++;
1053     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1054   } else {
1055     // Call EmitStoreOfScalar except when the lvalue is a bitfield to emit a
1056     // primitive store.
1057     assert(isa<NoExpansion>(Exp.get()));
1058     if (LV.isBitField())
1059       EmitStoreThroughLValue(RValue::get(&*AI++), LV);
1060     else
1061       EmitStoreOfScalar(&*AI++, LV);
1062   }
1063 }
1064 
1065 void CodeGenFunction::ExpandTypeToArgs(
1066     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1067     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1068   auto Exp = getTypeExpansion(Ty, getContext());
1069   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1070     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1071                                    : Arg.getKnownRValue().getAggregateAddress();
1072     forConstantArrayExpansion(
1073         *this, CAExp, Addr, [&](Address EltAddr) {
1074           CallArg EltArg = CallArg(
1075               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1076               CAExp->EltTy);
1077           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1078                            IRCallArgPos);
1079         });
1080   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1081     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress(*this)
1082                                    : Arg.getKnownRValue().getAggregateAddress();
1083     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1084       // Perform a single step derived-to-base conversion.
1085       Address Base =
1086           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1087                                 /*NullCheckValue=*/false, SourceLocation());
1088       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1089 
1090       // Recurse onto bases.
1091       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1092                        IRCallArgPos);
1093     }
1094 
1095     LValue LV = MakeAddrLValue(This, Ty);
1096     for (auto FD : RExp->Fields) {
1097       CallArg FldArg =
1098           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1099       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1100                        IRCallArgPos);
1101     }
1102   } else if (isa<ComplexExpansion>(Exp.get())) {
1103     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1104     IRCallArgs[IRCallArgPos++] = CV.first;
1105     IRCallArgs[IRCallArgPos++] = CV.second;
1106   } else {
1107     assert(isa<NoExpansion>(Exp.get()));
1108     auto RV = Arg.getKnownRValue();
1109     assert(RV.isScalar() &&
1110            "Unexpected non-scalar rvalue during struct expansion.");
1111 
1112     // Insert a bitcast as needed.
1113     llvm::Value *V = RV.getScalarVal();
1114     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1115         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1116       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1117 
1118     IRCallArgs[IRCallArgPos++] = V;
1119   }
1120 }
1121 
1122 /// Create a temporary allocation for the purposes of coercion.
1123 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1124                                            CharUnits MinAlign,
1125                                            const Twine &Name = "tmp") {
1126   // Don't use an alignment that's worse than what LLVM would prefer.
1127   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1128   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1129 
1130   return CGF.CreateTempAlloca(Ty, Align, Name + ".coerce");
1131 }
1132 
1133 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1134 /// accessing some number of bytes out of it, try to gep into the struct to get
1135 /// at its inner goodness.  Dive as deep as possible without entering an element
1136 /// with an in-memory size smaller than DstSize.
1137 static Address
1138 EnterStructPointerForCoercedAccess(Address SrcPtr,
1139                                    llvm::StructType *SrcSTy,
1140                                    uint64_t DstSize, CodeGenFunction &CGF) {
1141   // We can't dive into a zero-element struct.
1142   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1143 
1144   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1145 
1146   // If the first elt is at least as large as what we're looking for, or if the
1147   // first element is the same size as the whole struct, we can enter it. The
1148   // comparison must be made on the store size and not the alloca size. Using
1149   // the alloca size may overstate the size of the load.
1150   uint64_t FirstEltSize =
1151     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1152   if (FirstEltSize < DstSize &&
1153       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1154     return SrcPtr;
1155 
1156   // GEP into the first element.
1157   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1158 
1159   // If the first element is a struct, recurse.
1160   llvm::Type *SrcTy = SrcPtr.getElementType();
1161   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1162     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1163 
1164   return SrcPtr;
1165 }
1166 
1167 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1168 /// are either integers or pointers.  This does a truncation of the value if it
1169 /// is too large or a zero extension if it is too small.
1170 ///
1171 /// This behaves as if the value were coerced through memory, so on big-endian
1172 /// targets the high bits are preserved in a truncation, while little-endian
1173 /// targets preserve the low bits.
1174 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1175                                              llvm::Type *Ty,
1176                                              CodeGenFunction &CGF) {
1177   if (Val->getType() == Ty)
1178     return Val;
1179 
1180   if (isa<llvm::PointerType>(Val->getType())) {
1181     // If this is Pointer->Pointer avoid conversion to and from int.
1182     if (isa<llvm::PointerType>(Ty))
1183       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1184 
1185     // Convert the pointer to an integer so we can play with its width.
1186     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1187   }
1188 
1189   llvm::Type *DestIntTy = Ty;
1190   if (isa<llvm::PointerType>(DestIntTy))
1191     DestIntTy = CGF.IntPtrTy;
1192 
1193   if (Val->getType() != DestIntTy) {
1194     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1195     if (DL.isBigEndian()) {
1196       // Preserve the high bits on big-endian targets.
1197       // That is what memory coercion does.
1198       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1199       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1200 
1201       if (SrcSize > DstSize) {
1202         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1203         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1204       } else {
1205         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1206         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1207       }
1208     } else {
1209       // Little-endian targets preserve the low bits. No shifts required.
1210       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1211     }
1212   }
1213 
1214   if (isa<llvm::PointerType>(Ty))
1215     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1216   return Val;
1217 }
1218 
1219 
1220 
1221 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1222 /// a pointer to an object of type \arg Ty, known to be aligned to
1223 /// \arg SrcAlign bytes.
1224 ///
1225 /// This safely handles the case when the src type is smaller than the
1226 /// destination type; in this situation the values of bits which not
1227 /// present in the src are undefined.
1228 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1229                                       CodeGenFunction &CGF) {
1230   llvm::Type *SrcTy = Src.getElementType();
1231 
1232   // If SrcTy and Ty are the same, just do a load.
1233   if (SrcTy == Ty)
1234     return CGF.Builder.CreateLoad(Src);
1235 
1236   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1237 
1238   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1239     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy,
1240                                              DstSize.getFixedSize(), CGF);
1241     SrcTy = Src.getElementType();
1242   }
1243 
1244   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1245 
1246   // If the source and destination are integer or pointer types, just do an
1247   // extension or truncation to the desired type.
1248   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1249       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1250     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1251     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1252   }
1253 
1254   // If load is legal, just bitcast the src pointer.
1255   if (!SrcSize.isScalable() && !DstSize.isScalable() &&
1256       SrcSize.getFixedSize() >= DstSize.getFixedSize()) {
1257     // Generally SrcSize is never greater than DstSize, since this means we are
1258     // losing bits. However, this can happen in cases where the structure has
1259     // additional padding, for example due to a user specified alignment.
1260     //
1261     // FIXME: Assert that we aren't truncating non-padding bits when have access
1262     // to that information.
1263     Src = CGF.Builder.CreateBitCast(Src,
1264                                     Ty->getPointerTo(Src.getAddressSpace()));
1265     return CGF.Builder.CreateLoad(Src);
1266   }
1267 
1268   // If coercing a fixed vector to a scalable vector for ABI compatibility, and
1269   // the types match, use the llvm.experimental.vector.insert intrinsic to
1270   // perform the conversion.
1271   if (auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(Ty)) {
1272     if (auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) {
1273       if (ScalableDst->getElementType() == FixedSrc->getElementType()) {
1274         auto *Load = CGF.Builder.CreateLoad(Src);
1275         auto *UndefVec = llvm::UndefValue::get(ScalableDst);
1276         auto *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty);
1277         return CGF.Builder.CreateInsertVector(ScalableDst, UndefVec, Load, Zero,
1278                                               "castScalableSve");
1279       }
1280     }
1281   }
1282 
1283   // Otherwise do coercion through memory. This is stupid, but simple.
1284   Address Tmp =
1285       CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment(), Src.getName());
1286   CGF.Builder.CreateMemCpy(
1287       Tmp.getPointer(), Tmp.getAlignment().getAsAlign(), Src.getPointer(),
1288       Src.getAlignment().getAsAlign(),
1289       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize.getKnownMinSize()));
1290   return CGF.Builder.CreateLoad(Tmp);
1291 }
1292 
1293 // Function to store a first-class aggregate into memory.  We prefer to
1294 // store the elements rather than the aggregate to be more friendly to
1295 // fast-isel.
1296 // FIXME: Do we need to recurse here?
1297 void CodeGenFunction::EmitAggregateStore(llvm::Value *Val, Address Dest,
1298                                          bool DestIsVolatile) {
1299   // Prefer scalar stores to first-class aggregate stores.
1300   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(Val->getType())) {
1301     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1302       Address EltPtr = Builder.CreateStructGEP(Dest, i);
1303       llvm::Value *Elt = Builder.CreateExtractValue(Val, i);
1304       Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1305     }
1306   } else {
1307     Builder.CreateStore(Val, Dest, DestIsVolatile);
1308   }
1309 }
1310 
1311 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1312 /// where the source and destination may have different types.  The
1313 /// destination is known to be aligned to \arg DstAlign bytes.
1314 ///
1315 /// This safely handles the case when the src type is larger than the
1316 /// destination type; the upper bits of the src will be lost.
1317 static void CreateCoercedStore(llvm::Value *Src,
1318                                Address Dst,
1319                                bool DstIsVolatile,
1320                                CodeGenFunction &CGF) {
1321   llvm::Type *SrcTy = Src->getType();
1322   llvm::Type *DstTy = Dst.getElementType();
1323   if (SrcTy == DstTy) {
1324     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1325     return;
1326   }
1327 
1328   llvm::TypeSize SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1329 
1330   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1331     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy,
1332                                              SrcSize.getFixedSize(), CGF);
1333     DstTy = Dst.getElementType();
1334   }
1335 
1336   llvm::PointerType *SrcPtrTy = llvm::dyn_cast<llvm::PointerType>(SrcTy);
1337   llvm::PointerType *DstPtrTy = llvm::dyn_cast<llvm::PointerType>(DstTy);
1338   if (SrcPtrTy && DstPtrTy &&
1339       SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace()) {
1340     Src = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy);
1341     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1342     return;
1343   }
1344 
1345   // If the source and destination are integer or pointer types, just do an
1346   // extension or truncation to the desired type.
1347   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1348       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1349     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1350     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1351     return;
1352   }
1353 
1354   llvm::TypeSize DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1355 
1356   // If store is legal, just bitcast the src pointer.
1357   if (isa<llvm::ScalableVectorType>(SrcTy) ||
1358       isa<llvm::ScalableVectorType>(DstTy) ||
1359       SrcSize.getFixedSize() <= DstSize.getFixedSize()) {
1360     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1361     CGF.EmitAggregateStore(Src, Dst, DstIsVolatile);
1362   } else {
1363     // Otherwise do coercion through memory. This is stupid, but
1364     // simple.
1365 
1366     // Generally SrcSize is never greater than DstSize, since this means we are
1367     // losing bits. However, this can happen in cases where the structure has
1368     // additional padding, for example due to a user specified alignment.
1369     //
1370     // FIXME: Assert that we aren't truncating non-padding bits when have access
1371     // to that information.
1372     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1373     CGF.Builder.CreateStore(Src, Tmp);
1374     CGF.Builder.CreateMemCpy(
1375         Dst.getPointer(), Dst.getAlignment().getAsAlign(), Tmp.getPointer(),
1376         Tmp.getAlignment().getAsAlign(),
1377         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize.getFixedSize()));
1378   }
1379 }
1380 
1381 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1382                                    const ABIArgInfo &info) {
1383   if (unsigned offset = info.getDirectOffset()) {
1384     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1385     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1386                                              CharUnits::fromQuantity(offset));
1387     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1388   }
1389   return addr;
1390 }
1391 
1392 namespace {
1393 
1394 /// Encapsulates information about the way function arguments from
1395 /// CGFunctionInfo should be passed to actual LLVM IR function.
1396 class ClangToLLVMArgMapping {
1397   static const unsigned InvalidIndex = ~0U;
1398   unsigned InallocaArgNo;
1399   unsigned SRetArgNo;
1400   unsigned TotalIRArgs;
1401 
1402   /// Arguments of LLVM IR function corresponding to single Clang argument.
1403   struct IRArgs {
1404     unsigned PaddingArgIndex;
1405     // Argument is expanded to IR arguments at positions
1406     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1407     unsigned FirstArgIndex;
1408     unsigned NumberOfArgs;
1409 
1410     IRArgs()
1411         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1412           NumberOfArgs(0) {}
1413   };
1414 
1415   SmallVector<IRArgs, 8> ArgInfo;
1416 
1417 public:
1418   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1419                         bool OnlyRequiredArgs = false)
1420       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1421         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1422     construct(Context, FI, OnlyRequiredArgs);
1423   }
1424 
1425   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1426   unsigned getInallocaArgNo() const {
1427     assert(hasInallocaArg());
1428     return InallocaArgNo;
1429   }
1430 
1431   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1432   unsigned getSRetArgNo() const {
1433     assert(hasSRetArg());
1434     return SRetArgNo;
1435   }
1436 
1437   unsigned totalIRArgs() const { return TotalIRArgs; }
1438 
1439   bool hasPaddingArg(unsigned ArgNo) const {
1440     assert(ArgNo < ArgInfo.size());
1441     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1442   }
1443   unsigned getPaddingArgNo(unsigned ArgNo) const {
1444     assert(hasPaddingArg(ArgNo));
1445     return ArgInfo[ArgNo].PaddingArgIndex;
1446   }
1447 
1448   /// Returns index of first IR argument corresponding to ArgNo, and their
1449   /// quantity.
1450   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1451     assert(ArgNo < ArgInfo.size());
1452     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1453                           ArgInfo[ArgNo].NumberOfArgs);
1454   }
1455 
1456 private:
1457   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1458                  bool OnlyRequiredArgs);
1459 };
1460 
1461 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1462                                       const CGFunctionInfo &FI,
1463                                       bool OnlyRequiredArgs) {
1464   unsigned IRArgNo = 0;
1465   bool SwapThisWithSRet = false;
1466   const ABIArgInfo &RetAI = FI.getReturnInfo();
1467 
1468   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1469     SwapThisWithSRet = RetAI.isSRetAfterThis();
1470     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1471   }
1472 
1473   unsigned ArgNo = 0;
1474   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1475   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1476        ++I, ++ArgNo) {
1477     assert(I != FI.arg_end());
1478     QualType ArgType = I->type;
1479     const ABIArgInfo &AI = I->info;
1480     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1481     auto &IRArgs = ArgInfo[ArgNo];
1482 
1483     if (AI.getPaddingType())
1484       IRArgs.PaddingArgIndex = IRArgNo++;
1485 
1486     switch (AI.getKind()) {
1487     case ABIArgInfo::Extend:
1488     case ABIArgInfo::Direct: {
1489       // FIXME: handle sseregparm someday...
1490       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1491       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1492         IRArgs.NumberOfArgs = STy->getNumElements();
1493       } else {
1494         IRArgs.NumberOfArgs = 1;
1495       }
1496       break;
1497     }
1498     case ABIArgInfo::Indirect:
1499     case ABIArgInfo::IndirectAliased:
1500       IRArgs.NumberOfArgs = 1;
1501       break;
1502     case ABIArgInfo::Ignore:
1503     case ABIArgInfo::InAlloca:
1504       // ignore and inalloca doesn't have matching LLVM parameters.
1505       IRArgs.NumberOfArgs = 0;
1506       break;
1507     case ABIArgInfo::CoerceAndExpand:
1508       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1509       break;
1510     case ABIArgInfo::Expand:
1511       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1512       break;
1513     }
1514 
1515     if (IRArgs.NumberOfArgs > 0) {
1516       IRArgs.FirstArgIndex = IRArgNo;
1517       IRArgNo += IRArgs.NumberOfArgs;
1518     }
1519 
1520     // Skip over the sret parameter when it comes second.  We already handled it
1521     // above.
1522     if (IRArgNo == 1 && SwapThisWithSRet)
1523       IRArgNo++;
1524   }
1525   assert(ArgNo == ArgInfo.size());
1526 
1527   if (FI.usesInAlloca())
1528     InallocaArgNo = IRArgNo++;
1529 
1530   TotalIRArgs = IRArgNo;
1531 }
1532 }  // namespace
1533 
1534 /***/
1535 
1536 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1537   const auto &RI = FI.getReturnInfo();
1538   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1539 }
1540 
1541 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1542   return ReturnTypeUsesSRet(FI) &&
1543          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1544 }
1545 
1546 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1547   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1548     switch (BT->getKind()) {
1549     default:
1550       return false;
1551     case BuiltinType::Float:
1552       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1553     case BuiltinType::Double:
1554       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1555     case BuiltinType::LongDouble:
1556       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1557     }
1558   }
1559 
1560   return false;
1561 }
1562 
1563 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1564   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1565     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1566       if (BT->getKind() == BuiltinType::LongDouble)
1567         return getTarget().useObjCFP2RetForComplexLongDouble();
1568     }
1569   }
1570 
1571   return false;
1572 }
1573 
1574 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1575   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1576   return GetFunctionType(FI);
1577 }
1578 
1579 llvm::FunctionType *
1580 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1581 
1582   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1583   (void)Inserted;
1584   assert(Inserted && "Recursively being processed?");
1585 
1586   llvm::Type *resultType = nullptr;
1587   const ABIArgInfo &retAI = FI.getReturnInfo();
1588   switch (retAI.getKind()) {
1589   case ABIArgInfo::Expand:
1590   case ABIArgInfo::IndirectAliased:
1591     llvm_unreachable("Invalid ABI kind for return argument");
1592 
1593   case ABIArgInfo::Extend:
1594   case ABIArgInfo::Direct:
1595     resultType = retAI.getCoerceToType();
1596     break;
1597 
1598   case ABIArgInfo::InAlloca:
1599     if (retAI.getInAllocaSRet()) {
1600       // sret things on win32 aren't void, they return the sret pointer.
1601       QualType ret = FI.getReturnType();
1602       llvm::Type *ty = ConvertType(ret);
1603       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1604       resultType = llvm::PointerType::get(ty, addressSpace);
1605     } else {
1606       resultType = llvm::Type::getVoidTy(getLLVMContext());
1607     }
1608     break;
1609 
1610   case ABIArgInfo::Indirect:
1611   case ABIArgInfo::Ignore:
1612     resultType = llvm::Type::getVoidTy(getLLVMContext());
1613     break;
1614 
1615   case ABIArgInfo::CoerceAndExpand:
1616     resultType = retAI.getUnpaddedCoerceAndExpandType();
1617     break;
1618   }
1619 
1620   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1621   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1622 
1623   // Add type for sret argument.
1624   if (IRFunctionArgs.hasSRetArg()) {
1625     QualType Ret = FI.getReturnType();
1626     llvm::Type *Ty = ConvertType(Ret);
1627     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1628     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1629         llvm::PointerType::get(Ty, AddressSpace);
1630   }
1631 
1632   // Add type for inalloca argument.
1633   if (IRFunctionArgs.hasInallocaArg()) {
1634     auto ArgStruct = FI.getArgStruct();
1635     assert(ArgStruct);
1636     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1637   }
1638 
1639   // Add in all of the required arguments.
1640   unsigned ArgNo = 0;
1641   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1642                                      ie = it + FI.getNumRequiredArgs();
1643   for (; it != ie; ++it, ++ArgNo) {
1644     const ABIArgInfo &ArgInfo = it->info;
1645 
1646     // Insert a padding type to ensure proper alignment.
