1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This contains code to emit Builtin calls as LLVM code.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CGCUDARuntime.h"
14 #include "CGCXXABI.h"
15 #include "CGObjCRuntime.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "CodeGenModule.h"
20 #include "ConstantEmitter.h"
21 #include "PatternInit.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/Decl.h"
26 #include "clang/AST/OSLog.h"
27 #include "clang/Basic/TargetBuiltins.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/CodeGen/CGFunctionInfo.h"
30 #include "llvm/ADT/APFloat.h"
31 #include "llvm/ADT/APInt.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/StringExtras.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/IntrinsicsAArch64.h"
39 #include "llvm/IR/IntrinsicsAMDGPU.h"
40 #include "llvm/IR/IntrinsicsARM.h"
41 #include "llvm/IR/IntrinsicsBPF.h"
42 #include "llvm/IR/IntrinsicsHexagon.h"
43 #include "llvm/IR/IntrinsicsNVPTX.h"
44 #include "llvm/IR/IntrinsicsPowerPC.h"
45 #include "llvm/IR/IntrinsicsR600.h"
46 #include "llvm/IR/IntrinsicsRISCV.h"
47 #include "llvm/IR/IntrinsicsS390.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/MatrixBuilder.h"
52 #include "llvm/Support/ConvertUTF.h"
53 #include "llvm/Support/ScopedPrinter.h"
54 #include "llvm/Support/X86TargetParser.h"
55 #include <sstream>
56 
57 using namespace clang;
58 using namespace CodeGen;
59 using namespace llvm;
60 
61 static
62 int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
63   return std::min(High, std::max(Low, Value));
64 }
65 
66 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size,
67                              Align AlignmentInBytes) {
68   ConstantInt *Byte;
69   switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
70   case LangOptions::TrivialAutoVarInitKind::Uninitialized:
71     // Nothing to initialize.
72     return;
73   case LangOptions::TrivialAutoVarInitKind::Zero:
74     Byte = CGF.Builder.getInt8(0x00);
75     break;
76   case LangOptions::TrivialAutoVarInitKind::Pattern: {
77     llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
78     Byte = llvm::dyn_cast<llvm::ConstantInt>(
79         initializationPatternFor(CGF.CGM, Int8));
80     break;
81   }
82   }
83   if (CGF.CGM.stopAutoInit())
84     return;
85   auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
86   I->addAnnotationMetadata("auto-init");
87 }
88 
89 /// getBuiltinLibFunction - Given a builtin id for a function like
90 /// "__builtin_fabsf", return a Function* for "fabsf".
91 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
92                                                      unsigned BuiltinID) {
93   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
94 
95   // Get the name, skip over the __builtin_ prefix (if necessary).
96   StringRef Name;
97   GlobalDecl D(FD);
98 
99   // If the builtin has been declared explicitly with an assembler label,
100   // use the mangled name. This differs from the plain label on platforms
101   // that prefix labels.
102   if (FD->hasAttr<AsmLabelAttr>())
103     Name = getMangledName(D);
104   else
105     Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
106 
107   llvm::FunctionType *Ty =
108     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
109 
110   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
111 }
112 
113 /// Emit the conversions required to turn the given value into an
114 /// integer of the given size.
115 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
116                         QualType T, llvm::IntegerType *IntType) {
117   V = CGF.EmitToMemory(V, T);
118 
119   if (V->getType()->isPointerTy())
120     return CGF.Builder.CreatePtrToInt(V, IntType);
121 
122   assert(V->getType() == IntType);
123   return V;
124 }
125 
126 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
127                           QualType T, llvm::Type *ResultType) {
128   V = CGF.EmitFromMemory(V, T);
129 
130   if (ResultType->isPointerTy())
131     return CGF.Builder.CreateIntToPtr(V, ResultType);
132 
133   assert(V->getType() == ResultType);
134   return V;
135 }
136 
137 /// Utility to insert an atomic instruction based on Intrinsic::ID
138 /// and the expression node.
139 static Value *MakeBinaryAtomicValue(
140     CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
141     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
142   QualType T = E->getType();
143   assert(E->getArg(0)->getType()->isPointerType());
144   assert(CGF.getContext().hasSameUnqualifiedType(T,
145                                   E->getArg(0)->getType()->getPointeeType()));
146   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
147 
148   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
149   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
150 
151   llvm::IntegerType *IntType =
152     llvm::IntegerType::get(CGF.getLLVMContext(),
153                            CGF.getContext().getTypeSize(T));
154   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
155 
156   llvm::Value *Args[2];
157   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
158   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
159   llvm::Type *ValueType = Args[1]->getType();
160   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
161 
162   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
163       Kind, Args[0], Args[1], Ordering);
164   return EmitFromInt(CGF, Result, T, ValueType);
165 }
166 
167 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
168   Value *Val = CGF.EmitScalarExpr(E->getArg(0));
169   Value *Address = CGF.EmitScalarExpr(E->getArg(1));
170 
171   // Convert the type of the pointer to a pointer to the stored type.
172   Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
173   Value *BC = CGF.Builder.CreateBitCast(
174       Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
175   LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
176   LV.setNontemporal(true);
177   CGF.EmitStoreOfScalar(Val, LV, false);
178   return nullptr;
179 }
180 
181 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
182   Value *Address = CGF.EmitScalarExpr(E->getArg(0));
183 
184   LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
185   LV.setNontemporal(true);
186   return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
187 }
188 
189 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
190                                llvm::AtomicRMWInst::BinOp Kind,
191                                const CallExpr *E) {
192   return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
193 }
194 
195 /// Utility to insert an atomic instruction based Intrinsic::ID and
196 /// the expression node, where the return value is the result of the
197 /// operation.
198 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
199                                    llvm::AtomicRMWInst::BinOp Kind,
200                                    const CallExpr *E,
201                                    Instruction::BinaryOps Op,
202                                    bool Invert = false) {
203   QualType T = E->getType();
204   assert(E->getArg(0)->getType()->isPointerType());
205   assert(CGF.getContext().hasSameUnqualifiedType(T,
206                                   E->getArg(0)->getType()->getPointeeType()));
207   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
208 
209   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
210   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
211 
212   llvm::IntegerType *IntType =
213     llvm::IntegerType::get(CGF.getLLVMContext(),
214                            CGF.getContext().getTypeSize(T));
215   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
216 
217   llvm::Value *Args[2];
218   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
219   llvm::Type *ValueType = Args[1]->getType();
220   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
221   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
222 
223   llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
224       Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
225   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
226   if (Invert)
227     Result =
228         CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
229                                 llvm::ConstantInt::getAllOnesValue(IntType));
230   Result = EmitFromInt(CGF, Result, T, ValueType);
231   return RValue::get(Result);
232 }
233 
234 /// Utility to insert an atomic cmpxchg instruction.
235 ///
236 /// @param CGF The current codegen function.
237 /// @param E   Builtin call expression to convert to cmpxchg.
238 ///            arg0 - address to operate on
239 ///            arg1 - value to compare with
240 ///            arg2 - new value
241 /// @param ReturnBool Specifies whether to return success flag of
242 ///                   cmpxchg result or the old value.
243 ///
244 /// @returns result of cmpxchg, according to ReturnBool
245 ///
246 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
247 /// invoke the function EmitAtomicCmpXchgForMSIntrin.
248 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
249                                      bool ReturnBool) {
250   QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
251   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
252   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
253 
254   llvm::IntegerType *IntType = llvm::IntegerType::get(
255       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
256   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
257 
258   Value *Args[3];
259   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
260   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
261   llvm::Type *ValueType = Args[1]->getType();
262   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
263   Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
264 
265   Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
266       Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
267       llvm::AtomicOrdering::SequentiallyConsistent);
268   if (ReturnBool)
269     // Extract boolean success flag and zext it to int.
270     return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
271                                   CGF.ConvertType(E->getType()));
272   else
273     // Extract old value and emit it using the same type as compare value.
274     return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
275                        ValueType);
276 }
277 
278 /// This function should be invoked to emit atomic cmpxchg for Microsoft's
279 /// _InterlockedCompareExchange* intrinsics which have the following signature:
280 /// T _InterlockedCompareExchange(T volatile *Destination,
281 ///                               T Exchange,
282 ///                               T Comparand);
283 ///
284 /// Whereas the llvm 'cmpxchg' instruction has the following syntax:
285 /// cmpxchg *Destination, Comparand, Exchange.
286 /// So we need to swap Comparand and Exchange when invoking
287 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility
288 /// function MakeAtomicCmpXchgValue since it expects the arguments to be
289 /// already swapped.
290 
291 static
292 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
293     AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
294   assert(E->getArg(0)->getType()->isPointerType());
295   assert(CGF.getContext().hasSameUnqualifiedType(
296       E->getType(), E->getArg(0)->getType()->getPointeeType()));
297   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
298                                                  E->getArg(1)->getType()));
299   assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
300                                                  E->getArg(2)->getType()));
301 
302   auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
303   auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
304   auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
305 
306   // For Release ordering, the failure ordering should be Monotonic.
307   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
308                          AtomicOrdering::Monotonic :
309                          SuccessOrdering;
310 
311   // The atomic instruction is marked volatile for consistency with MSVC. This
312   // blocks the few atomics optimizations that LLVM has. If we want to optimize
313   // _Interlocked* operations in the future, we will have to remove the volatile
314   // marker.
315   auto *Result = CGF.Builder.CreateAtomicCmpXchg(
316                    Destination, Comparand, Exchange,
317                    SuccessOrdering, FailureOrdering);
318   Result->setVolatile(true);
319   return CGF.Builder.CreateExtractValue(Result, 0);
320 }
321 
322 // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are
323 // prototyped like this:
324 //
325 // unsigned char _InterlockedCompareExchange128...(
326 //     __int64 volatile * _Destination,
327 //     __int64 _ExchangeHigh,
328 //     __int64 _ExchangeLow,
329 //     __int64 * _ComparandResult);
330 static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF,
331                                               const CallExpr *E,
332                                               AtomicOrdering SuccessOrdering) {
333   assert(E->getNumArgs() == 4);
334   llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0));
335   llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1));
336   llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2));
337   llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3));
338 
339   assert(Destination->getType()->isPointerTy());
340   assert(!ExchangeHigh->getType()->isPointerTy());
341   assert(!ExchangeLow->getType()->isPointerTy());
342   assert(ComparandPtr->getType()->isPointerTy());
343 
344   // For Release ordering, the failure ordering should be Monotonic.
345   auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release
346                              ? AtomicOrdering::Monotonic
347                              : SuccessOrdering;
348 
349   // Convert to i128 pointers and values.
350   llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128);
351   llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
352   Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy);
353   Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy),
354                           CGF.getContext().toCharUnitsFromBits(128));
355 
356   // (((i128)hi) << 64) | ((i128)lo)
357   ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty);
358   ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty);
359   ExchangeHigh =
360       CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64));
361   llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow);
362 
363   // Load the comparand for the instruction.
364   llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult);
365 
366   auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
367                                               SuccessOrdering, FailureOrdering);
368 
369   // The atomic instruction is marked volatile for consistency with MSVC. This
370   // blocks the few atomics optimizations that LLVM has. If we want to optimize
371   // _Interlocked* operations in the future, we will have to remove the volatile
372   // marker.
373   CXI->setVolatile(true);
374 
375   // Store the result as an outparameter.
376   CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0),
377                           ComparandResult);
378 
379   // Get the success boolean and zero extend it to i8.
380   Value *Success = CGF.Builder.CreateExtractValue(CXI, 1);
381   return CGF.Builder.CreateZExt(Success, CGF.Int8Ty);
382 }
383 
384 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
385     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
386   assert(E->getArg(0)->getType()->isPointerType());
387 
388   auto *IntTy = CGF.ConvertType(E->getType());
389   auto *Result = CGF.Builder.CreateAtomicRMW(
390                    AtomicRMWInst::Add,
391                    CGF.EmitScalarExpr(E->getArg(0)),
392                    ConstantInt::get(IntTy, 1),
393                    Ordering);
394   return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
395 }
396 
397 static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
398     AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
399   assert(E->getArg(0)->getType()->isPointerType());
400 
401   auto *IntTy = CGF.ConvertType(E->getType());
402   auto *Result = CGF.Builder.CreateAtomicRMW(
403                    AtomicRMWInst::Sub,
404                    CGF.EmitScalarExpr(E->getArg(0)),
405                    ConstantInt::get(IntTy, 1),
406                    Ordering);
407   return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
408 }
409 
410 // Build a plain volatile load.
411 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
412   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
413   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
414   CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
415   llvm::Type *ITy =
416       llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
417   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
418   llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize);
419   Load->setVolatile(true);
420   return Load;
421 }
422 
423 // Build a plain volatile store.
424 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
425   Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
426   Value *Value = CGF.EmitScalarExpr(E->getArg(1));
427   QualType ElTy = E->getArg(0)->getType()->getPointeeType();
428   CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
429   llvm::Type *ITy =
430       llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
431   Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
432   llvm::StoreInst *Store =
433       CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
434   Store->setVolatile(true);
435   return Store;
436 }
437 
438 // Emit a simple mangled intrinsic that has 1 argument and a return type
439 // matching the argument type. Depending on mode, this may be a constrained
440 // floating-point intrinsic.
441 static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
442                                 const CallExpr *E, unsigned IntrinsicID,
443                                 unsigned ConstrainedIntrinsicID) {
444   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
445 
446   if (CGF.Builder.getIsFPConstrained()) {
447     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
448     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
449     return CGF.Builder.CreateConstrainedFPCall(F, { Src0 });
450   } else {
451     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
452     return CGF.Builder.CreateCall(F, Src0);
453   }
454 }
455 
456 // Emit an intrinsic that has 2 operands of the same type as its result.
457 // Depending on mode, this may be a constrained floating-point intrinsic.
458 static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
459                                 const CallExpr *E, unsigned IntrinsicID,
460                                 unsigned ConstrainedIntrinsicID) {
461   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
462   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
463 
464   if (CGF.Builder.getIsFPConstrained()) {
465     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
466     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
467     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 });
468   } else {
469     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
470     return CGF.Builder.CreateCall(F, { Src0, Src1 });
471   }
472 }
473 
474 // Emit an intrinsic that has 3 operands of the same type as its result.
475 // Depending on mode, this may be a constrained floating-point intrinsic.
476 static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
477                                  const CallExpr *E, unsigned IntrinsicID,
478                                  unsigned ConstrainedIntrinsicID) {
479   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
480   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
481   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
482 
483   if (CGF.Builder.getIsFPConstrained()) {
484     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
485     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType());
486     return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 });
487   } else {
488     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
489     return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
490   }
491 }
492 
493 // Emit an intrinsic where all operands are of the same type as the result.
494 // Depending on mode, this may be a constrained floating-point intrinsic.
495 static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF,
496                                                 unsigned IntrinsicID,
497                                                 unsigned ConstrainedIntrinsicID,
498                                                 llvm::Type *Ty,
499                                                 ArrayRef<Value *> Args) {
500   Function *F;
501   if (CGF.Builder.getIsFPConstrained())
502     F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty);
503   else
504     F = CGF.CGM.getIntrinsic(IntrinsicID, Ty);
505 
506   if (CGF.Builder.getIsFPConstrained())
507     return CGF.Builder.CreateConstrainedFPCall(F, Args);
508   else
509     return CGF.Builder.CreateCall(F, Args);
510 }
511 
512 // Emit a simple mangled intrinsic that has 1 argument and a return type
513 // matching the argument type.
514 static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
515                                const CallExpr *E,
516                                unsigned IntrinsicID) {
517   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
518 
519   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
520   return CGF.Builder.CreateCall(F, Src0);
521 }
522 
523 // Emit an intrinsic that has 2 operands of the same type as its result.
524 static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
525                                 const CallExpr *E,
526                                 unsigned IntrinsicID) {
527   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
528   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
529 
530   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
531   return CGF.Builder.CreateCall(F, { Src0, Src1 });
532 }
533 
534 // Emit an intrinsic that has 3 operands of the same type as its result.
535 static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
536                                  const CallExpr *E,
537                                  unsigned IntrinsicID) {
538   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
539   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
540   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
541 
542   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
543   return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
544 }
545 
546 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
547 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
548                                const CallExpr *E,
549                                unsigned IntrinsicID) {
550   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
551   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
552 
553   Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
554   return CGF.Builder.CreateCall(F, {Src0, Src1});
555 }
556 
557 // Emit an intrinsic that has overloaded integer result and fp operand.
558 static Value *
559 emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E,
560                                         unsigned IntrinsicID,
561                                         unsigned ConstrainedIntrinsicID) {
562   llvm::Type *ResultType = CGF.ConvertType(E->getType());
563   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
564 
565   if (CGF.Builder.getIsFPConstrained()) {
566     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
567     Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID,
568                                        {ResultType, Src0->getType()});
569     return CGF.Builder.CreateConstrainedFPCall(F, {Src0});
570   } else {
571     Function *F =
572         CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()});
573     return CGF.Builder.CreateCall(F, Src0);
574   }
575 }
576 
577 /// EmitFAbs - Emit a call to @llvm.fabs().
578 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
579   Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
580   llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
581   Call->setDoesNotAccessMemory();
582   return Call;
583 }
584 
585 /// Emit the computation of the sign bit for a floating point value. Returns
586 /// the i1 sign bit value.
587 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
588   LLVMContext &C = CGF.CGM.getLLVMContext();
589 
590   llvm::Type *Ty = V->getType();
591   int Width = Ty->getPrimitiveSizeInBits();
592   llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
593   V = CGF.Builder.CreateBitCast(V, IntTy);
594   if (Ty->isPPC_FP128Ty()) {
595     // We want the sign bit of the higher-order double. The bitcast we just
596     // did works as if the double-double was stored to memory and then
597     // read as an i128. The "store" will put the higher-order double in the
598     // lower address in both little- and big-Endian modes, but the "load"
599     // will treat those bits as a different part of the i128: the low bits in
600     // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
601     // we need to shift the high bits down to the low before truncating.
602     Width >>= 1;
603     if (CGF.getTarget().isBigEndian()) {
604       Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
605       V = CGF.Builder.CreateLShr(V, ShiftCst);
606     }
607     // We are truncating value in order to extract the higher-order
608     // double, which we will be using to extract the sign from.
609     IntTy = llvm::IntegerType::get(C, Width);
610     V = CGF.Builder.CreateTrunc(V, IntTy);
611   }
612   Value *Zero = llvm::Constant::getNullValue(IntTy);
613   return CGF.Builder.CreateICmpSLT(V, Zero);
614 }
615 
616 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
617                               const CallExpr *E, llvm::Constant *calleeValue) {
618   CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
619   return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
620 }
621 
622 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
623 /// depending on IntrinsicID.
624 ///
625 /// \arg CGF The current codegen function.
626 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
627 /// \arg X The first argument to the llvm.*.with.overflow.*.
628 /// \arg Y The second argument to the llvm.*.with.overflow.*.
629 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
630 /// \returns The result (i.e. sum/product) returned by the intrinsic.
631 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
632                                           const llvm::Intrinsic::ID IntrinsicID,
633                                           llvm::Value *X, llvm::Value *Y,
634                                           llvm::Value *&Carry) {
635   // Make sure we have integers of the same width.
636   assert(X->getType() == Y->getType() &&
637          "Arguments must be the same type. (Did you forget to make sure both "
638          "arguments have the same integer width?)");
639 
640   Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
641   llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
642   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
643   return CGF.Builder.CreateExtractValue(Tmp, 0);
644 }
645 
646 static Value *emitRangedBuiltin(CodeGenFunction &CGF,
647                                 unsigned IntrinsicID,
648                                 int low, int high) {
649     llvm::MDBuilder MDHelper(CGF.getLLVMContext());
650     llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
651     Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
652     llvm::Instruction *Call = CGF.Builder.CreateCall(F);
653     Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
654     return Call;
655 }
656 
657 namespace {
658   struct WidthAndSignedness {
659     unsigned Width;
660     bool Signed;
661   };
662 }
663 
664 static WidthAndSignedness
665 getIntegerWidthAndSignedness(const clang::ASTContext &context,
666                              const clang::QualType Type) {
667   assert(Type->isIntegerType() && "Given type is not an integer.");
668   unsigned Width = Type->isBooleanType()  ? 1
669                    : Type->isExtIntType() ? context.getIntWidth(Type)
670                                           : context.getTypeInfo(Type).Width;
671   bool Signed = Type->isSignedIntegerType();
672   return {Width, Signed};
673 }
674 
675 // Given one or more integer types, this function produces an integer type that
676 // encompasses them: any value in one of the given types could be expressed in
677 // the encompassing type.
678 static struct WidthAndSignedness
679 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
680   assert(Types.size() > 0 && "Empty list of types.");
681 
682   // If any of the given types is signed, we must return a signed type.
683   bool Signed = false;
684   for (const auto &Type : Types) {
685     Signed |= Type.Signed;
686   }
687 
688   // The encompassing type must have a width greater than or equal to the width
689   // of the specified types.  Additionally, if the encompassing type is signed,
690   // its width must be strictly greater than the width of any unsigned types
691   // given.
692   unsigned Width = 0;
693   for (const auto &Type : Types) {
694     unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
695     if (Width < MinWidth) {
696       Width = MinWidth;
697     }
698   }
699 
700   return {Width, Signed};
701 }
702 
703 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
704   llvm::Type *DestType = Int8PtrTy;
705   if (ArgValue->getType() != DestType)
706     ArgValue =
707         Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
708 
709   Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
710   return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
711 }
712 
713 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
714 /// __builtin_object_size(p, @p To) is correct
715 static bool areBOSTypesCompatible(int From, int To) {
716   // Note: Our __builtin_object_size implementation currently treats Type=0 and
717   // Type=2 identically. Encoding this implementation detail here may make
718   // improving __builtin_object_size difficult in the future, so it's omitted.
719   return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
720 }
721 
722 static llvm::Value *
723 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
724   return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
725 }
726 
727 llvm::Value *
728 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
729                                                  llvm::IntegerType *ResType,
730                                                  llvm::Value *EmittedE,
731                                                  bool IsDynamic) {
732   uint64_t ObjectSize;
733   if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
734     return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
735   return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
736 }
737 
738 /// Returns a Value corresponding to the size of the given expression.
739 /// This Value may be either of the following:
740 ///   - A llvm::Argument (if E is a param with the pass_object_size attribute on
741 ///     it)
742 ///   - A call to the @llvm.objectsize intrinsic
743 ///
744 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
745 /// and we wouldn't otherwise try to reference a pass_object_size parameter,
746 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
747 llvm::Value *
748 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
749                                        llvm::IntegerType *ResType,
750                                        llvm::Value *EmittedE, bool IsDynamic) {
751   // We need to reference an argument if the pointer is a parameter with the
752   // pass_object_size attribute.
753   if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
754     auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
755     auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
756     if (Param != nullptr && PS != nullptr &&
757         areBOSTypesCompatible(PS->getType(), Type)) {
758       auto Iter = SizeArguments.find(Param);
759       assert(Iter != SizeArguments.end());
760 
761       const ImplicitParamDecl *D = Iter->second;
762       auto DIter = LocalDeclMap.find(D);
763       assert(DIter != LocalDeclMap.end());
764 
765       return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
766                               getContext().getSizeType(), E->getBeginLoc());
767     }
768   }
769 
770   // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
771   // evaluate E for side-effects. In either case, we shouldn't lower to
772   // @llvm.objectsize.
773   if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
774     return getDefaultBuiltinObjectSizeResult(Type, ResType);
775 
776   Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
777   assert(Ptr->getType()->isPointerTy() &&
778          "Non-pointer passed to __builtin_object_size?");
779 
780   Function *F =
781       CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
782 
783   // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
784   Value *Min = Builder.getInt1((Type & 2) != 0);
785   // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
786   Value *NullIsUnknown = Builder.getTrue();
787   Value *Dynamic = Builder.getInt1(IsDynamic);
788   return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
789 }
790 
791 namespace {
792 /// A struct to generically describe a bit test intrinsic.
793 struct BitTest {
794   enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
795   enum InterlockingKind : uint8_t {
796     Unlocked,
797     Sequential,
798     Acquire,
799     Release,
800     NoFence
801   };
802 
803   ActionKind Action;
804   InterlockingKind Interlocking;
805   bool Is64Bit;
806 
807   static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
808 };
809 } // namespace
810 
811 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
812   switch (BuiltinID) {
813     // Main portable variants.
814   case Builtin::BI_bittest:
815     return {TestOnly, Unlocked, false};
816   case Builtin::BI_bittestandcomplement:
817     return {Complement, Unlocked, false};
818   case Builtin::BI_bittestandreset:
819     return {Reset, Unlocked, false};
820   case Builtin::BI_bittestandset:
821     return {Set, Unlocked, false};
822   case Builtin::BI_interlockedbittestandreset:
823     return {Reset, Sequential, false};
824   case Builtin::BI_interlockedbittestandset:
825     return {Set, Sequential, false};
826 
827     // X86-specific 64-bit variants.
828   case Builtin::BI_bittest64:
829     return {TestOnly, Unlocked, true};
830   case Builtin::BI_bittestandcomplement64:
831     return {Complement, Unlocked, true};
832   case Builtin::BI_bittestandreset64:
833     return {Reset, Unlocked, true};
834   case Builtin::BI_bittestandset64:
835     return {Set, Unlocked, true};
836   case Builtin::BI_interlockedbittestandreset64:
837     return {Reset, Sequential, true};
838   case Builtin::BI_interlockedbittestandset64:
839     return {Set, Sequential, true};
840 
841     // ARM/AArch64-specific ordering variants.
842   case Builtin::BI_interlockedbittestandset_acq:
843     return {Set, Acquire, false};
844   case Builtin::BI_interlockedbittestandset_rel:
845     return {Set, Release, false};
846   case Builtin::BI_interlockedbittestandset_nf:
847     return {Set, NoFence, false};
848   case Builtin::BI_interlockedbittestandreset_acq:
849     return {Reset, Acquire, false};
850   case Builtin::BI_interlockedbittestandreset_rel:
851     return {Reset, Release, false};
852   case Builtin::BI_interlockedbittestandreset_nf:
853     return {Reset, NoFence, false};
854   }
855   llvm_unreachable("expected only bittest intrinsics");
856 }
857 
858 static char bitActionToX86BTCode(BitTest::ActionKind A) {
859   switch (A) {
860   case BitTest::TestOnly:   return '\0';
861   case BitTest::Complement: return 'c';
862   case BitTest::Reset:      return 'r';
863   case BitTest::Set:        return 's';
864   }
865   llvm_unreachable("invalid action");
866 }
867 
868 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
869                                             BitTest BT,
870                                             const CallExpr *E, Value *BitBase,
871                                             Value *BitPos) {
872   char Action = bitActionToX86BTCode(BT.Action);
873   char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
874 
875   // Build the assembly.
876   SmallString<64> Asm;
877   raw_svector_ostream AsmOS(Asm);
878   if (BT.Interlocking != BitTest::Unlocked)
879     AsmOS << "lock ";
880   AsmOS << "bt";
881   if (Action)
882     AsmOS << Action;
883   AsmOS << SizeSuffix << " $2, ($1)";
884 
885   // Build the constraints. FIXME: We should support immediates when possible.
886   std::string Constraints = "={@ccc},r,r,~{cc},~{memory}";
887   std::string MachineClobbers = CGF.getTarget().getClobbers();
888   if (!MachineClobbers.empty()) {
889     Constraints += ',';
890     Constraints += MachineClobbers;
891   }
892   llvm::IntegerType *IntType = llvm::IntegerType::get(
893       CGF.getLLVMContext(),
894       CGF.getContext().getTypeSize(E->getArg(1)->getType()));
895   llvm::Type *IntPtrType = IntType->getPointerTo();
896   llvm::FunctionType *FTy =
897       llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
898 
899   llvm::InlineAsm *IA =
900       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
901   return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
902 }
903 
904 static llvm::AtomicOrdering
905 getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
906   switch (I) {
907   case BitTest::Unlocked:   return llvm::AtomicOrdering::NotAtomic;
908   case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
909   case BitTest::Acquire:    return llvm::AtomicOrdering::Acquire;
910   case BitTest::Release:    return llvm::AtomicOrdering::Release;
911   case BitTest::NoFence:    return llvm::AtomicOrdering::Monotonic;
912   }
913   llvm_unreachable("invalid interlocking");
914 }
915 
916 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
917 /// bits and a bit position and read and optionally modify the bit at that
918 /// position. The position index can be arbitrarily large, i.e. it can be larger
919 /// than 31 or 63, so we need an indexed load in the general case.
920 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
921                                          unsigned BuiltinID,
922                                          const CallExpr *E) {
923   Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
924   Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
925 
926   BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
927 
928   // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
929   // indexing operation internally. Use them if possible.
930   if (CGF.getTarget().getTriple().isX86())
931     return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
932 
933   // Otherwise, use generic code to load one byte and test the bit. Use all but
934   // the bottom three bits as the array index, and the bottom three bits to form
935   // a mask.
936   // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
937   Value *ByteIndex = CGF.Builder.CreateAShr(
938       BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
939   Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
940   Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
941                                                  ByteIndex, "bittest.byteaddr"),
942                    CharUnits::One());
943   Value *PosLow =
944       CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
945                             llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
946 
947   // The updating instructions will need a mask.
948   Value *Mask = nullptr;
949   if (BT.Action != BitTest::TestOnly) {
950     Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
951                                  "bittest.mask");
952   }
953 
954   // Check the action and ordering of the interlocked intrinsics.
955   llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
956 
957   Value *OldByte = nullptr;
958   if (Ordering != llvm::AtomicOrdering::NotAtomic) {
959     // Emit a combined atomicrmw load/store operation for the interlocked
960     // intrinsics.
961     llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
962     if (BT.Action == BitTest::Reset) {
963       Mask = CGF.Builder.CreateNot(Mask);
964       RMWOp = llvm::AtomicRMWInst::And;
965     }
966     OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
967                                           Ordering);
968   } else {
969     // Emit a plain load for the non-interlocked intrinsics.
970     OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
971     Value *NewByte = nullptr;
972     switch (BT.Action) {
973     case BitTest::TestOnly:
974       // Don't store anything.
975       break;
976     case BitTest::Complement:
977       NewByte = CGF.Builder.CreateXor(OldByte, Mask);
978       break;
979     case BitTest::Reset:
980       NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
981       break;
982     case BitTest::Set:
983       NewByte = CGF.Builder.CreateOr(OldByte, Mask);
984       break;
985     }
986     if (NewByte)
987       CGF.Builder.CreateStore(NewByte, ByteAddr);
988   }
989 
990   // However we loaded the old byte, either by plain load or atomicrmw, shift
991   // the bit into the low position and mask it to 0 or 1.
992   Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
993   return CGF.Builder.CreateAnd(
994       ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
995 }
996 
997 static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF,
998                                                 unsigned BuiltinID,
999                                                 const CallExpr *E) {
1000   Value *Addr = CGF.EmitScalarExpr(E->getArg(0));
1001 
1002   SmallString<64> Asm;
1003   raw_svector_ostream AsmOS(Asm);
1004   llvm::IntegerType *RetType = CGF.Int32Ty;
1005 
1006   switch (BuiltinID) {
1007   case clang::PPC::BI__builtin_ppc_ldarx:
1008     AsmOS << "ldarx ";
1009     RetType = CGF.Int64Ty;
1010     break;
1011   case clang::PPC::BI__builtin_ppc_lwarx:
1012     AsmOS << "lwarx ";
1013     RetType = CGF.Int32Ty;
1014     break;
1015   case clang::PPC::BI__builtin_ppc_lharx:
1016     AsmOS << "lharx ";
1017     RetType = CGF.Int16Ty;
1018     break;
1019   case clang::PPC::BI__builtin_ppc_lbarx:
1020     AsmOS << "lbarx ";
1021     RetType = CGF.Int8Ty;
1022     break;
1023   default:
1024     llvm_unreachable("Expected only PowerPC load reserve intrinsics");
1025   }
1026 
1027   AsmOS << "$0, ${1:y}";
1028 
1029   std::string Constraints = "=r,*Z,~{memory}";
1030   std::string MachineClobbers = CGF.getTarget().getClobbers();
1031   if (!MachineClobbers.empty()) {
1032     Constraints += ',';
1033     Constraints += MachineClobbers;
1034   }
1035 
1036   llvm::Type *IntPtrType = RetType->getPointerTo();
1037   llvm::FunctionType *FTy =
1038       llvm::FunctionType::get(RetType, {IntPtrType}, false);
1039 
1040   llvm::InlineAsm *IA =
1041       llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1042   return CGF.Builder.CreateCall(IA, {Addr});
1043 }
1044 
1045 namespace {
1046 enum class MSVCSetJmpKind {
1047   _setjmpex,
1048   _setjmp3,
1049   _setjmp
1050 };
1051 }
1052 
1053 /// MSVC handles setjmp a bit differently on different platforms. On every
1054 /// architecture except 32-bit x86, the frame address is passed. On x86, extra
1055 /// parameters can be passed as variadic arguments, but we always pass none.
1056 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
1057                                const CallExpr *E) {
1058   llvm::Value *Arg1 = nullptr;
1059   llvm::Type *Arg1Ty = nullptr;
1060   StringRef Name;
1061   bool IsVarArg = false;
1062   if (SJKind == MSVCSetJmpKind::_setjmp3) {
1063     Name = "_setjmp3";
1064     Arg1Ty = CGF.Int32Ty;
1065     Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
1066     IsVarArg = true;
1067   } else {
1068     Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
1069     Arg1Ty = CGF.Int8PtrTy;
1070     if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
1071       Arg1 = CGF.Builder.CreateCall(
1072           CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy));
1073     } else
1074       Arg1 = CGF.Builder.CreateCall(
1075           CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy),
1076           llvm::ConstantInt::get(CGF.Int32Ty, 0));
1077   }
1078 
1079   // Mark the call site and declaration with ReturnsTwice.
1080   llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
1081   llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
1082       CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
1083       llvm::Attribute::ReturnsTwice);
1084   llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
1085       llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
1086       ReturnsTwiceAttr, /*Local=*/true);
1087 
1088   llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
1089       CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
1090   llvm::Value *Args[] = {Buf, Arg1};
1091   llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
1092   CB->setAttributes(ReturnsTwiceAttr);
1093   return RValue::get(CB);
1094 }
1095 
1096 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
1097 // we handle them here.
1098 enum class CodeGenFunction::MSVCIntrin {
1099   _BitScanForward,
1100   _BitScanReverse,
1101   _InterlockedAnd,
1102   _InterlockedDecrement,
1103   _InterlockedExchange,
1104   _InterlockedExchangeAdd,
1105   _InterlockedExchangeSub,
1106   _InterlockedIncrement,
1107   _InterlockedOr,
1108   _InterlockedXor,
1109   _InterlockedExchangeAdd_acq,
1110   _InterlockedExchangeAdd_rel,
1111   _InterlockedExchangeAdd_nf,
1112   _InterlockedExchange_acq,
1113   _InterlockedExchange_rel,
1114   _InterlockedExchange_nf,
1115   _InterlockedCompareExchange_acq,
1116   _InterlockedCompareExchange_rel,
1117   _InterlockedCompareExchange_nf,
1118   _InterlockedCompareExchange128,
1119   _InterlockedCompareExchange128_acq,
1120   _InterlockedCompareExchange128_rel,
1121   _InterlockedCompareExchange128_nf,
1122   _InterlockedOr_acq,
1123   _InterlockedOr_rel,
1124   _InterlockedOr_nf,
1125   _InterlockedXor_acq,
1126   _InterlockedXor_rel,
1127   _InterlockedXor_nf,
1128   _InterlockedAnd_acq,
1129   _InterlockedAnd_rel,
1130   _InterlockedAnd_nf,
1131   _InterlockedIncrement_acq,
1132   _InterlockedIncrement_rel,
1133   _InterlockedIncrement_nf,
1134   _InterlockedDecrement_acq,
1135   _InterlockedDecrement_rel,
1136   _InterlockedDecrement_nf,
1137   __fastfail,
1138 };
1139 
1140 static Optional<CodeGenFunction::MSVCIntrin>
1141 translateArmToMsvcIntrin(unsigned BuiltinID) {
1142   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1143   switch (BuiltinID) {
1144   default:
1145     return None;
1146   case ARM::BI_BitScanForward:
1147   case ARM::BI_BitScanForward64:
1148     return MSVCIntrin::_BitScanForward;
1149   case ARM::BI_BitScanReverse:
1150   case ARM::BI_BitScanReverse64:
1151     return MSVCIntrin::_BitScanReverse;
1152   case ARM::BI_InterlockedAnd64:
1153     return MSVCIntrin::_InterlockedAnd;
1154   case ARM::BI_InterlockedExchange64:
1155     return MSVCIntrin::_InterlockedExchange;
1156   case ARM::BI_InterlockedExchangeAdd64:
1157     return MSVCIntrin::_InterlockedExchangeAdd;
1158   case ARM::BI_InterlockedExchangeSub64:
1159     return MSVCIntrin::_InterlockedExchangeSub;
1160   case ARM::BI_InterlockedOr64:
1161     return MSVCIntrin::_InterlockedOr;
1162   case ARM::BI_InterlockedXor64:
1163     return MSVCIntrin::_InterlockedXor;
1164   case ARM::BI_InterlockedDecrement64:
1165     return MSVCIntrin::_InterlockedDecrement;
1166   case ARM::BI_InterlockedIncrement64:
1167     return MSVCIntrin::_InterlockedIncrement;
1168   case ARM::BI_InterlockedExchangeAdd8_acq:
1169   case ARM::BI_InterlockedExchangeAdd16_acq:
1170   case ARM::BI_InterlockedExchangeAdd_acq:
1171   case ARM::BI_InterlockedExchangeAdd64_acq:
1172     return MSVCIntrin::_InterlockedExchangeAdd_acq;
1173   case ARM::BI_InterlockedExchangeAdd8_rel:
1174   case ARM::BI_InterlockedExchangeAdd16_rel:
1175   case ARM::BI_InterlockedExchangeAdd_rel:
1176   case ARM::BI_InterlockedExchangeAdd64_rel:
1177     return MSVCIntrin::_InterlockedExchangeAdd_rel;
1178   case ARM::BI_InterlockedExchangeAdd8_nf:
1179   case ARM::BI_InterlockedExchangeAdd16_nf:
1180   case ARM::BI_InterlockedExchangeAdd_nf:
1181   case ARM::BI_InterlockedExchangeAdd64_nf:
1182     return MSVCIntrin::_InterlockedExchangeAdd_nf;
1183   case ARM::BI_InterlockedExchange8_acq:
1184   case ARM::BI_InterlockedExchange16_acq:
1185   case ARM::BI_InterlockedExchange_acq:
1186   case ARM::BI_InterlockedExchange64_acq:
1187     return MSVCIntrin::_InterlockedExchange_acq;
1188   case ARM::BI_InterlockedExchange8_rel:
1189   case ARM::BI_InterlockedExchange16_rel:
1190   case ARM::BI_InterlockedExchange_rel:
1191   case ARM::BI_InterlockedExchange64_rel:
1192     return MSVCIntrin::_InterlockedExchange_rel;
1193   case ARM::BI_InterlockedExchange8_nf:
1194   case ARM::BI_InterlockedExchange16_nf:
1195   case ARM::BI_InterlockedExchange_nf:
1196   case ARM::BI_InterlockedExchange64_nf:
1197     return MSVCIntrin::_InterlockedExchange_nf;
1198   case ARM::BI_InterlockedCompareExchange8_acq:
1199   case ARM::BI_InterlockedCompareExchange16_acq:
1200   case ARM::BI_InterlockedCompareExchange_acq:
1201   case ARM::BI_InterlockedCompareExchange64_acq:
1202     return MSVCIntrin::_InterlockedCompareExchange_acq;
1203   case ARM::BI_InterlockedCompareExchange8_rel:
1204   case ARM::BI_InterlockedCompareExchange16_rel:
1205   case ARM::BI_InterlockedCompareExchange_rel:
1206   case ARM::BI_InterlockedCompareExchange64_rel:
1207     return MSVCIntrin::_InterlockedCompareExchange_rel;
1208   case ARM::BI_InterlockedCompareExchange8_nf:
1209   case ARM::BI_InterlockedCompareExchange16_nf:
1210   case ARM::BI_InterlockedCompareExchange_nf:
1211   case ARM::BI_InterlockedCompareExchange64_nf:
1212     return MSVCIntrin::_InterlockedCompareExchange_nf;
1213   case ARM::BI_InterlockedOr8_acq:
1214   case ARM::BI_InterlockedOr16_acq:
1215   case ARM::BI_InterlockedOr_acq:
1216   case ARM::BI_InterlockedOr64_acq:
1217     return MSVCIntrin::_InterlockedOr_acq;
1218   case ARM::BI_InterlockedOr8_rel:
1219   case ARM::BI_InterlockedOr16_rel:
1220   case ARM::BI_InterlockedOr_rel:
1221   case ARM::BI_InterlockedOr64_rel:
1222     return MSVCIntrin::_InterlockedOr_rel;
1223   case ARM::BI_InterlockedOr8_nf:
1224   case ARM::BI_InterlockedOr16_nf:
1225   case ARM::BI_InterlockedOr_nf:
1226   case ARM::BI_InterlockedOr64_nf:
1227     return MSVCIntrin::_InterlockedOr_nf;
1228   case ARM::BI_InterlockedXor8_acq:
1229   case ARM::BI_InterlockedXor16_acq:
1230   case ARM::BI_InterlockedXor_acq:
1231   case ARM::BI_InterlockedXor64_acq:
1232     return MSVCIntrin::_InterlockedXor_acq;
1233   case ARM::BI_InterlockedXor8_rel:
1234   case ARM::BI_InterlockedXor16_rel:
1235   case ARM::BI_InterlockedXor_rel:
1236   case ARM::BI_InterlockedXor64_rel:
1237     return MSVCIntrin::_InterlockedXor_rel;
1238   case ARM::BI_InterlockedXor8_nf:
1239   case ARM::BI_InterlockedXor16_nf:
1240   case ARM::BI_InterlockedXor_nf:
1241   case ARM::BI_InterlockedXor64_nf:
1242     return MSVCIntrin::_InterlockedXor_nf;
1243   case ARM::BI_InterlockedAnd8_acq:
1244   case ARM::BI_InterlockedAnd16_acq:
1245   case ARM::BI_InterlockedAnd_acq:
1246   case ARM::BI_InterlockedAnd64_acq:
1247     return MSVCIntrin::_InterlockedAnd_acq;
1248   case ARM::BI_InterlockedAnd8_rel:
1249   case ARM::BI_InterlockedAnd16_rel:
1250   case ARM::BI_InterlockedAnd_rel:
1251   case ARM::BI_InterlockedAnd64_rel:
1252     return MSVCIntrin::_InterlockedAnd_rel;
1253   case ARM::BI_InterlockedAnd8_nf:
1254   case ARM::BI_InterlockedAnd16_nf:
1255   case ARM::BI_InterlockedAnd_nf:
1256   case ARM::BI_InterlockedAnd64_nf:
1257     return MSVCIntrin::_InterlockedAnd_nf;
1258   case ARM::BI_InterlockedIncrement16_acq:
1259   case ARM::BI_InterlockedIncrement_acq:
1260   case ARM::BI_InterlockedIncrement64_acq:
1261     return MSVCIntrin::_InterlockedIncrement_acq;
1262   case ARM::BI_InterlockedIncrement16_rel:
1263   case ARM::BI_InterlockedIncrement_rel:
1264   case ARM::BI_InterlockedIncrement64_rel:
1265     return MSVCIntrin::_InterlockedIncrement_rel;
1266   case ARM::BI_InterlockedIncrement16_nf:
1267   case ARM::BI_InterlockedIncrement_nf:
1268   case ARM::BI_InterlockedIncrement64_nf:
1269     return MSVCIntrin::_InterlockedIncrement_nf;
1270   case ARM::BI_InterlockedDecrement16_acq:
1271   case ARM::BI_InterlockedDecrement_acq:
1272   case ARM::BI_InterlockedDecrement64_acq:
1273     return MSVCIntrin::_InterlockedDecrement_acq;
1274   case ARM::BI_InterlockedDecrement16_rel:
1275   case ARM::BI_InterlockedDecrement_rel:
1276   case ARM::BI_InterlockedDecrement64_rel:
1277     return MSVCIntrin::_InterlockedDecrement_rel;
1278   case ARM::BI_InterlockedDecrement16_nf:
1279   case ARM::BI_InterlockedDecrement_nf:
1280   case ARM::BI_InterlockedDecrement64_nf:
1281     return MSVCIntrin::_InterlockedDecrement_nf;
1282   }
1283   llvm_unreachable("must return from switch");
1284 }
1285 
1286 static Optional<CodeGenFunction::MSVCIntrin>
1287 translateAarch64ToMsvcIntrin(unsigned BuiltinID) {
1288   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1289   switch (BuiltinID) {
1290   default:
1291     return None;
1292   case AArch64::BI_BitScanForward:
1293   case AArch64::BI_BitScanForward64:
1294     return MSVCIntrin::_BitScanForward;
1295   case AArch64::BI_BitScanReverse:
1296   case AArch64::BI_BitScanReverse64:
1297     return MSVCIntrin::_BitScanReverse;
1298   case AArch64::BI_InterlockedAnd64:
1299     return MSVCIntrin::_InterlockedAnd;
1300   case AArch64::BI_InterlockedExchange64:
1301     return MSVCIntrin::_InterlockedExchange;
1302   case AArch64::BI_InterlockedExchangeAdd64:
1303     return MSVCIntrin::_InterlockedExchangeAdd;
1304   case AArch64::BI_InterlockedExchangeSub64:
1305     return MSVCIntrin::_InterlockedExchangeSub;
1306   case AArch64::BI_InterlockedOr64:
1307     return MSVCIntrin::_InterlockedOr;
1308   case AArch64::BI_InterlockedXor64:
1309     return MSVCIntrin::_InterlockedXor;
1310   case AArch64::BI_InterlockedDecrement64:
1311     return MSVCIntrin::_InterlockedDecrement;
1312   case AArch64::BI_InterlockedIncrement64:
1313     return MSVCIntrin::_InterlockedIncrement;
1314   case AArch64::BI_InterlockedExchangeAdd8_acq:
1315   case AArch64::BI_InterlockedExchangeAdd16_acq:
1316   case AArch64::BI_InterlockedExchangeAdd_acq:
1317   case AArch64::BI_InterlockedExchangeAdd64_acq:
1318     return MSVCIntrin::_InterlockedExchangeAdd_acq;
1319   case AArch64::BI_InterlockedExchangeAdd8_rel:
1320   case AArch64::BI_InterlockedExchangeAdd16_rel:
1321   case AArch64::BI_InterlockedExchangeAdd_rel:
1322   case AArch64::BI_InterlockedExchangeAdd64_rel:
1323     return MSVCIntrin::_InterlockedExchangeAdd_rel;
1324   case AArch64::BI_InterlockedExchangeAdd8_nf:
1325   case AArch64::BI_InterlockedExchangeAdd16_nf:
1326   case AArch64::BI_InterlockedExchangeAdd_nf:
1327   case AArch64::BI_InterlockedExchangeAdd64_nf:
1328     return MSVCIntrin::_InterlockedExchangeAdd_nf;
1329   case AArch64::BI_InterlockedExchange8_acq:
1330   case AArch64::BI_InterlockedExchange16_acq:
1331   case AArch64::BI_InterlockedExchange_acq:
1332   case AArch64::BI_InterlockedExchange64_acq:
1333     return MSVCIntrin::_InterlockedExchange_acq;
1334   case AArch64::BI_InterlockedExchange8_rel:
1335   case AArch64::BI_InterlockedExchange16_rel:
1336   case AArch64::BI_InterlockedExchange_rel:
1337   case AArch64::BI_InterlockedExchange64_rel:
1338     return MSVCIntrin::_InterlockedExchange_rel;
1339   case AArch64::BI_InterlockedExchange8_nf:
1340   case AArch64::BI_InterlockedExchange16_nf:
1341   case AArch64::BI_InterlockedExchange_nf:
1342   case AArch64::BI_InterlockedExchange64_nf:
1343     return MSVCIntrin::_InterlockedExchange_nf;
1344   case AArch64::BI_InterlockedCompareExchange8_acq:
1345   case AArch64::BI_InterlockedCompareExchange16_acq:
1346   case AArch64::BI_InterlockedCompareExchange_acq:
1347   case AArch64::BI_InterlockedCompareExchange64_acq:
1348     return MSVCIntrin::_InterlockedCompareExchange_acq;
1349   case AArch64::BI_InterlockedCompareExchange8_rel:
1350   case AArch64::BI_InterlockedCompareExchange16_rel:
1351   case AArch64::BI_InterlockedCompareExchange_rel:
1352   case AArch64::BI_InterlockedCompareExchange64_rel:
1353     return MSVCIntrin::_InterlockedCompareExchange_rel;
1354   case AArch64::BI_InterlockedCompareExchange8_nf:
1355   case AArch64::BI_InterlockedCompareExchange16_nf:
1356   case AArch64::BI_InterlockedCompareExchange_nf:
1357   case AArch64::BI_InterlockedCompareExchange64_nf:
1358     return MSVCIntrin::_InterlockedCompareExchange_nf;
1359   case AArch64::BI_InterlockedCompareExchange128:
1360     return MSVCIntrin::_InterlockedCompareExchange128;
1361   case AArch64::BI_InterlockedCompareExchange128_acq:
1362     return MSVCIntrin::_InterlockedCompareExchange128_acq;
1363   case AArch64::BI_InterlockedCompareExchange128_nf:
1364     return MSVCIntrin::_InterlockedCompareExchange128_nf;
1365   case AArch64::BI_InterlockedCompareExchange128_rel:
1366     return MSVCIntrin::_InterlockedCompareExchange128_rel;
1367   case AArch64::BI_InterlockedOr8_acq:
1368   case AArch64::BI_InterlockedOr16_acq:
1369   case AArch64::BI_InterlockedOr_acq:
1370   case AArch64::BI_InterlockedOr64_acq:
1371     return MSVCIntrin::_InterlockedOr_acq;
1372   case AArch64::BI_InterlockedOr8_rel:
1373   case AArch64::BI_InterlockedOr16_rel:
1374   case AArch64::BI_InterlockedOr_rel:
1375   case AArch64::BI_InterlockedOr64_rel:
1376     return MSVCIntrin::_InterlockedOr_rel;
1377   case AArch64::BI_InterlockedOr8_nf:
1378   case AArch64::BI_InterlockedOr16_nf:
1379   case AArch64::BI_InterlockedOr_nf:
1380   case AArch64::BI_InterlockedOr64_nf:
1381     return MSVCIntrin::_InterlockedOr_nf;
1382   case AArch64::BI_InterlockedXor8_acq:
1383   case AArch64::BI_InterlockedXor16_acq:
1384   case AArch64::BI_InterlockedXor_acq:
1385   case AArch64::BI_InterlockedXor64_acq:
1386     return MSVCIntrin::_InterlockedXor_acq;
1387   case AArch64::BI_InterlockedXor8_rel:
1388   case AArch64::BI_InterlockedXor16_rel:
1389   case AArch64::BI_InterlockedXor_rel:
1390   case AArch64::BI_InterlockedXor64_rel:
1391     return MSVCIntrin::_InterlockedXor_rel;
1392   case AArch64::BI_InterlockedXor8_nf:
1393   case AArch64::BI_InterlockedXor16_nf:
1394   case AArch64::BI_InterlockedXor_nf:
1395   case AArch64::BI_InterlockedXor64_nf:
1396     return MSVCIntrin::_InterlockedXor_nf;
1397   case AArch64::BI_InterlockedAnd8_acq:
1398   case AArch64::BI_InterlockedAnd16_acq:
1399   case AArch64::BI_InterlockedAnd_acq:
1400   case AArch64::BI_InterlockedAnd64_acq:
1401     return MSVCIntrin::_InterlockedAnd_acq;
1402   case AArch64::BI_InterlockedAnd8_rel:
1403   case AArch64::BI_InterlockedAnd16_rel:
1404   case AArch64::BI_InterlockedAnd_rel:
1405   case AArch64::BI_InterlockedAnd64_rel:
1406     return MSVCIntrin::_InterlockedAnd_rel;
1407   case AArch64::BI_InterlockedAnd8_nf:
1408   case AArch64::BI_InterlockedAnd16_nf:
1409   case AArch64::BI_InterlockedAnd_nf:
1410   case AArch64::BI_InterlockedAnd64_nf:
1411     return MSVCIntrin::_InterlockedAnd_nf;
1412   case AArch64::BI_InterlockedIncrement16_acq:
1413   case AArch64::BI_InterlockedIncrement_acq:
1414   case AArch64::BI_InterlockedIncrement64_acq:
1415     return MSVCIntrin::_InterlockedIncrement_acq;
1416   case AArch64::BI_InterlockedIncrement16_rel:
1417   case AArch64::BI_InterlockedIncrement_rel:
1418   case AArch64::BI_InterlockedIncrement64_rel:
1419     return MSVCIntrin::_InterlockedIncrement_rel;
1420   case AArch64::BI_InterlockedIncrement16_nf:
1421   case AArch64::BI_InterlockedIncrement_nf:
1422   case AArch64::BI_InterlockedIncrement64_nf:
1423     return MSVCIntrin::_InterlockedIncrement_nf;
1424   case AArch64::BI_InterlockedDecrement16_acq:
1425   case AArch64::BI_InterlockedDecrement_acq:
1426   case AArch64::BI_InterlockedDecrement64_acq:
1427     return MSVCIntrin::_InterlockedDecrement_acq;
1428   case AArch64::BI_InterlockedDecrement16_rel:
1429   case AArch64::BI_InterlockedDecrement_rel:
1430   case AArch64::BI_InterlockedDecrement64_rel:
1431     return MSVCIntrin::_InterlockedDecrement_rel;
1432   case AArch64::BI_InterlockedDecrement16_nf:
1433   case AArch64::BI_InterlockedDecrement_nf:
1434   case AArch64::BI_InterlockedDecrement64_nf:
1435     return MSVCIntrin::_InterlockedDecrement_nf;
1436   }
1437   llvm_unreachable("must return from switch");
1438 }
1439 
1440 static Optional<CodeGenFunction::MSVCIntrin>
1441 translateX86ToMsvcIntrin(unsigned BuiltinID) {
1442   using MSVCIntrin = CodeGenFunction::MSVCIntrin;
1443   switch (BuiltinID) {
1444   default:
1445     return None;
1446   case clang::X86::BI_BitScanForward:
1447   case clang::X86::BI_BitScanForward64:
1448     return MSVCIntrin::_BitScanForward;
1449   case clang::X86::BI_BitScanReverse:
1450   case clang::X86::BI_BitScanReverse64:
1451     return MSVCIntrin::_BitScanReverse;
1452   case clang::X86::BI_InterlockedAnd64:
1453     return MSVCIntrin::_InterlockedAnd;
1454   case clang::X86::BI_InterlockedCompareExchange128:
1455     return MSVCIntrin::_InterlockedCompareExchange128;
1456   case clang::X86::BI_InterlockedExchange64:
1457     return MSVCIntrin::_InterlockedExchange;
1458   case clang::X86::BI_InterlockedExchangeAdd64:
1459     return MSVCIntrin::_InterlockedExchangeAdd;
1460   case clang::X86::BI_InterlockedExchangeSub64:
1461     return MSVCIntrin::_InterlockedExchangeSub;
1462   case clang::X86::BI_InterlockedOr64:
1463     return MSVCIntrin::_InterlockedOr;
1464   case clang::X86::BI_InterlockedXor64:
1465     return MSVCIntrin::_InterlockedXor;
1466   case clang::X86::BI_InterlockedDecrement64:
1467     return MSVCIntrin::_InterlockedDecrement;
1468   case clang::X86::BI_InterlockedIncrement64:
1469     return MSVCIntrin::_InterlockedIncrement;
1470   }
1471   llvm_unreachable("must return from switch");
1472 }
1473 
1474 // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated.
1475 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
1476                                             const CallExpr *E) {
1477   switch (BuiltinID) {
1478   case MSVCIntrin::_BitScanForward:
1479   case MSVCIntrin::_BitScanReverse: {
1480     Address IndexAddress(EmitPointerWithAlignment(E->getArg(0)));
1481     Value *ArgValue = EmitScalarExpr(E->getArg(1));
1482 
1483     llvm::Type *ArgType = ArgValue->getType();
1484     llvm::Type *IndexType =
1485         IndexAddress.getPointer()->getType()->getPointerElementType();
1486     llvm::Type *ResultType = ConvertType(E->getType());
1487 
1488     Value *ArgZero = llvm::Constant::getNullValue(ArgType);
1489     Value *ResZero = llvm::Constant::getNullValue(ResultType);
1490     Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
1491 
1492     BasicBlock *Begin = Builder.GetInsertBlock();
1493     BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
1494     Builder.SetInsertPoint(End);
1495     PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
1496 
1497     Builder.SetInsertPoint(Begin);
1498     Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
1499     BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
1500     Builder.CreateCondBr(IsZero, End, NotZero);
1501     Result->addIncoming(ResZero, Begin);
1502 
1503     Builder.SetInsertPoint(NotZero);
1504 
1505     if (BuiltinID == MSVCIntrin::_BitScanForward) {
1506       Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
1507       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1508       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1509       Builder.CreateStore(ZeroCount, IndexAddress, false);
1510     } else {
1511       unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
1512       Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
1513 
1514       Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
1515       Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
1516       ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
1517       Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
1518       Builder.CreateStore(Index, IndexAddress, false);
1519     }
1520     Builder.CreateBr(End);
1521     Result->addIncoming(ResOne, NotZero);
1522 
1523     Builder.SetInsertPoint(End);
1524     return Result;
1525   }
1526   case MSVCIntrin::_InterlockedAnd:
1527     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
1528   case MSVCIntrin::_InterlockedExchange:
1529     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
1530   case MSVCIntrin::_InterlockedExchangeAdd:
1531     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
1532   case MSVCIntrin::_InterlockedExchangeSub:
1533     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
1534   case MSVCIntrin::_InterlockedOr:
1535     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
1536   case MSVCIntrin::_InterlockedXor:
1537     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
1538   case MSVCIntrin::_InterlockedExchangeAdd_acq:
1539     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1540                                  AtomicOrdering::Acquire);
1541   case MSVCIntrin::_InterlockedExchangeAdd_rel:
1542     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1543                                  AtomicOrdering::Release);
1544   case MSVCIntrin::_InterlockedExchangeAdd_nf:
1545     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
1546                                  AtomicOrdering::Monotonic);
1547   case MSVCIntrin::_InterlockedExchange_acq:
1548     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1549                                  AtomicOrdering::Acquire);
1550   case MSVCIntrin::_InterlockedExchange_rel:
1551     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1552                                  AtomicOrdering::Release);
1553   case MSVCIntrin::_InterlockedExchange_nf:
1554     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
1555                                  AtomicOrdering::Monotonic);
1556   case MSVCIntrin::_InterlockedCompareExchange_acq:
1557     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
1558   case MSVCIntrin::_InterlockedCompareExchange_rel:
1559     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
1560   case MSVCIntrin::_InterlockedCompareExchange_nf:
1561     return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1562   case MSVCIntrin::_InterlockedCompareExchange128:
1563     return EmitAtomicCmpXchg128ForMSIntrin(
1564         *this, E, AtomicOrdering::SequentiallyConsistent);
1565   case MSVCIntrin::_InterlockedCompareExchange128_acq:
1566     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire);
1567   case MSVCIntrin::_InterlockedCompareExchange128_rel:
1568     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release);
1569   case MSVCIntrin::_InterlockedCompareExchange128_nf:
1570     return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic);
1571   case MSVCIntrin::_InterlockedOr_acq:
1572     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1573                                  AtomicOrdering::Acquire);
1574   case MSVCIntrin::_InterlockedOr_rel:
1575     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1576                                  AtomicOrdering::Release);
1577   case MSVCIntrin::_InterlockedOr_nf:
1578     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
1579                                  AtomicOrdering::Monotonic);
1580   case MSVCIntrin::_InterlockedXor_acq:
1581     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1582                                  AtomicOrdering::Acquire);
1583   case MSVCIntrin::_InterlockedXor_rel:
1584     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1585                                  AtomicOrdering::Release);
1586   case MSVCIntrin::_InterlockedXor_nf:
1587     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
1588                                  AtomicOrdering::Monotonic);
1589   case MSVCIntrin::_InterlockedAnd_acq:
1590     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1591                                  AtomicOrdering::Acquire);
1592   case MSVCIntrin::_InterlockedAnd_rel:
1593     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1594                                  AtomicOrdering::Release);
1595   case MSVCIntrin::_InterlockedAnd_nf:
1596     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
1597                                  AtomicOrdering::Monotonic);
1598   case MSVCIntrin::_InterlockedIncrement_acq:
1599     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
1600   case MSVCIntrin::_InterlockedIncrement_rel:
1601     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
1602   case MSVCIntrin::_InterlockedIncrement_nf:
1603     return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
1604   case MSVCIntrin::_InterlockedDecrement_acq:
1605     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
1606   case MSVCIntrin::_InterlockedDecrement_rel:
1607     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
1608   case MSVCIntrin::_InterlockedDecrement_nf:
1609     return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
1610 
1611   case MSVCIntrin::_InterlockedDecrement:
1612     return EmitAtomicDecrementValue(*this, E);
1613   case MSVCIntrin::_InterlockedIncrement:
1614     return EmitAtomicIncrementValue(*this, E);
1615 
1616   case MSVCIntrin::__fastfail: {
1617     // Request immediate process termination from the kernel. The instruction
1618     // sequences to do this are documented on MSDN:
1619     // https://msdn.microsoft.com/en-us/library/dn774154.aspx
1620     llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
1621     StringRef Asm, Constraints;
1622     switch (ISA) {
1623     default:
1624       ErrorUnsupported(E, "__fastfail call for this architecture");
1625       break;
1626     case llvm::Triple::x86:
1627     case llvm::Triple::x86_64:
1628       Asm = "int $$0x29";
1629       Constraints = "{cx}";
1630       break;
1631     case llvm::Triple::thumb:
1632       Asm = "udf #251";
1633       Constraints = "{r0}";
1634       break;
1635     case llvm::Triple::aarch64:
1636       Asm = "brk #0xF003";
1637       Constraints = "{w0}";
1638     }
1639     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
1640     llvm::InlineAsm *IA =
1641         llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
1642     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
1643         getLLVMContext(), llvm::AttributeList::FunctionIndex,
1644         llvm::Attribute::NoReturn);
1645     llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
1646     CI->setAttributes(NoReturnAttr);
1647     return CI;
1648   }
1649   }
1650   llvm_unreachable("Incorrect MSVC intrinsic!");
1651 }
1652 
1653 namespace {
1654 // ARC cleanup for __builtin_os_log_format
1655 struct CallObjCArcUse final : EHScopeStack::Cleanup {
1656   CallObjCArcUse(llvm::Value *object) : object(object) {}
1657   llvm::Value *object;
1658 
1659   void Emit(CodeGenFunction &CGF, Flags flags) override {
1660     CGF.EmitARCIntrinsicUse(object);
1661   }
1662 };
1663 }
1664 
1665 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
1666                                                  BuiltinCheckKind Kind) {
1667   assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
1668           && "Unsupported builtin check kind");
1669 
1670   Value *ArgValue = EmitScalarExpr(E);
1671   if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
1672     return ArgValue;
1673 
1674   SanitizerScope SanScope(this);
1675   Value *Cond = Builder.CreateICmpNE(
1676       ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
1677   EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
1678             SanitizerHandler::InvalidBuiltin,
1679             {EmitCheckSourceLocation(E->getExprLoc()),
1680              llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
1681             None);
1682   return ArgValue;
1683 }
1684 
1685 /// Get the argument type for arguments to os_log_helper.
1686 static CanQualType getOSLogArgType(ASTContext &C, int Size) {
1687   QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
1688   return C.getCanonicalType(UnsignedTy);
1689 }
1690 
1691 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
1692     const analyze_os_log::OSLogBufferLayout &Layout,
1693     CharUnits BufferAlignment) {
1694   ASTContext &Ctx = getContext();
1695 
1696   llvm::SmallString<64> Name;
1697   {
1698     raw_svector_ostream OS(Name);
1699     OS << "__os_log_helper";
1700     OS << "_" << BufferAlignment.getQuantity();
1701     OS << "_" << int(Layout.getSummaryByte());
1702     OS << "_" << int(Layout.getNumArgsByte());
1703     for (const auto &Item : Layout.Items)
1704       OS << "_" << int(Item.getSizeByte()) << "_"
1705          << int(Item.getDescriptorByte());
1706   }
1707 
1708   if (llvm::Function *F = CGM.getModule().getFunction(Name))
1709     return F;
1710 
1711   llvm::SmallVector<QualType, 4> ArgTys;
1712   FunctionArgList Args;
1713   Args.push_back(ImplicitParamDecl::Create(
1714       Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
1715       ImplicitParamDecl::Other));
1716   ArgTys.emplace_back(Ctx.VoidPtrTy);
1717 
1718   for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
1719     char Size = Layout.Items[I].getSizeByte();
1720     if (!Size)
1721       continue;
1722 
1723     QualType ArgTy = getOSLogArgType(Ctx, Size);
1724     Args.push_back(ImplicitParamDecl::Create(
1725         Ctx, nullptr, SourceLocation(),
1726         &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
1727         ImplicitParamDecl::Other));
1728     ArgTys.emplace_back(ArgTy);
1729   }
1730 
1731   QualType ReturnTy = Ctx.VoidTy;
1732 
1733   // The helper function has linkonce_odr linkage to enable the linker to merge
1734   // identical functions. To ensure the merging always happens, 'noinline' is
1735   // attached to the function when compiling with -Oz.
1736   const CGFunctionInfo &FI =
1737       CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
1738   llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
1739   llvm::Function *Fn = llvm::Function::Create(
1740       FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
1741   Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
1742   CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false);
1743   CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
1744   Fn->setDoesNotThrow();
1745 
1746   // Attach 'noinline' at -Oz.
1747   if (CGM.getCodeGenOpts().OptimizeSize == 2)
1748     Fn->addFnAttr(llvm::Attribute::NoInline);
1749 
1750   auto NL = ApplyDebugLocation::CreateEmpty(*this);
1751   StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args);
1752 
1753   // Create a scope with an artificial location for the body of this function.
1754   auto AL = ApplyDebugLocation::CreateArtificial(*this);
1755 
1756   CharUnits Offset;
1757   Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"),
1758                   BufferAlignment);
1759   Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
1760                       Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
1761   Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
1762                       Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
1763 
1764   unsigned I = 1;
1765   for (const auto &Item : Layout.Items) {
1766     Builder.CreateStore(
1767         Builder.getInt8(Item.getDescriptorByte()),
1768         Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
1769     Builder.CreateStore(
1770         Builder.getInt8(Item.getSizeByte()),
1771         Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
1772 
1773     CharUnits Size = Item.size();
1774     if (!Size.getQuantity())
1775       continue;
1776 
1777     Address Arg = GetAddrOfLocalVar(Args[I]);
1778     Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
1779     Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
1780                                  "argDataCast");
1781     Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
1782     Offset += Size;
1783     ++I;
1784   }
1785 
1786   FinishFunction();
1787 
1788   return Fn;
1789 }
1790 
1791 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
1792   assert(E.getNumArgs() >= 2 &&
1793          "__builtin_os_log_format takes at least 2 arguments");
1794   ASTContext &Ctx = getContext();
1795   analyze_os_log::OSLogBufferLayout Layout;
1796   analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
1797   Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
1798   llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
1799 
1800   // Ignore argument 1, the format string. It is not currently used.
1801   CallArgList Args;
1802   Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
1803 
1804   for (const auto &Item : Layout.Items) {
1805     int Size = Item.getSizeByte();
1806     if (!Size)
1807       continue;
1808 
1809     llvm::Value *ArgVal;
1810 
1811     if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
1812       uint64_t Val = 0;
1813       for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
1814         Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
1815       ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
1816     } else if (const Expr *TheExpr = Item.getExpr()) {
1817       ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
1818 
1819       // If a temporary object that requires destruction after the full
1820       // expression is passed, push a lifetime-extended cleanup to extend its
1821       // lifetime to the end of the enclosing block scope.
1822       auto LifetimeExtendObject = [&](const Expr *E) {
1823         E = E->IgnoreParenCasts();
1824         // Extend lifetimes of objects returned by function calls and message
1825         // sends.
1826 
1827         // FIXME: We should do this in other cases in which temporaries are
1828         //        created including arguments of non-ARC types (e.g., C++
1829         //        temporaries).
1830         if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E))
1831           return true;
1832         return false;
1833       };
1834 
1835       if (TheExpr->getType()->isObjCRetainableType() &&
1836           getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) {
1837         assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
1838                "Only scalar can be a ObjC retainable type");
1839         if (!isa<Constant>(ArgVal)) {
1840           CleanupKind Cleanup = getARCCleanupKind();
1841           QualType Ty = TheExpr->getType();
1842           Address Alloca = Address::invalid();
1843           Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca);
1844           ArgVal = EmitARCRetain(Ty, ArgVal);
1845           Builder.CreateStore(ArgVal, Addr);
1846           pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty,
1847                                       CodeGenFunction::destroyARCStrongPrecise,
1848                                       Cleanup & EHCleanup);
1849 
1850           // Push a clang.arc.use call to ensure ARC optimizer knows that the
1851           // argument has to be alive.
1852           if (CGM.getCodeGenOpts().OptimizationLevel != 0)
1853             pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal);
1854         }
1855       }
1856     } else {
1857       ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
1858     }
1859 
1860     unsigned ArgValSize =
1861         CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
1862     llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
1863                                                      ArgValSize);
1864     ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
1865     CanQualType ArgTy = getOSLogArgType(Ctx, Size);
1866     // If ArgVal has type x86_fp80, zero-extend ArgVal.
1867     ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
1868     Args.add(RValue::get(ArgVal), ArgTy);
1869   }
1870 
1871   const CGFunctionInfo &FI =
1872       CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
1873   llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
1874       Layout, BufAddr.getAlignment());
1875   EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
1876   return RValue::get(BufAddr.getPointer());
1877 }
1878 
1879 static bool isSpecialUnsignedMultiplySignedResult(
1880     unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info,
1881     WidthAndSignedness ResultInfo) {
1882   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1883          Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width &&
1884          !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed;
1885 }
1886 
1887 static RValue EmitCheckedUnsignedMultiplySignedResult(
1888     CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info,
1889     const clang::Expr *Op2, WidthAndSignedness Op2Info,
1890     const clang::Expr *ResultArg, QualType ResultQTy,
1891     WidthAndSignedness ResultInfo) {
1892   assert(isSpecialUnsignedMultiplySignedResult(
1893              Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) &&
1894          "Cannot specialize this multiply");
1895 
1896   llvm::Value *V1 = CGF.EmitScalarExpr(Op1);
1897   llvm::Value *V2 = CGF.EmitScalarExpr(Op2);
1898 
1899   llvm::Value *HasOverflow;
1900   llvm::Value *Result = EmitOverflowIntrinsic(
1901       CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow);
1902 
1903   // The intrinsic call will detect overflow when the value is > UINT_MAX,
1904   // however, since the original builtin had a signed result, we need to report
1905   // an overflow when the result is greater than INT_MAX.
1906   auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width);
1907   llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax);
1908 
1909   llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue);
1910   HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow);
1911 
1912   bool isVolatile =
1913       ResultArg->getType()->getPointeeType().isVolatileQualified();
1914   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1915   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
1916                           isVolatile);
1917   return RValue::get(HasOverflow);
1918 }
1919 
1920 /// Determine if a binop is a checked mixed-sign multiply we can specialize.
1921 static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
1922                                        WidthAndSignedness Op1Info,
1923                                        WidthAndSignedness Op2Info,
1924                                        WidthAndSignedness ResultInfo) {
1925   return BuiltinID == Builtin::BI__builtin_mul_overflow &&
1926          std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
1927          Op1Info.Signed != Op2Info.Signed;
1928 }
1929 
1930 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of
1931 /// the generic checked-binop irgen.
1932 static RValue
1933 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
1934                              WidthAndSignedness Op1Info, const clang::Expr *Op2,
1935                              WidthAndSignedness Op2Info,
1936                              const clang::Expr *ResultArg, QualType ResultQTy,
1937                              WidthAndSignedness ResultInfo) {
1938   assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
1939                                     Op2Info, ResultInfo) &&
1940          "Not a mixed-sign multipliction we can specialize");
1941 
1942   // Emit the signed and unsigned operands.
1943   const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
1944   const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
1945   llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
1946   llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
1947   unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
1948   unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
1949 
1950   // One of the operands may be smaller than the other. If so, [s|z]ext it.
1951   if (SignedOpWidth < UnsignedOpWidth)
1952     Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
1953   if (UnsignedOpWidth < SignedOpWidth)
1954     Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
1955 
1956   llvm::Type *OpTy = Signed->getType();
1957   llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
1958   Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
1959   llvm::Type *ResTy = ResultPtr.getElementType();
1960   unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
1961 
1962   // Take the absolute value of the signed operand.
1963   llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
1964   llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
1965   llvm::Value *AbsSigned =
1966       CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
1967 
1968   // Perform a checked unsigned multiplication.
1969   llvm::Value *UnsignedOverflow;
1970   llvm::Value *UnsignedResult =
1971       EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
1972                             Unsigned, UnsignedOverflow);
1973 
1974   llvm::Value *Overflow, *Result;
1975   if (ResultInfo.Signed) {
1976     // Signed overflow occurs if the result is greater than INT_MAX or lesser
1977     // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
1978     auto IntMax =
1979         llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
1980     llvm::Value *MaxResult =
1981         CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
1982                               CGF.Builder.CreateZExt(IsNegative, OpTy));
1983     llvm::Value *SignedOverflow =
1984         CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
1985     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
1986 
1987     // Prepare the signed result (possibly by negating it).
1988     llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
1989     llvm::Value *SignedResult =
1990         CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
1991     Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
1992   } else {
1993     // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
1994     llvm::Value *Underflow = CGF.Builder.CreateAnd(
1995         IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
1996     Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
1997     if (ResultInfo.Width < OpWidth) {
1998       auto IntMax =
1999           llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
2000       llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
2001           UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
2002       Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
2003     }
2004 
2005     // Negate the product if it would be negative in infinite precision.
2006     Result = CGF.Builder.CreateSelect(
2007         IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
2008 
2009     Result = CGF.Builder.CreateTrunc(Result, ResTy);
2010   }
2011   assert(Overflow && Result && "Missing overflow or result");
2012 
2013   bool isVolatile =
2014       ResultArg->getType()->getPointeeType().isVolatileQualified();
2015   CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
2016                           isVolatile);
2017   return RValue::get(Overflow);
2018 }
2019 
2020 static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
2021                                Value *&RecordPtr, CharUnits Align,
2022                                llvm::FunctionCallee Func, int Lvl) {
2023   ASTContext &Context = CGF.getContext();
2024   RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition();
2025   std::string Pad = std::string(Lvl * 4, ' ');
2026 
2027   Value *GString =
2028       CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
2029   Value *Res = CGF.Builder.CreateCall(Func, {GString});
2030 
2031   static llvm::DenseMap<QualType, const char *> Types;
2032   if (Types.empty()) {
2033     Types[Context.CharTy] = "%c";
2034     Types[Context.BoolTy] = "%d";
2035     Types[Context.SignedCharTy] = "%hhd";
2036     Types[Context.UnsignedCharTy] = "%hhu";
2037     Types[Context.IntTy] = "%d";
2038     Types[Context.UnsignedIntTy] = "%u";
2039     Types[Context.LongTy] = "%ld";
2040     Types[Context.UnsignedLongTy] = "%lu";
2041     Types[Context.LongLongTy] = "%lld";
2042     Types[Context.UnsignedLongLongTy] = "%llu";
2043     Types[Context.ShortTy] = "%hd";
2044     Types[Context.UnsignedShortTy] = "%hu";
2045     Types[Context.VoidPtrTy] = "%p";
2046     Types[Context.FloatTy] = "%f";
2047     Types[Context.DoubleTy] = "%f";
2048     Types[Context.LongDoubleTy] = "%Lf";
2049     Types[Context.getPointerType(Context.CharTy)] = "%s";
2050     Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
2051   }
2052 
2053   for (const auto *FD : RD->fields()) {
2054     Value *FieldPtr = RecordPtr;
2055     if (RD->isUnion())
2056       FieldPtr = CGF.Builder.CreatePointerCast(
2057           FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
2058     else
2059       FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
2060                                              FD->getFieldIndex());
2061 
2062     GString = CGF.Builder.CreateGlobalStringPtr(
2063         llvm::Twine(Pad)
2064             .concat(FD->getType().getAsString())
2065             .concat(llvm::Twine(' '))
2066             .concat(FD->getNameAsString())
2067             .concat(" : ")
2068             .str());
2069     Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
2070     Res = CGF.Builder.CreateAdd(Res, TmpRes);
2071 
2072     QualType CanonicalType =
2073         FD->getType().getUnqualifiedType().getCanonicalType();
2074 
2075     // We check whether we are in a recursive type
2076     if (CanonicalType->isRecordType()) {
2077       TmpRes = dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
2078       Res = CGF.Builder.CreateAdd(TmpRes, Res);
2079       continue;
2080     }
2081 
2082     // We try to determine the best format to print the current field
2083     llvm::Twine Format = Types.find(CanonicalType) == Types.end()
2084                              ? Types[Context.VoidPtrTy]
2085                              : Types[CanonicalType];
2086 
2087     Address FieldAddress = Address(FieldPtr, Align);
2088     FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
2089 
2090     // FIXME Need to handle bitfield here
2091     GString = CGF.Builder.CreateGlobalStringPtr(
2092         Format.concat(llvm::Twine('\n')).str());
2093     TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
2094     Res = CGF.Builder.CreateAdd(Res, TmpRes);
2095   }
2096 
2097   GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
2098   Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
2099   Res = CGF.Builder.CreateAdd(Res, TmpRes);
2100   return Res;
2101 }
2102 
2103 static bool
2104 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
2105                               llvm::SmallPtrSetImpl<const Decl *> &Seen) {
2106   if (const auto *Arr = Ctx.getAsArrayType(Ty))
2107     Ty = Ctx.getBaseElementType(Arr);
2108 
2109   const auto *Record = Ty->getAsCXXRecordDecl();
2110   if (!Record)
2111     return false;
2112 
2113   // We've already checked this type, or are in the process of checking it.
2114   if (!Seen.insert(Record).second)
2115     return false;
2116 
2117   assert(Record->hasDefinition() &&
2118          "Incomplete types should already be diagnosed");
2119 
2120   if (Record->isDynamicClass())
2121     return true;
2122 
2123   for (FieldDecl *F : Record->fields()) {
2124     if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
2125       return true;
2126   }
2127   return false;
2128 }
2129 
2130 /// Determine if the specified type requires laundering by checking if it is a
2131 /// dynamic class type or contains a subobject which is a dynamic class type.
2132 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
2133   if (!CGM.getCodeGenOpts().StrictVTablePointers)
2134     return false;
2135   llvm::SmallPtrSet<const Decl *, 16> Seen;
2136   return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
2137 }
2138 
2139 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
2140   llvm::Value *Src = EmitScalarExpr(E->getArg(0));
2141   llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
2142 
2143   // The builtin's shift arg may have a different type than the source arg and
2144   // result, but the LLVM intrinsic uses the same type for all values.
2145   llvm::Type *Ty = Src->getType();
2146   ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
2147 
2148   // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
2149   unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
2150   Function *F = CGM.getIntrinsic(IID, Ty);
2151   return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
2152 }
2153 
2154 // Map math builtins for long-double to f128 version.
2155 static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) {
2156   switch (BuiltinID) {
2157 #define MUTATE_LDBL(func) \
2158   case Builtin::BI__builtin_##func##l: \
2159     return Builtin::BI__builtin_##func##f128;
2160   MUTATE_LDBL(sqrt)
2161   MUTATE_LDBL(cbrt)
2162   MUTATE_LDBL(fabs)
2163   MUTATE_LDBL(log)
2164   MUTATE_LDBL(log2)
2165   MUTATE_LDBL(log10)
2166   MUTATE_LDBL(log1p)
2167   MUTATE_LDBL(logb)
2168   MUTATE_LDBL(exp)
2169   MUTATE_LDBL(exp2)
2170   MUTATE_LDBL(expm1)
2171   MUTATE_LDBL(fdim)
2172   MUTATE_LDBL(hypot)
2173   MUTATE_LDBL(ilogb)
2174   MUTATE_LDBL(pow)
2175   MUTATE_LDBL(fmin)
2176   MUTATE_LDBL(fmax)
2177   MUTATE_LDBL(ceil)
2178   MUTATE_LDBL(trunc)
2179   MUTATE_LDBL(rint)
2180   MUTATE_LDBL(nearbyint)
2181   MUTATE_LDBL(round)
2182   MUTATE_LDBL(floor)
2183   MUTATE_LDBL(lround)
2184   MUTATE_LDBL(llround)
2185   MUTATE_LDBL(lrint)
2186   MUTATE_LDBL(llrint)
2187   MUTATE_LDBL(fmod)
2188   MUTATE_LDBL(modf)
2189   MUTATE_LDBL(nan)
2190   MUTATE_LDBL(nans)
2191   MUTATE_LDBL(inf)
2192   MUTATE_LDBL(fma)
2193   MUTATE_LDBL(sin)
2194   MUTATE_LDBL(cos)
2195   MUTATE_LDBL(tan)
2196   MUTATE_LDBL(sinh)
2197   MUTATE_LDBL(cosh)
2198   MUTATE_LDBL(tanh)
2199   MUTATE_LDBL(asin)
2200   MUTATE_LDBL(acos)
2201   MUTATE_LDBL(atan)
2202   MUTATE_LDBL(asinh)
2203   MUTATE_LDBL(acosh)
2204   MUTATE_LDBL(atanh)
2205   MUTATE_LDBL(atan2)
2206   MUTATE_LDBL(erf)
2207   MUTATE_LDBL(erfc)
2208   MUTATE_LDBL(ldexp)
2209   MUTATE_LDBL(frexp)
2210   MUTATE_LDBL(huge_val)
2211   MUTATE_LDBL(copysign)
2212   MUTATE_LDBL(nextafter)
2213   MUTATE_LDBL(nexttoward)
2214   MUTATE_LDBL(remainder)
2215   MUTATE_LDBL(remquo)
2216   MUTATE_LDBL(scalbln)
2217   MUTATE_LDBL(scalbn)
2218   MUTATE_LDBL(tgamma)
2219   MUTATE_LDBL(lgamma)
2220 #undef MUTATE_LDBL
2221   default:
2222     return BuiltinID;
2223   }
2224 }
2225 
2226 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
2227                                         const CallExpr *E,
2228                                         ReturnValueSlot ReturnValue) {
2229   const FunctionDecl *FD = GD.getDecl()->getAsFunction();
2230   // See if we can constant fold this builtin.  If so, don't emit it at all.
2231   Expr::EvalResult Result;
2232   if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
2233       !Result.hasSideEffects()) {
2234     if (Result.Val.isInt())
2235       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
2236                                                 Result.Val.getInt()));
2237     if (Result.Val.isFloat())
2238       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
2239                                                Result.Val.getFloat()));
2240   }
2241 
2242   // If current long-double semantics is IEEE 128-bit, replace math builtins
2243   // of long-double with f128 equivalent.
2244   // TODO: This mutation should also be applied to other targets other than PPC,
2245   // after backend supports IEEE 128-bit style libcalls.
2246   if (getTarget().getTriple().isPPC64() &&
2247       &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad())
2248     BuiltinID = mutateLongDoubleBuiltin(BuiltinID);
2249 
2250   // If the builtin has been declared explicitly with an assembler label,
2251   // disable the specialized emitting below. Ideally we should communicate the
2252   // rename in IR, or at least avoid generating the intrinsic calls that are
2253   // likely to get lowered to the renamed library functions.
2254   const unsigned BuiltinIDIfNoAsmLabel =
2255       FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID;
2256 
2257   // There are LLVM math intrinsics/instructions corresponding to math library
2258   // functions except the LLVM op will never set errno while the math library
2259   // might. Also, math builtins have the same semantics as their math library
2260   // twins. Thus, we can transform math library and builtin calls to their
2261   // LLVM counterparts if the call is marked 'const' (known to never set errno).
2262   if (FD->hasAttr<ConstAttr>()) {
2263     switch (BuiltinIDIfNoAsmLabel) {
2264     case Builtin::BIceil:
2265     case Builtin::BIceilf:
2266     case Builtin::BIceill:
2267     case Builtin::BI__builtin_ceil:
2268     case Builtin::BI__builtin_ceilf:
2269     case Builtin::BI__builtin_ceilf16:
2270     case Builtin::BI__builtin_ceill:
2271     case Builtin::BI__builtin_ceilf128:
2272       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2273                                    Intrinsic::ceil,
2274                                    Intrinsic::experimental_constrained_ceil));
2275 
2276     case Builtin::BIcopysign:
2277     case Builtin::BIcopysignf:
2278     case Builtin::BIcopysignl:
2279     case Builtin::BI__builtin_copysign:
2280     case Builtin::BI__builtin_copysignf:
2281     case Builtin::BI__builtin_copysignf16:
2282     case Builtin::BI__builtin_copysignl:
2283     case Builtin::BI__builtin_copysignf128:
2284       return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
2285 
2286     case Builtin::BIcos:
2287     case Builtin::BIcosf:
2288     case Builtin::BIcosl:
2289     case Builtin::BI__builtin_cos:
2290     case Builtin::BI__builtin_cosf:
2291     case Builtin::BI__builtin_cosf16:
2292     case Builtin::BI__builtin_cosl:
2293     case Builtin::BI__builtin_cosf128:
2294       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2295                                    Intrinsic::cos,
2296                                    Intrinsic::experimental_constrained_cos));
2297 
2298     case Builtin::BIexp:
2299     case Builtin::BIexpf:
2300     case Builtin::BIexpl:
2301     case Builtin::BI__builtin_exp:
2302     case Builtin::BI__builtin_expf:
2303     case Builtin::BI__builtin_expf16:
2304     case Builtin::BI__builtin_expl:
2305     case Builtin::BI__builtin_expf128:
2306       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2307                                    Intrinsic::exp,
2308                                    Intrinsic::experimental_constrained_exp));
2309 
2310     case Builtin::BIexp2:
2311     case Builtin::BIexp2f:
2312     case Builtin::BIexp2l:
2313     case Builtin::BI__builtin_exp2:
2314     case Builtin::BI__builtin_exp2f:
2315     case Builtin::BI__builtin_exp2f16:
2316     case Builtin::BI__builtin_exp2l:
2317     case Builtin::BI__builtin_exp2f128:
2318       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2319                                    Intrinsic::exp2,
2320                                    Intrinsic::experimental_constrained_exp2));
2321 
2322     case Builtin::BIfabs:
2323     case Builtin::BIfabsf:
2324     case Builtin::BIfabsl:
2325     case Builtin::BI__builtin_fabs:
2326     case Builtin::BI__builtin_fabsf:
2327     case Builtin::BI__builtin_fabsf16:
2328     case Builtin::BI__builtin_fabsl:
2329     case Builtin::BI__builtin_fabsf128:
2330       return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
2331 
2332     case Builtin::BIfloor:
2333     case Builtin::BIfloorf:
2334     case Builtin::BIfloorl:
2335     case Builtin::BI__builtin_floor:
2336     case Builtin::BI__builtin_floorf:
2337     case Builtin::BI__builtin_floorf16:
2338     case Builtin::BI__builtin_floorl:
2339     case Builtin::BI__builtin_floorf128:
2340       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2341                                    Intrinsic::floor,
2342                                    Intrinsic::experimental_constrained_floor));
2343 
2344     case Builtin::BIfma:
2345     case Builtin::BIfmaf:
2346     case Builtin::BIfmal:
2347     case Builtin::BI__builtin_fma:
2348     case Builtin::BI__builtin_fmaf:
2349     case Builtin::BI__builtin_fmaf16:
2350     case Builtin::BI__builtin_fmal:
2351     case Builtin::BI__builtin_fmaf128:
2352       return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E,
2353                                    Intrinsic::fma,
2354                                    Intrinsic::experimental_constrained_fma));
2355 
2356     case Builtin::BIfmax:
2357     case Builtin::BIfmaxf:
2358     case Builtin::BIfmaxl:
2359     case Builtin::BI__builtin_fmax:
2360     case Builtin::BI__builtin_fmaxf:
2361     case Builtin::BI__builtin_fmaxf16:
2362     case Builtin::BI__builtin_fmaxl:
2363     case Builtin::BI__builtin_fmaxf128:
2364       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2365                                    Intrinsic::maxnum,
2366                                    Intrinsic::experimental_constrained_maxnum));
2367 
2368     case Builtin::BIfmin:
2369     case Builtin::BIfminf:
2370     case Builtin::BIfminl:
2371     case Builtin::BI__builtin_fmin:
2372     case Builtin::BI__builtin_fminf:
2373     case Builtin::BI__builtin_fminf16:
2374     case Builtin::BI__builtin_fminl:
2375     case Builtin::BI__builtin_fminf128:
2376       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2377                                    Intrinsic::minnum,
2378                                    Intrinsic::experimental_constrained_minnum));
2379 
2380     // fmod() is a special-case. It maps to the frem instruction rather than an
2381     // LLVM intrinsic.
