1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This contains code to emit Builtin calls as LLVM code. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CGCUDARuntime.h" 14 #include "CGCXXABI.h" 15 #include "CGObjCRuntime.h" 16 #include "CGOpenCLRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "ConstantEmitter.h" 21 #include "PatternInit.h" 22 #include "TargetInfo.h" 23 #include "clang/AST/ASTContext.h" 24 #include "clang/AST/Attr.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/OSLog.h" 27 #include "clang/Basic/TargetBuiltins.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "clang/CodeGen/CGFunctionInfo.h" 30 #include "llvm/ADT/APFloat.h" 31 #include "llvm/ADT/APInt.h" 32 #include "llvm/ADT/SmallPtrSet.h" 33 #include "llvm/ADT/StringExtras.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/InlineAsm.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/IntrinsicsAArch64.h" 39 #include "llvm/IR/IntrinsicsAMDGPU.h" 40 #include "llvm/IR/IntrinsicsARM.h" 41 #include "llvm/IR/IntrinsicsBPF.h" 42 #include "llvm/IR/IntrinsicsHexagon.h" 43 #include "llvm/IR/IntrinsicsNVPTX.h" 44 #include "llvm/IR/IntrinsicsPowerPC.h" 45 #include "llvm/IR/IntrinsicsR600.h" 46 #include "llvm/IR/IntrinsicsRISCV.h" 47 #include "llvm/IR/IntrinsicsS390.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/MDBuilder.h" 51 #include "llvm/IR/MatrixBuilder.h" 52 #include "llvm/Support/ConvertUTF.h" 53 #include "llvm/Support/ScopedPrinter.h" 54 #include "llvm/Support/X86TargetParser.h" 55 #include <sstream> 56 57 using namespace clang; 58 using namespace CodeGen; 59 using namespace llvm; 60 61 static 62 int64_t clamp(int64_t Value, int64_t Low, int64_t High) { 63 return std::min(High, std::max(Low, Value)); 64 } 65 66 static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, 67 Align AlignmentInBytes) { 68 ConstantInt *Byte; 69 switch (CGF.getLangOpts().getTrivialAutoVarInit()) { 70 case LangOptions::TrivialAutoVarInitKind::Uninitialized: 71 // Nothing to initialize. 72 return; 73 case LangOptions::TrivialAutoVarInitKind::Zero: 74 Byte = CGF.Builder.getInt8(0x00); 75 break; 76 case LangOptions::TrivialAutoVarInitKind::Pattern: { 77 llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext()); 78 Byte = llvm::dyn_cast<llvm::ConstantInt>( 79 initializationPatternFor(CGF.CGM, Int8)); 80 break; 81 } 82 } 83 if (CGF.CGM.stopAutoInit()) 84 return; 85 auto *I = CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes); 86 I->addAnnotationMetadata("auto-init"); 87 } 88 89 /// getBuiltinLibFunction - Given a builtin id for a function like 90 /// "__builtin_fabsf", return a Function* for "fabsf". 91 llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD, 92 unsigned BuiltinID) { 93 assert(Context.BuiltinInfo.isLibFunction(BuiltinID)); 94 95 // Get the name, skip over the __builtin_ prefix (if necessary). 96 StringRef Name; 97 GlobalDecl D(FD); 98 99 // If the builtin has been declared explicitly with an assembler label, 100 // use the mangled name. This differs from the plain label on platforms 101 // that prefix labels. 102 if (FD->hasAttr<AsmLabelAttr>()) 103 Name = getMangledName(D); 104 else 105 Name = Context.BuiltinInfo.getName(BuiltinID) + 10; 106 107 llvm::FunctionType *Ty = 108 cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType())); 109 110 return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false); 111 } 112 113 /// Emit the conversions required to turn the given value into an 114 /// integer of the given size. 115 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V, 116 QualType T, llvm::IntegerType *IntType) { 117 V = CGF.EmitToMemory(V, T); 118 119 if (V->getType()->isPointerTy()) 120 return CGF.Builder.CreatePtrToInt(V, IntType); 121 122 assert(V->getType() == IntType); 123 return V; 124 } 125 126 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V, 127 QualType T, llvm::Type *ResultType) { 128 V = CGF.EmitFromMemory(V, T); 129 130 if (ResultType->isPointerTy()) 131 return CGF.Builder.CreateIntToPtr(V, ResultType); 132 133 assert(V->getType() == ResultType); 134 return V; 135 } 136 137 /// Utility to insert an atomic instruction based on Intrinsic::ID 138 /// and the expression node. 139 static Value *MakeBinaryAtomicValue( 140 CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E, 141 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { 142 QualType T = E->getType(); 143 assert(E->getArg(0)->getType()->isPointerType()); 144 assert(CGF.getContext().hasSameUnqualifiedType(T, 145 E->getArg(0)->getType()->getPointeeType())); 146 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); 147 148 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); 149 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 150 151 llvm::IntegerType *IntType = 152 llvm::IntegerType::get(CGF.getLLVMContext(), 153 CGF.getContext().getTypeSize(T)); 154 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 155 156 llvm::Value *Args[2]; 157 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); 158 Args[1] = CGF.EmitScalarExpr(E->getArg(1)); 159 llvm::Type *ValueType = Args[1]->getType(); 160 Args[1] = EmitToInt(CGF, Args[1], T, IntType); 161 162 llvm::Value *Result = CGF.Builder.CreateAtomicRMW( 163 Kind, Args[0], Args[1], Ordering); 164 return EmitFromInt(CGF, Result, T, ValueType); 165 } 166 167 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) { 168 Value *Val = CGF.EmitScalarExpr(E->getArg(0)); 169 Value *Address = CGF.EmitScalarExpr(E->getArg(1)); 170 171 // Convert the type of the pointer to a pointer to the stored type. 172 Val = CGF.EmitToMemory(Val, E->getArg(0)->getType()); 173 Value *BC = CGF.Builder.CreateBitCast( 174 Address, llvm::PointerType::getUnqual(Val->getType()), "cast"); 175 LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType()); 176 LV.setNontemporal(true); 177 CGF.EmitStoreOfScalar(Val, LV, false); 178 return nullptr; 179 } 180 181 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) { 182 Value *Address = CGF.EmitScalarExpr(E->getArg(0)); 183 184 LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType()); 185 LV.setNontemporal(true); 186 return CGF.EmitLoadOfScalar(LV, E->getExprLoc()); 187 } 188 189 static RValue EmitBinaryAtomic(CodeGenFunction &CGF, 190 llvm::AtomicRMWInst::BinOp Kind, 191 const CallExpr *E) { 192 return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E)); 193 } 194 195 /// Utility to insert an atomic instruction based Intrinsic::ID and 196 /// the expression node, where the return value is the result of the 197 /// operation. 198 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF, 199 llvm::AtomicRMWInst::BinOp Kind, 200 const CallExpr *E, 201 Instruction::BinaryOps Op, 202 bool Invert = false) { 203 QualType T = E->getType(); 204 assert(E->getArg(0)->getType()->isPointerType()); 205 assert(CGF.getContext().hasSameUnqualifiedType(T, 206 E->getArg(0)->getType()->getPointeeType())); 207 assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType())); 208 209 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); 210 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 211 212 llvm::IntegerType *IntType = 213 llvm::IntegerType::get(CGF.getLLVMContext(), 214 CGF.getContext().getTypeSize(T)); 215 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 216 217 llvm::Value *Args[2]; 218 Args[1] = CGF.EmitScalarExpr(E->getArg(1)); 219 llvm::Type *ValueType = Args[1]->getType(); 220 Args[1] = EmitToInt(CGF, Args[1], T, IntType); 221 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); 222 223 llvm::Value *Result = CGF.Builder.CreateAtomicRMW( 224 Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent); 225 Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]); 226 if (Invert) 227 Result = 228 CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result, 229 llvm::ConstantInt::getAllOnesValue(IntType)); 230 Result = EmitFromInt(CGF, Result, T, ValueType); 231 return RValue::get(Result); 232 } 233 234 /// Utility to insert an atomic cmpxchg instruction. 235 /// 236 /// @param CGF The current codegen function. 237 /// @param E Builtin call expression to convert to cmpxchg. 238 /// arg0 - address to operate on 239 /// arg1 - value to compare with 240 /// arg2 - new value 241 /// @param ReturnBool Specifies whether to return success flag of 242 /// cmpxchg result or the old value. 243 /// 244 /// @returns result of cmpxchg, according to ReturnBool 245 /// 246 /// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics 247 /// invoke the function EmitAtomicCmpXchgForMSIntrin. 248 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E, 249 bool ReturnBool) { 250 QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType(); 251 llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0)); 252 unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace(); 253 254 llvm::IntegerType *IntType = llvm::IntegerType::get( 255 CGF.getLLVMContext(), CGF.getContext().getTypeSize(T)); 256 llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace); 257 258 Value *Args[3]; 259 Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType); 260 Args[1] = CGF.EmitScalarExpr(E->getArg(1)); 261 llvm::Type *ValueType = Args[1]->getType(); 262 Args[1] = EmitToInt(CGF, Args[1], T, IntType); 263 Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType); 264 265 Value *Pair = CGF.Builder.CreateAtomicCmpXchg( 266 Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent, 267 llvm::AtomicOrdering::SequentiallyConsistent); 268 if (ReturnBool) 269 // Extract boolean success flag and zext it to int. 270 return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1), 271 CGF.ConvertType(E->getType())); 272 else 273 // Extract old value and emit it using the same type as compare value. 274 return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T, 275 ValueType); 276 } 277 278 /// This function should be invoked to emit atomic cmpxchg for Microsoft's 279 /// _InterlockedCompareExchange* intrinsics which have the following signature: 280 /// T _InterlockedCompareExchange(T volatile *Destination, 281 /// T Exchange, 282 /// T Comparand); 283 /// 284 /// Whereas the llvm 'cmpxchg' instruction has the following syntax: 285 /// cmpxchg *Destination, Comparand, Exchange. 286 /// So we need to swap Comparand and Exchange when invoking 287 /// CreateAtomicCmpXchg. That is the reason we could not use the above utility 288 /// function MakeAtomicCmpXchgValue since it expects the arguments to be 289 /// already swapped. 290 291 static 292 Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E, 293 AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) { 294 assert(E->getArg(0)->getType()->isPointerType()); 295 assert(CGF.getContext().hasSameUnqualifiedType( 296 E->getType(), E->getArg(0)->getType()->getPointeeType())); 297 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), 298 E->getArg(1)->getType())); 299 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), 300 E->getArg(2)->getType())); 301 302 auto *Destination = CGF.EmitScalarExpr(E->getArg(0)); 303 auto *Comparand = CGF.EmitScalarExpr(E->getArg(2)); 304 auto *Exchange = CGF.EmitScalarExpr(E->getArg(1)); 305 306 // For Release ordering, the failure ordering should be Monotonic. 307 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ? 308 AtomicOrdering::Monotonic : 309 SuccessOrdering; 310 311 // The atomic instruction is marked volatile for consistency with MSVC. This 312 // blocks the few atomics optimizations that LLVM has. If we want to optimize 313 // _Interlocked* operations in the future, we will have to remove the volatile 314 // marker. 315 auto *Result = CGF.Builder.CreateAtomicCmpXchg( 316 Destination, Comparand, Exchange, 317 SuccessOrdering, FailureOrdering); 318 Result->setVolatile(true); 319 return CGF.Builder.CreateExtractValue(Result, 0); 320 } 321 322 // 64-bit Microsoft platforms support 128 bit cmpxchg operations. They are 323 // prototyped like this: 324 // 325 // unsigned char _InterlockedCompareExchange128...( 326 // __int64 volatile * _Destination, 327 // __int64 _ExchangeHigh, 328 // __int64 _ExchangeLow, 329 // __int64 * _ComparandResult); 330 static Value *EmitAtomicCmpXchg128ForMSIntrin(CodeGenFunction &CGF, 331 const CallExpr *E, 332 AtomicOrdering SuccessOrdering) { 333 assert(E->getNumArgs() == 4); 334 llvm::Value *Destination = CGF.EmitScalarExpr(E->getArg(0)); 335 llvm::Value *ExchangeHigh = CGF.EmitScalarExpr(E->getArg(1)); 336 llvm::Value *ExchangeLow = CGF.EmitScalarExpr(E->getArg(2)); 337 llvm::Value *ComparandPtr = CGF.EmitScalarExpr(E->getArg(3)); 338 339 assert(Destination->getType()->isPointerTy()); 340 assert(!ExchangeHigh->getType()->isPointerTy()); 341 assert(!ExchangeLow->getType()->isPointerTy()); 342 assert(ComparandPtr->getType()->isPointerTy()); 343 344 // For Release ordering, the failure ordering should be Monotonic. 345 auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release 346 ? AtomicOrdering::Monotonic 347 : SuccessOrdering; 348 349 // Convert to i128 pointers and values. 350 llvm::Type *Int128Ty = llvm::IntegerType::get(CGF.getLLVMContext(), 128); 351 llvm::Type *Int128PtrTy = Int128Ty->getPointerTo(); 352 Destination = CGF.Builder.CreateBitCast(Destination, Int128PtrTy); 353 Address ComparandResult(CGF.Builder.CreateBitCast(ComparandPtr, Int128PtrTy), 354 CGF.getContext().toCharUnitsFromBits(128)); 355 356 // (((i128)hi) << 64) | ((i128)lo) 357 ExchangeHigh = CGF.Builder.CreateZExt(ExchangeHigh, Int128Ty); 358 ExchangeLow = CGF.Builder.CreateZExt(ExchangeLow, Int128Ty); 359 ExchangeHigh = 360 CGF.Builder.CreateShl(ExchangeHigh, llvm::ConstantInt::get(Int128Ty, 64)); 361 llvm::Value *Exchange = CGF.Builder.CreateOr(ExchangeHigh, ExchangeLow); 362 363 // Load the comparand for the instruction. 364 llvm::Value *Comparand = CGF.Builder.CreateLoad(ComparandResult); 365 366 auto *CXI = CGF.Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, 367 SuccessOrdering, FailureOrdering); 368 369 // The atomic instruction is marked volatile for consistency with MSVC. This 370 // blocks the few atomics optimizations that LLVM has. If we want to optimize 371 // _Interlocked* operations in the future, we will have to remove the volatile 372 // marker. 373 CXI->setVolatile(true); 374 375 // Store the result as an outparameter. 376 CGF.Builder.CreateStore(CGF.Builder.CreateExtractValue(CXI, 0), 377 ComparandResult); 378 379 // Get the success boolean and zero extend it to i8. 380 Value *Success = CGF.Builder.CreateExtractValue(CXI, 1); 381 return CGF.Builder.CreateZExt(Success, CGF.Int8Ty); 382 } 383 384 static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E, 385 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { 386 assert(E->getArg(0)->getType()->isPointerType()); 387 388 auto *IntTy = CGF.ConvertType(E->getType()); 389 auto *Result = CGF.Builder.CreateAtomicRMW( 390 AtomicRMWInst::Add, 391 CGF.EmitScalarExpr(E->getArg(0)), 392 ConstantInt::get(IntTy, 1), 393 Ordering); 394 return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1)); 395 } 396 397 static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E, 398 AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) { 399 assert(E->getArg(0)->getType()->isPointerType()); 400 401 auto *IntTy = CGF.ConvertType(E->getType()); 402 auto *Result = CGF.Builder.CreateAtomicRMW( 403 AtomicRMWInst::Sub, 404 CGF.EmitScalarExpr(E->getArg(0)), 405 ConstantInt::get(IntTy, 1), 406 Ordering); 407 return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1)); 408 } 409 410 // Build a plain volatile load. 411 static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) { 412 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); 413 QualType ElTy = E->getArg(0)->getType()->getPointeeType(); 414 CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy); 415 llvm::Type *ITy = 416 llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8); 417 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); 418 llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(ITy, Ptr, LoadSize); 419 Load->setVolatile(true); 420 return Load; 421 } 422 423 // Build a plain volatile store. 424 static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) { 425 Value *Ptr = CGF.EmitScalarExpr(E->getArg(0)); 426 Value *Value = CGF.EmitScalarExpr(E->getArg(1)); 427 QualType ElTy = E->getArg(0)->getType()->getPointeeType(); 428 CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy); 429 llvm::Type *ITy = 430 llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8); 431 Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo()); 432 llvm::StoreInst *Store = 433 CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize); 434 Store->setVolatile(true); 435 return Store; 436 } 437 438 // Emit a simple mangled intrinsic that has 1 argument and a return type 439 // matching the argument type. Depending on mode, this may be a constrained 440 // floating-point intrinsic. 441 static Value *emitUnaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, 442 const CallExpr *E, unsigned IntrinsicID, 443 unsigned ConstrainedIntrinsicID) { 444 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 445 446 if (CGF.Builder.getIsFPConstrained()) { 447 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 448 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); 449 return CGF.Builder.CreateConstrainedFPCall(F, { Src0 }); 450 } else { 451 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 452 return CGF.Builder.CreateCall(F, Src0); 453 } 454 } 455 456 // Emit an intrinsic that has 2 operands of the same type as its result. 457 // Depending on mode, this may be a constrained floating-point intrinsic. 458 static Value *emitBinaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, 459 const CallExpr *E, unsigned IntrinsicID, 460 unsigned ConstrainedIntrinsicID) { 461 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 462 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 463 464 if (CGF.Builder.getIsFPConstrained()) { 465 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 466 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); 467 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1 }); 468 } else { 469 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 470 return CGF.Builder.CreateCall(F, { Src0, Src1 }); 471 } 472 } 473 474 // Emit an intrinsic that has 3 operands of the same type as its result. 475 // Depending on mode, this may be a constrained floating-point intrinsic. 476 static Value *emitTernaryMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, 477 const CallExpr *E, unsigned IntrinsicID, 478 unsigned ConstrainedIntrinsicID) { 479 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 480 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 481 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); 482 483 if (CGF.Builder.getIsFPConstrained()) { 484 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 485 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Src0->getType()); 486 return CGF.Builder.CreateConstrainedFPCall(F, { Src0, Src1, Src2 }); 487 } else { 488 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 489 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); 490 } 491 } 492 493 // Emit an intrinsic where all operands are of the same type as the result. 494 // Depending on mode, this may be a constrained floating-point intrinsic. 495 static Value *emitCallMaybeConstrainedFPBuiltin(CodeGenFunction &CGF, 496 unsigned IntrinsicID, 497 unsigned ConstrainedIntrinsicID, 498 llvm::Type *Ty, 499 ArrayRef<Value *> Args) { 500 Function *F; 501 if (CGF.Builder.getIsFPConstrained()) 502 F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, Ty); 503 else 504 F = CGF.CGM.getIntrinsic(IntrinsicID, Ty); 505 506 if (CGF.Builder.getIsFPConstrained()) 507 return CGF.Builder.CreateConstrainedFPCall(F, Args); 508 else 509 return CGF.Builder.CreateCall(F, Args); 510 } 511 512 // Emit a simple mangled intrinsic that has 1 argument and a return type 513 // matching the argument type. 514 static Value *emitUnaryBuiltin(CodeGenFunction &CGF, 515 const CallExpr *E, 516 unsigned IntrinsicID) { 517 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 518 519 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 520 return CGF.Builder.CreateCall(F, Src0); 521 } 522 523 // Emit an intrinsic that has 2 operands of the same type as its result. 524 static Value *emitBinaryBuiltin(CodeGenFunction &CGF, 525 const CallExpr *E, 526 unsigned IntrinsicID) { 527 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 528 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 529 530 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 531 return CGF.Builder.CreateCall(F, { Src0, Src1 }); 532 } 533 534 // Emit an intrinsic that has 3 operands of the same type as its result. 535 static Value *emitTernaryBuiltin(CodeGenFunction &CGF, 536 const CallExpr *E, 537 unsigned IntrinsicID) { 538 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 539 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 540 llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2)); 541 542 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 543 return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 }); 544 } 545 546 // Emit an intrinsic that has 1 float or double operand, and 1 integer. 547 static Value *emitFPIntBuiltin(CodeGenFunction &CGF, 548 const CallExpr *E, 549 unsigned IntrinsicID) { 550 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 551 llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1)); 552 553 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType()); 554 return CGF.Builder.CreateCall(F, {Src0, Src1}); 555 } 556 557 // Emit an intrinsic that has overloaded integer result and fp operand. 558 static Value * 559 emitMaybeConstrainedFPToIntRoundBuiltin(CodeGenFunction &CGF, const CallExpr *E, 560 unsigned IntrinsicID, 561 unsigned ConstrainedIntrinsicID) { 562 llvm::Type *ResultType = CGF.ConvertType(E->getType()); 563 llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0)); 564 565 if (CGF.Builder.getIsFPConstrained()) { 566 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 567 Function *F = CGF.CGM.getIntrinsic(ConstrainedIntrinsicID, 568 {ResultType, Src0->getType()}); 569 return CGF.Builder.CreateConstrainedFPCall(F, {Src0}); 570 } else { 571 Function *F = 572 CGF.CGM.getIntrinsic(IntrinsicID, {ResultType, Src0->getType()}); 573 return CGF.Builder.CreateCall(F, Src0); 574 } 575 } 576 577 /// EmitFAbs - Emit a call to @llvm.fabs(). 578 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) { 579 Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType()); 580 llvm::CallInst *Call = CGF.Builder.CreateCall(F, V); 581 Call->setDoesNotAccessMemory(); 582 return Call; 583 } 584 585 /// Emit the computation of the sign bit for a floating point value. Returns 586 /// the i1 sign bit value. 587 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) { 588 LLVMContext &C = CGF.CGM.getLLVMContext(); 589 590 llvm::Type *Ty = V->getType(); 591 int Width = Ty->getPrimitiveSizeInBits(); 592 llvm::Type *IntTy = llvm::IntegerType::get(C, Width); 593 V = CGF.Builder.CreateBitCast(V, IntTy); 594 if (Ty->isPPC_FP128Ty()) { 595 // We want the sign bit of the higher-order double. The bitcast we just 596 // did works as if the double-double was stored to memory and then 597 // read as an i128. The "store" will put the higher-order double in the 598 // lower address in both little- and big-Endian modes, but the "load" 599 // will treat those bits as a different part of the i128: the low bits in 600 // little-Endian, the high bits in big-Endian. Therefore, on big-Endian 601 // we need to shift the high bits down to the low before truncating. 602 Width >>= 1; 603 if (CGF.getTarget().isBigEndian()) { 604 Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width); 605 V = CGF.Builder.CreateLShr(V, ShiftCst); 606 } 607 // We are truncating value in order to extract the higher-order 608 // double, which we will be using to extract the sign from. 609 IntTy = llvm::IntegerType::get(C, Width); 610 V = CGF.Builder.CreateTrunc(V, IntTy); 611 } 612 Value *Zero = llvm::Constant::getNullValue(IntTy); 613 return CGF.Builder.CreateICmpSLT(V, Zero); 614 } 615 616 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD, 617 const CallExpr *E, llvm::Constant *calleeValue) { 618 CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD)); 619 return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot()); 620 } 621 622 /// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.* 623 /// depending on IntrinsicID. 624 /// 625 /// \arg CGF The current codegen function. 626 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate. 627 /// \arg X The first argument to the llvm.*.with.overflow.*. 628 /// \arg Y The second argument to the llvm.*.with.overflow.*. 629 /// \arg Carry The carry returned by the llvm.*.with.overflow.*. 630 /// \returns The result (i.e. sum/product) returned by the intrinsic. 631 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF, 632 const llvm::Intrinsic::ID IntrinsicID, 633 llvm::Value *X, llvm::Value *Y, 634 llvm::Value *&Carry) { 635 // Make sure we have integers of the same width. 636 assert(X->getType() == Y->getType() && 637 "Arguments must be the same type. (Did you forget to make sure both " 638 "arguments have the same integer width?)"); 639 640 Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType()); 641 llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y}); 642 Carry = CGF.Builder.CreateExtractValue(Tmp, 1); 643 return CGF.Builder.CreateExtractValue(Tmp, 0); 644 } 645 646 static Value *emitRangedBuiltin(CodeGenFunction &CGF, 647 unsigned IntrinsicID, 648 int low, int high) { 649 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 650 llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high)); 651 Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {}); 652 llvm::Instruction *Call = CGF.Builder.CreateCall(F); 653 Call->setMetadata(llvm::LLVMContext::MD_range, RNode); 654 return Call; 655 } 656 657 namespace { 658 struct WidthAndSignedness { 659 unsigned Width; 660 bool Signed; 661 }; 662 } 663 664 static WidthAndSignedness 665 getIntegerWidthAndSignedness(const clang::ASTContext &context, 666 const clang::QualType Type) { 667 assert(Type->isIntegerType() && "Given type is not an integer."); 668 unsigned Width = Type->isBooleanType() ? 1 669 : Type->isExtIntType() ? context.getIntWidth(Type) 670 : context.getTypeInfo(Type).Width; 671 bool Signed = Type->isSignedIntegerType(); 672 return {Width, Signed}; 673 } 674 675 // Given one or more integer types, this function produces an integer type that 676 // encompasses them: any value in one of the given types could be expressed in 677 // the encompassing type. 678 static struct WidthAndSignedness 679 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) { 680 assert(Types.size() > 0 && "Empty list of types."); 681 682 // If any of the given types is signed, we must return a signed type. 683 bool Signed = false; 684 for (const auto &Type : Types) { 685 Signed |= Type.Signed; 686 } 687 688 // The encompassing type must have a width greater than or equal to the width 689 // of the specified types. Additionally, if the encompassing type is signed, 690 // its width must be strictly greater than the width of any unsigned types 691 // given. 692 unsigned Width = 0; 693 for (const auto &Type : Types) { 694 unsigned MinWidth = Type.Width + (Signed && !Type.Signed); 695 if (Width < MinWidth) { 696 Width = MinWidth; 697 } 698 } 699 700 return {Width, Signed}; 701 } 702 703 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) { 704 llvm::Type *DestType = Int8PtrTy; 705 if (ArgValue->getType() != DestType) 706 ArgValue = 707 Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data()); 708 709 Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend; 710 return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue); 711 } 712 713 /// Checks if using the result of __builtin_object_size(p, @p From) in place of 714 /// __builtin_object_size(p, @p To) is correct 715 static bool areBOSTypesCompatible(int From, int To) { 716 // Note: Our __builtin_object_size implementation currently treats Type=0 and 717 // Type=2 identically. Encoding this implementation detail here may make 718 // improving __builtin_object_size difficult in the future, so it's omitted. 719 return From == To || (From == 0 && To == 1) || (From == 3 && To == 2); 720 } 721 722 static llvm::Value * 723 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) { 724 return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true); 725 } 726 727 llvm::Value * 728 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 729 llvm::IntegerType *ResType, 730 llvm::Value *EmittedE, 731 bool IsDynamic) { 732 uint64_t ObjectSize; 733 if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type)) 734 return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic); 735 return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true); 736 } 737 738 /// Returns a Value corresponding to the size of the given expression. 739 /// This Value may be either of the following: 740 /// - A llvm::Argument (if E is a param with the pass_object_size attribute on 741 /// it) 742 /// - A call to the @llvm.objectsize intrinsic 743 /// 744 /// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null 745 /// and we wouldn't otherwise try to reference a pass_object_size parameter, 746 /// we'll call @llvm.objectsize on EmittedE, rather than emitting E. 747 llvm::Value * 748 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type, 749 llvm::IntegerType *ResType, 750 llvm::Value *EmittedE, bool IsDynamic) { 751 // We need to reference an argument if the pointer is a parameter with the 752 // pass_object_size attribute. 753 if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) { 754 auto *Param = dyn_cast<ParmVarDecl>(D->getDecl()); 755 auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>(); 756 if (Param != nullptr && PS != nullptr && 757 areBOSTypesCompatible(PS->getType(), Type)) { 758 auto Iter = SizeArguments.find(Param); 759 assert(Iter != SizeArguments.end()); 760 761 const ImplicitParamDecl *D = Iter->second; 762 auto DIter = LocalDeclMap.find(D); 763 assert(DIter != LocalDeclMap.end()); 764 765 return EmitLoadOfScalar(DIter->second, /*Volatile=*/false, 766 getContext().getSizeType(), E->getBeginLoc()); 767 } 768 } 769 770 // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't 771 // evaluate E for side-effects. In either case, we shouldn't lower to 772 // @llvm.objectsize. 773 if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext()))) 774 return getDefaultBuiltinObjectSizeResult(Type, ResType); 775 776 Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E); 777 assert(Ptr->getType()->isPointerTy() && 778 "Non-pointer passed to __builtin_object_size?"); 779 780 Function *F = 781 CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()}); 782 783 // LLVM only supports 0 and 2, make sure that we pass along that as a boolean. 784 Value *Min = Builder.getInt1((Type & 2) != 0); 785 // For GCC compatibility, __builtin_object_size treat NULL as unknown size. 786 Value *NullIsUnknown = Builder.getTrue(); 787 Value *Dynamic = Builder.getInt1(IsDynamic); 788 return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic}); 789 } 790 791 namespace { 792 /// A struct to generically describe a bit test intrinsic. 793 struct BitTest { 794 enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set }; 795 enum InterlockingKind : uint8_t { 796 Unlocked, 797 Sequential, 798 Acquire, 799 Release, 800 NoFence 801 }; 802 803 ActionKind Action; 804 InterlockingKind Interlocking; 805 bool Is64Bit; 806 807 static BitTest decodeBitTestBuiltin(unsigned BuiltinID); 808 }; 809 } // namespace 810 811 BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) { 812 switch (BuiltinID) { 813 // Main portable variants. 814 case Builtin::BI_bittest: 815 return {TestOnly, Unlocked, false}; 816 case Builtin::BI_bittestandcomplement: 817 return {Complement, Unlocked, false}; 818 case Builtin::BI_bittestandreset: 819 return {Reset, Unlocked, false}; 820 case Builtin::BI_bittestandset: 821 return {Set, Unlocked, false}; 822 case Builtin::BI_interlockedbittestandreset: 823 return {Reset, Sequential, false}; 824 case Builtin::BI_interlockedbittestandset: 825 return {Set, Sequential, false}; 826 827 // X86-specific 64-bit variants. 828 case Builtin::BI_bittest64: 829 return {TestOnly, Unlocked, true}; 830 case Builtin::BI_bittestandcomplement64: 831 return {Complement, Unlocked, true}; 832 case Builtin::BI_bittestandreset64: 833 return {Reset, Unlocked, true}; 834 case Builtin::BI_bittestandset64: 835 return {Set, Unlocked, true}; 836 case Builtin::BI_interlockedbittestandreset64: 837 return {Reset, Sequential, true}; 838 case Builtin::BI_interlockedbittestandset64: 839 return {Set, Sequential, true}; 840 841 // ARM/AArch64-specific ordering variants. 842 case Builtin::BI_interlockedbittestandset_acq: 843 return {Set, Acquire, false}; 844 case Builtin::BI_interlockedbittestandset_rel: 845 return {Set, Release, false}; 846 case Builtin::BI_interlockedbittestandset_nf: 847 return {Set, NoFence, false}; 848 case Builtin::BI_interlockedbittestandreset_acq: 849 return {Reset, Acquire, false}; 850 case Builtin::BI_interlockedbittestandreset_rel: 851 return {Reset, Release, false}; 852 case Builtin::BI_interlockedbittestandreset_nf: 853 return {Reset, NoFence, false}; 854 } 855 llvm_unreachable("expected only bittest intrinsics"); 856 } 857 858 static char bitActionToX86BTCode(BitTest::ActionKind A) { 859 switch (A) { 860 case BitTest::TestOnly: return '\0'; 861 case BitTest::Complement: return 'c'; 862 case BitTest::Reset: return 'r'; 863 case BitTest::Set: return 's'; 864 } 865 llvm_unreachable("invalid action"); 866 } 867 868 static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF, 869 BitTest BT, 870 const CallExpr *E, Value *BitBase, 871 Value *BitPos) { 872 char Action = bitActionToX86BTCode(BT.Action); 873 char SizeSuffix = BT.Is64Bit ? 'q' : 'l'; 874 875 // Build the assembly. 876 SmallString<64> Asm; 877 raw_svector_ostream AsmOS(Asm); 878 if (BT.Interlocking != BitTest::Unlocked) 879 AsmOS << "lock "; 880 AsmOS << "bt"; 881 if (Action) 882 AsmOS << Action; 883 AsmOS << SizeSuffix << " $2, ($1)"; 884 885 // Build the constraints. FIXME: We should support immediates when possible. 886 std::string Constraints = "={@ccc},r,r,~{cc},~{memory}"; 887 std::string MachineClobbers = CGF.getTarget().getClobbers(); 888 if (!MachineClobbers.empty()) { 889 Constraints += ','; 890 Constraints += MachineClobbers; 891 } 892 llvm::IntegerType *IntType = llvm::IntegerType::get( 893 CGF.getLLVMContext(), 894 CGF.getContext().getTypeSize(E->getArg(1)->getType())); 895 llvm::Type *IntPtrType = IntType->getPointerTo(); 896 llvm::FunctionType *FTy = 897 llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false); 898 899 llvm::InlineAsm *IA = 900 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); 901 return CGF.Builder.CreateCall(IA, {BitBase, BitPos}); 902 } 903 904 static llvm::AtomicOrdering 905 getBitTestAtomicOrdering(BitTest::InterlockingKind I) { 906 switch (I) { 907 case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic; 908 case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent; 909 case BitTest::Acquire: return llvm::AtomicOrdering::Acquire; 910 case BitTest::Release: return llvm::AtomicOrdering::Release; 911 case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic; 912 } 913 llvm_unreachable("invalid interlocking"); 914 } 915 916 /// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of 917 /// bits and a bit position and read and optionally modify the bit at that 918 /// position. The position index can be arbitrarily large, i.e. it can be larger 919 /// than 31 or 63, so we need an indexed load in the general case. 920 static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF, 921 unsigned BuiltinID, 922 const CallExpr *E) { 923 Value *BitBase = CGF.EmitScalarExpr(E->getArg(0)); 924 Value *BitPos = CGF.EmitScalarExpr(E->getArg(1)); 925 926 BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID); 927 928 // X86 has special BT, BTC, BTR, and BTS instructions that handle the array 929 // indexing operation internally. Use them if possible. 930 if (CGF.getTarget().getTriple().isX86()) 931 return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos); 932 933 // Otherwise, use generic code to load one byte and test the bit. Use all but 934 // the bottom three bits as the array index, and the bottom three bits to form 935 // a mask. 936 // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0; 937 Value *ByteIndex = CGF.Builder.CreateAShr( 938 BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx"); 939 Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy); 940 Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8, 941 ByteIndex, "bittest.byteaddr"), 942 CharUnits::One()); 943 Value *PosLow = 944 CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty), 945 llvm::ConstantInt::get(CGF.Int8Ty, 0x7)); 946 947 // The updating instructions will need a mask. 948 Value *Mask = nullptr; 949 if (BT.Action != BitTest::TestOnly) { 950 Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow, 951 "bittest.mask"); 952 } 953 954 // Check the action and ordering of the interlocked intrinsics. 955 llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking); 956 957 Value *OldByte = nullptr; 958 if (Ordering != llvm::AtomicOrdering::NotAtomic) { 959 // Emit a combined atomicrmw load/store operation for the interlocked 960 // intrinsics. 961 llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or; 962 if (BT.Action == BitTest::Reset) { 963 Mask = CGF.Builder.CreateNot(Mask); 964 RMWOp = llvm::AtomicRMWInst::And; 965 } 966 OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask, 967 Ordering); 968 } else { 969 // Emit a plain load for the non-interlocked intrinsics. 970 OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte"); 971 Value *NewByte = nullptr; 972 switch (BT.Action) { 973 case BitTest::TestOnly: 974 // Don't store anything. 975 break; 976 case BitTest::Complement: 977 NewByte = CGF.Builder.CreateXor(OldByte, Mask); 978 break; 979 case BitTest::Reset: 980 NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask)); 981 break; 982 case BitTest::Set: 983 NewByte = CGF.Builder.CreateOr(OldByte, Mask); 984 break; 985 } 986 if (NewByte) 987 CGF.Builder.CreateStore(NewByte, ByteAddr); 988 } 989 990 // However we loaded the old byte, either by plain load or atomicrmw, shift 991 // the bit into the low position and mask it to 0 or 1. 992 Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr"); 993 return CGF.Builder.CreateAnd( 994 ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res"); 995 } 996 997 static llvm::Value *emitPPCLoadReserveIntrinsic(CodeGenFunction &CGF, 998 unsigned BuiltinID, 999 const CallExpr *E) { 1000 Value *Addr = CGF.EmitScalarExpr(E->getArg(0)); 1001 1002 SmallString<64> Asm; 1003 raw_svector_ostream AsmOS(Asm); 1004 llvm::IntegerType *RetType = CGF.Int32Ty; 1005 1006 switch (BuiltinID) { 1007 case clang::PPC::BI__builtin_ppc_ldarx: 1008 AsmOS << "ldarx "; 1009 RetType = CGF.Int64Ty; 1010 break; 1011 case clang::PPC::BI__builtin_ppc_lwarx: 1012 AsmOS << "lwarx "; 1013 RetType = CGF.Int32Ty; 1014 break; 1015 case clang::PPC::BI__builtin_ppc_lharx: 1016 AsmOS << "lharx "; 1017 RetType = CGF.Int16Ty; 1018 break; 1019 case clang::PPC::BI__builtin_ppc_lbarx: 1020 AsmOS << "lbarx "; 1021 RetType = CGF.Int8Ty; 1022 break; 1023 default: 1024 llvm_unreachable("Expected only PowerPC load reserve intrinsics"); 1025 } 1026 1027 AsmOS << "$0, ${1:y}"; 1028 1029 std::string Constraints = "=r,*Z,~{memory}"; 1030 std::string MachineClobbers = CGF.getTarget().getClobbers(); 1031 if (!MachineClobbers.empty()) { 1032 Constraints += ','; 1033 Constraints += MachineClobbers; 1034 } 1035 1036 llvm::Type *IntPtrType = RetType->getPointerTo(); 1037 llvm::FunctionType *FTy = 1038 llvm::FunctionType::get(RetType, {IntPtrType}, false); 1039 1040 llvm::InlineAsm *IA = 1041 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); 1042 return CGF.Builder.CreateCall(IA, {Addr}); 1043 } 1044 1045 namespace { 1046 enum class MSVCSetJmpKind { 1047 _setjmpex, 1048 _setjmp3, 1049 _setjmp 1050 }; 1051 } 1052 1053 /// MSVC handles setjmp a bit differently on different platforms. On every 1054 /// architecture except 32-bit x86, the frame address is passed. On x86, extra 1055 /// parameters can be passed as variadic arguments, but we always pass none. 1056 static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind, 1057 const CallExpr *E) { 1058 llvm::Value *Arg1 = nullptr; 1059 llvm::Type *Arg1Ty = nullptr; 1060 StringRef Name; 1061 bool IsVarArg = false; 1062 if (SJKind == MSVCSetJmpKind::_setjmp3) { 1063 Name = "_setjmp3"; 1064 Arg1Ty = CGF.Int32Ty; 1065 Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0); 1066 IsVarArg = true; 1067 } else { 1068 Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex"; 1069 Arg1Ty = CGF.Int8PtrTy; 1070 if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) { 1071 Arg1 = CGF.Builder.CreateCall( 1072 CGF.CGM.getIntrinsic(Intrinsic::sponentry, CGF.AllocaInt8PtrTy)); 1073 } else 1074 Arg1 = CGF.Builder.CreateCall( 1075 CGF.CGM.getIntrinsic(Intrinsic::frameaddress, CGF.AllocaInt8PtrTy), 1076 llvm::ConstantInt::get(CGF.Int32Ty, 0)); 1077 } 1078 1079 // Mark the call site and declaration with ReturnsTwice. 1080 llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty}; 1081 llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get( 1082 CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, 1083 llvm::Attribute::ReturnsTwice); 1084 llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction( 1085 llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name, 1086 ReturnsTwiceAttr, /*Local=*/true); 1087 1088 llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast( 1089 CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy); 1090 llvm::Value *Args[] = {Buf, Arg1}; 1091 llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args); 1092 CB->setAttributes(ReturnsTwiceAttr); 1093 return RValue::get(CB); 1094 } 1095 1096 // Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code, 1097 // we handle them here. 1098 enum class CodeGenFunction::MSVCIntrin { 1099 _BitScanForward, 1100 _BitScanReverse, 1101 _InterlockedAnd, 1102 _InterlockedDecrement, 1103 _InterlockedExchange, 1104 _InterlockedExchangeAdd, 1105 _InterlockedExchangeSub, 1106 _InterlockedIncrement, 1107 _InterlockedOr, 1108 _InterlockedXor, 1109 _InterlockedExchangeAdd_acq, 1110 _InterlockedExchangeAdd_rel, 1111 _InterlockedExchangeAdd_nf, 1112 _InterlockedExchange_acq, 1113 _InterlockedExchange_rel, 1114 _InterlockedExchange_nf, 1115 _InterlockedCompareExchange_acq, 1116 _InterlockedCompareExchange_rel, 1117 _InterlockedCompareExchange_nf, 1118 _InterlockedCompareExchange128, 1119 _InterlockedCompareExchange128_acq, 1120 _InterlockedCompareExchange128_rel, 1121 _InterlockedCompareExchange128_nf, 1122 _InterlockedOr_acq, 1123 _InterlockedOr_rel, 1124 _InterlockedOr_nf, 1125 _InterlockedXor_acq, 1126 _InterlockedXor_rel, 1127 _InterlockedXor_nf, 1128 _InterlockedAnd_acq, 1129 _InterlockedAnd_rel, 1130 _InterlockedAnd_nf, 1131 _InterlockedIncrement_acq, 1132 _InterlockedIncrement_rel, 1133 _InterlockedIncrement_nf, 1134 _InterlockedDecrement_acq, 1135 _InterlockedDecrement_rel, 1136 _InterlockedDecrement_nf, 1137 __fastfail, 1138 }; 1139 1140 static Optional<CodeGenFunction::MSVCIntrin> 1141 translateArmToMsvcIntrin(unsigned BuiltinID) { 1142 using MSVCIntrin = CodeGenFunction::MSVCIntrin; 1143 switch (BuiltinID) { 1144 default: 1145 return None; 1146 case ARM::BI_BitScanForward: 1147 case ARM::BI_BitScanForward64: 1148 return MSVCIntrin::_BitScanForward; 1149 case ARM::BI_BitScanReverse: 1150 case ARM::BI_BitScanReverse64: 1151 return MSVCIntrin::_BitScanReverse; 1152 case ARM::BI_InterlockedAnd64: 1153 return MSVCIntrin::_InterlockedAnd; 1154 case ARM::BI_InterlockedExchange64: 1155 return MSVCIntrin::_InterlockedExchange; 1156 case ARM::BI_InterlockedExchangeAdd64: 1157 return MSVCIntrin::_InterlockedExchangeAdd; 1158 case ARM::BI_InterlockedExchangeSub64: 1159 return MSVCIntrin::_InterlockedExchangeSub; 1160 case ARM::BI_InterlockedOr64: 1161 return MSVCIntrin::_InterlockedOr; 1162 case ARM::BI_InterlockedXor64: 1163 return MSVCIntrin::_InterlockedXor; 1164 case ARM::BI_InterlockedDecrement64: 1165 return MSVCIntrin::_InterlockedDecrement; 1166 case ARM::BI_InterlockedIncrement64: 1167 return MSVCIntrin::_InterlockedIncrement; 1168 case ARM::BI_InterlockedExchangeAdd8_acq: 1169 case ARM::BI_InterlockedExchangeAdd16_acq: 1170 case ARM::BI_InterlockedExchangeAdd_acq: 1171 case ARM::BI_InterlockedExchangeAdd64_acq: 1172 return MSVCIntrin::_InterlockedExchangeAdd_acq; 1173 case ARM::BI_InterlockedExchangeAdd8_rel: 1174 case ARM::BI_InterlockedExchangeAdd16_rel: 1175 case ARM::BI_InterlockedExchangeAdd_rel: 1176 case ARM::BI_InterlockedExchangeAdd64_rel: 1177 return MSVCIntrin::_InterlockedExchangeAdd_rel; 1178 case ARM::BI_InterlockedExchangeAdd8_nf: 1179 case ARM::BI_InterlockedExchangeAdd16_nf: 1180 case ARM::BI_InterlockedExchangeAdd_nf: 1181 case ARM::BI_InterlockedExchangeAdd64_nf: 1182 return MSVCIntrin::_InterlockedExchangeAdd_nf; 1183 case ARM::BI_InterlockedExchange8_acq: 1184 case ARM::BI_InterlockedExchange16_acq: 1185 case ARM::BI_InterlockedExchange_acq: 1186 case ARM::BI_InterlockedExchange64_acq: 1187 return MSVCIntrin::_InterlockedExchange_acq; 1188 case ARM::BI_InterlockedExchange8_rel: 1189 case ARM::BI_InterlockedExchange16_rel: 1190 case ARM::BI_InterlockedExchange_rel: 1191 case ARM::BI_InterlockedExchange64_rel: 1192 return MSVCIntrin::_InterlockedExchange_rel; 1193 case ARM::BI_InterlockedExchange8_nf: 1194 case ARM::BI_InterlockedExchange16_nf: 1195 case ARM::BI_InterlockedExchange_nf: 1196 case ARM::BI_InterlockedExchange64_nf: 1197 return MSVCIntrin::_InterlockedExchange_nf; 1198 case ARM::BI_InterlockedCompareExchange8_acq: 1199 case ARM::BI_InterlockedCompareExchange16_acq: 1200 case ARM::BI_InterlockedCompareExchange_acq: 1201 case ARM::BI_InterlockedCompareExchange64_acq: 1202 return MSVCIntrin::_InterlockedCompareExchange_acq; 1203 case ARM::BI_InterlockedCompareExchange8_rel: 1204 case ARM::BI_InterlockedCompareExchange16_rel: 1205 case ARM::BI_InterlockedCompareExchange_rel: 1206 case ARM::BI_InterlockedCompareExchange64_rel: 1207 return MSVCIntrin::_InterlockedCompareExchange_rel; 1208 case ARM::BI_InterlockedCompareExchange8_nf: 1209 case ARM::BI_InterlockedCompareExchange16_nf: 1210 case ARM::BI_InterlockedCompareExchange_nf: 1211 case ARM::BI_InterlockedCompareExchange64_nf: 1212 return MSVCIntrin::_InterlockedCompareExchange_nf; 1213 case ARM::BI_InterlockedOr8_acq: 1214 case ARM::BI_InterlockedOr16_acq: 1215 case ARM::BI_InterlockedOr_acq: 1216 case ARM::BI_InterlockedOr64_acq: 1217 return MSVCIntrin::_InterlockedOr_acq; 1218 case ARM::BI_InterlockedOr8_rel: 1219 case ARM::BI_InterlockedOr16_rel: 1220 case ARM::BI_InterlockedOr_rel: 1221 case ARM::BI_InterlockedOr64_rel: 1222 return MSVCIntrin::_InterlockedOr_rel; 1223 case ARM::BI_InterlockedOr8_nf: 1224 case ARM::BI_InterlockedOr16_nf: 1225 case ARM::BI_InterlockedOr_nf: 1226 case ARM::BI_InterlockedOr64_nf: 1227 return MSVCIntrin::_InterlockedOr_nf; 1228 case ARM::BI_InterlockedXor8_acq: 1229 case ARM::BI_InterlockedXor16_acq: 1230 case ARM::BI_InterlockedXor_acq: 1231 case ARM::BI_InterlockedXor64_acq: 1232 return MSVCIntrin::_InterlockedXor_acq; 1233 case ARM::BI_InterlockedXor8_rel: 1234 case ARM::BI_InterlockedXor16_rel: 1235 case ARM::BI_InterlockedXor_rel: 1236 case ARM::BI_InterlockedXor64_rel: 1237 return MSVCIntrin::_InterlockedXor_rel; 1238 case ARM::BI_InterlockedXor8_nf: 1239 case ARM::BI_InterlockedXor16_nf: 1240 case ARM::BI_InterlockedXor_nf: 1241 case ARM::BI_InterlockedXor64_nf: 1242 return MSVCIntrin::_InterlockedXor_nf; 1243 case ARM::BI_InterlockedAnd8_acq: 1244 case ARM::BI_InterlockedAnd16_acq: 1245 case ARM::BI_InterlockedAnd_acq: 1246 case ARM::BI_InterlockedAnd64_acq: 1247 return MSVCIntrin::_InterlockedAnd_acq; 1248 case ARM::BI_InterlockedAnd8_rel: 1249 case ARM::BI_InterlockedAnd16_rel: 1250 case ARM::BI_InterlockedAnd_rel: 1251 case ARM::BI_InterlockedAnd64_rel: 1252 return MSVCIntrin::_InterlockedAnd_rel; 1253 case ARM::BI_InterlockedAnd8_nf: 1254 case ARM::BI_InterlockedAnd16_nf: 1255 case ARM::BI_InterlockedAnd_nf: 1256 case ARM::BI_InterlockedAnd64_nf: 1257 return MSVCIntrin::_InterlockedAnd_nf; 1258 case ARM::BI_InterlockedIncrement16_acq: 1259 case ARM::BI_InterlockedIncrement_acq: 1260 case ARM::BI_InterlockedIncrement64_acq: 1261 return MSVCIntrin::_InterlockedIncrement_acq; 1262 case ARM::BI_InterlockedIncrement16_rel: 1263 case ARM::BI_InterlockedIncrement_rel: 1264 case ARM::BI_InterlockedIncrement64_rel: 1265 return MSVCIntrin::_InterlockedIncrement_rel; 1266 case ARM::BI_InterlockedIncrement16_nf: 1267 case ARM::BI_InterlockedIncrement_nf: 1268 case ARM::BI_InterlockedIncrement64_nf: 1269 return MSVCIntrin::_InterlockedIncrement_nf; 1270 case ARM::BI_InterlockedDecrement16_acq: 1271 case ARM::BI_InterlockedDecrement_acq: 1272 case ARM::BI_InterlockedDecrement64_acq: 1273 return MSVCIntrin::_InterlockedDecrement_acq; 1274 case ARM::BI_InterlockedDecrement16_rel: 1275 case ARM::BI_InterlockedDecrement_rel: 1276 case ARM::BI_InterlockedDecrement64_rel: 1277 return MSVCIntrin::_InterlockedDecrement_rel; 1278 case ARM::BI_InterlockedDecrement16_nf: 1279 case ARM::BI_InterlockedDecrement_nf: 1280 case ARM::BI_InterlockedDecrement64_nf: 1281 return MSVCIntrin::_InterlockedDecrement_nf; 1282 } 1283 llvm_unreachable("must return from switch"); 1284 } 1285 1286 static Optional<CodeGenFunction::MSVCIntrin> 1287 translateAarch64ToMsvcIntrin(unsigned BuiltinID) { 1288 using MSVCIntrin = CodeGenFunction::MSVCIntrin; 1289 switch (BuiltinID) { 1290 default: 1291 return None; 1292 case AArch64::BI_BitScanForward: 1293 case AArch64::BI_BitScanForward64: 1294 return MSVCIntrin::_BitScanForward; 1295 case AArch64::BI_BitScanReverse: 1296 case AArch64::BI_BitScanReverse64: 1297 return MSVCIntrin::_BitScanReverse; 1298 case AArch64::BI_InterlockedAnd64: 1299 return MSVCIntrin::_InterlockedAnd; 1300 case AArch64::BI_InterlockedExchange64: 1301 return MSVCIntrin::_InterlockedExchange; 1302 case AArch64::BI_InterlockedExchangeAdd64: 1303 return MSVCIntrin::_InterlockedExchangeAdd; 1304 case AArch64::BI_InterlockedExchangeSub64: 1305 return MSVCIntrin::_InterlockedExchangeSub; 1306 case AArch64::BI_InterlockedOr64: 1307 return MSVCIntrin::_InterlockedOr; 1308 case AArch64::BI_InterlockedXor64: 1309 return MSVCIntrin::_InterlockedXor; 1310 case AArch64::BI_InterlockedDecrement64: 1311 return MSVCIntrin::_InterlockedDecrement; 1312 case AArch64::BI_InterlockedIncrement64: 1313 return MSVCIntrin::_InterlockedIncrement; 1314 case AArch64::BI_InterlockedExchangeAdd8_acq: 1315 case AArch64::BI_InterlockedExchangeAdd16_acq: 1316 case AArch64::BI_InterlockedExchangeAdd_acq: 1317 case AArch64::BI_InterlockedExchangeAdd64_acq: 1318 return MSVCIntrin::_InterlockedExchangeAdd_acq; 1319 case AArch64::BI_InterlockedExchangeAdd8_rel: 1320 case AArch64::BI_InterlockedExchangeAdd16_rel: 1321 case AArch64::BI_InterlockedExchangeAdd_rel: 1322 case AArch64::BI_InterlockedExchangeAdd64_rel: 1323 return MSVCIntrin::_InterlockedExchangeAdd_rel; 1324 case AArch64::BI_InterlockedExchangeAdd8_nf: 1325 case AArch64::BI_InterlockedExchangeAdd16_nf: 1326 case AArch64::BI_InterlockedExchangeAdd_nf: 1327 case AArch64::BI_InterlockedExchangeAdd64_nf: 1328 return MSVCIntrin::_InterlockedExchangeAdd_nf; 1329 case AArch64::BI_InterlockedExchange8_acq: 1330 case AArch64::BI_InterlockedExchange16_acq: 1331 case AArch64::BI_InterlockedExchange_acq: 1332 case AArch64::BI_InterlockedExchange64_acq: 1333 return MSVCIntrin::_InterlockedExchange_acq; 1334 case AArch64::BI_InterlockedExchange8_rel: 1335 case AArch64::BI_InterlockedExchange16_rel: 1336 case AArch64::BI_InterlockedExchange_rel: 1337 case AArch64::BI_InterlockedExchange64_rel: 1338 return MSVCIntrin::_InterlockedExchange_rel; 1339 case AArch64::BI_InterlockedExchange8_nf: 1340 case AArch64::BI_InterlockedExchange16_nf: 1341 case AArch64::BI_InterlockedExchange_nf: 1342 case AArch64::BI_InterlockedExchange64_nf: 1343 return MSVCIntrin::_InterlockedExchange_nf; 1344 case AArch64::BI_InterlockedCompareExchange8_acq: 1345 case AArch64::BI_InterlockedCompareExchange16_acq: 1346 case AArch64::BI_InterlockedCompareExchange_acq: 1347 case AArch64::BI_InterlockedCompareExchange64_acq: 1348 return MSVCIntrin::_InterlockedCompareExchange_acq; 1349 case AArch64::BI_InterlockedCompareExchange8_rel: 1350 case AArch64::BI_InterlockedCompareExchange16_rel: 1351 case AArch64::BI_InterlockedCompareExchange_rel: 1352 case AArch64::BI_InterlockedCompareExchange64_rel: 1353 return MSVCIntrin::_InterlockedCompareExchange_rel; 1354 case AArch64::BI_InterlockedCompareExchange8_nf: 1355 case AArch64::BI_InterlockedCompareExchange16_nf: 1356 case AArch64::BI_InterlockedCompareExchange_nf: 1357 case AArch64::BI_InterlockedCompareExchange64_nf: 1358 return MSVCIntrin::_InterlockedCompareExchange_nf; 1359 case AArch64::BI_InterlockedCompareExchange128: 1360 return MSVCIntrin::_InterlockedCompareExchange128; 1361 case AArch64::BI_InterlockedCompareExchange128_acq: 1362 return MSVCIntrin::_InterlockedCompareExchange128_acq; 1363 case AArch64::BI_InterlockedCompareExchange128_nf: 1364 return MSVCIntrin::_InterlockedCompareExchange128_nf; 1365 case AArch64::BI_InterlockedCompareExchange128_rel: 1366 return MSVCIntrin::_InterlockedCompareExchange128_rel; 1367 case AArch64::BI_InterlockedOr8_acq: 1368 case AArch64::BI_InterlockedOr16_acq: 1369 case AArch64::BI_InterlockedOr_acq: 1370 case AArch64::BI_InterlockedOr64_acq: 1371 return MSVCIntrin::_InterlockedOr_acq; 1372 case AArch64::BI_InterlockedOr8_rel: 1373 case AArch64::BI_InterlockedOr16_rel: 1374 case AArch64::BI_InterlockedOr_rel: 1375 case AArch64::BI_InterlockedOr64_rel: 1376 return MSVCIntrin::_InterlockedOr_rel; 1377 case AArch64::BI_InterlockedOr8_nf: 1378 case AArch64::BI_InterlockedOr16_nf: 1379 case AArch64::BI_InterlockedOr_nf: 1380 case AArch64::BI_InterlockedOr64_nf: 1381 return MSVCIntrin::_InterlockedOr_nf; 1382 case AArch64::BI_InterlockedXor8_acq: 1383 case AArch64::BI_InterlockedXor16_acq: 1384 case AArch64::BI_InterlockedXor_acq: 1385 case AArch64::BI_InterlockedXor64_acq: 1386 return MSVCIntrin::_InterlockedXor_acq; 1387 case AArch64::BI_InterlockedXor8_rel: 1388 case AArch64::BI_InterlockedXor16_rel: 1389 case AArch64::BI_InterlockedXor_rel: 1390 case AArch64::BI_InterlockedXor64_rel: 1391 return MSVCIntrin::_InterlockedXor_rel; 1392 case AArch64::BI_InterlockedXor8_nf: 1393 case AArch64::BI_InterlockedXor16_nf: 1394 case AArch64::BI_InterlockedXor_nf: 1395 case AArch64::BI_InterlockedXor64_nf: 1396 return MSVCIntrin::_InterlockedXor_nf; 1397 case AArch64::BI_InterlockedAnd8_acq: 1398 case AArch64::BI_InterlockedAnd16_acq: 1399 case AArch64::BI_InterlockedAnd_acq: 1400 case AArch64::BI_InterlockedAnd64_acq: 1401 return MSVCIntrin::_InterlockedAnd_acq; 1402 case AArch64::BI_InterlockedAnd8_rel: 1403 case AArch64::BI_InterlockedAnd16_rel: 1404 case AArch64::BI_InterlockedAnd_rel: 1405 case AArch64::BI_InterlockedAnd64_rel: 1406 return MSVCIntrin::_InterlockedAnd_rel; 1407 case AArch64::BI_InterlockedAnd8_nf: 1408 case AArch64::BI_InterlockedAnd16_nf: 1409 case AArch64::BI_InterlockedAnd_nf: 1410 case AArch64::BI_InterlockedAnd64_nf: 1411 return MSVCIntrin::_InterlockedAnd_nf; 1412 case AArch64::BI_InterlockedIncrement16_acq: 1413 case AArch64::BI_InterlockedIncrement_acq: 1414 case AArch64::BI_InterlockedIncrement64_acq: 1415 return MSVCIntrin::_InterlockedIncrement_acq; 1416 case AArch64::BI_InterlockedIncrement16_rel: 1417 case AArch64::BI_InterlockedIncrement_rel: 1418 case AArch64::BI_InterlockedIncrement64_rel: 1419 return MSVCIntrin::_InterlockedIncrement_rel; 1420 case AArch64::BI_InterlockedIncrement16_nf: 1421 case AArch64::BI_InterlockedIncrement_nf: 1422 case AArch64::BI_InterlockedIncrement64_nf: 1423 return MSVCIntrin::_InterlockedIncrement_nf; 1424 case AArch64::BI_InterlockedDecrement16_acq: 1425 case AArch64::BI_InterlockedDecrement_acq: 1426 case AArch64::BI_InterlockedDecrement64_acq: 1427 return MSVCIntrin::_InterlockedDecrement_acq; 1428 case AArch64::BI_InterlockedDecrement16_rel: 1429 case AArch64::BI_InterlockedDecrement_rel: 1430 case AArch64::BI_InterlockedDecrement64_rel: 1431 return MSVCIntrin::_InterlockedDecrement_rel; 1432 case AArch64::BI_InterlockedDecrement16_nf: 1433 case AArch64::BI_InterlockedDecrement_nf: 1434 case AArch64::BI_InterlockedDecrement64_nf: 1435 return MSVCIntrin::_InterlockedDecrement_nf; 1436 } 1437 llvm_unreachable("must return from switch"); 1438 } 1439 1440 static Optional<CodeGenFunction::MSVCIntrin> 1441 translateX86ToMsvcIntrin(unsigned BuiltinID) { 1442 using MSVCIntrin = CodeGenFunction::MSVCIntrin; 1443 switch (BuiltinID) { 1444 default: 1445 return None; 1446 case clang::X86::BI_BitScanForward: 1447 case clang::X86::BI_BitScanForward64: 1448 return MSVCIntrin::_BitScanForward; 1449 case clang::X86::BI_BitScanReverse: 1450 case clang::X86::BI_BitScanReverse64: 1451 return MSVCIntrin::_BitScanReverse; 1452 case clang::X86::BI_InterlockedAnd64: 1453 return MSVCIntrin::_InterlockedAnd; 1454 case clang::X86::BI_InterlockedCompareExchange128: 1455 return MSVCIntrin::_InterlockedCompareExchange128; 1456 case clang::X86::BI_InterlockedExchange64: 1457 return MSVCIntrin::_InterlockedExchange; 1458 case clang::X86::BI_InterlockedExchangeAdd64: 1459 return MSVCIntrin::_InterlockedExchangeAdd; 1460 case clang::X86::BI_InterlockedExchangeSub64: 1461 return MSVCIntrin::_InterlockedExchangeSub; 1462 case clang::X86::BI_InterlockedOr64: 1463 return MSVCIntrin::_InterlockedOr; 1464 case clang::X86::BI_InterlockedXor64: 1465 return MSVCIntrin::_InterlockedXor; 1466 case clang::X86::BI_InterlockedDecrement64: 1467 return MSVCIntrin::_InterlockedDecrement; 1468 case clang::X86::BI_InterlockedIncrement64: 1469 return MSVCIntrin::_InterlockedIncrement; 1470 } 1471 llvm_unreachable("must return from switch"); 1472 } 1473 1474 // Emit an MSVC intrinsic. Assumes that arguments have *not* been evaluated. 1475 Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, 1476 const CallExpr *E) { 1477 switch (BuiltinID) { 1478 case MSVCIntrin::_BitScanForward: 1479 case MSVCIntrin::_BitScanReverse: { 1480 Address IndexAddress(EmitPointerWithAlignment(E->getArg(0))); 1481 Value *ArgValue = EmitScalarExpr(E->getArg(1)); 1482 1483 llvm::Type *ArgType = ArgValue->getType(); 1484 llvm::Type *IndexType = 1485 IndexAddress.getPointer()->getType()->getPointerElementType(); 1486 llvm::Type *ResultType = ConvertType(E->getType()); 1487 1488 Value *ArgZero = llvm::Constant::getNullValue(ArgType); 1489 Value *ResZero = llvm::Constant::getNullValue(ResultType); 1490 Value *ResOne = llvm::ConstantInt::get(ResultType, 1); 1491 1492 BasicBlock *Begin = Builder.GetInsertBlock(); 1493 BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn); 1494 Builder.SetInsertPoint(End); 1495 PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result"); 1496 1497 Builder.SetInsertPoint(Begin); 1498 Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero); 1499 BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn); 1500 Builder.CreateCondBr(IsZero, End, NotZero); 1501 Result->addIncoming(ResZero, Begin); 1502 1503 Builder.SetInsertPoint(NotZero); 1504 1505 if (BuiltinID == MSVCIntrin::_BitScanForward) { 1506 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); 1507 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); 1508 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); 1509 Builder.CreateStore(ZeroCount, IndexAddress, false); 1510 } else { 1511 unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth(); 1512 Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1); 1513 1514 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 1515 Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()}); 1516 ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false); 1517 Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount); 1518 Builder.CreateStore(Index, IndexAddress, false); 1519 } 1520 Builder.CreateBr(End); 1521 Result->addIncoming(ResOne, NotZero); 1522 1523 Builder.SetInsertPoint(End); 1524 return Result; 1525 } 1526 case MSVCIntrin::_InterlockedAnd: 1527 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E); 1528 case MSVCIntrin::_InterlockedExchange: 1529 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E); 1530 case MSVCIntrin::_InterlockedExchangeAdd: 1531 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E); 1532 case MSVCIntrin::_InterlockedExchangeSub: 1533 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E); 1534 case MSVCIntrin::_InterlockedOr: 1535 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E); 1536 case MSVCIntrin::_InterlockedXor: 1537 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E); 1538 case MSVCIntrin::_InterlockedExchangeAdd_acq: 1539 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, 1540 AtomicOrdering::Acquire); 1541 case MSVCIntrin::_InterlockedExchangeAdd_rel: 1542 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, 1543 AtomicOrdering::Release); 1544 case MSVCIntrin::_InterlockedExchangeAdd_nf: 1545 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, 1546 AtomicOrdering::Monotonic); 1547 case MSVCIntrin::_InterlockedExchange_acq: 1548 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, 1549 AtomicOrdering::Acquire); 1550 case MSVCIntrin::_InterlockedExchange_rel: 1551 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, 1552 AtomicOrdering::Release); 1553 case MSVCIntrin::_InterlockedExchange_nf: 1554 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, 1555 AtomicOrdering::Monotonic); 1556 case MSVCIntrin::_InterlockedCompareExchange_acq: 1557 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire); 1558 case MSVCIntrin::_InterlockedCompareExchange_rel: 1559 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release); 1560 case MSVCIntrin::_InterlockedCompareExchange_nf: 1561 return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic); 1562 case MSVCIntrin::_InterlockedCompareExchange128: 1563 return EmitAtomicCmpXchg128ForMSIntrin( 1564 *this, E, AtomicOrdering::SequentiallyConsistent); 1565 case MSVCIntrin::_InterlockedCompareExchange128_acq: 1566 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Acquire); 1567 case MSVCIntrin::_InterlockedCompareExchange128_rel: 1568 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Release); 1569 case MSVCIntrin::_InterlockedCompareExchange128_nf: 1570 return EmitAtomicCmpXchg128ForMSIntrin(*this, E, AtomicOrdering::Monotonic); 1571 case MSVCIntrin::_InterlockedOr_acq: 1572 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, 1573 AtomicOrdering::Acquire); 1574 case MSVCIntrin::_InterlockedOr_rel: 1575 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, 1576 AtomicOrdering::Release); 1577 case MSVCIntrin::_InterlockedOr_nf: 1578 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, 1579 AtomicOrdering::Monotonic); 1580 case MSVCIntrin::_InterlockedXor_acq: 1581 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, 1582 AtomicOrdering::Acquire); 1583 case MSVCIntrin::_InterlockedXor_rel: 1584 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, 1585 AtomicOrdering::Release); 1586 case MSVCIntrin::_InterlockedXor_nf: 1587 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E, 1588 AtomicOrdering::Monotonic); 1589 case MSVCIntrin::_InterlockedAnd_acq: 1590 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, 1591 AtomicOrdering::Acquire); 1592 case MSVCIntrin::_InterlockedAnd_rel: 1593 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, 1594 AtomicOrdering::Release); 1595 case MSVCIntrin::_InterlockedAnd_nf: 1596 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, 1597 AtomicOrdering::Monotonic); 1598 case MSVCIntrin::_InterlockedIncrement_acq: 1599 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire); 1600 case MSVCIntrin::_InterlockedIncrement_rel: 1601 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release); 1602 case MSVCIntrin::_InterlockedIncrement_nf: 1603 return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic); 1604 case MSVCIntrin::_InterlockedDecrement_acq: 1605 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire); 1606 case MSVCIntrin::_InterlockedDecrement_rel: 1607 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release); 1608 case MSVCIntrin::_InterlockedDecrement_nf: 1609 return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic); 1610 1611 case MSVCIntrin::_InterlockedDecrement: 1612 return EmitAtomicDecrementValue(*this, E); 1613 case MSVCIntrin::_InterlockedIncrement: 1614 return EmitAtomicIncrementValue(*this, E); 1615 1616 case MSVCIntrin::__fastfail: { 1617 // Request immediate process termination from the kernel. The instruction 1618 // sequences to do this are documented on MSDN: 1619 // https://msdn.microsoft.com/en-us/library/dn774154.aspx 1620 llvm::Triple::ArchType ISA = getTarget().getTriple().getArch(); 1621 StringRef Asm, Constraints; 1622 switch (ISA) { 1623 default: 1624 ErrorUnsupported(E, "__fastfail call for this architecture"); 1625 break; 1626 case llvm::Triple::x86: 1627 case llvm::Triple::x86_64: 1628 Asm = "int $$0x29"; 1629 Constraints = "{cx}"; 1630 break; 1631 case llvm::Triple::thumb: 1632 Asm = "udf #251"; 1633 Constraints = "{r0}"; 1634 break; 1635 case llvm::Triple::aarch64: 1636 Asm = "brk #0xF003"; 1637 Constraints = "{w0}"; 1638 } 1639 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false); 1640 llvm::InlineAsm *IA = 1641 llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true); 1642 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( 1643 getLLVMContext(), llvm::AttributeList::FunctionIndex, 1644 llvm::Attribute::NoReturn); 1645 llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0))); 1646 CI->setAttributes(NoReturnAttr); 1647 return CI; 1648 } 1649 } 1650 llvm_unreachable("Incorrect MSVC intrinsic!"); 1651 } 1652 1653 namespace { 1654 // ARC cleanup for __builtin_os_log_format 1655 struct CallObjCArcUse final : EHScopeStack::Cleanup { 1656 CallObjCArcUse(llvm::Value *object) : object(object) {} 1657 llvm::Value *object; 1658 1659 void Emit(CodeGenFunction &CGF, Flags flags) override { 1660 CGF.EmitARCIntrinsicUse(object); 1661 } 1662 }; 1663 } 1664 1665 Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E, 1666 BuiltinCheckKind Kind) { 1667 assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero) 1668 && "Unsupported builtin check kind"); 1669 1670 Value *ArgValue = EmitScalarExpr(E); 1671 if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef()) 1672 return ArgValue; 1673 1674 SanitizerScope SanScope(this); 1675 Value *Cond = Builder.CreateICmpNE( 1676 ArgValue, llvm::Constant::getNullValue(ArgValue->getType())); 1677 EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin), 1678 SanitizerHandler::InvalidBuiltin, 1679 {EmitCheckSourceLocation(E->getExprLoc()), 1680 llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)}, 1681 None); 1682 return ArgValue; 1683 } 1684 1685 /// Get the argument type for arguments to os_log_helper. 1686 static CanQualType getOSLogArgType(ASTContext &C, int Size) { 1687 QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false); 1688 return C.getCanonicalType(UnsignedTy); 1689 } 1690 1691 llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction( 1692 const analyze_os_log::OSLogBufferLayout &Layout, 1693 CharUnits BufferAlignment) { 1694 ASTContext &Ctx = getContext(); 1695 1696 llvm::SmallString<64> Name; 1697 { 1698 raw_svector_ostream OS(Name); 1699 OS << "__os_log_helper"; 1700 OS << "_" << BufferAlignment.getQuantity(); 1701 OS << "_" << int(Layout.getSummaryByte()); 1702 OS << "_" << int(Layout.getNumArgsByte()); 1703 for (const auto &Item : Layout.Items) 1704 OS << "_" << int(Item.getSizeByte()) << "_" 1705 << int(Item.getDescriptorByte()); 1706 } 1707 1708 if (llvm::Function *F = CGM.getModule().getFunction(Name)) 1709 return F; 1710 1711 llvm::SmallVector<QualType, 4> ArgTys; 1712 FunctionArgList Args; 1713 Args.push_back(ImplicitParamDecl::Create( 1714 Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy, 1715 ImplicitParamDecl::Other)); 1716 ArgTys.emplace_back(Ctx.VoidPtrTy); 1717 1718 for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) { 1719 char Size = Layout.Items[I].getSizeByte(); 1720 if (!Size) 1721 continue; 1722 1723 QualType ArgTy = getOSLogArgType(Ctx, Size); 1724 Args.push_back(ImplicitParamDecl::Create( 1725 Ctx, nullptr, SourceLocation(), 1726 &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy, 1727 ImplicitParamDecl::Other)); 1728 ArgTys.emplace_back(ArgTy); 1729 } 1730 1731 QualType ReturnTy = Ctx.VoidTy; 1732 1733 // The helper function has linkonce_odr linkage to enable the linker to merge 1734 // identical functions. To ensure the merging always happens, 'noinline' is 1735 // attached to the function when compiling with -Oz. 1736 const CGFunctionInfo &FI = 1737 CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args); 1738 llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI); 1739 llvm::Function *Fn = llvm::Function::Create( 1740 FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule()); 1741 Fn->setVisibility(llvm::GlobalValue::HiddenVisibility); 1742 CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn, /*IsThunk=*/false); 1743 CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn); 1744 Fn->setDoesNotThrow(); 1745 1746 // Attach 'noinline' at -Oz. 1747 if (CGM.getCodeGenOpts().OptimizeSize == 2) 1748 Fn->addFnAttr(llvm::Attribute::NoInline); 1749 1750 auto NL = ApplyDebugLocation::CreateEmpty(*this); 1751 StartFunction(GlobalDecl(), ReturnTy, Fn, FI, Args); 1752 1753 // Create a scope with an artificial location for the body of this function. 