1647     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1648       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1649           ArgInfo.getPaddingType();
1650 
1651     unsigned FirstIRArg, NumIRArgs;
1652     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1653 
1654     switch (ArgInfo.getKind()) {
1655     case ABIArgInfo::Ignore:
1656     case ABIArgInfo::InAlloca:
1657       assert(NumIRArgs == 0);
1658       break;
1659 
1660     case ABIArgInfo::Indirect: {
1661       assert(NumIRArgs == 1);
1662       // indirect arguments are always on the stack, which is alloca addr space.
1663       llvm::Type *LTy = ConvertTypeForMem(it->type);
1664       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1665           CGM.getDataLayout().getAllocaAddrSpace());
1666       break;
1667     }
1668     case ABIArgInfo::IndirectAliased: {
1669       assert(NumIRArgs == 1);
1670       llvm::Type *LTy = ConvertTypeForMem(it->type);
1671       ArgTypes[FirstIRArg] = LTy->getPointerTo(ArgInfo.getIndirectAddrSpace());
1672       break;
1673     }
1674     case ABIArgInfo::Extend:
1675     case ABIArgInfo::Direct: {
1676       // Fast-isel and the optimizer generally like scalar values better than
1677       // FCAs, so we flatten them if this is safe to do for this argument.
1678       llvm::Type *argType = ArgInfo.getCoerceToType();
1679       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1680       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1681         assert(NumIRArgs == st->getNumElements());
1682         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1683           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1684       } else {
1685         assert(NumIRArgs == 1);
1686         ArgTypes[FirstIRArg] = argType;
1687       }
1688       break;
1689     }
1690 
1691     case ABIArgInfo::CoerceAndExpand: {
1692       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1693       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1694         *ArgTypesIter++ = EltTy;
1695       }
1696       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1697       break;
1698     }
1699 
1700     case ABIArgInfo::Expand:
1701       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1702       getExpandedTypes(it->type, ArgTypesIter);
1703       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1704       break;
1705     }
1706   }
1707 
1708   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1709   assert(Erased && "Not in set?");
1710 
1711   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1712 }
1713 
1714 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1715   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1716   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1717 
1718   if (!isFuncTypeConvertible(FPT))
1719     return llvm::StructType::get(getLLVMContext());
1720 
1721   return GetFunctionType(GD);
1722 }
1723 
1724 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1725                                                llvm::AttrBuilder &FuncAttrs,
1726                                                const FunctionProtoType *FPT) {
1727   if (!FPT)
1728     return;
1729 
1730   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1731       FPT->isNothrow())
1732     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1733 }
1734 
1735 void CodeGenModule::getDefaultFunctionAttributes(StringRef Name,
1736                                                  bool HasOptnone,
1737                                                  bool AttrOnCallSite,
1738                                                llvm::AttrBuilder &FuncAttrs) {
1739   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1740   if (!HasOptnone) {
1741     if (CodeGenOpts.OptimizeSize)
1742       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1743     if (CodeGenOpts.OptimizeSize == 2)
1744       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1745   }
1746 
1747   if (CodeGenOpts.DisableRedZone)
1748     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1749   if (CodeGenOpts.IndirectTlsSegRefs)
1750     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1751   if (CodeGenOpts.NoImplicitFloat)
1752     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1753 
1754   if (AttrOnCallSite) {
1755     // Attributes that should go on the call site only.
1756     if (!CodeGenOpts.SimplifyLibCalls ||
1757         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1758       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1759     if (!CodeGenOpts.TrapFuncName.empty())
1760       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1761   } else {
1762     StringRef FpKind;
1763     switch (CodeGenOpts.getFramePointer()) {
1764     case CodeGenOptions::FramePointerKind::None:
1765       FpKind = "none";
1766       break;
1767     case CodeGenOptions::FramePointerKind::NonLeaf:
1768       FpKind = "non-leaf";
1769       break;
1770     case CodeGenOptions::FramePointerKind::All:
1771       FpKind = "all";
1772       break;
1773     }
1774     FuncAttrs.addAttribute("frame-pointer", FpKind);
1775 
1776     if (CodeGenOpts.LessPreciseFPMAD)
1777       FuncAttrs.addAttribute("less-precise-fpmad", "true");
1778 
1779     if (CodeGenOpts.NullPointerIsValid)
1780       FuncAttrs.addAttribute(llvm::Attribute::NullPointerIsValid);
1781 
1782     if (CodeGenOpts.FPDenormalMode != llvm::DenormalMode::getIEEE())
1783       FuncAttrs.addAttribute("denormal-fp-math",
1784                              CodeGenOpts.FPDenormalMode.str());
1785     if (CodeGenOpts.FP32DenormalMode != CodeGenOpts.FPDenormalMode) {
1786       FuncAttrs.addAttribute(
1787           "denormal-fp-math-f32",
1788           CodeGenOpts.FP32DenormalMode.str());
1789     }
1790 
1791     if (LangOpts.getFPExceptionMode() == LangOptions::FPE_Ignore)
1792       FuncAttrs.addAttribute("no-trapping-math", "true");
1793 
1794     // Strict (compliant) code is the default, so only add this attribute to
1795     // indicate that we are trying to workaround a problem case.
1796     if (!CodeGenOpts.StrictFloatCastOverflow)
1797       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1798 
1799     // TODO: Are these all needed?
1800     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1801     if (LangOpts.NoHonorInfs)
1802       FuncAttrs.addAttribute("no-infs-fp-math", "true");
1803     if (LangOpts.NoHonorNaNs)
1804       FuncAttrs.addAttribute("no-nans-fp-math", "true");
1805     if (LangOpts.UnsafeFPMath)
1806       FuncAttrs.addAttribute("unsafe-fp-math", "true");
1807     if (CodeGenOpts.SoftFloat)
1808       FuncAttrs.addAttribute("use-soft-float", "true");
1809     FuncAttrs.addAttribute("stack-protector-buffer-size",
1810                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1811     if (LangOpts.NoSignedZero)
1812       FuncAttrs.addAttribute("no-signed-zeros-fp-math", "true");
1813 
1814     // TODO: Reciprocal estimate codegen options should apply to instructions?
1815     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1816     if (!Recips.empty())
1817       FuncAttrs.addAttribute("reciprocal-estimates",
1818                              llvm::join(Recips, ","));
1819 
1820     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1821         CodeGenOpts.PreferVectorWidth != "none")
1822       FuncAttrs.addAttribute("prefer-vector-width",
1823                              CodeGenOpts.PreferVectorWidth);
1824 
1825     if (CodeGenOpts.StackRealignment)
1826       FuncAttrs.addAttribute("stackrealign");
1827     if (CodeGenOpts.Backchain)
1828       FuncAttrs.addAttribute("backchain");
1829     if (CodeGenOpts.EnableSegmentedStacks)
1830       FuncAttrs.addAttribute("split-stack");
1831 
1832     if (CodeGenOpts.SpeculativeLoadHardening)
1833       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1834   }
1835 
1836   if (getLangOpts().assumeFunctionsAreConvergent()) {
1837     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1838     // convergent (meaning, they may call an intrinsically convergent op, such
1839     // as __syncthreads() / barrier(), and so can't have certain optimizations
1840     // applied around them).  LLVM will remove this attribute where it safely
1841     // can.
1842     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1843   }
1844 
1845   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1846     // Exceptions aren't supported in CUDA device code.
1847     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1848   }
1849 
1850   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1851     StringRef Var, Value;
1852     std::tie(Var, Value) = Attr.split('=');
1853     FuncAttrs.addAttribute(Var, Value);
1854   }
1855 }
1856 
1857 void CodeGenModule::addDefaultFunctionDefinitionAttributes(llvm::Function &F) {
1858   llvm::AttrBuilder FuncAttrs;
1859   getDefaultFunctionAttributes(F.getName(), F.hasOptNone(),
1860                                /* AttrOnCallSite = */ false, FuncAttrs);
1861   // TODO: call GetCPUAndFeaturesAttributes?
1862   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1863 }
1864 
1865 void CodeGenModule::addDefaultFunctionDefinitionAttributes(
1866                                                    llvm::AttrBuilder &attrs) {
1867   getDefaultFunctionAttributes(/*function name*/ "", /*optnone*/ false,
1868                                /*for call*/ false, attrs);
1869   GetCPUAndFeaturesAttributes(GlobalDecl(), attrs);
1870 }
1871 
1872 static void addNoBuiltinAttributes(llvm::AttrBuilder &FuncAttrs,
1873                                    const LangOptions &LangOpts,
1874                                    const NoBuiltinAttr *NBA = nullptr) {
1875   auto AddNoBuiltinAttr = [&FuncAttrs](StringRef BuiltinName) {
1876     SmallString<32> AttributeName;
1877     AttributeName += "no-builtin-";
1878     AttributeName += BuiltinName;
1879     FuncAttrs.addAttribute(AttributeName);
1880   };
1881 
1882   // First, handle the language options passed through -fno-builtin.
1883   if (LangOpts.NoBuiltin) {
1884     // -fno-builtin disables them all.
1885     FuncAttrs.addAttribute("no-builtins");
1886     return;
1887   }
1888 
1889   // Then, add attributes for builtins specified through -fno-builtin-<name>.
1890   llvm::for_each(LangOpts.NoBuiltinFuncs, AddNoBuiltinAttr);
1891 
1892   // Now, let's check the __attribute__((no_builtin("...")) attribute added to
1893   // the source.
1894   if (!NBA)
1895     return;
1896 
1897   // If there is a wildcard in the builtin names specified through the
1898   // attribute, disable them all.
1899   if (llvm::is_contained(NBA->builtinNames(), "*")) {
1900     FuncAttrs.addAttribute("no-builtins");
1901     return;
1902   }
1903 
1904   // And last, add the rest of the builtin names.
1905   llvm::for_each(NBA->builtinNames(), AddNoBuiltinAttr);
1906 }
1907 
1908 /// Construct the IR attribute list of a function or call.
1909 ///
1910 /// When adding an attribute, please consider where it should be handled:
1911 ///
1912 ///   - getDefaultFunctionAttributes is for attributes that are essentially
1913 ///     part of the global target configuration (but perhaps can be
1914 ///     overridden on a per-function basis).  Adding attributes there
1915 ///     will cause them to also be set in frontends that build on Clang's
1916 ///     target-configuration logic, as well as for code defined in library
1917 ///     modules such as CUDA's libdevice.
1918 ///
1919 ///   - ConstructAttributeList builds on top of getDefaultFunctionAttributes
1920 ///     and adds declaration-specific, convention-specific, and
1921 ///     frontend-specific logic.  The last is of particular importance:
1922 ///     attributes that restrict how the frontend generates code must be
1923 ///     added here rather than getDefaultFunctionAttributes.
1924 ///
1925 void CodeGenModule::ConstructAttributeList(
1926     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1927     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1928   llvm::AttrBuilder FuncAttrs;
1929   llvm::AttrBuilder RetAttrs;
1930 
1931   // Collect function IR attributes from the CC lowering.
1932   // We'll collect the paramete and result attributes later.
1933   CallingConv = FI.getEffectiveCallingConvention();
1934   if (FI.isNoReturn())
1935     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1936   if (FI.isCmseNSCall())
1937     FuncAttrs.addAttribute("cmse_nonsecure_call");
1938 
1939   // Collect function IR attributes from the callee prototype if we have one.
1940   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1941                                      CalleeInfo.getCalleeFunctionProtoType());
1942 
1943   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1944 
1945   bool HasOptnone = false;
1946   // The NoBuiltinAttr attached to the target FunctionDecl.
1947   const NoBuiltinAttr *NBA = nullptr;
1948 
1949   // Collect function IR attributes based on declaration-specific
1950   // information.
1951   // FIXME: handle sseregparm someday...
1952   if (TargetDecl) {
1953     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1954       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1955     if (TargetDecl->hasAttr<NoThrowAttr>())
1956       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1957     if (TargetDecl->hasAttr<NoReturnAttr>())
1958       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1959     if (TargetDecl->hasAttr<ColdAttr>())
1960       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1961     if (TargetDecl->hasAttr<HotAttr>())
1962       FuncAttrs.addAttribute(llvm::Attribute::Hot);
1963     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1964       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1965     if (TargetDecl->hasAttr<ConvergentAttr>())
1966       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1967 
1968     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1969       AddAttributesFromFunctionProtoType(
1970           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1971       if (AttrOnCallSite && Fn->isReplaceableGlobalAllocationFunction()) {
1972         // A sane operator new returns a non-aliasing pointer.
1973         auto Kind = Fn->getDeclName().getCXXOverloadedOperator();
1974         if (getCodeGenOpts().AssumeSaneOperatorNew &&
1975             (Kind == OO_New || Kind == OO_Array_New))
1976           RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1977       }
1978       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1979       const bool IsVirtualCall = MD && MD->isVirtual();
1980       // Don't use [[noreturn]], _Noreturn or [[no_builtin]] for a call to a
1981       // virtual function. These attributes are not inherited by overloads.
1982       if (!(AttrOnCallSite && IsVirtualCall)) {
1983         if (Fn->isNoReturn())
1984           FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1985         NBA = Fn->getAttr<NoBuiltinAttr>();
1986       }
1987       // Only place nomerge attribute on call sites, never functions. This
1988       // allows it to work on indirect virtual function calls.
1989       if (AttrOnCallSite && TargetDecl->hasAttr<NoMergeAttr>())
1990         FuncAttrs.addAttribute(llvm::Attribute::NoMerge);
1991     }
1992 
1993     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1994     if (TargetDecl->hasAttr<ConstAttr>()) {
1995       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1996       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1997     } else if (TargetDecl->hasAttr<PureAttr>()) {
1998       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1999       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2000     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
2001       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
2002       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
2003     }
2004     if (TargetDecl->hasAttr<RestrictAttr>())
2005       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
2006     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
2007         !CodeGenOpts.NullPointerIsValid)
2008       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2009     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
2010       FuncAttrs.addAttribute("no_caller_saved_registers");
2011     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
2012       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
2013     if (TargetDecl->hasAttr<LeafAttr>())
2014       FuncAttrs.addAttribute(llvm::Attribute::NoCallback);
2015 
2016     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
2017     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
2018       Optional<unsigned> NumElemsParam;
2019       if (AllocSize->getNumElemsParam().isValid())
2020         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
2021       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
2022                                  NumElemsParam);
2023     }
2024 
2025     if (TargetDecl->hasAttr<OpenCLKernelAttr>()) {
2026       if (getLangOpts().OpenCLVersion <= 120) {
2027         // OpenCL v1.2 Work groups are always uniform
2028         FuncAttrs.addAttribute("uniform-work-group-size", "true");
2029       } else {
2030         // OpenCL v2.0 Work groups may be whether uniform or not.
2031         // '-cl-uniform-work-group-size' compile option gets a hint
2032         // to the compiler that the global work-size be a multiple of
2033         // the work-group size specified to clEnqueueNDRangeKernel
2034         // (i.e. work groups are uniform).
2035         FuncAttrs.addAttribute("uniform-work-group-size",
2036                                llvm::toStringRef(CodeGenOpts.UniformWGSize));
2037       }
2038     }
2039 
2040     std::string AssumptionValueStr;
2041     for (AssumptionAttr *AssumptionA :
2042          TargetDecl->specific_attrs<AssumptionAttr>()) {
2043       std::string AS = AssumptionA->getAssumption().str();
2044       if (!AS.empty() && !AssumptionValueStr.empty())
2045         AssumptionValueStr += ",";
2046       AssumptionValueStr += AS;
2047     }
2048 
2049     if (!AssumptionValueStr.empty())
2050       FuncAttrs.addAttribute(llvm::AssumptionAttrKey, AssumptionValueStr);
2051   }
2052 
2053   // Attach "no-builtins" attributes to:
2054   // * call sites: both `nobuiltin` and "no-builtins" or "no-builtin-<name>".
2055   // * definitions: "no-builtins" or "no-builtin-<name>" only.
2056   // The attributes can come from:
2057   // * LangOpts: -ffreestanding, -fno-builtin, -fno-builtin-<name>
2058   // * FunctionDecl attributes: __attribute__((no_builtin(...)))
2059   addNoBuiltinAttributes(FuncAttrs, getLangOpts(), NBA);
2060 
2061   // Collect function IR attributes based on global settiings.
2062   getDefaultFunctionAttributes(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
2063 
2064   // Override some default IR attributes based on declaration-specific
2065   // information.
2066   if (TargetDecl) {
2067     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
2068       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
2069     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
2070       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
2071     if (TargetDecl->hasAttr<NoSplitStackAttr>())
2072       FuncAttrs.removeAttribute("split-stack");
2073 
2074     // Add NonLazyBind attribute to function declarations when -fno-plt
2075     // is used.
2076     // FIXME: what if we just haven't processed the function definition
2077     // yet, or if it's an external definition like C99 inline?
2078     if (CodeGenOpts.NoPLT) {
2079       if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
2080         if (!Fn->isDefined() && !AttrOnCallSite) {
2081           FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
2082         }
2083       }
2084     }
2085   }
2086 
2087   // Collect non-call-site function IR attributes from declaration-specific
2088   // information.
2089   if (!AttrOnCallSite) {
2090     if (TargetDecl && TargetDecl->hasAttr<CmseNSEntryAttr>())
2091       FuncAttrs.addAttribute("cmse_nonsecure_entry");
2092 
2093     // Whether tail calls are enabled.
2094     auto shouldDisableTailCalls = [&] {
2095       // Should this be honored in getDefaultFunctionAttributes?
2096       if (CodeGenOpts.DisableTailCalls)
2097         return true;
2098 
2099       if (!TargetDecl)
2100         return false;
2101 
2102       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
2103           TargetDecl->hasAttr<AnyX86InterruptAttr>())
2104         return true;
2105 
2106       if (CodeGenOpts.NoEscapingBlockTailCalls) {
2107         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
2108           if (!BD->doesNotEscape())
2109             return true;
2110       }
2111 
2112       return false;
2113     };
2114     FuncAttrs.addAttribute("disable-tail-calls",
2115                            llvm::toStringRef(shouldDisableTailCalls()));
2116 
2117     // CPU/feature overrides.  addDefaultFunctionDefinitionAttributes
2118     // handles these separately to set them based on the global defaults.
2119     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
2120   }
2121 
2122   // Collect attributes from arguments and return values.
2123   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
2124 
2125   QualType RetTy = FI.getReturnType();
2126   const ABIArgInfo &RetAI = FI.getReturnInfo();
2127   switch (RetAI.getKind()) {
2128   case ABIArgInfo::Extend:
2129     if (RetAI.isSignExt())
2130       RetAttrs.addAttribute(llvm::Attribute::SExt);
2131     else
2132       RetAttrs.addAttribute(llvm::Attribute::ZExt);
2133     LLVM_FALLTHROUGH;
2134   case ABIArgInfo::Direct:
2135     if (RetAI.getInReg())
2136       RetAttrs.addAttribute(llvm::Attribute::InReg);
2137     break;
2138   case ABIArgInfo::Ignore:
2139     break;
2140 
2141   case ABIArgInfo::InAlloca:
2142   case ABIArgInfo::Indirect: {
2143     // inalloca and sret disable readnone and readonly
2144     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2145       .removeAttribute(llvm::Attribute::ReadNone);
2146     break;
2147   }
2148 
2149   case ABIArgInfo::CoerceAndExpand:
2150     break;
2151 
2152   case ABIArgInfo::Expand:
2153   case ABIArgInfo::IndirectAliased:
2154     llvm_unreachable("Invalid ABI kind for return argument");
2155   }
2156 
2157   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
2158     QualType PTy = RefTy->getPointeeType();
2159     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2160       RetAttrs.addDereferenceableAttr(
2161           getMinimumObjectSize(PTy).getQuantity());
2162     if (getContext().getTargetAddressSpace(PTy) == 0 &&
2163         !CodeGenOpts.NullPointerIsValid)
2164       RetAttrs.addAttribute(llvm::Attribute::NonNull);
2165     if (PTy->isObjectType()) {
2166       llvm::Align Alignment =
2167           getNaturalPointeeTypeAlignment(RetTy).getAsAlign();
2168       RetAttrs.addAlignmentAttr(Alignment);
2169     }
2170   }
2171 
2172   bool hasUsedSRet = false;
2173   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
2174 
2175   // Attach attributes to sret.