2382     case Builtin::BIfmod:
2383     case Builtin::BIfmodf:
2384     case Builtin::BIfmodl:
2385     case Builtin::BI__builtin_fmod:
2386     case Builtin::BI__builtin_fmodf:
2387     case Builtin::BI__builtin_fmodf16:
2388     case Builtin::BI__builtin_fmodl:
2389     case Builtin::BI__builtin_fmodf128: {
2390       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2391       Value *Arg1 = EmitScalarExpr(E->getArg(0));
2392       Value *Arg2 = EmitScalarExpr(E->getArg(1));
2393       return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
2394     }
2395 
2396     case Builtin::BIlog:
2397     case Builtin::BIlogf:
2398     case Builtin::BIlogl:
2399     case Builtin::BI__builtin_log:
2400     case Builtin::BI__builtin_logf:
2401     case Builtin::BI__builtin_logf16:
2402     case Builtin::BI__builtin_logl:
2403     case Builtin::BI__builtin_logf128:
2404       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2405                                    Intrinsic::log,
2406                                    Intrinsic::experimental_constrained_log));
2407 
2408     case Builtin::BIlog10:
2409     case Builtin::BIlog10f:
2410     case Builtin::BIlog10l:
2411     case Builtin::BI__builtin_log10:
2412     case Builtin::BI__builtin_log10f:
2413     case Builtin::BI__builtin_log10f16:
2414     case Builtin::BI__builtin_log10l:
2415     case Builtin::BI__builtin_log10f128:
2416       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2417                                    Intrinsic::log10,
2418                                    Intrinsic::experimental_constrained_log10));
2419 
2420     case Builtin::BIlog2:
2421     case Builtin::BIlog2f:
2422     case Builtin::BIlog2l:
2423     case Builtin::BI__builtin_log2:
2424     case Builtin::BI__builtin_log2f:
2425     case Builtin::BI__builtin_log2f16:
2426     case Builtin::BI__builtin_log2l:
2427     case Builtin::BI__builtin_log2f128:
2428       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2429                                    Intrinsic::log2,
2430                                    Intrinsic::experimental_constrained_log2));
2431 
2432     case Builtin::BInearbyint:
2433     case Builtin::BInearbyintf:
2434     case Builtin::BInearbyintl:
2435     case Builtin::BI__builtin_nearbyint:
2436     case Builtin::BI__builtin_nearbyintf:
2437     case Builtin::BI__builtin_nearbyintl:
2438     case Builtin::BI__builtin_nearbyintf128:
2439       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2440                                 Intrinsic::nearbyint,
2441                                 Intrinsic::experimental_constrained_nearbyint));
2442 
2443     case Builtin::BIpow:
2444     case Builtin::BIpowf:
2445     case Builtin::BIpowl:
2446     case Builtin::BI__builtin_pow:
2447     case Builtin::BI__builtin_powf:
2448     case Builtin::BI__builtin_powf16:
2449     case Builtin::BI__builtin_powl:
2450     case Builtin::BI__builtin_powf128:
2451       return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E,
2452                                    Intrinsic::pow,
2453                                    Intrinsic::experimental_constrained_pow));
2454 
2455     case Builtin::BIrint:
2456     case Builtin::BIrintf:
2457     case Builtin::BIrintl:
2458     case Builtin::BI__builtin_rint:
2459     case Builtin::BI__builtin_rintf:
2460     case Builtin::BI__builtin_rintf16:
2461     case Builtin::BI__builtin_rintl:
2462     case Builtin::BI__builtin_rintf128:
2463       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2464                                    Intrinsic::rint,
2465                                    Intrinsic::experimental_constrained_rint));
2466 
2467     case Builtin::BIround:
2468     case Builtin::BIroundf:
2469     case Builtin::BIroundl:
2470     case Builtin::BI__builtin_round:
2471     case Builtin::BI__builtin_roundf:
2472     case Builtin::BI__builtin_roundf16:
2473     case Builtin::BI__builtin_roundl:
2474     case Builtin::BI__builtin_roundf128:
2475       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2476                                    Intrinsic::round,
2477                                    Intrinsic::experimental_constrained_round));
2478 
2479     case Builtin::BIsin:
2480     case Builtin::BIsinf:
2481     case Builtin::BIsinl:
2482     case Builtin::BI__builtin_sin:
2483     case Builtin::BI__builtin_sinf:
2484     case Builtin::BI__builtin_sinf16:
2485     case Builtin::BI__builtin_sinl:
2486     case Builtin::BI__builtin_sinf128:
2487       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2488                                    Intrinsic::sin,
2489                                    Intrinsic::experimental_constrained_sin));
2490 
2491     case Builtin::BIsqrt:
2492     case Builtin::BIsqrtf:
2493     case Builtin::BIsqrtl:
2494     case Builtin::BI__builtin_sqrt:
2495     case Builtin::BI__builtin_sqrtf:
2496     case Builtin::BI__builtin_sqrtf16:
2497     case Builtin::BI__builtin_sqrtl:
2498     case Builtin::BI__builtin_sqrtf128:
2499       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2500                                    Intrinsic::sqrt,
2501                                    Intrinsic::experimental_constrained_sqrt));
2502 
2503     case Builtin::BItrunc:
2504     case Builtin::BItruncf:
2505     case Builtin::BItruncl:
2506     case Builtin::BI__builtin_trunc:
2507     case Builtin::BI__builtin_truncf:
2508     case Builtin::BI__builtin_truncf16:
2509     case Builtin::BI__builtin_truncl:
2510     case Builtin::BI__builtin_truncf128:
2511       return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E,
2512                                    Intrinsic::trunc,
2513                                    Intrinsic::experimental_constrained_trunc));
2514 
2515     case Builtin::BIlround:
2516     case Builtin::BIlroundf:
2517     case Builtin::BIlroundl:
2518     case Builtin::BI__builtin_lround:
2519     case Builtin::BI__builtin_lroundf:
2520     case Builtin::BI__builtin_lroundl:
2521     case Builtin::BI__builtin_lroundf128:
2522       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2523           *this, E, Intrinsic::lround,
2524           Intrinsic::experimental_constrained_lround));
2525 
2526     case Builtin::BIllround:
2527     case Builtin::BIllroundf:
2528     case Builtin::BIllroundl:
2529     case Builtin::BI__builtin_llround:
2530     case Builtin::BI__builtin_llroundf:
2531     case Builtin::BI__builtin_llroundl:
2532     case Builtin::BI__builtin_llroundf128:
2533       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2534           *this, E, Intrinsic::llround,
2535           Intrinsic::experimental_constrained_llround));
2536 
2537     case Builtin::BIlrint:
2538     case Builtin::BIlrintf:
2539     case Builtin::BIlrintl:
2540     case Builtin::BI__builtin_lrint:
2541     case Builtin::BI__builtin_lrintf:
2542     case Builtin::BI__builtin_lrintl:
2543     case Builtin::BI__builtin_lrintf128:
2544       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2545           *this, E, Intrinsic::lrint,
2546           Intrinsic::experimental_constrained_lrint));
2547 
2548     case Builtin::BIllrint:
2549     case Builtin::BIllrintf:
2550     case Builtin::BIllrintl:
2551     case Builtin::BI__builtin_llrint:
2552     case Builtin::BI__builtin_llrintf:
2553     case Builtin::BI__builtin_llrintl:
2554     case Builtin::BI__builtin_llrintf128:
2555       return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin(
2556           *this, E, Intrinsic::llrint,
2557           Intrinsic::experimental_constrained_llrint));
2558 
2559     default:
2560       break;
2561     }
2562   }
2563 
2564   switch (BuiltinIDIfNoAsmLabel) {
2565   default: break;
2566   case Builtin::BI__builtin___CFStringMakeConstantString:
2567   case Builtin::BI__builtin___NSStringMakeConstantString:
2568     return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
2569   case Builtin::BI__builtin_stdarg_start:
2570   case Builtin::BI__builtin_va_start:
2571   case Builtin::BI__va_start:
2572   case Builtin::BI__builtin_va_end:
2573     return RValue::get(
2574         EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
2575                            ? EmitScalarExpr(E->getArg(0))
2576                            : EmitVAListRef(E->getArg(0)).getPointer(),
2577                        BuiltinID != Builtin::BI__builtin_va_end));
2578   case Builtin::BI__builtin_va_copy: {
2579     Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
2580     Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
2581 
2582     llvm::Type *Type = Int8PtrTy;
2583 
2584     DstPtr = Builder.CreateBitCast(DstPtr, Type);
2585     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
2586     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
2587                                           {DstPtr, SrcPtr}));
2588   }
2589   case Builtin::BI__builtin_abs:
2590   case Builtin::BI__builtin_labs:
2591   case Builtin::BI__builtin_llabs: {
2592     // X < 0 ? -X : X
2593     // The negation has 'nsw' because abs of INT_MIN is undefined.
2594     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2595     Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
2596     Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
2597     Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
2598     Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
2599     return RValue::get(Result);
2600   }
2601   case Builtin::BI__builtin_complex: {
2602     Value *Real = EmitScalarExpr(E->getArg(0));
2603     Value *Imag = EmitScalarExpr(E->getArg(1));
2604     return RValue::getComplex({Real, Imag});
2605   }
2606   case Builtin::BI__builtin_conj:
2607   case Builtin::BI__builtin_conjf:
2608   case Builtin::BI__builtin_conjl:
2609   case Builtin::BIconj:
2610   case Builtin::BIconjf:
2611   case Builtin::BIconjl: {
2612     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2613     Value *Real = ComplexVal.first;
2614     Value *Imag = ComplexVal.second;
2615     Imag = Builder.CreateFNeg(Imag, "neg");
2616     return RValue::getComplex(std::make_pair(Real, Imag));
2617   }
2618   case Builtin::BI__builtin_creal:
2619   case Builtin::BI__builtin_crealf:
2620   case Builtin::BI__builtin_creall:
2621   case Builtin::BIcreal:
2622   case Builtin::BIcrealf:
2623   case Builtin::BIcreall: {
2624     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2625     return RValue::get(ComplexVal.first);
2626   }
2627 
2628   case Builtin::BI__builtin_dump_struct: {
2629     llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
2630     llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
2631         LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
2632 
2633     Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
2634     CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
2635 
2636     const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
2637     QualType Arg0Type = Arg0->getType()->getPointeeType();
2638 
2639     Value *RecordPtr = EmitScalarExpr(Arg0);
2640     Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
2641                             {LLVMFuncType, Func}, 0);
2642     return RValue::get(Res);
2643   }
2644 
2645   case Builtin::BI__builtin_preserve_access_index: {
2646     // Only enabled preserved access index region when debuginfo
2647     // is available as debuginfo is needed to preserve user-level
2648     // access pattern.
2649     if (!getDebugInfo()) {
2650       CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
2651       return RValue::get(EmitScalarExpr(E->getArg(0)));
2652     }
2653 
2654     // Nested builtin_preserve_access_index() not supported
2655     if (IsInPreservedAIRegion) {
2656       CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
2657       return RValue::get(EmitScalarExpr(E->getArg(0)));
2658     }
2659 
2660     IsInPreservedAIRegion = true;
2661     Value *Res = EmitScalarExpr(E->getArg(0));
2662     IsInPreservedAIRegion = false;
2663     return RValue::get(Res);
2664   }
2665 
2666   case Builtin::BI__builtin_cimag:
2667   case Builtin::BI__builtin_cimagf:
2668   case Builtin::BI__builtin_cimagl:
2669   case Builtin::BIcimag:
2670   case Builtin::BIcimagf:
2671   case Builtin::BIcimagl: {
2672     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2673     return RValue::get(ComplexVal.second);
2674   }
2675 
2676   case Builtin::BI__builtin_clrsb:
2677   case Builtin::BI__builtin_clrsbl:
2678   case Builtin::BI__builtin_clrsbll: {
2679     // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
2680     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2681 
2682     llvm::Type *ArgType = ArgValue->getType();
2683     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2684 
2685     llvm::Type *ResultType = ConvertType(E->getType());
2686     Value *Zero = llvm::Constant::getNullValue(ArgType);
2687     Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
2688     Value *Inverse = Builder.CreateNot(ArgValue, "not");
2689     Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
2690     Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
2691     Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
2692     Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2693                                    "cast");
2694     return RValue::get(Result);
2695   }
2696   case Builtin::BI__builtin_ctzs:
2697   case Builtin::BI__builtin_ctz:
2698   case Builtin::BI__builtin_ctzl:
2699   case Builtin::BI__builtin_ctzll: {
2700     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
2701 
2702     llvm::Type *ArgType = ArgValue->getType();
2703     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2704 
2705     llvm::Type *ResultType = ConvertType(E->getType());
2706     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2707     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2708     if (Result->getType() != ResultType)
2709       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2710                                      "cast");
2711     return RValue::get(Result);
2712   }
2713   case Builtin::BI__builtin_clzs:
2714   case Builtin::BI__builtin_clz:
2715   case Builtin::BI__builtin_clzl:
2716   case Builtin::BI__builtin_clzll: {
2717     Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
2718 
2719     llvm::Type *ArgType = ArgValue->getType();
2720     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2721 
2722     llvm::Type *ResultType = ConvertType(E->getType());
2723     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
2724     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
2725     if (Result->getType() != ResultType)
2726       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2727                                      "cast");
2728     return RValue::get(Result);
2729   }
2730   case Builtin::BI__builtin_ffs:
2731   case Builtin::BI__builtin_ffsl:
2732   case Builtin::BI__builtin_ffsll: {
2733     // ffs(x) -> x ? cttz(x) + 1 : 0
2734     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2735 
2736     llvm::Type *ArgType = ArgValue->getType();
2737     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
2738 
2739     llvm::Type *ResultType = ConvertType(E->getType());
2740     Value *Tmp =
2741         Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
2742                           llvm::ConstantInt::get(ArgType, 1));
2743     Value *Zero = llvm::Constant::getNullValue(ArgType);
2744     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
2745     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
2746     if (Result->getType() != ResultType)
2747       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2748                                      "cast");
2749     return RValue::get(Result);
2750   }
2751   case Builtin::BI__builtin_parity:
2752   case Builtin::BI__builtin_parityl:
2753   case Builtin::BI__builtin_parityll: {
2754     // parity(x) -> ctpop(x) & 1
2755     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2756 
2757     llvm::Type *ArgType = ArgValue->getType();
2758     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2759 
2760     llvm::Type *ResultType = ConvertType(E->getType());
2761     Value *Tmp = Builder.CreateCall(F, ArgValue);
2762     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
2763     if (Result->getType() != ResultType)
2764       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2765                                      "cast");
2766     return RValue::get(Result);
2767   }
2768   case Builtin::BI__lzcnt16:
2769   case Builtin::BI__lzcnt:
2770   case Builtin::BI__lzcnt64: {
2771     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2772 
2773     llvm::Type *ArgType = ArgValue->getType();
2774     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
2775 
2776     llvm::Type *ResultType = ConvertType(E->getType());
2777     Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
2778     if (Result->getType() != ResultType)
2779       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2780                                      "cast");
2781     return RValue::get(Result);
2782   }
2783   case Builtin::BI__popcnt16:
2784   case Builtin::BI__popcnt:
2785   case Builtin::BI__popcnt64:
2786   case Builtin::BI__builtin_popcount:
2787   case Builtin::BI__builtin_popcountl:
2788   case Builtin::BI__builtin_popcountll: {
2789     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2790 
2791     llvm::Type *ArgType = ArgValue->getType();
2792     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
2793 
2794     llvm::Type *ResultType = ConvertType(E->getType());
2795     Value *Result = Builder.CreateCall(F, ArgValue);
2796     if (Result->getType() != ResultType)
2797       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
2798                                      "cast");
2799     return RValue::get(Result);
2800   }
2801   case Builtin::BI__builtin_unpredictable: {
2802     // Always return the argument of __builtin_unpredictable. LLVM does not
2803     // handle this builtin. Metadata for this builtin should be added directly
2804     // to instructions such as branches or switches that use it.
2805     return RValue::get(EmitScalarExpr(E->getArg(0)));
2806   }
2807   case Builtin::BI__builtin_expect: {
2808     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2809     llvm::Type *ArgType = ArgValue->getType();
2810 
2811     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2812     // Don't generate llvm.expect on -O0 as the backend won't use it for
2813     // anything.
2814     // Note, we still IRGen ExpectedValue because it could have side-effects.
2815     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2816       return RValue::get(ArgValue);
2817 
2818     Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
2819     Value *Result =
2820         Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
2821     return RValue::get(Result);
2822   }
2823   case Builtin::BI__builtin_expect_with_probability: {
2824     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2825     llvm::Type *ArgType = ArgValue->getType();
2826 
2827     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
2828     llvm::APFloat Probability(0.0);
2829     const Expr *ProbArg = E->getArg(2);
2830     bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext());
2831     assert(EvalSucceed && "probability should be able to evaluate as float");
2832     (void)EvalSucceed;
2833     bool LoseInfo = false;
2834     Probability.convert(llvm::APFloat::IEEEdouble(),
2835                         llvm::RoundingMode::Dynamic, &LoseInfo);
2836     llvm::Type *Ty = ConvertType(ProbArg->getType());
2837     Constant *Confidence = ConstantFP::get(Ty, Probability);
2838     // Don't generate llvm.expect.with.probability on -O0 as the backend
2839     // won't use it for anything.
2840     // Note, we still IRGen ExpectedValue because it could have side-effects.
2841     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
2842       return RValue::get(ArgValue);
2843 
2844     Function *FnExpect =
2845         CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType);
2846     Value *Result = Builder.CreateCall(
2847         FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval");
2848     return RValue::get(Result);
2849   }
2850   case Builtin::BI__builtin_assume_aligned: {
2851     const Expr *Ptr = E->getArg(0);
2852     Value *PtrValue = EmitScalarExpr(Ptr);
2853     Value *OffsetValue =
2854       (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
2855 
2856     Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
2857     ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
2858     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
2859       AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
2860                                      llvm::Value::MaximumAlignment);
2861 
2862     emitAlignmentAssumption(PtrValue, Ptr,
2863                             /*The expr loc is sufficient.*/ SourceLocation(),
2864                             AlignmentCI, OffsetValue);
2865     return RValue::get(PtrValue);
2866   }
2867   case Builtin::BI__assume:
2868   case Builtin::BI__builtin_assume: {
2869     if (E->getArg(0)->HasSideEffects(getContext()))
2870       return RValue::get(nullptr);
2871 
2872     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2873     Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
2874     return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
2875   }
2876   case Builtin::BI__arithmetic_fence: {
2877     // Create the builtin call if FastMath is selected, and the target
2878     // supports the builtin, otherwise just return the argument.
2879     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
2880     llvm::FastMathFlags FMF = Builder.getFastMathFlags();
2881     bool isArithmeticFenceEnabled =
2882         FMF.allowReassoc() &&
2883         getContext().getTargetInfo().checkArithmeticFenceSupported();
2884     QualType ArgType = E->getArg(0)->getType();
2885     if (ArgType->isComplexType()) {
2886       if (isArithmeticFenceEnabled) {
2887         QualType ElementType = ArgType->castAs<ComplexType>()->getElementType();
2888         ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2889         Value *Real = Builder.CreateArithmeticFence(ComplexVal.first,
2890                                                     ConvertType(ElementType));
2891         Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second,
2892                                                     ConvertType(ElementType));
2893         return RValue::getComplex(std::make_pair(Real, Imag));
2894       }
2895       ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
2896       Value *Real = ComplexVal.first;
2897       Value *Imag = ComplexVal.second;
2898       return RValue::getComplex(std::make_pair(Real, Imag));
2899     }
2900     Value *ArgValue = EmitScalarExpr(E->getArg(0));
2901     if (isArithmeticFenceEnabled)
2902       return RValue::get(
2903           Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType)));
2904     return RValue::get(ArgValue);
2905   }
2906   case Builtin::BI__builtin_bswap16:
2907   case Builtin::BI__builtin_bswap32:
2908   case Builtin::BI__builtin_bswap64: {
2909     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
2910   }
2911   case Builtin::BI__builtin_bitreverse8:
2912   case Builtin::BI__builtin_bitreverse16:
2913   case Builtin::BI__builtin_bitreverse32:
2914   case Builtin::BI__builtin_bitreverse64: {
2915     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
2916   }
2917   case Builtin::BI__builtin_rotateleft8:
2918   case Builtin::BI__builtin_rotateleft16:
2919   case Builtin::BI__builtin_rotateleft32:
2920   case Builtin::BI__builtin_rotateleft64:
2921   case Builtin::BI_rotl8: // Microsoft variants of rotate left
2922   case Builtin::BI_rotl16:
2923   case Builtin::BI_rotl:
2924   case Builtin::BI_lrotl:
2925   case Builtin::BI_rotl64:
2926     return emitRotate(E, false);
2927 
2928   case Builtin::BI__builtin_rotateright8:
2929   case Builtin::BI__builtin_rotateright16:
2930   case Builtin::BI__builtin_rotateright32:
2931   case Builtin::BI__builtin_rotateright64:
2932   case Builtin::BI_rotr8: // Microsoft variants of rotate right
2933   case Builtin::BI_rotr16:
2934   case Builtin::BI_rotr:
2935   case Builtin::BI_lrotr:
2936   case Builtin::BI_rotr64:
2937     return emitRotate(E, true);
2938 
2939   case Builtin::BI__builtin_constant_p: {
2940     llvm::Type *ResultType = ConvertType(E->getType());
2941 
2942     const Expr *Arg = E->getArg(0);
2943     QualType ArgType = Arg->getType();
2944     // FIXME: The allowance for Obj-C pointers and block pointers is historical
2945     // and likely a mistake.
2946     if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
2947         !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
2948       // Per the GCC documentation, only numeric constants are recognized after
2949       // inlining.
2950       return RValue::get(ConstantInt::get(ResultType, 0));
2951 
2952     if (Arg->HasSideEffects(getContext()))
2953       // The argument is unevaluated, so be conservative if it might have
2954       // side-effects.
2955       return RValue::get(ConstantInt::get(ResultType, 0));
2956 
2957     Value *ArgValue = EmitScalarExpr(Arg);
2958     if (ArgType->isObjCObjectPointerType()) {
2959       // Convert Objective-C objects to id because we cannot distinguish between
2960       // LLVM types for Obj-C classes as they are opaque.
2961       ArgType = CGM.getContext().getObjCIdType();
2962       ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
2963     }
2964     Function *F =
2965         CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
2966     Value *Result = Builder.CreateCall(F, ArgValue);
2967     if (Result->getType() != ResultType)
2968       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
2969     return RValue::get(Result);
2970   }
2971   case Builtin::BI__builtin_dynamic_object_size:
2972   case Builtin::BI__builtin_object_size: {
2973     unsigned Type =
2974         E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
2975     auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
2976 
2977     // We pass this builtin onto the optimizer so that it can figure out the
2978     // object size in more complex cases.
2979     bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
2980     return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
2981                                              /*EmittedE=*/nullptr, IsDynamic));
2982   }
2983   case Builtin::BI__builtin_prefetch: {
2984     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
2985     // FIXME: Technically these constants should of type 'int', yes?
2986     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
2987       llvm::ConstantInt::get(Int32Ty, 0);
2988     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
2989       llvm::ConstantInt::get(Int32Ty, 3);
2990     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
2991     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
2992     return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
2993   }
2994   case Builtin::BI__builtin_readcyclecounter: {
2995     Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
2996     return RValue::get(Builder.CreateCall(F));
2997   }
2998   case Builtin::BI__builtin___clear_cache: {
2999     Value *Begin = EmitScalarExpr(E->getArg(0));
3000     Value *End = EmitScalarExpr(E->getArg(1));
3001     Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
3002     return RValue::get(Builder.CreateCall(F, {Begin, End}));
3003   }
3004   case Builtin::BI__builtin_trap:
3005     return RValue::get(EmitTrapCall(Intrinsic::trap));
3006   case Builtin::BI__debugbreak:
3007     return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
3008   case Builtin::BI__builtin_unreachable: {
3009     EmitUnreachable(E->getExprLoc());
3010 
3011     // We do need to preserve an insertion point.
3012     EmitBlock(createBasicBlock("unreachable.cont"));
3013 
3014     return RValue::get(nullptr);
3015   }
3016 
3017   case Builtin::BI__builtin_powi:
3018   case Builtin::BI__builtin_powif:
3019   case Builtin::BI__builtin_powil: {
3020     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
3021     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
3022 
3023     if (Builder.getIsFPConstrained()) {
3024       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3025       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi,
3026                                      Src0->getType());
3027       return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 }));
3028     }
3029 
3030     Function *F = CGM.getIntrinsic(Intrinsic::powi,
3031                                    { Src0->getType(), Src1->getType() });
3032     return RValue::get(Builder.CreateCall(F, { Src0, Src1 }));
3033   }
3034   case Builtin::BI__builtin_isgreater:
3035   case Builtin::BI__builtin_isgreaterequal:
3036   case Builtin::BI__builtin_isless:
3037   case Builtin::BI__builtin_islessequal:
3038   case Builtin::BI__builtin_islessgreater:
3039   case Builtin::BI__builtin_isunordered: {
3040     // Ordered comparisons: we know the arguments to these are matching scalar
3041     // floating point values.
3042     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3043     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3044     Value *LHS = EmitScalarExpr(E->getArg(0));
3045     Value *RHS = EmitScalarExpr(E->getArg(1));
3046 
3047     switch (BuiltinID) {
3048     default: llvm_unreachable("Unknown ordered comparison");
3049     case Builtin::BI__builtin_isgreater:
3050       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
3051       break;
3052     case Builtin::BI__builtin_isgreaterequal:
3053       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
3054       break;
3055     case Builtin::BI__builtin_isless:
3056       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
3057       break;
3058     case Builtin::BI__builtin_islessequal:
3059       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
3060       break;
3061     case Builtin::BI__builtin_islessgreater:
3062       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
3063       break;
3064     case Builtin::BI__builtin_isunordered:
3065       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
3066       break;
3067     }
3068     // ZExt bool to int type.
3069     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
3070   }
3071   case Builtin::BI__builtin_isnan: {
3072     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3073     Value *V = EmitScalarExpr(E->getArg(0));
3074     llvm::Type *Ty = V->getType();
3075     const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3076     if (!Builder.getIsFPConstrained() ||
3077         Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3078         !Ty->isIEEE()) {
3079       V = Builder.CreateFCmpUNO(V, V, "cmp");
3080       return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3081     }
3082 
3083     if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3084       return RValue::get(Result);
3085 
3086     // NaN has all exp bits set and a non zero significand. Therefore:
3087     // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0)
3088     unsigned bitsize = Ty->getScalarSizeInBits();
3089     llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3090     Value *IntV = Builder.CreateBitCast(V, IntTy);
3091     APInt AndMask = APInt::getSignedMaxValue(bitsize);
3092     Value *AbsV =
3093         Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask));
3094     APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3095     Value *Sub =
3096         Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV);
3097     // V = sign bit (Sub) <=> V = (Sub < 0)
3098     V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1));
3099     if (bitsize > 32)
3100       V = Builder.CreateTrunc(V, ConvertType(E->getType()));
3101     return RValue::get(V);
3102   }
3103 
3104   case Builtin::BI__builtin_matrix_transpose: {
3105     const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3106     Value *MatValue = EmitScalarExpr(E->getArg(0));
3107     MatrixBuilder<CGBuilderTy> MB(Builder);
3108     Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(),
3109                                              MatrixTy->getNumColumns());
3110     return RValue::get(Result);
3111   }
3112 
3113   case Builtin::BI__builtin_matrix_column_major_load: {
3114     MatrixBuilder<CGBuilderTy> MB(Builder);
3115     // Emit everything that isn't dependent on the first parameter type
3116     Value *Stride = EmitScalarExpr(E->getArg(3));
3117     const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>();
3118     auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>();
3119     assert(PtrTy && "arg0 must be of pointer type");
3120     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3121 
3122     Address Src = EmitPointerWithAlignment(E->getArg(0));
3123     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(),
3124                         E->getArg(0)->getExprLoc(), FD, 0);
3125     Value *Result = MB.CreateColumnMajorLoad(
3126         Src.getPointer(), Align(Src.getAlignment().getQuantity()), Stride,
3127         IsVolatile, ResultTy->getNumRows(), ResultTy->getNumColumns(),
3128         "matrix");
3129     return RValue::get(Result);
3130   }
3131 
3132   case Builtin::BI__builtin_matrix_column_major_store: {
3133     MatrixBuilder<CGBuilderTy> MB(Builder);
3134     Value *Matrix = EmitScalarExpr(E->getArg(0));
3135     Address Dst = EmitPointerWithAlignment(E->getArg(1));
3136     Value *Stride = EmitScalarExpr(E->getArg(2));
3137 
3138     const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>();
3139     auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>();
3140     assert(PtrTy && "arg1 must be of pointer type");
3141     bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified();
3142 
3143     EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(),
3144                         E->getArg(1)->getExprLoc(), FD, 0);
3145     Value *Result = MB.CreateColumnMajorStore(
3146         Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()),
3147         Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns());
3148     return RValue::get(Result);
3149   }
3150 
3151   case Builtin::BIfinite:
3152   case Builtin::BI__finite:
3153   case Builtin::BIfinitef:
3154   case Builtin::BI__finitef:
3155   case Builtin::BIfinitel:
3156   case Builtin::BI__finitel:
3157   case Builtin::BI__builtin_isinf:
3158   case Builtin::BI__builtin_isfinite: {
3159     // isinf(x)    --> fabs(x) == infinity
3160     // isfinite(x) --> fabs(x) != infinity
3161     // x != NaN via the ordered compare in either case.
3162     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3163     Value *V = EmitScalarExpr(E->getArg(0));
3164     llvm::Type *Ty = V->getType();
3165     if (!Builder.getIsFPConstrained() ||
3166         Builder.getDefaultConstrainedExcept() == fp::ebIgnore ||
3167         !Ty->isIEEE()) {
3168       Value *Fabs = EmitFAbs(*this, V);
3169       Constant *Infinity = ConstantFP::getInfinity(V->getType());
3170       CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
3171                                     ? CmpInst::FCMP_OEQ
3172                                     : CmpInst::FCMP_ONE;
3173       Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
3174       return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
3175     }
3176 
3177     if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM))
3178       return RValue::get(Result);
3179 
3180     // Inf values have all exp bits set and a zero significand. Therefore:
3181     // isinf(V) == ((V << 1) == ((exp mask) << 1))
3182     // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison
3183     unsigned bitsize = Ty->getScalarSizeInBits();
3184     llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize);
3185     Value *IntV = Builder.CreateBitCast(V, IntTy);
3186     Value *Shl1 = Builder.CreateShl(IntV, 1);
3187     const llvm::fltSemantics &Semantics = Ty->getFltSemantics();
3188     APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt();
3189     Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1));
3190     if (BuiltinID == Builtin::BI__builtin_isinf)
3191       V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1);
3192     else
3193       V = Builder.CreateICmpULT(Shl1, ExpMaskShl1);
3194     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3195   }
3196 
3197   case Builtin::BI__builtin_isinf_sign: {
3198     // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
3199     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3200     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3201     Value *Arg = EmitScalarExpr(E->getArg(0));
3202     Value *AbsArg = EmitFAbs(*this, Arg);
3203     Value *IsInf = Builder.CreateFCmpOEQ(
3204         AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
3205     Value *IsNeg = EmitSignBit(*this, Arg);
3206 
3207     llvm::Type *IntTy = ConvertType(E->getType());
3208     Value *Zero = Constant::getNullValue(IntTy);
3209     Value *One = ConstantInt::get(IntTy, 1);
3210     Value *NegativeOne = ConstantInt::get(IntTy, -1);
3211     Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
3212     Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
3213     return RValue::get(Result);
3214   }
3215 
3216   case Builtin::BI__builtin_isnormal: {
3217     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
3218     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3219     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3220     Value *V = EmitScalarExpr(E->getArg(0));
3221     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
3222 
3223     Value *Abs = EmitFAbs(*this, V);
3224     Value *IsLessThanInf =
3225       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
3226     APFloat Smallest = APFloat::getSmallestNormalized(
3227                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
3228     Value *IsNormal =
3229       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
3230                             "isnormal");
3231     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
3232     V = Builder.CreateAnd(V, IsNormal, "and");
3233     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
3234   }
3235 
3236   case Builtin::BI__builtin_flt_rounds: {
3237     Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
3238 
3239     llvm::Type *ResultType = ConvertType(E->getType());
3240     Value *Result = Builder.CreateCall(F);
3241     if (Result->getType() != ResultType)
3242       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
3243                                      "cast");
3244     return RValue::get(Result);
3245   }
3246 
3247   case Builtin::BI__builtin_fpclassify: {
3248     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
3249     // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here.
3250     Value *V = EmitScalarExpr(E->getArg(5));
3251     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
3252 
3253     // Create Result
3254     BasicBlock *Begin = Builder.GetInsertBlock();
3255     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
3256     Builder.SetInsertPoint(End);
3257     PHINode *Result =
3258       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
3259                         "fpclassify_result");
3260 
3261     // if (V==0) return FP_ZERO
3262     Builder.SetInsertPoint(Begin);
3263     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
3264                                           "iszero");
3265     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
3266     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
3267     Builder.CreateCondBr(IsZero, End, NotZero);
3268     Result->addIncoming(ZeroLiteral, Begin);
3269 
3270     // if (V != V) return FP_NAN
3271     Builder.SetInsertPoint(NotZero);
3272     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
3273     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
3274     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
3275     Builder.CreateCondBr(IsNan, End, NotNan);
3276     Result->addIncoming(NanLiteral, NotZero);
3277 
3278     // if (fabs(V) == infinity) return FP_INFINITY
3279     Builder.SetInsertPoint(NotNan);
3280     Value *VAbs = EmitFAbs(*this, V);
3281     Value *IsInf =
3282       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
3283                             "isinf");
3284     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
3285     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
3286     Builder.CreateCondBr(IsInf, End, NotInf);
3287     Result->addIncoming(InfLiteral, NotNan);
3288 
3289     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
3290     Builder.SetInsertPoint(NotInf);
3291     APFloat Smallest = APFloat::getSmallestNormalized(
3292         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
3293     Value *IsNormal =
3294       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
3295                             "isnormal");
3296     Value *NormalResult =
3297       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
3298                            EmitScalarExpr(E->getArg(3)));
3299     Builder.CreateBr(End);
3300     Result->addIncoming(NormalResult, NotInf);
3301 
3302     // return Result
3303     Builder.SetInsertPoint(End);
3304     return RValue::get(Result);
3305   }
3306 
3307   case Builtin::BIalloca:
3308   case Builtin::BI_alloca:
3309   case Builtin::BI__builtin_alloca: {
3310     Value *Size = EmitScalarExpr(E->getArg(0));
3311     const TargetInfo &TI = getContext().getTargetInfo();
3312     // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
3313     const Align SuitableAlignmentInBytes =
3314         CGM.getContext()
3315             .toCharUnitsFromBits(TI.getSuitableAlign())
3316             .getAsAlign();
3317     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3318     AI->setAlignment(SuitableAlignmentInBytes);
3319     initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
3320     return RValue::get(AI);
3321   }
3322 
3323   case Builtin::BI__builtin_alloca_with_align: {
3324     Value *Size = EmitScalarExpr(E->getArg(0));
3325     Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
3326     auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
3327     unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
3328     const Align AlignmentInBytes =
3329         CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign();
3330     AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
3331     AI->setAlignment(AlignmentInBytes);
3332     initializeAlloca(*this, AI, Size, AlignmentInBytes);
3333     return RValue::get(AI);
3334   }
3335 
3336   case Builtin::BIbzero:
3337   case Builtin::BI__builtin_bzero: {
3338     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3339     Value *SizeVal = EmitScalarExpr(E->getArg(1));
3340     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3341                         E->getArg(0)->getExprLoc(), FD, 0);
3342     Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
3343     return RValue::get(nullptr);
3344   }
3345   case Builtin::BImemcpy:
3346   case Builtin::BI__builtin_memcpy:
3347   case Builtin::BImempcpy:
3348   case Builtin::BI__builtin_mempcpy: {
3349     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3350     Address Src = EmitPointerWithAlignment(E->getArg(1));
3351     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3352     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3353                         E->getArg(0)->getExprLoc(), FD, 0);
3354     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3355                         E->getArg(1)->getExprLoc(), FD, 1);
3356     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3357     if (BuiltinID == Builtin::BImempcpy ||
3358         BuiltinID == Builtin::BI__builtin_mempcpy)
3359       return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(),
3360                                                    Dest.getPointer(), SizeVal));
3361     else
3362       return RValue::get(Dest.getPointer());
3363   }
3364 
3365   case Builtin::BI__builtin_memcpy_inline: {
3366     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3367     Address Src = EmitPointerWithAlignment(E->getArg(1));
3368     uint64_t Size =
3369         E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue();
3370     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3371                         E->getArg(0)->getExprLoc(), FD, 0);
3372     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3373                         E->getArg(1)->getExprLoc(), FD, 1);
3374     Builder.CreateMemCpyInline(Dest, Src, Size);
3375     return RValue::get(nullptr);
3376   }
3377 
3378   case Builtin::BI__builtin_char_memchr:
3379     BuiltinID = Builtin::BI__builtin_memchr;
3380     break;
3381 
3382   case Builtin::BI__builtin___memcpy_chk: {
3383     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
3384     Expr::EvalResult SizeResult, DstSizeResult;
3385     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3386         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3387       break;
3388     llvm::APSInt Size = SizeResult.Val.getInt();
3389     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3390     if (Size.ugt(DstSize))
3391       break;
3392     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3393     Address Src = EmitPointerWithAlignment(E->getArg(1));
3394     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3395     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
3396     return RValue::get(Dest.getPointer());
3397   }
3398 
3399   case Builtin::BI__builtin_objc_memmove_collectable: {
3400     Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
3401     Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
3402     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3403     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
3404                                                   DestAddr, SrcAddr, SizeVal);
3405     return RValue::get(DestAddr.getPointer());
3406   }
3407 
3408   case Builtin::BI__builtin___memmove_chk: {
3409     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
3410     Expr::EvalResult SizeResult, DstSizeResult;
3411     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3412         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3413       break;
3414     llvm::APSInt Size = SizeResult.Val.getInt();
3415     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3416     if (Size.ugt(DstSize))
3417       break;
3418     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3419     Address Src = EmitPointerWithAlignment(E->getArg(1));
3420     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3421     Builder.CreateMemMove(Dest, Src, SizeVal, false);
3422     return RValue::get(Dest.getPointer());
3423   }
3424 
3425   case Builtin::BImemmove:
3426   case Builtin::BI__builtin_memmove: {
3427     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3428     Address Src = EmitPointerWithAlignment(E->getArg(1));
3429     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3430     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3431                         E->getArg(0)->getExprLoc(), FD, 0);
3432     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
3433                         E->getArg(1)->getExprLoc(), FD, 1);
3434     Builder.CreateMemMove(Dest, Src, SizeVal, false);
3435     return RValue::get(Dest.getPointer());
3436   }
3437   case Builtin::BImemset:
3438   case Builtin::BI__builtin_memset: {
3439     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3440     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3441                                          Builder.getInt8Ty());
3442     Value *SizeVal = EmitScalarExpr(E->getArg(2));
3443     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
3444                         E->getArg(0)->getExprLoc(), FD, 0);
3445     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3446     return RValue::get(Dest.getPointer());
3447   }
3448   case Builtin::BI__builtin___memset_chk: {
3449     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
3450     Expr::EvalResult SizeResult, DstSizeResult;
3451     if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
3452         !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
3453       break;
3454     llvm::APSInt Size = SizeResult.Val.getInt();
3455     llvm::APSInt DstSize = DstSizeResult.Val.getInt();
3456     if (Size.ugt(DstSize))
3457       break;
3458     Address Dest = EmitPointerWithAlignment(E->getArg(0));
3459     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
3460                                          Builder.getInt8Ty());
3461     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
3462     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
3463     return RValue::get(Dest.getPointer());
3464   }
3465   case Builtin::BI__builtin_wmemchr: {
3466     // The MSVC runtime library does not provide a definition of wmemchr, so we
3467     // need an inline implementation.
3468     if (!getTarget().getTriple().isOSMSVCRT())
3469       break;
3470 
3471     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3472     Value *Str = EmitScalarExpr(E->getArg(0));
3473     Value *Chr = EmitScalarExpr(E->getArg(1));
3474     Value *Size = EmitScalarExpr(E->getArg(2));
3475 
3476     BasicBlock *Entry = Builder.GetInsertBlock();
3477     BasicBlock *CmpEq = createBasicBlock("wmemchr.eq");
3478     BasicBlock *Next = createBasicBlock("wmemchr.next");
3479     BasicBlock *Exit = createBasicBlock("wmemchr.exit");
3480     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3481     Builder.CreateCondBr(SizeEq0, Exit, CmpEq);
3482 
3483     EmitBlock(CmpEq);
3484     PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2);
3485     StrPhi->addIncoming(Str, Entry);
3486     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3487     SizePhi->addIncoming(Size, Entry);
3488     CharUnits WCharAlign =
3489         getContext().getTypeAlignInChars(getContext().WCharTy);
3490     Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign);
3491     Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0);
3492     Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr);
3493     Builder.CreateCondBr(StrEqChr, Exit, Next);
3494 
3495     EmitBlock(Next);
3496     Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1);
3497     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3498     Value *NextSizeEq0 =
3499         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3500     Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq);
3501     StrPhi->addIncoming(NextStr, Next);
3502     SizePhi->addIncoming(NextSize, Next);
3503 
3504     EmitBlock(Exit);
3505     PHINode *Ret = Builder.CreatePHI(Str->getType(), 3);
3506     Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry);
3507     Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next);
3508     Ret->addIncoming(FoundChr, CmpEq);
3509     return RValue::get(Ret);
3510   }
3511   case Builtin::BI__builtin_wmemcmp: {
3512     // The MSVC runtime library does not provide a definition of wmemcmp, so we
3513     // need an inline implementation.
3514     if (!getTarget().getTriple().isOSMSVCRT())
3515       break;
3516 
3517     llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
3518 
3519     Value *Dst = EmitScalarExpr(E->getArg(0));
3520     Value *Src = EmitScalarExpr(E->getArg(1));
3521     Value *Size = EmitScalarExpr(E->getArg(2));
3522 
3523     BasicBlock *Entry = Builder.GetInsertBlock();
3524     BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
3525     BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
3526     BasicBlock *Next = createBasicBlock("wmemcmp.next");
3527     BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
3528     Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
3529     Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
3530 
3531     EmitBlock(CmpGT);
3532     PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
3533     DstPhi->addIncoming(Dst, Entry);
3534     PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
3535     SrcPhi->addIncoming(Src, Entry);
3536     PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
3537     SizePhi->addIncoming(Size, Entry);
3538     CharUnits WCharAlign =
3539         getContext().getTypeAlignInChars(getContext().WCharTy);
3540     Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
3541     Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
3542     Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
3543     Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
3544 
3545     EmitBlock(CmpLT);
3546     Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
3547     Builder.CreateCondBr(DstLtSrc, Exit, Next);
3548 
3549     EmitBlock(Next);
3550     Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
3551     Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
3552     Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
3553     Value *NextSizeEq0 =
3554         Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
3555     Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
3556     DstPhi->addIncoming(NextDst, Next);
3557     SrcPhi->addIncoming(NextSrc, Next);
3558     SizePhi->addIncoming(NextSize, Next);
3559 
3560     EmitBlock(Exit);
3561     PHINode *Ret = Builder.CreatePHI(IntTy, 4);
3562     Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
3563     Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
3564     Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
3565     Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
3566     return RValue::get(Ret);
3567   }
3568   case Builtin::BI__builtin_dwarf_cfa: {
3569     // The offset in bytes from the first argument to the CFA.
3570     //
3571     // Why on earth is this in the frontend?  Is there any reason at
3572     // all that the backend can't reasonably determine this while
3573     // lowering llvm.eh.dwarf.cfa()?
3574     //
3575     // TODO: If there's a satisfactory reason, add a target hook for
3576     // this instead of hard-coding 0, which is correct for most targets.
3577     int32_t Offset = 0;
3578 
3579     Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
3580     return RValue::get(Builder.CreateCall(F,
3581                                       llvm::ConstantInt::get(Int32Ty, Offset)));
3582   }
3583   case Builtin::BI__builtin_return_address: {
3584     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3585                                                    getContext().UnsignedIntTy);
3586     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3587     return RValue::get(Builder.CreateCall(F, Depth));
3588   }
3589   case Builtin::BI_ReturnAddress: {
3590     Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
3591     return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
3592   }
3593   case Builtin::BI__builtin_frame_address: {
3594     Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
3595                                                    getContext().UnsignedIntTy);
3596     Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy);
3597     return RValue::get(Builder.CreateCall(F, Depth));
3598   }
3599   case Builtin::BI__builtin_extract_return_addr: {
3600     Value *Address = EmitScalarExpr(E->getArg(0));
3601     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
3602     return RValue::get(Result);
3603   }
3604   case Builtin::BI__builtin_frob_return_addr: {
3605     Value *Address = EmitScalarExpr(E->getArg(0));
3606     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
3607     return RValue::get(Result);
3608   }
3609   case Builtin::BI__builtin_dwarf_sp_column: {
3610     llvm::IntegerType *Ty
3611       = cast<llvm::IntegerType>(ConvertType(E->getType()));
3612     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
3613     if (Column == -1) {
3614       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
3615       return RValue::get(llvm::UndefValue::get(Ty));
3616     }
3617     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
3618   }
3619   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
3620     Value *Address = EmitScalarExpr(E->getArg(0));
3621     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
3622       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
3623     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
3624   }
3625   case Builtin::BI__builtin_eh_return: {
3626     Value *Int = EmitScalarExpr(E->getArg(0));
3627     Value *Ptr = EmitScalarExpr(E->getArg(1));
3628 
3629     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
3630     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
3631            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
3632     Function *F =
3633         CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
3634                                                     : Intrinsic::eh_return_i64);
3635     Builder.CreateCall(F, {Int, Ptr});
3636     Builder.CreateUnreachable();
3637 
3638     // We do need to preserve an insertion point.
3639     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
3640 
3641     return RValue::get(nullptr);
3642   }
3643   case Builtin::BI__builtin_unwind_init: {
3644     Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
3645     return RValue::get(Builder.CreateCall(F));
3646   }
3647   case Builtin::BI__builtin_extend_pointer: {
3648     // Extends a pointer to the size of an _Unwind_Word, which is
3649     // uint64_t on all platforms.  Generally this gets poked into a
3650     // register and eventually used as an address, so if the
3651     // addressing registers are wider than pointers and the platform
3652     // doesn't implicitly ignore high-order bits when doing
3653     // addressing, we need to make sure we zext / sext based on
3654     // the platform's expectations.
3655     //
3656     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
3657 
3658     // Cast the pointer to intptr_t.
3659     Value *Ptr = EmitScalarExpr(E->getArg(0));
3660     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
3661 
3662     // If that's 64 bits, we're done.
3663     if (IntPtrTy->getBitWidth() == 64)
3664       return RValue::get(Result);
3665 
3666     // Otherwise, ask the codegen data what to do.
3667     if (getTargetHooks().extendPointerWithSExt())
3668       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
3669     else
3670       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
3671   }
3672   case Builtin::BI__builtin_setjmp: {
3673     // Buffer is a void**.
3674     Address Buf = EmitPointerWithAlignment(E->getArg(0));
3675 
3676     // Store the frame pointer to the setjmp buffer.
3677     Value *FrameAddr = Builder.CreateCall(
3678         CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy),
3679         ConstantInt::get(Int32Ty, 0));
3680     Builder.CreateStore(FrameAddr, Buf);
3681 
3682     // Store the stack pointer to the setjmp buffer.
3683     Value *StackAddr =
3684         Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
3685     Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
3686     Builder.CreateStore(StackAddr, StackSaveSlot);
3687 
3688     // Call LLVM's EH setjmp, which is lightweight.
3689     Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
3690     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3691     return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
3692   }
3693   case Builtin::BI__builtin_longjmp: {
3694     Value *Buf = EmitScalarExpr(E->getArg(0));
3695     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
3696 
3697     // Call LLVM's EH longjmp, which is lightweight.
3698     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
3699 
3700     // longjmp doesn't return; mark this as unreachable.
3701     Builder.CreateUnreachable();
3702 
3703     // We do need to preserve an insertion point.
3704     EmitBlock(createBasicBlock("longjmp.cont"));
3705 
3706     return RValue::get(nullptr);
3707   }
3708   case Builtin::BI__builtin_launder: {
3709     const Expr *Arg = E->getArg(0);
3710     QualType ArgTy = Arg->getType()->getPointeeType();
3711     Value *Ptr = EmitScalarExpr(Arg);
3712     if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
3713       Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
3714 
3715     return RValue::get(Ptr);
3716   }
3717   case Builtin::BI__sync_fetch_and_add:
3718   case Builtin::BI__sync_fetch_and_sub:
3719   case Builtin::BI__sync_fetch_and_or:
3720   case Builtin::BI__sync_fetch_and_and:
3721   case Builtin::BI__sync_fetch_and_xor:
3722   case Builtin::BI__sync_fetch_and_nand:
3723   case Builtin::BI__sync_add_and_fetch:
3724   case Builtin::BI__sync_sub_and_fetch:
3725   case Builtin::BI__sync_and_and_fetch:
3726   case Builtin::BI__sync_or_and_fetch:
3727   case Builtin::BI__sync_xor_and_fetch:
3728   case Builtin::BI__sync_nand_and_fetch:
3729   case Builtin::BI__sync_val_compare_and_swap:
3730   case Builtin::BI__sync_bool_compare_and_swap:
3731   case Builtin::BI__sync_lock_test_and_set:
3732   case Builtin::BI__sync_lock_release:
3733   case Builtin::BI__sync_swap:
3734     llvm_unreachable("Shouldn't make it through sema");
3735   case Builtin::BI__sync_fetch_and_add_1:
3736   case Builtin::BI__sync_fetch_and_add_2:
3737   case Builtin::BI__sync_fetch_and_add_4:
3738   case Builtin::BI__sync_fetch_and_add_8:
3739   case Builtin::BI__sync_fetch_and_add_16:
3740     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
3741   case Builtin::BI__sync_fetch_and_sub_1:
3742   case Builtin::BI__sync_fetch_and_sub_2:
3743   case Builtin::BI__sync_fetch_and_sub_4:
3744   case Builtin::BI__sync_fetch_and_sub_8:
3745   case Builtin::BI__sync_fetch_and_sub_16:
3746     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
3747   case Builtin::BI__sync_fetch_and_or_1:
3748   case Builtin::BI__sync_fetch_and_or_2:
3749   case Builtin::BI__sync_fetch_and_or_4:
3750   case Builtin::BI__sync_fetch_and_or_8:
3751   case Builtin::BI__sync_fetch_and_or_16:
3752     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
3753   case Builtin::BI__sync_fetch_and_and_1:
3754   case Builtin::BI__sync_fetch_and_and_2:
3755   case Builtin::BI__sync_fetch_and_and_4:
3756   case Builtin::BI__sync_fetch_and_and_8:
3757   case Builtin::BI__sync_fetch_and_and_16:
3758     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
3759   case Builtin::BI__sync_fetch_and_xor_1:
3760   case Builtin::BI__sync_fetch_and_xor_2:
3761   case Builtin::BI__sync_fetch_and_xor_4:
3762   case Builtin::BI__sync_fetch_and_xor_8:
3763   case Builtin::BI__sync_fetch_and_xor_16:
3764     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
3765   case Builtin::BI__sync_fetch_and_nand_1:
3766   case Builtin::BI__sync_fetch_and_nand_2:
3767   case Builtin::BI__sync_fetch_and_nand_4:
3768   case Builtin::BI__sync_fetch_and_nand_8:
3769   case Builtin::BI__sync_fetch_and_nand_16:
3770     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
3771 
3772   // Clang extensions: not overloaded yet.
3773   case Builtin::BI__sync_fetch_and_min:
3774     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
3775   case Builtin::BI__sync_fetch_and_max:
3776     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
3777   case Builtin::BI__sync_fetch_and_umin:
3778     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
3779   case Builtin::BI__sync_fetch_and_umax:
3780     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
3781 
3782   case Builtin::BI__sync_add_and_fetch_1:
3783   case Builtin::BI__sync_add_and_fetch_2:
3784   case Builtin::BI__sync_add_and_fetch_4:
3785   case Builtin::BI__sync_add_and_fetch_8:
3786   case Builtin::BI__sync_add_and_fetch_16:
3787     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
3788                                 llvm::Instruction::Add);
3789   case Builtin::BI__sync_sub_and_fetch_1:
3790   case Builtin::BI__sync_sub_and_fetch_2:
3791   case Builtin::BI__sync_sub_and_fetch_4:
3792   case Builtin::BI__sync_sub_and_fetch_8:
3793   case Builtin::BI__sync_sub_and_fetch_16:
3794     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
3795                                 llvm::Instruction::Sub);
3796   case Builtin::BI__sync_and_and_fetch_1:
3797   case Builtin::BI__sync_and_and_fetch_2:
3798   case Builtin::BI__sync_and_and_fetch_4:
3799   case Builtin::BI__sync_and_and_fetch_8:
3800   case Builtin::BI__sync_and_and_fetch_16:
3801     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
3802                                 llvm::Instruction::And);
3803   case Builtin::BI__sync_or_and_fetch_1:
3804   case Builtin::BI__sync_or_and_fetch_2:
3805   case Builtin::BI__sync_or_and_fetch_4:
3806   case Builtin::BI__sync_or_and_fetch_8:
3807   case Builtin::BI__sync_or_and_fetch_16:
3808     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
3809                                 llvm::Instruction::Or);
3810   case Builtin::BI__sync_xor_and_fetch_1:
3811   case Builtin::BI__sync_xor_and_fetch_2:
3812   case Builtin::BI__sync_xor_and_fetch_4:
3813   case Builtin::BI__sync_xor_and_fetch_8:
3814   case Builtin::BI__sync_xor_and_fetch_16:
3815     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
3816                                 llvm::Instruction::Xor);
3817   case Builtin::BI__sync_nand_and_fetch_1:
3818   case Builtin::BI__sync_nand_and_fetch_2:
3819   case Builtin::BI__sync_nand_and_fetch_4:
3820   case Builtin::BI__sync_nand_and_fetch_8:
3821   case Builtin::BI__sync_nand_and_fetch_16:
3822     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
3823                                 llvm::Instruction::And, true);
3824 
3825   case Builtin::BI__sync_val_compare_and_swap_1:
3826   case Builtin::BI__sync_val_compare_and_swap_2:
3827   case Builtin::BI__sync_val_compare_and_swap_4:
3828   case Builtin::BI__sync_val_compare_and_swap_8:
3829   case Builtin::BI__sync_val_compare_and_swap_16:
3830     return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
3831 
3832   case Builtin::BI__sync_bool_compare_and_swap_1:
3833   case Builtin::BI__sync_bool_compare_and_swap_2:
3834   case Builtin::BI__sync_bool_compare_and_swap_4:
3835   case Builtin::BI__sync_bool_compare_and_swap_8:
3836   case Builtin::BI__sync_bool_compare_and_swap_16:
3837     return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
3838 
3839   case Builtin::BI__sync_swap_1:
3840   case Builtin::BI__sync_swap_2:
3841   case Builtin::BI__sync_swap_4:
3842   case Builtin::BI__sync_swap_8:
3843   case Builtin::BI__sync_swap_16:
3844     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3845 
3846   case Builtin::BI__sync_lock_test_and_set_1:
3847   case Builtin::BI__sync_lock_test_and_set_2:
3848   case Builtin::BI__sync_lock_test_and_set_4:
3849   case Builtin::BI__sync_lock_test_and_set_8:
3850   case Builtin::BI__sync_lock_test_and_set_16:
3851     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
3852 
3853   case Builtin::BI__sync_lock_release_1:
3854   case Builtin::BI__sync_lock_release_2:
3855   case Builtin::BI__sync_lock_release_4:
3856   case Builtin::BI__sync_lock_release_8:
3857   case Builtin::BI__sync_lock_release_16: {
3858     Value *Ptr = EmitScalarExpr(E->getArg(0));
3859     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
3860     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
3861     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
3862                                              StoreSize.getQuantity() * 8);
3863     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
3864     llvm::StoreInst *Store =
3865       Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
3866                                  StoreSize);
3867     Store->setAtomic(llvm::AtomicOrdering::Release);
3868     return RValue::get(nullptr);
3869   }
3870 
3871   case Builtin::BI__sync_synchronize: {
3872     // We assume this is supposed to correspond to a C++0x-style
3873     // sequentially-consistent fence (i.e. this is only usable for
3874     // synchronization, not device I/O or anything like that). This intrinsic
3875     // is really badly designed in the sense that in theory, there isn't
3876     // any way to safely use it... but in practice, it mostly works
3877     // to use it with non-atomic loads and stores to get acquire/release
3878     // semantics.
3879     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
3880     return RValue::get(nullptr);
3881   }
3882 
3883   case Builtin::BI__builtin_nontemporal_load:
3884     return RValue::get(EmitNontemporalLoad(*this, E));
3885   case Builtin::BI__builtin_nontemporal_store:
3886     return RValue::get(EmitNontemporalStore(*this, E));
3887   case Builtin::BI__c11_atomic_is_lock_free:
3888   case Builtin::BI__atomic_is_lock_free: {
3889     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
3890     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
3891     // _Atomic(T) is always properly-aligned.
3892     const char *LibCallName = "__atomic_is_lock_free";
3893     CallArgList Args;
3894     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
3895              getContext().getSizeType());
3896     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
3897       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
3898                getContext().VoidPtrTy);
3899     else
3900       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
3901                getContext().VoidPtrTy);
3902     const CGFunctionInfo &FuncInfo =
3903         CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
3904     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
3905     llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
3906     return EmitCall(FuncInfo, CGCallee::forDirect(Func),
3907                     ReturnValueSlot(), Args);
3908   }
3909 
3910   case Builtin::BI__atomic_test_and_set: {
3911     // Look at the argument type to determine whether this is a volatile
3912     // operation. The parameter type is always volatile.
3913     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3914     bool Volatile =
3915         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3916 
3917     Value *Ptr = EmitScalarExpr(E->getArg(0));
3918     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
3919     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
3920     Value *NewVal = Builder.getInt8(1);
3921     Value *Order = EmitScalarExpr(E->getArg(1));
3922     if (isa<llvm::ConstantInt>(Order)) {
3923       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
3924       AtomicRMWInst *Result = nullptr;
3925       switch (ord) {
3926       case 0:  // memory_order_relaxed
3927       default: // invalid order
3928         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3929                                          llvm::AtomicOrdering::Monotonic);
3930         break;
3931       case 1: // memory_order_consume
3932       case 2: // memory_order_acquire
3933         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3934                                          llvm::AtomicOrdering::Acquire);
3935         break;
3936       case 3: // memory_order_release
3937         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3938                                          llvm::AtomicOrdering::Release);
3939         break;
3940       case 4: // memory_order_acq_rel
3941 
3942         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3943                                          llvm::AtomicOrdering::AcquireRelease);
3944         break;
3945       case 5: // memory_order_seq_cst
3946         Result = Builder.CreateAtomicRMW(
3947             llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
3948             llvm::AtomicOrdering::SequentiallyConsistent);
3949         break;
3950       }
3951       Result->setVolatile(Volatile);
3952       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3953     }
3954 
3955     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
3956 
3957     llvm::BasicBlock *BBs[5] = {
3958       createBasicBlock("monotonic", CurFn),
3959       createBasicBlock("acquire", CurFn),
3960       createBasicBlock("release", CurFn),
3961       createBasicBlock("acqrel", CurFn),
3962       createBasicBlock("seqcst", CurFn)
3963     };
3964     llvm::AtomicOrdering Orders[5] = {
3965         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
3966         llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
3967         llvm::AtomicOrdering::SequentiallyConsistent};
3968 
3969     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
3970     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
3971 
3972     Builder.SetInsertPoint(ContBB);
3973     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
3974 
3975     for (unsigned i = 0; i < 5; ++i) {
3976       Builder.SetInsertPoint(BBs[i]);
3977       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
3978                                                    Ptr, NewVal, Orders[i]);
3979       RMW->setVolatile(Volatile);
3980       Result->addIncoming(RMW, BBs[i]);
3981       Builder.CreateBr(ContBB);
3982     }
3983 
3984     SI->addCase(Builder.getInt32(0), BBs[0]);
3985     SI->addCase(Builder.getInt32(1), BBs[1]);
3986     SI->addCase(Builder.getInt32(2), BBs[1]);
3987     SI->addCase(Builder.getInt32(3), BBs[2]);
3988     SI->addCase(Builder.getInt32(4), BBs[3]);
3989     SI->addCase(Builder.getInt32(5), BBs[4]);
3990 
3991     Builder.SetInsertPoint(ContBB);
3992     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
3993   }
3994 
3995   case Builtin::BI__atomic_clear: {
3996     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
3997     bool Volatile =
3998         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
3999 
4000     Address Ptr = EmitPointerWithAlignment(E->getArg(0));
4001     unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
4002     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
4003     Value *NewVal = Builder.getInt8(0);
4004     Value *Order = EmitScalarExpr(E->getArg(1));
4005     if (isa<llvm::ConstantInt>(Order)) {
4006       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4007       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4008       switch (ord) {
4009       case 0:  // memory_order_relaxed
4010       default: // invalid order
4011         Store->setOrdering(llvm::AtomicOrdering::Monotonic);
4012         break;
4013       case 3:  // memory_order_release
4014         Store->setOrdering(llvm::AtomicOrdering::Release);
4015         break;
4016       case 5:  // memory_order_seq_cst
4017         Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
4018         break;
4019       }
4020       return RValue::get(nullptr);
4021     }
4022 
4023     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4024 
4025     llvm::BasicBlock *BBs[3] = {
4026       createBasicBlock("monotonic", CurFn),
4027       createBasicBlock("release", CurFn),
4028       createBasicBlock("seqcst", CurFn)
4029     };
4030     llvm::AtomicOrdering Orders[3] = {
4031         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
4032         llvm::AtomicOrdering::SequentiallyConsistent};
4033 
4034     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4035     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
4036 
4037     for (unsigned i = 0; i < 3; ++i) {
4038       Builder.SetInsertPoint(BBs[i]);
4039       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
4040       Store->setOrdering(Orders[i]);
4041       Builder.CreateBr(ContBB);
4042     }
4043 
4044     SI->addCase(Builder.getInt32(0), BBs[0]);
4045     SI->addCase(Builder.getInt32(3), BBs[1]);
4046     SI->addCase(Builder.getInt32(5), BBs[2]);
4047 
4048     Builder.SetInsertPoint(ContBB);
4049     return RValue::get(nullptr);
4050   }
4051 
4052   case Builtin::BI__atomic_thread_fence:
4053   case Builtin::BI__atomic_signal_fence:
4054   case Builtin::BI__c11_atomic_thread_fence:
4055   case Builtin::BI__c11_atomic_signal_fence: {
4056     llvm::SyncScope::ID SSID;
4057     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
4058         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
4059       SSID = llvm::SyncScope::SingleThread;
4060     else
4061       SSID = llvm::SyncScope::System;
4062     Value *Order = EmitScalarExpr(E->getArg(0));
4063     if (isa<llvm::ConstantInt>(Order)) {
4064       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
4065       switch (ord) {
4066       case 0:  // memory_order_relaxed
4067       default: // invalid order
4068         break;
4069       case 1:  // memory_order_consume
4070       case 2:  // memory_order_acquire
4071         Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4072         break;
4073       case 3:  // memory_order_release
4074         Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4075         break;
4076       case 4:  // memory_order_acq_rel
4077         Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4078         break;
4079       case 5:  // memory_order_seq_cst
4080         Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4081         break;
4082       }
4083       return RValue::get(nullptr);
4084     }
4085 
4086     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
4087     AcquireBB = createBasicBlock("acquire", CurFn);
4088     ReleaseBB = createBasicBlock("release", CurFn);
4089     AcqRelBB = createBasicBlock("acqrel", CurFn);
4090     SeqCstBB = createBasicBlock("seqcst", CurFn);
4091     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
4092 
4093     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
4094     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
4095 
4096     Builder.SetInsertPoint(AcquireBB);
4097     Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
4098     Builder.CreateBr(ContBB);
4099     SI->addCase(Builder.getInt32(1), AcquireBB);
4100     SI->addCase(Builder.getInt32(2), AcquireBB);
4101 
4102     Builder.SetInsertPoint(ReleaseBB);
4103     Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
4104     Builder.CreateBr(ContBB);
4105     SI->addCase(Builder.getInt32(3), ReleaseBB);
4106 
4107     Builder.SetInsertPoint(AcqRelBB);
4108     Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
4109     Builder.CreateBr(ContBB);
4110     SI->addCase(Builder.getInt32(4), AcqRelBB);
4111 
4112     Builder.SetInsertPoint(SeqCstBB);
4113     Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
4114     Builder.CreateBr(ContBB);
4115     SI->addCase(Builder.getInt32(5), SeqCstBB);
4116 
4117     Builder.SetInsertPoint(ContBB);
4118     return RValue::get(nullptr);
4119   }
4120 
4121   case Builtin::BI__builtin_signbit:
4122   case Builtin::BI__builtin_signbitf:
4123   case Builtin::BI__builtin_signbitl: {
4124     return RValue::get(
4125         Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
4126                            ConvertType(E->getType())));
4127   }
4128   case Builtin::BI__warn_memset_zero_len:
4129     return RValue::getIgnored();
4130   case Builtin::BI__annotation: {
4131     // Re-encode each wide string to UTF8 and make an MDString.
4132     SmallVector<Metadata *, 1> Strings;
4133     for (const Expr *Arg : E->arguments()) {
4134       const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
4135       assert(Str->getCharByteWidth() == 2);
4136       StringRef WideBytes = Str->getBytes();
4137       std::string StrUtf8;
4138       if (!convertUTF16ToUTF8String(
4139               makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
4140         CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
4141         continue;
4142       }
4143       Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
4144     }
4145 
4146     // Build and MDTuple of MDStrings and emit the intrinsic call.
4147     llvm::Function *F =
4148         CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
4149     MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
4150     Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
4151     return RValue::getIgnored();
4152   }
4153   case Builtin::BI__builtin_annotation: {
4154     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
4155     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
4156                                       AnnVal->getType());
4157 
4158     // Get the annotation string, go through casts. Sema requires this to be a
4159     // non-wide string literal, potentially casted, so the cast<> is safe.
4160     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
4161     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
4162     return RValue::get(
4163         EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr));
4164   }
4165   case Builtin::BI__builtin_addcb:
4166   case Builtin::BI__builtin_addcs:
4167   case Builtin::BI__builtin_addc:
4168   case Builtin::BI__builtin_addcl:
4169   case Builtin::BI__builtin_addcll:
4170   case Builtin::BI__builtin_subcb:
4171   case Builtin::BI__builtin_subcs:
4172   case Builtin::BI__builtin_subc:
4173   case Builtin::BI__builtin_subcl:
4174   case Builtin::BI__builtin_subcll: {
4175 
4176     // We translate all of these builtins from expressions of the form:
4177     //   int x = ..., y = ..., carryin = ..., carryout, result;
4178     //   result = __builtin_addc(x, y, carryin, &carryout);
4179     //
4180     // to LLVM IR of the form:
4181     //
4182     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
4183     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
4184     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
4185     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
4186     //                                                       i32 %carryin)
4187     //   %result = extractvalue {i32, i1} %tmp2, 0
4188     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
4189     //   %tmp3 = or i1 %carry1, %carry2
4190     //   %tmp4 = zext i1 %tmp3 to i32
4191     //   store i32 %tmp4, i32* %carryout
4192 
4193     // Scalarize our inputs.
4194     llvm::Value *X = EmitScalarExpr(E->getArg(0));
4195     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4196     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
4197     Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
4198 
4199     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
4200     llvm::Intrinsic::ID IntrinsicId;
4201     switch (BuiltinID) {
4202     default: llvm_unreachable("Unknown multiprecision builtin id.");
4203     case Builtin::BI__builtin_addcb:
4204     case Builtin::BI__builtin_addcs:
4205     case Builtin::BI__builtin_addc:
4206     case Builtin::BI__builtin_addcl:
4207     case Builtin::BI__builtin_addcll:
4208       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4209       break;
4210     case Builtin::BI__builtin_subcb:
4211     case Builtin::BI__builtin_subcs:
4212     case Builtin::BI__builtin_subc:
4213     case Builtin::BI__builtin_subcl:
4214     case Builtin::BI__builtin_subcll:
4215       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4216       break;
4217     }
4218 
4219     // Construct our resulting LLVM IR expression.
4220     llvm::Value *Carry1;
4221     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
4222                                               X, Y, Carry1);
4223     llvm::Value *Carry2;
4224     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
4225                                               Sum1, Carryin, Carry2);
4226     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
4227                                                X->getType());
4228     Builder.CreateStore(CarryOut, CarryOutPtr);
4229     return RValue::get(Sum2);
4230   }
4231 
4232   case Builtin::BI__builtin_add_overflow:
4233   case Builtin::BI__builtin_sub_overflow:
4234   case Builtin::BI__builtin_mul_overflow: {
4235     const clang::Expr *LeftArg = E->getArg(0);
4236     const clang::Expr *RightArg = E->getArg(1);
4237     const clang::Expr *ResultArg = E->getArg(2);
4238 
4239     clang::QualType ResultQTy =
4240         ResultArg->getType()->castAs<PointerType>()->getPointeeType();
4241 
4242     WidthAndSignedness LeftInfo =
4243         getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
4244     WidthAndSignedness RightInfo =
4245         getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
4246     WidthAndSignedness ResultInfo =
4247         getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
4248 
4249     // Handle mixed-sign multiplication as a special case, because adding
4250     // runtime or backend support for our generic irgen would be too expensive.
4251     if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
4252       return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
4253                                           RightInfo, ResultArg, ResultQTy,
4254                                           ResultInfo);
4255 
4256     if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo,
4257                                               ResultInfo))
4258       return EmitCheckedUnsignedMultiplySignedResult(
4259           *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy,
4260           ResultInfo);
4261 
4262     WidthAndSignedness EncompassingInfo =
4263         EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
4264 
4265     llvm::Type *EncompassingLLVMTy =
4266         llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
4267 
4268     llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
4269 
4270     llvm::Intrinsic::ID IntrinsicId;
4271     switch (BuiltinID) {
4272     default:
4273       llvm_unreachable("Unknown overflow builtin id.");
4274     case Builtin::BI__builtin_add_overflow:
4275       IntrinsicId = EncompassingInfo.Signed
4276                         ? llvm::Intrinsic::sadd_with_overflow
4277                         : llvm::Intrinsic::uadd_with_overflow;
4278       break;
4279     case Builtin::BI__builtin_sub_overflow:
4280       IntrinsicId = EncompassingInfo.Signed
4281                         ? llvm::Intrinsic::ssub_with_overflow
4282                         : llvm::Intrinsic::usub_with_overflow;
4283       break;
4284     case Builtin::BI__builtin_mul_overflow:
4285       IntrinsicId = EncompassingInfo.Signed
4286                         ? llvm::Intrinsic::smul_with_overflow
4287                         : llvm::Intrinsic::umul_with_overflow;
4288       break;
4289     }
4290 
4291     llvm::Value *Left = EmitScalarExpr(LeftArg);
4292     llvm::Value *Right = EmitScalarExpr(RightArg);
4293     Address ResultPtr = EmitPointerWithAlignment(ResultArg);
4294 
4295     // Extend each operand to the encompassing type.
4296     Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
4297     Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
4298 
4299     // Perform the operation on the extended values.
4300     llvm::Value *Overflow, *Result;
4301     Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
4302 
4303     if (EncompassingInfo.Width > ResultInfo.Width) {
4304       // The encompassing type is wider than the result type, so we need to
4305       // truncate it.
4306       llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
4307 
4308       // To see if the truncation caused an overflow, we will extend
4309       // the result and then compare it to the original result.
4310       llvm::Value *ResultTruncExt = Builder.CreateIntCast(
4311           ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
4312       llvm::Value *TruncationOverflow =
4313           Builder.CreateICmpNE(Result, ResultTruncExt);
4314 
4315       Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
4316       Result = ResultTrunc;
4317     }
4318 
4319     // Finally, store the result using the pointer.
4320     bool isVolatile =
4321       ResultArg->getType()->getPointeeType().isVolatileQualified();
4322     Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
4323 
4324     return RValue::get(Overflow);
4325   }
4326 
4327   case Builtin::BI__builtin_uadd_overflow:
4328   case Builtin::BI__builtin_uaddl_overflow:
4329   case Builtin::BI__builtin_uaddll_overflow:
4330   case Builtin::BI__builtin_usub_overflow:
4331   case Builtin::BI__builtin_usubl_overflow:
4332   case Builtin::BI__builtin_usubll_overflow:
4333   case Builtin::BI__builtin_umul_overflow:
4334   case Builtin::BI__builtin_umull_overflow:
4335   case Builtin::BI__builtin_umulll_overflow:
4336   case Builtin::BI__builtin_sadd_overflow:
4337   case Builtin::BI__builtin_saddl_overflow:
4338   case Builtin::BI__builtin_saddll_overflow:
4339   case Builtin::BI__builtin_ssub_overflow:
4340   case Builtin::BI__builtin_ssubl_overflow:
4341   case Builtin::BI__builtin_ssubll_overflow:
4342   case Builtin::BI__builtin_smul_overflow:
4343   case Builtin::BI__builtin_smull_overflow:
4344   case Builtin::BI__builtin_smulll_overflow: {
4345 
4346     // We translate all of these builtins directly to the relevant llvm IR node.
4347 
4348     // Scalarize our inputs.
4349     llvm::Value *X = EmitScalarExpr(E->getArg(0));
4350     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
4351     Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
4352 
4353     // Decide which of the overflow intrinsics we are lowering to:
4354     llvm::Intrinsic::ID IntrinsicId;
4355     switch (BuiltinID) {
4356     default: llvm_unreachable("Unknown overflow builtin id.");
4357     case Builtin::BI__builtin_uadd_overflow:
4358     case Builtin::BI__builtin_uaddl_overflow:
4359     case Builtin::BI__builtin_uaddll_overflow:
4360       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
4361       break;
4362     case Builtin::BI__builtin_usub_overflow:
4363     case Builtin::BI__builtin_usubl_overflow:
4364     case Builtin::BI__builtin_usubll_overflow:
4365       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
4366       break;
4367     case Builtin::BI__builtin_umul_overflow:
4368     case Builtin::BI__builtin_umull_overflow:
4369     case Builtin::BI__builtin_umulll_overflow:
4370       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
4371       break;
4372     case Builtin::BI__builtin_sadd_overflow:
4373     case Builtin::BI__builtin_saddl_overflow:
4374     case Builtin::BI__builtin_saddll_overflow:
4375       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
4376       break;
4377     case Builtin::BI__builtin_ssub_overflow:
4378     case Builtin::BI__builtin_ssubl_overflow:
4379     case Builtin::BI__builtin_ssubll_overflow:
4380       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
4381       break;
4382     case Builtin::BI__builtin_smul_overflow:
4383     case Builtin::BI__builtin_smull_overflow:
4384     case Builtin::BI__builtin_smulll_overflow:
4385       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
4386       break;
4387     }
4388 
4389 
4390     llvm::Value *Carry;
4391     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
4392     Builder.CreateStore(Sum, SumOutPtr);
4393 
4394     return RValue::get(Carry);
4395   }
4396   case Builtin::BI__builtin_addressof:
4397     return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this));
4398   case Builtin::BI__builtin_operator_new:
4399     return EmitBuiltinNewDeleteCall(
4400         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
4401   case Builtin::BI__builtin_operator_delete:
4402     return EmitBuiltinNewDeleteCall(
4403         E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
4404 
4405   case Builtin::BI__builtin_is_aligned:
4406     return EmitBuiltinIsAligned(E);
4407   case Builtin::BI__builtin_align_up:
4408     return EmitBuiltinAlignTo(E, true);
4409   case Builtin::BI__builtin_align_down:
4410     return EmitBuiltinAlignTo(E, false);
4411 
4412   case Builtin::BI__noop:
4413     // __noop always evaluates to an integer literal zero.
4414     return RValue::get(ConstantInt::get(IntTy, 0));
4415   case Builtin::BI__builtin_call_with_static_chain: {
4416     const CallExpr *Call = cast<CallExpr>(E->getArg(0));
4417     const Expr *Chain = E->getArg(1);
4418     return EmitCall(Call->getCallee()->getType(),
4419                     EmitCallee(Call->getCallee()), Call, ReturnValue,
4420                     EmitScalarExpr(Chain));
4421   }
4422   case Builtin::BI_InterlockedExchange8:
4423   case Builtin::BI_InterlockedExchange16:
4424   case Builtin::BI_InterlockedExchange:
4425   case Builtin::BI_InterlockedExchangePointer:
4426     return RValue::get(
4427         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
4428   case Builtin::BI_InterlockedCompareExchangePointer:
4429   case Builtin::BI_InterlockedCompareExchangePointer_nf: {
4430     llvm::Type *RTy;
4431     llvm::IntegerType *IntType =
4432       IntegerType::get(getLLVMContext(),
4433                        getContext().getTypeSize(E->getType()));
4434     llvm::Type *IntPtrType = IntType->getPointerTo();
4435 
4436     llvm::Value *Destination =
4437       Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
4438 
4439     llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
4440     RTy = Exchange->getType();
4441     Exchange = Builder.CreatePtrToInt(Exchange, IntType);
4442 
4443     llvm::Value *Comparand =
4444       Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
4445 
4446     auto Ordering =
4447       BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
4448       AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
4449 
4450     auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
4451                                               Ordering, Ordering);
4452     Result->setVolatile(true);
4453 
4454     return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
4455                                                                          0),
4456                                               RTy));
4457   }
4458   case Builtin::BI_InterlockedCompareExchange8:
4459   case Builtin::BI_InterlockedCompareExchange16:
4460   case Builtin::BI_InterlockedCompareExchange:
4461   case Builtin::BI_InterlockedCompareExchange64:
4462     return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
4463   case Builtin::BI_InterlockedIncrement16:
4464   case Builtin::BI_InterlockedIncrement:
4465     return RValue::get(
4466         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
4467   case Builtin::BI_InterlockedDecrement16:
4468   case Builtin::BI_InterlockedDecrement:
4469     return RValue::get(
4470         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
4471   case Builtin::BI_InterlockedAnd8:
4472   case Builtin::BI_InterlockedAnd16:
4473   case Builtin::BI_InterlockedAnd:
4474     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
4475   case Builtin::BI_InterlockedExchangeAdd8:
4476   case Builtin::BI_InterlockedExchangeAdd16:
4477   case Builtin::BI_InterlockedExchangeAdd:
4478     return RValue::get(
4479         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
4480   case Builtin::BI_InterlockedExchangeSub8:
4481   case Builtin::BI_InterlockedExchangeSub16:
4482   case Builtin::BI_InterlockedExchangeSub:
4483     return RValue::get(
4484         EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
4485   case Builtin::BI_InterlockedOr8:
4486   case Builtin::BI_InterlockedOr16:
4487   case Builtin::BI_InterlockedOr:
4488     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
4489   case Builtin::BI_InterlockedXor8:
4490   case Builtin::BI_InterlockedXor16:
4491   case Builtin::BI_InterlockedXor:
4492     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
4493 
4494   case Builtin::BI_bittest64:
4495   case Builtin::BI_bittest:
4496   case Builtin::BI_bittestandcomplement64:
4497   case Builtin::BI_bittestandcomplement:
4498   case Builtin::BI_bittestandreset64:
4499   case Builtin::BI_bittestandreset:
4500   case Builtin::BI_bittestandset64:
4501   case Builtin::BI_bittestandset:
4502   case Builtin::BI_interlockedbittestandreset:
4503   case Builtin::BI_interlockedbittestandreset64:
4504   case Builtin::BI_interlockedbittestandset64:
4505   case Builtin::BI_interlockedbittestandset:
4506   case Builtin::BI_interlockedbittestandset_acq:
4507   case Builtin::BI_interlockedbittestandset_rel:
4508   case Builtin::BI_interlockedbittestandset_nf:
4509   case Builtin::BI_interlockedbittestandreset_acq:
4510   case Builtin::BI_interlockedbittestandreset_rel:
4511   case Builtin::BI_interlockedbittestandreset_nf:
4512     return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
4513 
4514     // These builtins exist to emit regular volatile loads and stores not
4515     // affected by the -fms-volatile setting.
4516   case Builtin::BI__iso_volatile_load8:
4517   case Builtin::BI__iso_volatile_load16:
4518   case Builtin::BI__iso_volatile_load32:
4519   case Builtin::BI__iso_volatile_load64:
4520     return RValue::get(EmitISOVolatileLoad(*this, E));
4521   case Builtin::BI__iso_volatile_store8:
4522   case Builtin::BI__iso_volatile_store16:
4523   case Builtin::BI__iso_volatile_store32:
4524   case Builtin::BI__iso_volatile_store64:
4525     return RValue::get(EmitISOVolatileStore(*this, E));
4526 
4527   case Builtin::BI__exception_code:
4528   case Builtin::BI_exception_code:
4529     return RValue::get(EmitSEHExceptionCode());
4530   case Builtin::BI__exception_info:
4531   case Builtin::BI_exception_info:
4532     return RValue::get(EmitSEHExceptionInfo());
4533   case Builtin::BI__abnormal_termination:
4534   case Builtin::BI_abnormal_termination:
4535     return RValue::get(EmitSEHAbnormalTermination());
4536   case Builtin::BI_setjmpex:
4537     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4538         E->getArg(0)->getType()->isPointerType())
4539       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4540     break;
4541   case Builtin::BI_setjmp:
4542     if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 &&
4543         E->getArg(0)->getType()->isPointerType()) {
4544       if (getTarget().getTriple().getArch() == llvm::Triple::x86)
4545         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
4546       else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
4547         return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
4548       return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
4549     }
4550     break;
4551 
4552   case Builtin::BI__GetExceptionInfo: {
4553     if (llvm::GlobalVariable *GV =
4554             CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
4555       return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
4556     break;
4557   }
4558 
4559   case Builtin::BI__fastfail:
4560     return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
4561 
4562   case Builtin::BI__builtin_coro_size: {
4563     auto & Context = getContext();
4564     auto SizeTy = Context.getSizeType();
4565     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
4566     Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
4567     return RValue::get(Builder.CreateCall(F));
4568   }
4569 
4570   case Builtin::BI__builtin_coro_id:
4571     return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
4572   case Builtin::BI__builtin_coro_promise:
4573     return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
4574   case Builtin::BI__builtin_coro_resume:
4575     return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
4576   case Builtin::BI__builtin_coro_frame:
4577     return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
4578   case Builtin::BI__builtin_coro_noop:
4579     return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
4580   case Builtin::BI__builtin_coro_free:
4581     return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
4582   case Builtin::BI__builtin_coro_destroy:
4583     return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
4584   case Builtin::BI__builtin_coro_done:
4585     return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
4586   case Builtin::BI__builtin_coro_alloc:
4587     return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
4588   case Builtin::BI__builtin_coro_begin:
4589     return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
4590   case Builtin::BI__builtin_coro_end:
4591     return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
4592   case Builtin::BI__builtin_coro_suspend:
4593     return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
4594   case Builtin::BI__builtin_coro_param:
4595     return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
4596 
4597   // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
4598   case Builtin::BIread_pipe:
4599   case Builtin::BIwrite_pipe: {
4600     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4601           *Arg1 = EmitScalarExpr(E->getArg(1));
4602     CGOpenCLRuntime OpenCLRT(CGM);
4603     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4604     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4605 
4606     // Type of the generic packet parameter.
4607     unsigned GenericAS =
4608         getContext().getTargetAddressSpace(LangAS::opencl_generic);
4609     llvm::Type *I8PTy = llvm::PointerType::get(
4610         llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
4611 
4612     // Testing which overloaded version we should generate the call for.
4613     if (2U == E->getNumArgs()) {
4614       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
4615                                                              : "__write_pipe_2";
4616       // Creating a generic function type to be able to call with any builtin or
4617       // user defined type.
4618       llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
4619       llvm::FunctionType *FTy = llvm::FunctionType::get(
4620           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4621       Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
4622       return RValue::get(
4623           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4624                           {Arg0, BCast, PacketSize, PacketAlign}));
4625     } else {
4626       assert(4 == E->getNumArgs() &&
4627              "Illegal number of parameters to pipe function");
4628       const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
4629                                                              : "__write_pipe_4";
4630 
4631       llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
4632                               Int32Ty, Int32Ty};
4633       Value *Arg2 = EmitScalarExpr(E->getArg(2)),
4634             *Arg3 = EmitScalarExpr(E->getArg(3));
4635       llvm::FunctionType *FTy = llvm::FunctionType::get(
4636           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4637       Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
4638       // We know the third argument is an integer type, but we may need to cast
4639       // it to i32.
4640       if (Arg2->getType() != Int32Ty)
4641         Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
4642       return RValue::get(
4643           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4644                           {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
4645     }
4646   }
4647   // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
4648   // functions
4649   case Builtin::BIreserve_read_pipe:
4650   case Builtin::BIreserve_write_pipe:
4651   case Builtin::BIwork_group_reserve_read_pipe:
4652   case Builtin::BIwork_group_reserve_write_pipe:
4653   case Builtin::BIsub_group_reserve_read_pipe:
4654   case Builtin::BIsub_group_reserve_write_pipe: {
4655     // Composing the mangled name for the function.
4656     const char *Name;
4657     if (BuiltinID == Builtin::BIreserve_read_pipe)
4658       Name = "__reserve_read_pipe";
4659     else if (BuiltinID == Builtin::BIreserve_write_pipe)
4660       Name = "__reserve_write_pipe";
4661     else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
4662       Name = "__work_group_reserve_read_pipe";
4663     else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
4664       Name = "__work_group_reserve_write_pipe";
4665     else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
4666       Name = "__sub_group_reserve_read_pipe";
4667     else
4668       Name = "__sub_group_reserve_write_pipe";
4669 
4670     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4671           *Arg1 = EmitScalarExpr(E->getArg(1));
4672     llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
4673     CGOpenCLRuntime OpenCLRT(CGM);
4674     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4675     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4676 
4677     // Building the generic function prototype.
4678     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
4679     llvm::FunctionType *FTy = llvm::FunctionType::get(
4680         ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4681     // We know the second argument is an integer type, but we may need to cast
4682     // it to i32.
4683     if (Arg1->getType() != Int32Ty)
4684       Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
4685     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4686                                        {Arg0, Arg1, PacketSize, PacketAlign}));
4687   }
4688   // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
4689   // functions
4690   case Builtin::BIcommit_read_pipe:
4691   case Builtin::BIcommit_write_pipe:
4692   case Builtin::BIwork_group_commit_read_pipe:
4693   case Builtin::BIwork_group_commit_write_pipe:
4694   case Builtin::BIsub_group_commit_read_pipe:
4695   case Builtin::BIsub_group_commit_write_pipe: {
4696     const char *Name;
4697     if (BuiltinID == Builtin::BIcommit_read_pipe)
4698       Name = "__commit_read_pipe";
4699     else if (BuiltinID == Builtin::BIcommit_write_pipe)
4700       Name = "__commit_write_pipe";
4701     else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
4702       Name = "__work_group_commit_read_pipe";
4703     else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
4704       Name = "__work_group_commit_write_pipe";
4705     else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
4706       Name = "__sub_group_commit_read_pipe";
4707     else
4708       Name = "__sub_group_commit_write_pipe";
4709 
4710     Value *Arg0 = EmitScalarExpr(E->getArg(0)),
4711           *Arg1 = EmitScalarExpr(E->getArg(1));
4712     CGOpenCLRuntime OpenCLRT(CGM);
4713     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4714     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4715 
4716     // Building the generic function prototype.
4717     llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
4718     llvm::FunctionType *FTy =
4719         llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
4720                                 llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4721 
4722     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4723                                        {Arg0, Arg1, PacketSize, PacketAlign}));
4724   }
4725   // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
4726   case Builtin::BIget_pipe_num_packets:
4727   case Builtin::BIget_pipe_max_packets: {
4728     const char *BaseName;
4729     const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>();
4730     if (BuiltinID == Builtin::BIget_pipe_num_packets)
4731       BaseName = "__get_pipe_num_packets";
4732     else
4733       BaseName = "__get_pipe_max_packets";
4734     std::string Name = std::string(BaseName) +
4735                        std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
4736 
4737     // Building the generic function prototype.
4738     Value *Arg0 = EmitScalarExpr(E->getArg(0));
4739     CGOpenCLRuntime OpenCLRT(CGM);
4740     Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
4741     Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
4742     llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
4743     llvm::FunctionType *FTy = llvm::FunctionType::get(
4744         Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4745 
4746     return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4747                                        {Arg0, PacketSize, PacketAlign}));
4748   }
4749 
4750   // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
4751   case Builtin::BIto_global:
4752   case Builtin::BIto_local:
4753   case Builtin::BIto_private: {
4754     auto Arg0 = EmitScalarExpr(E->getArg(0));
4755     auto NewArgT = llvm::PointerType::get(Int8Ty,
4756       CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4757     auto NewRetT = llvm::PointerType::get(Int8Ty,
4758       CGM.getContext().getTargetAddressSpace(
4759         E->getType()->getPointeeType().getAddressSpace()));
4760     auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
4761     llvm::Value *NewArg;
4762     if (Arg0->getType()->getPointerAddressSpace() !=
4763         NewArgT->getPointerAddressSpace())
4764       NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
4765     else
4766       NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
4767     auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
4768     auto NewCall =
4769         EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
4770     return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
4771       ConvertType(E->getType())));
4772   }
4773 
4774   // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
4775   // It contains four different overload formats specified in Table 6.13.17.1.
4776   case Builtin::BIenqueue_kernel: {
4777     StringRef Name; // Generated function call name
4778     unsigned NumArgs = E->getNumArgs();
4779 
4780     llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
4781     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4782         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4783 
4784     llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
4785     llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
4786     LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
4787     llvm::Value *Range = NDRangeL.getAddress(*this).getPointer();
4788     llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType();
4789 
4790     if (NumArgs == 4) {
4791       // The most basic form of the call with parameters:
4792       // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
4793       Name = "__enqueue_kernel_basic";
4794       llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
4795                               GenericVoidPtrTy};
4796       llvm::FunctionType *FTy = llvm::FunctionType::get(
4797           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4798 
4799       auto Info =
4800           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4801       llvm::Value *Kernel =
4802           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4803       llvm::Value *Block =
4804           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4805 
4806       AttrBuilder B;
4807       B.addByValAttr(NDRangeL.getAddress(*this).getElementType());
4808       llvm::AttributeList ByValAttrSet =
4809           llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
4810 
4811       auto RTCall =
4812           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
4813                           {Queue, Flags, Range, Kernel, Block});
4814       RTCall->setAttributes(ByValAttrSet);
4815       return RValue::get(RTCall);
4816     }
4817     assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
4818 
4819     // Create a temporary array to hold the sizes of local pointer arguments
4820     // for the block. \p First is the position of the first size argument.