1754 auto AL = ApplyDebugLocation::CreateArtificial(*this); 1755 1756 CharUnits Offset; 1757 Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"), 1758 BufferAlignment); 1759 Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()), 1760 Builder.CreateConstByteGEP(BufAddr, Offset++, "summary")); 1761 Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()), 1762 Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs")); 1763 1764 unsigned I = 1; 1765 for (const auto &Item : Layout.Items) { 1766 Builder.CreateStore( 1767 Builder.getInt8(Item.getDescriptorByte()), 1768 Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor")); 1769 Builder.CreateStore( 1770 Builder.getInt8(Item.getSizeByte()), 1771 Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize")); 1772 1773 CharUnits Size = Item.size(); 1774 if (!Size.getQuantity()) 1775 continue; 1776 1777 Address Arg = GetAddrOfLocalVar(Args[I]); 1778 Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData"); 1779 Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(), 1780 "argDataCast"); 1781 Builder.CreateStore(Builder.CreateLoad(Arg), Addr); 1782 Offset += Size; 1783 ++I; 1784 } 1785 1786 FinishFunction(); 1787 1788 return Fn; 1789 } 1790 1791 RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) { 1792 assert(E.getNumArgs() >= 2 && 1793 "__builtin_os_log_format takes at least 2 arguments"); 1794 ASTContext &Ctx = getContext(); 1795 analyze_os_log::OSLogBufferLayout Layout; 1796 analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout); 1797 Address BufAddr = EmitPointerWithAlignment(E.getArg(0)); 1798 llvm::SmallVector<llvm::Value *, 4> RetainableOperands; 1799 1800 // Ignore argument 1, the format string. It is not currently used. 1801 CallArgList Args; 1802 Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy); 1803 1804 for (const auto &Item : Layout.Items) { 1805 int Size = Item.getSizeByte(); 1806 if (!Size) 1807 continue; 1808 1809 llvm::Value *ArgVal; 1810 1811 if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) { 1812 uint64_t Val = 0; 1813 for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I) 1814 Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8; 1815 ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val)); 1816 } else if (const Expr *TheExpr = Item.getExpr()) { 1817 ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false); 1818 1819 // If a temporary object that requires destruction after the full 1820 // expression is passed, push a lifetime-extended cleanup to extend its 1821 // lifetime to the end of the enclosing block scope. 1822 auto LifetimeExtendObject = [&](const Expr *E) { 1823 E = E->IgnoreParenCasts(); 1824 // Extend lifetimes of objects returned by function calls and message 1825 // sends. 1826 1827 // FIXME: We should do this in other cases in which temporaries are 1828 // created including arguments of non-ARC types (e.g., C++ 1829 // temporaries). 1830 if (isa<CallExpr>(E) || isa<ObjCMessageExpr>(E)) 1831 return true; 1832 return false; 1833 }; 1834 1835 if (TheExpr->getType()->isObjCRetainableType() && 1836 getLangOpts().ObjCAutoRefCount && LifetimeExtendObject(TheExpr)) { 1837 assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar && 1838 "Only scalar can be a ObjC retainable type"); 1839 if (!isa<Constant>(ArgVal)) { 1840 CleanupKind Cleanup = getARCCleanupKind(); 1841 QualType Ty = TheExpr->getType(); 1842 Address Alloca = Address::invalid(); 1843 Address Addr = CreateMemTemp(Ty, "os.log.arg", &Alloca); 1844 ArgVal = EmitARCRetain(Ty, ArgVal); 1845 Builder.CreateStore(ArgVal, Addr); 1846 pushLifetimeExtendedDestroy(Cleanup, Alloca, Ty, 1847 CodeGenFunction::destroyARCStrongPrecise, 1848 Cleanup & EHCleanup); 1849 1850 // Push a clang.arc.use call to ensure ARC optimizer knows that the 1851 // argument has to be alive. 1852 if (CGM.getCodeGenOpts().OptimizationLevel != 0) 1853 pushCleanupAfterFullExpr<CallObjCArcUse>(Cleanup, ArgVal); 1854 } 1855 } 1856 } else { 1857 ArgVal = Builder.getInt32(Item.getConstValue().getQuantity()); 1858 } 1859 1860 unsigned ArgValSize = 1861 CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType()); 1862 llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(), 1863 ArgValSize); 1864 ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy); 1865 CanQualType ArgTy = getOSLogArgType(Ctx, Size); 1866 // If ArgVal has type x86_fp80, zero-extend ArgVal. 1867 ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy)); 1868 Args.add(RValue::get(ArgVal), ArgTy); 1869 } 1870 1871 const CGFunctionInfo &FI = 1872 CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args); 1873 llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction( 1874 Layout, BufAddr.getAlignment()); 1875 EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args); 1876 return RValue::get(BufAddr.getPointer()); 1877 } 1878 1879 static bool isSpecialUnsignedMultiplySignedResult( 1880 unsigned BuiltinID, WidthAndSignedness Op1Info, WidthAndSignedness Op2Info, 1881 WidthAndSignedness ResultInfo) { 1882 return BuiltinID == Builtin::BI__builtin_mul_overflow && 1883 Op1Info.Width == Op2Info.Width && Op2Info.Width == ResultInfo.Width && 1884 !Op1Info.Signed && !Op2Info.Signed && ResultInfo.Signed; 1885 } 1886 1887 static RValue EmitCheckedUnsignedMultiplySignedResult( 1888 CodeGenFunction &CGF, const clang::Expr *Op1, WidthAndSignedness Op1Info, 1889 const clang::Expr *Op2, WidthAndSignedness Op2Info, 1890 const clang::Expr *ResultArg, QualType ResultQTy, 1891 WidthAndSignedness ResultInfo) { 1892 assert(isSpecialUnsignedMultiplySignedResult( 1893 Builtin::BI__builtin_mul_overflow, Op1Info, Op2Info, ResultInfo) && 1894 "Cannot specialize this multiply"); 1895 1896 llvm::Value *V1 = CGF.EmitScalarExpr(Op1); 1897 llvm::Value *V2 = CGF.EmitScalarExpr(Op2); 1898 1899 llvm::Value *HasOverflow; 1900 llvm::Value *Result = EmitOverflowIntrinsic( 1901 CGF, llvm::Intrinsic::umul_with_overflow, V1, V2, HasOverflow); 1902 1903 // The intrinsic call will detect overflow when the value is > UINT_MAX, 1904 // however, since the original builtin had a signed result, we need to report 1905 // an overflow when the result is greater than INT_MAX. 1906 auto IntMax = llvm::APInt::getSignedMaxValue(ResultInfo.Width); 1907 llvm::Value *IntMaxValue = llvm::ConstantInt::get(Result->getType(), IntMax); 1908 1909 llvm::Value *IntMaxOverflow = CGF.Builder.CreateICmpUGT(Result, IntMaxValue); 1910 HasOverflow = CGF.Builder.CreateOr(HasOverflow, IntMaxOverflow); 1911 1912 bool isVolatile = 1913 ResultArg->getType()->getPointeeType().isVolatileQualified(); 1914 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); 1915 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, 1916 isVolatile); 1917 return RValue::get(HasOverflow); 1918 } 1919 1920 /// Determine if a binop is a checked mixed-sign multiply we can specialize. 1921 static bool isSpecialMixedSignMultiply(unsigned BuiltinID, 1922 WidthAndSignedness Op1Info, 1923 WidthAndSignedness Op2Info, 1924 WidthAndSignedness ResultInfo) { 1925 return BuiltinID == Builtin::BI__builtin_mul_overflow && 1926 std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width && 1927 Op1Info.Signed != Op2Info.Signed; 1928 } 1929 1930 /// Emit a checked mixed-sign multiply. This is a cheaper specialization of 1931 /// the generic checked-binop irgen. 1932 static RValue 1933 EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1, 1934 WidthAndSignedness Op1Info, const clang::Expr *Op2, 1935 WidthAndSignedness Op2Info, 1936 const clang::Expr *ResultArg, QualType ResultQTy, 1937 WidthAndSignedness ResultInfo) { 1938 assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info, 1939 Op2Info, ResultInfo) && 1940 "Not a mixed-sign multipliction we can specialize"); 1941 1942 // Emit the signed and unsigned operands. 1943 const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2; 1944 const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1; 1945 llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp); 1946 llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp); 1947 unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width; 1948 unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width; 1949 1950 // One of the operands may be smaller than the other. If so, [s|z]ext it. 1951 if (SignedOpWidth < UnsignedOpWidth) 1952 Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext"); 1953 if (UnsignedOpWidth < SignedOpWidth) 1954 Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext"); 1955 1956 llvm::Type *OpTy = Signed->getType(); 1957 llvm::Value *Zero = llvm::Constant::getNullValue(OpTy); 1958 Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg); 1959 llvm::Type *ResTy = ResultPtr.getElementType(); 1960 unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width); 1961 1962 // Take the absolute value of the signed operand. 1963 llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero); 1964 llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed); 1965 llvm::Value *AbsSigned = 1966 CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed); 1967 1968 // Perform a checked unsigned multiplication. 1969 llvm::Value *UnsignedOverflow; 1970 llvm::Value *UnsignedResult = 1971 EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned, 1972 Unsigned, UnsignedOverflow); 1973 1974 llvm::Value *Overflow, *Result; 1975 if (ResultInfo.Signed) { 1976 // Signed overflow occurs if the result is greater than INT_MAX or lesser 1977 // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative). 1978 auto IntMax = 1979 llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth); 1980 llvm::Value *MaxResult = 1981 CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax), 1982 CGF.Builder.CreateZExt(IsNegative, OpTy)); 1983 llvm::Value *SignedOverflow = 1984 CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult); 1985 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow); 1986 1987 // Prepare the signed result (possibly by negating it). 1988 llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult); 1989 llvm::Value *SignedResult = 1990 CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult); 1991 Result = CGF.Builder.CreateTrunc(SignedResult, ResTy); 1992 } else { 1993 // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX. 1994 llvm::Value *Underflow = CGF.Builder.CreateAnd( 1995 IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult)); 1996 Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow); 1997 if (ResultInfo.Width < OpWidth) { 1998 auto IntMax = 1999 llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth); 2000 llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT( 2001 UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax)); 2002 Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow); 2003 } 2004 2005 // Negate the product if it would be negative in infinite precision. 2006 Result = CGF.Builder.CreateSelect( 2007 IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult); 2008 2009 Result = CGF.Builder.CreateTrunc(Result, ResTy); 2010 } 2011 assert(Overflow && Result && "Missing overflow or result"); 2012 2013 bool isVolatile = 2014 ResultArg->getType()->getPointeeType().isVolatileQualified(); 2015 CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr, 2016 isVolatile); 2017 return RValue::get(Overflow); 2018 } 2019 2020 static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType, 2021 Value *&RecordPtr, CharUnits Align, 2022 llvm::FunctionCallee Func, int Lvl) { 2023 ASTContext &Context = CGF.getContext(); 2024 RecordDecl *RD = RType->castAs<RecordType>()->getDecl()->getDefinition(); 2025 std::string Pad = std::string(Lvl * 4, ' '); 2026 2027 Value *GString = 2028 CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n"); 2029 Value *Res = CGF.Builder.CreateCall(Func, {GString}); 2030 2031 static llvm::DenseMap<QualType, const char *> Types; 2032 if (Types.empty()) { 2033 Types[Context.CharTy] = "%c"; 2034 Types[Context.BoolTy] = "%d"; 2035 Types[Context.SignedCharTy] = "%hhd"; 2036 Types[Context.UnsignedCharTy] = "%hhu"; 2037 Types[Context.IntTy] = "%d"; 2038 Types[Context.UnsignedIntTy] = "%u"; 2039 Types[Context.LongTy] = "%ld"; 2040 Types[Context.UnsignedLongTy] = "%lu"; 2041 Types[Context.LongLongTy] = "%lld"; 2042 Types[Context.UnsignedLongLongTy] = "%llu"; 2043 Types[Context.ShortTy] = "%hd"; 2044 Types[Context.UnsignedShortTy] = "%hu"; 2045 Types[Context.VoidPtrTy] = "%p"; 2046 Types[Context.FloatTy] = "%f"; 2047 Types[Context.DoubleTy] = "%f"; 2048 Types[Context.LongDoubleTy] = "%Lf"; 2049 Types[Context.getPointerType(Context.CharTy)] = "%s"; 2050 Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s"; 2051 } 2052 2053 for (const auto *FD : RD->fields()) { 2054 Value *FieldPtr = RecordPtr; 2055 if (RD->isUnion()) 2056 FieldPtr = CGF.Builder.CreatePointerCast( 2057 FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType()))); 2058 else 2059 FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr, 2060 FD->getFieldIndex()); 2061 2062 GString = CGF.Builder.CreateGlobalStringPtr( 2063 llvm::Twine(Pad) 2064 .concat(FD->getType().getAsString()) 2065 .concat(llvm::Twine(' ')) 2066 .concat(FD->getNameAsString()) 2067 .concat(" : ") 2068 .str()); 2069 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); 2070 Res = CGF.Builder.CreateAdd(Res, TmpRes); 2071 2072 QualType CanonicalType = 2073 FD->getType().getUnqualifiedType().getCanonicalType(); 2074 2075 // We check whether we are in a recursive type 2076 if (CanonicalType->isRecordType()) { 2077 TmpRes = dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1); 2078 Res = CGF.Builder.CreateAdd(TmpRes, Res); 2079 continue; 2080 } 2081 2082 // We try to determine the best format to print the current field 2083 llvm::Twine Format = Types.find(CanonicalType) == Types.end() 2084 ? Types[Context.VoidPtrTy] 2085 : Types[CanonicalType]; 2086 2087 Address FieldAddress = Address(FieldPtr, Align); 2088 FieldPtr = CGF.Builder.CreateLoad(FieldAddress); 2089 2090 // FIXME Need to handle bitfield here 2091 GString = CGF.Builder.CreateGlobalStringPtr( 2092 Format.concat(llvm::Twine('\n')).str()); 2093 TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr}); 2094 Res = CGF.Builder.CreateAdd(Res, TmpRes); 2095 } 2096 2097 GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n"); 2098 Value *TmpRes = CGF.Builder.CreateCall(Func, {GString}); 2099 Res = CGF.Builder.CreateAdd(Res, TmpRes); 2100 return Res; 2101 } 2102 2103 static bool 2104 TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty, 2105 llvm::SmallPtrSetImpl<const Decl *> &Seen) { 2106 if (const auto *Arr = Ctx.getAsArrayType(Ty)) 2107 Ty = Ctx.getBaseElementType(Arr); 2108 2109 const auto *Record = Ty->getAsCXXRecordDecl(); 2110 if (!Record) 2111 return false; 2112 2113 // We've already checked this type, or are in the process of checking it. 2114 if (!Seen.insert(Record).second) 2115 return false; 2116 2117 assert(Record->hasDefinition() && 2118 "Incomplete types should already be diagnosed"); 2119 2120 if (Record->isDynamicClass()) 2121 return true; 2122 2123 for (FieldDecl *F : Record->fields()) { 2124 if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen)) 2125 return true; 2126 } 2127 return false; 2128 } 2129 2130 /// Determine if the specified type requires laundering by checking if it is a 2131 /// dynamic class type or contains a subobject which is a dynamic class type. 2132 static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) { 2133 if (!CGM.getCodeGenOpts().StrictVTablePointers) 2134 return false; 2135 llvm::SmallPtrSet<const Decl *, 16> Seen; 2136 return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen); 2137 } 2138 2139 RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) { 2140 llvm::Value *Src = EmitScalarExpr(E->getArg(0)); 2141 llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1)); 2142 2143 // The builtin's shift arg may have a different type than the source arg and 2144 // result, but the LLVM intrinsic uses the same type for all values. 2145 llvm::Type *Ty = Src->getType(); 2146 ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false); 2147 2148 // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same. 2149 unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl; 2150 Function *F = CGM.getIntrinsic(IID, Ty); 2151 return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt })); 2152 } 2153 2154 // Map math builtins for long-double to f128 version. 2155 static unsigned mutateLongDoubleBuiltin(unsigned BuiltinID) { 2156 switch (BuiltinID) { 2157 #define MUTATE_LDBL(func) \ 2158 case Builtin::BI__builtin_##func##l: \ 2159 return Builtin::BI__builtin_##func##f128; 2160 MUTATE_LDBL(sqrt) 2161 MUTATE_LDBL(cbrt) 2162 MUTATE_LDBL(fabs) 2163 MUTATE_LDBL(log) 2164 MUTATE_LDBL(log2) 2165 MUTATE_LDBL(log10) 2166 MUTATE_LDBL(log1p) 2167 MUTATE_LDBL(logb) 2168 MUTATE_LDBL(exp) 2169 MUTATE_LDBL(exp2) 2170 MUTATE_LDBL(expm1) 2171 MUTATE_LDBL(fdim) 2172 MUTATE_LDBL(hypot) 2173 MUTATE_LDBL(ilogb) 2174 MUTATE_LDBL(pow) 2175 MUTATE_LDBL(fmin) 2176 MUTATE_LDBL(fmax) 2177 MUTATE_LDBL(ceil) 2178 MUTATE_LDBL(trunc) 2179 MUTATE_LDBL(rint) 2180 MUTATE_LDBL(nearbyint) 2181 MUTATE_LDBL(round) 2182 MUTATE_LDBL(floor) 2183 MUTATE_LDBL(lround) 2184 MUTATE_LDBL(llround) 2185 MUTATE_LDBL(lrint) 2186 MUTATE_LDBL(llrint) 2187 MUTATE_LDBL(fmod) 2188 MUTATE_LDBL(modf) 2189 MUTATE_LDBL(nan) 2190 MUTATE_LDBL(nans) 2191 MUTATE_LDBL(inf) 2192 MUTATE_LDBL(fma) 2193 MUTATE_LDBL(sin) 2194 MUTATE_LDBL(cos) 2195 MUTATE_LDBL(tan) 2196 MUTATE_LDBL(sinh) 2197 MUTATE_LDBL(cosh) 2198 MUTATE_LDBL(tanh) 2199 MUTATE_LDBL(asin) 2200 MUTATE_LDBL(acos) 2201 MUTATE_LDBL(atan) 2202 MUTATE_LDBL(asinh) 2203 MUTATE_LDBL(acosh) 2204 MUTATE_LDBL(atanh) 2205 MUTATE_LDBL(atan2) 2206 MUTATE_LDBL(erf) 2207 MUTATE_LDBL(erfc) 2208 MUTATE_LDBL(ldexp) 2209 MUTATE_LDBL(frexp) 2210 MUTATE_LDBL(huge_val) 2211 MUTATE_LDBL(copysign) 2212 MUTATE_LDBL(nextafter) 2213 MUTATE_LDBL(nexttoward) 2214 MUTATE_LDBL(remainder) 2215 MUTATE_LDBL(remquo) 2216 MUTATE_LDBL(scalbln) 2217 MUTATE_LDBL(scalbn) 2218 MUTATE_LDBL(tgamma) 2219 MUTATE_LDBL(lgamma) 2220 #undef MUTATE_LDBL 2221 default: 2222 return BuiltinID; 2223 } 2224 } 2225 2226 RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID, 2227 const CallExpr *E, 2228 ReturnValueSlot ReturnValue) { 2229 const FunctionDecl *FD = GD.getDecl()->getAsFunction(); 2230 // See if we can constant fold this builtin. If so, don't emit it at all. 2231 Expr::EvalResult Result; 2232 if (E->EvaluateAsRValue(Result, CGM.getContext()) && 2233 !Result.hasSideEffects()) { 2234 if (Result.Val.isInt()) 2235 return RValue::get(llvm::ConstantInt::get(getLLVMContext(), 2236 Result.Val.getInt())); 2237 if (Result.Val.isFloat()) 2238 return RValue::get(llvm::ConstantFP::get(getLLVMContext(), 2239 Result.Val.getFloat())); 2240 } 2241 2242 // If current long-double semantics is IEEE 128-bit, replace math builtins 2243 // of long-double with f128 equivalent. 2244 // TODO: This mutation should also be applied to other targets other than PPC, 2245 // after backend supports IEEE 128-bit style libcalls. 2246 if (getTarget().getTriple().isPPC64() && 2247 &getTarget().getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) 2248 BuiltinID = mutateLongDoubleBuiltin(BuiltinID); 2249 2250 // If the builtin has been declared explicitly with an assembler label, 2251 // disable the specialized emitting below. Ideally we should communicate the 2252 // rename in IR, or at least avoid generating the intrinsic calls that are 2253 // likely to get lowered to the renamed library functions. 2254 const unsigned BuiltinIDIfNoAsmLabel = 2255 FD->hasAttr<AsmLabelAttr>() ? 0 : BuiltinID; 2256 2257 // There are LLVM math intrinsics/instructions corresponding to math library 2258 // functions except the LLVM op will never set errno while the math library 2259 // might. Also, math builtins have the same semantics as their math library 2260 // twins. Thus, we can transform math library and builtin calls to their 2261 // LLVM counterparts if the call is marked 'const' (known to never set errno). 2262 if (FD->hasAttr<ConstAttr>()) { 2263 switch (BuiltinIDIfNoAsmLabel) { 2264 case Builtin::BIceil: 2265 case Builtin::BIceilf: 2266 case Builtin::BIceill: 2267 case Builtin::BI__builtin_ceil: 2268 case Builtin::BI__builtin_ceilf: 2269 case Builtin::BI__builtin_ceilf16: 2270 case Builtin::BI__builtin_ceill: 2271 case Builtin::BI__builtin_ceilf128: 2272 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2273 Intrinsic::ceil, 2274 Intrinsic::experimental_constrained_ceil)); 2275 2276 case Builtin::BIcopysign: 2277 case Builtin::BIcopysignf: 2278 case Builtin::BIcopysignl: 2279 case Builtin::BI__builtin_copysign: 2280 case Builtin::BI__builtin_copysignf: 2281 case Builtin::BI__builtin_copysignf16: 2282 case Builtin::BI__builtin_copysignl: 2283 case Builtin::BI__builtin_copysignf128: 2284 return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign)); 2285 2286 case Builtin::BIcos: 2287 case Builtin::BIcosf: 2288 case Builtin::BIcosl: 2289 case Builtin::BI__builtin_cos: 2290 case Builtin::BI__builtin_cosf: 2291 case Builtin::BI__builtin_cosf16: 2292 case Builtin::BI__builtin_cosl: 2293 case Builtin::BI__builtin_cosf128: 2294 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2295 Intrinsic::cos, 2296 Intrinsic::experimental_constrained_cos)); 2297 2298 case Builtin::BIexp: 2299 case Builtin::BIexpf: 2300 case Builtin::BIexpl: 2301 case Builtin::BI__builtin_exp: 2302 case Builtin::BI__builtin_expf: 2303 case Builtin::BI__builtin_expf16: 2304 case Builtin::BI__builtin_expl: 2305 case Builtin::BI__builtin_expf128: 2306 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2307 Intrinsic::exp, 2308 Intrinsic::experimental_constrained_exp)); 2309 2310 case Builtin::BIexp2: 2311 case Builtin::BIexp2f: 2312 case Builtin::BIexp2l: 2313 case Builtin::BI__builtin_exp2: 2314 case Builtin::BI__builtin_exp2f: 2315 case Builtin::BI__builtin_exp2f16: 2316 case Builtin::BI__builtin_exp2l: 2317 case Builtin::BI__builtin_exp2f128: 2318 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2319 Intrinsic::exp2, 2320 Intrinsic::experimental_constrained_exp2)); 2321 2322 case Builtin::BIfabs: 2323 case Builtin::BIfabsf: 2324 case Builtin::BIfabsl: 2325 case Builtin::BI__builtin_fabs: 2326 case Builtin::BI__builtin_fabsf: 2327 case Builtin::BI__builtin_fabsf16: 2328 case Builtin::BI__builtin_fabsl: 2329 case Builtin::BI__builtin_fabsf128: 2330 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs)); 2331 2332 case Builtin::BIfloor: 2333 case Builtin::BIfloorf: 2334 case Builtin::BIfloorl: 2335 case Builtin::BI__builtin_floor: 2336 case Builtin::BI__builtin_floorf: 2337 case Builtin::BI__builtin_floorf16: 2338 case Builtin::BI__builtin_floorl: 2339 case Builtin::BI__builtin_floorf128: 2340 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2341 Intrinsic::floor, 2342 Intrinsic::experimental_constrained_floor)); 2343 2344 case Builtin::BIfma: 2345 case Builtin::BIfmaf: 2346 case Builtin::BIfmal: 2347 case Builtin::BI__builtin_fma: 2348 case Builtin::BI__builtin_fmaf: 2349 case Builtin::BI__builtin_fmaf16: 2350 case Builtin::BI__builtin_fmal: 2351 case Builtin::BI__builtin_fmaf128: 2352 return RValue::get(emitTernaryMaybeConstrainedFPBuiltin(*this, E, 2353 Intrinsic::fma, 2354 Intrinsic::experimental_constrained_fma)); 2355 2356 case Builtin::BIfmax: 2357 case Builtin::BIfmaxf: 2358 case Builtin::BIfmaxl: 2359 case Builtin::BI__builtin_fmax: 2360 case Builtin::BI__builtin_fmaxf: 2361 case Builtin::BI__builtin_fmaxf16: 2362 case Builtin::BI__builtin_fmaxl: 2363 case Builtin::BI__builtin_fmaxf128: 2364 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, 2365 Intrinsic::maxnum, 2366 Intrinsic::experimental_constrained_maxnum)); 2367 2368 case Builtin::BIfmin: 2369 case Builtin::BIfminf: 2370 case Builtin::BIfminl: 2371 case Builtin::BI__builtin_fmin: 2372 case Builtin::BI__builtin_fminf: 2373 case Builtin::BI__builtin_fminf16: 2374 case Builtin::BI__builtin_fminl: 2375 case Builtin::BI__builtin_fminf128: 2376 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, 2377 Intrinsic::minnum, 2378 Intrinsic::experimental_constrained_minnum)); 2379 2380 // fmod() is a special-case. It maps to the frem instruction rather than an 2381 // LLVM intrinsic. 2382 case Builtin::BIfmod: 2383 case Builtin::BIfmodf: 2384 case Builtin::BIfmodl: 2385 case Builtin::BI__builtin_fmod: 2386 case Builtin::BI__builtin_fmodf: 2387 case Builtin::BI__builtin_fmodf16: 2388 case Builtin::BI__builtin_fmodl: 2389 case Builtin::BI__builtin_fmodf128: { 2390 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 2391 Value *Arg1 = EmitScalarExpr(E->getArg(0)); 2392 Value *Arg2 = EmitScalarExpr(E->getArg(1)); 2393 return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod")); 2394 } 2395 2396 case Builtin::BIlog: 2397 case Builtin::BIlogf: 2398 case Builtin::BIlogl: 2399 case Builtin::BI__builtin_log: 2400 case Builtin::BI__builtin_logf: 2401 case Builtin::BI__builtin_logf16: 2402 case Builtin::BI__builtin_logl: 2403 case Builtin::BI__builtin_logf128: 2404 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2405 Intrinsic::log, 2406 Intrinsic::experimental_constrained_log)); 2407 2408 case Builtin::BIlog10: 2409 case Builtin::BIlog10f: 2410 case Builtin::BIlog10l: 2411 case Builtin::BI__builtin_log10: 2412 case Builtin::BI__builtin_log10f: 2413 case Builtin::BI__builtin_log10f16: 2414 case Builtin::BI__builtin_log10l: 2415 case Builtin::BI__builtin_log10f128: 2416 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2417 Intrinsic::log10, 2418 Intrinsic::experimental_constrained_log10)); 2419 2420 case Builtin::BIlog2: 2421 case Builtin::BIlog2f: 2422 case Builtin::BIlog2l: 2423 case Builtin::BI__builtin_log2: 2424 case Builtin::BI__builtin_log2f: 2425 case Builtin::BI__builtin_log2f16: 2426 case Builtin::BI__builtin_log2l: 2427 case Builtin::BI__builtin_log2f128: 2428 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2429 Intrinsic::log2, 2430 Intrinsic::experimental_constrained_log2)); 2431 2432 case Builtin::BInearbyint: 2433 case Builtin::BInearbyintf: 2434 case Builtin::BInearbyintl: 2435 case Builtin::BI__builtin_nearbyint: 2436 case Builtin::BI__builtin_nearbyintf: 2437 case Builtin::BI__builtin_nearbyintl: 2438 case Builtin::BI__builtin_nearbyintf128: 2439 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2440 Intrinsic::nearbyint, 2441 Intrinsic::experimental_constrained_nearbyint)); 2442 2443 case Builtin::BIpow: 2444 case Builtin::BIpowf: 2445 case Builtin::BIpowl: 2446 case Builtin::BI__builtin_pow: 2447 case Builtin::BI__builtin_powf: 2448 case Builtin::BI__builtin_powf16: 2449 case Builtin::BI__builtin_powl: 2450 case Builtin::BI__builtin_powf128: 2451 return RValue::get(emitBinaryMaybeConstrainedFPBuiltin(*this, E, 2452 Intrinsic::pow, 2453 Intrinsic::experimental_constrained_pow)); 2454 2455 case Builtin::BIrint: 2456 case Builtin::BIrintf: 2457 case Builtin::BIrintl: 2458 case Builtin::BI__builtin_rint: 2459 case Builtin::BI__builtin_rintf: 2460 case Builtin::BI__builtin_rintf16: 2461 case Builtin::BI__builtin_rintl: 2462 case Builtin::BI__builtin_rintf128: 2463 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2464 Intrinsic::rint, 2465 Intrinsic::experimental_constrained_rint)); 2466 2467 case Builtin::BIround: 2468 case Builtin::BIroundf: 2469 case Builtin::BIroundl: 2470 case Builtin::BI__builtin_round: 2471 case Builtin::BI__builtin_roundf: 2472 case Builtin::BI__builtin_roundf16: 2473 case Builtin::BI__builtin_roundl: 2474 case Builtin::BI__builtin_roundf128: 2475 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2476 Intrinsic::round, 2477 Intrinsic::experimental_constrained_round)); 2478 2479 case Builtin::BIsin: 2480 case Builtin::BIsinf: 2481 case Builtin::BIsinl: 2482 case Builtin::BI__builtin_sin: 2483 case Builtin::BI__builtin_sinf: 2484 case Builtin::BI__builtin_sinf16: 2485 case Builtin::BI__builtin_sinl: 2486 case Builtin::BI__builtin_sinf128: 2487 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2488 Intrinsic::sin, 2489 Intrinsic::experimental_constrained_sin)); 2490 2491 case Builtin::BIsqrt: 2492 case Builtin::BIsqrtf: 2493 case Builtin::BIsqrtl: 2494 case Builtin::BI__builtin_sqrt: 2495 case Builtin::BI__builtin_sqrtf: 2496 case Builtin::BI__builtin_sqrtf16: 2497 case Builtin::BI__builtin_sqrtl: 2498 case Builtin::BI__builtin_sqrtf128: 2499 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2500 Intrinsic::sqrt, 2501 Intrinsic::experimental_constrained_sqrt)); 2502 2503 case Builtin::BItrunc: 2504 case Builtin::BItruncf: 2505 case Builtin::BItruncl: 2506 case Builtin::BI__builtin_trunc: 2507 case Builtin::BI__builtin_truncf: 2508 case Builtin::BI__builtin_truncf16: 2509 case Builtin::BI__builtin_truncl: 2510 case Builtin::BI__builtin_truncf128: 2511 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin(*this, E, 2512 Intrinsic::trunc, 2513 Intrinsic::experimental_constrained_trunc)); 2514 2515 case Builtin::BIlround: 2516 case Builtin::BIlroundf: 2517 case Builtin::BIlroundl: 2518 case Builtin::BI__builtin_lround: 2519 case Builtin::BI__builtin_lroundf: 2520 case Builtin::BI__builtin_lroundl: 2521 case Builtin::BI__builtin_lroundf128: 2522 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( 2523 *this, E, Intrinsic::lround, 2524 Intrinsic::experimental_constrained_lround)); 2525 2526 case Builtin::BIllround: 2527 case Builtin::BIllroundf: 2528 case Builtin::BIllroundl: 2529 case Builtin::BI__builtin_llround: 2530 case Builtin::BI__builtin_llroundf: 2531 case Builtin::BI__builtin_llroundl: 2532 case Builtin::BI__builtin_llroundf128: 2533 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( 2534 *this, E, Intrinsic::llround, 2535 Intrinsic::experimental_constrained_llround)); 2536 2537 case Builtin::BIlrint: 2538 case Builtin::BIlrintf: 2539 case Builtin::BIlrintl: 2540 case Builtin::BI__builtin_lrint: 2541 case Builtin::BI__builtin_lrintf: 2542 case Builtin::BI__builtin_lrintl: 2543 case Builtin::BI__builtin_lrintf128: 2544 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( 2545 *this, E, Intrinsic::lrint, 2546 Intrinsic::experimental_constrained_lrint)); 2547 2548 case Builtin::BIllrint: 2549 case Builtin::BIllrintf: 2550 case Builtin::BIllrintl: 2551 case Builtin::BI__builtin_llrint: 2552 case Builtin::BI__builtin_llrintf: 2553 case Builtin::BI__builtin_llrintl: 2554 case Builtin::BI__builtin_llrintf128: 2555 return RValue::get(emitMaybeConstrainedFPToIntRoundBuiltin( 2556 *this, E, Intrinsic::llrint, 2557 Intrinsic::experimental_constrained_llrint)); 2558 2559 default: 2560 break; 2561 } 2562 } 2563 2564 switch (BuiltinIDIfNoAsmLabel) { 2565 default: break; 2566 case Builtin::BI__builtin___CFStringMakeConstantString: 2567 case Builtin::BI__builtin___NSStringMakeConstantString: 2568 return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType())); 2569 case Builtin::BI__builtin_stdarg_start: 2570 case Builtin::BI__builtin_va_start: 2571 case Builtin::BI__va_start: 2572 case Builtin::BI__builtin_va_end: 2573 return RValue::get( 2574 EmitVAStartEnd(BuiltinID == Builtin::BI__va_start 2575 ? EmitScalarExpr(E->getArg(0)) 2576 : EmitVAListRef(E->getArg(0)).getPointer(), 2577 BuiltinID != Builtin::BI__builtin_va_end)); 2578 case Builtin::BI__builtin_va_copy: { 2579 Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer(); 2580 Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer(); 2581 2582 llvm::Type *Type = Int8PtrTy; 2583 2584 DstPtr = Builder.CreateBitCast(DstPtr, Type); 2585 SrcPtr = Builder.CreateBitCast(SrcPtr, Type); 2586 return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy), 2587 {DstPtr, SrcPtr})); 2588 } 2589 case Builtin::BI__builtin_abs: 2590 case Builtin::BI__builtin_labs: 2591 case Builtin::BI__builtin_llabs: { 2592 // X < 0 ? -X : X 2593 // The negation has 'nsw' because abs of INT_MIN is undefined. 2594 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2595 Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg"); 2596 Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType()); 2597 Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond"); 2598 Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs"); 2599 return RValue::get(Result); 2600 } 2601 case Builtin::BI__builtin_complex: { 2602 Value *Real = EmitScalarExpr(E->getArg(0)); 2603 Value *Imag = EmitScalarExpr(E->getArg(1)); 2604 return RValue::getComplex({Real, Imag}); 2605 } 2606 case Builtin::BI__builtin_conj: 2607 case Builtin::BI__builtin_conjf: 2608 case Builtin::BI__builtin_conjl: 2609 case Builtin::BIconj: 2610 case Builtin::BIconjf: 2611 case Builtin::BIconjl: { 2612 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 2613 Value *Real = ComplexVal.first; 2614 Value *Imag = ComplexVal.second; 2615 Imag = Builder.CreateFNeg(Imag, "neg"); 2616 return RValue::getComplex(std::make_pair(Real, Imag)); 2617 } 2618 case Builtin::BI__builtin_creal: 2619 case Builtin::BI__builtin_crealf: 2620 case Builtin::BI__builtin_creall: 2621 case Builtin::BIcreal: 2622 case Builtin::BIcrealf: 2623 case Builtin::BIcreall: { 2624 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 2625 return RValue::get(ComplexVal.first); 2626 } 2627 2628 case Builtin::BI__builtin_dump_struct: { 2629 llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy); 2630 llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get( 2631 LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true); 2632 2633 Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts()); 2634 CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment(); 2635 2636 const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts(); 2637 QualType Arg0Type = Arg0->getType()->getPointeeType(); 2638 2639 Value *RecordPtr = EmitScalarExpr(Arg0); 2640 Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align, 2641 {LLVMFuncType, Func}, 0); 2642 return RValue::get(Res); 2643 } 2644 2645 case Builtin::BI__builtin_preserve_access_index: { 2646 // Only enabled preserved access index region when debuginfo 2647 // is available as debuginfo is needed to preserve user-level 2648 // access pattern. 2649 if (!getDebugInfo()) { 2650 CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g"); 2651 return RValue::get(EmitScalarExpr(E->getArg(0))); 2652 } 2653 2654 // Nested builtin_preserve_access_index() not supported 2655 if (IsInPreservedAIRegion) { 2656 CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported"); 2657 return RValue::get(EmitScalarExpr(E->getArg(0))); 2658 } 2659 2660 IsInPreservedAIRegion = true; 2661 Value *Res = EmitScalarExpr(E->getArg(0)); 2662 IsInPreservedAIRegion = false; 2663 return RValue::get(Res); 2664 } 2665 2666 case Builtin::BI__builtin_cimag: 2667 case Builtin::BI__builtin_cimagf: 2668 case Builtin::BI__builtin_cimagl: 2669 case Builtin::BIcimag: 2670 case Builtin::BIcimagf: 2671 case Builtin::BIcimagl: { 2672 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 2673 return RValue::get(ComplexVal.second); 2674 } 2675 2676 case Builtin::BI__builtin_clrsb: 2677 case Builtin::BI__builtin_clrsbl: 2678 case Builtin::BI__builtin_clrsbll: { 2679 // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or 2680 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2681 2682 llvm::Type *ArgType = ArgValue->getType(); 2683 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 2684 2685 llvm::Type *ResultType = ConvertType(E->getType()); 2686 Value *Zero = llvm::Constant::getNullValue(ArgType); 2687 Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg"); 2688 Value *Inverse = Builder.CreateNot(ArgValue, "not"); 2689 Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue); 2690 Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()}); 2691 Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1)); 2692 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2693 "cast"); 2694 return RValue::get(Result); 2695 } 2696 case Builtin::BI__builtin_ctzs: 2697 case Builtin::BI__builtin_ctz: 2698 case Builtin::BI__builtin_ctzl: 2699 case Builtin::BI__builtin_ctzll: { 2700 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero); 2701 2702 llvm::Type *ArgType = ArgValue->getType(); 2703 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); 2704 2705 llvm::Type *ResultType = ConvertType(E->getType()); 2706 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); 2707 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); 2708 if (Result->getType() != ResultType) 2709 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2710 "cast"); 2711 return RValue::get(Result); 2712 } 2713 case Builtin::BI__builtin_clzs: 2714 case Builtin::BI__builtin_clz: 2715 case Builtin::BI__builtin_clzl: 2716 case Builtin::BI__builtin_clzll: { 2717 Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero); 2718 2719 llvm::Type *ArgType = ArgValue->getType(); 2720 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 2721 2722 llvm::Type *ResultType = ConvertType(E->getType()); 2723 Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef()); 2724 Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef}); 2725 if (Result->getType() != ResultType) 2726 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2727 "cast"); 2728 return RValue::get(Result); 2729 } 2730 case Builtin::BI__builtin_ffs: 2731 case Builtin::BI__builtin_ffsl: 2732 case Builtin::BI__builtin_ffsll: { 2733 // ffs(x) -> x ? cttz(x) + 1 : 0 2734 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2735 2736 llvm::Type *ArgType = ArgValue->getType(); 2737 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType); 2738 2739 llvm::Type *ResultType = ConvertType(E->getType()); 2740 Value *Tmp = 2741 Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}), 2742 llvm::ConstantInt::get(ArgType, 1)); 2743 Value *Zero = llvm::Constant::getNullValue(ArgType); 2744 Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero"); 2745 Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs"); 2746 if (Result->getType() != ResultType) 2747 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2748 "cast"); 2749 return RValue::get(Result); 2750 } 2751 case Builtin::BI__builtin_parity: 2752 case Builtin::BI__builtin_parityl: 2753 case Builtin::BI__builtin_parityll: { 2754 // parity(x) -> ctpop(x) & 1 2755 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2756 2757 llvm::Type *ArgType = ArgValue->getType(); 2758 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); 2759 2760 llvm::Type *ResultType = ConvertType(E->getType()); 2761 Value *Tmp = Builder.CreateCall(F, ArgValue); 2762 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); 2763 if (Result->getType() != ResultType) 2764 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2765 "cast"); 2766 return RValue::get(Result); 2767 } 2768 case Builtin::BI__lzcnt16: 2769 case Builtin::BI__lzcnt: 2770 case Builtin::BI__lzcnt64: { 2771 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2772 2773 llvm::Type *ArgType = ArgValue->getType(); 2774 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType); 2775 2776 llvm::Type *ResultType = ConvertType(E->getType()); 2777 Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()}); 2778 if (Result->getType() != ResultType) 2779 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2780 "cast"); 2781 return RValue::get(Result); 2782 } 2783 case Builtin::BI__popcnt16: 2784 case Builtin::BI__popcnt: 2785 case Builtin::BI__popcnt64: 2786 case Builtin::BI__builtin_popcount: 2787 case Builtin::BI__builtin_popcountl: 2788 case Builtin::BI__builtin_popcountll: { 2789 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2790 2791 llvm::Type *ArgType = ArgValue->getType(); 2792 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); 2793 2794 llvm::Type *ResultType = ConvertType(E->getType()); 2795 Value *Result = Builder.CreateCall(F, ArgValue); 2796 if (Result->getType() != ResultType) 2797 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 2798 "cast"); 2799 return RValue::get(Result); 2800 } 2801 case Builtin::BI__builtin_unpredictable: { 2802 // Always return the argument of __builtin_unpredictable. LLVM does not 2803 // handle this builtin. Metadata for this builtin should be added directly 2804 // to instructions such as branches or switches that use it. 2805 return RValue::get(EmitScalarExpr(E->getArg(0))); 2806 } 2807 case Builtin::BI__builtin_expect: { 2808 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2809 llvm::Type *ArgType = ArgValue->getType(); 2810 2811 Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); 2812 // Don't generate llvm.expect on -O0 as the backend won't use it for 2813 // anything. 2814 // Note, we still IRGen ExpectedValue because it could have side-effects. 2815 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2816 return RValue::get(ArgValue); 2817 2818 Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType); 2819 Value *Result = 2820 Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval"); 2821 return RValue::get(Result); 2822 } 2823 case Builtin::BI__builtin_expect_with_probability: { 2824 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2825 llvm::Type *ArgType = ArgValue->getType(); 2826 2827 Value *ExpectedValue = EmitScalarExpr(E->getArg(1)); 2828 llvm::APFloat Probability(0.0); 2829 const Expr *ProbArg = E->getArg(2); 2830 bool EvalSucceed = ProbArg->EvaluateAsFloat(Probability, CGM.getContext()); 2831 assert(EvalSucceed && "probability should be able to evaluate as float"); 2832 (void)EvalSucceed; 2833 bool LoseInfo = false; 2834 Probability.convert(llvm::APFloat::IEEEdouble(), 2835 llvm::RoundingMode::Dynamic, &LoseInfo); 2836 llvm::Type *Ty = ConvertType(ProbArg->getType()); 2837 Constant *Confidence = ConstantFP::get(Ty, Probability); 2838 // Don't generate llvm.expect.with.probability on -O0 as the backend 2839 // won't use it for anything. 2840 // Note, we still IRGen ExpectedValue because it could have side-effects. 2841 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 2842 return RValue::get(ArgValue); 2843 2844 Function *FnExpect = 2845 CGM.getIntrinsic(Intrinsic::expect_with_probability, ArgType); 2846 Value *Result = Builder.CreateCall( 2847 FnExpect, {ArgValue, ExpectedValue, Confidence}, "expval"); 2848 return RValue::get(Result); 2849 } 2850 case Builtin::BI__builtin_assume_aligned: { 2851 const Expr *Ptr = E->getArg(0); 2852 Value *PtrValue = EmitScalarExpr(Ptr); 2853 Value *OffsetValue = 2854 (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr; 2855 2856 Value *AlignmentValue = EmitScalarExpr(E->getArg(1)); 2857 ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue); 2858 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment)) 2859 AlignmentCI = ConstantInt::get(AlignmentCI->getType(), 2860 llvm::Value::MaximumAlignment); 2861 2862 emitAlignmentAssumption(PtrValue, Ptr, 2863 /*The expr loc is sufficient.*/ SourceLocation(), 2864 AlignmentCI, OffsetValue); 2865 return RValue::get(PtrValue); 2866 } 2867 case Builtin::BI__assume: 2868 case Builtin::BI__builtin_assume: { 2869 if (E->getArg(0)->HasSideEffects(getContext())) 2870 return RValue::get(nullptr); 2871 2872 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2873 Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume); 2874 return RValue::get(Builder.CreateCall(FnAssume, ArgValue)); 2875 } 2876 case Builtin::BI__arithmetic_fence: { 2877 // Create the builtin call if FastMath is selected, and the target 2878 // supports the builtin, otherwise just return the argument. 2879 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 2880 llvm::FastMathFlags FMF = Builder.getFastMathFlags(); 2881 bool isArithmeticFenceEnabled = 2882 FMF.allowReassoc() && 2883 getContext().getTargetInfo().checkArithmeticFenceSupported(); 2884 QualType ArgType = E->getArg(0)->getType(); 2885 if (ArgType->isComplexType()) { 2886 if (isArithmeticFenceEnabled) { 2887 QualType ElementType = ArgType->castAs<ComplexType>()->getElementType(); 2888 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 2889 Value *Real = Builder.CreateArithmeticFence(ComplexVal.first, 2890 ConvertType(ElementType)); 2891 Value *Imag = Builder.CreateArithmeticFence(ComplexVal.second, 2892 ConvertType(ElementType)); 2893 return RValue::getComplex(std::make_pair(Real, Imag)); 2894 } 2895 ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0)); 2896 Value *Real = ComplexVal.first; 2897 Value *Imag = ComplexVal.second; 2898 return RValue::getComplex(std::make_pair(Real, Imag)); 2899 } 2900 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 2901 if (isArithmeticFenceEnabled) 2902 return RValue::get( 2903 Builder.CreateArithmeticFence(ArgValue, ConvertType(ArgType))); 2904 return RValue::get(ArgValue); 2905 } 2906 case Builtin::BI__builtin_bswap16: 2907 case Builtin::BI__builtin_bswap32: 2908 case Builtin::BI__builtin_bswap64: { 2909 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap)); 2910 } 2911 case Builtin::BI__builtin_bitreverse8: 2912 case Builtin::BI__builtin_bitreverse16: 2913 case Builtin::BI__builtin_bitreverse32: 2914 case Builtin::BI__builtin_bitreverse64: { 2915 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse)); 2916 } 2917 case Builtin::BI__builtin_rotateleft8: 2918 case Builtin::BI__builtin_rotateleft16: 2919 case Builtin::BI__builtin_rotateleft32: 2920 case Builtin::BI__builtin_rotateleft64: 2921 case Builtin::BI_rotl8: // Microsoft variants of rotate left 2922 case Builtin::BI_rotl16: 2923 case Builtin::BI_rotl: 2924 case Builtin::BI_lrotl: 2925 case Builtin::BI_rotl64: 2926 return emitRotate(E, false); 2927 2928 case Builtin::BI__builtin_rotateright8: 2929 case Builtin::BI__builtin_rotateright16: 2930 case Builtin::BI__builtin_rotateright32: 2931 case Builtin::BI__builtin_rotateright64: 2932 case Builtin::BI_rotr8: // Microsoft variants of rotate right 2933 case Builtin::BI_rotr16: 2934 case Builtin::BI_rotr: 2935 case Builtin::BI_lrotr: 2936 case Builtin::BI_rotr64: 2937 return emitRotate(E, true); 2938 2939 case Builtin::BI__builtin_constant_p: { 2940 llvm::Type *ResultType = ConvertType(E->getType()); 2941 2942 const Expr *Arg = E->getArg(0); 2943 QualType ArgType = Arg->getType(); 2944 // FIXME: The allowance for Obj-C pointers and block pointers is historical 2945 // and likely a mistake. 2946 if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() && 2947 !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType()) 2948 // Per the GCC documentation, only numeric constants are recognized after 2949 // inlining. 2950 return RValue::get(ConstantInt::get(ResultType, 0)); 2951 2952 if (Arg->HasSideEffects(getContext())) 2953 // The argument is unevaluated, so be conservative if it might have 2954 // side-effects. 2955 return RValue::get(ConstantInt::get(ResultType, 0)); 2956 2957 Value *ArgValue = EmitScalarExpr(Arg); 2958 if (ArgType->isObjCObjectPointerType()) { 2959 // Convert Objective-C objects to id because we cannot distinguish between 2960 // LLVM types for Obj-C classes as they are opaque. 2961 ArgType = CGM.getContext().getObjCIdType(); 2962 ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType)); 2963 } 2964 Function *F = 2965 CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType)); 2966 Value *Result = Builder.CreateCall(F, ArgValue); 2967 if (Result->getType() != ResultType) 2968 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false); 2969 return RValue::get(Result); 2970 } 2971 case Builtin::BI__builtin_dynamic_object_size: 2972 case Builtin::BI__builtin_object_size: { 2973 unsigned Type = 2974 E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue(); 2975 auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType())); 2976 2977 // We pass this builtin onto the optimizer so that it can figure out the 2978 // object size in more complex cases. 2979 bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size; 2980 return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType, 2981 /*EmittedE=*/nullptr, IsDynamic)); 2982 } 2983 case Builtin::BI__builtin_prefetch: { 2984 Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0)); 2985 // FIXME: Technically these constants should of type 'int', yes? 2986 RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) : 2987 llvm::ConstantInt::get(Int32Ty, 0); 2988 Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : 2989 llvm::ConstantInt::get(Int32Ty, 3); 2990 Value *Data = llvm::ConstantInt::get(Int32Ty, 1); 2991 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 2992 return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data})); 2993 } 2994 case Builtin::BI__builtin_readcyclecounter: { 2995 Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter); 2996 return RValue::get(Builder.CreateCall(F)); 2997 } 2998 case Builtin::BI__builtin___clear_cache: { 2999 Value *Begin = EmitScalarExpr(E->getArg(0)); 3000 Value *End = EmitScalarExpr(E->getArg(1)); 3001 Function *F = CGM.getIntrinsic(Intrinsic::clear_cache); 3002 return RValue::get(Builder.CreateCall(F, {Begin, End})); 3003 } 3004 case Builtin::BI__builtin_trap: 3005 return RValue::get(EmitTrapCall(Intrinsic::trap)); 3006 case Builtin::BI__debugbreak: 3007 return RValue::get(EmitTrapCall(Intrinsic::debugtrap)); 3008 case Builtin::BI__builtin_unreachable: { 3009 EmitUnreachable(E->getExprLoc()); 3010 3011 // We do need to preserve an insertion point. 3012 EmitBlock(createBasicBlock("unreachable.cont")); 3013 3014 return RValue::get(nullptr); 3015 } 3016 3017 case Builtin::BI__builtin_powi: 3018 case Builtin::BI__builtin_powif: 3019 case Builtin::BI__builtin_powil: { 3020 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 3021 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 3022 3023 if (Builder.getIsFPConstrained()) { 3024 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3025 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_powi, 3026 Src0->getType()); 3027 return RValue::get(Builder.CreateConstrainedFPCall(F, { Src0, Src1 })); 3028 } 3029 3030 Function *F = CGM.getIntrinsic(Intrinsic::powi, 3031 { Src0->getType(), Src1->getType() }); 3032 return RValue::get(Builder.CreateCall(F, { Src0, Src1 })); 3033 } 3034 case Builtin::BI__builtin_isgreater: 3035 case Builtin::BI__builtin_isgreaterequal: 3036 case Builtin::BI__builtin_isless: 3037 case Builtin::BI__builtin_islessequal: 3038 case Builtin::BI__builtin_islessgreater: 3039 case Builtin::BI__builtin_isunordered: { 3040 // Ordered comparisons: we know the arguments to these are matching scalar 3041 // floating point values. 3042 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3043 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. 3044 Value *LHS = EmitScalarExpr(E->getArg(0)); 3045 Value *RHS = EmitScalarExpr(E->getArg(1)); 3046 3047 switch (BuiltinID) { 3048 default: llvm_unreachable("Unknown ordered comparison"); 3049 case Builtin::BI__builtin_isgreater: 3050 LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp"); 3051 break; 3052 case Builtin::BI__builtin_isgreaterequal: 3053 LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp"); 3054 break; 3055 case Builtin::BI__builtin_isless: 3056 LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp"); 3057 break; 3058 case Builtin::BI__builtin_islessequal: 3059 LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp"); 3060 break; 3061 case Builtin::BI__builtin_islessgreater: 3062 LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp"); 3063 break; 3064 case Builtin::BI__builtin_isunordered: 3065 LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp"); 3066 break; 3067 } 3068 // ZExt bool to int type. 3069 return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()))); 3070 } 3071 case Builtin::BI__builtin_isnan: { 3072 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3073 Value *V = EmitScalarExpr(E->getArg(0)); 3074 llvm::Type *Ty = V->getType(); 3075 const llvm::fltSemantics &Semantics = Ty->getFltSemantics(); 3076 if (!Builder.getIsFPConstrained() || 3077 Builder.getDefaultConstrainedExcept() == fp::ebIgnore || 3078 !Ty->isIEEE()) { 3079 V = Builder.CreateFCmpUNO(V, V, "cmp"); 3080 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); 3081 } 3082 3083 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM)) 3084 return RValue::get(Result); 3085 3086 // NaN has all exp bits set and a non zero significand. Therefore: 3087 // isnan(V) == ((exp mask - (abs(V) & exp mask)) < 0) 3088 unsigned bitsize = Ty->getScalarSizeInBits(); 3089 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize); 3090 Value *IntV = Builder.CreateBitCast(V, IntTy); 3091 APInt AndMask = APInt::getSignedMaxValue(bitsize); 3092 Value *AbsV = 3093 Builder.CreateAnd(IntV, llvm::ConstantInt::get(IntTy, AndMask)); 3094 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt(); 3095 Value *Sub = 3096 Builder.CreateSub(llvm::ConstantInt::get(IntTy, ExpMask), AbsV); 3097 // V = sign bit (Sub) <=> V = (Sub < 0) 3098 V = Builder.CreateLShr(Sub, llvm::ConstantInt::get(IntTy, bitsize - 1)); 3099 if (bitsize > 32) 3100 V = Builder.CreateTrunc(V, ConvertType(E->getType())); 3101 return RValue::get(V); 3102 } 3103 3104 case Builtin::BI__builtin_matrix_transpose: { 3105 const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>(); 3106 Value *MatValue = EmitScalarExpr(E->getArg(0)); 3107 MatrixBuilder<CGBuilderTy> MB(Builder); 3108 Value *Result = MB.CreateMatrixTranspose(MatValue, MatrixTy->getNumRows(), 3109 MatrixTy->getNumColumns()); 3110 return RValue::get(Result); 3111 } 3112 3113 case Builtin::BI__builtin_matrix_column_major_load: { 3114 MatrixBuilder<CGBuilderTy> MB(Builder); 3115 // Emit everything that isn't dependent on the first parameter type 3116 Value *Stride = EmitScalarExpr(E->getArg(3)); 3117 const auto *ResultTy = E->getType()->getAs<ConstantMatrixType>(); 3118 auto *PtrTy = E->getArg(0)->getType()->getAs<PointerType>(); 3119 assert(PtrTy && "arg0 must be of pointer type"); 3120 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); 3121 3122 Address Src = EmitPointerWithAlignment(E->getArg(0)); 3123 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(0)->getType(), 3124 E->getArg(0)->getExprLoc(), FD, 0); 3125 Value *Result = MB.CreateColumnMajorLoad( 3126 Src.getPointer(), Align(Src.getAlignment().getQuantity()), Stride, 3127 IsVolatile, ResultTy->getNumRows(), ResultTy->getNumColumns(), 3128 "matrix"); 3129 return RValue::get(Result); 3130 } 3131 3132 case Builtin::BI__builtin_matrix_column_major_store: { 3133 MatrixBuilder<CGBuilderTy> MB(Builder); 3134 Value *Matrix = EmitScalarExpr(E->getArg(0)); 3135 Address Dst = EmitPointerWithAlignment(E->getArg(1)); 3136 Value *Stride = EmitScalarExpr(E->getArg(2)); 3137 3138 const auto *MatrixTy = E->getArg(0)->getType()->getAs<ConstantMatrixType>(); 3139 auto *PtrTy = E->getArg(1)->getType()->getAs<PointerType>(); 3140 assert(PtrTy && "arg1 must be of pointer type"); 3141 bool IsVolatile = PtrTy->getPointeeType().isVolatileQualified(); 3142 3143 EmitNonNullArgCheck(RValue::get(Dst.getPointer()), E->getArg(1)->getType(), 3144 E->getArg(1)->getExprLoc(), FD, 0); 3145 Value *Result = MB.CreateColumnMajorStore( 3146 Matrix, Dst.getPointer(), Align(Dst.getAlignment().getQuantity()), 3147 Stride, IsVolatile, MatrixTy->getNumRows(), MatrixTy->getNumColumns()); 3148 return RValue::get(Result); 3149 } 3150 3151 case Builtin::BIfinite: 3152 case Builtin::BI__finite: 3153 case Builtin::BIfinitef: 3154 case Builtin::BI__finitef: 3155 case Builtin::BIfinitel: 3156 case Builtin::BI__finitel: 3157 case Builtin::BI__builtin_isinf: 3158 case Builtin::BI__builtin_isfinite: { 3159 // isinf(x) --> fabs(x) == infinity 3160 // isfinite(x) --> fabs(x) != infinity 3161 // x != NaN via the ordered compare in either case. 3162 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3163 Value *V = EmitScalarExpr(E->getArg(0)); 3164 llvm::Type *Ty = V->getType(); 3165 if (!Builder.getIsFPConstrained() || 3166 Builder.getDefaultConstrainedExcept() == fp::ebIgnore || 3167 !Ty->isIEEE()) { 3168 Value *Fabs = EmitFAbs(*this, V); 3169 Constant *Infinity = ConstantFP::getInfinity(V->getType()); 3170 CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf) 3171 ? CmpInst::FCMP_OEQ 3172 : CmpInst::FCMP_ONE; 3173 Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf"); 3174 return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType()))); 3175 } 3176 3177 if (Value *Result = getTargetHooks().testFPKind(V, BuiltinID, Builder, CGM)) 3178 return RValue::get(Result); 3179 3180 // Inf values have all exp bits set and a zero significand. Therefore: 3181 // isinf(V) == ((V << 1) == ((exp mask) << 1)) 3182 // isfinite(V) == ((V << 1) < ((exp mask) << 1)) using unsigned comparison 3183 unsigned bitsize = Ty->getScalarSizeInBits(); 3184 llvm::IntegerType *IntTy = Builder.getIntNTy(bitsize); 3185 Value *IntV = Builder.CreateBitCast(V, IntTy); 3186 Value *Shl1 = Builder.CreateShl(IntV, 1); 3187 const llvm::fltSemantics &Semantics = Ty->getFltSemantics(); 3188 APInt ExpMask = APFloat::getInf(Semantics).bitcastToAPInt(); 3189 Value *ExpMaskShl1 = llvm::ConstantInt::get(IntTy, ExpMask.shl(1)); 3190 if (BuiltinID == Builtin::BI__builtin_isinf) 3191 V = Builder.CreateICmpEQ(Shl1, ExpMaskShl1); 3192 else 3193 V = Builder.CreateICmpULT(Shl1, ExpMaskShl1); 3194 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); 3195 } 3196 3197 case Builtin::BI__builtin_isinf_sign: { 3198 // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0 3199 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3200 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. 3201 Value *Arg = EmitScalarExpr(E->getArg(0)); 3202 Value *AbsArg = EmitFAbs(*this, Arg); 3203 Value *IsInf = Builder.CreateFCmpOEQ( 3204 AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf"); 3205 Value *IsNeg = EmitSignBit(*this, Arg); 3206 3207 llvm::Type *IntTy = ConvertType(E->getType()); 3208 Value *Zero = Constant::getNullValue(IntTy); 3209 Value *One = ConstantInt::get(IntTy, 1); 3210 Value *NegativeOne = ConstantInt::get(IntTy, -1); 3211 Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One); 3212 Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero); 3213 return RValue::get(Result); 3214 } 3215 3216 case Builtin::BI__builtin_isnormal: { 3217 // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min 3218 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3219 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. 3220 Value *V = EmitScalarExpr(E->getArg(0)); 3221 Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq"); 3222 3223 Value *Abs = EmitFAbs(*this, V); 3224 Value *IsLessThanInf = 3225 Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf"); 3226 APFloat Smallest = APFloat::getSmallestNormalized( 3227 getContext().getFloatTypeSemantics(E->getArg(0)->getType())); 3228 Value *IsNormal = 3229 Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest), 3230 "isnormal"); 3231 V = Builder.CreateAnd(Eq, IsLessThanInf, "and"); 3232 V = Builder.CreateAnd(V, IsNormal, "and"); 3233 return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType()))); 3234 } 3235 3236 case Builtin::BI__builtin_flt_rounds: { 3237 Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds); 3238 3239 llvm::Type *ResultType = ConvertType(E->getType()); 3240 Value *Result = Builder.CreateCall(F); 3241 if (Result->getType() != ResultType) 3242 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 3243 "cast"); 3244 return RValue::get(Result); 3245 } 3246 3247 case Builtin::BI__builtin_fpclassify: { 3248 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 3249 // FIXME: for strictfp/IEEE-754 we need to not trap on SNaN here. 3250 Value *V = EmitScalarExpr(E->getArg(5)); 3251 llvm::Type *Ty = ConvertType(E->getArg(5)->getType()); 3252 3253 // Create Result 3254 BasicBlock *Begin = Builder.GetInsertBlock(); 3255 BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn); 3256 Builder.SetInsertPoint(End); 3257 PHINode *Result = 3258 Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4, 3259 "fpclassify_result"); 3260 3261 // if (V==0) return FP_ZERO 3262 Builder.SetInsertPoint(Begin); 3263 Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty), 3264 "iszero"); 3265 Value *ZeroLiteral = EmitScalarExpr(E->getArg(4)); 3266 BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn); 3267 Builder.CreateCondBr(IsZero, End, NotZero); 3268 Result->addIncoming(ZeroLiteral, Begin); 3269 3270 // if (V != V) return FP_NAN 3271 Builder.SetInsertPoint(NotZero); 3272 Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp"); 3273 Value *NanLiteral = EmitScalarExpr(E->getArg(0)); 3274 BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn); 3275 Builder.CreateCondBr(IsNan, End, NotNan); 3276 Result->addIncoming(NanLiteral, NotZero); 3277 3278 // if (fabs(V) == infinity) return FP_INFINITY 3279 Builder.SetInsertPoint(NotNan); 3280 Value *VAbs = EmitFAbs(*this, V); 3281 Value *IsInf = 3282 Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()), 3283 "isinf"); 3284 Value *InfLiteral = EmitScalarExpr(E->getArg(1)); 3285 BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn); 3286 Builder.CreateCondBr(IsInf, End, NotInf); 3287 Result->addIncoming(InfLiteral, NotNan); 3288 3289 // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL 3290 Builder.SetInsertPoint(NotInf); 3291 APFloat Smallest = APFloat::getSmallestNormalized( 3292 getContext().getFloatTypeSemantics(E->getArg(5)->getType())); 3293 Value *IsNormal = 3294 Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest), 3295 "isnormal"); 3296 Value *NormalResult = 3297 Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)), 3298 EmitScalarExpr(E->getArg(3))); 3299 Builder.CreateBr(End); 3300 Result->addIncoming(NormalResult, NotInf); 3301 3302 // return Result 3303 Builder.SetInsertPoint(End); 3304 return RValue::get(Result); 3305 } 3306 3307 case Builtin::BIalloca: 3308 case Builtin::BI_alloca: 3309 case Builtin::BI__builtin_alloca: { 3310 Value *Size = EmitScalarExpr(E->getArg(0)); 3311 const TargetInfo &TI = getContext().getTargetInfo(); 3312 // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__. 3313 const Align SuitableAlignmentInBytes = 3314 CGM.getContext() 3315 .toCharUnitsFromBits(TI.getSuitableAlign()) 3316 .getAsAlign(); 3317 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); 3318 AI->setAlignment(SuitableAlignmentInBytes); 3319 initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes); 3320 return RValue::get(AI); 3321 } 3322 3323 case Builtin::BI__builtin_alloca_with_align: { 3324 Value *Size = EmitScalarExpr(E->getArg(0)); 3325 Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1)); 3326 auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue); 3327 unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue(); 3328 const Align AlignmentInBytes = 3329 CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getAsAlign(); 3330 AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size); 3331 AI->setAlignment(AlignmentInBytes); 3332 initializeAlloca(*this, AI, Size, AlignmentInBytes); 3333 return RValue::get(AI); 3334 } 3335 3336 case Builtin::BIbzero: 3337 case Builtin::BI__builtin_bzero: { 3338 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3339 Value *SizeVal = EmitScalarExpr(E->getArg(1)); 3340 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3341 E->getArg(0)->getExprLoc(), FD, 0); 3342 Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false); 3343 return RValue::get(nullptr); 3344 } 3345 case Builtin::BImemcpy: 3346 case Builtin::BI__builtin_memcpy: 3347 case Builtin::BImempcpy: 3348 case Builtin::BI__builtin_mempcpy: { 3349 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3350 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3351 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 3352 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3353 E->getArg(0)->getExprLoc(), FD, 0); 3354 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), 3355 E->getArg(1)->getExprLoc(), FD, 1); 3356 Builder.CreateMemCpy(Dest, Src, SizeVal, false); 3357 if (BuiltinID == Builtin::BImempcpy || 3358 BuiltinID == Builtin::BI__builtin_mempcpy) 3359 return RValue::get(Builder.CreateInBoundsGEP(Dest.getElementType(), 3360 Dest.getPointer(), SizeVal)); 3361 else 3362 return RValue::get(Dest.getPointer()); 3363 } 3364 3365 case Builtin::BI__builtin_memcpy_inline: { 3366 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3367 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3368 uint64_t Size = 3369 E->getArg(2)->EvaluateKnownConstInt(getContext()).getZExtValue(); 3370 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3371 E->getArg(0)->getExprLoc(), FD, 0); 3372 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), 3373 E->getArg(1)->getExprLoc(), FD, 1); 3374 Builder.CreateMemCpyInline(Dest, Src, Size); 3375 return RValue::get(nullptr); 3376 } 3377 3378 case Builtin::BI__builtin_char_memchr: 3379 BuiltinID = Builtin::BI__builtin_memchr; 3380 break; 3381 3382 case Builtin::BI__builtin___memcpy_chk: { 3383 // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2. 3384 Expr::EvalResult SizeResult, DstSizeResult; 3385 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || 3386 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) 3387 break; 3388 llvm::APSInt Size = SizeResult.Val.getInt(); 3389 llvm::APSInt DstSize = DstSizeResult.Val.getInt(); 3390 if (Size.ugt(DstSize)) 3391 break; 3392 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3393 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3394 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); 3395 Builder.CreateMemCpy(Dest, Src, SizeVal, false); 3396 return RValue::get(Dest.getPointer()); 3397 } 3398 3399 case Builtin::BI__builtin_objc_memmove_collectable: { 3400 Address DestAddr = EmitPointerWithAlignment(E->getArg(0)); 3401 Address SrcAddr = EmitPointerWithAlignment(E->getArg(1)); 3402 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 3403 CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, 3404 DestAddr, SrcAddr, SizeVal); 3405 return RValue::get(DestAddr.getPointer()); 3406 } 3407 3408 case Builtin::BI__builtin___memmove_chk: { 3409 // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2. 3410 Expr::EvalResult SizeResult, DstSizeResult; 3411 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || 3412 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) 3413 break; 3414 llvm::APSInt Size = SizeResult.Val.getInt(); 3415 llvm::APSInt DstSize = DstSizeResult.Val.getInt(); 3416 if (Size.ugt(DstSize)) 3417 break; 3418 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3419 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3420 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); 3421 Builder.CreateMemMove(Dest, Src, SizeVal, false); 3422 return RValue::get(Dest.getPointer()); 3423 } 3424 3425 case Builtin::BImemmove: 3426 case Builtin::BI__builtin_memmove: { 3427 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3428 Address Src = EmitPointerWithAlignment(E->getArg(1)); 3429 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 3430 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3431 E->getArg(0)->getExprLoc(), FD, 0); 3432 EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(), 3433 E->getArg(1)->getExprLoc(), FD, 1); 3434 Builder.CreateMemMove(Dest, Src, SizeVal, false); 3435 return RValue::get(Dest.getPointer()); 3436 } 3437 case Builtin::BImemset: 3438 case Builtin::BI__builtin_memset: { 3439 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3440 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), 3441 Builder.getInt8Ty()); 3442 Value *SizeVal = EmitScalarExpr(E->getArg(2)); 3443 EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(), 3444 E->getArg(0)->getExprLoc(), FD, 0); 3445 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); 3446 return RValue::get(Dest.getPointer()); 3447 } 3448 case Builtin::BI__builtin___memset_chk: { 3449 // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2. 3450 Expr::EvalResult SizeResult, DstSizeResult; 3451 if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) || 3452 !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext())) 3453 break; 3454 llvm::APSInt Size = SizeResult.Val.getInt(); 3455 llvm::APSInt DstSize = DstSizeResult.Val.getInt(); 3456 if (Size.ugt(DstSize)) 3457 break; 3458 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 3459 Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)), 3460 Builder.getInt8Ty()); 3461 Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size); 3462 Builder.CreateMemSet(Dest, ByteVal, SizeVal, false); 3463 return RValue::get(Dest.getPointer()); 3464 } 3465 case Builtin::BI__builtin_wmemchr: { 3466 // The MSVC runtime library does not provide a definition of wmemchr, so we 3467 // need an inline implementation. 3468 if (!getTarget().getTriple().isOSMSVCRT()) 3469 break; 3470 3471 llvm::Type *WCharTy = ConvertType(getContext().WCharTy); 3472 Value *Str = EmitScalarExpr(E->getArg(0)); 3473 Value *Chr = EmitScalarExpr(E->getArg(1)); 3474 Value *Size = EmitScalarExpr(E->getArg(2)); 3475 3476 BasicBlock *Entry = Builder.GetInsertBlock(); 3477 BasicBlock *CmpEq = createBasicBlock("wmemchr.eq"); 3478 BasicBlock *Next = createBasicBlock("wmemchr.next"); 3479 BasicBlock *Exit = createBasicBlock("wmemchr.exit"); 3480 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); 3481 Builder.CreateCondBr(SizeEq0, Exit, CmpEq); 3482 3483 EmitBlock(CmpEq); 3484 PHINode *StrPhi = Builder.CreatePHI(Str->getType(), 2); 3485 StrPhi->addIncoming(Str, Entry); 3486 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); 3487 SizePhi->addIncoming(Size, Entry); 3488 CharUnits WCharAlign = 3489 getContext().getTypeAlignInChars(getContext().WCharTy); 3490 Value *StrCh = Builder.CreateAlignedLoad(WCharTy, StrPhi, WCharAlign); 3491 Value *FoundChr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 0); 3492 Value *StrEqChr = Builder.CreateICmpEQ(StrCh, Chr); 3493 Builder.CreateCondBr(StrEqChr, Exit, Next); 3494 3495 EmitBlock(Next); 3496 Value *NextStr = Builder.CreateConstInBoundsGEP1_32(WCharTy, StrPhi, 1); 3497 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); 3498 Value *NextSizeEq0 = 3499 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); 3500 Builder.CreateCondBr(NextSizeEq0, Exit, CmpEq); 3501 StrPhi->addIncoming(NextStr, Next); 3502 SizePhi->addIncoming(NextSize, Next); 3503 3504 EmitBlock(Exit); 3505 PHINode *Ret = Builder.CreatePHI(Str->getType(), 3); 3506 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Entry); 3507 Ret->addIncoming(llvm::Constant::getNullValue(Str->getType()), Next); 3508 Ret->addIncoming(FoundChr, CmpEq); 3509 return RValue::get(Ret); 3510 } 3511 case Builtin::BI__builtin_wmemcmp: { 3512 // The MSVC runtime library does not provide a definition of wmemcmp, so we 3513 // need an inline implementation. 