2176   if (IRFunctionArgs.hasSRetArg()) {
2177     llvm::AttrBuilder SRETAttrs;
2178     SRETAttrs.addStructRetAttr(getTypes().ConvertTypeForMem(RetTy));
2179     hasUsedSRet = true;
2180     if (RetAI.getInReg())
2181       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2182     SRETAttrs.addAlignmentAttr(RetAI.getIndirectAlign().getQuantity());
2183     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2184         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2185   }
2186 
2187   // Attach attributes to inalloca argument.
2188   if (IRFunctionArgs.hasInallocaArg()) {
2189     llvm::AttrBuilder Attrs;
2190     Attrs.addAttribute(llvm::Attribute::InAlloca);
2191     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2192         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2193   }
2194 
2195   // Apply `nonnull` and `dereferencable(N)` to the `this` argument.
2196   if (FI.isInstanceMethod() && !IRFunctionArgs.hasInallocaArg() &&
2197       !FI.arg_begin()->type->isVoidPointerType()) {
2198     auto IRArgs = IRFunctionArgs.getIRArgs(0);
2199 
2200     assert(IRArgs.second == 1 && "Expected only a single `this` pointer.");
2201 
2202     llvm::AttrBuilder Attrs;
2203 
2204     if (!CodeGenOpts.NullPointerIsValid &&
2205         getContext().getTargetAddressSpace(FI.arg_begin()->type) == 0) {
2206       Attrs.addAttribute(llvm::Attribute::NonNull);
2207       Attrs.addDereferenceableAttr(
2208           getMinimumObjectSize(
2209               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2210               .getQuantity());
2211     } else {
2212       // FIXME dereferenceable should be correct here, regardless of
2213       // NullPointerIsValid. However, dereferenceable currently does not always
2214       // respect NullPointerIsValid and may imply nonnull and break the program.
2215       // See https://reviews.llvm.org/D66618 for discussions.
2216       Attrs.addDereferenceableOrNullAttr(
2217           getMinimumObjectSize(
2218               FI.arg_begin()->type.castAs<PointerType>()->getPointeeType())
2219               .getQuantity());
2220     }
2221 
2222     ArgAttrs[IRArgs.first] = llvm::AttributeSet::get(getLLVMContext(), Attrs);
2223   }
2224 
2225   unsigned ArgNo = 0;
2226   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2227                                           E = FI.arg_end();
2228        I != E; ++I, ++ArgNo) {
2229     QualType ParamType = I->type;
2230     const ABIArgInfo &AI = I->info;
2231     llvm::AttrBuilder Attrs;
2232 
2233     // Add attribute for padding argument, if necessary.
2234     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2235       if (AI.getPaddingInReg()) {
2236         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2237             llvm::AttributeSet::get(
2238                 getLLVMContext(),
2239                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2240       }
2241     }
2242 
2243     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2244     // have the corresponding parameter variable.  It doesn't make
2245     // sense to do it here because parameters are so messed up.
2246     switch (AI.getKind()) {
2247     case ABIArgInfo::Extend:
2248       if (AI.isSignExt())
2249         Attrs.addAttribute(llvm::Attribute::SExt);
2250       else
2251         Attrs.addAttribute(llvm::Attribute::ZExt);
2252       LLVM_FALLTHROUGH;
2253     case ABIArgInfo::Direct:
2254       if (ArgNo == 0 && FI.isChainCall())
2255         Attrs.addAttribute(llvm::Attribute::Nest);
2256       else if (AI.getInReg())
2257         Attrs.addAttribute(llvm::Attribute::InReg);
2258       break;
2259 
2260     case ABIArgInfo::Indirect: {
2261       if (AI.getInReg())
2262         Attrs.addAttribute(llvm::Attribute::InReg);
2263 
2264       if (AI.getIndirectByVal())
2265         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2266 
2267       auto *Decl = ParamType->getAsRecordDecl();
2268       if (CodeGenOpts.PassByValueIsNoAlias && Decl &&
2269           Decl->getArgPassingRestrictions() == RecordDecl::APK_CanPassInRegs)
2270         // When calling the function, the pointer passed in will be the only
2271         // reference to the underlying object. Mark it accordingly.
2272         Attrs.addAttribute(llvm::Attribute::NoAlias);
2273 
2274       // TODO: We could add the byref attribute if not byval, but it would
2275       // require updating many testcases.
2276 
2277       CharUnits Align = AI.getIndirectAlign();
2278 
2279       // In a byval argument, it is important that the required
2280       // alignment of the type is honored, as LLVM might be creating a
2281       // *new* stack object, and needs to know what alignment to give
2282       // it. (Sometimes it can deduce a sensible alignment on its own,
2283       // but not if clang decides it must emit a packed struct, or the
2284       // user specifies increased alignment requirements.)
2285       //
2286       // This is different from indirect *not* byval, where the object
2287       // exists already, and the align attribute is purely
2288       // informative.
2289       assert(!Align.isZero());
2290 
2291       // For now, only add this when we have a byval argument.
2292       // TODO: be less lazy about updating test cases.
2293       if (AI.getIndirectByVal())
2294         Attrs.addAlignmentAttr(Align.getQuantity());
2295 
2296       // byval disables readnone and readonly.
2297       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2298         .removeAttribute(llvm::Attribute::ReadNone);
2299 
2300       break;
2301     }
2302     case ABIArgInfo::IndirectAliased: {
2303       CharUnits Align = AI.getIndirectAlign();
2304       Attrs.addByRefAttr(getTypes().ConvertTypeForMem(ParamType));
2305       Attrs.addAlignmentAttr(Align.getQuantity());
2306       break;
2307     }
2308     case ABIArgInfo::Ignore:
2309     case ABIArgInfo::Expand:
2310     case ABIArgInfo::CoerceAndExpand:
2311       break;
2312 
2313     case ABIArgInfo::InAlloca:
2314       // inalloca disables readnone and readonly.
2315       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2316           .removeAttribute(llvm::Attribute::ReadNone);
2317       continue;
2318     }
2319 
2320     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2321       QualType PTy = RefTy->getPointeeType();
2322       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2323         Attrs.addDereferenceableAttr(
2324             getMinimumObjectSize(PTy).getQuantity());
2325       if (getContext().getTargetAddressSpace(PTy) == 0 &&
2326           !CodeGenOpts.NullPointerIsValid)
2327         Attrs.addAttribute(llvm::Attribute::NonNull);
2328       if (PTy->isObjectType()) {
2329         llvm::Align Alignment =
2330             getNaturalPointeeTypeAlignment(ParamType).getAsAlign();
2331         Attrs.addAlignmentAttr(Alignment);
2332       }
2333     }
2334 
2335     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2336     case ParameterABI::Ordinary:
2337       break;
2338 
2339     case ParameterABI::SwiftIndirectResult: {
2340       // Add 'sret' if we haven't already used it for something, but
2341       // only if the result is void.
2342       if (!hasUsedSRet && RetTy->isVoidType()) {
2343         Attrs.addStructRetAttr(getTypes().ConvertTypeForMem(ParamType));
2344         hasUsedSRet = true;
2345       }
2346 
2347       // Add 'noalias' in either case.
2348       Attrs.addAttribute(llvm::Attribute::NoAlias);
2349 
2350       // Add 'dereferenceable' and 'alignment'.
2351       auto PTy = ParamType->getPointeeType();
2352       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2353         auto info = getContext().getTypeInfoInChars(PTy);
2354         Attrs.addDereferenceableAttr(info.Width.getQuantity());
2355         Attrs.addAlignmentAttr(info.Align.getAsAlign());
2356       }
2357       break;
2358     }
2359 
2360     case ParameterABI::SwiftErrorResult:
2361       Attrs.addAttribute(llvm::Attribute::SwiftError);
2362       break;
2363 
2364     case ParameterABI::SwiftContext:
2365       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2366       break;
2367     }
2368 
2369     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2370       Attrs.addAttribute(llvm::Attribute::NoCapture);
2371 
2372     if (Attrs.hasAttributes()) {
2373       unsigned FirstIRArg, NumIRArgs;
2374       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2375       for (unsigned i = 0; i < NumIRArgs; i++)
2376         ArgAttrs[FirstIRArg + i] =
2377             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2378     }
2379   }
2380   assert(ArgNo == FI.arg_size());
2381 
2382   AttrList = llvm::AttributeList::get(
2383       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2384       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2385 }
2386 
2387 /// An argument came in as a promoted argument; demote it back to its
2388 /// declared type.
2389 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2390                                          const VarDecl *var,
2391                                          llvm::Value *value) {
2392   llvm::Type *varType = CGF.ConvertType(var->getType());
2393 
2394   // This can happen with promotions that actually don't change the
2395   // underlying type, like the enum promotions.
2396   if (value->getType() == varType) return value;
2397 
2398   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2399          && "unexpected promotion type");
2400 
2401   if (isa<llvm::IntegerType>(varType))
2402     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2403 
2404   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2405 }
2406 
2407 /// Returns the attribute (either parameter attribute, or function
2408 /// attribute), which declares argument ArgNo to be non-null.
2409 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2410                                          QualType ArgType, unsigned ArgNo) {
2411   // FIXME: __attribute__((nonnull)) can also be applied to:
2412   //   - references to pointers, where the pointee is known to be
2413   //     nonnull (apparently a Clang extension)
2414   //   - transparent unions containing pointers
2415   // In the former case, LLVM IR cannot represent the constraint. In
2416   // the latter case, we have no guarantee that the transparent union
2417   // is in fact passed as a pointer.
2418   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2419     return nullptr;
2420   // First, check attribute on parameter itself.
2421   if (PVD) {
2422     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2423       return ParmNNAttr;
2424   }
2425   // Check function attributes.
2426   if (!FD)
2427     return nullptr;
2428   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2429     if (NNAttr->isNonNull(ArgNo))
2430       return NNAttr;
2431   }
2432   return nullptr;
2433 }
2434 
2435 namespace {
2436   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2437     Address Temp;
2438     Address Arg;
2439     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2440     void Emit(CodeGenFunction &CGF, Flags flags) override {
2441       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2442       CGF.Builder.CreateStore(errorValue, Arg);
2443     }
2444   };
2445 }
2446 
2447 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2448                                          llvm::Function *Fn,
2449                                          const FunctionArgList &Args) {
2450   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2451     // Naked functions don't have prologues.
2452     return;
2453 
2454   // If this is an implicit-return-zero function, go ahead and
2455   // initialize the return value.  TODO: it might be nice to have
2456   // a more general mechanism for this that didn't require synthesized
2457   // return statements.
2458   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2459     if (FD->hasImplicitReturnZero()) {
2460       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2461       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2462       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2463       Builder.CreateStore(Zero, ReturnValue);
2464     }
2465   }
2466 
2467   // FIXME: We no longer need the types from FunctionArgList; lift up and
2468   // simplify.
2469 
2470   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2471   assert(Fn->arg_size() == IRFunctionArgs.totalIRArgs());
2472 
2473   // If we're using inalloca, all the memory arguments are GEPs off of the last
2474   // parameter, which is a pointer to the complete memory area.
2475   Address ArgStruct = Address::invalid();
2476   if (IRFunctionArgs.hasInallocaArg()) {
2477     ArgStruct = Address(Fn->getArg(IRFunctionArgs.getInallocaArgNo()),
2478                         FI.getArgStructAlignment());
2479 
2480     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2481   }
2482 
2483   // Name the struct return parameter.
2484   if (IRFunctionArgs.hasSRetArg()) {
2485     auto AI = Fn->getArg(IRFunctionArgs.getSRetArgNo());
2486     AI->setName("agg.result");
2487     AI->addAttr(llvm::Attribute::NoAlias);
2488   }
2489 
2490   // Track if we received the parameter as a pointer (indirect, byval, or
2491   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2492   // into a local alloca for us.
2493   SmallVector<ParamValue, 16> ArgVals;
2494   ArgVals.reserve(Args.size());
2495 
2496   // Create a pointer value for every parameter declaration.  This usually
2497   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2498   // any cleanups or do anything that might unwind.  We do that separately, so
2499   // we can push the cleanups in the correct order for the ABI.
2500   assert(FI.arg_size() == Args.size() &&
2501          "Mismatch between function signature & arguments.");
2502   unsigned ArgNo = 0;
2503   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2504   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2505        i != e; ++i, ++info_it, ++ArgNo) {
2506     const VarDecl *Arg = *i;
2507     const ABIArgInfo &ArgI = info_it->info;
2508 
2509     bool isPromoted =
2510       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2511     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2512     // the parameter is promoted. In this case we convert to
2513     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2514     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2515     assert(hasScalarEvaluationKind(Ty) ==
2516            hasScalarEvaluationKind(Arg->getType()));
2517 
2518     unsigned FirstIRArg, NumIRArgs;
2519     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2520 
2521     switch (ArgI.getKind()) {
2522     case ABIArgInfo::InAlloca: {
2523       assert(NumIRArgs == 0);
2524       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2525       Address V =
2526           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2527       if (ArgI.getInAllocaIndirect())
2528         V = Address(Builder.CreateLoad(V),
2529                     getContext().getTypeAlignInChars(Ty));
2530       ArgVals.push_back(ParamValue::forIndirect(V));
2531       break;
2532     }
2533 
2534     case ABIArgInfo::Indirect:
2535     case ABIArgInfo::IndirectAliased: {
2536       assert(NumIRArgs == 1);
2537       Address ParamAddr =
2538           Address(Fn->getArg(FirstIRArg), ArgI.getIndirectAlign());
2539 
2540       if (!hasScalarEvaluationKind(Ty)) {
2541         // Aggregates and complex variables are accessed by reference. All we
2542         // need to do is realign the value, if requested. Also, if the address
2543         // may be aliased, copy it to ensure that the parameter variable is
2544         // mutable and has a unique adress, as C requires.
2545         Address V = ParamAddr;
2546         if (ArgI.getIndirectRealign() || ArgI.isIndirectAliased()) {
2547           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2548 
2549           // Copy from the incoming argument pointer to the temporary with the
2550           // appropriate alignment.
2551           //
2552           // FIXME: We should have a common utility for generating an aggregate
2553           // copy.
2554           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2555           Builder.CreateMemCpy(
2556               AlignedTemp.getPointer(), AlignedTemp.getAlignment().getAsAlign(),
2557               ParamAddr.getPointer(), ParamAddr.getAlignment().getAsAlign(),
2558               llvm::ConstantInt::get(IntPtrTy, Size.getQuantity()));
2559           V = AlignedTemp;
2560         }
2561         ArgVals.push_back(ParamValue::forIndirect(V));
2562       } else {
2563         // Load scalar value from indirect argument.
2564         llvm::Value *V =
2565             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2566 
2567         if (isPromoted)
2568           V = emitArgumentDemotion(*this, Arg, V);
2569         ArgVals.push_back(ParamValue::forDirect(V));
2570       }
2571       break;
2572     }
2573 
2574     case ABIArgInfo::Extend:
2575     case ABIArgInfo::Direct: {
2576       auto AI = Fn->getArg(FirstIRArg);
2577       llvm::Type *LTy = ConvertType(Arg->getType());
2578 
2579       // Prepare parameter attributes. So far, only attributes for pointer
2580       // parameters are prepared. See
2581       // http://llvm.org/docs/LangRef.html#paramattrs.
2582       if (ArgI.getDirectOffset() == 0 && LTy->isPointerTy() &&
2583           ArgI.getCoerceToType()->isPointerTy()) {
2584         assert(NumIRArgs == 1);
2585 
2586         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2587           // Set `nonnull` attribute if any.
2588           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2589                              PVD->getFunctionScopeIndex()) &&
2590               !CGM.getCodeGenOpts().NullPointerIsValid)
2591             AI->addAttr(llvm::Attribute::NonNull);
2592 
2593           QualType OTy = PVD->getOriginalType();
2594           if (const auto *ArrTy =
2595               getContext().getAsConstantArrayType(OTy)) {
2596             // A C99 array parameter declaration with the static keyword also
2597             // indicates dereferenceability, and if the size is constant we can
2598             // use the dereferenceable attribute (which requires the size in
2599             // bytes).
2600             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2601               QualType ETy = ArrTy->getElementType();
2602               llvm::Align Alignment =
2603                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2604               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2605               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2606               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2607                   ArrSize) {
2608                 llvm::AttrBuilder Attrs;
2609                 Attrs.addDereferenceableAttr(
2610                     getContext().getTypeSizeInChars(ETy).getQuantity() *
2611                     ArrSize);
2612                 AI->addAttrs(Attrs);
2613               } else if (getContext().getTargetInfo().getNullPointerValue(
2614                              ETy.getAddressSpace()) == 0 &&
2615                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2616                 AI->addAttr(llvm::Attribute::NonNull);
2617               }
2618             }
2619           } else if (const auto *ArrTy =
2620                      getContext().getAsVariableArrayType(OTy)) {
2621             // For C99 VLAs with the static keyword, we don't know the size so
2622             // we can't use the dereferenceable attribute, but in addrspace(0)
2623             // we know that it must be nonnull.
2624             if (ArrTy->getSizeModifier() == VariableArrayType::Static) {
2625               QualType ETy = ArrTy->getElementType();
2626               llvm::Align Alignment =
2627                   CGM.getNaturalTypeAlignment(ETy).getAsAlign();
2628               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2629               if (!getContext().getTargetAddressSpace(ETy) &&
2630                   !CGM.getCodeGenOpts().NullPointerIsValid)
2631                 AI->addAttr(llvm::Attribute::NonNull);
2632             }
2633           }
2634 
2635           // Set `align` attribute if any.
2636           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2637           if (!AVAttr)
2638             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2639               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2640           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2641             // If alignment-assumption sanitizer is enabled, we do *not* add
2642             // alignment attribute here, but emit normal alignment assumption,
2643             // so the UBSAN check could function.
2644             llvm::ConstantInt *AlignmentCI =
2645                 cast<llvm::ConstantInt>(EmitScalarExpr(AVAttr->getAlignment()));
2646             unsigned AlignmentInt =
2647                 AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment);
2648             if (AI->getParamAlign().valueOrOne() < AlignmentInt) {
2649               AI->removeAttr(llvm::Attribute::AttrKind::Alignment);
2650               AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(
2651                   llvm::Align(AlignmentInt)));
2652             }
2653           }
2654         }
2655 
2656         // Set 'noalias' if an argument type has the `restrict` qualifier.
2657         if (Arg->getType().isRestrictQualified())
2658           AI->addAttr(llvm::Attribute::NoAlias);
2659       }
2660 
2661       // Prepare the argument value. If we have the trivial case, handle it
2662       // with no muss and fuss.
2663       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2664           ArgI.getCoerceToType() == ConvertType(Ty) &&
2665           ArgI.getDirectOffset() == 0) {
2666         assert(NumIRArgs == 1);
2667 
2668         // LLVM expects swifterror parameters to be used in very restricted
2669         // ways.  Copy the value into a less-restricted temporary.