4821     auto CreateArrayForSizeVar = [=](unsigned First)
4822         -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
4823       llvm::APInt ArraySize(32, NumArgs - First);
4824       QualType SizeArrayTy = getContext().getConstantArrayType(
4825           getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal,
4826           /*IndexTypeQuals=*/0);
4827       auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
4828       llvm::Value *TmpPtr = Tmp.getPointer();
4829       llvm::Value *TmpSize = EmitLifetimeStart(
4830           CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
4831       llvm::Value *ElemPtr;
4832       // Each of the following arguments specifies the size of the corresponding
4833       // argument passed to the enqueued block.
4834       auto *Zero = llvm::ConstantInt::get(IntTy, 0);
4835       for (unsigned I = First; I < NumArgs; ++I) {
4836         auto *Index = llvm::ConstantInt::get(IntTy, I - First);
4837         auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr,
4838                                       {Zero, Index});
4839         if (I == First)
4840           ElemPtr = GEP;
4841         auto *V =
4842             Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
4843         Builder.CreateAlignedStore(
4844             V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy));
4845       }
4846       return std::tie(ElemPtr, TmpSize, TmpPtr);
4847     };
4848 
4849     // Could have events and/or varargs.
4850     if (E->getArg(3)->getType()->isBlockPointerType()) {
4851       // No events passed, but has variadic arguments.
4852       Name = "__enqueue_kernel_varargs";
4853       auto Info =
4854           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
4855       llvm::Value *Kernel =
4856           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4857       auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4858       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4859       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
4860 
4861       // Create a vector of the arguments, as well as a constant value to
4862       // express to the runtime the number of variadic arguments.
4863       llvm::Value *const Args[] = {Queue,  Flags,
4864                                    Range,  Kernel,
4865                                    Block,  ConstantInt::get(IntTy, NumArgs - 4),
4866                                    ElemPtr};
4867       llvm::Type *const ArgTys[] = {
4868           QueueTy,          IntTy, RangeTy,           GenericVoidPtrTy,
4869           GenericVoidPtrTy, IntTy, ElemPtr->getType()};
4870 
4871       llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false);
4872       auto Call = RValue::get(
4873           EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args));
4874       if (TmpSize)
4875         EmitLifetimeEnd(TmpSize, TmpPtr);
4876       return Call;
4877     }
4878     // Any calls now have event arguments passed.
4879     if (NumArgs >= 7) {
4880       llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
4881       llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
4882           CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
4883 
4884       llvm::Value *NumEvents =
4885           Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
4886 
4887       // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
4888       // to be a null pointer constant (including `0` literal), we can take it
4889       // into account and emit null pointer directly.
4890       llvm::Value *EventWaitList = nullptr;
4891       if (E->getArg(4)->isNullPointerConstant(
4892               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4893         EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
4894       } else {
4895         EventWaitList = E->getArg(4)->getType()->isArrayType()
4896                         ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
4897                         : EmitScalarExpr(E->getArg(4));
4898         // Convert to generic address space.
4899         EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
4900       }
4901       llvm::Value *EventRet = nullptr;
4902       if (E->getArg(5)->isNullPointerConstant(
4903               getContext(), Expr::NPC_ValueDependentIsNotNull)) {
4904         EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
4905       } else {
4906         EventRet =
4907             Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
4908       }
4909 
4910       auto Info =
4911           CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
4912       llvm::Value *Kernel =
4913           Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4914       llvm::Value *Block =
4915           Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4916 
4917       std::vector<llvm::Type *> ArgTys = {
4918           QueueTy,    Int32Ty,    RangeTy,          Int32Ty,
4919           EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
4920 
4921       std::vector<llvm::Value *> Args = {Queue,     Flags,         Range,
4922                                          NumEvents, EventWaitList, EventRet,
4923                                          Kernel,    Block};
4924 
4925       if (NumArgs == 7) {
4926         // Has events but no variadics.
4927         Name = "__enqueue_kernel_basic_events";
4928         llvm::FunctionType *FTy = llvm::FunctionType::get(
4929             Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4930         return RValue::get(
4931             EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4932                             llvm::ArrayRef<llvm::Value *>(Args)));
4933       }
4934       // Has event info and variadics
4935       // Pass the number of variadics to the runtime function too.
4936       Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
4937       ArgTys.push_back(Int32Ty);
4938       Name = "__enqueue_kernel_events_varargs";
4939 
4940       llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
4941       std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
4942       Args.push_back(ElemPtr);
4943       ArgTys.push_back(ElemPtr->getType());
4944 
4945       llvm::FunctionType *FTy = llvm::FunctionType::get(
4946           Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
4947       auto Call =
4948           RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name),
4949                                       llvm::ArrayRef<llvm::Value *>(Args)));
4950       if (TmpSize)
4951         EmitLifetimeEnd(TmpSize, TmpPtr);
4952       return Call;
4953     }
4954     LLVM_FALLTHROUGH;
4955   }
4956   // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
4957   // parameter.
4958   case Builtin::BIget_kernel_work_group_size: {
4959     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4960         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4961     auto Info =
4962         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4963     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4964     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4965     return RValue::get(EmitRuntimeCall(
4966         CGM.CreateRuntimeFunction(
4967             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4968                                     false),
4969             "__get_kernel_work_group_size_impl"),
4970         {Kernel, Arg}));
4971   }
4972   case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
4973     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4974         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4975     auto Info =
4976         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
4977     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4978     Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4979     return RValue::get(EmitRuntimeCall(
4980         CGM.CreateRuntimeFunction(
4981             llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
4982                                     false),
4983             "__get_kernel_preferred_work_group_size_multiple_impl"),
4984         {Kernel, Arg}));
4985   }
4986   case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
4987   case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
4988     llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
4989         getContext().getTargetAddressSpace(LangAS::opencl_generic));
4990     LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
4991     llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer();
4992     auto Info =
4993         CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
4994     Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
4995     Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
4996     const char *Name =
4997         BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
4998             ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
4999             : "__get_kernel_sub_group_count_for_ndrange_impl";
5000     return RValue::get(EmitRuntimeCall(
5001         CGM.CreateRuntimeFunction(
5002             llvm::FunctionType::get(
5003                 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
5004                 false),
5005             Name),
5006         {NDRange, Kernel, Block}));
5007   }
5008 
5009   case Builtin::BI__builtin_store_half:
5010   case Builtin::BI__builtin_store_halff: {
5011     Value *Val = EmitScalarExpr(E->getArg(0));
5012     Address Address = EmitPointerWithAlignment(E->getArg(1));
5013     Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
5014     return RValue::get(Builder.CreateStore(HalfVal, Address));
5015   }
5016   case Builtin::BI__builtin_load_half: {
5017     Address Address = EmitPointerWithAlignment(E->getArg(0));
5018     Value *HalfVal = Builder.CreateLoad(Address);
5019     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
5020   }
5021   case Builtin::BI__builtin_load_halff: {
5022     Address Address = EmitPointerWithAlignment(E->getArg(0));
5023     Value *HalfVal = Builder.CreateLoad(Address);
5024     return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
5025   }
5026   case Builtin::BIprintf:
5027     if (getTarget().getTriple().isNVPTX())
5028       return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
5029     if (getTarget().getTriple().getArch() == Triple::amdgcn &&
5030         getLangOpts().HIP)
5031       return EmitAMDGPUDevicePrintfCallExpr(E, ReturnValue);
5032     break;
5033   case Builtin::BI__builtin_canonicalize:
5034   case Builtin::BI__builtin_canonicalizef:
5035   case Builtin::BI__builtin_canonicalizef16:
5036   case Builtin::BI__builtin_canonicalizel:
5037     return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
5038 
5039   case Builtin::BI__builtin_thread_pointer: {
5040     if (!getContext().getTargetInfo().isTLSSupported())
5041       CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
5042     // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
5043     break;
5044   }
5045   case Builtin::BI__builtin_os_log_format:
5046     return emitBuiltinOSLogFormat(*E);
5047 
5048   case Builtin::BI__xray_customevent: {
5049     if (!ShouldXRayInstrumentFunction())
5050       return RValue::getIgnored();
5051 
5052     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5053             XRayInstrKind::Custom))
5054       return RValue::getIgnored();
5055 
5056     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5057       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
5058         return RValue::getIgnored();
5059 
5060     Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
5061     auto FTy = F->getFunctionType();
5062     auto Arg0 = E->getArg(0);
5063     auto Arg0Val = EmitScalarExpr(Arg0);
5064     auto Arg0Ty = Arg0->getType();
5065     auto PTy0 = FTy->getParamType(0);
5066     if (PTy0 != Arg0Val->getType()) {
5067       if (Arg0Ty->isArrayType())
5068         Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
5069       else
5070         Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
5071     }
5072     auto Arg1 = EmitScalarExpr(E->getArg(1));
5073     auto PTy1 = FTy->getParamType(1);
5074     if (PTy1 != Arg1->getType())
5075       Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
5076     return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
5077   }
5078 
5079   case Builtin::BI__xray_typedevent: {
5080     // TODO: There should be a way to always emit events even if the current
5081     // function is not instrumented. Losing events in a stream can cripple
5082     // a trace.
5083     if (!ShouldXRayInstrumentFunction())
5084       return RValue::getIgnored();
5085 
5086     if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
5087             XRayInstrKind::Typed))
5088       return RValue::getIgnored();
5089 
5090     if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
5091       if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
5092         return RValue::getIgnored();
5093 
5094     Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
5095     auto FTy = F->getFunctionType();
5096     auto Arg0 = EmitScalarExpr(E->getArg(0));
5097     auto PTy0 = FTy->getParamType(0);
5098     if (PTy0 != Arg0->getType())
5099       Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
5100     auto Arg1 = E->getArg(1);
5101     auto Arg1Val = EmitScalarExpr(Arg1);
5102     auto Arg1Ty = Arg1->getType();
5103     auto PTy1 = FTy->getParamType(1);
5104     if (PTy1 != Arg1Val->getType()) {
5105       if (Arg1Ty->isArrayType())
5106         Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
5107       else
5108         Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
5109     }
5110     auto Arg2 = EmitScalarExpr(E->getArg(2));
5111     auto PTy2 = FTy->getParamType(2);
5112     if (PTy2 != Arg2->getType())
5113       Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
5114     return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
5115   }
5116 
5117   case Builtin::BI__builtin_ms_va_start:
5118   case Builtin::BI__builtin_ms_va_end:
5119     return RValue::get(
5120         EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
5121                        BuiltinID == Builtin::BI__builtin_ms_va_start));
5122 
5123   case Builtin::BI__builtin_ms_va_copy: {
5124     // Lower this manually. We can't reliably determine whether or not any
5125     // given va_copy() is for a Win64 va_list from the calling convention
5126     // alone, because it's legal to do this from a System V ABI function.
5127     // With opaque pointer types, we won't have enough information in LLVM
5128     // IR to determine this from the argument types, either. Best to do it
5129     // now, while we have enough information.
5130     Address DestAddr = EmitMSVAListRef(E->getArg(0));
5131     Address SrcAddr = EmitMSVAListRef(E->getArg(1));
5132 
5133     llvm::Type *BPP = Int8PtrPtrTy;
5134 
5135     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
5136                        DestAddr.getAlignment());
5137     SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
5138                       SrcAddr.getAlignment());
5139 
5140     Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
5141     return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
5142   }
5143 
5144   case Builtin::BI__builtin_get_device_side_mangled_name: {
5145     auto Name = CGM.getCUDARuntime().getDeviceSideName(
5146         cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl());
5147     auto Str = CGM.GetAddrOfConstantCString(Name, "");
5148     llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0),
5149                                llvm::ConstantInt::get(SizeTy, 0)};
5150     auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(),
5151                                                      Str.getPointer(), Zeros);
5152     return RValue::get(Ptr);
5153   }
5154   }
5155 
5156   // If this is an alias for a lib function (e.g. __builtin_sin), emit
5157   // the call using the normal call path, but using the unmangled
5158   // version of the function name.
5159   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
5160     return emitLibraryCall(*this, FD, E,
5161                            CGM.getBuiltinLibFunction(FD, BuiltinID));
5162 
5163   // If this is a predefined lib function (e.g. malloc), emit the call
5164   // using exactly the normal call path.
5165   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
5166     return emitLibraryCall(*this, FD, E,
5167                       cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
5168 
5169   // Check that a call to a target specific builtin has the correct target
5170   // features.
5171   // This is down here to avoid non-target specific builtins, however, if
5172   // generic builtins start to require generic target features then we
5173   // can move this up to the beginning of the function.
5174   checkTargetFeatures(E, FD);
5175 
5176   if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
5177     LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
5178 
5179   // See if we have a target specific intrinsic.
5180   const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
5181   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
5182   StringRef Prefix =
5183       llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
5184   if (!Prefix.empty()) {
5185     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
5186     // NOTE we don't need to perform a compatibility flag check here since the
5187     // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
5188     // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
5189     if (IntrinsicID == Intrinsic::not_intrinsic)
5190       IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
5191   }
5192 
5193   if (IntrinsicID != Intrinsic::not_intrinsic) {
5194     SmallVector<Value*, 16> Args;
5195 
5196     // Find out if any arguments are required to be integer constant
5197     // expressions.
5198     unsigned ICEArguments = 0;
5199     ASTContext::GetBuiltinTypeError Error;
5200     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
5201     assert(Error == ASTContext::GE_None && "Should not codegen an error");
5202 
5203     Function *F = CGM.getIntrinsic(IntrinsicID);
5204     llvm::FunctionType *FTy = F->getFunctionType();
5205 
5206     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
5207       Value *ArgValue;
5208       // If this is a normal argument, just emit it as a scalar.
5209       if ((ICEArguments & (1 << i)) == 0) {
5210         ArgValue = EmitScalarExpr(E->getArg(i));
5211       } else {
5212         // If this is required to be a constant, constant fold it so that we
5213         // know that the generated intrinsic gets a ConstantInt.
5214         ArgValue = llvm::ConstantInt::get(
5215             getLLVMContext(),
5216             *E->getArg(i)->getIntegerConstantExpr(getContext()));
5217       }
5218 
5219       // If the intrinsic arg type is different from the builtin arg type
5220       // we need to do a bit cast.
5221       llvm::Type *PTy = FTy->getParamType(i);
5222       if (PTy != ArgValue->getType()) {
5223         // XXX - vector of pointers?
5224         if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
5225           if (PtrTy->getAddressSpace() !=
5226               ArgValue->getType()->getPointerAddressSpace()) {
5227             ArgValue = Builder.CreateAddrSpaceCast(
5228               ArgValue,
5229               ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
5230           }
5231         }
5232 
5233         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
5234                "Must be able to losslessly bit cast to param");
5235         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
5236       }
5237 
5238       Args.push_back(ArgValue);
5239     }
5240 
5241     Value *V = Builder.CreateCall(F, Args);
5242     QualType BuiltinRetType = E->getType();
5243 
5244     llvm::Type *RetTy = VoidTy;
5245     if (!BuiltinRetType->isVoidType())
5246       RetTy = ConvertType(BuiltinRetType);
5247 
5248     if (RetTy != V->getType()) {
5249       // XXX - vector of pointers?
5250       if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
5251         if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
5252           V = Builder.CreateAddrSpaceCast(
5253             V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
5254         }
5255       }
5256 
5257       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
5258              "Must be able to losslessly bit cast result type");
5259       V = Builder.CreateBitCast(V, RetTy);
5260     }
5261 
5262     return RValue::get(V);
5263   }
5264 
5265   // Some target-specific builtins can have aggregate return values, e.g.
5266   // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force
5267   // ReturnValue to be non-null, so that the target-specific emission code can
5268   // always just emit into it.
5269   TypeEvaluationKind EvalKind = getEvaluationKind(E->getType());
5270   if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) {
5271     Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp");
5272     ReturnValue = ReturnValueSlot(DestPtr, false);
5273   }
5274 
5275   // Now see if we can emit a target-specific builtin.
5276   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) {
5277     switch (EvalKind) {
5278     case TEK_Scalar:
5279       return RValue::get(V);
5280     case TEK_Aggregate:
5281       return RValue::getAggregate(ReturnValue.getValue(),
5282                                   ReturnValue.isVolatile());
5283     case TEK_Complex:
5284       llvm_unreachable("No current target builtin returns complex");
5285     }
5286     llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr");
5287   }
5288 
5289   ErrorUnsupported(E, "builtin function");
5290 
5291   // Unknown builtin, for now just dump it out and return undef.
5292   return GetUndefRValue(E->getType());
5293 }
5294 
5295 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
5296                                         unsigned BuiltinID, const CallExpr *E,
5297                                         ReturnValueSlot ReturnValue,
5298                                         llvm::Triple::ArchType Arch) {
5299   switch (Arch) {
5300   case llvm::Triple::arm:
5301   case llvm::Triple::armeb:
5302   case llvm::Triple::thumb:
5303   case llvm::Triple::thumbeb:
5304     return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch);
5305   case llvm::Triple::aarch64:
5306   case llvm::Triple::aarch64_32:
5307   case llvm::Triple::aarch64_be:
5308     return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
5309   case llvm::Triple::bpfeb:
5310   case llvm::Triple::bpfel:
5311     return CGF->EmitBPFBuiltinExpr(BuiltinID, E);
5312   case llvm::Triple::x86:
5313   case llvm::Triple::x86_64:
5314     return CGF->EmitX86BuiltinExpr(BuiltinID, E);
5315   case llvm::Triple::ppc:
5316   case llvm::Triple::ppcle:
5317   case llvm::Triple::ppc64:
5318   case llvm::Triple::ppc64le:
5319     return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
5320   case llvm::Triple::r600:
5321   case llvm::Triple::amdgcn:
5322     return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
5323   case llvm::Triple::systemz:
5324     return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
5325   case llvm::Triple::nvptx:
5326   case llvm::Triple::nvptx64:
5327     return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
5328   case llvm::Triple::wasm32:
5329   case llvm::Triple::wasm64:
5330     return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
5331   case llvm::Triple::hexagon:
5332     return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
5333   case llvm::Triple::riscv32:
5334   case llvm::Triple::riscv64:
5335     return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue);
5336   default:
5337     return nullptr;
5338   }
5339 }
5340 
5341 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
5342                                               const CallExpr *E,
5343                                               ReturnValueSlot ReturnValue) {
5344   if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
5345     assert(getContext().getAuxTargetInfo() && "Missing aux target info");
5346     return EmitTargetArchBuiltinExpr(
5347         this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
5348         ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch());
5349   }
5350 
5351   return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue,
5352                                    getTarget().getTriple().getArch());
5353 }
5354 
5355 static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF,
5356                                           NeonTypeFlags TypeFlags,
5357                                           bool HasLegalHalfType = true,
5358                                           bool V1Ty = false,
5359                                           bool AllowBFloatArgsAndRet = true) {
5360   int IsQuad = TypeFlags.isQuad();
5361   switch (TypeFlags.getEltType()) {
5362   case NeonTypeFlags::Int8:
5363   case NeonTypeFlags::Poly8:
5364     return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
5365   case NeonTypeFlags::Int16:
5366   case NeonTypeFlags::Poly16:
5367     return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5368   case NeonTypeFlags::BFloat16:
5369     if (AllowBFloatArgsAndRet)
5370       return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad));
5371     else
5372       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5373   case NeonTypeFlags::Float16:
5374     if (HasLegalHalfType)
5375       return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
5376     else
5377       return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
5378   case NeonTypeFlags::Int32:
5379     return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
5380   case NeonTypeFlags::Int64:
5381   case NeonTypeFlags::Poly64:
5382     return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
5383   case NeonTypeFlags::Poly128:
5384     // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
5385     // There is a lot of i128 and f128 API missing.
5386     // so we use v16i8 to represent poly128 and get pattern matched.
5387     return llvm::FixedVectorType::get(CGF->Int8Ty, 16);
5388   case NeonTypeFlags::Float32:
5389     return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
5390   case NeonTypeFlags::Float64:
5391     return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
5392   }
5393   llvm_unreachable("Unknown vector element type!");
5394 }
5395 
5396 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
5397                                           NeonTypeFlags IntTypeFlags) {
5398   int IsQuad = IntTypeFlags.isQuad();
5399   switch (IntTypeFlags.getEltType()) {
5400   case NeonTypeFlags::Int16:
5401     return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad));
5402   case NeonTypeFlags::Int32:
5403     return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad));
5404   case NeonTypeFlags::Int64:
5405     return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad));
5406   default:
5407     llvm_unreachable("Type can't be converted to floating-point!");
5408   }
5409 }
5410 
5411 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C,
5412                                       const ElementCount &Count) {
5413   Value *SV = llvm::ConstantVector::getSplat(Count, C);
5414   return Builder.CreateShuffleVector(V, V, SV, "lane");
5415 }
5416 
5417 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
5418   ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount();
5419   return EmitNeonSplat(V, C, EC);
5420 }
5421 
5422 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
5423                                      const char *name,
5424                                      unsigned shift, bool rightshift) {
5425   unsigned j = 0;
5426   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
5427        ai != ae; ++ai, ++j) {
5428     if (F->isConstrainedFPIntrinsic())
5429       if (ai->getType()->isMetadataTy())
5430         continue;
5431     if (shift > 0 && shift == j)
5432       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
5433     else
5434       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
5435   }
5436 
5437   if (F->isConstrainedFPIntrinsic())
5438     return Builder.CreateConstrainedFPCall(F, Ops, name);
5439   else
5440     return Builder.CreateCall(F, Ops, name);
5441 }
5442 
5443 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
5444                                             bool neg) {
5445   int SV = cast<ConstantInt>(V)->getSExtValue();
5446   return ConstantInt::get(Ty, neg ? -SV : SV);
5447 }
5448 
5449 // Right-shift a vector by a constant.
5450 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
5451                                           llvm::Type *Ty, bool usgn,
5452                                           const char *name) {
5453   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
5454 
5455   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
5456   int EltSize = VTy->getScalarSizeInBits();
5457 
5458   Vec = Builder.CreateBitCast(Vec, Ty);
5459 
5460   // lshr/ashr are undefined when the shift amount is equal to the vector
5461   // element size.
5462   if (ShiftAmt == EltSize) {
5463     if (usgn) {
5464       // Right-shifting an unsigned value by its size yields 0.
5465       return llvm::ConstantAggregateZero::get(VTy);
5466     } else {
5467       // Right-shifting a signed value by its size is equivalent
5468       // to a shift of size-1.
5469       --ShiftAmt;
5470       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
5471     }
5472   }
5473 
5474   Shift = EmitNeonShiftVector(Shift, Ty, false);
5475   if (usgn)
5476     return Builder.CreateLShr(Vec, Shift, name);
5477   else
5478     return Builder.CreateAShr(Vec, Shift, name);
5479 }
5480 
5481 enum {
5482   AddRetType = (1 << 0),
5483   Add1ArgType = (1 << 1),
5484   Add2ArgTypes = (1 << 2),
5485 
5486   VectorizeRetType = (1 << 3),
5487   VectorizeArgTypes = (1 << 4),
5488 
5489   InventFloatType = (1 << 5),
5490   UnsignedAlts = (1 << 6),
5491 
5492   Use64BitVectors = (1 << 7),
5493   Use128BitVectors = (1 << 8),
5494 
5495   Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
5496   VectorRet = AddRetType | VectorizeRetType,
5497   VectorRetGetArgs01 =
5498       AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
5499   FpCmpzModifiers =
5500       AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
5501 };
5502 
5503 namespace {
5504 struct ARMVectorIntrinsicInfo {
5505   const char *NameHint;
5506   unsigned BuiltinID;
5507   unsigned LLVMIntrinsic;
5508   unsigned AltLLVMIntrinsic;
5509   uint64_t TypeModifier;
5510 
5511   bool operator<(unsigned RHSBuiltinID) const {
5512     return BuiltinID < RHSBuiltinID;
5513   }
5514   bool operator<(const ARMVectorIntrinsicInfo &TE) const {
5515     return BuiltinID < TE.BuiltinID;
5516   }
5517 };
5518 } // end anonymous namespace
5519 
5520 #define NEONMAP0(NameBase) \
5521   { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
5522 
5523 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
5524   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5525       Intrinsic::LLVMIntrinsic, 0, TypeModifier }
5526 
5527 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
5528   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
5529       Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
5530       TypeModifier }
5531 
5532 static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = {
5533   NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0),
5534   NEONMAP0(splat_lane_v),
5535   NEONMAP0(splat_laneq_v),
5536   NEONMAP0(splatq_lane_v),
5537   NEONMAP0(splatq_laneq_v),
5538   NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5539   NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
5540   NEONMAP1(vabs_v, arm_neon_vabs, 0),
5541   NEONMAP1(vabsq_v, arm_neon_vabs, 0),
5542   NEONMAP0(vadd_v),
5543   NEONMAP0(vaddhn_v),
5544   NEONMAP0(vaddq_v),
5545   NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
5546   NEONMAP1(vaeseq_v, arm_neon_aese, 0),
5547   NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
5548   NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
5549   NEONMAP1(vbfdot_v, arm_neon_bfdot, 0),
5550   NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0),
5551   NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0),
5552   NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0),
5553   NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0),
5554   NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
5555   NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
5556   NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5557   NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5558   NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType),
5559   NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType),
5560   NEONMAP1(vcage_v, arm_neon_vacge, 0),
5561   NEONMAP1(vcageq_v, arm_neon_vacge, 0),
5562   NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
5563   NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
5564   NEONMAP1(vcale_v, arm_neon_vacge, 0),
5565   NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
5566   NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
5567   NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
5568   NEONMAP0(vceqz_v),
5569   NEONMAP0(vceqzq_v),
5570   NEONMAP0(vcgez_v),
5571   NEONMAP0(vcgezq_v),
5572   NEONMAP0(vcgtz_v),
5573   NEONMAP0(vcgtzq_v),
5574   NEONMAP0(vclez_v),
5575   NEONMAP0(vclezq_v),
5576   NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
5577   NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
5578   NEONMAP0(vcltz_v),
5579   NEONMAP0(vcltzq_v),
5580   NEONMAP1(vclz_v, ctlz, Add1ArgType),
5581   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5582   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5583   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5584   NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
5585   NEONMAP0(vcvt_f16_v),
5586   NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
5587   NEONMAP0(vcvt_f32_v),
5588   NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5589   NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5590   NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5591   NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5592   NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5593   NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5594   NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5595   NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5596   NEONMAP0(vcvt_s16_v),
5597   NEONMAP0(vcvt_s32_v),
5598   NEONMAP0(vcvt_s64_v),
5599   NEONMAP0(vcvt_u16_v),
5600   NEONMAP0(vcvt_u32_v),
5601   NEONMAP0(vcvt_u64_v),
5602   NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
5603   NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
5604   NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
5605   NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
5606   NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
5607   NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
5608   NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
5609   NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
5610   NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
5611   NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
5612   NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
5613   NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
5614   NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0),
5615   NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
5616   NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
5617   NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
5618   NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
5619   NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
5620   NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
5621   NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
5622   NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
5623   NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
5624   NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
5625   NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
5626   NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
5627   NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
5628   NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
5629   NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
5630   NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
5631   NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
5632   NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
5633   NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
5634   NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
5635   NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
5636   NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
5637   NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
5638   NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
5639   NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
5640   NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
5641   NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
5642   NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
5643   NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
5644   NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
5645   NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
5646   NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
5647   NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
5648   NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
5649   NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
5650   NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
5651   NEONMAP0(vcvtq_f16_v),
5652   NEONMAP0(vcvtq_f32_v),
5653   NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5654   NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
5655   NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
5656   NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
5657   NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
5658   NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
5659   NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
5660   NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
5661   NEONMAP0(vcvtq_s16_v),
5662   NEONMAP0(vcvtq_s32_v),
5663   NEONMAP0(vcvtq_s64_v),
5664   NEONMAP0(vcvtq_u16_v),
5665   NEONMAP0(vcvtq_u32_v),
5666   NEONMAP0(vcvtq_u64_v),
5667   NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
5668   NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
5669   NEONMAP0(vext_v),
5670   NEONMAP0(vextq_v),
5671   NEONMAP0(vfma_v),
5672   NEONMAP0(vfmaq_v),
5673   NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5674   NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
5675   NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5676   NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
5677   NEONMAP0(vld1_dup_v),
5678   NEONMAP1(vld1_v, arm_neon_vld1, 0),
5679   NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
5680   NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
5681   NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
5682   NEONMAP0(vld1q_dup_v),
5683   NEONMAP1(vld1q_v, arm_neon_vld1, 0),
5684   NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
5685   NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
5686   NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
5687   NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
5688   NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
5689   NEONMAP1(vld2_v, arm_neon_vld2, 0),
5690   NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
5691   NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
5692   NEONMAP1(vld2q_v, arm_neon_vld2, 0),
5693   NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
5694   NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
5695   NEONMAP1(vld3_v, arm_neon_vld3, 0),
5696   NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
5697   NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
5698   NEONMAP1(vld3q_v, arm_neon_vld3, 0),
5699   NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
5700   NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
5701   NEONMAP1(vld4_v, arm_neon_vld4, 0),
5702   NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
5703   NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
5704   NEONMAP1(vld4q_v, arm_neon_vld4, 0),
5705   NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5706   NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
5707   NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
5708   NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
5709   NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5710   NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
5711   NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
5712   NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
5713   NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0),
5714   NEONMAP0(vmovl_v),
5715   NEONMAP0(vmovn_v),
5716   NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
5717   NEONMAP0(vmull_v),
5718   NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
5719   NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5720   NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
5721   NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
5722   NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5723   NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
5724   NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
5725   NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
5726   NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
5727   NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
5728   NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
5729   NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5730   NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts),
5731   NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0),
5732   NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0),
5733   NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
5734   NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
5735   NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
5736   NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
5737   NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
5738   NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
5739   NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
5740   NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
5741   NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
5742   NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5743   NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
5744   NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5745   NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5746   NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
5747   NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
5748   NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
5749   NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
5750   NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5751   NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts),
5752   NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
5753   NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5754   NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
5755   NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
5756   NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
5757   NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5758   NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
5759   NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
5760   NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
5761   NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
5762   NEONMAP0(vrndi_v),
5763   NEONMAP0(vrndiq_v),
5764   NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
5765   NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
5766   NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
5767   NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
5768   NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
5769   NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
5770   NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
5771   NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
5772   NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
5773   NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5774   NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
5775   NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5776   NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
5777   NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5778   NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
5779   NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
5780   NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
5781   NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
5782   NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
5783   NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
5784   NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
5785   NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
5786   NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
5787   NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
5788   NEONMAP0(vshl_n_v),
5789   NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5790   NEONMAP0(vshll_n_v),
5791   NEONMAP0(vshlq_n_v),
5792   NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
5793   NEONMAP0(vshr_n_v),
5794   NEONMAP0(vshrn_n_v),
5795   NEONMAP0(vshrq_n_v),
5796   NEONMAP1(vst1_v, arm_neon_vst1, 0),
5797   NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
5798   NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
5799   NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
5800   NEONMAP1(vst1q_v, arm_neon_vst1, 0),
5801   NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
5802   NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
5803   NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
5804   NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
5805   NEONMAP1(vst2_v, arm_neon_vst2, 0),
5806   NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
5807   NEONMAP1(vst2q_v, arm_neon_vst2, 0),
5808   NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
5809   NEONMAP1(vst3_v, arm_neon_vst3, 0),
5810   NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
5811   NEONMAP1(vst3q_v, arm_neon_vst3, 0),
5812   NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
5813   NEONMAP1(vst4_v, arm_neon_vst4, 0),
5814   NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
5815   NEONMAP1(vst4q_v, arm_neon_vst4, 0),
5816   NEONMAP0(vsubhn_v),
5817   NEONMAP0(vtrn_v),
5818   NEONMAP0(vtrnq_v),
5819   NEONMAP0(vtst_v),
5820   NEONMAP0(vtstq_v),
5821   NEONMAP1(vusdot_v, arm_neon_usdot, 0),
5822   NEONMAP1(vusdotq_v, arm_neon_usdot, 0),
5823   NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0),
5824   NEONMAP0(vuzp_v),
5825   NEONMAP0(vuzpq_v),
5826   NEONMAP0(vzip_v),
5827   NEONMAP0(vzipq_v)
5828 };
5829 
5830 static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
5831   NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0),
5832   NEONMAP0(splat_lane_v),
5833   NEONMAP0(splat_laneq_v),
5834   NEONMAP0(splatq_lane_v),
5835   NEONMAP0(splatq_laneq_v),
5836   NEONMAP1(vabs_v, aarch64_neon_abs, 0),
5837   NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
5838   NEONMAP0(vadd_v),
5839   NEONMAP0(vaddhn_v),
5840   NEONMAP0(vaddq_p128),
5841   NEONMAP0(vaddq_v),
5842   NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
5843   NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
5844   NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
5845   NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
5846   NEONMAP2(vbcaxq_v, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts),
5847   NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0),
5848   NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0),
5849   NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0),
5850   NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0),
5851   NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0),
5852   NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5853   NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5854   NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType),
5855   NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType),
5856   NEONMAP1(vcage_v, aarch64_neon_facge, 0),
5857   NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
5858   NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
5859   NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
5860   NEONMAP1(vcale_v, aarch64_neon_facge, 0),
5861   NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
5862   NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
5863   NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
5864   NEONMAP0(vceqz_v),
5865   NEONMAP0(vceqzq_v),
5866   NEONMAP0(vcgez_v),
5867   NEONMAP0(vcgezq_v),
5868   NEONMAP0(vcgtz_v),
5869   NEONMAP0(vcgtzq_v),
5870   NEONMAP0(vclez_v),
5871   NEONMAP0(vclezq_v),
5872   NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
5873   NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
5874   NEONMAP0(vcltz_v),
5875   NEONMAP0(vcltzq_v),
5876   NEONMAP1(vclz_v, ctlz, Add1ArgType),
5877   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
5878   NEONMAP1(vcmla_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
5879   NEONMAP1(vcmla_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
5880   NEONMAP1(vcmla_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
5881   NEONMAP1(vcmla_v, aarch64_neon_vcmla_rot0, Add1ArgType),
5882   NEONMAP1(vcmlaq_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType),
5883   NEONMAP1(vcmlaq_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType),
5884   NEONMAP1(vcmlaq_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType),
5885   NEONMAP1(vcmlaq_v, aarch64_neon_vcmla_rot0, Add1ArgType),
5886   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
5887   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
5888   NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
5889   NEONMAP0(vcvt_f16_v),
5890   NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
5891   NEONMAP0(vcvt_f32_v),
5892   NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5893   NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5894   NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5895   NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5896   NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5897   NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5898   NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5899   NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5900   NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5901   NEONMAP0(vcvtq_f16_v),
5902   NEONMAP0(vcvtq_f32_v),
5903   NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0),
5904   NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5905   NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5906   NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
5907   NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
5908   NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
5909   NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
5910   NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
5911   NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
5912   NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
5913   NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
5914   NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5915   NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
5916   NEONMAP2(veor3q_v, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts),
5917   NEONMAP0(vext_v),
5918   NEONMAP0(vextq_v),
5919   NEONMAP0(vfma_v),
5920   NEONMAP0(vfmaq_v),
5921   NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
5922   NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
5923   NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
5924   NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
5925   NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
5926   NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
5927   NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
5928   NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
5929   NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5930   NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
5931   NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5932   NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
5933   NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
5934   NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
5935   NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
5936   NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
5937   NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
5938   NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
5939   NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0),
5940   NEONMAP0(vmovl_v),
5941   NEONMAP0(vmovn_v),
5942   NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
5943   NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
5944   NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
5945   NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5946   NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
5947   NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
5948   NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
5949   NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
5950   NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5951   NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
5952   NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
5953   NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
5954   NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0),
5955   NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5956   NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
5957   NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0),
5958   NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0),
5959   NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
5960   NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
5961   NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
5962   NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
5963   NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
5964   NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
5965   NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5966   NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5967   NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
5968   NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0),
5969   NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0),
5970   NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
5971   NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5972   NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
5973   NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
5974   NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5975   NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
5976   NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
5977   NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
5978   NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
5979   NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5980   NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
5981   NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
5982   NEONMAP1(vrax1q_v, aarch64_crypto_rax1, 0),
5983   NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5984   NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
5985   NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
5986   NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
5987   NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5988   NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
5989   NEONMAP1(vrnd32x_v, aarch64_neon_frint32x, Add1ArgType),
5990   NEONMAP1(vrnd32xq_v, aarch64_neon_frint32x, Add1ArgType),
5991   NEONMAP1(vrnd32z_v, aarch64_neon_frint32z, Add1ArgType),
5992   NEONMAP1(vrnd32zq_v, aarch64_neon_frint32z, Add1ArgType),
5993   NEONMAP1(vrnd64x_v, aarch64_neon_frint64x, Add1ArgType),
5994   NEONMAP1(vrnd64xq_v, aarch64_neon_frint64x, Add1ArgType),
5995   NEONMAP1(vrnd64z_v, aarch64_neon_frint64z, Add1ArgType),
5996   NEONMAP1(vrnd64zq_v, aarch64_neon_frint64z, Add1ArgType),
5997   NEONMAP0(vrndi_v),
5998   NEONMAP0(vrndiq_v),
5999   NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
6000   NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
6001   NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
6002   NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
6003   NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
6004   NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
6005   NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
6006   NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
6007   NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
6008   NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
6009   NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
6010   NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
6011   NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
6012   NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
6013   NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
6014   NEONMAP1(vsha512h2q_v, aarch64_crypto_sha512h2, 0),
6015   NEONMAP1(vsha512hq_v, aarch64_crypto_sha512h, 0),
6016   NEONMAP1(vsha512su0q_v, aarch64_crypto_sha512su0, 0),
6017   NEONMAP1(vsha512su1q_v, aarch64_crypto_sha512su1, 0),
6018   NEONMAP0(vshl_n_v),
6019   NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
6020   NEONMAP0(vshll_n_v),
6021   NEONMAP0(vshlq_n_v),
6022   NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
6023   NEONMAP0(vshr_n_v),
6024   NEONMAP0(vshrn_n_v),
6025   NEONMAP0(vshrq_n_v),
6026   NEONMAP1(vsm3partw1q_v, aarch64_crypto_sm3partw1, 0),
6027   NEONMAP1(vsm3partw2q_v, aarch64_crypto_sm3partw2, 0),
6028   NEONMAP1(vsm3ss1q_v, aarch64_crypto_sm3ss1, 0),
6029   NEONMAP1(vsm3tt1aq_v, aarch64_crypto_sm3tt1a, 0),
6030   NEONMAP1(vsm3tt1bq_v, aarch64_crypto_sm3tt1b, 0),
6031   NEONMAP1(vsm3tt2aq_v, aarch64_crypto_sm3tt2a, 0),
6032   NEONMAP1(vsm3tt2bq_v, aarch64_crypto_sm3tt2b, 0),
6033   NEONMAP1(vsm4ekeyq_v, aarch64_crypto_sm4ekey, 0),
6034   NEONMAP1(vsm4eq_v, aarch64_crypto_sm4e, 0),
6035   NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
6036   NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
6037   NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
6038   NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
6039   NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
6040   NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
6041   NEONMAP0(vsubhn_v),
6042   NEONMAP0(vtst_v),
6043   NEONMAP0(vtstq_v),
6044   NEONMAP1(vusdot_v, aarch64_neon_usdot, 0),
6045   NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0),
6046   NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0),
6047   NEONMAP1(vxarq_v, aarch64_crypto_xar, 0),
6048 };
6049 
6050 static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = {
6051   NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
6052   NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
6053   NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
6054   NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
6055   NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
6056   NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
6057   NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
6058   NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
6059   NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
6060   NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6061   NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
6062   NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
6063   NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
6064   NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
6065   NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6066   NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6067   NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6068   NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6069   NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6070   NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6071   NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
6072   NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
6073   NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
6074   NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
6075   NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6076   NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6077   NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6078   NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6079   NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6080   NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6081   NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6082   NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6083   NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6084   NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6085   NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0),
6086   NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6087   NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6088   NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6089   NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6090   NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6091   NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6092   NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6093   NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6094   NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6095   NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6096   NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6097   NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6098   NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6099   NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6100   NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6101   NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6102   NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6103   NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6104   NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
6105   NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6106   NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6107   NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6108   NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6109   NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6110   NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6111   NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6112   NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6113   NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
6114   NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
6115   NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6116   NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6117   NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6118   NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6119   NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6120   NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6121   NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6122   NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6123   NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
6124   NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
6125   NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
6126   NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
6127   NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
6128   NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6129   NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
6130   NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6131   NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
6132   NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6133   NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
6134   NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6135   NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
6136   NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
6137   NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
6138   NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6139   NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
6140   NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
6141   NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
6142   NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6143   NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6144   NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
6145   NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
6146   NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
6147   NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
6148   NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
6149   NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
6150   NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
6151   NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
6152   NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
6153   NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
6154   NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
6155   NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
6156   NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6157   NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6158   NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
6159   NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
6160   NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
6161   NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6162   NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
6163   NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6164   NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
6165   NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
6166   NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
6167   NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
6168   NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
6169   NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6170   NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6171   NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
6172   NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
6173   NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
6174   NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
6175   NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
6176   NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
6177   NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
6178   NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
6179   NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6180   NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6181   NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
6182   NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
6183   NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
6184   NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6185   NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
6186   NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6187   NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6188   NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6189   NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6190   NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
6191   NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
6192   NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6193   NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6194   NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
6195   NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
6196   NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
6197   NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
6198   NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
6199   NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
6200   NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6201   NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
6202   NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
6203   NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
6204   NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
6205   NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6206   NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6207   NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
6208   NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
6209   NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
6210   NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6211   NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
6212   NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6213   NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6214   NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
6215   NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
6216   NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
6217   NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
6218   NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
6219   NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
6220   NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
6221   NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
6222   NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
6223   NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
6224   NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
6225   NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
6226   NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
6227   NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
6228   NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
6229   NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
6230   NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
6231   NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
6232   NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
6233   NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
6234   NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
6235   NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
6236   NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
6237   NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
6238   NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6239   NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
6240   NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
6241   NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
6242   NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
6243   NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
6244   NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6245   NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
6246   NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
6247   NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
6248   // FP16 scalar intrinisics go here.
6249   NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
6250   NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6251   NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
6252   NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6253   NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
6254   NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6255   NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
6256   NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6257   NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
6258   NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6259   NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
6260   NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6261   NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
6262   NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6263   NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType),
6264   NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6265   NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType),
6266   NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6267   NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
6268   NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6269   NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
6270   NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6271   NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
6272   NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6273   NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
6274   NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6275   NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
6276   NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6277   NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
6278   NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
6279   NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
6280   NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
6281   NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
6282   NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
6283 };
6284 
6285 #undef NEONMAP0
6286 #undef NEONMAP1
6287 #undef NEONMAP2
6288 
6289 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier)                         \
6290   {                                                                            \
6291     #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0,   \
6292         TypeModifier                                                           \
6293   }
6294 
6295 #define SVEMAP2(NameBase, TypeModifier)                                        \
6296   { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier }
6297 static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = {
6298 #define GET_SVE_LLVM_INTRINSIC_MAP
6299 #include "clang/Basic/arm_sve_builtin_cg.inc"
6300 #undef GET_SVE_LLVM_INTRINSIC_MAP
6301 };
6302 
6303 #undef SVEMAP1
6304 #undef SVEMAP2
6305 
6306 static bool NEONSIMDIntrinsicsProvenSorted = false;
6307 
6308 static bool AArch64SIMDIntrinsicsProvenSorted = false;
6309 static bool AArch64SISDIntrinsicsProvenSorted = false;
6310 static bool AArch64SVEIntrinsicsProvenSorted = false;
6311 
6312 static const ARMVectorIntrinsicInfo *
6313 findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap,
6314                             unsigned BuiltinID, bool &MapProvenSorted) {
6315 
6316 #ifndef NDEBUG
6317   if (!MapProvenSorted) {
6318     assert(llvm::is_sorted(IntrinsicMap));
6319     MapProvenSorted = true;
6320   }
6321 #endif
6322 
6323   const ARMVectorIntrinsicInfo *Builtin =
6324       llvm::lower_bound(IntrinsicMap, BuiltinID);
6325 
6326   if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
6327     return Builtin;
6328 
6329   return nullptr;
6330 }
6331 
6332 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
6333                                                    unsigned Modifier,
6334                                                    llvm::Type *ArgType,
6335                                                    const CallExpr *E) {
6336   int VectorSize = 0;
6337   if (Modifier & Use64BitVectors)
6338     VectorSize = 64;
6339   else if (Modifier & Use128BitVectors)
6340     VectorSize = 128;
6341 
6342   // Return type.
6343   SmallVector<llvm::Type *, 3> Tys;
6344   if (Modifier & AddRetType) {
6345     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
6346     if (Modifier & VectorizeRetType)
6347       Ty = llvm::FixedVectorType::get(
6348           Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
6349 
6350     Tys.push_back(Ty);
6351   }
6352 
6353   // Arguments.
6354   if (Modifier & VectorizeArgTypes) {
6355     int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
6356     ArgType = llvm::FixedVectorType::get(ArgType, Elts);
6357   }
6358 
6359   if (Modifier & (Add1ArgType | Add2ArgTypes))
6360     Tys.push_back(ArgType);
6361 
6362   if (Modifier & Add2ArgTypes)
6363     Tys.push_back(ArgType);
6364 
6365   if (Modifier & InventFloatType)
6366     Tys.push_back(FloatTy);
6367 
6368   return CGM.getIntrinsic(IntrinsicID, Tys);
6369 }
6370 
6371 static Value *EmitCommonNeonSISDBuiltinExpr(
6372     CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo,
6373     SmallVectorImpl<Value *> &Ops, const CallExpr *E) {
6374   unsigned BuiltinID = SISDInfo.BuiltinID;
6375   unsigned int Int = SISDInfo.LLVMIntrinsic;
6376   unsigned Modifier = SISDInfo.TypeModifier;
6377   const char *s = SISDInfo.NameHint;
6378 
6379   switch (BuiltinID) {
6380   case NEON::BI__builtin_neon_vcled_s64:
6381   case NEON::BI__builtin_neon_vcled_u64:
6382   case NEON::BI__builtin_neon_vcles_f32:
6383   case NEON::BI__builtin_neon_vcled_f64:
6384   case NEON::BI__builtin_neon_vcltd_s64:
6385   case NEON::BI__builtin_neon_vcltd_u64:
6386   case NEON::BI__builtin_neon_vclts_f32:
6387   case NEON::BI__builtin_neon_vcltd_f64:
6388   case NEON::BI__builtin_neon_vcales_f32:
6389   case NEON::BI__builtin_neon_vcaled_f64:
6390   case NEON::BI__builtin_neon_vcalts_f32:
6391   case NEON::BI__builtin_neon_vcaltd_f64:
6392     // Only one direction of comparisons actually exist, cmle is actually a cmge
6393     // with swapped operands. The table gives us the right intrinsic but we
6394     // still need to do the swap.
6395     std::swap(Ops[0], Ops[1]);
6396     break;
6397   }
6398 
6399   assert(Int && "Generic code assumes a valid intrinsic");
6400 
6401   // Determine the type(s) of this overloaded AArch64 intrinsic.
6402   const Expr *Arg = E->getArg(0);
6403   llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
6404   Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
6405 
6406   int j = 0;
6407   ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
6408   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
6409        ai != ae; ++ai, ++j) {
6410     llvm::Type *ArgTy = ai->getType();
6411     if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
6412              ArgTy->getPrimitiveSizeInBits())
6413       continue;
6414 
6415     assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
6416     // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
6417     // it before inserting.
6418     Ops[j] = CGF.Builder.CreateTruncOrBitCast(
6419         Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType());
6420     Ops[j] =
6421         CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
6422   }
6423 
6424   Value *Result = CGF.EmitNeonCall(F, Ops, s);
6425   llvm::Type *ResultType = CGF.ConvertType(E->getType());
6426   if (ResultType->getPrimitiveSizeInBits().getFixedSize() <
6427       Result->getType()->getPrimitiveSizeInBits().getFixedSize())
6428     return CGF.Builder.CreateExtractElement(Result, C0);
6429 
6430   return CGF.Builder.CreateBitCast(Result, ResultType, s);
6431 }
6432 
6433 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
6434     unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
6435     const char *NameHint, unsigned Modifier, const CallExpr *E,
6436     SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
6437     llvm::Triple::ArchType Arch) {
6438   // Get the last argument, which specifies the vector type.
6439   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
6440   Optional<llvm::APSInt> NeonTypeConst =
6441       Arg->getIntegerConstantExpr(getContext());
6442   if (!NeonTypeConst)
6443     return nullptr;
6444 
6445   // Determine the type of this overloaded NEON intrinsic.
6446   NeonTypeFlags Type(NeonTypeConst->getZExtValue());
6447   bool Usgn = Type.isUnsigned();
6448   bool Quad = Type.isQuad();
6449   const bool HasLegalHalfType = getTarget().hasLegalHalfType();
6450   const bool AllowBFloatArgsAndRet =
6451       getTargetHooks().getABIInfo().allowBFloatArgsAndRet();
6452 
6453   llvm::FixedVectorType *VTy =
6454       GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet);
6455   llvm::Type *Ty = VTy;
6456   if (!Ty)
6457     return nullptr;
6458 
6459   auto getAlignmentValue32 = [&](Address addr) -> Value* {
6460     return Builder.getInt32(addr.getAlignment().getQuantity());
6461   };
6462 
6463   unsigned Int = LLVMIntrinsic;
6464   if ((Modifier & UnsignedAlts) && !Usgn)
6465     Int = AltLLVMIntrinsic;
6466 
6467   switch (BuiltinID) {
6468   default: break;
6469   case NEON::BI__builtin_neon_splat_lane_v:
6470   case NEON::BI__builtin_neon_splat_laneq_v:
6471   case NEON::BI__builtin_neon_splatq_lane_v:
6472   case NEON::BI__builtin_neon_splatq_laneq_v: {
6473     auto NumElements = VTy->getElementCount();
6474     if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v)
6475       NumElements = NumElements * 2;
6476     if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v)
6477       NumElements = NumElements.divideCoefficientBy(2);
6478 
6479     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6480     return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements);
6481   }
6482   case NEON::BI__builtin_neon_vpadd_v:
6483   case NEON::BI__builtin_neon_vpaddq_v:
6484     // We don't allow fp/int overloading of intrinsics.
6485     if (VTy->getElementType()->isFloatingPointTy() &&
6486         Int == Intrinsic::aarch64_neon_addp)
6487       Int = Intrinsic::aarch64_neon_faddp;
6488     break;
6489   case NEON::BI__builtin_neon_vabs_v:
6490   case NEON::BI__builtin_neon_vabsq_v:
6491     if (VTy->getElementType()->isFloatingPointTy())
6492       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
6493     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
6494   case NEON::BI__builtin_neon_vadd_v:
6495   case NEON::BI__builtin_neon_vaddq_v: {
6496     llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8);
6497     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
6498     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
6499     Ops[0] =  Builder.CreateXor(Ops[0], Ops[1]);
6500     return Builder.CreateBitCast(Ops[0], Ty);
6501   }
6502   case NEON::BI__builtin_neon_vaddhn_v: {
6503     llvm::FixedVectorType *SrcTy =
6504         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6505 
6506     // %sum = add <4 x i32> %lhs, %rhs
6507     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6508     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6509     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
6510 
6511     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6512     Constant *ShiftAmt =
6513         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6514     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
6515 
6516     // %res = trunc <4 x i32> %high to <4 x i16>
6517     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
6518   }
6519   case NEON::BI__builtin_neon_vcale_v:
6520   case NEON::BI__builtin_neon_vcaleq_v:
6521   case NEON::BI__builtin_neon_vcalt_v:
6522   case NEON::BI__builtin_neon_vcaltq_v:
6523     std::swap(Ops[0], Ops[1]);
6524     LLVM_FALLTHROUGH;
6525   case NEON::BI__builtin_neon_vcage_v:
6526   case NEON::BI__builtin_neon_vcageq_v:
6527   case NEON::BI__builtin_neon_vcagt_v:
6528   case NEON::BI__builtin_neon_vcagtq_v: {
6529     llvm::Type *Ty;
6530     switch (VTy->getScalarSizeInBits()) {
6531     default: llvm_unreachable("unexpected type");
6532     case 32:
6533       Ty = FloatTy;
6534       break;
6535     case 64:
6536       Ty = DoubleTy;
6537       break;
6538     case 16:
6539       Ty = HalfTy;
6540       break;
6541     }
6542     auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements());
6543     llvm::Type *Tys[] = { VTy, VecFlt };
6544     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6545     return EmitNeonCall(F, Ops, NameHint);
6546   }
6547   case NEON::BI__builtin_neon_vceqz_v:
6548   case NEON::BI__builtin_neon_vceqzq_v:
6549     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
6550                                          ICmpInst::ICMP_EQ, "vceqz");
6551   case NEON::BI__builtin_neon_vcgez_v:
6552   case NEON::BI__builtin_neon_vcgezq_v:
6553     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
6554                                          ICmpInst::ICMP_SGE, "vcgez");
6555   case NEON::BI__builtin_neon_vclez_v:
6556   case NEON::BI__builtin_neon_vclezq_v:
6557     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
6558                                          ICmpInst::ICMP_SLE, "vclez");
6559   case NEON::BI__builtin_neon_vcgtz_v:
6560   case NEON::BI__builtin_neon_vcgtzq_v:
6561     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
6562                                          ICmpInst::ICMP_SGT, "vcgtz");
6563   case NEON::BI__builtin_neon_vcltz_v:
6564   case NEON::BI__builtin_neon_vcltzq_v:
6565     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
6566                                          ICmpInst::ICMP_SLT, "vcltz");
6567   case NEON::BI__builtin_neon_vclz_v:
6568   case NEON::BI__builtin_neon_vclzq_v:
6569     // We generate target-independent intrinsic, which needs a second argument
6570     // for whether or not clz of zero is undefined; on ARM it isn't.
6571     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
6572     break;
6573   case NEON::BI__builtin_neon_vcvt_f32_v:
6574   case NEON::BI__builtin_neon_vcvtq_f32_v:
6575     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6576     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
6577                      HasLegalHalfType);
6578     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6579                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6580   case NEON::BI__builtin_neon_vcvt_f16_v:
6581   case NEON::BI__builtin_neon_vcvtq_f16_v:
6582     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6583     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
6584                      HasLegalHalfType);
6585     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
6586                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
6587   case NEON::BI__builtin_neon_vcvt_n_f16_v:
6588   case NEON::BI__builtin_neon_vcvt_n_f32_v:
6589   case NEON::BI__builtin_neon_vcvt_n_f64_v:
6590   case NEON::BI__builtin_neon_vcvtq_n_f16_v:
6591   case NEON::BI__builtin_neon_vcvtq_n_f32_v:
6592   case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
6593     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
6594     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
6595     Function *F = CGM.getIntrinsic(Int, Tys);
6596     return EmitNeonCall(F, Ops, "vcvt_n");
6597   }
6598   case NEON::BI__builtin_neon_vcvt_n_s16_v:
6599   case NEON::BI__builtin_neon_vcvt_n_s32_v:
6600   case NEON::BI__builtin_neon_vcvt_n_u16_v:
6601   case NEON::BI__builtin_neon_vcvt_n_u32_v:
6602   case NEON::BI__builtin_neon_vcvt_n_s64_v:
6603   case NEON::BI__builtin_neon_vcvt_n_u64_v:
6604   case NEON::BI__builtin_neon_vcvtq_n_s16_v:
6605   case NEON::BI__builtin_neon_vcvtq_n_s32_v:
6606   case NEON::BI__builtin_neon_vcvtq_n_u16_v:
6607   case NEON::BI__builtin_neon_vcvtq_n_u32_v:
6608   case NEON::BI__builtin_neon_vcvtq_n_s64_v:
6609   case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
6610     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6611     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6612     return EmitNeonCall(F, Ops, "vcvt_n");
6613   }
6614   case NEON::BI__builtin_neon_vcvt_s32_v:
6615   case NEON::BI__builtin_neon_vcvt_u32_v:
6616   case NEON::BI__builtin_neon_vcvt_s64_v:
6617   case NEON::BI__builtin_neon_vcvt_u64_v:
6618   case NEON::BI__builtin_neon_vcvt_s16_v:
6619   case NEON::BI__builtin_neon_vcvt_u16_v:
6620   case NEON::BI__builtin_neon_vcvtq_s32_v:
6621   case NEON::BI__builtin_neon_vcvtq_u32_v:
6622   case NEON::BI__builtin_neon_vcvtq_s64_v:
6623   case NEON::BI__builtin_neon_vcvtq_u64_v:
6624   case NEON::BI__builtin_neon_vcvtq_s16_v:
6625   case NEON::BI__builtin_neon_vcvtq_u16_v: {
6626     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
6627     return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
6628                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
6629   }
6630   case NEON::BI__builtin_neon_vcvta_s16_v:
6631   case NEON::BI__builtin_neon_vcvta_s32_v:
6632   case NEON::BI__builtin_neon_vcvta_s64_v:
6633   case NEON::BI__builtin_neon_vcvta_u16_v:
6634   case NEON::BI__builtin_neon_vcvta_u32_v:
6635   case NEON::BI__builtin_neon_vcvta_u64_v:
6636   case NEON::BI__builtin_neon_vcvtaq_s16_v:
6637   case NEON::BI__builtin_neon_vcvtaq_s32_v:
6638   case NEON::BI__builtin_neon_vcvtaq_s64_v:
6639   case NEON::BI__builtin_neon_vcvtaq_u16_v:
6640   case NEON::BI__builtin_neon_vcvtaq_u32_v:
6641   case NEON::BI__builtin_neon_vcvtaq_u64_v:
6642   case NEON::BI__builtin_neon_vcvtn_s16_v:
6643   case NEON::BI__builtin_neon_vcvtn_s32_v:
6644   case NEON::BI__builtin_neon_vcvtn_s64_v:
6645   case NEON::BI__builtin_neon_vcvtn_u16_v:
6646   case NEON::BI__builtin_neon_vcvtn_u32_v:
6647   case NEON::BI__builtin_neon_vcvtn_u64_v:
6648   case NEON::BI__builtin_neon_vcvtnq_s16_v:
6649   case NEON::BI__builtin_neon_vcvtnq_s32_v:
6650   case NEON::BI__builtin_neon_vcvtnq_s64_v:
6651   case NEON::BI__builtin_neon_vcvtnq_u16_v:
6652   case NEON::BI__builtin_neon_vcvtnq_u32_v:
6653   case NEON::BI__builtin_neon_vcvtnq_u64_v:
6654   case NEON::BI__builtin_neon_vcvtp_s16_v:
6655   case NEON::BI__builtin_neon_vcvtp_s32_v:
6656   case NEON::BI__builtin_neon_vcvtp_s64_v:
6657   case NEON::BI__builtin_neon_vcvtp_u16_v:
6658   case NEON::BI__builtin_neon_vcvtp_u32_v:
6659   case NEON::BI__builtin_neon_vcvtp_u64_v:
6660   case NEON::BI__builtin_neon_vcvtpq_s16_v:
6661   case NEON::BI__builtin_neon_vcvtpq_s32_v:
6662   case NEON::BI__builtin_neon_vcvtpq_s64_v:
6663   case NEON::BI__builtin_neon_vcvtpq_u16_v:
6664   case NEON::BI__builtin_neon_vcvtpq_u32_v:
6665   case NEON::BI__builtin_neon_vcvtpq_u64_v:
6666   case NEON::BI__builtin_neon_vcvtm_s16_v:
6667   case NEON::BI__builtin_neon_vcvtm_s32_v:
6668   case NEON::BI__builtin_neon_vcvtm_s64_v:
6669   case NEON::BI__builtin_neon_vcvtm_u16_v:
6670   case NEON::BI__builtin_neon_vcvtm_u32_v:
6671   case NEON::BI__builtin_neon_vcvtm_u64_v:
6672   case NEON::BI__builtin_neon_vcvtmq_s16_v:
6673   case NEON::BI__builtin_neon_vcvtmq_s32_v:
6674   case NEON::BI__builtin_neon_vcvtmq_s64_v:
6675   case NEON::BI__builtin_neon_vcvtmq_u16_v:
6676   case NEON::BI__builtin_neon_vcvtmq_u32_v:
6677   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
6678     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
6679     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6680   }
6681   case NEON::BI__builtin_neon_vcvtx_f32_v: {
6682     llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty};
6683     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
6684 
6685   }
6686   case NEON::BI__builtin_neon_vext_v:
6687   case NEON::BI__builtin_neon_vextq_v: {
6688     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
6689     SmallVector<int, 16> Indices;
6690     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6691       Indices.push_back(i+CV);
6692 
6693     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6694     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6695     return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
6696   }
6697   case NEON::BI__builtin_neon_vfma_v:
6698   case NEON::BI__builtin_neon_vfmaq_v: {
6699     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6700     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6701     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6702 
6703     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
6704     return emitCallMaybeConstrainedFPBuiltin(
6705         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
6706         {Ops[1], Ops[2], Ops[0]});
6707   }
6708   case NEON::BI__builtin_neon_vld1_v:
6709   case NEON::BI__builtin_neon_vld1q_v: {
6710     llvm::Type *Tys[] = {Ty, Int8PtrTy};
6711     Ops.push_back(getAlignmentValue32(PtrOp0));
6712     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
6713   }
6714   case NEON::BI__builtin_neon_vld1_x2_v:
6715   case NEON::BI__builtin_neon_vld1q_x2_v:
6716   case NEON::BI__builtin_neon_vld1_x3_v:
6717   case NEON::BI__builtin_neon_vld1q_x3_v:
6718   case NEON::BI__builtin_neon_vld1_x4_v:
6719   case NEON::BI__builtin_neon_vld1q_x4_v: {
6720     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6721     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
6722     llvm::Type *Tys[2] = { VTy, PTy };
6723     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6724     Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
6725     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6726     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6727     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6728   }
6729   case NEON::BI__builtin_neon_vld2_v:
6730   case NEON::BI__builtin_neon_vld2q_v:
6731   case NEON::BI__builtin_neon_vld3_v:
6732   case NEON::BI__builtin_neon_vld3q_v:
6733   case NEON::BI__builtin_neon_vld4_v:
6734   case NEON::BI__builtin_neon_vld4q_v:
6735   case NEON::BI__builtin_neon_vld2_dup_v:
6736   case NEON::BI__builtin_neon_vld2q_dup_v:
6737   case NEON::BI__builtin_neon_vld3_dup_v:
6738   case NEON::BI__builtin_neon_vld3q_dup_v:
6739   case NEON::BI__builtin_neon_vld4_dup_v:
6740   case NEON::BI__builtin_neon_vld4q_dup_v: {
6741     llvm::Type *Tys[] = {Ty, Int8PtrTy};
6742     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6743     Value *Align = getAlignmentValue32(PtrOp1);
6744     Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
6745     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6746     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6747     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6748   }
6749   case NEON::BI__builtin_neon_vld1_dup_v:
6750   case NEON::BI__builtin_neon_vld1q_dup_v: {
6751     Value *V = UndefValue::get(Ty);
6752     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
6753     PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
6754     LoadInst *Ld = Builder.CreateLoad(PtrOp0);
6755     llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
6756     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
6757     return EmitNeonSplat(Ops[0], CI);
6758   }
6759   case NEON::BI__builtin_neon_vld2_lane_v:
6760   case NEON::BI__builtin_neon_vld2q_lane_v:
6761   case NEON::BI__builtin_neon_vld3_lane_v:
6762   case NEON::BI__builtin_neon_vld3q_lane_v:
6763   case NEON::BI__builtin_neon_vld4_lane_v:
6764   case NEON::BI__builtin_neon_vld4q_lane_v: {
6765     llvm::Type *Tys[] = {Ty, Int8PtrTy};
6766     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
6767     for (unsigned I = 2; I < Ops.size() - 1; ++I)
6768       Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
6769     Ops.push_back(getAlignmentValue32(PtrOp1));
6770     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
6771     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
6772     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
6773     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6774   }
6775   case NEON::BI__builtin_neon_vmovl_v: {
6776     llvm::FixedVectorType *DTy =
6777         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6778     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
6779     if (Usgn)
6780       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
6781     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
6782   }
6783   case NEON::BI__builtin_neon_vmovn_v: {
6784     llvm::FixedVectorType *QTy =
6785         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6786     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
6787     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
6788   }
6789   case NEON::BI__builtin_neon_vmull_v:
6790     // FIXME: the integer vmull operations could be emitted in terms of pure
6791     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
6792     // hoisting the exts outside loops. Until global ISel comes along that can
6793     // see through such movement this leads to bad CodeGen. So we need an
6794     // intrinsic for now.
6795     Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
6796     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
6797     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
6798   case NEON::BI__builtin_neon_vpadal_v:
6799   case NEON::BI__builtin_neon_vpadalq_v: {
6800     // The source operand type has twice as many elements of half the size.
6801     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6802     llvm::Type *EltTy =
6803       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6804     auto *NarrowTy =
6805         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6806     llvm::Type *Tys[2] = { Ty, NarrowTy };
6807     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6808   }
6809   case NEON::BI__builtin_neon_vpaddl_v:
6810   case NEON::BI__builtin_neon_vpaddlq_v: {
6811     // The source operand type has twice as many elements of half the size.
6812     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
6813     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
6814     auto *NarrowTy =
6815         llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2);
6816     llvm::Type *Tys[2] = { Ty, NarrowTy };
6817     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
6818   }
6819   case NEON::BI__builtin_neon_vqdmlal_v:
6820   case NEON::BI__builtin_neon_vqdmlsl_v: {
6821     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
6822     Ops[1] =
6823         EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
6824     Ops.resize(2);
6825     return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
6826   }
6827   case NEON::BI__builtin_neon_vqdmulhq_lane_v:
6828   case NEON::BI__builtin_neon_vqdmulh_lane_v:
6829   case NEON::BI__builtin_neon_vqrdmulhq_lane_v:
6830   case NEON::BI__builtin_neon_vqrdmulh_lane_v: {
6831     auto *RTy = cast<llvm::FixedVectorType>(Ty);
6832     if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v ||
6833         BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v)
6834       RTy = llvm::FixedVectorType::get(RTy->getElementType(),
6835                                        RTy->getNumElements() * 2);
6836     llvm::Type *Tys[2] = {
6837         RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
6838                                              /*isQuad*/ false))};
6839     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6840   }
6841   case NEON::BI__builtin_neon_vqdmulhq_laneq_v:
6842   case NEON::BI__builtin_neon_vqdmulh_laneq_v:
6843   case NEON::BI__builtin_neon_vqrdmulhq_laneq_v:
6844   case NEON::BI__builtin_neon_vqrdmulh_laneq_v: {
6845     llvm::Type *Tys[2] = {
6846         Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false,
6847                                             /*isQuad*/ true))};
6848     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
6849   }
6850   case NEON::BI__builtin_neon_vqshl_n_v:
6851   case NEON::BI__builtin_neon_vqshlq_n_v:
6852     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
6853                         1, false);
6854   case NEON::BI__builtin_neon_vqshlu_n_v:
6855   case NEON::BI__builtin_neon_vqshluq_n_v:
6856     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
6857                         1, false);
6858   case NEON::BI__builtin_neon_vrecpe_v:
6859   case NEON::BI__builtin_neon_vrecpeq_v:
6860   case NEON::BI__builtin_neon_vrsqrte_v:
6861   case NEON::BI__builtin_neon_vrsqrteq_v:
6862     Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
6863     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6864   case NEON::BI__builtin_neon_vrndi_v:
6865   case NEON::BI__builtin_neon_vrndiq_v:
6866     Int = Builder.getIsFPConstrained()
6867               ? Intrinsic::experimental_constrained_nearbyint
6868               : Intrinsic::nearbyint;
6869     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
6870   case NEON::BI__builtin_neon_vrshr_n_v:
6871   case NEON::BI__builtin_neon_vrshrq_n_v:
6872     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
6873                         1, true);
6874   case NEON::BI__builtin_neon_vsha512hq_v:
6875   case NEON::BI__builtin_neon_vsha512h2q_v:
6876   case NEON::BI__builtin_neon_vsha512su0q_v:
6877   case NEON::BI__builtin_neon_vsha512su1q_v: {
6878     Function *F = CGM.getIntrinsic(Int);
6879     return EmitNeonCall(F, Ops, "");
6880   }
6881   case NEON::BI__builtin_neon_vshl_n_v:
6882   case NEON::BI__builtin_neon_vshlq_n_v:
6883     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
6884     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
6885                              "vshl_n");
6886   case NEON::BI__builtin_neon_vshll_n_v: {
6887     llvm::FixedVectorType *SrcTy =
6888         llvm::FixedVectorType::getTruncatedElementVectorType(VTy);
6889     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6890     if (Usgn)
6891       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
6892     else
6893       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
6894     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
6895     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
6896   }
6897   case NEON::BI__builtin_neon_vshrn_n_v: {
6898     llvm::FixedVectorType *SrcTy =
6899         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6900     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6901     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
6902     if (Usgn)
6903       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
6904     else
6905       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
6906     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
6907   }
6908   case NEON::BI__builtin_neon_vshr_n_v:
6909   case NEON::BI__builtin_neon_vshrq_n_v:
6910     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
6911   case NEON::BI__builtin_neon_vst1_v:
6912   case NEON::BI__builtin_neon_vst1q_v:
6913   case NEON::BI__builtin_neon_vst2_v:
6914   case NEON::BI__builtin_neon_vst2q_v:
6915   case NEON::BI__builtin_neon_vst3_v:
6916   case NEON::BI__builtin_neon_vst3q_v:
6917   case NEON::BI__builtin_neon_vst4_v:
6918   case NEON::BI__builtin_neon_vst4q_v:
6919   case NEON::BI__builtin_neon_vst2_lane_v:
6920   case NEON::BI__builtin_neon_vst2q_lane_v:
6921   case NEON::BI__builtin_neon_vst3_lane_v:
6922   case NEON::BI__builtin_neon_vst3q_lane_v:
6923   case NEON::BI__builtin_neon_vst4_lane_v:
6924   case NEON::BI__builtin_neon_vst4q_lane_v: {
6925     llvm::Type *Tys[] = {Int8PtrTy, Ty};
6926     Ops.push_back(getAlignmentValue32(PtrOp0));
6927     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
6928   }
6929   case NEON::BI__builtin_neon_vsm3partw1q_v:
6930   case NEON::BI__builtin_neon_vsm3partw2q_v:
6931   case NEON::BI__builtin_neon_vsm3ss1q_v:
6932   case NEON::BI__builtin_neon_vsm4ekeyq_v:
6933   case NEON::BI__builtin_neon_vsm4eq_v: {
6934     Function *F = CGM.getIntrinsic(Int);
6935     return EmitNeonCall(F, Ops, "");
6936   }
6937   case NEON::BI__builtin_neon_vsm3tt1aq_v:
6938   case NEON::BI__builtin_neon_vsm3tt1bq_v:
6939   case NEON::BI__builtin_neon_vsm3tt2aq_v:
6940   case NEON::BI__builtin_neon_vsm3tt2bq_v: {
6941     Function *F = CGM.getIntrinsic(Int);
6942     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
6943     return EmitNeonCall(F, Ops, "");
6944   }
6945   case NEON::BI__builtin_neon_vst1_x2_v:
6946   case NEON::BI__builtin_neon_vst1q_x2_v:
6947   case NEON::BI__builtin_neon_vst1_x3_v:
6948   case NEON::BI__builtin_neon_vst1q_x3_v:
6949   case NEON::BI__builtin_neon_vst1_x4_v:
6950   case NEON::BI__builtin_neon_vst1q_x4_v: {
6951     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType());
6952     // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
6953     // in AArch64 it comes last. We may want to stick to one or another.
6954     if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be ||
6955         Arch == llvm::Triple::aarch64_32) {
6956       llvm::Type *Tys[2] = { VTy, PTy };
6957       std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
6958       return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6959     }
6960     llvm::Type *Tys[2] = { PTy, VTy };
6961     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
6962   }
6963   case NEON::BI__builtin_neon_vsubhn_v: {
6964     llvm::FixedVectorType *SrcTy =
6965         llvm::FixedVectorType::getExtendedElementVectorType(VTy);
6966 
6967     // %sum = add <4 x i32> %lhs, %rhs
6968     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
6969     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
6970     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
6971 
6972     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
6973     Constant *ShiftAmt =
6974         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
6975     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
6976 
6977     // %res = trunc <4 x i32> %high to <4 x i16>
6978     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
6979   }
6980   case NEON::BI__builtin_neon_vtrn_v:
6981   case NEON::BI__builtin_neon_vtrnq_v: {
6982     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6983     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6984     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6985     Value *SV = nullptr;
6986 
6987     for (unsigned vi = 0; vi != 2; ++vi) {
6988       SmallVector<int, 16> Indices;
6989       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6990         Indices.push_back(i+vi);
6991         Indices.push_back(i+e+vi);
6992       }
6993       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6994       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
6995       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6996     }
6997     return SV;
6998   }
6999   case NEON::BI__builtin_neon_vtst_v:
7000   case NEON::BI__builtin_neon_vtstq_v: {
7001     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7002     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7003     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
7004     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
7005                                 ConstantAggregateZero::get(Ty));
7006     return Builder.CreateSExt(Ops[0], Ty, "vtst");
7007   }
7008   case NEON::BI__builtin_neon_vuzp_v:
7009   case NEON::BI__builtin_neon_vuzpq_v: {
7010     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7011     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7012     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7013     Value *SV = nullptr;
7014 
7015     for (unsigned vi = 0; vi != 2; ++vi) {
7016       SmallVector<int, 16> Indices;
7017       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
7018         Indices.push_back(2*i+vi);
7019 
7020       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7021       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
7022       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7023     }
7024     return SV;
7025   }
7026   case NEON::BI__builtin_neon_vxarq_v: {
7027     Function *F = CGM.getIntrinsic(Int);
7028     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
7029     return EmitNeonCall(F, Ops, "");
7030   }
7031   case NEON::BI__builtin_neon_vzip_v:
7032   case NEON::BI__builtin_neon_vzipq_v: {
7033     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
7034     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7035     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
7036     Value *SV = nullptr;
7037 
7038     for (unsigned vi = 0; vi != 2; ++vi) {
7039       SmallVector<int, 16> Indices;
7040       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
7041         Indices.push_back((i + vi*e) >> 1);
7042         Indices.push_back(((i + vi*e) >> 1)+e);
7043       }
7044       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
7045       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
7046       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
7047     }
7048     return SV;
7049   }
7050   case NEON::BI__builtin_neon_vdot_v:
7051   case NEON::BI__builtin_neon_vdotq_v: {
7052     auto *InputTy =
7053         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7054     llvm::Type *Tys[2] = { Ty, InputTy };
7055     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7056     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
7057   }
7058   case NEON::BI__builtin_neon_vfmlal_low_v:
7059   case NEON::BI__builtin_neon_vfmlalq_low_v: {
7060     auto *InputTy =
7061         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7062     llvm::Type *Tys[2] = { Ty, InputTy };
7063     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
7064   }
7065   case NEON::BI__builtin_neon_vfmlsl_low_v:
7066   case NEON::BI__builtin_neon_vfmlslq_low_v: {
7067     auto *InputTy =
7068         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7069     llvm::Type *Tys[2] = { Ty, InputTy };
7070     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
7071   }
7072   case NEON::BI__builtin_neon_vfmlal_high_v:
7073   case NEON::BI__builtin_neon_vfmlalq_high_v: {
7074     auto *InputTy =
7075         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7076     llvm::Type *Tys[2] = { Ty, InputTy };
7077     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
7078   }
7079   case NEON::BI__builtin_neon_vfmlsl_high_v:
7080   case NEON::BI__builtin_neon_vfmlslq_high_v: {
7081     auto *InputTy =
7082         llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
7083     llvm::Type *Tys[2] = { Ty, InputTy };
7084     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
7085   }
7086   case NEON::BI__builtin_neon_vmmlaq_v: {
7087     auto *InputTy =
7088         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7089     llvm::Type *Tys[2] = { Ty, InputTy };
7090     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
7091     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla");
7092   }
7093   case NEON::BI__builtin_neon_vusmmlaq_v: {
7094     auto *InputTy =
7095         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7096     llvm::Type *Tys[2] = { Ty, InputTy };
7097     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla");
7098   }
7099   case NEON::BI__builtin_neon_vusdot_v:
7100   case NEON::BI__builtin_neon_vusdotq_v: {
7101     auto *InputTy =
7102         llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
7103     llvm::Type *Tys[2] = { Ty, InputTy };
7104     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot");
7105   }
7106   case NEON::BI__builtin_neon_vbfdot_v:
7107   case NEON::BI__builtin_neon_vbfdotq_v: {
7108     llvm::Type *InputTy =
7109         llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16);
7110     llvm::Type *Tys[2] = { Ty, InputTy };
7111     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot");
7112   }
7113   case NEON::BI__builtin_neon___a32_vcvt_bf16_v: {
7114     llvm::Type *Tys[1] = { Ty };
7115     Function *F = CGM.getIntrinsic(Int, Tys);
7116     return EmitNeonCall(F, Ops, "vcvtfp2bf");
7117   }
7118 
7119   }
7120 
7121   assert(Int && "Expected valid intrinsic number");
7122 
7123   // Determine the type(s) of this overloaded AArch64 intrinsic.
7124   Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
7125 
7126   Value *Result = EmitNeonCall(F, Ops, NameHint);
7127   llvm::Type *ResultType = ConvertType(E->getType());
7128   // AArch64 intrinsic one-element vector type cast to
7129   // scalar type expected by the builtin
7130   return Builder.CreateBitCast(Result, ResultType, NameHint);
7131 }
7132 
7133 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
7134     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
7135     const CmpInst::Predicate Ip, const Twine &Name) {
7136   llvm::Type *OTy = Op->getType();
7137 
7138   // FIXME: this is utterly horrific. We should not be looking at previous
7139   // codegen context to find out what needs doing. Unfortunately TableGen
7140   // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
7141   // (etc).
7142   if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
7143     OTy = BI->getOperand(0)->getType();
7144 
7145   Op = Builder.CreateBitCast(Op, OTy);
7146   if (OTy->getScalarType()->isFloatingPointTy()) {
7147     Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
7148   } else {
7149     Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
7150   }
7151   return Builder.CreateSExt(Op, Ty, Name);
7152 }
7153 
7154 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
7155                                  Value *ExtOp, Value *IndexOp,
7156                                  llvm::Type *ResTy, unsigned IntID,
7157                                  const char *Name) {
7158   SmallVector<Value *, 2> TblOps;
7159   if (ExtOp)
7160     TblOps.push_back(ExtOp);
7161 
7162   // Build a vector containing sequential number like (0, 1, 2, ..., 15)
7163   SmallVector<int, 16> Indices;
7164   auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType());
7165   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
7166     Indices.push_back(2*i);
7167     Indices.push_back(2*i+1);
7168   }
7169 
7170   int PairPos = 0, End = Ops.size() - 1;
7171   while (PairPos < End) {
7172     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7173                                                      Ops[PairPos+1], Indices,
7174                                                      Name));
7175     PairPos += 2;
7176   }
7177 
7178   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
7179   // of the 128-bit lookup table with zero.
7180   if (PairPos == End) {
7181     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
7182     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
7183                                                      ZeroTbl, Indices, Name));
7184   }
7185 
7186   Function *TblF;
7187   TblOps.push_back(IndexOp);
7188   TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
7189 
7190   return CGF.EmitNeonCall(TblF, TblOps, Name);
7191 }
7192 
7193 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
7194   unsigned Value;
7195   switch (BuiltinID) {
7196   default:
7197     return nullptr;
7198   case ARM::BI__builtin_arm_nop:
7199     Value = 0;
7200     break;
7201   case ARM::BI__builtin_arm_yield:
7202   case ARM::BI__yield:
7203     Value = 1;
7204     break;
7205   case ARM::BI__builtin_arm_wfe:
7206   case ARM::BI__wfe:
7207     Value = 2;
7208     break;
7209   case ARM::BI__builtin_arm_wfi:
7210   case ARM::BI__wfi:
7211     Value = 3;
7212     break;
7213   case ARM::BI__builtin_arm_sev:
7214   case ARM::BI__sev:
7215     Value = 4;
7216     break;
7217   case ARM::BI__builtin_arm_sevl:
7218   case ARM::BI__sevl:
7219     Value = 5;
7220     break;
7221   }
7222 
7223   return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
7224                             llvm::ConstantInt::get(Int32Ty, Value));
7225 }
7226 
7227 enum SpecialRegisterAccessKind {
7228   NormalRead,
7229   VolatileRead,
7230   Write,
7231 };
7232 
7233 // Generates the IR for the read/write special register builtin,
7234 // ValueType is the type of the value that is to be written or read,
7235 // RegisterType is the type of the register being written to or read from.
7236 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
7237                                          const CallExpr *E,
7238                                          llvm::Type *RegisterType,
7239                                          llvm::Type *ValueType,
7240                                          SpecialRegisterAccessKind AccessKind,
7241                                          StringRef SysReg = "") {
7242   // write and register intrinsics only support 32 and 64 bit operations.
7243   assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
7244           && "Unsupported size for register.");
7245 
7246   CodeGen::CGBuilderTy &Builder = CGF.Builder;
7247   CodeGen::CodeGenModule &CGM = CGF.CGM;
7248   LLVMContext &Context = CGM.getLLVMContext();
7249 
7250   if (SysReg.empty()) {
7251     const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
7252     SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
7253   }
7254 
7255   llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
7256   llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
7257   llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
7258 
7259   llvm::Type *Types[] = { RegisterType };
7260 
7261   bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
7262   assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
7263             && "Can't fit 64-bit value in 32-bit register");
7264 
7265   if (AccessKind != Write) {
7266     assert(AccessKind == NormalRead || AccessKind == VolatileRead);
7267     llvm::Function *F = CGM.getIntrinsic(
7268         AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register
7269                                    : llvm::Intrinsic::read_register,
7270         Types);
7271     llvm::Value *Call = Builder.CreateCall(F, Metadata);
7272 
7273     if (MixedTypes)
7274       // Read into 64 bit register and then truncate result to 32 bit.
7275       return Builder.CreateTrunc(Call, ValueType);
7276 
7277     if (ValueType->isPointerTy())
7278       // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
7279       return Builder.CreateIntToPtr(Call, ValueType);
7280 
7281     return Call;
7282   }
7283 
7284   llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
7285   llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
7286   if (MixedTypes) {
7287     // Extend 32 bit write value to 64 bit to pass to write.
7288     ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
7289     return Builder.CreateCall(F, { Metadata, ArgValue });
7290   }
7291 
7292   if (ValueType->isPointerTy()) {
7293     // Have VoidPtrTy ArgValue but want to return an i32/i64.
7294     ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
7295     return Builder.CreateCall(F, { Metadata, ArgValue });
7296   }
7297 
7298   return Builder.CreateCall(F, { Metadata, ArgValue });
7299 }
7300 
7301 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
7302 /// argument that specifies the vector type.
7303 static bool HasExtraNeonArgument(unsigned BuiltinID) {
7304   switch (BuiltinID) {
7305   default: break;
7306   case NEON::BI__builtin_neon_vget_lane_i8:
7307   case NEON::BI__builtin_neon_vget_lane_i16:
7308   case NEON::BI__builtin_neon_vget_lane_bf16:
7309   case NEON::BI__builtin_neon_vget_lane_i32:
7310   case NEON::BI__builtin_neon_vget_lane_i64:
7311   case NEON::BI__builtin_neon_vget_lane_f32:
7312   case NEON::BI__builtin_neon_vgetq_lane_i8:
7313   case NEON::BI__builtin_neon_vgetq_lane_i16:
7314   case NEON::BI__builtin_neon_vgetq_lane_bf16:
7315   case NEON::BI__builtin_neon_vgetq_lane_i32:
7316   case NEON::BI__builtin_neon_vgetq_lane_i64:
7317   case NEON::BI__builtin_neon_vgetq_lane_f32:
7318   case NEON::BI__builtin_neon_vduph_lane_bf16:
7319   case NEON::BI__builtin_neon_vduph_laneq_bf16:
7320   case NEON::BI__builtin_neon_vset_lane_i8:
7321   case NEON::BI__builtin_neon_vset_lane_i16:
7322   case NEON::BI__builtin_neon_vset_lane_bf16:
7323   case NEON::BI__builtin_neon_vset_lane_i32:
7324   case NEON::BI__builtin_neon_vset_lane_i64:
7325   case NEON::BI__builtin_neon_vset_lane_f32:
7326   case NEON::BI__builtin_neon_vsetq_lane_i8:
7327   case NEON::BI__builtin_neon_vsetq_lane_i16:
7328   case NEON::BI__builtin_neon_vsetq_lane_bf16:
7329   case NEON::BI__builtin_neon_vsetq_lane_i32:
7330   case NEON::BI__builtin_neon_vsetq_lane_i64:
7331   case NEON::BI__builtin_neon_vsetq_lane_f32:
7332   case NEON::BI__builtin_neon_vsha1h_u32:
7333   case NEON::BI__builtin_neon_vsha1cq_u32:
7334   case NEON::BI__builtin_neon_vsha1pq_u32:
7335   case NEON::BI__builtin_neon_vsha1mq_u32:
7336   case NEON::BI__builtin_neon_vcvth_bf16_f32:
7337   case clang::ARM::BI_MoveToCoprocessor:
7338   case clang::ARM::BI_MoveToCoprocessor2:
7339     return false;
7340   }
7341   return true;
7342 }
7343 
7344 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
7345                                            const CallExpr *E,
7346                                            ReturnValueSlot ReturnValue,
7347                                            llvm::Triple::ArchType Arch) {
7348   if (auto Hint = GetValueForARMHint(BuiltinID))
7349     return Hint;
7350 
7351   if (BuiltinID == ARM::BI__emit) {
7352     bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
7353     llvm::FunctionType *FTy =
7354         llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
7355 
7356     Expr::EvalResult Result;
7357     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
7358       llvm_unreachable("Sema will ensure that the parameter is constant");
7359 
7360     llvm::APSInt Value = Result.Val.getInt();
7361     uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
7362 
7363     llvm::InlineAsm *Emit =
7364         IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
7365                                  /*hasSideEffects=*/true)
7366                 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
7367                                  /*hasSideEffects=*/true);
7368 
7369     return Builder.CreateCall(Emit);
7370   }
7371 
7372   if (BuiltinID == ARM::BI__builtin_arm_dbg) {
7373     Value *Option = EmitScalarExpr(E->getArg(0));
7374     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
7375   }
7376 
7377   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
7378     Value *Address = EmitScalarExpr(E->getArg(0));
7379     Value *RW      = EmitScalarExpr(E->getArg(1));
7380     Value *IsData  = EmitScalarExpr(E->getArg(2));
7381 
7382     // Locality is not supported on ARM target
7383     Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
7384 
7385     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
7386     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
7387   }
7388 
7389   if (BuiltinID == ARM::BI__builtin_arm_rbit) {
7390     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7391     return Builder.CreateCall(
7392         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
7393   }
7394 
7395   if (BuiltinID == ARM::BI__builtin_arm_cls) {
7396     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7397     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls");
7398   }
7399   if (BuiltinID == ARM::BI__builtin_arm_cls64) {
7400     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
7401     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg,
7402                               "cls");
7403   }
7404 
7405   if (BuiltinID == ARM::BI__clear_cache) {
7406     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
7407     const FunctionDecl *FD = E->getDirectCallee();
7408     Value *Ops[2];
7409     for (unsigned i = 0; i < 2; i++)
7410       Ops[i] = EmitScalarExpr(E->getArg(i));
7411     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
7412     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
7413     StringRef Name = FD->getName();
7414     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
7415   }
7416 
7417   if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
7418       BuiltinID == ARM::BI__builtin_arm_mcrr2) {
7419     Function *F;
7420 
7421     switch (BuiltinID) {
7422     default: llvm_unreachable("unexpected builtin");
7423     case ARM::BI__builtin_arm_mcrr:
7424       F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
7425       break;
7426     case ARM::BI__builtin_arm_mcrr2:
7427       F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
7428       break;
7429     }
7430 
7431     // MCRR{2} instruction has 5 operands but
7432     // the intrinsic has 4 because Rt and Rt2
7433     // are represented as a single unsigned 64
7434     // bit integer in the intrinsic definition
7435     // but internally it's represented as 2 32
7436     // bit integers.
7437 
7438     Value *Coproc = EmitScalarExpr(E->getArg(0));
7439     Value *Opc1 = EmitScalarExpr(E->getArg(1));
7440     Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
7441     Value *CRm = EmitScalarExpr(E->getArg(3));
7442 
7443     Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7444     Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
7445     Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
7446     Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
7447 
7448     return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
7449   }
7450 
7451   if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
7452       BuiltinID == ARM::BI__builtin_arm_mrrc2) {
7453     Function *F;
7454 
7455     switch (BuiltinID) {
7456     default: llvm_unreachable("unexpected builtin");
7457     case ARM::BI__builtin_arm_mrrc:
7458       F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
7459       break;
7460     case ARM::BI__builtin_arm_mrrc2:
7461       F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
7462       break;
7463     }
7464 
7465     Value *Coproc = EmitScalarExpr(E->getArg(0));
7466     Value *Opc1 = EmitScalarExpr(E->getArg(1));
7467     Value *CRm  = EmitScalarExpr(E->getArg(2));
7468     Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
7469 
7470     // Returns an unsigned 64 bit integer, represented
7471     // as two 32 bit integers.