3514 if (!getTarget().getTriple().isOSMSVCRT()) 3515 break; 3516 3517 llvm::Type *WCharTy = ConvertType(getContext().WCharTy); 3518 3519 Value *Dst = EmitScalarExpr(E->getArg(0)); 3520 Value *Src = EmitScalarExpr(E->getArg(1)); 3521 Value *Size = EmitScalarExpr(E->getArg(2)); 3522 3523 BasicBlock *Entry = Builder.GetInsertBlock(); 3524 BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt"); 3525 BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt"); 3526 BasicBlock *Next = createBasicBlock("wmemcmp.next"); 3527 BasicBlock *Exit = createBasicBlock("wmemcmp.exit"); 3528 Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0)); 3529 Builder.CreateCondBr(SizeEq0, Exit, CmpGT); 3530 3531 EmitBlock(CmpGT); 3532 PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2); 3533 DstPhi->addIncoming(Dst, Entry); 3534 PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2); 3535 SrcPhi->addIncoming(Src, Entry); 3536 PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2); 3537 SizePhi->addIncoming(Size, Entry); 3538 CharUnits WCharAlign = 3539 getContext().getTypeAlignInChars(getContext().WCharTy); 3540 Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign); 3541 Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign); 3542 Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh); 3543 Builder.CreateCondBr(DstGtSrc, Exit, CmpLT); 3544 3545 EmitBlock(CmpLT); 3546 Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh); 3547 Builder.CreateCondBr(DstLtSrc, Exit, Next); 3548 3549 EmitBlock(Next); 3550 Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1); 3551 Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1); 3552 Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1)); 3553 Value *NextSizeEq0 = 3554 Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0)); 3555 Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT); 3556 DstPhi->addIncoming(NextDst, Next); 3557 SrcPhi->addIncoming(NextSrc, Next); 3558 SizePhi->addIncoming(NextSize, Next); 3559 3560 EmitBlock(Exit); 3561 PHINode *Ret = Builder.CreatePHI(IntTy, 4); 3562 Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry); 3563 Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT); 3564 Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT); 3565 Ret->addIncoming(ConstantInt::get(IntTy, 0), Next); 3566 return RValue::get(Ret); 3567 } 3568 case Builtin::BI__builtin_dwarf_cfa: { 3569 // The offset in bytes from the first argument to the CFA. 3570 // 3571 // Why on earth is this in the frontend? Is there any reason at 3572 // all that the backend can't reasonably determine this while 3573 // lowering llvm.eh.dwarf.cfa()? 3574 // 3575 // TODO: If there's a satisfactory reason, add a target hook for 3576 // this instead of hard-coding 0, which is correct for most targets. 3577 int32_t Offset = 0; 3578 3579 Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa); 3580 return RValue::get(Builder.CreateCall(F, 3581 llvm::ConstantInt::get(Int32Ty, Offset))); 3582 } 3583 case Builtin::BI__builtin_return_address: { 3584 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), 3585 getContext().UnsignedIntTy); 3586 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); 3587 return RValue::get(Builder.CreateCall(F, Depth)); 3588 } 3589 case Builtin::BI_ReturnAddress: { 3590 Function *F = CGM.getIntrinsic(Intrinsic::returnaddress); 3591 return RValue::get(Builder.CreateCall(F, Builder.getInt32(0))); 3592 } 3593 case Builtin::BI__builtin_frame_address: { 3594 Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0), 3595 getContext().UnsignedIntTy); 3596 Function *F = CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy); 3597 return RValue::get(Builder.CreateCall(F, Depth)); 3598 } 3599 case Builtin::BI__builtin_extract_return_addr: { 3600 Value *Address = EmitScalarExpr(E->getArg(0)); 3601 Value *Result = getTargetHooks().decodeReturnAddress(*this, Address); 3602 return RValue::get(Result); 3603 } 3604 case Builtin::BI__builtin_frob_return_addr: { 3605 Value *Address = EmitScalarExpr(E->getArg(0)); 3606 Value *Result = getTargetHooks().encodeReturnAddress(*this, Address); 3607 return RValue::get(Result); 3608 } 3609 case Builtin::BI__builtin_dwarf_sp_column: { 3610 llvm::IntegerType *Ty 3611 = cast<llvm::IntegerType>(ConvertType(E->getType())); 3612 int Column = getTargetHooks().getDwarfEHStackPointer(CGM); 3613 if (Column == -1) { 3614 CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column"); 3615 return RValue::get(llvm::UndefValue::get(Ty)); 3616 } 3617 return RValue::get(llvm::ConstantInt::get(Ty, Column, true)); 3618 } 3619 case Builtin::BI__builtin_init_dwarf_reg_size_table: { 3620 Value *Address = EmitScalarExpr(E->getArg(0)); 3621 if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address)) 3622 CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table"); 3623 return RValue::get(llvm::UndefValue::get(ConvertType(E->getType()))); 3624 } 3625 case Builtin::BI__builtin_eh_return: { 3626 Value *Int = EmitScalarExpr(E->getArg(0)); 3627 Value *Ptr = EmitScalarExpr(E->getArg(1)); 3628 3629 llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType()); 3630 assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) && 3631 "LLVM's __builtin_eh_return only supports 32- and 64-bit variants"); 3632 Function *F = 3633 CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32 3634 : Intrinsic::eh_return_i64); 3635 Builder.CreateCall(F, {Int, Ptr}); 3636 Builder.CreateUnreachable(); 3637 3638 // We do need to preserve an insertion point. 3639 EmitBlock(createBasicBlock("builtin_eh_return.cont")); 3640 3641 return RValue::get(nullptr); 3642 } 3643 case Builtin::BI__builtin_unwind_init: { 3644 Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init); 3645 return RValue::get(Builder.CreateCall(F)); 3646 } 3647 case Builtin::BI__builtin_extend_pointer: { 3648 // Extends a pointer to the size of an _Unwind_Word, which is 3649 // uint64_t on all platforms. Generally this gets poked into a 3650 // register and eventually used as an address, so if the 3651 // addressing registers are wider than pointers and the platform 3652 // doesn't implicitly ignore high-order bits when doing 3653 // addressing, we need to make sure we zext / sext based on 3654 // the platform's expectations. 3655 // 3656 // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html 3657 3658 // Cast the pointer to intptr_t. 3659 Value *Ptr = EmitScalarExpr(E->getArg(0)); 3660 Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast"); 3661 3662 // If that's 64 bits, we're done. 3663 if (IntPtrTy->getBitWidth() == 64) 3664 return RValue::get(Result); 3665 3666 // Otherwise, ask the codegen data what to do. 3667 if (getTargetHooks().extendPointerWithSExt()) 3668 return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext")); 3669 else 3670 return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext")); 3671 } 3672 case Builtin::BI__builtin_setjmp: { 3673 // Buffer is a void**. 3674 Address Buf = EmitPointerWithAlignment(E->getArg(0)); 3675 3676 // Store the frame pointer to the setjmp buffer. 3677 Value *FrameAddr = Builder.CreateCall( 3678 CGM.getIntrinsic(Intrinsic::frameaddress, AllocaInt8PtrTy), 3679 ConstantInt::get(Int32Ty, 0)); 3680 Builder.CreateStore(FrameAddr, Buf); 3681 3682 // Store the stack pointer to the setjmp buffer. 3683 Value *StackAddr = 3684 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave)); 3685 Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2); 3686 Builder.CreateStore(StackAddr, StackSaveSlot); 3687 3688 // Call LLVM's EH setjmp, which is lightweight. 3689 Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp); 3690 Buf = Builder.CreateBitCast(Buf, Int8PtrTy); 3691 return RValue::get(Builder.CreateCall(F, Buf.getPointer())); 3692 } 3693 case Builtin::BI__builtin_longjmp: { 3694 Value *Buf = EmitScalarExpr(E->getArg(0)); 3695 Buf = Builder.CreateBitCast(Buf, Int8PtrTy); 3696 3697 // Call LLVM's EH longjmp, which is lightweight. 3698 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf); 3699 3700 // longjmp doesn't return; mark this as unreachable. 3701 Builder.CreateUnreachable(); 3702 3703 // We do need to preserve an insertion point. 3704 EmitBlock(createBasicBlock("longjmp.cont")); 3705 3706 return RValue::get(nullptr); 3707 } 3708 case Builtin::BI__builtin_launder: { 3709 const Expr *Arg = E->getArg(0); 3710 QualType ArgTy = Arg->getType()->getPointeeType(); 3711 Value *Ptr = EmitScalarExpr(Arg); 3712 if (TypeRequiresBuiltinLaunder(CGM, ArgTy)) 3713 Ptr = Builder.CreateLaunderInvariantGroup(Ptr); 3714 3715 return RValue::get(Ptr); 3716 } 3717 case Builtin::BI__sync_fetch_and_add: 3718 case Builtin::BI__sync_fetch_and_sub: 3719 case Builtin::BI__sync_fetch_and_or: 3720 case Builtin::BI__sync_fetch_and_and: 3721 case Builtin::BI__sync_fetch_and_xor: 3722 case Builtin::BI__sync_fetch_and_nand: 3723 case Builtin::BI__sync_add_and_fetch: 3724 case Builtin::BI__sync_sub_and_fetch: 3725 case Builtin::BI__sync_and_and_fetch: 3726 case Builtin::BI__sync_or_and_fetch: 3727 case Builtin::BI__sync_xor_and_fetch: 3728 case Builtin::BI__sync_nand_and_fetch: 3729 case Builtin::BI__sync_val_compare_and_swap: 3730 case Builtin::BI__sync_bool_compare_and_swap: 3731 case Builtin::BI__sync_lock_test_and_set: 3732 case Builtin::BI__sync_lock_release: 3733 case Builtin::BI__sync_swap: 3734 llvm_unreachable("Shouldn't make it through sema"); 3735 case Builtin::BI__sync_fetch_and_add_1: 3736 case Builtin::BI__sync_fetch_and_add_2: 3737 case Builtin::BI__sync_fetch_and_add_4: 3738 case Builtin::BI__sync_fetch_and_add_8: 3739 case Builtin::BI__sync_fetch_and_add_16: 3740 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E); 3741 case Builtin::BI__sync_fetch_and_sub_1: 3742 case Builtin::BI__sync_fetch_and_sub_2: 3743 case Builtin::BI__sync_fetch_and_sub_4: 3744 case Builtin::BI__sync_fetch_and_sub_8: 3745 case Builtin::BI__sync_fetch_and_sub_16: 3746 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E); 3747 case Builtin::BI__sync_fetch_and_or_1: 3748 case Builtin::BI__sync_fetch_and_or_2: 3749 case Builtin::BI__sync_fetch_and_or_4: 3750 case Builtin::BI__sync_fetch_and_or_8: 3751 case Builtin::BI__sync_fetch_and_or_16: 3752 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E); 3753 case Builtin::BI__sync_fetch_and_and_1: 3754 case Builtin::BI__sync_fetch_and_and_2: 3755 case Builtin::BI__sync_fetch_and_and_4: 3756 case Builtin::BI__sync_fetch_and_and_8: 3757 case Builtin::BI__sync_fetch_and_and_16: 3758 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E); 3759 case Builtin::BI__sync_fetch_and_xor_1: 3760 case Builtin::BI__sync_fetch_and_xor_2: 3761 case Builtin::BI__sync_fetch_and_xor_4: 3762 case Builtin::BI__sync_fetch_and_xor_8: 3763 case Builtin::BI__sync_fetch_and_xor_16: 3764 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E); 3765 case Builtin::BI__sync_fetch_and_nand_1: 3766 case Builtin::BI__sync_fetch_and_nand_2: 3767 case Builtin::BI__sync_fetch_and_nand_4: 3768 case Builtin::BI__sync_fetch_and_nand_8: 3769 case Builtin::BI__sync_fetch_and_nand_16: 3770 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E); 3771 3772 // Clang extensions: not overloaded yet. 3773 case Builtin::BI__sync_fetch_and_min: 3774 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E); 3775 case Builtin::BI__sync_fetch_and_max: 3776 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E); 3777 case Builtin::BI__sync_fetch_and_umin: 3778 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E); 3779 case Builtin::BI__sync_fetch_and_umax: 3780 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E); 3781 3782 case Builtin::BI__sync_add_and_fetch_1: 3783 case Builtin::BI__sync_add_and_fetch_2: 3784 case Builtin::BI__sync_add_and_fetch_4: 3785 case Builtin::BI__sync_add_and_fetch_8: 3786 case Builtin::BI__sync_add_and_fetch_16: 3787 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E, 3788 llvm::Instruction::Add); 3789 case Builtin::BI__sync_sub_and_fetch_1: 3790 case Builtin::BI__sync_sub_and_fetch_2: 3791 case Builtin::BI__sync_sub_and_fetch_4: 3792 case Builtin::BI__sync_sub_and_fetch_8: 3793 case Builtin::BI__sync_sub_and_fetch_16: 3794 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E, 3795 llvm::Instruction::Sub); 3796 case Builtin::BI__sync_and_and_fetch_1: 3797 case Builtin::BI__sync_and_and_fetch_2: 3798 case Builtin::BI__sync_and_and_fetch_4: 3799 case Builtin::BI__sync_and_and_fetch_8: 3800 case Builtin::BI__sync_and_and_fetch_16: 3801 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E, 3802 llvm::Instruction::And); 3803 case Builtin::BI__sync_or_and_fetch_1: 3804 case Builtin::BI__sync_or_and_fetch_2: 3805 case Builtin::BI__sync_or_and_fetch_4: 3806 case Builtin::BI__sync_or_and_fetch_8: 3807 case Builtin::BI__sync_or_and_fetch_16: 3808 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E, 3809 llvm::Instruction::Or); 3810 case Builtin::BI__sync_xor_and_fetch_1: 3811 case Builtin::BI__sync_xor_and_fetch_2: 3812 case Builtin::BI__sync_xor_and_fetch_4: 3813 case Builtin::BI__sync_xor_and_fetch_8: 3814 case Builtin::BI__sync_xor_and_fetch_16: 3815 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E, 3816 llvm::Instruction::Xor); 3817 case Builtin::BI__sync_nand_and_fetch_1: 3818 case Builtin::BI__sync_nand_and_fetch_2: 3819 case Builtin::BI__sync_nand_and_fetch_4: 3820 case Builtin::BI__sync_nand_and_fetch_8: 3821 case Builtin::BI__sync_nand_and_fetch_16: 3822 return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E, 3823 llvm::Instruction::And, true); 3824 3825 case Builtin::BI__sync_val_compare_and_swap_1: 3826 case Builtin::BI__sync_val_compare_and_swap_2: 3827 case Builtin::BI__sync_val_compare_and_swap_4: 3828 case Builtin::BI__sync_val_compare_and_swap_8: 3829 case Builtin::BI__sync_val_compare_and_swap_16: 3830 return RValue::get(MakeAtomicCmpXchgValue(*this, E, false)); 3831 3832 case Builtin::BI__sync_bool_compare_and_swap_1: 3833 case Builtin::BI__sync_bool_compare_and_swap_2: 3834 case Builtin::BI__sync_bool_compare_and_swap_4: 3835 case Builtin::BI__sync_bool_compare_and_swap_8: 3836 case Builtin::BI__sync_bool_compare_and_swap_16: 3837 return RValue::get(MakeAtomicCmpXchgValue(*this, E, true)); 3838 3839 case Builtin::BI__sync_swap_1: 3840 case Builtin::BI__sync_swap_2: 3841 case Builtin::BI__sync_swap_4: 3842 case Builtin::BI__sync_swap_8: 3843 case Builtin::BI__sync_swap_16: 3844 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); 3845 3846 case Builtin::BI__sync_lock_test_and_set_1: 3847 case Builtin::BI__sync_lock_test_and_set_2: 3848 case Builtin::BI__sync_lock_test_and_set_4: 3849 case Builtin::BI__sync_lock_test_and_set_8: 3850 case Builtin::BI__sync_lock_test_and_set_16: 3851 return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E); 3852 3853 case Builtin::BI__sync_lock_release_1: 3854 case Builtin::BI__sync_lock_release_2: 3855 case Builtin::BI__sync_lock_release_4: 3856 case Builtin::BI__sync_lock_release_8: 3857 case Builtin::BI__sync_lock_release_16: { 3858 Value *Ptr = EmitScalarExpr(E->getArg(0)); 3859 QualType ElTy = E->getArg(0)->getType()->getPointeeType(); 3860 CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy); 3861 llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(), 3862 StoreSize.getQuantity() * 8); 3863 Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo()); 3864 llvm::StoreInst *Store = 3865 Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr, 3866 StoreSize); 3867 Store->setAtomic(llvm::AtomicOrdering::Release); 3868 return RValue::get(nullptr); 3869 } 3870 3871 case Builtin::BI__sync_synchronize: { 3872 // We assume this is supposed to correspond to a C++0x-style 3873 // sequentially-consistent fence (i.e. this is only usable for 3874 // synchronization, not device I/O or anything like that). This intrinsic 3875 // is really badly designed in the sense that in theory, there isn't 3876 // any way to safely use it... but in practice, it mostly works 3877 // to use it with non-atomic loads and stores to get acquire/release 3878 // semantics. 3879 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent); 3880 return RValue::get(nullptr); 3881 } 3882 3883 case Builtin::BI__builtin_nontemporal_load: 3884 return RValue::get(EmitNontemporalLoad(*this, E)); 3885 case Builtin::BI__builtin_nontemporal_store: 3886 return RValue::get(EmitNontemporalStore(*this, E)); 3887 case Builtin::BI__c11_atomic_is_lock_free: 3888 case Builtin::BI__atomic_is_lock_free: { 3889 // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the 3890 // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since 3891 // _Atomic(T) is always properly-aligned. 3892 const char *LibCallName = "__atomic_is_lock_free"; 3893 CallArgList Args; 3894 Args.add(RValue::get(EmitScalarExpr(E->getArg(0))), 3895 getContext().getSizeType()); 3896 if (BuiltinID == Builtin::BI__atomic_is_lock_free) 3897 Args.add(RValue::get(EmitScalarExpr(E->getArg(1))), 3898 getContext().VoidPtrTy); 3899 else 3900 Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)), 3901 getContext().VoidPtrTy); 3902 const CGFunctionInfo &FuncInfo = 3903 CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args); 3904 llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo); 3905 llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName); 3906 return EmitCall(FuncInfo, CGCallee::forDirect(Func), 3907 ReturnValueSlot(), Args); 3908 } 3909 3910 case Builtin::BI__atomic_test_and_set: { 3911 // Look at the argument type to determine whether this is a volatile 3912 // operation. The parameter type is always volatile. 3913 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); 3914 bool Volatile = 3915 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); 3916 3917 Value *Ptr = EmitScalarExpr(E->getArg(0)); 3918 unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace(); 3919 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); 3920 Value *NewVal = Builder.getInt8(1); 3921 Value *Order = EmitScalarExpr(E->getArg(1)); 3922 if (isa<llvm::ConstantInt>(Order)) { 3923 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 3924 AtomicRMWInst *Result = nullptr; 3925 switch (ord) { 3926 case 0: // memory_order_relaxed 3927 default: // invalid order 3928 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 3929 llvm::AtomicOrdering::Monotonic); 3930 break; 3931 case 1: // memory_order_consume 3932 case 2: // memory_order_acquire 3933 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 3934 llvm::AtomicOrdering::Acquire); 3935 break; 3936 case 3: // memory_order_release 3937 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 3938 llvm::AtomicOrdering::Release); 3939 break; 3940 case 4: // memory_order_acq_rel 3941 3942 Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 3943 llvm::AtomicOrdering::AcquireRelease); 3944 break; 3945 case 5: // memory_order_seq_cst 3946 Result = Builder.CreateAtomicRMW( 3947 llvm::AtomicRMWInst::Xchg, Ptr, NewVal, 3948 llvm::AtomicOrdering::SequentiallyConsistent); 3949 break; 3950 } 3951 Result->setVolatile(Volatile); 3952 return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); 3953 } 3954 3955 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 3956 3957 llvm::BasicBlock *BBs[5] = { 3958 createBasicBlock("monotonic", CurFn), 3959 createBasicBlock("acquire", CurFn), 3960 createBasicBlock("release", CurFn), 3961 createBasicBlock("acqrel", CurFn), 3962 createBasicBlock("seqcst", CurFn) 3963 }; 3964 llvm::AtomicOrdering Orders[5] = { 3965 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire, 3966 llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease, 3967 llvm::AtomicOrdering::SequentiallyConsistent}; 3968 3969 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 3970 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); 3971 3972 Builder.SetInsertPoint(ContBB); 3973 PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set"); 3974 3975 for (unsigned i = 0; i < 5; ++i) { 3976 Builder.SetInsertPoint(BBs[i]); 3977 AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 3978 Ptr, NewVal, Orders[i]); 3979 RMW->setVolatile(Volatile); 3980 Result->addIncoming(RMW, BBs[i]); 3981 Builder.CreateBr(ContBB); 3982 } 3983 3984 SI->addCase(Builder.getInt32(0), BBs[0]); 3985 SI->addCase(Builder.getInt32(1), BBs[1]); 3986 SI->addCase(Builder.getInt32(2), BBs[1]); 3987 SI->addCase(Builder.getInt32(3), BBs[2]); 3988 SI->addCase(Builder.getInt32(4), BBs[3]); 3989 SI->addCase(Builder.getInt32(5), BBs[4]); 3990 3991 Builder.SetInsertPoint(ContBB); 3992 return RValue::get(Builder.CreateIsNotNull(Result, "tobool")); 3993 } 3994 3995 case Builtin::BI__atomic_clear: { 3996 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); 3997 bool Volatile = 3998 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); 3999 4000 Address Ptr = EmitPointerWithAlignment(E->getArg(0)); 4001 unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace(); 4002 Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace)); 4003 Value *NewVal = Builder.getInt8(0); 4004 Value *Order = EmitScalarExpr(E->getArg(1)); 4005 if (isa<llvm::ConstantInt>(Order)) { 4006 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 4007 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); 4008 switch (ord) { 4009 case 0: // memory_order_relaxed 4010 default: // invalid order 4011 Store->setOrdering(llvm::AtomicOrdering::Monotonic); 4012 break; 4013 case 3: // memory_order_release 4014 Store->setOrdering(llvm::AtomicOrdering::Release); 4015 break; 4016 case 5: // memory_order_seq_cst 4017 Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent); 4018 break; 4019 } 4020 return RValue::get(nullptr); 4021 } 4022 4023 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 4024 4025 llvm::BasicBlock *BBs[3] = { 4026 createBasicBlock("monotonic", CurFn), 4027 createBasicBlock("release", CurFn), 4028 createBasicBlock("seqcst", CurFn) 4029 }; 4030 llvm::AtomicOrdering Orders[3] = { 4031 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release, 4032 llvm::AtomicOrdering::SequentiallyConsistent}; 4033 4034 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 4035 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]); 4036 4037 for (unsigned i = 0; i < 3; ++i) { 4038 Builder.SetInsertPoint(BBs[i]); 4039 StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile); 4040 Store->setOrdering(Orders[i]); 4041 Builder.CreateBr(ContBB); 4042 } 4043 4044 SI->addCase(Builder.getInt32(0), BBs[0]); 4045 SI->addCase(Builder.getInt32(3), BBs[1]); 4046 SI->addCase(Builder.getInt32(5), BBs[2]); 4047 4048 Builder.SetInsertPoint(ContBB); 4049 return RValue::get(nullptr); 4050 } 4051 4052 case Builtin::BI__atomic_thread_fence: 4053 case Builtin::BI__atomic_signal_fence: 4054 case Builtin::BI__c11_atomic_thread_fence: 4055 case Builtin::BI__c11_atomic_signal_fence: { 4056 llvm::SyncScope::ID SSID; 4057 if (BuiltinID == Builtin::BI__atomic_signal_fence || 4058 BuiltinID == Builtin::BI__c11_atomic_signal_fence) 4059 SSID = llvm::SyncScope::SingleThread; 4060 else 4061 SSID = llvm::SyncScope::System; 4062 Value *Order = EmitScalarExpr(E->getArg(0)); 4063 if (isa<llvm::ConstantInt>(Order)) { 4064 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 4065 switch (ord) { 4066 case 0: // memory_order_relaxed 4067 default: // invalid order 4068 break; 4069 case 1: // memory_order_consume 4070 case 2: // memory_order_acquire 4071 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); 4072 break; 4073 case 3: // memory_order_release 4074 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); 4075 break; 4076 case 4: // memory_order_acq_rel 4077 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); 4078 break; 4079 case 5: // memory_order_seq_cst 4080 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); 4081 break; 4082 } 4083 return RValue::get(nullptr); 4084 } 4085 4086 llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB; 4087 AcquireBB = createBasicBlock("acquire", CurFn); 4088 ReleaseBB = createBasicBlock("release", CurFn); 4089 AcqRelBB = createBasicBlock("acqrel", CurFn); 4090 SeqCstBB = createBasicBlock("seqcst", CurFn); 4091 llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); 4092 4093 Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); 4094 llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB); 4095 4096 Builder.SetInsertPoint(AcquireBB); 4097 Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID); 4098 Builder.CreateBr(ContBB); 4099 SI->addCase(Builder.getInt32(1), AcquireBB); 4100 SI->addCase(Builder.getInt32(2), AcquireBB); 4101 4102 Builder.SetInsertPoint(ReleaseBB); 4103 Builder.CreateFence(llvm::AtomicOrdering::Release, SSID); 4104 Builder.CreateBr(ContBB); 4105 SI->addCase(Builder.getInt32(3), ReleaseBB); 4106 4107 Builder.SetInsertPoint(AcqRelBB); 4108 Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID); 4109 Builder.CreateBr(ContBB); 4110 SI->addCase(Builder.getInt32(4), AcqRelBB); 4111 4112 Builder.SetInsertPoint(SeqCstBB); 4113 Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID); 4114 Builder.CreateBr(ContBB); 4115 SI->addCase(Builder.getInt32(5), SeqCstBB); 4116 4117 Builder.SetInsertPoint(ContBB); 4118 return RValue::get(nullptr); 4119 } 4120 4121 case Builtin::BI__builtin_signbit: 4122 case Builtin::BI__builtin_signbitf: 4123 case Builtin::BI__builtin_signbitl: { 4124 return RValue::get( 4125 Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))), 4126 ConvertType(E->getType()))); 4127 } 4128 case Builtin::BI__warn_memset_zero_len: 4129 return RValue::getIgnored(); 4130 case Builtin::BI__annotation: { 4131 // Re-encode each wide string to UTF8 and make an MDString. 4132 SmallVector<Metadata *, 1> Strings; 4133 for (const Expr *Arg : E->arguments()) { 4134 const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts()); 4135 assert(Str->getCharByteWidth() == 2); 4136 StringRef WideBytes = Str->getBytes(); 4137 std::string StrUtf8; 4138 if (!convertUTF16ToUTF8String( 4139 makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) { 4140 CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument"); 4141 continue; 4142 } 4143 Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8)); 4144 } 4145 4146 // Build and MDTuple of MDStrings and emit the intrinsic call. 4147 llvm::Function *F = 4148 CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {}); 4149 MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings); 4150 Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple)); 4151 return RValue::getIgnored(); 4152 } 4153 case Builtin::BI__builtin_annotation: { 4154 llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0)); 4155 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation, 4156 AnnVal->getType()); 4157 4158 // Get the annotation string, go through casts. Sema requires this to be a 4159 // non-wide string literal, potentially casted, so the cast<> is safe. 4160 const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts(); 4161 StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString(); 4162 return RValue::get( 4163 EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc(), nullptr)); 4164 } 4165 case Builtin::BI__builtin_addcb: 4166 case Builtin::BI__builtin_addcs: 4167 case Builtin::BI__builtin_addc: 4168 case Builtin::BI__builtin_addcl: 4169 case Builtin::BI__builtin_addcll: 4170 case Builtin::BI__builtin_subcb: 4171 case Builtin::BI__builtin_subcs: 4172 case Builtin::BI__builtin_subc: 4173 case Builtin::BI__builtin_subcl: 4174 case Builtin::BI__builtin_subcll: { 4175 4176 // We translate all of these builtins from expressions of the form: 4177 // int x = ..., y = ..., carryin = ..., carryout, result; 4178 // result = __builtin_addc(x, y, carryin, &carryout); 4179 // 4180 // to LLVM IR of the form: 4181 // 4182 // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y) 4183 // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0 4184 // %carry1 = extractvalue {i32, i1} %tmp1, 1 4185 // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1, 4186 // i32 %carryin) 4187 // %result = extractvalue {i32, i1} %tmp2, 0 4188 // %carry2 = extractvalue {i32, i1} %tmp2, 1 4189 // %tmp3 = or i1 %carry1, %carry2 4190 // %tmp4 = zext i1 %tmp3 to i32 4191 // store i32 %tmp4, i32* %carryout 4192 4193 // Scalarize our inputs. 4194 llvm::Value *X = EmitScalarExpr(E->getArg(0)); 4195 llvm::Value *Y = EmitScalarExpr(E->getArg(1)); 4196 llvm::Value *Carryin = EmitScalarExpr(E->getArg(2)); 4197 Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3)); 4198 4199 // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow. 4200 llvm::Intrinsic::ID IntrinsicId; 4201 switch (BuiltinID) { 4202 default: llvm_unreachable("Unknown multiprecision builtin id."); 4203 case Builtin::BI__builtin_addcb: 4204 case Builtin::BI__builtin_addcs: 4205 case Builtin::BI__builtin_addc: 4206 case Builtin::BI__builtin_addcl: 4207 case Builtin::BI__builtin_addcll: 4208 IntrinsicId = llvm::Intrinsic::uadd_with_overflow; 4209 break; 4210 case Builtin::BI__builtin_subcb: 4211 case Builtin::BI__builtin_subcs: 4212 case Builtin::BI__builtin_subc: 4213 case Builtin::BI__builtin_subcl: 4214 case Builtin::BI__builtin_subcll: 4215 IntrinsicId = llvm::Intrinsic::usub_with_overflow; 4216 break; 4217 } 4218 4219 // Construct our resulting LLVM IR expression. 4220 llvm::Value *Carry1; 4221 llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId, 4222 X, Y, Carry1); 4223 llvm::Value *Carry2; 4224 llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId, 4225 Sum1, Carryin, Carry2); 4226 llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2), 4227 X->getType()); 4228 Builder.CreateStore(CarryOut, CarryOutPtr); 4229 return RValue::get(Sum2); 4230 } 4231 4232 case Builtin::BI__builtin_add_overflow: 4233 case Builtin::BI__builtin_sub_overflow: 4234 case Builtin::BI__builtin_mul_overflow: { 4235 const clang::Expr *LeftArg = E->getArg(0); 4236 const clang::Expr *RightArg = E->getArg(1); 4237 const clang::Expr *ResultArg = E->getArg(2); 4238 4239 clang::QualType ResultQTy = 4240 ResultArg->getType()->castAs<PointerType>()->getPointeeType(); 4241 4242 WidthAndSignedness LeftInfo = 4243 getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType()); 4244 WidthAndSignedness RightInfo = 4245 getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType()); 4246 WidthAndSignedness ResultInfo = 4247 getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy); 4248 4249 // Handle mixed-sign multiplication as a special case, because adding 4250 // runtime or backend support for our generic irgen would be too expensive. 4251 if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo)) 4252 return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg, 4253 RightInfo, ResultArg, ResultQTy, 4254 ResultInfo); 4255 4256 if (isSpecialUnsignedMultiplySignedResult(BuiltinID, LeftInfo, RightInfo, 4257 ResultInfo)) 4258 return EmitCheckedUnsignedMultiplySignedResult( 4259 *this, LeftArg, LeftInfo, RightArg, RightInfo, ResultArg, ResultQTy, 4260 ResultInfo); 4261 4262 WidthAndSignedness EncompassingInfo = 4263 EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo}); 4264 4265 llvm::Type *EncompassingLLVMTy = 4266 llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width); 4267 4268 llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy); 4269 4270 llvm::Intrinsic::ID IntrinsicId; 4271 switch (BuiltinID) { 4272 default: 4273 llvm_unreachable("Unknown overflow builtin id."); 4274 case Builtin::BI__builtin_add_overflow: 4275 IntrinsicId = EncompassingInfo.Signed 4276 ? llvm::Intrinsic::sadd_with_overflow 4277 : llvm::Intrinsic::uadd_with_overflow; 4278 break; 4279 case Builtin::BI__builtin_sub_overflow: 4280 IntrinsicId = EncompassingInfo.Signed 4281 ? llvm::Intrinsic::ssub_with_overflow 4282 : llvm::Intrinsic::usub_with_overflow; 4283 break; 4284 case Builtin::BI__builtin_mul_overflow: 4285 IntrinsicId = EncompassingInfo.Signed 4286 ? llvm::Intrinsic::smul_with_overflow 4287 : llvm::Intrinsic::umul_with_overflow; 4288 break; 4289 } 4290 4291 llvm::Value *Left = EmitScalarExpr(LeftArg); 4292 llvm::Value *Right = EmitScalarExpr(RightArg); 4293 Address ResultPtr = EmitPointerWithAlignment(ResultArg); 4294 4295 // Extend each operand to the encompassing type. 4296 Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed); 4297 Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed); 4298 4299 // Perform the operation on the extended values. 4300 llvm::Value *Overflow, *Result; 4301 Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow); 4302 4303 if (EncompassingInfo.Width > ResultInfo.Width) { 4304 // The encompassing type is wider than the result type, so we need to 4305 // truncate it. 4306 llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy); 4307 4308 // To see if the truncation caused an overflow, we will extend 4309 // the result and then compare it to the original result. 4310 llvm::Value *ResultTruncExt = Builder.CreateIntCast( 4311 ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed); 4312 llvm::Value *TruncationOverflow = 4313 Builder.CreateICmpNE(Result, ResultTruncExt); 4314 4315 Overflow = Builder.CreateOr(Overflow, TruncationOverflow); 4316 Result = ResultTrunc; 4317 } 4318 4319 // Finally, store the result using the pointer. 4320 bool isVolatile = 4321 ResultArg->getType()->getPointeeType().isVolatileQualified(); 4322 Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile); 4323 4324 return RValue::get(Overflow); 4325 } 4326 4327 case Builtin::BI__builtin_uadd_overflow: 4328 case Builtin::BI__builtin_uaddl_overflow: 4329 case Builtin::BI__builtin_uaddll_overflow: 4330 case Builtin::BI__builtin_usub_overflow: 4331 case Builtin::BI__builtin_usubl_overflow: 4332 case Builtin::BI__builtin_usubll_overflow: 4333 case Builtin::BI__builtin_umul_overflow: 4334 case Builtin::BI__builtin_umull_overflow: 4335 case Builtin::BI__builtin_umulll_overflow: 4336 case Builtin::BI__builtin_sadd_overflow: 4337 case Builtin::BI__builtin_saddl_overflow: 4338 case Builtin::BI__builtin_saddll_overflow: 4339 case Builtin::BI__builtin_ssub_overflow: 4340 case Builtin::BI__builtin_ssubl_overflow: 4341 case Builtin::BI__builtin_ssubll_overflow: 4342 case Builtin::BI__builtin_smul_overflow: 4343 case Builtin::BI__builtin_smull_overflow: 4344 case Builtin::BI__builtin_smulll_overflow: { 4345 4346 // We translate all of these builtins directly to the relevant llvm IR node. 4347 4348 // Scalarize our inputs. 4349 llvm::Value *X = EmitScalarExpr(E->getArg(0)); 4350 llvm::Value *Y = EmitScalarExpr(E->getArg(1)); 4351 Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2)); 4352 4353 // Decide which of the overflow intrinsics we are lowering to: 4354 llvm::Intrinsic::ID IntrinsicId; 4355 switch (BuiltinID) { 4356 default: llvm_unreachable("Unknown overflow builtin id."); 4357 case Builtin::BI__builtin_uadd_overflow: 4358 case Builtin::BI__builtin_uaddl_overflow: 4359 case Builtin::BI__builtin_uaddll_overflow: 4360 IntrinsicId = llvm::Intrinsic::uadd_with_overflow; 4361 break; 4362 case Builtin::BI__builtin_usub_overflow: 4363 case Builtin::BI__builtin_usubl_overflow: 4364 case Builtin::BI__builtin_usubll_overflow: 4365 IntrinsicId = llvm::Intrinsic::usub_with_overflow; 4366 break; 4367 case Builtin::BI__builtin_umul_overflow: 4368 case Builtin::BI__builtin_umull_overflow: 4369 case Builtin::BI__builtin_umulll_overflow: 4370 IntrinsicId = llvm::Intrinsic::umul_with_overflow; 4371 break; 4372 case Builtin::BI__builtin_sadd_overflow: 4373 case Builtin::BI__builtin_saddl_overflow: 4374 case Builtin::BI__builtin_saddll_overflow: 4375 IntrinsicId = llvm::Intrinsic::sadd_with_overflow; 4376 break; 4377 case Builtin::BI__builtin_ssub_overflow: 4378 case Builtin::BI__builtin_ssubl_overflow: 4379 case Builtin::BI__builtin_ssubll_overflow: 4380 IntrinsicId = llvm::Intrinsic::ssub_with_overflow; 4381 break; 4382 case Builtin::BI__builtin_smul_overflow: 4383 case Builtin::BI__builtin_smull_overflow: 4384 case Builtin::BI__builtin_smulll_overflow: 4385 IntrinsicId = llvm::Intrinsic::smul_with_overflow; 4386 break; 4387 } 4388 4389 4390 llvm::Value *Carry; 4391 llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry); 4392 Builder.CreateStore(Sum, SumOutPtr); 4393 4394 return RValue::get(Carry); 4395 } 4396 case Builtin::BI__builtin_addressof: 4397 return RValue::get(EmitLValue(E->getArg(0)).getPointer(*this)); 4398 case Builtin::BI__builtin_operator_new: 4399 return EmitBuiltinNewDeleteCall( 4400 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false); 4401 case Builtin::BI__builtin_operator_delete: 4402 return EmitBuiltinNewDeleteCall( 4403 E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true); 4404 4405 case Builtin::BI__builtin_is_aligned: 4406 return EmitBuiltinIsAligned(E); 4407 case Builtin::BI__builtin_align_up: 4408 return EmitBuiltinAlignTo(E, true); 4409 case Builtin::BI__builtin_align_down: 4410 return EmitBuiltinAlignTo(E, false); 4411 4412 case Builtin::BI__noop: 4413 // __noop always evaluates to an integer literal zero. 4414 return RValue::get(ConstantInt::get(IntTy, 0)); 4415 case Builtin::BI__builtin_call_with_static_chain: { 4416 const CallExpr *Call = cast<CallExpr>(E->getArg(0)); 4417 const Expr *Chain = E->getArg(1); 4418 return EmitCall(Call->getCallee()->getType(), 4419 EmitCallee(Call->getCallee()), Call, ReturnValue, 4420 EmitScalarExpr(Chain)); 4421 } 4422 case Builtin::BI_InterlockedExchange8: 4423 case Builtin::BI_InterlockedExchange16: 4424 case Builtin::BI_InterlockedExchange: 4425 case Builtin::BI_InterlockedExchangePointer: 4426 return RValue::get( 4427 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E)); 4428 case Builtin::BI_InterlockedCompareExchangePointer: 4429 case Builtin::BI_InterlockedCompareExchangePointer_nf: { 4430 llvm::Type *RTy; 4431 llvm::IntegerType *IntType = 4432 IntegerType::get(getLLVMContext(), 4433 getContext().getTypeSize(E->getType())); 4434 llvm::Type *IntPtrType = IntType->getPointerTo(); 4435 4436 llvm::Value *Destination = 4437 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType); 4438 4439 llvm::Value *Exchange = EmitScalarExpr(E->getArg(1)); 4440 RTy = Exchange->getType(); 4441 Exchange = Builder.CreatePtrToInt(Exchange, IntType); 4442 4443 llvm::Value *Comparand = 4444 Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType); 4445 4446 auto Ordering = 4447 BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ? 4448 AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent; 4449 4450 auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange, 4451 Ordering, Ordering); 4452 Result->setVolatile(true); 4453 4454 return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result, 4455 0), 4456 RTy)); 4457 } 4458 case Builtin::BI_InterlockedCompareExchange8: 4459 case Builtin::BI_InterlockedCompareExchange16: 4460 case Builtin::BI_InterlockedCompareExchange: 4461 case Builtin::BI_InterlockedCompareExchange64: 4462 return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E)); 4463 case Builtin::BI_InterlockedIncrement16: 4464 case Builtin::BI_InterlockedIncrement: 4465 return RValue::get( 4466 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E)); 4467 case Builtin::BI_InterlockedDecrement16: 4468 case Builtin::BI_InterlockedDecrement: 4469 return RValue::get( 4470 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E)); 4471 case Builtin::BI_InterlockedAnd8: 4472 case Builtin::BI_InterlockedAnd16: 4473 case Builtin::BI_InterlockedAnd: 4474 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E)); 4475 case Builtin::BI_InterlockedExchangeAdd8: 4476 case Builtin::BI_InterlockedExchangeAdd16: 4477 case Builtin::BI_InterlockedExchangeAdd: 4478 return RValue::get( 4479 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E)); 4480 case Builtin::BI_InterlockedExchangeSub8: 4481 case Builtin::BI_InterlockedExchangeSub16: 4482 case Builtin::BI_InterlockedExchangeSub: 4483 return RValue::get( 4484 EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E)); 4485 case Builtin::BI_InterlockedOr8: 4486 case Builtin::BI_InterlockedOr16: 4487 case Builtin::BI_InterlockedOr: 4488 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E)); 4489 case Builtin::BI_InterlockedXor8: 4490 case Builtin::BI_InterlockedXor16: 4491 case Builtin::BI_InterlockedXor: 4492 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E)); 4493 4494 case Builtin::BI_bittest64: 4495 case Builtin::BI_bittest: 4496 case Builtin::BI_bittestandcomplement64: 4497 case Builtin::BI_bittestandcomplement: 4498 case Builtin::BI_bittestandreset64: 4499 case Builtin::BI_bittestandreset: 4500 case Builtin::BI_bittestandset64: 4501 case Builtin::BI_bittestandset: 4502 case Builtin::BI_interlockedbittestandreset: 4503 case Builtin::BI_interlockedbittestandreset64: 4504 case Builtin::BI_interlockedbittestandset64: 4505 case Builtin::BI_interlockedbittestandset: 4506 case Builtin::BI_interlockedbittestandset_acq: 4507 case Builtin::BI_interlockedbittestandset_rel: 4508 case Builtin::BI_interlockedbittestandset_nf: 4509 case Builtin::BI_interlockedbittestandreset_acq: 4510 case Builtin::BI_interlockedbittestandreset_rel: 4511 case Builtin::BI_interlockedbittestandreset_nf: 4512 return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E)); 4513 4514 // These builtins exist to emit regular volatile loads and stores not 4515 // affected by the -fms-volatile setting. 4516 case Builtin::BI__iso_volatile_load8: 4517 case Builtin::BI__iso_volatile_load16: 4518 case Builtin::BI__iso_volatile_load32: 4519 case Builtin::BI__iso_volatile_load64: 4520 return RValue::get(EmitISOVolatileLoad(*this, E)); 4521 case Builtin::BI__iso_volatile_store8: 4522 case Builtin::BI__iso_volatile_store16: 4523 case Builtin::BI__iso_volatile_store32: 4524 case Builtin::BI__iso_volatile_store64: 4525 return RValue::get(EmitISOVolatileStore(*this, E)); 4526 4527 case Builtin::BI__exception_code: 4528 case Builtin::BI_exception_code: 4529 return RValue::get(EmitSEHExceptionCode()); 4530 case Builtin::BI__exception_info: 4531 case Builtin::BI_exception_info: 4532 return RValue::get(EmitSEHExceptionInfo()); 4533 case Builtin::BI__abnormal_termination: 4534 case Builtin::BI_abnormal_termination: 4535 return RValue::get(EmitSEHAbnormalTermination()); 4536 case Builtin::BI_setjmpex: 4537 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 && 4538 E->getArg(0)->getType()->isPointerType()) 4539 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); 4540 break; 4541 case Builtin::BI_setjmp: 4542 if (getTarget().getTriple().isOSMSVCRT() && E->getNumArgs() == 1 && 4543 E->getArg(0)->getType()->isPointerType()) { 4544 if (getTarget().getTriple().getArch() == llvm::Triple::x86) 4545 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E); 4546 else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64) 4547 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E); 4548 return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E); 4549 } 4550 break; 4551 4552 case Builtin::BI__GetExceptionInfo: { 4553 if (llvm::GlobalVariable *GV = 4554 CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType())) 4555 return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy)); 4556 break; 4557 } 4558 4559 case Builtin::BI__fastfail: 4560 return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E)); 4561 4562 case Builtin::BI__builtin_coro_size: { 4563 auto & Context = getContext(); 4564 auto SizeTy = Context.getSizeType(); 4565 auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy)); 4566 Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T); 4567 return RValue::get(Builder.CreateCall(F)); 4568 } 4569 4570 case Builtin::BI__builtin_coro_id: 4571 return EmitCoroutineIntrinsic(E, Intrinsic::coro_id); 4572 case Builtin::BI__builtin_coro_promise: 4573 return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise); 4574 case Builtin::BI__builtin_coro_resume: 4575 return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume); 4576 case Builtin::BI__builtin_coro_frame: 4577 return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame); 4578 case Builtin::BI__builtin_coro_noop: 4579 return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop); 4580 case Builtin::BI__builtin_coro_free: 4581 return EmitCoroutineIntrinsic(E, Intrinsic::coro_free); 4582 case Builtin::BI__builtin_coro_destroy: 4583 return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy); 4584 case Builtin::BI__builtin_coro_done: 4585 return EmitCoroutineIntrinsic(E, Intrinsic::coro_done); 4586 case Builtin::BI__builtin_coro_alloc: 4587 return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc); 4588 case Builtin::BI__builtin_coro_begin: 4589 return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin); 4590 case Builtin::BI__builtin_coro_end: 4591 return EmitCoroutineIntrinsic(E, Intrinsic::coro_end); 4592 case Builtin::BI__builtin_coro_suspend: 4593 return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend); 4594 case Builtin::BI__builtin_coro_param: 4595 return EmitCoroutineIntrinsic(E, Intrinsic::coro_param); 4596 4597 // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions 4598 case Builtin::BIread_pipe: 4599 case Builtin::BIwrite_pipe: { 4600 Value *Arg0 = EmitScalarExpr(E->getArg(0)), 4601 *Arg1 = EmitScalarExpr(E->getArg(1)); 4602 CGOpenCLRuntime OpenCLRT(CGM); 4603 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 4604 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 4605 4606 // Type of the generic packet parameter. 4607 unsigned GenericAS = 4608 getContext().getTargetAddressSpace(LangAS::opencl_generic); 4609 llvm::Type *I8PTy = llvm::PointerType::get( 4610 llvm::Type::getInt8Ty(getLLVMContext()), GenericAS); 4611 4612 // Testing which overloaded version we should generate the call for. 4613 if (2U == E->getNumArgs()) { 4614 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2" 4615 : "__write_pipe_2"; 4616 // Creating a generic function type to be able to call with any builtin or 4617 // user defined type. 4618 llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty}; 4619 llvm::FunctionType *FTy = llvm::FunctionType::get( 4620 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4621 Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy); 4622 return RValue::get( 4623 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4624 {Arg0, BCast, PacketSize, PacketAlign})); 4625 } else { 4626 assert(4 == E->getNumArgs() && 4627 "Illegal number of parameters to pipe function"); 4628 const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4" 4629 : "__write_pipe_4"; 4630 4631 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy, 4632 Int32Ty, Int32Ty}; 4633 Value *Arg2 = EmitScalarExpr(E->getArg(2)), 4634 *Arg3 = EmitScalarExpr(E->getArg(3)); 4635 llvm::FunctionType *FTy = llvm::FunctionType::get( 4636 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4637 Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy); 4638 // We know the third argument is an integer type, but we may need to cast 4639 // it to i32. 4640 if (Arg2->getType() != Int32Ty) 4641 Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty); 4642 return RValue::get( 4643 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4644 {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign})); 4645 } 4646 } 4647 // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write 4648 // functions 4649 case Builtin::BIreserve_read_pipe: 4650 case Builtin::BIreserve_write_pipe: 4651 case Builtin::BIwork_group_reserve_read_pipe: 4652 case Builtin::BIwork_group_reserve_write_pipe: 4653 case Builtin::BIsub_group_reserve_read_pipe: 4654 case Builtin::BIsub_group_reserve_write_pipe: { 4655 // Composing the mangled name for the function. 4656 const char *Name; 4657 if (BuiltinID == Builtin::BIreserve_read_pipe) 4658 Name = "__reserve_read_pipe"; 4659 else if (BuiltinID == Builtin::BIreserve_write_pipe) 4660 Name = "__reserve_write_pipe"; 4661 else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe) 4662 Name = "__work_group_reserve_read_pipe"; 4663 else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe) 4664 Name = "__work_group_reserve_write_pipe"; 4665 else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe) 4666 Name = "__sub_group_reserve_read_pipe"; 4667 else 4668 Name = "__sub_group_reserve_write_pipe"; 4669 4670 Value *Arg0 = EmitScalarExpr(E->getArg(0)), 4671 *Arg1 = EmitScalarExpr(E->getArg(1)); 4672 llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy); 4673 CGOpenCLRuntime OpenCLRT(CGM); 4674 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 4675 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 4676 4677 // Building the generic function prototype. 4678 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty}; 4679 llvm::FunctionType *FTy = llvm::FunctionType::get( 4680 ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4681 // We know the second argument is an integer type, but we may need to cast 4682 // it to i32. 4683 if (Arg1->getType() != Int32Ty) 4684 Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty); 4685 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4686 {Arg0, Arg1, PacketSize, PacketAlign})); 4687 } 4688 // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write 4689 // functions 4690 case Builtin::BIcommit_read_pipe: 4691 case Builtin::BIcommit_write_pipe: 4692 case Builtin::BIwork_group_commit_read_pipe: 4693 case Builtin::BIwork_group_commit_write_pipe: 4694 case Builtin::BIsub_group_commit_read_pipe: 4695 case Builtin::BIsub_group_commit_write_pipe: { 4696 const char *Name; 4697 if (BuiltinID == Builtin::BIcommit_read_pipe) 4698 Name = "__commit_read_pipe"; 4699 else if (BuiltinID == Builtin::BIcommit_write_pipe) 4700 Name = "__commit_write_pipe"; 4701 else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe) 4702 Name = "__work_group_commit_read_pipe"; 4703 else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe) 4704 Name = "__work_group_commit_write_pipe"; 4705 else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe) 4706 Name = "__sub_group_commit_read_pipe"; 4707 else 4708 Name = "__sub_group_commit_write_pipe"; 4709 4710 Value *Arg0 = EmitScalarExpr(E->getArg(0)), 4711 *Arg1 = EmitScalarExpr(E->getArg(1)); 4712 CGOpenCLRuntime OpenCLRT(CGM); 4713 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 4714 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 4715 4716 // Building the generic function prototype. 4717 llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty}; 4718 llvm::FunctionType *FTy = 4719 llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()), 4720 llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4721 4722 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4723 {Arg0, Arg1, PacketSize, PacketAlign})); 4724 } 4725 // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions 4726 case Builtin::BIget_pipe_num_packets: 4727 case Builtin::BIget_pipe_max_packets: { 4728 const char *BaseName; 4729 const auto *PipeTy = E->getArg(0)->getType()->castAs<PipeType>(); 4730 if (BuiltinID == Builtin::BIget_pipe_num_packets) 4731 BaseName = "__get_pipe_num_packets"; 4732 else 4733 BaseName = "__get_pipe_max_packets"; 4734 std::string Name = std::string(BaseName) + 4735 std::string(PipeTy->isReadOnly() ? "_ro" : "_wo"); 4736 4737 // Building the generic function prototype. 4738 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 4739 CGOpenCLRuntime OpenCLRT(CGM); 4740 Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0)); 4741 Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0)); 4742 llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty}; 4743 llvm::FunctionType *FTy = llvm::FunctionType::get( 4744 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4745 4746 return RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4747 {Arg0, PacketSize, PacketAlign})); 4748 } 4749 4750 // OpenCL v2.0 s6.13.9 - Address space qualifier functions. 4751 case Builtin::BIto_global: 4752 case Builtin::BIto_local: 4753 case Builtin::BIto_private: { 4754 auto Arg0 = EmitScalarExpr(E->getArg(0)); 4755 auto NewArgT = llvm::PointerType::get(Int8Ty, 4756 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4757 auto NewRetT = llvm::PointerType::get(Int8Ty, 4758 CGM.getContext().getTargetAddressSpace( 4759 E->getType()->getPointeeType().getAddressSpace())); 4760 auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false); 4761 llvm::Value *NewArg; 4762 if (Arg0->getType()->getPointerAddressSpace() != 4763 NewArgT->getPointerAddressSpace()) 4764 NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT); 4765 else 4766 NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT); 4767 auto NewName = std::string("__") + E->getDirectCallee()->getName().str(); 4768 auto NewCall = 4769 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg}); 4770 return RValue::get(Builder.CreateBitOrPointerCast(NewCall, 4771 ConvertType(E->getType()))); 4772 } 4773 4774 // OpenCL v2.0, s6.13.17 - Enqueue kernel function. 4775 // It contains four different overload formats specified in Table 6.13.17.1. 4776 case Builtin::BIenqueue_kernel: { 4777 StringRef Name; // Generated function call name 4778 unsigned NumArgs = E->getNumArgs(); 4779 4780 llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy); 4781 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 4782 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4783 4784 llvm::Value *Queue = EmitScalarExpr(E->getArg(0)); 4785 llvm::Value *Flags = EmitScalarExpr(E->getArg(1)); 4786 LValue NDRangeL = EmitAggExprToLValue(E->getArg(2)); 4787 llvm::Value *Range = NDRangeL.getAddress(*this).getPointer(); 4788 llvm::Type *RangeTy = NDRangeL.getAddress(*this).getType(); 4789 4790 if (NumArgs == 4) { 4791 // The most basic form of the call with parameters: 4792 // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void) 4793 Name = "__enqueue_kernel_basic"; 4794 llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy, 4795 GenericVoidPtrTy}; 4796 llvm::FunctionType *FTy = llvm::FunctionType::get( 4797 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4798 4799 auto Info = 4800 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); 4801 llvm::Value *Kernel = 4802 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4803 llvm::Value *Block = 4804 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4805 4806 AttrBuilder B; 4807 B.addByValAttr(NDRangeL.getAddress(*this).getElementType()); 4808 llvm::AttributeList ByValAttrSet = 4809 llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B); 4810 4811 auto RTCall = 4812 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet), 4813 {Queue, Flags, Range, Kernel, Block}); 4814 RTCall->setAttributes(ByValAttrSet); 4815 return RValue::get(RTCall); 4816 } 4817 assert(NumArgs >= 5 && "Invalid enqueue_kernel signature"); 4818 4819 // Create a temporary array to hold the sizes of local pointer arguments 4820 // for the block. \p First is the position of the first size argument. 4821 auto CreateArrayForSizeVar = [=](unsigned First) 4822 -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> { 4823 llvm::APInt ArraySize(32, NumArgs - First); 4824 QualType SizeArrayTy = getContext().getConstantArrayType( 4825 getContext().getSizeType(), ArraySize, nullptr, ArrayType::Normal, 4826 /*IndexTypeQuals=*/0); 4827 auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes"); 4828 llvm::Value *TmpPtr = Tmp.getPointer(); 4829 llvm::Value *TmpSize = EmitLifetimeStart( 4830 CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr); 4831 llvm::Value *ElemPtr; 4832 // Each of the following arguments specifies the size of the corresponding 4833 // argument passed to the enqueued block. 4834 auto *Zero = llvm::ConstantInt::get(IntTy, 0); 4835 for (unsigned I = First; I < NumArgs; ++I) { 4836 auto *Index = llvm::ConstantInt::get(IntTy, I - First); 4837 auto *GEP = Builder.CreateGEP(Tmp.getElementType(), TmpPtr, 4838 {Zero, Index}); 4839 if (I == First) 4840 ElemPtr = GEP; 4841 auto *V = 4842 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy); 4843 Builder.CreateAlignedStore( 4844 V, GEP, CGM.getDataLayout().getPrefTypeAlign(SizeTy)); 4845 } 4846 return std::tie(ElemPtr, TmpSize, TmpPtr); 4847 }; 4848 4849 // Could have events and/or varargs. 4850 if (E->getArg(3)->getType()->isBlockPointerType()) { 4851 // No events passed, but has variadic arguments. 4852 Name = "__enqueue_kernel_varargs"; 4853 auto Info = 4854 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3)); 4855 llvm::Value *Kernel = 4856 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4857 auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4858 llvm::Value *ElemPtr, *TmpSize, *TmpPtr; 4859 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4); 4860 4861 // Create a vector of the arguments, as well as a constant value to 4862 // express to the runtime the number of variadic arguments. 4863 llvm::Value *const Args[] = {Queue, Flags, 4864 Range, Kernel, 4865 Block, ConstantInt::get(IntTy, NumArgs - 4), 4866 ElemPtr}; 4867 llvm::Type *const ArgTys[] = { 4868 QueueTy, IntTy, RangeTy, GenericVoidPtrTy, 4869 GenericVoidPtrTy, IntTy, ElemPtr->getType()}; 4870 4871 llvm::FunctionType *FTy = llvm::FunctionType::get(Int32Ty, ArgTys, false); 4872 auto Call = RValue::get( 4873 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Args)); 4874 if (TmpSize) 4875 EmitLifetimeEnd(TmpSize, TmpPtr); 4876 return Call; 4877 } 4878 // Any calls now have event arguments passed. 4879 if (NumArgs >= 7) { 4880 llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy); 4881 llvm::PointerType *EventPtrTy = EventTy->getPointerTo( 4882 CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4883 4884 llvm::Value *NumEvents = 4885 Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty); 4886 4887 // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments 4888 // to be a null pointer constant (including `0` literal), we can take it 4889 // into account and emit null pointer directly. 4890 llvm::Value *EventWaitList = nullptr; 4891 if (E->getArg(4)->isNullPointerConstant( 4892 getContext(), Expr::NPC_ValueDependentIsNotNull)) { 4893 EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy); 4894 } else { 4895 EventWaitList = E->getArg(4)->getType()->isArrayType() 4896 ? EmitArrayToPointerDecay(E->getArg(4)).getPointer() 4897 : EmitScalarExpr(E->getArg(4)); 4898 // Convert to generic address space. 4899 EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy); 4900 } 4901 llvm::Value *EventRet = nullptr; 4902 if (E->getArg(5)->isNullPointerConstant( 4903 getContext(), Expr::NPC_ValueDependentIsNotNull)) { 4904 EventRet = llvm::ConstantPointerNull::get(EventPtrTy); 4905 } else { 4906 EventRet = 4907 Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy); 4908 } 4909 4910 auto Info = 4911 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6)); 4912 llvm::Value *Kernel = 4913 Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4914 llvm::Value *Block = 4915 Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4916 4917 std::vector<llvm::Type *> ArgTys = { 4918 QueueTy, Int32Ty, RangeTy, Int32Ty, 4919 EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy}; 4920 4921 std::vector<llvm::Value *> Args = {Queue, Flags, Range, 4922 NumEvents, EventWaitList, EventRet, 4923 Kernel, Block}; 4924 4925 if (NumArgs == 7) { 4926 // Has events but no variadics. 4927 Name = "__enqueue_kernel_basic_events"; 4928 llvm::FunctionType *FTy = llvm::FunctionType::get( 4929 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4930 return RValue::get( 4931 EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4932 llvm::ArrayRef<llvm::Value *>(Args))); 4933 } 4934 // Has event info and variadics 4935 // Pass the number of variadics to the runtime function too. 4936 Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7)); 4937 ArgTys.push_back(Int32Ty); 4938 Name = "__enqueue_kernel_events_varargs"; 4939 4940 llvm::Value *ElemPtr, *TmpSize, *TmpPtr; 4941 std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7); 4942 Args.push_back(ElemPtr); 4943 ArgTys.push_back(ElemPtr->getType()); 4944 4945 llvm::FunctionType *FTy = llvm::FunctionType::get( 4946 Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false); 4947 auto Call = 4948 RValue::get(EmitRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), 4949 llvm::ArrayRef<llvm::Value *>(Args))); 4950 if (TmpSize) 4951 EmitLifetimeEnd(TmpSize, TmpPtr); 4952 return Call; 4953 } 4954 LLVM_FALLTHROUGH; 4955 } 4956 // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block 4957 // parameter. 4958 case Builtin::BIget_kernel_work_group_size: { 4959 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 4960 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4961 auto Info = 4962 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); 4963 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4964 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4965 return RValue::get(EmitRuntimeCall( 4966 CGM.CreateRuntimeFunction( 4967 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, 4968 false), 4969 "__get_kernel_work_group_size_impl"), 4970 {Kernel, Arg})); 4971 } 4972 case Builtin::BIget_kernel_preferred_work_group_size_multiple: { 4973 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 4974 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4975 auto Info = 4976 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0)); 4977 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4978 Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4979 return RValue::get(EmitRuntimeCall( 4980 CGM.CreateRuntimeFunction( 4981 llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy}, 4982 false), 4983 "__get_kernel_preferred_work_group_size_multiple_impl"), 4984 {Kernel, Arg})); 4985 } 4986 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange: 4987 case Builtin::BIget_kernel_sub_group_count_for_ndrange: { 4988 llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy( 4989 getContext().getTargetAddressSpace(LangAS::opencl_generic)); 4990 LValue NDRangeL = EmitAggExprToLValue(E->getArg(0)); 4991 llvm::Value *NDRange = NDRangeL.getAddress(*this).getPointer(); 4992 auto Info = 4993 CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1)); 4994 Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy); 4995 Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy); 4996 const char *Name = 4997 BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange 4998 ? "__get_kernel_max_sub_group_size_for_ndrange_impl" 4999 : "__get_kernel_sub_group_count_for_ndrange_impl"; 5000 return RValue::get(EmitRuntimeCall( 5001 CGM.CreateRuntimeFunction( 5002 llvm::FunctionType::get( 5003 IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy}, 5004 false), 5005 Name), 5006 {NDRange, Kernel, Block})); 5007 } 5008 5009 case Builtin::BI__builtin_store_half: 5010 case Builtin::BI__builtin_store_halff: { 5011 Value *Val = EmitScalarExpr(E->getArg(0)); 5012 Address Address = EmitPointerWithAlignment(E->getArg(1)); 5013 Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy()); 5014 return RValue::get(Builder.CreateStore(HalfVal, Address)); 5015 } 5016 case Builtin::BI__builtin_load_half: { 5017 Address Address = EmitPointerWithAlignment(E->getArg(0)); 5018 Value *HalfVal = Builder.CreateLoad(Address); 5019 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy())); 5020 } 5021 case Builtin::BI__builtin_load_halff: { 5022 Address Address = EmitPointerWithAlignment(E->getArg(0)); 5023 Value *HalfVal = Builder.CreateLoad(Address); 5024 return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy())); 5025 } 5026 case Builtin::BIprintf: 5027 if (getTarget().getTriple().isNVPTX()) 5028 return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue); 5029 if (getTarget().getTriple().getArch() == Triple::amdgcn && 5030 getLangOpts().HIP) 5031 return EmitAMDGPUDevicePrintfCallExpr(E, ReturnValue); 5032 break; 5033 case Builtin::BI__builtin_canonicalize: 5034 case Builtin::BI__builtin_canonicalizef: 5035 case Builtin::BI__builtin_canonicalizef16: 5036 case Builtin::BI__builtin_canonicalizel: 5037 return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize)); 5038 5039 case Builtin::BI__builtin_thread_pointer: { 5040 if (!getContext().getTargetInfo().isTLSSupported()) 5041 CGM.ErrorUnsupported(E, "__builtin_thread_pointer"); 5042 // Fall through - it's already mapped to the intrinsic by GCCBuiltin. 5043 break; 5044 } 5045 case Builtin::BI__builtin_os_log_format: 5046 return emitBuiltinOSLogFormat(*E); 5047 5048 case Builtin::BI__xray_customevent: { 5049 if (!ShouldXRayInstrumentFunction()) 5050 return RValue::getIgnored(); 5051 5052 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 5053 XRayInstrKind::Custom)) 5054 return RValue::getIgnored(); 5055 5056 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) 5057 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents()) 5058 return RValue::getIgnored(); 5059 5060 Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent); 5061 auto FTy = F->getFunctionType(); 5062 auto Arg0 = E->getArg(0); 5063 auto Arg0Val = EmitScalarExpr(Arg0); 5064 auto Arg0Ty = Arg0->getType(); 5065 auto PTy0 = FTy->getParamType(0); 5066 if (PTy0 != Arg0Val->getType()) { 5067 if (Arg0Ty->isArrayType()) 5068 Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer(); 5069 else 5070 Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0); 5071 } 5072 auto Arg1 = EmitScalarExpr(E->getArg(1)); 5073 auto PTy1 = FTy->getParamType(1); 5074 if (PTy1 != Arg1->getType()) 5075 Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1); 5076 return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1})); 5077 } 5078 5079 case Builtin::BI__xray_typedevent: { 5080 // TODO: There should be a way to always emit events even if the current 5081 // function is not instrumented. Losing events in a stream can cripple 5082 // a trace. 5083 if (!ShouldXRayInstrumentFunction()) 5084 return RValue::getIgnored(); 5085 5086 if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 5087 XRayInstrKind::Typed)) 5088 return RValue::getIgnored(); 5089 5090 if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>()) 5091 if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents()) 5092 return RValue::getIgnored(); 5093 5094 Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent); 5095 auto FTy = F->getFunctionType(); 5096 auto Arg0 = EmitScalarExpr(E->getArg(0)); 5097 auto PTy0 = FTy->getParamType(0); 5098 if (PTy0 != Arg0->getType()) 5099 Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0); 5100 auto Arg1 = E->getArg(1); 5101 auto Arg1Val = EmitScalarExpr(Arg1); 5102 auto Arg1Ty = Arg1->getType(); 5103 auto PTy1 = FTy->getParamType(1); 5104 if (PTy1 != Arg1Val->getType()) { 5105 if (Arg1Ty->isArrayType()) 5106 Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer(); 5107 else 5108 Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1); 5109 } 5110 auto Arg2 = EmitScalarExpr(E->getArg(2)); 5111 auto PTy2 = FTy->getParamType(2); 5112 if (PTy2 != Arg2->getType()) 5113 Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2); 5114 return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2})); 5115 } 5116 5117 case Builtin::BI__builtin_ms_va_start: 5118 case Builtin::BI__builtin_ms_va_end: 5119 return RValue::get( 5120 EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(), 5121 BuiltinID == Builtin::BI__builtin_ms_va_start)); 5122 5123 case Builtin::BI__builtin_ms_va_copy: { 5124 // Lower this manually. We can't reliably determine whether or not any 5125 // given va_copy() is for a Win64 va_list from the calling convention 5126 // alone, because it's legal to do this from a System V ABI function. 5127 // With opaque pointer types, we won't have enough information in LLVM 5128 // IR to determine this from the argument types, either. Best to do it 5129 // now, while we have enough information. 5130 Address DestAddr = EmitMSVAListRef(E->getArg(0)); 5131 Address SrcAddr = EmitMSVAListRef(E->getArg(1)); 5132 5133 llvm::Type *BPP = Int8PtrPtrTy; 5134 5135 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"), 5136 DestAddr.getAlignment()); 5137 SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"), 5138 SrcAddr.getAlignment()); 5139 5140 Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val"); 5141 return RValue::get(Builder.CreateStore(ArgPtr, DestAddr)); 5142 } 5143 5144 case Builtin::BI__builtin_get_device_side_mangled_name: { 5145 auto Name = CGM.getCUDARuntime().getDeviceSideName( 5146 cast<DeclRefExpr>(E->getArg(0)->IgnoreImpCasts())->getDecl()); 5147 auto Str = CGM.GetAddrOfConstantCString(Name, ""); 5148 llvm::Constant *Zeros[] = {llvm::ConstantInt::get(SizeTy, 0), 5149 llvm::ConstantInt::get(SizeTy, 0)}; 5150 auto *Ptr = llvm::ConstantExpr::getGetElementPtr(Str.getElementType(), 5151 Str.getPointer(), Zeros); 5152 return RValue::get(Ptr); 5153 } 5154 } 5155 5156 // If this is an alias for a lib function (e.g. __builtin_sin), emit 5157 // the call using the normal call path, but using the unmangled 5158 // version of the function name. 5159 if (getContext().BuiltinInfo.isLibFunction(BuiltinID)) 5160 return emitLibraryCall(*this, FD, E, 5161 CGM.getBuiltinLibFunction(FD, BuiltinID)); 5162 5163 // If this is a predefined lib function (e.g. malloc), emit the call 5164 // using exactly the normal call path. 5165 if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID)) 5166 return emitLibraryCall(*this, FD, E, 5167 cast<llvm::Constant>(EmitScalarExpr(E->getCallee()))); 5168 5169 // Check that a call to a target specific builtin has the correct target 5170 // features. 