2670         llvm::Value *V = AI;
2671         if (FI.getExtParameterInfo(ArgNo).getABI()
2672               == ParameterABI::SwiftErrorResult) {
2673           QualType pointeeTy = Ty->getPointeeType();
2674           assert(pointeeTy->isPointerType());
2675           Address temp =
2676             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2677           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2678           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2679           Builder.CreateStore(incomingErrorValue, temp);
2680           V = temp.getPointer();
2681 
2682           // Push a cleanup to copy the value back at the end of the function.
2683           // The convention does not guarantee that the value will be written
2684           // back if the function exits with an unwind exception.
2685           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2686         }
2687 
2688         // Ensure the argument is the correct type.
2689         if (V->getType() != ArgI.getCoerceToType())
2690           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2691 
2692         if (isPromoted)
2693           V = emitArgumentDemotion(*this, Arg, V);
2694 
2695         // Because of merging of function types from multiple decls it is
2696         // possible for the type of an argument to not match the corresponding
2697         // type in the function type. Since we are codegening the callee
2698         // in here, add a cast to the argument type.
2699         llvm::Type *LTy = ConvertType(Arg->getType());
2700         if (V->getType() != LTy)
2701           V = Builder.CreateBitCast(V, LTy);
2702 
2703         ArgVals.push_back(ParamValue::forDirect(V));
2704         break;
2705       }
2706 
2707       // VLST arguments are coerced to VLATs at the function boundary for
2708       // ABI consistency. If this is a VLST that was coerced to
2709       // a VLAT at the function boundary and the types match up, use
2710       // llvm.experimental.vector.extract to convert back to the original
2711       // VLST.
2712       if (auto *VecTyTo = dyn_cast<llvm::FixedVectorType>(ConvertType(Ty))) {
2713         auto *Coerced = Fn->getArg(FirstIRArg);
2714         if (auto *VecTyFrom =
2715                 dyn_cast<llvm::ScalableVectorType>(Coerced->getType())) {
2716           if (VecTyFrom->getElementType() == VecTyTo->getElementType()) {
2717             llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
2718 
2719             assert(NumIRArgs == 1);
2720             Coerced->setName(Arg->getName() + ".coerce");
2721             ArgVals.push_back(ParamValue::forDirect(Builder.CreateExtractVector(
2722                 VecTyTo, Coerced, Zero, "castFixedSve")));
2723             break;
2724           }
2725         }
2726       }
2727 
2728       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2729                                      Arg->getName());
2730 
2731       // Pointer to store into.
2732       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2733 
2734       // Fast-isel and the optimizer generally like scalar values better than
2735       // FCAs, so we flatten them if this is safe to do for this argument.
2736       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2737       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2738           STy->getNumElements() > 1) {
2739         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2740         llvm::Type *DstTy = Ptr.getElementType();
2741         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2742 
2743         Address AddrToStoreInto = Address::invalid();
2744         if (SrcSize <= DstSize) {
2745           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2746         } else {
2747           AddrToStoreInto =
2748             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2749         }
2750 
2751         assert(STy->getNumElements() == NumIRArgs);
2752         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2753           auto AI = Fn->getArg(FirstIRArg + i);
2754           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2755           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2756           Builder.CreateStore(AI, EltPtr);
2757         }
2758 
2759         if (SrcSize > DstSize) {
2760           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2761         }
2762 
2763       } else {
2764         // Simple case, just do a coerced store of the argument into the alloca.
2765         assert(NumIRArgs == 1);
2766         auto AI = Fn->getArg(FirstIRArg);
2767         AI->setName(Arg->getName() + ".coerce");
2768         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2769       }
2770 
2771       // Match to what EmitParmDecl is expecting for this type.
2772       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2773         llvm::Value *V =
2774             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2775         if (isPromoted)
2776           V = emitArgumentDemotion(*this, Arg, V);
2777         ArgVals.push_back(ParamValue::forDirect(V));
2778       } else {
2779         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2780       }
2781       break;
2782     }
2783 
2784     case ABIArgInfo::CoerceAndExpand: {
2785       // Reconstruct into a temporary.
2786       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2787       ArgVals.push_back(ParamValue::forIndirect(alloca));
2788 
2789       auto coercionType = ArgI.getCoerceAndExpandType();
2790       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2791 
2792       unsigned argIndex = FirstIRArg;
2793       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2794         llvm::Type *eltType = coercionType->getElementType(i);
2795         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2796           continue;
2797 
2798         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2799         auto elt = Fn->getArg(argIndex++);
2800         Builder.CreateStore(elt, eltAddr);
2801       }
2802       assert(argIndex == FirstIRArg + NumIRArgs);
2803       break;
2804     }
2805 
2806     case ABIArgInfo::Expand: {
2807       // If this structure was expanded into multiple arguments then
2808       // we need to create a temporary and reconstruct it from the
2809       // arguments.
2810       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2811       LValue LV = MakeAddrLValue(Alloca, Ty);
2812       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2813 
2814       auto FnArgIter = Fn->arg_begin() + FirstIRArg;
2815       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2816       assert(FnArgIter == Fn->arg_begin() + FirstIRArg + NumIRArgs);
2817       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2818         auto AI = Fn->getArg(FirstIRArg + i);
2819         AI->setName(Arg->getName() + "." + Twine(i));
2820       }
2821       break;
2822     }
2823 
2824     case ABIArgInfo::Ignore:
2825       assert(NumIRArgs == 0);
2826       // Initialize the local variable appropriately.
2827       if (!hasScalarEvaluationKind(Ty)) {
2828         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2829       } else {
2830         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2831         ArgVals.push_back(ParamValue::forDirect(U));
2832       }
2833       break;
2834     }
2835   }
2836 
2837   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2838     for (int I = Args.size() - 1; I >= 0; --I)
2839       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2840   } else {
2841     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2842       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2843   }
2844 }
2845 
2846 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2847   while (insn->use_empty()) {
2848     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2849     if (!bitcast) return;
2850 
2851     // This is "safe" because we would have used a ConstantExpr otherwise.
2852     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2853     bitcast->eraseFromParent();
2854   }
2855 }
2856 
2857 /// Try to emit a fused autorelease of a return result.
2858 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2859                                                     llvm::Value *result) {
2860   // We must be immediately followed the cast.
2861   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2862   if (BB->empty()) return nullptr;
2863   if (&BB->back() != result) return nullptr;
2864 
2865   llvm::Type *resultType = result->getType();
2866 
2867   // result is in a BasicBlock and is therefore an Instruction.
2868   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2869 
2870   SmallVector<llvm::Instruction *, 4> InstsToKill;
2871 
2872   // Look for:
2873   //  %generator = bitcast %type1* %generator2 to %type2*
2874   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2875     // We would have emitted this as a constant if the operand weren't
2876     // an Instruction.
2877     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2878 
2879     // Require the generator to be immediately followed by the cast.
2880     if (generator->getNextNode() != bitcast)
2881       return nullptr;
2882 
2883     InstsToKill.push_back(bitcast);
2884   }
2885 
2886   // Look for:
2887   //   %generator = call i8* @objc_retain(i8* %originalResult)
2888   // or
2889   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2890   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2891   if (!call) return nullptr;
2892 
2893   bool doRetainAutorelease;
2894 
2895   if (call->getCalledOperand() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2896     doRetainAutorelease = true;
2897   } else if (call->getCalledOperand() ==
2898              CGF.CGM.getObjCEntrypoints().objc_retainAutoreleasedReturnValue) {
2899     doRetainAutorelease = false;
2900 
2901     // If we emitted an assembly marker for this call (and the
2902     // ARCEntrypoints field should have been set if so), go looking
2903     // for that call.  If we can't find it, we can't do this
2904     // optimization.  But it should always be the immediately previous
2905     // instruction, unless we needed bitcasts around the call.
2906     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2907       llvm::Instruction *prev = call->getPrevNode();
2908       assert(prev);
2909       if (isa<llvm::BitCastInst>(prev)) {
2910         prev = prev->getPrevNode();
2911         assert(prev);
2912       }
2913       assert(isa<llvm::CallInst>(prev));
2914       assert(cast<llvm::CallInst>(prev)->getCalledOperand() ==
2915              CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2916       InstsToKill.push_back(prev);
2917     }
2918   } else {
2919     return nullptr;
2920   }
2921 
2922   result = call->getArgOperand(0);
2923   InstsToKill.push_back(call);
2924 
2925   // Keep killing bitcasts, for sanity.  Note that we no longer care
2926   // about precise ordering as long as there's exactly one use.
2927   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2928     if (!bitcast->hasOneUse()) break;
2929     InstsToKill.push_back(bitcast);
2930     result = bitcast->getOperand(0);
2931   }
2932 
2933   // Delete all the unnecessary instructions, from latest to earliest.
2934   for (auto *I : InstsToKill)
2935     I->eraseFromParent();
2936 
2937   // Do the fused retain/autorelease if we were asked to.
2938   if (doRetainAutorelease)
2939     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2940 
2941   // Cast back to the result type.
2942   return CGF.Builder.CreateBitCast(result, resultType);
2943 }
2944 
2945 /// If this is a +1 of the value of an immutable 'self', remove it.
2946 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2947                                           llvm::Value *result) {
2948   // This is only applicable to a method with an immutable 'self'.
2949   const ObjCMethodDecl *method =
2950     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2951   if (!method) return nullptr;
2952   const VarDecl *self = method->getSelfDecl();
2953   if (!self->getType().isConstQualified()) return nullptr;
2954 
2955   // Look for a retain call.
2956   llvm::CallInst *retainCall =
2957     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2958   if (!retainCall || retainCall->getCalledOperand() !=
2959                          CGF.CGM.getObjCEntrypoints().objc_retain)
2960     return nullptr;
2961 
2962   // Look for an ordinary load of 'self'.
2963   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2964   llvm::LoadInst *load =
2965     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2966   if (!load || load->isAtomic() || load->isVolatile() ||
2967       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2968     return nullptr;
2969 
2970   // Okay!  Burn it all down.  This relies for correctness on the
2971   // assumption that the retain is emitted as part of the return and
2972   // that thereafter everything is used "linearly".
2973   llvm::Type *resultType = result->getType();
2974   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2975   assert(retainCall->use_empty());
2976   retainCall->eraseFromParent();
2977   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2978 
2979   return CGF.Builder.CreateBitCast(load, resultType);
2980 }
2981 
2982 /// Emit an ARC autorelease of the result of a function.
2983 ///
2984 /// \return the value to actually return from the function
2985 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2986                                             llvm::Value *result) {
2987   // If we're returning 'self', kill the initial retain.  This is a
2988   // heuristic attempt to "encourage correctness" in the really unfortunate
2989   // case where we have a return of self during a dealloc and we desperately
2990   // need to avoid the possible autorelease.
2991   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2992     return self;
2993 
2994   // At -O0, try to emit a fused retain/autorelease.
2995   if (CGF.shouldUseFusedARCCalls())
2996     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2997       return fused;
2998 
2999   return CGF.EmitARCAutoreleaseReturnValue(result);
3000 }
3001 
3002 /// Heuristically search for a dominating store to the return-value slot.
3003 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
3004   // Check if a User is a store which pointerOperand is the ReturnValue.
3005   // We are looking for stores to the ReturnValue, not for stores of the
3006   // ReturnValue to some other location.
3007   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
3008     auto *SI = dyn_cast<llvm::StoreInst>(U);
3009     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
3010       return nullptr;
3011     // These aren't actually possible for non-coerced returns, and we
3012     // only care about non-coerced returns on this code path.
3013     assert(!SI->isAtomic() && !SI->isVolatile());
3014     return SI;
3015   };
3016   // If there are multiple uses of the return-value slot, just check
3017   // for something immediately preceding the IP.  Sometimes this can
3018   // happen with how we generate implicit-returns; it can also happen
3019   // with noreturn cleanups.
3020   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
3021     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3022     if (IP->empty()) return nullptr;
3023     llvm::Instruction *I = &IP->back();
3024 
3025     // Skip lifetime markers
3026     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
3027                                             IE = IP->rend();
3028          II != IE; ++II) {
3029       if (llvm::IntrinsicInst *Intrinsic =
3030               dyn_cast<llvm::IntrinsicInst>(&*II)) {
3031         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
3032           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
3033           ++II;
3034           if (II == IE)
3035             break;
3036           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
3037             continue;
3038         }
3039       }
3040       I = &*II;
3041       break;
3042     }
3043 
3044     return GetStoreIfValid(I);
3045   }
3046 
3047   llvm::StoreInst *store =
3048       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
3049   if (!store) return nullptr;
3050 
3051   // Now do a first-and-dirty dominance check: just walk up the
3052   // single-predecessors chain from the current insertion point.
3053   llvm::BasicBlock *StoreBB = store->getParent();
3054   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
3055   while (IP != StoreBB) {
3056     if (!(IP = IP->getSinglePredecessor()))
3057       return nullptr;
3058   }
3059 
3060   // Okay, the store's basic block dominates the insertion point; we
3061   // can do our thing.
3062   return store;
3063 }
3064 
3065 // Helper functions for EmitCMSEClearRecord
3066 
3067 // Set the bits corresponding to a field having width `BitWidth` and located at
3068 // offset `BitOffset` (from the least significant bit) within a storage unit of
3069 // `Bits.size()` bytes. Each element of `Bits` corresponds to one target byte.
3070 // Use little-endian layout, i.e.`Bits[0]` is the LSB.
3071 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int BitOffset,
3072                         int BitWidth, int CharWidth) {
3073   assert(CharWidth <= 64);
3074   assert(static_cast<unsigned>(BitWidth) <= Bits.size() * CharWidth);
3075 
3076   int Pos = 0;
3077   if (BitOffset >= CharWidth) {
3078     Pos += BitOffset / CharWidth;
3079     BitOffset = BitOffset % CharWidth;
3080   }
3081 
3082   const uint64_t Used = (uint64_t(1) << CharWidth) - 1;
3083   if (BitOffset + BitWidth >= CharWidth) {
3084     Bits[Pos++] |= (Used << BitOffset) & Used;
3085     BitWidth -= CharWidth - BitOffset;
3086     BitOffset = 0;
3087   }
3088 
3089   while (BitWidth >= CharWidth) {
3090     Bits[Pos++] = Used;
3091     BitWidth -= CharWidth;
3092   }
3093 
3094   if (BitWidth > 0)
3095     Bits[Pos++] |= (Used >> (CharWidth - BitWidth)) << BitOffset;
3096 }
3097 
3098 // Set the bits corresponding to a field having width `BitWidth` and located at
3099 // offset `BitOffset` (from the least significant bit) within a storage unit of
3100 // `StorageSize` bytes, located at `StorageOffset` in `Bits`. Each element of
3101 // `Bits` corresponds to one target byte. Use target endian layout.
3102 static void setBitRange(SmallVectorImpl<uint64_t> &Bits, int StorageOffset,
3103                         int StorageSize, int BitOffset, int BitWidth,
3104                         int CharWidth, bool BigEndian) {
3105 
3106   SmallVector<uint64_t, 8> TmpBits(StorageSize);
3107   setBitRange(TmpBits, BitOffset, BitWidth, CharWidth);
3108 
3109   if (BigEndian)
3110     std::reverse(TmpBits.begin(), TmpBits.end());
3111 
3112   for (uint64_t V : TmpBits)
3113     Bits[StorageOffset++] |= V;
3114 }
3115 
3116 static void setUsedBits(CodeGenModule &, QualType, int,
3117                         SmallVectorImpl<uint64_t> &);
3118 
3119 // Set the bits in `Bits`, which correspond to the value representations of
3120 // the actual members of the record type `RTy`. Note that this function does
3121 // not handle base classes, virtual tables, etc, since they cannot happen in
3122 // CMSE function arguments or return. The bit mask corresponds to the target
3123 // memory layout, i.e. it's endian dependent.
3124 static void setUsedBits(CodeGenModule &CGM, const RecordType *RTy, int Offset,
3125                         SmallVectorImpl<uint64_t> &Bits) {
3126   ASTContext &Context = CGM.getContext();
3127   int CharWidth = Context.getCharWidth();
3128   const RecordDecl *RD = RTy->getDecl()->getDefinition();
3129   const ASTRecordLayout &ASTLayout = Context.getASTRecordLayout(RD);
3130   const CGRecordLayout &Layout = CGM.getTypes().getCGRecordLayout(RD);
3131 
3132   int Idx = 0;
3133   for (auto I = RD->field_begin(), E = RD->field_end(); I != E; ++I, ++Idx) {
3134     const FieldDecl *F = *I;
3135 
3136     if (F->isUnnamedBitfield() || F->isZeroLengthBitField(Context) ||
3137         F->getType()->isIncompleteArrayType())
3138       continue;
3139 
3140     if (F->isBitField()) {
3141       const CGBitFieldInfo &BFI = Layout.getBitFieldInfo(F);
3142       setBitRange(Bits, Offset + BFI.StorageOffset.getQuantity(),
3143                   BFI.StorageSize / CharWidth, BFI.Offset,
3144                   BFI.Size, CharWidth,
3145                   CGM.getDataLayout().isBigEndian());
3146       continue;
3147     }
3148 
3149     setUsedBits(CGM, F->getType(),
3150                 Offset + ASTLayout.getFieldOffset(Idx) / CharWidth, Bits);
3151   }
3152 }
3153 
3154 // Set the bits in `Bits`, which correspond to the value representations of
3155 // the elements of an array type `ATy`.
3156 static void setUsedBits(CodeGenModule &CGM, const ConstantArrayType *ATy,
3157                         int Offset, SmallVectorImpl<uint64_t> &Bits) {
3158   const ASTContext &Context = CGM.getContext();
3159 
3160   QualType ETy = Context.getBaseElementType(ATy);
3161   int Size = Context.getTypeSizeInChars(ETy).getQuantity();
3162   SmallVector<uint64_t, 4> TmpBits(Size);
3163   setUsedBits(CGM, ETy, 0, TmpBits);
3164 
3165   for (int I = 0, N = Context.getConstantArrayElementCount(ATy); I < N; ++I) {
3166     auto Src = TmpBits.begin();
3167     auto Dst = Bits.begin() + Offset + I * Size;
3168     for (int J = 0; J < Size; ++J)
3169       *Dst++ |= *Src++;
3170   }
3171 }
3172 
3173 // Set the bits in `Bits`, which correspond to the value representations of
3174 // the type `QTy`.
3175 static void setUsedBits(CodeGenModule &CGM, QualType QTy, int Offset,
3176                         SmallVectorImpl<uint64_t> &Bits) {
3177   if (const auto *RTy = QTy->getAs<RecordType>())
3178     return setUsedBits(CGM, RTy, Offset, Bits);
3179 
3180   ASTContext &Context = CGM.getContext();
3181   if (const auto *ATy = Context.getAsConstantArrayType(QTy))
3182     return setUsedBits(CGM, ATy, Offset, Bits);
3183 
3184   int Size = Context.getTypeSizeInChars(QTy).getQuantity();
3185   if (Size <= 0)
3186     return;
3187 
3188   std::fill_n(Bits.begin() + Offset, Size,
3189               (uint64_t(1) << Context.getCharWidth()) - 1);
3190 }
3191 
3192 static uint64_t buildMultiCharMask(const SmallVectorImpl<uint64_t> &Bits,
3193                                    int Pos, int Size, int CharWidth,
3194                                    bool BigEndian) {
3195   assert(Size > 0);
3196   uint64_t Mask = 0;
3197   if (BigEndian) {
3198     for (auto P = Bits.begin() + Pos, E = Bits.begin() + Pos + Size; P != E;
3199          ++P)
3200       Mask = (Mask << CharWidth) | *P;
3201   } else {
3202     auto P = Bits.begin() + Pos + Size, End = Bits.begin() + Pos;
3203     do
3204       Mask = (Mask << CharWidth) | *--P;
3205     while (P != End);
3206   }
3207   return Mask;
3208 }
3209 
3210 // Emit code to clear the bits in a record, which aren't a part of any user
3211 // declared member, when the record is a function return.