7472 
7473     Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
7474     Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
7475     Rt = Builder.CreateZExt(Rt, Int64Ty);
7476     Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
7477 
7478     Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
7479     RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
7480     RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
7481 
7482     return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
7483   }
7484 
7485   if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
7486       ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
7487         BuiltinID == ARM::BI__builtin_arm_ldaex) &&
7488        getContext().getTypeSize(E->getType()) == 64) ||
7489       BuiltinID == ARM::BI__ldrexd) {
7490     Function *F;
7491 
7492     switch (BuiltinID) {
7493     default: llvm_unreachable("unexpected builtin");
7494     case ARM::BI__builtin_arm_ldaex:
7495       F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
7496       break;
7497     case ARM::BI__builtin_arm_ldrexd:
7498     case ARM::BI__builtin_arm_ldrex:
7499     case ARM::BI__ldrexd:
7500       F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
7501       break;
7502     }
7503 
7504     Value *LdPtr = EmitScalarExpr(E->getArg(0));
7505     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
7506                                     "ldrexd");
7507 
7508     Value *Val0 = Builder.CreateExtractValue(Val, 1);
7509     Value *Val1 = Builder.CreateExtractValue(Val, 0);
7510     Val0 = Builder.CreateZExt(Val0, Int64Ty);
7511     Val1 = Builder.CreateZExt(Val1, Int64Ty);
7512 
7513     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
7514     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
7515     Val = Builder.CreateOr(Val, Val1);
7516     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
7517   }
7518 
7519   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
7520       BuiltinID == ARM::BI__builtin_arm_ldaex) {
7521     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
7522 
7523     QualType Ty = E->getType();
7524     llvm::Type *RealResTy = ConvertType(Ty);
7525     llvm::Type *PtrTy = llvm::IntegerType::get(
7526         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
7527     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
7528 
7529     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
7530                                        ? Intrinsic::arm_ldaex
7531                                        : Intrinsic::arm_ldrex,
7532                                    PtrTy);
7533     Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
7534 
7535     if (RealResTy->isPointerTy())
7536       return Builder.CreateIntToPtr(Val, RealResTy);
7537     else {
7538       llvm::Type *IntResTy = llvm::IntegerType::get(
7539           getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
7540       Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
7541       return Builder.CreateBitCast(Val, RealResTy);
7542     }
7543   }
7544 
7545   if (BuiltinID == ARM::BI__builtin_arm_strexd ||
7546       ((BuiltinID == ARM::BI__builtin_arm_stlex ||
7547         BuiltinID == ARM::BI__builtin_arm_strex) &&
7548        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
7549     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7550                                        ? Intrinsic::arm_stlexd
7551                                        : Intrinsic::arm_strexd);
7552     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
7553 
7554     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
7555     Value *Val = EmitScalarExpr(E->getArg(0));
7556     Builder.CreateStore(Val, Tmp);
7557 
7558     Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
7559     Val = Builder.CreateLoad(LdPtr);
7560 
7561     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
7562     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
7563     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
7564     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
7565   }
7566 
7567   if (BuiltinID == ARM::BI__builtin_arm_strex ||
7568       BuiltinID == ARM::BI__builtin_arm_stlex) {
7569     Value *StoreVal = EmitScalarExpr(E->getArg(0));
7570     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
7571 
7572     QualType Ty = E->getArg(0)->getType();
7573     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
7574                                                  getContext().getTypeSize(Ty));
7575     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
7576 
7577     if (StoreVal->getType()->isPointerTy())
7578       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
7579     else {
7580       llvm::Type *IntTy = llvm::IntegerType::get(
7581           getLLVMContext(),
7582           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
7583       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
7584       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
7585     }
7586 
7587     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
7588                                        ? Intrinsic::arm_stlex
7589                                        : Intrinsic::arm_strex,
7590                                    StoreAddr->getType());
7591     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
7592   }
7593 
7594   if (BuiltinID == ARM::BI__builtin_arm_clrex) {
7595     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
7596     return Builder.CreateCall(F);
7597   }
7598 
7599   // CRC32
7600   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
7601   switch (BuiltinID) {
7602   case ARM::BI__builtin_arm_crc32b:
7603     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
7604   case ARM::BI__builtin_arm_crc32cb:
7605     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
7606   case ARM::BI__builtin_arm_crc32h:
7607     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
7608   case ARM::BI__builtin_arm_crc32ch:
7609     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
7610   case ARM::BI__builtin_arm_crc32w:
7611   case ARM::BI__builtin_arm_crc32d:
7612     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
7613   case ARM::BI__builtin_arm_crc32cw:
7614   case ARM::BI__builtin_arm_crc32cd:
7615     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
7616   }
7617 
7618   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
7619     Value *Arg0 = EmitScalarExpr(E->getArg(0));
7620     Value *Arg1 = EmitScalarExpr(E->getArg(1));
7621 
7622     // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
7623     // intrinsics, hence we need different codegen for these cases.
7624     if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
7625         BuiltinID == ARM::BI__builtin_arm_crc32cd) {
7626       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
7627       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
7628       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
7629       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
7630 
7631       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7632       Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
7633       return Builder.CreateCall(F, {Res, Arg1b});
7634     } else {
7635       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
7636 
7637       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
7638       return Builder.CreateCall(F, {Arg0, Arg1});
7639     }
7640   }
7641 
7642   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7643       BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7644       BuiltinID == ARM::BI__builtin_arm_rsrp ||
7645       BuiltinID == ARM::BI__builtin_arm_wsr ||
7646       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
7647       BuiltinID == ARM::BI__builtin_arm_wsrp) {
7648 
7649     SpecialRegisterAccessKind AccessKind = Write;
7650     if (BuiltinID == ARM::BI__builtin_arm_rsr ||
7651         BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7652         BuiltinID == ARM::BI__builtin_arm_rsrp)
7653       AccessKind = VolatileRead;
7654 
7655     bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
7656                             BuiltinID == ARM::BI__builtin_arm_wsrp;
7657 
7658     bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
7659                    BuiltinID == ARM::BI__builtin_arm_wsr64;
7660 
7661     llvm::Type *ValueType;
7662     llvm::Type *RegisterType;
7663     if (IsPointerBuiltin) {
7664       ValueType = VoidPtrTy;
7665       RegisterType = Int32Ty;
7666     } else if (Is64Bit) {
7667       ValueType = RegisterType = Int64Ty;
7668     } else {
7669       ValueType = RegisterType = Int32Ty;
7670     }
7671 
7672     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
7673                                       AccessKind);
7674   }
7675 
7676   // Handle MSVC intrinsics before argument evaluation to prevent double
7677   // evaluation.
7678   if (Optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID))
7679     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
7680 
7681   // Deal with MVE builtins
7682   if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7683     return Result;
7684   // Handle CDE builtins
7685   if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch))
7686     return Result;
7687 
7688   // Find out if any arguments are required to be integer constant
7689   // expressions.
7690   unsigned ICEArguments = 0;
7691   ASTContext::GetBuiltinTypeError Error;
7692   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
7693   assert(Error == ASTContext::GE_None && "Should not codegen an error");
7694 
7695   auto getAlignmentValue32 = [&](Address addr) -> Value* {
7696     return Builder.getInt32(addr.getAlignment().getQuantity());
7697   };
7698 
7699   Address PtrOp0 = Address::invalid();
7700   Address PtrOp1 = Address::invalid();
7701   SmallVector<Value*, 4> Ops;
7702   bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
7703   unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
7704   for (unsigned i = 0, e = NumArgs; i != e; i++) {
7705     if (i == 0) {
7706       switch (BuiltinID) {
7707       case NEON::BI__builtin_neon_vld1_v:
7708       case NEON::BI__builtin_neon_vld1q_v:
7709       case NEON::BI__builtin_neon_vld1q_lane_v:
7710       case NEON::BI__builtin_neon_vld1_lane_v:
7711       case NEON::BI__builtin_neon_vld1_dup_v:
7712       case NEON::BI__builtin_neon_vld1q_dup_v:
7713       case NEON::BI__builtin_neon_vst1_v:
7714       case NEON::BI__builtin_neon_vst1q_v:
7715       case NEON::BI__builtin_neon_vst1q_lane_v:
7716       case NEON::BI__builtin_neon_vst1_lane_v:
7717       case NEON::BI__builtin_neon_vst2_v:
7718       case NEON::BI__builtin_neon_vst2q_v:
7719       case NEON::BI__builtin_neon_vst2_lane_v:
7720       case NEON::BI__builtin_neon_vst2q_lane_v:
7721       case NEON::BI__builtin_neon_vst3_v:
7722       case NEON::BI__builtin_neon_vst3q_v:
7723       case NEON::BI__builtin_neon_vst3_lane_v:
7724       case NEON::BI__builtin_neon_vst3q_lane_v:
7725       case NEON::BI__builtin_neon_vst4_v:
7726       case NEON::BI__builtin_neon_vst4q_v:
7727       case NEON::BI__builtin_neon_vst4_lane_v:
7728       case NEON::BI__builtin_neon_vst4q_lane_v:
7729         // Get the alignment for the argument in addition to the value;
7730         // we'll use it later.
7731         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
7732         Ops.push_back(PtrOp0.getPointer());
7733         continue;
7734       }
7735     }
7736     if (i == 1) {
7737       switch (BuiltinID) {
7738       case NEON::BI__builtin_neon_vld2_v:
7739       case NEON::BI__builtin_neon_vld2q_v:
7740       case NEON::BI__builtin_neon_vld3_v:
7741       case NEON::BI__builtin_neon_vld3q_v:
7742       case NEON::BI__builtin_neon_vld4_v:
7743       case NEON::BI__builtin_neon_vld4q_v:
7744       case NEON::BI__builtin_neon_vld2_lane_v:
7745       case NEON::BI__builtin_neon_vld2q_lane_v:
7746       case NEON::BI__builtin_neon_vld3_lane_v:
7747       case NEON::BI__builtin_neon_vld3q_lane_v:
7748       case NEON::BI__builtin_neon_vld4_lane_v:
7749       case NEON::BI__builtin_neon_vld4q_lane_v:
7750       case NEON::BI__builtin_neon_vld2_dup_v:
7751       case NEON::BI__builtin_neon_vld2q_dup_v:
7752       case NEON::BI__builtin_neon_vld3_dup_v:
7753       case NEON::BI__builtin_neon_vld3q_dup_v:
7754       case NEON::BI__builtin_neon_vld4_dup_v:
7755       case NEON::BI__builtin_neon_vld4q_dup_v:
7756         // Get the alignment for the argument in addition to the value;
7757         // we'll use it later.
7758         PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
7759         Ops.push_back(PtrOp1.getPointer());
7760         continue;
7761       }
7762     }
7763 
7764     if ((ICEArguments & (1 << i)) == 0) {
7765       Ops.push_back(EmitScalarExpr(E->getArg(i)));
7766     } else {
7767       // If this is required to be a constant, constant fold it so that we know
7768       // that the generated intrinsic gets a ConstantInt.
7769       Ops.push_back(llvm::ConstantInt::get(
7770           getLLVMContext(),
7771           *E->getArg(i)->getIntegerConstantExpr(getContext())));
7772     }
7773   }
7774 
7775   switch (BuiltinID) {
7776   default: break;
7777 
7778   case NEON::BI__builtin_neon_vget_lane_i8:
7779   case NEON::BI__builtin_neon_vget_lane_i16:
7780   case NEON::BI__builtin_neon_vget_lane_i32:
7781   case NEON::BI__builtin_neon_vget_lane_i64:
7782   case NEON::BI__builtin_neon_vget_lane_bf16:
7783   case NEON::BI__builtin_neon_vget_lane_f32:
7784   case NEON::BI__builtin_neon_vgetq_lane_i8:
7785   case NEON::BI__builtin_neon_vgetq_lane_i16:
7786   case NEON::BI__builtin_neon_vgetq_lane_i32:
7787   case NEON::BI__builtin_neon_vgetq_lane_i64:
7788   case NEON::BI__builtin_neon_vgetq_lane_bf16:
7789   case NEON::BI__builtin_neon_vgetq_lane_f32:
7790   case NEON::BI__builtin_neon_vduph_lane_bf16:
7791   case NEON::BI__builtin_neon_vduph_laneq_bf16:
7792     return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
7793 
7794   case NEON::BI__builtin_neon_vrndns_f32: {
7795     Value *Arg = EmitScalarExpr(E->getArg(0));
7796     llvm::Type *Tys[] = {Arg->getType()};
7797     Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
7798     return Builder.CreateCall(F, {Arg}, "vrndn"); }
7799 
7800   case NEON::BI__builtin_neon_vset_lane_i8:
7801   case NEON::BI__builtin_neon_vset_lane_i16:
7802   case NEON::BI__builtin_neon_vset_lane_i32:
7803   case NEON::BI__builtin_neon_vset_lane_i64:
7804   case NEON::BI__builtin_neon_vset_lane_bf16:
7805   case NEON::BI__builtin_neon_vset_lane_f32:
7806   case NEON::BI__builtin_neon_vsetq_lane_i8:
7807   case NEON::BI__builtin_neon_vsetq_lane_i16:
7808   case NEON::BI__builtin_neon_vsetq_lane_i32:
7809   case NEON::BI__builtin_neon_vsetq_lane_i64:
7810   case NEON::BI__builtin_neon_vsetq_lane_bf16:
7811   case NEON::BI__builtin_neon_vsetq_lane_f32:
7812     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
7813 
7814   case NEON::BI__builtin_neon_vsha1h_u32:
7815     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
7816                         "vsha1h");
7817   case NEON::BI__builtin_neon_vsha1cq_u32:
7818     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
7819                         "vsha1h");
7820   case NEON::BI__builtin_neon_vsha1pq_u32:
7821     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
7822                         "vsha1h");
7823   case NEON::BI__builtin_neon_vsha1mq_u32:
7824     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
7825                         "vsha1h");
7826 
7827   case NEON::BI__builtin_neon_vcvth_bf16_f32: {
7828     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops,
7829                         "vcvtbfp2bf");
7830   }
7831 
7832   // The ARM _MoveToCoprocessor builtins put the input register value as
7833   // the first argument, but the LLVM intrinsic expects it as the third one.
7834   case ARM::BI_MoveToCoprocessor:
7835   case ARM::BI_MoveToCoprocessor2: {
7836     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
7837                                    Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
7838     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
7839                                   Ops[3], Ops[4], Ops[5]});
7840   }
7841   }
7842 
7843   // Get the last argument, which specifies the vector type.
7844   assert(HasExtraArg);
7845   const Expr *Arg = E->getArg(E->getNumArgs()-1);
7846   Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext());
7847   if (!Result)
7848     return nullptr;
7849 
7850   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
7851       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
7852     // Determine the overloaded type of this builtin.
7853     llvm::Type *Ty;
7854     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
7855       Ty = FloatTy;
7856     else
7857       Ty = DoubleTy;
7858 
7859     // Determine whether this is an unsigned conversion or not.
7860     bool usgn = Result->getZExtValue() == 1;
7861     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
7862 
7863     // Call the appropriate intrinsic.
7864     Function *F = CGM.getIntrinsic(Int, Ty);
7865     return Builder.CreateCall(F, Ops, "vcvtr");
7866   }
7867 
7868   // Determine the type of this overloaded NEON intrinsic.
7869   NeonTypeFlags Type = Result->getZExtValue();
7870   bool usgn = Type.isUnsigned();
7871   bool rightShift = false;
7872 
7873   llvm::FixedVectorType *VTy =
7874       GetNeonType(this, Type, getTarget().hasLegalHalfType(), false,
7875                   getTarget().hasBFloat16Type());
7876   llvm::Type *Ty = VTy;
7877   if (!Ty)
7878     return nullptr;
7879 
7880   // Many NEON builtins have identical semantics and uses in ARM and
7881   // AArch64. Emit these in a single function.
7882   auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
7883   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
7884       IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
7885   if (Builtin)
7886     return EmitCommonNeonBuiltinExpr(
7887         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
7888         Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
7889 
7890   unsigned Int;
7891   switch (BuiltinID) {
7892   default: return nullptr;
7893   case NEON::BI__builtin_neon_vld1q_lane_v:
7894     // Handle 64-bit integer elements as a special case.  Use shuffles of
7895     // one-element vectors to avoid poor code for i64 in the backend.
7896     if (VTy->getElementType()->isIntegerTy(64)) {
7897       // Extract the other lane.
7898       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7899       int Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
7900       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
7901       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7902       // Load the value as a one-element vector.
7903       Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1);
7904       llvm::Type *Tys[] = {Ty, Int8PtrTy};
7905       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
7906       Value *Align = getAlignmentValue32(PtrOp0);
7907       Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
7908       // Combine them.
7909       int Indices[] = {1 - Lane, Lane};
7910       return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane");
7911     }
7912     LLVM_FALLTHROUGH;
7913   case NEON::BI__builtin_neon_vld1_lane_v: {
7914     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7915     PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
7916     Value *Ld = Builder.CreateLoad(PtrOp0);
7917     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
7918   }
7919   case NEON::BI__builtin_neon_vqrshrn_n_v:
7920     Int =
7921       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
7922     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
7923                         1, true);
7924   case NEON::BI__builtin_neon_vqrshrun_n_v:
7925     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
7926                         Ops, "vqrshrun_n", 1, true);
7927   case NEON::BI__builtin_neon_vqshrn_n_v:
7928     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
7929     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
7930                         1, true);
7931   case NEON::BI__builtin_neon_vqshrun_n_v:
7932     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
7933                         Ops, "vqshrun_n", 1, true);
7934   case NEON::BI__builtin_neon_vrecpe_v:
7935   case NEON::BI__builtin_neon_vrecpeq_v:
7936     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
7937                         Ops, "vrecpe");
7938   case NEON::BI__builtin_neon_vrshrn_n_v:
7939     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
7940                         Ops, "vrshrn_n", 1, true);
7941   case NEON::BI__builtin_neon_vrsra_n_v:
7942   case NEON::BI__builtin_neon_vrsraq_n_v:
7943     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7944     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7945     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
7946     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
7947     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
7948     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
7949   case NEON::BI__builtin_neon_vsri_n_v:
7950   case NEON::BI__builtin_neon_vsriq_n_v:
7951     rightShift = true;
7952     LLVM_FALLTHROUGH;
7953   case NEON::BI__builtin_neon_vsli_n_v:
7954   case NEON::BI__builtin_neon_vsliq_n_v:
7955     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
7956     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
7957                         Ops, "vsli_n");
7958   case NEON::BI__builtin_neon_vsra_n_v:
7959   case NEON::BI__builtin_neon_vsraq_n_v:
7960     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
7961     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
7962     return Builder.CreateAdd(Ops[0], Ops[1]);
7963   case NEON::BI__builtin_neon_vst1q_lane_v:
7964     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
7965     // a one-element vector and avoid poor code for i64 in the backend.
7966     if (VTy->getElementType()->isIntegerTy(64)) {
7967       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7968       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
7969       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
7970       Ops[2] = getAlignmentValue32(PtrOp0);
7971       llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
7972       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
7973                                                  Tys), Ops);
7974     }
7975     LLVM_FALLTHROUGH;
7976   case NEON::BI__builtin_neon_vst1_lane_v: {
7977     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
7978     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
7979     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
7980     auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
7981     return St;
7982   }
7983   case NEON::BI__builtin_neon_vtbl1_v:
7984     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
7985                         Ops, "vtbl1");
7986   case NEON::BI__builtin_neon_vtbl2_v:
7987     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
7988                         Ops, "vtbl2");
7989   case NEON::BI__builtin_neon_vtbl3_v:
7990     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
7991                         Ops, "vtbl3");
7992   case NEON::BI__builtin_neon_vtbl4_v:
7993     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
7994                         Ops, "vtbl4");
7995   case NEON::BI__builtin_neon_vtbx1_v:
7996     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
7997                         Ops, "vtbx1");
7998   case NEON::BI__builtin_neon_vtbx2_v:
7999     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
8000                         Ops, "vtbx2");
8001   case NEON::BI__builtin_neon_vtbx3_v:
8002     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
8003                         Ops, "vtbx3");
8004   case NEON::BI__builtin_neon_vtbx4_v:
8005     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
8006                         Ops, "vtbx4");
8007   }
8008 }
8009 
8010 template<typename Integer>
8011 static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) {
8012   return E->getIntegerConstantExpr(Context)->getExtValue();
8013 }
8014 
8015 static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V,
8016                                      llvm::Type *T, bool Unsigned) {
8017   // Helper function called by Tablegen-constructed ARM MVE builtin codegen,
8018   // which finds it convenient to specify signed/unsigned as a boolean flag.
8019   return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T);
8020 }
8021 
8022 static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V,
8023                                     uint32_t Shift, bool Unsigned) {
8024   // MVE helper function for integer shift right. This must handle signed vs
8025   // unsigned, and also deal specially with the case where the shift count is
8026   // equal to the lane size. In LLVM IR, an LShr with that parameter would be
8027   // undefined behavior, but in MVE it's legal, so we must convert it to code
8028   // that is not undefined in IR.
8029   unsigned LaneBits = cast<llvm::VectorType>(V->getType())
8030                           ->getElementType()
8031                           ->getPrimitiveSizeInBits();
8032   if (Shift == LaneBits) {
8033     // An unsigned shift of the full lane size always generates zero, so we can
8034     // simply emit a zero vector. A signed shift of the full lane size does the
8035     // same thing as shifting by one bit fewer.
8036     if (Unsigned)
8037       return llvm::Constant::getNullValue(V->getType());
8038     else
8039       --Shift;
8040   }
8041   return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift);
8042 }
8043 
8044 static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) {
8045   // MVE-specific helper function for a vector splat, which infers the element
8046   // count of the output vector by knowing that MVE vectors are all 128 bits
8047   // wide.
8048   unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits();
8049   return Builder.CreateVectorSplat(Elements, V);
8050 }
8051 
8052 static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder,
8053                                             CodeGenFunction *CGF,
8054                                             llvm::Value *V,
8055                                             llvm::Type *DestType) {
8056   // Convert one MVE vector type into another by reinterpreting its in-register
8057   // format.
8058   //
8059   // Little-endian, this is identical to a bitcast (which reinterprets the
8060   // memory format). But big-endian, they're not necessarily the same, because
8061   // the register and memory formats map to each other differently depending on
8062   // the lane size.
8063   //
8064   // We generate a bitcast whenever we can (if we're little-endian, or if the
8065   // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic
8066   // that performs the different kind of reinterpretation.
8067   if (CGF->getTarget().isBigEndian() &&
8068       V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) {
8069     return Builder.CreateCall(
8070         CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq,
8071                               {DestType, V->getType()}),
8072         V);
8073   } else {
8074     return Builder.CreateBitCast(V, DestType);
8075   }
8076 }
8077 
8078 static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) {
8079   // Make a shufflevector that extracts every other element of a vector (evens
8080   // or odds, as desired).
8081   SmallVector<int, 16> Indices;
8082   unsigned InputElements =
8083       cast<llvm::FixedVectorType>(V->getType())->getNumElements();
8084   for (unsigned i = 0; i < InputElements; i += 2)
8085     Indices.push_back(i + Odd);
8086   return Builder.CreateShuffleVector(V, Indices);
8087 }
8088 
8089 static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0,
8090                               llvm::Value *V1) {
8091   // Make a shufflevector that interleaves two vectors element by element.
8092   assert(V0->getType() == V1->getType() && "Can't zip different vector types");
8093   SmallVector<int, 16> Indices;
8094   unsigned InputElements =
8095       cast<llvm::FixedVectorType>(V0->getType())->getNumElements();
8096   for (unsigned i = 0; i < InputElements; i++) {
8097     Indices.push_back(i);
8098     Indices.push_back(i + InputElements);
8099   }
8100   return Builder.CreateShuffleVector(V0, V1, Indices);
8101 }
8102 
8103 template<unsigned HighBit, unsigned OtherBits>
8104 static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) {
8105   // MVE-specific helper function to make a vector splat of a constant such as
8106   // UINT_MAX or INT_MIN, in which all bits below the highest one are equal.
8107   llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType();
8108   unsigned LaneBits = T->getPrimitiveSizeInBits();
8109   uint32_t Value = HighBit << (LaneBits - 1);
8110   if (OtherBits)
8111     Value |= (1UL << (LaneBits - 1)) - 1;
8112   llvm::Value *Lane = llvm::ConstantInt::get(T, Value);
8113   return ARMMVEVectorSplat(Builder, Lane);
8114 }
8115 
8116 static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder,
8117                                                llvm::Value *V,
8118                                                unsigned ReverseWidth) {
8119   // MVE-specific helper function which reverses the elements of a
8120   // vector within every (ReverseWidth)-bit collection of lanes.
8121   SmallVector<int, 16> Indices;
8122   unsigned LaneSize = V->getType()->getScalarSizeInBits();
8123   unsigned Elements = 128 / LaneSize;
8124   unsigned Mask = ReverseWidth / LaneSize - 1;
8125   for (unsigned i = 0; i < Elements; i++)
8126     Indices.push_back(i ^ Mask);
8127   return Builder.CreateShuffleVector(V, Indices);
8128 }
8129 
8130 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID,
8131                                               const CallExpr *E,
8132                                               ReturnValueSlot ReturnValue,
8133                                               llvm::Triple::ArchType Arch) {
8134   enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType;
8135   Intrinsic::ID IRIntr;
8136   unsigned NumVectors;
8137 
8138   // Code autogenerated by Tablegen will handle all the simple builtins.
8139   switch (BuiltinID) {
8140     #include "clang/Basic/arm_mve_builtin_cg.inc"
8141 
8142     // If we didn't match an MVE builtin id at all, go back to the
8143     // main EmitARMBuiltinExpr.
8144   default:
8145     return nullptr;
8146   }
8147 
8148   // Anything that breaks from that switch is an MVE builtin that
8149   // needs handwritten code to generate.
8150 
8151   switch (CustomCodeGenType) {
8152 
8153   case CustomCodeGen::VLD24: {
8154     llvm::SmallVector<Value *, 4> Ops;
8155     llvm::SmallVector<llvm::Type *, 4> Tys;
8156 
8157     auto MvecCType = E->getType();
8158     auto MvecLType = ConvertType(MvecCType);
8159     assert(MvecLType->isStructTy() &&
8160            "Return type for vld[24]q should be a struct");
8161     assert(MvecLType->getStructNumElements() == 1 &&
8162            "Return-type struct for vld[24]q should have one element");
8163     auto MvecLTypeInner = MvecLType->getStructElementType(0);
8164     assert(MvecLTypeInner->isArrayTy() &&
8165            "Return-type struct for vld[24]q should contain an array");
8166     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
8167            "Array member of return-type struct vld[24]q has wrong length");
8168     auto VecLType = MvecLTypeInner->getArrayElementType();
8169 
8170     Tys.push_back(VecLType);
8171 
8172     auto Addr = E->getArg(0);
8173     Ops.push_back(EmitScalarExpr(Addr));
8174     Tys.push_back(ConvertType(Addr->getType()));
8175 
8176     Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
8177     Value *LoadResult = Builder.CreateCall(F, Ops);
8178     Value *MvecOut = UndefValue::get(MvecLType);
8179     for (unsigned i = 0; i < NumVectors; ++i) {
8180       Value *Vec = Builder.CreateExtractValue(LoadResult, i);
8181       MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i});
8182     }
8183 
8184     if (ReturnValue.isNull())
8185       return MvecOut;
8186     else
8187       return Builder.CreateStore(MvecOut, ReturnValue.getValue());
8188   }
8189 
8190   case CustomCodeGen::VST24: {
8191     llvm::SmallVector<Value *, 4> Ops;
8192     llvm::SmallVector<llvm::Type *, 4> Tys;
8193 
8194     auto Addr = E->getArg(0);
8195     Ops.push_back(EmitScalarExpr(Addr));
8196     Tys.push_back(ConvertType(Addr->getType()));
8197 
8198     auto MvecCType = E->getArg(1)->getType();
8199     auto MvecLType = ConvertType(MvecCType);
8200     assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct");
8201     assert(MvecLType->getStructNumElements() == 1 &&
8202            "Data-type struct for vst2q should have one element");
8203     auto MvecLTypeInner = MvecLType->getStructElementType(0);
8204     assert(MvecLTypeInner->isArrayTy() &&
8205            "Data-type struct for vst2q should contain an array");
8206     assert(MvecLTypeInner->getArrayNumElements() == NumVectors &&
8207            "Array member of return-type struct vld[24]q has wrong length");
8208     auto VecLType = MvecLTypeInner->getArrayElementType();
8209 
8210     Tys.push_back(VecLType);
8211 
8212     AggValueSlot MvecSlot = CreateAggTemp(MvecCType);
8213     EmitAggExpr(E->getArg(1), MvecSlot);
8214     auto Mvec = Builder.CreateLoad(MvecSlot.getAddress());
8215     for (unsigned i = 0; i < NumVectors; i++)
8216       Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i}));
8217 
8218     Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys));
8219     Value *ToReturn = nullptr;
8220     for (unsigned i = 0; i < NumVectors; i++) {
8221       Ops.push_back(llvm::ConstantInt::get(Int32Ty, i));
8222       ToReturn = Builder.CreateCall(F, Ops);
8223       Ops.pop_back();
8224     }
8225     return ToReturn;
8226   }
8227   }
8228   llvm_unreachable("unknown custom codegen type.");
8229 }
8230 
8231 Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID,
8232                                               const CallExpr *E,
8233                                               ReturnValueSlot ReturnValue,
8234                                               llvm::Triple::ArchType Arch) {
8235   switch (BuiltinID) {
8236   default:
8237     return nullptr;
8238 #include "clang/Basic/arm_cde_builtin_cg.inc"
8239   }
8240 }
8241 
8242 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
8243                                       const CallExpr *E,
8244                                       SmallVectorImpl<Value *> &Ops,
8245                                       llvm::Triple::ArchType Arch) {
8246   unsigned int Int = 0;
8247   const char *s = nullptr;
8248 
8249   switch (BuiltinID) {
8250   default:
8251     return nullptr;
8252   case NEON::BI__builtin_neon_vtbl1_v:
8253   case NEON::BI__builtin_neon_vqtbl1_v:
8254   case NEON::BI__builtin_neon_vqtbl1q_v:
8255   case NEON::BI__builtin_neon_vtbl2_v:
8256   case NEON::BI__builtin_neon_vqtbl2_v:
8257   case NEON::BI__builtin_neon_vqtbl2q_v:
8258   case NEON::BI__builtin_neon_vtbl3_v:
8259   case NEON::BI__builtin_neon_vqtbl3_v:
8260   case NEON::BI__builtin_neon_vqtbl3q_v:
8261   case NEON::BI__builtin_neon_vtbl4_v:
8262   case NEON::BI__builtin_neon_vqtbl4_v:
8263   case NEON::BI__builtin_neon_vqtbl4q_v:
8264     break;
8265   case NEON::BI__builtin_neon_vtbx1_v:
8266   case NEON::BI__builtin_neon_vqtbx1_v:
8267   case NEON::BI__builtin_neon_vqtbx1q_v:
8268   case NEON::BI__builtin_neon_vtbx2_v:
8269   case NEON::BI__builtin_neon_vqtbx2_v:
8270   case NEON::BI__builtin_neon_vqtbx2q_v:
8271   case NEON::BI__builtin_neon_vtbx3_v:
8272   case NEON::BI__builtin_neon_vqtbx3_v:
8273   case NEON::BI__builtin_neon_vqtbx3q_v:
8274   case NEON::BI__builtin_neon_vtbx4_v:
8275   case NEON::BI__builtin_neon_vqtbx4_v:
8276   case NEON::BI__builtin_neon_vqtbx4q_v:
8277     break;
8278   }
8279 
8280   assert(E->getNumArgs() >= 3);
8281 
8282   // Get the last argument, which specifies the vector type.
8283   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
8284   Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(CGF.getContext());
8285   if (!Result)
8286     return nullptr;
8287 
8288   // Determine the type of this overloaded NEON intrinsic.
8289   NeonTypeFlags Type = Result->getZExtValue();
8290   llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type);
8291   if (!Ty)
8292     return nullptr;
8293 
8294   CodeGen::CGBuilderTy &Builder = CGF.Builder;
8295 
8296   // AArch64 scalar builtins are not overloaded, they do not have an extra
8297   // argument that specifies the vector type, need to handle each case.
8298   switch (BuiltinID) {
8299   case NEON::BI__builtin_neon_vtbl1_v: {
8300     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
8301                               Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
8302                               "vtbl1");
8303   }
8304   case NEON::BI__builtin_neon_vtbl2_v: {
8305     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
8306                               Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
8307                               "vtbl1");
8308   }
8309   case NEON::BI__builtin_neon_vtbl3_v: {
8310     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
8311                               Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
8312                               "vtbl2");
8313   }
8314   case NEON::BI__builtin_neon_vtbl4_v: {
8315     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
8316                               Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
8317                               "vtbl2");
8318   }
8319   case NEON::BI__builtin_neon_vtbx1_v: {
8320     Value *TblRes =
8321         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
8322                            Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
8323 
8324     llvm::Constant *EightV = ConstantInt::get(Ty, 8);
8325     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
8326     CmpRes = Builder.CreateSExt(CmpRes, Ty);
8327 
8328     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8329     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8330     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8331   }
8332   case NEON::BI__builtin_neon_vtbx2_v: {
8333     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
8334                               Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
8335                               "vtbx1");
8336   }
8337   case NEON::BI__builtin_neon_vtbx3_v: {
8338     Value *TblRes =
8339         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
8340                            Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
8341 
8342     llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
8343     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
8344                                            TwentyFourV);
8345     CmpRes = Builder.CreateSExt(CmpRes, Ty);
8346 
8347     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
8348     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
8349     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
8350   }
8351   case NEON::BI__builtin_neon_vtbx4_v: {
8352     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
8353                               Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
8354                               "vtbx2");
8355   }
8356   case NEON::BI__builtin_neon_vqtbl1_v:
8357   case NEON::BI__builtin_neon_vqtbl1q_v:
8358     Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
8359   case NEON::BI__builtin_neon_vqtbl2_v:
8360   case NEON::BI__builtin_neon_vqtbl2q_v: {
8361     Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
8362   case NEON::BI__builtin_neon_vqtbl3_v:
8363   case NEON::BI__builtin_neon_vqtbl3q_v:
8364     Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
8365   case NEON::BI__builtin_neon_vqtbl4_v:
8366   case NEON::BI__builtin_neon_vqtbl4q_v:
8367     Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
8368   case NEON::BI__builtin_neon_vqtbx1_v:
8369   case NEON::BI__builtin_neon_vqtbx1q_v:
8370     Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
8371   case NEON::BI__builtin_neon_vqtbx2_v:
8372   case NEON::BI__builtin_neon_vqtbx2q_v:
8373     Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
8374   case NEON::BI__builtin_neon_vqtbx3_v:
8375   case NEON::BI__builtin_neon_vqtbx3q_v:
8376     Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
8377   case NEON::BI__builtin_neon_vqtbx4_v:
8378   case NEON::BI__builtin_neon_vqtbx4q_v:
8379     Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
8380   }
8381   }
8382 
8383   if (!Int)
8384     return nullptr;
8385 
8386   Function *F = CGF.CGM.getIntrinsic(Int, Ty);
8387   return CGF.EmitNeonCall(F, Ops, s);
8388 }
8389 
8390 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
8391   auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4);
8392   Op = Builder.CreateBitCast(Op, Int16Ty);
8393   Value *V = UndefValue::get(VTy);
8394   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
8395   Op = Builder.CreateInsertElement(V, Op, CI);
8396   return Op;
8397 }
8398 
8399 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
8400 /// access builtin.  Only required if it can't be inferred from the base pointer
8401 /// operand.
8402 llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags) {
8403   switch (TypeFlags.getMemEltType()) {
8404   case SVETypeFlags::MemEltTyDefault:
8405     return getEltType(TypeFlags);
8406   case SVETypeFlags::MemEltTyInt8:
8407     return Builder.getInt8Ty();
8408   case SVETypeFlags::MemEltTyInt16:
8409     return Builder.getInt16Ty();
8410   case SVETypeFlags::MemEltTyInt32:
8411     return Builder.getInt32Ty();
8412   case SVETypeFlags::MemEltTyInt64:
8413     return Builder.getInt64Ty();
8414   }
8415   llvm_unreachable("Unknown MemEltType");
8416 }
8417 
8418 llvm::Type *CodeGenFunction::getEltType(const SVETypeFlags &TypeFlags) {
8419   switch (TypeFlags.getEltType()) {
8420   default:
8421     llvm_unreachable("Invalid SVETypeFlag!");
8422 
8423   case SVETypeFlags::EltTyInt8:
8424     return Builder.getInt8Ty();
8425   case SVETypeFlags::EltTyInt16:
8426     return Builder.getInt16Ty();
8427   case SVETypeFlags::EltTyInt32:
8428     return Builder.getInt32Ty();
8429   case SVETypeFlags::EltTyInt64:
8430     return Builder.getInt64Ty();
8431 
8432   case SVETypeFlags::EltTyFloat16:
8433     return Builder.getHalfTy();
8434   case SVETypeFlags::EltTyFloat32:
8435     return Builder.getFloatTy();
8436   case SVETypeFlags::EltTyFloat64:
8437     return Builder.getDoubleTy();
8438 
8439   case SVETypeFlags::EltTyBFloat16:
8440     return Builder.getBFloatTy();
8441 
8442   case SVETypeFlags::EltTyBool8:
8443   case SVETypeFlags::EltTyBool16:
8444   case SVETypeFlags::EltTyBool32:
8445   case SVETypeFlags::EltTyBool64:
8446     return Builder.getInt1Ty();
8447   }
8448 }
8449 
8450 // Return the llvm predicate vector type corresponding to the specified element
8451 // TypeFlags.
8452 llvm::ScalableVectorType *
8453 CodeGenFunction::getSVEPredType(const SVETypeFlags &TypeFlags) {
8454   switch (TypeFlags.getEltType()) {
8455   default: llvm_unreachable("Unhandled SVETypeFlag!");
8456 
8457   case SVETypeFlags::EltTyInt8:
8458     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8459   case SVETypeFlags::EltTyInt16:
8460     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8461   case SVETypeFlags::EltTyInt32:
8462     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8463   case SVETypeFlags::EltTyInt64:
8464     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8465 
8466   case SVETypeFlags::EltTyBFloat16:
8467     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8468   case SVETypeFlags::EltTyFloat16:
8469     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8470   case SVETypeFlags::EltTyFloat32:
8471     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8472   case SVETypeFlags::EltTyFloat64:
8473     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8474 
8475   case SVETypeFlags::EltTyBool8:
8476     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8477   case SVETypeFlags::EltTyBool16:
8478     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8479   case SVETypeFlags::EltTyBool32:
8480     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8481   case SVETypeFlags::EltTyBool64:
8482     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8483   }
8484 }
8485 
8486 // Return the llvm vector type corresponding to the specified element TypeFlags.
8487 llvm::ScalableVectorType *
8488 CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) {
8489   switch (TypeFlags.getEltType()) {
8490   default:
8491     llvm_unreachable("Invalid SVETypeFlag!");
8492 
8493   case SVETypeFlags::EltTyInt8:
8494     return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16);
8495   case SVETypeFlags::EltTyInt16:
8496     return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8);
8497   case SVETypeFlags::EltTyInt32:
8498     return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4);
8499   case SVETypeFlags::EltTyInt64:
8500     return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2);
8501 
8502   case SVETypeFlags::EltTyFloat16:
8503     return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8);
8504   case SVETypeFlags::EltTyBFloat16:
8505     return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8);
8506   case SVETypeFlags::EltTyFloat32:
8507     return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4);
8508   case SVETypeFlags::EltTyFloat64:
8509     return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2);
8510 
8511   case SVETypeFlags::EltTyBool8:
8512     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16);
8513   case SVETypeFlags::EltTyBool16:
8514     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8);
8515   case SVETypeFlags::EltTyBool32:
8516     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4);
8517   case SVETypeFlags::EltTyBool64:
8518     return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2);
8519   }
8520 }
8521 
8522 llvm::Value *
8523 CodeGenFunction::EmitSVEAllTruePred(const SVETypeFlags &TypeFlags) {
8524   Function *Ptrue =
8525       CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags));
8526   return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)});
8527 }
8528 
8529 constexpr unsigned SVEBitsPerBlock = 128;
8530 
8531 static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) {
8532   unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits();
8533   return llvm::ScalableVectorType::get(EltTy, NumElts);
8534 }
8535 
8536 // Reinterpret the input predicate so that it can be used to correctly isolate
8537 // the elements of the specified datatype.
8538 Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred,
8539                                              llvm::ScalableVectorType *VTy) {
8540   auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy);
8541   if (Pred->getType() == RTy)
8542     return Pred;
8543 
8544   unsigned IntID;
8545   llvm::Type *IntrinsicTy;
8546   switch (VTy->getMinNumElements()) {
8547   default:
8548     llvm_unreachable("unsupported element count!");
8549   case 2:
8550   case 4:
8551   case 8:
8552     IntID = Intrinsic::aarch64_sve_convert_from_svbool;
8553     IntrinsicTy = RTy;
8554     break;
8555   case 16:
8556     IntID = Intrinsic::aarch64_sve_convert_to_svbool;
8557     IntrinsicTy = Pred->getType();
8558     break;
8559   }
8560 
8561   Function *F = CGM.getIntrinsic(IntID, IntrinsicTy);
8562   Value *C = Builder.CreateCall(F, Pred);
8563   assert(C->getType() == RTy && "Unexpected return type!");
8564   return C;
8565 }
8566 
8567 Value *CodeGenFunction::EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
8568                                           SmallVectorImpl<Value *> &Ops,
8569                                           unsigned IntID) {
8570   auto *ResultTy = getSVEType(TypeFlags);
8571   auto *OverloadedTy =
8572       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy);
8573 
8574   // At the ACLE level there's only one predicate type, svbool_t, which is
8575   // mapped to <n x 16 x i1>. However, this might be incompatible with the
8576   // actual type being loaded. For example, when loading doubles (i64) the
8577   // predicated should be <n x 2 x i1> instead. At the IR level the type of
8578   // the predicate and the data being loaded must match. Cast accordingly.
8579   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8580 
8581   Function *F = nullptr;
8582   if (Ops[1]->getType()->isVectorTy())
8583     // This is the "vector base, scalar offset" case. In order to uniquely
8584     // map this built-in to an LLVM IR intrinsic, we need both the return type
8585     // and the type of the vector base.
8586     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()});
8587   else
8588     // This is the "scalar base, vector offset case". The type of the offset
8589     // is encoded in the name of the intrinsic. We only need to specify the
8590     // return type in order to uniquely map this built-in to an LLVM IR
8591     // intrinsic.
8592     F = CGM.getIntrinsic(IntID, OverloadedTy);
8593 
8594   // Pass 0 when the offset is missing. This can only be applied when using
8595   // the "vector base" addressing mode for which ACLE allows no offset. The
8596   // corresponding LLVM IR always requires an offset.
8597   if (Ops.size() == 2) {
8598     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
8599     Ops.push_back(ConstantInt::get(Int64Ty, 0));
8600   }
8601 
8602   // For "vector base, scalar index" scale the index so that it becomes a
8603   // scalar offset.
8604   if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) {
8605     unsigned BytesPerElt =
8606         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8607     Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8608     Ops[2] = Builder.CreateMul(Ops[2], Scale);
8609   }
8610 
8611   Value *Call = Builder.CreateCall(F, Ops);
8612 
8613   // The following sext/zext is only needed when ResultTy != OverloadedTy. In
8614   // other cases it's folded into a nop.
8615   return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy)
8616                                   : Builder.CreateSExt(Call, ResultTy);
8617 }
8618 
8619 Value *CodeGenFunction::EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
8620                                             SmallVectorImpl<Value *> &Ops,
8621                                             unsigned IntID) {
8622   auto *SrcDataTy = getSVEType(TypeFlags);
8623   auto *OverloadedTy =
8624       llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy);
8625 
8626   // In ACLE the source data is passed in the last argument, whereas in LLVM IR
8627   // it's the first argument. Move it accordingly.
8628   Ops.insert(Ops.begin(), Ops.pop_back_val());
8629 
8630   Function *F = nullptr;
8631   if (Ops[2]->getType()->isVectorTy())
8632     // This is the "vector base, scalar offset" case. In order to uniquely
8633     // map this built-in to an LLVM IR intrinsic, we need both the return type
8634     // and the type of the vector base.
8635     F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()});
8636   else
8637     // This is the "scalar base, vector offset case". The type of the offset
8638     // is encoded in the name of the intrinsic. We only need to specify the
8639     // return type in order to uniquely map this built-in to an LLVM IR
8640     // intrinsic.
8641     F = CGM.getIntrinsic(IntID, OverloadedTy);
8642 
8643   // Pass 0 when the offset is missing. This can only be applied when using
8644   // the "vector base" addressing mode for which ACLE allows no offset. The
8645   // corresponding LLVM IR always requires an offset.
8646   if (Ops.size() == 3) {
8647     assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset");
8648     Ops.push_back(ConstantInt::get(Int64Ty, 0));
8649   }
8650 
8651   // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's
8652   // folded into a nop.
8653   Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy);
8654 
8655   // At the ACLE level there's only one predicate type, svbool_t, which is
8656   // mapped to <n x 16 x i1>. However, this might be incompatible with the
8657   // actual type being stored. For example, when storing doubles (i64) the
8658   // predicated should be <n x 2 x i1> instead. At the IR level the type of
8659   // the predicate and the data being stored must match. Cast accordingly.
8660   Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy);
8661 
8662   // For "vector base, scalar index" scale the index so that it becomes a
8663   // scalar offset.
8664   if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) {
8665     unsigned BytesPerElt =
8666         OverloadedTy->getElementType()->getScalarSizeInBits() / 8;
8667     Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8668     Ops[3] = Builder.CreateMul(Ops[3], Scale);
8669   }
8670 
8671   return Builder.CreateCall(F, Ops);
8672 }
8673 
8674 Value *CodeGenFunction::EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
8675                                               SmallVectorImpl<Value *> &Ops,
8676                                               unsigned IntID) {
8677   // The gather prefetches are overloaded on the vector input - this can either
8678   // be the vector of base addresses or vector of offsets.
8679   auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType());
8680   if (!OverloadedTy)
8681     OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType());
8682 
8683   // Cast the predicate from svbool_t to the right number of elements.
8684   Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy);
8685 
8686   // vector + imm addressing modes
8687   if (Ops[1]->getType()->isVectorTy()) {
8688     if (Ops.size() == 3) {
8689       // Pass 0 for 'vector+imm' when the index is omitted.
8690       Ops.push_back(ConstantInt::get(Int64Ty, 0));
8691 
8692       // The sv_prfop is the last operand in the builtin and IR intrinsic.
8693       std::swap(Ops[2], Ops[3]);
8694     } else {
8695       // Index needs to be passed as scaled offset.
8696       llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8697       unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8;
8698       Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt);
8699       Ops[2] = Builder.CreateMul(Ops[2], Scale);
8700     }
8701   }
8702 
8703   Function *F = CGM.getIntrinsic(IntID, OverloadedTy);
8704   return Builder.CreateCall(F, Ops);
8705 }
8706 
8707 Value *CodeGenFunction::EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
8708                                           SmallVectorImpl<Value*> &Ops,
8709                                           unsigned IntID) {
8710   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8711   auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8712   auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8713 
8714   unsigned N;
8715   switch (IntID) {
8716   case Intrinsic::aarch64_sve_ld2:
8717     N = 2;
8718     break;
8719   case Intrinsic::aarch64_sve_ld3:
8720     N = 3;
8721     break;
8722   case Intrinsic::aarch64_sve_ld4:
8723     N = 4;
8724     break;
8725   default:
8726     llvm_unreachable("unknown intrinsic!");
8727   }
8728   auto RetTy = llvm::VectorType::get(VTy->getElementType(),
8729                                      VTy->getElementCount() * N);
8730 
8731 	Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8732   Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy);
8733   Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8734   BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8735   BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8736 
8737   Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()});
8738   return Builder.CreateCall(F, { Predicate, BasePtr });
8739 }
8740 
8741 Value *CodeGenFunction::EmitSVEStructStore(const SVETypeFlags &TypeFlags,
8742                                            SmallVectorImpl<Value*> &Ops,
8743                                            unsigned IntID) {
8744   llvm::ScalableVectorType *VTy = getSVEType(TypeFlags);
8745   auto VecPtrTy = llvm::PointerType::getUnqual(VTy);
8746   auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType());
8747 
8748   unsigned N;
8749   switch (IntID) {
8750   case Intrinsic::aarch64_sve_st2:
8751     N = 2;
8752     break;
8753   case Intrinsic::aarch64_sve_st3:
8754     N = 3;
8755     break;
8756   case Intrinsic::aarch64_sve_st4:
8757     N = 4;
8758     break;
8759   default:
8760     llvm_unreachable("unknown intrinsic!");
8761   }
8762   auto TupleTy =
8763       llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N);
8764 
8765   Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy);
8766   Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy);
8767   Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0);
8768   Value *Val = Ops.back();
8769   BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset);
8770   BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy);
8771 
8772   // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we
8773   // need to break up the tuple vector.
8774   SmallVector<llvm::Value*, 5> Operands;
8775   Function *FExtr =
8776       CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
8777   for (unsigned I = 0; I < N; ++I)
8778     Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)}));
8779   Operands.append({Predicate, BasePtr});
8780 
8781   Function *F = CGM.getIntrinsic(IntID, { VTy });
8782   return Builder.CreateCall(F, Operands);
8783 }
8784 
8785 // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and
8786 // svpmullt_pair intrinsics, with the exception that their results are bitcast
8787 // to a wider type.
8788 Value *CodeGenFunction::EmitSVEPMull(const SVETypeFlags &TypeFlags,
8789                                      SmallVectorImpl<Value *> &Ops,
8790                                      unsigned BuiltinID) {
8791   // Splat scalar operand to vector (intrinsics with _n infix)
8792   if (TypeFlags.hasSplatOperand()) {
8793     unsigned OpNo = TypeFlags.getSplatOperand();
8794     Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
8795   }
8796 
8797   // The pair-wise function has a narrower overloaded type.
8798   Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType());
8799   Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]});
8800 
8801   // Now bitcast to the wider result type.
8802   llvm::ScalableVectorType *Ty = getSVEType(TypeFlags);
8803   return EmitSVEReinterpret(Call, Ty);
8804 }
8805 
8806 Value *CodeGenFunction::EmitSVEMovl(const SVETypeFlags &TypeFlags,
8807                                     ArrayRef<Value *> Ops, unsigned BuiltinID) {
8808   llvm::Type *OverloadedTy = getSVEType(TypeFlags);
8809   Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy);
8810   return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)});
8811 }
8812 
8813 Value *CodeGenFunction::EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
8814                                             SmallVectorImpl<Value *> &Ops,
8815                                             unsigned BuiltinID) {
8816   auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags);
8817   auto *VectorTy = getSVEVectorForElementType(MemEltTy);
8818   auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8819 
8820   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8821   Value *BasePtr = Ops[1];
8822 
8823   // Implement the index operand if not omitted.
8824   if (Ops.size() > 3) {
8825     BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo());
8826     BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]);
8827   }
8828 
8829   // Prefetch intriniscs always expect an i8*
8830   BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty));
8831   Value *PrfOp = Ops.back();
8832 
8833   Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType());
8834   return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp});
8835 }
8836 
8837 Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E,
8838                                           llvm::Type *ReturnTy,
8839                                           SmallVectorImpl<Value *> &Ops,
8840                                           unsigned BuiltinID,
8841                                           bool IsZExtReturn) {
8842   QualType LangPTy = E->getArg(1)->getType();
8843   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8844       LangPTy->castAs<PointerType>()->getPointeeType());
8845 
8846   // The vector type that is returned may be different from the
8847   // eventual type loaded from memory.
8848   auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy);
8849   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8850 
8851   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8852   Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8853   Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0);
8854   BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8855 
8856   BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8857   Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8858   Value *Load = Builder.CreateCall(F, {Predicate, BasePtr});
8859 
8860   return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy)
8861                      : Builder.CreateSExt(Load, VectorTy);
8862 }
8863 
8864 Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E,
8865                                            SmallVectorImpl<Value *> &Ops,
8866                                            unsigned BuiltinID) {
8867   QualType LangPTy = E->getArg(1)->getType();
8868   llvm::Type *MemEltTy = CGM.getTypes().ConvertType(
8869       LangPTy->castAs<PointerType>()->getPointeeType());
8870 
8871   // The vector type that is stored may be different from the
8872   // eventual type stored to memory.
8873   auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType());
8874   auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy);
8875 
8876   Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy);
8877   Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo());
8878   Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0);
8879   BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset);
8880 
8881   // Last value is always the data
8882   llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy);
8883 
8884   BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo());
8885   Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy);
8886   return Builder.CreateCall(F, {Val, Predicate, BasePtr});
8887 }
8888 
8889 // Limit the usage of scalable llvm IR generated by the ACLE by using the
8890 // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat.
8891 Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) {
8892   auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty);
8893   return Builder.CreateCall(F, Scalar);
8894 }
8895 
8896 Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) {
8897   return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType()));
8898 }
8899 
8900 Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) {
8901   // FIXME: For big endian this needs an additional REV, or needs a separate
8902   // intrinsic that is code-generated as a no-op, because the LLVM bitcast
8903   // instruction is defined as 'bitwise' equivalent from memory point of
8904   // view (when storing/reloading), whereas the svreinterpret builtin
8905   // implements bitwise equivalent cast from register point of view.
8906   // LLVM CodeGen for a bitcast must add an explicit REV for big-endian.
8907   return Builder.CreateBitCast(Val, Ty);
8908 }
8909 
8910 static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8911                                       SmallVectorImpl<Value *> &Ops) {
8912   auto *SplatZero = Constant::getNullValue(Ty);
8913   Ops.insert(Ops.begin(), SplatZero);
8914 }
8915 
8916 static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty,
8917                                        SmallVectorImpl<Value *> &Ops) {
8918   auto *SplatUndef = UndefValue::get(Ty);
8919   Ops.insert(Ops.begin(), SplatUndef);
8920 }
8921 
8922 SmallVector<llvm::Type *, 2>
8923 CodeGenFunction::getSVEOverloadTypes(const SVETypeFlags &TypeFlags,
8924                                      llvm::Type *ResultType,
8925                                      ArrayRef<Value *> Ops) {
8926   if (TypeFlags.isOverloadNone())
8927     return {};
8928 
8929   llvm::Type *DefaultType = getSVEType(TypeFlags);
8930 
8931   if (TypeFlags.isOverloadWhile())
8932     return {DefaultType, Ops[1]->getType()};
8933 
8934   if (TypeFlags.isOverloadWhileRW())
8935     return {getSVEPredType(TypeFlags), Ops[0]->getType()};
8936 
8937   if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet())
8938     return {Ops[0]->getType(), Ops.back()->getType()};
8939 
8940   if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet())
8941     return {ResultType, Ops[0]->getType()};
8942 
8943   assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads");
8944   return {DefaultType};
8945 }
8946 
8947 Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID,
8948                                                   const CallExpr *E) {
8949   // Find out if any arguments are required to be integer constant expressions.
8950   unsigned ICEArguments = 0;
8951   ASTContext::GetBuiltinTypeError Error;
8952   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
8953   assert(Error == ASTContext::GE_None && "Should not codegen an error");
8954 
8955   llvm::Type *Ty = ConvertType(E->getType());
8956   if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 &&
8957       BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) {
8958     Value *Val = EmitScalarExpr(E->getArg(0));
8959     return EmitSVEReinterpret(Val, Ty);
8960   }
8961 
8962   llvm::SmallVector<Value *, 4> Ops;
8963   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
8964     if ((ICEArguments & (1 << i)) == 0)
8965       Ops.push_back(EmitScalarExpr(E->getArg(i)));
8966     else {
8967       // If this is required to be a constant, constant fold it so that we know
8968       // that the generated intrinsic gets a ConstantInt.
8969       Optional<llvm::APSInt> Result =
8970           E->getArg(i)->getIntegerConstantExpr(getContext());
8971       assert(Result && "Expected argument to be a constant");
8972 
8973       // Immediates for SVE llvm intrinsics are always 32bit.  We can safely
8974       // truncate because the immediate has been range checked and no valid
8975       // immediate requires more than a handful of bits.
8976       *Result = Result->extOrTrunc(32);
8977       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result));
8978     }
8979   }
8980 
8981   auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID,
8982                                               AArch64SVEIntrinsicsProvenSorted);
8983   SVETypeFlags TypeFlags(Builtin->TypeModifier);
8984   if (TypeFlags.isLoad())
8985     return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic,
8986                              TypeFlags.isZExtReturn());
8987   else if (TypeFlags.isStore())
8988     return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic);
8989   else if (TypeFlags.isGatherLoad())
8990     return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8991   else if (TypeFlags.isScatterStore())
8992     return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8993   else if (TypeFlags.isPrefetch())
8994     return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8995   else if (TypeFlags.isGatherPrefetch())
8996     return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8997 	else if (TypeFlags.isStructLoad())
8998 		return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic);
8999 	else if (TypeFlags.isStructStore())
9000 		return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic);
9001   else if (TypeFlags.isUndef())
9002     return UndefValue::get(Ty);
9003   else if (Builtin->LLVMIntrinsic != 0) {
9004     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp)
9005       InsertExplicitZeroOperand(Builder, Ty, Ops);
9006 
9007     if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp)
9008       InsertExplicitUndefOperand(Builder, Ty, Ops);
9009 
9010     // Some ACLE builtins leave out the argument to specify the predicate
9011     // pattern, which is expected to be expanded to an SV_ALL pattern.
9012     if (TypeFlags.isAppendSVALL())
9013       Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31));
9014     if (TypeFlags.isInsertOp1SVALL())
9015       Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31));
9016 
9017     // Predicates must match the main datatype.
9018     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
9019       if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType()))
9020         if (PredTy->getElementType()->isIntegerTy(1))
9021           Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags));
9022 
9023     // Splat scalar operand to vector (intrinsics with _n infix)
9024     if (TypeFlags.hasSplatOperand()) {
9025       unsigned OpNo = TypeFlags.getSplatOperand();
9026       Ops[OpNo] = EmitSVEDupX(Ops[OpNo]);
9027     }
9028 
9029     if (TypeFlags.isReverseCompare())
9030       std::swap(Ops[1], Ops[2]);
9031 
9032     if (TypeFlags.isReverseUSDOT())
9033       std::swap(Ops[1], Ops[2]);
9034 
9035     // Predicated intrinsics with _z suffix need a select w/ zeroinitializer.
9036     if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) {
9037       llvm::Type *OpndTy = Ops[1]->getType();
9038       auto *SplatZero = Constant::getNullValue(OpndTy);
9039       Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy);
9040       Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero});
9041     }
9042 
9043     Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic,
9044                                    getSVEOverloadTypes(TypeFlags, Ty, Ops));
9045     Value *Call = Builder.CreateCall(F, Ops);
9046 
9047     // Predicate results must be converted to svbool_t.
9048     if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType()))
9049       if (PredTy->getScalarType()->isIntegerTy(1))
9050         Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9051 
9052     return Call;
9053   }
9054 
9055   switch (BuiltinID) {
9056   default:
9057     return nullptr;
9058 
9059   case SVE::BI__builtin_sve_svmov_b_z: {
9060     // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op)
9061     SVETypeFlags TypeFlags(Builtin->TypeModifier);
9062     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
9063     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy);
9064     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]});
9065   }
9066 
9067   case SVE::BI__builtin_sve_svnot_b_z: {
9068     // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg)
9069     SVETypeFlags TypeFlags(Builtin->TypeModifier);
9070     llvm::Type* OverloadedTy = getSVEType(TypeFlags);
9071     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy);
9072     return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]});
9073   }
9074 
9075   case SVE::BI__builtin_sve_svmovlb_u16:
9076   case SVE::BI__builtin_sve_svmovlb_u32:
9077   case SVE::BI__builtin_sve_svmovlb_u64:
9078     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb);
9079 
9080   case SVE::BI__builtin_sve_svmovlb_s16:
9081   case SVE::BI__builtin_sve_svmovlb_s32:
9082   case SVE::BI__builtin_sve_svmovlb_s64:
9083     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb);
9084 
9085   case SVE::BI__builtin_sve_svmovlt_u16:
9086   case SVE::BI__builtin_sve_svmovlt_u32:
9087   case SVE::BI__builtin_sve_svmovlt_u64:
9088     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt);
9089 
9090   case SVE::BI__builtin_sve_svmovlt_s16:
9091   case SVE::BI__builtin_sve_svmovlt_s32:
9092   case SVE::BI__builtin_sve_svmovlt_s64:
9093     return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt);
9094 
9095   case SVE::BI__builtin_sve_svpmullt_u16:
9096   case SVE::BI__builtin_sve_svpmullt_u64:
9097   case SVE::BI__builtin_sve_svpmullt_n_u16:
9098   case SVE::BI__builtin_sve_svpmullt_n_u64:
9099     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair);
9100 
9101   case SVE::BI__builtin_sve_svpmullb_u16:
9102   case SVE::BI__builtin_sve_svpmullb_u64:
9103   case SVE::BI__builtin_sve_svpmullb_n_u16:
9104   case SVE::BI__builtin_sve_svpmullb_n_u64:
9105     return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair);
9106 
9107   case SVE::BI__builtin_sve_svdup_n_b8:
9108   case SVE::BI__builtin_sve_svdup_n_b16:
9109   case SVE::BI__builtin_sve_svdup_n_b32:
9110   case SVE::BI__builtin_sve_svdup_n_b64: {
9111     Value *CmpNE =
9112         Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType()));
9113     llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags);
9114     Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy);
9115     return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty));
9116   }
9117 
9118   case SVE::BI__builtin_sve_svdupq_n_b8:
9119   case SVE::BI__builtin_sve_svdupq_n_b16:
9120   case SVE::BI__builtin_sve_svdupq_n_b32:
9121   case SVE::BI__builtin_sve_svdupq_n_b64:
9122   case SVE::BI__builtin_sve_svdupq_n_u8:
9123   case SVE::BI__builtin_sve_svdupq_n_s8:
9124   case SVE::BI__builtin_sve_svdupq_n_u64:
9125   case SVE::BI__builtin_sve_svdupq_n_f64:
9126   case SVE::BI__builtin_sve_svdupq_n_s64:
9127   case SVE::BI__builtin_sve_svdupq_n_u16:
9128   case SVE::BI__builtin_sve_svdupq_n_f16:
9129   case SVE::BI__builtin_sve_svdupq_n_bf16:
9130   case SVE::BI__builtin_sve_svdupq_n_s16:
9131   case SVE::BI__builtin_sve_svdupq_n_u32:
9132   case SVE::BI__builtin_sve_svdupq_n_f32:
9133   case SVE::BI__builtin_sve_svdupq_n_s32: {
9134     // These builtins are implemented by storing each element to an array and using
9135     // ld1rq to materialize a vector.
9136     unsigned NumOpnds = Ops.size();
9137 
9138     bool IsBoolTy =
9139         cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1);
9140 
9141     // For svdupq_n_b* the element type of is an integer of type 128/numelts,
9142     // so that the compare can use the width that is natural for the expected
9143     // number of predicate lanes.
9144     llvm::Type *EltTy = Ops[0]->getType();
9145     if (IsBoolTy)
9146       EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds);
9147 
9148     SmallVector<llvm::Value *, 16> VecOps;
9149     for (unsigned I = 0; I < NumOpnds; ++I)
9150         VecOps.push_back(Builder.CreateZExt(Ops[I], EltTy));
9151     Value *Vec = BuildVector(VecOps);
9152 
9153     SVETypeFlags TypeFlags(Builtin->TypeModifier);
9154     Value *Pred = EmitSVEAllTruePred(TypeFlags);
9155 
9156     llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy);
9157     Value *InsertSubVec = Builder.CreateInsertVector(
9158         OverloadedTy, UndefValue::get(OverloadedTy), Vec, Builder.getInt64(0));
9159 
9160     Function *F =
9161         CGM.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane, OverloadedTy);
9162     Value *DupQLane =
9163         Builder.CreateCall(F, {InsertSubVec, Builder.getInt64(0)});
9164 
9165     if (!IsBoolTy)
9166       return DupQLane;
9167 
9168     // For svdupq_n_b* we need to add an additional 'cmpne' with '0'.
9169     F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne
9170                                        : Intrinsic::aarch64_sve_cmpne_wide,
9171                          OverloadedTy);
9172     Value *Call = Builder.CreateCall(
9173         F, {Pred, DupQLane, EmitSVEDupX(Builder.getInt64(0))});
9174     return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty));
9175   }
9176 
9177   case SVE::BI__builtin_sve_svpfalse_b:
9178     return ConstantInt::getFalse(Ty);
9179 
9180   case SVE::BI__builtin_sve_svlen_bf16:
9181   case SVE::BI__builtin_sve_svlen_f16:
9182   case SVE::BI__builtin_sve_svlen_f32:
9183   case SVE::BI__builtin_sve_svlen_f64:
9184   case SVE::BI__builtin_sve_svlen_s8:
9185   case SVE::BI__builtin_sve_svlen_s16:
9186   case SVE::BI__builtin_sve_svlen_s32:
9187   case SVE::BI__builtin_sve_svlen_s64:
9188   case SVE::BI__builtin_sve_svlen_u8:
9189   case SVE::BI__builtin_sve_svlen_u16:
9190   case SVE::BI__builtin_sve_svlen_u32:
9191   case SVE::BI__builtin_sve_svlen_u64: {
9192     SVETypeFlags TF(Builtin->TypeModifier);
9193     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9194     auto *NumEls =
9195         llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue());
9196 
9197     Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty);
9198     return Builder.CreateMul(NumEls, Builder.CreateCall(F));
9199   }
9200 
9201   case SVE::BI__builtin_sve_svtbl2_u8:
9202   case SVE::BI__builtin_sve_svtbl2_s8:
9203   case SVE::BI__builtin_sve_svtbl2_u16:
9204   case SVE::BI__builtin_sve_svtbl2_s16:
9205   case SVE::BI__builtin_sve_svtbl2_u32:
9206   case SVE::BI__builtin_sve_svtbl2_s32:
9207   case SVE::BI__builtin_sve_svtbl2_u64:
9208   case SVE::BI__builtin_sve_svtbl2_s64:
9209   case SVE::BI__builtin_sve_svtbl2_f16:
9210   case SVE::BI__builtin_sve_svtbl2_bf16:
9211   case SVE::BI__builtin_sve_svtbl2_f32:
9212   case SVE::BI__builtin_sve_svtbl2_f64: {
9213     SVETypeFlags TF(Builtin->TypeModifier);
9214     auto VTy = cast<llvm::VectorType>(getSVEType(TF));
9215     auto TupleTy = llvm::VectorType::getDoubleElementsVectorType(VTy);
9216     Function *FExtr =
9217         CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy});
9218     Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)});
9219     Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)});
9220     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy);
9221     return Builder.CreateCall(F, {V0, V1, Ops[1]});
9222   }
9223   }
9224 
9225   /// Should not happen
9226   return nullptr;
9227 }
9228 
9229 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
9230                                                const CallExpr *E,
9231                                                llvm::Triple::ArchType Arch) {
9232   if (BuiltinID >= AArch64::FirstSVEBuiltin &&
9233       BuiltinID <= AArch64::LastSVEBuiltin)
9234     return EmitAArch64SVEBuiltinExpr(BuiltinID, E);
9235 
9236   unsigned HintID = static_cast<unsigned>(-1);
9237   switch (BuiltinID) {
9238   default: break;
9239   case AArch64::BI__builtin_arm_nop:
9240     HintID = 0;
9241     break;
9242   case AArch64::BI__builtin_arm_yield:
9243   case AArch64::BI__yield:
9244     HintID = 1;
9245     break;
9246   case AArch64::BI__builtin_arm_wfe:
9247   case AArch64::BI__wfe:
9248     HintID = 2;
9249     break;
9250   case AArch64::BI__builtin_arm_wfi:
9251   case AArch64::BI__wfi:
9252     HintID = 3;
9253     break;
9254   case AArch64::BI__builtin_arm_sev:
9255   case AArch64::BI__sev:
9256     HintID = 4;
9257     break;
9258   case AArch64::BI__builtin_arm_sevl:
9259   case AArch64::BI__sevl:
9260     HintID = 5;
9261     break;
9262   }
9263 
9264   if (HintID != static_cast<unsigned>(-1)) {
9265     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
9266     return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
9267   }
9268 
9269   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
9270     Value *Address         = EmitScalarExpr(E->getArg(0));
9271     Value *RW              = EmitScalarExpr(E->getArg(1));
9272     Value *CacheLevel      = EmitScalarExpr(E->getArg(2));
9273     Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
9274     Value *IsData          = EmitScalarExpr(E->getArg(4));
9275 
9276     Value *Locality = nullptr;
9277     if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
9278       // Temporal fetch, needs to convert cache level to locality.
9279       Locality = llvm::ConstantInt::get(Int32Ty,
9280         -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
9281     } else {
9282       // Streaming fetch.
9283       Locality = llvm::ConstantInt::get(Int32Ty, 0);
9284     }
9285 
9286     // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
9287     // PLDL3STRM or PLDL2STRM.
9288     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
9289     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
9290   }
9291 
9292   if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
9293     assert((getContext().getTypeSize(E->getType()) == 32) &&
9294            "rbit of unusual size!");
9295     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9296     return Builder.CreateCall(
9297         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9298   }
9299   if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
9300     assert((getContext().getTypeSize(E->getType()) == 64) &&
9301            "rbit of unusual size!");
9302     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9303     return Builder.CreateCall(
9304         CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
9305   }
9306 
9307   if (BuiltinID == AArch64::BI__builtin_arm_cls) {
9308     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9309     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg,
9310                               "cls");
9311   }
9312   if (BuiltinID == AArch64::BI__builtin_arm_cls64) {
9313     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9314     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg,
9315                               "cls");
9316   }
9317 
9318   if (BuiltinID == AArch64::BI__builtin_arm_frint32zf ||
9319       BuiltinID == AArch64::BI__builtin_arm_frint32z) {
9320     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9321     llvm::Type *Ty = Arg->getType();
9322     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty),
9323                               Arg, "frint32z");
9324   }
9325 
9326   if (BuiltinID == AArch64::BI__builtin_arm_frint64zf ||
9327       BuiltinID == AArch64::BI__builtin_arm_frint64z) {
9328     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9329     llvm::Type *Ty = Arg->getType();
9330     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty),
9331                               Arg, "frint64z");
9332   }
9333 
9334   if (BuiltinID == AArch64::BI__builtin_arm_frint32xf ||
9335       BuiltinID == AArch64::BI__builtin_arm_frint32x) {
9336     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9337     llvm::Type *Ty = Arg->getType();
9338     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty),
9339                               Arg, "frint32x");
9340   }
9341 
9342   if (BuiltinID == AArch64::BI__builtin_arm_frint64xf ||
9343       BuiltinID == AArch64::BI__builtin_arm_frint64x) {
9344     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9345     llvm::Type *Ty = Arg->getType();
9346     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty),
9347                               Arg, "frint64x");
9348   }
9349 
9350   if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
9351     assert((getContext().getTypeSize(E->getType()) == 32) &&
9352            "__jcvt of unusual size!");
9353     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
9354     return Builder.CreateCall(
9355         CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
9356   }
9357 
9358   if (BuiltinID == AArch64::BI__builtin_arm_ld64b ||
9359       BuiltinID == AArch64::BI__builtin_arm_st64b ||
9360       BuiltinID == AArch64::BI__builtin_arm_st64bv ||
9361       BuiltinID == AArch64::BI__builtin_arm_st64bv0) {
9362     llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0));
9363     llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1));
9364 
9365     if (BuiltinID == AArch64::BI__builtin_arm_ld64b) {
9366       // Load from the address via an LLVM intrinsic, receiving a
9367       // tuple of 8 i64 words, and store each one to ValPtr.
9368       Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b);
9369       llvm::Value *Val = Builder.CreateCall(F, MemAddr);
9370       llvm::Value *ToRet;
9371       for (size_t i = 0; i < 8; i++) {
9372         llvm::Value *ValOffsetPtr =
9373             Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
9374         Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8));
9375         ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr);
9376       }
9377       return ToRet;
9378     } else {
9379       // Load 8 i64 words from ValPtr, and store them to the address
9380       // via an LLVM intrinsic.
9381       SmallVector<llvm::Value *, 9> Args;
9382       Args.push_back(MemAddr);
9383       for (size_t i = 0; i < 8; i++) {
9384         llvm::Value *ValOffsetPtr =
9385             Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i));
9386         Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8));
9387         Args.push_back(Builder.CreateLoad(Addr));
9388       }
9389 
9390       auto Intr = (BuiltinID == AArch64::BI__builtin_arm_st64b
9391                        ? Intrinsic::aarch64_st64b
9392                        : BuiltinID == AArch64::BI__builtin_arm_st64bv
9393                              ? Intrinsic::aarch64_st64bv
9394                              : Intrinsic::aarch64_st64bv0);
9395       Function *F = CGM.getIntrinsic(Intr);
9396       return Builder.CreateCall(F, Args);
9397     }
9398   }
9399 
9400   if (BuiltinID == AArch64::BI__builtin_arm_rndr ||
9401       BuiltinID == AArch64::BI__builtin_arm_rndrrs) {
9402 
9403     auto Intr = (BuiltinID == AArch64::BI__builtin_arm_rndr
9404                      ? Intrinsic::aarch64_rndr
9405                      : Intrinsic::aarch64_rndrrs);
9406     Function *F = CGM.getIntrinsic(Intr);
9407     llvm::Value *Val = Builder.CreateCall(F);
9408     Value *RandomValue = Builder.CreateExtractValue(Val, 0);
9409     Value *Status = Builder.CreateExtractValue(Val, 1);
9410 
9411     Address MemAddress = EmitPointerWithAlignment(E->getArg(0));
9412     Builder.CreateStore(RandomValue, MemAddress);
9413     Status = Builder.CreateZExt(Status, Int32Ty);
9414     return Status;
9415   }
9416 
9417   if (BuiltinID == AArch64::BI__clear_cache) {
9418     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
9419     const FunctionDecl *FD = E->getDirectCallee();
9420     Value *Ops[2];
9421     for (unsigned i = 0; i < 2; i++)
9422       Ops[i] = EmitScalarExpr(E->getArg(i));
9423     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
9424     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
9425     StringRef Name = FD->getName();
9426     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
9427   }
9428 
9429   if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
9430       BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
9431       getContext().getTypeSize(E->getType()) == 128) {
9432     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
9433                                        ? Intrinsic::aarch64_ldaxp
9434                                        : Intrinsic::aarch64_ldxp);
9435 
9436     Value *LdPtr = EmitScalarExpr(E->getArg(0));
9437     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
9438                                     "ldxp");
9439 
9440     Value *Val0 = Builder.CreateExtractValue(Val, 1);
9441     Value *Val1 = Builder.CreateExtractValue(Val, 0);
9442     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
9443     Val0 = Builder.CreateZExt(Val0, Int128Ty);
9444     Val1 = Builder.CreateZExt(Val1, Int128Ty);
9445 
9446     Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
9447     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
9448     Val = Builder.CreateOr(Val, Val1);
9449     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
9450   } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
9451              BuiltinID == AArch64::BI__builtin_arm_ldaex) {
9452     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
9453 
9454     QualType Ty = E->getType();
9455     llvm::Type *RealResTy = ConvertType(Ty);
9456     llvm::Type *PtrTy = llvm::IntegerType::get(
9457         getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
9458     LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
9459 
9460     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
9461                                        ? Intrinsic::aarch64_ldaxr
9462                                        : Intrinsic::aarch64_ldxr,
9463                                    PtrTy);
9464     Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
9465 
9466     if (RealResTy->isPointerTy())
9467       return Builder.CreateIntToPtr(Val, RealResTy);
9468 
9469     llvm::Type *IntResTy = llvm::IntegerType::get(
9470         getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
9471     Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
9472     return Builder.CreateBitCast(Val, RealResTy);
9473   }
9474 
9475   if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
9476        BuiltinID == AArch64::BI__builtin_arm_stlex) &&
9477       getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
9478     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9479                                        ? Intrinsic::aarch64_stlxp
9480                                        : Intrinsic::aarch64_stxp);
9481     llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
9482 
9483     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
9484     EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
9485 
9486     Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
9487     llvm::Value *Val = Builder.CreateLoad(Tmp);
9488 
9489     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
9490     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
9491     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
9492                                          Int8PtrTy);
9493     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
9494   }
9495 
9496   if (BuiltinID == AArch64::BI__builtin_arm_strex ||
9497       BuiltinID == AArch64::BI__builtin_arm_stlex) {
9498     Value *StoreVal = EmitScalarExpr(E->getArg(0));
9499     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
9500 
9501     QualType Ty = E->getArg(0)->getType();
9502     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
9503                                                  getContext().getTypeSize(Ty));
9504     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
9505 
9506     if (StoreVal->getType()->isPointerTy())
9507       StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
9508     else {
9509       llvm::Type *IntTy = llvm::IntegerType::get(
9510           getLLVMContext(),
9511           CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
9512       StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
9513       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
9514     }
9515 
9516     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
9517                                        ? Intrinsic::aarch64_stlxr
9518                                        : Intrinsic::aarch64_stxr,
9519                                    StoreAddr->getType());
9520     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
9521   }
9522 
9523   if (BuiltinID == AArch64::BI__getReg) {
9524     Expr::EvalResult Result;
9525     if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
9526       llvm_unreachable("Sema will ensure that the parameter is constant");
9527 
9528     llvm::APSInt Value = Result.Val.getInt();
9529     LLVMContext &Context = CGM.getLLVMContext();
9530     std::string Reg = Value == 31 ? "sp" : "x" + toString(Value, 10);
9531 
9532     llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
9533     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9534     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9535 
9536     llvm::Function *F =
9537         CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
9538     return Builder.CreateCall(F, Metadata);
9539   }
9540 
9541   if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
9542     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
9543     return Builder.CreateCall(F);
9544   }
9545 
9546   if (BuiltinID == AArch64::BI_ReadWriteBarrier)
9547     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
9548                                llvm::SyncScope::SingleThread);
9549 
9550   // CRC32
9551   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
9552   switch (BuiltinID) {
9553   case AArch64::BI__builtin_arm_crc32b:
9554     CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
9555   case AArch64::BI__builtin_arm_crc32cb:
9556     CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
9557   case AArch64::BI__builtin_arm_crc32h:
9558     CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
9559   case AArch64::BI__builtin_arm_crc32ch:
9560     CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
9561   case AArch64::BI__builtin_arm_crc32w:
9562     CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
9563   case AArch64::BI__builtin_arm_crc32cw:
9564     CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
9565   case AArch64::BI__builtin_arm_crc32d:
9566     CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
9567   case AArch64::BI__builtin_arm_crc32cd:
9568     CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
9569   }
9570 
9571   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
9572     Value *Arg0 = EmitScalarExpr(E->getArg(0));
9573     Value *Arg1 = EmitScalarExpr(E->getArg(1));
9574     Function *F = CGM.getIntrinsic(CRCIntrinsicID);
9575 
9576     llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
9577     Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
9578 
9579     return Builder.CreateCall(F, {Arg0, Arg1});
9580   }
9581 
9582   // Memory Tagging Extensions (MTE) Intrinsics
9583   Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
9584   switch (BuiltinID) {
9585   case AArch64::BI__builtin_arm_irg:
9586     MTEIntrinsicID = Intrinsic::aarch64_irg; break;
9587   case  AArch64::BI__builtin_arm_addg:
9588     MTEIntrinsicID = Intrinsic::aarch64_addg; break;
9589   case  AArch64::BI__builtin_arm_gmi:
9590     MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
9591   case  AArch64::BI__builtin_arm_ldg:
9592     MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
9593   case AArch64::BI__builtin_arm_stg:
9594     MTEIntrinsicID = Intrinsic::aarch64_stg; break;
9595   case AArch64::BI__builtin_arm_subp:
9596     MTEIntrinsicID = Intrinsic::aarch64_subp; break;
9597   }
9598 
9599   if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
9600     llvm::Type *T = ConvertType(E->getType());
9601 
9602     if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
9603       Value *Pointer = EmitScalarExpr(E->getArg(0));
9604       Value *Mask = EmitScalarExpr(E->getArg(1));
9605 
9606       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9607       Mask = Builder.CreateZExt(Mask, Int64Ty);
9608       Value *RV = Builder.CreateCall(
9609                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
9610        return Builder.CreatePointerCast(RV, T);
9611     }
9612     if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
9613       Value *Pointer = EmitScalarExpr(E->getArg(0));
9614       Value *TagOffset = EmitScalarExpr(E->getArg(1));
9615 
9616       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9617       TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
9618       Value *RV = Builder.CreateCall(
9619                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
9620       return Builder.CreatePointerCast(RV, T);
9621     }
9622     if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
9623       Value *Pointer = EmitScalarExpr(E->getArg(0));
9624       Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
9625 
9626       ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
9627       Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
9628       return Builder.CreateCall(
9629                        CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
9630     }
9631     // Although it is possible to supply a different return
9632     // address (first arg) to this intrinsic, for now we set
9633     // return address same as input address.
9634     if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
9635       Value *TagAddress = EmitScalarExpr(E->getArg(0));
9636       TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9637       Value *RV = Builder.CreateCall(
9638                     CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9639       return Builder.CreatePointerCast(RV, T);
9640     }
9641     // Although it is possible to supply a different tag (to set)
9642     // to this intrinsic (as first arg), for now we supply
9643     // the tag that is in input address arg (common use case).
9644     if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
9645         Value *TagAddress = EmitScalarExpr(E->getArg(0));
9646         TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
9647         return Builder.CreateCall(
9648                  CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
9649     }
9650     if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
9651       Value *PointerA = EmitScalarExpr(E->getArg(0));
9652       Value *PointerB = EmitScalarExpr(E->getArg(1));
9653       PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
9654       PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
9655       return Builder.CreateCall(
9656                        CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
9657     }
9658   }
9659 
9660   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9661       BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9662       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9663       BuiltinID == AArch64::BI__builtin_arm_wsr ||
9664       BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
9665       BuiltinID == AArch64::BI__builtin_arm_wsrp) {
9666 
9667     SpecialRegisterAccessKind AccessKind = Write;
9668     if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
9669         BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
9670         BuiltinID == AArch64::BI__builtin_arm_rsrp)
9671       AccessKind = VolatileRead;
9672 
9673     bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
9674                             BuiltinID == AArch64::BI__builtin_arm_wsrp;
9675 
9676     bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
9677                    BuiltinID != AArch64::BI__builtin_arm_wsr;
9678 
9679     llvm::Type *ValueType;
9680     llvm::Type *RegisterType = Int64Ty;
9681     if (IsPointerBuiltin) {
9682       ValueType = VoidPtrTy;
9683     } else if (Is64Bit) {
9684       ValueType = Int64Ty;
9685     } else {
9686       ValueType = Int32Ty;
9687     }
9688 
9689     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType,
9690                                       AccessKind);
9691   }
9692 
9693   if (BuiltinID == AArch64::BI_ReadStatusReg ||
9694       BuiltinID == AArch64::BI_WriteStatusReg) {
9695     LLVMContext &Context = CGM.getLLVMContext();
9696 
9697     unsigned SysReg =
9698       E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
9699 
9700     std::string SysRegStr;
9701     llvm::raw_string_ostream(SysRegStr) <<
9702                        ((1 << 1) | ((SysReg >> 14) & 1))  << ":" <<
9703                        ((SysReg >> 11) & 7)               << ":" <<
9704                        ((SysReg >> 7)  & 15)              << ":" <<
9705                        ((SysReg >> 3)  & 15)              << ":" <<
9706                        ( SysReg        & 7);
9707 
9708     llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
9709     llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
9710     llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
9711 
9712     llvm::Type *RegisterType = Int64Ty;
9713     llvm::Type *Types[] = { RegisterType };
9714 
9715     if (BuiltinID == AArch64::BI_ReadStatusReg) {
9716       llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
9717 
9718       return Builder.CreateCall(F, Metadata);
9719     }
9720 
9721     llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
9722     llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
9723 
9724     return Builder.CreateCall(F, { Metadata, ArgValue });
9725   }
9726 
9727   if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
9728     llvm::Function *F =
9729         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
9730     return Builder.CreateCall(F);
9731   }
9732 
9733   if (BuiltinID == AArch64::BI__builtin_sponentry) {
9734     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy);
9735     return Builder.CreateCall(F);
9736   }
9737 
9738   if (BuiltinID == AArch64::BI__mulh || BuiltinID == AArch64::BI__umulh) {
9739     llvm::Type *ResType = ConvertType(E->getType());
9740     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
9741 
9742     bool IsSigned = BuiltinID == AArch64::BI__mulh;
9743     Value *LHS =
9744         Builder.CreateIntCast(EmitScalarExpr(E->getArg(0)), Int128Ty, IsSigned);
9745     Value *RHS =
9746         Builder.CreateIntCast(EmitScalarExpr(E->getArg(1)), Int128Ty, IsSigned);
9747 
9748     Value *MulResult, *HigherBits;
9749     if (IsSigned) {
9750       MulResult = Builder.CreateNSWMul(LHS, RHS);
9751       HigherBits = Builder.CreateAShr(MulResult, 64);
9752     } else {
9753       MulResult = Builder.CreateNUWMul(LHS, RHS);
9754       HigherBits = Builder.CreateLShr(MulResult, 64);
9755     }
9756     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
9757 
9758     return HigherBits;
9759   }
9760 
9761   // Handle MSVC intrinsics before argument evaluation to prevent double
9762   // evaluation.
9763   if (Optional<MSVCIntrin> MsvcIntId = translateAarch64ToMsvcIntrin(BuiltinID))
9764     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
9765 
9766   // Find out if any arguments are required to be integer constant
9767   // expressions.
9768   unsigned ICEArguments = 0;
9769   ASTContext::GetBuiltinTypeError Error;
9770   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
9771   assert(Error == ASTContext::GE_None && "Should not codegen an error");
9772 
9773   llvm::SmallVector<Value*, 4> Ops;
9774   Address PtrOp0 = Address::invalid();
9775   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
9776     if (i == 0) {
9777       switch (BuiltinID) {
9778       case NEON::BI__builtin_neon_vld1_v:
9779       case NEON::BI__builtin_neon_vld1q_v:
9780       case NEON::BI__builtin_neon_vld1_dup_v:
9781       case NEON::BI__builtin_neon_vld1q_dup_v:
9782       case NEON::BI__builtin_neon_vld1_lane_v:
9783       case NEON::BI__builtin_neon_vld1q_lane_v:
9784       case NEON::BI__builtin_neon_vst1_v:
9785       case NEON::BI__builtin_neon_vst1q_v:
9786       case NEON::BI__builtin_neon_vst1_lane_v:
9787       case NEON::BI__builtin_neon_vst1q_lane_v:
9788         // Get the alignment for the argument in addition to the value;
9789         // we'll use it later.
9790         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
9791         Ops.push_back(PtrOp0.getPointer());
9792         continue;
9793       }
9794     }
9795     if ((ICEArguments & (1 << i)) == 0) {
9796       Ops.push_back(EmitScalarExpr(E->getArg(i)));
9797     } else {
9798       // If this is required to be a constant, constant fold it so that we know
9799       // that the generated intrinsic gets a ConstantInt.
9800       Ops.push_back(llvm::ConstantInt::get(
9801           getLLVMContext(),
9802           *E->getArg(i)->getIntegerConstantExpr(getContext())));
9803     }
9804   }
9805 
9806   auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
9807   const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap(
9808       SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
9809 
9810   if (Builtin) {
9811     Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
9812     Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
9813     assert(Result && "SISD intrinsic should have been handled");
9814     return Result;
9815   }
9816 
9817   const Expr *Arg = E->getArg(E->getNumArgs()-1);
9818   NeonTypeFlags Type(0);
9819   if (Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext()))
9820     // Determine the type of this overloaded NEON intrinsic.
9821     Type = NeonTypeFlags(Result->getZExtValue());
9822 
9823   bool usgn = Type.isUnsigned();
9824   bool quad = Type.isQuad();
9825 
9826   // Handle non-overloaded intrinsics first.