5171 // This is down here to avoid non-target specific builtins, however, if 5172 // generic builtins start to require generic target features then we 5173 // can move this up to the beginning of the function. 5174 checkTargetFeatures(E, FD); 5175 5176 if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID)) 5177 LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth); 5178 5179 // See if we have a target specific intrinsic. 5180 const char *Name = getContext().BuiltinInfo.getName(BuiltinID); 5181 Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic; 5182 StringRef Prefix = 5183 llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch()); 5184 if (!Prefix.empty()) { 5185 IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name); 5186 // NOTE we don't need to perform a compatibility flag check here since the 5187 // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the 5188 // MS builtins via ALL_MS_LANGUAGES and are filtered earlier. 5189 if (IntrinsicID == Intrinsic::not_intrinsic) 5190 IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name); 5191 } 5192 5193 if (IntrinsicID != Intrinsic::not_intrinsic) { 5194 SmallVector<Value*, 16> Args; 5195 5196 // Find out if any arguments are required to be integer constant 5197 // expressions. 5198 unsigned ICEArguments = 0; 5199 ASTContext::GetBuiltinTypeError Error; 5200 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 5201 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 5202 5203 Function *F = CGM.getIntrinsic(IntrinsicID); 5204 llvm::FunctionType *FTy = F->getFunctionType(); 5205 5206 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { 5207 Value *ArgValue; 5208 // If this is a normal argument, just emit it as a scalar. 5209 if ((ICEArguments & (1 << i)) == 0) { 5210 ArgValue = EmitScalarExpr(E->getArg(i)); 5211 } else { 5212 // If this is required to be a constant, constant fold it so that we 5213 // know that the generated intrinsic gets a ConstantInt. 5214 ArgValue = llvm::ConstantInt::get( 5215 getLLVMContext(), 5216 *E->getArg(i)->getIntegerConstantExpr(getContext())); 5217 } 5218 5219 // If the intrinsic arg type is different from the builtin arg type 5220 // we need to do a bit cast. 5221 llvm::Type *PTy = FTy->getParamType(i); 5222 if (PTy != ArgValue->getType()) { 5223 // XXX - vector of pointers? 5224 if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) { 5225 if (PtrTy->getAddressSpace() != 5226 ArgValue->getType()->getPointerAddressSpace()) { 5227 ArgValue = Builder.CreateAddrSpaceCast( 5228 ArgValue, 5229 ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace())); 5230 } 5231 } 5232 5233 assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) && 5234 "Must be able to losslessly bit cast to param"); 5235 ArgValue = Builder.CreateBitCast(ArgValue, PTy); 5236 } 5237 5238 Args.push_back(ArgValue); 5239 } 5240 5241 Value *V = Builder.CreateCall(F, Args); 5242 QualType BuiltinRetType = E->getType(); 5243 5244 llvm::Type *RetTy = VoidTy; 5245 if (!BuiltinRetType->isVoidType()) 5246 RetTy = ConvertType(BuiltinRetType); 5247 5248 if (RetTy != V->getType()) { 5249 // XXX - vector of pointers? 5250 if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) { 5251 if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) { 5252 V = Builder.CreateAddrSpaceCast( 5253 V, V->getType()->getPointerTo(PtrTy->getAddressSpace())); 5254 } 5255 } 5256 5257 assert(V->getType()->canLosslesslyBitCastTo(RetTy) && 5258 "Must be able to losslessly bit cast result type"); 5259 V = Builder.CreateBitCast(V, RetTy); 5260 } 5261 5262 return RValue::get(V); 5263 } 5264 5265 // Some target-specific builtins can have aggregate return values, e.g. 5266 // __builtin_arm_mve_vld2q_u32. So if the result is an aggregate, force 5267 // ReturnValue to be non-null, so that the target-specific emission code can 5268 // always just emit into it. 5269 TypeEvaluationKind EvalKind = getEvaluationKind(E->getType()); 5270 if (EvalKind == TEK_Aggregate && ReturnValue.isNull()) { 5271 Address DestPtr = CreateMemTemp(E->getType(), "agg.tmp"); 5272 ReturnValue = ReturnValueSlot(DestPtr, false); 5273 } 5274 5275 // Now see if we can emit a target-specific builtin. 5276 if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E, ReturnValue)) { 5277 switch (EvalKind) { 5278 case TEK_Scalar: 5279 return RValue::get(V); 5280 case TEK_Aggregate: 5281 return RValue::getAggregate(ReturnValue.getValue(), 5282 ReturnValue.isVolatile()); 5283 case TEK_Complex: 5284 llvm_unreachable("No current target builtin returns complex"); 5285 } 5286 llvm_unreachable("Bad evaluation kind in EmitBuiltinExpr"); 5287 } 5288 5289 ErrorUnsupported(E, "builtin function"); 5290 5291 // Unknown builtin, for now just dump it out and return undef. 5292 return GetUndefRValue(E->getType()); 5293 } 5294 5295 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF, 5296 unsigned BuiltinID, const CallExpr *E, 5297 ReturnValueSlot ReturnValue, 5298 llvm::Triple::ArchType Arch) { 5299 switch (Arch) { 5300 case llvm::Triple::arm: 5301 case llvm::Triple::armeb: 5302 case llvm::Triple::thumb: 5303 case llvm::Triple::thumbeb: 5304 return CGF->EmitARMBuiltinExpr(BuiltinID, E, ReturnValue, Arch); 5305 case llvm::Triple::aarch64: 5306 case llvm::Triple::aarch64_32: 5307 case llvm::Triple::aarch64_be: 5308 return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch); 5309 case llvm::Triple::bpfeb: 5310 case llvm::Triple::bpfel: 5311 return CGF->EmitBPFBuiltinExpr(BuiltinID, E); 5312 case llvm::Triple::x86: 5313 case llvm::Triple::x86_64: 5314 return CGF->EmitX86BuiltinExpr(BuiltinID, E); 5315 case llvm::Triple::ppc: 5316 case llvm::Triple::ppcle: 5317 case llvm::Triple::ppc64: 5318 case llvm::Triple::ppc64le: 5319 return CGF->EmitPPCBuiltinExpr(BuiltinID, E); 5320 case llvm::Triple::r600: 5321 case llvm::Triple::amdgcn: 5322 return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E); 5323 case llvm::Triple::systemz: 5324 return CGF->EmitSystemZBuiltinExpr(BuiltinID, E); 5325 case llvm::Triple::nvptx: 5326 case llvm::Triple::nvptx64: 5327 return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E); 5328 case llvm::Triple::wasm32: 5329 case llvm::Triple::wasm64: 5330 return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E); 5331 case llvm::Triple::hexagon: 5332 return CGF->EmitHexagonBuiltinExpr(BuiltinID, E); 5333 case llvm::Triple::riscv32: 5334 case llvm::Triple::riscv64: 5335 return CGF->EmitRISCVBuiltinExpr(BuiltinID, E, ReturnValue); 5336 default: 5337 return nullptr; 5338 } 5339 } 5340 5341 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID, 5342 const CallExpr *E, 5343 ReturnValueSlot ReturnValue) { 5344 if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) { 5345 assert(getContext().getAuxTargetInfo() && "Missing aux target info"); 5346 return EmitTargetArchBuiltinExpr( 5347 this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E, 5348 ReturnValue, getContext().getAuxTargetInfo()->getTriple().getArch()); 5349 } 5350 5351 return EmitTargetArchBuiltinExpr(this, BuiltinID, E, ReturnValue, 5352 getTarget().getTriple().getArch()); 5353 } 5354 5355 static llvm::FixedVectorType *GetNeonType(CodeGenFunction *CGF, 5356 NeonTypeFlags TypeFlags, 5357 bool HasLegalHalfType = true, 5358 bool V1Ty = false, 5359 bool AllowBFloatArgsAndRet = true) { 5360 int IsQuad = TypeFlags.isQuad(); 5361 switch (TypeFlags.getEltType()) { 5362 case NeonTypeFlags::Int8: 5363 case NeonTypeFlags::Poly8: 5364 return llvm::FixedVectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad)); 5365 case NeonTypeFlags::Int16: 5366 case NeonTypeFlags::Poly16: 5367 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); 5368 case NeonTypeFlags::BFloat16: 5369 if (AllowBFloatArgsAndRet) 5370 return llvm::FixedVectorType::get(CGF->BFloatTy, V1Ty ? 1 : (4 << IsQuad)); 5371 else 5372 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); 5373 case NeonTypeFlags::Float16: 5374 if (HasLegalHalfType) 5375 return llvm::FixedVectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad)); 5376 else 5377 return llvm::FixedVectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad)); 5378 case NeonTypeFlags::Int32: 5379 return llvm::FixedVectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad)); 5380 case NeonTypeFlags::Int64: 5381 case NeonTypeFlags::Poly64: 5382 return llvm::FixedVectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad)); 5383 case NeonTypeFlags::Poly128: 5384 // FIXME: i128 and f128 doesn't get fully support in Clang and llvm. 5385 // There is a lot of i128 and f128 API missing. 5386 // so we use v16i8 to represent poly128 and get pattern matched. 5387 return llvm::FixedVectorType::get(CGF->Int8Ty, 16); 5388 case NeonTypeFlags::Float32: 5389 return llvm::FixedVectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad)); 5390 case NeonTypeFlags::Float64: 5391 return llvm::FixedVectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad)); 5392 } 5393 llvm_unreachable("Unknown vector element type!"); 5394 } 5395 5396 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF, 5397 NeonTypeFlags IntTypeFlags) { 5398 int IsQuad = IntTypeFlags.isQuad(); 5399 switch (IntTypeFlags.getEltType()) { 5400 case NeonTypeFlags::Int16: 5401 return llvm::FixedVectorType::get(CGF->HalfTy, (4 << IsQuad)); 5402 case NeonTypeFlags::Int32: 5403 return llvm::FixedVectorType::get(CGF->FloatTy, (2 << IsQuad)); 5404 case NeonTypeFlags::Int64: 5405 return llvm::FixedVectorType::get(CGF->DoubleTy, (1 << IsQuad)); 5406 default: 5407 llvm_unreachable("Type can't be converted to floating-point!"); 5408 } 5409 } 5410 5411 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C, 5412 const ElementCount &Count) { 5413 Value *SV = llvm::ConstantVector::getSplat(Count, C); 5414 return Builder.CreateShuffleVector(V, V, SV, "lane"); 5415 } 5416 5417 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) { 5418 ElementCount EC = cast<llvm::VectorType>(V->getType())->getElementCount(); 5419 return EmitNeonSplat(V, C, EC); 5420 } 5421 5422 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops, 5423 const char *name, 5424 unsigned shift, bool rightshift) { 5425 unsigned j = 0; 5426 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); 5427 ai != ae; ++ai, ++j) { 5428 if (F->isConstrainedFPIntrinsic()) 5429 if (ai->getType()->isMetadataTy()) 5430 continue; 5431 if (shift > 0 && shift == j) 5432 Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift); 5433 else 5434 Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name); 5435 } 5436 5437 if (F->isConstrainedFPIntrinsic()) 5438 return Builder.CreateConstrainedFPCall(F, Ops, name); 5439 else 5440 return Builder.CreateCall(F, Ops, name); 5441 } 5442 5443 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty, 5444 bool neg) { 5445 int SV = cast<ConstantInt>(V)->getSExtValue(); 5446 return ConstantInt::get(Ty, neg ? -SV : SV); 5447 } 5448 5449 // Right-shift a vector by a constant. 5450 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift, 5451 llvm::Type *Ty, bool usgn, 5452 const char *name) { 5453 llvm::VectorType *VTy = cast<llvm::VectorType>(Ty); 5454 5455 int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue(); 5456 int EltSize = VTy->getScalarSizeInBits(); 5457 5458 Vec = Builder.CreateBitCast(Vec, Ty); 5459 5460 // lshr/ashr are undefined when the shift amount is equal to the vector 5461 // element size. 5462 if (ShiftAmt == EltSize) { 5463 if (usgn) { 5464 // Right-shifting an unsigned value by its size yields 0. 5465 return llvm::ConstantAggregateZero::get(VTy); 5466 } else { 5467 // Right-shifting a signed value by its size is equivalent 5468 // to a shift of size-1. 5469 --ShiftAmt; 5470 Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt); 5471 } 5472 } 5473 5474 Shift = EmitNeonShiftVector(Shift, Ty, false); 5475 if (usgn) 5476 return Builder.CreateLShr(Vec, Shift, name); 5477 else 5478 return Builder.CreateAShr(Vec, Shift, name); 5479 } 5480 5481 enum { 5482 AddRetType = (1 << 0), 5483 Add1ArgType = (1 << 1), 5484 Add2ArgTypes = (1 << 2), 5485 5486 VectorizeRetType = (1 << 3), 5487 VectorizeArgTypes = (1 << 4), 5488 5489 InventFloatType = (1 << 5), 5490 UnsignedAlts = (1 << 6), 5491 5492 Use64BitVectors = (1 << 7), 5493 Use128BitVectors = (1 << 8), 5494 5495 Vectorize1ArgType = Add1ArgType | VectorizeArgTypes, 5496 VectorRet = AddRetType | VectorizeRetType, 5497 VectorRetGetArgs01 = 5498 AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes, 5499 FpCmpzModifiers = 5500 AddRetType | VectorizeRetType | Add1ArgType | InventFloatType 5501 }; 5502 5503 namespace { 5504 struct ARMVectorIntrinsicInfo { 5505 const char *NameHint; 5506 unsigned BuiltinID; 5507 unsigned LLVMIntrinsic; 5508 unsigned AltLLVMIntrinsic; 5509 uint64_t TypeModifier; 5510 5511 bool operator<(unsigned RHSBuiltinID) const { 5512 return BuiltinID < RHSBuiltinID; 5513 } 5514 bool operator<(const ARMVectorIntrinsicInfo &TE) const { 5515 return BuiltinID < TE.BuiltinID; 5516 } 5517 }; 5518 } // end anonymous namespace 5519 5520 #define NEONMAP0(NameBase) \ 5521 { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 } 5522 5523 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ 5524 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ 5525 Intrinsic::LLVMIntrinsic, 0, TypeModifier } 5526 5527 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \ 5528 { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \ 5529 Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \ 5530 TypeModifier } 5531 5532 static const ARMVectorIntrinsicInfo ARMSIMDIntrinsicMap [] = { 5533 NEONMAP1(__a32_vcvt_bf16_v, arm_neon_vcvtfp2bf, 0), 5534 NEONMAP0(splat_lane_v), 5535 NEONMAP0(splat_laneq_v), 5536 NEONMAP0(splatq_lane_v), 5537 NEONMAP0(splatq_laneq_v), 5538 NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), 5539 NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts), 5540 NEONMAP1(vabs_v, arm_neon_vabs, 0), 5541 NEONMAP1(vabsq_v, arm_neon_vabs, 0), 5542 NEONMAP0(vadd_v), 5543 NEONMAP0(vaddhn_v), 5544 NEONMAP0(vaddq_v), 5545 NEONMAP1(vaesdq_v, arm_neon_aesd, 0), 5546 NEONMAP1(vaeseq_v, arm_neon_aese, 0), 5547 NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0), 5548 NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0), 5549 NEONMAP1(vbfdot_v, arm_neon_bfdot, 0), 5550 NEONMAP1(vbfdotq_v, arm_neon_bfdot, 0), 5551 NEONMAP1(vbfmlalbq_v, arm_neon_bfmlalb, 0), 5552 NEONMAP1(vbfmlaltq_v, arm_neon_bfmlalt, 0), 5553 NEONMAP1(vbfmmlaq_v, arm_neon_bfmmla, 0), 5554 NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType), 5555 NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType), 5556 NEONMAP1(vcadd_rot270_v, arm_neon_vcadd_rot270, Add1ArgType), 5557 NEONMAP1(vcadd_rot90_v, arm_neon_vcadd_rot90, Add1ArgType), 5558 NEONMAP1(vcaddq_rot270_v, arm_neon_vcadd_rot270, Add1ArgType), 5559 NEONMAP1(vcaddq_rot90_v, arm_neon_vcadd_rot90, Add1ArgType), 5560 NEONMAP1(vcage_v, arm_neon_vacge, 0), 5561 NEONMAP1(vcageq_v, arm_neon_vacge, 0), 5562 NEONMAP1(vcagt_v, arm_neon_vacgt, 0), 5563 NEONMAP1(vcagtq_v, arm_neon_vacgt, 0), 5564 NEONMAP1(vcale_v, arm_neon_vacge, 0), 5565 NEONMAP1(vcaleq_v, arm_neon_vacge, 0), 5566 NEONMAP1(vcalt_v, arm_neon_vacgt, 0), 5567 NEONMAP1(vcaltq_v, arm_neon_vacgt, 0), 5568 NEONMAP0(vceqz_v), 5569 NEONMAP0(vceqzq_v), 5570 NEONMAP0(vcgez_v), 5571 NEONMAP0(vcgezq_v), 5572 NEONMAP0(vcgtz_v), 5573 NEONMAP0(vcgtzq_v), 5574 NEONMAP0(vclez_v), 5575 NEONMAP0(vclezq_v), 5576 NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType), 5577 NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType), 5578 NEONMAP0(vcltz_v), 5579 NEONMAP0(vcltzq_v), 5580 NEONMAP1(vclz_v, ctlz, Add1ArgType), 5581 NEONMAP1(vclzq_v, ctlz, Add1ArgType), 5582 NEONMAP1(vcnt_v, ctpop, Add1ArgType), 5583 NEONMAP1(vcntq_v, ctpop, Add1ArgType), 5584 NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0), 5585 NEONMAP0(vcvt_f16_v), 5586 NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0), 5587 NEONMAP0(vcvt_f32_v), 5588 NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 5589 NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 5590 NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0), 5591 NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0), 5592 NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0), 5593 NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0), 5594 NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0), 5595 NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0), 5596 NEONMAP0(vcvt_s16_v), 5597 NEONMAP0(vcvt_s32_v), 5598 NEONMAP0(vcvt_s64_v), 5599 NEONMAP0(vcvt_u16_v), 5600 NEONMAP0(vcvt_u32_v), 5601 NEONMAP0(vcvt_u64_v), 5602 NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0), 5603 NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0), 5604 NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0), 5605 NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0), 5606 NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0), 5607 NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0), 5608 NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0), 5609 NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0), 5610 NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0), 5611 NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0), 5612 NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0), 5613 NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0), 5614 NEONMAP1(vcvth_bf16_f32, arm_neon_vcvtbfp2bf, 0), 5615 NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0), 5616 NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0), 5617 NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0), 5618 NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0), 5619 NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0), 5620 NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0), 5621 NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0), 5622 NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0), 5623 NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0), 5624 NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0), 5625 NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0), 5626 NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0), 5627 NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0), 5628 NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0), 5629 NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0), 5630 NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0), 5631 NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0), 5632 NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0), 5633 NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0), 5634 NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0), 5635 NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0), 5636 NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0), 5637 NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0), 5638 NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0), 5639 NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0), 5640 NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0), 5641 NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0), 5642 NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0), 5643 NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0), 5644 NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0), 5645 NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0), 5646 NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0), 5647 NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0), 5648 NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0), 5649 NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0), 5650 NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0), 5651 NEONMAP0(vcvtq_f16_v), 5652 NEONMAP0(vcvtq_f32_v), 5653 NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 5654 NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0), 5655 NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0), 5656 NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0), 5657 NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0), 5658 NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0), 5659 NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0), 5660 NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0), 5661 NEONMAP0(vcvtq_s16_v), 5662 NEONMAP0(vcvtq_s32_v), 5663 NEONMAP0(vcvtq_s64_v), 5664 NEONMAP0(vcvtq_u16_v), 5665 NEONMAP0(vcvtq_u32_v), 5666 NEONMAP0(vcvtq_u64_v), 5667 NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0), 5668 NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0), 5669 NEONMAP0(vext_v), 5670 NEONMAP0(vextq_v), 5671 NEONMAP0(vfma_v), 5672 NEONMAP0(vfmaq_v), 5673 NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), 5674 NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts), 5675 NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), 5676 NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts), 5677 NEONMAP0(vld1_dup_v), 5678 NEONMAP1(vld1_v, arm_neon_vld1, 0), 5679 NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0), 5680 NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0), 5681 NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0), 5682 NEONMAP0(vld1q_dup_v), 5683 NEONMAP1(vld1q_v, arm_neon_vld1, 0), 5684 NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0), 5685 NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0), 5686 NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0), 5687 NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0), 5688 NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0), 5689 NEONMAP1(vld2_v, arm_neon_vld2, 0), 5690 NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0), 5691 NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0), 5692 NEONMAP1(vld2q_v, arm_neon_vld2, 0), 5693 NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0), 5694 NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0), 5695 NEONMAP1(vld3_v, arm_neon_vld3, 0), 5696 NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0), 5697 NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0), 5698 NEONMAP1(vld3q_v, arm_neon_vld3, 0), 5699 NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0), 5700 NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0), 5701 NEONMAP1(vld4_v, arm_neon_vld4, 0), 5702 NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0), 5703 NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0), 5704 NEONMAP1(vld4q_v, arm_neon_vld4, 0), 5705 NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), 5706 NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType), 5707 NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType), 5708 NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts), 5709 NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), 5710 NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType), 5711 NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType), 5712 NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts), 5713 NEONMAP2(vmmlaq_v, arm_neon_ummla, arm_neon_smmla, 0), 5714 NEONMAP0(vmovl_v), 5715 NEONMAP0(vmovn_v), 5716 NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType), 5717 NEONMAP0(vmull_v), 5718 NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType), 5719 NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), 5720 NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts), 5721 NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType), 5722 NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), 5723 NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts), 5724 NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType), 5725 NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts), 5726 NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts), 5727 NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType), 5728 NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType), 5729 NEONMAP2(vqadd_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts), 5730 NEONMAP2(vqaddq_v, uadd_sat, sadd_sat, Add1ArgType | UnsignedAlts), 5731 NEONMAP2(vqdmlal_v, arm_neon_vqdmull, sadd_sat, 0), 5732 NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, ssub_sat, 0), 5733 NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType), 5734 NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType), 5735 NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType), 5736 NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts), 5737 NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType), 5738 NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType), 5739 NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType), 5740 NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType), 5741 NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType), 5742 NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), 5743 NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts), 5744 NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), 5745 NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), 5746 NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts), 5747 NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts), 5748 NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0), 5749 NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0), 5750 NEONMAP2(vqsub_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts), 5751 NEONMAP2(vqsubq_v, usub_sat, ssub_sat, Add1ArgType | UnsignedAlts), 5752 NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType), 5753 NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), 5754 NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0), 5755 NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType), 5756 NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType), 5757 NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), 5758 NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts), 5759 NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType), 5760 NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType), 5761 NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType), 5762 NEONMAP0(vrndi_v), 5763 NEONMAP0(vrndiq_v), 5764 NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType), 5765 NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType), 5766 NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType), 5767 NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType), 5768 NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType), 5769 NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType), 5770 NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType), 5771 NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType), 5772 NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType), 5773 NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), 5774 NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts), 5775 NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), 5776 NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts), 5777 NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), 5778 NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0), 5779 NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType), 5780 NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType), 5781 NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType), 5782 NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0), 5783 NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0), 5784 NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0), 5785 NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0), 5786 NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0), 5787 NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0), 5788 NEONMAP0(vshl_n_v), 5789 NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), 5790 NEONMAP0(vshll_n_v), 5791 NEONMAP0(vshlq_n_v), 5792 NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts), 5793 NEONMAP0(vshr_n_v), 5794 NEONMAP0(vshrn_n_v), 5795 NEONMAP0(vshrq_n_v), 5796 NEONMAP1(vst1_v, arm_neon_vst1, 0), 5797 NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0), 5798 NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0), 5799 NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0), 5800 NEONMAP1(vst1q_v, arm_neon_vst1, 0), 5801 NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0), 5802 NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0), 5803 NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0), 5804 NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0), 5805 NEONMAP1(vst2_v, arm_neon_vst2, 0), 5806 NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0), 5807 NEONMAP1(vst2q_v, arm_neon_vst2, 0), 5808 NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0), 5809 NEONMAP1(vst3_v, arm_neon_vst3, 0), 5810 NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0), 5811 NEONMAP1(vst3q_v, arm_neon_vst3, 0), 5812 NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0), 5813 NEONMAP1(vst4_v, arm_neon_vst4, 0), 5814 NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0), 5815 NEONMAP1(vst4q_v, arm_neon_vst4, 0), 5816 NEONMAP0(vsubhn_v), 5817 NEONMAP0(vtrn_v), 5818 NEONMAP0(vtrnq_v), 5819 NEONMAP0(vtst_v), 5820 NEONMAP0(vtstq_v), 5821 NEONMAP1(vusdot_v, arm_neon_usdot, 0), 5822 NEONMAP1(vusdotq_v, arm_neon_usdot, 0), 5823 NEONMAP1(vusmmlaq_v, arm_neon_usmmla, 0), 5824 NEONMAP0(vuzp_v), 5825 NEONMAP0(vuzpq_v), 5826 NEONMAP0(vzip_v), 5827 NEONMAP0(vzipq_v) 5828 }; 5829 5830 static const ARMVectorIntrinsicInfo AArch64SIMDIntrinsicMap[] = { 5831 NEONMAP1(__a64_vcvtq_low_bf16_v, aarch64_neon_bfcvtn, 0), 5832 NEONMAP0(splat_lane_v), 5833 NEONMAP0(splat_laneq_v), 5834 NEONMAP0(splatq_lane_v), 5835 NEONMAP0(splatq_laneq_v), 5836 NEONMAP1(vabs_v, aarch64_neon_abs, 0), 5837 NEONMAP1(vabsq_v, aarch64_neon_abs, 0), 5838 NEONMAP0(vadd_v), 5839 NEONMAP0(vaddhn_v), 5840 NEONMAP0(vaddq_p128), 5841 NEONMAP0(vaddq_v), 5842 NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0), 5843 NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0), 5844 NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0), 5845 NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0), 5846 NEONMAP2(vbcaxq_v, aarch64_crypto_bcaxu, aarch64_crypto_bcaxs, Add1ArgType | UnsignedAlts), 5847 NEONMAP1(vbfdot_v, aarch64_neon_bfdot, 0), 5848 NEONMAP1(vbfdotq_v, aarch64_neon_bfdot, 0), 5849 NEONMAP1(vbfmlalbq_v, aarch64_neon_bfmlalb, 0), 5850 NEONMAP1(vbfmlaltq_v, aarch64_neon_bfmlalt, 0), 5851 NEONMAP1(vbfmmlaq_v, aarch64_neon_bfmmla, 0), 5852 NEONMAP1(vcadd_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType), 5853 NEONMAP1(vcadd_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType), 5854 NEONMAP1(vcaddq_rot270_v, aarch64_neon_vcadd_rot270, Add1ArgType), 5855 NEONMAP1(vcaddq_rot90_v, aarch64_neon_vcadd_rot90, Add1ArgType), 5856 NEONMAP1(vcage_v, aarch64_neon_facge, 0), 5857 NEONMAP1(vcageq_v, aarch64_neon_facge, 0), 5858 NEONMAP1(vcagt_v, aarch64_neon_facgt, 0), 5859 NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0), 5860 NEONMAP1(vcale_v, aarch64_neon_facge, 0), 5861 NEONMAP1(vcaleq_v, aarch64_neon_facge, 0), 5862 NEONMAP1(vcalt_v, aarch64_neon_facgt, 0), 5863 NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0), 5864 NEONMAP0(vceqz_v), 5865 NEONMAP0(vceqzq_v), 5866 NEONMAP0(vcgez_v), 5867 NEONMAP0(vcgezq_v), 5868 NEONMAP0(vcgtz_v), 5869 NEONMAP0(vcgtzq_v), 5870 NEONMAP0(vclez_v), 5871 NEONMAP0(vclezq_v), 5872 NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType), 5873 NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType), 5874 NEONMAP0(vcltz_v), 5875 NEONMAP0(vcltzq_v), 5876 NEONMAP1(vclz_v, ctlz, Add1ArgType), 5877 NEONMAP1(vclzq_v, ctlz, Add1ArgType), 5878 NEONMAP1(vcmla_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType), 5879 NEONMAP1(vcmla_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType), 5880 NEONMAP1(vcmla_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType), 5881 NEONMAP1(vcmla_v, aarch64_neon_vcmla_rot0, Add1ArgType), 5882 NEONMAP1(vcmlaq_rot180_v, aarch64_neon_vcmla_rot180, Add1ArgType), 5883 NEONMAP1(vcmlaq_rot270_v, aarch64_neon_vcmla_rot270, Add1ArgType), 5884 NEONMAP1(vcmlaq_rot90_v, aarch64_neon_vcmla_rot90, Add1ArgType), 5885 NEONMAP1(vcmlaq_v, aarch64_neon_vcmla_rot0, Add1ArgType), 5886 NEONMAP1(vcnt_v, ctpop, Add1ArgType), 5887 NEONMAP1(vcntq_v, ctpop, Add1ArgType), 5888 NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0), 5889 NEONMAP0(vcvt_f16_v), 5890 NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0), 5891 NEONMAP0(vcvt_f32_v), 5892 NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 5893 NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 5894 NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 5895 NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), 5896 NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), 5897 NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), 5898 NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), 5899 NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), 5900 NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), 5901 NEONMAP0(vcvtq_f16_v), 5902 NEONMAP0(vcvtq_f32_v), 5903 NEONMAP1(vcvtq_high_bf16_v, aarch64_neon_bfcvtn2, 0), 5904 NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 5905 NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 5906 NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0), 5907 NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0), 5908 NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0), 5909 NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0), 5910 NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0), 5911 NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0), 5912 NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0), 5913 NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType), 5914 NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0), 5915 NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0), 5916 NEONMAP2(veor3q_v, aarch64_crypto_eor3u, aarch64_crypto_eor3s, Add1ArgType | UnsignedAlts), 5917 NEONMAP0(vext_v), 5918 NEONMAP0(vextq_v), 5919 NEONMAP0(vfma_v), 5920 NEONMAP0(vfmaq_v), 5921 NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0), 5922 NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0), 5923 NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0), 5924 NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0), 5925 NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0), 5926 NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0), 5927 NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0), 5928 NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0), 5929 NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), 5930 NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts), 5931 NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), 5932 NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts), 5933 NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0), 5934 NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0), 5935 NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0), 5936 NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0), 5937 NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0), 5938 NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0), 5939 NEONMAP2(vmmlaq_v, aarch64_neon_ummla, aarch64_neon_smmla, 0), 5940 NEONMAP0(vmovl_v), 5941 NEONMAP0(vmovn_v), 5942 NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType), 5943 NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType), 5944 NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType), 5945 NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), 5946 NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts), 5947 NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType), 5948 NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType), 5949 NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType), 5950 NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), 5951 NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts), 5952 NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0), 5953 NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0), 5954 NEONMAP1(vqdmulh_lane_v, aarch64_neon_sqdmulh_lane, 0), 5955 NEONMAP1(vqdmulh_laneq_v, aarch64_neon_sqdmulh_laneq, 0), 5956 NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType), 5957 NEONMAP1(vqdmulhq_lane_v, aarch64_neon_sqdmulh_lane, 0), 5958 NEONMAP1(vqdmulhq_laneq_v, aarch64_neon_sqdmulh_laneq, 0), 5959 NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType), 5960 NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType), 5961 NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts), 5962 NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType), 5963 NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType), 5964 NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType), 5965 NEONMAP1(vqrdmulh_lane_v, aarch64_neon_sqrdmulh_lane, 0), 5966 NEONMAP1(vqrdmulh_laneq_v, aarch64_neon_sqrdmulh_laneq, 0), 5967 NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType), 5968 NEONMAP1(vqrdmulhq_lane_v, aarch64_neon_sqrdmulh_lane, 0), 5969 NEONMAP1(vqrdmulhq_laneq_v, aarch64_neon_sqrdmulh_laneq, 0), 5970 NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType), 5971 NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), 5972 NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts), 5973 NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts), 5974 NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), 5975 NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts), 5976 NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts), 5977 NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0), 5978 NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0), 5979 NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), 5980 NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts), 5981 NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType), 5982 NEONMAP1(vrax1q_v, aarch64_crypto_rax1, 0), 5983 NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), 5984 NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0), 5985 NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType), 5986 NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType), 5987 NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), 5988 NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts), 5989 NEONMAP1(vrnd32x_v, aarch64_neon_frint32x, Add1ArgType), 5990 NEONMAP1(vrnd32xq_v, aarch64_neon_frint32x, Add1ArgType), 5991 NEONMAP1(vrnd32z_v, aarch64_neon_frint32z, Add1ArgType), 5992 NEONMAP1(vrnd32zq_v, aarch64_neon_frint32z, Add1ArgType), 5993 NEONMAP1(vrnd64x_v, aarch64_neon_frint64x, Add1ArgType), 5994 NEONMAP1(vrnd64xq_v, aarch64_neon_frint64x, Add1ArgType), 5995 NEONMAP1(vrnd64z_v, aarch64_neon_frint64z, Add1ArgType), 5996 NEONMAP1(vrnd64zq_v, aarch64_neon_frint64z, Add1ArgType), 5997 NEONMAP0(vrndi_v), 5998 NEONMAP0(vrndiq_v), 5999 NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), 6000 NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts), 6001 NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), 6002 NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts), 6003 NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), 6004 NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0), 6005 NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType), 6006 NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType), 6007 NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType), 6008 NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0), 6009 NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0), 6010 NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0), 6011 NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0), 6012 NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0), 6013 NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0), 6014 NEONMAP1(vsha512h2q_v, aarch64_crypto_sha512h2, 0), 6015 NEONMAP1(vsha512hq_v, aarch64_crypto_sha512h, 0), 6016 NEONMAP1(vsha512su0q_v, aarch64_crypto_sha512su0, 0), 6017 NEONMAP1(vsha512su1q_v, aarch64_crypto_sha512su1, 0), 6018 NEONMAP0(vshl_n_v), 6019 NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), 6020 NEONMAP0(vshll_n_v), 6021 NEONMAP0(vshlq_n_v), 6022 NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts), 6023 NEONMAP0(vshr_n_v), 6024 NEONMAP0(vshrn_n_v), 6025 NEONMAP0(vshrq_n_v), 6026 NEONMAP1(vsm3partw1q_v, aarch64_crypto_sm3partw1, 0), 6027 NEONMAP1(vsm3partw2q_v, aarch64_crypto_sm3partw2, 0), 6028 NEONMAP1(vsm3ss1q_v, aarch64_crypto_sm3ss1, 0), 6029 NEONMAP1(vsm3tt1aq_v, aarch64_crypto_sm3tt1a, 0), 6030 NEONMAP1(vsm3tt1bq_v, aarch64_crypto_sm3tt1b, 0), 6031 NEONMAP1(vsm3tt2aq_v, aarch64_crypto_sm3tt2a, 0), 6032 NEONMAP1(vsm3tt2bq_v, aarch64_crypto_sm3tt2b, 0), 6033 NEONMAP1(vsm4ekeyq_v, aarch64_crypto_sm4ekey, 0), 6034 NEONMAP1(vsm4eq_v, aarch64_crypto_sm4e, 0), 6035 NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0), 6036 NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0), 6037 NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0), 6038 NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0), 6039 NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0), 6040 NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0), 6041 NEONMAP0(vsubhn_v), 6042 NEONMAP0(vtst_v), 6043 NEONMAP0(vtstq_v), 6044 NEONMAP1(vusdot_v, aarch64_neon_usdot, 0), 6045 NEONMAP1(vusdotq_v, aarch64_neon_usdot, 0), 6046 NEONMAP1(vusmmlaq_v, aarch64_neon_usmmla, 0), 6047 NEONMAP1(vxarq_v, aarch64_crypto_xar, 0), 6048 }; 6049 6050 static const ARMVectorIntrinsicInfo AArch64SISDIntrinsicMap[] = { 6051 NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType), 6052 NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType), 6053 NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType), 6054 NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), 6055 NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), 6056 NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType), 6057 NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType), 6058 NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), 6059 NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), 6060 NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), 6061 NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType), 6062 NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType), 6063 NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType), 6064 NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType), 6065 NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType), 6066 NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), 6067 NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType), 6068 NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType), 6069 NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), 6070 NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), 6071 NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType), 6072 NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType), 6073 NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType), 6074 NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType), 6075 NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 6076 NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 6077 NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 6078 NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 6079 NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 6080 NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 6081 NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 6082 NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 6083 NEONMAP1(vcvtd_s64_f64, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), 6084 NEONMAP1(vcvtd_u64_f64, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), 6085 NEONMAP1(vcvth_bf16_f32, aarch64_neon_bfcvt, 0), 6086 NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 6087 NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 6088 NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 6089 NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 6090 NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 6091 NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 6092 NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 6093 NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 6094 NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 6095 NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 6096 NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 6097 NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 6098 NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 6099 NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 6100 NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 6101 NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 6102 NEONMAP1(vcvts_s32_f32, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), 6103 NEONMAP1(vcvts_u32_f32, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), 6104 NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0), 6105 NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 6106 NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 6107 NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 6108 NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 6109 NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), 6110 NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), 6111 NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 6112 NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 6113 NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType), 6114 NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType), 6115 NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 6116 NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 6117 NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 6118 NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), 6119 NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), 6120 NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), 6121 NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), 6122 NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), 6123 NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType), 6124 NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType), 6125 NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0), 6126 NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType), 6127 NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType), 6128 NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType), 6129 NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType), 6130 NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 6131 NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType), 6132 NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 6133 NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType), 6134 NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 6135 NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType), 6136 NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType), 6137 NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType), 6138 NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), 6139 NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType), 6140 NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors), 6141 NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType), 6142 NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), 6143 NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), 6144 NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType), 6145 NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType), 6146 NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors), 6147 NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors), 6148 NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType), 6149 NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType), 6150 NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors), 6151 NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType), 6152 NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors), 6153 NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0), 6154 NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType), 6155 NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType), 6156 NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), 6157 NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), 6158 NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors), 6159 NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors), 6160 NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType), 6161 NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), 6162 NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors), 6163 NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), 6164 NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType), 6165 NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors), 6166 NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType), 6167 NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors), 6168 NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType), 6169 NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), 6170 NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), 6171 NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType), 6172 NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType), 6173 NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors), 6174 NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors), 6175 NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType), 6176 NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType), 6177 NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType), 6178 NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType), 6179 NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), 6180 NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), 6181 NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors), 6182 NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors), 6183 NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType), 6184 NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), 6185 NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors), 6186 NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 6187 NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 6188 NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 6189 NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 6190 NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType), 6191 NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType), 6192 NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 6193 NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 6194 NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors), 6195 NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors), 6196 NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType), 6197 NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType), 6198 NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType), 6199 NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType), 6200 NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), 6201 NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors), 6202 NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType), 6203 NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType), 6204 NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType), 6205 NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), 6206 NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), 6207 NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors), 6208 NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors), 6209 NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType), 6210 NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), 6211 NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors), 6212 NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), 6213 NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), 6214 NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType), 6215 NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType), 6216 NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors), 6217 NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors), 6218 NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType), 6219 NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType), 6220 NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType), 6221 NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType), 6222 NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType), 6223 NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType), 6224 NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType), 6225 NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType), 6226 NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType), 6227 NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType), 6228 NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType), 6229 NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType), 6230 NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0), 6231 NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0), 6232 NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0), 6233 NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0), 6234 NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType), 6235 NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType), 6236 NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType), 6237 NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType), 6238 NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), 6239 NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType), 6240 NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors), 6241 NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType), 6242 NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType), 6243 NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType), 6244 NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), 6245 NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType), 6246 NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors), 6247 NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType), 6248 // FP16 scalar intrinisics go here. 6249 NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType), 6250 NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 6251 NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType), 6252 NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 6253 NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType), 6254 NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 6255 NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType), 6256 NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 6257 NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType), 6258 NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 6259 NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType), 6260 NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 6261 NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType), 6262 NEONMAP1(vcvth_s32_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), 6263 NEONMAP1(vcvth_s64_f16, aarch64_neon_fcvtzs, AddRetType | Add1ArgType), 6264 NEONMAP1(vcvth_u32_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), 6265 NEONMAP1(vcvth_u64_f16, aarch64_neon_fcvtzu, AddRetType | Add1ArgType), 6266 NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 6267 NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType), 6268 NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 6269 NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType), 6270 NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 6271 NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType), 6272 NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 6273 NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType), 6274 NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 6275 NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType), 6276 NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 6277 NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType), 6278 NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType), 6279 NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType), 6280 NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType), 6281 NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType), 6282 NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType), 6283 }; 6284 6285 #undef NEONMAP0 6286 #undef NEONMAP1 6287 #undef NEONMAP2 6288 6289 #define SVEMAP1(NameBase, LLVMIntrinsic, TypeModifier) \ 6290 { \ 6291 #NameBase, SVE::BI__builtin_sve_##NameBase, Intrinsic::LLVMIntrinsic, 0, \ 6292 TypeModifier \ 6293 } 6294 6295 #define SVEMAP2(NameBase, TypeModifier) \ 6296 { #NameBase, SVE::BI__builtin_sve_##NameBase, 0, 0, TypeModifier } 6297 static const ARMVectorIntrinsicInfo AArch64SVEIntrinsicMap[] = { 6298 #define GET_SVE_LLVM_INTRINSIC_MAP 6299 #include "clang/Basic/arm_sve_builtin_cg.inc" 6300 #undef GET_SVE_LLVM_INTRINSIC_MAP 6301 }; 6302 6303 #undef SVEMAP1 6304 #undef SVEMAP2 6305 6306 static bool NEONSIMDIntrinsicsProvenSorted = false; 6307 6308 static bool AArch64SIMDIntrinsicsProvenSorted = false; 6309 static bool AArch64SISDIntrinsicsProvenSorted = false; 6310 static bool AArch64SVEIntrinsicsProvenSorted = false; 6311 6312 static const ARMVectorIntrinsicInfo * 6313 findARMVectorIntrinsicInMap(ArrayRef<ARMVectorIntrinsicInfo> IntrinsicMap, 6314 unsigned BuiltinID, bool &MapProvenSorted) { 6315 6316 #ifndef NDEBUG 6317 if (!MapProvenSorted) { 6318 assert(llvm::is_sorted(IntrinsicMap)); 6319 MapProvenSorted = true; 6320 } 6321 #endif 6322 6323 const ARMVectorIntrinsicInfo *Builtin = 6324 llvm::lower_bound(IntrinsicMap, BuiltinID); 6325 6326 if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID) 6327 return Builtin; 6328 6329 return nullptr; 6330 } 6331 6332 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 6333 unsigned Modifier, 6334 llvm::Type *ArgType, 6335 const CallExpr *E) { 6336 int VectorSize = 0; 6337 if (Modifier & Use64BitVectors) 6338 VectorSize = 64; 6339 else if (Modifier & Use128BitVectors) 6340 VectorSize = 128; 6341 6342 // Return type. 6343 SmallVector<llvm::Type *, 3> Tys; 6344 if (Modifier & AddRetType) { 6345 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); 6346 if (Modifier & VectorizeRetType) 6347 Ty = llvm::FixedVectorType::get( 6348 Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1); 6349 6350 Tys.push_back(Ty); 6351 } 6352 6353 // Arguments. 6354 if (Modifier & VectorizeArgTypes) { 6355 int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1; 6356 ArgType = llvm::FixedVectorType::get(ArgType, Elts); 6357 } 6358 6359 if (Modifier & (Add1ArgType | Add2ArgTypes)) 6360 Tys.push_back(ArgType); 6361 6362 if (Modifier & Add2ArgTypes) 6363 Tys.push_back(ArgType); 6364 6365 if (Modifier & InventFloatType) 6366 Tys.push_back(FloatTy); 6367 6368 return CGM.getIntrinsic(IntrinsicID, Tys); 6369 } 6370 6371 static Value *EmitCommonNeonSISDBuiltinExpr( 6372 CodeGenFunction &CGF, const ARMVectorIntrinsicInfo &SISDInfo, 6373 SmallVectorImpl<Value *> &Ops, const CallExpr *E) { 6374 unsigned BuiltinID = SISDInfo.BuiltinID; 6375 unsigned int Int = SISDInfo.LLVMIntrinsic; 6376 unsigned Modifier = SISDInfo.TypeModifier; 6377 const char *s = SISDInfo.NameHint; 6378 6379 switch (BuiltinID) { 6380 case NEON::BI__builtin_neon_vcled_s64: 6381 case NEON::BI__builtin_neon_vcled_u64: 6382 case NEON::BI__builtin_neon_vcles_f32: 6383 case NEON::BI__builtin_neon_vcled_f64: 6384 case NEON::BI__builtin_neon_vcltd_s64: 6385 case NEON::BI__builtin_neon_vcltd_u64: 6386 case NEON::BI__builtin_neon_vclts_f32: 6387 case NEON::BI__builtin_neon_vcltd_f64: 6388 case NEON::BI__builtin_neon_vcales_f32: 6389 case NEON::BI__builtin_neon_vcaled_f64: 6390 case NEON::BI__builtin_neon_vcalts_f32: 6391 case NEON::BI__builtin_neon_vcaltd_f64: 6392 // Only one direction of comparisons actually exist, cmle is actually a cmge 6393 // with swapped operands. The table gives us the right intrinsic but we 6394 // still need to do the swap. 6395 std::swap(Ops[0], Ops[1]); 6396 break; 6397 } 6398 6399 assert(Int && "Generic code assumes a valid intrinsic"); 6400 6401 // Determine the type(s) of this overloaded AArch64 intrinsic. 6402 const Expr *Arg = E->getArg(0); 6403 llvm::Type *ArgTy = CGF.ConvertType(Arg->getType()); 6404 Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E); 6405 6406 int j = 0; 6407 ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0); 6408 for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end(); 6409 ai != ae; ++ai, ++j) { 6410 llvm::Type *ArgTy = ai->getType(); 6411 if (Ops[j]->getType()->getPrimitiveSizeInBits() == 6412 ArgTy->getPrimitiveSizeInBits()) 6413 continue; 6414 6415 assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy()); 6416 // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate 6417 // it before inserting. 6418 Ops[j] = CGF.Builder.CreateTruncOrBitCast( 6419 Ops[j], cast<llvm::VectorType>(ArgTy)->getElementType()); 6420 Ops[j] = 6421 CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0); 6422 } 6423 6424 Value *Result = CGF.EmitNeonCall(F, Ops, s); 6425 llvm::Type *ResultType = CGF.ConvertType(E->getType()); 6426 if (ResultType->getPrimitiveSizeInBits().getFixedSize() < 6427 Result->getType()->getPrimitiveSizeInBits().getFixedSize()) 6428 return CGF.Builder.CreateExtractElement(Result, C0); 6429 6430 return CGF.Builder.CreateBitCast(Result, ResultType, s); 6431 } 6432 6433 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr( 6434 unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic, 6435 const char *NameHint, unsigned Modifier, const CallExpr *E, 6436 SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1, 6437 llvm::Triple::ArchType Arch) { 6438 // Get the last argument, which specifies the vector type. 6439 const Expr *Arg = E->getArg(E->getNumArgs() - 1); 6440 Optional<llvm::APSInt> NeonTypeConst = 6441 Arg->getIntegerConstantExpr(getContext()); 6442 if (!NeonTypeConst) 6443 return nullptr; 6444 6445 // Determine the type of this overloaded NEON intrinsic. 6446 NeonTypeFlags Type(NeonTypeConst->getZExtValue()); 6447 bool Usgn = Type.isUnsigned(); 6448 bool Quad = Type.isQuad(); 6449 const bool HasLegalHalfType = getTarget().hasLegalHalfType(); 6450 const bool AllowBFloatArgsAndRet = 6451 getTargetHooks().getABIInfo().allowBFloatArgsAndRet(); 6452 6453 llvm::FixedVectorType *VTy = 6454 GetNeonType(this, Type, HasLegalHalfType, false, AllowBFloatArgsAndRet); 6455 llvm::Type *Ty = VTy; 6456 if (!Ty) 6457 return nullptr; 6458 6459 auto getAlignmentValue32 = [&](Address addr) -> Value* { 6460 return Builder.getInt32(addr.getAlignment().getQuantity()); 6461 }; 6462 6463 unsigned Int = LLVMIntrinsic; 6464 if ((Modifier & UnsignedAlts) && !Usgn) 6465 Int = AltLLVMIntrinsic; 6466 6467 switch (BuiltinID) { 6468 default: break; 6469 case NEON::BI__builtin_neon_splat_lane_v: 6470 case NEON::BI__builtin_neon_splat_laneq_v: 6471 case NEON::BI__builtin_neon_splatq_lane_v: 6472 case NEON::BI__builtin_neon_splatq_laneq_v: { 6473 auto NumElements = VTy->getElementCount(); 6474 if (BuiltinID == NEON::BI__builtin_neon_splatq_lane_v) 6475 NumElements = NumElements * 2; 6476 if (BuiltinID == NEON::BI__builtin_neon_splat_laneq_v) 6477 NumElements = NumElements.divideCoefficientBy(2); 6478 6479 Ops[0] = Builder.CreateBitCast(Ops[0], VTy); 6480 return EmitNeonSplat(Ops[0], cast<ConstantInt>(Ops[1]), NumElements); 6481 } 6482 case NEON::BI__builtin_neon_vpadd_v: 6483 case NEON::BI__builtin_neon_vpaddq_v: 6484 // We don't allow fp/int overloading of intrinsics. 6485 if (VTy->getElementType()->isFloatingPointTy() && 6486 Int == Intrinsic::aarch64_neon_addp) 6487 Int = Intrinsic::aarch64_neon_faddp; 6488 break; 6489 case NEON::BI__builtin_neon_vabs_v: 6490 case NEON::BI__builtin_neon_vabsq_v: 6491 if (VTy->getElementType()->isFloatingPointTy()) 6492 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs"); 6493 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs"); 6494 case NEON::BI__builtin_neon_vadd_v: 6495 case NEON::BI__builtin_neon_vaddq_v: { 6496 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, Quad ? 