3212 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3213                                                   llvm::IntegerType *ITy,
3214                                                   QualType QTy) {
3215   assert(Src->getType() == ITy);
3216   assert(ITy->getScalarSizeInBits() <= 64);
3217 
3218   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3219   int Size = DataLayout.getTypeStoreSize(ITy);
3220   SmallVector<uint64_t, 4> Bits(Size);
3221   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3222 
3223   int CharWidth = CGM.getContext().getCharWidth();
3224   uint64_t Mask =
3225       buildMultiCharMask(Bits, 0, Size, CharWidth, DataLayout.isBigEndian());
3226 
3227   return Builder.CreateAnd(Src, Mask, "cmse.clear");
3228 }
3229 
3230 // Emit code to clear the bits in a record, which aren't a part of any user
3231 // declared member, when the record is a function argument.
3232 llvm::Value *CodeGenFunction::EmitCMSEClearRecord(llvm::Value *Src,
3233                                                   llvm::ArrayType *ATy,
3234                                                   QualType QTy) {
3235   const llvm::DataLayout &DataLayout = CGM.getDataLayout();
3236   int Size = DataLayout.getTypeStoreSize(ATy);
3237   SmallVector<uint64_t, 16> Bits(Size);
3238   setUsedBits(CGM, QTy->castAs<RecordType>(), 0, Bits);
3239 
3240   // Clear each element of the LLVM array.
3241   int CharWidth = CGM.getContext().getCharWidth();
3242   int CharsPerElt =
3243       ATy->getArrayElementType()->getScalarSizeInBits() / CharWidth;
3244   int MaskIndex = 0;
3245   llvm::Value *R = llvm::UndefValue::get(ATy);
3246   for (int I = 0, N = ATy->getArrayNumElements(); I != N; ++I) {
3247     uint64_t Mask = buildMultiCharMask(Bits, MaskIndex, CharsPerElt, CharWidth,
3248                                        DataLayout.isBigEndian());
3249     MaskIndex += CharsPerElt;
3250     llvm::Value *T0 = Builder.CreateExtractValue(Src, I);
3251     llvm::Value *T1 = Builder.CreateAnd(T0, Mask, "cmse.clear");
3252     R = Builder.CreateInsertValue(R, T1, I);
3253   }
3254 
3255   return R;
3256 }
3257 
3258 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
3259                                          bool EmitRetDbgLoc,
3260                                          SourceLocation EndLoc) {
3261   if (FI.isNoReturn()) {
3262     // Noreturn functions don't return.
3263     EmitUnreachable(EndLoc);
3264     return;
3265   }
3266 
3267   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
3268     // Naked functions don't have epilogues.
3269     Builder.CreateUnreachable();
3270     return;
3271   }
3272 
3273   // Functions with no result always return void.
3274   if (!ReturnValue.isValid()) {
3275     Builder.CreateRetVoid();
3276     return;
3277   }
3278 
3279   llvm::DebugLoc RetDbgLoc;
3280   llvm::Value *RV = nullptr;
3281   QualType RetTy = FI.getReturnType();
3282   const ABIArgInfo &RetAI = FI.getReturnInfo();
3283 
3284   switch (RetAI.getKind()) {
3285   case ABIArgInfo::InAlloca:
3286     // Aggregrates get evaluated directly into the destination.  Sometimes we
3287     // need to return the sret value in a register, though.
3288     assert(hasAggregateEvaluationKind(RetTy));
3289     if (RetAI.getInAllocaSRet()) {
3290       llvm::Function::arg_iterator EI = CurFn->arg_end();
3291       --EI;
3292       llvm::Value *ArgStruct = &*EI;
3293       llvm::Value *SRet = Builder.CreateStructGEP(
3294           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
3295       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
3296     }
3297     break;
3298 
3299   case ABIArgInfo::Indirect: {
3300     auto AI = CurFn->arg_begin();
3301     if (RetAI.isSRetAfterThis())
3302       ++AI;
3303     switch (getEvaluationKind(RetTy)) {
3304     case TEK_Complex: {
3305       ComplexPairTy RT =
3306         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
3307       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
3308                          /*isInit*/ true);
3309       break;
3310     }
3311     case TEK_Aggregate:
3312       // Do nothing; aggregrates get evaluated directly into the destination.
3313       break;
3314     case TEK_Scalar:
3315       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
3316                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
3317                         /*isInit*/ true);
3318       break;
3319     }
3320     break;
3321   }
3322 
3323   case ABIArgInfo::Extend:
3324   case ABIArgInfo::Direct:
3325     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
3326         RetAI.getDirectOffset() == 0) {
3327       // The internal return value temp always will have pointer-to-return-type
3328       // type, just do a load.
3329 
3330       // If there is a dominating store to ReturnValue, we can elide
3331       // the load, zap the store, and usually zap the alloca.
3332       if (llvm::StoreInst *SI =
3333               findDominatingStoreToReturnValue(*this)) {
3334         // Reuse the debug location from the store unless there is
3335         // cleanup code to be emitted between the store and return
3336         // instruction.
3337         if (EmitRetDbgLoc && !AutoreleaseResult)
3338           RetDbgLoc = SI->getDebugLoc();
3339         // Get the stored value and nuke the now-dead store.
3340         RV = SI->getValueOperand();
3341         SI->eraseFromParent();
3342 
3343       // Otherwise, we have to do a simple load.
3344       } else {
3345         RV = Builder.CreateLoad(ReturnValue);
3346       }
3347     } else {
3348       // If the value is offset in memory, apply the offset now.
3349       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
3350 
3351       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
3352     }
3353 
3354     // In ARC, end functions that return a retainable type with a call
3355     // to objc_autoreleaseReturnValue.
3356     if (AutoreleaseResult) {
3357 #ifndef NDEBUG
3358       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
3359       // been stripped of the typedefs, so we cannot use RetTy here. Get the
3360       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
3361       // CurCodeDecl or BlockInfo.
3362       QualType RT;
3363 
3364       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
3365         RT = FD->getReturnType();
3366       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
3367         RT = MD->getReturnType();
3368       else if (isa<BlockDecl>(CurCodeDecl))
3369         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
3370       else
3371         llvm_unreachable("Unexpected function/method type");
3372 
3373       assert(getLangOpts().ObjCAutoRefCount &&
3374              !FI.isReturnsRetained() &&
3375              RT->isObjCRetainableType());
3376 #endif
3377       RV = emitAutoreleaseOfResult(*this, RV);
3378     }
3379 
3380     break;
3381 
3382   case ABIArgInfo::Ignore:
3383     break;
3384 
3385   case ABIArgInfo::CoerceAndExpand: {
3386     auto coercionType = RetAI.getCoerceAndExpandType();
3387 
3388     // Load all of the coerced elements out into results.
3389     llvm::SmallVector<llvm::Value*, 4> results;
3390     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
3391     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3392       auto coercedEltType = coercionType->getElementType(i);
3393       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
3394         continue;
3395 
3396       auto eltAddr = Builder.CreateStructGEP(addr, i);
3397       auto elt = Builder.CreateLoad(eltAddr);
3398       results.push_back(elt);
3399     }
3400 
3401     // If we have one result, it's the single direct result type.
3402     if (results.size() == 1) {
3403       RV = results[0];
3404 
3405     // Otherwise, we need to make a first-class aggregate.
3406     } else {
3407       // Construct a return type that lacks padding elements.
3408       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
3409 
3410       RV = llvm::UndefValue::get(returnType);
3411       for (unsigned i = 0, e = results.size(); i != e; ++i) {
3412         RV = Builder.CreateInsertValue(RV, results[i], i);
3413       }
3414     }
3415     break;
3416   }
3417   case ABIArgInfo::Expand:
3418   case ABIArgInfo::IndirectAliased:
3419     llvm_unreachable("Invalid ABI kind for return argument");
3420   }
3421 
3422   llvm::Instruction *Ret;
3423   if (RV) {
3424     if (CurFuncDecl && CurFuncDecl->hasAttr<CmseNSEntryAttr>()) {
3425       // For certain return types, clear padding bits, as they may reveal
3426       // sensitive information.
3427       // Small struct/union types are passed as integers.
3428       auto *ITy = dyn_cast<llvm::IntegerType>(RV->getType());
3429       if (ITy != nullptr && isa<RecordType>(RetTy.getCanonicalType()))
3430         RV = EmitCMSEClearRecord(RV, ITy, RetTy);
3431     }
3432     EmitReturnValueCheck(RV);
3433     Ret = Builder.CreateRet(RV);
3434   } else {
3435     Ret = Builder.CreateRetVoid();
3436   }
3437 
3438   if (RetDbgLoc)
3439     Ret->setDebugLoc(std::move(RetDbgLoc));
3440 }
3441 
3442 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
3443   // A current decl may not be available when emitting vtable thunks.
3444   if (!CurCodeDecl)
3445     return;
3446 
3447   // If the return block isn't reachable, neither is this check, so don't emit
3448   // it.
3449   if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty())
3450     return;
3451 
3452   ReturnsNonNullAttr *RetNNAttr = nullptr;
3453   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
3454     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
3455 
3456   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
3457     return;
3458 
3459   // Prefer the returns_nonnull attribute if it's present.
3460   SourceLocation AttrLoc;
3461   SanitizerMask CheckKind;
3462   SanitizerHandler Handler;
3463   if (RetNNAttr) {
3464     assert(!requiresReturnValueNullabilityCheck() &&
3465            "Cannot check nullability and the nonnull attribute");
3466     AttrLoc = RetNNAttr->getLocation();
3467     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
3468     Handler = SanitizerHandler::NonnullReturn;
3469   } else {
3470     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
3471       if (auto *TSI = DD->getTypeSourceInfo())
3472         if (auto FTL = TSI->getTypeLoc().getAsAdjusted<FunctionTypeLoc>())
3473           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
3474     CheckKind = SanitizerKind::NullabilityReturn;
3475     Handler = SanitizerHandler::NullabilityReturn;
3476   }
3477 
3478   SanitizerScope SanScope(this);
3479 
3480   // Make sure the "return" source location is valid. If we're checking a
3481   // nullability annotation, make sure the preconditions for the check are met.
3482   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3483   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3484   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3485   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3486   if (requiresReturnValueNullabilityCheck())
3487     CanNullCheck =
3488         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3489   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3490   EmitBlock(Check);
3491 
3492   // Now do the null check.
3493   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3494   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3495   llvm::Value *DynamicData[] = {SLocPtr};
3496   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3497 
3498   EmitBlock(NoCheck);
3499 
3500 #ifndef NDEBUG
3501   // The return location should not be used after the check has been emitted.
3502   ReturnLocation = Address::invalid();
3503 #endif
3504 }
3505 
3506 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3507   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3508   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3509 }
3510 
3511 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3512                                           QualType Ty) {
3513   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3514   // placeholders.
3515   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3516   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3517   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3518 
3519   // FIXME: When we generate this IR in one pass, we shouldn't need
3520   // this win32-specific alignment hack.
3521   CharUnits Align = CharUnits::fromQuantity(4);
3522   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3523 
3524   return AggValueSlot::forAddr(Address(Placeholder, Align),
3525                                Ty.getQualifiers(),
3526                                AggValueSlot::IsNotDestructed,
3527                                AggValueSlot::DoesNotNeedGCBarriers,
3528                                AggValueSlot::IsNotAliased,
3529                                AggValueSlot::DoesNotOverlap);
3530 }
3531 
3532 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3533                                           const VarDecl *param,
3534                                           SourceLocation loc) {
3535   // StartFunction converted the ABI-lowered parameter(s) into a
3536   // local alloca.  We need to turn that into an r-value suitable
3537   // for EmitCall.
3538   Address local = GetAddrOfLocalVar(param);
3539 
3540   QualType type = param->getType();
3541 
3542   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3543     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3544   }
3545 
3546   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3547   // but the argument needs to be the original pointer.
3548   if (type->isReferenceType()) {
3549     args.add(RValue::get(Builder.CreateLoad(local)), type);
3550 
3551   // In ARC, move out of consumed arguments so that the release cleanup
3552   // entered by StartFunction doesn't cause an over-release.  This isn't
3553   // optimal -O0 code generation, but it should get cleaned up when
3554   // optimization is enabled.  This also assumes that delegate calls are
3555   // performed exactly once for a set of arguments, but that should be safe.
3556   } else if (getLangOpts().ObjCAutoRefCount &&
3557              param->hasAttr<NSConsumedAttr>() &&
3558              type->isObjCRetainableType()) {
3559     llvm::Value *ptr = Builder.CreateLoad(local);
3560     auto null =
3561       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3562     Builder.CreateStore(null, local);
3563     args.add(RValue::get(ptr), type);
3564 
3565   // For the most part, we just need to load the alloca, except that
3566   // aggregate r-values are actually pointers to temporaries.
3567   } else {
3568     args.add(convertTempToRValue(local, type, loc), type);
3569   }
3570 
3571   // Deactivate the cleanup for the callee-destructed param that was pushed.
3572   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3573       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3574       param->needsDestruction(getContext())) {
3575     EHScopeStack::stable_iterator cleanup =
3576         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3577     assert(cleanup.isValid() &&
3578            "cleanup for callee-destructed param not recorded");
3579     // This unreachable is a temporary marker which will be removed later.
3580     llvm::Instruction *isActive = Builder.CreateUnreachable();
3581     args.addArgCleanupDeactivation(cleanup, isActive);
3582   }
3583 }
3584 
3585 static bool isProvablyNull(llvm::Value *addr) {
3586   return isa<llvm::ConstantPointerNull>(addr);
3587 }
3588 
3589 /// Emit the actual writing-back of a writeback.
3590 static void emitWriteback(CodeGenFunction &CGF,
3591                           const CallArgList::Writeback &writeback) {
3592   const LValue &srcLV = writeback.Source;
3593   Address srcAddr = srcLV.getAddress(CGF);
3594   assert(!isProvablyNull(srcAddr.getPointer()) &&
3595          "shouldn't have writeback for provably null argument");
3596 
3597   llvm::BasicBlock *contBB = nullptr;
3598 
3599   // If the argument wasn't provably non-null, we need to null check
3600   // before doing the store.
3601   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3602                                               CGF.CGM.getDataLayout());
3603   if (!provablyNonNull) {
3604     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3605     contBB = CGF.createBasicBlock("icr.done");
3606 
3607     llvm::Value *isNull =
3608       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3609     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3610     CGF.EmitBlock(writebackBB);
3611   }
3612 
3613   // Load the value to writeback.
3614   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3615 
3616   // Cast it back, in case we're writing an id to a Foo* or something.
3617   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3618                                     "icr.writeback-cast");
3619 
3620   // Perform the writeback.
3621 
3622   // If we have a "to use" value, it's something we need to emit a use
3623   // of.  This has to be carefully threaded in: if it's done after the
3624   // release it's potentially undefined behavior (and the optimizer
3625   // will ignore it), and if it happens before the retain then the
3626   // optimizer could move the release there.
3627   if (writeback.ToUse) {
3628     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3629 
3630     // Retain the new value.  No need to block-copy here:  the block's
3631     // being passed up the stack.
3632     value = CGF.EmitARCRetainNonBlock(value);
3633 
3634     // Emit the intrinsic use here.
3635     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3636 
3637     // Load the old value (primitively).
3638     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3639 
3640     // Put the new value in place (primitively).
3641     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3642 
3643     // Release the old value.
3644     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3645 
3646   // Otherwise, we can just do a normal lvalue store.
3647   } else {
3648     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3649   }
3650 
3651   // Jump to the continuation block.
3652   if (!provablyNonNull)
3653     CGF.EmitBlock(contBB);
3654 }
3655 
3656 static void emitWritebacks(CodeGenFunction &CGF,
3657                            const CallArgList &args) {
3658   for (const auto &I : args.writebacks())
3659     emitWriteback(CGF, I);
3660 }
3661 
3662 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3663                                             const CallArgList &CallArgs) {
3664   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3665     CallArgs.getCleanupsToDeactivate();
3666   // Iterate in reverse to increase the likelihood of popping the cleanup.
3667   for (const auto &I : llvm::reverse(Cleanups)) {
3668     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3669     I.IsActiveIP->eraseFromParent();
3670   }
3671 }
3672 
3673 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3674   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3675     if (uop->getOpcode() == UO_AddrOf)
3676       return uop->getSubExpr();
3677   return nullptr;
3678 }
3679 
3680 /// Emit an argument that's being passed call-by-writeback.  That is,
3681 /// we are passing the address of an __autoreleased temporary; it
3682 /// might be copy-initialized with the current value of the given
3683 /// address, but it will definitely be copied out of after the call.
3684 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3685                              const ObjCIndirectCopyRestoreExpr *CRE) {
3686   LValue srcLV;
3687 
3688   // Make an optimistic effort to emit the address as an l-value.
3689   // This can fail if the argument expression is more complicated.
3690   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3691     srcLV = CGF.EmitLValue(lvExpr);
3692 
3693   // Otherwise, just emit it as a scalar.
3694   } else {
3695     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3696 
3697     QualType srcAddrType =
3698       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3699     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3700   }
3701   Address srcAddr = srcLV.getAddress(CGF);
3702 
3703   // The dest and src types don't necessarily match in LLVM terms
3704   // because of the crazy ObjC compatibility rules.
3705 
3706   llvm::PointerType *destType =
3707     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3708 
3709   // If the address is a constant null, just pass the appropriate null.
3710   if (isProvablyNull(srcAddr.getPointer())) {
3711     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3712              CRE->getType());
3713     return;
3714   }
3715 
3716   // Create the temporary.
3717   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3718                                       CGF.getPointerAlign(),
3719                                       "icr.temp");
3720   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3721   // and that cleanup will be conditional if we can't prove that the l-value
3722   // isn't null, so we need to register a dominating point so that the cleanups
3723   // system will make valid IR.
3724   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3725 
3726   // Zero-initialize it if we're not doing a copy-initialization.
3727   bool shouldCopy = CRE->shouldCopy();
3728   if (!shouldCopy) {
3729     llvm::Value *null =
3730       llvm::ConstantPointerNull::get(
3731         cast<llvm::PointerType>(destType->getElementType()));
3732     CGF.Builder.CreateStore(null, temp);
3733   }
3734 
3735   llvm::BasicBlock *contBB = nullptr;
3736   llvm::BasicBlock *originBB = nullptr;
3737 
3738   // If the address is *not* known to be non-null, we need to switch.
3739   llvm::Value *finalArgument;
3740 
3741   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3742                                               CGF.CGM.getDataLayout());
3743   if (provablyNonNull) {
3744     finalArgument = temp.getPointer();
3745   } else {
3746     llvm::Value *isNull =
3747       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3748 
3749     finalArgument = CGF.Builder.CreateSelect(isNull,
3750                                    llvm::ConstantPointerNull::get(destType),
3751                                              temp.getPointer(), "icr.argument");
3752 
3753     // If we need to copy, then the load has to be conditional, which
3754     // means we need control flow.