9827   switch (BuiltinID) {
9828   default: break;
9829   case NEON::BI__builtin_neon_vabsh_f16:
9830     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9831     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
9832   case NEON::BI__builtin_neon_vaddq_p128: {
9833     llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128);
9834     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9835     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
9836     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
9837     Ops[0] =  Builder.CreateXor(Ops[0], Ops[1]);
9838     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
9839     return Builder.CreateBitCast(Ops[0], Int128Ty);
9840   }
9841   case NEON::BI__builtin_neon_vldrq_p128: {
9842     llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
9843     llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
9844     Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
9845     return Builder.CreateAlignedLoad(Int128Ty, Ptr,
9846                                      CharUnits::fromQuantity(16));
9847   }
9848   case NEON::BI__builtin_neon_vstrq_p128: {
9849     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
9850     Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
9851     return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
9852   }
9853   case NEON::BI__builtin_neon_vcvts_f32_u32:
9854   case NEON::BI__builtin_neon_vcvtd_f64_u64:
9855     usgn = true;
9856     LLVM_FALLTHROUGH;
9857   case NEON::BI__builtin_neon_vcvts_f32_s32:
9858   case NEON::BI__builtin_neon_vcvtd_f64_s64: {
9859     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9860     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
9861     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
9862     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
9863     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9864     if (usgn)
9865       return Builder.CreateUIToFP(Ops[0], FTy);
9866     return Builder.CreateSIToFP(Ops[0], FTy);
9867   }
9868   case NEON::BI__builtin_neon_vcvth_f16_u16:
9869   case NEON::BI__builtin_neon_vcvth_f16_u32:
9870   case NEON::BI__builtin_neon_vcvth_f16_u64:
9871     usgn = true;
9872     LLVM_FALLTHROUGH;
9873   case NEON::BI__builtin_neon_vcvth_f16_s16:
9874   case NEON::BI__builtin_neon_vcvth_f16_s32:
9875   case NEON::BI__builtin_neon_vcvth_f16_s64: {
9876     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9877     llvm::Type *FTy = HalfTy;
9878     llvm::Type *InTy;
9879     if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
9880       InTy = Int64Ty;
9881     else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
9882       InTy = Int32Ty;
9883     else
9884       InTy = Int16Ty;
9885     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
9886     if (usgn)
9887       return Builder.CreateUIToFP(Ops[0], FTy);
9888     return Builder.CreateSIToFP(Ops[0], FTy);
9889   }
9890   case NEON::BI__builtin_neon_vcvtah_u16_f16:
9891   case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9892   case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9893   case NEON::BI__builtin_neon_vcvtph_u16_f16:
9894   case NEON::BI__builtin_neon_vcvth_u16_f16:
9895   case NEON::BI__builtin_neon_vcvtah_s16_f16:
9896   case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9897   case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9898   case NEON::BI__builtin_neon_vcvtph_s16_f16:
9899   case NEON::BI__builtin_neon_vcvth_s16_f16: {
9900     unsigned Int;
9901     llvm::Type* InTy = Int32Ty;
9902     llvm::Type* FTy  = HalfTy;
9903     llvm::Type *Tys[2] = {InTy, FTy};
9904     Ops.push_back(EmitScalarExpr(E->getArg(0)));
9905     switch (BuiltinID) {
9906     default: llvm_unreachable("missing builtin ID in switch!");
9907     case NEON::BI__builtin_neon_vcvtah_u16_f16:
9908       Int = Intrinsic::aarch64_neon_fcvtau; break;
9909     case NEON::BI__builtin_neon_vcvtmh_u16_f16:
9910       Int = Intrinsic::aarch64_neon_fcvtmu; break;
9911     case NEON::BI__builtin_neon_vcvtnh_u16_f16:
9912       Int = Intrinsic::aarch64_neon_fcvtnu; break;
9913     case NEON::BI__builtin_neon_vcvtph_u16_f16:
9914       Int = Intrinsic::aarch64_neon_fcvtpu; break;
9915     case NEON::BI__builtin_neon_vcvth_u16_f16:
9916       Int = Intrinsic::aarch64_neon_fcvtzu; break;
9917     case NEON::BI__builtin_neon_vcvtah_s16_f16:
9918       Int = Intrinsic::aarch64_neon_fcvtas; break;
9919     case NEON::BI__builtin_neon_vcvtmh_s16_f16:
9920       Int = Intrinsic::aarch64_neon_fcvtms; break;
9921     case NEON::BI__builtin_neon_vcvtnh_s16_f16:
9922       Int = Intrinsic::aarch64_neon_fcvtns; break;
9923     case NEON::BI__builtin_neon_vcvtph_s16_f16:
9924       Int = Intrinsic::aarch64_neon_fcvtps; break;
9925     case NEON::BI__builtin_neon_vcvth_s16_f16:
9926       Int = Intrinsic::aarch64_neon_fcvtzs; break;
9927     }
9928     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
9929     return Builder.CreateTrunc(Ops[0], Int16Ty);
9930   }
9931   case NEON::BI__builtin_neon_vcaleh_f16:
9932   case NEON::BI__builtin_neon_vcalth_f16:
9933   case NEON::BI__builtin_neon_vcageh_f16:
9934   case NEON::BI__builtin_neon_vcagth_f16: {
9935     unsigned Int;
9936     llvm::Type* InTy = Int32Ty;
9937     llvm::Type* FTy  = HalfTy;
9938     llvm::Type *Tys[2] = {InTy, FTy};
9939     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9940     switch (BuiltinID) {
9941     default: llvm_unreachable("missing builtin ID in switch!");
9942     case NEON::BI__builtin_neon_vcageh_f16:
9943       Int = Intrinsic::aarch64_neon_facge; break;
9944     case NEON::BI__builtin_neon_vcagth_f16:
9945       Int = Intrinsic::aarch64_neon_facgt; break;
9946     case NEON::BI__builtin_neon_vcaleh_f16:
9947       Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
9948     case NEON::BI__builtin_neon_vcalth_f16:
9949       Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
9950     }
9951     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
9952     return Builder.CreateTrunc(Ops[0], Int16Ty);
9953   }
9954   case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9955   case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
9956     unsigned Int;
9957     llvm::Type* InTy = Int32Ty;
9958     llvm::Type* FTy  = HalfTy;
9959     llvm::Type *Tys[2] = {InTy, FTy};
9960     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9961     switch (BuiltinID) {
9962     default: llvm_unreachable("missing builtin ID in switch!");
9963     case NEON::BI__builtin_neon_vcvth_n_s16_f16:
9964       Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
9965     case NEON::BI__builtin_neon_vcvth_n_u16_f16:
9966       Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
9967     }
9968     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9969     return Builder.CreateTrunc(Ops[0], Int16Ty);
9970   }
9971   case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9972   case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
9973     unsigned Int;
9974     llvm::Type* FTy  = HalfTy;
9975     llvm::Type* InTy = Int32Ty;
9976     llvm::Type *Tys[2] = {FTy, InTy};
9977     Ops.push_back(EmitScalarExpr(E->getArg(1)));
9978     switch (BuiltinID) {
9979     default: llvm_unreachable("missing builtin ID in switch!");
9980     case NEON::BI__builtin_neon_vcvth_n_f16_s16:
9981       Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
9982       Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
9983       break;
9984     case NEON::BI__builtin_neon_vcvth_n_f16_u16:
9985       Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
9986       Ops[0] = Builder.CreateZExt(Ops[0], InTy);
9987       break;
9988     }
9989     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
9990   }
9991   case NEON::BI__builtin_neon_vpaddd_s64: {
9992     auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2);
9993     Value *Vec = EmitScalarExpr(E->getArg(0));
9994     // The vector is v2f64, so make sure it's bitcast to that.
9995     Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
9996     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
9997     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
9998     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
9999     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10000     // Pairwise addition of a v2f64 into a scalar f64.
10001     return Builder.CreateAdd(Op0, Op1, "vpaddd");
10002   }
10003   case NEON::BI__builtin_neon_vpaddd_f64: {
10004     auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2);
10005     Value *Vec = EmitScalarExpr(E->getArg(0));
10006     // The vector is v2f64, so make sure it's bitcast to that.
10007     Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
10008     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10009     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10010     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10011     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10012     // Pairwise addition of a v2f64 into a scalar f64.
10013     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
10014   }
10015   case NEON::BI__builtin_neon_vpadds_f32: {
10016     auto *Ty = llvm::FixedVectorType::get(FloatTy, 2);
10017     Value *Vec = EmitScalarExpr(E->getArg(0));
10018     // The vector is v2f32, so make sure it's bitcast to that.
10019     Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
10020     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
10021     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
10022     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
10023     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
10024     // Pairwise addition of a v2f32 into a scalar f32.
10025     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
10026   }
10027   case NEON::BI__builtin_neon_vceqzd_s64:
10028   case NEON::BI__builtin_neon_vceqzd_f64:
10029   case NEON::BI__builtin_neon_vceqzs_f32:
10030   case NEON::BI__builtin_neon_vceqzh_f16:
10031     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10032     return EmitAArch64CompareBuiltinExpr(
10033         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10034         ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
10035   case NEON::BI__builtin_neon_vcgezd_s64:
10036   case NEON::BI__builtin_neon_vcgezd_f64:
10037   case NEON::BI__builtin_neon_vcgezs_f32:
10038   case NEON::BI__builtin_neon_vcgezh_f16:
10039     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10040     return EmitAArch64CompareBuiltinExpr(
10041         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10042         ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
10043   case NEON::BI__builtin_neon_vclezd_s64:
10044   case NEON::BI__builtin_neon_vclezd_f64:
10045   case NEON::BI__builtin_neon_vclezs_f32:
10046   case NEON::BI__builtin_neon_vclezh_f16:
10047     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10048     return EmitAArch64CompareBuiltinExpr(
10049         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10050         ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
10051   case NEON::BI__builtin_neon_vcgtzd_s64:
10052   case NEON::BI__builtin_neon_vcgtzd_f64:
10053   case NEON::BI__builtin_neon_vcgtzs_f32:
10054   case NEON::BI__builtin_neon_vcgtzh_f16:
10055     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10056     return EmitAArch64CompareBuiltinExpr(
10057         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10058         ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
10059   case NEON::BI__builtin_neon_vcltzd_s64:
10060   case NEON::BI__builtin_neon_vcltzd_f64:
10061   case NEON::BI__builtin_neon_vcltzs_f32:
10062   case NEON::BI__builtin_neon_vcltzh_f16:
10063     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10064     return EmitAArch64CompareBuiltinExpr(
10065         Ops[0], ConvertType(E->getCallReturnType(getContext())),
10066         ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
10067 
10068   case NEON::BI__builtin_neon_vceqzd_u64: {
10069     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10070     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10071     Ops[0] =
10072         Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
10073     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
10074   }
10075   case NEON::BI__builtin_neon_vceqd_f64:
10076   case NEON::BI__builtin_neon_vcled_f64:
10077   case NEON::BI__builtin_neon_vcltd_f64:
10078   case NEON::BI__builtin_neon_vcged_f64:
10079   case NEON::BI__builtin_neon_vcgtd_f64: {
10080     llvm::CmpInst::Predicate P;
10081     switch (BuiltinID) {
10082     default: llvm_unreachable("missing builtin ID in switch!");
10083     case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
10084     case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
10085     case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
10086     case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
10087     case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
10088     }
10089     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10090     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10091     Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10092     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10093     return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
10094   }
10095   case NEON::BI__builtin_neon_vceqs_f32:
10096   case NEON::BI__builtin_neon_vcles_f32:
10097   case NEON::BI__builtin_neon_vclts_f32:
10098   case NEON::BI__builtin_neon_vcges_f32:
10099   case NEON::BI__builtin_neon_vcgts_f32: {
10100     llvm::CmpInst::Predicate P;
10101     switch (BuiltinID) {
10102     default: llvm_unreachable("missing builtin ID in switch!");
10103     case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
10104     case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
10105     case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
10106     case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
10107     case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
10108     }
10109     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10110     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
10111     Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
10112     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10113     return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
10114   }
10115   case NEON::BI__builtin_neon_vceqh_f16:
10116   case NEON::BI__builtin_neon_vcleh_f16:
10117   case NEON::BI__builtin_neon_vclth_f16:
10118   case NEON::BI__builtin_neon_vcgeh_f16:
10119   case NEON::BI__builtin_neon_vcgth_f16: {
10120     llvm::CmpInst::Predicate P;
10121     switch (BuiltinID) {
10122     default: llvm_unreachable("missing builtin ID in switch!");
10123     case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
10124     case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
10125     case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
10126     case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
10127     case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
10128     }
10129     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10130     Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
10131     Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
10132     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
10133     return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
10134   }
10135   case NEON::BI__builtin_neon_vceqd_s64:
10136   case NEON::BI__builtin_neon_vceqd_u64:
10137   case NEON::BI__builtin_neon_vcgtd_s64:
10138   case NEON::BI__builtin_neon_vcgtd_u64:
10139   case NEON::BI__builtin_neon_vcltd_s64:
10140   case NEON::BI__builtin_neon_vcltd_u64:
10141   case NEON::BI__builtin_neon_vcged_u64:
10142   case NEON::BI__builtin_neon_vcged_s64:
10143   case NEON::BI__builtin_neon_vcled_u64:
10144   case NEON::BI__builtin_neon_vcled_s64: {
10145     llvm::CmpInst::Predicate P;
10146     switch (BuiltinID) {
10147     default: llvm_unreachable("missing builtin ID in switch!");
10148     case NEON::BI__builtin_neon_vceqd_s64:
10149     case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
10150     case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
10151     case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
10152     case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
10153     case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
10154     case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
10155     case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
10156     case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
10157     case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
10158     }
10159     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10160     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10161     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10162     Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
10163     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
10164   }
10165   case NEON::BI__builtin_neon_vtstd_s64:
10166   case NEON::BI__builtin_neon_vtstd_u64: {
10167     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10168     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
10169     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10170     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
10171     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
10172                                 llvm::Constant::getNullValue(Int64Ty));
10173     return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
10174   }
10175   case NEON::BI__builtin_neon_vset_lane_i8:
10176   case NEON::BI__builtin_neon_vset_lane_i16:
10177   case NEON::BI__builtin_neon_vset_lane_i32:
10178   case NEON::BI__builtin_neon_vset_lane_i64:
10179   case NEON::BI__builtin_neon_vset_lane_bf16:
10180   case NEON::BI__builtin_neon_vset_lane_f32:
10181   case NEON::BI__builtin_neon_vsetq_lane_i8:
10182   case NEON::BI__builtin_neon_vsetq_lane_i16:
10183   case NEON::BI__builtin_neon_vsetq_lane_i32:
10184   case NEON::BI__builtin_neon_vsetq_lane_i64:
10185   case NEON::BI__builtin_neon_vsetq_lane_bf16:
10186   case NEON::BI__builtin_neon_vsetq_lane_f32:
10187     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10188     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10189   case NEON::BI__builtin_neon_vset_lane_f64:
10190     // The vector type needs a cast for the v1f64 variant.
10191     Ops[1] =
10192         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1));
10193     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10194     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10195   case NEON::BI__builtin_neon_vsetq_lane_f64:
10196     // The vector type needs a cast for the v2f64 variant.
10197     Ops[1] =
10198         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2));
10199     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10200     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
10201 
10202   case NEON::BI__builtin_neon_vget_lane_i8:
10203   case NEON::BI__builtin_neon_vdupb_lane_i8:
10204     Ops[0] =
10205         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8));
10206     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10207                                         "vget_lane");
10208   case NEON::BI__builtin_neon_vgetq_lane_i8:
10209   case NEON::BI__builtin_neon_vdupb_laneq_i8:
10210     Ops[0] =
10211         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16));
10212     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10213                                         "vgetq_lane");
10214   case NEON::BI__builtin_neon_vget_lane_i16:
10215   case NEON::BI__builtin_neon_vduph_lane_i16:
10216     Ops[0] =
10217         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4));
10218     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10219                                         "vget_lane");
10220   case NEON::BI__builtin_neon_vgetq_lane_i16:
10221   case NEON::BI__builtin_neon_vduph_laneq_i16:
10222     Ops[0] =
10223         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8));
10224     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10225                                         "vgetq_lane");
10226   case NEON::BI__builtin_neon_vget_lane_i32:
10227   case NEON::BI__builtin_neon_vdups_lane_i32:
10228     Ops[0] =
10229         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2));
10230     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10231                                         "vget_lane");
10232   case NEON::BI__builtin_neon_vdups_lane_f32:
10233     Ops[0] =
10234         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10235     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10236                                         "vdups_lane");
10237   case NEON::BI__builtin_neon_vgetq_lane_i32:
10238   case NEON::BI__builtin_neon_vdups_laneq_i32:
10239     Ops[0] =
10240         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
10241     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10242                                         "vgetq_lane");
10243   case NEON::BI__builtin_neon_vget_lane_i64:
10244   case NEON::BI__builtin_neon_vdupd_lane_i64:
10245     Ops[0] =
10246         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1));
10247     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10248                                         "vget_lane");
10249   case NEON::BI__builtin_neon_vdupd_lane_f64:
10250     Ops[0] =
10251         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10252     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10253                                         "vdupd_lane");
10254   case NEON::BI__builtin_neon_vgetq_lane_i64:
10255   case NEON::BI__builtin_neon_vdupd_laneq_i64:
10256     Ops[0] =
10257         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
10258     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10259                                         "vgetq_lane");
10260   case NEON::BI__builtin_neon_vget_lane_f32:
10261     Ops[0] =
10262         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2));
10263     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10264                                         "vget_lane");
10265   case NEON::BI__builtin_neon_vget_lane_f64:
10266     Ops[0] =
10267         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1));
10268     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10269                                         "vget_lane");
10270   case NEON::BI__builtin_neon_vgetq_lane_f32:
10271   case NEON::BI__builtin_neon_vdups_laneq_f32:
10272     Ops[0] =
10273         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4));
10274     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10275                                         "vgetq_lane");
10276   case NEON::BI__builtin_neon_vgetq_lane_f64:
10277   case NEON::BI__builtin_neon_vdupd_laneq_f64:
10278     Ops[0] =
10279         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2));
10280     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10281                                         "vgetq_lane");
10282   case NEON::BI__builtin_neon_vaddh_f16:
10283     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10284     return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
10285   case NEON::BI__builtin_neon_vsubh_f16:
10286     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10287     return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
10288   case NEON::BI__builtin_neon_vmulh_f16:
10289     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10290     return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
10291   case NEON::BI__builtin_neon_vdivh_f16:
10292     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10293     return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
10294   case NEON::BI__builtin_neon_vfmah_f16:
10295     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10296     return emitCallMaybeConstrainedFPBuiltin(
10297         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10298         {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
10299   case NEON::BI__builtin_neon_vfmsh_f16: {
10300     // FIXME: This should be an fneg instruction:
10301     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
10302     Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
10303 
10304     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
10305     return emitCallMaybeConstrainedFPBuiltin(
10306         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy,
10307         {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
10308   }
10309   case NEON::BI__builtin_neon_vaddd_s64:
10310   case NEON::BI__builtin_neon_vaddd_u64:
10311     return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
10312   case NEON::BI__builtin_neon_vsubd_s64:
10313   case NEON::BI__builtin_neon_vsubd_u64:
10314     return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
10315   case NEON::BI__builtin_neon_vqdmlalh_s16:
10316   case NEON::BI__builtin_neon_vqdmlslh_s16: {
10317     SmallVector<Value *, 2> ProductOps;
10318     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10319     ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
10320     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10321     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10322                           ProductOps, "vqdmlXl");
10323     Constant *CI = ConstantInt::get(SizeTy, 0);
10324     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10325 
10326     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
10327                                         ? Intrinsic::aarch64_neon_sqadd
10328                                         : Intrinsic::aarch64_neon_sqsub;
10329     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
10330   }
10331   case NEON::BI__builtin_neon_vqshlud_n_s64: {
10332     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10333     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10334     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
10335                         Ops, "vqshlu_n");
10336   }
10337   case NEON::BI__builtin_neon_vqshld_n_u64:
10338   case NEON::BI__builtin_neon_vqshld_n_s64: {
10339     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
10340                                    ? Intrinsic::aarch64_neon_uqshl
10341                                    : Intrinsic::aarch64_neon_sqshl;
10342     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10343     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
10344     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
10345   }
10346   case NEON::BI__builtin_neon_vrshrd_n_u64:
10347   case NEON::BI__builtin_neon_vrshrd_n_s64: {
10348     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
10349                                    ? Intrinsic::aarch64_neon_urshl
10350                                    : Intrinsic::aarch64_neon_srshl;
10351     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10352     int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
10353     Ops[1] = ConstantInt::get(Int64Ty, -SV);
10354     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
10355   }
10356   case NEON::BI__builtin_neon_vrsrad_n_u64:
10357   case NEON::BI__builtin_neon_vrsrad_n_s64: {
10358     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
10359                                    ? Intrinsic::aarch64_neon_urshl
10360                                    : Intrinsic::aarch64_neon_srshl;
10361     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
10362     Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
10363     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
10364                                 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
10365     return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
10366   }
10367   case NEON::BI__builtin_neon_vshld_n_s64:
10368   case NEON::BI__builtin_neon_vshld_n_u64: {
10369     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10370     return Builder.CreateShl(
10371         Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
10372   }
10373   case NEON::BI__builtin_neon_vshrd_n_s64: {
10374     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10375     return Builder.CreateAShr(
10376         Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10377                                                    Amt->getZExtValue())),
10378         "shrd_n");
10379   }
10380   case NEON::BI__builtin_neon_vshrd_n_u64: {
10381     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
10382     uint64_t ShiftAmt = Amt->getZExtValue();
10383     // Right-shifting an unsigned value by its size yields 0.
10384     if (ShiftAmt == 64)
10385       return ConstantInt::get(Int64Ty, 0);
10386     return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
10387                               "shrd_n");
10388   }
10389   case NEON::BI__builtin_neon_vsrad_n_s64: {
10390     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10391     Ops[1] = Builder.CreateAShr(
10392         Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
10393                                                    Amt->getZExtValue())),
10394         "shrd_n");
10395     return Builder.CreateAdd(Ops[0], Ops[1]);
10396   }
10397   case NEON::BI__builtin_neon_vsrad_n_u64: {
10398     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
10399     uint64_t ShiftAmt = Amt->getZExtValue();
10400     // Right-shifting an unsigned value by its size yields 0.
10401     // As Op + 0 = Op, return Ops[0] directly.
10402     if (ShiftAmt == 64)
10403       return Ops[0];
10404     Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
10405                                 "shrd_n");
10406     return Builder.CreateAdd(Ops[0], Ops[1]);
10407   }
10408   case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
10409   case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
10410   case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
10411   case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
10412     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10413                                           "lane");
10414     SmallVector<Value *, 2> ProductOps;
10415     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
10416     ProductOps.push_back(vectorWrapScalar16(Ops[2]));
10417     auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4);
10418     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
10419                           ProductOps, "vqdmlXl");
10420     Constant *CI = ConstantInt::get(SizeTy, 0);
10421     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
10422     Ops.pop_back();
10423 
10424     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
10425                        BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
10426                           ? Intrinsic::aarch64_neon_sqadd
10427                           : Intrinsic::aarch64_neon_sqsub;
10428     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
10429   }
10430   case NEON::BI__builtin_neon_vqdmlals_s32:
10431   case NEON::BI__builtin_neon_vqdmlsls_s32: {
10432     SmallVector<Value *, 2> ProductOps;
10433     ProductOps.push_back(Ops[1]);
10434     ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
10435     Ops[1] =
10436         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10437                      ProductOps, "vqdmlXl");
10438 
10439     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
10440                                         ? Intrinsic::aarch64_neon_sqadd
10441                                         : Intrinsic::aarch64_neon_sqsub;
10442     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
10443   }
10444   case NEON::BI__builtin_neon_vqdmlals_lane_s32:
10445   case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
10446   case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
10447   case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
10448     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
10449                                           "lane");
10450     SmallVector<Value *, 2> ProductOps;
10451     ProductOps.push_back(Ops[1]);
10452     ProductOps.push_back(Ops[2]);
10453     Ops[1] =
10454         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
10455                      ProductOps, "vqdmlXl");
10456     Ops.pop_back();
10457 
10458     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
10459                        BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
10460                           ? Intrinsic::aarch64_neon_sqadd
10461                           : Intrinsic::aarch64_neon_sqsub;
10462     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
10463   }
10464   case NEON::BI__builtin_neon_vget_lane_bf16:
10465   case NEON::BI__builtin_neon_vduph_lane_bf16:
10466   case NEON::BI__builtin_neon_vduph_lane_f16: {
10467     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10468                                         "vget_lane");
10469   }
10470   case NEON::BI__builtin_neon_vgetq_lane_bf16:
10471   case NEON::BI__builtin_neon_vduph_laneq_bf16:
10472   case NEON::BI__builtin_neon_vduph_laneq_f16: {
10473     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
10474                                         "vgetq_lane");
10475   }
10476 
10477   case AArch64::BI_InterlockedAdd: {
10478     Value *Arg0 = EmitScalarExpr(E->getArg(0));
10479     Value *Arg1 = EmitScalarExpr(E->getArg(1));
10480     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
10481       AtomicRMWInst::Add, Arg0, Arg1,
10482       llvm::AtomicOrdering::SequentiallyConsistent);
10483     return Builder.CreateAdd(RMWI, Arg1);
10484   }
10485   }
10486 
10487   llvm::FixedVectorType *VTy = GetNeonType(this, Type);
10488   llvm::Type *Ty = VTy;
10489   if (!Ty)
10490     return nullptr;
10491 
10492   // Not all intrinsics handled by the common case work for AArch64 yet, so only
10493   // defer to common code if it's been added to our special map.
10494   Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
10495                                         AArch64SIMDIntrinsicsProvenSorted);
10496 
10497   if (Builtin)
10498     return EmitCommonNeonBuiltinExpr(
10499         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
10500         Builtin->NameHint, Builtin->TypeModifier, E, Ops,
10501         /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
10502 
10503   if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
10504     return V;
10505 
10506   unsigned Int;
10507   switch (BuiltinID) {
10508   default: return nullptr;
10509   case NEON::BI__builtin_neon_vbsl_v:
10510   case NEON::BI__builtin_neon_vbslq_v: {
10511     llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
10512     Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
10513     Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
10514     Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
10515 
10516     Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
10517     Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
10518     Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
10519     return Builder.CreateBitCast(Ops[0], Ty);
10520   }
10521   case NEON::BI__builtin_neon_vfma_lane_v:
10522   case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
10523     // The ARM builtins (and instructions) have the addend as the first
10524     // operand, but the 'fma' intrinsics have it last. Swap it around here.
10525     Value *Addend = Ops[0];
10526     Value *Multiplicand = Ops[1];
10527     Value *LaneSource = Ops[2];
10528     Ops[0] = Multiplicand;
10529     Ops[1] = LaneSource;
10530     Ops[2] = Addend;
10531 
10532     // Now adjust things to handle the lane access.
10533     auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v
10534                          ? llvm::FixedVectorType::get(VTy->getElementType(),
10535                                                       VTy->getNumElements() / 2)
10536                          : VTy;
10537     llvm::Constant *cst = cast<Constant>(Ops[3]);
10538     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst);
10539     Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
10540     Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
10541 
10542     Ops.pop_back();
10543     Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma
10544                                        : Intrinsic::fma;
10545     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
10546   }
10547   case NEON::BI__builtin_neon_vfma_laneq_v: {
10548     auto *VTy = cast<llvm::FixedVectorType>(Ty);
10549     // v1f64 fma should be mapped to Neon scalar f64 fma
10550     if (VTy && VTy->getElementType() == DoubleTy) {
10551       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10552       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
10553       llvm::FixedVectorType *VTy =
10554           GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true));
10555       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
10556       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10557       Value *Result;
10558       Result = emitCallMaybeConstrainedFPBuiltin(
10559           *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma,
10560           DoubleTy, {Ops[1], Ops[2], Ops[0]});
10561       return Builder.CreateBitCast(Result, Ty);
10562     }
10563     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10564     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10565 
10566     auto *STy = llvm::FixedVectorType::get(VTy->getElementType(),
10567                                            VTy->getNumElements() * 2);
10568     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
10569     Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(),
10570                                                cast<ConstantInt>(Ops[3]));
10571     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
10572 
10573     return emitCallMaybeConstrainedFPBuiltin(
10574         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10575         {Ops[2], Ops[1], Ops[0]});
10576   }
10577   case NEON::BI__builtin_neon_vfmaq_laneq_v: {
10578     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10579     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
10580 
10581     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
10582     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
10583     return emitCallMaybeConstrainedFPBuiltin(
10584         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10585         {Ops[2], Ops[1], Ops[0]});
10586   }
10587   case NEON::BI__builtin_neon_vfmah_lane_f16:
10588   case NEON::BI__builtin_neon_vfmas_lane_f32:
10589   case NEON::BI__builtin_neon_vfmah_laneq_f16:
10590   case NEON::BI__builtin_neon_vfmas_laneq_f32:
10591   case NEON::BI__builtin_neon_vfmad_lane_f64:
10592   case NEON::BI__builtin_neon_vfmad_laneq_f64: {
10593     Ops.push_back(EmitScalarExpr(E->getArg(3)));
10594     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
10595     Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
10596     return emitCallMaybeConstrainedFPBuiltin(
10597         *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty,
10598         {Ops[1], Ops[2], Ops[0]});
10599   }
10600   case NEON::BI__builtin_neon_vmull_v:
10601     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10602     Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
10603     if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
10604     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
10605   case NEON::BI__builtin_neon_vmax_v:
10606   case NEON::BI__builtin_neon_vmaxq_v:
10607     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10608     Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
10609     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
10610     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
10611   case NEON::BI__builtin_neon_vmaxh_f16: {
10612     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10613     Int = Intrinsic::aarch64_neon_fmax;
10614     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
10615   }
10616   case NEON::BI__builtin_neon_vmin_v:
10617   case NEON::BI__builtin_neon_vminq_v:
10618     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10619     Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
10620     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
10621     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
10622   case NEON::BI__builtin_neon_vminh_f16: {
10623     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10624     Int = Intrinsic::aarch64_neon_fmin;
10625     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
10626   }
10627   case NEON::BI__builtin_neon_vabd_v:
10628   case NEON::BI__builtin_neon_vabdq_v:
10629     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10630     Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
10631     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
10632     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
10633   case NEON::BI__builtin_neon_vpadal_v:
10634   case NEON::BI__builtin_neon_vpadalq_v: {
10635     unsigned ArgElts = VTy->getNumElements();
10636     llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
10637     unsigned BitWidth = EltTy->getBitWidth();
10638     auto *ArgTy = llvm::FixedVectorType::get(
10639         llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts);
10640     llvm::Type* Tys[2] = { VTy, ArgTy };
10641     Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
10642     SmallVector<llvm::Value*, 1> TmpOps;
10643     TmpOps.push_back(Ops[1]);
10644     Function *F = CGM.getIntrinsic(Int, Tys);
10645     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
10646     llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
10647     return Builder.CreateAdd(tmp, addend);
10648   }
10649   case NEON::BI__builtin_neon_vpmin_v:
10650   case NEON::BI__builtin_neon_vpminq_v:
10651     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10652     Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
10653     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
10654     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
10655   case NEON::BI__builtin_neon_vpmax_v:
10656   case NEON::BI__builtin_neon_vpmaxq_v:
10657     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
10658     Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
10659     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
10660     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
10661   case NEON::BI__builtin_neon_vminnm_v:
10662   case NEON::BI__builtin_neon_vminnmq_v:
10663     Int = Intrinsic::aarch64_neon_fminnm;
10664     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
10665   case NEON::BI__builtin_neon_vminnmh_f16:
10666     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10667     Int = Intrinsic::aarch64_neon_fminnm;
10668     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
10669   case NEON::BI__builtin_neon_vmaxnm_v:
10670   case NEON::BI__builtin_neon_vmaxnmq_v:
10671     Int = Intrinsic::aarch64_neon_fmaxnm;
10672     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
10673   case NEON::BI__builtin_neon_vmaxnmh_f16:
10674     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10675     Int = Intrinsic::aarch64_neon_fmaxnm;
10676     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
10677   case NEON::BI__builtin_neon_vrecpss_f32: {
10678     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10679     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
10680                         Ops, "vrecps");
10681   }
10682   case NEON::BI__builtin_neon_vrecpsd_f64:
10683     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10684     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
10685                         Ops, "vrecps");
10686   case NEON::BI__builtin_neon_vrecpsh_f16:
10687     Ops.push_back(EmitScalarExpr(E->getArg(1)));
10688     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
10689                         Ops, "vrecps");
10690   case NEON::BI__builtin_neon_vqshrun_n_v:
10691     Int = Intrinsic::aarch64_neon_sqshrun;
10692     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
10693   case NEON::BI__builtin_neon_vqrshrun_n_v:
10694     Int = Intrinsic::aarch64_neon_sqrshrun;
10695     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
10696   case NEON::BI__builtin_neon_vqshrn_n_v:
10697     Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
10698     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
10699   case NEON::BI__builtin_neon_vrshrn_n_v:
10700     Int = Intrinsic::aarch64_neon_rshrn;
10701     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
10702   case NEON::BI__builtin_neon_vqrshrn_n_v:
10703     Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
10704     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
10705   case NEON::BI__builtin_neon_vrndah_f16: {
10706     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10707     Int = Builder.getIsFPConstrained()
10708               ? Intrinsic::experimental_constrained_round
10709               : Intrinsic::round;
10710     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
10711   }
10712   case NEON::BI__builtin_neon_vrnda_v:
10713   case NEON::BI__builtin_neon_vrndaq_v: {
10714     Int = Builder.getIsFPConstrained()
10715               ? Intrinsic::experimental_constrained_round
10716               : Intrinsic::round;
10717     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
10718   }
10719   case NEON::BI__builtin_neon_vrndih_f16: {
10720     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10721     Int = Builder.getIsFPConstrained()
10722               ? Intrinsic::experimental_constrained_nearbyint
10723               : Intrinsic::nearbyint;
10724     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
10725   }
10726   case NEON::BI__builtin_neon_vrndmh_f16: {
10727     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10728     Int = Builder.getIsFPConstrained()
10729               ? Intrinsic::experimental_constrained_floor
10730               : Intrinsic::floor;
10731     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
10732   }
10733   case NEON::BI__builtin_neon_vrndm_v:
10734   case NEON::BI__builtin_neon_vrndmq_v: {
10735     Int = Builder.getIsFPConstrained()
10736               ? Intrinsic::experimental_constrained_floor
10737               : Intrinsic::floor;
10738     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
10739   }
10740   case NEON::BI__builtin_neon_vrndnh_f16: {
10741     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10742     Int = Builder.getIsFPConstrained()
10743               ? Intrinsic::experimental_constrained_roundeven
10744               : Intrinsic::roundeven;
10745     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
10746   }
10747   case NEON::BI__builtin_neon_vrndn_v:
10748   case NEON::BI__builtin_neon_vrndnq_v: {
10749     Int = Builder.getIsFPConstrained()
10750               ? Intrinsic::experimental_constrained_roundeven
10751               : Intrinsic::roundeven;
10752     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
10753   }
10754   case NEON::BI__builtin_neon_vrndns_f32: {
10755     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10756     Int = Builder.getIsFPConstrained()
10757               ? Intrinsic::experimental_constrained_roundeven
10758               : Intrinsic::roundeven;
10759     return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
10760   }
10761   case NEON::BI__builtin_neon_vrndph_f16: {
10762     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10763     Int = Builder.getIsFPConstrained()
10764               ? Intrinsic::experimental_constrained_ceil
10765               : Intrinsic::ceil;
10766     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
10767   }
10768   case NEON::BI__builtin_neon_vrndp_v:
10769   case NEON::BI__builtin_neon_vrndpq_v: {
10770     Int = Builder.getIsFPConstrained()
10771               ? Intrinsic::experimental_constrained_ceil
10772               : Intrinsic::ceil;
10773     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
10774   }
10775   case NEON::BI__builtin_neon_vrndxh_f16: {
10776     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10777     Int = Builder.getIsFPConstrained()
10778               ? Intrinsic::experimental_constrained_rint
10779               : Intrinsic::rint;
10780     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
10781   }
10782   case NEON::BI__builtin_neon_vrndx_v:
10783   case NEON::BI__builtin_neon_vrndxq_v: {
10784     Int = Builder.getIsFPConstrained()
10785               ? Intrinsic::experimental_constrained_rint
10786               : Intrinsic::rint;
10787     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
10788   }
10789   case NEON::BI__builtin_neon_vrndh_f16: {
10790     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10791     Int = Builder.getIsFPConstrained()
10792               ? Intrinsic::experimental_constrained_trunc
10793               : Intrinsic::trunc;
10794     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
10795   }
10796   case NEON::BI__builtin_neon_vrnd32x_v:
10797   case NEON::BI__builtin_neon_vrnd32xq_v: {
10798     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10799     Int = Intrinsic::aarch64_neon_frint32x;
10800     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x");
10801   }
10802   case NEON::BI__builtin_neon_vrnd32z_v:
10803   case NEON::BI__builtin_neon_vrnd32zq_v: {
10804     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10805     Int = Intrinsic::aarch64_neon_frint32z;
10806     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z");
10807   }
10808   case NEON::BI__builtin_neon_vrnd64x_v:
10809   case NEON::BI__builtin_neon_vrnd64xq_v: {
10810     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10811     Int = Intrinsic::aarch64_neon_frint64x;
10812     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x");
10813   }
10814   case NEON::BI__builtin_neon_vrnd64z_v:
10815   case NEON::BI__builtin_neon_vrnd64zq_v: {
10816     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10817     Int = Intrinsic::aarch64_neon_frint64z;
10818     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z");
10819   }
10820   case NEON::BI__builtin_neon_vrnd_v:
10821   case NEON::BI__builtin_neon_vrndq_v: {
10822     Int = Builder.getIsFPConstrained()
10823               ? Intrinsic::experimental_constrained_trunc
10824               : Intrinsic::trunc;
10825     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
10826   }
10827   case NEON::BI__builtin_neon_vcvt_f64_v:
10828   case NEON::BI__builtin_neon_vcvtq_f64_v:
10829     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10830     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
10831     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
10832                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
10833   case NEON::BI__builtin_neon_vcvt_f64_f32: {
10834     assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
10835            "unexpected vcvt_f64_f32 builtin");
10836     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
10837     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10838 
10839     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
10840   }
10841   case NEON::BI__builtin_neon_vcvt_f32_f64: {
10842     assert(Type.getEltType() == NeonTypeFlags::Float32 &&
10843            "unexpected vcvt_f32_f64 builtin");
10844     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
10845     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
10846 
10847     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
10848   }
10849   case NEON::BI__builtin_neon_vcvt_s32_v:
10850   case NEON::BI__builtin_neon_vcvt_u32_v:
10851   case NEON::BI__builtin_neon_vcvt_s64_v:
10852   case NEON::BI__builtin_neon_vcvt_u64_v:
10853   case NEON::BI__builtin_neon_vcvt_s16_v:
10854   case NEON::BI__builtin_neon_vcvt_u16_v:
10855   case NEON::BI__builtin_neon_vcvtq_s32_v:
10856   case NEON::BI__builtin_neon_vcvtq_u32_v:
10857   case NEON::BI__builtin_neon_vcvtq_s64_v:
10858   case NEON::BI__builtin_neon_vcvtq_u64_v:
10859   case NEON::BI__builtin_neon_vcvtq_s16_v:
10860   case NEON::BI__builtin_neon_vcvtq_u16_v: {
10861     Int =
10862         usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs;
10863     llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)};
10864     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz");
10865   }
10866   case NEON::BI__builtin_neon_vcvta_s16_v:
10867   case NEON::BI__builtin_neon_vcvta_u16_v:
10868   case NEON::BI__builtin_neon_vcvta_s32_v:
10869   case NEON::BI__builtin_neon_vcvtaq_s16_v:
10870   case NEON::BI__builtin_neon_vcvtaq_s32_v:
10871   case NEON::BI__builtin_neon_vcvta_u32_v:
10872   case NEON::BI__builtin_neon_vcvtaq_u16_v:
10873   case NEON::BI__builtin_neon_vcvtaq_u32_v:
10874   case NEON::BI__builtin_neon_vcvta_s64_v:
10875   case NEON::BI__builtin_neon_vcvtaq_s64_v:
10876   case NEON::BI__builtin_neon_vcvta_u64_v:
10877   case NEON::BI__builtin_neon_vcvtaq_u64_v: {
10878     Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
10879     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10880     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
10881   }
10882   case NEON::BI__builtin_neon_vcvtm_s16_v:
10883   case NEON::BI__builtin_neon_vcvtm_s32_v:
10884   case NEON::BI__builtin_neon_vcvtmq_s16_v:
10885   case NEON::BI__builtin_neon_vcvtmq_s32_v:
10886   case NEON::BI__builtin_neon_vcvtm_u16_v:
10887   case NEON::BI__builtin_neon_vcvtm_u32_v:
10888   case NEON::BI__builtin_neon_vcvtmq_u16_v:
10889   case NEON::BI__builtin_neon_vcvtmq_u32_v:
10890   case NEON::BI__builtin_neon_vcvtm_s64_v:
10891   case NEON::BI__builtin_neon_vcvtmq_s64_v:
10892   case NEON::BI__builtin_neon_vcvtm_u64_v:
10893   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
10894     Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
10895     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10896     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
10897   }
10898   case NEON::BI__builtin_neon_vcvtn_s16_v:
10899   case NEON::BI__builtin_neon_vcvtn_s32_v:
10900   case NEON::BI__builtin_neon_vcvtnq_s16_v:
10901   case NEON::BI__builtin_neon_vcvtnq_s32_v:
10902   case NEON::BI__builtin_neon_vcvtn_u16_v:
10903   case NEON::BI__builtin_neon_vcvtn_u32_v:
10904   case NEON::BI__builtin_neon_vcvtnq_u16_v:
10905   case NEON::BI__builtin_neon_vcvtnq_u32_v:
10906   case NEON::BI__builtin_neon_vcvtn_s64_v:
10907   case NEON::BI__builtin_neon_vcvtnq_s64_v:
10908   case NEON::BI__builtin_neon_vcvtn_u64_v:
10909   case NEON::BI__builtin_neon_vcvtnq_u64_v: {
10910     Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
10911     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10912     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
10913   }
10914   case NEON::BI__builtin_neon_vcvtp_s16_v:
10915   case NEON::BI__builtin_neon_vcvtp_s32_v:
10916   case NEON::BI__builtin_neon_vcvtpq_s16_v:
10917   case NEON::BI__builtin_neon_vcvtpq_s32_v:
10918   case NEON::BI__builtin_neon_vcvtp_u16_v:
10919   case NEON::BI__builtin_neon_vcvtp_u32_v:
10920   case NEON::BI__builtin_neon_vcvtpq_u16_v:
10921   case NEON::BI__builtin_neon_vcvtpq_u32_v:
10922   case NEON::BI__builtin_neon_vcvtp_s64_v:
10923   case NEON::BI__builtin_neon_vcvtpq_s64_v:
10924   case NEON::BI__builtin_neon_vcvtp_u64_v:
10925   case NEON::BI__builtin_neon_vcvtpq_u64_v: {
10926     Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
10927     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
10928     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
10929   }
10930   case NEON::BI__builtin_neon_vmulx_v:
10931   case NEON::BI__builtin_neon_vmulxq_v: {
10932     Int = Intrinsic::aarch64_neon_fmulx;
10933     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
10934   }
10935   case NEON::BI__builtin_neon_vmulxh_lane_f16:
10936   case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
10937     // vmulx_lane should be mapped to Neon scalar mulx after
10938     // extracting the scalar element
10939     Ops.push_back(EmitScalarExpr(E->getArg(2)));
10940     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10941     Ops.pop_back();
10942     Int = Intrinsic::aarch64_neon_fmulx;
10943     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
10944   }
10945   case NEON::BI__builtin_neon_vmul_lane_v:
10946   case NEON::BI__builtin_neon_vmul_laneq_v: {
10947     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
10948     bool Quad = false;
10949     if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
10950       Quad = true;
10951     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
10952     llvm::FixedVectorType *VTy =
10953         GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
10954     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
10955     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
10956     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
10957     return Builder.CreateBitCast(Result, Ty);
10958   }
10959   case NEON::BI__builtin_neon_vnegd_s64:
10960     return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
10961   case NEON::BI__builtin_neon_vnegh_f16:
10962     return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
10963   case NEON::BI__builtin_neon_vpmaxnm_v:
10964   case NEON::BI__builtin_neon_vpmaxnmq_v: {
10965     Int = Intrinsic::aarch64_neon_fmaxnmp;
10966     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
10967   }
10968   case NEON::BI__builtin_neon_vpminnm_v:
10969   case NEON::BI__builtin_neon_vpminnmq_v: {
10970     Int = Intrinsic::aarch64_neon_fminnmp;
10971     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
10972   }
10973   case NEON::BI__builtin_neon_vsqrth_f16: {
10974     Ops.push_back(EmitScalarExpr(E->getArg(0)));
10975     Int = Builder.getIsFPConstrained()
10976               ? Intrinsic::experimental_constrained_sqrt
10977               : Intrinsic::sqrt;
10978     return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
10979   }
10980   case NEON::BI__builtin_neon_vsqrt_v:
10981   case NEON::BI__builtin_neon_vsqrtq_v: {
10982     Int = Builder.getIsFPConstrained()
10983               ? Intrinsic::experimental_constrained_sqrt
10984               : Intrinsic::sqrt;
10985     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
10986     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
10987   }
10988   case NEON::BI__builtin_neon_vrbit_v:
10989   case NEON::BI__builtin_neon_vrbitq_v: {
10990     Int = Intrinsic::bitreverse;
10991     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
10992   }
10993   case NEON::BI__builtin_neon_vaddv_u8:
10994     // FIXME: These are handled by the AArch64 scalar code.
10995     usgn = true;
10996     LLVM_FALLTHROUGH;
10997   case NEON::BI__builtin_neon_vaddv_s8: {
10998     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
10999     Ty = Int32Ty;
11000     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11001     llvm::Type *Tys[2] = { Ty, VTy };
11002     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11003     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11004     return Builder.CreateTrunc(Ops[0], Int8Ty);
11005   }
11006   case NEON::BI__builtin_neon_vaddv_u16:
11007     usgn = true;
11008     LLVM_FALLTHROUGH;
11009   case NEON::BI__builtin_neon_vaddv_s16: {
11010     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11011     Ty = Int32Ty;
11012     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11013     llvm::Type *Tys[2] = { Ty, VTy };
11014     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11015     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11016     return Builder.CreateTrunc(Ops[0], Int16Ty);
11017   }
11018   case NEON::BI__builtin_neon_vaddvq_u8:
11019     usgn = true;
11020     LLVM_FALLTHROUGH;
11021   case NEON::BI__builtin_neon_vaddvq_s8: {
11022     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11023     Ty = Int32Ty;
11024     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11025     llvm::Type *Tys[2] = { Ty, VTy };
11026     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11027     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11028     return Builder.CreateTrunc(Ops[0], Int8Ty);
11029   }
11030   case NEON::BI__builtin_neon_vaddvq_u16:
11031     usgn = true;
11032     LLVM_FALLTHROUGH;
11033   case NEON::BI__builtin_neon_vaddvq_s16: {
11034     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
11035     Ty = Int32Ty;
11036     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11037     llvm::Type *Tys[2] = { Ty, VTy };
11038     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11039     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
11040     return Builder.CreateTrunc(Ops[0], Int16Ty);
11041   }
11042   case NEON::BI__builtin_neon_vmaxv_u8: {
11043     Int = Intrinsic::aarch64_neon_umaxv;
11044     Ty = Int32Ty;
11045     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11046     llvm::Type *Tys[2] = { Ty, VTy };
11047     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11048     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11049     return Builder.CreateTrunc(Ops[0], Int8Ty);
11050   }
11051   case NEON::BI__builtin_neon_vmaxv_u16: {
11052     Int = Intrinsic::aarch64_neon_umaxv;
11053     Ty = Int32Ty;
11054     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11055     llvm::Type *Tys[2] = { Ty, VTy };
11056     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11057     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11058     return Builder.CreateTrunc(Ops[0], Int16Ty);
11059   }
11060   case NEON::BI__builtin_neon_vmaxvq_u8: {
11061     Int = Intrinsic::aarch64_neon_umaxv;
11062     Ty = Int32Ty;
11063     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11064     llvm::Type *Tys[2] = { Ty, VTy };
11065     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11066     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11067     return Builder.CreateTrunc(Ops[0], Int8Ty);
11068   }
11069   case NEON::BI__builtin_neon_vmaxvq_u16: {
11070     Int = Intrinsic::aarch64_neon_umaxv;
11071     Ty = Int32Ty;
11072     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11073     llvm::Type *Tys[2] = { Ty, VTy };
11074     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11075     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11076     return Builder.CreateTrunc(Ops[0], Int16Ty);
11077   }
11078   case NEON::BI__builtin_neon_vmaxv_s8: {
11079     Int = Intrinsic::aarch64_neon_smaxv;
11080     Ty = Int32Ty;
11081     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11082     llvm::Type *Tys[2] = { Ty, VTy };
11083     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11084     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11085     return Builder.CreateTrunc(Ops[0], Int8Ty);
11086   }
11087   case NEON::BI__builtin_neon_vmaxv_s16: {
11088     Int = Intrinsic::aarch64_neon_smaxv;
11089     Ty = Int32Ty;
11090     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11091     llvm::Type *Tys[2] = { Ty, VTy };
11092     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11093     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11094     return Builder.CreateTrunc(Ops[0], Int16Ty);
11095   }
11096   case NEON::BI__builtin_neon_vmaxvq_s8: {
11097     Int = Intrinsic::aarch64_neon_smaxv;
11098     Ty = Int32Ty;
11099     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11100     llvm::Type *Tys[2] = { Ty, VTy };
11101     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11102     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11103     return Builder.CreateTrunc(Ops[0], Int8Ty);
11104   }
11105   case NEON::BI__builtin_neon_vmaxvq_s16: {
11106     Int = Intrinsic::aarch64_neon_smaxv;
11107     Ty = Int32Ty;
11108     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11109     llvm::Type *Tys[2] = { Ty, VTy };
11110     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11111     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11112     return Builder.CreateTrunc(Ops[0], Int16Ty);
11113   }
11114   case NEON::BI__builtin_neon_vmaxv_f16: {
11115     Int = Intrinsic::aarch64_neon_fmaxv;
11116     Ty = HalfTy;
11117     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11118     llvm::Type *Tys[2] = { Ty, VTy };
11119     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11120     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11121     return Builder.CreateTrunc(Ops[0], HalfTy);
11122   }
11123   case NEON::BI__builtin_neon_vmaxvq_f16: {
11124     Int = Intrinsic::aarch64_neon_fmaxv;
11125     Ty = HalfTy;
11126     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11127     llvm::Type *Tys[2] = { Ty, VTy };
11128     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11129     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
11130     return Builder.CreateTrunc(Ops[0], HalfTy);
11131   }
11132   case NEON::BI__builtin_neon_vminv_u8: {
11133     Int = Intrinsic::aarch64_neon_uminv;
11134     Ty = Int32Ty;
11135     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11136     llvm::Type *Tys[2] = { Ty, VTy };
11137     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11138     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11139     return Builder.CreateTrunc(Ops[0], Int8Ty);
11140   }
11141   case NEON::BI__builtin_neon_vminv_u16: {
11142     Int = Intrinsic::aarch64_neon_uminv;
11143     Ty = Int32Ty;
11144     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11145     llvm::Type *Tys[2] = { Ty, VTy };
11146     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11147     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11148     return Builder.CreateTrunc(Ops[0], Int16Ty);
11149   }
11150   case NEON::BI__builtin_neon_vminvq_u8: {
11151     Int = Intrinsic::aarch64_neon_uminv;
11152     Ty = Int32Ty;
11153     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11154     llvm::Type *Tys[2] = { Ty, VTy };
11155     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11156     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11157     return Builder.CreateTrunc(Ops[0], Int8Ty);
11158   }
11159   case NEON::BI__builtin_neon_vminvq_u16: {
11160     Int = Intrinsic::aarch64_neon_uminv;
11161     Ty = Int32Ty;
11162     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11163     llvm::Type *Tys[2] = { Ty, VTy };
11164     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11165     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11166     return Builder.CreateTrunc(Ops[0], Int16Ty);
11167   }
11168   case NEON::BI__builtin_neon_vminv_s8: {
11169     Int = Intrinsic::aarch64_neon_sminv;
11170     Ty = Int32Ty;
11171     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11172     llvm::Type *Tys[2] = { Ty, VTy };
11173     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11174     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11175     return Builder.CreateTrunc(Ops[0], Int8Ty);
11176   }
11177   case NEON::BI__builtin_neon_vminv_s16: {
11178     Int = Intrinsic::aarch64_neon_sminv;
11179     Ty = Int32Ty;
11180     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11181     llvm::Type *Tys[2] = { Ty, VTy };
11182     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11183     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11184     return Builder.CreateTrunc(Ops[0], Int16Ty);
11185   }
11186   case NEON::BI__builtin_neon_vminvq_s8: {
11187     Int = Intrinsic::aarch64_neon_sminv;
11188     Ty = Int32Ty;
11189     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11190     llvm::Type *Tys[2] = { Ty, VTy };
11191     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11192     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11193     return Builder.CreateTrunc(Ops[0], Int8Ty);
11194   }
11195   case NEON::BI__builtin_neon_vminvq_s16: {
11196     Int = Intrinsic::aarch64_neon_sminv;
11197     Ty = Int32Ty;
11198     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11199     llvm::Type *Tys[2] = { Ty, VTy };
11200     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11201     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11202     return Builder.CreateTrunc(Ops[0], Int16Ty);
11203   }
11204   case NEON::BI__builtin_neon_vminv_f16: {
11205     Int = Intrinsic::aarch64_neon_fminv;
11206     Ty = HalfTy;
11207     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11208     llvm::Type *Tys[2] = { Ty, VTy };
11209     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11210     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11211     return Builder.CreateTrunc(Ops[0], HalfTy);
11212   }
11213   case NEON::BI__builtin_neon_vminvq_f16: {
11214     Int = Intrinsic::aarch64_neon_fminv;
11215     Ty = HalfTy;
11216     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11217     llvm::Type *Tys[2] = { Ty, VTy };
11218     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11219     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
11220     return Builder.CreateTrunc(Ops[0], HalfTy);
11221   }
11222   case NEON::BI__builtin_neon_vmaxnmv_f16: {
11223     Int = Intrinsic::aarch64_neon_fmaxnmv;
11224     Ty = HalfTy;
11225     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11226     llvm::Type *Tys[2] = { Ty, VTy };
11227     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11228     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11229     return Builder.CreateTrunc(Ops[0], HalfTy);
11230   }
11231   case NEON::BI__builtin_neon_vmaxnmvq_f16: {
11232     Int = Intrinsic::aarch64_neon_fmaxnmv;
11233     Ty = HalfTy;
11234     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11235     llvm::Type *Tys[2] = { Ty, VTy };
11236     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11237     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
11238     return Builder.CreateTrunc(Ops[0], HalfTy);
11239   }
11240   case NEON::BI__builtin_neon_vminnmv_f16: {
11241     Int = Intrinsic::aarch64_neon_fminnmv;
11242     Ty = HalfTy;
11243     VTy = llvm::FixedVectorType::get(HalfTy, 4);
11244     llvm::Type *Tys[2] = { Ty, VTy };
11245     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11246     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11247     return Builder.CreateTrunc(Ops[0], HalfTy);
11248   }
11249   case NEON::BI__builtin_neon_vminnmvq_f16: {
11250     Int = Intrinsic::aarch64_neon_fminnmv;
11251     Ty = HalfTy;
11252     VTy = llvm::FixedVectorType::get(HalfTy, 8);
11253     llvm::Type *Tys[2] = { Ty, VTy };
11254     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11255     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
11256     return Builder.CreateTrunc(Ops[0], HalfTy);
11257   }
11258   case NEON::BI__builtin_neon_vmul_n_f64: {
11259     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
11260     Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
11261     return Builder.CreateFMul(Ops[0], RHS);
11262   }
11263   case NEON::BI__builtin_neon_vaddlv_u8: {
11264     Int = Intrinsic::aarch64_neon_uaddlv;
11265     Ty = Int32Ty;
11266     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11267     llvm::Type *Tys[2] = { Ty, VTy };
11268     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11269     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11270     return Builder.CreateTrunc(Ops[0], Int16Ty);
11271   }
11272   case NEON::BI__builtin_neon_vaddlv_u16: {
11273     Int = Intrinsic::aarch64_neon_uaddlv;
11274     Ty = Int32Ty;
11275     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11276     llvm::Type *Tys[2] = { Ty, VTy };
11277     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11278     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11279   }
11280   case NEON::BI__builtin_neon_vaddlvq_u8: {
11281     Int = Intrinsic::aarch64_neon_uaddlv;
11282     Ty = Int32Ty;
11283     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11284     llvm::Type *Tys[2] = { Ty, VTy };
11285     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11286     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11287     return Builder.CreateTrunc(Ops[0], Int16Ty);
11288   }
11289   case NEON::BI__builtin_neon_vaddlvq_u16: {
11290     Int = Intrinsic::aarch64_neon_uaddlv;
11291     Ty = Int32Ty;
11292     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11293     llvm::Type *Tys[2] = { Ty, VTy };
11294     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11295     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11296   }
11297   case NEON::BI__builtin_neon_vaddlv_s8: {
11298     Int = Intrinsic::aarch64_neon_saddlv;
11299     Ty = Int32Ty;
11300     VTy = llvm::FixedVectorType::get(Int8Ty, 8);
11301     llvm::Type *Tys[2] = { Ty, VTy };
11302     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11303     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11304     return Builder.CreateTrunc(Ops[0], Int16Ty);
11305   }
11306   case NEON::BI__builtin_neon_vaddlv_s16: {
11307     Int = Intrinsic::aarch64_neon_saddlv;
11308     Ty = Int32Ty;
11309     VTy = llvm::FixedVectorType::get(Int16Ty, 4);
11310     llvm::Type *Tys[2] = { Ty, VTy };
11311     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11312     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11313   }
11314   case NEON::BI__builtin_neon_vaddlvq_s8: {
11315     Int = Intrinsic::aarch64_neon_saddlv;
11316     Ty = Int32Ty;
11317     VTy = llvm::FixedVectorType::get(Int8Ty, 16);
11318     llvm::Type *Tys[2] = { Ty, VTy };
11319     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11320     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11321     return Builder.CreateTrunc(Ops[0], Int16Ty);
11322   }
11323   case NEON::BI__builtin_neon_vaddlvq_s16: {
11324     Int = Intrinsic::aarch64_neon_saddlv;
11325     Ty = Int32Ty;
11326     VTy = llvm::FixedVectorType::get(Int16Ty, 8);
11327     llvm::Type *Tys[2] = { Ty, VTy };
11328     Ops.push_back(EmitScalarExpr(E->getArg(0)));
11329     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
11330   }
11331   case NEON::BI__builtin_neon_vsri_n_v:
11332   case NEON::BI__builtin_neon_vsriq_n_v: {
11333     Int = Intrinsic::aarch64_neon_vsri;
11334     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11335     return EmitNeonCall(Intrin, Ops, "vsri_n");
11336   }
11337   case NEON::BI__builtin_neon_vsli_n_v:
11338   case NEON::BI__builtin_neon_vsliq_n_v: {
11339     Int = Intrinsic::aarch64_neon_vsli;
11340     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
11341     return EmitNeonCall(Intrin, Ops, "vsli_n");
11342   }
11343   case NEON::BI__builtin_neon_vsra_n_v:
11344   case NEON::BI__builtin_neon_vsraq_n_v:
11345     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11346     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
11347     return Builder.CreateAdd(Ops[0], Ops[1]);
11348   case NEON::BI__builtin_neon_vrsra_n_v:
11349   case NEON::BI__builtin_neon_vrsraq_n_v: {
11350     Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
11351     SmallVector<llvm::Value*,2> TmpOps;
11352     TmpOps.push_back(Ops[1]);
11353     TmpOps.push_back(Ops[2]);
11354     Function* F = CGM.getIntrinsic(Int, Ty);
11355     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
11356     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
11357     return Builder.CreateAdd(Ops[0], tmp);
11358   }
11359   case NEON::BI__builtin_neon_vld1_v:
11360   case NEON::BI__builtin_neon_vld1q_v: {
11361     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11362     return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment());
11363   }
11364   case NEON::BI__builtin_neon_vst1_v:
11365   case NEON::BI__builtin_neon_vst1q_v:
11366     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
11367     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
11368     return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment());
11369   case NEON::BI__builtin_neon_vld1_lane_v:
11370   case NEON::BI__builtin_neon_vld1q_lane_v: {
11371     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11372     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11373     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11374     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11375                                        PtrOp0.getAlignment());
11376     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
11377   }
11378   case NEON::BI__builtin_neon_vld1_dup_v:
11379   case NEON::BI__builtin_neon_vld1q_dup_v: {
11380     Value *V = UndefValue::get(Ty);
11381     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
11382     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11383     Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0],
11384                                        PtrOp0.getAlignment());
11385     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
11386     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
11387     return EmitNeonSplat(Ops[0], CI);
11388   }
11389   case NEON::BI__builtin_neon_vst1_lane_v:
11390   case NEON::BI__builtin_neon_vst1q_lane_v:
11391     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11392     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
11393     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11394     return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty),
11395                                       PtrOp0.getAlignment());
11396   case NEON::BI__builtin_neon_vld2_v:
11397   case NEON::BI__builtin_neon_vld2q_v: {
11398     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11399     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11400     llvm::Type *Tys[2] = { VTy, PTy };
11401     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
11402     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11403     Ops[0] = Builder.CreateBitCast(Ops[0],
11404                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11405     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11406   }
11407   case NEON::BI__builtin_neon_vld3_v:
11408   case NEON::BI__builtin_neon_vld3q_v: {
11409     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11410     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11411     llvm::Type *Tys[2] = { VTy, PTy };
11412     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
11413     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11414     Ops[0] = Builder.CreateBitCast(Ops[0],
11415                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11416     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11417   }
11418   case NEON::BI__builtin_neon_vld4_v:
11419   case NEON::BI__builtin_neon_vld4q_v: {
11420     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
11421     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11422     llvm::Type *Tys[2] = { VTy, PTy };
11423     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
11424     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11425     Ops[0] = Builder.CreateBitCast(Ops[0],
11426                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11427     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11428   }
11429   case NEON::BI__builtin_neon_vld2_dup_v:
11430   case NEON::BI__builtin_neon_vld2q_dup_v: {
11431     llvm::Type *PTy =
11432       llvm::PointerType::getUnqual(VTy->getElementType());
11433     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11434     llvm::Type *Tys[2] = { VTy, PTy };
11435     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
11436     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
11437     Ops[0] = Builder.CreateBitCast(Ops[0],
11438                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11439     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11440   }
11441   case NEON::BI__builtin_neon_vld3_dup_v:
11442   case NEON::BI__builtin_neon_vld3q_dup_v: {
11443     llvm::Type *PTy =
11444       llvm::PointerType::getUnqual(VTy->getElementType());
11445     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11446     llvm::Type *Tys[2] = { VTy, PTy };
11447     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
11448     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
11449     Ops[0] = Builder.CreateBitCast(Ops[0],
11450                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11451     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11452   }
11453   case NEON::BI__builtin_neon_vld4_dup_v:
11454   case NEON::BI__builtin_neon_vld4q_dup_v: {
11455     llvm::Type *PTy =
11456       llvm::PointerType::getUnqual(VTy->getElementType());
11457     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
11458     llvm::Type *Tys[2] = { VTy, PTy };
11459     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
11460     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
11461     Ops[0] = Builder.CreateBitCast(Ops[0],
11462                 llvm::PointerType::getUnqual(Ops[1]->getType()));
11463     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11464   }
11465   case NEON::BI__builtin_neon_vld2_lane_v:
11466   case NEON::BI__builtin_neon_vld2q_lane_v: {
11467     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11468     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
11469     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11470     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11471     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11472     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11473     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
11474     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11475     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11476     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11477   }
11478   case NEON::BI__builtin_neon_vld3_lane_v:
11479   case NEON::BI__builtin_neon_vld3q_lane_v: {
11480     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11481     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
11482     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11483     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11484     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11485     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11486     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11487     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
11488     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11489     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11490     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11491   }
11492   case NEON::BI__builtin_neon_vld4_lane_v:
11493   case NEON::BI__builtin_neon_vld4q_lane_v: {
11494     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
11495     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
11496     std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end());
11497     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11498     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11499     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
11500     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
11501     Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
11502     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
11503     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
11504     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
11505     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
11506   }
11507   case NEON::BI__builtin_neon_vst2_v:
11508   case NEON::BI__builtin_neon_vst2q_v: {
11509     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11510     llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
11511     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
11512                         Ops, "");
11513   }
11514   case NEON::BI__builtin_neon_vst2_lane_v:
11515   case NEON::BI__builtin_neon_vst2q_lane_v: {
11516     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11517     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
11518     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11519     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
11520                         Ops, "");
11521   }
11522   case NEON::BI__builtin_neon_vst3_v:
11523   case NEON::BI__builtin_neon_vst3q_v: {
11524     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11525     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
11526     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
11527                         Ops, "");
11528   }
11529   case NEON::BI__builtin_neon_vst3_lane_v:
11530   case NEON::BI__builtin_neon_vst3q_lane_v: {
11531     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11532     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
11533     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11534     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
11535                         Ops, "");
11536   }
11537   case NEON::BI__builtin_neon_vst4_v:
11538   case NEON::BI__builtin_neon_vst4q_v: {
11539     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11540     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
11541     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
11542                         Ops, "");
11543   }
11544   case NEON::BI__builtin_neon_vst4_lane_v:
11545   case NEON::BI__builtin_neon_vst4q_lane_v: {
11546     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
11547     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
11548     llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
11549     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
11550                         Ops, "");
11551   }
11552   case NEON::BI__builtin_neon_vtrn_v:
11553   case NEON::BI__builtin_neon_vtrnq_v: {
11554     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11555     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11556     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11557     Value *SV = nullptr;
11558 
11559     for (unsigned vi = 0; vi != 2; ++vi) {
11560       SmallVector<int, 16> Indices;
11561       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11562         Indices.push_back(i+vi);
11563         Indices.push_back(i+e+vi);
11564       }
11565       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11566       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
11567       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11568     }
11569     return SV;
11570   }
11571   case NEON::BI__builtin_neon_vuzp_v:
11572   case NEON::BI__builtin_neon_vuzpq_v: {
11573     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11574     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11575     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11576     Value *SV = nullptr;
11577 
11578     for (unsigned vi = 0; vi != 2; ++vi) {
11579       SmallVector<int, 16> Indices;
11580       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
11581         Indices.push_back(2*i+vi);
11582 
11583       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11584       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
11585       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11586     }
11587     return SV;
11588   }
11589   case NEON::BI__builtin_neon_vzip_v:
11590   case NEON::BI__builtin_neon_vzipq_v: {
11591     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11592     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
11593     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
11594     Value *SV = nullptr;
11595 
11596     for (unsigned vi = 0; vi != 2; ++vi) {
11597       SmallVector<int, 16> Indices;
11598       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
11599         Indices.push_back((i + vi*e) >> 1);
11600         Indices.push_back(((i + vi*e) >> 1)+e);
11601       }
11602       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
11603       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
11604       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
11605     }
11606     return SV;
11607   }
11608   case NEON::BI__builtin_neon_vqtbl1q_v: {
11609     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
11610                         Ops, "vtbl1");
11611   }
11612   case NEON::BI__builtin_neon_vqtbl2q_v: {
11613     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
11614                         Ops, "vtbl2");
11615   }
11616   case NEON::BI__builtin_neon_vqtbl3q_v: {
11617     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
11618                         Ops, "vtbl3");
11619   }
11620   case NEON::BI__builtin_neon_vqtbl4q_v: {
11621     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
11622                         Ops, "vtbl4");
11623   }
11624   case NEON::BI__builtin_neon_vqtbx1q_v: {
11625     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
11626                         Ops, "vtbx1");
11627   }
11628   case NEON::BI__builtin_neon_vqtbx2q_v: {
11629     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
11630                         Ops, "vtbx2");
11631   }
11632   case NEON::BI__builtin_neon_vqtbx3q_v: {
11633     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
11634                         Ops, "vtbx3");
11635   }
11636   case NEON::BI__builtin_neon_vqtbx4q_v: {
11637     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
11638                         Ops, "vtbx4");
11639   }
11640   case NEON::BI__builtin_neon_vsqadd_v:
11641   case NEON::BI__builtin_neon_vsqaddq_v: {
11642     Int = Intrinsic::aarch64_neon_usqadd;
11643     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
11644   }
11645   case NEON::BI__builtin_neon_vuqadd_v:
11646   case NEON::BI__builtin_neon_vuqaddq_v: {
11647     Int = Intrinsic::aarch64_neon_suqadd;
11648     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
11649   }
11650   }
11651 }
11652 
11653 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID,
11654                                            const CallExpr *E) {
11655   assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
11656           BuiltinID == BPF::BI__builtin_btf_type_id ||
11657           BuiltinID == BPF::BI__builtin_preserve_type_info ||
11658           BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
11659          "unexpected BPF builtin");
11660 
11661   // A sequence number, injected into IR builtin functions, to
11662   // prevent CSE given the only difference of the funciton
11663   // may just be the debuginfo metadata.
11664   static uint32_t BuiltinSeqNum;
11665 
11666   switch (BuiltinID) {
11667   default:
11668     llvm_unreachable("Unexpected BPF builtin");
11669   case BPF::BI__builtin_preserve_field_info: {
11670     const Expr *Arg = E->getArg(0);
11671     bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField;
11672 
11673     if (!getDebugInfo()) {
11674       CGM.Error(E->getExprLoc(),
11675                 "using __builtin_preserve_field_info() without -g");
11676       return IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11677                         : EmitLValue(Arg).getPointer(*this);
11678     }
11679 
11680     // Enable underlying preserve_*_access_index() generation.
11681     bool OldIsInPreservedAIRegion = IsInPreservedAIRegion;
11682     IsInPreservedAIRegion = true;
11683     Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer()
11684                                   : EmitLValue(Arg).getPointer(*this);
11685     IsInPreservedAIRegion = OldIsInPreservedAIRegion;
11686 
11687     ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11688     Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue());
11689 
11690     // Built the IR for the preserve_field_info intrinsic.
11691     llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration(
11692         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info,
11693         {FieldAddr->getType()});
11694     return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind});
11695   }
11696   case BPF::BI__builtin_btf_type_id:
11697   case BPF::BI__builtin_preserve_type_info: {
11698     if (!getDebugInfo()) {
11699       CGM.Error(E->getExprLoc(), "using builtin function without -g");
11700       return nullptr;
11701     }
11702 
11703     const Expr *Arg0 = E->getArg(0);
11704     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
11705         Arg0->getType(), Arg0->getExprLoc());
11706 
11707     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11708     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11709     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11710 
11711     llvm::Function *FnDecl;
11712     if (BuiltinID == BPF::BI__builtin_btf_type_id)
11713       FnDecl = llvm::Intrinsic::getDeclaration(
11714           &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {});
11715     else
11716       FnDecl = llvm::Intrinsic::getDeclaration(
11717           &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {});
11718     CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue});
11719     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11720     return Fn;
11721   }
11722   case BPF::BI__builtin_preserve_enum_value: {
11723     if (!getDebugInfo()) {
11724       CGM.Error(E->getExprLoc(), "using builtin function without -g");
11725       return nullptr;
11726     }
11727 
11728     const Expr *Arg0 = E->getArg(0);
11729     llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(
11730         Arg0->getType(), Arg0->getExprLoc());
11731 
11732     // Find enumerator
11733     const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens());
11734     const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr());
11735     const auto *DR = cast<DeclRefExpr>(CE->getSubExpr());
11736     const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl());
11737 
11738     auto &InitVal = Enumerator->getInitVal();
11739     std::string InitValStr;
11740     if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX))
11741       InitValStr = std::to_string(InitVal.getSExtValue());
11742     else
11743       InitValStr = std::to_string(InitVal.getZExtValue());
11744     std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr;
11745     Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr);
11746 
11747     ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
11748     Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue());
11749     Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++);
11750 
11751     llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration(
11752         &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {});
11753     CallInst *Fn =
11754         Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue});
11755     Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo);
11756     return Fn;
11757   }
11758   }
11759 }
11760 
11761 llvm::Value *CodeGenFunction::
11762 BuildVector(ArrayRef<llvm::Value*> Ops) {
11763   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
11764          "Not a power-of-two sized vector!");
11765   bool AllConstants = true;
11766   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
11767     AllConstants &= isa<Constant>(Ops[i]);
11768 
11769   // If this is a constant vector, create a ConstantVector.
11770   if (AllConstants) {
11771     SmallVector<llvm::Constant*, 16> CstOps;
11772     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11773       CstOps.push_back(cast<Constant>(Ops[i]));
11774     return llvm::ConstantVector::get(CstOps);
11775   }
11776 
11777   // Otherwise, insertelement the values to build the vector.
11778   Value *Result = llvm::UndefValue::get(
11779       llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size()));
11780 
11781   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
11782     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
11783 
11784   return Result;
11785 }
11786 
11787 // Convert the mask from an integer type to a vector of i1.
11788 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
11789                               unsigned NumElts) {
11790 
11791   auto *MaskTy = llvm::FixedVectorType::get(
11792       CGF.Builder.getInt1Ty(),
11793       cast<IntegerType>(Mask->getType())->getBitWidth());
11794   Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
11795 
11796   // If we have less than 8 elements, then the starting mask was an i8 and
11797   // we need to extract down to the right number of elements.
11798   if (NumElts < 8) {
11799     int Indices[4];
11800     for (unsigned i = 0; i != NumElts; ++i)
11801       Indices[i] = i;
11802     MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
11803                                              makeArrayRef(Indices, NumElts),
11804                                              "extract");
11805   }
11806   return MaskVec;
11807 }
11808 
11809 static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11810                                  Align Alignment) {
11811   // Cast the pointer to right type.
11812   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11813                                llvm::PointerType::getUnqual(Ops[1]->getType()));
11814 
11815   Value *MaskVec = getMaskVecValue(
11816       CGF, Ops[2],
11817       cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements());
11818 
11819   return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec);
11820 }
11821 
11822 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11823                                 Align Alignment) {
11824   // Cast the pointer to right type.
11825   llvm::Type *Ty = Ops[1]->getType();
11826   Value *Ptr =
11827       CGF.Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
11828 
11829   Value *MaskVec = getMaskVecValue(
11830       CGF, Ops[2], cast<llvm::FixedVectorType>(Ty)->getNumElements());
11831 
11832   return CGF.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, MaskVec, Ops[1]);
11833 }
11834 
11835 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
11836                                 ArrayRef<Value *> Ops) {
11837   auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType());
11838   llvm::Type *PtrTy = ResultTy->getElementType();
11839 
11840   // Cast the pointer to element type.
11841   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11842                                          llvm::PointerType::getUnqual(PtrTy));
11843 
11844   Value *MaskVec = getMaskVecValue(
11845       CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements());
11846 
11847   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
11848                                            ResultTy);
11849   return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
11850 }
11851 
11852 static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
11853                                     ArrayRef<Value *> Ops,
11854                                     bool IsCompress) {
11855   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
11856 
11857   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11858 
11859   Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
11860                                  : Intrinsic::x86_avx512_mask_expand;
11861   llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
11862   return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
11863 }
11864 
11865 static Value *EmitX86CompressStore(CodeGenFunction &CGF,
11866                                    ArrayRef<Value *> Ops) {
11867   auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType());
11868   llvm::Type *PtrTy = ResultTy->getElementType();
11869 
11870   // Cast the pointer to element type.
11871   Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
11872                                          llvm::PointerType::getUnqual(PtrTy));
11873 
11874   Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements());
11875 
11876   llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
11877                                            ResultTy);
11878   return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
11879 }
11880 
11881 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
11882                               ArrayRef<Value *> Ops,
11883                               bool InvertLHS = false) {
11884   unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
11885   Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
11886   Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
11887 
11888   if (InvertLHS)
11889     LHS = CGF.Builder.CreateNot(LHS);
11890 
11891   return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
11892                                    Ops[0]->getType());
11893 }
11894 
11895 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
11896                                  Value *Amt, bool IsRight) {
11897   llvm::Type *Ty = Op0->getType();
11898 
11899   // Amount may be scalar immediate, in which case create a splat vector.
11900   // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
11901   // we only care about the lowest log2 bits anyway.
11902   if (Amt->getType() != Ty) {
11903     unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements();
11904     Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
11905     Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
11906   }
11907 
11908   unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
11909   Function *F = CGF.CGM.getIntrinsic(IID, Ty);
11910   return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
11911 }
11912 
11913 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
11914                            bool IsSigned) {
11915   Value *Op0 = Ops[0];
11916   Value *Op1 = Ops[1];
11917   llvm::Type *Ty = Op0->getType();
11918   uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
11919 
11920   CmpInst::Predicate Pred;
11921   switch (Imm) {
11922   case 0x0:
11923     Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11924     break;
11925   case 0x1:
11926     Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
11927     break;
11928   case 0x2:
11929     Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11930     break;
11931   case 0x3:
11932     Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11933     break;
11934   case 0x4:
11935     Pred = ICmpInst::ICMP_EQ;
11936     break;
11937   case 0x5:
11938     Pred = ICmpInst::ICMP_NE;
11939     break;
11940   case 0x6:
11941     return llvm::Constant::getNullValue(Ty); // FALSE
11942   case 0x7:
11943     return llvm::Constant::getAllOnesValue(Ty); // TRUE
11944   default:
11945     llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
11946   }
11947 
11948   Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
11949   Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
11950   return Res;
11951 }
11952 
11953 static Value *EmitX86Select(CodeGenFunction &CGF,
11954                             Value *Mask, Value *Op0, Value *Op1) {
11955 
11956   // If the mask is all ones just return first argument.
11957   if (const auto *C = dyn_cast<Constant>(Mask))
11958     if (C->isAllOnesValue())
11959       return Op0;
11960 
11961   Mask = getMaskVecValue(
11962       CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements());
11963 
11964   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11965 }
11966 
11967 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
11968                                   Value *Mask, Value *Op0, Value *Op1) {
11969   // If the mask is all ones just return first argument.
11970   if (const auto *C = dyn_cast<Constant>(Mask))
11971     if (C->isAllOnesValue())
11972       return Op0;
11973 
11974   auto *MaskTy = llvm::FixedVectorType::get(
11975       CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth());
11976   Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
11977   Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
11978   return CGF.Builder.CreateSelect(Mask, Op0, Op1);
11979 }
11980 
11981 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
11982                                          unsigned NumElts, Value *MaskIn) {
11983   if (MaskIn) {
11984     const auto *C = dyn_cast<Constant>(MaskIn);
11985     if (!C || !C->isAllOnesValue())
11986       Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
11987   }
11988 
11989   if (NumElts < 8) {
11990     int Indices[8];
11991     for (unsigned i = 0; i != NumElts; ++i)
11992       Indices[i] = i;
11993     for (unsigned i = NumElts; i != 8; ++i)
11994       Indices[i] = i % NumElts + NumElts;
11995     Cmp = CGF.Builder.CreateShuffleVector(
11996         Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
11997   }
11998 
11999   return CGF.Builder.CreateBitCast(Cmp,
12000                                    IntegerType::get(CGF.getLLVMContext(),
12001                                                     std::max(NumElts, 8U)));
12002 }
12003 
12004 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
12005                                    bool Signed, ArrayRef<Value *> Ops) {
12006   assert((Ops.size() == 2 || Ops.size() == 4) &&
12007          "Unexpected number of arguments");
12008   unsigned NumElts =
12009       cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12010   Value *Cmp;
12011 
12012   if (CC == 3) {
12013     Cmp = Constant::getNullValue(
12014         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
12015   } else if (CC == 7) {
12016     Cmp = Constant::getAllOnesValue(
12017         llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts));
12018   } else {
12019     ICmpInst::Predicate Pred;
12020     switch (CC) {
12021     default: llvm_unreachable("Unknown condition code");
12022     case 0: Pred = ICmpInst::ICMP_EQ;  break;
12023     case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
12024     case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
12025     case 4: Pred = ICmpInst::ICMP_NE;  break;
12026     case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
12027     case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
12028     }
12029     Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
12030   }
12031 
12032   Value *MaskIn = nullptr;
12033   if (Ops.size() == 4)
12034     MaskIn = Ops[3];
12035 
12036   return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
12037 }
12038 
12039 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
12040   Value *Zero = Constant::getNullValue(In->getType());
12041   return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
12042 }
12043 
12044 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E,
12045                                     ArrayRef<Value *> Ops, bool IsSigned) {
12046   unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
12047   llvm::Type *Ty = Ops[1]->getType();
12048 
12049   Value *Res;
12050   if (Rnd != 4) {
12051     Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
12052                                  : Intrinsic::x86_avx512_uitofp_round;
12053     Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
12054     Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
12055   } else {
12056     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12057     Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
12058                    : CGF.Builder.CreateUIToFP(Ops[0], Ty);
12059   }
12060 
12061   return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
12062 }
12063 
12064 // Lowers X86 FMA intrinsics to IR.
12065 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12066                              ArrayRef<Value *> Ops, unsigned BuiltinID,
12067                              bool IsAddSub) {
12068 
12069   bool Subtract = false;
12070   Intrinsic::ID IID = Intrinsic::not_intrinsic;
12071   switch (BuiltinID) {
12072   default: break;
12073   case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
12074     Subtract = true;
12075     LLVM_FALLTHROUGH;
12076   case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
12077   case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
12078   case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
12079     IID = llvm::Intrinsic::x86_avx512fp16_vfmadd_ph_512;
12080     break;
12081   case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
12082     Subtract = true;
12083     LLVM_FALLTHROUGH;
12084   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
12085   case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
12086   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
12087     IID = llvm::Intrinsic::x86_avx512fp16_vfmaddsub_ph_512;
12088     break;
12089   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12090     Subtract = true;
12091     LLVM_FALLTHROUGH;
12092   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12093   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12094   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12095     IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
12096   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12097     Subtract = true;
12098     LLVM_FALLTHROUGH;
12099   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12100   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12101   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12102     IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
12103   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12104     Subtract = true;
12105     LLVM_FALLTHROUGH;
12106   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12107   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12108   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12109     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
12110     break;
12111   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12112     Subtract = true;
12113     LLVM_FALLTHROUGH;
12114   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12115   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12116   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12117     IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
12118     break;
12119   }
12120 
12121   Value *A = Ops[0];
12122   Value *B = Ops[1];
12123   Value *C = Ops[2];
12124 
12125   if (Subtract)
12126     C = CGF.Builder.CreateFNeg(C);
12127 
12128   Value *Res;
12129 
12130   // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
12131   if (IID != Intrinsic::not_intrinsic &&
12132       (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 ||
12133        IsAddSub)) {
12134     Function *Intr = CGF.CGM.getIntrinsic(IID);
12135     Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
12136   } else {
12137     llvm::Type *Ty = A->getType();
12138     Function *FMA;
12139     if (CGF.Builder.getIsFPConstrained()) {
12140       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12141       FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty);
12142       Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C});
12143     } else {
12144       FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
12145       Res = CGF.Builder.CreateCall(FMA, {A, B, C});
12146     }
12147   }
12148 
12149   // Handle any required masking.
12150   Value *MaskFalseVal = nullptr;
12151   switch (BuiltinID) {
12152   case clang::X86::BI__builtin_ia32_vfmaddph512_mask:
12153   case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
12154   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
12155   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask:
12156   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
12157   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12158     MaskFalseVal = Ops[0];
12159     break;
12160   case clang::X86::BI__builtin_ia32_vfmaddph512_maskz:
12161   case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
12162   case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
12163   case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz:
12164   case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12165   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12166     MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
12167     break;
12168   case clang::X86::BI__builtin_ia32_vfmsubph512_mask3:
12169   case clang::X86::BI__builtin_ia32_vfmaddph512_mask3:
12170   case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
12171   case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
12172   case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
12173   case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
12174   case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3:
12175   case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3:
12176   case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12177   case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12178   case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12179   case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12180     MaskFalseVal = Ops[2];
12181     break;
12182   }
12183 
12184   if (MaskFalseVal)
12185     return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
12186 
12187   return Res;
12188 }
12189 
12190 static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E,
12191                                 MutableArrayRef<Value *> Ops, Value *Upper,
12192                                 bool ZeroMask = false, unsigned PTIdx = 0,
12193                                 bool NegAcc = false) {
12194   unsigned Rnd = 4;
12195   if (Ops.size() > 4)
12196     Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
12197 
12198   if (NegAcc)
12199     Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
12200 
12201   Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
12202   Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
12203   Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
12204   Value *Res;
12205   if (Rnd != 4) {
12206     Intrinsic::ID IID;
12207 
12208     switch (Ops[0]->getType()->getPrimitiveSizeInBits()) {
12209     case 16:
12210       IID = Intrinsic::x86_avx512fp16_vfmadd_f16;
12211       break;
12212     case 32:
12213       IID = Intrinsic::x86_avx512_vfmadd_f32;
12214       break;
12215     case 64:
12216       IID = Intrinsic::x86_avx512_vfmadd_f64;
12217       break;
12218     default:
12219       llvm_unreachable("Unexpected size");
12220     }
12221     Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12222                                  {Ops[0], Ops[1], Ops[2], Ops[4]});
12223   } else if (CGF.Builder.getIsFPConstrained()) {
12224     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E);
12225     Function *FMA = CGF.CGM.getIntrinsic(
12226         Intrinsic::experimental_constrained_fma, Ops[0]->getType());
12227     Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3));
12228   } else {
12229     Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
12230     Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
12231   }
12232   // If we have more than 3 arguments, we need to do masking.
12233   if (Ops.size() > 3) {
12234     Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
12235                                : Ops[PTIdx];
12236 
12237     // If we negated the accumulator and the its the PassThru value we need to
12238     // bypass the negate. Conveniently Upper should be the same thing in this
12239     // case.
12240     if (NegAcc && PTIdx == 2)
12241       PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
12242 
12243     Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
12244   }
12245   return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
12246 }
12247 
12248 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
12249                            ArrayRef<Value *> Ops) {
12250   llvm::Type *Ty = Ops[0]->getType();
12251   // Arguments have a vXi32 type so cast to vXi64.
12252   Ty = llvm::FixedVectorType::get(CGF.Int64Ty,
12253                                   Ty->getPrimitiveSizeInBits() / 64);
12254   Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
12255   Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
12256 
12257   if (IsSigned) {
12258     // Shift left then arithmetic shift right.
12259     Constant *ShiftAmt = ConstantInt::get(Ty, 32);
12260     LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
12261     LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
12262     RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
12263     RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
12264   } else {
12265     // Clear the upper bits.
12266     Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
12267     LHS = CGF.Builder.CreateAnd(LHS, Mask);
12268     RHS = CGF.Builder.CreateAnd(RHS, Mask);
12269   }
12270 
12271   return CGF.Builder.CreateMul(LHS, RHS);
12272 }
12273 
12274 // Emit a masked pternlog intrinsic. This only exists because the header has to
12275 // use a macro and we aren't able to pass the input argument to a pternlog
12276 // builtin and a select builtin without evaluating it twice.
12277 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
12278                              ArrayRef<Value *> Ops) {
12279   llvm::Type *Ty = Ops[0]->getType();
12280 
12281   unsigned VecWidth = Ty->getPrimitiveSizeInBits();
12282   unsigned EltWidth = Ty->getScalarSizeInBits();
12283   Intrinsic::ID IID;
12284   if (VecWidth == 128 && EltWidth == 32)
12285     IID = Intrinsic::x86_avx512_pternlog_d_128;
12286   else if (VecWidth == 256 && EltWidth == 32)
12287     IID = Intrinsic::x86_avx512_pternlog_d_256;
12288   else if (VecWidth == 512 && EltWidth == 32)
12289     IID = Intrinsic::x86_avx512_pternlog_d_512;
12290   else if (VecWidth == 128 && EltWidth == 64)
12291     IID = Intrinsic::x86_avx512_pternlog_q_128;
12292   else if (VecWidth == 256 && EltWidth == 64)
12293     IID = Intrinsic::x86_avx512_pternlog_q_256;
12294   else if (VecWidth == 512 && EltWidth == 64)
12295     IID = Intrinsic::x86_avx512_pternlog_q_512;
12296   else
12297     llvm_unreachable("Unexpected intrinsic");
12298 
12299   Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
12300                                           Ops.drop_back());
12301   Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
12302   return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
12303 }
12304 
12305 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
12306                               llvm::Type *DstTy) {
12307   unsigned NumberOfElements =
12308       cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12309   Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
12310   return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
12311 }
12312 
12313 // Emit binary intrinsic with the same type used in result/args.
12314 static Value *EmitX86BinaryIntrinsic(CodeGenFunction &CGF,
12315                                      ArrayRef<Value *> Ops, Intrinsic::ID IID) {
12316   llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
12317   return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
12318 }
12319 
12320 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
12321   const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
12322   StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
12323   return EmitX86CpuIs(CPUStr);
12324 }
12325 
12326 // Convert F16 halfs to floats.
12327 static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF,
12328                                        ArrayRef<Value *> Ops,
12329                                        llvm::Type *DstTy) {
12330   assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) &&
12331          "Unknown cvtph2ps intrinsic");
12332 
12333   // If the SAE intrinsic doesn't use default rounding then we can't upgrade.
12334   if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) {
12335     Function *F =
12336         CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512);
12337     return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]});
12338   }
12339 
12340   unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements();
12341   Value *Src = Ops[0];
12342 
12343   // Extract the subvector.
12344   if (NumDstElts !=
12345       cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) {
12346     assert(NumDstElts == 4 && "Unexpected vector size");
12347     Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3});
12348   }
12349 
12350   // Bitcast from vXi16 to vXf16.
12351   auto *HalfTy = llvm::FixedVectorType::get(
12352       llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts);
12353   Src = CGF.Builder.CreateBitCast(Src, HalfTy);
12354 
12355   // Perform the fp-extension.
12356   Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps");
12357 
12358   if (Ops.size() >= 3)
12359     Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]);
12360   return Res;
12361 }
12362 
12363 // Convert a BF16 to a float.
12364 static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
12365                                         const CallExpr *E,
12366                                         ArrayRef<Value *> Ops) {
12367   llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
12368   Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
12369   Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
12370   llvm::Type *ResultType = CGF.ConvertType(E->getType());
12371   Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
12372   return BitCast;
12373 }
12374 
12375 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
12376 
12377   llvm::Type *Int32Ty = Builder.getInt32Ty();
12378 
12379   // Matching the struct layout from the compiler-rt/libgcc structure that is
12380   // filled in:
12381   // unsigned int __cpu_vendor;
12382   // unsigned int __cpu_type;
12383   // unsigned int __cpu_subtype;
12384   // unsigned int __cpu_features[1];
12385   llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12386                                           llvm::ArrayType::get(Int32Ty, 1));
12387 
12388   // Grab the global __cpu_model.
12389   llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12390   cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12391 
12392   // Calculate the index needed to access the correct field based on the
12393   // range. Also adjust the expected value.
12394   unsigned Index;
12395   unsigned Value;
12396   std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
12397 #define X86_VENDOR(ENUM, STRING)                                               \
12398   .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
12399 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS)                                        \
12400   .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12401 #define X86_CPU_TYPE(ENUM, STR)                                                \
12402   .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
12403 #define X86_CPU_SUBTYPE(ENUM, STR)                                             \
12404   .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
12405 #include "llvm/Support/X86TargetParser.def"
12406                                .Default({0, 0});
12407   assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
12408 
12409   // Grab the appropriate field from __cpu_model.
12410   llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
12411                          ConstantInt::get(Int32Ty, Index)};
12412   llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
12413   CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue,
12414                                        CharUnits::fromQuantity(4));
12415 
12416   // Check the value of the field against the requested value.
12417   return Builder.CreateICmpEQ(CpuValue,
12418                                   llvm::ConstantInt::get(Int32Ty, Value));
12419 }
12420 
12421 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
12422   const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
12423   StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
12424   return EmitX86CpuSupports(FeatureStr);
12425 }
12426 
12427 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
12428   return EmitX86CpuSupports(llvm::X86::getCpuSupportsMask(FeatureStrs));
12429 }
12430 
12431 llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
12432   uint32_t Features1 = Lo_32(FeaturesMask);
12433   uint32_t Features2 = Hi_32(FeaturesMask);
12434 
12435   Value *Result = Builder.getTrue();
12436 
12437   if (Features1 != 0) {
12438     // Matching the struct layout from the compiler-rt/libgcc structure that is
12439     // filled in:
12440     // unsigned int __cpu_vendor;
12441     // unsigned int __cpu_type;
12442     // unsigned int __cpu_subtype;
12443     // unsigned int __cpu_features[1];
12444     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
12445                                             llvm::ArrayType::get(Int32Ty, 1));
12446 
12447     // Grab the global __cpu_model.
12448     llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
12449     cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
12450 
12451     // Grab the first (0th) element from the field __cpu_features off of the
12452     // global in the struct STy.
12453     Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
12454                      Builder.getInt32(0)};
12455     Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
12456     Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures,
12457                                                 CharUnits::fromQuantity(4));
12458 
12459     // Check the value of the bit corresponding to the feature requested.
12460     Value *Mask = Builder.getInt32(Features1);
12461     Value *Bitset = Builder.CreateAnd(Features, Mask);
12462     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12463     Result = Builder.CreateAnd(Result, Cmp);
12464   }
12465 
12466   if (Features2 != 0) {
12467     llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
12468                                                              "__cpu_features2");
12469     cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
12470 
12471     Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures2,
12472                                                 CharUnits::fromQuantity(4));
12473 
12474     // Check the value of the bit corresponding to the feature requested.