16 : 8); 6497 Ops[0] = Builder.CreateBitCast(Ops[0], VTy); 6498 Ops[1] = Builder.CreateBitCast(Ops[1], VTy); 6499 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]); 6500 return Builder.CreateBitCast(Ops[0], Ty); 6501 } 6502 case NEON::BI__builtin_neon_vaddhn_v: { 6503 llvm::FixedVectorType *SrcTy = 6504 llvm::FixedVectorType::getExtendedElementVectorType(VTy); 6505 6506 // %sum = add <4 x i32> %lhs, %rhs 6507 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 6508 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); 6509 Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn"); 6510 6511 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> 6512 Constant *ShiftAmt = 6513 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); 6514 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn"); 6515 6516 // %res = trunc <4 x i32> %high to <4 x i16> 6517 return Builder.CreateTrunc(Ops[0], VTy, "vaddhn"); 6518 } 6519 case NEON::BI__builtin_neon_vcale_v: 6520 case NEON::BI__builtin_neon_vcaleq_v: 6521 case NEON::BI__builtin_neon_vcalt_v: 6522 case NEON::BI__builtin_neon_vcaltq_v: 6523 std::swap(Ops[0], Ops[1]); 6524 LLVM_FALLTHROUGH; 6525 case NEON::BI__builtin_neon_vcage_v: 6526 case NEON::BI__builtin_neon_vcageq_v: 6527 case NEON::BI__builtin_neon_vcagt_v: 6528 case NEON::BI__builtin_neon_vcagtq_v: { 6529 llvm::Type *Ty; 6530 switch (VTy->getScalarSizeInBits()) { 6531 default: llvm_unreachable("unexpected type"); 6532 case 32: 6533 Ty = FloatTy; 6534 break; 6535 case 64: 6536 Ty = DoubleTy; 6537 break; 6538 case 16: 6539 Ty = HalfTy; 6540 break; 6541 } 6542 auto *VecFlt = llvm::FixedVectorType::get(Ty, VTy->getNumElements()); 6543 llvm::Type *Tys[] = { VTy, VecFlt }; 6544 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6545 return EmitNeonCall(F, Ops, NameHint); 6546 } 6547 case NEON::BI__builtin_neon_vceqz_v: 6548 case NEON::BI__builtin_neon_vceqzq_v: 6549 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ, 6550 ICmpInst::ICMP_EQ, "vceqz"); 6551 case NEON::BI__builtin_neon_vcgez_v: 6552 case NEON::BI__builtin_neon_vcgezq_v: 6553 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE, 6554 ICmpInst::ICMP_SGE, "vcgez"); 6555 case NEON::BI__builtin_neon_vclez_v: 6556 case NEON::BI__builtin_neon_vclezq_v: 6557 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE, 6558 ICmpInst::ICMP_SLE, "vclez"); 6559 case NEON::BI__builtin_neon_vcgtz_v: 6560 case NEON::BI__builtin_neon_vcgtzq_v: 6561 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT, 6562 ICmpInst::ICMP_SGT, "vcgtz"); 6563 case NEON::BI__builtin_neon_vcltz_v: 6564 case NEON::BI__builtin_neon_vcltzq_v: 6565 return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT, 6566 ICmpInst::ICMP_SLT, "vcltz"); 6567 case NEON::BI__builtin_neon_vclz_v: 6568 case NEON::BI__builtin_neon_vclzq_v: 6569 // We generate target-independent intrinsic, which needs a second argument 6570 // for whether or not clz of zero is undefined; on ARM it isn't. 6571 Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef())); 6572 break; 6573 case NEON::BI__builtin_neon_vcvt_f32_v: 6574 case NEON::BI__builtin_neon_vcvtq_f32_v: 6575 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6576 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad), 6577 HasLegalHalfType); 6578 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") 6579 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); 6580 case NEON::BI__builtin_neon_vcvt_f16_v: 6581 case NEON::BI__builtin_neon_vcvtq_f16_v: 6582 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6583 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad), 6584 HasLegalHalfType); 6585 return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") 6586 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); 6587 case NEON::BI__builtin_neon_vcvt_n_f16_v: 6588 case NEON::BI__builtin_neon_vcvt_n_f32_v: 6589 case NEON::BI__builtin_neon_vcvt_n_f64_v: 6590 case NEON::BI__builtin_neon_vcvtq_n_f16_v: 6591 case NEON::BI__builtin_neon_vcvtq_n_f32_v: 6592 case NEON::BI__builtin_neon_vcvtq_n_f64_v: { 6593 llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty }; 6594 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; 6595 Function *F = CGM.getIntrinsic(Int, Tys); 6596 return EmitNeonCall(F, Ops, "vcvt_n"); 6597 } 6598 case NEON::BI__builtin_neon_vcvt_n_s16_v: 6599 case NEON::BI__builtin_neon_vcvt_n_s32_v: 6600 case NEON::BI__builtin_neon_vcvt_n_u16_v: 6601 case NEON::BI__builtin_neon_vcvt_n_u32_v: 6602 case NEON::BI__builtin_neon_vcvt_n_s64_v: 6603 case NEON::BI__builtin_neon_vcvt_n_u64_v: 6604 case NEON::BI__builtin_neon_vcvtq_n_s16_v: 6605 case NEON::BI__builtin_neon_vcvtq_n_s32_v: 6606 case NEON::BI__builtin_neon_vcvtq_n_u16_v: 6607 case NEON::BI__builtin_neon_vcvtq_n_u32_v: 6608 case NEON::BI__builtin_neon_vcvtq_n_s64_v: 6609 case NEON::BI__builtin_neon_vcvtq_n_u64_v: { 6610 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 6611 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6612 return EmitNeonCall(F, Ops, "vcvt_n"); 6613 } 6614 case NEON::BI__builtin_neon_vcvt_s32_v: 6615 case NEON::BI__builtin_neon_vcvt_u32_v: 6616 case NEON::BI__builtin_neon_vcvt_s64_v: 6617 case NEON::BI__builtin_neon_vcvt_u64_v: 6618 case NEON::BI__builtin_neon_vcvt_s16_v: 6619 case NEON::BI__builtin_neon_vcvt_u16_v: 6620 case NEON::BI__builtin_neon_vcvtq_s32_v: 6621 case NEON::BI__builtin_neon_vcvtq_u32_v: 6622 case NEON::BI__builtin_neon_vcvtq_s64_v: 6623 case NEON::BI__builtin_neon_vcvtq_u64_v: 6624 case NEON::BI__builtin_neon_vcvtq_s16_v: 6625 case NEON::BI__builtin_neon_vcvtq_u16_v: { 6626 Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type)); 6627 return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt") 6628 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt"); 6629 } 6630 case NEON::BI__builtin_neon_vcvta_s16_v: 6631 case NEON::BI__builtin_neon_vcvta_s32_v: 6632 case NEON::BI__builtin_neon_vcvta_s64_v: 6633 case NEON::BI__builtin_neon_vcvta_u16_v: 6634 case NEON::BI__builtin_neon_vcvta_u32_v: 6635 case NEON::BI__builtin_neon_vcvta_u64_v: 6636 case NEON::BI__builtin_neon_vcvtaq_s16_v: 6637 case NEON::BI__builtin_neon_vcvtaq_s32_v: 6638 case NEON::BI__builtin_neon_vcvtaq_s64_v: 6639 case NEON::BI__builtin_neon_vcvtaq_u16_v: 6640 case NEON::BI__builtin_neon_vcvtaq_u32_v: 6641 case NEON::BI__builtin_neon_vcvtaq_u64_v: 6642 case NEON::BI__builtin_neon_vcvtn_s16_v: 6643 case NEON::BI__builtin_neon_vcvtn_s32_v: 6644 case NEON::BI__builtin_neon_vcvtn_s64_v: 6645 case NEON::BI__builtin_neon_vcvtn_u16_v: 6646 case NEON::BI__builtin_neon_vcvtn_u32_v: 6647 case NEON::BI__builtin_neon_vcvtn_u64_v: 6648 case NEON::BI__builtin_neon_vcvtnq_s16_v: 6649 case NEON::BI__builtin_neon_vcvtnq_s32_v: 6650 case NEON::BI__builtin_neon_vcvtnq_s64_v: 6651 case NEON::BI__builtin_neon_vcvtnq_u16_v: 6652 case NEON::BI__builtin_neon_vcvtnq_u32_v: 6653 case NEON::BI__builtin_neon_vcvtnq_u64_v: 6654 case NEON::BI__builtin_neon_vcvtp_s16_v: 6655 case NEON::BI__builtin_neon_vcvtp_s32_v: 6656 case NEON::BI__builtin_neon_vcvtp_s64_v: 6657 case NEON::BI__builtin_neon_vcvtp_u16_v: 6658 case NEON::BI__builtin_neon_vcvtp_u32_v: 6659 case NEON::BI__builtin_neon_vcvtp_u64_v: 6660 case NEON::BI__builtin_neon_vcvtpq_s16_v: 6661 case NEON::BI__builtin_neon_vcvtpq_s32_v: 6662 case NEON::BI__builtin_neon_vcvtpq_s64_v: 6663 case NEON::BI__builtin_neon_vcvtpq_u16_v: 6664 case NEON::BI__builtin_neon_vcvtpq_u32_v: 6665 case NEON::BI__builtin_neon_vcvtpq_u64_v: 6666 case NEON::BI__builtin_neon_vcvtm_s16_v: 6667 case NEON::BI__builtin_neon_vcvtm_s32_v: 6668 case NEON::BI__builtin_neon_vcvtm_s64_v: 6669 case NEON::BI__builtin_neon_vcvtm_u16_v: 6670 case NEON::BI__builtin_neon_vcvtm_u32_v: 6671 case NEON::BI__builtin_neon_vcvtm_u64_v: 6672 case NEON::BI__builtin_neon_vcvtmq_s16_v: 6673 case NEON::BI__builtin_neon_vcvtmq_s32_v: 6674 case NEON::BI__builtin_neon_vcvtmq_s64_v: 6675 case NEON::BI__builtin_neon_vcvtmq_u16_v: 6676 case NEON::BI__builtin_neon_vcvtmq_u32_v: 6677 case NEON::BI__builtin_neon_vcvtmq_u64_v: { 6678 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 6679 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); 6680 } 6681 case NEON::BI__builtin_neon_vcvtx_f32_v: { 6682 llvm::Type *Tys[2] = { VTy->getTruncatedElementVectorType(VTy), Ty}; 6683 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint); 6684 6685 } 6686 case NEON::BI__builtin_neon_vext_v: 6687 case NEON::BI__builtin_neon_vextq_v: { 6688 int CV = cast<ConstantInt>(Ops[2])->getSExtValue(); 6689 SmallVector<int, 16> Indices; 6690 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 6691 Indices.push_back(i+CV); 6692 6693 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6694 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6695 return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext"); 6696 } 6697 case NEON::BI__builtin_neon_vfma_v: 6698 case NEON::BI__builtin_neon_vfmaq_v: { 6699 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6700 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6701 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 6702 6703 // NEON intrinsic puts accumulator first, unlike the LLVM fma. 6704 return emitCallMaybeConstrainedFPBuiltin( 6705 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, 6706 {Ops[1], Ops[2], Ops[0]}); 6707 } 6708 case NEON::BI__builtin_neon_vld1_v: 6709 case NEON::BI__builtin_neon_vld1q_v: { 6710 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 6711 Ops.push_back(getAlignmentValue32(PtrOp0)); 6712 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1"); 6713 } 6714 case NEON::BI__builtin_neon_vld1_x2_v: 6715 case NEON::BI__builtin_neon_vld1q_x2_v: 6716 case NEON::BI__builtin_neon_vld1_x3_v: 6717 case NEON::BI__builtin_neon_vld1q_x3_v: 6718 case NEON::BI__builtin_neon_vld1_x4_v: 6719 case NEON::BI__builtin_neon_vld1q_x4_v: { 6720 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType()); 6721 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 6722 llvm::Type *Tys[2] = { VTy, PTy }; 6723 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6724 Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN"); 6725 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 6726 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6727 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 6728 } 6729 case NEON::BI__builtin_neon_vld2_v: 6730 case NEON::BI__builtin_neon_vld2q_v: 6731 case NEON::BI__builtin_neon_vld3_v: 6732 case NEON::BI__builtin_neon_vld3q_v: 6733 case NEON::BI__builtin_neon_vld4_v: 6734 case NEON::BI__builtin_neon_vld4q_v: 6735 case NEON::BI__builtin_neon_vld2_dup_v: 6736 case NEON::BI__builtin_neon_vld2q_dup_v: 6737 case NEON::BI__builtin_neon_vld3_dup_v: 6738 case NEON::BI__builtin_neon_vld3q_dup_v: 6739 case NEON::BI__builtin_neon_vld4_dup_v: 6740 case NEON::BI__builtin_neon_vld4q_dup_v: { 6741 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 6742 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6743 Value *Align = getAlignmentValue32(PtrOp1); 6744 Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint); 6745 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 6746 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6747 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 6748 } 6749 case NEON::BI__builtin_neon_vld1_dup_v: 6750 case NEON::BI__builtin_neon_vld1q_dup_v: { 6751 Value *V = UndefValue::get(Ty); 6752 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 6753 PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty); 6754 LoadInst *Ld = Builder.CreateLoad(PtrOp0); 6755 llvm::Constant *CI = ConstantInt::get(SizeTy, 0); 6756 Ops[0] = Builder.CreateInsertElement(V, Ld, CI); 6757 return EmitNeonSplat(Ops[0], CI); 6758 } 6759 case NEON::BI__builtin_neon_vld2_lane_v: 6760 case NEON::BI__builtin_neon_vld2q_lane_v: 6761 case NEON::BI__builtin_neon_vld3_lane_v: 6762 case NEON::BI__builtin_neon_vld3q_lane_v: 6763 case NEON::BI__builtin_neon_vld4_lane_v: 6764 case NEON::BI__builtin_neon_vld4q_lane_v: { 6765 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 6766 Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys); 6767 for (unsigned I = 2; I < Ops.size() - 1; ++I) 6768 Ops[I] = Builder.CreateBitCast(Ops[I], Ty); 6769 Ops.push_back(getAlignmentValue32(PtrOp1)); 6770 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint); 6771 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 6772 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 6773 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 6774 } 6775 case NEON::BI__builtin_neon_vmovl_v: { 6776 llvm::FixedVectorType *DTy = 6777 llvm::FixedVectorType::getTruncatedElementVectorType(VTy); 6778 Ops[0] = Builder.CreateBitCast(Ops[0], DTy); 6779 if (Usgn) 6780 return Builder.CreateZExt(Ops[0], Ty, "vmovl"); 6781 return Builder.CreateSExt(Ops[0], Ty, "vmovl"); 6782 } 6783 case NEON::BI__builtin_neon_vmovn_v: { 6784 llvm::FixedVectorType *QTy = 6785 llvm::FixedVectorType::getExtendedElementVectorType(VTy); 6786 Ops[0] = Builder.CreateBitCast(Ops[0], QTy); 6787 return Builder.CreateTrunc(Ops[0], Ty, "vmovn"); 6788 } 6789 case NEON::BI__builtin_neon_vmull_v: 6790 // FIXME: the integer vmull operations could be emitted in terms of pure 6791 // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of 6792 // hoisting the exts outside loops. Until global ISel comes along that can 6793 // see through such movement this leads to bad CodeGen. So we need an 6794 // intrinsic for now. 6795 Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls; 6796 Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int; 6797 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); 6798 case NEON::BI__builtin_neon_vpadal_v: 6799 case NEON::BI__builtin_neon_vpadalq_v: { 6800 // The source operand type has twice as many elements of half the size. 6801 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 6802 llvm::Type *EltTy = 6803 llvm::IntegerType::get(getLLVMContext(), EltBits / 2); 6804 auto *NarrowTy = 6805 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2); 6806 llvm::Type *Tys[2] = { Ty, NarrowTy }; 6807 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); 6808 } 6809 case NEON::BI__builtin_neon_vpaddl_v: 6810 case NEON::BI__builtin_neon_vpaddlq_v: { 6811 // The source operand type has twice as many elements of half the size. 6812 unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits(); 6813 llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2); 6814 auto *NarrowTy = 6815 llvm::FixedVectorType::get(EltTy, VTy->getNumElements() * 2); 6816 llvm::Type *Tys[2] = { Ty, NarrowTy }; 6817 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl"); 6818 } 6819 case NEON::BI__builtin_neon_vqdmlal_v: 6820 case NEON::BI__builtin_neon_vqdmlsl_v: { 6821 SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end()); 6822 Ops[1] = 6823 EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal"); 6824 Ops.resize(2); 6825 return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint); 6826 } 6827 case NEON::BI__builtin_neon_vqdmulhq_lane_v: 6828 case NEON::BI__builtin_neon_vqdmulh_lane_v: 6829 case NEON::BI__builtin_neon_vqrdmulhq_lane_v: 6830 case NEON::BI__builtin_neon_vqrdmulh_lane_v: { 6831 auto *RTy = cast<llvm::FixedVectorType>(Ty); 6832 if (BuiltinID == NEON::BI__builtin_neon_vqdmulhq_lane_v || 6833 BuiltinID == NEON::BI__builtin_neon_vqrdmulhq_lane_v) 6834 RTy = llvm::FixedVectorType::get(RTy->getElementType(), 6835 RTy->getNumElements() * 2); 6836 llvm::Type *Tys[2] = { 6837 RTy, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false, 6838 /*isQuad*/ false))}; 6839 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); 6840 } 6841 case NEON::BI__builtin_neon_vqdmulhq_laneq_v: 6842 case NEON::BI__builtin_neon_vqdmulh_laneq_v: 6843 case NEON::BI__builtin_neon_vqrdmulhq_laneq_v: 6844 case NEON::BI__builtin_neon_vqrdmulh_laneq_v: { 6845 llvm::Type *Tys[2] = { 6846 Ty, GetNeonType(this, NeonTypeFlags(Type.getEltType(), false, 6847 /*isQuad*/ true))}; 6848 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint); 6849 } 6850 case NEON::BI__builtin_neon_vqshl_n_v: 6851 case NEON::BI__builtin_neon_vqshlq_n_v: 6852 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n", 6853 1, false); 6854 case NEON::BI__builtin_neon_vqshlu_n_v: 6855 case NEON::BI__builtin_neon_vqshluq_n_v: 6856 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n", 6857 1, false); 6858 case NEON::BI__builtin_neon_vrecpe_v: 6859 case NEON::BI__builtin_neon_vrecpeq_v: 6860 case NEON::BI__builtin_neon_vrsqrte_v: 6861 case NEON::BI__builtin_neon_vrsqrteq_v: 6862 Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic; 6863 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); 6864 case NEON::BI__builtin_neon_vrndi_v: 6865 case NEON::BI__builtin_neon_vrndiq_v: 6866 Int = Builder.getIsFPConstrained() 6867 ? Intrinsic::experimental_constrained_nearbyint 6868 : Intrinsic::nearbyint; 6869 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint); 6870 case NEON::BI__builtin_neon_vrshr_n_v: 6871 case NEON::BI__builtin_neon_vrshrq_n_v: 6872 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n", 6873 1, true); 6874 case NEON::BI__builtin_neon_vsha512hq_v: 6875 case NEON::BI__builtin_neon_vsha512h2q_v: 6876 case NEON::BI__builtin_neon_vsha512su0q_v: 6877 case NEON::BI__builtin_neon_vsha512su1q_v: { 6878 Function *F = CGM.getIntrinsic(Int); 6879 return EmitNeonCall(F, Ops, ""); 6880 } 6881 case NEON::BI__builtin_neon_vshl_n_v: 6882 case NEON::BI__builtin_neon_vshlq_n_v: 6883 Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false); 6884 return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1], 6885 "vshl_n"); 6886 case NEON::BI__builtin_neon_vshll_n_v: { 6887 llvm::FixedVectorType *SrcTy = 6888 llvm::FixedVectorType::getTruncatedElementVectorType(VTy); 6889 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 6890 if (Usgn) 6891 Ops[0] = Builder.CreateZExt(Ops[0], VTy); 6892 else 6893 Ops[0] = Builder.CreateSExt(Ops[0], VTy); 6894 Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false); 6895 return Builder.CreateShl(Ops[0], Ops[1], "vshll_n"); 6896 } 6897 case NEON::BI__builtin_neon_vshrn_n_v: { 6898 llvm::FixedVectorType *SrcTy = 6899 llvm::FixedVectorType::getExtendedElementVectorType(VTy); 6900 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 6901 Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false); 6902 if (Usgn) 6903 Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]); 6904 else 6905 Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]); 6906 return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n"); 6907 } 6908 case NEON::BI__builtin_neon_vshr_n_v: 6909 case NEON::BI__builtin_neon_vshrq_n_v: 6910 return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n"); 6911 case NEON::BI__builtin_neon_vst1_v: 6912 case NEON::BI__builtin_neon_vst1q_v: 6913 case NEON::BI__builtin_neon_vst2_v: 6914 case NEON::BI__builtin_neon_vst2q_v: 6915 case NEON::BI__builtin_neon_vst3_v: 6916 case NEON::BI__builtin_neon_vst3q_v: 6917 case NEON::BI__builtin_neon_vst4_v: 6918 case NEON::BI__builtin_neon_vst4q_v: 6919 case NEON::BI__builtin_neon_vst2_lane_v: 6920 case NEON::BI__builtin_neon_vst2q_lane_v: 6921 case NEON::BI__builtin_neon_vst3_lane_v: 6922 case NEON::BI__builtin_neon_vst3q_lane_v: 6923 case NEON::BI__builtin_neon_vst4_lane_v: 6924 case NEON::BI__builtin_neon_vst4q_lane_v: { 6925 llvm::Type *Tys[] = {Int8PtrTy, Ty}; 6926 Ops.push_back(getAlignmentValue32(PtrOp0)); 6927 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, ""); 6928 } 6929 case NEON::BI__builtin_neon_vsm3partw1q_v: 6930 case NEON::BI__builtin_neon_vsm3partw2q_v: 6931 case NEON::BI__builtin_neon_vsm3ss1q_v: 6932 case NEON::BI__builtin_neon_vsm4ekeyq_v: 6933 case NEON::BI__builtin_neon_vsm4eq_v: { 6934 Function *F = CGM.getIntrinsic(Int); 6935 return EmitNeonCall(F, Ops, ""); 6936 } 6937 case NEON::BI__builtin_neon_vsm3tt1aq_v: 6938 case NEON::BI__builtin_neon_vsm3tt1bq_v: 6939 case NEON::BI__builtin_neon_vsm3tt2aq_v: 6940 case NEON::BI__builtin_neon_vsm3tt2bq_v: { 6941 Function *F = CGM.getIntrinsic(Int); 6942 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); 6943 return EmitNeonCall(F, Ops, ""); 6944 } 6945 case NEON::BI__builtin_neon_vst1_x2_v: 6946 case NEON::BI__builtin_neon_vst1q_x2_v: 6947 case NEON::BI__builtin_neon_vst1_x3_v: 6948 case NEON::BI__builtin_neon_vst1q_x3_v: 6949 case NEON::BI__builtin_neon_vst1_x4_v: 6950 case NEON::BI__builtin_neon_vst1q_x4_v: { 6951 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getElementType()); 6952 // TODO: Currently in AArch32 mode the pointer operand comes first, whereas 6953 // in AArch64 it comes last. We may want to stick to one or another. 6954 if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be || 6955 Arch == llvm::Triple::aarch64_32) { 6956 llvm::Type *Tys[2] = { VTy, PTy }; 6957 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 6958 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); 6959 } 6960 llvm::Type *Tys[2] = { PTy, VTy }; 6961 return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, ""); 6962 } 6963 case NEON::BI__builtin_neon_vsubhn_v: { 6964 llvm::FixedVectorType *SrcTy = 6965 llvm::FixedVectorType::getExtendedElementVectorType(VTy); 6966 6967 // %sum = add <4 x i32> %lhs, %rhs 6968 Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy); 6969 Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy); 6970 Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn"); 6971 6972 // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16> 6973 Constant *ShiftAmt = 6974 ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2); 6975 Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn"); 6976 6977 // %res = trunc <4 x i32> %high to <4 x i16> 6978 return Builder.CreateTrunc(Ops[0], VTy, "vsubhn"); 6979 } 6980 case NEON::BI__builtin_neon_vtrn_v: 6981 case NEON::BI__builtin_neon_vtrnq_v: { 6982 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 6983 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 6984 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 6985 Value *SV = nullptr; 6986 6987 for (unsigned vi = 0; vi != 2; ++vi) { 6988 SmallVector<int, 16> Indices; 6989 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 6990 Indices.push_back(i+vi); 6991 Indices.push_back(i+e+vi); 6992 } 6993 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 6994 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); 6995 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 6996 } 6997 return SV; 6998 } 6999 case NEON::BI__builtin_neon_vtst_v: 7000 case NEON::BI__builtin_neon_vtstq_v: { 7001 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 7002 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7003 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); 7004 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], 7005 ConstantAggregateZero::get(Ty)); 7006 return Builder.CreateSExt(Ops[0], Ty, "vtst"); 7007 } 7008 case NEON::BI__builtin_neon_vuzp_v: 7009 case NEON::BI__builtin_neon_vuzpq_v: { 7010 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 7011 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7012 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 7013 Value *SV = nullptr; 7014 7015 for (unsigned vi = 0; vi != 2; ++vi) { 7016 SmallVector<int, 16> Indices; 7017 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 7018 Indices.push_back(2*i+vi); 7019 7020 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 7021 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); 7022 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 7023 } 7024 return SV; 7025 } 7026 case NEON::BI__builtin_neon_vxarq_v: { 7027 Function *F = CGM.getIntrinsic(Int); 7028 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); 7029 return EmitNeonCall(F, Ops, ""); 7030 } 7031 case NEON::BI__builtin_neon_vzip_v: 7032 case NEON::BI__builtin_neon_vzipq_v: { 7033 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 7034 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7035 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 7036 Value *SV = nullptr; 7037 7038 for (unsigned vi = 0; vi != 2; ++vi) { 7039 SmallVector<int, 16> Indices; 7040 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 7041 Indices.push_back((i + vi*e) >> 1); 7042 Indices.push_back(((i + vi*e) >> 1)+e); 7043 } 7044 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 7045 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); 7046 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 7047 } 7048 return SV; 7049 } 7050 case NEON::BI__builtin_neon_vdot_v: 7051 case NEON::BI__builtin_neon_vdotq_v: { 7052 auto *InputTy = 7053 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); 7054 llvm::Type *Tys[2] = { Ty, InputTy }; 7055 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; 7056 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot"); 7057 } 7058 case NEON::BI__builtin_neon_vfmlal_low_v: 7059 case NEON::BI__builtin_neon_vfmlalq_low_v: { 7060 auto *InputTy = 7061 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 7062 llvm::Type *Tys[2] = { Ty, InputTy }; 7063 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low"); 7064 } 7065 case NEON::BI__builtin_neon_vfmlsl_low_v: 7066 case NEON::BI__builtin_neon_vfmlslq_low_v: { 7067 auto *InputTy = 7068 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 7069 llvm::Type *Tys[2] = { Ty, InputTy }; 7070 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low"); 7071 } 7072 case NEON::BI__builtin_neon_vfmlal_high_v: 7073 case NEON::BI__builtin_neon_vfmlalq_high_v: { 7074 auto *InputTy = 7075 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 7076 llvm::Type *Tys[2] = { Ty, InputTy }; 7077 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high"); 7078 } 7079 case NEON::BI__builtin_neon_vfmlsl_high_v: 7080 case NEON::BI__builtin_neon_vfmlslq_high_v: { 7081 auto *InputTy = 7082 llvm::FixedVectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16); 7083 llvm::Type *Tys[2] = { Ty, InputTy }; 7084 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high"); 7085 } 7086 case NEON::BI__builtin_neon_vmmlaq_v: { 7087 auto *InputTy = 7088 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); 7089 llvm::Type *Tys[2] = { Ty, InputTy }; 7090 Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic; 7091 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmmla"); 7092 } 7093 case NEON::BI__builtin_neon_vusmmlaq_v: { 7094 auto *InputTy = 7095 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); 7096 llvm::Type *Tys[2] = { Ty, InputTy }; 7097 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusmmla"); 7098 } 7099 case NEON::BI__builtin_neon_vusdot_v: 7100 case NEON::BI__builtin_neon_vusdotq_v: { 7101 auto *InputTy = 7102 llvm::FixedVectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8); 7103 llvm::Type *Tys[2] = { Ty, InputTy }; 7104 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vusdot"); 7105 } 7106 case NEON::BI__builtin_neon_vbfdot_v: 7107 case NEON::BI__builtin_neon_vbfdotq_v: { 7108 llvm::Type *InputTy = 7109 llvm::FixedVectorType::get(BFloatTy, Ty->getPrimitiveSizeInBits() / 16); 7110 llvm::Type *Tys[2] = { Ty, InputTy }; 7111 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vbfdot"); 7112 } 7113 case NEON::BI__builtin_neon___a32_vcvt_bf16_v: { 7114 llvm::Type *Tys[1] = { Ty }; 7115 Function *F = CGM.getIntrinsic(Int, Tys); 7116 return EmitNeonCall(F, Ops, "vcvtfp2bf"); 7117 } 7118 7119 } 7120 7121 assert(Int && "Expected valid intrinsic number"); 7122 7123 // Determine the type(s) of this overloaded AArch64 intrinsic. 7124 Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E); 7125 7126 Value *Result = EmitNeonCall(F, Ops, NameHint); 7127 llvm::Type *ResultType = ConvertType(E->getType()); 7128 // AArch64 intrinsic one-element vector type cast to 7129 // scalar type expected by the builtin 7130 return Builder.CreateBitCast(Result, ResultType, NameHint); 7131 } 7132 7133 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr( 7134 Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp, 7135 const CmpInst::Predicate Ip, const Twine &Name) { 7136 llvm::Type *OTy = Op->getType(); 7137 7138 // FIXME: this is utterly horrific. We should not be looking at previous 7139 // codegen context to find out what needs doing. Unfortunately TableGen 7140 // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32 7141 // (etc). 7142 if (BitCastInst *BI = dyn_cast<BitCastInst>(Op)) 7143 OTy = BI->getOperand(0)->getType(); 7144 7145 Op = Builder.CreateBitCast(Op, OTy); 7146 if (OTy->getScalarType()->isFloatingPointTy()) { 7147 Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy)); 7148 } else { 7149 Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy)); 7150 } 7151 return Builder.CreateSExt(Op, Ty, Name); 7152 } 7153 7154 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 7155 Value *ExtOp, Value *IndexOp, 7156 llvm::Type *ResTy, unsigned IntID, 7157 const char *Name) { 7158 SmallVector<Value *, 2> TblOps; 7159 if (ExtOp) 7160 TblOps.push_back(ExtOp); 7161 7162 // Build a vector containing sequential number like (0, 1, 2, ..., 15) 7163 SmallVector<int, 16> Indices; 7164 auto *TblTy = cast<llvm::FixedVectorType>(Ops[0]->getType()); 7165 for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) { 7166 Indices.push_back(2*i); 7167 Indices.push_back(2*i+1); 7168 } 7169 7170 int PairPos = 0, End = Ops.size() - 1; 7171 while (PairPos < End) { 7172 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], 7173 Ops[PairPos+1], Indices, 7174 Name)); 7175 PairPos += 2; 7176 } 7177 7178 // If there's an odd number of 64-bit lookup table, fill the high 64-bit 7179 // of the 128-bit lookup table with zero. 7180 if (PairPos == End) { 7181 Value *ZeroTbl = ConstantAggregateZero::get(TblTy); 7182 TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos], 7183 ZeroTbl, Indices, Name)); 7184 } 7185 7186 Function *TblF; 7187 TblOps.push_back(IndexOp); 7188 TblF = CGF.CGM.getIntrinsic(IntID, ResTy); 7189 7190 return CGF.EmitNeonCall(TblF, TblOps, Name); 7191 } 7192 7193 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) { 7194 unsigned Value; 7195 switch (BuiltinID) { 7196 default: 7197 return nullptr; 7198 case ARM::BI__builtin_arm_nop: 7199 Value = 0; 7200 break; 7201 case ARM::BI__builtin_arm_yield: 7202 case ARM::BI__yield: 7203 Value = 1; 7204 break; 7205 case ARM::BI__builtin_arm_wfe: 7206 case ARM::BI__wfe: 7207 Value = 2; 7208 break; 7209 case ARM::BI__builtin_arm_wfi: 7210 case ARM::BI__wfi: 7211 Value = 3; 7212 break; 7213 case ARM::BI__builtin_arm_sev: 7214 case ARM::BI__sev: 7215 Value = 4; 7216 break; 7217 case ARM::BI__builtin_arm_sevl: 7218 case ARM::BI__sevl: 7219 Value = 5; 7220 break; 7221 } 7222 7223 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint), 7224 llvm::ConstantInt::get(Int32Ty, Value)); 7225 } 7226 7227 enum SpecialRegisterAccessKind { 7228 NormalRead, 7229 VolatileRead, 7230 Write, 7231 }; 7232 7233 // Generates the IR for the read/write special register builtin, 7234 // ValueType is the type of the value that is to be written or read, 7235 // RegisterType is the type of the register being written to or read from. 7236 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF, 7237 const CallExpr *E, 7238 llvm::Type *RegisterType, 7239 llvm::Type *ValueType, 7240 SpecialRegisterAccessKind AccessKind, 7241 StringRef SysReg = "") { 7242 // write and register intrinsics only support 32 and 64 bit operations. 7243 assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64)) 7244 && "Unsupported size for register."); 7245 7246 CodeGen::CGBuilderTy &Builder = CGF.Builder; 7247 CodeGen::CodeGenModule &CGM = CGF.CGM; 7248 LLVMContext &Context = CGM.getLLVMContext(); 7249 7250 if (SysReg.empty()) { 7251 const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts(); 7252 SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString(); 7253 } 7254 7255 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) }; 7256 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); 7257 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); 7258 7259 llvm::Type *Types[] = { RegisterType }; 7260 7261 bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32); 7262 assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64)) 7263 && "Can't fit 64-bit value in 32-bit register"); 7264 7265 if (AccessKind != Write) { 7266 assert(AccessKind == NormalRead || AccessKind == VolatileRead); 7267 llvm::Function *F = CGM.getIntrinsic( 7268 AccessKind == VolatileRead ? llvm::Intrinsic::read_volatile_register 7269 : llvm::Intrinsic::read_register, 7270 Types); 7271 llvm::Value *Call = Builder.CreateCall(F, Metadata); 7272 7273 if (MixedTypes) 7274 // Read into 64 bit register and then truncate result to 32 bit. 7275 return Builder.CreateTrunc(Call, ValueType); 7276 7277 if (ValueType->isPointerTy()) 7278 // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*). 7279 return Builder.CreateIntToPtr(Call, ValueType); 7280 7281 return Call; 7282 } 7283 7284 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 7285 llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1)); 7286 if (MixedTypes) { 7287 // Extend 32 bit write value to 64 bit to pass to write. 7288 ArgValue = Builder.CreateZExt(ArgValue, RegisterType); 7289 return Builder.CreateCall(F, { Metadata, ArgValue }); 7290 } 7291 7292 if (ValueType->isPointerTy()) { 7293 // Have VoidPtrTy ArgValue but want to return an i32/i64. 7294 ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType); 7295 return Builder.CreateCall(F, { Metadata, ArgValue }); 7296 } 7297 7298 return Builder.CreateCall(F, { Metadata, ArgValue }); 7299 } 7300 7301 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra 7302 /// argument that specifies the vector type. 7303 static bool HasExtraNeonArgument(unsigned BuiltinID) { 7304 switch (BuiltinID) { 7305 default: break; 7306 case NEON::BI__builtin_neon_vget_lane_i8: 7307 case NEON::BI__builtin_neon_vget_lane_i16: 7308 case NEON::BI__builtin_neon_vget_lane_bf16: 7309 case NEON::BI__builtin_neon_vget_lane_i32: 7310 case NEON::BI__builtin_neon_vget_lane_i64: 7311 case NEON::BI__builtin_neon_vget_lane_f32: 7312 case NEON::BI__builtin_neon_vgetq_lane_i8: 7313 case NEON::BI__builtin_neon_vgetq_lane_i16: 7314 case NEON::BI__builtin_neon_vgetq_lane_bf16: 7315 case NEON::BI__builtin_neon_vgetq_lane_i32: 7316 case NEON::BI__builtin_neon_vgetq_lane_i64: 7317 case NEON::BI__builtin_neon_vgetq_lane_f32: 7318 case NEON::BI__builtin_neon_vduph_lane_bf16: 7319 case NEON::BI__builtin_neon_vduph_laneq_bf16: 7320 case NEON::BI__builtin_neon_vset_lane_i8: 7321 case NEON::BI__builtin_neon_vset_lane_i16: 7322 case NEON::BI__builtin_neon_vset_lane_bf16: 7323 case NEON::BI__builtin_neon_vset_lane_i32: 7324 case NEON::BI__builtin_neon_vset_lane_i64: 7325 case NEON::BI__builtin_neon_vset_lane_f32: 7326 case NEON::BI__builtin_neon_vsetq_lane_i8: 7327 case NEON::BI__builtin_neon_vsetq_lane_i16: 7328 case NEON::BI__builtin_neon_vsetq_lane_bf16: 7329 case NEON::BI__builtin_neon_vsetq_lane_i32: 7330 case NEON::BI__builtin_neon_vsetq_lane_i64: 7331 case NEON::BI__builtin_neon_vsetq_lane_f32: 7332 case NEON::BI__builtin_neon_vsha1h_u32: 7333 case NEON::BI__builtin_neon_vsha1cq_u32: 7334 case NEON::BI__builtin_neon_vsha1pq_u32: 7335 case NEON::BI__builtin_neon_vsha1mq_u32: 7336 case NEON::BI__builtin_neon_vcvth_bf16_f32: 7337 case clang::ARM::BI_MoveToCoprocessor: 7338 case clang::ARM::BI_MoveToCoprocessor2: 7339 return false; 7340 } 7341 return true; 7342 } 7343 7344 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID, 7345 const CallExpr *E, 7346 ReturnValueSlot ReturnValue, 7347 llvm::Triple::ArchType Arch) { 7348 if (auto Hint = GetValueForARMHint(BuiltinID)) 7349 return Hint; 7350 7351 if (BuiltinID == ARM::BI__emit) { 7352 bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb; 7353 llvm::FunctionType *FTy = 7354 llvm::FunctionType::get(VoidTy, /*Variadic=*/false); 7355 7356 Expr::EvalResult Result; 7357 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) 7358 llvm_unreachable("Sema will ensure that the parameter is constant"); 7359 7360 llvm::APSInt Value = Result.Val.getInt(); 7361 uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue(); 7362 7363 llvm::InlineAsm *Emit = 7364 IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "", 7365 /*hasSideEffects=*/true) 7366 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "", 7367 /*hasSideEffects=*/true); 7368 7369 return Builder.CreateCall(Emit); 7370 } 7371 7372 if (BuiltinID == ARM::BI__builtin_arm_dbg) { 7373 Value *Option = EmitScalarExpr(E->getArg(0)); 7374 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option); 7375 } 7376 7377 if (BuiltinID == ARM::BI__builtin_arm_prefetch) { 7378 Value *Address = EmitScalarExpr(E->getArg(0)); 7379 Value *RW = EmitScalarExpr(E->getArg(1)); 7380 Value *IsData = EmitScalarExpr(E->getArg(2)); 7381 7382 // Locality is not supported on ARM target 7383 Value *Locality = llvm::ConstantInt::get(Int32Ty, 3); 7384 7385 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 7386 return Builder.CreateCall(F, {Address, RW, Locality, IsData}); 7387 } 7388 7389 if (BuiltinID == ARM::BI__builtin_arm_rbit) { 7390 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 7391 return Builder.CreateCall( 7392 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); 7393 } 7394 7395 if (BuiltinID == ARM::BI__builtin_arm_cls) { 7396 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 7397 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls), Arg, "cls"); 7398 } 7399 if (BuiltinID == ARM::BI__builtin_arm_cls64) { 7400 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 7401 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_cls64), Arg, 7402 "cls"); 7403 } 7404 7405 if (BuiltinID == ARM::BI__clear_cache) { 7406 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); 7407 const FunctionDecl *FD = E->getDirectCallee(); 7408 Value *Ops[2]; 7409 for (unsigned i = 0; i < 2; i++) 7410 Ops[i] = EmitScalarExpr(E->getArg(i)); 7411 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); 7412 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 7413 StringRef Name = FD->getName(); 7414 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); 7415 } 7416 7417 if (BuiltinID == ARM::BI__builtin_arm_mcrr || 7418 BuiltinID == ARM::BI__builtin_arm_mcrr2) { 7419 Function *F; 7420 7421 switch (BuiltinID) { 7422 default: llvm_unreachable("unexpected builtin"); 7423 case ARM::BI__builtin_arm_mcrr: 7424 F = CGM.getIntrinsic(Intrinsic::arm_mcrr); 7425 break; 7426 case ARM::BI__builtin_arm_mcrr2: 7427 F = CGM.getIntrinsic(Intrinsic::arm_mcrr2); 7428 break; 7429 } 7430 7431 // MCRR{2} instruction has 5 operands but 7432 // the intrinsic has 4 because Rt and Rt2 7433 // are represented as a single unsigned 64 7434 // bit integer in the intrinsic definition 7435 // but internally it's represented as 2 32 7436 // bit integers. 7437 7438 Value *Coproc = EmitScalarExpr(E->getArg(0)); 7439 Value *Opc1 = EmitScalarExpr(E->getArg(1)); 7440 Value *RtAndRt2 = EmitScalarExpr(E->getArg(2)); 7441 Value *CRm = EmitScalarExpr(E->getArg(3)); 7442 7443 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); 7444 Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty); 7445 Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1); 7446 Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty); 7447 7448 return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm}); 7449 } 7450 7451 if (BuiltinID == ARM::BI__builtin_arm_mrrc || 7452 BuiltinID == ARM::BI__builtin_arm_mrrc2) { 7453 Function *F; 7454 7455 switch (BuiltinID) { 7456 default: llvm_unreachable("unexpected builtin"); 7457 case ARM::BI__builtin_arm_mrrc: 7458 F = CGM.getIntrinsic(Intrinsic::arm_mrrc); 7459 break; 7460 case ARM::BI__builtin_arm_mrrc2: 7461 F = CGM.getIntrinsic(Intrinsic::arm_mrrc2); 7462 break; 7463 } 7464 7465 Value *Coproc = EmitScalarExpr(E->getArg(0)); 7466 Value *Opc1 = EmitScalarExpr(E->getArg(1)); 7467 Value *CRm = EmitScalarExpr(E->getArg(2)); 7468 Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm}); 7469 7470 // Returns an unsigned 64 bit integer, represented 7471 // as two 32 bit integers. 7472 7473 Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1); 7474 Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0); 7475 Rt = Builder.CreateZExt(Rt, Int64Ty); 7476 Rt1 = Builder.CreateZExt(Rt1, Int64Ty); 7477 7478 Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32); 7479 RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true); 7480 RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1); 7481 7482 return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType())); 7483 } 7484 7485 if (BuiltinID == ARM::BI__builtin_arm_ldrexd || 7486 ((BuiltinID == ARM::BI__builtin_arm_ldrex || 7487 BuiltinID == ARM::BI__builtin_arm_ldaex) && 7488 getContext().getTypeSize(E->getType()) == 64) || 7489 BuiltinID == ARM::BI__ldrexd) { 7490 Function *F; 7491 7492 switch (BuiltinID) { 7493 default: llvm_unreachable("unexpected builtin"); 7494 case ARM::BI__builtin_arm_ldaex: 7495 F = CGM.getIntrinsic(Intrinsic::arm_ldaexd); 7496 break; 7497 case ARM::BI__builtin_arm_ldrexd: 7498 case ARM::BI__builtin_arm_ldrex: 7499 case ARM::BI__ldrexd: 7500 F = CGM.getIntrinsic(Intrinsic::arm_ldrexd); 7501 break; 7502 } 7503 7504 Value *LdPtr = EmitScalarExpr(E->getArg(0)); 7505 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), 7506 "ldrexd"); 7507 7508 Value *Val0 = Builder.CreateExtractValue(Val, 1); 7509 Value *Val1 = Builder.CreateExtractValue(Val, 0); 7510 Val0 = Builder.CreateZExt(Val0, Int64Ty); 7511 Val1 = Builder.CreateZExt(Val1, Int64Ty); 7512 7513 Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32); 7514 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); 7515 Val = Builder.CreateOr(Val, Val1); 7516 return Builder.CreateBitCast(Val, ConvertType(E->getType())); 7517 } 7518 7519 if (BuiltinID == ARM::BI__builtin_arm_ldrex || 7520 BuiltinID == ARM::BI__builtin_arm_ldaex) { 7521 Value *LoadAddr = EmitScalarExpr(E->getArg(0)); 7522 7523 QualType Ty = E->getType(); 7524 llvm::Type *RealResTy = ConvertType(Ty); 7525 llvm::Type *PtrTy = llvm::IntegerType::get( 7526 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); 7527 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); 7528 7529 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex 7530 ? Intrinsic::arm_ldaex 7531 : Intrinsic::arm_ldrex, 7532 PtrTy); 7533 Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex"); 7534 7535 if (RealResTy->isPointerTy()) 7536 return Builder.CreateIntToPtr(Val, RealResTy); 7537 else { 7538 llvm::Type *IntResTy = llvm::IntegerType::get( 7539 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); 7540 Val = Builder.CreateTruncOrBitCast(Val, IntResTy); 7541 return Builder.CreateBitCast(Val, RealResTy); 7542 } 7543 } 7544 7545 if (BuiltinID == ARM::BI__builtin_arm_strexd || 7546 ((BuiltinID == ARM::BI__builtin_arm_stlex || 7547 BuiltinID == ARM::BI__builtin_arm_strex) && 7548 getContext().getTypeSize(E->getArg(0)->getType()) == 64)) { 7549 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex 7550 ? Intrinsic::arm_stlexd 7551 : Intrinsic::arm_strexd); 7552 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty); 7553 7554 Address Tmp = CreateMemTemp(E->getArg(0)->getType()); 7555 Value *Val = EmitScalarExpr(E->getArg(0)); 7556 Builder.CreateStore(Val, Tmp); 7557 7558 Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy)); 7559 Val = Builder.CreateLoad(LdPtr); 7560 7561 Value *Arg0 = Builder.CreateExtractValue(Val, 0); 7562 Value *Arg1 = Builder.CreateExtractValue(Val, 1); 7563 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy); 7564 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd"); 7565 } 7566 7567 if (BuiltinID == ARM::BI__builtin_arm_strex || 7568 BuiltinID == ARM::BI__builtin_arm_stlex) { 7569 Value *StoreVal = EmitScalarExpr(E->getArg(0)); 7570 Value *StoreAddr = EmitScalarExpr(E->getArg(1)); 7571 7572 QualType Ty = E->getArg(0)->getType(); 7573 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), 7574 getContext().getTypeSize(Ty)); 7575 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); 7576 7577 if (StoreVal->getType()->isPointerTy()) 7578 StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty); 7579 else { 7580 llvm::Type *IntTy = llvm::IntegerType::get( 7581 getLLVMContext(), 7582 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); 7583 StoreVal = Builder.CreateBitCast(StoreVal, IntTy); 7584 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty); 7585 } 7586 7587 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex 7588 ? Intrinsic::arm_stlex 7589 : Intrinsic::arm_strex, 7590 StoreAddr->getType()); 7591 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex"); 7592 } 7593 7594 if (BuiltinID == ARM::BI__builtin_arm_clrex) { 7595 Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex); 7596 return Builder.CreateCall(F); 7597 } 7598 7599 // CRC32 7600 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; 7601 switch (BuiltinID) { 7602 case ARM::BI__builtin_arm_crc32b: 7603 CRCIntrinsicID = Intrinsic::arm_crc32b; break; 7604 case ARM::BI__builtin_arm_crc32cb: 7605 CRCIntrinsicID = Intrinsic::arm_crc32cb; break; 7606 case ARM::BI__builtin_arm_crc32h: 7607 CRCIntrinsicID = Intrinsic::arm_crc32h; break; 7608 case ARM::BI__builtin_arm_crc32ch: 7609 CRCIntrinsicID = Intrinsic::arm_crc32ch; break; 7610 case ARM::BI__builtin_arm_crc32w: 7611 case ARM::BI__builtin_arm_crc32d: 7612 CRCIntrinsicID = Intrinsic::arm_crc32w; break; 7613 case ARM::BI__builtin_arm_crc32cw: 7614 case ARM::BI__builtin_arm_crc32cd: 7615 CRCIntrinsicID = Intrinsic::arm_crc32cw; break; 7616 } 7617 7618 if (CRCIntrinsicID != Intrinsic::not_intrinsic) { 7619 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 7620 Value *Arg1 = EmitScalarExpr(E->getArg(1)); 7621 7622 // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w 7623 // intrinsics, hence we need different codegen for these cases. 7624 if (BuiltinID == ARM::BI__builtin_arm_crc32d || 7625 BuiltinID == ARM::BI__builtin_arm_crc32cd) { 7626 Value *C1 = llvm::ConstantInt::get(Int64Ty, 32); 7627 Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty); 7628 Value *Arg1b = Builder.CreateLShr(Arg1, C1); 7629 Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty); 7630 7631 Function *F = CGM.getIntrinsic(CRCIntrinsicID); 7632 Value *Res = Builder.CreateCall(F, {Arg0, Arg1a}); 7633 return Builder.CreateCall(F, {Res, Arg1b}); 7634 } else { 7635 Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty); 7636 7637 Function *F = CGM.getIntrinsic(CRCIntrinsicID); 7638 return Builder.CreateCall(F, {Arg0, Arg1}); 7639 } 7640 } 7641 7642 if (BuiltinID == ARM::BI__builtin_arm_rsr || 7643 BuiltinID == ARM::BI__builtin_arm_rsr64 || 7644 BuiltinID == ARM::BI__builtin_arm_rsrp || 7645 BuiltinID == ARM::BI__builtin_arm_wsr || 7646 BuiltinID == ARM::BI__builtin_arm_wsr64 || 7647 BuiltinID == ARM::BI__builtin_arm_wsrp) { 7648 7649 SpecialRegisterAccessKind AccessKind = Write; 7650 if (BuiltinID == ARM::BI__builtin_arm_rsr || 7651 BuiltinID == ARM::BI__builtin_arm_rsr64 || 7652 BuiltinID == ARM::BI__builtin_arm_rsrp) 7653 AccessKind = VolatileRead; 7654 7655 bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp || 7656 BuiltinID == ARM::BI__builtin_arm_wsrp; 7657 7658 bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 || 7659 BuiltinID == ARM::BI__builtin_arm_wsr64; 7660 7661 llvm::Type *ValueType; 7662 llvm::Type *RegisterType; 7663 if (IsPointerBuiltin) { 7664 ValueType = VoidPtrTy; 7665 RegisterType = Int32Ty; 7666 } else if (Is64Bit) { 7667 ValueType = RegisterType = Int64Ty; 7668 } else { 7669 ValueType = RegisterType = Int32Ty; 7670 } 7671 7672 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, 7673 AccessKind); 7674 } 7675 7676 // Handle MSVC intrinsics before argument evaluation to prevent double 7677 // evaluation. 7678 if (Optional<MSVCIntrin> MsvcIntId = translateArmToMsvcIntrin(BuiltinID)) 7679 return EmitMSVCBuiltinExpr(*MsvcIntId, E); 7680 7681 // Deal with MVE builtins 7682 if (Value *Result = EmitARMMVEBuiltinExpr(BuiltinID, E, ReturnValue, Arch)) 7683 return Result; 7684 // Handle CDE builtins 7685 if (Value *Result = EmitARMCDEBuiltinExpr(BuiltinID, E, ReturnValue, Arch)) 7686 return Result; 7687 7688 // Find out if any arguments are required to be integer constant 7689 // expressions. 7690 unsigned ICEArguments = 0; 7691 ASTContext::GetBuiltinTypeError Error; 7692 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 7693 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 7694 7695 auto getAlignmentValue32 = [&](Address addr) -> Value* { 7696 return Builder.getInt32(addr.getAlignment().getQuantity()); 7697 }; 7698 7699 Address PtrOp0 = Address::invalid(); 7700 Address PtrOp1 = Address::invalid(); 7701 SmallVector<Value*, 4> Ops; 7702 bool HasExtraArg = HasExtraNeonArgument(BuiltinID); 7703 unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0); 7704 for (unsigned i = 0, e = NumArgs; i != e; i++) { 7705 if (i == 0) { 7706 switch (BuiltinID) { 7707 case NEON::BI__builtin_neon_vld1_v: 7708 case NEON::BI__builtin_neon_vld1q_v: 7709 case NEON::BI__builtin_neon_vld1q_lane_v: 7710 case NEON::BI__builtin_neon_vld1_lane_v: 7711 case NEON::BI__builtin_neon_vld1_dup_v: 7712 case NEON::BI__builtin_neon_vld1q_dup_v: 7713 case NEON::BI__builtin_neon_vst1_v: 7714 case NEON::BI__builtin_neon_vst1q_v: 7715 case NEON::BI__builtin_neon_vst1q_lane_v: 7716 case NEON::BI__builtin_neon_vst1_lane_v: 7717 case NEON::BI__builtin_neon_vst2_v: 7718 case NEON::BI__builtin_neon_vst2q_v: 7719 case NEON::BI__builtin_neon_vst2_lane_v: 7720 case NEON::BI__builtin_neon_vst2q_lane_v: 7721 case NEON::BI__builtin_neon_vst3_v: 7722 case NEON::BI__builtin_neon_vst3q_v: 7723 case NEON::BI__builtin_neon_vst3_lane_v: 7724 case NEON::BI__builtin_neon_vst3q_lane_v: 7725 case NEON::BI__builtin_neon_vst4_v: 7726 case NEON::BI__builtin_neon_vst4q_v: 7727 case NEON::BI__builtin_neon_vst4_lane_v: 7728 case NEON::BI__builtin_neon_vst4q_lane_v: 7729 // Get the alignment for the argument in addition to the value; 7730 // we'll use it later. 7731 PtrOp0 = EmitPointerWithAlignment(E->getArg(0)); 7732 Ops.push_back(PtrOp0.getPointer()); 7733 continue; 7734 } 7735 } 7736 if (i == 1) { 7737 switch (BuiltinID) { 7738 case NEON::BI__builtin_neon_vld2_v: 7739 case NEON::BI__builtin_neon_vld2q_v: 7740 case NEON::BI__builtin_neon_vld3_v: 7741 case NEON::BI__builtin_neon_vld3q_v: 7742 case NEON::BI__builtin_neon_vld4_v: 7743 case NEON::BI__builtin_neon_vld4q_v: 7744 case NEON::BI__builtin_neon_vld2_lane_v: 7745 case NEON::BI__builtin_neon_vld2q_lane_v: 7746 case NEON::BI__builtin_neon_vld3_lane_v: 7747 case NEON::BI__builtin_neon_vld3q_lane_v: 7748 case NEON::BI__builtin_neon_vld4_lane_v: 7749 case NEON::BI__builtin_neon_vld4q_lane_v: 7750 case NEON::BI__builtin_neon_vld2_dup_v: 7751 case NEON::BI__builtin_neon_vld2q_dup_v: 7752 case NEON::BI__builtin_neon_vld3_dup_v: 7753 case NEON::BI__builtin_neon_vld3q_dup_v: 7754 case NEON::BI__builtin_neon_vld4_dup_v: 7755 case NEON::BI__builtin_neon_vld4q_dup_v: 7756 // Get the alignment for the argument in addition to the value; 7757 // we'll use it later. 7758 PtrOp1 = EmitPointerWithAlignment(E->getArg(1)); 7759 Ops.push_back(PtrOp1.getPointer()); 7760 continue; 7761 } 7762 } 7763 7764 if ((ICEArguments & (1 << i)) == 0) { 7765 Ops.push_back(EmitScalarExpr(E->getArg(i))); 7766 } else { 7767 // If this is required to be a constant, constant fold it so that we know 7768 // that the generated intrinsic gets a ConstantInt. 7769 Ops.push_back(llvm::ConstantInt::get( 7770 getLLVMContext(), 7771 *E->getArg(i)->getIntegerConstantExpr(getContext()))); 7772 } 7773 } 7774 7775 switch (BuiltinID) { 7776 default: break; 7777 7778 case NEON::BI__builtin_neon_vget_lane_i8: 7779 case NEON::BI__builtin_neon_vget_lane_i16: 7780 case NEON::BI__builtin_neon_vget_lane_i32: 7781 case NEON::BI__builtin_neon_vget_lane_i64: 7782 case NEON::BI__builtin_neon_vget_lane_bf16: 7783 case NEON::BI__builtin_neon_vget_lane_f32: 7784 case NEON::BI__builtin_neon_vgetq_lane_i8: 7785 case NEON::BI__builtin_neon_vgetq_lane_i16: 7786 case NEON::BI__builtin_neon_vgetq_lane_i32: 7787 case NEON::BI__builtin_neon_vgetq_lane_i64: 7788 case NEON::BI__builtin_neon_vgetq_lane_bf16: 7789 case NEON::BI__builtin_neon_vgetq_lane_f32: 7790 case NEON::BI__builtin_neon_vduph_lane_bf16: 7791 case NEON::BI__builtin_neon_vduph_laneq_bf16: 7792 return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane"); 7793 7794 case NEON::BI__builtin_neon_vrndns_f32: { 7795 Value *Arg = EmitScalarExpr(E->getArg(0)); 7796 llvm::Type *Tys[] = {Arg->getType()}; 7797 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys); 7798 return Builder.CreateCall(F, {Arg}, "vrndn"); } 7799 7800 case NEON::BI__builtin_neon_vset_lane_i8: 7801 case NEON::BI__builtin_neon_vset_lane_i16: 7802 case NEON::BI__builtin_neon_vset_lane_i32: 7803 case NEON::BI__builtin_neon_vset_lane_i64: 7804 case NEON::BI__builtin_neon_vset_lane_bf16: 7805 case NEON::BI__builtin_neon_vset_lane_f32: 7806 case NEON::BI__builtin_neon_vsetq_lane_i8: 7807 case NEON::BI__builtin_neon_vsetq_lane_i16: 7808 case NEON::BI__builtin_neon_vsetq_lane_i32: 7809 case NEON::BI__builtin_neon_vsetq_lane_i64: 7810 case NEON::BI__builtin_neon_vsetq_lane_bf16: 7811 case NEON::BI__builtin_neon_vsetq_lane_f32: 7812 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 7813 7814 case NEON::BI__builtin_neon_vsha1h_u32: 7815 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops, 7816 "vsha1h"); 7817 case NEON::BI__builtin_neon_vsha1cq_u32: 7818 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops, 7819 "vsha1h"); 7820 case NEON::BI__builtin_neon_vsha1pq_u32: 7821 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops, 7822 "vsha1h"); 7823 case NEON::BI__builtin_neon_vsha1mq_u32: 7824 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops, 7825 "vsha1h"); 7826 7827 case NEON::BI__builtin_neon_vcvth_bf16_f32: { 7828 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vcvtbfp2bf), Ops, 7829 "vcvtbfp2bf"); 7830 } 7831 7832 // The ARM _MoveToCoprocessor builtins put the input register value as 7833 // the first argument, but the LLVM intrinsic expects it as the third one. 7834 case ARM::BI_MoveToCoprocessor: 7835 case ARM::BI_MoveToCoprocessor2: { 7836 Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ? 7837 Intrinsic::arm_mcr : Intrinsic::arm_mcr2); 7838 return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0], 7839 Ops[3], Ops[4], Ops[5]}); 7840 } 7841 } 7842 7843 // Get the last argument, which specifies the vector type. 7844 assert(HasExtraArg); 7845 const Expr *Arg = E->getArg(E->getNumArgs()-1); 7846 Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext()); 7847 if (!Result) 7848 return nullptr; 7849 7850 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f || 7851 BuiltinID == ARM::BI__builtin_arm_vcvtr_d) { 7852 // Determine the overloaded type of this builtin. 7853 llvm::Type *Ty; 7854 if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f) 7855 Ty = FloatTy; 7856 else 7857 Ty = DoubleTy; 7858 7859 // Determine whether this is an unsigned conversion or not. 7860 bool usgn = Result->getZExtValue() == 1; 7861 unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr; 7862 7863 // Call the appropriate intrinsic. 7864 Function *F = CGM.getIntrinsic(Int, Ty); 7865 return Builder.CreateCall(F, Ops, "vcvtr"); 7866 } 7867 7868 // Determine the type of this overloaded NEON intrinsic. 7869 NeonTypeFlags Type = Result->getZExtValue(); 7870 bool usgn = Type.isUnsigned(); 7871 bool rightShift = false; 7872 7873 llvm::FixedVectorType *VTy = 7874 GetNeonType(this, Type, getTarget().hasLegalHalfType(), false, 7875 getTarget().hasBFloat16Type()); 7876 llvm::Type *Ty = VTy; 7877 if (!Ty) 7878 return nullptr; 7879 7880 // Many NEON builtins have identical semantics and uses in ARM and 7881 // AArch64. Emit these in a single function. 7882 auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap); 7883 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap( 7884 IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted); 7885 if (Builtin) 7886 return EmitCommonNeonBuiltinExpr( 7887 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, 7888 Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch); 7889 7890 unsigned Int; 7891 switch (BuiltinID) { 7892 default: return nullptr; 7893 case NEON::BI__builtin_neon_vld1q_lane_v: 7894 // Handle 64-bit integer elements as a special case. Use shuffles of 7895 // one-element vectors to avoid poor code for i64 in the backend. 7896 if (VTy->getElementType()->isIntegerTy(64)) { 7897 // Extract the other lane. 7898 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7899 int Lane = cast<ConstantInt>(Ops[2])->getZExtValue(); 7900 Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane)); 7901 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); 7902 // Load the value as a one-element vector. 7903 Ty = llvm::FixedVectorType::get(VTy->getElementType(), 1); 7904 llvm::Type *Tys[] = {Ty, Int8PtrTy}; 7905 Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys); 7906 Value *Align = getAlignmentValue32(PtrOp0); 7907 Value *Ld = Builder.CreateCall(F, {Ops[0], Align}); 7908 // Combine them. 7909 int Indices[] = {1 - Lane, Lane}; 7910 return Builder.CreateShuffleVector(Ops[1], Ld, Indices, "vld1q_lane"); 7911 } 7912 LLVM_FALLTHROUGH; 7913 case NEON::BI__builtin_neon_vld1_lane_v: { 7914 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7915 PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType()); 7916 Value *Ld = Builder.CreateLoad(PtrOp0); 7917 return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane"); 7918 } 7919 case NEON::BI__builtin_neon_vqrshrn_n_v: 7920 Int = 7921 usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns; 7922 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n", 7923 1, true); 7924 case NEON::BI__builtin_neon_vqrshrun_n_v: 7925 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty), 7926 Ops, "vqrshrun_n", 1, true); 7927 case NEON::BI__builtin_neon_vqshrn_n_v: 7928 Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns; 7929 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n", 7930 1, true); 7931 case NEON::BI__builtin_neon_vqshrun_n_v: 7932 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty), 7933 Ops, "vqshrun_n", 1, true); 7934 case NEON::BI__builtin_neon_vrecpe_v: 7935 case NEON::BI__builtin_neon_vrecpeq_v: 7936 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty), 7937 Ops, "vrecpe"); 7938 case NEON::BI__builtin_neon_vrshrn_n_v: 7939 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty), 7940 Ops, "vrshrn_n", 1, true); 7941 case NEON::BI__builtin_neon_vrsra_n_v: 7942 case NEON::BI__builtin_neon_vrsraq_n_v: 7943 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 7944 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7945 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true); 7946 Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts; 7947 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]}); 7948 return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n"); 7949 case NEON::BI__builtin_neon_vsri_n_v: 7950 case NEON::BI__builtin_neon_vsriq_n_v: 7951 rightShift = true; 7952 LLVM_FALLTHROUGH; 7953 case NEON::BI__builtin_neon_vsli_n_v: 7954 case NEON::BI__builtin_neon_vsliq_n_v: 7955 Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift); 7956 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty), 7957 Ops, "vsli_n"); 7958 case NEON::BI__builtin_neon_vsra_n_v: 7959 case NEON::BI__builtin_neon_vsraq_n_v: 7960 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 7961 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); 7962 return Builder.CreateAdd(Ops[0], Ops[1]); 7963 case NEON::BI__builtin_neon_vst1q_lane_v: 7964 // Handle 64-bit integer elements as a special case. Use a shuffle to get 7965 // a one-element vector and avoid poor code for i64 in the backend. 7966 if (VTy->getElementType()->isIntegerTy(64)) { 7967 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7968 Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2])); 7969 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV); 7970 Ops[2] = getAlignmentValue32(PtrOp0); 7971 llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()}; 7972 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1, 7973 Tys), Ops); 7974 } 7975 LLVM_FALLTHROUGH; 7976 case NEON::BI__builtin_neon_vst1_lane_v: { 7977 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 7978 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); 7979 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 7980 auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty)); 7981 return St; 7982 } 7983 case NEON::BI__builtin_neon_vtbl1_v: 7984 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1), 7985 Ops, "vtbl1"); 7986 case NEON::BI__builtin_neon_vtbl2_v: 7987 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2), 7988 Ops, "vtbl2"); 7989 case NEON::BI__builtin_neon_vtbl3_v: 7990 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3), 7991 Ops, "vtbl3"); 7992 case NEON::BI__builtin_neon_vtbl4_v: 7993 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4), 7994 Ops, "vtbl4"); 7995 case NEON::BI__builtin_neon_vtbx1_v: 7996 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1), 7997 Ops, "vtbx1"); 7998 case NEON::BI__builtin_neon_vtbx2_v: 7999 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2), 8000 Ops, "vtbx2"); 8001 case NEON::BI__builtin_neon_vtbx3_v: 8002 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3), 8003 Ops, "vtbx3"); 8004 case NEON::BI__builtin_neon_vtbx4_v: 8005 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4), 8006 Ops, "vtbx4"); 8007 } 8008 } 8009 8010 template<typename Integer> 8011 static Integer GetIntegerConstantValue(const Expr *E, ASTContext &Context) { 8012 return E->getIntegerConstantExpr(Context)->getExtValue(); 8013 } 8014 8015 static llvm::Value *SignOrZeroExtend(CGBuilderTy &Builder, llvm::Value *V, 8016 llvm::Type *T, bool Unsigned) { 8017 // Helper function called by Tablegen-constructed ARM MVE builtin codegen, 8018 // which finds it convenient to specify signed/unsigned as a boolean flag. 8019 return Unsigned ? Builder.CreateZExt(V, T) : Builder.CreateSExt(V, T); 8020 } 8021 8022 static llvm::Value *MVEImmediateShr(CGBuilderTy &Builder, llvm::Value *V, 8023 uint32_t Shift, bool Unsigned) { 8024 // MVE helper function for integer shift right. This must handle signed vs 8025 // unsigned, and also deal specially with the case where the shift count is 8026 // equal to the lane size. In LLVM IR, an LShr with that parameter would be 8027 // undefined behavior, but in MVE it's legal, so we must convert it to code 8028 // that is not undefined in IR. 8029 unsigned LaneBits = cast<llvm::VectorType>(V->getType()) 8030 ->getElementType() 8031 ->getPrimitiveSizeInBits(); 8032 if (Shift == LaneBits) { 8033 // An unsigned shift of the full lane size always generates zero, so we can 8034 // simply emit a zero vector. A signed shift of the full lane size does the 8035 // same thing as shifting by one bit fewer. 8036 if (Unsigned) 8037 return llvm::Constant::getNullValue(V->getType()); 8038 else 8039 --Shift; 8040 } 8041 return Unsigned ? Builder.CreateLShr(V, Shift) : Builder.CreateAShr(V, Shift); 8042 } 8043 8044 static llvm::Value *ARMMVEVectorSplat(CGBuilderTy &Builder, llvm::Value *V) { 8045 // MVE-specific helper function for a vector splat, which infers the element 8046 // count of the output vector by knowing that MVE vectors are all 128 bits 8047 // wide. 8048 unsigned Elements = 128 / V->getType()->getPrimitiveSizeInBits(); 8049 return Builder.CreateVectorSplat(Elements, V); 8050 } 8051 8052 static llvm::Value *ARMMVEVectorReinterpret(CGBuilderTy &Builder, 8053 CodeGenFunction *CGF, 8054 llvm::Value *V, 8055 llvm::Type *DestType) { 8056 // Convert one MVE vector type into another by reinterpreting its in-register 8057 // format. 8058 // 8059 // Little-endian, this is identical to a bitcast (which reinterprets the 8060 // memory format). But big-endian, they're not necessarily the same, because 8061 // the register and memory formats map to each other differently depending on 8062 // the lane size. 8063 // 8064 // We generate a bitcast whenever we can (if we're little-endian, or if the 8065 // lane sizes are the same anyway). Otherwise we fall back to an IR intrinsic 8066 // that performs the different kind of reinterpretation. 8067 if (CGF->getTarget().isBigEndian() && 8068 V->getType()->getScalarSizeInBits() != DestType->getScalarSizeInBits()) { 8069 return Builder.CreateCall( 8070 CGF->CGM.getIntrinsic(Intrinsic::arm_mve_vreinterpretq, 8071 {DestType, V->getType()}), 8072 V); 8073 } else { 8074 return Builder.CreateBitCast(V, DestType); 8075 } 8076 } 8077 8078 static llvm::Value *VectorUnzip(CGBuilderTy &Builder, llvm::Value *V, bool Odd) { 8079 // Make a shufflevector that extracts every other element of a vector (evens 8080 // or odds, as desired). 8081 SmallVector<int, 16> Indices; 8082 unsigned InputElements = 8083 cast<llvm::FixedVectorType>(V->getType())->getNumElements(); 8084 for (unsigned i = 0; i < InputElements; i += 2) 8085 Indices.push_back(i + Odd); 8086 return Builder.CreateShuffleVector(V, Indices); 8087 } 8088 8089 static llvm::Value *VectorZip(CGBuilderTy &Builder, llvm::Value *V0, 8090 llvm::Value *V1) { 8091 // Make a shufflevector that interleaves two vectors element by element. 8092 assert(V0->getType() == V1->getType() && "Can't zip different vector types"); 8093 SmallVector<int, 16> Indices; 8094 unsigned InputElements = 8095 cast<llvm::FixedVectorType>(V0->getType())->getNumElements(); 8096 for (unsigned i = 0; i < InputElements; i++) { 8097 Indices.push_back(i); 8098 Indices.push_back(i + InputElements); 8099 } 8100 return Builder.CreateShuffleVector(V0, V1, Indices); 8101 } 8102 8103 template<unsigned HighBit, unsigned OtherBits> 8104 static llvm::Value *ARMMVEConstantSplat(CGBuilderTy &Builder, llvm::Type *VT) { 8105 // MVE-specific helper function to make a vector splat of a constant such as 8106 // UINT_MAX or INT_MIN, in which all bits below the highest one are equal. 8107 llvm::Type *T = cast<llvm::VectorType>(VT)->getElementType(); 8108 unsigned LaneBits = T->getPrimitiveSizeInBits(); 8109 uint32_t Value = HighBit << (LaneBits - 1); 8110 if (OtherBits) 8111 Value |= (1UL << (LaneBits - 1)) - 1; 8112 llvm::Value *Lane = llvm::ConstantInt::get(T, Value); 8113 return ARMMVEVectorSplat(Builder, Lane); 8114 } 8115 8116 static llvm::Value *ARMMVEVectorElementReverse(CGBuilderTy &Builder, 8117 llvm::Value *V, 8118 unsigned ReverseWidth) { 8119 // MVE-specific helper function which reverses the elements of a 8120 // vector within every (ReverseWidth)-bit collection of lanes. 8121 SmallVector<int, 16> Indices; 8122 unsigned LaneSize = V->getType()->getScalarSizeInBits(); 8123 unsigned Elements = 128 / LaneSize; 8124 unsigned Mask = ReverseWidth / LaneSize - 1; 8125 for (unsigned i = 0; i < Elements; i++) 8126 Indices.push_back(i ^ Mask); 8127 return Builder.CreateShuffleVector(V, Indices); 8128 } 8129 8130 Value *CodeGenFunction::EmitARMMVEBuiltinExpr(unsigned BuiltinID, 8131 const CallExpr *E, 8132 ReturnValueSlot ReturnValue, 8133 llvm::Triple::ArchType Arch) { 8134 enum class CustomCodeGen { VLD24, VST24 } CustomCodeGenType; 8135 Intrinsic::ID IRIntr; 8136 unsigned NumVectors; 8137 8138 // Code autogenerated by Tablegen will handle all the simple builtins. 8139 switch (BuiltinID) { 8140 #include "clang/Basic/arm_mve_builtin_cg.inc" 8141 8142 // If we didn't match an MVE builtin id at all, go back to the 8143 // main EmitARMBuiltinExpr. 8144 default: 8145 return nullptr; 8146 } 8147 8148 // Anything that breaks from that switch is an MVE builtin that 8149 // needs handwritten code to generate. 8150 8151 switch (CustomCodeGenType) { 8152 8153 case CustomCodeGen::VLD24: { 8154 llvm::SmallVector<Value *, 4> Ops; 8155 llvm::SmallVector<llvm::Type *, 4> Tys; 8156 8157 auto MvecCType = E->getType(); 8158 auto MvecLType = ConvertType(MvecCType); 8159 assert(MvecLType->isStructTy() && 8160 "Return type for vld[24]q should be a struct"); 8161 assert(MvecLType->getStructNumElements() == 1 && 8162 "Return-type struct for vld[24]q should have one element"); 8163 auto MvecLTypeInner = MvecLType->getStructElementType(0); 8164 assert(MvecLTypeInner->isArrayTy() && 8165 "Return-type struct for vld[24]q should contain an array"); 8166 assert(MvecLTypeInner->getArrayNumElements() == NumVectors && 8167 "Array member of return-type struct vld[24]q has wrong length"); 8168 auto VecLType = MvecLTypeInner->getArrayElementType(); 8169 8170 Tys.push_back(VecLType); 8171 8172 auto Addr = E->getArg(0); 8173 Ops.push_back(EmitScalarExpr(Addr)); 8174 Tys.push_back(ConvertType(Addr->getType())); 8175 8176 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys)); 8177 Value *LoadResult = Builder.CreateCall(F, Ops); 8178 Value *MvecOut = UndefValue::get(MvecLType); 8179 for (unsigned i = 0; i < NumVectors; ++i) { 8180 Value *Vec = Builder.CreateExtractValue(LoadResult, i); 8181 MvecOut = Builder.CreateInsertValue(MvecOut, Vec, {0, i}); 8182 } 8183 8184 if (ReturnValue.isNull()) 8185 return MvecOut; 8186 else 8187 return Builder.CreateStore(MvecOut, ReturnValue.getValue()); 8188 } 8189 8190 case CustomCodeGen::VST24: { 8191 llvm::SmallVector<Value *, 4> Ops; 8192 llvm::SmallVector<llvm::Type *, 4> Tys; 8193 8194 auto Addr = E->getArg(0); 8195 Ops.push_back(EmitScalarExpr(Addr)); 8196 Tys.push_back(ConvertType(Addr->getType())); 8197 8198 auto MvecCType = E->getArg(1)->getType(); 8199 auto MvecLType = ConvertType(MvecCType); 8200 assert(MvecLType->isStructTy() && "Data type for vst2q should be a struct"); 8201 assert(MvecLType->getStructNumElements() == 1 && 8202 "Data-type struct for vst2q should have one element"); 8203 auto MvecLTypeInner = MvecLType->getStructElementType(0); 8204 assert(MvecLTypeInner->isArrayTy() && 8205 "Data-type struct for vst2q should contain an array"); 8206 assert(MvecLTypeInner->getArrayNumElements() == NumVectors && 8207 "Array member of return-type struct vld[24]q has wrong length"); 8208 auto VecLType = MvecLTypeInner->getArrayElementType(); 8209 8210 Tys.push_back(VecLType); 8211 8212 AggValueSlot MvecSlot = CreateAggTemp(MvecCType); 8213 EmitAggExpr(E->getArg(1), MvecSlot); 8214 auto Mvec = Builder.CreateLoad(MvecSlot.getAddress()); 8215 for (unsigned i = 0; i < NumVectors; i++) 8216 Ops.push_back(Builder.CreateExtractValue(Mvec, {0, i})); 8217 8218 Function *F = CGM.getIntrinsic(IRIntr, makeArrayRef(Tys)); 8219 Value *ToReturn = nullptr; 8220 for (unsigned i = 0; i < NumVectors; i++) { 8221 Ops.push_back(llvm::ConstantInt::get(Int32Ty, i)); 8222 ToReturn = Builder.CreateCall(F, Ops); 8223 Ops.pop_back(); 8224 } 8225 return ToReturn; 8226 } 8227 } 8228 llvm_unreachable("unknown custom codegen type."); 8229 } 8230 8231 Value *CodeGenFunction::EmitARMCDEBuiltinExpr(unsigned BuiltinID, 8232 const CallExpr *E, 8233 ReturnValueSlot ReturnValue, 8234 llvm::Triple::ArchType Arch) { 8235 switch (BuiltinID) { 8236 default: 8237 return nullptr; 8238 #include "clang/Basic/arm_cde_builtin_cg.inc" 8239 } 8240 } 8241 8242 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID, 8243 const CallExpr *E, 8244 SmallVectorImpl<Value *> &Ops, 8245 llvm::Triple::ArchType Arch) { 8246 unsigned int Int = 0; 8247 const char *s = nullptr; 8248 8249 switch (BuiltinID) { 8250 default: 8251 return nullptr; 8252 case NEON::BI__builtin_neon_vtbl1_v: 8253 case NEON::BI__builtin_neon_vqtbl1_v: 8254 case NEON::BI__builtin_neon_vqtbl1q_v: 8255 case NEON::BI__builtin_neon_vtbl2_v: 8256 case NEON::BI__builtin_neon_vqtbl2_v: 8257 case NEON::BI__builtin_neon_vqtbl2q_v: 8258 case NEON::BI__builtin_neon_vtbl3_v: 8259 case NEON::BI__builtin_neon_vqtbl3_v: 8260 case NEON::BI__builtin_neon_vqtbl3q_v: 8261 case NEON::BI__builtin_neon_vtbl4_v: 8262 case NEON::BI__builtin_neon_vqtbl4_v: 8263 case NEON::BI__builtin_neon_vqtbl4q_v: 8264 break; 8265 case NEON::BI__builtin_neon_vtbx1_v: 8266 case NEON::BI__builtin_neon_vqtbx1_v: 8267 case NEON::BI__builtin_neon_vqtbx1q_v: 8268 case NEON::BI__builtin_neon_vtbx2_v: 8269 case NEON::BI__builtin_neon_vqtbx2_v: 8270 case NEON::BI__builtin_neon_vqtbx2q_v: 8271 case NEON::BI__builtin_neon_vtbx3_v: 8272 case NEON::BI__builtin_neon_vqtbx3_v: 8273 case NEON::BI__builtin_neon_vqtbx3q_v: 8274 case NEON::BI__builtin_neon_vtbx4_v: 8275 case NEON::BI__builtin_neon_vqtbx4_v: 8276 case NEON::BI__builtin_neon_vqtbx4q_v: 8277 break; 8278 } 8279 8280 assert(E->getNumArgs() >= 3); 8281 8282 // Get the last argument, which specifies the vector type. 8283 const Expr *Arg = E->getArg(E->getNumArgs() - 1); 8284 Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(CGF.getContext()); 8285 if (!Result) 8286 return nullptr; 8287 8288 // Determine the type of this overloaded NEON intrinsic. 8289 NeonTypeFlags Type = Result->getZExtValue(); 8290 llvm::FixedVectorType *Ty = GetNeonType(&CGF, Type); 8291 if (!Ty) 8292 return nullptr; 8293 8294 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8295 8296 // AArch64 scalar builtins are not overloaded, they do not have an extra 8297 // argument that specifies the vector type, need to handle each case. 8298 switch (BuiltinID) { 8299 case NEON::BI__builtin_neon_vtbl1_v: { 8300 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr, 8301 Ops[1], Ty, Intrinsic::aarch64_neon_tbl1, 8302 "vtbl1"); 8303 } 8304 case NEON::BI__builtin_neon_vtbl2_v: { 8305 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr, 8306 Ops[2], Ty, Intrinsic::aarch64_neon_tbl1, 8307 "vtbl1"); 8308 } 8309 case NEON::BI__builtin_neon_vtbl3_v: { 8310 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr, 8311 Ops[3], Ty, Intrinsic::aarch64_neon_tbl2, 8312 "vtbl2"); 8313 } 8314 case NEON::BI__builtin_neon_vtbl4_v: { 8315 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr, 8316 Ops[4], Ty, Intrinsic::aarch64_neon_tbl2, 8317 "vtbl2"); 8318 } 8319 case NEON::BI__builtin_neon_vtbx1_v: { 8320 Value *TblRes = 8321 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2], 8322 Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1"); 8323 8324 llvm::Constant *EightV = ConstantInt::get(Ty, 8); 8325 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV); 8326 CmpRes = Builder.CreateSExt(CmpRes, Ty); 8327 8328 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); 8329 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); 8330 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); 8331 } 8332 case NEON::BI__builtin_neon_vtbx2_v: { 8333 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0], 8334 Ops[3], Ty, Intrinsic::aarch64_neon_tbx1, 8335 "vtbx1"); 8336 } 8337 case NEON::BI__builtin_neon_vtbx3_v: { 8338 Value *TblRes = 8339 packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4], 8340 Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2"); 8341 8342 llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24); 8343 Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4], 8344 TwentyFourV); 8345 CmpRes = Builder.CreateSExt(CmpRes, Ty); 8346 8347 Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]); 8348 Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes); 8349 return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx"); 8350 } 8351 case NEON::BI__builtin_neon_vtbx4_v: { 8352 return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0], 8353 Ops[5], Ty, Intrinsic::aarch64_neon_tbx2, 8354 "vtbx2"); 8355 } 8356 case NEON::BI__builtin_neon_vqtbl1_v: 8357 case NEON::BI__builtin_neon_vqtbl1q_v: 8358 Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break; 8359 case NEON::BI__builtin_neon_vqtbl2_v: 8360 case NEON::BI__builtin_neon_vqtbl2q_v: { 8361 Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break; 8362 case NEON::BI__builtin_neon_vqtbl3_v: 8363 case NEON::BI__builtin_neon_vqtbl3q_v: 8364 Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break; 8365 case NEON::BI__builtin_neon_vqtbl4_v: 8366 case NEON::BI__builtin_neon_vqtbl4q_v: 8367 Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break; 8368 case NEON::BI__builtin_neon_vqtbx1_v: 8369 case NEON::BI__builtin_neon_vqtbx1q_v: 8370 Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break; 8371 case NEON::BI__builtin_neon_vqtbx2_v: 8372 case NEON::BI__builtin_neon_vqtbx2q_v: 8373 Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break; 8374 case NEON::BI__builtin_neon_vqtbx3_v: 8375 case NEON::BI__builtin_neon_vqtbx3q_v: 8376 Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break; 8377 case NEON::BI__builtin_neon_vqtbx4_v: 8378 case NEON::BI__builtin_neon_vqtbx4q_v: 8379 Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break; 8380 } 8381 } 8382 8383 if (!Int) 8384 return nullptr; 8385 8386 Function *F = CGF.CGM.getIntrinsic(Int, Ty); 8387 return CGF.EmitNeonCall(F, Ops, s); 8388 } 8389 8390 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) { 8391 auto *VTy = llvm::FixedVectorType::get(Int16Ty, 4); 8392 Op = Builder.CreateBitCast(Op, Int16Ty); 8393 Value *V = UndefValue::get(VTy); 8394 llvm::Constant *CI = ConstantInt::get(SizeTy, 0); 8395 Op = Builder.CreateInsertElement(V, Op, CI); 8396 return Op; 8397 } 8398 8399 /// SVEBuiltinMemEltTy - Returns the memory element type for this memory 8400 /// access builtin. Only required if it can't be inferred from the base pointer 8401 /// operand. 