3755     if (shouldCopy) {
3756       originBB = CGF.Builder.GetInsertBlock();
3757       contBB = CGF.createBasicBlock("icr.cont");
3758       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3759       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3760       CGF.EmitBlock(copyBB);
3761       condEval.begin(CGF);
3762     }
3763   }
3764 
3765   llvm::Value *valueToUse = nullptr;
3766 
3767   // Perform a copy if necessary.
3768   if (shouldCopy) {
3769     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3770     assert(srcRV.isScalar());
3771 
3772     llvm::Value *src = srcRV.getScalarVal();
3773     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3774                                     "icr.cast");
3775 
3776     // Use an ordinary store, not a store-to-lvalue.
3777     CGF.Builder.CreateStore(src, temp);
3778 
3779     // If optimization is enabled, and the value was held in a
3780     // __strong variable, we need to tell the optimizer that this
3781     // value has to stay alive until we're doing the store back.
3782     // This is because the temporary is effectively unretained,
3783     // and so otherwise we can violate the high-level semantics.
3784     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3785         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3786       valueToUse = src;
3787     }
3788   }
3789 
3790   // Finish the control flow if we needed it.
3791   if (shouldCopy && !provablyNonNull) {
3792     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3793     CGF.EmitBlock(contBB);
3794 
3795     // Make a phi for the value to intrinsically use.
3796     if (valueToUse) {
3797       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3798                                                       "icr.to-use");
3799       phiToUse->addIncoming(valueToUse, copyBB);
3800       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3801                             originBB);
3802       valueToUse = phiToUse;
3803     }
3804 
3805     condEval.end(CGF);
3806   }
3807 
3808   args.addWriteback(srcLV, temp, valueToUse);
3809   args.add(RValue::get(finalArgument), CRE->getType());
3810 }
3811 
3812 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3813   assert(!StackBase);
3814 
3815   // Save the stack.
3816   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3817   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3818 }
3819 
3820 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3821   if (StackBase) {
3822     // Restore the stack after the call.
3823     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3824     CGF.Builder.CreateCall(F, StackBase);
3825   }
3826 }
3827 
3828 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3829                                           SourceLocation ArgLoc,
3830                                           AbstractCallee AC,
3831                                           unsigned ParmNum) {
3832   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3833                          SanOpts.has(SanitizerKind::NullabilityArg)))
3834     return;
3835 
3836   // The param decl may be missing in a variadic function.
3837   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3838   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3839 
3840   // Prefer the nonnull attribute if it's present.
3841   const NonNullAttr *NNAttr = nullptr;
3842   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3843     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3844 
3845   bool CanCheckNullability = false;
3846   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3847     auto Nullability = PVD->getType()->getNullability(getContext());
3848     CanCheckNullability = Nullability &&
3849                           *Nullability == NullabilityKind::NonNull &&
3850                           PVD->getTypeSourceInfo();
3851   }
3852 
3853   if (!NNAttr && !CanCheckNullability)
3854     return;
3855 
3856   SourceLocation AttrLoc;
3857   SanitizerMask CheckKind;
3858   SanitizerHandler Handler;
3859   if (NNAttr) {
3860     AttrLoc = NNAttr->getLocation();
3861     CheckKind = SanitizerKind::NonnullAttribute;
3862     Handler = SanitizerHandler::NonnullArg;
3863   } else {
3864     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3865     CheckKind = SanitizerKind::NullabilityArg;
3866     Handler = SanitizerHandler::NullabilityArg;
3867   }
3868 
3869   SanitizerScope SanScope(this);
3870   llvm::Value *Cond = EmitNonNullRValueCheck(RV, ArgType);
3871   llvm::Constant *StaticData[] = {
3872       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3873       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3874   };
3875   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3876 }
3877 
3878 // Check if the call is going to use the inalloca convention. This needs to
3879 // agree with CGFunctionInfo::usesInAlloca. The CGFunctionInfo is arranged
3880 // later, so we can't check it directly.
3881 static bool hasInAllocaArgs(CodeGenModule &CGM, CallingConv ExplicitCC,
3882                             ArrayRef<QualType> ArgTypes) {
3883   // The Swift calling convention doesn't go through the target-specific
3884   // argument classification, so it never uses inalloca.
3885   // TODO: Consider limiting inalloca use to only calling conventions supported
3886   // by MSVC.
3887   if (ExplicitCC == CC_Swift)
3888     return false;
3889   if (!CGM.getTarget().getCXXABI().isMicrosoft())
3890     return false;
3891   return llvm::any_of(ArgTypes, [&](QualType Ty) {
3892     return isInAllocaArgument(CGM.getCXXABI(), Ty);
3893   });
3894 }
3895 
3896 #ifndef NDEBUG
3897 // Determine whether the given argument is an Objective-C method
3898 // that may have type parameters in its signature.
3899 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
3900   const DeclContext *dc = method->getDeclContext();
3901   if (const ObjCInterfaceDecl *classDecl = dyn_cast<ObjCInterfaceDecl>(dc)) {
3902     return classDecl->getTypeParamListAsWritten();
3903   }
3904 
3905   if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
3906     return catDecl->getTypeParamList();
3907   }
3908 
3909   return false;
3910 }
3911 #endif
3912 
3913 /// EmitCallArgs - Emit call arguments for a function.
3914 void CodeGenFunction::EmitCallArgs(
3915     CallArgList &Args, PrototypeWrapper Prototype,
3916     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3917     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3918   SmallVector<QualType, 16> ArgTypes;
3919 
3920   assert((ParamsToSkip == 0 || Prototype.P) &&
3921          "Can't skip parameters if type info is not provided");
3922 
3923   // This variable only captures *explicitly* written conventions, not those
3924   // applied by default via command line flags or target defaults, such as
3925   // thiscall, aapcs, stdcall via -mrtd, etc. Computing that correctly would
3926   // require knowing if this is a C++ instance method or being able to see
3927   // unprototyped FunctionTypes.
3928   CallingConv ExplicitCC = CC_C;
3929 
3930   // First, if a prototype was provided, use those argument types.
3931   bool IsVariadic = false;
3932   if (Prototype.P) {
3933     const auto *MD = Prototype.P.dyn_cast<const ObjCMethodDecl *>();
3934     if (MD) {
3935       IsVariadic = MD->isVariadic();
3936       ExplicitCC = getCallingConventionForDecl(
3937           MD, CGM.getTarget().getTriple().isOSWindows());
3938       ArgTypes.assign(MD->param_type_begin() + ParamsToSkip,
3939                       MD->param_type_end());
3940     } else {
3941       const auto *FPT = Prototype.P.get<const FunctionProtoType *>();
3942       IsVariadic = FPT->isVariadic();
3943       ExplicitCC = FPT->getExtInfo().getCC();
3944       ArgTypes.assign(FPT->param_type_begin() + ParamsToSkip,
3945                       FPT->param_type_end());
3946     }
3947 
3948 #ifndef NDEBUG
3949     // Check that the prototyped types match the argument expression types.
3950     bool isGenericMethod = MD && isObjCMethodWithTypeParams(MD);
3951     CallExpr::const_arg_iterator Arg = ArgRange.begin();
3952     for (QualType Ty : ArgTypes) {
3953       assert(Arg != ArgRange.end() && "Running over edge of argument list!");
3954       assert(
3955           (isGenericMethod || Ty->isVariablyModifiedType() ||
3956            Ty.getNonReferenceType()->isObjCRetainableType() ||
3957            getContext()
3958                    .getCanonicalType(Ty.getNonReferenceType())
3959                    .getTypePtr() ==
3960                getContext().getCanonicalType((*Arg)->getType()).getTypePtr()) &&
3961           "type mismatch in call argument!");
3962       ++Arg;
3963     }
3964 
3965     // Either we've emitted all the call args, or we have a call to variadic
3966     // function.
3967     assert((Arg == ArgRange.end() || IsVariadic) &&
3968            "Extra arguments in non-variadic function!");
3969 #endif
3970   }
3971 
3972   // If we still have any arguments, emit them using the type of the argument.
3973   for (auto *A : llvm::make_range(std::next(ArgRange.begin(), ArgTypes.size()),
3974                                   ArgRange.end()))
3975     ArgTypes.push_back(IsVariadic ? getVarArgType(A) : A->getType());
3976   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3977 
3978   // We must evaluate arguments from right to left in the MS C++ ABI,
3979   // because arguments are destroyed left to right in the callee. As a special
3980   // case, there are certain language constructs that require left-to-right
3981   // evaluation, and in those cases we consider the evaluation order requirement
3982   // to trump the "destruction order is reverse construction order" guarantee.
3983   bool LeftToRight =
3984       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3985           ? Order == EvaluationOrder::ForceLeftToRight
3986           : Order != EvaluationOrder::ForceRightToLeft;
3987 
3988   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3989                                          RValue EmittedArg) {
3990     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3991       return;
3992     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3993     if (PS == nullptr)
3994       return;
3995 
3996     const auto &Context = getContext();
3997     auto SizeTy = Context.getSizeType();
3998     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3999     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
4000     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
4001                                                      EmittedArg.getScalarVal(),
4002                                                      PS->isDynamic());
4003     Args.add(RValue::get(V), SizeTy);
4004     // If we're emitting args in reverse, be sure to do so with
4005     // pass_object_size, as well.
4006     if (!LeftToRight)
4007       std::swap(Args.back(), *(&Args.back() - 1));
4008   };
4009 
4010   // Insert a stack save if we're going to need any inalloca args.
4011   if (hasInAllocaArgs(CGM, ExplicitCC, ArgTypes)) {
4012     assert(getTarget().getTriple().getArch() == llvm::Triple::x86 &&
4013            "inalloca only supported on x86");
4014     Args.allocateArgumentMemory(*this);
4015   }
4016 
4017   // Evaluate each argument in the appropriate order.
4018   size_t CallArgsStart = Args.size();
4019   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
4020     unsigned Idx = LeftToRight ? I : E - I - 1;
4021     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
4022     unsigned InitialArgSize = Args.size();
4023     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
4024     // the argument and parameter match or the objc method is parameterized.
4025     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
4026             getContext().hasSameUnqualifiedType((*Arg)->getType(),
4027                                                 ArgTypes[Idx]) ||
4028             (isa<ObjCMethodDecl>(AC.getDecl()) &&
4029              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
4030            "Argument and parameter types don't match");
4031     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
4032     // In particular, we depend on it being the last arg in Args, and the
4033     // objectsize bits depend on there only being one arg if !LeftToRight.
4034     assert(InitialArgSize + 1 == Args.size() &&
4035            "The code below depends on only adding one arg per EmitCallArg");
4036     (void)InitialArgSize;
4037     // Since pointer argument are never emitted as LValue, it is safe to emit
4038     // non-null argument check for r-value only.
4039     if (!Args.back().hasLValue()) {
4040       RValue RVArg = Args.back().getKnownRValue();
4041       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
4042                           ParamsToSkip + Idx);
4043       // @llvm.objectsize should never have side-effects and shouldn't need
4044       // destruction/cleanups, so we can safely "emit" it after its arg,
4045       // regardless of right-to-leftness
4046       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
4047     }
4048   }
4049 
4050   if (!LeftToRight) {
4051     // Un-reverse the arguments we just evaluated so they match up with the LLVM
4052     // IR function.
4053     std::reverse(Args.begin() + CallArgsStart, Args.end());
4054   }
4055 }
4056 
4057 namespace {
4058 
4059 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
4060   DestroyUnpassedArg(Address Addr, QualType Ty)
4061       : Addr(Addr), Ty(Ty) {}
4062 
4063   Address Addr;
4064   QualType Ty;
4065 
4066   void Emit(CodeGenFunction &CGF, Flags flags) override {
4067     QualType::DestructionKind DtorKind = Ty.isDestructedType();
4068     if (DtorKind == QualType::DK_cxx_destructor) {
4069       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
4070       assert(!Dtor->isTrivial());
4071       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
4072                                 /*Delegating=*/false, Addr, Ty);
4073     } else {
4074       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
4075     }
4076   }
4077 };
4078 
4079 struct DisableDebugLocationUpdates {
4080   CodeGenFunction &CGF;
4081   bool disabledDebugInfo;
4082   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
4083     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
4084       CGF.disableDebugInfo();
4085   }
4086   ~DisableDebugLocationUpdates() {
4087     if (disabledDebugInfo)
4088       CGF.enableDebugInfo();
4089   }
4090 };
4091 
4092 } // end anonymous namespace
4093 
4094 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
4095   if (!HasLV)
4096     return RV;
4097   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
4098   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
4099                         LV.isVolatile());
4100   IsUsed = true;
4101   return RValue::getAggregate(Copy.getAddress(CGF));
4102 }
4103 
4104 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
4105   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
4106   if (!HasLV && RV.isScalar())
4107     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
4108   else if (!HasLV && RV.isComplex())
4109     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
4110   else {
4111     auto Addr = HasLV ? LV.getAddress(CGF) : RV.getAggregateAddress();
4112     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
4113     // We assume that call args are never copied into subobjects.
4114     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
4115                           HasLV ? LV.isVolatileQualified()
4116                                 : RV.isVolatileQualified());
4117   }
4118   IsUsed = true;
4119 }
4120 
4121 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
4122                                   QualType type) {
4123   DisableDebugLocationUpdates Dis(*this, E);
4124   if (const ObjCIndirectCopyRestoreExpr *CRE
4125         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
4126     assert(getLangOpts().ObjCAutoRefCount);
4127     return emitWritebackArg(*this, args, CRE);
4128   }
4129 
4130   assert(type->isReferenceType() == E->isGLValue() &&
4131          "reference binding to unmaterialized r-value!");
4132 
4133   if (E->isGLValue()) {
4134     assert(E->getObjectKind() == OK_Ordinary);
4135     return args.add(EmitReferenceBindingToExpr(E), type);
4136   }
4137 
4138   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
4139 
4140   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
4141   // However, we still have to push an EH-only cleanup in case we unwind before
4142   // we make it to the call.
4143   if (HasAggregateEvalKind &&
4144       type->castAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
4145     // If we're using inalloca, use the argument memory.  Otherwise, use a
4146     // temporary.
4147     AggValueSlot Slot;
4148     if (args.isUsingInAlloca())
4149       Slot = createPlaceholderSlot(*this, type);
4150     else
4151       Slot = CreateAggTemp(type, "agg.tmp");
4152 
4153     bool DestroyedInCallee = true, NeedsEHCleanup = true;
4154     if (const auto *RD = type->getAsCXXRecordDecl())
4155       DestroyedInCallee = RD->hasNonTrivialDestructor();
4156     else
4157       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
4158 
4159     if (DestroyedInCallee)
4160       Slot.setExternallyDestructed();
4161 
4162     EmitAggExpr(E, Slot);
4163     RValue RV = Slot.asRValue();
4164     args.add(RV, type);
4165 
4166     if (DestroyedInCallee && NeedsEHCleanup) {
4167       // Create a no-op GEP between the placeholder and the cleanup so we can
4168       // RAUW it successfully.  It also serves as a marker of the first
4169       // instruction where the cleanup is active.
4170       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
4171                                               type);
4172       // This unreachable is a temporary marker which will be removed later.
4173       llvm::Instruction *IsActive = Builder.CreateUnreachable();
4174       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
4175     }
4176     return;
4177   }
4178 
4179   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
4180       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
4181     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
4182     assert(L.isSimple());
4183     args.addUncopiedAggregate(L, type);
4184     return;
4185   }
4186 
4187   args.add(EmitAnyExprToTemp(E), type);
4188 }
4189 
4190 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
4191   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
4192   // implicitly widens null pointer constants that are arguments to varargs
4193   // functions to pointer-sized ints.
4194   if (!getTarget().getTriple().isOSWindows())
4195     return Arg->getType();
4196 
4197   if (Arg->getType()->isIntegerType() &&
4198       getContext().getTypeSize(Arg->getType()) <
4199           getContext().getTargetInfo().getPointerWidth(0) &&
4200       Arg->isNullPointerConstant(getContext(),
4201                                  Expr::NPC_ValueDependentIsNotNull)) {
4202     return getContext().getIntPtrType();
4203   }
4204 
4205   return Arg->getType();
4206 }
4207 
4208 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4209 // optimizer it can aggressively ignore unwind edges.
4210 void
4211 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
4212   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
4213       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
4214     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
4215                       CGM.getNoObjCARCExceptionsMetadata());
4216 }
4217 
4218 /// Emits a call to the given no-arguments nounwind runtime function.
4219 llvm::CallInst *
4220 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4221                                          const llvm::Twine &name) {
4222   return EmitNounwindRuntimeCall(callee, None, name);
4223 }
4224 
4225 /// Emits a call to the given nounwind runtime function.
4226 llvm::CallInst *
4227 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4228                                          ArrayRef<llvm::Value *> args,
4229                                          const llvm::Twine &name) {
4230   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
4231   call->setDoesNotThrow();
4232   return call;
4233 }
4234 
4235 /// Emits a simple call (never an invoke) to the given no-arguments
4236 /// runtime function.
4237 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4238                                                  const llvm::Twine &name) {
4239   return EmitRuntimeCall(callee, None, name);
4240 }
4241 
4242 // Calls which may throw must have operand bundles indicating which funclet
4243 // they are nested within.
4244 SmallVector<llvm::OperandBundleDef, 1>
4245 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
4246   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4247   // There is no need for a funclet operand bundle if we aren't inside a
4248   // funclet.
4249   if (!CurrentFuncletPad)
4250     return BundleList;
4251 
4252   // Skip intrinsics which cannot throw.
4253   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
4254   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
4255     return BundleList;
4256 
4257   BundleList.emplace_back("funclet", CurrentFuncletPad);
4258   return BundleList;
4259 }
4260 
4261 /// Emits a simple call (never an invoke) to the given runtime function.
4262 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
4263                                                  ArrayRef<llvm::Value *> args,
4264                                                  const llvm::Twine &name) {
4265   llvm::CallInst *call = Builder.CreateCall(
4266       callee, args, getBundlesForFunclet(callee.getCallee()), name);
4267   call->setCallingConv(getRuntimeCC());
4268   return call;
4269 }
4270 
4271 /// Emits a call or invoke to the given noreturn runtime function.
4272 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
4273     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
4274   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4275       getBundlesForFunclet(callee.getCallee());
4276 
4277   if (getInvokeDest()) {
4278     llvm::InvokeInst *invoke =
4279       Builder.CreateInvoke(callee,
4280                            getUnreachableBlock(),
4281                            getInvokeDest(),
4282                            args,
4283                            BundleList);
4284     invoke->setDoesNotReturn();
4285     invoke->setCallingConv(getRuntimeCC());
4286   } else {
4287     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
4288     call->setDoesNotReturn();
4289     call->setCallingConv(getRuntimeCC());
4290     Builder.CreateUnreachable();
4291   }
4292 }
4293 
4294 /// Emits a call or invoke instruction to the given nullary runtime function.
4295 llvm::CallBase *
4296 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4297                                          const Twine &name) {
4298   return EmitRuntimeCallOrInvoke(callee, None, name);
4299 }
4300 
4301 /// Emits a call or invoke instruction to the given runtime function.
4302 llvm::CallBase *
4303 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4304                                          ArrayRef<llvm::Value *> args,
4305                                          const Twine &name) {
4306   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
4307   call->setCallingConv(getRuntimeCC());
4308   return call;
4309 }
4310 
4311 /// Emits a call or invoke instruction to the given function, depending
4312 /// on the current state of the EH stack.