12475     Value *Mask = Builder.getInt32(Features2);
12476     Value *Bitset = Builder.CreateAnd(Features, Mask);
12477     Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
12478     Result = Builder.CreateAnd(Result, Cmp);
12479   }
12480 
12481   return Result;
12482 }
12483 
12484 Value *CodeGenFunction::EmitX86CpuInit() {
12485   llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
12486                                                     /*Variadic*/ false);
12487   llvm::FunctionCallee Func =
12488       CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
12489   cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
12490   cast<llvm::GlobalValue>(Func.getCallee())
12491       ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
12492   return Builder.CreateCall(Func);
12493 }
12494 
12495 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
12496                                            const CallExpr *E) {
12497   if (BuiltinID == X86::BI__builtin_cpu_is)
12498     return EmitX86CpuIs(E);
12499   if (BuiltinID == X86::BI__builtin_cpu_supports)
12500     return EmitX86CpuSupports(E);
12501   if (BuiltinID == X86::BI__builtin_cpu_init)
12502     return EmitX86CpuInit();
12503 
12504   // Handle MSVC intrinsics before argument evaluation to prevent double
12505   // evaluation.
12506   if (Optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID))
12507     return EmitMSVCBuiltinExpr(*MsvcIntId, E);
12508 
12509   SmallVector<Value*, 4> Ops;
12510   bool IsMaskFCmp = false;
12511 
12512   // Find out if any arguments are required to be integer constant expressions.
12513   unsigned ICEArguments = 0;
12514   ASTContext::GetBuiltinTypeError Error;
12515   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
12516   assert(Error == ASTContext::GE_None && "Should not codegen an error");
12517 
12518   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
12519     // If this is a normal argument, just emit it as a scalar.
12520     if ((ICEArguments & (1 << i)) == 0) {
12521       Ops.push_back(EmitScalarExpr(E->getArg(i)));
12522       continue;
12523     }
12524 
12525     // If this is required to be a constant, constant fold it so that we know
12526     // that the generated intrinsic gets a ConstantInt.
12527     Ops.push_back(llvm::ConstantInt::get(
12528         getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext())));
12529   }
12530 
12531   // These exist so that the builtin that takes an immediate can be bounds
12532   // checked by clang to avoid passing bad immediates to the backend. Since
12533   // AVX has a larger immediate than SSE we would need separate builtins to
12534   // do the different bounds checking. Rather than create a clang specific
12535   // SSE only builtin, this implements eight separate builtins to match gcc
12536   // implementation.
12537   auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
12538     Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
12539     llvm::Function *F = CGM.getIntrinsic(ID);
12540     return Builder.CreateCall(F, Ops);
12541   };
12542 
12543   // For the vector forms of FP comparisons, translate the builtins directly to
12544   // IR.
12545   // TODO: The builtins could be removed if the SSE header files used vector
12546   // extension comparisons directly (vector ordered/unordered may need
12547   // additional support via __builtin_isnan()).
12548   auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred,
12549                                          bool IsSignaling) {
12550     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
12551     Value *Cmp;
12552     if (IsSignaling)
12553       Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
12554     else
12555       Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
12556     llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
12557     llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
12558     Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
12559     return Builder.CreateBitCast(Sext, FPVecTy);
12560   };
12561 
12562   switch (BuiltinID) {
12563   default: return nullptr;
12564   case X86::BI_mm_prefetch: {
12565     Value *Address = Ops[0];
12566     ConstantInt *C = cast<ConstantInt>(Ops[1]);
12567     Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
12568     Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
12569     Value *Data = ConstantInt::get(Int32Ty, 1);
12570     Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType());
12571     return Builder.CreateCall(F, {Address, RW, Locality, Data});
12572   }
12573   case X86::BI_mm_clflush: {
12574     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
12575                               Ops[0]);
12576   }
12577   case X86::BI_mm_lfence: {
12578     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
12579   }
12580   case X86::BI_mm_mfence: {
12581     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
12582   }
12583   case X86::BI_mm_sfence: {
12584     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
12585   }
12586   case X86::BI_mm_pause: {
12587     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
12588   }
12589   case X86::BI__rdtsc: {
12590     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
12591   }
12592   case X86::BI__builtin_ia32_rdtscp: {
12593     Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
12594     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
12595                                       Ops[0]);
12596     return Builder.CreateExtractValue(Call, 0);
12597   }
12598   case X86::BI__builtin_ia32_lzcnt_u16:
12599   case X86::BI__builtin_ia32_lzcnt_u32:
12600   case X86::BI__builtin_ia32_lzcnt_u64: {
12601     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
12602     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12603   }
12604   case X86::BI__builtin_ia32_tzcnt_u16:
12605   case X86::BI__builtin_ia32_tzcnt_u32:
12606   case X86::BI__builtin_ia32_tzcnt_u64: {
12607     Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
12608     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
12609   }
12610   case X86::BI__builtin_ia32_undef128:
12611   case X86::BI__builtin_ia32_undef256:
12612   case X86::BI__builtin_ia32_undef512:
12613     // The x86 definition of "undef" is not the same as the LLVM definition
12614     // (PR32176). We leave optimizing away an unnecessary zero constant to the
12615     // IR optimizer and backend.
12616     // TODO: If we had a "freeze" IR instruction to generate a fixed undef
12617     // value, we should use that here instead of a zero.
12618     return llvm::Constant::getNullValue(ConvertType(E->getType()));
12619   case X86::BI__builtin_ia32_vec_init_v8qi:
12620   case X86::BI__builtin_ia32_vec_init_v4hi:
12621   case X86::BI__builtin_ia32_vec_init_v2si:
12622     return Builder.CreateBitCast(BuildVector(Ops),
12623                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
12624   case X86::BI__builtin_ia32_vec_ext_v2si:
12625   case X86::BI__builtin_ia32_vec_ext_v16qi:
12626   case X86::BI__builtin_ia32_vec_ext_v8hi:
12627   case X86::BI__builtin_ia32_vec_ext_v4si:
12628   case X86::BI__builtin_ia32_vec_ext_v4sf:
12629   case X86::BI__builtin_ia32_vec_ext_v2di:
12630   case X86::BI__builtin_ia32_vec_ext_v32qi:
12631   case X86::BI__builtin_ia32_vec_ext_v16hi:
12632   case X86::BI__builtin_ia32_vec_ext_v8si:
12633   case X86::BI__builtin_ia32_vec_ext_v4di: {
12634     unsigned NumElts =
12635         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12636     uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
12637     Index &= NumElts - 1;
12638     // These builtins exist so we can ensure the index is an ICE and in range.
12639     // Otherwise we could just do this in the header file.
12640     return Builder.CreateExtractElement(Ops[0], Index);
12641   }
12642   case X86::BI__builtin_ia32_vec_set_v16qi:
12643   case X86::BI__builtin_ia32_vec_set_v8hi:
12644   case X86::BI__builtin_ia32_vec_set_v4si:
12645   case X86::BI__builtin_ia32_vec_set_v2di:
12646   case X86::BI__builtin_ia32_vec_set_v32qi:
12647   case X86::BI__builtin_ia32_vec_set_v16hi:
12648   case X86::BI__builtin_ia32_vec_set_v8si:
12649   case X86::BI__builtin_ia32_vec_set_v4di: {
12650     unsigned NumElts =
12651         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
12652     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
12653     Index &= NumElts - 1;
12654     // These builtins exist so we can ensure the index is an ICE and in range.
12655     // Otherwise we could just do this in the header file.
12656     return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
12657   }
12658   case X86::BI_mm_setcsr:
12659   case X86::BI__builtin_ia32_ldmxcsr: {
12660     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
12661     Builder.CreateStore(Ops[0], Tmp);
12662     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
12663                           Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12664   }
12665   case X86::BI_mm_getcsr:
12666   case X86::BI__builtin_ia32_stmxcsr: {
12667     Address Tmp = CreateMemTemp(E->getType());
12668     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
12669                        Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
12670     return Builder.CreateLoad(Tmp, "stmxcsr");
12671   }
12672   case X86::BI__builtin_ia32_xsave:
12673   case X86::BI__builtin_ia32_xsave64:
12674   case X86::BI__builtin_ia32_xrstor:
12675   case X86::BI__builtin_ia32_xrstor64:
12676   case X86::BI__builtin_ia32_xsaveopt:
12677   case X86::BI__builtin_ia32_xsaveopt64:
12678   case X86::BI__builtin_ia32_xrstors:
12679   case X86::BI__builtin_ia32_xrstors64:
12680   case X86::BI__builtin_ia32_xsavec:
12681   case X86::BI__builtin_ia32_xsavec64:
12682   case X86::BI__builtin_ia32_xsaves:
12683   case X86::BI__builtin_ia32_xsaves64:
12684   case X86::BI__builtin_ia32_xsetbv:
12685   case X86::BI_xsetbv: {
12686     Intrinsic::ID ID;
12687 #define INTRINSIC_X86_XSAVE_ID(NAME) \
12688     case X86::BI__builtin_ia32_##NAME: \
12689       ID = Intrinsic::x86_##NAME; \
12690       break
12691     switch (BuiltinID) {
12692     default: llvm_unreachable("Unsupported intrinsic!");
12693     INTRINSIC_X86_XSAVE_ID(xsave);
12694     INTRINSIC_X86_XSAVE_ID(xsave64);
12695     INTRINSIC_X86_XSAVE_ID(xrstor);
12696     INTRINSIC_X86_XSAVE_ID(xrstor64);
12697     INTRINSIC_X86_XSAVE_ID(xsaveopt);
12698     INTRINSIC_X86_XSAVE_ID(xsaveopt64);
12699     INTRINSIC_X86_XSAVE_ID(xrstors);
12700     INTRINSIC_X86_XSAVE_ID(xrstors64);
12701     INTRINSIC_X86_XSAVE_ID(xsavec);
12702     INTRINSIC_X86_XSAVE_ID(xsavec64);
12703     INTRINSIC_X86_XSAVE_ID(xsaves);
12704     INTRINSIC_X86_XSAVE_ID(xsaves64);
12705     INTRINSIC_X86_XSAVE_ID(xsetbv);
12706     case X86::BI_xsetbv:
12707       ID = Intrinsic::x86_xsetbv;
12708       break;
12709     }
12710 #undef INTRINSIC_X86_XSAVE_ID
12711     Value *Mhi = Builder.CreateTrunc(
12712       Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
12713     Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
12714     Ops[1] = Mhi;
12715     Ops.push_back(Mlo);
12716     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
12717   }
12718   case X86::BI__builtin_ia32_xgetbv:
12719   case X86::BI_xgetbv:
12720     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
12721   case X86::BI__builtin_ia32_storedqudi128_mask:
12722   case X86::BI__builtin_ia32_storedqusi128_mask:
12723   case X86::BI__builtin_ia32_storedquhi128_mask:
12724   case X86::BI__builtin_ia32_storedquqi128_mask:
12725   case X86::BI__builtin_ia32_storeupd128_mask:
12726   case X86::BI__builtin_ia32_storeups128_mask:
12727   case X86::BI__builtin_ia32_storedqudi256_mask:
12728   case X86::BI__builtin_ia32_storedqusi256_mask:
12729   case X86::BI__builtin_ia32_storedquhi256_mask:
12730   case X86::BI__builtin_ia32_storedquqi256_mask:
12731   case X86::BI__builtin_ia32_storeupd256_mask:
12732   case X86::BI__builtin_ia32_storeups256_mask:
12733   case X86::BI__builtin_ia32_storedqudi512_mask:
12734   case X86::BI__builtin_ia32_storedqusi512_mask:
12735   case X86::BI__builtin_ia32_storedquhi512_mask:
12736   case X86::BI__builtin_ia32_storedquqi512_mask:
12737   case X86::BI__builtin_ia32_storeupd512_mask:
12738   case X86::BI__builtin_ia32_storeups512_mask:
12739     return EmitX86MaskedStore(*this, Ops, Align(1));
12740 
12741   case X86::BI__builtin_ia32_storesh128_mask:
12742   case X86::BI__builtin_ia32_storess128_mask:
12743   case X86::BI__builtin_ia32_storesd128_mask:
12744     return EmitX86MaskedStore(*this, Ops, Align(1));
12745 
12746   case X86::BI__builtin_ia32_vpopcntb_128:
12747   case X86::BI__builtin_ia32_vpopcntd_128:
12748   case X86::BI__builtin_ia32_vpopcntq_128:
12749   case X86::BI__builtin_ia32_vpopcntw_128:
12750   case X86::BI__builtin_ia32_vpopcntb_256:
12751   case X86::BI__builtin_ia32_vpopcntd_256:
12752   case X86::BI__builtin_ia32_vpopcntq_256:
12753   case X86::BI__builtin_ia32_vpopcntw_256:
12754   case X86::BI__builtin_ia32_vpopcntb_512:
12755   case X86::BI__builtin_ia32_vpopcntd_512:
12756   case X86::BI__builtin_ia32_vpopcntq_512:
12757   case X86::BI__builtin_ia32_vpopcntw_512: {
12758     llvm::Type *ResultType = ConvertType(E->getType());
12759     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
12760     return Builder.CreateCall(F, Ops);
12761   }
12762   case X86::BI__builtin_ia32_cvtmask2b128:
12763   case X86::BI__builtin_ia32_cvtmask2b256:
12764   case X86::BI__builtin_ia32_cvtmask2b512:
12765   case X86::BI__builtin_ia32_cvtmask2w128:
12766   case X86::BI__builtin_ia32_cvtmask2w256:
12767   case X86::BI__builtin_ia32_cvtmask2w512:
12768   case X86::BI__builtin_ia32_cvtmask2d128:
12769   case X86::BI__builtin_ia32_cvtmask2d256:
12770   case X86::BI__builtin_ia32_cvtmask2d512:
12771   case X86::BI__builtin_ia32_cvtmask2q128:
12772   case X86::BI__builtin_ia32_cvtmask2q256:
12773   case X86::BI__builtin_ia32_cvtmask2q512:
12774     return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
12775 
12776   case X86::BI__builtin_ia32_cvtb2mask128:
12777   case X86::BI__builtin_ia32_cvtb2mask256:
12778   case X86::BI__builtin_ia32_cvtb2mask512:
12779   case X86::BI__builtin_ia32_cvtw2mask128:
12780   case X86::BI__builtin_ia32_cvtw2mask256:
12781   case X86::BI__builtin_ia32_cvtw2mask512:
12782   case X86::BI__builtin_ia32_cvtd2mask128:
12783   case X86::BI__builtin_ia32_cvtd2mask256:
12784   case X86::BI__builtin_ia32_cvtd2mask512:
12785   case X86::BI__builtin_ia32_cvtq2mask128:
12786   case X86::BI__builtin_ia32_cvtq2mask256:
12787   case X86::BI__builtin_ia32_cvtq2mask512:
12788     return EmitX86ConvertToMask(*this, Ops[0]);
12789 
12790   case X86::BI__builtin_ia32_cvtdq2ps512_mask:
12791   case X86::BI__builtin_ia32_cvtqq2ps512_mask:
12792   case X86::BI__builtin_ia32_cvtqq2pd512_mask:
12793   case X86::BI__builtin_ia32_vcvtw2ph512_mask:
12794   case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
12795   case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
12796     return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true);
12797   case X86::BI__builtin_ia32_cvtudq2ps512_mask:
12798   case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
12799   case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
12800   case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
12801   case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
12802   case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
12803     return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false);
12804 
12805   case X86::BI__builtin_ia32_vfmaddss3:
12806   case X86::BI__builtin_ia32_vfmaddsd3:
12807   case X86::BI__builtin_ia32_vfmaddsh3_mask:
12808   case X86::BI__builtin_ia32_vfmaddss3_mask:
12809   case X86::BI__builtin_ia32_vfmaddsd3_mask:
12810     return EmitScalarFMAExpr(*this, E, Ops, Ops[0]);
12811   case X86::BI__builtin_ia32_vfmaddss:
12812   case X86::BI__builtin_ia32_vfmaddsd:
12813     return EmitScalarFMAExpr(*this, E, Ops,
12814                              Constant::getNullValue(Ops[0]->getType()));
12815   case X86::BI__builtin_ia32_vfmaddsh3_maskz:
12816   case X86::BI__builtin_ia32_vfmaddss3_maskz:
12817   case X86::BI__builtin_ia32_vfmaddsd3_maskz:
12818     return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true);
12819   case X86::BI__builtin_ia32_vfmaddsh3_mask3:
12820   case X86::BI__builtin_ia32_vfmaddss3_mask3:
12821   case X86::BI__builtin_ia32_vfmaddsd3_mask3:
12822     return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2);
12823   case X86::BI__builtin_ia32_vfmsubsh3_mask3:
12824   case X86::BI__builtin_ia32_vfmsubss3_mask3:
12825   case X86::BI__builtin_ia32_vfmsubsd3_mask3:
12826     return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2,
12827                              /*NegAcc*/ true);
12828   case X86::BI__builtin_ia32_vfmaddph:
12829   case X86::BI__builtin_ia32_vfmaddps:
12830   case X86::BI__builtin_ia32_vfmaddpd:
12831   case X86::BI__builtin_ia32_vfmaddph256:
12832   case X86::BI__builtin_ia32_vfmaddps256:
12833   case X86::BI__builtin_ia32_vfmaddpd256:
12834   case X86::BI__builtin_ia32_vfmaddph512_mask:
12835   case X86::BI__builtin_ia32_vfmaddph512_maskz:
12836   case X86::BI__builtin_ia32_vfmaddph512_mask3:
12837   case X86::BI__builtin_ia32_vfmaddps512_mask:
12838   case X86::BI__builtin_ia32_vfmaddps512_maskz:
12839   case X86::BI__builtin_ia32_vfmaddps512_mask3:
12840   case X86::BI__builtin_ia32_vfmsubps512_mask3:
12841   case X86::BI__builtin_ia32_vfmaddpd512_mask:
12842   case X86::BI__builtin_ia32_vfmaddpd512_maskz:
12843   case X86::BI__builtin_ia32_vfmaddpd512_mask3:
12844   case X86::BI__builtin_ia32_vfmsubpd512_mask3:
12845   case X86::BI__builtin_ia32_vfmsubph512_mask3:
12846     return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false);
12847   case X86::BI__builtin_ia32_vfmaddsubph512_mask:
12848   case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
12849   case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
12850   case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
12851   case X86::BI__builtin_ia32_vfmaddsubps512_mask:
12852   case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
12853   case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
12854   case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
12855   case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
12856   case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
12857   case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
12858   case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
12859     return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true);
12860 
12861   case X86::BI__builtin_ia32_movdqa32store128_mask:
12862   case X86::BI__builtin_ia32_movdqa64store128_mask:
12863   case X86::BI__builtin_ia32_storeaps128_mask:
12864   case X86::BI__builtin_ia32_storeapd128_mask:
12865   case X86::BI__builtin_ia32_movdqa32store256_mask:
12866   case X86::BI__builtin_ia32_movdqa64store256_mask:
12867   case X86::BI__builtin_ia32_storeaps256_mask:
12868   case X86::BI__builtin_ia32_storeapd256_mask:
12869   case X86::BI__builtin_ia32_movdqa32store512_mask:
12870   case X86::BI__builtin_ia32_movdqa64store512_mask:
12871   case X86::BI__builtin_ia32_storeaps512_mask:
12872   case X86::BI__builtin_ia32_storeapd512_mask:
12873     return EmitX86MaskedStore(
12874         *this, Ops,
12875         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12876 
12877   case X86::BI__builtin_ia32_loadups128_mask:
12878   case X86::BI__builtin_ia32_loadups256_mask:
12879   case X86::BI__builtin_ia32_loadups512_mask:
12880   case X86::BI__builtin_ia32_loadupd128_mask:
12881   case X86::BI__builtin_ia32_loadupd256_mask:
12882   case X86::BI__builtin_ia32_loadupd512_mask:
12883   case X86::BI__builtin_ia32_loaddquqi128_mask:
12884   case X86::BI__builtin_ia32_loaddquqi256_mask:
12885   case X86::BI__builtin_ia32_loaddquqi512_mask:
12886   case X86::BI__builtin_ia32_loaddquhi128_mask:
12887   case X86::BI__builtin_ia32_loaddquhi256_mask:
12888   case X86::BI__builtin_ia32_loaddquhi512_mask:
12889   case X86::BI__builtin_ia32_loaddqusi128_mask:
12890   case X86::BI__builtin_ia32_loaddqusi256_mask:
12891   case X86::BI__builtin_ia32_loaddqusi512_mask:
12892   case X86::BI__builtin_ia32_loaddqudi128_mask:
12893   case X86::BI__builtin_ia32_loaddqudi256_mask:
12894   case X86::BI__builtin_ia32_loaddqudi512_mask:
12895     return EmitX86MaskedLoad(*this, Ops, Align(1));
12896 
12897   case X86::BI__builtin_ia32_loadsh128_mask:
12898   case X86::BI__builtin_ia32_loadss128_mask:
12899   case X86::BI__builtin_ia32_loadsd128_mask:
12900     return EmitX86MaskedLoad(*this, Ops, Align(1));
12901 
12902   case X86::BI__builtin_ia32_loadaps128_mask:
12903   case X86::BI__builtin_ia32_loadaps256_mask:
12904   case X86::BI__builtin_ia32_loadaps512_mask:
12905   case X86::BI__builtin_ia32_loadapd128_mask:
12906   case X86::BI__builtin_ia32_loadapd256_mask:
12907   case X86::BI__builtin_ia32_loadapd512_mask:
12908   case X86::BI__builtin_ia32_movdqa32load128_mask:
12909   case X86::BI__builtin_ia32_movdqa32load256_mask:
12910   case X86::BI__builtin_ia32_movdqa32load512_mask:
12911   case X86::BI__builtin_ia32_movdqa64load128_mask:
12912   case X86::BI__builtin_ia32_movdqa64load256_mask:
12913   case X86::BI__builtin_ia32_movdqa64load512_mask:
12914     return EmitX86MaskedLoad(
12915         *this, Ops,
12916         getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign());
12917 
12918   case X86::BI__builtin_ia32_expandloaddf128_mask:
12919   case X86::BI__builtin_ia32_expandloaddf256_mask:
12920   case X86::BI__builtin_ia32_expandloaddf512_mask:
12921   case X86::BI__builtin_ia32_expandloadsf128_mask:
12922   case X86::BI__builtin_ia32_expandloadsf256_mask:
12923   case X86::BI__builtin_ia32_expandloadsf512_mask:
12924   case X86::BI__builtin_ia32_expandloaddi128_mask:
12925   case X86::BI__builtin_ia32_expandloaddi256_mask:
12926   case X86::BI__builtin_ia32_expandloaddi512_mask:
12927   case X86::BI__builtin_ia32_expandloadsi128_mask:
12928   case X86::BI__builtin_ia32_expandloadsi256_mask:
12929   case X86::BI__builtin_ia32_expandloadsi512_mask:
12930   case X86::BI__builtin_ia32_expandloadhi128_mask:
12931   case X86::BI__builtin_ia32_expandloadhi256_mask:
12932   case X86::BI__builtin_ia32_expandloadhi512_mask:
12933   case X86::BI__builtin_ia32_expandloadqi128_mask:
12934   case X86::BI__builtin_ia32_expandloadqi256_mask:
12935   case X86::BI__builtin_ia32_expandloadqi512_mask:
12936     return EmitX86ExpandLoad(*this, Ops);
12937 
12938   case X86::BI__builtin_ia32_compressstoredf128_mask:
12939   case X86::BI__builtin_ia32_compressstoredf256_mask:
12940   case X86::BI__builtin_ia32_compressstoredf512_mask:
12941   case X86::BI__builtin_ia32_compressstoresf128_mask:
12942   case X86::BI__builtin_ia32_compressstoresf256_mask:
12943   case X86::BI__builtin_ia32_compressstoresf512_mask:
12944   case X86::BI__builtin_ia32_compressstoredi128_mask:
12945   case X86::BI__builtin_ia32_compressstoredi256_mask:
12946   case X86::BI__builtin_ia32_compressstoredi512_mask:
12947   case X86::BI__builtin_ia32_compressstoresi128_mask:
12948   case X86::BI__builtin_ia32_compressstoresi256_mask:
12949   case X86::BI__builtin_ia32_compressstoresi512_mask:
12950   case X86::BI__builtin_ia32_compressstorehi128_mask:
12951   case X86::BI__builtin_ia32_compressstorehi256_mask:
12952   case X86::BI__builtin_ia32_compressstorehi512_mask:
12953   case X86::BI__builtin_ia32_compressstoreqi128_mask:
12954   case X86::BI__builtin_ia32_compressstoreqi256_mask:
12955   case X86::BI__builtin_ia32_compressstoreqi512_mask:
12956     return EmitX86CompressStore(*this, Ops);
12957 
12958   case X86::BI__builtin_ia32_expanddf128_mask:
12959   case X86::BI__builtin_ia32_expanddf256_mask:
12960   case X86::BI__builtin_ia32_expanddf512_mask:
12961   case X86::BI__builtin_ia32_expandsf128_mask:
12962   case X86::BI__builtin_ia32_expandsf256_mask:
12963   case X86::BI__builtin_ia32_expandsf512_mask:
12964   case X86::BI__builtin_ia32_expanddi128_mask:
12965   case X86::BI__builtin_ia32_expanddi256_mask:
12966   case X86::BI__builtin_ia32_expanddi512_mask:
12967   case X86::BI__builtin_ia32_expandsi128_mask:
12968   case X86::BI__builtin_ia32_expandsi256_mask:
12969   case X86::BI__builtin_ia32_expandsi512_mask:
12970   case X86::BI__builtin_ia32_expandhi128_mask:
12971   case X86::BI__builtin_ia32_expandhi256_mask:
12972   case X86::BI__builtin_ia32_expandhi512_mask:
12973   case X86::BI__builtin_ia32_expandqi128_mask:
12974   case X86::BI__builtin_ia32_expandqi256_mask:
12975   case X86::BI__builtin_ia32_expandqi512_mask:
12976     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
12977 
12978   case X86::BI__builtin_ia32_compressdf128_mask:
12979   case X86::BI__builtin_ia32_compressdf256_mask:
12980   case X86::BI__builtin_ia32_compressdf512_mask:
12981   case X86::BI__builtin_ia32_compresssf128_mask:
12982   case X86::BI__builtin_ia32_compresssf256_mask:
12983   case X86::BI__builtin_ia32_compresssf512_mask:
12984   case X86::BI__builtin_ia32_compressdi128_mask:
12985   case X86::BI__builtin_ia32_compressdi256_mask:
12986   case X86::BI__builtin_ia32_compressdi512_mask:
12987   case X86::BI__builtin_ia32_compresssi128_mask:
12988   case X86::BI__builtin_ia32_compresssi256_mask:
12989   case X86::BI__builtin_ia32_compresssi512_mask:
12990   case X86::BI__builtin_ia32_compresshi128_mask:
12991   case X86::BI__builtin_ia32_compresshi256_mask:
12992   case X86::BI__builtin_ia32_compresshi512_mask:
12993   case X86::BI__builtin_ia32_compressqi128_mask:
12994   case X86::BI__builtin_ia32_compressqi256_mask:
12995   case X86::BI__builtin_ia32_compressqi512_mask:
12996     return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
12997 
12998   case X86::BI__builtin_ia32_gather3div2df:
12999   case X86::BI__builtin_ia32_gather3div2di:
13000   case X86::BI__builtin_ia32_gather3div4df:
13001   case X86::BI__builtin_ia32_gather3div4di:
13002   case X86::BI__builtin_ia32_gather3div4sf:
13003   case X86::BI__builtin_ia32_gather3div4si:
13004   case X86::BI__builtin_ia32_gather3div8sf:
13005   case X86::BI__builtin_ia32_gather3div8si:
13006   case X86::BI__builtin_ia32_gather3siv2df:
13007   case X86::BI__builtin_ia32_gather3siv2di:
13008   case X86::BI__builtin_ia32_gather3siv4df:
13009   case X86::BI__builtin_ia32_gather3siv4di:
13010   case X86::BI__builtin_ia32_gather3siv4sf:
13011   case X86::BI__builtin_ia32_gather3siv4si:
13012   case X86::BI__builtin_ia32_gather3siv8sf:
13013   case X86::BI__builtin_ia32_gather3siv8si:
13014   case X86::BI__builtin_ia32_gathersiv8df:
13015   case X86::BI__builtin_ia32_gathersiv16sf:
13016   case X86::BI__builtin_ia32_gatherdiv8df:
13017   case X86::BI__builtin_ia32_gatherdiv16sf:
13018   case X86::BI__builtin_ia32_gathersiv8di:
13019   case X86::BI__builtin_ia32_gathersiv16si:
13020   case X86::BI__builtin_ia32_gatherdiv8di:
13021   case X86::BI__builtin_ia32_gatherdiv16si: {
13022     Intrinsic::ID IID;
13023     switch (BuiltinID) {
13024     default: llvm_unreachable("Unexpected builtin");
13025     case X86::BI__builtin_ia32_gather3div2df:
13026       IID = Intrinsic::x86_avx512_mask_gather3div2_df;
13027       break;
13028     case X86::BI__builtin_ia32_gather3div2di:
13029       IID = Intrinsic::x86_avx512_mask_gather3div2_di;
13030       break;
13031     case X86::BI__builtin_ia32_gather3div4df:
13032       IID = Intrinsic::x86_avx512_mask_gather3div4_df;
13033       break;
13034     case X86::BI__builtin_ia32_gather3div4di:
13035       IID = Intrinsic::x86_avx512_mask_gather3div4_di;
13036       break;
13037     case X86::BI__builtin_ia32_gather3div4sf:
13038       IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
13039       break;
13040     case X86::BI__builtin_ia32_gather3div4si:
13041       IID = Intrinsic::x86_avx512_mask_gather3div4_si;
13042       break;
13043     case X86::BI__builtin_ia32_gather3div8sf:
13044       IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
13045       break;
13046     case X86::BI__builtin_ia32_gather3div8si:
13047       IID = Intrinsic::x86_avx512_mask_gather3div8_si;
13048       break;
13049     case X86::BI__builtin_ia32_gather3siv2df:
13050       IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
13051       break;
13052     case X86::BI__builtin_ia32_gather3siv2di:
13053       IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
13054       break;
13055     case X86::BI__builtin_ia32_gather3siv4df:
13056       IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
13057       break;
13058     case X86::BI__builtin_ia32_gather3siv4di:
13059       IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
13060       break;
13061     case X86::BI__builtin_ia32_gather3siv4sf:
13062       IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
13063       break;
13064     case X86::BI__builtin_ia32_gather3siv4si:
13065       IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
13066       break;
13067     case X86::BI__builtin_ia32_gather3siv8sf:
13068       IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
13069       break;
13070     case X86::BI__builtin_ia32_gather3siv8si:
13071       IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
13072       break;
13073     case X86::BI__builtin_ia32_gathersiv8df:
13074       IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
13075       break;
13076     case X86::BI__builtin_ia32_gathersiv16sf:
13077       IID = Intrinsic::x86_avx512_mask_gather_dps_512;
13078       break;
13079     case X86::BI__builtin_ia32_gatherdiv8df:
13080       IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
13081       break;
13082     case X86::BI__builtin_ia32_gatherdiv16sf:
13083       IID = Intrinsic::x86_avx512_mask_gather_qps_512;
13084       break;
13085     case X86::BI__builtin_ia32_gathersiv8di:
13086       IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
13087       break;
13088     case X86::BI__builtin_ia32_gathersiv16si:
13089       IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
13090       break;
13091     case X86::BI__builtin_ia32_gatherdiv8di:
13092       IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
13093       break;
13094     case X86::BI__builtin_ia32_gatherdiv16si:
13095       IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
13096       break;
13097     }
13098 
13099     unsigned MinElts = std::min(
13100         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(),
13101         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements());
13102     Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
13103     Function *Intr = CGM.getIntrinsic(IID);
13104     return Builder.CreateCall(Intr, Ops);
13105   }
13106 
13107   case X86::BI__builtin_ia32_scattersiv8df:
13108   case X86::BI__builtin_ia32_scattersiv16sf:
13109   case X86::BI__builtin_ia32_scatterdiv8df:
13110   case X86::BI__builtin_ia32_scatterdiv16sf:
13111   case X86::BI__builtin_ia32_scattersiv8di:
13112   case X86::BI__builtin_ia32_scattersiv16si:
13113   case X86::BI__builtin_ia32_scatterdiv8di:
13114   case X86::BI__builtin_ia32_scatterdiv16si:
13115   case X86::BI__builtin_ia32_scatterdiv2df:
13116   case X86::BI__builtin_ia32_scatterdiv2di:
13117   case X86::BI__builtin_ia32_scatterdiv4df:
13118   case X86::BI__builtin_ia32_scatterdiv4di:
13119   case X86::BI__builtin_ia32_scatterdiv4sf:
13120   case X86::BI__builtin_ia32_scatterdiv4si:
13121   case X86::BI__builtin_ia32_scatterdiv8sf:
13122   case X86::BI__builtin_ia32_scatterdiv8si:
13123   case X86::BI__builtin_ia32_scattersiv2df:
13124   case X86::BI__builtin_ia32_scattersiv2di:
13125   case X86::BI__builtin_ia32_scattersiv4df:
13126   case X86::BI__builtin_ia32_scattersiv4di:
13127   case X86::BI__builtin_ia32_scattersiv4sf:
13128   case X86::BI__builtin_ia32_scattersiv4si:
13129   case X86::BI__builtin_ia32_scattersiv8sf:
13130   case X86::BI__builtin_ia32_scattersiv8si: {
13131     Intrinsic::ID IID;
13132     switch (BuiltinID) {
13133     default: llvm_unreachable("Unexpected builtin");
13134     case X86::BI__builtin_ia32_scattersiv8df:
13135       IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
13136       break;
13137     case X86::BI__builtin_ia32_scattersiv16sf:
13138       IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
13139       break;
13140     case X86::BI__builtin_ia32_scatterdiv8df:
13141       IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
13142       break;
13143     case X86::BI__builtin_ia32_scatterdiv16sf:
13144       IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
13145       break;
13146     case X86::BI__builtin_ia32_scattersiv8di:
13147       IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
13148       break;
13149     case X86::BI__builtin_ia32_scattersiv16si:
13150       IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
13151       break;
13152     case X86::BI__builtin_ia32_scatterdiv8di:
13153       IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
13154       break;
13155     case X86::BI__builtin_ia32_scatterdiv16si:
13156       IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
13157       break;
13158     case X86::BI__builtin_ia32_scatterdiv2df:
13159       IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
13160       break;
13161     case X86::BI__builtin_ia32_scatterdiv2di:
13162       IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
13163       break;
13164     case X86::BI__builtin_ia32_scatterdiv4df:
13165       IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
13166       break;
13167     case X86::BI__builtin_ia32_scatterdiv4di:
13168       IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
13169       break;
13170     case X86::BI__builtin_ia32_scatterdiv4sf:
13171       IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
13172       break;
13173     case X86::BI__builtin_ia32_scatterdiv4si:
13174       IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
13175       break;
13176     case X86::BI__builtin_ia32_scatterdiv8sf:
13177       IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
13178       break;
13179     case X86::BI__builtin_ia32_scatterdiv8si:
13180       IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
13181       break;
13182     case X86::BI__builtin_ia32_scattersiv2df:
13183       IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
13184       break;
13185     case X86::BI__builtin_ia32_scattersiv2di:
13186       IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
13187       break;
13188     case X86::BI__builtin_ia32_scattersiv4df:
13189       IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
13190       break;
13191     case X86::BI__builtin_ia32_scattersiv4di:
13192       IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
13193       break;
13194     case X86::BI__builtin_ia32_scattersiv4sf:
13195       IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
13196       break;
13197     case X86::BI__builtin_ia32_scattersiv4si:
13198       IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
13199       break;
13200     case X86::BI__builtin_ia32_scattersiv8sf:
13201       IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
13202       break;
13203     case X86::BI__builtin_ia32_scattersiv8si:
13204       IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
13205       break;
13206     }
13207 
13208     unsigned MinElts = std::min(
13209         cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(),
13210         cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements());
13211     Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
13212     Function *Intr = CGM.getIntrinsic(IID);
13213     return Builder.CreateCall(Intr, Ops);
13214   }
13215 
13216   case X86::BI__builtin_ia32_vextractf128_pd256:
13217   case X86::BI__builtin_ia32_vextractf128_ps256:
13218   case X86::BI__builtin_ia32_vextractf128_si256:
13219   case X86::BI__builtin_ia32_extract128i256:
13220   case X86::BI__builtin_ia32_extractf64x4_mask:
13221   case X86::BI__builtin_ia32_extractf32x4_mask:
13222   case X86::BI__builtin_ia32_extracti64x4_mask:
13223   case X86::BI__builtin_ia32_extracti32x4_mask:
13224   case X86::BI__builtin_ia32_extractf32x8_mask:
13225   case X86::BI__builtin_ia32_extracti32x8_mask:
13226   case X86::BI__builtin_ia32_extractf32x4_256_mask:
13227   case X86::BI__builtin_ia32_extracti32x4_256_mask:
13228   case X86::BI__builtin_ia32_extractf64x2_256_mask:
13229   case X86::BI__builtin_ia32_extracti64x2_256_mask:
13230   case X86::BI__builtin_ia32_extractf64x2_512_mask:
13231   case X86::BI__builtin_ia32_extracti64x2_512_mask: {
13232     auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType()));
13233     unsigned NumElts = DstTy->getNumElements();
13234     unsigned SrcNumElts =
13235         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13236     unsigned SubVectors = SrcNumElts / NumElts;
13237     unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
13238     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
13239     Index &= SubVectors - 1; // Remove any extra bits.
13240     Index *= NumElts;
13241 
13242     int Indices[16];
13243     for (unsigned i = 0; i != NumElts; ++i)
13244       Indices[i] = i + Index;
13245 
13246     Value *Res = Builder.CreateShuffleVector(Ops[0],
13247                                              makeArrayRef(Indices, NumElts),
13248                                              "extract");
13249 
13250     if (Ops.size() == 4)
13251       Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
13252 
13253     return Res;
13254   }
13255   case X86::BI__builtin_ia32_vinsertf128_pd256:
13256   case X86::BI__builtin_ia32_vinsertf128_ps256:
13257   case X86::BI__builtin_ia32_vinsertf128_si256:
13258   case X86::BI__builtin_ia32_insert128i256:
13259   case X86::BI__builtin_ia32_insertf64x4:
13260   case X86::BI__builtin_ia32_insertf32x4:
13261   case X86::BI__builtin_ia32_inserti64x4:
13262   case X86::BI__builtin_ia32_inserti32x4:
13263   case X86::BI__builtin_ia32_insertf32x8:
13264   case X86::BI__builtin_ia32_inserti32x8:
13265   case X86::BI__builtin_ia32_insertf32x4_256:
13266   case X86::BI__builtin_ia32_inserti32x4_256:
13267   case X86::BI__builtin_ia32_insertf64x2_256:
13268   case X86::BI__builtin_ia32_inserti64x2_256:
13269   case X86::BI__builtin_ia32_insertf64x2_512:
13270   case X86::BI__builtin_ia32_inserti64x2_512: {
13271     unsigned DstNumElts =
13272         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13273     unsigned SrcNumElts =
13274         cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements();
13275     unsigned SubVectors = DstNumElts / SrcNumElts;
13276     unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
13277     assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
13278     Index &= SubVectors - 1; // Remove any extra bits.
13279     Index *= SrcNumElts;
13280 
13281     int Indices[16];
13282     for (unsigned i = 0; i != DstNumElts; ++i)
13283       Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
13284 
13285     Value *Op1 = Builder.CreateShuffleVector(Ops[1],
13286                                              makeArrayRef(Indices, DstNumElts),
13287                                              "widen");
13288 
13289     for (unsigned i = 0; i != DstNumElts; ++i) {
13290       if (i >= Index && i < (Index + SrcNumElts))
13291         Indices[i] = (i - Index) + DstNumElts;
13292       else
13293         Indices[i] = i;
13294     }
13295 
13296     return Builder.CreateShuffleVector(Ops[0], Op1,
13297                                        makeArrayRef(Indices, DstNumElts),
13298                                        "insert");
13299   }
13300   case X86::BI__builtin_ia32_pmovqd512_mask:
13301   case X86::BI__builtin_ia32_pmovwb512_mask: {
13302     Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13303     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
13304   }
13305   case X86::BI__builtin_ia32_pmovdb512_mask:
13306   case X86::BI__builtin_ia32_pmovdw512_mask:
13307   case X86::BI__builtin_ia32_pmovqw512_mask: {
13308     if (const auto *C = dyn_cast<Constant>(Ops[2]))
13309       if (C->isAllOnesValue())
13310         return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
13311 
13312     Intrinsic::ID IID;
13313     switch (BuiltinID) {
13314     default: llvm_unreachable("Unsupported intrinsic!");
13315     case X86::BI__builtin_ia32_pmovdb512_mask:
13316       IID = Intrinsic::x86_avx512_mask_pmov_db_512;
13317       break;
13318     case X86::BI__builtin_ia32_pmovdw512_mask:
13319       IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
13320       break;
13321     case X86::BI__builtin_ia32_pmovqw512_mask:
13322       IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
13323       break;
13324     }
13325 
13326     Function *Intr = CGM.getIntrinsic(IID);
13327     return Builder.CreateCall(Intr, Ops);
13328   }
13329   case X86::BI__builtin_ia32_pblendw128:
13330   case X86::BI__builtin_ia32_blendpd:
13331   case X86::BI__builtin_ia32_blendps:
13332   case X86::BI__builtin_ia32_blendpd256:
13333   case X86::BI__builtin_ia32_blendps256:
13334   case X86::BI__builtin_ia32_pblendw256:
13335   case X86::BI__builtin_ia32_pblendd128:
13336   case X86::BI__builtin_ia32_pblendd256: {
13337     unsigned NumElts =
13338         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13339     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13340 
13341     int Indices[16];
13342     // If there are more than 8 elements, the immediate is used twice so make
13343     // sure we handle that.
13344     for (unsigned i = 0; i != NumElts; ++i)
13345       Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
13346 
13347     return Builder.CreateShuffleVector(Ops[0], Ops[1],
13348                                        makeArrayRef(Indices, NumElts),
13349                                        "blend");
13350   }
13351   case X86::BI__builtin_ia32_pshuflw:
13352   case X86::BI__builtin_ia32_pshuflw256:
13353   case X86::BI__builtin_ia32_pshuflw512: {
13354     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13355     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13356     unsigned NumElts = Ty->getNumElements();
13357 
13358     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13359     Imm = (Imm & 0xff) * 0x01010101;
13360 
13361     int Indices[32];
13362     for (unsigned l = 0; l != NumElts; l += 8) {
13363       for (unsigned i = 0; i != 4; ++i) {
13364         Indices[l + i] = l + (Imm & 3);
13365         Imm >>= 2;
13366       }
13367       for (unsigned i = 4; i != 8; ++i)
13368         Indices[l + i] = l + i;
13369     }
13370 
13371     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13372                                        "pshuflw");
13373   }
13374   case X86::BI__builtin_ia32_pshufhw:
13375   case X86::BI__builtin_ia32_pshufhw256:
13376   case X86::BI__builtin_ia32_pshufhw512: {
13377     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13378     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13379     unsigned NumElts = Ty->getNumElements();
13380 
13381     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13382     Imm = (Imm & 0xff) * 0x01010101;
13383 
13384     int Indices[32];
13385     for (unsigned l = 0; l != NumElts; l += 8) {
13386       for (unsigned i = 0; i != 4; ++i)
13387         Indices[l + i] = l + i;
13388       for (unsigned i = 4; i != 8; ++i) {
13389         Indices[l + i] = l + 4 + (Imm & 3);
13390         Imm >>= 2;
13391       }
13392     }
13393 
13394     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13395                                        "pshufhw");
13396   }
13397   case X86::BI__builtin_ia32_pshufd:
13398   case X86::BI__builtin_ia32_pshufd256:
13399   case X86::BI__builtin_ia32_pshufd512:
13400   case X86::BI__builtin_ia32_vpermilpd:
13401   case X86::BI__builtin_ia32_vpermilps:
13402   case X86::BI__builtin_ia32_vpermilpd256:
13403   case X86::BI__builtin_ia32_vpermilps256:
13404   case X86::BI__builtin_ia32_vpermilpd512:
13405   case X86::BI__builtin_ia32_vpermilps512: {
13406     uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13407     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13408     unsigned NumElts = Ty->getNumElements();
13409     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13410     unsigned NumLaneElts = NumElts / NumLanes;
13411 
13412     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13413     Imm = (Imm & 0xff) * 0x01010101;
13414 
13415     int Indices[16];
13416     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13417       for (unsigned i = 0; i != NumLaneElts; ++i) {
13418         Indices[i + l] = (Imm % NumLaneElts) + l;
13419         Imm /= NumLaneElts;
13420       }
13421     }
13422 
13423     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13424                                        "permil");
13425   }
13426   case X86::BI__builtin_ia32_shufpd:
13427   case X86::BI__builtin_ia32_shufpd256:
13428   case X86::BI__builtin_ia32_shufpd512:
13429   case X86::BI__builtin_ia32_shufps:
13430   case X86::BI__builtin_ia32_shufps256:
13431   case X86::BI__builtin_ia32_shufps512: {
13432     uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13433     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13434     unsigned NumElts = Ty->getNumElements();
13435     unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
13436     unsigned NumLaneElts = NumElts / NumLanes;
13437 
13438     // Splat the 8-bits of immediate 4 times to help the loop wrap around.
13439     Imm = (Imm & 0xff) * 0x01010101;
13440 
13441     int Indices[16];
13442     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13443       for (unsigned i = 0; i != NumLaneElts; ++i) {
13444         unsigned Index = Imm % NumLaneElts;
13445         Imm /= NumLaneElts;
13446         if (i >= (NumLaneElts / 2))
13447           Index += NumElts;
13448         Indices[l + i] = l + Index;
13449       }
13450     }
13451 
13452     return Builder.CreateShuffleVector(Ops[0], Ops[1],
13453                                        makeArrayRef(Indices, NumElts),
13454                                        "shufp");
13455   }
13456   case X86::BI__builtin_ia32_permdi256:
13457   case X86::BI__builtin_ia32_permdf256:
13458   case X86::BI__builtin_ia32_permdi512:
13459   case X86::BI__builtin_ia32_permdf512: {
13460     unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
13461     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13462     unsigned NumElts = Ty->getNumElements();
13463 
13464     // These intrinsics operate on 256-bit lanes of four 64-bit elements.
13465     int Indices[8];
13466     for (unsigned l = 0; l != NumElts; l += 4)
13467       for (unsigned i = 0; i != 4; ++i)
13468         Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
13469 
13470     return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts),
13471                                        "perm");
13472   }
13473   case X86::BI__builtin_ia32_palignr128:
13474   case X86::BI__builtin_ia32_palignr256:
13475   case X86::BI__builtin_ia32_palignr512: {
13476     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13477 
13478     unsigned NumElts =
13479         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13480     assert(NumElts % 16 == 0);
13481 
13482     // If palignr is shifting the pair of vectors more than the size of two
13483     // lanes, emit zero.
13484     if (ShiftVal >= 32)
13485       return llvm::Constant::getNullValue(ConvertType(E->getType()));
13486 
13487     // If palignr is shifting the pair of input vectors more than one lane,
13488     // but less than two lanes, convert to shifting in zeroes.
13489     if (ShiftVal > 16) {
13490       ShiftVal -= 16;
13491       Ops[1] = Ops[0];
13492       Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
13493     }
13494 
13495     int Indices[64];
13496     // 256-bit palignr operates on 128-bit lanes so we need to handle that
13497     for (unsigned l = 0; l != NumElts; l += 16) {
13498       for (unsigned i = 0; i != 16; ++i) {
13499         unsigned Idx = ShiftVal + i;
13500         if (Idx >= 16)
13501           Idx += NumElts - 16; // End of lane, switch operand.
13502         Indices[l + i] = Idx + l;
13503       }
13504     }
13505 
13506     return Builder.CreateShuffleVector(Ops[1], Ops[0],
13507                                        makeArrayRef(Indices, NumElts),
13508                                        "palignr");
13509   }
13510   case X86::BI__builtin_ia32_alignd128:
13511   case X86::BI__builtin_ia32_alignd256:
13512   case X86::BI__builtin_ia32_alignd512:
13513   case X86::BI__builtin_ia32_alignq128:
13514   case X86::BI__builtin_ia32_alignq256:
13515   case X86::BI__builtin_ia32_alignq512: {
13516     unsigned NumElts =
13517         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13518     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
13519 
13520     // Mask the shift amount to width of a vector.
13521     ShiftVal &= NumElts - 1;
13522 
13523     int Indices[16];
13524     for (unsigned i = 0; i != NumElts; ++i)
13525       Indices[i] = i + ShiftVal;
13526 
13527     return Builder.CreateShuffleVector(Ops[1], Ops[0],
13528                                        makeArrayRef(Indices, NumElts),
13529                                        "valign");
13530   }
13531   case X86::BI__builtin_ia32_shuf_f32x4_256:
13532   case X86::BI__builtin_ia32_shuf_f64x2_256:
13533   case X86::BI__builtin_ia32_shuf_i32x4_256:
13534   case X86::BI__builtin_ia32_shuf_i64x2_256:
13535   case X86::BI__builtin_ia32_shuf_f32x4:
13536   case X86::BI__builtin_ia32_shuf_f64x2:
13537   case X86::BI__builtin_ia32_shuf_i32x4:
13538   case X86::BI__builtin_ia32_shuf_i64x2: {
13539     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13540     auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType());
13541     unsigned NumElts = Ty->getNumElements();
13542     unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
13543     unsigned NumLaneElts = NumElts / NumLanes;
13544 
13545     int Indices[16];
13546     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
13547       unsigned Index = (Imm % NumLanes) * NumLaneElts;
13548       Imm /= NumLanes; // Discard the bits we just used.
13549       if (l >= (NumElts / 2))
13550         Index += NumElts; // Switch to other source.
13551       for (unsigned i = 0; i != NumLaneElts; ++i) {
13552         Indices[l + i] = Index + i;
13553       }
13554     }
13555 
13556     return Builder.CreateShuffleVector(Ops[0], Ops[1],
13557                                        makeArrayRef(Indices, NumElts),
13558                                        "shuf");
13559   }
13560 
13561   case X86::BI__builtin_ia32_vperm2f128_pd256:
13562   case X86::BI__builtin_ia32_vperm2f128_ps256:
13563   case X86::BI__builtin_ia32_vperm2f128_si256:
13564   case X86::BI__builtin_ia32_permti256: {
13565     unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
13566     unsigned NumElts =
13567         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
13568 
13569     // This takes a very simple approach since there are two lanes and a
13570     // shuffle can have 2 inputs. So we reserve the first input for the first
13571     // lane and the second input for the second lane. This may result in
13572     // duplicate sources, but this can be dealt with in the backend.
13573 
13574     Value *OutOps[2];
13575     int Indices[8];
13576     for (unsigned l = 0; l != 2; ++l) {
13577       // Determine the source for this lane.
13578       if (Imm & (1 << ((l * 4) + 3)))
13579         OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
13580       else if (Imm & (1 << ((l * 4) + 1)))
13581         OutOps[l] = Ops[1];
13582       else
13583         OutOps[l] = Ops[0];
13584 
13585       for (unsigned i = 0; i != NumElts/2; ++i) {
13586         // Start with ith element of the source for this lane.
13587         unsigned Idx = (l * NumElts) + i;
13588         // If bit 0 of the immediate half is set, switch to the high half of
13589         // the source.
13590         if (Imm & (1 << (l * 4)))
13591           Idx += NumElts/2;
13592         Indices[(l * (NumElts/2)) + i] = Idx;
13593       }
13594     }
13595 
13596     return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
13597                                        makeArrayRef(Indices, NumElts),
13598                                        "vperm");
13599   }
13600 
13601   case X86::BI__builtin_ia32_pslldqi128_byteshift:
13602   case X86::BI__builtin_ia32_pslldqi256_byteshift:
13603   case X86::BI__builtin_ia32_pslldqi512_byteshift: {
13604     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13605     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13606     // Builtin type is vXi64 so multiply by 8 to get bytes.
13607     unsigned NumElts = ResultType->getNumElements() * 8;
13608 
13609     // If pslldq is shifting the vector more than 15 bytes, emit zero.
13610     if (ShiftVal >= 16)
13611       return llvm::Constant::getNullValue(ResultType);
13612 
13613     int Indices[64];
13614     // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
13615     for (unsigned l = 0; l != NumElts; l += 16) {
13616       for (unsigned i = 0; i != 16; ++i) {
13617         unsigned Idx = NumElts + i - ShiftVal;
13618         if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
13619         Indices[l + i] = Idx + l;
13620       }
13621     }
13622 
13623     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13624     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13625     Value *Zero = llvm::Constant::getNullValue(VecTy);
13626     Value *SV = Builder.CreateShuffleVector(Zero, Cast,
13627                                             makeArrayRef(Indices, NumElts),
13628                                             "pslldq");
13629     return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
13630   }
13631   case X86::BI__builtin_ia32_psrldqi128_byteshift:
13632   case X86::BI__builtin_ia32_psrldqi256_byteshift:
13633   case X86::BI__builtin_ia32_psrldqi512_byteshift: {
13634     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13635     auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType());
13636     // Builtin type is vXi64 so multiply by 8 to get bytes.
13637     unsigned NumElts = ResultType->getNumElements() * 8;
13638 
13639     // If psrldq is shifting the vector more than 15 bytes, emit zero.
13640     if (ShiftVal >= 16)
13641       return llvm::Constant::getNullValue(ResultType);
13642 
13643     int Indices[64];
13644     // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
13645     for (unsigned l = 0; l != NumElts; l += 16) {
13646       for (unsigned i = 0; i != 16; ++i) {
13647         unsigned Idx = i + ShiftVal;
13648         if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
13649         Indices[l + i] = Idx + l;
13650       }
13651     }
13652 
13653     auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts);
13654     Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
13655     Value *Zero = llvm::Constant::getNullValue(VecTy);
13656     Value *SV = Builder.CreateShuffleVector(Cast, Zero,
13657                                             makeArrayRef(Indices, NumElts),
13658                                             "psrldq");
13659     return Builder.CreateBitCast(SV, ResultType, "cast");
13660   }
13661   case X86::BI__builtin_ia32_kshiftliqi:
13662   case X86::BI__builtin_ia32_kshiftlihi:
13663   case X86::BI__builtin_ia32_kshiftlisi:
13664   case X86::BI__builtin_ia32_kshiftlidi: {
13665     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13666     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13667 
13668     if (ShiftVal >= NumElts)
13669       return llvm::Constant::getNullValue(Ops[0]->getType());
13670 
13671     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13672 
13673     int Indices[64];
13674     for (unsigned i = 0; i != NumElts; ++i)
13675       Indices[i] = NumElts + i - ShiftVal;
13676 
13677     Value *Zero = llvm::Constant::getNullValue(In->getType());
13678     Value *SV = Builder.CreateShuffleVector(Zero, In,
13679                                             makeArrayRef(Indices, NumElts),
13680                                             "kshiftl");
13681     return Builder.CreateBitCast(SV, Ops[0]->getType());
13682   }
13683   case X86::BI__builtin_ia32_kshiftriqi:
13684   case X86::BI__builtin_ia32_kshiftrihi:
13685   case X86::BI__builtin_ia32_kshiftrisi:
13686   case X86::BI__builtin_ia32_kshiftridi: {
13687     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
13688     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13689 
13690     if (ShiftVal >= NumElts)
13691       return llvm::Constant::getNullValue(Ops[0]->getType());
13692 
13693     Value *In = getMaskVecValue(*this, Ops[0], NumElts);
13694 
13695     int Indices[64];
13696     for (unsigned i = 0; i != NumElts; ++i)
13697       Indices[i] = i + ShiftVal;
13698 
13699     Value *Zero = llvm::Constant::getNullValue(In->getType());
13700     Value *SV = Builder.CreateShuffleVector(In, Zero,
13701                                             makeArrayRef(Indices, NumElts),
13702                                             "kshiftr");
13703     return Builder.CreateBitCast(SV, Ops[0]->getType());
13704   }
13705   case X86::BI__builtin_ia32_movnti:
13706   case X86::BI__builtin_ia32_movnti64:
13707   case X86::BI__builtin_ia32_movntsd:
13708   case X86::BI__builtin_ia32_movntss: {
13709     llvm::MDNode *Node = llvm::MDNode::get(
13710         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
13711 
13712     Value *Ptr = Ops[0];
13713     Value *Src = Ops[1];
13714 
13715     // Extract the 0'th element of the source vector.
13716     if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
13717         BuiltinID == X86::BI__builtin_ia32_movntss)
13718       Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
13719 
13720     // Convert the type of the pointer to a pointer to the stored type.
13721     Value *BC = Builder.CreateBitCast(
13722         Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
13723 
13724     // Unaligned nontemporal store of the scalar value.
13725     StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
13726     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
13727     SI->setAlignment(llvm::Align(1));
13728     return SI;
13729   }
13730   // Rotate is a special case of funnel shift - 1st 2 args are the same.
13731   case X86::BI__builtin_ia32_vprotb:
13732   case X86::BI__builtin_ia32_vprotw:
13733   case X86::BI__builtin_ia32_vprotd:
13734   case X86::BI__builtin_ia32_vprotq:
13735   case X86::BI__builtin_ia32_vprotbi:
13736   case X86::BI__builtin_ia32_vprotwi:
13737   case X86::BI__builtin_ia32_vprotdi:
13738   case X86::BI__builtin_ia32_vprotqi:
13739   case X86::BI__builtin_ia32_prold128:
13740   case X86::BI__builtin_ia32_prold256:
13741   case X86::BI__builtin_ia32_prold512:
13742   case X86::BI__builtin_ia32_prolq128:
13743   case X86::BI__builtin_ia32_prolq256:
13744   case X86::BI__builtin_ia32_prolq512:
13745   case X86::BI__builtin_ia32_prolvd128:
13746   case X86::BI__builtin_ia32_prolvd256:
13747   case X86::BI__builtin_ia32_prolvd512:
13748   case X86::BI__builtin_ia32_prolvq128:
13749   case X86::BI__builtin_ia32_prolvq256:
13750   case X86::BI__builtin_ia32_prolvq512:
13751     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
13752   case X86::BI__builtin_ia32_prord128:
13753   case X86::BI__builtin_ia32_prord256:
13754   case X86::BI__builtin_ia32_prord512:
13755   case X86::BI__builtin_ia32_prorq128:
13756   case X86::BI__builtin_ia32_prorq256:
13757   case X86::BI__builtin_ia32_prorq512:
13758   case X86::BI__builtin_ia32_prorvd128:
13759   case X86::BI__builtin_ia32_prorvd256:
13760   case X86::BI__builtin_ia32_prorvd512:
13761   case X86::BI__builtin_ia32_prorvq128:
13762   case X86::BI__builtin_ia32_prorvq256:
13763   case X86::BI__builtin_ia32_prorvq512:
13764     return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
13765   case X86::BI__builtin_ia32_selectb_128:
13766   case X86::BI__builtin_ia32_selectb_256:
13767   case X86::BI__builtin_ia32_selectb_512:
13768   case X86::BI__builtin_ia32_selectw_128:
13769   case X86::BI__builtin_ia32_selectw_256:
13770   case X86::BI__builtin_ia32_selectw_512:
13771   case X86::BI__builtin_ia32_selectd_128:
13772   case X86::BI__builtin_ia32_selectd_256:
13773   case X86::BI__builtin_ia32_selectd_512:
13774   case X86::BI__builtin_ia32_selectq_128:
13775   case X86::BI__builtin_ia32_selectq_256:
13776   case X86::BI__builtin_ia32_selectq_512:
13777   case X86::BI__builtin_ia32_selectph_128:
13778   case X86::BI__builtin_ia32_selectph_256:
13779   case X86::BI__builtin_ia32_selectph_512:
13780   case X86::BI__builtin_ia32_selectps_128:
13781   case X86::BI__builtin_ia32_selectps_256:
13782   case X86::BI__builtin_ia32_selectps_512:
13783   case X86::BI__builtin_ia32_selectpd_128:
13784   case X86::BI__builtin_ia32_selectpd_256:
13785   case X86::BI__builtin_ia32_selectpd_512:
13786     return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
13787   case X86::BI__builtin_ia32_selectsh_128:
13788   case X86::BI__builtin_ia32_selectss_128:
13789   case X86::BI__builtin_ia32_selectsd_128: {
13790     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
13791     Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
13792     A = EmitX86ScalarSelect(*this, Ops[0], A, B);
13793     return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
13794   }
13795   case X86::BI__builtin_ia32_cmpb128_mask:
13796   case X86::BI__builtin_ia32_cmpb256_mask:
13797   case X86::BI__builtin_ia32_cmpb512_mask:
13798   case X86::BI__builtin_ia32_cmpw128_mask:
13799   case X86::BI__builtin_ia32_cmpw256_mask:
13800   case X86::BI__builtin_ia32_cmpw512_mask:
13801   case X86::BI__builtin_ia32_cmpd128_mask:
13802   case X86::BI__builtin_ia32_cmpd256_mask:
13803   case X86::BI__builtin_ia32_cmpd512_mask:
13804   case X86::BI__builtin_ia32_cmpq128_mask:
13805   case X86::BI__builtin_ia32_cmpq256_mask:
13806   case X86::BI__builtin_ia32_cmpq512_mask: {
13807     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13808     return EmitX86MaskedCompare(*this, CC, true, Ops);
13809   }
13810   case X86::BI__builtin_ia32_ucmpb128_mask:
13811   case X86::BI__builtin_ia32_ucmpb256_mask:
13812   case X86::BI__builtin_ia32_ucmpb512_mask:
13813   case X86::BI__builtin_ia32_ucmpw128_mask:
13814   case X86::BI__builtin_ia32_ucmpw256_mask:
13815   case X86::BI__builtin_ia32_ucmpw512_mask:
13816   case X86::BI__builtin_ia32_ucmpd128_mask:
13817   case X86::BI__builtin_ia32_ucmpd256_mask:
13818   case X86::BI__builtin_ia32_ucmpd512_mask:
13819   case X86::BI__builtin_ia32_ucmpq128_mask:
13820   case X86::BI__builtin_ia32_ucmpq256_mask:
13821   case X86::BI__builtin_ia32_ucmpq512_mask: {
13822     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
13823     return EmitX86MaskedCompare(*this, CC, false, Ops);
13824   }
13825   case X86::BI__builtin_ia32_vpcomb:
13826   case X86::BI__builtin_ia32_vpcomw:
13827   case X86::BI__builtin_ia32_vpcomd:
13828   case X86::BI__builtin_ia32_vpcomq:
13829     return EmitX86vpcom(*this, Ops, true);
13830   case X86::BI__builtin_ia32_vpcomub:
13831   case X86::BI__builtin_ia32_vpcomuw:
13832   case X86::BI__builtin_ia32_vpcomud:
13833   case X86::BI__builtin_ia32_vpcomuq:
13834     return EmitX86vpcom(*this, Ops, false);
13835 
13836   case X86::BI__builtin_ia32_kortestcqi:
13837   case X86::BI__builtin_ia32_kortestchi:
13838   case X86::BI__builtin_ia32_kortestcsi:
13839   case X86::BI__builtin_ia32_kortestcdi: {
13840     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13841     Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
13842     Value *Cmp = Builder.CreateICmpEQ(Or, C);
13843     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13844   }
13845   case X86::BI__builtin_ia32_kortestzqi:
13846   case X86::BI__builtin_ia32_kortestzhi:
13847   case X86::BI__builtin_ia32_kortestzsi:
13848   case X86::BI__builtin_ia32_kortestzdi: {
13849     Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
13850     Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
13851     Value *Cmp = Builder.CreateICmpEQ(Or, C);
13852     return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
13853   }
13854 
13855   case X86::BI__builtin_ia32_ktestcqi:
13856   case X86::BI__builtin_ia32_ktestzqi:
13857   case X86::BI__builtin_ia32_ktestchi:
13858   case X86::BI__builtin_ia32_ktestzhi:
13859   case X86::BI__builtin_ia32_ktestcsi:
13860   case X86::BI__builtin_ia32_ktestzsi:
13861   case X86::BI__builtin_ia32_ktestcdi:
13862   case X86::BI__builtin_ia32_ktestzdi: {
13863     Intrinsic::ID IID;
13864     switch (BuiltinID) {
13865     default: llvm_unreachable("Unsupported intrinsic!");
13866     case X86::BI__builtin_ia32_ktestcqi:
13867       IID = Intrinsic::x86_avx512_ktestc_b;
13868       break;
13869     case X86::BI__builtin_ia32_ktestzqi:
13870       IID = Intrinsic::x86_avx512_ktestz_b;
13871       break;
13872     case X86::BI__builtin_ia32_ktestchi:
13873       IID = Intrinsic::x86_avx512_ktestc_w;
13874       break;
13875     case X86::BI__builtin_ia32_ktestzhi:
13876       IID = Intrinsic::x86_avx512_ktestz_w;
13877       break;
13878     case X86::BI__builtin_ia32_ktestcsi:
13879       IID = Intrinsic::x86_avx512_ktestc_d;
13880       break;
13881     case X86::BI__builtin_ia32_ktestzsi:
13882       IID = Intrinsic::x86_avx512_ktestz_d;
13883       break;
13884     case X86::BI__builtin_ia32_ktestcdi:
13885       IID = Intrinsic::x86_avx512_ktestc_q;
13886       break;
13887     case X86::BI__builtin_ia32_ktestzdi:
13888       IID = Intrinsic::x86_avx512_ktestz_q;
13889       break;
13890     }
13891 
13892     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13893     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13894     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13895     Function *Intr = CGM.getIntrinsic(IID);
13896     return Builder.CreateCall(Intr, {LHS, RHS});
13897   }
13898 
13899   case X86::BI__builtin_ia32_kaddqi:
13900   case X86::BI__builtin_ia32_kaddhi:
13901   case X86::BI__builtin_ia32_kaddsi:
13902   case X86::BI__builtin_ia32_kadddi: {
13903     Intrinsic::ID IID;
13904     switch (BuiltinID) {
13905     default: llvm_unreachable("Unsupported intrinsic!");
13906     case X86::BI__builtin_ia32_kaddqi:
13907       IID = Intrinsic::x86_avx512_kadd_b;
13908       break;
13909     case X86::BI__builtin_ia32_kaddhi:
13910       IID = Intrinsic::x86_avx512_kadd_w;
13911       break;
13912     case X86::BI__builtin_ia32_kaddsi:
13913       IID = Intrinsic::x86_avx512_kadd_d;
13914       break;
13915     case X86::BI__builtin_ia32_kadddi:
13916       IID = Intrinsic::x86_avx512_kadd_q;
13917       break;
13918     }
13919 
13920     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13921     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13922     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13923     Function *Intr = CGM.getIntrinsic(IID);
13924     Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
13925     return Builder.CreateBitCast(Res, Ops[0]->getType());
13926   }
13927   case X86::BI__builtin_ia32_kandqi:
13928   case X86::BI__builtin_ia32_kandhi:
13929   case X86::BI__builtin_ia32_kandsi:
13930   case X86::BI__builtin_ia32_kanddi:
13931     return EmitX86MaskLogic(*this, Instruction::And, Ops);
13932   case X86::BI__builtin_ia32_kandnqi:
13933   case X86::BI__builtin_ia32_kandnhi:
13934   case X86::BI__builtin_ia32_kandnsi:
13935   case X86::BI__builtin_ia32_kandndi:
13936     return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
13937   case X86::BI__builtin_ia32_korqi:
13938   case X86::BI__builtin_ia32_korhi:
13939   case X86::BI__builtin_ia32_korsi:
13940   case X86::BI__builtin_ia32_kordi:
13941     return EmitX86MaskLogic(*this, Instruction::Or, Ops);
13942   case X86::BI__builtin_ia32_kxnorqi:
13943   case X86::BI__builtin_ia32_kxnorhi:
13944   case X86::BI__builtin_ia32_kxnorsi:
13945   case X86::BI__builtin_ia32_kxnordi:
13946     return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
13947   case X86::BI__builtin_ia32_kxorqi:
13948   case X86::BI__builtin_ia32_kxorhi:
13949   case X86::BI__builtin_ia32_kxorsi:
13950   case X86::BI__builtin_ia32_kxordi:
13951     return EmitX86MaskLogic(*this, Instruction::Xor,  Ops);
13952   case X86::BI__builtin_ia32_knotqi:
13953   case X86::BI__builtin_ia32_knothi:
13954   case X86::BI__builtin_ia32_knotsi:
13955   case X86::BI__builtin_ia32_knotdi: {
13956     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13957     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13958     return Builder.CreateBitCast(Builder.CreateNot(Res),
13959                                  Ops[0]->getType());
13960   }
13961   case X86::BI__builtin_ia32_kmovb:
13962   case X86::BI__builtin_ia32_kmovw:
13963   case X86::BI__builtin_ia32_kmovd:
13964   case X86::BI__builtin_ia32_kmovq: {
13965     // Bitcast to vXi1 type and then back to integer. This gets the mask
13966     // register type into the IR, but might be optimized out depending on
13967     // what's around it.
13968     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13969     Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
13970     return Builder.CreateBitCast(Res, Ops[0]->getType());
13971   }
13972 
13973   case X86::BI__builtin_ia32_kunpckdi:
13974   case X86::BI__builtin_ia32_kunpcksi:
13975   case X86::BI__builtin_ia32_kunpckhi: {
13976     unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
13977     Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
13978     Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
13979     int Indices[64];
13980     for (unsigned i = 0; i != NumElts; ++i)
13981       Indices[i] = i;
13982 
13983     // First extract half of each vector. This gives better codegen than
13984     // doing it in a single shuffle.
13985     LHS = Builder.CreateShuffleVector(LHS, LHS,
13986                                       makeArrayRef(Indices, NumElts / 2));
13987     RHS = Builder.CreateShuffleVector(RHS, RHS,
13988                                       makeArrayRef(Indices, NumElts / 2));
13989     // Concat the vectors.
13990     // NOTE: Operands are swapped to match the intrinsic definition.
13991     Value *Res = Builder.CreateShuffleVector(RHS, LHS,
13992                                              makeArrayRef(Indices, NumElts));
13993     return Builder.CreateBitCast(Res, Ops[0]->getType());
13994   }
13995 
13996   case X86::BI__builtin_ia32_vplzcntd_128:
13997   case X86::BI__builtin_ia32_vplzcntd_256:
13998   case X86::BI__builtin_ia32_vplzcntd_512:
13999   case X86::BI__builtin_ia32_vplzcntq_128:
14000   case X86::BI__builtin_ia32_vplzcntq_256:
14001   case X86::BI__builtin_ia32_vplzcntq_512: {
14002     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
14003     return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
14004   }
14005   case X86::BI__builtin_ia32_sqrtss:
14006   case X86::BI__builtin_ia32_sqrtsd: {
14007     Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
14008     Function *F;
14009     if (Builder.getIsFPConstrained()) {
14010       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14011       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14012                            A->getType());
14013       A = Builder.CreateConstrainedFPCall(F, {A});
14014     } else {
14015       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
14016       A = Builder.CreateCall(F, {A});
14017     }
14018     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
14019   }
14020   case X86::BI__builtin_ia32_sqrtsh_round_mask:
14021   case X86::BI__builtin_ia32_sqrtsd_round_mask:
14022   case X86::BI__builtin_ia32_sqrtss_round_mask: {
14023     unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
14024     // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
14025     // otherwise keep the intrinsic.
14026     if (CC != 4) {
14027       Intrinsic::ID IID;
14028 
14029       switch (BuiltinID) {
14030       default:
14031         llvm_unreachable("Unsupported intrinsic!");
14032       case X86::BI__builtin_ia32_sqrtsh_round_mask:
14033         IID = Intrinsic::x86_avx512fp16_mask_sqrt_sh;
14034         break;
14035       case X86::BI__builtin_ia32_sqrtsd_round_mask:
14036         IID = Intrinsic::x86_avx512_mask_sqrt_sd;
14037         break;
14038       case X86::BI__builtin_ia32_sqrtss_round_mask:
14039         IID = Intrinsic::x86_avx512_mask_sqrt_ss;
14040         break;
14041       }
14042       return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14043     }
14044     Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
14045     Function *F;
14046     if (Builder.getIsFPConstrained()) {
14047       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14048       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14049                            A->getType());
14050       A = Builder.CreateConstrainedFPCall(F, A);
14051     } else {
14052       F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
14053       A = Builder.CreateCall(F, A);
14054     }
14055     Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
14056     A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
14057     return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
14058   }
14059   case X86::BI__builtin_ia32_sqrtpd256:
14060   case X86::BI__builtin_ia32_sqrtpd:
14061   case X86::BI__builtin_ia32_sqrtps256:
14062   case X86::BI__builtin_ia32_sqrtps:
14063   case X86::BI__builtin_ia32_sqrtph256:
14064   case X86::BI__builtin_ia32_sqrtph:
14065   case X86::BI__builtin_ia32_sqrtph512:
14066   case X86::BI__builtin_ia32_sqrtps512:
14067   case X86::BI__builtin_ia32_sqrtpd512: {
14068     if (Ops.size() == 2) {
14069       unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
14070       // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
14071       // otherwise keep the intrinsic.
14072       if (CC != 4) {
14073         Intrinsic::ID IID;
14074 
14075         switch (BuiltinID) {
14076         default:
14077           llvm_unreachable("Unsupported intrinsic!");
14078         case X86::BI__builtin_ia32_sqrtph512:
14079           IID = Intrinsic::x86_avx512fp16_sqrt_ph_512;
14080           break;
14081         case X86::BI__builtin_ia32_sqrtps512:
14082           IID = Intrinsic::x86_avx512_sqrt_ps_512;
14083           break;
14084         case X86::BI__builtin_ia32_sqrtpd512:
14085           IID = Intrinsic::x86_avx512_sqrt_pd_512;
14086           break;
14087         }
14088         return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14089       }
14090     }
14091     if (Builder.getIsFPConstrained()) {
14092       CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14093       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt,
14094                                      Ops[0]->getType());
14095       return Builder.CreateConstrainedFPCall(F, Ops[0]);
14096     } else {
14097       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
14098       return Builder.CreateCall(F, Ops[0]);
14099     }
14100   }
14101   case X86::BI__builtin_ia32_pabsb128:
14102   case X86::BI__builtin_ia32_pabsw128:
14103   case X86::BI__builtin_ia32_pabsd128:
14104   case X86::BI__builtin_ia32_pabsb256:
14105   case X86::BI__builtin_ia32_pabsw256:
14106   case X86::BI__builtin_ia32_pabsd256:
14107   case X86::BI__builtin_ia32_pabsq128:
14108   case X86::BI__builtin_ia32_pabsq256:
14109   case X86::BI__builtin_ia32_pabsb512:
14110   case X86::BI__builtin_ia32_pabsw512:
14111   case X86::BI__builtin_ia32_pabsd512:
14112   case X86::BI__builtin_ia32_pabsq512: {
14113     Function *F = CGM.getIntrinsic(Intrinsic::abs, Ops[0]->getType());
14114     return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
14115   }
14116   case X86::BI__builtin_ia32_pmaxsb128:
14117   case X86::BI__builtin_ia32_pmaxsw128:
14118   case X86::BI__builtin_ia32_pmaxsd128:
14119   case X86::BI__builtin_ia32_pmaxsq128:
14120   case X86::BI__builtin_ia32_pmaxsb256:
14121   case X86::BI__builtin_ia32_pmaxsw256:
14122   case X86::BI__builtin_ia32_pmaxsd256:
14123   case X86::BI__builtin_ia32_pmaxsq256:
14124   case X86::BI__builtin_ia32_pmaxsb512:
14125   case X86::BI__builtin_ia32_pmaxsw512:
14126   case X86::BI__builtin_ia32_pmaxsd512:
14127   case X86::BI__builtin_ia32_pmaxsq512:
14128     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smax);
14129   case X86::BI__builtin_ia32_pmaxub128:
14130   case X86::BI__builtin_ia32_pmaxuw128:
14131   case X86::BI__builtin_ia32_pmaxud128:
14132   case X86::BI__builtin_ia32_pmaxuq128:
14133   case X86::BI__builtin_ia32_pmaxub256:
14134   case X86::BI__builtin_ia32_pmaxuw256:
14135   case X86::BI__builtin_ia32_pmaxud256:
14136   case X86::BI__builtin_ia32_pmaxuq256:
14137   case X86::BI__builtin_ia32_pmaxub512:
14138   case X86::BI__builtin_ia32_pmaxuw512:
14139   case X86::BI__builtin_ia32_pmaxud512:
14140   case X86::BI__builtin_ia32_pmaxuq512:
14141     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umax);
14142   case X86::BI__builtin_ia32_pminsb128:
14143   case X86::BI__builtin_ia32_pminsw128:
14144   case X86::BI__builtin_ia32_pminsd128:
14145   case X86::BI__builtin_ia32_pminsq128:
14146   case X86::BI__builtin_ia32_pminsb256:
14147   case X86::BI__builtin_ia32_pminsw256:
14148   case X86::BI__builtin_ia32_pminsd256:
14149   case X86::BI__builtin_ia32_pminsq256:
14150   case X86::BI__builtin_ia32_pminsb512:
14151   case X86::BI__builtin_ia32_pminsw512:
14152   case X86::BI__builtin_ia32_pminsd512:
14153   case X86::BI__builtin_ia32_pminsq512:
14154     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smin);
14155   case X86::BI__builtin_ia32_pminub128:
14156   case X86::BI__builtin_ia32_pminuw128:
14157   case X86::BI__builtin_ia32_pminud128:
14158   case X86::BI__builtin_ia32_pminuq128:
14159   case X86::BI__builtin_ia32_pminub256:
14160   case X86::BI__builtin_ia32_pminuw256:
14161   case X86::BI__builtin_ia32_pminud256:
14162   case X86::BI__builtin_ia32_pminuq256:
14163   case X86::BI__builtin_ia32_pminub512:
14164   case X86::BI__builtin_ia32_pminuw512:
14165   case X86::BI__builtin_ia32_pminud512:
14166   case X86::BI__builtin_ia32_pminuq512:
14167     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umin);
14168 
14169   case X86::BI__builtin_ia32_pmuludq128:
14170   case X86::BI__builtin_ia32_pmuludq256:
14171   case X86::BI__builtin_ia32_pmuludq512:
14172     return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
14173 
14174   case X86::BI__builtin_ia32_pmuldq128:
14175   case X86::BI__builtin_ia32_pmuldq256:
14176   case X86::BI__builtin_ia32_pmuldq512:
14177     return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
14178 
14179   case X86::BI__builtin_ia32_pternlogd512_mask:
14180   case X86::BI__builtin_ia32_pternlogq512_mask:
14181   case X86::BI__builtin_ia32_pternlogd128_mask:
14182   case X86::BI__builtin_ia32_pternlogd256_mask:
14183   case X86::BI__builtin_ia32_pternlogq128_mask:
14184   case X86::BI__builtin_ia32_pternlogq256_mask:
14185     return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
14186 
14187   case X86::BI__builtin_ia32_pternlogd512_maskz:
14188   case X86::BI__builtin_ia32_pternlogq512_maskz:
14189   case X86::BI__builtin_ia32_pternlogd128_maskz:
14190   case X86::BI__builtin_ia32_pternlogd256_maskz:
14191   case X86::BI__builtin_ia32_pternlogq128_maskz:
14192   case X86::BI__builtin_ia32_pternlogq256_maskz:
14193     return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
14194 
14195   case X86::BI__builtin_ia32_vpshldd128:
14196   case X86::BI__builtin_ia32_vpshldd256:
14197   case X86::BI__builtin_ia32_vpshldd512:
14198   case X86::BI__builtin_ia32_vpshldq128:
14199   case X86::BI__builtin_ia32_vpshldq256:
14200   case X86::BI__builtin_ia32_vpshldq512:
14201   case X86::BI__builtin_ia32_vpshldw128:
14202   case X86::BI__builtin_ia32_vpshldw256:
14203   case X86::BI__builtin_ia32_vpshldw512:
14204     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14205 
14206   case X86::BI__builtin_ia32_vpshrdd128:
14207   case X86::BI__builtin_ia32_vpshrdd256:
14208   case X86::BI__builtin_ia32_vpshrdd512:
14209   case X86::BI__builtin_ia32_vpshrdq128:
14210   case X86::BI__builtin_ia32_vpshrdq256:
14211   case X86::BI__builtin_ia32_vpshrdq512:
14212   case X86::BI__builtin_ia32_vpshrdw128:
14213   case X86::BI__builtin_ia32_vpshrdw256:
14214   case X86::BI__builtin_ia32_vpshrdw512:
14215     // Ops 0 and 1 are swapped.
14216     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14217 
14218   case X86::BI__builtin_ia32_vpshldvd128:
14219   case X86::BI__builtin_ia32_vpshldvd256:
14220   case X86::BI__builtin_ia32_vpshldvd512:
14221   case X86::BI__builtin_ia32_vpshldvq128:
14222   case X86::BI__builtin_ia32_vpshldvq256:
14223   case X86::BI__builtin_ia32_vpshldvq512:
14224   case X86::BI__builtin_ia32_vpshldvw128:
14225   case X86::BI__builtin_ia32_vpshldvw256:
14226   case X86::BI__builtin_ia32_vpshldvw512:
14227     return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
14228 
14229   case X86::BI__builtin_ia32_vpshrdvd128:
14230   case X86::BI__builtin_ia32_vpshrdvd256:
14231   case X86::BI__builtin_ia32_vpshrdvd512:
14232   case X86::BI__builtin_ia32_vpshrdvq128:
14233   case X86::BI__builtin_ia32_vpshrdvq256:
14234   case X86::BI__builtin_ia32_vpshrdvq512:
14235   case X86::BI__builtin_ia32_vpshrdvw128:
14236   case X86::BI__builtin_ia32_vpshrdvw256:
14237   case X86::BI__builtin_ia32_vpshrdvw512:
14238     // Ops 0 and 1 are swapped.
14239     return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
14240 
14241   // Reductions
14242   case X86::BI__builtin_ia32_reduce_add_d512:
14243   case X86::BI__builtin_ia32_reduce_add_q512: {
14244     Function *F =
14245         CGM.getIntrinsic(Intrinsic::vector_reduce_add, Ops[0]->getType());
14246     return Builder.CreateCall(F, {Ops[0]});
14247   }
14248   case X86::BI__builtin_ia32_reduce_and_d512:
14249   case X86::BI__builtin_ia32_reduce_and_q512: {
14250     Function *F =
14251         CGM.getIntrinsic(Intrinsic::vector_reduce_and, Ops[0]->getType());
14252     return Builder.CreateCall(F, {Ops[0]});
14253   }
14254   case X86::BI__builtin_ia32_reduce_fadd_pd512:
14255   case X86::BI__builtin_ia32_reduce_fadd_ps512:
14256   case X86::BI__builtin_ia32_reduce_fadd_ph512:
14257   case X86::BI__builtin_ia32_reduce_fadd_ph256:
14258   case X86::BI__builtin_ia32_reduce_fadd_ph128: {
14259     Function *F =
14260         CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType());
14261     Builder.getFastMathFlags().setAllowReassoc();
14262     return Builder.CreateCall(F, {Ops[0], Ops[1]});
14263   }
14264   case X86::BI__builtin_ia32_reduce_fmul_pd512:
14265   case X86::BI__builtin_ia32_reduce_fmul_ps512:
14266   case X86::BI__builtin_ia32_reduce_fmul_ph512:
14267   case X86::BI__builtin_ia32_reduce_fmul_ph256:
14268   case X86::BI__builtin_ia32_reduce_fmul_ph128: {
14269     Function *F =
14270         CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType());
14271     Builder.getFastMathFlags().setAllowReassoc();
14272     return Builder.CreateCall(F, {Ops[0], Ops[1]});
14273   }
14274   case X86::BI__builtin_ia32_reduce_fmax_pd512:
14275   case X86::BI__builtin_ia32_reduce_fmax_ps512:
14276   case X86::BI__builtin_ia32_reduce_fmax_ph512:
14277   case X86::BI__builtin_ia32_reduce_fmax_ph256:
14278   case X86::BI__builtin_ia32_reduce_fmax_ph128: {
14279     Function *F =
14280         CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType());
14281     Builder.getFastMathFlags().setNoNaNs();
14282     return Builder.CreateCall(F, {Ops[0]});
14283   }
14284   case X86::BI__builtin_ia32_reduce_fmin_pd512:
14285   case X86::BI__builtin_ia32_reduce_fmin_ps512:
14286   case X86::BI__builtin_ia32_reduce_fmin_ph512:
14287   case X86::BI__builtin_ia32_reduce_fmin_ph256:
14288   case X86::BI__builtin_ia32_reduce_fmin_ph128: {
14289     Function *F =
14290         CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType());
14291     Builder.getFastMathFlags().setNoNaNs();
14292     return Builder.CreateCall(F, {Ops[0]});
14293   }
14294   case X86::BI__builtin_ia32_reduce_mul_d512:
14295   case X86::BI__builtin_ia32_reduce_mul_q512: {
14296     Function *F =
14297         CGM.getIntrinsic(Intrinsic::vector_reduce_mul, Ops[0]->getType());
14298     return Builder.CreateCall(F, {Ops[0]});
14299   }
14300   case X86::BI__builtin_ia32_reduce_or_d512:
14301   case X86::BI__builtin_ia32_reduce_or_q512: {
14302     Function *F =
14303         CGM.getIntrinsic(Intrinsic::vector_reduce_or, Ops[0]->getType());
14304     return Builder.CreateCall(F, {Ops[0]});
14305   }
14306   case X86::BI__builtin_ia32_reduce_smax_d512:
14307   case X86::BI__builtin_ia32_reduce_smax_q512: {
14308     Function *F =
14309         CGM.getIntrinsic(Intrinsic::vector_reduce_smax, Ops[0]->getType());
14310     return Builder.CreateCall(F, {Ops[0]});
14311   }
14312   case X86::BI__builtin_ia32_reduce_smin_d512:
14313   case X86::BI__builtin_ia32_reduce_smin_q512: {
14314     Function *F =
14315         CGM.getIntrinsic(Intrinsic::vector_reduce_smin, Ops[0]->getType());
14316     return Builder.CreateCall(F, {Ops[0]});
14317   }
14318   case X86::BI__builtin_ia32_reduce_umax_d512:
14319   case X86::BI__builtin_ia32_reduce_umax_q512: {
14320     Function *F =
14321         CGM.getIntrinsic(Intrinsic::vector_reduce_umax, Ops[0]->getType());
14322     return Builder.CreateCall(F, {Ops[0]});
14323   }
14324   case X86::BI__builtin_ia32_reduce_umin_d512:
14325   case X86::BI__builtin_ia32_reduce_umin_q512: {
14326     Function *F =
14327         CGM.getIntrinsic(Intrinsic::vector_reduce_umin, Ops[0]->getType());
14328     return Builder.CreateCall(F, {Ops[0]});
14329   }
14330 
14331   // 3DNow!