8402 llvm::Type *CodeGenFunction::SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags) { 8403 switch (TypeFlags.getMemEltType()) { 8404 case SVETypeFlags::MemEltTyDefault: 8405 return getEltType(TypeFlags); 8406 case SVETypeFlags::MemEltTyInt8: 8407 return Builder.getInt8Ty(); 8408 case SVETypeFlags::MemEltTyInt16: 8409 return Builder.getInt16Ty(); 8410 case SVETypeFlags::MemEltTyInt32: 8411 return Builder.getInt32Ty(); 8412 case SVETypeFlags::MemEltTyInt64: 8413 return Builder.getInt64Ty(); 8414 } 8415 llvm_unreachable("Unknown MemEltType"); 8416 } 8417 8418 llvm::Type *CodeGenFunction::getEltType(const SVETypeFlags &TypeFlags) { 8419 switch (TypeFlags.getEltType()) { 8420 default: 8421 llvm_unreachable("Invalid SVETypeFlag!"); 8422 8423 case SVETypeFlags::EltTyInt8: 8424 return Builder.getInt8Ty(); 8425 case SVETypeFlags::EltTyInt16: 8426 return Builder.getInt16Ty(); 8427 case SVETypeFlags::EltTyInt32: 8428 return Builder.getInt32Ty(); 8429 case SVETypeFlags::EltTyInt64: 8430 return Builder.getInt64Ty(); 8431 8432 case SVETypeFlags::EltTyFloat16: 8433 return Builder.getHalfTy(); 8434 case SVETypeFlags::EltTyFloat32: 8435 return Builder.getFloatTy(); 8436 case SVETypeFlags::EltTyFloat64: 8437 return Builder.getDoubleTy(); 8438 8439 case SVETypeFlags::EltTyBFloat16: 8440 return Builder.getBFloatTy(); 8441 8442 case SVETypeFlags::EltTyBool8: 8443 case SVETypeFlags::EltTyBool16: 8444 case SVETypeFlags::EltTyBool32: 8445 case SVETypeFlags::EltTyBool64: 8446 return Builder.getInt1Ty(); 8447 } 8448 } 8449 8450 // Return the llvm predicate vector type corresponding to the specified element 8451 // TypeFlags. 8452 llvm::ScalableVectorType * 8453 CodeGenFunction::getSVEPredType(const SVETypeFlags &TypeFlags) { 8454 switch (TypeFlags.getEltType()) { 8455 default: llvm_unreachable("Unhandled SVETypeFlag!"); 8456 8457 case SVETypeFlags::EltTyInt8: 8458 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 8459 case SVETypeFlags::EltTyInt16: 8460 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8461 case SVETypeFlags::EltTyInt32: 8462 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); 8463 case SVETypeFlags::EltTyInt64: 8464 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); 8465 8466 case SVETypeFlags::EltTyBFloat16: 8467 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8468 case SVETypeFlags::EltTyFloat16: 8469 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8470 case SVETypeFlags::EltTyFloat32: 8471 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); 8472 case SVETypeFlags::EltTyFloat64: 8473 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); 8474 8475 case SVETypeFlags::EltTyBool8: 8476 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 8477 case SVETypeFlags::EltTyBool16: 8478 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8479 case SVETypeFlags::EltTyBool32: 8480 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); 8481 case SVETypeFlags::EltTyBool64: 8482 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); 8483 } 8484 } 8485 8486 // Return the llvm vector type corresponding to the specified element TypeFlags. 8487 llvm::ScalableVectorType * 8488 CodeGenFunction::getSVEType(const SVETypeFlags &TypeFlags) { 8489 switch (TypeFlags.getEltType()) { 8490 default: 8491 llvm_unreachable("Invalid SVETypeFlag!"); 8492 8493 case SVETypeFlags::EltTyInt8: 8494 return llvm::ScalableVectorType::get(Builder.getInt8Ty(), 16); 8495 case SVETypeFlags::EltTyInt16: 8496 return llvm::ScalableVectorType::get(Builder.getInt16Ty(), 8); 8497 case SVETypeFlags::EltTyInt32: 8498 return llvm::ScalableVectorType::get(Builder.getInt32Ty(), 4); 8499 case SVETypeFlags::EltTyInt64: 8500 return llvm::ScalableVectorType::get(Builder.getInt64Ty(), 2); 8501 8502 case SVETypeFlags::EltTyFloat16: 8503 return llvm::ScalableVectorType::get(Builder.getHalfTy(), 8); 8504 case SVETypeFlags::EltTyBFloat16: 8505 return llvm::ScalableVectorType::get(Builder.getBFloatTy(), 8); 8506 case SVETypeFlags::EltTyFloat32: 8507 return llvm::ScalableVectorType::get(Builder.getFloatTy(), 4); 8508 case SVETypeFlags::EltTyFloat64: 8509 return llvm::ScalableVectorType::get(Builder.getDoubleTy(), 2); 8510 8511 case SVETypeFlags::EltTyBool8: 8512 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); 8513 case SVETypeFlags::EltTyBool16: 8514 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 8); 8515 case SVETypeFlags::EltTyBool32: 8516 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 4); 8517 case SVETypeFlags::EltTyBool64: 8518 return llvm::ScalableVectorType::get(Builder.getInt1Ty(), 2); 8519 } 8520 } 8521 8522 llvm::Value * 8523 CodeGenFunction::EmitSVEAllTruePred(const SVETypeFlags &TypeFlags) { 8524 Function *Ptrue = 8525 CGM.getIntrinsic(Intrinsic::aarch64_sve_ptrue, getSVEPredType(TypeFlags)); 8526 return Builder.CreateCall(Ptrue, {Builder.getInt32(/*SV_ALL*/ 31)}); 8527 } 8528 8529 constexpr unsigned SVEBitsPerBlock = 128; 8530 8531 static llvm::ScalableVectorType *getSVEVectorForElementType(llvm::Type *EltTy) { 8532 unsigned NumElts = SVEBitsPerBlock / EltTy->getScalarSizeInBits(); 8533 return llvm::ScalableVectorType::get(EltTy, NumElts); 8534 } 8535 8536 // Reinterpret the input predicate so that it can be used to correctly isolate 8537 // the elements of the specified datatype. 8538 Value *CodeGenFunction::EmitSVEPredicateCast(Value *Pred, 8539 llvm::ScalableVectorType *VTy) { 8540 auto *RTy = llvm::VectorType::get(IntegerType::get(getLLVMContext(), 1), VTy); 8541 if (Pred->getType() == RTy) 8542 return Pred; 8543 8544 unsigned IntID; 8545 llvm::Type *IntrinsicTy; 8546 switch (VTy->getMinNumElements()) { 8547 default: 8548 llvm_unreachable("unsupported element count!"); 8549 case 2: 8550 case 4: 8551 case 8: 8552 IntID = Intrinsic::aarch64_sve_convert_from_svbool; 8553 IntrinsicTy = RTy; 8554 break; 8555 case 16: 8556 IntID = Intrinsic::aarch64_sve_convert_to_svbool; 8557 IntrinsicTy = Pred->getType(); 8558 break; 8559 } 8560 8561 Function *F = CGM.getIntrinsic(IntID, IntrinsicTy); 8562 Value *C = Builder.CreateCall(F, Pred); 8563 assert(C->getType() == RTy && "Unexpected return type!"); 8564 return C; 8565 } 8566 8567 Value *CodeGenFunction::EmitSVEGatherLoad(const SVETypeFlags &TypeFlags, 8568 SmallVectorImpl<Value *> &Ops, 8569 unsigned IntID) { 8570 auto *ResultTy = getSVEType(TypeFlags); 8571 auto *OverloadedTy = 8572 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), ResultTy); 8573 8574 // At the ACLE level there's only one predicate type, svbool_t, which is 8575 // mapped to <n x 16 x i1>. However, this might be incompatible with the 8576 // actual type being loaded. For example, when loading doubles (i64) the 8577 // predicated should be <n x 2 x i1> instead. At the IR level the type of 8578 // the predicate and the data being loaded must match. Cast accordingly. 8579 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy); 8580 8581 Function *F = nullptr; 8582 if (Ops[1]->getType()->isVectorTy()) 8583 // This is the "vector base, scalar offset" case. In order to uniquely 8584 // map this built-in to an LLVM IR intrinsic, we need both the return type 8585 // and the type of the vector base. 8586 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[1]->getType()}); 8587 else 8588 // This is the "scalar base, vector offset case". The type of the offset 8589 // is encoded in the name of the intrinsic. We only need to specify the 8590 // return type in order to uniquely map this built-in to an LLVM IR 8591 // intrinsic. 8592 F = CGM.getIntrinsic(IntID, OverloadedTy); 8593 8594 // Pass 0 when the offset is missing. This can only be applied when using 8595 // the "vector base" addressing mode for which ACLE allows no offset. The 8596 // corresponding LLVM IR always requires an offset. 8597 if (Ops.size() == 2) { 8598 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset"); 8599 Ops.push_back(ConstantInt::get(Int64Ty, 0)); 8600 } 8601 8602 // For "vector base, scalar index" scale the index so that it becomes a 8603 // scalar offset. 8604 if (!TypeFlags.isByteIndexed() && Ops[1]->getType()->isVectorTy()) { 8605 unsigned BytesPerElt = 8606 OverloadedTy->getElementType()->getScalarSizeInBits() / 8; 8607 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt); 8608 Ops[2] = Builder.CreateMul(Ops[2], Scale); 8609 } 8610 8611 Value *Call = Builder.CreateCall(F, Ops); 8612 8613 // The following sext/zext is only needed when ResultTy != OverloadedTy. In 8614 // other cases it's folded into a nop. 8615 return TypeFlags.isZExtReturn() ? Builder.CreateZExt(Call, ResultTy) 8616 : Builder.CreateSExt(Call, ResultTy); 8617 } 8618 8619 Value *CodeGenFunction::EmitSVEScatterStore(const SVETypeFlags &TypeFlags, 8620 SmallVectorImpl<Value *> &Ops, 8621 unsigned IntID) { 8622 auto *SrcDataTy = getSVEType(TypeFlags); 8623 auto *OverloadedTy = 8624 llvm::ScalableVectorType::get(SVEBuiltinMemEltTy(TypeFlags), SrcDataTy); 8625 8626 // In ACLE the source data is passed in the last argument, whereas in LLVM IR 8627 // it's the first argument. Move it accordingly. 8628 Ops.insert(Ops.begin(), Ops.pop_back_val()); 8629 8630 Function *F = nullptr; 8631 if (Ops[2]->getType()->isVectorTy()) 8632 // This is the "vector base, scalar offset" case. In order to uniquely 8633 // map this built-in to an LLVM IR intrinsic, we need both the return type 8634 // and the type of the vector base. 8635 F = CGM.getIntrinsic(IntID, {OverloadedTy, Ops[2]->getType()}); 8636 else 8637 // This is the "scalar base, vector offset case". The type of the offset 8638 // is encoded in the name of the intrinsic. We only need to specify the 8639 // return type in order to uniquely map this built-in to an LLVM IR 8640 // intrinsic. 8641 F = CGM.getIntrinsic(IntID, OverloadedTy); 8642 8643 // Pass 0 when the offset is missing. This can only be applied when using 8644 // the "vector base" addressing mode for which ACLE allows no offset. The 8645 // corresponding LLVM IR always requires an offset. 8646 if (Ops.size() == 3) { 8647 assert(Ops[1]->getType()->isVectorTy() && "Scalar base requires an offset"); 8648 Ops.push_back(ConstantInt::get(Int64Ty, 0)); 8649 } 8650 8651 // Truncation is needed when SrcDataTy != OverloadedTy. In other cases it's 8652 // folded into a nop. 8653 Ops[0] = Builder.CreateTrunc(Ops[0], OverloadedTy); 8654 8655 // At the ACLE level there's only one predicate type, svbool_t, which is 8656 // mapped to <n x 16 x i1>. However, this might be incompatible with the 8657 // actual type being stored. For example, when storing doubles (i64) the 8658 // predicated should be <n x 2 x i1> instead. At the IR level the type of 8659 // the predicate and the data being stored must match. Cast accordingly. 8660 Ops[1] = EmitSVEPredicateCast(Ops[1], OverloadedTy); 8661 8662 // For "vector base, scalar index" scale the index so that it becomes a 8663 // scalar offset. 8664 if (!TypeFlags.isByteIndexed() && Ops[2]->getType()->isVectorTy()) { 8665 unsigned BytesPerElt = 8666 OverloadedTy->getElementType()->getScalarSizeInBits() / 8; 8667 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt); 8668 Ops[3] = Builder.CreateMul(Ops[3], Scale); 8669 } 8670 8671 return Builder.CreateCall(F, Ops); 8672 } 8673 8674 Value *CodeGenFunction::EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags, 8675 SmallVectorImpl<Value *> &Ops, 8676 unsigned IntID) { 8677 // The gather prefetches are overloaded on the vector input - this can either 8678 // be the vector of base addresses or vector of offsets. 8679 auto *OverloadedTy = dyn_cast<llvm::ScalableVectorType>(Ops[1]->getType()); 8680 if (!OverloadedTy) 8681 OverloadedTy = cast<llvm::ScalableVectorType>(Ops[2]->getType()); 8682 8683 // Cast the predicate from svbool_t to the right number of elements. 8684 Ops[0] = EmitSVEPredicateCast(Ops[0], OverloadedTy); 8685 8686 // vector + imm addressing modes 8687 if (Ops[1]->getType()->isVectorTy()) { 8688 if (Ops.size() == 3) { 8689 // Pass 0 for 'vector+imm' when the index is omitted. 8690 Ops.push_back(ConstantInt::get(Int64Ty, 0)); 8691 8692 // The sv_prfop is the last operand in the builtin and IR intrinsic. 8693 std::swap(Ops[2], Ops[3]); 8694 } else { 8695 // Index needs to be passed as scaled offset. 8696 llvm::Type *MemEltTy = SVEBuiltinMemEltTy(TypeFlags); 8697 unsigned BytesPerElt = MemEltTy->getPrimitiveSizeInBits() / 8; 8698 Value *Scale = ConstantInt::get(Int64Ty, BytesPerElt); 8699 Ops[2] = Builder.CreateMul(Ops[2], Scale); 8700 } 8701 } 8702 8703 Function *F = CGM.getIntrinsic(IntID, OverloadedTy); 8704 return Builder.CreateCall(F, Ops); 8705 } 8706 8707 Value *CodeGenFunction::EmitSVEStructLoad(const SVETypeFlags &TypeFlags, 8708 SmallVectorImpl<Value*> &Ops, 8709 unsigned IntID) { 8710 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags); 8711 auto VecPtrTy = llvm::PointerType::getUnqual(VTy); 8712 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType()); 8713 8714 unsigned N; 8715 switch (IntID) { 8716 case Intrinsic::aarch64_sve_ld2: 8717 N = 2; 8718 break; 8719 case Intrinsic::aarch64_sve_ld3: 8720 N = 3; 8721 break; 8722 case Intrinsic::aarch64_sve_ld4: 8723 N = 4; 8724 break; 8725 default: 8726 llvm_unreachable("unknown intrinsic!"); 8727 } 8728 auto RetTy = llvm::VectorType::get(VTy->getElementType(), 8729 VTy->getElementCount() * N); 8730 8731 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy); 8732 Value *BasePtr= Builder.CreateBitCast(Ops[1], VecPtrTy); 8733 Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0); 8734 BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset); 8735 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy); 8736 8737 Function *F = CGM.getIntrinsic(IntID, {RetTy, Predicate->getType()}); 8738 return Builder.CreateCall(F, { Predicate, BasePtr }); 8739 } 8740 8741 Value *CodeGenFunction::EmitSVEStructStore(const SVETypeFlags &TypeFlags, 8742 SmallVectorImpl<Value*> &Ops, 8743 unsigned IntID) { 8744 llvm::ScalableVectorType *VTy = getSVEType(TypeFlags); 8745 auto VecPtrTy = llvm::PointerType::getUnqual(VTy); 8746 auto EltPtrTy = llvm::PointerType::getUnqual(VTy->getElementType()); 8747 8748 unsigned N; 8749 switch (IntID) { 8750 case Intrinsic::aarch64_sve_st2: 8751 N = 2; 8752 break; 8753 case Intrinsic::aarch64_sve_st3: 8754 N = 3; 8755 break; 8756 case Intrinsic::aarch64_sve_st4: 8757 N = 4; 8758 break; 8759 default: 8760 llvm_unreachable("unknown intrinsic!"); 8761 } 8762 auto TupleTy = 8763 llvm::VectorType::get(VTy->getElementType(), VTy->getElementCount() * N); 8764 8765 Value *Predicate = EmitSVEPredicateCast(Ops[0], VTy); 8766 Value *BasePtr = Builder.CreateBitCast(Ops[1], VecPtrTy); 8767 Value *Offset = Ops.size() > 3 ? Ops[2] : Builder.getInt32(0); 8768 Value *Val = Ops.back(); 8769 BasePtr = Builder.CreateGEP(VTy, BasePtr, Offset); 8770 BasePtr = Builder.CreateBitCast(BasePtr, EltPtrTy); 8771 8772 // The llvm.aarch64.sve.st2/3/4 intrinsics take legal part vectors, so we 8773 // need to break up the tuple vector. 8774 SmallVector<llvm::Value*, 5> Operands; 8775 Function *FExtr = 8776 CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy}); 8777 for (unsigned I = 0; I < N; ++I) 8778 Operands.push_back(Builder.CreateCall(FExtr, {Val, Builder.getInt32(I)})); 8779 Operands.append({Predicate, BasePtr}); 8780 8781 Function *F = CGM.getIntrinsic(IntID, { VTy }); 8782 return Builder.CreateCall(F, Operands); 8783 } 8784 8785 // SVE2's svpmullb and svpmullt builtins are similar to the svpmullb_pair and 8786 // svpmullt_pair intrinsics, with the exception that their results are bitcast 8787 // to a wider type. 8788 Value *CodeGenFunction::EmitSVEPMull(const SVETypeFlags &TypeFlags, 8789 SmallVectorImpl<Value *> &Ops, 8790 unsigned BuiltinID) { 8791 // Splat scalar operand to vector (intrinsics with _n infix) 8792 if (TypeFlags.hasSplatOperand()) { 8793 unsigned OpNo = TypeFlags.getSplatOperand(); 8794 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]); 8795 } 8796 8797 // The pair-wise function has a narrower overloaded type. 8798 Function *F = CGM.getIntrinsic(BuiltinID, Ops[0]->getType()); 8799 Value *Call = Builder.CreateCall(F, {Ops[0], Ops[1]}); 8800 8801 // Now bitcast to the wider result type. 8802 llvm::ScalableVectorType *Ty = getSVEType(TypeFlags); 8803 return EmitSVEReinterpret(Call, Ty); 8804 } 8805 8806 Value *CodeGenFunction::EmitSVEMovl(const SVETypeFlags &TypeFlags, 8807 ArrayRef<Value *> Ops, unsigned BuiltinID) { 8808 llvm::Type *OverloadedTy = getSVEType(TypeFlags); 8809 Function *F = CGM.getIntrinsic(BuiltinID, OverloadedTy); 8810 return Builder.CreateCall(F, {Ops[0], Builder.getInt32(0)}); 8811 } 8812 8813 Value *CodeGenFunction::EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags, 8814 SmallVectorImpl<Value *> &Ops, 8815 unsigned BuiltinID) { 8816 auto *MemEltTy = SVEBuiltinMemEltTy(TypeFlags); 8817 auto *VectorTy = getSVEVectorForElementType(MemEltTy); 8818 auto *MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); 8819 8820 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); 8821 Value *BasePtr = Ops[1]; 8822 8823 // Implement the index operand if not omitted. 8824 if (Ops.size() > 3) { 8825 BasePtr = Builder.CreateBitCast(BasePtr, MemoryTy->getPointerTo()); 8826 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Ops[2]); 8827 } 8828 8829 // Prefetch intriniscs always expect an i8* 8830 BasePtr = Builder.CreateBitCast(BasePtr, llvm::PointerType::getUnqual(Int8Ty)); 8831 Value *PrfOp = Ops.back(); 8832 8833 Function *F = CGM.getIntrinsic(BuiltinID, Predicate->getType()); 8834 return Builder.CreateCall(F, {Predicate, BasePtr, PrfOp}); 8835 } 8836 8837 Value *CodeGenFunction::EmitSVEMaskedLoad(const CallExpr *E, 8838 llvm::Type *ReturnTy, 8839 SmallVectorImpl<Value *> &Ops, 8840 unsigned BuiltinID, 8841 bool IsZExtReturn) { 8842 QualType LangPTy = E->getArg(1)->getType(); 8843 llvm::Type *MemEltTy = CGM.getTypes().ConvertType( 8844 LangPTy->castAs<PointerType>()->getPointeeType()); 8845 8846 // The vector type that is returned may be different from the 8847 // eventual type loaded from memory. 8848 auto VectorTy = cast<llvm::ScalableVectorType>(ReturnTy); 8849 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); 8850 8851 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); 8852 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo()); 8853 Value *Offset = Ops.size() > 2 ? Ops[2] : Builder.getInt32(0); 8854 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset); 8855 8856 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo()); 8857 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy); 8858 Value *Load = Builder.CreateCall(F, {Predicate, BasePtr}); 8859 8860 return IsZExtReturn ? Builder.CreateZExt(Load, VectorTy) 8861 : Builder.CreateSExt(Load, VectorTy); 8862 } 8863 8864 Value *CodeGenFunction::EmitSVEMaskedStore(const CallExpr *E, 8865 SmallVectorImpl<Value *> &Ops, 8866 unsigned BuiltinID) { 8867 QualType LangPTy = E->getArg(1)->getType(); 8868 llvm::Type *MemEltTy = CGM.getTypes().ConvertType( 8869 LangPTy->castAs<PointerType>()->getPointeeType()); 8870 8871 // The vector type that is stored may be different from the 8872 // eventual type stored to memory. 8873 auto VectorTy = cast<llvm::ScalableVectorType>(Ops.back()->getType()); 8874 auto MemoryTy = llvm::ScalableVectorType::get(MemEltTy, VectorTy); 8875 8876 Value *Predicate = EmitSVEPredicateCast(Ops[0], MemoryTy); 8877 Value *BasePtr = Builder.CreateBitCast(Ops[1], MemoryTy->getPointerTo()); 8878 Value *Offset = Ops.size() == 4 ? Ops[2] : Builder.getInt32(0); 8879 BasePtr = Builder.CreateGEP(MemoryTy, BasePtr, Offset); 8880 8881 // Last value is always the data 8882 llvm::Value *Val = Builder.CreateTrunc(Ops.back(), MemoryTy); 8883 8884 BasePtr = Builder.CreateBitCast(BasePtr, MemEltTy->getPointerTo()); 8885 Function *F = CGM.getIntrinsic(BuiltinID, MemoryTy); 8886 return Builder.CreateCall(F, {Val, Predicate, BasePtr}); 8887 } 8888 8889 // Limit the usage of scalable llvm IR generated by the ACLE by using the 8890 // sve dup.x intrinsic instead of IRBuilder::CreateVectorSplat. 8891 Value *CodeGenFunction::EmitSVEDupX(Value *Scalar, llvm::Type *Ty) { 8892 auto F = CGM.getIntrinsic(Intrinsic::aarch64_sve_dup_x, Ty); 8893 return Builder.CreateCall(F, Scalar); 8894 } 8895 8896 Value *CodeGenFunction::EmitSVEDupX(Value* Scalar) { 8897 return EmitSVEDupX(Scalar, getSVEVectorForElementType(Scalar->getType())); 8898 } 8899 8900 Value *CodeGenFunction::EmitSVEReinterpret(Value *Val, llvm::Type *Ty) { 8901 // FIXME: For big endian this needs an additional REV, or needs a separate 8902 // intrinsic that is code-generated as a no-op, because the LLVM bitcast 8903 // instruction is defined as 'bitwise' equivalent from memory point of 8904 // view (when storing/reloading), whereas the svreinterpret builtin 8905 // implements bitwise equivalent cast from register point of view. 8906 // LLVM CodeGen for a bitcast must add an explicit REV for big-endian. 8907 return Builder.CreateBitCast(Val, Ty); 8908 } 8909 8910 static void InsertExplicitZeroOperand(CGBuilderTy &Builder, llvm::Type *Ty, 8911 SmallVectorImpl<Value *> &Ops) { 8912 auto *SplatZero = Constant::getNullValue(Ty); 8913 Ops.insert(Ops.begin(), SplatZero); 8914 } 8915 8916 static void InsertExplicitUndefOperand(CGBuilderTy &Builder, llvm::Type *Ty, 8917 SmallVectorImpl<Value *> &Ops) { 8918 auto *SplatUndef = UndefValue::get(Ty); 8919 Ops.insert(Ops.begin(), SplatUndef); 8920 } 8921 8922 SmallVector<llvm::Type *, 2> 8923 CodeGenFunction::getSVEOverloadTypes(const SVETypeFlags &TypeFlags, 8924 llvm::Type *ResultType, 8925 ArrayRef<Value *> Ops) { 8926 if (TypeFlags.isOverloadNone()) 8927 return {}; 8928 8929 llvm::Type *DefaultType = getSVEType(TypeFlags); 8930 8931 if (TypeFlags.isOverloadWhile()) 8932 return {DefaultType, Ops[1]->getType()}; 8933 8934 if (TypeFlags.isOverloadWhileRW()) 8935 return {getSVEPredType(TypeFlags), Ops[0]->getType()}; 8936 8937 if (TypeFlags.isOverloadCvt() || TypeFlags.isTupleSet()) 8938 return {Ops[0]->getType(), Ops.back()->getType()}; 8939 8940 if (TypeFlags.isTupleCreate() || TypeFlags.isTupleGet()) 8941 return {ResultType, Ops[0]->getType()}; 8942 8943 assert(TypeFlags.isOverloadDefault() && "Unexpected value for overloads"); 8944 return {DefaultType}; 8945 } 8946 8947 Value *CodeGenFunction::EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, 8948 const CallExpr *E) { 8949 // Find out if any arguments are required to be integer constant expressions. 8950 unsigned ICEArguments = 0; 8951 ASTContext::GetBuiltinTypeError Error; 8952 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 8953 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 8954 8955 llvm::Type *Ty = ConvertType(E->getType()); 8956 if (BuiltinID >= SVE::BI__builtin_sve_reinterpret_s8_s8 && 8957 BuiltinID <= SVE::BI__builtin_sve_reinterpret_f64_f64) { 8958 Value *Val = EmitScalarExpr(E->getArg(0)); 8959 return EmitSVEReinterpret(Val, Ty); 8960 } 8961 8962 llvm::SmallVector<Value *, 4> Ops; 8963 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { 8964 if ((ICEArguments & (1 << i)) == 0) 8965 Ops.push_back(EmitScalarExpr(E->getArg(i))); 8966 else { 8967 // If this is required to be a constant, constant fold it so that we know 8968 // that the generated intrinsic gets a ConstantInt. 8969 Optional<llvm::APSInt> Result = 8970 E->getArg(i)->getIntegerConstantExpr(getContext()); 8971 assert(Result && "Expected argument to be a constant"); 8972 8973 // Immediates for SVE llvm intrinsics are always 32bit. We can safely 8974 // truncate because the immediate has been range checked and no valid 8975 // immediate requires more than a handful of bits. 8976 *Result = Result->extOrTrunc(32); 8977 Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), *Result)); 8978 } 8979 } 8980 8981 auto *Builtin = findARMVectorIntrinsicInMap(AArch64SVEIntrinsicMap, BuiltinID, 8982 AArch64SVEIntrinsicsProvenSorted); 8983 SVETypeFlags TypeFlags(Builtin->TypeModifier); 8984 if (TypeFlags.isLoad()) 8985 return EmitSVEMaskedLoad(E, Ty, Ops, Builtin->LLVMIntrinsic, 8986 TypeFlags.isZExtReturn()); 8987 else if (TypeFlags.isStore()) 8988 return EmitSVEMaskedStore(E, Ops, Builtin->LLVMIntrinsic); 8989 else if (TypeFlags.isGatherLoad()) 8990 return EmitSVEGatherLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); 8991 else if (TypeFlags.isScatterStore()) 8992 return EmitSVEScatterStore(TypeFlags, Ops, Builtin->LLVMIntrinsic); 8993 else if (TypeFlags.isPrefetch()) 8994 return EmitSVEPrefetchLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); 8995 else if (TypeFlags.isGatherPrefetch()) 8996 return EmitSVEGatherPrefetch(TypeFlags, Ops, Builtin->LLVMIntrinsic); 8997 else if (TypeFlags.isStructLoad()) 8998 return EmitSVEStructLoad(TypeFlags, Ops, Builtin->LLVMIntrinsic); 8999 else if (TypeFlags.isStructStore()) 9000 return EmitSVEStructStore(TypeFlags, Ops, Builtin->LLVMIntrinsic); 9001 else if (TypeFlags.isUndef()) 9002 return UndefValue::get(Ty); 9003 else if (Builtin->LLVMIntrinsic != 0) { 9004 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZeroExp) 9005 InsertExplicitZeroOperand(Builder, Ty, Ops); 9006 9007 if (TypeFlags.getMergeType() == SVETypeFlags::MergeAnyExp) 9008 InsertExplicitUndefOperand(Builder, Ty, Ops); 9009 9010 // Some ACLE builtins leave out the argument to specify the predicate 9011 // pattern, which is expected to be expanded to an SV_ALL pattern. 9012 if (TypeFlags.isAppendSVALL()) 9013 Ops.push_back(Builder.getInt32(/*SV_ALL*/ 31)); 9014 if (TypeFlags.isInsertOp1SVALL()) 9015 Ops.insert(&Ops[1], Builder.getInt32(/*SV_ALL*/ 31)); 9016 9017 // Predicates must match the main datatype. 9018 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 9019 if (auto PredTy = dyn_cast<llvm::VectorType>(Ops[i]->getType())) 9020 if (PredTy->getElementType()->isIntegerTy(1)) 9021 Ops[i] = EmitSVEPredicateCast(Ops[i], getSVEType(TypeFlags)); 9022 9023 // Splat scalar operand to vector (intrinsics with _n infix) 9024 if (TypeFlags.hasSplatOperand()) { 9025 unsigned OpNo = TypeFlags.getSplatOperand(); 9026 Ops[OpNo] = EmitSVEDupX(Ops[OpNo]); 9027 } 9028 9029 if (TypeFlags.isReverseCompare()) 9030 std::swap(Ops[1], Ops[2]); 9031 9032 if (TypeFlags.isReverseUSDOT()) 9033 std::swap(Ops[1], Ops[2]); 9034 9035 // Predicated intrinsics with _z suffix need a select w/ zeroinitializer. 9036 if (TypeFlags.getMergeType() == SVETypeFlags::MergeZero) { 9037 llvm::Type *OpndTy = Ops[1]->getType(); 9038 auto *SplatZero = Constant::getNullValue(OpndTy); 9039 Function *Sel = CGM.getIntrinsic(Intrinsic::aarch64_sve_sel, OpndTy); 9040 Ops[1] = Builder.CreateCall(Sel, {Ops[0], Ops[1], SplatZero}); 9041 } 9042 9043 Function *F = CGM.getIntrinsic(Builtin->LLVMIntrinsic, 9044 getSVEOverloadTypes(TypeFlags, Ty, Ops)); 9045 Value *Call = Builder.CreateCall(F, Ops); 9046 9047 // Predicate results must be converted to svbool_t. 9048 if (auto PredTy = dyn_cast<llvm::VectorType>(Call->getType())) 9049 if (PredTy->getScalarType()->isIntegerTy(1)) 9050 Call = EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty)); 9051 9052 return Call; 9053 } 9054 9055 switch (BuiltinID) { 9056 default: 9057 return nullptr; 9058 9059 case SVE::BI__builtin_sve_svmov_b_z: { 9060 // svmov_b_z(pg, op) <=> svand_b_z(pg, op, op) 9061 SVETypeFlags TypeFlags(Builtin->TypeModifier); 9062 llvm::Type* OverloadedTy = getSVEType(TypeFlags); 9063 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_and_z, OverloadedTy); 9064 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[1]}); 9065 } 9066 9067 case SVE::BI__builtin_sve_svnot_b_z: { 9068 // svnot_b_z(pg, op) <=> sveor_b_z(pg, op, pg) 9069 SVETypeFlags TypeFlags(Builtin->TypeModifier); 9070 llvm::Type* OverloadedTy = getSVEType(TypeFlags); 9071 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_eor_z, OverloadedTy); 9072 return Builder.CreateCall(F, {Ops[0], Ops[1], Ops[0]}); 9073 } 9074 9075 case SVE::BI__builtin_sve_svmovlb_u16: 9076 case SVE::BI__builtin_sve_svmovlb_u32: 9077 case SVE::BI__builtin_sve_svmovlb_u64: 9078 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllb); 9079 9080 case SVE::BI__builtin_sve_svmovlb_s16: 9081 case SVE::BI__builtin_sve_svmovlb_s32: 9082 case SVE::BI__builtin_sve_svmovlb_s64: 9083 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllb); 9084 9085 case SVE::BI__builtin_sve_svmovlt_u16: 9086 case SVE::BI__builtin_sve_svmovlt_u32: 9087 case SVE::BI__builtin_sve_svmovlt_u64: 9088 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_ushllt); 9089 9090 case SVE::BI__builtin_sve_svmovlt_s16: 9091 case SVE::BI__builtin_sve_svmovlt_s32: 9092 case SVE::BI__builtin_sve_svmovlt_s64: 9093 return EmitSVEMovl(TypeFlags, Ops, Intrinsic::aarch64_sve_sshllt); 9094 9095 case SVE::BI__builtin_sve_svpmullt_u16: 9096 case SVE::BI__builtin_sve_svpmullt_u64: 9097 case SVE::BI__builtin_sve_svpmullt_n_u16: 9098 case SVE::BI__builtin_sve_svpmullt_n_u64: 9099 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullt_pair); 9100 9101 case SVE::BI__builtin_sve_svpmullb_u16: 9102 case SVE::BI__builtin_sve_svpmullb_u64: 9103 case SVE::BI__builtin_sve_svpmullb_n_u16: 9104 case SVE::BI__builtin_sve_svpmullb_n_u64: 9105 return EmitSVEPMull(TypeFlags, Ops, Intrinsic::aarch64_sve_pmullb_pair); 9106 9107 case SVE::BI__builtin_sve_svdup_n_b8: 9108 case SVE::BI__builtin_sve_svdup_n_b16: 9109 case SVE::BI__builtin_sve_svdup_n_b32: 9110 case SVE::BI__builtin_sve_svdup_n_b64: { 9111 Value *CmpNE = 9112 Builder.CreateICmpNE(Ops[0], Constant::getNullValue(Ops[0]->getType())); 9113 llvm::ScalableVectorType *OverloadedTy = getSVEType(TypeFlags); 9114 Value *Dup = EmitSVEDupX(CmpNE, OverloadedTy); 9115 return EmitSVEPredicateCast(Dup, cast<llvm::ScalableVectorType>(Ty)); 9116 } 9117 9118 case SVE::BI__builtin_sve_svdupq_n_b8: 9119 case SVE::BI__builtin_sve_svdupq_n_b16: 9120 case SVE::BI__builtin_sve_svdupq_n_b32: 9121 case SVE::BI__builtin_sve_svdupq_n_b64: 9122 case SVE::BI__builtin_sve_svdupq_n_u8: 9123 case SVE::BI__builtin_sve_svdupq_n_s8: 9124 case SVE::BI__builtin_sve_svdupq_n_u64: 9125 case SVE::BI__builtin_sve_svdupq_n_f64: 9126 case SVE::BI__builtin_sve_svdupq_n_s64: 9127 case SVE::BI__builtin_sve_svdupq_n_u16: 9128 case SVE::BI__builtin_sve_svdupq_n_f16: 9129 case SVE::BI__builtin_sve_svdupq_n_bf16: 9130 case SVE::BI__builtin_sve_svdupq_n_s16: 9131 case SVE::BI__builtin_sve_svdupq_n_u32: 9132 case SVE::BI__builtin_sve_svdupq_n_f32: 9133 case SVE::BI__builtin_sve_svdupq_n_s32: { 9134 // These builtins are implemented by storing each element to an array and using 9135 // ld1rq to materialize a vector. 9136 unsigned NumOpnds = Ops.size(); 9137 9138 bool IsBoolTy = 9139 cast<llvm::VectorType>(Ty)->getElementType()->isIntegerTy(1); 9140 9141 // For svdupq_n_b* the element type of is an integer of type 128/numelts, 9142 // so that the compare can use the width that is natural for the expected 9143 // number of predicate lanes. 9144 llvm::Type *EltTy = Ops[0]->getType(); 9145 if (IsBoolTy) 9146 EltTy = IntegerType::get(getLLVMContext(), SVEBitsPerBlock / NumOpnds); 9147 9148 SmallVector<llvm::Value *, 16> VecOps; 9149 for (unsigned I = 0; I < NumOpnds; ++I) 9150 VecOps.push_back(Builder.CreateZExt(Ops[I], EltTy)); 9151 Value *Vec = BuildVector(VecOps); 9152 9153 SVETypeFlags TypeFlags(Builtin->TypeModifier); 9154 Value *Pred = EmitSVEAllTruePred(TypeFlags); 9155 9156 llvm::Type *OverloadedTy = getSVEVectorForElementType(EltTy); 9157 Value *InsertSubVec = Builder.CreateInsertVector( 9158 OverloadedTy, UndefValue::get(OverloadedTy), Vec, Builder.getInt64(0)); 9159 9160 Function *F = 9161 CGM.getIntrinsic(Intrinsic::aarch64_sve_dupq_lane, OverloadedTy); 9162 Value *DupQLane = 9163 Builder.CreateCall(F, {InsertSubVec, Builder.getInt64(0)}); 9164 9165 if (!IsBoolTy) 9166 return DupQLane; 9167 9168 // For svdupq_n_b* we need to add an additional 'cmpne' with '0'. 9169 F = CGM.getIntrinsic(NumOpnds == 2 ? Intrinsic::aarch64_sve_cmpne 9170 : Intrinsic::aarch64_sve_cmpne_wide, 9171 OverloadedTy); 9172 Value *Call = Builder.CreateCall( 9173 F, {Pred, DupQLane, EmitSVEDupX(Builder.getInt64(0))}); 9174 return EmitSVEPredicateCast(Call, cast<llvm::ScalableVectorType>(Ty)); 9175 } 9176 9177 case SVE::BI__builtin_sve_svpfalse_b: 9178 return ConstantInt::getFalse(Ty); 9179 9180 case SVE::BI__builtin_sve_svlen_bf16: 9181 case SVE::BI__builtin_sve_svlen_f16: 9182 case SVE::BI__builtin_sve_svlen_f32: 9183 case SVE::BI__builtin_sve_svlen_f64: 9184 case SVE::BI__builtin_sve_svlen_s8: 9185 case SVE::BI__builtin_sve_svlen_s16: 9186 case SVE::BI__builtin_sve_svlen_s32: 9187 case SVE::BI__builtin_sve_svlen_s64: 9188 case SVE::BI__builtin_sve_svlen_u8: 9189 case SVE::BI__builtin_sve_svlen_u16: 9190 case SVE::BI__builtin_sve_svlen_u32: 9191 case SVE::BI__builtin_sve_svlen_u64: { 9192 SVETypeFlags TF(Builtin->TypeModifier); 9193 auto VTy = cast<llvm::VectorType>(getSVEType(TF)); 9194 auto *NumEls = 9195 llvm::ConstantInt::get(Ty, VTy->getElementCount().getKnownMinValue()); 9196 9197 Function *F = CGM.getIntrinsic(Intrinsic::vscale, Ty); 9198 return Builder.CreateMul(NumEls, Builder.CreateCall(F)); 9199 } 9200 9201 case SVE::BI__builtin_sve_svtbl2_u8: 9202 case SVE::BI__builtin_sve_svtbl2_s8: 9203 case SVE::BI__builtin_sve_svtbl2_u16: 9204 case SVE::BI__builtin_sve_svtbl2_s16: 9205 case SVE::BI__builtin_sve_svtbl2_u32: 9206 case SVE::BI__builtin_sve_svtbl2_s32: 9207 case SVE::BI__builtin_sve_svtbl2_u64: 9208 case SVE::BI__builtin_sve_svtbl2_s64: 9209 case SVE::BI__builtin_sve_svtbl2_f16: 9210 case SVE::BI__builtin_sve_svtbl2_bf16: 9211 case SVE::BI__builtin_sve_svtbl2_f32: 9212 case SVE::BI__builtin_sve_svtbl2_f64: { 9213 SVETypeFlags TF(Builtin->TypeModifier); 9214 auto VTy = cast<llvm::VectorType>(getSVEType(TF)); 9215 auto TupleTy = llvm::VectorType::getDoubleElementsVectorType(VTy); 9216 Function *FExtr = 9217 CGM.getIntrinsic(Intrinsic::aarch64_sve_tuple_get, {VTy, TupleTy}); 9218 Value *V0 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(0)}); 9219 Value *V1 = Builder.CreateCall(FExtr, {Ops[0], Builder.getInt32(1)}); 9220 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_sve_tbl2, VTy); 9221 return Builder.CreateCall(F, {V0, V1, Ops[1]}); 9222 } 9223 } 9224 9225 /// Should not happen 9226 return nullptr; 9227 } 9228 9229 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID, 9230 const CallExpr *E, 9231 llvm::Triple::ArchType Arch) { 9232 if (BuiltinID >= AArch64::FirstSVEBuiltin && 9233 BuiltinID <= AArch64::LastSVEBuiltin) 9234 return EmitAArch64SVEBuiltinExpr(BuiltinID, E); 9235 9236 unsigned HintID = static_cast<unsigned>(-1); 9237 switch (BuiltinID) { 9238 default: break; 9239 case AArch64::BI__builtin_arm_nop: 9240 HintID = 0; 9241 break; 9242 case AArch64::BI__builtin_arm_yield: 9243 case AArch64::BI__yield: 9244 HintID = 1; 9245 break; 9246 case AArch64::BI__builtin_arm_wfe: 9247 case AArch64::BI__wfe: 9248 HintID = 2; 9249 break; 9250 case AArch64::BI__builtin_arm_wfi: 9251 case AArch64::BI__wfi: 9252 HintID = 3; 9253 break; 9254 case AArch64::BI__builtin_arm_sev: 9255 case AArch64::BI__sev: 9256 HintID = 4; 9257 break; 9258 case AArch64::BI__builtin_arm_sevl: 9259 case AArch64::BI__sevl: 9260 HintID = 5; 9261 break; 9262 } 9263 9264 if (HintID != static_cast<unsigned>(-1)) { 9265 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint); 9266 return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID)); 9267 } 9268 9269 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) { 9270 Value *Address = EmitScalarExpr(E->getArg(0)); 9271 Value *RW = EmitScalarExpr(E->getArg(1)); 9272 Value *CacheLevel = EmitScalarExpr(E->getArg(2)); 9273 Value *RetentionPolicy = EmitScalarExpr(E->getArg(3)); 9274 Value *IsData = EmitScalarExpr(E->getArg(4)); 9275 9276 Value *Locality = nullptr; 9277 if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) { 9278 // Temporal fetch, needs to convert cache level to locality. 9279 Locality = llvm::ConstantInt::get(Int32Ty, 9280 -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3); 9281 } else { 9282 // Streaming fetch. 9283 Locality = llvm::ConstantInt::get(Int32Ty, 0); 9284 } 9285 9286 // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify 9287 // PLDL3STRM or PLDL2STRM. 9288 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 9289 return Builder.CreateCall(F, {Address, RW, Locality, IsData}); 9290 } 9291 9292 if (BuiltinID == AArch64::BI__builtin_arm_rbit) { 9293 assert((getContext().getTypeSize(E->getType()) == 32) && 9294 "rbit of unusual size!"); 9295 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9296 return Builder.CreateCall( 9297 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); 9298 } 9299 if (BuiltinID == AArch64::BI__builtin_arm_rbit64) { 9300 assert((getContext().getTypeSize(E->getType()) == 64) && 9301 "rbit of unusual size!"); 9302 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9303 return Builder.CreateCall( 9304 CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit"); 9305 } 9306 9307 if (BuiltinID == AArch64::BI__builtin_arm_cls) { 9308 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9309 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls), Arg, 9310 "cls"); 9311 } 9312 if (BuiltinID == AArch64::BI__builtin_arm_cls64) { 9313 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9314 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_cls64), Arg, 9315 "cls"); 9316 } 9317 9318 if (BuiltinID == AArch64::BI__builtin_arm_frint32zf || 9319 BuiltinID == AArch64::BI__builtin_arm_frint32z) { 9320 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9321 llvm::Type *Ty = Arg->getType(); 9322 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32z, Ty), 9323 Arg, "frint32z"); 9324 } 9325 9326 if (BuiltinID == AArch64::BI__builtin_arm_frint64zf || 9327 BuiltinID == AArch64::BI__builtin_arm_frint64z) { 9328 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9329 llvm::Type *Ty = Arg->getType(); 9330 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64z, Ty), 9331 Arg, "frint64z"); 9332 } 9333 9334 if (BuiltinID == AArch64::BI__builtin_arm_frint32xf || 9335 BuiltinID == AArch64::BI__builtin_arm_frint32x) { 9336 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9337 llvm::Type *Ty = Arg->getType(); 9338 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint32x, Ty), 9339 Arg, "frint32x"); 9340 } 9341 9342 if (BuiltinID == AArch64::BI__builtin_arm_frint64xf || 9343 BuiltinID == AArch64::BI__builtin_arm_frint64x) { 9344 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9345 llvm::Type *Ty = Arg->getType(); 9346 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::aarch64_frint64x, Ty), 9347 Arg, "frint64x"); 9348 } 9349 9350 if (BuiltinID == AArch64::BI__builtin_arm_jcvt) { 9351 assert((getContext().getTypeSize(E->getType()) == 32) && 9352 "__jcvt of unusual size!"); 9353 llvm::Value *Arg = EmitScalarExpr(E->getArg(0)); 9354 return Builder.CreateCall( 9355 CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg); 9356 } 9357 9358 if (BuiltinID == AArch64::BI__builtin_arm_ld64b || 9359 BuiltinID == AArch64::BI__builtin_arm_st64b || 9360 BuiltinID == AArch64::BI__builtin_arm_st64bv || 9361 BuiltinID == AArch64::BI__builtin_arm_st64bv0) { 9362 llvm::Value *MemAddr = EmitScalarExpr(E->getArg(0)); 9363 llvm::Value *ValPtr = EmitScalarExpr(E->getArg(1)); 9364 9365 if (BuiltinID == AArch64::BI__builtin_arm_ld64b) { 9366 // Load from the address via an LLVM intrinsic, receiving a 9367 // tuple of 8 i64 words, and store each one to ValPtr. 9368 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_ld64b); 9369 llvm::Value *Val = Builder.CreateCall(F, MemAddr); 9370 llvm::Value *ToRet; 9371 for (size_t i = 0; i < 8; i++) { 9372 llvm::Value *ValOffsetPtr = 9373 Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i)); 9374 Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8)); 9375 ToRet = Builder.CreateStore(Builder.CreateExtractValue(Val, i), Addr); 9376 } 9377 return ToRet; 9378 } else { 9379 // Load 8 i64 words from ValPtr, and store them to the address 9380 // via an LLVM intrinsic. 9381 SmallVector<llvm::Value *, 9> Args; 9382 Args.push_back(MemAddr); 9383 for (size_t i = 0; i < 8; i++) { 9384 llvm::Value *ValOffsetPtr = 9385 Builder.CreateGEP(Int64Ty, ValPtr, Builder.getInt32(i)); 9386 Address Addr(ValOffsetPtr, CharUnits::fromQuantity(8)); 9387 Args.push_back(Builder.CreateLoad(Addr)); 9388 } 9389 9390 auto Intr = (BuiltinID == AArch64::BI__builtin_arm_st64b 9391 ? Intrinsic::aarch64_st64b 9392 : BuiltinID == AArch64::BI__builtin_arm_st64bv 9393 ? Intrinsic::aarch64_st64bv 9394 : Intrinsic::aarch64_st64bv0); 9395 Function *F = CGM.getIntrinsic(Intr); 9396 return Builder.CreateCall(F, Args); 9397 } 9398 } 9399 9400 if (BuiltinID == AArch64::BI__builtin_arm_rndr || 9401 BuiltinID == AArch64::BI__builtin_arm_rndrrs) { 9402 9403 auto Intr = (BuiltinID == AArch64::BI__builtin_arm_rndr 9404 ? Intrinsic::aarch64_rndr 9405 : Intrinsic::aarch64_rndrrs); 9406 Function *F = CGM.getIntrinsic(Intr); 9407 llvm::Value *Val = Builder.CreateCall(F); 9408 Value *RandomValue = Builder.CreateExtractValue(Val, 0); 9409 Value *Status = Builder.CreateExtractValue(Val, 1); 9410 9411 Address MemAddress = EmitPointerWithAlignment(E->getArg(0)); 9412 Builder.CreateStore(RandomValue, MemAddress); 9413 Status = Builder.CreateZExt(Status, Int32Ty); 9414 return Status; 9415 } 9416 9417 if (BuiltinID == AArch64::BI__clear_cache) { 9418 assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments"); 9419 const FunctionDecl *FD = E->getDirectCallee(); 9420 Value *Ops[2]; 9421 for (unsigned i = 0; i < 2; i++) 9422 Ops[i] = EmitScalarExpr(E->getArg(i)); 9423 llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType()); 9424 llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty); 9425 StringRef Name = FD->getName(); 9426 return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops); 9427 } 9428 9429 if ((BuiltinID == AArch64::BI__builtin_arm_ldrex || 9430 BuiltinID == AArch64::BI__builtin_arm_ldaex) && 9431 getContext().getTypeSize(E->getType()) == 128) { 9432 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex 9433 ? Intrinsic::aarch64_ldaxp 9434 : Intrinsic::aarch64_ldxp); 9435 9436 Value *LdPtr = EmitScalarExpr(E->getArg(0)); 9437 Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy), 9438 "ldxp"); 9439 9440 Value *Val0 = Builder.CreateExtractValue(Val, 1); 9441 Value *Val1 = Builder.CreateExtractValue(Val, 0); 9442 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); 9443 Val0 = Builder.CreateZExt(Val0, Int128Ty); 9444 Val1 = Builder.CreateZExt(Val1, Int128Ty); 9445 9446 Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64); 9447 Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */); 9448 Val = Builder.CreateOr(Val, Val1); 9449 return Builder.CreateBitCast(Val, ConvertType(E->getType())); 9450 } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex || 9451 BuiltinID == AArch64::BI__builtin_arm_ldaex) { 9452 Value *LoadAddr = EmitScalarExpr(E->getArg(0)); 9453 9454 QualType Ty = E->getType(); 9455 llvm::Type *RealResTy = ConvertType(Ty); 9456 llvm::Type *PtrTy = llvm::IntegerType::get( 9457 getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo(); 9458 LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy); 9459 9460 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex 9461 ? Intrinsic::aarch64_ldaxr 9462 : Intrinsic::aarch64_ldxr, 9463 PtrTy); 9464 Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr"); 9465 9466 if (RealResTy->isPointerTy()) 9467 return Builder.CreateIntToPtr(Val, RealResTy); 9468 9469 llvm::Type *IntResTy = llvm::IntegerType::get( 9470 getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy)); 9471 Val = Builder.CreateTruncOrBitCast(Val, IntResTy); 9472 return Builder.CreateBitCast(Val, RealResTy); 9473 } 9474 9475 if ((BuiltinID == AArch64::BI__builtin_arm_strex || 9476 BuiltinID == AArch64::BI__builtin_arm_stlex) && 9477 getContext().getTypeSize(E->getArg(0)->getType()) == 128) { 9478 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex 9479 ? Intrinsic::aarch64_stlxp 9480 : Intrinsic::aarch64_stxp); 9481 llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty); 9482 9483 Address Tmp = CreateMemTemp(E->getArg(0)->getType()); 9484 EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true); 9485 9486 Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy)); 9487 llvm::Value *Val = Builder.CreateLoad(Tmp); 9488 9489 Value *Arg0 = Builder.CreateExtractValue(Val, 0); 9490 Value *Arg1 = Builder.CreateExtractValue(Val, 1); 9491 Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), 9492 Int8PtrTy); 9493 return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp"); 9494 } 9495 9496 if (BuiltinID == AArch64::BI__builtin_arm_strex || 9497 BuiltinID == AArch64::BI__builtin_arm_stlex) { 9498 Value *StoreVal = EmitScalarExpr(E->getArg(0)); 9499 Value *StoreAddr = EmitScalarExpr(E->getArg(1)); 9500 9501 QualType Ty = E->getArg(0)->getType(); 9502 llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(), 9503 getContext().getTypeSize(Ty)); 9504 StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo()); 9505 9506 if (StoreVal->getType()->isPointerTy()) 9507 StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty); 9508 else { 9509 llvm::Type *IntTy = llvm::IntegerType::get( 9510 getLLVMContext(), 9511 CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType())); 9512 StoreVal = Builder.CreateBitCast(StoreVal, IntTy); 9513 StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty); 9514 } 9515 9516 Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex 9517 ? Intrinsic::aarch64_stlxr 9518 : Intrinsic::aarch64_stxr, 9519 StoreAddr->getType()); 9520 return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr"); 9521 } 9522 9523 if (BuiltinID == AArch64::BI__getReg) { 9524 Expr::EvalResult Result; 9525 if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext())) 9526 llvm_unreachable("Sema will ensure that the parameter is constant"); 9527 9528 llvm::APSInt Value = Result.Val.getInt(); 9529 LLVMContext &Context = CGM.getLLVMContext(); 9530 std::string Reg = Value == 31 ? "sp" : "x" + toString(Value, 10); 9531 9532 llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)}; 9533 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); 9534 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); 9535 9536 llvm::Function *F = 9537 CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty}); 9538 return Builder.CreateCall(F, Metadata); 9539 } 9540 9541 if (BuiltinID == AArch64::BI__builtin_arm_clrex) { 9542 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex); 9543 return Builder.CreateCall(F); 9544 } 9545 9546 if (BuiltinID == AArch64::BI_ReadWriteBarrier) 9547 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, 9548 llvm::SyncScope::SingleThread); 9549 9550 // CRC32 9551 Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic; 9552 switch (BuiltinID) { 9553 case AArch64::BI__builtin_arm_crc32b: 9554 CRCIntrinsicID = Intrinsic::aarch64_crc32b; break; 9555 case AArch64::BI__builtin_arm_crc32cb: 9556 CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break; 9557 case AArch64::BI__builtin_arm_crc32h: 9558 CRCIntrinsicID = Intrinsic::aarch64_crc32h; break; 9559 case AArch64::BI__builtin_arm_crc32ch: 9560 CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break; 9561 case AArch64::BI__builtin_arm_crc32w: 9562 CRCIntrinsicID = Intrinsic::aarch64_crc32w; break; 9563 case AArch64::BI__builtin_arm_crc32cw: 9564 CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break; 9565 case AArch64::BI__builtin_arm_crc32d: 9566 CRCIntrinsicID = Intrinsic::aarch64_crc32x; break; 9567 case AArch64::BI__builtin_arm_crc32cd: 9568 CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break; 9569 } 9570 9571 if (CRCIntrinsicID != Intrinsic::not_intrinsic) { 9572 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 9573 Value *Arg1 = EmitScalarExpr(E->getArg(1)); 9574 Function *F = CGM.getIntrinsic(CRCIntrinsicID); 9575 9576 llvm::Type *DataTy = F->getFunctionType()->getParamType(1); 9577 Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy); 9578 9579 return Builder.CreateCall(F, {Arg0, Arg1}); 9580 } 9581 9582 // Memory Tagging Extensions (MTE) Intrinsics 9583 Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic; 9584 switch (BuiltinID) { 9585 case AArch64::BI__builtin_arm_irg: 9586 MTEIntrinsicID = Intrinsic::aarch64_irg; break; 9587 case AArch64::BI__builtin_arm_addg: 9588 MTEIntrinsicID = Intrinsic::aarch64_addg; break; 9589 case AArch64::BI__builtin_arm_gmi: 9590 MTEIntrinsicID = Intrinsic::aarch64_gmi; break; 9591 case AArch64::BI__builtin_arm_ldg: 9592 MTEIntrinsicID = Intrinsic::aarch64_ldg; break; 9593 case AArch64::BI__builtin_arm_stg: 9594 MTEIntrinsicID = Intrinsic::aarch64_stg; break; 9595 case AArch64::BI__builtin_arm_subp: 9596 MTEIntrinsicID = Intrinsic::aarch64_subp; break; 9597 } 9598 9599 if (MTEIntrinsicID != Intrinsic::not_intrinsic) { 9600 llvm::Type *T = ConvertType(E->getType()); 9601 9602 if (MTEIntrinsicID == Intrinsic::aarch64_irg) { 9603 Value *Pointer = EmitScalarExpr(E->getArg(0)); 9604 Value *Mask = EmitScalarExpr(E->getArg(1)); 9605 9606 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); 9607 Mask = Builder.CreateZExt(Mask, Int64Ty); 9608 Value *RV = Builder.CreateCall( 9609 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask}); 9610 return Builder.CreatePointerCast(RV, T); 9611 } 9612 if (MTEIntrinsicID == Intrinsic::aarch64_addg) { 9613 Value *Pointer = EmitScalarExpr(E->getArg(0)); 9614 Value *TagOffset = EmitScalarExpr(E->getArg(1)); 9615 9616 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); 9617 TagOffset = Builder.CreateZExt(TagOffset, Int64Ty); 9618 Value *RV = Builder.CreateCall( 9619 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset}); 9620 return Builder.CreatePointerCast(RV, T); 9621 } 9622 if (MTEIntrinsicID == Intrinsic::aarch64_gmi) { 9623 Value *Pointer = EmitScalarExpr(E->getArg(0)); 9624 Value *ExcludedMask = EmitScalarExpr(E->getArg(1)); 9625 9626 ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty); 9627 Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy); 9628 return Builder.CreateCall( 9629 CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask}); 9630 } 9631 // Although it is possible to supply a different return 9632 // address (first arg) to this intrinsic, for now we set 9633 // return address same as input address. 9634 if (MTEIntrinsicID == Intrinsic::aarch64_ldg) { 9635 Value *TagAddress = EmitScalarExpr(E->getArg(0)); 9636 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy); 9637 Value *RV = Builder.CreateCall( 9638 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress}); 9639 return Builder.CreatePointerCast(RV, T); 9640 } 9641 // Although it is possible to supply a different tag (to set) 9642 // to this intrinsic (as first arg), for now we supply 9643 // the tag that is in input address arg (common use case). 9644 if (MTEIntrinsicID == Intrinsic::aarch64_stg) { 9645 Value *TagAddress = EmitScalarExpr(E->getArg(0)); 9646 TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy); 9647 return Builder.CreateCall( 9648 CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress}); 9649 } 9650 if (MTEIntrinsicID == Intrinsic::aarch64_subp) { 9651 Value *PointerA = EmitScalarExpr(E->getArg(0)); 9652 Value *PointerB = EmitScalarExpr(E->getArg(1)); 9653 PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy); 9654 PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy); 9655 return Builder.CreateCall( 9656 CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB}); 9657 } 9658 } 9659 9660 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 9661 BuiltinID == AArch64::BI__builtin_arm_rsr64 || 9662 BuiltinID == AArch64::BI__builtin_arm_rsrp || 9663 BuiltinID == AArch64::BI__builtin_arm_wsr || 9664 BuiltinID == AArch64::BI__builtin_arm_wsr64 || 9665 BuiltinID == AArch64::BI__builtin_arm_wsrp) { 9666 9667 SpecialRegisterAccessKind AccessKind = Write; 9668 if (BuiltinID == AArch64::BI__builtin_arm_rsr || 9669 BuiltinID == AArch64::BI__builtin_arm_rsr64 || 9670 BuiltinID == AArch64::BI__builtin_arm_rsrp) 9671 AccessKind = VolatileRead; 9672 9673 bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp || 9674 BuiltinID == AArch64::BI__builtin_arm_wsrp; 9675 9676 bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr && 9677 BuiltinID != AArch64::BI__builtin_arm_wsr; 9678 9679 llvm::Type *ValueType; 9680 llvm::Type *RegisterType = Int64Ty; 9681 if (IsPointerBuiltin) { 9682 ValueType = VoidPtrTy; 9683 } else if (Is64Bit) { 9684 ValueType = Int64Ty; 9685 } else { 9686 ValueType = Int32Ty; 9687 } 9688 9689 return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, 9690 AccessKind); 9691 } 9692 9693 if (BuiltinID == AArch64::BI_ReadStatusReg || 9694 BuiltinID == AArch64::BI_WriteStatusReg) { 9695 LLVMContext &Context = CGM.getLLVMContext(); 9696 9697 unsigned SysReg = 9698 E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue(); 9699 9700 std::string SysRegStr; 9701 llvm::raw_string_ostream(SysRegStr) << 9702 ((1 << 1) | ((SysReg >> 14) & 1)) << ":" << 9703 ((SysReg >> 11) & 7) << ":" << 9704 ((SysReg >> 7) & 15) << ":" << 9705 ((SysReg >> 3) & 15) << ":" << 9706 ( SysReg & 7); 9707 9708 llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) }; 9709 llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops); 9710 llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName); 9711 9712 llvm::Type *RegisterType = Int64Ty; 9713 llvm::Type *Types[] = { RegisterType }; 9714 9715 if (BuiltinID == AArch64::BI_ReadStatusReg) { 9716 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types); 9717 9718 return Builder.CreateCall(F, Metadata); 9719 } 9720 9721 llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types); 9722 llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1)); 9723 9724 return Builder.CreateCall(F, { Metadata, ArgValue }); 9725 } 9726 9727 if (BuiltinID == AArch64::BI_AddressOfReturnAddress) { 9728 llvm::Function *F = 9729 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy); 9730 return Builder.CreateCall(F); 9731 } 9732 9733 if (BuiltinID == AArch64::BI__builtin_sponentry) { 9734 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry, AllocaInt8PtrTy); 9735 return Builder.CreateCall(F); 9736 } 9737 9738 if (BuiltinID == AArch64::BI__mulh || BuiltinID == AArch64::BI__umulh) { 9739 llvm::Type *ResType = ConvertType(E->getType()); 9740 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); 9741 9742 bool IsSigned = BuiltinID == AArch64::BI__mulh; 9743 Value *LHS = 9744 Builder.CreateIntCast(EmitScalarExpr(E->getArg(0)), Int128Ty, IsSigned); 9745 Value *RHS = 9746 Builder.CreateIntCast(EmitScalarExpr(E->getArg(1)), Int128Ty, IsSigned); 9747 9748 Value *MulResult, *HigherBits; 9749 if (IsSigned) { 9750 MulResult = Builder.CreateNSWMul(LHS, RHS); 9751 HigherBits = Builder.CreateAShr(MulResult, 64); 9752 } else { 9753 MulResult = Builder.CreateNUWMul(LHS, RHS); 9754 HigherBits = Builder.CreateLShr(MulResult, 64); 9755 } 9756 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned); 9757 9758 return HigherBits; 9759 } 9760 9761 // Handle MSVC intrinsics before argument evaluation to prevent double 9762 // evaluation. 9763 if (Optional<MSVCIntrin> MsvcIntId = translateAarch64ToMsvcIntrin(BuiltinID)) 9764 return EmitMSVCBuiltinExpr(*MsvcIntId, E); 9765 9766 // Find out if any arguments are required to be integer constant 9767 // expressions. 9768 unsigned ICEArguments = 0; 9769 ASTContext::GetBuiltinTypeError Error; 9770 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 9771 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 9772 9773 llvm::SmallVector<Value*, 4> Ops; 9774 Address PtrOp0 = Address::invalid(); 9775 for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) { 9776 if (i == 0) { 9777 switch (BuiltinID) { 9778 case NEON::BI__builtin_neon_vld1_v: 9779 case NEON::BI__builtin_neon_vld1q_v: 9780 case NEON::BI__builtin_neon_vld1_dup_v: 9781 case NEON::BI__builtin_neon_vld1q_dup_v: 9782 case NEON::BI__builtin_neon_vld1_lane_v: 9783 case NEON::BI__builtin_neon_vld1q_lane_v: 9784 case NEON::BI__builtin_neon_vst1_v: 9785 case NEON::BI__builtin_neon_vst1q_v: 9786 case NEON::BI__builtin_neon_vst1_lane_v: 9787 case NEON::BI__builtin_neon_vst1q_lane_v: 9788 // Get the alignment for the argument in addition to the value; 9789 // we'll use it later. 9790 PtrOp0 = EmitPointerWithAlignment(E->getArg(0)); 9791 Ops.push_back(PtrOp0.getPointer()); 9792 continue; 9793 } 9794 } 9795 if ((ICEArguments & (1 << i)) == 0) { 9796 Ops.push_back(EmitScalarExpr(E->getArg(i))); 9797 } else { 9798 // If this is required to be a constant, constant fold it so that we know 9799 // that the generated intrinsic gets a ConstantInt. 9800 Ops.push_back(llvm::ConstantInt::get( 9801 getLLVMContext(), 9802 *E->getArg(i)->getIntegerConstantExpr(getContext()))); 9803 } 9804 } 9805 9806 auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap); 9807 const ARMVectorIntrinsicInfo *Builtin = findARMVectorIntrinsicInMap( 9808 SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted); 9809 9810 if (Builtin) { 9811 Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1))); 9812 Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E); 9813 assert(Result && "SISD intrinsic should have been handled"); 9814 return Result; 9815 } 9816 9817 const Expr *Arg = E->getArg(E->getNumArgs()-1); 9818 NeonTypeFlags Type(0); 9819 if (Optional<llvm::APSInt> Result = Arg->getIntegerConstantExpr(getContext())) 9820 // Determine the type of this overloaded NEON intrinsic. 9821 Type = NeonTypeFlags(Result->getZExtValue()); 9822 9823 bool usgn = Type.isUnsigned(); 9824 bool quad = Type.isQuad(); 9825 9826 // Handle non-overloaded intrinsics first. 9827 switch (BuiltinID) { 9828 default: break; 9829 case NEON::BI__builtin_neon_vabsh_f16: 9830 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9831 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs"); 9832 case NEON::BI__builtin_neon_vaddq_p128: { 9833 llvm::Type *Ty = GetNeonType(this, NeonTypeFlags::Poly128); 9834 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9835 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 9836 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 9837 Ops[0] = Builder.CreateXor(Ops[0], Ops[1]); 9838 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128); 9839 return Builder.CreateBitCast(Ops[0], Int128Ty); 9840 } 9841 case NEON::BI__builtin_neon_vldrq_p128: { 9842 llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128); 9843 llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0); 9844 Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy); 9845 return Builder.CreateAlignedLoad(Int128Ty, Ptr, 9846 CharUnits::fromQuantity(16)); 9847 } 9848 case NEON::BI__builtin_neon_vstrq_p128: { 9849 llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128); 9850 Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy); 9851 return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr); 9852 } 9853 case NEON::BI__builtin_neon_vcvts_f32_u32: 9854 case NEON::BI__builtin_neon_vcvtd_f64_u64: 9855 usgn = true; 9856 LLVM_FALLTHROUGH; 9857 case NEON::BI__builtin_neon_vcvts_f32_s32: 9858 case NEON::BI__builtin_neon_vcvtd_f64_s64: { 9859 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9860 bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64; 9861 llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty; 9862 llvm::Type *FTy = Is64 ? DoubleTy : FloatTy; 9863 Ops[0] = Builder.CreateBitCast(Ops[0], InTy); 9864 if (usgn) 9865 return Builder.CreateUIToFP(Ops[0], FTy); 9866 return Builder.CreateSIToFP(Ops[0], FTy); 9867 } 9868 case NEON::BI__builtin_neon_vcvth_f16_u16: 9869 case NEON::BI__builtin_neon_vcvth_f16_u32: 9870 case NEON::BI__builtin_neon_vcvth_f16_u64: 9871 usgn = true; 9872 LLVM_FALLTHROUGH; 9873 case NEON::BI__builtin_neon_vcvth_f16_s16: 9874 case NEON::BI__builtin_neon_vcvth_f16_s32: 9875 case NEON::BI__builtin_neon_vcvth_f16_s64: { 9876 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9877 llvm::Type *FTy = HalfTy; 9878 llvm::Type *InTy; 9879 if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64) 9880 InTy = Int64Ty; 9881 else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32) 9882 InTy = Int32Ty; 9883 else 9884 InTy = Int16Ty; 9885 Ops[0] = Builder.CreateBitCast(Ops[0], InTy); 9886 if (usgn) 9887 return Builder.CreateUIToFP(Ops[0], FTy); 9888 return Builder.CreateSIToFP(Ops[0], FTy); 9889 } 9890 case NEON::BI__builtin_neon_vcvtah_u16_f16: 9891 case NEON::BI__builtin_neon_vcvtmh_u16_f16: 9892 case NEON::BI__builtin_neon_vcvtnh_u16_f16: 9893 case NEON::BI__builtin_neon_vcvtph_u16_f16: 9894 case NEON::BI__builtin_neon_vcvth_u16_f16: 9895 case NEON::BI__builtin_neon_vcvtah_s16_f16: 9896 case NEON::BI__builtin_neon_vcvtmh_s16_f16: 9897 case NEON::BI__builtin_neon_vcvtnh_s16_f16: 9898 case NEON::BI__builtin_neon_vcvtph_s16_f16: 9899 case NEON::BI__builtin_neon_vcvth_s16_f16: { 9900 unsigned Int; 9901 llvm::Type* InTy = Int32Ty; 9902 llvm::Type* FTy = HalfTy; 9903 llvm::Type *Tys[2] = {InTy, FTy}; 9904 Ops.push_back(EmitScalarExpr(E->getArg(0))); 9905 switch (BuiltinID) { 9906 default: llvm_unreachable("missing builtin ID in switch!"); 9907 case NEON::BI__builtin_neon_vcvtah_u16_f16: 9908 Int = Intrinsic::aarch64_neon_fcvtau; break; 9909 case NEON::BI__builtin_neon_vcvtmh_u16_f16: 9910 Int = Intrinsic::aarch64_neon_fcvtmu; break; 9911 case NEON::BI__builtin_neon_vcvtnh_u16_f16: 9912 Int = Intrinsic::aarch64_neon_fcvtnu; break; 9913 case NEON::BI__builtin_neon_vcvtph_u16_f16: 9914 Int = Intrinsic::aarch64_neon_fcvtpu; break; 9915 case NEON::BI__builtin_neon_vcvth_u16_f16: 9916 Int = Intrinsic::aarch64_neon_fcvtzu; break; 9917 case NEON::BI__builtin_neon_vcvtah_s16_f16: 9918 Int = Intrinsic::aarch64_neon_fcvtas; break; 9919 case NEON::BI__builtin_neon_vcvtmh_s16_f16: 9920 Int = Intrinsic::aarch64_neon_fcvtms; break; 9921 case NEON::BI__builtin_neon_vcvtnh_s16_f16: 9922 Int = Intrinsic::aarch64_neon_fcvtns; break; 9923 case NEON::BI__builtin_neon_vcvtph_s16_f16: 9924 Int = Intrinsic::aarch64_neon_fcvtps; break; 9925 case NEON::BI__builtin_neon_vcvth_s16_f16: 9926 Int = Intrinsic::aarch64_neon_fcvtzs; break; 9927 } 9928 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt"); 9929 return Builder.CreateTrunc(Ops[0], Int16Ty); 9930 } 9931 case NEON::BI__builtin_neon_vcaleh_f16: 9932 case NEON::BI__builtin_neon_vcalth_f16: 9933 case NEON::BI__builtin_neon_vcageh_f16: 9934 case NEON::BI__builtin_neon_vcagth_f16: { 9935 unsigned Int; 9936 llvm::Type* InTy = Int32Ty; 9937 llvm::Type* FTy = HalfTy; 9938 llvm::Type *Tys[2] = {InTy, FTy}; 9939 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9940 switch (BuiltinID) { 9941 default: llvm_unreachable("missing builtin ID in switch!"); 9942 case NEON::BI__builtin_neon_vcageh_f16: 9943 Int = Intrinsic::aarch64_neon_facge; break; 9944 case NEON::BI__builtin_neon_vcagth_f16: 9945 Int = Intrinsic::aarch64_neon_facgt; break; 9946 case NEON::BI__builtin_neon_vcaleh_f16: 9947 Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break; 9948 case NEON::BI__builtin_neon_vcalth_f16: 9949 Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break; 9950 } 9951 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg"); 9952 return Builder.CreateTrunc(Ops[0], Int16Ty); 9953 } 9954 case NEON::BI__builtin_neon_vcvth_n_s16_f16: 9955 case NEON::BI__builtin_neon_vcvth_n_u16_f16: { 9956 unsigned Int; 9957 llvm::Type* InTy = Int32Ty; 9958 llvm::Type* FTy = HalfTy; 9959 llvm::Type *Tys[2] = {InTy, FTy}; 9960 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9961 switch (BuiltinID) { 9962 default: llvm_unreachable("missing builtin ID in switch!"); 9963 case NEON::BI__builtin_neon_vcvth_n_s16_f16: 9964 Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break; 9965 case NEON::BI__builtin_neon_vcvth_n_u16_f16: 9966 Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break; 9967 } 9968 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); 9969 return Builder.CreateTrunc(Ops[0], Int16Ty); 9970 } 9971 case NEON::BI__builtin_neon_vcvth_n_f16_s16: 9972 case NEON::BI__builtin_neon_vcvth_n_f16_u16: { 9973 unsigned Int; 9974 llvm::Type* FTy = HalfTy; 9975 llvm::Type* InTy = Int32Ty; 9976 llvm::Type *Tys[2] = {FTy, InTy}; 9977 Ops.push_back(EmitScalarExpr(E->getArg(1))); 9978 switch (BuiltinID) { 9979 default: llvm_unreachable("missing builtin ID in switch!"); 9980 case NEON::BI__builtin_neon_vcvth_n_f16_s16: 9981 Int = Intrinsic::aarch64_neon_vcvtfxs2fp; 9982 Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext"); 9983 break; 9984 case NEON::BI__builtin_neon_vcvth_n_f16_u16: 9985 Int = Intrinsic::aarch64_neon_vcvtfxu2fp; 9986 Ops[0] = Builder.CreateZExt(Ops[0], InTy); 9987 break; 9988 } 9989 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n"); 9990 } 9991 case NEON::BI__builtin_neon_vpaddd_s64: { 9992 auto *Ty = llvm::FixedVectorType::get(Int64Ty, 2); 9993 Value *Vec = EmitScalarExpr(E->getArg(0)); 9994 // The vector is v2f64, so make sure it's bitcast to that. 9995 Vec = Builder.CreateBitCast(Vec, Ty, "v2i64"); 9996 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); 9997 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); 9998 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); 9999 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); 10000 // Pairwise addition of a v2f64 into a scalar f64. 10001 return Builder.CreateAdd(Op0, Op1, "vpaddd"); 10002 } 10003 case NEON::BI__builtin_neon_vpaddd_f64: { 10004 auto *Ty = llvm::FixedVectorType::get(DoubleTy, 2); 10005 Value *Vec = EmitScalarExpr(E->getArg(0)); 10006 // The vector is v2f64, so make sure it's bitcast to that. 10007 Vec = Builder.CreateBitCast(Vec, Ty, "v2f64"); 10008 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); 10009 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); 10010 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); 10011 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); 10012 // Pairwise addition of a v2f64 into a scalar f64. 10013 return Builder.CreateFAdd(Op0, Op1, "vpaddd"); 10014 } 10015 case NEON::BI__builtin_neon_vpadds_f32: { 10016 auto *Ty = llvm::FixedVectorType::get(FloatTy, 2); 10017 Value *Vec = EmitScalarExpr(E->getArg(0)); 10018 // The vector is v2f32, so make sure it's bitcast to that. 10019 Vec = Builder.CreateBitCast(Vec, Ty, "v2f32"); 10020 llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0); 10021 llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1); 10022 Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0"); 10023 Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1"); 10024 // Pairwise addition of a v2f32 into a scalar f32. 