4313 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
4314                                                   ArrayRef<llvm::Value *> Args,
4315                                                   const Twine &Name) {
4316   llvm::BasicBlock *InvokeDest = getInvokeDest();
4317   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4318       getBundlesForFunclet(Callee.getCallee());
4319 
4320   llvm::CallBase *Inst;
4321   if (!InvokeDest)
4322     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
4323   else {
4324     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
4325     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
4326                                 Name);
4327     EmitBlock(ContBB);
4328   }
4329 
4330   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4331   // optimizer it can aggressively ignore unwind edges.
4332   if (CGM.getLangOpts().ObjCAutoRefCount)
4333     AddObjCARCExceptionMetadata(Inst);
4334 
4335   return Inst;
4336 }
4337 
4338 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
4339                                                   llvm::Value *New) {
4340   DeferredReplacements.push_back(std::make_pair(Old, New));
4341 }
4342 
4343 namespace {
4344 
4345 /// Specify given \p NewAlign as the alignment of return value attribute. If
4346 /// such attribute already exists, re-set it to the maximal one of two options.
4347 LLVM_NODISCARD llvm::AttributeList
4348 maybeRaiseRetAlignmentAttribute(llvm::LLVMContext &Ctx,
4349                                 const llvm::AttributeList &Attrs,
4350                                 llvm::Align NewAlign) {
4351   llvm::Align CurAlign = Attrs.getRetAlignment().valueOrOne();
4352   if (CurAlign >= NewAlign)
4353     return Attrs;
4354   llvm::Attribute AlignAttr = llvm::Attribute::getWithAlignment(Ctx, NewAlign);
4355   return Attrs
4356       .removeAttribute(Ctx, llvm::AttributeList::ReturnIndex,
4357                        llvm::Attribute::AttrKind::Alignment)
4358       .addAttribute(Ctx, llvm::AttributeList::ReturnIndex, AlignAttr);
4359 }
4360 
4361 template <typename AlignedAttrTy> class AbstractAssumeAlignedAttrEmitter {
4362 protected:
4363   CodeGenFunction &CGF;
4364 
4365   /// We do nothing if this is, or becomes, nullptr.
4366   const AlignedAttrTy *AA = nullptr;
4367 
4368   llvm::Value *Alignment = nullptr;      // May or may not be a constant.
4369   llvm::ConstantInt *OffsetCI = nullptr; // Constant, hopefully zero.
4370 
4371   AbstractAssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4372       : CGF(CGF_) {
4373     if (!FuncDecl)
4374       return;
4375     AA = FuncDecl->getAttr<AlignedAttrTy>();
4376   }
4377 
4378 public:
4379   /// If we can, materialize the alignment as an attribute on return value.
4380   LLVM_NODISCARD llvm::AttributeList
4381   TryEmitAsCallSiteAttribute(const llvm::AttributeList &Attrs) {
4382     if (!AA || OffsetCI || CGF.SanOpts.has(SanitizerKind::Alignment))
4383       return Attrs;
4384     const auto *AlignmentCI = dyn_cast<llvm::ConstantInt>(Alignment);
4385     if (!AlignmentCI)
4386       return Attrs;
4387     // We may legitimately have non-power-of-2 alignment here.
4388     // If so, this is UB land, emit it via `@llvm.assume` instead.
4389     if (!AlignmentCI->getValue().isPowerOf2())
4390       return Attrs;
4391     llvm::AttributeList NewAttrs = maybeRaiseRetAlignmentAttribute(
4392         CGF.getLLVMContext(), Attrs,
4393         llvm::Align(
4394             AlignmentCI->getLimitedValue(llvm::Value::MaximumAlignment)));
4395     AA = nullptr; // We're done. Disallow doing anything else.
4396     return NewAttrs;
4397   }
4398 
4399   /// Emit alignment assumption.
4400   /// This is a general fallback that we take if either there is an offset,
4401   /// or the alignment is variable or we are sanitizing for alignment.
4402   void EmitAsAnAssumption(SourceLocation Loc, QualType RetTy, RValue &Ret) {
4403     if (!AA)
4404       return;
4405     CGF.emitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc,
4406                                 AA->getLocation(), Alignment, OffsetCI);
4407     AA = nullptr; // We're done. Disallow doing anything else.
4408   }
4409 };
4410 
4411 /// Helper data structure to emit `AssumeAlignedAttr`.
4412 class AssumeAlignedAttrEmitter final
4413     : public AbstractAssumeAlignedAttrEmitter<AssumeAlignedAttr> {
4414 public:
4415   AssumeAlignedAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl)
4416       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4417     if (!AA)
4418       return;
4419     // It is guaranteed that the alignment/offset are constants.
4420     Alignment = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(AA->getAlignment()));
4421     if (Expr *Offset = AA->getOffset()) {
4422       OffsetCI = cast<llvm::ConstantInt>(CGF.EmitScalarExpr(Offset));
4423       if (OffsetCI->isNullValue()) // Canonicalize zero offset to no offset.
4424         OffsetCI = nullptr;
4425     }
4426   }
4427 };
4428 
4429 /// Helper data structure to emit `AllocAlignAttr`.
4430 class AllocAlignAttrEmitter final
4431     : public AbstractAssumeAlignedAttrEmitter<AllocAlignAttr> {
4432 public:
4433   AllocAlignAttrEmitter(CodeGenFunction &CGF_, const Decl *FuncDecl,
4434                         const CallArgList &CallArgs)
4435       : AbstractAssumeAlignedAttrEmitter(CGF_, FuncDecl) {
4436     if (!AA)
4437       return;
4438     // Alignment may or may not be a constant, and that is okay.
4439     Alignment = CallArgs[AA->getParamIndex().getLLVMIndex()]
4440                     .getRValue(CGF)
4441                     .getScalarVal();
4442   }
4443 };
4444 
4445 } // namespace
4446 
4447 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
4448                                  const CGCallee &Callee,
4449                                  ReturnValueSlot ReturnValue,
4450                                  const CallArgList &CallArgs,
4451                                  llvm::CallBase **callOrInvoke,
4452                                  SourceLocation Loc) {
4453   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
4454 
4455   assert(Callee.isOrdinary() || Callee.isVirtual());
4456 
4457   // Handle struct-return functions by passing a pointer to the
4458   // location that we would like to return into.
4459   QualType RetTy = CallInfo.getReturnType();
4460   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
4461 
4462   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
4463 
4464   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
4465   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
4466     // We can only guarantee that a function is called from the correct
4467     // context/function based on the appropriate target attributes,
4468     // so only check in the case where we have both always_inline and target
4469     // since otherwise we could be making a conditional call after a check for
4470     // the proper cpu features (and it won't cause code generation issues due to
4471     // function based code generation).
4472     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
4473         TargetDecl->hasAttr<TargetAttr>())
4474       checkTargetFeatures(Loc, FD);
4475 
4476     // Some architectures (such as x86-64) have the ABI changed based on
4477     // attribute-target/features. Give them a chance to diagnose.
4478     CGM.getTargetCodeGenInfo().checkFunctionCallABI(
4479         CGM, Loc, dyn_cast_or_null<FunctionDecl>(CurCodeDecl), FD, CallArgs);
4480   }
4481 
4482 #ifndef NDEBUG
4483   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
4484     // For an inalloca varargs function, we don't expect CallInfo to match the
4485     // function pointer's type, because the inalloca struct a will have extra
4486     // fields in it for the varargs parameters.  Code later in this function
4487     // bitcasts the function pointer to the type derived from CallInfo.
4488     //
4489     // In other cases, we assert that the types match up (until pointers stop
4490     // having pointee types).
4491     llvm::Type *TypeFromVal;
4492     if (Callee.isVirtual())
4493       TypeFromVal = Callee.getVirtualFunctionType();
4494     else
4495       TypeFromVal =
4496           Callee.getFunctionPointer()->getType()->getPointerElementType();
4497     assert(IRFuncTy == TypeFromVal);
4498   }
4499 #endif
4500 
4501   // 1. Set up the arguments.
4502 
4503   // If we're using inalloca, insert the allocation after the stack save.
4504   // FIXME: Do this earlier rather than hacking it in here!
4505   Address ArgMemory = Address::invalid();
4506   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
4507     const llvm::DataLayout &DL = CGM.getDataLayout();
4508     llvm::Instruction *IP = CallArgs.getStackBase();
4509     llvm::AllocaInst *AI;
4510     if (IP) {
4511       IP = IP->getNextNode();
4512       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
4513                                 "argmem", IP);
4514     } else {
4515       AI = CreateTempAlloca(ArgStruct, "argmem");
4516     }
4517     auto Align = CallInfo.getArgStructAlignment();
4518     AI->setAlignment(Align.getAsAlign());
4519     AI->setUsedWithInAlloca(true);
4520     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
4521     ArgMemory = Address(AI, Align);
4522   }
4523 
4524   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
4525   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
4526 
4527   // If the call returns a temporary with struct return, create a temporary
4528   // alloca to hold the result, unless one is given to us.
4529   Address SRetPtr = Address::invalid();
4530   Address SRetAlloca = Address::invalid();
4531   llvm::Value *UnusedReturnSizePtr = nullptr;
4532   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
4533     if (!ReturnValue.isNull()) {
4534       SRetPtr = ReturnValue.getValue();
4535     } else {
4536       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
4537       if (HaveInsertPoint() && ReturnValue.isUnused()) {
4538         uint64_t size =
4539             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
4540         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
4541       }
4542     }
4543     if (IRFunctionArgs.hasSRetArg()) {
4544       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
4545     } else if (RetAI.isInAlloca()) {
4546       Address Addr =
4547           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
4548       Builder.CreateStore(SRetPtr.getPointer(), Addr);
4549     }
4550   }
4551 
4552   Address swiftErrorTemp = Address::invalid();
4553   Address swiftErrorArg = Address::invalid();
4554 
4555   // When passing arguments using temporary allocas, we need to add the
4556   // appropriate lifetime markers. This vector keeps track of all the lifetime
4557   // markers that need to be ended right after the call.
4558   SmallVector<CallLifetimeEnd, 2> CallLifetimeEndAfterCall;
4559 
4560   // Translate all of the arguments as necessary to match the IR lowering.
4561   assert(CallInfo.arg_size() == CallArgs.size() &&
4562          "Mismatch between function signature & arguments.");
4563   unsigned ArgNo = 0;
4564   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
4565   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
4566        I != E; ++I, ++info_it, ++ArgNo) {
4567     const ABIArgInfo &ArgInfo = info_it->info;
4568 
4569     // Insert a padding argument to ensure proper alignment.
4570     if (IRFunctionArgs.hasPaddingArg(ArgNo))
4571       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
4572           llvm::UndefValue::get(ArgInfo.getPaddingType());
4573 
4574     unsigned FirstIRArg, NumIRArgs;
4575     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
4576 
4577     switch (ArgInfo.getKind()) {
4578     case ABIArgInfo::InAlloca: {
4579       assert(NumIRArgs == 0);
4580       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
4581       if (I->isAggregate()) {
4582         Address Addr = I->hasLValue()
4583                            ? I->getKnownLValue().getAddress(*this)
4584                            : I->getKnownRValue().getAggregateAddress();
4585         llvm::Instruction *Placeholder =
4586             cast<llvm::Instruction>(Addr.getPointer());
4587 
4588         if (!ArgInfo.getInAllocaIndirect()) {
4589           // Replace the placeholder with the appropriate argument slot GEP.
4590           CGBuilderTy::InsertPoint IP = Builder.saveIP();
4591           Builder.SetInsertPoint(Placeholder);
4592           Addr = Builder.CreateStructGEP(ArgMemory,
4593                                          ArgInfo.getInAllocaFieldIndex());
4594           Builder.restoreIP(IP);
4595         } else {
4596           // For indirect things such as overaligned structs, replace the
4597           // placeholder with a regular aggregate temporary alloca. Store the
4598           // address of this alloca into the struct.
4599           Addr = CreateMemTemp(info_it->type, "inalloca.indirect.tmp");
4600           Address ArgSlot = Builder.CreateStructGEP(
4601               ArgMemory, ArgInfo.getInAllocaFieldIndex());
4602           Builder.CreateStore(Addr.getPointer(), ArgSlot);
4603         }
4604         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
4605       } else if (ArgInfo.getInAllocaIndirect()) {
4606         // Make a temporary alloca and store the address of it into the argument
4607         // struct.
4608         Address Addr = CreateMemTempWithoutCast(
4609             I->Ty, getContext().getTypeAlignInChars(I->Ty),
4610             "indirect-arg-temp");
4611         I->copyInto(*this, Addr);
4612         Address ArgSlot =
4613             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4614         Builder.CreateStore(Addr.getPointer(), ArgSlot);
4615       } else {
4616         // Store the RValue into the argument struct.
4617         Address Addr =
4618             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
4619         unsigned AS = Addr.getType()->getPointerAddressSpace();
4620         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
4621         // There are some cases where a trivial bitcast is not avoidable.  The
4622         // definition of a type later in a translation unit may change it's type
4623         // from {}* to (%struct.foo*)*.
4624         if (Addr.getType() != MemType)
4625           Addr = Builder.CreateBitCast(Addr, MemType);
4626         I->copyInto(*this, Addr);
4627       }
4628       break;
4629     }
4630 
4631     case ABIArgInfo::Indirect:
4632     case ABIArgInfo::IndirectAliased: {
4633       assert(NumIRArgs == 1);
4634       if (!I->isAggregate()) {
4635         // Make a temporary alloca to pass the argument.
4636         Address Addr = CreateMemTempWithoutCast(
4637             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
4638         IRCallArgs[FirstIRArg] = Addr.getPointer();
4639 
4640         I->copyInto(*this, Addr);
4641       } else {
4642         // We want to avoid creating an unnecessary temporary+copy here;
4643         // however, we need one in three cases:
4644         // 1. If the argument is not byval, and we are required to copy the
4645         //    source.  (This case doesn't occur on any common architecture.)
4646         // 2. If the argument is byval, RV is not sufficiently aligned, and
4647         //    we cannot force it to be sufficiently aligned.
4648         // 3. If the argument is byval, but RV is not located in default
4649         //    or alloca address space.
4650         Address Addr = I->hasLValue()
4651                            ? I->getKnownLValue().getAddress(*this)
4652                            : I->getKnownRValue().getAggregateAddress();
4653         llvm::Value *V = Addr.getPointer();
4654         CharUnits Align = ArgInfo.getIndirectAlign();
4655         const llvm::DataLayout *TD = &CGM.getDataLayout();
4656 
4657         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
4658                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
4659                     TD->getAllocaAddrSpace()) &&
4660                "indirect argument must be in alloca address space");
4661 
4662         bool NeedCopy = false;
4663 
4664         if (Addr.getAlignment() < Align &&
4665             llvm::getOrEnforceKnownAlignment(V, Align.getAsAlign(), *TD) <
4666                 Align.getAsAlign()) {
4667           NeedCopy = true;
4668         } else if (I->hasLValue()) {
4669           auto LV = I->getKnownLValue();
4670           auto AS = LV.getAddressSpace();
4671 
4672           if (!ArgInfo.getIndirectByVal() ||
4673               (LV.getAlignment() < getContext().getTypeAlignInChars(I->Ty))) {
4674             NeedCopy = true;
4675           }
4676           if (!getLangOpts().OpenCL) {
4677             if ((ArgInfo.getIndirectByVal() &&
4678                 (AS != LangAS::Default &&
4679                  AS != CGM.getASTAllocaAddressSpace()))) {
4680               NeedCopy = true;
4681             }
4682           }
4683           // For OpenCL even if RV is located in default or alloca address space
4684           // we don't want to perform address space cast for it.
4685           else if ((ArgInfo.getIndirectByVal() &&
4686                     Addr.getType()->getAddressSpace() != IRFuncTy->
4687                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
4688             NeedCopy = true;
4689           }
4690         }
4691 
4692         if (NeedCopy) {
4693           // Create an aligned temporary, and copy to it.
4694           Address AI = CreateMemTempWithoutCast(
4695               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
4696           IRCallArgs[FirstIRArg] = AI.getPointer();
4697 
4698           // Emit lifetime markers for the temporary alloca.
4699           uint64_t ByvalTempElementSize =
4700               CGM.getDataLayout().getTypeAllocSize(AI.getElementType());
4701           llvm::Value *LifetimeSize =
4702               EmitLifetimeStart(ByvalTempElementSize, AI.getPointer());
4703 
4704           // Add cleanup code to emit the end lifetime marker after the call.
4705           if (LifetimeSize) // In case we disabled lifetime markers.
4706             CallLifetimeEndAfterCall.emplace_back(AI, LifetimeSize);
4707 
4708           // Generate the copy.
4709           I->copyInto(*this, AI);
4710         } else {
4711           // Skip the extra memcpy call.
4712           auto *T = V->getType()->getPointerElementType()->getPointerTo(
4713               CGM.getDataLayout().getAllocaAddrSpace());
4714           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4715               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4716               true);
4717         }
4718       }
4719       break;
4720     }
4721 
4722     case ABIArgInfo::Ignore:
4723       assert(NumIRArgs == 0);
4724       break;
4725 
4726     case ABIArgInfo::Extend:
4727     case ABIArgInfo::Direct: {
4728       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4729           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4730           ArgInfo.getDirectOffset() == 0) {
4731         assert(NumIRArgs == 1);
4732         llvm::Value *V;
4733         if (!I->isAggregate())
4734           V = I->getKnownRValue().getScalarVal();
4735         else
4736           V = Builder.CreateLoad(
4737               I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4738                              : I->getKnownRValue().getAggregateAddress());
4739 
4740         // Implement swifterror by copying into a new swifterror argument.
4741         // We'll write back in the normal path out of the call.
4742         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4743               == ParameterABI::SwiftErrorResult) {
4744           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4745 
4746           QualType pointeeTy = I->Ty->getPointeeType();
4747           swiftErrorArg =
4748             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4749 
4750           swiftErrorTemp =
4751             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4752           V = swiftErrorTemp.getPointer();
4753           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4754 
4755           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4756           Builder.CreateStore(errorValue, swiftErrorTemp);
4757         }
4758 
4759         // We might have to widen integers, but we should never truncate.
4760         if (ArgInfo.getCoerceToType() != V->getType() &&
4761             V->getType()->isIntegerTy())
4762           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4763 
4764         // If the argument doesn't match, perform a bitcast to coerce it.  This
4765         // can happen due to trivial type mismatches.
4766         if (FirstIRArg < IRFuncTy->getNumParams() &&
4767             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4768           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4769 
4770         IRCallArgs[FirstIRArg] = V;
4771         break;
4772       }
4773 
4774       // FIXME: Avoid the conversion through memory if possible.
4775       Address Src = Address::invalid();
4776       if (!I->isAggregate()) {
4777         Src = CreateMemTemp(I->Ty, "coerce");
4778         I->copyInto(*this, Src);
4779       } else {
4780         Src = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4781                              : I->getKnownRValue().getAggregateAddress();
4782       }
4783 
4784       // If the value is offset in memory, apply the offset now.
4785       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4786 
4787       // Fast-isel and the optimizer generally like scalar values better than
4788       // FCAs, so we flatten them if this is safe to do for this argument.
4789       llvm::StructType *STy =
4790             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4791       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4792         llvm::Type *SrcTy = Src.getElementType();
4793         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4794         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4795 
4796         // If the source type is smaller than the destination type of the
4797         // coerce-to logic, copy the source value into a temp alloca the size
4798         // of the destination type to allow loading all of it. The bits past
4799         // the source value are left undef.