14332   case X86::BI__builtin_ia32_pswapdsf:
14333   case X86::BI__builtin_ia32_pswapdsi: {
14334     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
14335     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
14336     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
14337     return Builder.CreateCall(F, Ops, "pswapd");
14338   }
14339   case X86::BI__builtin_ia32_rdrand16_step:
14340   case X86::BI__builtin_ia32_rdrand32_step:
14341   case X86::BI__builtin_ia32_rdrand64_step:
14342   case X86::BI__builtin_ia32_rdseed16_step:
14343   case X86::BI__builtin_ia32_rdseed32_step:
14344   case X86::BI__builtin_ia32_rdseed64_step: {
14345     Intrinsic::ID ID;
14346     switch (BuiltinID) {
14347     default: llvm_unreachable("Unsupported intrinsic!");
14348     case X86::BI__builtin_ia32_rdrand16_step:
14349       ID = Intrinsic::x86_rdrand_16;
14350       break;
14351     case X86::BI__builtin_ia32_rdrand32_step:
14352       ID = Intrinsic::x86_rdrand_32;
14353       break;
14354     case X86::BI__builtin_ia32_rdrand64_step:
14355       ID = Intrinsic::x86_rdrand_64;
14356       break;
14357     case X86::BI__builtin_ia32_rdseed16_step:
14358       ID = Intrinsic::x86_rdseed_16;
14359       break;
14360     case X86::BI__builtin_ia32_rdseed32_step:
14361       ID = Intrinsic::x86_rdseed_32;
14362       break;
14363     case X86::BI__builtin_ia32_rdseed64_step:
14364       ID = Intrinsic::x86_rdseed_64;
14365       break;
14366     }
14367 
14368     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
14369     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
14370                                       Ops[0]);
14371     return Builder.CreateExtractValue(Call, 1);
14372   }
14373   case X86::BI__builtin_ia32_addcarryx_u32:
14374   case X86::BI__builtin_ia32_addcarryx_u64:
14375   case X86::BI__builtin_ia32_subborrow_u32:
14376   case X86::BI__builtin_ia32_subborrow_u64: {
14377     Intrinsic::ID IID;
14378     switch (BuiltinID) {
14379     default: llvm_unreachable("Unsupported intrinsic!");
14380     case X86::BI__builtin_ia32_addcarryx_u32:
14381       IID = Intrinsic::x86_addcarry_32;
14382       break;
14383     case X86::BI__builtin_ia32_addcarryx_u64:
14384       IID = Intrinsic::x86_addcarry_64;
14385       break;
14386     case X86::BI__builtin_ia32_subborrow_u32:
14387       IID = Intrinsic::x86_subborrow_32;
14388       break;
14389     case X86::BI__builtin_ia32_subborrow_u64:
14390       IID = Intrinsic::x86_subborrow_64;
14391       break;
14392     }
14393 
14394     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
14395                                      { Ops[0], Ops[1], Ops[2] });
14396     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
14397                                       Ops[3]);
14398     return Builder.CreateExtractValue(Call, 0);
14399   }
14400 
14401   case X86::BI__builtin_ia32_fpclassps128_mask:
14402   case X86::BI__builtin_ia32_fpclassps256_mask:
14403   case X86::BI__builtin_ia32_fpclassps512_mask:
14404   case X86::BI__builtin_ia32_fpclassph128_mask:
14405   case X86::BI__builtin_ia32_fpclassph256_mask:
14406   case X86::BI__builtin_ia32_fpclassph512_mask:
14407   case X86::BI__builtin_ia32_fpclasspd128_mask:
14408   case X86::BI__builtin_ia32_fpclasspd256_mask:
14409   case X86::BI__builtin_ia32_fpclasspd512_mask: {
14410     unsigned NumElts =
14411         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14412     Value *MaskIn = Ops[2];
14413     Ops.erase(&Ops[2]);
14414 
14415     Intrinsic::ID ID;
14416     switch (BuiltinID) {
14417     default: llvm_unreachable("Unsupported intrinsic!");
14418     case X86::BI__builtin_ia32_fpclassph128_mask:
14419       ID = Intrinsic::x86_avx512fp16_fpclass_ph_128;
14420       break;
14421     case X86::BI__builtin_ia32_fpclassph256_mask:
14422       ID = Intrinsic::x86_avx512fp16_fpclass_ph_256;
14423       break;
14424     case X86::BI__builtin_ia32_fpclassph512_mask:
14425       ID = Intrinsic::x86_avx512fp16_fpclass_ph_512;
14426       break;
14427     case X86::BI__builtin_ia32_fpclassps128_mask:
14428       ID = Intrinsic::x86_avx512_fpclass_ps_128;
14429       break;
14430     case X86::BI__builtin_ia32_fpclassps256_mask:
14431       ID = Intrinsic::x86_avx512_fpclass_ps_256;
14432       break;
14433     case X86::BI__builtin_ia32_fpclassps512_mask:
14434       ID = Intrinsic::x86_avx512_fpclass_ps_512;
14435       break;
14436     case X86::BI__builtin_ia32_fpclasspd128_mask:
14437       ID = Intrinsic::x86_avx512_fpclass_pd_128;
14438       break;
14439     case X86::BI__builtin_ia32_fpclasspd256_mask:
14440       ID = Intrinsic::x86_avx512_fpclass_pd_256;
14441       break;
14442     case X86::BI__builtin_ia32_fpclasspd512_mask:
14443       ID = Intrinsic::x86_avx512_fpclass_pd_512;
14444       break;
14445     }
14446 
14447     Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14448     return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
14449   }
14450 
14451   case X86::BI__builtin_ia32_vp2intersect_q_512:
14452   case X86::BI__builtin_ia32_vp2intersect_q_256:
14453   case X86::BI__builtin_ia32_vp2intersect_q_128:
14454   case X86::BI__builtin_ia32_vp2intersect_d_512:
14455   case X86::BI__builtin_ia32_vp2intersect_d_256:
14456   case X86::BI__builtin_ia32_vp2intersect_d_128: {
14457     unsigned NumElts =
14458         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14459     Intrinsic::ID ID;
14460 
14461     switch (BuiltinID) {
14462     default: llvm_unreachable("Unsupported intrinsic!");
14463     case X86::BI__builtin_ia32_vp2intersect_q_512:
14464       ID = Intrinsic::x86_avx512_vp2intersect_q_512;
14465       break;
14466     case X86::BI__builtin_ia32_vp2intersect_q_256:
14467       ID = Intrinsic::x86_avx512_vp2intersect_q_256;
14468       break;
14469     case X86::BI__builtin_ia32_vp2intersect_q_128:
14470       ID = Intrinsic::x86_avx512_vp2intersect_q_128;
14471       break;
14472     case X86::BI__builtin_ia32_vp2intersect_d_512:
14473       ID = Intrinsic::x86_avx512_vp2intersect_d_512;
14474       break;
14475     case X86::BI__builtin_ia32_vp2intersect_d_256:
14476       ID = Intrinsic::x86_avx512_vp2intersect_d_256;
14477       break;
14478     case X86::BI__builtin_ia32_vp2intersect_d_128:
14479       ID = Intrinsic::x86_avx512_vp2intersect_d_128;
14480       break;
14481     }
14482 
14483     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
14484     Value *Result = Builder.CreateExtractValue(Call, 0);
14485     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14486     Builder.CreateDefaultAlignedStore(Result, Ops[2]);
14487 
14488     Result = Builder.CreateExtractValue(Call, 1);
14489     Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
14490     return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
14491   }
14492 
14493   case X86::BI__builtin_ia32_vpmultishiftqb128:
14494   case X86::BI__builtin_ia32_vpmultishiftqb256:
14495   case X86::BI__builtin_ia32_vpmultishiftqb512: {
14496     Intrinsic::ID ID;
14497     switch (BuiltinID) {
14498     default: llvm_unreachable("Unsupported intrinsic!");
14499     case X86::BI__builtin_ia32_vpmultishiftqb128:
14500       ID = Intrinsic::x86_avx512_pmultishift_qb_128;
14501       break;
14502     case X86::BI__builtin_ia32_vpmultishiftqb256:
14503       ID = Intrinsic::x86_avx512_pmultishift_qb_256;
14504       break;
14505     case X86::BI__builtin_ia32_vpmultishiftqb512:
14506       ID = Intrinsic::x86_avx512_pmultishift_qb_512;
14507       break;
14508     }
14509 
14510     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14511   }
14512 
14513   case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14514   case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14515   case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
14516     unsigned NumElts =
14517         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14518     Value *MaskIn = Ops[2];
14519     Ops.erase(&Ops[2]);
14520 
14521     Intrinsic::ID ID;
14522     switch (BuiltinID) {
14523     default: llvm_unreachable("Unsupported intrinsic!");
14524     case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
14525       ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
14526       break;
14527     case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
14528       ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
14529       break;
14530     case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
14531       ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
14532       break;
14533     }
14534 
14535     Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
14536     return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
14537   }
14538 
14539   // packed comparison intrinsics
14540   case X86::BI__builtin_ia32_cmpeqps:
14541   case X86::BI__builtin_ia32_cmpeqpd:
14542     return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false);
14543   case X86::BI__builtin_ia32_cmpltps:
14544   case X86::BI__builtin_ia32_cmpltpd:
14545     return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true);
14546   case X86::BI__builtin_ia32_cmpleps:
14547   case X86::BI__builtin_ia32_cmplepd:
14548     return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true);
14549   case X86::BI__builtin_ia32_cmpunordps:
14550   case X86::BI__builtin_ia32_cmpunordpd:
14551     return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false);
14552   case X86::BI__builtin_ia32_cmpneqps:
14553   case X86::BI__builtin_ia32_cmpneqpd:
14554     return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false);
14555   case X86::BI__builtin_ia32_cmpnltps:
14556   case X86::BI__builtin_ia32_cmpnltpd:
14557     return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true);
14558   case X86::BI__builtin_ia32_cmpnleps:
14559   case X86::BI__builtin_ia32_cmpnlepd:
14560     return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true);
14561   case X86::BI__builtin_ia32_cmpordps:
14562   case X86::BI__builtin_ia32_cmpordpd:
14563     return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false);
14564   case X86::BI__builtin_ia32_cmpph128_mask:
14565   case X86::BI__builtin_ia32_cmpph256_mask:
14566   case X86::BI__builtin_ia32_cmpph512_mask:
14567   case X86::BI__builtin_ia32_cmpps128_mask:
14568   case X86::BI__builtin_ia32_cmpps256_mask:
14569   case X86::BI__builtin_ia32_cmpps512_mask:
14570   case X86::BI__builtin_ia32_cmppd128_mask:
14571   case X86::BI__builtin_ia32_cmppd256_mask:
14572   case X86::BI__builtin_ia32_cmppd512_mask:
14573     IsMaskFCmp = true;
14574     LLVM_FALLTHROUGH;
14575   case X86::BI__builtin_ia32_cmpps:
14576   case X86::BI__builtin_ia32_cmpps256:
14577   case X86::BI__builtin_ia32_cmppd:
14578   case X86::BI__builtin_ia32_cmppd256: {
14579     // Lowering vector comparisons to fcmp instructions, while
14580     // ignoring signalling behaviour requested
14581     // ignoring rounding mode requested
14582     // This is only possible if fp-model is not strict and FENV_ACCESS is off.
14583 
14584     // The third argument is the comparison condition, and integer in the
14585     // range [0, 31]
14586     unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
14587 
14588     // Lowering to IR fcmp instruction.
14589     // Ignoring requested signaling behaviour,
14590     // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
14591     FCmpInst::Predicate Pred;
14592     bool IsSignaling;
14593     // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling
14594     // behavior is inverted. We'll handle that after the switch.
14595     switch (CC & 0xf) {
14596     case 0x00: Pred = FCmpInst::FCMP_OEQ;   IsSignaling = false; break;
14597     case 0x01: Pred = FCmpInst::FCMP_OLT;   IsSignaling = true;  break;
14598     case 0x02: Pred = FCmpInst::FCMP_OLE;   IsSignaling = true;  break;
14599     case 0x03: Pred = FCmpInst::FCMP_UNO;   IsSignaling = false; break;
14600     case 0x04: Pred = FCmpInst::FCMP_UNE;   IsSignaling = false; break;
14601     case 0x05: Pred = FCmpInst::FCMP_UGE;   IsSignaling = true;  break;
14602     case 0x06: Pred = FCmpInst::FCMP_UGT;   IsSignaling = true;  break;
14603     case 0x07: Pred = FCmpInst::FCMP_ORD;   IsSignaling = false; break;
14604     case 0x08: Pred = FCmpInst::FCMP_UEQ;   IsSignaling = false; break;
14605     case 0x09: Pred = FCmpInst::FCMP_ULT;   IsSignaling = true;  break;
14606     case 0x0a: Pred = FCmpInst::FCMP_ULE;   IsSignaling = true;  break;
14607     case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break;
14608     case 0x0c: Pred = FCmpInst::FCMP_ONE;   IsSignaling = false; break;
14609     case 0x0d: Pred = FCmpInst::FCMP_OGE;   IsSignaling = true;  break;
14610     case 0x0e: Pred = FCmpInst::FCMP_OGT;   IsSignaling = true;  break;
14611     case 0x0f: Pred = FCmpInst::FCMP_TRUE;  IsSignaling = false; break;
14612     default: llvm_unreachable("Unhandled CC");
14613     }
14614 
14615     // Invert the signalling behavior for 16-31.
14616     if (CC & 0x10)
14617       IsSignaling = !IsSignaling;
14618 
14619     // If the predicate is true or false and we're using constrained intrinsics,
14620     // we don't have a compare intrinsic we can use. Just use the legacy X86
14621     // specific intrinsic.
14622     // If the intrinsic is mask enabled and we're using constrained intrinsics,
14623     // use the legacy X86 specific intrinsic.
14624     if (Builder.getIsFPConstrained() &&
14625         (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE ||
14626          IsMaskFCmp)) {
14627 
14628       Intrinsic::ID IID;
14629       switch (BuiltinID) {
14630       default: llvm_unreachable("Unexpected builtin");
14631       case X86::BI__builtin_ia32_cmpps:
14632         IID = Intrinsic::x86_sse_cmp_ps;
14633         break;
14634       case X86::BI__builtin_ia32_cmpps256:
14635         IID = Intrinsic::x86_avx_cmp_ps_256;
14636         break;
14637       case X86::BI__builtin_ia32_cmppd:
14638         IID = Intrinsic::x86_sse2_cmp_pd;
14639         break;
14640       case X86::BI__builtin_ia32_cmppd256:
14641         IID = Intrinsic::x86_avx_cmp_pd_256;
14642         break;
14643       case X86::BI__builtin_ia32_cmpps512_mask:
14644         IID = Intrinsic::x86_avx512_mask_cmp_ps_512;
14645         break;
14646       case X86::BI__builtin_ia32_cmppd512_mask:
14647         IID = Intrinsic::x86_avx512_mask_cmp_pd_512;
14648         break;
14649       case X86::BI__builtin_ia32_cmpps128_mask:
14650         IID = Intrinsic::x86_avx512_mask_cmp_ps_128;
14651         break;
14652       case X86::BI__builtin_ia32_cmpps256_mask:
14653         IID = Intrinsic::x86_avx512_mask_cmp_ps_256;
14654         break;
14655       case X86::BI__builtin_ia32_cmppd128_mask:
14656         IID = Intrinsic::x86_avx512_mask_cmp_pd_128;
14657         break;
14658       case X86::BI__builtin_ia32_cmppd256_mask:
14659         IID = Intrinsic::x86_avx512_mask_cmp_pd_256;
14660         break;
14661       }
14662 
14663       Function *Intr = CGM.getIntrinsic(IID);
14664       if (IsMaskFCmp) {
14665         unsigned NumElts =
14666             cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14667         Ops[3] = getMaskVecValue(*this, Ops[3], NumElts);
14668         Value *Cmp = Builder.CreateCall(Intr, Ops);
14669         return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr);
14670       }
14671 
14672       return Builder.CreateCall(Intr, Ops);
14673     }
14674 
14675     // Builtins without the _mask suffix return a vector of integers
14676     // of the same width as the input vectors
14677     if (IsMaskFCmp) {
14678       // We ignore SAE if strict FP is disabled. We only keep precise
14679       // exception behavior under strict FP.
14680       // NOTE: If strict FP does ever go through here a CGFPOptionsRAII
14681       // object will be required.
14682       unsigned NumElts =
14683           cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements();
14684       Value *Cmp;
14685       if (IsSignaling)
14686         Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]);
14687       else
14688         Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
14689       return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
14690     }
14691 
14692     return getVectorFCmpIR(Pred, IsSignaling);
14693   }
14694 
14695   // SSE scalar comparison intrinsics
14696   case X86::BI__builtin_ia32_cmpeqss:
14697     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
14698   case X86::BI__builtin_ia32_cmpltss:
14699     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
14700   case X86::BI__builtin_ia32_cmpless:
14701     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
14702   case X86::BI__builtin_ia32_cmpunordss:
14703     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
14704   case X86::BI__builtin_ia32_cmpneqss:
14705     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
14706   case X86::BI__builtin_ia32_cmpnltss:
14707     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
14708   case X86::BI__builtin_ia32_cmpnless:
14709     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
14710   case X86::BI__builtin_ia32_cmpordss:
14711     return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
14712   case X86::BI__builtin_ia32_cmpeqsd:
14713     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
14714   case X86::BI__builtin_ia32_cmpltsd:
14715     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
14716   case X86::BI__builtin_ia32_cmplesd:
14717     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
14718   case X86::BI__builtin_ia32_cmpunordsd:
14719     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
14720   case X86::BI__builtin_ia32_cmpneqsd:
14721     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
14722   case X86::BI__builtin_ia32_cmpnltsd:
14723     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
14724   case X86::BI__builtin_ia32_cmpnlesd:
14725     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
14726   case X86::BI__builtin_ia32_cmpordsd:
14727     return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
14728 
14729   // f16c half2float intrinsics
14730   case X86::BI__builtin_ia32_vcvtph2ps:
14731   case X86::BI__builtin_ia32_vcvtph2ps256:
14732   case X86::BI__builtin_ia32_vcvtph2ps_mask:
14733   case X86::BI__builtin_ia32_vcvtph2ps256_mask:
14734   case X86::BI__builtin_ia32_vcvtph2ps512_mask: {
14735     CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E);
14736     return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType()));
14737   }
14738 
14739 // AVX512 bf16 intrinsics
14740   case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
14741     Ops[2] = getMaskVecValue(
14742         *this, Ops[2],
14743         cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements());
14744     Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
14745     return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
14746   }
14747   case X86::BI__builtin_ia32_cvtsbf162ss_32:
14748     return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
14749 
14750   case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14751   case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
14752     Intrinsic::ID IID;
14753     switch (BuiltinID) {
14754     default: llvm_unreachable("Unsupported intrinsic!");
14755     case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
14756       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
14757       break;
14758     case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
14759       IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
14760       break;
14761     }
14762     Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
14763     return EmitX86Select(*this, Ops[2], Res, Ops[1]);
14764   }
14765 
14766   case X86::BI__emul:
14767   case X86::BI__emulu: {
14768     llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
14769     bool isSigned = (BuiltinID == X86::BI__emul);
14770     Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
14771     Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
14772     return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
14773   }
14774   case X86::BI__mulh:
14775   case X86::BI__umulh:
14776   case X86::BI_mul128:
14777   case X86::BI_umul128: {
14778     llvm::Type *ResType = ConvertType(E->getType());
14779     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
14780 
14781     bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
14782     Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
14783     Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
14784 
14785     Value *MulResult, *HigherBits;
14786     if (IsSigned) {
14787       MulResult = Builder.CreateNSWMul(LHS, RHS);
14788       HigherBits = Builder.CreateAShr(MulResult, 64);
14789     } else {
14790       MulResult = Builder.CreateNUWMul(LHS, RHS);
14791       HigherBits = Builder.CreateLShr(MulResult, 64);
14792     }
14793     HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
14794 
14795     if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
14796       return HigherBits;
14797 
14798     Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
14799     Builder.CreateStore(HigherBits, HighBitsAddress);
14800     return Builder.CreateIntCast(MulResult, ResType, IsSigned);
14801   }
14802 
14803   case X86::BI__faststorefence: {
14804     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
14805                                llvm::SyncScope::System);
14806   }
14807   case X86::BI__shiftleft128:
14808   case X86::BI__shiftright128: {
14809     llvm::Function *F = CGM.getIntrinsic(
14810         BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
14811         Int64Ty);
14812     // Flip low/high ops and zero-extend amount to matching type.
14813     // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt)
14814     // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt)
14815     std::swap(Ops[0], Ops[1]);
14816     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
14817     return Builder.CreateCall(F, Ops);
14818   }
14819   case X86::BI_ReadWriteBarrier:
14820   case X86::BI_ReadBarrier:
14821   case X86::BI_WriteBarrier: {
14822     return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
14823                                llvm::SyncScope::SingleThread);
14824   }
14825 
14826   case X86::BI_AddressOfReturnAddress: {
14827     Function *F =
14828         CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy);
14829     return Builder.CreateCall(F);
14830   }
14831   case X86::BI__stosb: {
14832     // We treat __stosb as a volatile memset - it may not generate "rep stosb"
14833     // instruction, but it will create a memset that won't be optimized away.
14834     return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true);
14835   }
14836   case X86::BI__ud2:
14837     // llvm.trap makes a ud2a instruction on x86.
14838     return EmitTrapCall(Intrinsic::trap);
14839   case X86::BI__int2c: {
14840     // This syscall signals a driver assertion failure in x86 NT kernels.
14841     llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
14842     llvm::InlineAsm *IA =
14843         llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
14844     llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
14845         getLLVMContext(), llvm::AttributeList::FunctionIndex,
14846         llvm::Attribute::NoReturn);
14847     llvm::CallInst *CI = Builder.CreateCall(IA);
14848     CI->setAttributes(NoReturnAttr);
14849     return CI;
14850   }
14851   case X86::BI__readfsbyte:
14852   case X86::BI__readfsword:
14853   case X86::BI__readfsdword:
14854   case X86::BI__readfsqword: {
14855     llvm::Type *IntTy = ConvertType(E->getType());
14856     Value *Ptr =
14857         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
14858     LoadInst *Load = Builder.CreateAlignedLoad(
14859         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14860     Load->setVolatile(true);
14861     return Load;
14862   }
14863   case X86::BI__readgsbyte:
14864   case X86::BI__readgsword:
14865   case X86::BI__readgsdword:
14866   case X86::BI__readgsqword: {
14867     llvm::Type *IntTy = ConvertType(E->getType());
14868     Value *Ptr =
14869         Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
14870     LoadInst *Load = Builder.CreateAlignedLoad(
14871         IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
14872     Load->setVolatile(true);
14873     return Load;
14874   }
14875   case X86::BI__builtin_ia32_paddsb512:
14876   case X86::BI__builtin_ia32_paddsw512:
14877   case X86::BI__builtin_ia32_paddsb256:
14878   case X86::BI__builtin_ia32_paddsw256:
14879   case X86::BI__builtin_ia32_paddsb128:
14880   case X86::BI__builtin_ia32_paddsw128:
14881     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::sadd_sat);
14882   case X86::BI__builtin_ia32_paddusb512:
14883   case X86::BI__builtin_ia32_paddusw512:
14884   case X86::BI__builtin_ia32_paddusb256:
14885   case X86::BI__builtin_ia32_paddusw256:
14886   case X86::BI__builtin_ia32_paddusb128:
14887   case X86::BI__builtin_ia32_paddusw128:
14888     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::uadd_sat);
14889   case X86::BI__builtin_ia32_psubsb512:
14890   case X86::BI__builtin_ia32_psubsw512:
14891   case X86::BI__builtin_ia32_psubsb256:
14892   case X86::BI__builtin_ia32_psubsw256:
14893   case X86::BI__builtin_ia32_psubsb128:
14894   case X86::BI__builtin_ia32_psubsw128:
14895     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::ssub_sat);
14896   case X86::BI__builtin_ia32_psubusb512:
14897   case X86::BI__builtin_ia32_psubusw512:
14898   case X86::BI__builtin_ia32_psubusb256:
14899   case X86::BI__builtin_ia32_psubusw256:
14900   case X86::BI__builtin_ia32_psubusb128:
14901   case X86::BI__builtin_ia32_psubusw128:
14902     return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::usub_sat);
14903   case X86::BI__builtin_ia32_encodekey128_u32: {
14904     Intrinsic::ID IID = Intrinsic::x86_encodekey128;
14905 
14906     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]});
14907 
14908     for (int i = 0; i < 3; ++i) {
14909       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14910       Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[2], i * 16);
14911       Ptr = Builder.CreateBitCast(
14912           Ptr, llvm::PointerType::getUnqual(Extract->getType()));
14913       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
14914     }
14915 
14916     return Builder.CreateExtractValue(Call, 0);
14917   }
14918   case X86::BI__builtin_ia32_encodekey256_u32: {
14919     Intrinsic::ID IID = Intrinsic::x86_encodekey256;
14920 
14921     Value *Call =
14922         Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]});
14923 
14924     for (int i = 0; i < 4; ++i) {
14925       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
14926       Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[3], i * 16);
14927       Ptr = Builder.CreateBitCast(
14928           Ptr, llvm::PointerType::getUnqual(Extract->getType()));
14929       Builder.CreateAlignedStore(Extract, Ptr, Align(1));
14930     }
14931 
14932     return Builder.CreateExtractValue(Call, 0);
14933   }
14934   case X86::BI__builtin_ia32_aesenc128kl_u8:
14935   case X86::BI__builtin_ia32_aesdec128kl_u8:
14936   case X86::BI__builtin_ia32_aesenc256kl_u8:
14937   case X86::BI__builtin_ia32_aesdec256kl_u8: {
14938     Intrinsic::ID IID;
14939     StringRef BlockName;
14940     switch (BuiltinID) {
14941     default:
14942       llvm_unreachable("Unexpected builtin");
14943     case X86::BI__builtin_ia32_aesenc128kl_u8:
14944       IID = Intrinsic::x86_aesenc128kl;
14945       BlockName = "aesenc128kl";
14946       break;
14947     case X86::BI__builtin_ia32_aesdec128kl_u8:
14948       IID = Intrinsic::x86_aesdec128kl;
14949       BlockName = "aesdec128kl";
14950       break;
14951     case X86::BI__builtin_ia32_aesenc256kl_u8:
14952       IID = Intrinsic::x86_aesenc256kl;
14953       BlockName = "aesenc256kl";
14954       break;
14955     case X86::BI__builtin_ia32_aesdec256kl_u8:
14956       IID = Intrinsic::x86_aesdec256kl;
14957       BlockName = "aesdec256kl";
14958       break;
14959     }
14960 
14961     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]});
14962 
14963     BasicBlock *NoError =
14964         createBasicBlock(BlockName + "_no_error", this->CurFn);
14965     BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
14966     BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
14967 
14968     Value *Ret = Builder.CreateExtractValue(Call, 0);
14969     Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
14970     Value *Out = Builder.CreateExtractValue(Call, 1);
14971     Builder.CreateCondBr(Succ, NoError, Error);
14972 
14973     Builder.SetInsertPoint(NoError);
14974     Builder.CreateDefaultAlignedStore(Out, Ops[0]);
14975     Builder.CreateBr(End);
14976 
14977     Builder.SetInsertPoint(Error);
14978     Constant *Zero = llvm::Constant::getNullValue(Out->getType());
14979     Builder.CreateDefaultAlignedStore(Zero, Ops[0]);
14980     Builder.CreateBr(End);
14981 
14982     Builder.SetInsertPoint(End);
14983     return Builder.CreateExtractValue(Call, 0);
14984   }
14985   case X86::BI__builtin_ia32_aesencwide128kl_u8:
14986   case X86::BI__builtin_ia32_aesdecwide128kl_u8:
14987   case X86::BI__builtin_ia32_aesencwide256kl_u8:
14988   case X86::BI__builtin_ia32_aesdecwide256kl_u8: {
14989     Intrinsic::ID IID;
14990     StringRef BlockName;
14991     switch (BuiltinID) {
14992     case X86::BI__builtin_ia32_aesencwide128kl_u8:
14993       IID = Intrinsic::x86_aesencwide128kl;
14994       BlockName = "aesencwide128kl";
14995       break;
14996     case X86::BI__builtin_ia32_aesdecwide128kl_u8:
14997       IID = Intrinsic::x86_aesdecwide128kl;
14998       BlockName = "aesdecwide128kl";
14999       break;
15000     case X86::BI__builtin_ia32_aesencwide256kl_u8:
15001       IID = Intrinsic::x86_aesencwide256kl;
15002       BlockName = "aesencwide256kl";
15003       break;
15004     case X86::BI__builtin_ia32_aesdecwide256kl_u8:
15005       IID = Intrinsic::x86_aesdecwide256kl;
15006       BlockName = "aesdecwide256kl";
15007       break;
15008     }
15009 
15010     llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2);
15011     Value *InOps[9];
15012     InOps[0] = Ops[2];
15013     for (int i = 0; i != 8; ++i) {
15014       Value *Ptr = Builder.CreateConstGEP1_32(Ty, Ops[1], i);
15015       InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16));
15016     }
15017 
15018     Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps);
15019 
15020     BasicBlock *NoError =
15021         createBasicBlock(BlockName + "_no_error", this->CurFn);
15022     BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn);
15023     BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn);
15024 
15025     Value *Ret = Builder.CreateExtractValue(Call, 0);
15026     Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty());
15027     Builder.CreateCondBr(Succ, NoError, Error);
15028 
15029     Builder.SetInsertPoint(NoError);
15030     for (int i = 0; i != 8; ++i) {
15031       Value *Extract = Builder.CreateExtractValue(Call, i + 1);
15032       Value *Ptr = Builder.CreateConstGEP1_32(Extract->getType(), Ops[0], i);
15033       Builder.CreateAlignedStore(Extract, Ptr, Align(16));
15034     }
15035     Builder.CreateBr(End);
15036 
15037     Builder.SetInsertPoint(Error);
15038     for (int i = 0; i != 8; ++i) {
15039       Value *Out = Builder.CreateExtractValue(Call, i + 1);
15040       Constant *Zero = llvm::Constant::getNullValue(Out->getType());
15041       Value *Ptr = Builder.CreateConstGEP1_32(Out->getType(), Ops[0], i);
15042       Builder.CreateAlignedStore(Zero, Ptr, Align(16));
15043     }
15044     Builder.CreateBr(End);
15045 
15046     Builder.SetInsertPoint(End);
15047     return Builder.CreateExtractValue(Call, 0);
15048   }
15049   }
15050 }
15051 
15052 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
15053                                            const CallExpr *E) {
15054   SmallVector<Value*, 4> Ops;
15055 
15056   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
15057     Ops.push_back(EmitScalarExpr(E->getArg(i)));
15058 
15059   Intrinsic::ID ID = Intrinsic::not_intrinsic;
15060 
15061   switch (BuiltinID) {
15062   default: return nullptr;
15063 
15064   // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
15065   // call __builtin_readcyclecounter.
15066   case PPC::BI__builtin_ppc_get_timebase:
15067     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
15068 
15069   // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
15070   case PPC::BI__builtin_altivec_lvx:
15071   case PPC::BI__builtin_altivec_lvxl:
15072   case PPC::BI__builtin_altivec_lvebx:
15073   case PPC::BI__builtin_altivec_lvehx:
15074   case PPC::BI__builtin_altivec_lvewx:
15075   case PPC::BI__builtin_altivec_lvsl:
15076   case PPC::BI__builtin_altivec_lvsr:
15077   case PPC::BI__builtin_vsx_lxvd2x:
15078   case PPC::BI__builtin_vsx_lxvw4x:
15079   case PPC::BI__builtin_vsx_lxvd2x_be:
15080   case PPC::BI__builtin_vsx_lxvw4x_be:
15081   case PPC::BI__builtin_vsx_lxvl:
15082   case PPC::BI__builtin_vsx_lxvll:
15083   {
15084     if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
15085        BuiltinID == PPC::BI__builtin_vsx_lxvll){
15086       Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
15087     }else {
15088       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15089       Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
15090       Ops.pop_back();
15091     }
15092 
15093     switch (BuiltinID) {
15094     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
15095     case PPC::BI__builtin_altivec_lvx:
15096       ID = Intrinsic::ppc_altivec_lvx;
15097       break;
15098     case PPC::BI__builtin_altivec_lvxl:
15099       ID = Intrinsic::ppc_altivec_lvxl;
15100       break;
15101     case PPC::BI__builtin_altivec_lvebx:
15102       ID = Intrinsic::ppc_altivec_lvebx;
15103       break;
15104     case PPC::BI__builtin_altivec_lvehx:
15105       ID = Intrinsic::ppc_altivec_lvehx;
15106       break;
15107     case PPC::BI__builtin_altivec_lvewx:
15108       ID = Intrinsic::ppc_altivec_lvewx;
15109       break;
15110     case PPC::BI__builtin_altivec_lvsl:
15111       ID = Intrinsic::ppc_altivec_lvsl;
15112       break;
15113     case PPC::BI__builtin_altivec_lvsr:
15114       ID = Intrinsic::ppc_altivec_lvsr;
15115       break;
15116     case PPC::BI__builtin_vsx_lxvd2x:
15117       ID = Intrinsic::ppc_vsx_lxvd2x;
15118       break;
15119     case PPC::BI__builtin_vsx_lxvw4x:
15120       ID = Intrinsic::ppc_vsx_lxvw4x;
15121       break;
15122     case PPC::BI__builtin_vsx_lxvd2x_be:
15123       ID = Intrinsic::ppc_vsx_lxvd2x_be;
15124       break;
15125     case PPC::BI__builtin_vsx_lxvw4x_be:
15126       ID = Intrinsic::ppc_vsx_lxvw4x_be;
15127       break;
15128     case PPC::BI__builtin_vsx_lxvl:
15129       ID = Intrinsic::ppc_vsx_lxvl;
15130       break;
15131     case PPC::BI__builtin_vsx_lxvll:
15132       ID = Intrinsic::ppc_vsx_lxvll;
15133       break;
15134     }
15135     llvm::Function *F = CGM.getIntrinsic(ID);
15136     return Builder.CreateCall(F, Ops, "");
15137   }
15138 
15139   // vec_st, vec_xst_be
15140   case PPC::BI__builtin_altivec_stvx:
15141   case PPC::BI__builtin_altivec_stvxl:
15142   case PPC::BI__builtin_altivec_stvebx:
15143   case PPC::BI__builtin_altivec_stvehx:
15144   case PPC::BI__builtin_altivec_stvewx:
15145   case PPC::BI__builtin_vsx_stxvd2x:
15146   case PPC::BI__builtin_vsx_stxvw4x:
15147   case PPC::BI__builtin_vsx_stxvd2x_be:
15148   case PPC::BI__builtin_vsx_stxvw4x_be:
15149   case PPC::BI__builtin_vsx_stxvl:
15150   case PPC::BI__builtin_vsx_stxvll:
15151   {
15152     if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
15153       BuiltinID == PPC::BI__builtin_vsx_stxvll ){
15154       Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15155     }else {
15156       Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
15157       Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
15158       Ops.pop_back();
15159     }
15160 
15161     switch (BuiltinID) {
15162     default: llvm_unreachable("Unsupported st intrinsic!");
15163     case PPC::BI__builtin_altivec_stvx:
15164       ID = Intrinsic::ppc_altivec_stvx;
15165       break;
15166     case PPC::BI__builtin_altivec_stvxl:
15167       ID = Intrinsic::ppc_altivec_stvxl;
15168       break;
15169     case PPC::BI__builtin_altivec_stvebx:
15170       ID = Intrinsic::ppc_altivec_stvebx;
15171       break;
15172     case PPC::BI__builtin_altivec_stvehx:
15173       ID = Intrinsic::ppc_altivec_stvehx;
15174       break;
15175     case PPC::BI__builtin_altivec_stvewx:
15176       ID = Intrinsic::ppc_altivec_stvewx;
15177       break;
15178     case PPC::BI__builtin_vsx_stxvd2x:
15179       ID = Intrinsic::ppc_vsx_stxvd2x;
15180       break;
15181     case PPC::BI__builtin_vsx_stxvw4x:
15182       ID = Intrinsic::ppc_vsx_stxvw4x;
15183       break;
15184     case PPC::BI__builtin_vsx_stxvd2x_be:
15185       ID = Intrinsic::ppc_vsx_stxvd2x_be;
15186       break;
15187     case PPC::BI__builtin_vsx_stxvw4x_be:
15188       ID = Intrinsic::ppc_vsx_stxvw4x_be;
15189       break;
15190     case PPC::BI__builtin_vsx_stxvl:
15191       ID = Intrinsic::ppc_vsx_stxvl;
15192       break;
15193     case PPC::BI__builtin_vsx_stxvll:
15194       ID = Intrinsic::ppc_vsx_stxvll;
15195       break;
15196     }
15197     llvm::Function *F = CGM.getIntrinsic(ID);
15198     return Builder.CreateCall(F, Ops, "");
15199   }
15200   case PPC::BI__builtin_vsx_ldrmb: {
15201     // Essentially boils down to performing an unaligned VMX load sequence so
15202     // as to avoid crossing a page boundary and then shuffling the elements
15203     // into the right side of the vector register.
15204     int64_t NumBytes = cast<ConstantInt>(Ops[1])->getZExtValue();
15205     llvm::Type *ResTy = ConvertType(E->getType());
15206     bool IsLE = getTarget().isLittleEndian();
15207 
15208     // If the user wants the entire vector, just load the entire vector.
15209     if (NumBytes == 16) {
15210       Value *BC = Builder.CreateBitCast(Ops[0], ResTy->getPointerTo());
15211       Value *LD = Builder.CreateLoad(Address(BC, CharUnits::fromQuantity(1)));
15212       if (!IsLE)
15213         return LD;
15214 
15215       // Reverse the bytes on LE.
15216       SmallVector<int, 16> RevMask;
15217       for (int Idx = 0; Idx < 16; Idx++)
15218         RevMask.push_back(15 - Idx);
15219       return Builder.CreateShuffleVector(LD, LD, RevMask);
15220     }
15221 
15222     llvm::Function *Lvx = CGM.getIntrinsic(Intrinsic::ppc_altivec_lvx);
15223     llvm::Function *Lvs = CGM.getIntrinsic(IsLE ? Intrinsic::ppc_altivec_lvsr
15224                                                 : Intrinsic::ppc_altivec_lvsl);
15225     llvm::Function *Vperm = CGM.getIntrinsic(Intrinsic::ppc_altivec_vperm);
15226     Value *HiMem = Builder.CreateGEP(
15227         Int8Ty, Ops[0], ConstantInt::get(Ops[1]->getType(), NumBytes - 1));
15228     Value *LoLd = Builder.CreateCall(Lvx, Ops[0], "ld.lo");
15229     Value *HiLd = Builder.CreateCall(Lvx, HiMem, "ld.hi");
15230     Value *Mask1 = Builder.CreateCall(Lvs, Ops[0], "mask1");
15231 
15232     Ops.clear();
15233     Ops.push_back(IsLE ? HiLd : LoLd);
15234     Ops.push_back(IsLE ? LoLd : HiLd);
15235     Ops.push_back(Mask1);
15236     Value *AllElts = Builder.CreateCall(Vperm, Ops, "shuffle1");
15237     Constant *Zero = llvm::Constant::getNullValue(IsLE ? ResTy : AllElts->getType());
15238 
15239     if (IsLE) {
15240       SmallVector<int, 16> Consts;
15241       for (int Idx = 0; Idx < 16; Idx++) {
15242         int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1)
15243                                             : 16 - (NumBytes - Idx);
15244         Consts.push_back(Val);
15245       }
15246       return Builder.CreateShuffleVector(Builder.CreateBitCast(AllElts, ResTy),
15247                                          Zero, Consts);
15248     }
15249     SmallVector<Constant *, 16> Consts;
15250     for (int Idx = 0; Idx < 16; Idx++)
15251       Consts.push_back(Builder.getInt8(NumBytes + Idx));
15252     Value *Mask2 = ConstantVector::get(Consts);
15253     return Builder.CreateBitCast(
15254         Builder.CreateCall(Vperm, {Zero, AllElts, Mask2}, "shuffle2"), ResTy);
15255   }
15256   case PPC::BI__builtin_vsx_strmb: {
15257     int64_t NumBytes = cast<ConstantInt>(Ops[1])->getZExtValue();
15258     bool IsLE = getTarget().isLittleEndian();
15259     auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) {
15260       // Storing the whole vector, simply store it on BE and reverse bytes and
15261       // store on LE.
15262       if (Width == 16) {
15263         Value *BC =
15264             Builder.CreateBitCast(Ops[0], Ops[2]->getType()->getPointerTo());
15265         Value *StVec = Ops[2];
15266         if (IsLE) {
15267           SmallVector<int, 16> RevMask;
15268           for (int Idx = 0; Idx < 16; Idx++)
15269             RevMask.push_back(15 - Idx);
15270           StVec = Builder.CreateShuffleVector(Ops[2], Ops[2], RevMask);
15271         }
15272         return Builder.CreateStore(StVec,
15273                                    Address(BC, CharUnits::fromQuantity(1)));
15274       }
15275       auto *ConvTy = Int64Ty;
15276       unsigned NumElts = 0;
15277       switch (Width) {
15278       default:
15279         llvm_unreachable("width for stores must be a power of 2");
15280       case 8:
15281         ConvTy = Int64Ty;
15282         NumElts = 2;
15283         break;
15284       case 4:
15285         ConvTy = Int32Ty;
15286         NumElts = 4;
15287         break;
15288       case 2:
15289         ConvTy = Int16Ty;
15290         NumElts = 8;
15291         break;
15292       case 1:
15293         ConvTy = Int8Ty;
15294         NumElts = 16;
15295         break;
15296       }
15297       Value *Vec = Builder.CreateBitCast(
15298           Ops[2], llvm::FixedVectorType::get(ConvTy, NumElts));
15299       Value *Ptr = Builder.CreateGEP(Int8Ty, Ops[0],
15300                                      ConstantInt::get(Int64Ty, Offset));
15301       Value *PtrBC = Builder.CreateBitCast(Ptr, ConvTy->getPointerTo());
15302       Value *Elt = Builder.CreateExtractElement(Vec, EltNo);
15303       if (IsLE && Width > 1) {
15304         Function *F = CGM.getIntrinsic(Intrinsic::bswap, ConvTy);
15305         Elt = Builder.CreateCall(F, Elt);
15306       }
15307       return Builder.CreateStore(Elt,
15308                                  Address(PtrBC, CharUnits::fromQuantity(1)));
15309     };
15310     unsigned Stored = 0;
15311     unsigned RemainingBytes = NumBytes;
15312     Value *Result;
15313     if (NumBytes == 16)
15314       return StoreSubVec(16, 0, 0);
15315     if (NumBytes >= 8) {
15316       Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1);
15317       RemainingBytes -= 8;
15318       Stored += 8;
15319     }
15320     if (RemainingBytes >= 4) {
15321       Result = StoreSubVec(4, NumBytes - Stored - 4,
15322                            IsLE ? (Stored >> 2) : 3 - (Stored >> 2));
15323       RemainingBytes -= 4;
15324       Stored += 4;
15325     }
15326     if (RemainingBytes >= 2) {
15327       Result = StoreSubVec(2, NumBytes - Stored - 2,
15328                            IsLE ? (Stored >> 1) : 7 - (Stored >> 1));
15329       RemainingBytes -= 2;
15330       Stored += 2;
15331     }
15332     if (RemainingBytes)
15333       Result =
15334           StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored);
15335     return Result;
15336   }
15337   // Square root
15338   case PPC::BI__builtin_vsx_xvsqrtsp:
15339   case PPC::BI__builtin_vsx_xvsqrtdp: {
15340     llvm::Type *ResultType = ConvertType(E->getType());
15341     Value *X = EmitScalarExpr(E->getArg(0));
15342     if (Builder.getIsFPConstrained()) {
15343       llvm::Function *F = CGM.getIntrinsic(
15344           Intrinsic::experimental_constrained_sqrt, ResultType);
15345       return Builder.CreateConstrainedFPCall(F, X);
15346     } else {
15347       llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15348       return Builder.CreateCall(F, X);
15349     }
15350   }
15351   // Count leading zeros
15352   case PPC::BI__builtin_altivec_vclzb:
15353   case PPC::BI__builtin_altivec_vclzh:
15354   case PPC::BI__builtin_altivec_vclzw:
15355   case PPC::BI__builtin_altivec_vclzd: {
15356     llvm::Type *ResultType = ConvertType(E->getType());
15357     Value *X = EmitScalarExpr(E->getArg(0));
15358     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15359     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
15360     return Builder.CreateCall(F, {X, Undef});
15361   }
15362   case PPC::BI__builtin_altivec_vctzb:
15363   case PPC::BI__builtin_altivec_vctzh:
15364   case PPC::BI__builtin_altivec_vctzw:
15365   case PPC::BI__builtin_altivec_vctzd: {
15366     llvm::Type *ResultType = ConvertType(E->getType());
15367     Value *X = EmitScalarExpr(E->getArg(0));
15368     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
15369     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
15370     return Builder.CreateCall(F, {X, Undef});
15371   }
15372   case PPC::BI__builtin_altivec_vec_replace_elt:
15373   case PPC::BI__builtin_altivec_vec_replace_unaligned: {
15374     // The third argument of vec_replace_elt and vec_replace_unaligned must
15375     // be a compile time constant and will be emitted either to the vinsw
15376     // or vinsd instruction.
15377     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15378     assert(ArgCI &&
15379            "Third Arg to vinsw/vinsd intrinsic must be a constant integer!");
15380     llvm::Type *ResultType = ConvertType(E->getType());
15381     llvm::Function *F = nullptr;
15382     Value *Call = nullptr;
15383     int64_t ConstArg = ArgCI->getSExtValue();
15384     unsigned ArgWidth = Ops[1]->getType()->getPrimitiveSizeInBits();
15385     bool Is32Bit = false;
15386     assert((ArgWidth == 32 || ArgWidth == 64) && "Invalid argument width");
15387     // The input to vec_replace_elt is an element index, not a byte index.
15388     if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt)
15389       ConstArg *= ArgWidth / 8;
15390     if (ArgWidth == 32) {
15391       Is32Bit = true;
15392       // When the second argument is 32 bits, it can either be an integer or
15393       // a float. The vinsw intrinsic is used in this case.
15394       F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsw);
15395       // Fix the constant according to endianess.
15396       if (getTarget().isLittleEndian())
15397         ConstArg = 12 - ConstArg;
15398     } else {
15399       // When the second argument is 64 bits, it can either be a long long or
15400       // a double. The vinsd intrinsic is used in this case.
15401       F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsd);
15402       // Fix the constant for little endian.
15403       if (getTarget().isLittleEndian())
15404         ConstArg = 8 - ConstArg;
15405     }
15406     Ops[2] = ConstantInt::getSigned(Int32Ty, ConstArg);
15407     // Depending on ArgWidth, the input vector could be a float or a double.
15408     // If the input vector is a float type, bitcast the inputs to integers. Or,
15409     // if the input vector is a double, bitcast the inputs to 64-bit integers.
15410     if (!Ops[1]->getType()->isIntegerTy(ArgWidth)) {
15411       Ops[0] = Builder.CreateBitCast(
15412           Ops[0], Is32Bit ? llvm::FixedVectorType::get(Int32Ty, 4)
15413                           : llvm::FixedVectorType::get(Int64Ty, 2));
15414       Ops[1] = Builder.CreateBitCast(Ops[1], Is32Bit ? Int32Ty : Int64Ty);
15415     }
15416     // Emit the call to vinsw or vinsd.
15417     Call = Builder.CreateCall(F, Ops);
15418     // Depending on the builtin, bitcast to the approriate result type.
15419     if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
15420         !Ops[1]->getType()->isIntegerTy())
15421       return Builder.CreateBitCast(Call, ResultType);
15422     else if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt &&
15423              Ops[1]->getType()->isIntegerTy())
15424       return Call;
15425     else
15426       return Builder.CreateBitCast(Call,
15427                                    llvm::FixedVectorType::get(Int8Ty, 16));
15428   }
15429   case PPC::BI__builtin_altivec_vpopcntb:
15430   case PPC::BI__builtin_altivec_vpopcnth:
15431   case PPC::BI__builtin_altivec_vpopcntw:
15432   case PPC::BI__builtin_altivec_vpopcntd: {
15433     llvm::Type *ResultType = ConvertType(E->getType());
15434     Value *X = EmitScalarExpr(E->getArg(0));
15435     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
15436     return Builder.CreateCall(F, X);
15437   }
15438   case PPC::BI__builtin_altivec_vadduqm:
15439   case PPC::BI__builtin_altivec_vsubuqm: {
15440     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
15441     Ops[0] =
15442         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int128Ty, 1));
15443     Ops[1] =
15444         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int128Ty, 1));
15445     if (BuiltinID == PPC::BI__builtin_altivec_vadduqm)
15446       return Builder.CreateAdd(Ops[0], Ops[1], "vadduqm");
15447     else
15448       return Builder.CreateSub(Ops[0], Ops[1], "vsubuqm");
15449   }
15450   // Rotate and insert under mask operation.
15451   // __rldimi(rs, is, shift, mask)
15452   // (rotl64(rs, shift) & mask) | (is & ~mask)
15453   // __rlwimi(rs, is, shift, mask)
15454   // (rotl(rs, shift) & mask) | (is & ~mask)
15455   case PPC::BI__builtin_ppc_rldimi:
15456   case PPC::BI__builtin_ppc_rlwimi: {
15457     llvm::Type *Ty = Ops[0]->getType();
15458     Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
15459     if (BuiltinID == PPC::BI__builtin_ppc_rldimi)
15460       Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
15461     Value *Shift = Builder.CreateCall(F, {Ops[0], Ops[0], Ops[2]});
15462     Value *X = Builder.CreateAnd(Shift, Ops[3]);
15463     Value *Y = Builder.CreateAnd(Ops[1], Builder.CreateNot(Ops[3]));
15464     return Builder.CreateOr(X, Y);
15465   }
15466   // Rotate and insert under mask operation.
15467   // __rlwnm(rs, shift, mask)
15468   // rotl(rs, shift) & mask
15469   case PPC::BI__builtin_ppc_rlwnm: {
15470     llvm::Type *Ty = Ops[0]->getType();
15471     Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
15472     Value *Shift = Builder.CreateCall(F, {Ops[0], Ops[0], Ops[1]});
15473     return Builder.CreateAnd(Shift, Ops[2]);
15474   }
15475   case PPC::BI__builtin_ppc_poppar4:
15476   case PPC::BI__builtin_ppc_poppar8: {
15477     llvm::Type *ArgType = Ops[0]->getType();
15478     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
15479     Value *Tmp = Builder.CreateCall(F, Ops[0]);
15480 
15481     llvm::Type *ResultType = ConvertType(E->getType());
15482     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
15483     if (Result->getType() != ResultType)
15484       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
15485                                      "cast");
15486     return Result;
15487   }
15488   case PPC::BI__builtin_ppc_cmpb: {
15489     if (getTarget().getTriple().isPPC64()) {
15490       Function *F =
15491           CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int64Ty, Int64Ty, Int64Ty});
15492       return Builder.CreateCall(F, Ops, "cmpb");
15493     }
15494     // For 32 bit, emit the code as below:
15495     // %conv = trunc i64 %a to i32
15496     // %conv1 = trunc i64 %b to i32
15497     // %shr = lshr i64 %a, 32
15498     // %conv2 = trunc i64 %shr to i32
15499     // %shr3 = lshr i64 %b, 32
15500     // %conv4 = trunc i64 %shr3 to i32
15501     // %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1)
15502     // %conv5 = zext i32 %0 to i64
15503     // %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4)
15504     // %conv614 = zext i32 %1 to i64
15505     // %shl = shl nuw i64 %conv614, 32
15506     // %or = or i64 %shl, %conv5
15507     // ret i64 %or
15508     Function *F =
15509         CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int32Ty, Int32Ty, Int32Ty});
15510     Value *ArgOneLo = Builder.CreateTrunc(Ops[0], Int32Ty);
15511     Value *ArgTwoLo = Builder.CreateTrunc(Ops[1], Int32Ty);
15512     Constant *ShiftAmt = ConstantInt::get(Int64Ty, 32);
15513     Value *ArgOneHi =
15514         Builder.CreateTrunc(Builder.CreateLShr(Ops[0], ShiftAmt), Int32Ty);
15515     Value *ArgTwoHi =
15516         Builder.CreateTrunc(Builder.CreateLShr(Ops[1], ShiftAmt), Int32Ty);
15517     Value *ResLo = Builder.CreateZExt(
15518         Builder.CreateCall(F, {ArgOneLo, ArgTwoLo}, "cmpb"), Int64Ty);
15519     Value *ResHiShift = Builder.CreateZExt(
15520         Builder.CreateCall(F, {ArgOneHi, ArgTwoHi}, "cmpb"), Int64Ty);
15521     Value *ResHi = Builder.CreateShl(ResHiShift, ShiftAmt);
15522     return Builder.CreateOr(ResLo, ResHi);
15523   }
15524   // Copy sign
15525   case PPC::BI__builtin_vsx_xvcpsgnsp:
15526   case PPC::BI__builtin_vsx_xvcpsgndp: {
15527     llvm::Type *ResultType = ConvertType(E->getType());
15528     Value *X = EmitScalarExpr(E->getArg(0));
15529     Value *Y = EmitScalarExpr(E->getArg(1));
15530     ID = Intrinsic::copysign;
15531     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
15532     return Builder.CreateCall(F, {X, Y});
15533   }
15534   // Rounding/truncation
15535   case PPC::BI__builtin_vsx_xvrspip:
15536   case PPC::BI__builtin_vsx_xvrdpip:
15537   case PPC::BI__builtin_vsx_xvrdpim:
15538   case PPC::BI__builtin_vsx_xvrspim:
15539   case PPC::BI__builtin_vsx_xvrdpi:
15540   case PPC::BI__builtin_vsx_xvrspi:
15541   case PPC::BI__builtin_vsx_xvrdpic:
15542   case PPC::BI__builtin_vsx_xvrspic:
15543   case PPC::BI__builtin_vsx_xvrdpiz:
15544   case PPC::BI__builtin_vsx_xvrspiz: {
15545     llvm::Type *ResultType = ConvertType(E->getType());
15546     Value *X = EmitScalarExpr(E->getArg(0));
15547     if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
15548         BuiltinID == PPC::BI__builtin_vsx_xvrspim)
15549       ID = Builder.getIsFPConstrained()
15550                ? Intrinsic::experimental_constrained_floor
15551                : Intrinsic::floor;
15552     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
15553              BuiltinID == PPC::BI__builtin_vsx_xvrspi)
15554       ID = Builder.getIsFPConstrained()
15555                ? Intrinsic::experimental_constrained_round
15556                : Intrinsic::round;
15557     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
15558              BuiltinID == PPC::BI__builtin_vsx_xvrspic)
15559       ID = Builder.getIsFPConstrained()
15560                ? Intrinsic::experimental_constrained_rint
15561                : Intrinsic::rint;
15562     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
15563              BuiltinID == PPC::BI__builtin_vsx_xvrspip)
15564       ID = Builder.getIsFPConstrained()
15565                ? Intrinsic::experimental_constrained_ceil
15566                : Intrinsic::ceil;
15567     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
15568              BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
15569       ID = Builder.getIsFPConstrained()
15570                ? Intrinsic::experimental_constrained_trunc
15571                : Intrinsic::trunc;
15572     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
15573     return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X)
15574                                         : Builder.CreateCall(F, X);
15575   }
15576 
15577   // Absolute value
15578   case PPC::BI__builtin_vsx_xvabsdp:
15579   case PPC::BI__builtin_vsx_xvabssp: {
15580     llvm::Type *ResultType = ConvertType(E->getType());
15581     Value *X = EmitScalarExpr(E->getArg(0));
15582     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
15583     return Builder.CreateCall(F, X);
15584   }
15585 
15586   // Fastmath by default
15587   case PPC::BI__builtin_ppc_recipdivf:
15588   case PPC::BI__builtin_ppc_recipdivd:
15589   case PPC::BI__builtin_ppc_rsqrtf:
15590   case PPC::BI__builtin_ppc_rsqrtd: {
15591     FastMathFlags FMF = Builder.getFastMathFlags();
15592     Builder.getFastMathFlags().setFast();
15593     llvm::Type *ResultType = ConvertType(E->getType());
15594     Value *X = EmitScalarExpr(E->getArg(0));
15595 
15596     if (BuiltinID == PPC::BI__builtin_ppc_recipdivf ||
15597         BuiltinID == PPC::BI__builtin_ppc_recipdivd) {
15598       Value *Y = EmitScalarExpr(E->getArg(1));
15599       Value *FDiv = Builder.CreateFDiv(X, Y, "recipdiv");
15600       Builder.getFastMathFlags() &= (FMF);
15601       return FDiv;
15602     }
15603     auto *One = ConstantFP::get(ResultType, 1.0);
15604     llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
15605     Value *FDiv = Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt");
15606     Builder.getFastMathFlags() &= (FMF);
15607     return FDiv;
15608   }
15609   case PPC::BI__builtin_ppc_alignx: {
15610     ConstantInt *AlignmentCI = cast<ConstantInt>(Ops[0]);
15611     if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment))
15612       AlignmentCI = ConstantInt::get(AlignmentCI->getType(),
15613                                      llvm::Value::MaximumAlignment);
15614 
15615     emitAlignmentAssumption(Ops[1], E->getArg(1),
15616                             /*The expr loc is sufficient.*/ SourceLocation(),
15617                             AlignmentCI, nullptr);
15618     return Ops[1];
15619   }
15620   case PPC::BI__builtin_ppc_rdlam: {
15621     llvm::Type *Ty = Ops[0]->getType();
15622     Value *ShiftAmt = Builder.CreateIntCast(Ops[1], Ty, false);
15623     Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty);
15624     Value *Rotate = Builder.CreateCall(F, {Ops[0], Ops[0], ShiftAmt});
15625     return Builder.CreateAnd(Rotate, Ops[2]);
15626   }
15627   // FMA variations
15628   case PPC::BI__builtin_vsx_xvmaddadp:
15629   case PPC::BI__builtin_vsx_xvmaddasp:
15630   case PPC::BI__builtin_vsx_xvnmaddadp:
15631   case PPC::BI__builtin_vsx_xvnmaddasp:
15632   case PPC::BI__builtin_vsx_xvmsubadp:
15633   case PPC::BI__builtin_vsx_xvmsubasp:
15634   case PPC::BI__builtin_vsx_xvnmsubadp:
15635   case PPC::BI__builtin_vsx_xvnmsubasp: {
15636     llvm::Type *ResultType = ConvertType(E->getType());
15637     Value *X = EmitScalarExpr(E->getArg(0));
15638     Value *Y = EmitScalarExpr(E->getArg(1));
15639     Value *Z = EmitScalarExpr(E->getArg(2));
15640     llvm::Function *F;
15641     if (Builder.getIsFPConstrained())
15642       F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
15643     else
15644       F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
15645     switch (BuiltinID) {
15646       case PPC::BI__builtin_vsx_xvmaddadp:
15647       case PPC::BI__builtin_vsx_xvmaddasp:
15648         if (Builder.getIsFPConstrained())
15649           return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
15650         else
15651           return Builder.CreateCall(F, {X, Y, Z});
15652       case PPC::BI__builtin_vsx_xvnmaddadp:
15653       case PPC::BI__builtin_vsx_xvnmaddasp:
15654         if (Builder.getIsFPConstrained())
15655           return Builder.CreateFNeg(
15656               Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg");
15657         else
15658           return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
15659       case PPC::BI__builtin_vsx_xvmsubadp:
15660       case PPC::BI__builtin_vsx_xvmsubasp:
15661         if (Builder.getIsFPConstrained())
15662           return Builder.CreateConstrainedFPCall(
15663               F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15664         else
15665           return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
15666       case PPC::BI__builtin_vsx_xvnmsubadp:
15667       case PPC::BI__builtin_vsx_xvnmsubasp:
15668         if (Builder.getIsFPConstrained())
15669           return Builder.CreateFNeg(
15670               Builder.CreateConstrainedFPCall(
15671                   F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
15672               "neg");
15673         else
15674           return Builder.CreateFNeg(
15675               Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}),
15676               "neg");
15677     }
15678     llvm_unreachable("Unknown FMA operation");
15679     return nullptr; // Suppress no-return warning
15680   }
15681 
15682   case PPC::BI__builtin_vsx_insertword: {
15683     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
15684 
15685     // Third argument is a compile time constant int. It must be clamped to
15686     // to the range [0, 12].
15687     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15688     assert(ArgCI &&
15689            "Third arg to xxinsertw intrinsic must be constant integer");
15690     const int64_t MaxIndex = 12;
15691     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
15692 
15693     // The builtin semantics don't exactly match the xxinsertw instructions
15694     // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
15695     // word from the first argument, and inserts it in the second argument. The
15696     // instruction extracts the word from its second input register and inserts
15697     // it into its first input register, so swap the first and second arguments.
15698     std::swap(Ops[0], Ops[1]);
15699 
15700     // Need to cast the second argument from a vector of unsigned int to a
15701     // vector of long long.
15702     Ops[1] =
15703         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
15704 
15705     if (getTarget().isLittleEndian()) {
15706       // Reverse the double words in the vector we will extract from.
15707       Ops[0] =
15708           Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15709       Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{1, 0});
15710 
15711       // Reverse the index.
15712       Index = MaxIndex - Index;
15713     }
15714 
15715     // Intrinsic expects the first arg to be a vector of int.
15716     Ops[0] =
15717         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
15718     Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
15719     return Builder.CreateCall(F, Ops);
15720   }
15721 
15722   case PPC::BI__builtin_vsx_extractuword: {
15723     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
15724 
15725     // Intrinsic expects the first argument to be a vector of doublewords.
15726     Ops[0] =
15727         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15728 
15729     // The second argument is a compile time constant int that needs to
15730     // be clamped to the range [0, 12].
15731     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
15732     assert(ArgCI &&
15733            "Second Arg to xxextractuw intrinsic must be a constant integer!");
15734     const int64_t MaxIndex = 12;
15735     int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
15736 
15737     if (getTarget().isLittleEndian()) {
15738       // Reverse the index.
15739       Index = MaxIndex - Index;
15740       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
15741 
15742       // Emit the call, then reverse the double words of the results vector.
15743       Value *Call = Builder.CreateCall(F, Ops);
15744 
15745       Value *ShuffleCall =
15746           Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0});
15747       return ShuffleCall;
15748     } else {
15749       Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
15750       return Builder.CreateCall(F, Ops);
15751     }
15752   }
15753 
15754   case PPC::BI__builtin_vsx_xxpermdi: {
15755     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15756     assert(ArgCI && "Third arg must be constant integer!");
15757 
15758     unsigned Index = ArgCI->getZExtValue();
15759     Ops[0] =
15760         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2));
15761     Ops[1] =
15762         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2));
15763 
15764     // Account for endianness by treating this as just a shuffle. So we use the
15765     // same indices for both LE and BE in order to produce expected results in
15766     // both cases.
15767     int ElemIdx0 = (Index & 2) >> 1;
15768     int ElemIdx1 = 2 + (Index & 1);
15769 
15770     int ShuffleElts[2] = {ElemIdx0, ElemIdx1};
15771     Value *ShuffleCall =
15772         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
15773     QualType BIRetType = E->getType();
15774     auto RetTy = ConvertType(BIRetType);
15775     return Builder.CreateBitCast(ShuffleCall, RetTy);
15776   }
15777 
15778   case PPC::BI__builtin_vsx_xxsldwi: {
15779     ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
15780     assert(ArgCI && "Third argument must be a compile time constant");
15781     unsigned Index = ArgCI->getZExtValue() & 0x3;
15782     Ops[0] =
15783         Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4));
15784     Ops[1] =
15785         Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int32Ty, 4));
15786 
15787     // Create a shuffle mask
15788     int ElemIdx0;
15789     int ElemIdx1;
15790     int ElemIdx2;
15791     int ElemIdx3;
15792     if (getTarget().isLittleEndian()) {
15793       // Little endian element N comes from element 8+N-Index of the
15794       // concatenated wide vector (of course, using modulo arithmetic on
15795       // the total number of elements).
15796       ElemIdx0 = (8 - Index) % 8;
15797       ElemIdx1 = (9 - Index) % 8;
15798       ElemIdx2 = (10 - Index) % 8;
15799       ElemIdx3 = (11 - Index) % 8;
15800     } else {
15801       // Big endian ElemIdx<N> = Index + N
15802       ElemIdx0 = Index;
15803       ElemIdx1 = Index + 1;
15804       ElemIdx2 = Index + 2;
15805       ElemIdx3 = Index + 3;
15806     }
15807 
15808     int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3};
15809     Value *ShuffleCall =
15810         Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts);
15811     QualType BIRetType = E->getType();
15812     auto RetTy = ConvertType(BIRetType);
15813     return Builder.CreateBitCast(ShuffleCall, RetTy);
15814   }
15815 
15816   case PPC::BI__builtin_pack_vector_int128: {
15817     bool isLittleEndian = getTarget().isLittleEndian();
15818     Value *UndefValue =
15819         llvm::UndefValue::get(llvm::FixedVectorType::get(Ops[0]->getType(), 2));
15820     Value *Res = Builder.CreateInsertElement(
15821         UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
15822     Res = Builder.CreateInsertElement(Res, Ops[1],
15823                                       (uint64_t)(isLittleEndian ? 0 : 1));
15824     return Builder.CreateBitCast(Res, ConvertType(E->getType()));
15825   }
15826 
15827   case PPC::BI__builtin_unpack_vector_int128: {
15828     ConstantInt *Index = cast<ConstantInt>(Ops[1]);
15829     Value *Unpacked = Builder.CreateBitCast(
15830         Ops[0], llvm::FixedVectorType::get(ConvertType(E->getType()), 2));
15831 
15832     if (getTarget().isLittleEndian())
15833       Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
15834 
15835     return Builder.CreateExtractElement(Unpacked, Index);
15836   }
15837 
15838   case PPC::BI__builtin_ppc_sthcx: {
15839     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_sthcx);
15840     Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
15841     Ops[1] = Builder.CreateSExt(Ops[1], Int32Ty);
15842     return Builder.CreateCall(F, Ops);
15843   }
15844 
15845   // The PPC MMA builtins take a pointer to a __vector_quad as an argument.
15846   // Some of the MMA instructions accumulate their result into an existing
15847   // accumulator whereas the others generate a new accumulator. So we need to
15848   // use custom code generation to expand a builtin call with a pointer to a
15849   // load (if the corresponding instruction accumulates its result) followed by
15850   // the call to the intrinsic and a store of the result.
15851 #define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate) \
15852   case PPC::BI__builtin_##Name:
15853 #include "clang/Basic/BuiltinsPPC.def"
15854   {
15855     // The first argument of these two builtins is a pointer used to store their
15856     // result. However, the llvm intrinsics return their result in multiple
15857     // return values. So, here we emit code extracting these values from the
15858     // intrinsic results and storing them using that pointer.
15859     if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc ||
15860         BuiltinID == PPC::BI__builtin_vsx_disassemble_pair ||
15861         BuiltinID == PPC::BI__builtin_mma_disassemble_pair) {
15862       unsigned NumVecs = 2;
15863       auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair;
15864       if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) {
15865         NumVecs = 4;
15866         Intrinsic = Intrinsic::ppc_mma_disassemble_acc;
15867       }
15868       llvm::Function *F = CGM.getIntrinsic(Intrinsic);
15869       Address Addr = EmitPointerWithAlignment(E->getArg(1));
15870       Value *Vec = Builder.CreateLoad(Addr);
15871       Value *Call = Builder.CreateCall(F, {Vec});
15872       llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16);
15873       Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo());
15874       for (unsigned i=0; i<NumVecs; i++) {
15875         Value *Vec = Builder.CreateExtractValue(Call, i);
15876         llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i);
15877         Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index);
15878         Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16));
15879       }
15880       return Call;
15881     }
15882     bool Accumulate;
15883     switch (BuiltinID) {
15884   #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \
15885     case PPC::BI__builtin_##Name: \
15886       ID = Intrinsic::ppc_##Intr; \
15887       Accumulate = Acc; \
15888       break;
15889   #include "clang/Basic/BuiltinsPPC.def"
15890     }
15891     if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
15892         BuiltinID == PPC::BI__builtin_vsx_stxvp ||
15893         BuiltinID == PPC::BI__builtin_mma_lxvp ||
15894         BuiltinID == PPC::BI__builtin_mma_stxvp) {
15895       if (BuiltinID == PPC::BI__builtin_vsx_lxvp ||
15896           BuiltinID == PPC::BI__builtin_mma_lxvp) {
15897         Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
15898         Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]);
15899       } else {
15900         Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
15901         Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]);
15902       }
15903       Ops.pop_back();
15904       llvm::Function *F = CGM.getIntrinsic(ID);
15905       return Builder.CreateCall(F, Ops, "");
15906     }
15907     SmallVector<Value*, 4> CallOps;
15908     if (Accumulate) {
15909       Address Addr = EmitPointerWithAlignment(E->getArg(0));
15910       Value *Acc = Builder.CreateLoad(Addr);
15911       CallOps.push_back(Acc);
15912     }
15913     for (unsigned i=1; i<Ops.size(); i++)
15914       CallOps.push_back(Ops[i]);
15915     llvm::Function *F = CGM.getIntrinsic(ID);
15916     Value *Call = Builder.CreateCall(F, CallOps);
15917     return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64));
15918   }
15919 
15920   case PPC::BI__builtin_ppc_compare_and_swap:
15921   case PPC::BI__builtin_ppc_compare_and_swaplp: {
15922     Address Addr = EmitPointerWithAlignment(E->getArg(0));
15923     Address OldValAddr = EmitPointerWithAlignment(E->getArg(1));
15924     Value *OldVal = Builder.CreateLoad(OldValAddr);
15925     QualType AtomicTy = E->getArg(0)->getType()->getPointeeType();
15926     LValue LV = MakeAddrLValue(Addr, AtomicTy);
15927     auto Pair = EmitAtomicCompareExchange(
15928         LV, RValue::get(OldVal), RValue::get(Ops[2]), E->getExprLoc(),
15929         llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true);
15930     // Unlike c11's atomic_compare_exchange, accroding to
15931     // https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp
15932     // > In either case, the contents of the memory location specified by addr
15933     // > are copied into the memory location specified by old_val_addr.
15934     // But it hasn't specified storing to OldValAddr is atomic or not and
15935     // which order to use. Now following XL's codegen, treat it as a normal
15936     // store.
15937     Value *LoadedVal = Pair.first.getScalarVal();
15938     Builder.CreateStore(LoadedVal, OldValAddr);
15939     return Builder.CreateZExt(Pair.second, Builder.getInt32Ty());
15940   }
15941   case PPC::BI__builtin_ppc_fetch_and_add:
15942   case PPC::BI__builtin_ppc_fetch_and_addlp: {
15943     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
15944                                  llvm::AtomicOrdering::Monotonic);
15945   }
15946   case PPC::BI__builtin_ppc_fetch_and_and:
15947   case PPC::BI__builtin_ppc_fetch_and_andlp: {
15948     return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
15949                                  llvm::AtomicOrdering::Monotonic);
15950   }
15951 
15952   case PPC::BI__builtin_ppc_fetch_and_or:
15953   case PPC::BI__builtin_ppc_fetch_and_orlp: {
15954     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
15955                                  llvm::AtomicOrdering::Monotonic);
15956   }
15957   case PPC::BI__builtin_ppc_fetch_and_swap:
15958   case PPC::BI__builtin_ppc_fetch_and_swaplp: {
15959     return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
15960                                  llvm::AtomicOrdering::Monotonic);
15961   }
15962   case PPC::BI__builtin_ppc_ldarx:
15963   case PPC::BI__builtin_ppc_lwarx:
15964   case PPC::BI__builtin_ppc_lharx:
15965   case PPC::BI__builtin_ppc_lbarx:
15966     return emitPPCLoadReserveIntrinsic(*this, BuiltinID, E);
15967   case PPC::BI__builtin_ppc_mfspr: {
15968     llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
15969                               ? Int32Ty
15970                               : Int64Ty;
15971     Function *F = CGM.getIntrinsic(Intrinsic::ppc_mfspr, RetType);
15972     return Builder.CreateCall(F, Ops);
15973   }
15974   case PPC::BI__builtin_ppc_mtspr: {
15975     llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32
15976                               ? Int32Ty
15977                               : Int64Ty;
15978     Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtspr, RetType);
15979     return Builder.CreateCall(F, Ops);
15980   }
15981   case PPC::BI__builtin_ppc_popcntb: {
15982     Value *ArgValue = EmitScalarExpr(E->getArg(0));
15983     llvm::Type *ArgType = ArgValue->getType();
15984     Function *F = CGM.getIntrinsic(Intrinsic::ppc_popcntb, {ArgType, ArgType});
15985     return Builder.CreateCall(F, Ops, "popcntb");
15986   }
15987   case PPC::BI__builtin_ppc_mtfsf: {
15988     // The builtin takes a uint32 that needs to be cast to an
15989     // f64 to be passed to the intrinsic.
15990     Value *Cast = Builder.CreateUIToFP(Ops[1], DoubleTy);
15991     llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtfsf);
15992     return Builder.CreateCall(F, {Ops[0], Cast}, "");
15993   }
15994 
15995   case PPC::BI__builtin_ppc_swdiv_nochk:
15996   case PPC::BI__builtin_ppc_swdivs_nochk: {
15997     FastMathFlags FMF = Builder.getFastMathFlags();
15998     Builder.getFastMathFlags().setFast();
15999     Value *FDiv = Builder.CreateFDiv(Ops[0], Ops[1], "swdiv_nochk");
16000     Builder.getFastMathFlags() &= (FMF);
16001     return FDiv;
16002   }
16003   case PPC::BI__builtin_ppc_fric:
16004     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16005                            *this, E, Intrinsic::rint,
16006                            Intrinsic::experimental_constrained_rint))
16007         .getScalarVal();
16008   case PPC::BI__builtin_ppc_frim:
16009   case PPC::BI__builtin_ppc_frims:
16010     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16011                            *this, E, Intrinsic::floor,
16012                            Intrinsic::experimental_constrained_floor))
16013         .getScalarVal();
16014   case PPC::BI__builtin_ppc_frin:
16015   case PPC::BI__builtin_ppc_frins:
16016     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16017                            *this, E, Intrinsic::round,
16018                            Intrinsic::experimental_constrained_round))
16019         .getScalarVal();
16020   case PPC::BI__builtin_ppc_frip:
16021   case PPC::BI__builtin_ppc_frips:
16022     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16023                            *this, E, Intrinsic::ceil,
16024                            Intrinsic::experimental_constrained_ceil))
16025         .getScalarVal();
16026   case PPC::BI__builtin_ppc_friz:
16027   case PPC::BI__builtin_ppc_frizs:
16028     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16029                            *this, E, Intrinsic::trunc,
16030                            Intrinsic::experimental_constrained_trunc))
16031         .getScalarVal();
16032   case PPC::BI__builtin_ppc_fsqrt:
16033   case PPC::BI__builtin_ppc_fsqrts:
16034     return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(
16035                            *this, E, Intrinsic::sqrt,
16036                            Intrinsic::experimental_constrained_sqrt))
16037         .getScalarVal();
16038   }
16039 }
16040 
16041 namespace {
16042 // If \p E is not null pointer, insert address space cast to match return
16043 // type of \p E if necessary.
16044 Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF,
16045                              const CallExpr *E = nullptr) {
16046   auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr);
16047   auto *Call = CGF.Builder.CreateCall(F);
16048   Call->addRetAttr(
16049       Attribute::getWithDereferenceableBytes(Call->getContext(), 64));
16050   Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(4)));
16051   if (!E)
16052     return Call;
16053   QualType BuiltinRetType = E->getType();
16054   auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType));
16055   if (RetTy == Call->getType())
16056     return Call;
16057   return CGF.Builder.CreateAddrSpaceCast(Call, RetTy);
16058 }
16059 
16060 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
16061 Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) {
16062   const unsigned XOffset = 4;
16063   auto *DP = EmitAMDGPUDispatchPtr(CGF);
16064   // Indexing the HSA kernel_dispatch_packet struct.
16065   auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 2);
16066   auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
16067   auto *DstTy =
16068       CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
16069   auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
16070   auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(2)));
16071   llvm::MDBuilder MDHelper(CGF.getLLVMContext());
16072   llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1),
16073       APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1));
16074   LD->setMetadata(llvm::LLVMContext::MD_range, RNode);
16075   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
16076       llvm::MDNode::get(CGF.getLLVMContext(), None));
16077   return LD;
16078 }
16079 
16080 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively.
16081 Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) {
16082   const unsigned XOffset = 12;
16083   auto *DP = EmitAMDGPUDispatchPtr(CGF);
16084   // Indexing the HSA kernel_dispatch_packet struct.
16085   auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4);
16086   auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset);
16087   auto *DstTy =
16088       CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace());
16089   auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy);
16090   auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(4)));
16091   LD->setMetadata(llvm::LLVMContext::MD_invariant_load,
16092                   llvm::MDNode::get(CGF.getLLVMContext(), None));
16093   return LD;
16094 }
16095 } // namespace
16096 
16097 // For processing memory ordering and memory scope arguments of various
16098 // amdgcn builtins.
16099 // \p Order takes a C++11 comptabile memory-ordering specifier and converts
16100 // it into LLVM's memory ordering specifier using atomic C ABI, and writes
16101 // to \p AO. \p Scope takes a const char * and converts it into AMDGCN
16102 // specific SyncScopeID and writes it to \p SSID.
16103 bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope,
16104                                               llvm::AtomicOrdering &AO,
16105                                               llvm::SyncScope::ID &SSID) {
16106   if (isa<llvm::ConstantInt>(Order)) {
16107     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
16108 
16109     // Map C11/C++11 memory ordering to LLVM memory ordering
16110     assert(llvm::isValidAtomicOrderingCABI(ord));
16111     switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
16112     case llvm::AtomicOrderingCABI::acquire:
16113     case llvm::AtomicOrderingCABI::consume:
16114       AO = llvm::AtomicOrdering::Acquire;
16115       break;
16116     case llvm::AtomicOrderingCABI::release:
16117       AO = llvm::AtomicOrdering::Release;
16118       break;
16119     case llvm::AtomicOrderingCABI::acq_rel:
16120       AO = llvm::AtomicOrdering::AcquireRelease;
16121       break;
16122     case llvm::AtomicOrderingCABI::seq_cst:
16123       AO = llvm::AtomicOrdering::SequentiallyConsistent;
16124       break;
16125     case llvm::AtomicOrderingCABI::relaxed:
16126       AO = llvm::AtomicOrdering::Monotonic;
16127       break;
16128     }
16129 
16130     StringRef scp;
16131     llvm::getConstantStringInfo(Scope, scp);
16132     SSID = getLLVMContext().getOrInsertSyncScopeID(scp);
16133     return true;
16134   }
16135   return false;
16136 }
16137 
16138 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
16139                                               const CallExpr *E) {
16140   llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent;
16141   llvm::SyncScope::ID SSID;
16142   switch (BuiltinID) {
16143   case AMDGPU::BI__builtin_amdgcn_div_scale:
16144   case AMDGPU::BI__builtin_amdgcn_div_scalef: {
16145     // Translate from the intrinsics's struct return to the builtin's out
16146     // argument.
16147 
16148     Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
16149 
16150     llvm::Value *X = EmitScalarExpr(E->getArg(0));
16151     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
16152     llvm::Value *Z = EmitScalarExpr(E->getArg(2));
16153 
16154     llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
16155                                            X->getType());
16156 
16157     llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
16158 
16159     llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
16160     llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
16161 
16162     llvm::Type *RealFlagType
16163       = FlagOutPtr.getPointer()->getType()->getPointerElementType();
16164 
16165     llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
16166     Builder.CreateStore(FlagExt, FlagOutPtr);
16167     return Result;
16168   }
16169   case AMDGPU::BI__builtin_amdgcn_div_fmas:
16170   case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
16171     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16172     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16173     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16174     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
16175 
16176     llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
16177                                       Src0->getType());
16178     llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
16179     return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
16180   }
16181 
16182   case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
16183     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
16184   case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
16185     return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
16186   case AMDGPU::BI__builtin_amdgcn_mov_dpp:
16187   case AMDGPU::BI__builtin_amdgcn_update_dpp: {
16188     llvm::SmallVector<llvm::Value *, 6> Args;
16189     for (unsigned I = 0; I != E->getNumArgs(); ++I)
16190       Args.push_back(EmitScalarExpr(E->getArg(I)));
16191     assert(Args.size() == 5 || Args.size() == 6);
16192     if (Args.size() == 5)
16193       Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
16194     Function *F =
16195         CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
16196     return Builder.CreateCall(F, Args);
16197   }
16198   case AMDGPU::BI__builtin_amdgcn_div_fixup:
16199   case AMDGPU::BI__builtin_amdgcn_div_fixupf:
16200   case AMDGPU::BI__builtin_amdgcn_div_fixuph:
16201     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
16202   case AMDGPU::BI__builtin_amdgcn_trig_preop:
16203   case AMDGPU::BI__builtin_amdgcn_trig_preopf:
16204     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
16205   case AMDGPU::BI__builtin_amdgcn_rcp:
16206   case AMDGPU::BI__builtin_amdgcn_rcpf:
16207   case AMDGPU::BI__builtin_amdgcn_rcph:
16208     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
16209   case AMDGPU::BI__builtin_amdgcn_sqrt:
16210   case AMDGPU::BI__builtin_amdgcn_sqrtf:
16211   case AMDGPU::BI__builtin_amdgcn_sqrth:
16212     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt);
16213   case AMDGPU::BI__builtin_amdgcn_rsq:
16214   case AMDGPU::BI__builtin_amdgcn_rsqf:
16215   case AMDGPU::BI__builtin_amdgcn_rsqh:
16216     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
16217   case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
16218   case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
16219     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
16220   case AMDGPU::BI__builtin_amdgcn_sinf:
16221   case AMDGPU::BI__builtin_amdgcn_sinh:
16222     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
16223   case AMDGPU::BI__builtin_amdgcn_cosf:
16224   case AMDGPU::BI__builtin_amdgcn_cosh:
16225     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
16226   case AMDGPU::BI__builtin_amdgcn_dispatch_ptr:
16227     return EmitAMDGPUDispatchPtr(*this, E);
16228   case AMDGPU::BI__builtin_amdgcn_log_clampf:
16229     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
16230   case AMDGPU::BI__builtin_amdgcn_ldexp:
16231   case AMDGPU::BI__builtin_amdgcn_ldexpf:
16232   case AMDGPU::BI__builtin_amdgcn_ldexph:
16233     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
16234   case AMDGPU::BI__builtin_amdgcn_frexp_mant:
16235   case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
16236   case AMDGPU::BI__builtin_amdgcn_frexp_manth:
16237     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
16238   case AMDGPU::BI__builtin_amdgcn_frexp_exp:
16239   case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
16240     Value *Src0 = EmitScalarExpr(E->getArg(0));
16241     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
16242                                 { Builder.getInt32Ty(), Src0->getType() });
16243     return Builder.CreateCall(F, Src0);
16244   }
16245   case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
16246     Value *Src0 = EmitScalarExpr(E->getArg(0));
16247     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
16248                                 { Builder.getInt16Ty(), Src0->getType() });
16249     return Builder.CreateCall(F, Src0);
16250   }
16251   case AMDGPU::BI__builtin_amdgcn_fract:
16252   case AMDGPU::BI__builtin_amdgcn_fractf:
16253   case AMDGPU::BI__builtin_amdgcn_fracth:
16254     return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
16255   case AMDGPU::BI__builtin_amdgcn_lerp:
16256     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
16257   case AMDGPU::BI__builtin_amdgcn_ubfe:
16258     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
16259   case AMDGPU::BI__builtin_amdgcn_sbfe:
16260     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
16261   case AMDGPU::BI__builtin_amdgcn_uicmp:
16262   case AMDGPU::BI__builtin_amdgcn_uicmpl:
16263   case AMDGPU::BI__builtin_amdgcn_sicmp:
16264   case AMDGPU::BI__builtin_amdgcn_sicmpl: {
16265     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16266     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16267     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16268 
16269     // FIXME-GFX10: How should 32 bit mask be handled?
16270     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
16271       { Builder.getInt64Ty(), Src0->getType() });
16272     return Builder.CreateCall(F, { Src0, Src1, Src2 });
16273   }
16274   case AMDGPU::BI__builtin_amdgcn_fcmp:
16275   case AMDGPU::BI__builtin_amdgcn_fcmpf: {
16276     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16277     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16278     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16279 
16280     // FIXME-GFX10: How should 32 bit mask be handled?
16281     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
16282       { Builder.getInt64Ty(), Src0->getType() });
16283     return Builder.CreateCall(F, { Src0, Src1, Src2 });
16284   }
16285   case AMDGPU::BI__builtin_amdgcn_class:
16286   case AMDGPU::BI__builtin_amdgcn_classf:
16287   case AMDGPU::BI__builtin_amdgcn_classh:
16288     return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
16289   case AMDGPU::BI__builtin_amdgcn_fmed3f:
16290   case AMDGPU::BI__builtin_amdgcn_fmed3h:
16291     return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
16292   case AMDGPU::BI__builtin_amdgcn_ds_append:
16293   case AMDGPU::BI__builtin_amdgcn_ds_consume: {
16294     Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
16295       Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
16296     Value *Src0 = EmitScalarExpr(E->getArg(0));
16297     Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
16298     return Builder.CreateCall(F, { Src0, Builder.getFalse() });
16299   }
16300   case AMDGPU::BI__builtin_amdgcn_ds_faddf:
16301   case AMDGPU::BI__builtin_amdgcn_ds_fminf:
16302   case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: {
16303     Intrinsic::ID Intrin;
16304     switch (BuiltinID) {
16305     case AMDGPU::BI__builtin_amdgcn_ds_faddf:
16306       Intrin = Intrinsic::amdgcn_ds_fadd;
16307       break;
16308     case AMDGPU::BI__builtin_amdgcn_ds_fminf:
16309       Intrin = Intrinsic::amdgcn_ds_fmin;
16310       break;
16311     case AMDGPU::BI__builtin_amdgcn_ds_fmaxf:
16312       Intrin = Intrinsic::amdgcn_ds_fmax;
16313       break;
16314     }
16315     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16316     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16317     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16318     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
16319     llvm::Value *Src4 = EmitScalarExpr(E->getArg(4));
16320     llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() });
16321     llvm::FunctionType *FTy = F->getFunctionType();
16322     llvm::Type *PTy = FTy->getParamType(0);
16323     Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy);
16324     return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 });
16325   }
16326   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
16327   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
16328   case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
16329   case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
16330   case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
16331   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
16332   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
16333   case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64: {
16334     Intrinsic::ID IID;
16335     llvm::Type *ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
16336     switch (BuiltinID) {
16337     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32:
16338       ArgTy = llvm::Type::getFloatTy(getLLVMContext());
16339       IID = Intrinsic::amdgcn_global_atomic_fadd;
16340       break;
16341     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16:
16342       ArgTy = llvm::FixedVectorType::get(
16343           llvm::Type::getHalfTy(getLLVMContext()), 2);
16344       IID = Intrinsic::amdgcn_global_atomic_fadd;
16345       break;
16346     case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64:
16347       IID = Intrinsic::amdgcn_global_atomic_fadd;
16348       break;
16349     case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64:
16350       IID = Intrinsic::amdgcn_global_atomic_fmin;
16351       break;
16352     case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64:
16353       IID = Intrinsic::amdgcn_global_atomic_fmax;
16354       break;
16355     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64:
16356       IID = Intrinsic::amdgcn_flat_atomic_fadd;
16357       break;
16358     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64:
16359       IID = Intrinsic::amdgcn_flat_atomic_fmin;
16360       break;
16361     case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64:
16362       IID = Intrinsic::amdgcn_flat_atomic_fmax;
16363       break;
16364     }
16365     llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
16366     llvm::Value *Val = EmitScalarExpr(E->getArg(1));
16367     llvm::Function *F =
16368         CGM.getIntrinsic(IID, {ArgTy, Addr->getType(), Val->getType()});
16369     return Builder.CreateCall(F, {Addr, Val});
16370   }
16371   case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
16372   case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32: {
16373     Intrinsic::ID IID;
16374     llvm::Type *ArgTy;
16375     switch (BuiltinID) {
16376     case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32:
16377       ArgTy = llvm::Type::getFloatTy(getLLVMContext());
16378       IID = Intrinsic::amdgcn_ds_fadd;
16379       break;
16380     case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64:
16381       ArgTy = llvm::Type::getDoubleTy(getLLVMContext());
16382       IID = Intrinsic::amdgcn_ds_fadd;
16383       break;
16384     }
16385     llvm::Value *Addr = EmitScalarExpr(E->getArg(0));
16386     llvm::Value *Val = EmitScalarExpr(E->getArg(1));
16387     llvm::Constant *ZeroI32 = llvm::ConstantInt::getIntegerValue(
16388         llvm::Type::getInt32Ty(getLLVMContext()), APInt(32, 0, true));
16389     llvm::Constant *ZeroI1 = llvm::ConstantInt::getIntegerValue(
16390         llvm::Type::getInt1Ty(getLLVMContext()), APInt(1, 0));
16391     llvm::Function *F = CGM.getIntrinsic(IID, {ArgTy});
16392     return Builder.CreateCall(F, {Addr, Val, ZeroI32, ZeroI32, ZeroI1});
16393   }
16394   case AMDGPU::BI__builtin_amdgcn_read_exec: {
16395     CallInst *CI = cast<CallInst>(
16396       EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec"));
16397     CI->setConvergent();
16398     return CI;
16399   }
16400   case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
16401   case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
16402     StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
16403       "exec_lo" : "exec_hi";
16404     CallInst *CI = cast<CallInst>(
16405       EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName));
16406     CI->setConvergent();
16407     return CI;
16408   }
16409   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray:
16410   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_h:
16411   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_l:
16412   case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_lh: {
16413     llvm::Value *NodePtr = EmitScalarExpr(E->getArg(0));
16414     llvm::Value *RayExtent = EmitScalarExpr(E->getArg(1));
16415     llvm::Value *RayOrigin = EmitScalarExpr(E->getArg(2));
16416     llvm::Value *RayDir = EmitScalarExpr(E->getArg(3));
16417     llvm::Value *RayInverseDir = EmitScalarExpr(E->getArg(4));
16418     llvm::Value *TextureDescr = EmitScalarExpr(E->getArg(5));
16419 
16420     Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_image_bvh_intersect_ray,
16421                                    {NodePtr->getType(), RayDir->getType()});
16422     return Builder.CreateCall(F, {NodePtr, RayExtent, RayOrigin, RayDir,
16423                                   RayInverseDir, TextureDescr});
16424   }
16425 
16426   // amdgcn workitem
16427   case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
16428     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
16429   case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
16430     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
16431   case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
16432     return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
16433 
16434   // amdgcn workgroup size
16435   case AMDGPU::BI__builtin_amdgcn_workgroup_size_x:
16436     return EmitAMDGPUWorkGroupSize(*this, 0);
16437   case AMDGPU::BI__builtin_amdgcn_workgroup_size_y:
16438     return EmitAMDGPUWorkGroupSize(*this, 1);
16439   case AMDGPU::BI__builtin_amdgcn_workgroup_size_z:
16440     return EmitAMDGPUWorkGroupSize(*this, 2);
16441 
16442   // amdgcn grid size
16443   case AMDGPU::BI__builtin_amdgcn_grid_size_x:
16444     return EmitAMDGPUGridSize(*this, 0);
16445   case AMDGPU::BI__builtin_amdgcn_grid_size_y:
16446     return EmitAMDGPUGridSize(*this, 1);
16447   case AMDGPU::BI__builtin_amdgcn_grid_size_z:
16448     return EmitAMDGPUGridSize(*this, 2);
16449 
16450   // r600 intrinsics
16451   case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
16452   case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
16453     return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
16454   case AMDGPU::BI__builtin_r600_read_tidig_x:
16455     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
16456   case AMDGPU::BI__builtin_r600_read_tidig_y:
16457     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
16458   case AMDGPU::BI__builtin_r600_read_tidig_z:
16459     return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
16460   case AMDGPU::BI__builtin_amdgcn_alignbit: {
16461     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
16462     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
16463     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
16464     Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType());
16465     return Builder.CreateCall(F, { Src0, Src1, Src2 });
16466   }
16467 
16468   case AMDGPU::BI__builtin_amdgcn_fence: {
16469     if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)),
16470                                 EmitScalarExpr(E->getArg(1)), AO, SSID))
16471       return Builder.CreateFence(AO, SSID);
16472     LLVM_FALLTHROUGH;
16473   }
16474   case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
16475   case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
16476   case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
16477   case AMDGPU::BI__builtin_amdgcn_atomic_dec64: {
16478     unsigned BuiltinAtomicOp;
16479     llvm::Type *ResultType = ConvertType(E->getType());
16480 
16481     switch (BuiltinID) {
16482     case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
16483     case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
16484       BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc;
16485       break;
16486     case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
16487     case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
16488       BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec;
16489       break;
16490     }
16491 
16492     Value *Ptr = EmitScalarExpr(E->getArg(0));
16493     Value *Val = EmitScalarExpr(E->getArg(1));
16494 
16495     llvm::Function *F =
16496         CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()});
16497 
16498     if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)),
16499                                 EmitScalarExpr(E->getArg(3)), AO, SSID)) {
16500 
16501       // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and
16502       // scope as unsigned values
16503       Value *MemOrder = Builder.getInt32(static_cast<int>(AO));
16504       Value *MemScope = Builder.getInt32(static_cast<int>(SSID));
16505 
16506       QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
16507       bool Volatile =
16508           PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
16509       Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile));
16510 
16511       return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile});
16512     }
16513     LLVM_FALLTHROUGH;
16514   }
16515   default:
16516     return nullptr;
16517   }
16518 }
16519 
16520 /// Handle a SystemZ function in which the final argument is a pointer
16521 /// to an int that receives the post-instruction CC value.  At the LLVM level
16522 /// this is represented as a function that returns a {result, cc} pair.