10025 return Builder.CreateFAdd(Op0, Op1, "vpaddd"); 10026 } 10027 case NEON::BI__builtin_neon_vceqzd_s64: 10028 case NEON::BI__builtin_neon_vceqzd_f64: 10029 case NEON::BI__builtin_neon_vceqzs_f32: 10030 case NEON::BI__builtin_neon_vceqzh_f16: 10031 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10032 return EmitAArch64CompareBuiltinExpr( 10033 Ops[0], ConvertType(E->getCallReturnType(getContext())), 10034 ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz"); 10035 case NEON::BI__builtin_neon_vcgezd_s64: 10036 case NEON::BI__builtin_neon_vcgezd_f64: 10037 case NEON::BI__builtin_neon_vcgezs_f32: 10038 case NEON::BI__builtin_neon_vcgezh_f16: 10039 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10040 return EmitAArch64CompareBuiltinExpr( 10041 Ops[0], ConvertType(E->getCallReturnType(getContext())), 10042 ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez"); 10043 case NEON::BI__builtin_neon_vclezd_s64: 10044 case NEON::BI__builtin_neon_vclezd_f64: 10045 case NEON::BI__builtin_neon_vclezs_f32: 10046 case NEON::BI__builtin_neon_vclezh_f16: 10047 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10048 return EmitAArch64CompareBuiltinExpr( 10049 Ops[0], ConvertType(E->getCallReturnType(getContext())), 10050 ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez"); 10051 case NEON::BI__builtin_neon_vcgtzd_s64: 10052 case NEON::BI__builtin_neon_vcgtzd_f64: 10053 case NEON::BI__builtin_neon_vcgtzs_f32: 10054 case NEON::BI__builtin_neon_vcgtzh_f16: 10055 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10056 return EmitAArch64CompareBuiltinExpr( 10057 Ops[0], ConvertType(E->getCallReturnType(getContext())), 10058 ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz"); 10059 case NEON::BI__builtin_neon_vcltzd_s64: 10060 case NEON::BI__builtin_neon_vcltzd_f64: 10061 case NEON::BI__builtin_neon_vcltzs_f32: 10062 case NEON::BI__builtin_neon_vcltzh_f16: 10063 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10064 return EmitAArch64CompareBuiltinExpr( 10065 Ops[0], ConvertType(E->getCallReturnType(getContext())), 10066 ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz"); 10067 10068 case NEON::BI__builtin_neon_vceqzd_u64: { 10069 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10070 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); 10071 Ops[0] = 10072 Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty)); 10073 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd"); 10074 } 10075 case NEON::BI__builtin_neon_vceqd_f64: 10076 case NEON::BI__builtin_neon_vcled_f64: 10077 case NEON::BI__builtin_neon_vcltd_f64: 10078 case NEON::BI__builtin_neon_vcged_f64: 10079 case NEON::BI__builtin_neon_vcgtd_f64: { 10080 llvm::CmpInst::Predicate P; 10081 switch (BuiltinID) { 10082 default: llvm_unreachable("missing builtin ID in switch!"); 10083 case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break; 10084 case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break; 10085 case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break; 10086 case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break; 10087 case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break; 10088 } 10089 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10090 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 10091 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); 10092 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); 10093 return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd"); 10094 } 10095 case NEON::BI__builtin_neon_vceqs_f32: 10096 case NEON::BI__builtin_neon_vcles_f32: 10097 case NEON::BI__builtin_neon_vclts_f32: 10098 case NEON::BI__builtin_neon_vcges_f32: 10099 case NEON::BI__builtin_neon_vcgts_f32: { 10100 llvm::CmpInst::Predicate P; 10101 switch (BuiltinID) { 10102 default: llvm_unreachable("missing builtin ID in switch!"); 10103 case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break; 10104 case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break; 10105 case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break; 10106 case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break; 10107 case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break; 10108 } 10109 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10110 Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy); 10111 Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy); 10112 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); 10113 return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd"); 10114 } 10115 case NEON::BI__builtin_neon_vceqh_f16: 10116 case NEON::BI__builtin_neon_vcleh_f16: 10117 case NEON::BI__builtin_neon_vclth_f16: 10118 case NEON::BI__builtin_neon_vcgeh_f16: 10119 case NEON::BI__builtin_neon_vcgth_f16: { 10120 llvm::CmpInst::Predicate P; 10121 switch (BuiltinID) { 10122 default: llvm_unreachable("missing builtin ID in switch!"); 10123 case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break; 10124 case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break; 10125 case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break; 10126 case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break; 10127 case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break; 10128 } 10129 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10130 Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy); 10131 Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy); 10132 Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]); 10133 return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd"); 10134 } 10135 case NEON::BI__builtin_neon_vceqd_s64: 10136 case NEON::BI__builtin_neon_vceqd_u64: 10137 case NEON::BI__builtin_neon_vcgtd_s64: 10138 case NEON::BI__builtin_neon_vcgtd_u64: 10139 case NEON::BI__builtin_neon_vcltd_s64: 10140 case NEON::BI__builtin_neon_vcltd_u64: 10141 case NEON::BI__builtin_neon_vcged_u64: 10142 case NEON::BI__builtin_neon_vcged_s64: 10143 case NEON::BI__builtin_neon_vcled_u64: 10144 case NEON::BI__builtin_neon_vcled_s64: { 10145 llvm::CmpInst::Predicate P; 10146 switch (BuiltinID) { 10147 default: llvm_unreachable("missing builtin ID in switch!"); 10148 case NEON::BI__builtin_neon_vceqd_s64: 10149 case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break; 10150 case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break; 10151 case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break; 10152 case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break; 10153 case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break; 10154 case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break; 10155 case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break; 10156 case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break; 10157 case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break; 10158 } 10159 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10160 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); 10161 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); 10162 Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]); 10163 return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd"); 10164 } 10165 case NEON::BI__builtin_neon_vtstd_s64: 10166 case NEON::BI__builtin_neon_vtstd_u64: { 10167 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10168 Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty); 10169 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); 10170 Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]); 10171 Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0], 10172 llvm::Constant::getNullValue(Int64Ty)); 10173 return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd"); 10174 } 10175 case NEON::BI__builtin_neon_vset_lane_i8: 10176 case NEON::BI__builtin_neon_vset_lane_i16: 10177 case NEON::BI__builtin_neon_vset_lane_i32: 10178 case NEON::BI__builtin_neon_vset_lane_i64: 10179 case NEON::BI__builtin_neon_vset_lane_bf16: 10180 case NEON::BI__builtin_neon_vset_lane_f32: 10181 case NEON::BI__builtin_neon_vsetq_lane_i8: 10182 case NEON::BI__builtin_neon_vsetq_lane_i16: 10183 case NEON::BI__builtin_neon_vsetq_lane_i32: 10184 case NEON::BI__builtin_neon_vsetq_lane_i64: 10185 case NEON::BI__builtin_neon_vsetq_lane_bf16: 10186 case NEON::BI__builtin_neon_vsetq_lane_f32: 10187 Ops.push_back(EmitScalarExpr(E->getArg(2))); 10188 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 10189 case NEON::BI__builtin_neon_vset_lane_f64: 10190 // The vector type needs a cast for the v1f64 variant. 10191 Ops[1] = 10192 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 1)); 10193 Ops.push_back(EmitScalarExpr(E->getArg(2))); 10194 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 10195 case NEON::BI__builtin_neon_vsetq_lane_f64: 10196 // The vector type needs a cast for the v2f64 variant. 10197 Ops[1] = 10198 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(DoubleTy, 2)); 10199 Ops.push_back(EmitScalarExpr(E->getArg(2))); 10200 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane"); 10201 10202 case NEON::BI__builtin_neon_vget_lane_i8: 10203 case NEON::BI__builtin_neon_vdupb_lane_i8: 10204 Ops[0] = 10205 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 8)); 10206 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10207 "vget_lane"); 10208 case NEON::BI__builtin_neon_vgetq_lane_i8: 10209 case NEON::BI__builtin_neon_vdupb_laneq_i8: 10210 Ops[0] = 10211 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int8Ty, 16)); 10212 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10213 "vgetq_lane"); 10214 case NEON::BI__builtin_neon_vget_lane_i16: 10215 case NEON::BI__builtin_neon_vduph_lane_i16: 10216 Ops[0] = 10217 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 4)); 10218 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10219 "vget_lane"); 10220 case NEON::BI__builtin_neon_vgetq_lane_i16: 10221 case NEON::BI__builtin_neon_vduph_laneq_i16: 10222 Ops[0] = 10223 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int16Ty, 8)); 10224 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10225 "vgetq_lane"); 10226 case NEON::BI__builtin_neon_vget_lane_i32: 10227 case NEON::BI__builtin_neon_vdups_lane_i32: 10228 Ops[0] = 10229 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 2)); 10230 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10231 "vget_lane"); 10232 case NEON::BI__builtin_neon_vdups_lane_f32: 10233 Ops[0] = 10234 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2)); 10235 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10236 "vdups_lane"); 10237 case NEON::BI__builtin_neon_vgetq_lane_i32: 10238 case NEON::BI__builtin_neon_vdups_laneq_i32: 10239 Ops[0] = 10240 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4)); 10241 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10242 "vgetq_lane"); 10243 case NEON::BI__builtin_neon_vget_lane_i64: 10244 case NEON::BI__builtin_neon_vdupd_lane_i64: 10245 Ops[0] = 10246 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 1)); 10247 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10248 "vget_lane"); 10249 case NEON::BI__builtin_neon_vdupd_lane_f64: 10250 Ops[0] = 10251 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1)); 10252 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10253 "vdupd_lane"); 10254 case NEON::BI__builtin_neon_vgetq_lane_i64: 10255 case NEON::BI__builtin_neon_vdupd_laneq_i64: 10256 Ops[0] = 10257 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); 10258 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10259 "vgetq_lane"); 10260 case NEON::BI__builtin_neon_vget_lane_f32: 10261 Ops[0] = 10262 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 2)); 10263 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10264 "vget_lane"); 10265 case NEON::BI__builtin_neon_vget_lane_f64: 10266 Ops[0] = 10267 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 1)); 10268 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10269 "vget_lane"); 10270 case NEON::BI__builtin_neon_vgetq_lane_f32: 10271 case NEON::BI__builtin_neon_vdups_laneq_f32: 10272 Ops[0] = 10273 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(FloatTy, 4)); 10274 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10275 "vgetq_lane"); 10276 case NEON::BI__builtin_neon_vgetq_lane_f64: 10277 case NEON::BI__builtin_neon_vdupd_laneq_f64: 10278 Ops[0] = 10279 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(DoubleTy, 2)); 10280 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10281 "vgetq_lane"); 10282 case NEON::BI__builtin_neon_vaddh_f16: 10283 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10284 return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh"); 10285 case NEON::BI__builtin_neon_vsubh_f16: 10286 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10287 return Builder.CreateFSub(Ops[0], Ops[1], "vsubh"); 10288 case NEON::BI__builtin_neon_vmulh_f16: 10289 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10290 return Builder.CreateFMul(Ops[0], Ops[1], "vmulh"); 10291 case NEON::BI__builtin_neon_vdivh_f16: 10292 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10293 return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh"); 10294 case NEON::BI__builtin_neon_vfmah_f16: 10295 // NEON intrinsic puts accumulator first, unlike the LLVM fma. 10296 return emitCallMaybeConstrainedFPBuiltin( 10297 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy, 10298 {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]}); 10299 case NEON::BI__builtin_neon_vfmsh_f16: { 10300 // FIXME: This should be an fneg instruction: 10301 Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy); 10302 Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh"); 10303 10304 // NEON intrinsic puts accumulator first, unlike the LLVM fma. 10305 return emitCallMaybeConstrainedFPBuiltin( 10306 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, HalfTy, 10307 {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]}); 10308 } 10309 case NEON::BI__builtin_neon_vaddd_s64: 10310 case NEON::BI__builtin_neon_vaddd_u64: 10311 return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd"); 10312 case NEON::BI__builtin_neon_vsubd_s64: 10313 case NEON::BI__builtin_neon_vsubd_u64: 10314 return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd"); 10315 case NEON::BI__builtin_neon_vqdmlalh_s16: 10316 case NEON::BI__builtin_neon_vqdmlslh_s16: { 10317 SmallVector<Value *, 2> ProductOps; 10318 ProductOps.push_back(vectorWrapScalar16(Ops[1])); 10319 ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2)))); 10320 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4); 10321 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), 10322 ProductOps, "vqdmlXl"); 10323 Constant *CI = ConstantInt::get(SizeTy, 0); 10324 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); 10325 10326 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16 10327 ? Intrinsic::aarch64_neon_sqadd 10328 : Intrinsic::aarch64_neon_sqsub; 10329 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl"); 10330 } 10331 case NEON::BI__builtin_neon_vqshlud_n_s64: { 10332 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10333 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); 10334 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty), 10335 Ops, "vqshlu_n"); 10336 } 10337 case NEON::BI__builtin_neon_vqshld_n_u64: 10338 case NEON::BI__builtin_neon_vqshld_n_s64: { 10339 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64 10340 ? Intrinsic::aarch64_neon_uqshl 10341 : Intrinsic::aarch64_neon_sqshl; 10342 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10343 Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty); 10344 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n"); 10345 } 10346 case NEON::BI__builtin_neon_vrshrd_n_u64: 10347 case NEON::BI__builtin_neon_vrshrd_n_s64: { 10348 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64 10349 ? Intrinsic::aarch64_neon_urshl 10350 : Intrinsic::aarch64_neon_srshl; 10351 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10352 int SV = cast<ConstantInt>(Ops[1])->getSExtValue(); 10353 Ops[1] = ConstantInt::get(Int64Ty, -SV); 10354 return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n"); 10355 } 10356 case NEON::BI__builtin_neon_vrsrad_n_u64: 10357 case NEON::BI__builtin_neon_vrsrad_n_s64: { 10358 unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64 10359 ? Intrinsic::aarch64_neon_urshl 10360 : Intrinsic::aarch64_neon_srshl; 10361 Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty); 10362 Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2)))); 10363 Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty), 10364 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)}); 10365 return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty)); 10366 } 10367 case NEON::BI__builtin_neon_vshld_n_s64: 10368 case NEON::BI__builtin_neon_vshld_n_u64: { 10369 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 10370 return Builder.CreateShl( 10371 Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n"); 10372 } 10373 case NEON::BI__builtin_neon_vshrd_n_s64: { 10374 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 10375 return Builder.CreateAShr( 10376 Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), 10377 Amt->getZExtValue())), 10378 "shrd_n"); 10379 } 10380 case NEON::BI__builtin_neon_vshrd_n_u64: { 10381 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 10382 uint64_t ShiftAmt = Amt->getZExtValue(); 10383 // Right-shifting an unsigned value by its size yields 0. 10384 if (ShiftAmt == 64) 10385 return ConstantInt::get(Int64Ty, 0); 10386 return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt), 10387 "shrd_n"); 10388 } 10389 case NEON::BI__builtin_neon_vsrad_n_s64: { 10390 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); 10391 Ops[1] = Builder.CreateAShr( 10392 Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63), 10393 Amt->getZExtValue())), 10394 "shrd_n"); 10395 return Builder.CreateAdd(Ops[0], Ops[1]); 10396 } 10397 case NEON::BI__builtin_neon_vsrad_n_u64: { 10398 llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2))); 10399 uint64_t ShiftAmt = Amt->getZExtValue(); 10400 // Right-shifting an unsigned value by its size yields 0. 10401 // As Op + 0 = Op, return Ops[0] directly. 10402 if (ShiftAmt == 64) 10403 return Ops[0]; 10404 Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt), 10405 "shrd_n"); 10406 return Builder.CreateAdd(Ops[0], Ops[1]); 10407 } 10408 case NEON::BI__builtin_neon_vqdmlalh_lane_s16: 10409 case NEON::BI__builtin_neon_vqdmlalh_laneq_s16: 10410 case NEON::BI__builtin_neon_vqdmlslh_lane_s16: 10411 case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: { 10412 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), 10413 "lane"); 10414 SmallVector<Value *, 2> ProductOps; 10415 ProductOps.push_back(vectorWrapScalar16(Ops[1])); 10416 ProductOps.push_back(vectorWrapScalar16(Ops[2])); 10417 auto *VTy = llvm::FixedVectorType::get(Int32Ty, 4); 10418 Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy), 10419 ProductOps, "vqdmlXl"); 10420 Constant *CI = ConstantInt::get(SizeTy, 0); 10421 Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0"); 10422 Ops.pop_back(); 10423 10424 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 || 10425 BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16) 10426 ? Intrinsic::aarch64_neon_sqadd 10427 : Intrinsic::aarch64_neon_sqsub; 10428 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl"); 10429 } 10430 case NEON::BI__builtin_neon_vqdmlals_s32: 10431 case NEON::BI__builtin_neon_vqdmlsls_s32: { 10432 SmallVector<Value *, 2> ProductOps; 10433 ProductOps.push_back(Ops[1]); 10434 ProductOps.push_back(EmitScalarExpr(E->getArg(2))); 10435 Ops[1] = 10436 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), 10437 ProductOps, "vqdmlXl"); 10438 10439 unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32 10440 ? Intrinsic::aarch64_neon_sqadd 10441 : Intrinsic::aarch64_neon_sqsub; 10442 return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl"); 10443 } 10444 case NEON::BI__builtin_neon_vqdmlals_lane_s32: 10445 case NEON::BI__builtin_neon_vqdmlals_laneq_s32: 10446 case NEON::BI__builtin_neon_vqdmlsls_lane_s32: 10447 case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: { 10448 Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)), 10449 "lane"); 10450 SmallVector<Value *, 2> ProductOps; 10451 ProductOps.push_back(Ops[1]); 10452 ProductOps.push_back(Ops[2]); 10453 Ops[1] = 10454 EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar), 10455 ProductOps, "vqdmlXl"); 10456 Ops.pop_back(); 10457 10458 unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 || 10459 BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32) 10460 ? Intrinsic::aarch64_neon_sqadd 10461 : Intrinsic::aarch64_neon_sqsub; 10462 return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl"); 10463 } 10464 case NEON::BI__builtin_neon_vget_lane_bf16: 10465 case NEON::BI__builtin_neon_vduph_lane_bf16: 10466 case NEON::BI__builtin_neon_vduph_lane_f16: { 10467 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10468 "vget_lane"); 10469 } 10470 case NEON::BI__builtin_neon_vgetq_lane_bf16: 10471 case NEON::BI__builtin_neon_vduph_laneq_bf16: 10472 case NEON::BI__builtin_neon_vduph_laneq_f16: { 10473 return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)), 10474 "vgetq_lane"); 10475 } 10476 10477 case AArch64::BI_InterlockedAdd: { 10478 Value *Arg0 = EmitScalarExpr(E->getArg(0)); 10479 Value *Arg1 = EmitScalarExpr(E->getArg(1)); 10480 AtomicRMWInst *RMWI = Builder.CreateAtomicRMW( 10481 AtomicRMWInst::Add, Arg0, Arg1, 10482 llvm::AtomicOrdering::SequentiallyConsistent); 10483 return Builder.CreateAdd(RMWI, Arg1); 10484 } 10485 } 10486 10487 llvm::FixedVectorType *VTy = GetNeonType(this, Type); 10488 llvm::Type *Ty = VTy; 10489 if (!Ty) 10490 return nullptr; 10491 10492 // Not all intrinsics handled by the common case work for AArch64 yet, so only 10493 // defer to common code if it's been added to our special map. 10494 Builtin = findARMVectorIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID, 10495 AArch64SIMDIntrinsicsProvenSorted); 10496 10497 if (Builtin) 10498 return EmitCommonNeonBuiltinExpr( 10499 Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic, 10500 Builtin->NameHint, Builtin->TypeModifier, E, Ops, 10501 /*never use addresses*/ Address::invalid(), Address::invalid(), Arch); 10502 10503 if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch)) 10504 return V; 10505 10506 unsigned Int; 10507 switch (BuiltinID) { 10508 default: return nullptr; 10509 case NEON::BI__builtin_neon_vbsl_v: 10510 case NEON::BI__builtin_neon_vbslq_v: { 10511 llvm::Type *BitTy = llvm::VectorType::getInteger(VTy); 10512 Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl"); 10513 Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl"); 10514 Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl"); 10515 10516 Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl"); 10517 Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl"); 10518 Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl"); 10519 return Builder.CreateBitCast(Ops[0], Ty); 10520 } 10521 case NEON::BI__builtin_neon_vfma_lane_v: 10522 case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types 10523 // The ARM builtins (and instructions) have the addend as the first 10524 // operand, but the 'fma' intrinsics have it last. Swap it around here. 10525 Value *Addend = Ops[0]; 10526 Value *Multiplicand = Ops[1]; 10527 Value *LaneSource = Ops[2]; 10528 Ops[0] = Multiplicand; 10529 Ops[1] = LaneSource; 10530 Ops[2] = Addend; 10531 10532 // Now adjust things to handle the lane access. 10533 auto *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v 10534 ? llvm::FixedVectorType::get(VTy->getElementType(), 10535 VTy->getNumElements() / 2) 10536 : VTy; 10537 llvm::Constant *cst = cast<Constant>(Ops[3]); 10538 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), cst); 10539 Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy); 10540 Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane"); 10541 10542 Ops.pop_back(); 10543 Int = Builder.getIsFPConstrained() ? Intrinsic::experimental_constrained_fma 10544 : Intrinsic::fma; 10545 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla"); 10546 } 10547 case NEON::BI__builtin_neon_vfma_laneq_v: { 10548 auto *VTy = cast<llvm::FixedVectorType>(Ty); 10549 // v1f64 fma should be mapped to Neon scalar f64 fma 10550 if (VTy && VTy->getElementType() == DoubleTy) { 10551 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 10552 Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy); 10553 llvm::FixedVectorType *VTy = 10554 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, true)); 10555 Ops[2] = Builder.CreateBitCast(Ops[2], VTy); 10556 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); 10557 Value *Result; 10558 Result = emitCallMaybeConstrainedFPBuiltin( 10559 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, 10560 DoubleTy, {Ops[1], Ops[2], Ops[0]}); 10561 return Builder.CreateBitCast(Result, Ty); 10562 } 10563 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 10564 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 10565 10566 auto *STy = llvm::FixedVectorType::get(VTy->getElementType(), 10567 VTy->getNumElements() * 2); 10568 Ops[2] = Builder.CreateBitCast(Ops[2], STy); 10569 Value *SV = llvm::ConstantVector::getSplat(VTy->getElementCount(), 10570 cast<ConstantInt>(Ops[3])); 10571 Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane"); 10572 10573 return emitCallMaybeConstrainedFPBuiltin( 10574 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, 10575 {Ops[2], Ops[1], Ops[0]}); 10576 } 10577 case NEON::BI__builtin_neon_vfmaq_laneq_v: { 10578 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 10579 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 10580 10581 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 10582 Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3])); 10583 return emitCallMaybeConstrainedFPBuiltin( 10584 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, 10585 {Ops[2], Ops[1], Ops[0]}); 10586 } 10587 case NEON::BI__builtin_neon_vfmah_lane_f16: 10588 case NEON::BI__builtin_neon_vfmas_lane_f32: 10589 case NEON::BI__builtin_neon_vfmah_laneq_f16: 10590 case NEON::BI__builtin_neon_vfmas_laneq_f32: 10591 case NEON::BI__builtin_neon_vfmad_lane_f64: 10592 case NEON::BI__builtin_neon_vfmad_laneq_f64: { 10593 Ops.push_back(EmitScalarExpr(E->getArg(3))); 10594 llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext())); 10595 Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract"); 10596 return emitCallMaybeConstrainedFPBuiltin( 10597 *this, Intrinsic::fma, Intrinsic::experimental_constrained_fma, Ty, 10598 {Ops[1], Ops[2], Ops[0]}); 10599 } 10600 case NEON::BI__builtin_neon_vmull_v: 10601 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10602 Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull; 10603 if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull; 10604 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull"); 10605 case NEON::BI__builtin_neon_vmax_v: 10606 case NEON::BI__builtin_neon_vmaxq_v: 10607 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10608 Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax; 10609 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax; 10610 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax"); 10611 case NEON::BI__builtin_neon_vmaxh_f16: { 10612 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10613 Int = Intrinsic::aarch64_neon_fmax; 10614 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax"); 10615 } 10616 case NEON::BI__builtin_neon_vmin_v: 10617 case NEON::BI__builtin_neon_vminq_v: 10618 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10619 Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin; 10620 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin; 10621 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin"); 10622 case NEON::BI__builtin_neon_vminh_f16: { 10623 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10624 Int = Intrinsic::aarch64_neon_fmin; 10625 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin"); 10626 } 10627 case NEON::BI__builtin_neon_vabd_v: 10628 case NEON::BI__builtin_neon_vabdq_v: 10629 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10630 Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd; 10631 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd; 10632 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd"); 10633 case NEON::BI__builtin_neon_vpadal_v: 10634 case NEON::BI__builtin_neon_vpadalq_v: { 10635 unsigned ArgElts = VTy->getNumElements(); 10636 llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType()); 10637 unsigned BitWidth = EltTy->getBitWidth(); 10638 auto *ArgTy = llvm::FixedVectorType::get( 10639 llvm::IntegerType::get(getLLVMContext(), BitWidth / 2), 2 * ArgElts); 10640 llvm::Type* Tys[2] = { VTy, ArgTy }; 10641 Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp; 10642 SmallVector<llvm::Value*, 1> TmpOps; 10643 TmpOps.push_back(Ops[1]); 10644 Function *F = CGM.getIntrinsic(Int, Tys); 10645 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal"); 10646 llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType()); 10647 return Builder.CreateAdd(tmp, addend); 10648 } 10649 case NEON::BI__builtin_neon_vpmin_v: 10650 case NEON::BI__builtin_neon_vpminq_v: 10651 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10652 Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp; 10653 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp; 10654 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin"); 10655 case NEON::BI__builtin_neon_vpmax_v: 10656 case NEON::BI__builtin_neon_vpmaxq_v: 10657 // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics. 10658 Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp; 10659 if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp; 10660 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax"); 10661 case NEON::BI__builtin_neon_vminnm_v: 10662 case NEON::BI__builtin_neon_vminnmq_v: 10663 Int = Intrinsic::aarch64_neon_fminnm; 10664 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm"); 10665 case NEON::BI__builtin_neon_vminnmh_f16: 10666 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10667 Int = Intrinsic::aarch64_neon_fminnm; 10668 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm"); 10669 case NEON::BI__builtin_neon_vmaxnm_v: 10670 case NEON::BI__builtin_neon_vmaxnmq_v: 10671 Int = Intrinsic::aarch64_neon_fmaxnm; 10672 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm"); 10673 case NEON::BI__builtin_neon_vmaxnmh_f16: 10674 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10675 Int = Intrinsic::aarch64_neon_fmaxnm; 10676 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm"); 10677 case NEON::BI__builtin_neon_vrecpss_f32: { 10678 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10679 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy), 10680 Ops, "vrecps"); 10681 } 10682 case NEON::BI__builtin_neon_vrecpsd_f64: 10683 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10684 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy), 10685 Ops, "vrecps"); 10686 case NEON::BI__builtin_neon_vrecpsh_f16: 10687 Ops.push_back(EmitScalarExpr(E->getArg(1))); 10688 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy), 10689 Ops, "vrecps"); 10690 case NEON::BI__builtin_neon_vqshrun_n_v: 10691 Int = Intrinsic::aarch64_neon_sqshrun; 10692 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n"); 10693 case NEON::BI__builtin_neon_vqrshrun_n_v: 10694 Int = Intrinsic::aarch64_neon_sqrshrun; 10695 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n"); 10696 case NEON::BI__builtin_neon_vqshrn_n_v: 10697 Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn; 10698 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n"); 10699 case NEON::BI__builtin_neon_vrshrn_n_v: 10700 Int = Intrinsic::aarch64_neon_rshrn; 10701 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n"); 10702 case NEON::BI__builtin_neon_vqrshrn_n_v: 10703 Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn; 10704 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n"); 10705 case NEON::BI__builtin_neon_vrndah_f16: { 10706 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10707 Int = Builder.getIsFPConstrained() 10708 ? Intrinsic::experimental_constrained_round 10709 : Intrinsic::round; 10710 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda"); 10711 } 10712 case NEON::BI__builtin_neon_vrnda_v: 10713 case NEON::BI__builtin_neon_vrndaq_v: { 10714 Int = Builder.getIsFPConstrained() 10715 ? Intrinsic::experimental_constrained_round 10716 : Intrinsic::round; 10717 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda"); 10718 } 10719 case NEON::BI__builtin_neon_vrndih_f16: { 10720 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10721 Int = Builder.getIsFPConstrained() 10722 ? Intrinsic::experimental_constrained_nearbyint 10723 : Intrinsic::nearbyint; 10724 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi"); 10725 } 10726 case NEON::BI__builtin_neon_vrndmh_f16: { 10727 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10728 Int = Builder.getIsFPConstrained() 10729 ? Intrinsic::experimental_constrained_floor 10730 : Intrinsic::floor; 10731 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm"); 10732 } 10733 case NEON::BI__builtin_neon_vrndm_v: 10734 case NEON::BI__builtin_neon_vrndmq_v: { 10735 Int = Builder.getIsFPConstrained() 10736 ? Intrinsic::experimental_constrained_floor 10737 : Intrinsic::floor; 10738 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm"); 10739 } 10740 case NEON::BI__builtin_neon_vrndnh_f16: { 10741 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10742 Int = Builder.getIsFPConstrained() 10743 ? Intrinsic::experimental_constrained_roundeven 10744 : Intrinsic::roundeven; 10745 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn"); 10746 } 10747 case NEON::BI__builtin_neon_vrndn_v: 10748 case NEON::BI__builtin_neon_vrndnq_v: { 10749 Int = Builder.getIsFPConstrained() 10750 ? Intrinsic::experimental_constrained_roundeven 10751 : Intrinsic::roundeven; 10752 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn"); 10753 } 10754 case NEON::BI__builtin_neon_vrndns_f32: { 10755 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10756 Int = Builder.getIsFPConstrained() 10757 ? Intrinsic::experimental_constrained_roundeven 10758 : Intrinsic::roundeven; 10759 return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn"); 10760 } 10761 case NEON::BI__builtin_neon_vrndph_f16: { 10762 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10763 Int = Builder.getIsFPConstrained() 10764 ? Intrinsic::experimental_constrained_ceil 10765 : Intrinsic::ceil; 10766 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp"); 10767 } 10768 case NEON::BI__builtin_neon_vrndp_v: 10769 case NEON::BI__builtin_neon_vrndpq_v: { 10770 Int = Builder.getIsFPConstrained() 10771 ? Intrinsic::experimental_constrained_ceil 10772 : Intrinsic::ceil; 10773 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp"); 10774 } 10775 case NEON::BI__builtin_neon_vrndxh_f16: { 10776 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10777 Int = Builder.getIsFPConstrained() 10778 ? Intrinsic::experimental_constrained_rint 10779 : Intrinsic::rint; 10780 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx"); 10781 } 10782 case NEON::BI__builtin_neon_vrndx_v: 10783 case NEON::BI__builtin_neon_vrndxq_v: { 10784 Int = Builder.getIsFPConstrained() 10785 ? Intrinsic::experimental_constrained_rint 10786 : Intrinsic::rint; 10787 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx"); 10788 } 10789 case NEON::BI__builtin_neon_vrndh_f16: { 10790 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10791 Int = Builder.getIsFPConstrained() 10792 ? Intrinsic::experimental_constrained_trunc 10793 : Intrinsic::trunc; 10794 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz"); 10795 } 10796 case NEON::BI__builtin_neon_vrnd32x_v: 10797 case NEON::BI__builtin_neon_vrnd32xq_v: { 10798 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10799 Int = Intrinsic::aarch64_neon_frint32x; 10800 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32x"); 10801 } 10802 case NEON::BI__builtin_neon_vrnd32z_v: 10803 case NEON::BI__builtin_neon_vrnd32zq_v: { 10804 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10805 Int = Intrinsic::aarch64_neon_frint32z; 10806 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd32z"); 10807 } 10808 case NEON::BI__builtin_neon_vrnd64x_v: 10809 case NEON::BI__builtin_neon_vrnd64xq_v: { 10810 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10811 Int = Intrinsic::aarch64_neon_frint64x; 10812 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64x"); 10813 } 10814 case NEON::BI__builtin_neon_vrnd64z_v: 10815 case NEON::BI__builtin_neon_vrnd64zq_v: { 10816 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10817 Int = Intrinsic::aarch64_neon_frint64z; 10818 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnd64z"); 10819 } 10820 case NEON::BI__builtin_neon_vrnd_v: 10821 case NEON::BI__builtin_neon_vrndq_v: { 10822 Int = Builder.getIsFPConstrained() 10823 ? Intrinsic::experimental_constrained_trunc 10824 : Intrinsic::trunc; 10825 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz"); 10826 } 10827 case NEON::BI__builtin_neon_vcvt_f64_v: 10828 case NEON::BI__builtin_neon_vcvtq_f64_v: 10829 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 10830 Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad)); 10831 return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt") 10832 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt"); 10833 case NEON::BI__builtin_neon_vcvt_f64_f32: { 10834 assert(Type.getEltType() == NeonTypeFlags::Float64 && quad && 10835 "unexpected vcvt_f64_f32 builtin"); 10836 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false); 10837 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); 10838 10839 return Builder.CreateFPExt(Ops[0], Ty, "vcvt"); 10840 } 10841 case NEON::BI__builtin_neon_vcvt_f32_f64: { 10842 assert(Type.getEltType() == NeonTypeFlags::Float32 && 10843 "unexpected vcvt_f32_f64 builtin"); 10844 NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true); 10845 Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag)); 10846 10847 return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt"); 10848 } 10849 case NEON::BI__builtin_neon_vcvt_s32_v: 10850 case NEON::BI__builtin_neon_vcvt_u32_v: 10851 case NEON::BI__builtin_neon_vcvt_s64_v: 10852 case NEON::BI__builtin_neon_vcvt_u64_v: 10853 case NEON::BI__builtin_neon_vcvt_s16_v: 10854 case NEON::BI__builtin_neon_vcvt_u16_v: 10855 case NEON::BI__builtin_neon_vcvtq_s32_v: 10856 case NEON::BI__builtin_neon_vcvtq_u32_v: 10857 case NEON::BI__builtin_neon_vcvtq_s64_v: 10858 case NEON::BI__builtin_neon_vcvtq_u64_v: 10859 case NEON::BI__builtin_neon_vcvtq_s16_v: 10860 case NEON::BI__builtin_neon_vcvtq_u16_v: { 10861 Int = 10862 usgn ? Intrinsic::aarch64_neon_fcvtzu : Intrinsic::aarch64_neon_fcvtzs; 10863 llvm::Type *Tys[2] = {Ty, GetFloatNeonType(this, Type)}; 10864 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtz"); 10865 } 10866 case NEON::BI__builtin_neon_vcvta_s16_v: 10867 case NEON::BI__builtin_neon_vcvta_u16_v: 10868 case NEON::BI__builtin_neon_vcvta_s32_v: 10869 case NEON::BI__builtin_neon_vcvtaq_s16_v: 10870 case NEON::BI__builtin_neon_vcvtaq_s32_v: 10871 case NEON::BI__builtin_neon_vcvta_u32_v: 10872 case NEON::BI__builtin_neon_vcvtaq_u16_v: 10873 case NEON::BI__builtin_neon_vcvtaq_u32_v: 10874 case NEON::BI__builtin_neon_vcvta_s64_v: 10875 case NEON::BI__builtin_neon_vcvtaq_s64_v: 10876 case NEON::BI__builtin_neon_vcvta_u64_v: 10877 case NEON::BI__builtin_neon_vcvtaq_u64_v: { 10878 Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas; 10879 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 10880 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta"); 10881 } 10882 case NEON::BI__builtin_neon_vcvtm_s16_v: 10883 case NEON::BI__builtin_neon_vcvtm_s32_v: 10884 case NEON::BI__builtin_neon_vcvtmq_s16_v: 10885 case NEON::BI__builtin_neon_vcvtmq_s32_v: 10886 case NEON::BI__builtin_neon_vcvtm_u16_v: 10887 case NEON::BI__builtin_neon_vcvtm_u32_v: 10888 case NEON::BI__builtin_neon_vcvtmq_u16_v: 10889 case NEON::BI__builtin_neon_vcvtmq_u32_v: 10890 case NEON::BI__builtin_neon_vcvtm_s64_v: 10891 case NEON::BI__builtin_neon_vcvtmq_s64_v: 10892 case NEON::BI__builtin_neon_vcvtm_u64_v: 10893 case NEON::BI__builtin_neon_vcvtmq_u64_v: { 10894 Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms; 10895 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 10896 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm"); 10897 } 10898 case NEON::BI__builtin_neon_vcvtn_s16_v: 10899 case NEON::BI__builtin_neon_vcvtn_s32_v: 10900 case NEON::BI__builtin_neon_vcvtnq_s16_v: 10901 case NEON::BI__builtin_neon_vcvtnq_s32_v: 10902 case NEON::BI__builtin_neon_vcvtn_u16_v: 10903 case NEON::BI__builtin_neon_vcvtn_u32_v: 10904 case NEON::BI__builtin_neon_vcvtnq_u16_v: 10905 case NEON::BI__builtin_neon_vcvtnq_u32_v: 10906 case NEON::BI__builtin_neon_vcvtn_s64_v: 10907 case NEON::BI__builtin_neon_vcvtnq_s64_v: 10908 case NEON::BI__builtin_neon_vcvtn_u64_v: 10909 case NEON::BI__builtin_neon_vcvtnq_u64_v: { 10910 Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns; 10911 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 10912 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn"); 10913 } 10914 case NEON::BI__builtin_neon_vcvtp_s16_v: 10915 case NEON::BI__builtin_neon_vcvtp_s32_v: 10916 case NEON::BI__builtin_neon_vcvtpq_s16_v: 10917 case NEON::BI__builtin_neon_vcvtpq_s32_v: 10918 case NEON::BI__builtin_neon_vcvtp_u16_v: 10919 case NEON::BI__builtin_neon_vcvtp_u32_v: 10920 case NEON::BI__builtin_neon_vcvtpq_u16_v: 10921 case NEON::BI__builtin_neon_vcvtpq_u32_v: 10922 case NEON::BI__builtin_neon_vcvtp_s64_v: 10923 case NEON::BI__builtin_neon_vcvtpq_s64_v: 10924 case NEON::BI__builtin_neon_vcvtp_u64_v: 10925 case NEON::BI__builtin_neon_vcvtpq_u64_v: { 10926 Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps; 10927 llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) }; 10928 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp"); 10929 } 10930 case NEON::BI__builtin_neon_vmulx_v: 10931 case NEON::BI__builtin_neon_vmulxq_v: { 10932 Int = Intrinsic::aarch64_neon_fmulx; 10933 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx"); 10934 } 10935 case NEON::BI__builtin_neon_vmulxh_lane_f16: 10936 case NEON::BI__builtin_neon_vmulxh_laneq_f16: { 10937 // vmulx_lane should be mapped to Neon scalar mulx after 10938 // extracting the scalar element 10939 Ops.push_back(EmitScalarExpr(E->getArg(2))); 10940 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); 10941 Ops.pop_back(); 10942 Int = Intrinsic::aarch64_neon_fmulx; 10943 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx"); 10944 } 10945 case NEON::BI__builtin_neon_vmul_lane_v: 10946 case NEON::BI__builtin_neon_vmul_laneq_v: { 10947 // v1f64 vmul_lane should be mapped to Neon scalar mul lane 10948 bool Quad = false; 10949 if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v) 10950 Quad = true; 10951 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 10952 llvm::FixedVectorType *VTy = 10953 GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, Quad)); 10954 Ops[1] = Builder.CreateBitCast(Ops[1], VTy); 10955 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract"); 10956 Value *Result = Builder.CreateFMul(Ops[0], Ops[1]); 10957 return Builder.CreateBitCast(Result, Ty); 10958 } 10959 case NEON::BI__builtin_neon_vnegd_s64: 10960 return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd"); 10961 case NEON::BI__builtin_neon_vnegh_f16: 10962 return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh"); 10963 case NEON::BI__builtin_neon_vpmaxnm_v: 10964 case NEON::BI__builtin_neon_vpmaxnmq_v: { 10965 Int = Intrinsic::aarch64_neon_fmaxnmp; 10966 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm"); 10967 } 10968 case NEON::BI__builtin_neon_vpminnm_v: 10969 case NEON::BI__builtin_neon_vpminnmq_v: { 10970 Int = Intrinsic::aarch64_neon_fminnmp; 10971 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm"); 10972 } 10973 case NEON::BI__builtin_neon_vsqrth_f16: { 10974 Ops.push_back(EmitScalarExpr(E->getArg(0))); 10975 Int = Builder.getIsFPConstrained() 10976 ? Intrinsic::experimental_constrained_sqrt 10977 : Intrinsic::sqrt; 10978 return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt"); 10979 } 10980 case NEON::BI__builtin_neon_vsqrt_v: 10981 case NEON::BI__builtin_neon_vsqrtq_v: { 10982 Int = Builder.getIsFPConstrained() 10983 ? Intrinsic::experimental_constrained_sqrt 10984 : Intrinsic::sqrt; 10985 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 10986 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt"); 10987 } 10988 case NEON::BI__builtin_neon_vrbit_v: 10989 case NEON::BI__builtin_neon_vrbitq_v: { 10990 Int = Intrinsic::bitreverse; 10991 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit"); 10992 } 10993 case NEON::BI__builtin_neon_vaddv_u8: 10994 // FIXME: These are handled by the AArch64 scalar code. 10995 usgn = true; 10996 LLVM_FALLTHROUGH; 10997 case NEON::BI__builtin_neon_vaddv_s8: { 10998 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 10999 Ty = Int32Ty; 11000 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 11001 llvm::Type *Tys[2] = { Ty, VTy }; 11002 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11003 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 11004 return Builder.CreateTrunc(Ops[0], Int8Ty); 11005 } 11006 case NEON::BI__builtin_neon_vaddv_u16: 11007 usgn = true; 11008 LLVM_FALLTHROUGH; 11009 case NEON::BI__builtin_neon_vaddv_s16: { 11010 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 11011 Ty = Int32Ty; 11012 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 11013 llvm::Type *Tys[2] = { Ty, VTy }; 11014 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11015 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 11016 return Builder.CreateTrunc(Ops[0], Int16Ty); 11017 } 11018 case NEON::BI__builtin_neon_vaddvq_u8: 11019 usgn = true; 11020 LLVM_FALLTHROUGH; 11021 case NEON::BI__builtin_neon_vaddvq_s8: { 11022 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 11023 Ty = Int32Ty; 11024 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 11025 llvm::Type *Tys[2] = { Ty, VTy }; 11026 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11027 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 11028 return Builder.CreateTrunc(Ops[0], Int8Ty); 11029 } 11030 case NEON::BI__builtin_neon_vaddvq_u16: 11031 usgn = true; 11032 LLVM_FALLTHROUGH; 11033 case NEON::BI__builtin_neon_vaddvq_s16: { 11034 Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv; 11035 Ty = Int32Ty; 11036 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11037 llvm::Type *Tys[2] = { Ty, VTy }; 11038 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11039 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv"); 11040 return Builder.CreateTrunc(Ops[0], Int16Ty); 11041 } 11042 case NEON::BI__builtin_neon_vmaxv_u8: { 11043 Int = Intrinsic::aarch64_neon_umaxv; 11044 Ty = Int32Ty; 11045 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 11046 llvm::Type *Tys[2] = { Ty, VTy }; 11047 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11048 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11049 return Builder.CreateTrunc(Ops[0], Int8Ty); 11050 } 11051 case NEON::BI__builtin_neon_vmaxv_u16: { 11052 Int = Intrinsic::aarch64_neon_umaxv; 11053 Ty = Int32Ty; 11054 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 11055 llvm::Type *Tys[2] = { Ty, VTy }; 11056 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11057 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11058 return Builder.CreateTrunc(Ops[0], Int16Ty); 11059 } 11060 case NEON::BI__builtin_neon_vmaxvq_u8: { 11061 Int = Intrinsic::aarch64_neon_umaxv; 11062 Ty = Int32Ty; 11063 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 11064 llvm::Type *Tys[2] = { Ty, VTy }; 11065 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11066 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11067 return Builder.CreateTrunc(Ops[0], Int8Ty); 11068 } 11069 case NEON::BI__builtin_neon_vmaxvq_u16: { 11070 Int = Intrinsic::aarch64_neon_umaxv; 11071 Ty = Int32Ty; 11072 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11073 llvm::Type *Tys[2] = { Ty, VTy }; 11074 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11075 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11076 return Builder.CreateTrunc(Ops[0], Int16Ty); 11077 } 11078 case NEON::BI__builtin_neon_vmaxv_s8: { 11079 Int = Intrinsic::aarch64_neon_smaxv; 11080 Ty = Int32Ty; 11081 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 11082 llvm::Type *Tys[2] = { Ty, VTy }; 11083 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11084 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11085 return Builder.CreateTrunc(Ops[0], Int8Ty); 11086 } 11087 case NEON::BI__builtin_neon_vmaxv_s16: { 11088 Int = Intrinsic::aarch64_neon_smaxv; 11089 Ty = Int32Ty; 11090 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 11091 llvm::Type *Tys[2] = { Ty, VTy }; 11092 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11093 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11094 return Builder.CreateTrunc(Ops[0], Int16Ty); 11095 } 11096 case NEON::BI__builtin_neon_vmaxvq_s8: { 11097 Int = Intrinsic::aarch64_neon_smaxv; 11098 Ty = Int32Ty; 11099 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 11100 llvm::Type *Tys[2] = { Ty, VTy }; 11101 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11102 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11103 return Builder.CreateTrunc(Ops[0], Int8Ty); 11104 } 11105 case NEON::BI__builtin_neon_vmaxvq_s16: { 11106 Int = Intrinsic::aarch64_neon_smaxv; 11107 Ty = Int32Ty; 11108 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11109 llvm::Type *Tys[2] = { Ty, VTy }; 11110 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11111 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11112 return Builder.CreateTrunc(Ops[0], Int16Ty); 11113 } 11114 case NEON::BI__builtin_neon_vmaxv_f16: { 11115 Int = Intrinsic::aarch64_neon_fmaxv; 11116 Ty = HalfTy; 11117 VTy = llvm::FixedVectorType::get(HalfTy, 4); 11118 llvm::Type *Tys[2] = { Ty, VTy }; 11119 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11120 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11121 return Builder.CreateTrunc(Ops[0], HalfTy); 11122 } 11123 case NEON::BI__builtin_neon_vmaxvq_f16: { 11124 Int = Intrinsic::aarch64_neon_fmaxv; 11125 Ty = HalfTy; 11126 VTy = llvm::FixedVectorType::get(HalfTy, 8); 11127 llvm::Type *Tys[2] = { Ty, VTy }; 11128 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11129 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv"); 11130 return Builder.CreateTrunc(Ops[0], HalfTy); 11131 } 11132 case NEON::BI__builtin_neon_vminv_u8: { 11133 Int = Intrinsic::aarch64_neon_uminv; 11134 Ty = Int32Ty; 11135 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 11136 llvm::Type *Tys[2] = { Ty, VTy }; 11137 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11138 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11139 return Builder.CreateTrunc(Ops[0], Int8Ty); 11140 } 11141 case NEON::BI__builtin_neon_vminv_u16: { 11142 Int = Intrinsic::aarch64_neon_uminv; 11143 Ty = Int32Ty; 11144 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 11145 llvm::Type *Tys[2] = { Ty, VTy }; 11146 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11147 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11148 return Builder.CreateTrunc(Ops[0], Int16Ty); 11149 } 11150 case NEON::BI__builtin_neon_vminvq_u8: { 11151 Int = Intrinsic::aarch64_neon_uminv; 11152 Ty = Int32Ty; 11153 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 11154 llvm::Type *Tys[2] = { Ty, VTy }; 11155 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11156 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11157 return Builder.CreateTrunc(Ops[0], Int8Ty); 11158 } 11159 case NEON::BI__builtin_neon_vminvq_u16: { 11160 Int = Intrinsic::aarch64_neon_uminv; 11161 Ty = Int32Ty; 11162 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11163 llvm::Type *Tys[2] = { Ty, VTy }; 11164 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11165 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11166 return Builder.CreateTrunc(Ops[0], Int16Ty); 11167 } 11168 case NEON::BI__builtin_neon_vminv_s8: { 11169 Int = Intrinsic::aarch64_neon_sminv; 11170 Ty = Int32Ty; 11171 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 11172 llvm::Type *Tys[2] = { Ty, VTy }; 11173 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11174 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11175 return Builder.CreateTrunc(Ops[0], Int8Ty); 11176 } 11177 case NEON::BI__builtin_neon_vminv_s16: { 11178 Int = Intrinsic::aarch64_neon_sminv; 11179 Ty = Int32Ty; 11180 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 11181 llvm::Type *Tys[2] = { Ty, VTy }; 11182 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11183 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11184 return Builder.CreateTrunc(Ops[0], Int16Ty); 11185 } 11186 case NEON::BI__builtin_neon_vminvq_s8: { 11187 Int = Intrinsic::aarch64_neon_sminv; 11188 Ty = Int32Ty; 11189 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 11190 llvm::Type *Tys[2] = { Ty, VTy }; 11191 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11192 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11193 return Builder.CreateTrunc(Ops[0], Int8Ty); 11194 } 11195 case NEON::BI__builtin_neon_vminvq_s16: { 11196 Int = Intrinsic::aarch64_neon_sminv; 11197 Ty = Int32Ty; 11198 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11199 llvm::Type *Tys[2] = { Ty, VTy }; 11200 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11201 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11202 return Builder.CreateTrunc(Ops[0], Int16Ty); 11203 } 11204 case NEON::BI__builtin_neon_vminv_f16: { 11205 Int = Intrinsic::aarch64_neon_fminv; 11206 Ty = HalfTy; 11207 VTy = llvm::FixedVectorType::get(HalfTy, 4); 11208 llvm::Type *Tys[2] = { Ty, VTy }; 11209 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11210 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11211 return Builder.CreateTrunc(Ops[0], HalfTy); 11212 } 11213 case NEON::BI__builtin_neon_vminvq_f16: { 11214 Int = Intrinsic::aarch64_neon_fminv; 11215 Ty = HalfTy; 11216 VTy = llvm::FixedVectorType::get(HalfTy, 8); 11217 llvm::Type *Tys[2] = { Ty, VTy }; 11218 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11219 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv"); 11220 return Builder.CreateTrunc(Ops[0], HalfTy); 11221 } 11222 case NEON::BI__builtin_neon_vmaxnmv_f16: { 11223 Int = Intrinsic::aarch64_neon_fmaxnmv; 11224 Ty = HalfTy; 11225 VTy = llvm::FixedVectorType::get(HalfTy, 4); 11226 llvm::Type *Tys[2] = { Ty, VTy }; 11227 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11228 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); 11229 return Builder.CreateTrunc(Ops[0], HalfTy); 11230 } 11231 case NEON::BI__builtin_neon_vmaxnmvq_f16: { 11232 Int = Intrinsic::aarch64_neon_fmaxnmv; 11233 Ty = HalfTy; 11234 VTy = llvm::FixedVectorType::get(HalfTy, 8); 11235 llvm::Type *Tys[2] = { Ty, VTy }; 11236 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11237 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv"); 11238 return Builder.CreateTrunc(Ops[0], HalfTy); 11239 } 11240 case NEON::BI__builtin_neon_vminnmv_f16: { 11241 Int = Intrinsic::aarch64_neon_fminnmv; 11242 Ty = HalfTy; 11243 VTy = llvm::FixedVectorType::get(HalfTy, 4); 11244 llvm::Type *Tys[2] = { Ty, VTy }; 11245 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11246 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); 11247 return Builder.CreateTrunc(Ops[0], HalfTy); 11248 } 11249 case NEON::BI__builtin_neon_vminnmvq_f16: { 11250 Int = Intrinsic::aarch64_neon_fminnmv; 11251 Ty = HalfTy; 11252 VTy = llvm::FixedVectorType::get(HalfTy, 8); 11253 llvm::Type *Tys[2] = { Ty, VTy }; 11254 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11255 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv"); 11256 return Builder.CreateTrunc(Ops[0], HalfTy); 11257 } 11258 case NEON::BI__builtin_neon_vmul_n_f64: { 11259 Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy); 11260 Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy); 11261 return Builder.CreateFMul(Ops[0], RHS); 11262 } 11263 case NEON::BI__builtin_neon_vaddlv_u8: { 11264 Int = Intrinsic::aarch64_neon_uaddlv; 11265 Ty = Int32Ty; 11266 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 11267 llvm::Type *Tys[2] = { Ty, VTy }; 11268 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11269 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11270 return Builder.CreateTrunc(Ops[0], Int16Ty); 11271 } 11272 case NEON::BI__builtin_neon_vaddlv_u16: { 11273 Int = Intrinsic::aarch64_neon_uaddlv; 11274 Ty = Int32Ty; 11275 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 11276 llvm::Type *Tys[2] = { Ty, VTy }; 11277 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11278 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11279 } 11280 case NEON::BI__builtin_neon_vaddlvq_u8: { 11281 Int = Intrinsic::aarch64_neon_uaddlv; 11282 Ty = Int32Ty; 11283 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 11284 llvm::Type *Tys[2] = { Ty, VTy }; 11285 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11286 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11287 return Builder.CreateTrunc(Ops[0], Int16Ty); 11288 } 11289 case NEON::BI__builtin_neon_vaddlvq_u16: { 11290 Int = Intrinsic::aarch64_neon_uaddlv; 11291 Ty = Int32Ty; 11292 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11293 llvm::Type *Tys[2] = { Ty, VTy }; 11294 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11295 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11296 } 11297 case NEON::BI__builtin_neon_vaddlv_s8: { 11298 Int = Intrinsic::aarch64_neon_saddlv; 11299 Ty = Int32Ty; 11300 VTy = llvm::FixedVectorType::get(Int8Ty, 8); 11301 llvm::Type *Tys[2] = { Ty, VTy }; 11302 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11303 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11304 return Builder.CreateTrunc(Ops[0], Int16Ty); 11305 } 11306 case NEON::BI__builtin_neon_vaddlv_s16: { 11307 Int = Intrinsic::aarch64_neon_saddlv; 11308 Ty = Int32Ty; 11309 VTy = llvm::FixedVectorType::get(Int16Ty, 4); 11310 llvm::Type *Tys[2] = { Ty, VTy }; 11311 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11312 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11313 } 11314 case NEON::BI__builtin_neon_vaddlvq_s8: { 11315 Int = Intrinsic::aarch64_neon_saddlv; 11316 Ty = Int32Ty; 11317 VTy = llvm::FixedVectorType::get(Int8Ty, 16); 11318 llvm::Type *Tys[2] = { Ty, VTy }; 11319 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11320 Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11321 return Builder.CreateTrunc(Ops[0], Int16Ty); 11322 } 11323 case NEON::BI__builtin_neon_vaddlvq_s16: { 11324 Int = Intrinsic::aarch64_neon_saddlv; 11325 Ty = Int32Ty; 11326 VTy = llvm::FixedVectorType::get(Int16Ty, 8); 11327 llvm::Type *Tys[2] = { Ty, VTy }; 11328 Ops.push_back(EmitScalarExpr(E->getArg(0))); 11329 return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv"); 11330 } 11331 case NEON::BI__builtin_neon_vsri_n_v: 11332 case NEON::BI__builtin_neon_vsriq_n_v: { 11333 Int = Intrinsic::aarch64_neon_vsri; 11334 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); 11335 return EmitNeonCall(Intrin, Ops, "vsri_n"); 11336 } 11337 case NEON::BI__builtin_neon_vsli_n_v: 11338 case NEON::BI__builtin_neon_vsliq_n_v: { 11339 Int = Intrinsic::aarch64_neon_vsli; 11340 llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty); 11341 return EmitNeonCall(Intrin, Ops, "vsli_n"); 11342 } 11343 case NEON::BI__builtin_neon_vsra_n_v: 11344 case NEON::BI__builtin_neon_vsraq_n_v: 11345 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11346 Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n"); 11347 return Builder.CreateAdd(Ops[0], Ops[1]); 11348 case NEON::BI__builtin_neon_vrsra_n_v: 11349 case NEON::BI__builtin_neon_vrsraq_n_v: { 11350 Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl; 11351 SmallVector<llvm::Value*,2> TmpOps; 11352 TmpOps.push_back(Ops[1]); 11353 TmpOps.push_back(Ops[2]); 11354 Function* F = CGM.getIntrinsic(Int, Ty); 11355 llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true); 11356 Ops[0] = Builder.CreateBitCast(Ops[0], VTy); 11357 return Builder.CreateAdd(Ops[0], tmp); 11358 } 11359 case NEON::BI__builtin_neon_vld1_v: 11360 case NEON::BI__builtin_neon_vld1q_v: { 11361 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); 11362 return Builder.CreateAlignedLoad(VTy, Ops[0], PtrOp0.getAlignment()); 11363 } 11364 case NEON::BI__builtin_neon_vst1_v: 11365 case NEON::BI__builtin_neon_vst1q_v: 11366 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy)); 11367 Ops[1] = Builder.CreateBitCast(Ops[1], VTy); 11368 return Builder.CreateAlignedStore(Ops[1], Ops[0], PtrOp0.getAlignment()); 11369 case NEON::BI__builtin_neon_vld1_lane_v: 11370 case NEON::BI__builtin_neon_vld1q_lane_v: { 11371 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11372 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 11373 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11374 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], 11375 PtrOp0.getAlignment()); 11376 return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane"); 11377 } 11378 case NEON::BI__builtin_neon_vld1_dup_v: 11379 case NEON::BI__builtin_neon_vld1q_dup_v: { 11380 Value *V = UndefValue::get(Ty); 11381 Ty = llvm::PointerType::getUnqual(VTy->getElementType()); 11382 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11383 Ops[0] = Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], 11384 PtrOp0.getAlignment()); 11385 llvm::Constant *CI = ConstantInt::get(Int32Ty, 0); 11386 Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI); 11387 return EmitNeonSplat(Ops[0], CI); 11388 } 11389 case NEON::BI__builtin_neon_vst1_lane_v: 11390 case NEON::BI__builtin_neon_vst1q_lane_v: 11391 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11392 Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]); 11393 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 11394 return Builder.CreateAlignedStore(Ops[1], Builder.CreateBitCast(Ops[0], Ty), 11395 PtrOp0.getAlignment()); 11396 case NEON::BI__builtin_neon_vld2_v: 11397 case NEON::BI__builtin_neon_vld2q_v: { 11398 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); 11399 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11400 llvm::Type *Tys[2] = { VTy, PTy }; 11401 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys); 11402 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); 11403 Ops[0] = Builder.CreateBitCast(Ops[0], 11404 llvm::PointerType::getUnqual(Ops[1]->getType())); 11405 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11406 } 11407 case NEON::BI__builtin_neon_vld3_v: 11408 case NEON::BI__builtin_neon_vld3q_v: { 11409 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); 11410 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11411 llvm::Type *Tys[2] = { VTy, PTy }; 11412 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys); 11413 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); 11414 Ops[0] = Builder.CreateBitCast(Ops[0], 11415 llvm::PointerType::getUnqual(Ops[1]->getType())); 11416 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11417 } 11418 case NEON::BI__builtin_neon_vld4_v: 11419 case NEON::BI__builtin_neon_vld4q_v: { 11420 llvm::Type *PTy = llvm::PointerType::getUnqual(VTy); 11421 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11422 llvm::Type *Tys[2] = { VTy, PTy }; 11423 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys); 11424 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); 11425 Ops[0] = Builder.CreateBitCast(Ops[0], 11426 llvm::PointerType::getUnqual(Ops[1]->getType())); 11427 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11428 } 11429 case NEON::BI__builtin_neon_vld2_dup_v: 11430 case NEON::BI__builtin_neon_vld2q_dup_v: { 11431 llvm::Type *PTy = 11432 llvm::PointerType::getUnqual(VTy->getElementType()); 11433 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11434 llvm::Type *Tys[2] = { VTy, PTy }; 11435 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys); 11436 Ops[1] = Builder.CreateCall(F, Ops[1], "vld2"); 11437 Ops[0] = Builder.CreateBitCast(Ops[0], 11438 llvm::PointerType::getUnqual(Ops[1]->getType())); 11439 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11440 } 11441 case NEON::BI__builtin_neon_vld3_dup_v: 11442 case NEON::BI__builtin_neon_vld3q_dup_v: { 11443 llvm::Type *PTy = 11444 llvm::PointerType::getUnqual(VTy->getElementType()); 11445 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11446 llvm::Type *Tys[2] = { VTy, PTy }; 11447 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys); 11448 Ops[1] = Builder.CreateCall(F, Ops[1], "vld3"); 11449 Ops[0] = Builder.CreateBitCast(Ops[0], 11450 llvm::PointerType::getUnqual(Ops[1]->getType())); 11451 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11452 } 11453 case NEON::BI__builtin_neon_vld4_dup_v: 11454 case NEON::BI__builtin_neon_vld4q_dup_v: { 11455 llvm::Type *PTy = 11456 llvm::PointerType::getUnqual(VTy->getElementType()); 11457 Ops[1] = Builder.CreateBitCast(Ops[1], PTy); 11458 llvm::Type *Tys[2] = { VTy, PTy }; 11459 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys); 11460 Ops[1] = Builder.CreateCall(F, Ops[1], "vld4"); 11461 Ops[0] = Builder.CreateBitCast(Ops[0], 11462 llvm::PointerType::getUnqual(Ops[1]->getType())); 11463 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11464 } 11465 case NEON::BI__builtin_neon_vld2_lane_v: 11466 case NEON::BI__builtin_neon_vld2q_lane_v: { 11467 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; 11468 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys); 11469 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end()); 11470 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11471 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11472 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); 11473 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane"); 11474 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 11475 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11476 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11477 } 11478 case NEON::BI__builtin_neon_vld3_lane_v: 11479 case NEON::BI__builtin_neon_vld3q_lane_v: { 11480 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; 11481 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys); 11482 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end()); 11483 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11484 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11485 Ops[3] = Builder.CreateBitCast(Ops[3], Ty); 11486 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); 11487 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane"); 11488 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 11489 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11490 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11491 } 11492 case NEON::BI__builtin_neon_vld4_lane_v: 11493 case NEON::BI__builtin_neon_vld4q_lane_v: { 11494 llvm::Type *Tys[2] = { VTy, Ops[1]->getType() }; 11495 Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys); 11496 std::rotate(Ops.begin() + 1, Ops.begin() + 2, Ops.end()); 11497 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11498 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11499 Ops[3] = Builder.CreateBitCast(Ops[3], Ty); 11500 Ops[4] = Builder.CreateBitCast(Ops[4], Ty); 11501 Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty); 11502 Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane"); 11503 Ty = llvm::PointerType::getUnqual(Ops[1]->getType()); 11504 Ops[0] = Builder.CreateBitCast(Ops[0], Ty); 11505 return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]); 11506 } 11507 case NEON::BI__builtin_neon_vst2_v: 11508 case NEON::BI__builtin_neon_vst2q_v: { 11509 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11510 llvm::Type *Tys[2] = { VTy, Ops[2]->getType() }; 11511 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys), 11512 Ops, ""); 11513 } 11514 case NEON::BI__builtin_neon_vst2_lane_v: 11515 case NEON::BI__builtin_neon_vst2q_lane_v: { 11516 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11517 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); 11518 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; 11519 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys), 11520 Ops, ""); 11521 } 11522 case NEON::BI__builtin_neon_vst3_v: 11523 case NEON::BI__builtin_neon_vst3q_v: { 11524 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11525 llvm::Type *Tys[2] = { VTy, Ops[3]->getType() }; 11526 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys), 11527 Ops, ""); 11528 } 11529 case NEON::BI__builtin_neon_vst3_lane_v: 11530 case NEON::BI__builtin_neon_vst3q_lane_v: { 11531 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11532 Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty); 11533 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; 11534 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys), 11535 Ops, ""); 11536 } 11537 case NEON::BI__builtin_neon_vst4_v: 11538 case NEON::BI__builtin_neon_vst4q_v: { 11539 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11540 llvm::Type *Tys[2] = { VTy, Ops[4]->getType() }; 11541 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys), 11542 Ops, ""); 11543 } 11544 case NEON::BI__builtin_neon_vst4_lane_v: 11545 case NEON::BI__builtin_neon_vst4q_lane_v: { 11546 std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end()); 11547 Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty); 11548 llvm::Type *Tys[2] = { VTy, Ops[5]->getType() }; 11549 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys), 11550 Ops, ""); 11551 } 11552 case NEON::BI__builtin_neon_vtrn_v: 11553 case NEON::BI__builtin_neon_vtrnq_v: { 11554 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 11555 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11556 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11557 Value *SV = nullptr; 11558 11559 for (unsigned vi = 0; vi != 2; ++vi) { 11560 SmallVector<int, 16> Indices; 11561 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 11562 Indices.push_back(i+vi); 11563 Indices.push_back(i+e+vi); 11564 } 11565 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 11566 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn"); 11567 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 11568 } 11569 return SV; 11570 } 11571 case NEON::BI__builtin_neon_vuzp_v: 11572 case NEON::BI__builtin_neon_vuzpq_v: { 11573 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 11574 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11575 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11576 Value *SV = nullptr; 11577 11578 for (unsigned vi = 0; vi != 2; ++vi) { 11579 SmallVector<int, 16> Indices; 11580 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) 11581 Indices.push_back(2*i+vi); 11582 11583 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 11584 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp"); 11585 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 11586 } 11587 return SV; 11588 } 11589 case NEON::BI__builtin_neon_vzip_v: 11590 case NEON::BI__builtin_neon_vzipq_v: { 11591 Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 11592 Ops[1] = Builder.CreateBitCast(Ops[1], Ty); 11593 Ops[2] = Builder.CreateBitCast(Ops[2], Ty); 11594 Value *SV = nullptr; 11595 11596 for (unsigned vi = 0; vi != 2; ++vi) { 11597 SmallVector<int, 16> Indices; 11598 for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) { 11599 Indices.push_back((i + vi*e) >> 1); 11600 Indices.push_back(((i + vi*e) >> 1)+e); 11601 } 11602 Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi); 11603 SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip"); 11604 SV = Builder.CreateDefaultAlignedStore(SV, Addr); 11605 } 11606 return SV; 11607 } 11608 case NEON::BI__builtin_neon_vqtbl1q_v: { 11609 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty), 11610 Ops, "vtbl1"); 11611 } 11612 case NEON::BI__builtin_neon_vqtbl2q_v: { 11613 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty), 11614 Ops, "vtbl2"); 11615 } 11616 case NEON::BI__builtin_neon_vqtbl3q_v: { 11617 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty), 11618 Ops, "vtbl3"); 11619 } 11620 case NEON::BI__builtin_neon_vqtbl4q_v: { 11621 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty), 11622 Ops, "vtbl4"); 11623 } 11624 case NEON::BI__builtin_neon_vqtbx1q_v: { 11625 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty), 11626 Ops, "vtbx1"); 11627 } 11628 case NEON::BI__builtin_neon_vqtbx2q_v: { 11629 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty), 11630 Ops, "vtbx2"); 11631 } 11632 case NEON::BI__builtin_neon_vqtbx3q_v: { 11633 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty), 11634 Ops, "vtbx3"); 11635 } 11636 case NEON::BI__builtin_neon_vqtbx4q_v: { 11637 return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty), 11638 Ops, "vtbx4"); 11639 } 11640 case NEON::BI__builtin_neon_vsqadd_v: 11641 case NEON::BI__builtin_neon_vsqaddq_v: { 11642 Int = Intrinsic::aarch64_neon_usqadd; 11643 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd"); 11644 } 11645 case NEON::BI__builtin_neon_vuqadd_v: 11646 case NEON::BI__builtin_neon_vuqaddq_v: { 11647 Int = Intrinsic::aarch64_neon_suqadd; 11648 return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd"); 11649 } 11650 } 11651 } 11652 11653 Value *CodeGenFunction::EmitBPFBuiltinExpr(unsigned BuiltinID, 11654 const CallExpr *E) { 11655 assert((BuiltinID == BPF::BI__builtin_preserve_field_info || 11656 BuiltinID == BPF::BI__builtin_btf_type_id || 11657 BuiltinID == BPF::BI__builtin_preserve_type_info || 11658 BuiltinID == BPF::BI__builtin_preserve_enum_value) && 11659 "unexpected BPF builtin"); 11660 11661 // A sequence number, injected into IR builtin functions, to 11662 // prevent CSE given the only difference of the funciton 11663 // may just be the debuginfo metadata. 