4800         if (SrcSize < DstSize) {
4801           Address TempAlloca
4802             = CreateTempAlloca(STy, Src.getAlignment(),
4803                                Src.getName() + ".coerce");
4804           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4805           Src = TempAlloca;
4806         } else {
4807           Src = Builder.CreateBitCast(Src,
4808                                       STy->getPointerTo(Src.getAddressSpace()));
4809         }
4810 
4811         assert(NumIRArgs == STy->getNumElements());
4812         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4813           Address EltPtr = Builder.CreateStructGEP(Src, i);
4814           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4815           IRCallArgs[FirstIRArg + i] = LI;
4816         }
4817       } else {
4818         // In the simple case, just pass the coerced loaded value.
4819         assert(NumIRArgs == 1);
4820         llvm::Value *Load =
4821             CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4822 
4823         if (CallInfo.isCmseNSCall()) {
4824           // For certain parameter types, clear padding bits, as they may reveal
4825           // sensitive information.
4826           // Small struct/union types are passed as integer arrays.
4827           auto *ATy = dyn_cast<llvm::ArrayType>(Load->getType());
4828           if (ATy != nullptr && isa<RecordType>(I->Ty.getCanonicalType()))
4829             Load = EmitCMSEClearRecord(Load, ATy, I->Ty);
4830         }
4831         IRCallArgs[FirstIRArg] = Load;
4832       }
4833 
4834       break;
4835     }
4836 
4837     case ABIArgInfo::CoerceAndExpand: {
4838       auto coercionType = ArgInfo.getCoerceAndExpandType();
4839       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4840 
4841       llvm::Value *tempSize = nullptr;
4842       Address addr = Address::invalid();
4843       Address AllocaAddr = Address::invalid();
4844       if (I->isAggregate()) {
4845         addr = I->hasLValue() ? I->getKnownLValue().getAddress(*this)
4846                               : I->getKnownRValue().getAggregateAddress();
4847 
4848       } else {
4849         RValue RV = I->getKnownRValue();
4850         assert(RV.isScalar()); // complex should always just be direct
4851 
4852         llvm::Type *scalarType = RV.getScalarVal()->getType();
4853         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4854         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4855 
4856         // Materialize to a temporary.
4857         addr = CreateTempAlloca(
4858             RV.getScalarVal()->getType(),
4859             CharUnits::fromQuantity(std::max(
4860                 (unsigned)layout->getAlignment().value(), scalarAlign)),
4861             "tmp",
4862             /*ArraySize=*/nullptr, &AllocaAddr);
4863         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4864 
4865         Builder.CreateStore(RV.getScalarVal(), addr);
4866       }
4867 
4868       addr = Builder.CreateElementBitCast(addr, coercionType);
4869 
4870       unsigned IRArgPos = FirstIRArg;
4871       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4872         llvm::Type *eltType = coercionType->getElementType(i);
4873         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4874         Address eltAddr = Builder.CreateStructGEP(addr, i);
4875         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4876         IRCallArgs[IRArgPos++] = elt;
4877       }
4878       assert(IRArgPos == FirstIRArg + NumIRArgs);
4879 
4880       if (tempSize) {
4881         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4882       }
4883 
4884       break;
4885     }
4886 
4887     case ABIArgInfo::Expand: {
4888       unsigned IRArgPos = FirstIRArg;
4889       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4890       assert(IRArgPos == FirstIRArg + NumIRArgs);
4891       break;
4892     }
4893     }
4894   }
4895 
4896   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4897   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4898 
4899   // If we're using inalloca, set up that argument.
4900   if (ArgMemory.isValid()) {
4901     llvm::Value *Arg = ArgMemory.getPointer();
4902     if (CallInfo.isVariadic()) {
4903       // When passing non-POD arguments by value to variadic functions, we will
4904       // end up with a variadic prototype and an inalloca call site.  In such
4905       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4906       // the callee.
4907       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4908       CalleePtr =
4909           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4910     } else {
4911       llvm::Type *LastParamTy =
4912           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4913       if (Arg->getType() != LastParamTy) {
4914 #ifndef NDEBUG
4915         // Assert that these structs have equivalent element types.
4916         llvm::StructType *FullTy = CallInfo.getArgStruct();
4917         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4918             cast<llvm::PointerType>(LastParamTy)->getElementType());
4919         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4920         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4921                                                 DE = DeclaredTy->element_end(),
4922                                                 FI = FullTy->element_begin();
4923              DI != DE; ++DI, ++FI)
4924           assert(*DI == *FI);
4925 #endif
4926         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4927       }
4928     }
4929     assert(IRFunctionArgs.hasInallocaArg());
4930     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4931   }
4932 
4933   // 2. Prepare the function pointer.
4934 
4935   // If the callee is a bitcast of a non-variadic function to have a
4936   // variadic function pointer type, check to see if we can remove the
4937   // bitcast.  This comes up with unprototyped functions.
4938   //
4939   // This makes the IR nicer, but more importantly it ensures that we
4940   // can inline the function at -O0 if it is marked always_inline.
4941   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4942                                    llvm::Value *Ptr) -> llvm::Function * {
4943     if (!CalleeFT->isVarArg())
4944       return nullptr;
4945 
4946     // Get underlying value if it's a bitcast
4947     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4948       if (CE->getOpcode() == llvm::Instruction::BitCast)
4949         Ptr = CE->getOperand(0);
4950     }
4951 
4952     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4953     if (!OrigFn)
4954       return nullptr;
4955 
4956     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4957 
4958     // If the original type is variadic, or if any of the component types
4959     // disagree, we cannot remove the cast.
4960     if (OrigFT->isVarArg() ||
4961         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4962         OrigFT->getReturnType() != CalleeFT->getReturnType())
4963       return nullptr;
4964 
4965     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4966       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4967         return nullptr;
4968 
4969     return OrigFn;
4970   };
4971 
4972   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4973     CalleePtr = OrigFn;
4974     IRFuncTy = OrigFn->getFunctionType();
4975   }
4976 
4977   // 3. Perform the actual call.
4978 
4979   // Deactivate any cleanups that we're supposed to do immediately before
4980   // the call.
4981   if (!CallArgs.getCleanupsToDeactivate().empty())
4982     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4983 
4984   // Assert that the arguments we computed match up.  The IR verifier
4985   // will catch this, but this is a common enough source of problems
4986   // during IRGen changes that it's way better for debugging to catch
4987   // it ourselves here.
4988 #ifndef NDEBUG
4989   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4990   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4991     // Inalloca argument can have different type.
4992     if (IRFunctionArgs.hasInallocaArg() &&
4993         i == IRFunctionArgs.getInallocaArgNo())
4994       continue;
4995     if (i < IRFuncTy->getNumParams())
4996       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4997   }
4998 #endif
4999 
5000   // Update the largest vector width if any arguments have vector types.
5001   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
5002     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
5003       LargestVectorWidth =
5004           std::max((uint64_t)LargestVectorWidth,
5005                    VT->getPrimitiveSizeInBits().getKnownMinSize());
5006   }
5007 
5008   // Compute the calling convention and attributes.
5009   unsigned CallingConv;
5010   llvm::AttributeList Attrs;
5011   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
5012                              Callee.getAbstractInfo(), Attrs, CallingConv,
5013                              /*AttrOnCallSite=*/true);
5014 
5015   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5016     if (FD->hasAttr<StrictFPAttr>())
5017       // All calls within a strictfp function are marked strictfp
5018       Attrs =
5019         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5020                            llvm::Attribute::StrictFP);
5021 
5022   // Add call-site nomerge attribute if exists.
5023   if (InNoMergeAttributedStmt)
5024     Attrs =
5025         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5026                            llvm::Attribute::NoMerge);
5027 
5028   // Apply some call-site-specific attributes.
5029   // TODO: work this into building the attribute set.
5030 
5031   // Apply always_inline to all calls within flatten functions.
5032   // FIXME: should this really take priority over __try, below?
5033   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
5034       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
5035     Attrs =
5036         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5037                            llvm::Attribute::AlwaysInline);
5038   }
5039 
5040   // Disable inlining inside SEH __try blocks.
5041   if (isSEHTryScope()) {
5042     Attrs =
5043         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5044                            llvm::Attribute::NoInline);
5045   }
5046 
5047   // Decide whether to use a call or an invoke.
5048   bool CannotThrow;
5049   if (currentFunctionUsesSEHTry()) {
5050     // SEH cares about asynchronous exceptions, so everything can "throw."
5051     CannotThrow = false;
5052   } else if (isCleanupPadScope() &&
5053              EHPersonality::get(*this).isMSVCXXPersonality()) {
5054     // The MSVC++ personality will implicitly terminate the program if an
5055     // exception is thrown during a cleanup outside of a try/catch.
5056     // We don't need to model anything in IR to get this behavior.
5057     CannotThrow = true;
5058   } else {
5059     // Otherwise, nounwind call sites will never throw.
5060     CannotThrow = Attrs.hasFnAttribute(llvm::Attribute::NoUnwind);
5061 
5062     if (auto *FPtr = dyn_cast<llvm::Function>(CalleePtr))
5063       if (FPtr->hasFnAttribute(llvm::Attribute::NoUnwind))
5064         CannotThrow = true;
5065   }
5066 
5067   // If we made a temporary, be sure to clean up after ourselves. Note that we
5068   // can't depend on being inside of an ExprWithCleanups, so we need to manually
5069   // pop this cleanup later on. Being eager about this is OK, since this
5070   // temporary is 'invisible' outside of the callee.
5071   if (UnusedReturnSizePtr)
5072     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
5073                                          UnusedReturnSizePtr);
5074 
5075   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
5076 
5077   SmallVector<llvm::OperandBundleDef, 1> BundleList =
5078       getBundlesForFunclet(CalleePtr);
5079 
5080   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl))
5081     if (FD->hasAttr<StrictFPAttr>())
5082       // All calls within a strictfp function are marked strictfp
5083       Attrs =
5084         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
5085                            llvm::Attribute::StrictFP);
5086 
5087   AssumeAlignedAttrEmitter AssumeAlignedAttrEmitter(*this, TargetDecl);
5088   Attrs = AssumeAlignedAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5089 
5090   AllocAlignAttrEmitter AllocAlignAttrEmitter(*this, TargetDecl, CallArgs);
5091   Attrs = AllocAlignAttrEmitter.TryEmitAsCallSiteAttribute(Attrs);
5092 
5093   // Emit the actual call/invoke instruction.
5094   llvm::CallBase *CI;
5095   if (!InvokeDest) {
5096     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
5097   } else {
5098     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
5099     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
5100                               BundleList);
5101     EmitBlock(Cont);
5102   }
5103   if (callOrInvoke)
5104     *callOrInvoke = CI;
5105 
5106   // If this is within a function that has the guard(nocf) attribute and is an
5107   // indirect call, add the "guard_nocf" attribute to this call to indicate that
5108   // Control Flow Guard checks should not be added, even if the call is inlined.
5109   if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl)) {
5110     if (const auto *A = FD->getAttr<CFGuardAttr>()) {
5111       if (A->getGuard() == CFGuardAttr::GuardArg::nocf && !CI->getCalledFunction())
5112         Attrs = Attrs.addAttribute(
5113             getLLVMContext(), llvm::AttributeList::FunctionIndex, "guard_nocf");
5114     }
5115   }
5116 
5117   // Apply the attributes and calling convention.
5118   CI->setAttributes(Attrs);
5119   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
5120 
5121   // Apply various metadata.
5122 
5123   if (!CI->getType()->isVoidTy())
5124     CI->setName("call");
5125 
5126   // Update largest vector width from the return type.
5127   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
5128     LargestVectorWidth =
5129         std::max((uint64_t)LargestVectorWidth,
5130                  VT->getPrimitiveSizeInBits().getKnownMinSize());
5131 
5132   // Insert instrumentation or attach profile metadata at indirect call sites.
5133   // For more details, see the comment before the definition of
5134   // IPVK_IndirectCallTarget in InstrProfData.inc.
5135   if (!CI->getCalledFunction())
5136     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
5137                      CI, CalleePtr);
5138 
5139   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
5140   // optimizer it can aggressively ignore unwind edges.
5141   if (CGM.getLangOpts().ObjCAutoRefCount)
5142     AddObjCARCExceptionMetadata(CI);
5143 
5144   // Suppress tail calls if requested.
5145   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
5146     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
5147       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
5148   }
5149 
5150   // Add metadata for calls to MSAllocator functions
5151   if (getDebugInfo() && TargetDecl &&
5152       TargetDecl->hasAttr<MSAllocatorAttr>())
5153     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy->getPointeeType(), Loc);
5154 
5155   // 4. Finish the call.
5156 
5157   // If the call doesn't return, finish the basic block and clear the
5158   // insertion point; this allows the rest of IRGen to discard
5159   // unreachable code.
5160   if (CI->doesNotReturn()) {
5161     if (UnusedReturnSizePtr)
5162       PopCleanupBlock();
5163 
5164     // Strip away the noreturn attribute to better diagnose unreachable UB.
5165     if (SanOpts.has(SanitizerKind::Unreachable)) {
5166       // Also remove from function since CallBase::hasFnAttr additionally checks
5167       // attributes of the called function.
5168       if (auto *F = CI->getCalledFunction())
5169         F->removeFnAttr(llvm::Attribute::NoReturn);
5170       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
5171                           llvm::Attribute::NoReturn);
5172 
5173       // Avoid incompatibility with ASan which relies on the `noreturn`
5174       // attribute to insert handler calls.
5175       if (SanOpts.hasOneOf(SanitizerKind::Address |
5176                            SanitizerKind::KernelAddress)) {
5177         SanitizerScope SanScope(this);
5178         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
5179         Builder.SetInsertPoint(CI);
5180         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
5181         llvm::FunctionCallee Fn =
5182             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
5183         EmitNounwindRuntimeCall(Fn);
5184       }
5185     }
5186 
5187     EmitUnreachable(Loc);
5188     Builder.ClearInsertionPoint();
5189 
5190     // FIXME: For now, emit a dummy basic block because expr emitters in
5191     // generally are not ready to handle emitting expressions at unreachable
5192     // points.
5193     EnsureInsertPoint();
5194 
5195     // Return a reasonable RValue.
5196     return GetUndefRValue(RetTy);
5197   }
5198 
5199   // Perform the swifterror writeback.
5200   if (swiftErrorTemp.isValid()) {
5201     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
5202     Builder.CreateStore(errorResult, swiftErrorArg);
5203   }
5204 
5205   // Emit any call-associated writebacks immediately.  Arguably this
5206   // should happen after any return-value munging.
5207   if (CallArgs.hasWritebacks())
5208     emitWritebacks(*this, CallArgs);
5209 
5210   // The stack cleanup for inalloca arguments has to run out of the normal
5211   // lexical order, so deactivate it and run it manually here.
5212   CallArgs.freeArgumentMemory(*this);
5213 
5214   // Extract the return value.
5215   RValue Ret = [&] {
5216     switch (RetAI.getKind()) {
5217     case ABIArgInfo::CoerceAndExpand: {
5218       auto coercionType = RetAI.getCoerceAndExpandType();
5219 
5220       Address addr = SRetPtr;
5221       addr = Builder.CreateElementBitCast(addr, coercionType);
5222 
5223       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
5224       bool requiresExtract = isa<llvm::StructType>(CI->getType());
5225 
5226       unsigned unpaddedIndex = 0;
5227       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
5228         llvm::Type *eltType = coercionType->getElementType(i);
5229         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
5230         Address eltAddr = Builder.CreateStructGEP(addr, i);
5231         llvm::Value *elt = CI;
5232         if (requiresExtract)
5233           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
5234         else
5235           assert(unpaddedIndex == 0);
5236         Builder.CreateStore(elt, eltAddr);
5237       }
5238       // FALLTHROUGH
5239       LLVM_FALLTHROUGH;
5240     }
5241 
5242     case ABIArgInfo::InAlloca:
5243     case ABIArgInfo::Indirect: {
5244       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
5245       if (UnusedReturnSizePtr)
5246         PopCleanupBlock();
5247       return ret;
5248     }
5249 
5250     case ABIArgInfo::Ignore:
5251       // If we are ignoring an argument that had a result, make sure to
5252       // construct the appropriate return value for our caller.
5253       return GetUndefRValue(RetTy);
5254 
5255     case ABIArgInfo::Extend:
5256     case ABIArgInfo::Direct: {
5257       llvm::Type *RetIRTy = ConvertType(RetTy);
5258       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
5259         switch (getEvaluationKind(RetTy)) {
5260         case TEK_Complex: {
5261           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
5262           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
5263           return RValue::getComplex(std::make_pair(Real, Imag));
5264         }
5265         case TEK_Aggregate: {
5266           Address DestPtr = ReturnValue.getValue();
5267           bool DestIsVolatile = ReturnValue.isVolatile();
5268 
5269           if (!DestPtr.isValid()) {
5270             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
5271             DestIsVolatile = false;
5272           }
5273           EmitAggregateStore(CI, DestPtr, DestIsVolatile);
5274           return RValue::getAggregate(DestPtr);
5275         }
5276         case TEK_Scalar: {
5277           // If the argument doesn't match, perform a bitcast to coerce it.  This
5278           // can happen due to trivial type mismatches.
5279           llvm::Value *V = CI;
5280           if (V->getType() != RetIRTy)
5281             V = Builder.CreateBitCast(V, RetIRTy);
5282           return RValue::get(V);
5283         }
5284         }
5285         llvm_unreachable("bad evaluation kind");
5286       }
5287 
5288       Address DestPtr = ReturnValue.getValue();
5289       bool DestIsVolatile = ReturnValue.isVolatile();
5290 
5291       if (!DestPtr.isValid()) {
5292         DestPtr = CreateMemTemp(RetTy, "coerce");
5293         DestIsVolatile = false;
5294       }
5295 
5296       // If the value is offset in memory, apply the offset now.
5297       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
5298       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
5299 
5300       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
5301     }
5302 
5303     case ABIArgInfo::Expand:
5304     case ABIArgInfo::IndirectAliased:
5305       llvm_unreachable("Invalid ABI kind for return argument");
5306     }
5307 
5308     llvm_unreachable("Unhandled ABIArgInfo::Kind");
5309   } ();
5310 
5311   // Emit the assume_aligned check on the return value.
5312   if (Ret.isScalar() && TargetDecl) {
5313     AssumeAlignedAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5314     AllocAlignAttrEmitter.EmitAsAnAssumption(Loc, RetTy, Ret);
5315   }
5316 
5317   // Explicitly call CallLifetimeEnd::Emit just to re-use the code even though
5318   // we can't use the full cleanup mechanism.
5319   for (CallLifetimeEnd &LifetimeEnd : CallLifetimeEndAfterCall)
5320     LifetimeEnd.Emit(*this, /*Flags=*/{});
5321 
5322   if (!ReturnValue.isExternallyDestructed() &&
5323       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct)
5324     pushDestroy(QualType::DK_nontrivial_c_struct, Ret.getAggregateAddress(),
5325                 RetTy);
5326 
5327   return Ret;
5328 }
5329 
5330 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
5331   if (isVirtual()) {
5332     const CallExpr *CE = getVirtualCallExpr();
5333     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
5334         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
5335         CE ? CE->getBeginLoc() : SourceLocation());
5336   }
5337 
5338   return *this;
5339 }
5340 
5341 /* VarArg handling */
5342 
5343 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
5344   VAListAddr = VE->isMicrosoftABI()
5345                  ? EmitMSVAListRef(VE->getSubExpr())
5346                  : EmitVAListRef(VE->getSubExpr());
5347   QualType Ty = VE->getType();
5348   if (VE->isMicrosoftABI())
5349     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
5350   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
5351 }
5352