16523 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
16524                                          unsigned IntrinsicID,
16525                                          const CallExpr *E) {
16526   unsigned NumArgs = E->getNumArgs() - 1;
16527   SmallVector<Value *, 8> Args(NumArgs);
16528   for (unsigned I = 0; I < NumArgs; ++I)
16529     Args[I] = CGF.EmitScalarExpr(E->getArg(I));
16530   Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
16531   Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
16532   Value *Call = CGF.Builder.CreateCall(F, Args);
16533   Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
16534   CGF.Builder.CreateStore(CC, CCPtr);
16535   return CGF.Builder.CreateExtractValue(Call, 0);
16536 }
16537 
16538 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
16539                                                const CallExpr *E) {
16540   switch (BuiltinID) {
16541   case SystemZ::BI__builtin_tbegin: {
16542     Value *TDB = EmitScalarExpr(E->getArg(0));
16543     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
16544     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
16545     return Builder.CreateCall(F, {TDB, Control});
16546   }
16547   case SystemZ::BI__builtin_tbegin_nofloat: {
16548     Value *TDB = EmitScalarExpr(E->getArg(0));
16549     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
16550     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
16551     return Builder.CreateCall(F, {TDB, Control});
16552   }
16553   case SystemZ::BI__builtin_tbeginc: {
16554     Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
16555     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
16556     Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
16557     return Builder.CreateCall(F, {TDB, Control});
16558   }
16559   case SystemZ::BI__builtin_tabort: {
16560     Value *Data = EmitScalarExpr(E->getArg(0));
16561     Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
16562     return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
16563   }
16564   case SystemZ::BI__builtin_non_tx_store: {
16565     Value *Address = EmitScalarExpr(E->getArg(0));
16566     Value *Data = EmitScalarExpr(E->getArg(1));
16567     Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
16568     return Builder.CreateCall(F, {Data, Address});
16569   }
16570 
16571   // Vector builtins.  Note that most vector builtins are mapped automatically
16572   // to target-specific LLVM intrinsics.  The ones handled specially here can
16573   // be represented via standard LLVM IR, which is preferable to enable common
16574   // LLVM optimizations.
16575 
16576   case SystemZ::BI__builtin_s390_vpopctb:
16577   case SystemZ::BI__builtin_s390_vpopcth:
16578   case SystemZ::BI__builtin_s390_vpopctf:
16579   case SystemZ::BI__builtin_s390_vpopctg: {
16580     llvm::Type *ResultType = ConvertType(E->getType());
16581     Value *X = EmitScalarExpr(E->getArg(0));
16582     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
16583     return Builder.CreateCall(F, X);
16584   }
16585 
16586   case SystemZ::BI__builtin_s390_vclzb:
16587   case SystemZ::BI__builtin_s390_vclzh:
16588   case SystemZ::BI__builtin_s390_vclzf:
16589   case SystemZ::BI__builtin_s390_vclzg: {
16590     llvm::Type *ResultType = ConvertType(E->getType());
16591     Value *X = EmitScalarExpr(E->getArg(0));
16592     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
16593     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
16594     return Builder.CreateCall(F, {X, Undef});
16595   }
16596 
16597   case SystemZ::BI__builtin_s390_vctzb:
16598   case SystemZ::BI__builtin_s390_vctzh:
16599   case SystemZ::BI__builtin_s390_vctzf:
16600   case SystemZ::BI__builtin_s390_vctzg: {
16601     llvm::Type *ResultType = ConvertType(E->getType());
16602     Value *X = EmitScalarExpr(E->getArg(0));
16603     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
16604     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
16605     return Builder.CreateCall(F, {X, Undef});
16606   }
16607 
16608   case SystemZ::BI__builtin_s390_vfsqsb:
16609   case SystemZ::BI__builtin_s390_vfsqdb: {
16610     llvm::Type *ResultType = ConvertType(E->getType());
16611     Value *X = EmitScalarExpr(E->getArg(0));
16612     if (Builder.getIsFPConstrained()) {
16613       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType);
16614       return Builder.CreateConstrainedFPCall(F, { X });
16615     } else {
16616       Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
16617       return Builder.CreateCall(F, X);
16618     }
16619   }
16620   case SystemZ::BI__builtin_s390_vfmasb:
16621   case SystemZ::BI__builtin_s390_vfmadb: {
16622     llvm::Type *ResultType = ConvertType(E->getType());
16623     Value *X = EmitScalarExpr(E->getArg(0));
16624     Value *Y = EmitScalarExpr(E->getArg(1));
16625     Value *Z = EmitScalarExpr(E->getArg(2));
16626     if (Builder.getIsFPConstrained()) {
16627       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16628       return Builder.CreateConstrainedFPCall(F, {X, Y, Z});
16629     } else {
16630       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16631       return Builder.CreateCall(F, {X, Y, Z});
16632     }
16633   }
16634   case SystemZ::BI__builtin_s390_vfmssb:
16635   case SystemZ::BI__builtin_s390_vfmsdb: {
16636     llvm::Type *ResultType = ConvertType(E->getType());
16637     Value *X = EmitScalarExpr(E->getArg(0));
16638     Value *Y = EmitScalarExpr(E->getArg(1));
16639     Value *Z = EmitScalarExpr(E->getArg(2));
16640     if (Builder.getIsFPConstrained()) {
16641       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16642       return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
16643     } else {
16644       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16645       return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")});
16646     }
16647   }
16648   case SystemZ::BI__builtin_s390_vfnmasb:
16649   case SystemZ::BI__builtin_s390_vfnmadb: {
16650     llvm::Type *ResultType = ConvertType(E->getType());
16651     Value *X = EmitScalarExpr(E->getArg(0));
16652     Value *Y = EmitScalarExpr(E->getArg(1));
16653     Value *Z = EmitScalarExpr(E->getArg(2));
16654     if (Builder.getIsFPConstrained()) {
16655       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16656       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y,  Z}), "neg");
16657     } else {
16658       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16659       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg");
16660     }
16661   }
16662   case SystemZ::BI__builtin_s390_vfnmssb:
16663   case SystemZ::BI__builtin_s390_vfnmsdb: {
16664     llvm::Type *ResultType = ConvertType(E->getType());
16665     Value *X = EmitScalarExpr(E->getArg(0));
16666     Value *Y = EmitScalarExpr(E->getArg(1));
16667     Value *Z = EmitScalarExpr(E->getArg(2));
16668     if (Builder.getIsFPConstrained()) {
16669       Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType);
16670       Value *NegZ = Builder.CreateFNeg(Z, "sub");
16671       return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ}));
16672     } else {
16673       Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
16674       Value *NegZ = Builder.CreateFNeg(Z, "neg");
16675       return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ}));
16676     }
16677   }
16678   case SystemZ::BI__builtin_s390_vflpsb:
16679   case SystemZ::BI__builtin_s390_vflpdb: {
16680     llvm::Type *ResultType = ConvertType(E->getType());
16681     Value *X = EmitScalarExpr(E->getArg(0));
16682     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
16683     return Builder.CreateCall(F, X);
16684   }
16685   case SystemZ::BI__builtin_s390_vflnsb:
16686   case SystemZ::BI__builtin_s390_vflndb: {
16687     llvm::Type *ResultType = ConvertType(E->getType());
16688     Value *X = EmitScalarExpr(E->getArg(0));
16689     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
16690     return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg");
16691   }
16692   case SystemZ::BI__builtin_s390_vfisb:
16693   case SystemZ::BI__builtin_s390_vfidb: {
16694     llvm::Type *ResultType = ConvertType(E->getType());
16695     Value *X = EmitScalarExpr(E->getArg(0));
16696     // Constant-fold the M4 and M5 mask arguments.
16697     llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext());
16698     llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext());
16699     // Check whether this instance can be represented via a LLVM standard
16700     // intrinsic.  We only support some combinations of M4 and M5.
16701     Intrinsic::ID ID = Intrinsic::not_intrinsic;
16702     Intrinsic::ID CI;
16703     switch (M4.getZExtValue()) {
16704     default: break;
16705     case 0:  // IEEE-inexact exception allowed
16706       switch (M5.getZExtValue()) {
16707       default: break;
16708       case 0: ID = Intrinsic::rint;
16709               CI = Intrinsic::experimental_constrained_rint; break;
16710       }
16711       break;
16712     case 4:  // IEEE-inexact exception suppressed
16713       switch (M5.getZExtValue()) {
16714       default: break;
16715       case 0: ID = Intrinsic::nearbyint;
16716               CI = Intrinsic::experimental_constrained_nearbyint; break;
16717       case 1: ID = Intrinsic::round;
16718               CI = Intrinsic::experimental_constrained_round; break;
16719       case 5: ID = Intrinsic::trunc;
16720               CI = Intrinsic::experimental_constrained_trunc; break;
16721       case 6: ID = Intrinsic::ceil;
16722               CI = Intrinsic::experimental_constrained_ceil; break;
16723       case 7: ID = Intrinsic::floor;
16724               CI = Intrinsic::experimental_constrained_floor; break;
16725       }
16726       break;
16727     }
16728     if (ID != Intrinsic::not_intrinsic) {
16729       if (Builder.getIsFPConstrained()) {
16730         Function *F = CGM.getIntrinsic(CI, ResultType);
16731         return Builder.CreateConstrainedFPCall(F, X);
16732       } else {
16733         Function *F = CGM.getIntrinsic(ID, ResultType);
16734         return Builder.CreateCall(F, X);
16735       }
16736     }
16737     switch (BuiltinID) { // FIXME: constrained version?
16738       case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
16739       case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
16740       default: llvm_unreachable("Unknown BuiltinID");
16741     }
16742     Function *F = CGM.getIntrinsic(ID);
16743     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
16744     Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
16745     return Builder.CreateCall(F, {X, M4Value, M5Value});
16746   }
16747   case SystemZ::BI__builtin_s390_vfmaxsb:
16748   case SystemZ::BI__builtin_s390_vfmaxdb: {
16749     llvm::Type *ResultType = ConvertType(E->getType());
16750     Value *X = EmitScalarExpr(E->getArg(0));
16751     Value *Y = EmitScalarExpr(E->getArg(1));
16752     // Constant-fold the M4 mask argument.
16753     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
16754     // Check whether this instance can be represented via a LLVM standard
16755     // intrinsic.  We only support some values of M4.
16756     Intrinsic::ID ID = Intrinsic::not_intrinsic;
16757     Intrinsic::ID CI;
16758     switch (M4.getZExtValue()) {
16759     default: break;
16760     case 4: ID = Intrinsic::maxnum;
16761             CI = Intrinsic::experimental_constrained_maxnum; break;
16762     }
16763     if (ID != Intrinsic::not_intrinsic) {
16764       if (Builder.getIsFPConstrained()) {
16765         Function *F = CGM.getIntrinsic(CI, ResultType);
16766         return Builder.CreateConstrainedFPCall(F, {X, Y});
16767       } else {
16768         Function *F = CGM.getIntrinsic(ID, ResultType);
16769         return Builder.CreateCall(F, {X, Y});
16770       }
16771     }
16772     switch (BuiltinID) {
16773       case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
16774       case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
16775       default: llvm_unreachable("Unknown BuiltinID");
16776     }
16777     Function *F = CGM.getIntrinsic(ID);
16778     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
16779     return Builder.CreateCall(F, {X, Y, M4Value});
16780   }
16781   case SystemZ::BI__builtin_s390_vfminsb:
16782   case SystemZ::BI__builtin_s390_vfmindb: {
16783     llvm::Type *ResultType = ConvertType(E->getType());
16784     Value *X = EmitScalarExpr(E->getArg(0));
16785     Value *Y = EmitScalarExpr(E->getArg(1));
16786     // Constant-fold the M4 mask argument.
16787     llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext());
16788     // Check whether this instance can be represented via a LLVM standard
16789     // intrinsic.  We only support some values of M4.
16790     Intrinsic::ID ID = Intrinsic::not_intrinsic;
16791     Intrinsic::ID CI;
16792     switch (M4.getZExtValue()) {
16793     default: break;
16794     case 4: ID = Intrinsic::minnum;
16795             CI = Intrinsic::experimental_constrained_minnum; break;
16796     }
16797     if (ID != Intrinsic::not_intrinsic) {
16798       if (Builder.getIsFPConstrained()) {
16799         Function *F = CGM.getIntrinsic(CI, ResultType);
16800         return Builder.CreateConstrainedFPCall(F, {X, Y});
16801       } else {
16802         Function *F = CGM.getIntrinsic(ID, ResultType);
16803         return Builder.CreateCall(F, {X, Y});
16804       }
16805     }
16806     switch (BuiltinID) {
16807       case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
16808       case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
16809       default: llvm_unreachable("Unknown BuiltinID");
16810     }
16811     Function *F = CGM.getIntrinsic(ID);
16812     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
16813     return Builder.CreateCall(F, {X, Y, M4Value});
16814   }
16815 
16816   case SystemZ::BI__builtin_s390_vlbrh:
16817   case SystemZ::BI__builtin_s390_vlbrf:
16818   case SystemZ::BI__builtin_s390_vlbrg: {
16819     llvm::Type *ResultType = ConvertType(E->getType());
16820     Value *X = EmitScalarExpr(E->getArg(0));
16821     Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
16822     return Builder.CreateCall(F, X);
16823   }
16824 
16825   // Vector intrinsics that output the post-instruction CC value.
16826 
16827 #define INTRINSIC_WITH_CC(NAME) \
16828     case SystemZ::BI__builtin_##NAME: \
16829       return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
16830 
16831   INTRINSIC_WITH_CC(s390_vpkshs);
16832   INTRINSIC_WITH_CC(s390_vpksfs);
16833   INTRINSIC_WITH_CC(s390_vpksgs);
16834 
16835   INTRINSIC_WITH_CC(s390_vpklshs);
16836   INTRINSIC_WITH_CC(s390_vpklsfs);
16837   INTRINSIC_WITH_CC(s390_vpklsgs);
16838 
16839   INTRINSIC_WITH_CC(s390_vceqbs);
16840   INTRINSIC_WITH_CC(s390_vceqhs);
16841   INTRINSIC_WITH_CC(s390_vceqfs);
16842   INTRINSIC_WITH_CC(s390_vceqgs);
16843 
16844   INTRINSIC_WITH_CC(s390_vchbs);
16845   INTRINSIC_WITH_CC(s390_vchhs);
16846   INTRINSIC_WITH_CC(s390_vchfs);
16847   INTRINSIC_WITH_CC(s390_vchgs);
16848 
16849   INTRINSIC_WITH_CC(s390_vchlbs);
16850   INTRINSIC_WITH_CC(s390_vchlhs);
16851   INTRINSIC_WITH_CC(s390_vchlfs);
16852   INTRINSIC_WITH_CC(s390_vchlgs);
16853 
16854   INTRINSIC_WITH_CC(s390_vfaebs);
16855   INTRINSIC_WITH_CC(s390_vfaehs);
16856   INTRINSIC_WITH_CC(s390_vfaefs);
16857 
16858   INTRINSIC_WITH_CC(s390_vfaezbs);
16859   INTRINSIC_WITH_CC(s390_vfaezhs);
16860   INTRINSIC_WITH_CC(s390_vfaezfs);
16861 
16862   INTRINSIC_WITH_CC(s390_vfeebs);
16863   INTRINSIC_WITH_CC(s390_vfeehs);
16864   INTRINSIC_WITH_CC(s390_vfeefs);
16865 
16866   INTRINSIC_WITH_CC(s390_vfeezbs);
16867   INTRINSIC_WITH_CC(s390_vfeezhs);
16868   INTRINSIC_WITH_CC(s390_vfeezfs);
16869 
16870   INTRINSIC_WITH_CC(s390_vfenebs);
16871   INTRINSIC_WITH_CC(s390_vfenehs);
16872   INTRINSIC_WITH_CC(s390_vfenefs);
16873 
16874   INTRINSIC_WITH_CC(s390_vfenezbs);
16875   INTRINSIC_WITH_CC(s390_vfenezhs);
16876   INTRINSIC_WITH_CC(s390_vfenezfs);
16877 
16878   INTRINSIC_WITH_CC(s390_vistrbs);
16879   INTRINSIC_WITH_CC(s390_vistrhs);
16880   INTRINSIC_WITH_CC(s390_vistrfs);
16881 
16882   INTRINSIC_WITH_CC(s390_vstrcbs);
16883   INTRINSIC_WITH_CC(s390_vstrchs);
16884   INTRINSIC_WITH_CC(s390_vstrcfs);
16885 
16886   INTRINSIC_WITH_CC(s390_vstrczbs);
16887   INTRINSIC_WITH_CC(s390_vstrczhs);
16888   INTRINSIC_WITH_CC(s390_vstrczfs);
16889 
16890   INTRINSIC_WITH_CC(s390_vfcesbs);
16891   INTRINSIC_WITH_CC(s390_vfcedbs);
16892   INTRINSIC_WITH_CC(s390_vfchsbs);
16893   INTRINSIC_WITH_CC(s390_vfchdbs);
16894   INTRINSIC_WITH_CC(s390_vfchesbs);
16895   INTRINSIC_WITH_CC(s390_vfchedbs);
16896 
16897   INTRINSIC_WITH_CC(s390_vftcisb);
16898   INTRINSIC_WITH_CC(s390_vftcidb);
16899 
16900   INTRINSIC_WITH_CC(s390_vstrsb);
16901   INTRINSIC_WITH_CC(s390_vstrsh);
16902   INTRINSIC_WITH_CC(s390_vstrsf);
16903 
16904   INTRINSIC_WITH_CC(s390_vstrszb);
16905   INTRINSIC_WITH_CC(s390_vstrszh);
16906   INTRINSIC_WITH_CC(s390_vstrszf);
16907 
16908 #undef INTRINSIC_WITH_CC
16909 
16910   default:
16911     return nullptr;
16912   }
16913 }
16914 
16915 namespace {
16916 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
16917 struct NVPTXMmaLdstInfo {
16918   unsigned NumResults;  // Number of elements to load/store
16919   // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
16920   unsigned IID_col;
16921   unsigned IID_row;
16922 };
16923 
16924 #define MMA_INTR(geom_op_type, layout) \
16925   Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
16926 #define MMA_LDST(n, geom_op_type)                                              \
16927   { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
16928 
16929 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
16930   switch (BuiltinID) {
16931   // FP MMA loads
16932   case NVPTX::BI__hmma_m16n16k16_ld_a:
16933     return MMA_LDST(8, m16n16k16_load_a_f16);
16934   case NVPTX::BI__hmma_m16n16k16_ld_b:
16935     return MMA_LDST(8, m16n16k16_load_b_f16);
16936   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
16937     return MMA_LDST(4, m16n16k16_load_c_f16);
16938   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
16939     return MMA_LDST(8, m16n16k16_load_c_f32);
16940   case NVPTX::BI__hmma_m32n8k16_ld_a:
16941     return MMA_LDST(8, m32n8k16_load_a_f16);
16942   case NVPTX::BI__hmma_m32n8k16_ld_b:
16943     return MMA_LDST(8, m32n8k16_load_b_f16);
16944   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
16945     return MMA_LDST(4, m32n8k16_load_c_f16);
16946   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
16947     return MMA_LDST(8, m32n8k16_load_c_f32);
16948   case NVPTX::BI__hmma_m8n32k16_ld_a:
16949     return MMA_LDST(8, m8n32k16_load_a_f16);
16950   case NVPTX::BI__hmma_m8n32k16_ld_b:
16951     return MMA_LDST(8, m8n32k16_load_b_f16);
16952   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
16953     return MMA_LDST(4, m8n32k16_load_c_f16);
16954   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
16955     return MMA_LDST(8, m8n32k16_load_c_f32);
16956 
16957   // Integer MMA loads
16958   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
16959     return MMA_LDST(2, m16n16k16_load_a_s8);
16960   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
16961     return MMA_LDST(2, m16n16k16_load_a_u8);
16962   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
16963     return MMA_LDST(2, m16n16k16_load_b_s8);
16964   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
16965     return MMA_LDST(2, m16n16k16_load_b_u8);
16966   case NVPTX::BI__imma_m16n16k16_ld_c:
16967     return MMA_LDST(8, m16n16k16_load_c_s32);
16968   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
16969     return MMA_LDST(4, m32n8k16_load_a_s8);
16970   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
16971     return MMA_LDST(4, m32n8k16_load_a_u8);
16972   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
16973     return MMA_LDST(1, m32n8k16_load_b_s8);
16974   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
16975     return MMA_LDST(1, m32n8k16_load_b_u8);
16976   case NVPTX::BI__imma_m32n8k16_ld_c:
16977     return MMA_LDST(8, m32n8k16_load_c_s32);
16978   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
16979     return MMA_LDST(1, m8n32k16_load_a_s8);
16980   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
16981     return MMA_LDST(1, m8n32k16_load_a_u8);
16982   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
16983     return MMA_LDST(4, m8n32k16_load_b_s8);
16984   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
16985     return MMA_LDST(4, m8n32k16_load_b_u8);
16986   case NVPTX::BI__imma_m8n32k16_ld_c:
16987     return MMA_LDST(8, m8n32k16_load_c_s32);
16988 
16989   // Sub-integer MMA loads.
16990   // Only row/col layout is supported by A/B fragments.
16991   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
16992     return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
16993   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
16994     return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
16995   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
16996     return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
16997   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
16998     return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
16999   case NVPTX::BI__imma_m8n8k32_ld_c:
17000     return MMA_LDST(2, m8n8k32_load_c_s32);
17001   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
17002     return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
17003   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
17004     return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
17005   case NVPTX::BI__bmma_m8n8k128_ld_c:
17006     return MMA_LDST(2, m8n8k128_load_c_s32);
17007 
17008   // Double MMA loads
17009   case NVPTX::BI__dmma_m8n8k4_ld_a:
17010     return MMA_LDST(1, m8n8k4_load_a_f64);
17011   case NVPTX::BI__dmma_m8n8k4_ld_b:
17012     return MMA_LDST(1, m8n8k4_load_b_f64);
17013   case NVPTX::BI__dmma_m8n8k4_ld_c:
17014     return MMA_LDST(2, m8n8k4_load_c_f64);
17015 
17016   // Alternate float MMA loads
17017   case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
17018     return MMA_LDST(4, m16n16k16_load_a_bf16);
17019   case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
17020     return MMA_LDST(4, m16n16k16_load_b_bf16);
17021   case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
17022     return MMA_LDST(2, m8n32k16_load_a_bf16);
17023   case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
17024     return MMA_LDST(8, m8n32k16_load_b_bf16);
17025   case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
17026     return MMA_LDST(8, m32n8k16_load_a_bf16);
17027   case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
17028     return MMA_LDST(2, m32n8k16_load_b_bf16);
17029   case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
17030     return MMA_LDST(4, m16n16k8_load_a_tf32);
17031   case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
17032     return MMA_LDST(2, m16n16k8_load_b_tf32);
17033   case NVPTX::BI__mma_tf32_m16n16k8_ld_c:
17034     return MMA_LDST(8, m16n16k8_load_c_f32);
17035 
17036   // NOTE: We need to follow inconsitent naming scheme used by NVCC.  Unlike
17037   // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
17038   // use fragment C for both loads and stores.
17039   // FP MMA stores.
17040   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
17041     return MMA_LDST(4, m16n16k16_store_d_f16);
17042   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
17043     return MMA_LDST(8, m16n16k16_store_d_f32);
17044   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
17045     return MMA_LDST(4, m32n8k16_store_d_f16);
17046   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
17047     return MMA_LDST(8, m32n8k16_store_d_f32);
17048   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
17049     return MMA_LDST(4, m8n32k16_store_d_f16);
17050   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
17051     return MMA_LDST(8, m8n32k16_store_d_f32);
17052 
17053   // Integer and sub-integer MMA stores.
17054   // Another naming quirk. Unlike other MMA builtins that use PTX types in the
17055   // name, integer loads/stores use LLVM's i32.
17056   case NVPTX::BI__imma_m16n16k16_st_c_i32:
17057     return MMA_LDST(8, m16n16k16_store_d_s32);
17058   case NVPTX::BI__imma_m32n8k16_st_c_i32:
17059     return MMA_LDST(8, m32n8k16_store_d_s32);
17060   case NVPTX::BI__imma_m8n32k16_st_c_i32:
17061     return MMA_LDST(8, m8n32k16_store_d_s32);
17062   case NVPTX::BI__imma_m8n8k32_st_c_i32:
17063     return MMA_LDST(2, m8n8k32_store_d_s32);
17064   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
17065     return MMA_LDST(2, m8n8k128_store_d_s32);
17066 
17067   // Double MMA store
17068   case NVPTX::BI__dmma_m8n8k4_st_c_f64:
17069     return MMA_LDST(2, m8n8k4_store_d_f64);
17070 
17071   // Alternate float MMA store
17072   case NVPTX::BI__mma_m16n16k8_st_c_f32:
17073     return MMA_LDST(8, m16n16k8_store_d_f32);
17074 
17075   default:
17076     llvm_unreachable("Unknown MMA builtin");
17077   }
17078 }
17079 #undef MMA_LDST
17080 #undef MMA_INTR
17081 
17082 
17083 struct NVPTXMmaInfo {
17084   unsigned NumEltsA;
17085   unsigned NumEltsB;
17086   unsigned NumEltsC;
17087   unsigned NumEltsD;
17088 
17089   // Variants are ordered by layout-A/layout-B/satf, where 'row' has priority
17090   // over 'col' for layout. The index of non-satf variants is expected to match
17091   // the undocumented layout constants used by CUDA's mma.hpp.
17092   std::array<unsigned, 8> Variants;
17093 
17094   unsigned getMMAIntrinsic(int Layout, bool Satf) {
17095     unsigned Index = Layout + 4 * Satf;
17096     if (Index >= Variants.size())
17097       return 0;
17098     return Variants[Index];
17099   }
17100 };
17101 
17102   // Returns an intrinsic that matches Layout and Satf for valid combinations of
17103   // Layout and Satf, 0 otherwise.
17104 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
17105   // clang-format off
17106 #define MMA_VARIANTS(geom, type)                                    \
17107       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type,             \
17108       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
17109       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type,             \
17110       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type
17111 #define MMA_SATF_VARIANTS(geom, type)                               \
17112       MMA_VARIANTS(geom, type),                                     \
17113       Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
17114       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
17115       Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
17116       Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite
17117 // Sub-integer MMA only supports row.col layout.
17118 #define MMA_VARIANTS_I4(geom, type) \
17119       0, \
17120       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type,             \
17121       0, \
17122       0, \
17123       0, \
17124       Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
17125       0, \
17126       0
17127 // b1 MMA does not support .satfinite.
17128 #define MMA_VARIANTS_B1_XOR(geom, type) \
17129       0, \
17130       Intrinsic::nvvm_wmma_##geom##_mma_xor_popc_row_col_##type,             \
17131       0, \
17132       0, \
17133       0, \
17134       0, \
17135       0, \
17136       0
17137 #define MMA_VARIANTS_B1_AND(geom, type) \
17138       0, \
17139       Intrinsic::nvvm_wmma_##geom##_mma_and_popc_row_col_##type,             \
17140       0, \
17141       0, \
17142       0, \
17143       0, \
17144       0, \
17145       0
17146   // clang-format on
17147   switch (BuiltinID) {
17148   // FP MMA
17149   // Note that 'type' argument of MMA_SATF_VARIANTS uses D_C notation, while
17150   // NumEltsN of return value are ordered as A,B,C,D.
17151   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
17152     return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f16)}}};
17153   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
17154     return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f16)}}};
17155   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
17156     return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f32)}}};
17157   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
17158     return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f32)}}};
17159   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
17160     return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f16)}}};
17161   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
17162     return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f16)}}};
17163   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
17164     return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f32)}}};
17165   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
17166     return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f32)}}};
17167   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
17168     return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f16)}}};
17169   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
17170     return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f16)}}};
17171   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
17172     return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f32)}}};
17173   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
17174     return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f32)}}};
17175 
17176   // Integer MMA
17177   case NVPTX::BI__imma_m16n16k16_mma_s8:
17178     return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, s8)}}};
17179   case NVPTX::BI__imma_m16n16k16_mma_u8:
17180     return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, u8)}}};
17181   case NVPTX::BI__imma_m32n8k16_mma_s8:
17182     return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, s8)}}};
17183   case NVPTX::BI__imma_m32n8k16_mma_u8:
17184     return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, u8)}}};
17185   case NVPTX::BI__imma_m8n32k16_mma_s8:
17186     return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, s8)}}};
17187   case NVPTX::BI__imma_m8n32k16_mma_u8:
17188     return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, u8)}}};
17189 
17190   // Sub-integer MMA
17191   case NVPTX::BI__imma_m8n8k32_mma_s4:
17192     return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, s4)}}};
17193   case NVPTX::BI__imma_m8n8k32_mma_u4:
17194     return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, u4)}}};
17195   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
17196     return {1, 1, 2, 2, {{MMA_VARIANTS_B1_XOR(m8n8k128, b1)}}};
17197   case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
17198     return {1, 1, 2, 2, {{MMA_VARIANTS_B1_AND(m8n8k128, b1)}}};
17199 
17200   // Double MMA
17201   case NVPTX::BI__dmma_m8n8k4_mma_f64:
17202     return {1, 1, 2, 2, {{MMA_VARIANTS(m8n8k4, f64)}}};
17203 
17204   // Alternate FP MMA
17205   case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
17206     return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k16, bf16)}}};
17207   case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
17208     return {2, 8, 8, 8, {{MMA_VARIANTS(m8n32k16, bf16)}}};
17209   case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
17210     return {8, 2, 8, 8, {{MMA_VARIANTS(m32n8k16, bf16)}}};
17211   case NVPTX::BI__mma_tf32_m16n16k8_mma_f32:
17212     return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k8, tf32)}}};
17213   default:
17214     llvm_unreachable("Unexpected builtin ID.");
17215   }
17216 #undef MMA_VARIANTS
17217 #undef MMA_SATF_VARIANTS
17218 #undef MMA_VARIANTS_I4
17219 #undef MMA_VARIANTS_B1_AND
17220 #undef MMA_VARIANTS_B1_XOR
17221 }
17222 
17223 } // namespace
17224 
17225 Value *
17226 CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
17227   auto MakeLdg = [&](unsigned IntrinsicID) {
17228     Value *Ptr = EmitScalarExpr(E->getArg(0));
17229     clang::CharUnits Align =
17230         CGM.getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
17231     return Builder.CreateCall(
17232         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
17233                                        Ptr->getType()}),
17234         {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
17235   };
17236   auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
17237     Value *Ptr = EmitScalarExpr(E->getArg(0));
17238     return Builder.CreateCall(
17239         CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
17240                                        Ptr->getType()}),
17241         {Ptr, EmitScalarExpr(E->getArg(1))});
17242   };
17243   switch (BuiltinID) {
17244   case NVPTX::BI__nvvm_atom_add_gen_i:
17245   case NVPTX::BI__nvvm_atom_add_gen_l:
17246   case NVPTX::BI__nvvm_atom_add_gen_ll:
17247     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
17248 
17249   case NVPTX::BI__nvvm_atom_sub_gen_i:
17250   case NVPTX::BI__nvvm_atom_sub_gen_l:
17251   case NVPTX::BI__nvvm_atom_sub_gen_ll:
17252     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
17253 
17254   case NVPTX::BI__nvvm_atom_and_gen_i:
17255   case NVPTX::BI__nvvm_atom_and_gen_l:
17256   case NVPTX::BI__nvvm_atom_and_gen_ll:
17257     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
17258 
17259   case NVPTX::BI__nvvm_atom_or_gen_i:
17260   case NVPTX::BI__nvvm_atom_or_gen_l:
17261   case NVPTX::BI__nvvm_atom_or_gen_ll:
17262     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
17263 
17264   case NVPTX::BI__nvvm_atom_xor_gen_i:
17265   case NVPTX::BI__nvvm_atom_xor_gen_l:
17266   case NVPTX::BI__nvvm_atom_xor_gen_ll:
17267     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
17268 
17269   case NVPTX::BI__nvvm_atom_xchg_gen_i:
17270   case NVPTX::BI__nvvm_atom_xchg_gen_l:
17271   case NVPTX::BI__nvvm_atom_xchg_gen_ll:
17272     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
17273 
17274   case NVPTX::BI__nvvm_atom_max_gen_i:
17275   case NVPTX::BI__nvvm_atom_max_gen_l:
17276   case NVPTX::BI__nvvm_atom_max_gen_ll:
17277     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
17278 
17279   case NVPTX::BI__nvvm_atom_max_gen_ui:
17280   case NVPTX::BI__nvvm_atom_max_gen_ul:
17281   case NVPTX::BI__nvvm_atom_max_gen_ull:
17282     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
17283 
17284   case NVPTX::BI__nvvm_atom_min_gen_i:
17285   case NVPTX::BI__nvvm_atom_min_gen_l:
17286   case NVPTX::BI__nvvm_atom_min_gen_ll:
17287     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
17288 
17289   case NVPTX::BI__nvvm_atom_min_gen_ui:
17290   case NVPTX::BI__nvvm_atom_min_gen_ul:
17291   case NVPTX::BI__nvvm_atom_min_gen_ull:
17292     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
17293 
17294   case NVPTX::BI__nvvm_atom_cas_gen_i:
17295   case NVPTX::BI__nvvm_atom_cas_gen_l:
17296   case NVPTX::BI__nvvm_atom_cas_gen_ll:
17297     // __nvvm_atom_cas_gen_* should return the old value rather than the
17298     // success flag.
17299     return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
17300 
17301   case NVPTX::BI__nvvm_atom_add_gen_f:
17302   case NVPTX::BI__nvvm_atom_add_gen_d: {
17303     Value *Ptr = EmitScalarExpr(E->getArg(0));
17304     Value *Val = EmitScalarExpr(E->getArg(1));
17305     return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
17306                                    AtomicOrdering::SequentiallyConsistent);
17307   }
17308 
17309   case NVPTX::BI__nvvm_atom_inc_gen_ui: {
17310     Value *Ptr = EmitScalarExpr(E->getArg(0));
17311     Value *Val = EmitScalarExpr(E->getArg(1));
17312     Function *FnALI32 =
17313         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
17314     return Builder.CreateCall(FnALI32, {Ptr, Val});
17315   }
17316 
17317   case NVPTX::BI__nvvm_atom_dec_gen_ui: {
17318     Value *Ptr = EmitScalarExpr(E->getArg(0));
17319     Value *Val = EmitScalarExpr(E->getArg(1));
17320     Function *FnALD32 =
17321         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
17322     return Builder.CreateCall(FnALD32, {Ptr, Val});
17323   }
17324 
17325   case NVPTX::BI__nvvm_ldg_c:
17326   case NVPTX::BI__nvvm_ldg_c2:
17327   case NVPTX::BI__nvvm_ldg_c4:
17328   case NVPTX::BI__nvvm_ldg_s:
17329   case NVPTX::BI__nvvm_ldg_s2:
17330   case NVPTX::BI__nvvm_ldg_s4:
17331   case NVPTX::BI__nvvm_ldg_i:
17332   case NVPTX::BI__nvvm_ldg_i2:
17333   case NVPTX::BI__nvvm_ldg_i4:
17334   case NVPTX::BI__nvvm_ldg_l:
17335   case NVPTX::BI__nvvm_ldg_ll:
17336   case NVPTX::BI__nvvm_ldg_ll2:
17337   case NVPTX::BI__nvvm_ldg_uc:
17338   case NVPTX::BI__nvvm_ldg_uc2:
17339   case NVPTX::BI__nvvm_ldg_uc4:
17340   case NVPTX::BI__nvvm_ldg_us:
17341   case NVPTX::BI__nvvm_ldg_us2:
17342   case NVPTX::BI__nvvm_ldg_us4:
17343   case NVPTX::BI__nvvm_ldg_ui:
17344   case NVPTX::BI__nvvm_ldg_ui2:
17345   case NVPTX::BI__nvvm_ldg_ui4:
17346   case NVPTX::BI__nvvm_ldg_ul:
17347   case NVPTX::BI__nvvm_ldg_ull:
17348   case NVPTX::BI__nvvm_ldg_ull2:
17349     // PTX Interoperability section 2.2: "For a vector with an even number of
17350     // elements, its alignment is set to number of elements times the alignment
17351     // of its member: n*alignof(t)."
17352     return MakeLdg(Intrinsic::nvvm_ldg_global_i);
17353   case NVPTX::BI__nvvm_ldg_f:
17354   case NVPTX::BI__nvvm_ldg_f2:
17355   case NVPTX::BI__nvvm_ldg_f4:
17356   case NVPTX::BI__nvvm_ldg_d:
17357   case NVPTX::BI__nvvm_ldg_d2:
17358     return MakeLdg(Intrinsic::nvvm_ldg_global_f);
17359 
17360   case NVPTX::BI__nvvm_atom_cta_add_gen_i:
17361   case NVPTX::BI__nvvm_atom_cta_add_gen_l:
17362   case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
17363     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
17364   case NVPTX::BI__nvvm_atom_sys_add_gen_i:
17365   case NVPTX::BI__nvvm_atom_sys_add_gen_l:
17366   case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
17367     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
17368   case NVPTX::BI__nvvm_atom_cta_add_gen_f:
17369   case NVPTX::BI__nvvm_atom_cta_add_gen_d:
17370     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
17371   case NVPTX::BI__nvvm_atom_sys_add_gen_f:
17372   case NVPTX::BI__nvvm_atom_sys_add_gen_d:
17373     return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
17374   case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
17375   case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
17376   case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
17377     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
17378   case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
17379   case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
17380   case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
17381     return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
17382   case NVPTX::BI__nvvm_atom_cta_max_gen_i:
17383   case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
17384   case NVPTX::BI__nvvm_atom_cta_max_gen_l:
17385   case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
17386   case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
17387   case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
17388     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
17389   case NVPTX::BI__nvvm_atom_sys_max_gen_i:
17390   case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
17391   case NVPTX::BI__nvvm_atom_sys_max_gen_l:
17392   case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
17393   case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
17394   case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
17395     return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
17396   case NVPTX::BI__nvvm_atom_cta_min_gen_i:
17397   case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
17398   case NVPTX::BI__nvvm_atom_cta_min_gen_l:
17399   case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
17400   case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
17401   case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
17402     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
17403   case NVPTX::BI__nvvm_atom_sys_min_gen_i:
17404   case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
17405   case NVPTX::BI__nvvm_atom_sys_min_gen_l:
17406   case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
17407   case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
17408   case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
17409     return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
17410   case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
17411     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
17412   case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
17413     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
17414   case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
17415     return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
17416   case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
17417     return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
17418   case NVPTX::BI__nvvm_atom_cta_and_gen_i:
17419   case NVPTX::BI__nvvm_atom_cta_and_gen_l:
17420   case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
17421     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
17422   case NVPTX::BI__nvvm_atom_sys_and_gen_i:
17423   case NVPTX::BI__nvvm_atom_sys_and_gen_l:
17424   case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
17425     return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
17426   case NVPTX::BI__nvvm_atom_cta_or_gen_i:
17427   case NVPTX::BI__nvvm_atom_cta_or_gen_l:
17428   case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
17429     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
17430   case NVPTX::BI__nvvm_atom_sys_or_gen_i:
17431   case NVPTX::BI__nvvm_atom_sys_or_gen_l:
17432   case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
17433     return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
17434   case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
17435   case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
17436   case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
17437     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
17438   case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
17439   case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
17440   case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
17441     return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
17442   case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
17443   case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
17444   case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
17445     Value *Ptr = EmitScalarExpr(E->getArg(0));
17446     return Builder.CreateCall(
17447         CGM.getIntrinsic(
17448             Intrinsic::nvvm_atomic_cas_gen_i_cta,
17449             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
17450         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
17451   }
17452   case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
17453   case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
17454   case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
17455     Value *Ptr = EmitScalarExpr(E->getArg(0));
17456     return Builder.CreateCall(
17457         CGM.getIntrinsic(
17458             Intrinsic::nvvm_atomic_cas_gen_i_sys,
17459             {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
17460         {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
17461   }
17462   case NVPTX::BI__nvvm_match_all_sync_i32p:
17463   case NVPTX::BI__nvvm_match_all_sync_i64p: {
17464     Value *Mask = EmitScalarExpr(E->getArg(0));
17465     Value *Val = EmitScalarExpr(E->getArg(1));
17466     Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
17467     Value *ResultPair = Builder.CreateCall(
17468         CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
17469                              ? Intrinsic::nvvm_match_all_sync_i32p
17470                              : Intrinsic::nvvm_match_all_sync_i64p),
17471         {Mask, Val});
17472     Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
17473                                      PredOutPtr.getElementType());
17474     Builder.CreateStore(Pred, PredOutPtr);
17475     return Builder.CreateExtractValue(ResultPair, 0);
17476   }
17477 
17478   // FP MMA loads
17479   case NVPTX::BI__hmma_m16n16k16_ld_a:
17480   case NVPTX::BI__hmma_m16n16k16_ld_b:
17481   case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
17482   case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
17483   case NVPTX::BI__hmma_m32n8k16_ld_a:
17484   case NVPTX::BI__hmma_m32n8k16_ld_b:
17485   case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
17486   case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
17487   case NVPTX::BI__hmma_m8n32k16_ld_a:
17488   case NVPTX::BI__hmma_m8n32k16_ld_b:
17489   case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
17490   case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
17491   // Integer MMA loads.
17492   case NVPTX::BI__imma_m16n16k16_ld_a_s8:
17493   case NVPTX::BI__imma_m16n16k16_ld_a_u8:
17494   case NVPTX::BI__imma_m16n16k16_ld_b_s8:
17495   case NVPTX::BI__imma_m16n16k16_ld_b_u8:
17496   case NVPTX::BI__imma_m16n16k16_ld_c:
17497   case NVPTX::BI__imma_m32n8k16_ld_a_s8:
17498   case NVPTX::BI__imma_m32n8k16_ld_a_u8:
17499   case NVPTX::BI__imma_m32n8k16_ld_b_s8:
17500   case NVPTX::BI__imma_m32n8k16_ld_b_u8:
17501   case NVPTX::BI__imma_m32n8k16_ld_c:
17502   case NVPTX::BI__imma_m8n32k16_ld_a_s8:
17503   case NVPTX::BI__imma_m8n32k16_ld_a_u8:
17504   case NVPTX::BI__imma_m8n32k16_ld_b_s8:
17505   case NVPTX::BI__imma_m8n32k16_ld_b_u8:
17506   case NVPTX::BI__imma_m8n32k16_ld_c:
17507   // Sub-integer MMA loads.
17508   case NVPTX::BI__imma_m8n8k32_ld_a_s4:
17509   case NVPTX::BI__imma_m8n8k32_ld_a_u4:
17510   case NVPTX::BI__imma_m8n8k32_ld_b_s4:
17511   case NVPTX::BI__imma_m8n8k32_ld_b_u4:
17512   case NVPTX::BI__imma_m8n8k32_ld_c:
17513   case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
17514   case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
17515   case NVPTX::BI__bmma_m8n8k128_ld_c:
17516   // Double MMA loads.
17517   case NVPTX::BI__dmma_m8n8k4_ld_a:
17518   case NVPTX::BI__dmma_m8n8k4_ld_b:
17519   case NVPTX::BI__dmma_m8n8k4_ld_c:
17520   // Alternate float MMA loads.
17521   case NVPTX::BI__mma_bf16_m16n16k16_ld_a:
17522   case NVPTX::BI__mma_bf16_m16n16k16_ld_b:
17523   case NVPTX::BI__mma_bf16_m8n32k16_ld_a:
17524   case NVPTX::BI__mma_bf16_m8n32k16_ld_b:
17525   case NVPTX::BI__mma_bf16_m32n8k16_ld_a:
17526   case NVPTX::BI__mma_bf16_m32n8k16_ld_b:
17527   case NVPTX::BI__mma_tf32_m16n16k8_ld_a:
17528   case NVPTX::BI__mma_tf32_m16n16k8_ld_b:
17529   case NVPTX::BI__mma_tf32_m16n16k8_ld_c: {
17530     Address Dst = EmitPointerWithAlignment(E->getArg(0));
17531     Value *Src = EmitScalarExpr(E->getArg(1));
17532     Value *Ldm = EmitScalarExpr(E->getArg(2));
17533     Optional<llvm::APSInt> isColMajorArg =
17534         E->getArg(3)->getIntegerConstantExpr(getContext());
17535     if (!isColMajorArg)
17536       return nullptr;
17537     bool isColMajor = isColMajorArg->getSExtValue();
17538     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
17539     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
17540     if (IID == 0)
17541       return nullptr;
17542 
17543     Value *Result =
17544         Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
17545 
17546     // Save returned values.
17547     assert(II.NumResults);
17548     if (II.NumResults == 1) {
17549       Builder.CreateAlignedStore(Result, Dst.getPointer(),
17550                                  CharUnits::fromQuantity(4));
17551     } else {
17552       for (unsigned i = 0; i < II.NumResults; ++i) {
17553         Builder.CreateAlignedStore(
17554             Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
17555                                   Dst.getElementType()),
17556             Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
17557                               llvm::ConstantInt::get(IntTy, i)),
17558             CharUnits::fromQuantity(4));
17559       }
17560     }
17561     return Result;
17562   }
17563 
17564   case NVPTX::BI__hmma_m16n16k16_st_c_f16:
17565   case NVPTX::BI__hmma_m16n16k16_st_c_f32:
17566   case NVPTX::BI__hmma_m32n8k16_st_c_f16:
17567   case NVPTX::BI__hmma_m32n8k16_st_c_f32:
17568   case NVPTX::BI__hmma_m8n32k16_st_c_f16:
17569   case NVPTX::BI__hmma_m8n32k16_st_c_f32:
17570   case NVPTX::BI__imma_m16n16k16_st_c_i32:
17571   case NVPTX::BI__imma_m32n8k16_st_c_i32:
17572   case NVPTX::BI__imma_m8n32k16_st_c_i32:
17573   case NVPTX::BI__imma_m8n8k32_st_c_i32:
17574   case NVPTX::BI__bmma_m8n8k128_st_c_i32:
17575   case NVPTX::BI__dmma_m8n8k4_st_c_f64:
17576   case NVPTX::BI__mma_m16n16k8_st_c_f32: {
17577     Value *Dst = EmitScalarExpr(E->getArg(0));
17578     Address Src = EmitPointerWithAlignment(E->getArg(1));
17579     Value *Ldm = EmitScalarExpr(E->getArg(2));
17580     Optional<llvm::APSInt> isColMajorArg =
17581         E->getArg(3)->getIntegerConstantExpr(getContext());
17582     if (!isColMajorArg)
17583       return nullptr;
17584     bool isColMajor = isColMajorArg->getSExtValue();
17585     NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
17586     unsigned IID = isColMajor ? II.IID_col : II.IID_row;
17587     if (IID == 0)
17588       return nullptr;
17589     Function *Intrinsic =
17590         CGM.getIntrinsic(IID, Dst->getType());
17591     llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
17592     SmallVector<Value *, 10> Values = {Dst};
17593     for (unsigned i = 0; i < II.NumResults; ++i) {
17594       Value *V = Builder.CreateAlignedLoad(
17595           Src.getElementType(),
17596           Builder.CreateGEP(Src.getElementType(), Src.getPointer(),
17597                             llvm::ConstantInt::get(IntTy, i)),
17598           CharUnits::fromQuantity(4));
17599       Values.push_back(Builder.CreateBitCast(V, ParamType));
17600     }
17601     Values.push_back(Ldm);
17602     Value *Result = Builder.CreateCall(Intrinsic, Values);
17603     return Result;
17604   }
17605 
17606   // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
17607   // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
17608   case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
17609   case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
17610   case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
17611   case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
17612   case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
17613   case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
17614   case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
17615   case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
17616   case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
17617   case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
17618   case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
17619   case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
17620   case NVPTX::BI__imma_m16n16k16_mma_s8:
17621   case NVPTX::BI__imma_m16n16k16_mma_u8:
17622   case NVPTX::BI__imma_m32n8k16_mma_s8:
17623   case NVPTX::BI__imma_m32n8k16_mma_u8:
17624   case NVPTX::BI__imma_m8n32k16_mma_s8:
17625   case NVPTX::BI__imma_m8n32k16_mma_u8:
17626   case NVPTX::BI__imma_m8n8k32_mma_s4:
17627   case NVPTX::BI__imma_m8n8k32_mma_u4:
17628   case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
17629   case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1:
17630   case NVPTX::BI__dmma_m8n8k4_mma_f64:
17631   case NVPTX::BI__mma_bf16_m16n16k16_mma_f32:
17632   case NVPTX::BI__mma_bf16_m8n32k16_mma_f32:
17633   case NVPTX::BI__mma_bf16_m32n8k16_mma_f32:
17634   case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: {
17635     Address Dst = EmitPointerWithAlignment(E->getArg(0));
17636     Address SrcA = EmitPointerWithAlignment(E->getArg(1));
17637     Address SrcB = EmitPointerWithAlignment(E->getArg(2));
17638     Address SrcC = EmitPointerWithAlignment(E->getArg(3));
17639     Optional<llvm::APSInt> LayoutArg =
17640         E->getArg(4)->getIntegerConstantExpr(getContext());
17641     if (!LayoutArg)
17642       return nullptr;
17643     int Layout = LayoutArg->getSExtValue();
17644     if (Layout < 0 || Layout > 3)
17645       return nullptr;
17646     llvm::APSInt SatfArg;
17647     if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1 ||
17648         BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1)
17649       SatfArg = 0;  // .b1 does not have satf argument.
17650     else if (Optional<llvm::APSInt> OptSatfArg =
17651                  E->getArg(5)->getIntegerConstantExpr(getContext()))
17652       SatfArg = *OptSatfArg;
17653     else
17654       return nullptr;
17655     bool Satf = SatfArg.getSExtValue();
17656     NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
17657     unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
17658     if (IID == 0)  // Unsupported combination of Layout/Satf.
17659       return nullptr;
17660 
17661     SmallVector<Value *, 24> Values;
17662     Function *Intrinsic = CGM.getIntrinsic(IID);
17663     llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
17664     // Load A
17665     for (unsigned i = 0; i < MI.NumEltsA; ++i) {
17666       Value *V = Builder.CreateAlignedLoad(
17667           SrcA.getElementType(),
17668           Builder.CreateGEP(SrcA.getElementType(), SrcA.getPointer(),
17669                             llvm::ConstantInt::get(IntTy, i)),
17670           CharUnits::fromQuantity(4));
17671       Values.push_back(Builder.CreateBitCast(V, AType));
17672     }
17673     // Load B
17674     llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
17675     for (unsigned i = 0; i < MI.NumEltsB; ++i) {
17676       Value *V = Builder.CreateAlignedLoad(
17677           SrcB.getElementType(),
17678           Builder.CreateGEP(SrcB.getElementType(), SrcB.getPointer(),
17679                             llvm::ConstantInt::get(IntTy, i)),
17680           CharUnits::fromQuantity(4));
17681       Values.push_back(Builder.CreateBitCast(V, BType));
17682     }
17683     // Load C
17684     llvm::Type *CType =
17685         Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
17686     for (unsigned i = 0; i < MI.NumEltsC; ++i) {
17687       Value *V = Builder.CreateAlignedLoad(
17688           SrcC.getElementType(),
17689           Builder.CreateGEP(SrcC.getElementType(), SrcC.getPointer(),
17690                             llvm::ConstantInt::get(IntTy, i)),
17691           CharUnits::fromQuantity(4));
17692       Values.push_back(Builder.CreateBitCast(V, CType));
17693     }
17694     Value *Result = Builder.CreateCall(Intrinsic, Values);
17695     llvm::Type *DType = Dst.getElementType();
17696     for (unsigned i = 0; i < MI.NumEltsD; ++i)
17697       Builder.CreateAlignedStore(
17698           Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
17699           Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(),
17700                             llvm::ConstantInt::get(IntTy, i)),
17701           CharUnits::fromQuantity(4));
17702     return Result;
17703   }
17704   default:
17705     return nullptr;
17706   }
17707 }
17708 
17709 namespace {
17710 struct BuiltinAlignArgs {
17711   llvm::Value *Src = nullptr;
17712   llvm::Type *SrcType = nullptr;
17713   llvm::Value *Alignment = nullptr;
17714   llvm::Value *Mask = nullptr;
17715   llvm::IntegerType *IntType = nullptr;
17716 
17717   BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) {
17718     QualType AstType = E->getArg(0)->getType();
17719     if (AstType->isArrayType())
17720       Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer();
17721     else
17722       Src = CGF.EmitScalarExpr(E->getArg(0));
17723     SrcType = Src->getType();
17724     if (SrcType->isPointerTy()) {
17725       IntType = IntegerType::get(
17726           CGF.getLLVMContext(),
17727           CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType));
17728     } else {
17729       assert(SrcType->isIntegerTy());
17730       IntType = cast<llvm::IntegerType>(SrcType);
17731     }
17732     Alignment = CGF.EmitScalarExpr(E->getArg(1));
17733     Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment");
17734     auto *One = llvm::ConstantInt::get(IntType, 1);
17735     Mask = CGF.Builder.CreateSub(Alignment, One, "mask");
17736   }
17737 };
17738 } // namespace
17739 
17740 /// Generate (x & (y-1)) == 0.
17741 RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) {
17742   BuiltinAlignArgs Args(E, *this);
17743   llvm::Value *SrcAddress = Args.Src;
17744   if (Args.SrcType->isPointerTy())
17745     SrcAddress =
17746         Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr");
17747   return RValue::get(Builder.CreateICmpEQ(
17748       Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"),
17749       llvm::Constant::getNullValue(Args.IntType), "is_aligned"));
17750 }
17751 
17752 /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up.
17753 /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the
17754 /// llvm.ptrmask instrinsic (with a GEP before in the align_up case).
17755 /// TODO: actually use ptrmask once most optimization passes know about it.
17756 RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) {
17757   BuiltinAlignArgs Args(E, *this);
17758   llvm::Value *SrcAddr = Args.Src;
17759   if (Args.Src->getType()->isPointerTy())
17760     SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr");
17761   llvm::Value *SrcForMask = SrcAddr;
17762   if (AlignUp) {
17763     // When aligning up we have to first add the mask to ensure we go over the
17764     // next alignment value and then align down to the next valid multiple.
17765     // By adding the mask, we ensure that align_up on an already aligned
17766     // value will not change the value.
17767     SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary");
17768   }
17769   // Invert the mask to only clear the lower bits.
17770   llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask");
17771   llvm::Value *Result =
17772       Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result");
17773   if (Args.Src->getType()->isPointerTy()) {
17774     /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well.
17775     // Result = Builder.CreateIntrinsic(
17776     //  Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType},
17777     //  {SrcForMask, NegatedMask}, nullptr, "aligned_result");
17778     Result->setName("aligned_intptr");
17779     llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff");
17780     // The result must point to the same underlying allocation. This means we
17781     // can use an inbounds GEP to enable better optimization.
17782     Value *Base = EmitCastToVoidPtr(Args.Src);
17783     if (getLangOpts().isSignedOverflowDefined())
17784       Result = Builder.CreateGEP(Int8Ty, Base, Difference, "aligned_result");
17785     else
17786       Result = EmitCheckedInBoundsGEP(Base, Difference,
17787                                       /*SignedIndices=*/true,
17788                                       /*isSubtraction=*/!AlignUp,
17789                                       E->getExprLoc(), "aligned_result");
17790     Result = Builder.CreatePointerCast(Result, Args.SrcType);
17791     // Emit an alignment assumption to ensure that the new alignment is
17792     // propagated to loads/stores, etc.
17793     emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment);
17794   }
17795   assert(Result->getType() == Args.SrcType);
17796   return RValue::get(Result);
17797 }
17798 
17799 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
17800                                                    const CallExpr *E) {
17801   switch (BuiltinID) {
17802   case WebAssembly::BI__builtin_wasm_memory_size: {
17803     llvm::Type *ResultType = ConvertType(E->getType());
17804     Value *I = EmitScalarExpr(E->getArg(0));
17805     Function *Callee =
17806         CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
17807     return Builder.CreateCall(Callee, I);
17808   }
17809   case WebAssembly::BI__builtin_wasm_memory_grow: {
17810     llvm::Type *ResultType = ConvertType(E->getType());
17811     Value *Args[] = {EmitScalarExpr(E->getArg(0)),
17812                      EmitScalarExpr(E->getArg(1))};
17813     Function *Callee =
17814         CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
17815     return Builder.CreateCall(Callee, Args);
17816   }
17817   case WebAssembly::BI__builtin_wasm_tls_size: {
17818     llvm::Type *ResultType = ConvertType(E->getType());
17819     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
17820     return Builder.CreateCall(Callee);
17821   }
17822   case WebAssembly::BI__builtin_wasm_tls_align: {
17823     llvm::Type *ResultType = ConvertType(E->getType());
17824     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType);
17825     return Builder.CreateCall(Callee);
17826   }
17827   case WebAssembly::BI__builtin_wasm_tls_base: {
17828     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base);
17829     return Builder.CreateCall(Callee);
17830   }
17831   case WebAssembly::BI__builtin_wasm_throw: {
17832     Value *Tag = EmitScalarExpr(E->getArg(0));
17833     Value *Obj = EmitScalarExpr(E->getArg(1));
17834     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
17835     return Builder.CreateCall(Callee, {Tag, Obj});
17836   }
17837   case WebAssembly::BI__builtin_wasm_rethrow: {
17838     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow);
17839     return Builder.CreateCall(Callee);
17840   }
17841   case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: {
17842     Value *Addr = EmitScalarExpr(E->getArg(0));
17843     Value *Expected = EmitScalarExpr(E->getArg(1));
17844     Value *Timeout = EmitScalarExpr(E->getArg(2));
17845     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32);
17846     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
17847   }
17848   case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: {
17849     Value *Addr = EmitScalarExpr(E->getArg(0));
17850     Value *Expected = EmitScalarExpr(E->getArg(1));
17851     Value *Timeout = EmitScalarExpr(E->getArg(2));
17852     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64);
17853     return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
17854   }
17855   case WebAssembly::BI__builtin_wasm_memory_atomic_notify: {
17856     Value *Addr = EmitScalarExpr(E->getArg(0));
17857     Value *Count = EmitScalarExpr(E->getArg(1));
17858     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify);
17859     return Builder.CreateCall(Callee, {Addr, Count});
17860   }
17861   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32:
17862   case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64:
17863   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32:
17864   case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: {
17865     Value *Src = EmitScalarExpr(E->getArg(0));
17866     llvm::Type *ResT = ConvertType(E->getType());
17867     Function *Callee =
17868         CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()});
17869     return Builder.CreateCall(Callee, {Src});
17870   }
17871   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32:
17872   case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64:
17873   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32:
17874   case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: {
17875     Value *Src = EmitScalarExpr(E->getArg(0));
17876     llvm::Type *ResT = ConvertType(E->getType());
17877     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned,
17878                                         {ResT, Src->getType()});
17879     return Builder.CreateCall(Callee, {Src});
17880   }
17881   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
17882   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
17883   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
17884   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
17885   case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: {
17886     Value *Src = EmitScalarExpr(E->getArg(0));
17887     llvm::Type *ResT = ConvertType(E->getType());
17888     Function *Callee =
17889         CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()});
17890     return Builder.CreateCall(Callee, {Src});
17891   }
17892   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
17893   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
17894   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
17895   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
17896   case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: {
17897     Value *Src = EmitScalarExpr(E->getArg(0));
17898     llvm::Type *ResT = ConvertType(E->getType());
17899     Function *Callee =
17900         CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()});
17901     return Builder.CreateCall(Callee, {Src});
17902   }
17903   case WebAssembly::BI__builtin_wasm_min_f32:
17904   case WebAssembly::BI__builtin_wasm_min_f64:
17905   case WebAssembly::BI__builtin_wasm_min_f32x4:
17906   case WebAssembly::BI__builtin_wasm_min_f64x2: {
17907     Value *LHS = EmitScalarExpr(E->getArg(0));
17908     Value *RHS = EmitScalarExpr(E->getArg(1));
17909     Function *Callee =
17910         CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType()));
17911     return Builder.CreateCall(Callee, {LHS, RHS});
17912   }
17913   case WebAssembly::BI__builtin_wasm_max_f32:
17914   case WebAssembly::BI__builtin_wasm_max_f64:
17915   case WebAssembly::BI__builtin_wasm_max_f32x4:
17916   case WebAssembly::BI__builtin_wasm_max_f64x2: {
17917     Value *LHS = EmitScalarExpr(E->getArg(0));
17918     Value *RHS = EmitScalarExpr(E->getArg(1));
17919     Function *Callee =
17920         CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType()));
17921     return Builder.CreateCall(Callee, {LHS, RHS});
17922   }
17923   case WebAssembly::BI__builtin_wasm_pmin_f32x4:
17924   case WebAssembly::BI__builtin_wasm_pmin_f64x2: {
17925     Value *LHS = EmitScalarExpr(E->getArg(0));
17926     Value *RHS = EmitScalarExpr(E->getArg(1));
17927     Function *Callee =
17928         CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType()));
17929     return Builder.CreateCall(Callee, {LHS, RHS});
17930   }
17931   case WebAssembly::BI__builtin_wasm_pmax_f32x4:
17932   case WebAssembly::BI__builtin_wasm_pmax_f64x2: {
17933     Value *LHS = EmitScalarExpr(E->getArg(0));
17934     Value *RHS = EmitScalarExpr(E->getArg(1));
17935     Function *Callee =
17936         CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType()));
17937     return Builder.CreateCall(Callee, {LHS, RHS});
17938   }
17939   case WebAssembly::BI__builtin_wasm_ceil_f32x4:
17940   case WebAssembly::BI__builtin_wasm_floor_f32x4:
17941   case WebAssembly::BI__builtin_wasm_trunc_f32x4:
17942   case WebAssembly::BI__builtin_wasm_nearest_f32x4:
17943   case WebAssembly::BI__builtin_wasm_ceil_f64x2:
17944   case WebAssembly::BI__builtin_wasm_floor_f64x2:
17945   case WebAssembly::BI__builtin_wasm_trunc_f64x2:
17946   case WebAssembly::BI__builtin_wasm_nearest_f64x2: {
17947     unsigned IntNo;
17948     switch (BuiltinID) {
17949     case WebAssembly::BI__builtin_wasm_ceil_f32x4:
17950     case WebAssembly::BI__builtin_wasm_ceil_f64x2:
17951       IntNo = Intrinsic::ceil;
17952       break;
17953     case WebAssembly::BI__builtin_wasm_floor_f32x4:
17954     case WebAssembly::BI__builtin_wasm_floor_f64x2:
17955       IntNo = Intrinsic::floor;
17956       break;
17957     case WebAssembly::BI__builtin_wasm_trunc_f32x4:
17958     case WebAssembly::BI__builtin_wasm_trunc_f64x2:
17959       IntNo = Intrinsic::trunc;
17960       break;
17961     case WebAssembly::BI__builtin_wasm_nearest_f32x4:
17962     case WebAssembly::BI__builtin_wasm_nearest_f64x2:
17963       IntNo = Intrinsic::nearbyint;
17964       break;
17965     default:
17966       llvm_unreachable("unexpected builtin ID");
17967     }
17968     Value *Value = EmitScalarExpr(E->getArg(0));
17969     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
17970     return Builder.CreateCall(Callee, Value);
17971   }
17972   case WebAssembly::BI__builtin_wasm_swizzle_i8x16: {
17973     Value *Src = EmitScalarExpr(E->getArg(0));
17974     Value *Indices = EmitScalarExpr(E->getArg(1));
17975     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle);
17976     return Builder.CreateCall(Callee, {Src, Indices});
17977   }
17978   case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
17979   case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
17980   case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
17981   case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
17982   case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
17983   case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
17984   case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
17985   case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: {
17986     unsigned IntNo;
17987     switch (BuiltinID) {
17988     case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16:
17989     case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8:
17990       IntNo = Intrinsic::sadd_sat;
17991       break;
17992     case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16:
17993     case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8:
17994       IntNo = Intrinsic::uadd_sat;
17995       break;
17996     case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16:
17997     case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8:
17998       IntNo = Intrinsic::wasm_sub_sat_signed;
17999       break;
18000     case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16:
18001     case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8:
18002       IntNo = Intrinsic::wasm_sub_sat_unsigned;
18003       break;
18004     default:
18005       llvm_unreachable("unexpected builtin ID");
18006     }
18007     Value *LHS = EmitScalarExpr(E->getArg(0));
18008     Value *RHS = EmitScalarExpr(E->getArg(1));
18009     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
18010     return Builder.CreateCall(Callee, {LHS, RHS});
18011   }
18012   case WebAssembly::BI__builtin_wasm_abs_i8x16:
18013   case WebAssembly::BI__builtin_wasm_abs_i16x8:
18014   case WebAssembly::BI__builtin_wasm_abs_i32x4:
18015   case WebAssembly::BI__builtin_wasm_abs_i64x2: {
18016     Value *Vec = EmitScalarExpr(E->getArg(0));
18017     Value *Neg = Builder.CreateNeg(Vec, "neg");
18018     Constant *Zero = llvm::Constant::getNullValue(Vec->getType());
18019     Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond");
18020     return Builder.CreateSelect(ICmp, Neg, Vec, "abs");
18021   }
18022   case WebAssembly::BI__builtin_wasm_min_s_i8x16:
18023   case WebAssembly::BI__builtin_wasm_min_u_i8x16:
18024   case WebAssembly::BI__builtin_wasm_max_s_i8x16:
18025   case WebAssembly::BI__builtin_wasm_max_u_i8x16:
18026   case WebAssembly::BI__builtin_wasm_min_s_i16x8:
18027   case WebAssembly::BI__builtin_wasm_min_u_i16x8:
18028   case WebAssembly::BI__builtin_wasm_max_s_i16x8:
18029   case WebAssembly::BI__builtin_wasm_max_u_i16x8:
18030   case WebAssembly::BI__builtin_wasm_min_s_i32x4:
18031   case WebAssembly::BI__builtin_wasm_min_u_i32x4:
18032   case WebAssembly::BI__builtin_wasm_max_s_i32x4:
18033   case WebAssembly::BI__builtin_wasm_max_u_i32x4: {
18034     Value *LHS = EmitScalarExpr(E->getArg(0));
18035     Value *RHS = EmitScalarExpr(E->getArg(1));
18036     Value *ICmp;
18037     switch (BuiltinID) {
18038     case WebAssembly::BI__builtin_wasm_min_s_i8x16:
18039     case WebAssembly::BI__builtin_wasm_min_s_i16x8:
18040     case WebAssembly::BI__builtin_wasm_min_s_i32x4:
18041       ICmp = Builder.CreateICmpSLT(LHS, RHS);
18042       break;
18043     case WebAssembly::BI__builtin_wasm_min_u_i8x16:
18044     case WebAssembly::BI__builtin_wasm_min_u_i16x8:
18045     case WebAssembly::BI__builtin_wasm_min_u_i32x4:
18046       ICmp = Builder.CreateICmpULT(LHS, RHS);
18047       break;
18048     case WebAssembly::BI__builtin_wasm_max_s_i8x16:
18049     case WebAssembly::BI__builtin_wasm_max_s_i16x8:
18050     case WebAssembly::BI__builtin_wasm_max_s_i32x4:
18051       ICmp = Builder.CreateICmpSGT(LHS, RHS);
18052       break;
18053     case WebAssembly::BI__builtin_wasm_max_u_i8x16:
18054     case WebAssembly::BI__builtin_wasm_max_u_i16x8:
18055     case WebAssembly::BI__builtin_wasm_max_u_i32x4:
18056       ICmp = Builder.CreateICmpUGT(LHS, RHS);
18057       break;
18058     default:
18059       llvm_unreachable("unexpected builtin ID");
18060     }
18061     return Builder.CreateSelect(ICmp, LHS, RHS);
18062   }
18063   case WebAssembly::BI__builtin_wasm_avgr_u_i8x16:
18064   case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: {
18065     Value *LHS = EmitScalarExpr(E->getArg(0));
18066     Value *RHS = EmitScalarExpr(E->getArg(1));
18067     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned,
18068                                         ConvertType(E->getType()));
18069     return Builder.CreateCall(Callee, {LHS, RHS});
18070   }
18071   case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: {
18072     Value *LHS = EmitScalarExpr(E->getArg(0));
18073     Value *RHS = EmitScalarExpr(E->getArg(1));
18074     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed);
18075     return Builder.CreateCall(Callee, {LHS, RHS});
18076   }
18077   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
18078   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
18079   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
18080   case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: {
18081     Value *Vec = EmitScalarExpr(E->getArg(0));
18082     unsigned IntNo;
18083     switch (BuiltinID) {
18084     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8:
18085     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4:
18086       IntNo = Intrinsic::wasm_extadd_pairwise_signed;
18087       break;
18088     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8:
18089     case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4:
18090       IntNo = Intrinsic::wasm_extadd_pairwise_unsigned;
18091       break;
18092     default:
18093       llvm_unreachable("unexptected builtin ID");
18094     }
18095 
18096     Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
18097     return Builder.CreateCall(Callee, Vec);
18098   }
18099   case WebAssembly::BI__builtin_wasm_bitselect: {
18100     Value *V1 = EmitScalarExpr(E->getArg(0));
18101     Value *V2 = EmitScalarExpr(E->getArg(1));
18102     Value *C = EmitScalarExpr(E->getArg(2));
18103     Function *Callee =
18104         CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType()));
18105     return Builder.CreateCall(Callee, {V1, V2, C});
18106   }
18107   case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: {
18108     Value *LHS = EmitScalarExpr(E->getArg(0));
18109     Value *RHS = EmitScalarExpr(E->getArg(1));
18110     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot);
18111     return Builder.CreateCall(Callee, {LHS, RHS});
18112   }
18113   case WebAssembly::BI__builtin_wasm_popcnt_i8x16: {
18114     Value *Vec = EmitScalarExpr(E->getArg(0));
18115     Function *Callee =
18116         CGM.getIntrinsic(Intrinsic::ctpop, ConvertType(E->getType()));
18117     return Builder.CreateCall(Callee, {Vec});
18118   }
18119   case WebAssembly::BI__builtin_wasm_any_true_v128:
18120   case WebAssembly::BI__builtin_wasm_all_true_i8x16:
18121   case WebAssembly::BI__builtin_wasm_all_true_i16x8:
18122   case WebAssembly::BI__builtin_wasm_all_true_i32x4:
18123   case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
18124     unsigned IntNo;
18125     switch (BuiltinID) {
18126     case WebAssembly::BI__builtin_wasm_any_true_v128:
18127       IntNo = Intrinsic::wasm_anytrue;
18128       break;
18129     case WebAssembly::BI__builtin_wasm_all_true_i8x16:
18130     case WebAssembly::BI__builtin_wasm_all_true_i16x8:
18131     case WebAssembly::BI__builtin_wasm_all_true_i32x4:
18132     case WebAssembly::BI__builtin_wasm_all_true_i64x2:
18133       IntNo = Intrinsic::wasm_alltrue;
18134       break;
18135     default:
18136       llvm_unreachable("unexpected builtin ID");
18137     }
18138     Value *Vec = EmitScalarExpr(E->getArg(0));
18139     Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
18140     return Builder.CreateCall(Callee, {Vec});
18141   }
18142   case WebAssembly::BI__builtin_wasm_bitmask_i8x16:
18143   case WebAssembly::BI__builtin_wasm_bitmask_i16x8:
18144   case WebAssembly::BI__builtin_wasm_bitmask_i32x4:
18145   case WebAssembly::BI__builtin_wasm_bitmask_i64x2: {
18146     Value *Vec = EmitScalarExpr(E->getArg(0));
18147     Function *Callee =
18148         CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType());
18149     return Builder.CreateCall(Callee, {Vec});
18150   }
18151   case WebAssembly::BI__builtin_wasm_abs_f32x4:
18152   case WebAssembly::BI__builtin_wasm_abs_f64x2: {
18153     Value *Vec = EmitScalarExpr(E->getArg(0));
18154     Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
18155     return Builder.CreateCall(Callee, {Vec});
18156   }
18157   case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
18158   case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
18159     Value *Vec = EmitScalarExpr(E->getArg(0));
18160     Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
18161     return Builder.CreateCall(Callee, {Vec});
18162   }
18163   case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
18164   case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
18165   case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
18166   case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: {
18167     Value *Low = EmitScalarExpr(E->getArg(0));
18168     Value *High = EmitScalarExpr(E->getArg(1));
18169     unsigned IntNo;
18170     switch (BuiltinID) {
18171     case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8:
18172     case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4:
18173       IntNo = Intrinsic::wasm_narrow_signed;
18174       break;
18175     case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8:
18176     case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4:
18177       IntNo = Intrinsic::wasm_narrow_unsigned;
18178       break;
18179     default:
18180       llvm_unreachable("unexpected builtin ID");
18181     }
18182     Function *Callee =
18183         CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()});
18184     return Builder.CreateCall(Callee, {Low, High});
18185   }
18186   case WebAssembly::BI__builtin_wasm_trunc_sat_zero_s_f64x2_i32x4:
18187   case WebAssembly::BI__builtin_wasm_trunc_sat_zero_u_f64x2_i32x4: {
18188     Value *Vec = EmitScalarExpr(E->getArg(0));
18189     unsigned IntNo;
18190     switch (BuiltinID) {
18191     case WebAssembly::BI__builtin_wasm_trunc_sat_zero_s_f64x2_i32x4:
18192       IntNo = Intrinsic::fptosi_sat;
18193       break;
18194     case WebAssembly::BI__builtin_wasm_trunc_sat_zero_u_f64x2_i32x4:
18195       IntNo = Intrinsic::fptoui_sat;
18196       break;
18197     default:
18198       llvm_unreachable("unexpected builtin ID");
18199     }
18200     llvm::Type *SrcT = Vec->getType();
18201     llvm::Type *TruncT =
18202         SrcT->getWithNewType(llvm::IntegerType::get(getLLVMContext(), 32));
18203     Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT});
18204     Value *Trunc = Builder.CreateCall(Callee, Vec);
18205     Value *Splat = Builder.CreateVectorSplat(2, Builder.getInt32(0));
18206     Value *ConcatMask =
18207         llvm::ConstantVector::get({Builder.getInt32(0), Builder.getInt32(1),
18208                                    Builder.getInt32(2), Builder.getInt32(3)});
18209     return Builder.CreateShuffleVector(Trunc, Splat, ConcatMask);
18210   }
18211   case WebAssembly::BI__builtin_wasm_shuffle_i8x16: {
18212     Value *Ops[18];
18213     size_t OpIdx = 0;
18214     Ops[OpIdx++] = EmitScalarExpr(E->getArg(0));
18215     Ops[OpIdx++] = EmitScalarExpr(E->getArg(1));
18216     while (OpIdx < 18) {
18217       Optional<llvm::APSInt> LaneConst =
18218           E->getArg(OpIdx)->getIntegerConstantExpr(getContext());
18219       assert(LaneConst && "Constant arg isn't actually constant?");
18220       Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst);
18221     }
18222     Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle);
18223     return Builder.CreateCall(Callee, Ops);
18224   }
18225   default:
18226     return nullptr;
18227   }
18228 }
18229 
18230 static std::pair<Intrinsic::ID, unsigned>
18231 getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) {
18232   struct Info {
18233     unsigned BuiltinID;
18234     Intrinsic::ID IntrinsicID;
18235     unsigned VecLen;
18236   };
18237   Info Infos[] = {
18238 #define CUSTOM_BUILTIN_MAPPING(x,s) \
18239   { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s },
18240     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0)
18241     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0)
18242     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0)
18243     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0)
18244     CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0)
18245     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0)
18246     CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0)
18247     CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0)
18248     CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0)
18249     CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0)
18250     CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0)
18251     CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0)
18252     CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0)
18253     CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0)
18254     CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0)
18255     CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0)
18256     CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0)
18257     CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0)
18258     CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0)
18259     CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0)
18260     CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0)
18261     CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0)
18262     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64)
18263     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64)
18264     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64)
18265     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64)
18266     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128)
18267     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128)
18268     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128)
18269     CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128)
18270 #include "clang/Basic/BuiltinsHexagonMapCustomDep.def"
18271 #undef CUSTOM_BUILTIN_MAPPING
18272   };
18273 
18274   auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; };
18275   static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true);
18276   (void)SortOnce;
18277 
18278   const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos),
18279                                    Info{BuiltinID, 0, 0}, CmpInfo);
18280   if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
18281     return {Intrinsic::not_intrinsic, 0};
18282 
18283   return {F->IntrinsicID, F->VecLen};
18284 }
18285 
18286 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
18287                                                const CallExpr *E) {
18288   Intrinsic::ID ID;
18289   unsigned VecLen;
18290   std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID);
18291 
18292   auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) {
18293     // The base pointer is passed by address, so it needs to be loaded.
18294     Address A = EmitPointerWithAlignment(E->getArg(0));
18295     Address BP = Address(
18296         Builder.CreateBitCast(A.getPointer(), Int8PtrPtrTy), A.getAlignment());
18297     llvm::Value *Base = Builder.CreateLoad(BP);
18298     // The treatment of both loads and stores is the same: the arguments for
18299     // the builtin are the same as the arguments for the intrinsic.
18300     // Load:
18301     //   builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start)
18302     //   builtin(Base, Mod, Start)      -> intr(Base, Mod, Start)
18303     // Store:
18304     //   builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start)
18305     //   builtin(Base, Mod, Val, Start)      -> intr(Base, Mod, Val, Start)
18306     SmallVector<llvm::Value*,5> Ops = { Base };
18307     for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i)
18308       Ops.push_back(EmitScalarExpr(E->getArg(i)));
18309 
18310     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
18311     // The load intrinsics generate two results (Value, NewBase), stores
18312     // generate one (NewBase). The new base address needs to be stored.
18313     llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1)
18314                                   : Result;
18315     llvm::Value *LV = Builder.CreateBitCast(
18316         EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo());
18317     Address Dest = EmitPointerWithAlignment(E->getArg(0));
18318     llvm::Value *RetVal =
18319         Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
18320     if (IsLoad)
18321       RetVal = Builder.CreateExtractValue(Result, 0);
18322     return RetVal;
18323   };
18324 
18325   // Handle the conversion of bit-reverse load intrinsics to bit code.
18326   // The intrinsic call after this function only reads from memory and the
18327   // write to memory is dealt by the store instruction.
18328   auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) {
18329     // The intrinsic generates one result, which is the new value for the base
18330     // pointer. It needs to be returned. The result of the load instruction is
18331     // passed to intrinsic by address, so the value needs to be stored.
18332     llvm::Value *BaseAddress =
18333         Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
18334 
18335     // Expressions like &(*pt++) will be incremented per evaluation.
18336     // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
18337     // per call.
18338     Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
18339     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
18340                        DestAddr.getAlignment());
18341     llvm::Value *DestAddress = DestAddr.getPointer();
18342 
18343     // Operands are Base, Dest, Modifier.
18344     // The intrinsic format in LLVM IR is defined as
18345     // { ValueType, i8* } (i8*, i32).
18346     llvm::Value *Result = Builder.CreateCall(
18347         CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))});
18348 
18349     // The value needs to be stored as the variable is passed by reference.
18350     llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
18351 
18352     // The store needs to be truncated to fit the destination type.
18353     // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
18354     // to be handled with stores of respective destination type.
18355     DestVal = Builder.CreateTrunc(DestVal, DestTy);
18356 
18357     llvm::Value *DestForStore =
18358         Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
18359     Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
18360     // The updated value of the base pointer is returned.
18361     return Builder.CreateExtractValue(Result, 1);
18362   };
18363 
18364   auto V2Q = [this, VecLen] (llvm::Value *Vec) {
18365     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B
18366                                      : Intrinsic::hexagon_V6_vandvrt;
18367     return Builder.CreateCall(CGM.getIntrinsic(ID),
18368                               {Vec, Builder.getInt32(-1)});
18369   };
18370   auto Q2V = [this, VecLen] (llvm::Value *Pred) {
18371     Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B
18372                                      : Intrinsic::hexagon_V6_vandqrt;
18373     return Builder.CreateCall(CGM.getIntrinsic(ID),
18374                               {Pred, Builder.getInt32(-1)});
18375   };
18376 
18377   switch (BuiltinID) {
18378   // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR,
18379   // and the corresponding C/C++ builtins use loads/stores to update
18380   // the predicate.
18381   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
18382   case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B:
18383   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
18384   case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
18385     // Get the type from the 0-th argument.
18386     llvm::Type *VecType = ConvertType(E->getArg(0)->getType());
18387     Address PredAddr = Builder.CreateBitCast(
18388         EmitPointerWithAlignment(E->getArg(2)), VecType->getPointerTo(0));
18389     llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr));
18390     llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID),
18391         {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn});
18392 
18393     llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1);
18394     Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(),
18395         PredAddr.getAlignment());
18396     return Builder.CreateExtractValue(Result, 0);
18397   }
18398 
18399   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
18400   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
18401   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
18402   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
18403   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
18404   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
18405   case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
18406   case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
18407   case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
18408   case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
18409   case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
18410   case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
18411     return MakeCircOp(ID, /*IsLoad=*/true);
18412   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
18413   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
18414   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
18415   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
18416   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
18417   case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
18418   case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
18419   case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
18420   case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
18421   case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
18422     return MakeCircOp(ID, /*IsLoad=*/false);
18423   case Hexagon::BI__builtin_brev_ldub:
18424     return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
18425   case Hexagon::BI__builtin_brev_ldb:
18426     return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
18427   case Hexagon::BI__builtin_brev_lduh:
18428     return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
18429   case Hexagon::BI__builtin_brev_ldh:
18430     return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
18431   case Hexagon::BI__builtin_brev_ldw:
18432     return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
18433   case Hexagon::BI__builtin_brev_ldd:
18434     return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
18435 
18436   default: {
18437     if (ID == Intrinsic::not_intrinsic)
18438       return nullptr;
18439 
18440     auto IsVectorPredTy = [](llvm::Type *T) {
18441       return T->isVectorTy() &&
18442              cast<llvm::VectorType>(T)->getElementType()->isIntegerTy(1);
18443     };
18444 
18445     llvm::Function *IntrFn = CGM.getIntrinsic(ID);
18446     llvm::FunctionType *IntrTy = IntrFn->getFunctionType();
18447     SmallVector<llvm::Value*,4> Ops;
18448     for (unsigned i = 0, e = IntrTy->getNumParams(); i != e; ++i) {
18449       llvm::Type *T = IntrTy->getParamType(i);
18450       const Expr *A = E->getArg(i);
18451       if (IsVectorPredTy(T)) {
18452         // There will be an implicit cast to a boolean vector. Strip it.
18453         if (auto *Cast = dyn_cast<ImplicitCastExpr>(A)) {
18454           if (Cast->getCastKind() == CK_BitCast)
18455             A = Cast->getSubExpr();
18456         }
18457         Ops.push_back(V2Q(EmitScalarExpr(A)));
18458       } else {
18459         Ops.push_back(EmitScalarExpr(A));
18460       }
18461     }
18462 
18463     llvm::Value *Call = Builder.CreateCall(IntrFn, Ops);
18464     if (IsVectorPredTy(IntrTy->getReturnType()))
18465       Call = Q2V(Call);
18466 
18467     return Call;
18468   } // default
18469   } // switch
18470 
18471   return nullptr;
18472 }
18473 
18474 Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID,
18475                                              const CallExpr *E,
18476                                              ReturnValueSlot ReturnValue) {
18477   SmallVector<Value *, 4> Ops;
18478   llvm::Type *ResultType = ConvertType(E->getType());
18479 
18480   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
18481     Ops.push_back(EmitScalarExpr(E->getArg(i)));
18482 
18483   Intrinsic::ID ID = Intrinsic::not_intrinsic;
18484   unsigned NF = 1;
18485 
18486   // Required for overloaded intrinsics.
18487   llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes;
18488   switch (BuiltinID) {
18489   default: llvm_unreachable("unexpected builtin ID");
18490   case RISCV::BI__builtin_riscv_orc_b_32:
18491   case RISCV::BI__builtin_riscv_orc_b_64:
18492   case RISCV::BI__builtin_riscv_clmul:
18493   case RISCV::BI__builtin_riscv_clmulh:
18494   case RISCV::BI__builtin_riscv_clmulr:
18495   case RISCV::BI__builtin_riscv_bcompress_32:
18496   case RISCV::BI__builtin_riscv_bcompress_64:
18497   case RISCV::BI__builtin_riscv_bdecompress_32:
18498   case RISCV::BI__builtin_riscv_bdecompress_64:
18499   case RISCV::BI__builtin_riscv_grev_32:
18500   case RISCV::BI__builtin_riscv_grev_64:
18501   case RISCV::BI__builtin_riscv_gorc_32:
18502   case RISCV::BI__builtin_riscv_gorc_64:
18503   case RISCV::BI__builtin_riscv_shfl_32:
18504   case RISCV::BI__builtin_riscv_shfl_64:
18505   case RISCV::BI__builtin_riscv_unshfl_32:
18506   case RISCV::BI__builtin_riscv_unshfl_64:
18507   case RISCV::BI__builtin_riscv_xperm_n:
18508   case RISCV::BI__builtin_riscv_xperm_b:
18509   case RISCV::BI__builtin_riscv_xperm_h:
18510   case RISCV::BI__builtin_riscv_xperm_w:
18511   case RISCV::BI__builtin_riscv_crc32_b:
18512   case RISCV::BI__builtin_riscv_crc32_h:
18513   case RISCV::BI__builtin_riscv_crc32_w:
18514   case RISCV::BI__builtin_riscv_crc32_d:
18515   case RISCV::BI__builtin_riscv_crc32c_b:
18516   case RISCV::BI__builtin_riscv_crc32c_h:
18517   case RISCV::BI__builtin_riscv_crc32c_w:
18518   case RISCV::BI__builtin_riscv_crc32c_d: {
18519     switch (BuiltinID) {
18520     default: llvm_unreachable("unexpected builtin ID");
18521     // Zbb
18522     case RISCV::BI__builtin_riscv_orc_b_32:
18523     case RISCV::BI__builtin_riscv_orc_b_64:
18524       ID = Intrinsic::riscv_orc_b;
18525       break;
18526 
18527     // Zbc
18528     case RISCV::BI__builtin_riscv_clmul:
18529       ID = Intrinsic::riscv_clmul;
18530       break;
18531     case RISCV::BI__builtin_riscv_clmulh:
18532       ID = Intrinsic::riscv_clmulh;
18533       break;
18534     case RISCV::BI__builtin_riscv_clmulr:
18535       ID = Intrinsic::riscv_clmulr;
18536       break;
18537 
18538     // Zbe
18539     case RISCV::BI__builtin_riscv_bcompress_32:
18540     case RISCV::BI__builtin_riscv_bcompress_64:
18541       ID = Intrinsic::riscv_bcompress;
18542       break;
18543     case RISCV::BI__builtin_riscv_bdecompress_32:
18544     case RISCV::BI__builtin_riscv_bdecompress_64:
18545       ID = Intrinsic::riscv_bdecompress;
18546       break;
18547 
18548     // Zbp
18549     case RISCV::BI__builtin_riscv_grev_32:
18550     case RISCV::BI__builtin_riscv_grev_64:
18551       ID = Intrinsic::riscv_grev;
18552       break;
18553     case RISCV::BI__builtin_riscv_gorc_32:
18554     case RISCV::BI__builtin_riscv_gorc_64:
18555       ID = Intrinsic::riscv_gorc;
18556       break;
18557     case RISCV::BI__builtin_riscv_shfl_32:
18558     case RISCV::BI__builtin_riscv_shfl_64:
18559       ID = Intrinsic::riscv_shfl;
18560       break;
18561     case RISCV::BI__builtin_riscv_unshfl_32:
18562     case RISCV::BI__builtin_riscv_unshfl_64:
18563       ID = Intrinsic::riscv_unshfl;
18564       break;
18565     case RISCV::BI__builtin_riscv_xperm_n:
18566       ID = Intrinsic::riscv_xperm_n;
18567       break;
18568     case RISCV::BI__builtin_riscv_xperm_b:
18569       ID = Intrinsic::riscv_xperm_b;
18570       break;
18571     case RISCV::BI__builtin_riscv_xperm_h:
18572       ID = Intrinsic::riscv_xperm_h;
18573       break;
18574     case RISCV::BI__builtin_riscv_xperm_w:
18575       ID = Intrinsic::riscv_xperm_w;
18576       break;
18577 
18578     // Zbr
18579     case RISCV::BI__builtin_riscv_crc32_b:
18580       ID = Intrinsic::riscv_crc32_b;
18581       break;
18582     case RISCV::BI__builtin_riscv_crc32_h:
18583       ID = Intrinsic::riscv_crc32_h;
18584       break;
18585     case RISCV::BI__builtin_riscv_crc32_w:
18586       ID = Intrinsic::riscv_crc32_w;
18587       break;
18588     case RISCV::BI__builtin_riscv_crc32_d:
18589       ID = Intrinsic::riscv_crc32_d;
18590       break;
18591     case RISCV::BI__builtin_riscv_crc32c_b:
18592       ID = Intrinsic::riscv_crc32c_b;
18593       break;
18594     case RISCV::BI__builtin_riscv_crc32c_h:
18595       ID = Intrinsic::riscv_crc32c_h;
18596       break;
18597     case RISCV::BI__builtin_riscv_crc32c_w:
18598       ID = Intrinsic::riscv_crc32c_w;
18599       break;
18600     case RISCV::BI__builtin_riscv_crc32c_d:
18601       ID = Intrinsic::riscv_crc32c_d;
18602       break;
18603     }
18604 
18605     IntrinsicTypes = {ResultType};
18606     break;
18607   }
18608   // Vector builtins are handled from here.
18609 #include "clang/Basic/riscv_vector_builtin_cg.inc"
18610   }
18611 
18612   assert(ID != Intrinsic::not_intrinsic);
18613 
18614   llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes);
18615   return Builder.CreateCall(F, Ops, "");
18616 }
18617