11664 static uint32_t BuiltinSeqNum; 11665 11666 switch (BuiltinID) { 11667 default: 11668 llvm_unreachable("Unexpected BPF builtin"); 11669 case BPF::BI__builtin_preserve_field_info: { 11670 const Expr *Arg = E->getArg(0); 11671 bool IsBitField = Arg->IgnoreParens()->getObjectKind() == OK_BitField; 11672 11673 if (!getDebugInfo()) { 11674 CGM.Error(E->getExprLoc(), 11675 "using __builtin_preserve_field_info() without -g"); 11676 return IsBitField ? EmitLValue(Arg).getBitFieldPointer() 11677 : EmitLValue(Arg).getPointer(*this); 11678 } 11679 11680 // Enable underlying preserve_*_access_index() generation. 11681 bool OldIsInPreservedAIRegion = IsInPreservedAIRegion; 11682 IsInPreservedAIRegion = true; 11683 Value *FieldAddr = IsBitField ? EmitLValue(Arg).getBitFieldPointer() 11684 : EmitLValue(Arg).getPointer(*this); 11685 IsInPreservedAIRegion = OldIsInPreservedAIRegion; 11686 11687 ConstantInt *C = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 11688 Value *InfoKind = ConstantInt::get(Int64Ty, C->getSExtValue()); 11689 11690 // Built the IR for the preserve_field_info intrinsic. 11691 llvm::Function *FnGetFieldInfo = llvm::Intrinsic::getDeclaration( 11692 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_field_info, 11693 {FieldAddr->getType()}); 11694 return Builder.CreateCall(FnGetFieldInfo, {FieldAddr, InfoKind}); 11695 } 11696 case BPF::BI__builtin_btf_type_id: 11697 case BPF::BI__builtin_preserve_type_info: { 11698 if (!getDebugInfo()) { 11699 CGM.Error(E->getExprLoc(), "using builtin function without -g"); 11700 return nullptr; 11701 } 11702 11703 const Expr *Arg0 = E->getArg(0); 11704 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType( 11705 Arg0->getType(), Arg0->getExprLoc()); 11706 11707 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 11708 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue()); 11709 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++); 11710 11711 llvm::Function *FnDecl; 11712 if (BuiltinID == BPF::BI__builtin_btf_type_id) 11713 FnDecl = llvm::Intrinsic::getDeclaration( 11714 &CGM.getModule(), llvm::Intrinsic::bpf_btf_type_id, {}); 11715 else 11716 FnDecl = llvm::Intrinsic::getDeclaration( 11717 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_type_info, {}); 11718 CallInst *Fn = Builder.CreateCall(FnDecl, {SeqNumVal, FlagValue}); 11719 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo); 11720 return Fn; 11721 } 11722 case BPF::BI__builtin_preserve_enum_value: { 11723 if (!getDebugInfo()) { 11724 CGM.Error(E->getExprLoc(), "using builtin function without -g"); 11725 return nullptr; 11726 } 11727 11728 const Expr *Arg0 = E->getArg(0); 11729 llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType( 11730 Arg0->getType(), Arg0->getExprLoc()); 11731 11732 // Find enumerator 11733 const auto *UO = cast<UnaryOperator>(Arg0->IgnoreParens()); 11734 const auto *CE = cast<CStyleCastExpr>(UO->getSubExpr()); 11735 const auto *DR = cast<DeclRefExpr>(CE->getSubExpr()); 11736 const auto *Enumerator = cast<EnumConstantDecl>(DR->getDecl()); 11737 11738 auto &InitVal = Enumerator->getInitVal(); 11739 std::string InitValStr; 11740 if (InitVal.isNegative() || InitVal > uint64_t(INT64_MAX)) 11741 InitValStr = std::to_string(InitVal.getSExtValue()); 11742 else 11743 InitValStr = std::to_string(InitVal.getZExtValue()); 11744 std::string EnumStr = Enumerator->getNameAsString() + ":" + InitValStr; 11745 Value *EnumStrVal = Builder.CreateGlobalStringPtr(EnumStr); 11746 11747 ConstantInt *Flag = cast<ConstantInt>(EmitScalarExpr(E->getArg(1))); 11748 Value *FlagValue = ConstantInt::get(Int64Ty, Flag->getSExtValue()); 11749 Value *SeqNumVal = ConstantInt::get(Int32Ty, BuiltinSeqNum++); 11750 11751 llvm::Function *IntrinsicFn = llvm::Intrinsic::getDeclaration( 11752 &CGM.getModule(), llvm::Intrinsic::bpf_preserve_enum_value, {}); 11753 CallInst *Fn = 11754 Builder.CreateCall(IntrinsicFn, {SeqNumVal, EnumStrVal, FlagValue}); 11755 Fn->setMetadata(LLVMContext::MD_preserve_access_index, DbgInfo); 11756 return Fn; 11757 } 11758 } 11759 } 11760 11761 llvm::Value *CodeGenFunction:: 11762 BuildVector(ArrayRef<llvm::Value*> Ops) { 11763 assert((Ops.size() & (Ops.size() - 1)) == 0 && 11764 "Not a power-of-two sized vector!"); 11765 bool AllConstants = true; 11766 for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i) 11767 AllConstants &= isa<Constant>(Ops[i]); 11768 11769 // If this is a constant vector, create a ConstantVector. 11770 if (AllConstants) { 11771 SmallVector<llvm::Constant*, 16> CstOps; 11772 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 11773 CstOps.push_back(cast<Constant>(Ops[i])); 11774 return llvm::ConstantVector::get(CstOps); 11775 } 11776 11777 // Otherwise, insertelement the values to build the vector. 11778 Value *Result = llvm::UndefValue::get( 11779 llvm::FixedVectorType::get(Ops[0]->getType(), Ops.size())); 11780 11781 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 11782 Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i)); 11783 11784 return Result; 11785 } 11786 11787 // Convert the mask from an integer type to a vector of i1. 11788 static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask, 11789 unsigned NumElts) { 11790 11791 auto *MaskTy = llvm::FixedVectorType::get( 11792 CGF.Builder.getInt1Ty(), 11793 cast<IntegerType>(Mask->getType())->getBitWidth()); 11794 Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy); 11795 11796 // If we have less than 8 elements, then the starting mask was an i8 and 11797 // we need to extract down to the right number of elements. 11798 if (NumElts < 8) { 11799 int Indices[4]; 11800 for (unsigned i = 0; i != NumElts; ++i) 11801 Indices[i] = i; 11802 MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec, 11803 makeArrayRef(Indices, NumElts), 11804 "extract"); 11805 } 11806 return MaskVec; 11807 } 11808 11809 static Value *EmitX86MaskedStore(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 11810 Align Alignment) { 11811 // Cast the pointer to right type. 11812 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], 11813 llvm::PointerType::getUnqual(Ops[1]->getType())); 11814 11815 Value *MaskVec = getMaskVecValue( 11816 CGF, Ops[2], 11817 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements()); 11818 11819 return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Alignment, MaskVec); 11820 } 11821 11822 static Value *EmitX86MaskedLoad(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 11823 Align Alignment) { 11824 // Cast the pointer to right type. 11825 llvm::Type *Ty = Ops[1]->getType(); 11826 Value *Ptr = 11827 CGF.Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty)); 11828 11829 Value *MaskVec = getMaskVecValue( 11830 CGF, Ops[2], cast<llvm::FixedVectorType>(Ty)->getNumElements()); 11831 11832 return CGF.Builder.CreateMaskedLoad(Ty, Ptr, Alignment, MaskVec, Ops[1]); 11833 } 11834 11835 static Value *EmitX86ExpandLoad(CodeGenFunction &CGF, 11836 ArrayRef<Value *> Ops) { 11837 auto *ResultTy = cast<llvm::VectorType>(Ops[1]->getType()); 11838 llvm::Type *PtrTy = ResultTy->getElementType(); 11839 11840 // Cast the pointer to element type. 11841 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], 11842 llvm::PointerType::getUnqual(PtrTy)); 11843 11844 Value *MaskVec = getMaskVecValue( 11845 CGF, Ops[2], cast<FixedVectorType>(ResultTy)->getNumElements()); 11846 11847 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload, 11848 ResultTy); 11849 return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] }); 11850 } 11851 11852 static Value *EmitX86CompressExpand(CodeGenFunction &CGF, 11853 ArrayRef<Value *> Ops, 11854 bool IsCompress) { 11855 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType()); 11856 11857 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements()); 11858 11859 Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress 11860 : Intrinsic::x86_avx512_mask_expand; 11861 llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy); 11862 return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec }); 11863 } 11864 11865 static Value *EmitX86CompressStore(CodeGenFunction &CGF, 11866 ArrayRef<Value *> Ops) { 11867 auto *ResultTy = cast<llvm::FixedVectorType>(Ops[1]->getType()); 11868 llvm::Type *PtrTy = ResultTy->getElementType(); 11869 11870 // Cast the pointer to element type. 11871 Value *Ptr = CGF.Builder.CreateBitCast(Ops[0], 11872 llvm::PointerType::getUnqual(PtrTy)); 11873 11874 Value *MaskVec = getMaskVecValue(CGF, Ops[2], ResultTy->getNumElements()); 11875 11876 llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore, 11877 ResultTy); 11878 return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec }); 11879 } 11880 11881 static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc, 11882 ArrayRef<Value *> Ops, 11883 bool InvertLHS = false) { 11884 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 11885 Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts); 11886 Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts); 11887 11888 if (InvertLHS) 11889 LHS = CGF.Builder.CreateNot(LHS); 11890 11891 return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS), 11892 Ops[0]->getType()); 11893 } 11894 11895 static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1, 11896 Value *Amt, bool IsRight) { 11897 llvm::Type *Ty = Op0->getType(); 11898 11899 // Amount may be scalar immediate, in which case create a splat vector. 11900 // Funnel shifts amounts are treated as modulo and types are all power-of-2 so 11901 // we only care about the lowest log2 bits anyway. 11902 if (Amt->getType() != Ty) { 11903 unsigned NumElts = cast<llvm::FixedVectorType>(Ty)->getNumElements(); 11904 Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false); 11905 Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt); 11906 } 11907 11908 unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl; 11909 Function *F = CGF.CGM.getIntrinsic(IID, Ty); 11910 return CGF.Builder.CreateCall(F, {Op0, Op1, Amt}); 11911 } 11912 11913 static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops, 11914 bool IsSigned) { 11915 Value *Op0 = Ops[0]; 11916 Value *Op1 = Ops[1]; 11917 llvm::Type *Ty = Op0->getType(); 11918 uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; 11919 11920 CmpInst::Predicate Pred; 11921 switch (Imm) { 11922 case 0x0: 11923 Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 11924 break; 11925 case 0x1: 11926 Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 11927 break; 11928 case 0x2: 11929 Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 11930 break; 11931 case 0x3: 11932 Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 11933 break; 11934 case 0x4: 11935 Pred = ICmpInst::ICMP_EQ; 11936 break; 11937 case 0x5: 11938 Pred = ICmpInst::ICMP_NE; 11939 break; 11940 case 0x6: 11941 return llvm::Constant::getNullValue(Ty); // FALSE 11942 case 0x7: 11943 return llvm::Constant::getAllOnesValue(Ty); // TRUE 11944 default: 11945 llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate"); 11946 } 11947 11948 Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1); 11949 Value *Res = CGF.Builder.CreateSExt(Cmp, Ty); 11950 return Res; 11951 } 11952 11953 static Value *EmitX86Select(CodeGenFunction &CGF, 11954 Value *Mask, Value *Op0, Value *Op1) { 11955 11956 // If the mask is all ones just return first argument. 11957 if (const auto *C = dyn_cast<Constant>(Mask)) 11958 if (C->isAllOnesValue()) 11959 return Op0; 11960 11961 Mask = getMaskVecValue( 11962 CGF, Mask, cast<llvm::FixedVectorType>(Op0->getType())->getNumElements()); 11963 11964 return CGF.Builder.CreateSelect(Mask, Op0, Op1); 11965 } 11966 11967 static Value *EmitX86ScalarSelect(CodeGenFunction &CGF, 11968 Value *Mask, Value *Op0, Value *Op1) { 11969 // If the mask is all ones just return first argument. 11970 if (const auto *C = dyn_cast<Constant>(Mask)) 11971 if (C->isAllOnesValue()) 11972 return Op0; 11973 11974 auto *MaskTy = llvm::FixedVectorType::get( 11975 CGF.Builder.getInt1Ty(), Mask->getType()->getIntegerBitWidth()); 11976 Mask = CGF.Builder.CreateBitCast(Mask, MaskTy); 11977 Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0); 11978 return CGF.Builder.CreateSelect(Mask, Op0, Op1); 11979 } 11980 11981 static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp, 11982 unsigned NumElts, Value *MaskIn) { 11983 if (MaskIn) { 11984 const auto *C = dyn_cast<Constant>(MaskIn); 11985 if (!C || !C->isAllOnesValue()) 11986 Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts)); 11987 } 11988 11989 if (NumElts < 8) { 11990 int Indices[8]; 11991 for (unsigned i = 0; i != NumElts; ++i) 11992 Indices[i] = i; 11993 for (unsigned i = NumElts; i != 8; ++i) 11994 Indices[i] = i % NumElts + NumElts; 11995 Cmp = CGF.Builder.CreateShuffleVector( 11996 Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices); 11997 } 11998 11999 return CGF.Builder.CreateBitCast(Cmp, 12000 IntegerType::get(CGF.getLLVMContext(), 12001 std::max(NumElts, 8U))); 12002 } 12003 12004 static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC, 12005 bool Signed, ArrayRef<Value *> Ops) { 12006 assert((Ops.size() == 2 || Ops.size() == 4) && 12007 "Unexpected number of arguments"); 12008 unsigned NumElts = 12009 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 12010 Value *Cmp; 12011 12012 if (CC == 3) { 12013 Cmp = Constant::getNullValue( 12014 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts)); 12015 } else if (CC == 7) { 12016 Cmp = Constant::getAllOnesValue( 12017 llvm::FixedVectorType::get(CGF.Builder.getInt1Ty(), NumElts)); 12018 } else { 12019 ICmpInst::Predicate Pred; 12020 switch (CC) { 12021 default: llvm_unreachable("Unknown condition code"); 12022 case 0: Pred = ICmpInst::ICMP_EQ; break; 12023 case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break; 12024 case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break; 12025 case 4: Pred = ICmpInst::ICMP_NE; break; 12026 case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break; 12027 case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break; 12028 } 12029 Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]); 12030 } 12031 12032 Value *MaskIn = nullptr; 12033 if (Ops.size() == 4) 12034 MaskIn = Ops[3]; 12035 12036 return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn); 12037 } 12038 12039 static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) { 12040 Value *Zero = Constant::getNullValue(In->getType()); 12041 return EmitX86MaskedCompare(CGF, 1, true, { In, Zero }); 12042 } 12043 12044 static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF, const CallExpr *E, 12045 ArrayRef<Value *> Ops, bool IsSigned) { 12046 unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue(); 12047 llvm::Type *Ty = Ops[1]->getType(); 12048 12049 Value *Res; 12050 if (Rnd != 4) { 12051 Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round 12052 : Intrinsic::x86_avx512_uitofp_round; 12053 Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() }); 12054 Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] }); 12055 } else { 12056 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 12057 Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty) 12058 : CGF.Builder.CreateUIToFP(Ops[0], Ty); 12059 } 12060 12061 return EmitX86Select(CGF, Ops[2], Res, Ops[1]); 12062 } 12063 12064 // Lowers X86 FMA intrinsics to IR. 12065 static Value *EmitX86FMAExpr(CodeGenFunction &CGF, const CallExpr *E, 12066 ArrayRef<Value *> Ops, unsigned BuiltinID, 12067 bool IsAddSub) { 12068 12069 bool Subtract = false; 12070 Intrinsic::ID IID = Intrinsic::not_intrinsic; 12071 switch (BuiltinID) { 12072 default: break; 12073 case clang::X86::BI__builtin_ia32_vfmsubph512_mask3: 12074 Subtract = true; 12075 LLVM_FALLTHROUGH; 12076 case clang::X86::BI__builtin_ia32_vfmaddph512_mask: 12077 case clang::X86::BI__builtin_ia32_vfmaddph512_maskz: 12078 case clang::X86::BI__builtin_ia32_vfmaddph512_mask3: 12079 IID = llvm::Intrinsic::x86_avx512fp16_vfmadd_ph_512; 12080 break; 12081 case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3: 12082 Subtract = true; 12083 LLVM_FALLTHROUGH; 12084 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask: 12085 case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz: 12086 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3: 12087 IID = llvm::Intrinsic::x86_avx512fp16_vfmaddsub_ph_512; 12088 break; 12089 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3: 12090 Subtract = true; 12091 LLVM_FALLTHROUGH; 12092 case clang::X86::BI__builtin_ia32_vfmaddps512_mask: 12093 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz: 12094 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3: 12095 IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break; 12096 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3: 12097 Subtract = true; 12098 LLVM_FALLTHROUGH; 12099 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask: 12100 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz: 12101 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3: 12102 IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break; 12103 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3: 12104 Subtract = true; 12105 LLVM_FALLTHROUGH; 12106 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask: 12107 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz: 12108 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3: 12109 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512; 12110 break; 12111 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 12112 Subtract = true; 12113 LLVM_FALLTHROUGH; 12114 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask: 12115 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 12116 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 12117 IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512; 12118 break; 12119 } 12120 12121 Value *A = Ops[0]; 12122 Value *B = Ops[1]; 12123 Value *C = Ops[2]; 12124 12125 if (Subtract) 12126 C = CGF.Builder.CreateFNeg(C); 12127 12128 Value *Res; 12129 12130 // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding). 12131 if (IID != Intrinsic::not_intrinsic && 12132 (cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4 || 12133 IsAddSub)) { 12134 Function *Intr = CGF.CGM.getIntrinsic(IID); 12135 Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() }); 12136 } else { 12137 llvm::Type *Ty = A->getType(); 12138 Function *FMA; 12139 if (CGF.Builder.getIsFPConstrained()) { 12140 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 12141 FMA = CGF.CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, Ty); 12142 Res = CGF.Builder.CreateConstrainedFPCall(FMA, {A, B, C}); 12143 } else { 12144 FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty); 12145 Res = CGF.Builder.CreateCall(FMA, {A, B, C}); 12146 } 12147 } 12148 12149 // Handle any required masking. 12150 Value *MaskFalseVal = nullptr; 12151 switch (BuiltinID) { 12152 case clang::X86::BI__builtin_ia32_vfmaddph512_mask: 12153 case clang::X86::BI__builtin_ia32_vfmaddps512_mask: 12154 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask: 12155 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask: 12156 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask: 12157 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask: 12158 MaskFalseVal = Ops[0]; 12159 break; 12160 case clang::X86::BI__builtin_ia32_vfmaddph512_maskz: 12161 case clang::X86::BI__builtin_ia32_vfmaddps512_maskz: 12162 case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz: 12163 case clang::X86::BI__builtin_ia32_vfmaddsubph512_maskz: 12164 case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz: 12165 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 12166 MaskFalseVal = Constant::getNullValue(Ops[0]->getType()); 12167 break; 12168 case clang::X86::BI__builtin_ia32_vfmsubph512_mask3: 12169 case clang::X86::BI__builtin_ia32_vfmaddph512_mask3: 12170 case clang::X86::BI__builtin_ia32_vfmsubps512_mask3: 12171 case clang::X86::BI__builtin_ia32_vfmaddps512_mask3: 12172 case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3: 12173 case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3: 12174 case clang::X86::BI__builtin_ia32_vfmsubaddph512_mask3: 12175 case clang::X86::BI__builtin_ia32_vfmaddsubph512_mask3: 12176 case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3: 12177 case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3: 12178 case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 12179 case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 12180 MaskFalseVal = Ops[2]; 12181 break; 12182 } 12183 12184 if (MaskFalseVal) 12185 return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal); 12186 12187 return Res; 12188 } 12189 12190 static Value *EmitScalarFMAExpr(CodeGenFunction &CGF, const CallExpr *E, 12191 MutableArrayRef<Value *> Ops, Value *Upper, 12192 bool ZeroMask = false, unsigned PTIdx = 0, 12193 bool NegAcc = false) { 12194 unsigned Rnd = 4; 12195 if (Ops.size() > 4) 12196 Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue(); 12197 12198 if (NegAcc) 12199 Ops[2] = CGF.Builder.CreateFNeg(Ops[2]); 12200 12201 Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0); 12202 Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0); 12203 Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0); 12204 Value *Res; 12205 if (Rnd != 4) { 12206 Intrinsic::ID IID; 12207 12208 switch (Ops[0]->getType()->getPrimitiveSizeInBits()) { 12209 case 16: 12210 IID = Intrinsic::x86_avx512fp16_vfmadd_f16; 12211 break; 12212 case 32: 12213 IID = Intrinsic::x86_avx512_vfmadd_f32; 12214 break; 12215 case 64: 12216 IID = Intrinsic::x86_avx512_vfmadd_f64; 12217 break; 12218 default: 12219 llvm_unreachable("Unexpected size"); 12220 } 12221 Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID), 12222 {Ops[0], Ops[1], Ops[2], Ops[4]}); 12223 } else if (CGF.Builder.getIsFPConstrained()) { 12224 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); 12225 Function *FMA = CGF.CGM.getIntrinsic( 12226 Intrinsic::experimental_constrained_fma, Ops[0]->getType()); 12227 Res = CGF.Builder.CreateConstrainedFPCall(FMA, Ops.slice(0, 3)); 12228 } else { 12229 Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType()); 12230 Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3)); 12231 } 12232 // If we have more than 3 arguments, we need to do masking. 12233 if (Ops.size() > 3) { 12234 Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType()) 12235 : Ops[PTIdx]; 12236 12237 // If we negated the accumulator and the its the PassThru value we need to 12238 // bypass the negate. Conveniently Upper should be the same thing in this 12239 // case. 12240 if (NegAcc && PTIdx == 2) 12241 PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0); 12242 12243 Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru); 12244 } 12245 return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0); 12246 } 12247 12248 static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned, 12249 ArrayRef<Value *> Ops) { 12250 llvm::Type *Ty = Ops[0]->getType(); 12251 // Arguments have a vXi32 type so cast to vXi64. 12252 Ty = llvm::FixedVectorType::get(CGF.Int64Ty, 12253 Ty->getPrimitiveSizeInBits() / 64); 12254 Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty); 12255 Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty); 12256 12257 if (IsSigned) { 12258 // Shift left then arithmetic shift right. 12259 Constant *ShiftAmt = ConstantInt::get(Ty, 32); 12260 LHS = CGF.Builder.CreateShl(LHS, ShiftAmt); 12261 LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt); 12262 RHS = CGF.Builder.CreateShl(RHS, ShiftAmt); 12263 RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt); 12264 } else { 12265 // Clear the upper bits. 12266 Constant *Mask = ConstantInt::get(Ty, 0xffffffff); 12267 LHS = CGF.Builder.CreateAnd(LHS, Mask); 12268 RHS = CGF.Builder.CreateAnd(RHS, Mask); 12269 } 12270 12271 return CGF.Builder.CreateMul(LHS, RHS); 12272 } 12273 12274 // Emit a masked pternlog intrinsic. This only exists because the header has to 12275 // use a macro and we aren't able to pass the input argument to a pternlog 12276 // builtin and a select builtin without evaluating it twice. 12277 static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask, 12278 ArrayRef<Value *> Ops) { 12279 llvm::Type *Ty = Ops[0]->getType(); 12280 12281 unsigned VecWidth = Ty->getPrimitiveSizeInBits(); 12282 unsigned EltWidth = Ty->getScalarSizeInBits(); 12283 Intrinsic::ID IID; 12284 if (VecWidth == 128 && EltWidth == 32) 12285 IID = Intrinsic::x86_avx512_pternlog_d_128; 12286 else if (VecWidth == 256 && EltWidth == 32) 12287 IID = Intrinsic::x86_avx512_pternlog_d_256; 12288 else if (VecWidth == 512 && EltWidth == 32) 12289 IID = Intrinsic::x86_avx512_pternlog_d_512; 12290 else if (VecWidth == 128 && EltWidth == 64) 12291 IID = Intrinsic::x86_avx512_pternlog_q_128; 12292 else if (VecWidth == 256 && EltWidth == 64) 12293 IID = Intrinsic::x86_avx512_pternlog_q_256; 12294 else if (VecWidth == 512 && EltWidth == 64) 12295 IID = Intrinsic::x86_avx512_pternlog_q_512; 12296 else 12297 llvm_unreachable("Unexpected intrinsic"); 12298 12299 Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID), 12300 Ops.drop_back()); 12301 Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0]; 12302 return EmitX86Select(CGF, Ops[4], Ternlog, PassThru); 12303 } 12304 12305 static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op, 12306 llvm::Type *DstTy) { 12307 unsigned NumberOfElements = 12308 cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 12309 Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements); 12310 return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2"); 12311 } 12312 12313 // Emit binary intrinsic with the same type used in result/args. 12314 static Value *EmitX86BinaryIntrinsic(CodeGenFunction &CGF, 12315 ArrayRef<Value *> Ops, Intrinsic::ID IID) { 12316 llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType()); 12317 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]}); 12318 } 12319 12320 Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) { 12321 const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts(); 12322 StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString(); 12323 return EmitX86CpuIs(CPUStr); 12324 } 12325 12326 // Convert F16 halfs to floats. 12327 static Value *EmitX86CvtF16ToFloatExpr(CodeGenFunction &CGF, 12328 ArrayRef<Value *> Ops, 12329 llvm::Type *DstTy) { 12330 assert((Ops.size() == 1 || Ops.size() == 3 || Ops.size() == 4) && 12331 "Unknown cvtph2ps intrinsic"); 12332 12333 // If the SAE intrinsic doesn't use default rounding then we can't upgrade. 12334 if (Ops.size() == 4 && cast<llvm::ConstantInt>(Ops[3])->getZExtValue() != 4) { 12335 Function *F = 12336 CGF.CGM.getIntrinsic(Intrinsic::x86_avx512_mask_vcvtph2ps_512); 12337 return CGF.Builder.CreateCall(F, {Ops[0], Ops[1], Ops[2], Ops[3]}); 12338 } 12339 12340 unsigned NumDstElts = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); 12341 Value *Src = Ops[0]; 12342 12343 // Extract the subvector. 12344 if (NumDstElts != 12345 cast<llvm::FixedVectorType>(Src->getType())->getNumElements()) { 12346 assert(NumDstElts == 4 && "Unexpected vector size"); 12347 Src = CGF.Builder.CreateShuffleVector(Src, ArrayRef<int>{0, 1, 2, 3}); 12348 } 12349 12350 // Bitcast from vXi16 to vXf16. 12351 auto *HalfTy = llvm::FixedVectorType::get( 12352 llvm::Type::getHalfTy(CGF.getLLVMContext()), NumDstElts); 12353 Src = CGF.Builder.CreateBitCast(Src, HalfTy); 12354 12355 // Perform the fp-extension. 12356 Value *Res = CGF.Builder.CreateFPExt(Src, DstTy, "cvtph2ps"); 12357 12358 if (Ops.size() >= 3) 12359 Res = EmitX86Select(CGF, Ops[2], Res, Ops[1]); 12360 return Res; 12361 } 12362 12363 // Convert a BF16 to a float. 12364 static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF, 12365 const CallExpr *E, 12366 ArrayRef<Value *> Ops) { 12367 llvm::Type *Int32Ty = CGF.Builder.getInt32Ty(); 12368 Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty); 12369 Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16); 12370 llvm::Type *ResultType = CGF.ConvertType(E->getType()); 12371 Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType); 12372 return BitCast; 12373 } 12374 12375 Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) { 12376 12377 llvm::Type *Int32Ty = Builder.getInt32Ty(); 12378 12379 // Matching the struct layout from the compiler-rt/libgcc structure that is 12380 // filled in: 12381 // unsigned int __cpu_vendor; 12382 // unsigned int __cpu_type; 12383 // unsigned int __cpu_subtype; 12384 // unsigned int __cpu_features[1]; 12385 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, 12386 llvm::ArrayType::get(Int32Ty, 1)); 12387 12388 // Grab the global __cpu_model. 12389 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); 12390 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true); 12391 12392 // Calculate the index needed to access the correct field based on the 12393 // range. Also adjust the expected value. 12394 unsigned Index; 12395 unsigned Value; 12396 std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr) 12397 #define X86_VENDOR(ENUM, STRING) \ 12398 .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)}) 12399 #define X86_CPU_TYPE_ALIAS(ENUM, ALIAS) \ 12400 .Case(ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)}) 12401 #define X86_CPU_TYPE(ENUM, STR) \ 12402 .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)}) 12403 #define X86_CPU_SUBTYPE(ENUM, STR) \ 12404 .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)}) 12405 #include "llvm/Support/X86TargetParser.def" 12406 .Default({0, 0}); 12407 assert(Value != 0 && "Invalid CPUStr passed to CpuIs"); 12408 12409 // Grab the appropriate field from __cpu_model. 12410 llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0), 12411 ConstantInt::get(Int32Ty, Index)}; 12412 llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs); 12413 CpuValue = Builder.CreateAlignedLoad(Int32Ty, CpuValue, 12414 CharUnits::fromQuantity(4)); 12415 12416 // Check the value of the field against the requested value. 12417 return Builder.CreateICmpEQ(CpuValue, 12418 llvm::ConstantInt::get(Int32Ty, Value)); 12419 } 12420 12421 Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) { 12422 const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts(); 12423 StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString(); 12424 return EmitX86CpuSupports(FeatureStr); 12425 } 12426 12427 Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) { 12428 return EmitX86CpuSupports(llvm::X86::getCpuSupportsMask(FeatureStrs)); 12429 } 12430 12431 llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) { 12432 uint32_t Features1 = Lo_32(FeaturesMask); 12433 uint32_t Features2 = Hi_32(FeaturesMask); 12434 12435 Value *Result = Builder.getTrue(); 12436 12437 if (Features1 != 0) { 12438 // Matching the struct layout from the compiler-rt/libgcc structure that is 12439 // filled in: 12440 // unsigned int __cpu_vendor; 12441 // unsigned int __cpu_type; 12442 // unsigned int __cpu_subtype; 12443 // unsigned int __cpu_features[1]; 12444 llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty, 12445 llvm::ArrayType::get(Int32Ty, 1)); 12446 12447 // Grab the global __cpu_model. 12448 llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model"); 12449 cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true); 12450 12451 // Grab the first (0th) element from the field __cpu_features off of the 12452 // global in the struct STy. 12453 Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3), 12454 Builder.getInt32(0)}; 12455 Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs); 12456 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures, 12457 CharUnits::fromQuantity(4)); 12458 12459 // Check the value of the bit corresponding to the feature requested. 12460 Value *Mask = Builder.getInt32(Features1); 12461 Value *Bitset = Builder.CreateAnd(Features, Mask); 12462 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask); 12463 Result = Builder.CreateAnd(Result, Cmp); 12464 } 12465 12466 if (Features2 != 0) { 12467 llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty, 12468 "__cpu_features2"); 12469 cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true); 12470 12471 Value *Features = Builder.CreateAlignedLoad(Int32Ty, CpuFeatures2, 12472 CharUnits::fromQuantity(4)); 12473 12474 // Check the value of the bit corresponding to the feature requested. 12475 Value *Mask = Builder.getInt32(Features2); 12476 Value *Bitset = Builder.CreateAnd(Features, Mask); 12477 Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask); 12478 Result = Builder.CreateAnd(Result, Cmp); 12479 } 12480 12481 return Result; 12482 } 12483 12484 Value *CodeGenFunction::EmitX86CpuInit() { 12485 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, 12486 /*Variadic*/ false); 12487 llvm::FunctionCallee Func = 12488 CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init"); 12489 cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true); 12490 cast<llvm::GlobalValue>(Func.getCallee()) 12491 ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 12492 return Builder.CreateCall(Func); 12493 } 12494 12495 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID, 12496 const CallExpr *E) { 12497 if (BuiltinID == X86::BI__builtin_cpu_is) 12498 return EmitX86CpuIs(E); 12499 if (BuiltinID == X86::BI__builtin_cpu_supports) 12500 return EmitX86CpuSupports(E); 12501 if (BuiltinID == X86::BI__builtin_cpu_init) 12502 return EmitX86CpuInit(); 12503 12504 // Handle MSVC intrinsics before argument evaluation to prevent double 12505 // evaluation. 12506 if (Optional<MSVCIntrin> MsvcIntId = translateX86ToMsvcIntrin(BuiltinID)) 12507 return EmitMSVCBuiltinExpr(*MsvcIntId, E); 12508 12509 SmallVector<Value*, 4> Ops; 12510 bool IsMaskFCmp = false; 12511 12512 // Find out if any arguments are required to be integer constant expressions. 12513 unsigned ICEArguments = 0; 12514 ASTContext::GetBuiltinTypeError Error; 12515 getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments); 12516 assert(Error == ASTContext::GE_None && "Should not codegen an error"); 12517 12518 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) { 12519 // If this is a normal argument, just emit it as a scalar. 12520 if ((ICEArguments & (1 << i)) == 0) { 12521 Ops.push_back(EmitScalarExpr(E->getArg(i))); 12522 continue; 12523 } 12524 12525 // If this is required to be a constant, constant fold it so that we know 12526 // that the generated intrinsic gets a ConstantInt. 12527 Ops.push_back(llvm::ConstantInt::get( 12528 getLLVMContext(), *E->getArg(i)->getIntegerConstantExpr(getContext()))); 12529 } 12530 12531 // These exist so that the builtin that takes an immediate can be bounds 12532 // checked by clang to avoid passing bad immediates to the backend. Since 12533 // AVX has a larger immediate than SSE we would need separate builtins to 12534 // do the different bounds checking. Rather than create a clang specific 12535 // SSE only builtin, this implements eight separate builtins to match gcc 12536 // implementation. 12537 auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) { 12538 Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm)); 12539 llvm::Function *F = CGM.getIntrinsic(ID); 12540 return Builder.CreateCall(F, Ops); 12541 }; 12542 12543 // For the vector forms of FP comparisons, translate the builtins directly to 12544 // IR. 12545 // TODO: The builtins could be removed if the SSE header files used vector 12546 // extension comparisons directly (vector ordered/unordered may need 12547 // additional support via __builtin_isnan()). 12548 auto getVectorFCmpIR = [this, &Ops, E](CmpInst::Predicate Pred, 12549 bool IsSignaling) { 12550 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 12551 Value *Cmp; 12552 if (IsSignaling) 12553 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]); 12554 else 12555 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); 12556 llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType()); 12557 llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy); 12558 Value *Sext = Builder.CreateSExt(Cmp, IntVecTy); 12559 return Builder.CreateBitCast(Sext, FPVecTy); 12560 }; 12561 12562 switch (BuiltinID) { 12563 default: return nullptr; 12564 case X86::BI_mm_prefetch: { 12565 Value *Address = Ops[0]; 12566 ConstantInt *C = cast<ConstantInt>(Ops[1]); 12567 Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1); 12568 Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3); 12569 Value *Data = ConstantInt::get(Int32Ty, 1); 12570 Function *F = CGM.getIntrinsic(Intrinsic::prefetch, Address->getType()); 12571 return Builder.CreateCall(F, {Address, RW, Locality, Data}); 12572 } 12573 case X86::BI_mm_clflush: { 12574 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush), 12575 Ops[0]); 12576 } 12577 case X86::BI_mm_lfence: { 12578 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence)); 12579 } 12580 case X86::BI_mm_mfence: { 12581 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence)); 12582 } 12583 case X86::BI_mm_sfence: { 12584 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence)); 12585 } 12586 case X86::BI_mm_pause: { 12587 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause)); 12588 } 12589 case X86::BI__rdtsc: { 12590 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc)); 12591 } 12592 case X86::BI__builtin_ia32_rdtscp: { 12593 Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp)); 12594 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1), 12595 Ops[0]); 12596 return Builder.CreateExtractValue(Call, 0); 12597 } 12598 case X86::BI__builtin_ia32_lzcnt_u16: 12599 case X86::BI__builtin_ia32_lzcnt_u32: 12600 case X86::BI__builtin_ia32_lzcnt_u64: { 12601 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); 12602 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); 12603 } 12604 case X86::BI__builtin_ia32_tzcnt_u16: 12605 case X86::BI__builtin_ia32_tzcnt_u32: 12606 case X86::BI__builtin_ia32_tzcnt_u64: { 12607 Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType()); 12608 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); 12609 } 12610 case X86::BI__builtin_ia32_undef128: 12611 case X86::BI__builtin_ia32_undef256: 12612 case X86::BI__builtin_ia32_undef512: 12613 // The x86 definition of "undef" is not the same as the LLVM definition 12614 // (PR32176). We leave optimizing away an unnecessary zero constant to the 12615 // IR optimizer and backend. 12616 // TODO: If we had a "freeze" IR instruction to generate a fixed undef 12617 // value, we should use that here instead of a zero. 12618 return llvm::Constant::getNullValue(ConvertType(E->getType())); 12619 case X86::BI__builtin_ia32_vec_init_v8qi: 12620 case X86::BI__builtin_ia32_vec_init_v4hi: 12621 case X86::BI__builtin_ia32_vec_init_v2si: 12622 return Builder.CreateBitCast(BuildVector(Ops), 12623 llvm::Type::getX86_MMXTy(getLLVMContext())); 12624 case X86::BI__builtin_ia32_vec_ext_v2si: 12625 case X86::BI__builtin_ia32_vec_ext_v16qi: 12626 case X86::BI__builtin_ia32_vec_ext_v8hi: 12627 case X86::BI__builtin_ia32_vec_ext_v4si: 12628 case X86::BI__builtin_ia32_vec_ext_v4sf: 12629 case X86::BI__builtin_ia32_vec_ext_v2di: 12630 case X86::BI__builtin_ia32_vec_ext_v32qi: 12631 case X86::BI__builtin_ia32_vec_ext_v16hi: 12632 case X86::BI__builtin_ia32_vec_ext_v8si: 12633 case X86::BI__builtin_ia32_vec_ext_v4di: { 12634 unsigned NumElts = 12635 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 12636 uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue(); 12637 Index &= NumElts - 1; 12638 // These builtins exist so we can ensure the index is an ICE and in range. 12639 // Otherwise we could just do this in the header file. 12640 return Builder.CreateExtractElement(Ops[0], Index); 12641 } 12642 case X86::BI__builtin_ia32_vec_set_v16qi: 12643 case X86::BI__builtin_ia32_vec_set_v8hi: 12644 case X86::BI__builtin_ia32_vec_set_v4si: 12645 case X86::BI__builtin_ia32_vec_set_v2di: 12646 case X86::BI__builtin_ia32_vec_set_v32qi: 12647 case X86::BI__builtin_ia32_vec_set_v16hi: 12648 case X86::BI__builtin_ia32_vec_set_v8si: 12649 case X86::BI__builtin_ia32_vec_set_v4di: { 12650 unsigned NumElts = 12651 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 12652 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue(); 12653 Index &= NumElts - 1; 12654 // These builtins exist so we can ensure the index is an ICE and in range. 12655 // Otherwise we could just do this in the header file. 12656 return Builder.CreateInsertElement(Ops[0], Ops[1], Index); 12657 } 12658 case X86::BI_mm_setcsr: 12659 case X86::BI__builtin_ia32_ldmxcsr: { 12660 Address Tmp = CreateMemTemp(E->getArg(0)->getType()); 12661 Builder.CreateStore(Ops[0], Tmp); 12662 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr), 12663 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy)); 12664 } 12665 case X86::BI_mm_getcsr: 12666 case X86::BI__builtin_ia32_stmxcsr: { 12667 Address Tmp = CreateMemTemp(E->getType()); 12668 Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr), 12669 Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy)); 12670 return Builder.CreateLoad(Tmp, "stmxcsr"); 12671 } 12672 case X86::BI__builtin_ia32_xsave: 12673 case X86::BI__builtin_ia32_xsave64: 12674 case X86::BI__builtin_ia32_xrstor: 12675 case X86::BI__builtin_ia32_xrstor64: 12676 case X86::BI__builtin_ia32_xsaveopt: 12677 case X86::BI__builtin_ia32_xsaveopt64: 12678 case X86::BI__builtin_ia32_xrstors: 12679 case X86::BI__builtin_ia32_xrstors64: 12680 case X86::BI__builtin_ia32_xsavec: 12681 case X86::BI__builtin_ia32_xsavec64: 12682 case X86::BI__builtin_ia32_xsaves: 12683 case X86::BI__builtin_ia32_xsaves64: 12684 case X86::BI__builtin_ia32_xsetbv: 12685 case X86::BI_xsetbv: { 12686 Intrinsic::ID ID; 12687 #define INTRINSIC_X86_XSAVE_ID(NAME) \ 12688 case X86::BI__builtin_ia32_##NAME: \ 12689 ID = Intrinsic::x86_##NAME; \ 12690 break 12691 switch (BuiltinID) { 12692 default: llvm_unreachable("Unsupported intrinsic!"); 12693 INTRINSIC_X86_XSAVE_ID(xsave); 12694 INTRINSIC_X86_XSAVE_ID(xsave64); 12695 INTRINSIC_X86_XSAVE_ID(xrstor); 12696 INTRINSIC_X86_XSAVE_ID(xrstor64); 12697 INTRINSIC_X86_XSAVE_ID(xsaveopt); 12698 INTRINSIC_X86_XSAVE_ID(xsaveopt64); 12699 INTRINSIC_X86_XSAVE_ID(xrstors); 12700 INTRINSIC_X86_XSAVE_ID(xrstors64); 12701 INTRINSIC_X86_XSAVE_ID(xsavec); 12702 INTRINSIC_X86_XSAVE_ID(xsavec64); 12703 INTRINSIC_X86_XSAVE_ID(xsaves); 12704 INTRINSIC_X86_XSAVE_ID(xsaves64); 12705 INTRINSIC_X86_XSAVE_ID(xsetbv); 12706 case X86::BI_xsetbv: 12707 ID = Intrinsic::x86_xsetbv; 12708 break; 12709 } 12710 #undef INTRINSIC_X86_XSAVE_ID 12711 Value *Mhi = Builder.CreateTrunc( 12712 Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty); 12713 Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty); 12714 Ops[1] = Mhi; 12715 Ops.push_back(Mlo); 12716 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 12717 } 12718 case X86::BI__builtin_ia32_xgetbv: 12719 case X86::BI_xgetbv: 12720 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops); 12721 case X86::BI__builtin_ia32_storedqudi128_mask: 12722 case X86::BI__builtin_ia32_storedqusi128_mask: 12723 case X86::BI__builtin_ia32_storedquhi128_mask: 12724 case X86::BI__builtin_ia32_storedquqi128_mask: 12725 case X86::BI__builtin_ia32_storeupd128_mask: 12726 case X86::BI__builtin_ia32_storeups128_mask: 12727 case X86::BI__builtin_ia32_storedqudi256_mask: 12728 case X86::BI__builtin_ia32_storedqusi256_mask: 12729 case X86::BI__builtin_ia32_storedquhi256_mask: 12730 case X86::BI__builtin_ia32_storedquqi256_mask: 12731 case X86::BI__builtin_ia32_storeupd256_mask: 12732 case X86::BI__builtin_ia32_storeups256_mask: 12733 case X86::BI__builtin_ia32_storedqudi512_mask: 12734 case X86::BI__builtin_ia32_storedqusi512_mask: 12735 case X86::BI__builtin_ia32_storedquhi512_mask: 12736 case X86::BI__builtin_ia32_storedquqi512_mask: 12737 case X86::BI__builtin_ia32_storeupd512_mask: 12738 case X86::BI__builtin_ia32_storeups512_mask: 12739 return EmitX86MaskedStore(*this, Ops, Align(1)); 12740 12741 case X86::BI__builtin_ia32_storesh128_mask: 12742 case X86::BI__builtin_ia32_storess128_mask: 12743 case X86::BI__builtin_ia32_storesd128_mask: 12744 return EmitX86MaskedStore(*this, Ops, Align(1)); 12745 12746 case X86::BI__builtin_ia32_vpopcntb_128: 12747 case X86::BI__builtin_ia32_vpopcntd_128: 12748 case X86::BI__builtin_ia32_vpopcntq_128: 12749 case X86::BI__builtin_ia32_vpopcntw_128: 12750 case X86::BI__builtin_ia32_vpopcntb_256: 12751 case X86::BI__builtin_ia32_vpopcntd_256: 12752 case X86::BI__builtin_ia32_vpopcntq_256: 12753 case X86::BI__builtin_ia32_vpopcntw_256: 12754 case X86::BI__builtin_ia32_vpopcntb_512: 12755 case X86::BI__builtin_ia32_vpopcntd_512: 12756 case X86::BI__builtin_ia32_vpopcntq_512: 12757 case X86::BI__builtin_ia32_vpopcntw_512: { 12758 llvm::Type *ResultType = ConvertType(E->getType()); 12759 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); 12760 return Builder.CreateCall(F, Ops); 12761 } 12762 case X86::BI__builtin_ia32_cvtmask2b128: 12763 case X86::BI__builtin_ia32_cvtmask2b256: 12764 case X86::BI__builtin_ia32_cvtmask2b512: 12765 case X86::BI__builtin_ia32_cvtmask2w128: 12766 case X86::BI__builtin_ia32_cvtmask2w256: 12767 case X86::BI__builtin_ia32_cvtmask2w512: 12768 case X86::BI__builtin_ia32_cvtmask2d128: 12769 case X86::BI__builtin_ia32_cvtmask2d256: 12770 case X86::BI__builtin_ia32_cvtmask2d512: 12771 case X86::BI__builtin_ia32_cvtmask2q128: 12772 case X86::BI__builtin_ia32_cvtmask2q256: 12773 case X86::BI__builtin_ia32_cvtmask2q512: 12774 return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType())); 12775 12776 case X86::BI__builtin_ia32_cvtb2mask128: 12777 case X86::BI__builtin_ia32_cvtb2mask256: 12778 case X86::BI__builtin_ia32_cvtb2mask512: 12779 case X86::BI__builtin_ia32_cvtw2mask128: 12780 case X86::BI__builtin_ia32_cvtw2mask256: 12781 case X86::BI__builtin_ia32_cvtw2mask512: 12782 case X86::BI__builtin_ia32_cvtd2mask128: 12783 case X86::BI__builtin_ia32_cvtd2mask256: 12784 case X86::BI__builtin_ia32_cvtd2mask512: 12785 case X86::BI__builtin_ia32_cvtq2mask128: 12786 case X86::BI__builtin_ia32_cvtq2mask256: 12787 case X86::BI__builtin_ia32_cvtq2mask512: 12788 return EmitX86ConvertToMask(*this, Ops[0]); 12789 12790 case X86::BI__builtin_ia32_cvtdq2ps512_mask: 12791 case X86::BI__builtin_ia32_cvtqq2ps512_mask: 12792 case X86::BI__builtin_ia32_cvtqq2pd512_mask: 12793 case X86::BI__builtin_ia32_vcvtw2ph512_mask: 12794 case X86::BI__builtin_ia32_vcvtdq2ph512_mask: 12795 case X86::BI__builtin_ia32_vcvtqq2ph512_mask: 12796 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ true); 12797 case X86::BI__builtin_ia32_cvtudq2ps512_mask: 12798 case X86::BI__builtin_ia32_cvtuqq2ps512_mask: 12799 case X86::BI__builtin_ia32_cvtuqq2pd512_mask: 12800 case X86::BI__builtin_ia32_vcvtuw2ph512_mask: 12801 case X86::BI__builtin_ia32_vcvtudq2ph512_mask: 12802 case X86::BI__builtin_ia32_vcvtuqq2ph512_mask: 12803 return EmitX86ConvertIntToFp(*this, E, Ops, /*IsSigned*/ false); 12804 12805 case X86::BI__builtin_ia32_vfmaddss3: 12806 case X86::BI__builtin_ia32_vfmaddsd3: 12807 case X86::BI__builtin_ia32_vfmaddsh3_mask: 12808 case X86::BI__builtin_ia32_vfmaddss3_mask: 12809 case X86::BI__builtin_ia32_vfmaddsd3_mask: 12810 return EmitScalarFMAExpr(*this, E, Ops, Ops[0]); 12811 case X86::BI__builtin_ia32_vfmaddss: 12812 case X86::BI__builtin_ia32_vfmaddsd: 12813 return EmitScalarFMAExpr(*this, E, Ops, 12814 Constant::getNullValue(Ops[0]->getType())); 12815 case X86::BI__builtin_ia32_vfmaddsh3_maskz: 12816 case X86::BI__builtin_ia32_vfmaddss3_maskz: 12817 case X86::BI__builtin_ia32_vfmaddsd3_maskz: 12818 return EmitScalarFMAExpr(*this, E, Ops, Ops[0], /*ZeroMask*/ true); 12819 case X86::BI__builtin_ia32_vfmaddsh3_mask3: 12820 case X86::BI__builtin_ia32_vfmaddss3_mask3: 12821 case X86::BI__builtin_ia32_vfmaddsd3_mask3: 12822 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2); 12823 case X86::BI__builtin_ia32_vfmsubsh3_mask3: 12824 case X86::BI__builtin_ia32_vfmsubss3_mask3: 12825 case X86::BI__builtin_ia32_vfmsubsd3_mask3: 12826 return EmitScalarFMAExpr(*this, E, Ops, Ops[2], /*ZeroMask*/ false, 2, 12827 /*NegAcc*/ true); 12828 case X86::BI__builtin_ia32_vfmaddph: 12829 case X86::BI__builtin_ia32_vfmaddps: 12830 case X86::BI__builtin_ia32_vfmaddpd: 12831 case X86::BI__builtin_ia32_vfmaddph256: 12832 case X86::BI__builtin_ia32_vfmaddps256: 12833 case X86::BI__builtin_ia32_vfmaddpd256: 12834 case X86::BI__builtin_ia32_vfmaddph512_mask: 12835 case X86::BI__builtin_ia32_vfmaddph512_maskz: 12836 case X86::BI__builtin_ia32_vfmaddph512_mask3: 12837 case X86::BI__builtin_ia32_vfmaddps512_mask: 12838 case X86::BI__builtin_ia32_vfmaddps512_maskz: 12839 case X86::BI__builtin_ia32_vfmaddps512_mask3: 12840 case X86::BI__builtin_ia32_vfmsubps512_mask3: 12841 case X86::BI__builtin_ia32_vfmaddpd512_mask: 12842 case X86::BI__builtin_ia32_vfmaddpd512_maskz: 12843 case X86::BI__builtin_ia32_vfmaddpd512_mask3: 12844 case X86::BI__builtin_ia32_vfmsubpd512_mask3: 12845 case X86::BI__builtin_ia32_vfmsubph512_mask3: 12846 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ false); 12847 case X86::BI__builtin_ia32_vfmaddsubph512_mask: 12848 case X86::BI__builtin_ia32_vfmaddsubph512_maskz: 12849 case X86::BI__builtin_ia32_vfmaddsubph512_mask3: 12850 case X86::BI__builtin_ia32_vfmsubaddph512_mask3: 12851 case X86::BI__builtin_ia32_vfmaddsubps512_mask: 12852 case X86::BI__builtin_ia32_vfmaddsubps512_maskz: 12853 case X86::BI__builtin_ia32_vfmaddsubps512_mask3: 12854 case X86::BI__builtin_ia32_vfmsubaddps512_mask3: 12855 case X86::BI__builtin_ia32_vfmaddsubpd512_mask: 12856 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz: 12857 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3: 12858 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3: 12859 return EmitX86FMAExpr(*this, E, Ops, BuiltinID, /*IsAddSub*/ true); 12860 12861 case X86::BI__builtin_ia32_movdqa32store128_mask: 12862 case X86::BI__builtin_ia32_movdqa64store128_mask: 12863 case X86::BI__builtin_ia32_storeaps128_mask: 12864 case X86::BI__builtin_ia32_storeapd128_mask: 12865 case X86::BI__builtin_ia32_movdqa32store256_mask: 12866 case X86::BI__builtin_ia32_movdqa64store256_mask: 12867 case X86::BI__builtin_ia32_storeaps256_mask: 12868 case X86::BI__builtin_ia32_storeapd256_mask: 12869 case X86::BI__builtin_ia32_movdqa32store512_mask: 12870 case X86::BI__builtin_ia32_movdqa64store512_mask: 12871 case X86::BI__builtin_ia32_storeaps512_mask: 12872 case X86::BI__builtin_ia32_storeapd512_mask: 12873 return EmitX86MaskedStore( 12874 *this, Ops, 12875 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign()); 12876 12877 case X86::BI__builtin_ia32_loadups128_mask: 12878 case X86::BI__builtin_ia32_loadups256_mask: 12879 case X86::BI__builtin_ia32_loadups512_mask: 12880 case X86::BI__builtin_ia32_loadupd128_mask: 12881 case X86::BI__builtin_ia32_loadupd256_mask: 12882 case X86::BI__builtin_ia32_loadupd512_mask: 12883 case X86::BI__builtin_ia32_loaddquqi128_mask: 12884 case X86::BI__builtin_ia32_loaddquqi256_mask: 12885 case X86::BI__builtin_ia32_loaddquqi512_mask: 12886 case X86::BI__builtin_ia32_loaddquhi128_mask: 12887 case X86::BI__builtin_ia32_loaddquhi256_mask: 12888 case X86::BI__builtin_ia32_loaddquhi512_mask: 12889 case X86::BI__builtin_ia32_loaddqusi128_mask: 12890 case X86::BI__builtin_ia32_loaddqusi256_mask: 12891 case X86::BI__builtin_ia32_loaddqusi512_mask: 12892 case X86::BI__builtin_ia32_loaddqudi128_mask: 12893 case X86::BI__builtin_ia32_loaddqudi256_mask: 12894 case X86::BI__builtin_ia32_loaddqudi512_mask: 12895 return EmitX86MaskedLoad(*this, Ops, Align(1)); 12896 12897 case X86::BI__builtin_ia32_loadsh128_mask: 12898 case X86::BI__builtin_ia32_loadss128_mask: 12899 case X86::BI__builtin_ia32_loadsd128_mask: 12900 return EmitX86MaskedLoad(*this, Ops, Align(1)); 12901 12902 case X86::BI__builtin_ia32_loadaps128_mask: 12903 case X86::BI__builtin_ia32_loadaps256_mask: 12904 case X86::BI__builtin_ia32_loadaps512_mask: 12905 case X86::BI__builtin_ia32_loadapd128_mask: 12906 case X86::BI__builtin_ia32_loadapd256_mask: 12907 case X86::BI__builtin_ia32_loadapd512_mask: 12908 case X86::BI__builtin_ia32_movdqa32load128_mask: 12909 case X86::BI__builtin_ia32_movdqa32load256_mask: 12910 case X86::BI__builtin_ia32_movdqa32load512_mask: 12911 case X86::BI__builtin_ia32_movdqa64load128_mask: 12912 case X86::BI__builtin_ia32_movdqa64load256_mask: 12913 case X86::BI__builtin_ia32_movdqa64load512_mask: 12914 return EmitX86MaskedLoad( 12915 *this, Ops, 12916 getContext().getTypeAlignInChars(E->getArg(1)->getType()).getAsAlign()); 12917 12918 case X86::BI__builtin_ia32_expandloaddf128_mask: 12919 case X86::BI__builtin_ia32_expandloaddf256_mask: 12920 case X86::BI__builtin_ia32_expandloaddf512_mask: 12921 case X86::BI__builtin_ia32_expandloadsf128_mask: 12922 case X86::BI__builtin_ia32_expandloadsf256_mask: 12923 case X86::BI__builtin_ia32_expandloadsf512_mask: 12924 case X86::BI__builtin_ia32_expandloaddi128_mask: 12925 case X86::BI__builtin_ia32_expandloaddi256_mask: 12926 case X86::BI__builtin_ia32_expandloaddi512_mask: 12927 case X86::BI__builtin_ia32_expandloadsi128_mask: 12928 case X86::BI__builtin_ia32_expandloadsi256_mask: 12929 case X86::BI__builtin_ia32_expandloadsi512_mask: 12930 case X86::BI__builtin_ia32_expandloadhi128_mask: 12931 case X86::BI__builtin_ia32_expandloadhi256_mask: 12932 case X86::BI__builtin_ia32_expandloadhi512_mask: 12933 case X86::BI__builtin_ia32_expandloadqi128_mask: 12934 case X86::BI__builtin_ia32_expandloadqi256_mask: 12935 case X86::BI__builtin_ia32_expandloadqi512_mask: 12936 return EmitX86ExpandLoad(*this, Ops); 12937 12938 case X86::BI__builtin_ia32_compressstoredf128_mask: 12939 case X86::BI__builtin_ia32_compressstoredf256_mask: 12940 case X86::BI__builtin_ia32_compressstoredf512_mask: 12941 case X86::BI__builtin_ia32_compressstoresf128_mask: 12942 case X86::BI__builtin_ia32_compressstoresf256_mask: 12943 case X86::BI__builtin_ia32_compressstoresf512_mask: 12944 case X86::BI__builtin_ia32_compressstoredi128_mask: 12945 case X86::BI__builtin_ia32_compressstoredi256_mask: 12946 case X86::BI__builtin_ia32_compressstoredi512_mask: 12947 case X86::BI__builtin_ia32_compressstoresi128_mask: 12948 case X86::BI__builtin_ia32_compressstoresi256_mask: 12949 case X86::BI__builtin_ia32_compressstoresi512_mask: 12950 case X86::BI__builtin_ia32_compressstorehi128_mask: 12951 case X86::BI__builtin_ia32_compressstorehi256_mask: 12952 case X86::BI__builtin_ia32_compressstorehi512_mask: 12953 case X86::BI__builtin_ia32_compressstoreqi128_mask: 12954 case X86::BI__builtin_ia32_compressstoreqi256_mask: 12955 case X86::BI__builtin_ia32_compressstoreqi512_mask: 12956 return EmitX86CompressStore(*this, Ops); 12957 12958 case X86::BI__builtin_ia32_expanddf128_mask: 12959 case X86::BI__builtin_ia32_expanddf256_mask: 12960 case X86::BI__builtin_ia32_expanddf512_mask: 12961 case X86::BI__builtin_ia32_expandsf128_mask: 12962 case X86::BI__builtin_ia32_expandsf256_mask: 12963 case X86::BI__builtin_ia32_expandsf512_mask: 12964 case X86::BI__builtin_ia32_expanddi128_mask: 12965 case X86::BI__builtin_ia32_expanddi256_mask: 12966 case X86::BI__builtin_ia32_expanddi512_mask: 12967 case X86::BI__builtin_ia32_expandsi128_mask: 12968 case X86::BI__builtin_ia32_expandsi256_mask: 12969 case X86::BI__builtin_ia32_expandsi512_mask: 12970 case X86::BI__builtin_ia32_expandhi128_mask: 12971 case X86::BI__builtin_ia32_expandhi256_mask: 12972 case X86::BI__builtin_ia32_expandhi512_mask: 12973 case X86::BI__builtin_ia32_expandqi128_mask: 12974 case X86::BI__builtin_ia32_expandqi256_mask: 12975 case X86::BI__builtin_ia32_expandqi512_mask: 12976 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false); 12977 12978 case X86::BI__builtin_ia32_compressdf128_mask: 12979 case X86::BI__builtin_ia32_compressdf256_mask: 12980 case X86::BI__builtin_ia32_compressdf512_mask: 12981 case X86::BI__builtin_ia32_compresssf128_mask: 12982 case X86::BI__builtin_ia32_compresssf256_mask: 12983 case X86::BI__builtin_ia32_compresssf512_mask: 12984 case X86::BI__builtin_ia32_compressdi128_mask: 12985 case X86::BI__builtin_ia32_compressdi256_mask: 12986 case X86::BI__builtin_ia32_compressdi512_mask: 12987 case X86::BI__builtin_ia32_compresssi128_mask: 12988 case X86::BI__builtin_ia32_compresssi256_mask: 12989 case X86::BI__builtin_ia32_compresssi512_mask: 12990 case X86::BI__builtin_ia32_compresshi128_mask: 12991 case X86::BI__builtin_ia32_compresshi256_mask: 12992 case X86::BI__builtin_ia32_compresshi512_mask: 12993 case X86::BI__builtin_ia32_compressqi128_mask: 12994 case X86::BI__builtin_ia32_compressqi256_mask: 12995 case X86::BI__builtin_ia32_compressqi512_mask: 12996 return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true); 12997 12998 case X86::BI__builtin_ia32_gather3div2df: 12999 case X86::BI__builtin_ia32_gather3div2di: 13000 case X86::BI__builtin_ia32_gather3div4df: 13001 case X86::BI__builtin_ia32_gather3div4di: 13002 case X86::BI__builtin_ia32_gather3div4sf: 13003 case X86::BI__builtin_ia32_gather3div4si: 13004 case X86::BI__builtin_ia32_gather3div8sf: 13005 case X86::BI__builtin_ia32_gather3div8si: 13006 case X86::BI__builtin_ia32_gather3siv2df: 13007 case X86::BI__builtin_ia32_gather3siv2di: 13008 case X86::BI__builtin_ia32_gather3siv4df: 13009 case X86::BI__builtin_ia32_gather3siv4di: 13010 case X86::BI__builtin_ia32_gather3siv4sf: 13011 case X86::BI__builtin_ia32_gather3siv4si: 13012 case X86::BI__builtin_ia32_gather3siv8sf: 13013 case X86::BI__builtin_ia32_gather3siv8si: 13014 case X86::BI__builtin_ia32_gathersiv8df: 13015 case X86::BI__builtin_ia32_gathersiv16sf: 13016 case X86::BI__builtin_ia32_gatherdiv8df: 13017 case X86::BI__builtin_ia32_gatherdiv16sf: 13018 case X86::BI__builtin_ia32_gathersiv8di: 13019 case X86::BI__builtin_ia32_gathersiv16si: 13020 case X86::BI__builtin_ia32_gatherdiv8di: 13021 case X86::BI__builtin_ia32_gatherdiv16si: { 13022 Intrinsic::ID IID; 13023 switch (BuiltinID) { 13024 default: llvm_unreachable("Unexpected builtin"); 13025 case X86::BI__builtin_ia32_gather3div2df: 13026 IID = Intrinsic::x86_avx512_mask_gather3div2_df; 13027 break; 13028 case X86::BI__builtin_ia32_gather3div2di: 13029 IID = Intrinsic::x86_avx512_mask_gather3div2_di; 13030 break; 13031 case X86::BI__builtin_ia32_gather3div4df: 13032 IID = Intrinsic::x86_avx512_mask_gather3div4_df; 13033 break; 13034 case X86::BI__builtin_ia32_gather3div4di: 13035 IID = Intrinsic::x86_avx512_mask_gather3div4_di; 13036 break; 13037 case X86::BI__builtin_ia32_gather3div4sf: 13038 IID = Intrinsic::x86_avx512_mask_gather3div4_sf; 13039 break; 13040 case X86::BI__builtin_ia32_gather3div4si: 13041 IID = Intrinsic::x86_avx512_mask_gather3div4_si; 13042 break; 13043 case X86::BI__builtin_ia32_gather3div8sf: 13044 IID = Intrinsic::x86_avx512_mask_gather3div8_sf; 13045 break; 13046 case X86::BI__builtin_ia32_gather3div8si: 13047 IID = Intrinsic::x86_avx512_mask_gather3div8_si; 13048 break; 13049 case X86::BI__builtin_ia32_gather3siv2df: 13050 IID = Intrinsic::x86_avx512_mask_gather3siv2_df; 13051 break; 13052 case X86::BI__builtin_ia32_gather3siv2di: 13053 IID = Intrinsic::x86_avx512_mask_gather3siv2_di; 13054 break; 13055 case X86::BI__builtin_ia32_gather3siv4df: 13056 IID = Intrinsic::x86_avx512_mask_gather3siv4_df; 13057 break; 13058 case X86::BI__builtin_ia32_gather3siv4di: 13059 IID = Intrinsic::x86_avx512_mask_gather3siv4_di; 13060 break; 13061 case X86::BI__builtin_ia32_gather3siv4sf: 13062 IID = Intrinsic::x86_avx512_mask_gather3siv4_sf; 13063 break; 13064 case X86::BI__builtin_ia32_gather3siv4si: 13065 IID = Intrinsic::x86_avx512_mask_gather3siv4_si; 13066 break; 13067 case X86::BI__builtin_ia32_gather3siv8sf: 13068 IID = Intrinsic::x86_avx512_mask_gather3siv8_sf; 13069 break; 13070 case X86::BI__builtin_ia32_gather3siv8si: 13071 IID = Intrinsic::x86_avx512_mask_gather3siv8_si; 13072 break; 13073 case X86::BI__builtin_ia32_gathersiv8df: 13074 IID = Intrinsic::x86_avx512_mask_gather_dpd_512; 13075 break; 13076 case X86::BI__builtin_ia32_gathersiv16sf: 13077 IID = Intrinsic::x86_avx512_mask_gather_dps_512; 13078 break; 13079 case X86::BI__builtin_ia32_gatherdiv8df: 13080 IID = Intrinsic::x86_avx512_mask_gather_qpd_512; 13081 break; 13082 case X86::BI__builtin_ia32_gatherdiv16sf: 13083 IID = Intrinsic::x86_avx512_mask_gather_qps_512; 13084 break; 13085 case X86::BI__builtin_ia32_gathersiv8di: 13086 IID = Intrinsic::x86_avx512_mask_gather_dpq_512; 13087 break; 13088 case X86::BI__builtin_ia32_gathersiv16si: 13089 IID = Intrinsic::x86_avx512_mask_gather_dpi_512; 13090 break; 13091 case X86::BI__builtin_ia32_gatherdiv8di: 13092 IID = Intrinsic::x86_avx512_mask_gather_qpq_512; 13093 break; 13094 case X86::BI__builtin_ia32_gatherdiv16si: 13095 IID = Intrinsic::x86_avx512_mask_gather_qpi_512; 13096 break; 13097 } 13098 13099 unsigned MinElts = std::min( 13100 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(), 13101 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements()); 13102 Ops[3] = getMaskVecValue(*this, Ops[3], MinElts); 13103 Function *Intr = CGM.getIntrinsic(IID); 13104 return Builder.CreateCall(Intr, Ops); 13105 } 13106 13107 case X86::BI__builtin_ia32_scattersiv8df: 13108 case X86::BI__builtin_ia32_scattersiv16sf: 13109 case X86::BI__builtin_ia32_scatterdiv8df: 13110 case X86::BI__builtin_ia32_scatterdiv16sf: 13111 case X86::BI__builtin_ia32_scattersiv8di: 13112 case X86::BI__builtin_ia32_scattersiv16si: 13113 case X86::BI__builtin_ia32_scatterdiv8di: 13114 case X86::BI__builtin_ia32_scatterdiv16si: 13115 case X86::BI__builtin_ia32_scatterdiv2df: 13116 case X86::BI__builtin_ia32_scatterdiv2di: 13117 case X86::BI__builtin_ia32_scatterdiv4df: 13118 case X86::BI__builtin_ia32_scatterdiv4di: 13119 case X86::BI__builtin_ia32_scatterdiv4sf: 13120 case X86::BI__builtin_ia32_scatterdiv4si: 13121 case X86::BI__builtin_ia32_scatterdiv8sf: 13122 case X86::BI__builtin_ia32_scatterdiv8si: 13123 case X86::BI__builtin_ia32_scattersiv2df: 13124 case X86::BI__builtin_ia32_scattersiv2di: 13125 case X86::BI__builtin_ia32_scattersiv4df: 13126 case X86::BI__builtin_ia32_scattersiv4di: 13127 case X86::BI__builtin_ia32_scattersiv4sf: 13128 case X86::BI__builtin_ia32_scattersiv4si: 13129 case X86::BI__builtin_ia32_scattersiv8sf: 13130 case X86::BI__builtin_ia32_scattersiv8si: { 13131 Intrinsic::ID IID; 13132 switch (BuiltinID) { 13133 default: llvm_unreachable("Unexpected builtin"); 13134 case X86::BI__builtin_ia32_scattersiv8df: 13135 IID = Intrinsic::x86_avx512_mask_scatter_dpd_512; 13136 break; 13137 case X86::BI__builtin_ia32_scattersiv16sf: 13138 IID = Intrinsic::x86_avx512_mask_scatter_dps_512; 13139 break; 13140 case X86::BI__builtin_ia32_scatterdiv8df: 13141 IID = Intrinsic::x86_avx512_mask_scatter_qpd_512; 13142 break; 13143 case X86::BI__builtin_ia32_scatterdiv16sf: 13144 IID = Intrinsic::x86_avx512_mask_scatter_qps_512; 13145 break; 13146 case X86::BI__builtin_ia32_scattersiv8di: 13147 IID = Intrinsic::x86_avx512_mask_scatter_dpq_512; 13148 break; 13149 case X86::BI__builtin_ia32_scattersiv16si: 13150 IID = Intrinsic::x86_avx512_mask_scatter_dpi_512; 13151 break; 13152 case X86::BI__builtin_ia32_scatterdiv8di: 13153 IID = Intrinsic::x86_avx512_mask_scatter_qpq_512; 13154 break; 13155 case X86::BI__builtin_ia32_scatterdiv16si: 13156 IID = Intrinsic::x86_avx512_mask_scatter_qpi_512; 13157 break; 13158 case X86::BI__builtin_ia32_scatterdiv2df: 13159 IID = Intrinsic::x86_avx512_mask_scatterdiv2_df; 13160 break; 13161 case X86::BI__builtin_ia32_scatterdiv2di: 13162 IID = Intrinsic::x86_avx512_mask_scatterdiv2_di; 13163 break; 13164 case X86::BI__builtin_ia32_scatterdiv4df: 13165 IID = Intrinsic::x86_avx512_mask_scatterdiv4_df; 13166 break; 13167 case X86::BI__builtin_ia32_scatterdiv4di: 13168 IID = Intrinsic::x86_avx512_mask_scatterdiv4_di; 13169 break; 13170 case X86::BI__builtin_ia32_scatterdiv4sf: 13171 IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf; 13172 break; 13173 case X86::BI__builtin_ia32_scatterdiv4si: 13174 IID = Intrinsic::x86_avx512_mask_scatterdiv4_si; 13175 break; 13176 case X86::BI__builtin_ia32_scatterdiv8sf: 13177 IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf; 13178 break; 13179 case X86::BI__builtin_ia32_scatterdiv8si: 13180 IID = Intrinsic::x86_avx512_mask_scatterdiv8_si; 13181 break; 13182 case X86::BI__builtin_ia32_scattersiv2df: 13183 IID = Intrinsic::x86_avx512_mask_scattersiv2_df; 13184 break; 13185 case X86::BI__builtin_ia32_scattersiv2di: 13186 IID = Intrinsic::x86_avx512_mask_scattersiv2_di; 13187 break; 13188 case X86::BI__builtin_ia32_scattersiv4df: 13189 IID = Intrinsic::x86_avx512_mask_scattersiv4_df; 13190 break; 13191 case X86::BI__builtin_ia32_scattersiv4di: 13192 IID = Intrinsic::x86_avx512_mask_scattersiv4_di; 13193 break; 13194 case X86::BI__builtin_ia32_scattersiv4sf: 13195 IID = Intrinsic::x86_avx512_mask_scattersiv4_sf; 13196 break; 13197 case X86::BI__builtin_ia32_scattersiv4si: 13198 IID = Intrinsic::x86_avx512_mask_scattersiv4_si; 13199 break; 13200 case X86::BI__builtin_ia32_scattersiv8sf: 13201 IID = Intrinsic::x86_avx512_mask_scattersiv8_sf; 13202 break; 13203 case X86::BI__builtin_ia32_scattersiv8si: 13204 IID = Intrinsic::x86_avx512_mask_scattersiv8_si; 13205 break; 13206 } 13207 13208 unsigned MinElts = std::min( 13209 cast<llvm::FixedVectorType>(Ops[2]->getType())->getNumElements(), 13210 cast<llvm::FixedVectorType>(Ops[3]->getType())->getNumElements()); 13211 Ops[1] = getMaskVecValue(*this, Ops[1], MinElts); 13212 Function *Intr = CGM.getIntrinsic(IID); 13213 return Builder.CreateCall(Intr, Ops); 13214 } 13215 13216 case X86::BI__builtin_ia32_vextractf128_pd256: 13217 case X86::BI__builtin_ia32_vextractf128_ps256: 13218 case X86::BI__builtin_ia32_vextractf128_si256: 13219 case X86::BI__builtin_ia32_extract128i256: 13220 case X86::BI__builtin_ia32_extractf64x4_mask: 13221 case X86::BI__builtin_ia32_extractf32x4_mask: 13222 case X86::BI__builtin_ia32_extracti64x4_mask: 13223 case X86::BI__builtin_ia32_extracti32x4_mask: 13224 case X86::BI__builtin_ia32_extractf32x8_mask: 13225 case X86::BI__builtin_ia32_extracti32x8_mask: 13226 case X86::BI__builtin_ia32_extractf32x4_256_mask: 13227 case X86::BI__builtin_ia32_extracti32x4_256_mask: 13228 case X86::BI__builtin_ia32_extractf64x2_256_mask: 13229 case X86::BI__builtin_ia32_extracti64x2_256_mask: 13230 case X86::BI__builtin_ia32_extractf64x2_512_mask: 13231 case X86::BI__builtin_ia32_extracti64x2_512_mask: { 13232 auto *DstTy = cast<llvm::FixedVectorType>(ConvertType(E->getType())); 13233 unsigned NumElts = DstTy->getNumElements(); 13234 unsigned SrcNumElts = 13235 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13236 unsigned SubVectors = SrcNumElts / NumElts; 13237 unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue(); 13238 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"); 13239 Index &= SubVectors - 1; // Remove any extra bits. 13240 Index *= NumElts; 13241 13242 int Indices[16]; 13243 for (unsigned i = 0; i != NumElts; ++i) 13244 Indices[i] = i + Index; 13245 13246 Value *Res = Builder.CreateShuffleVector(Ops[0], 13247 makeArrayRef(Indices, NumElts), 13248 "extract"); 13249 13250 if (Ops.size() == 4) 13251 Res = EmitX86Select(*this, Ops[3], Res, Ops[2]); 13252 13253 return Res; 13254 } 13255 case X86::BI__builtin_ia32_vinsertf128_pd256: 13256 case X86::BI__builtin_ia32_vinsertf128_ps256: 13257 case X86::BI__builtin_ia32_vinsertf128_si256: 13258 case X86::BI__builtin_ia32_insert128i256: 13259 case X86::BI__builtin_ia32_insertf64x4: 13260 case X86::BI__builtin_ia32_insertf32x4: 13261 case X86::BI__builtin_ia32_inserti64x4: 13262 case X86::BI__builtin_ia32_inserti32x4: 13263 case X86::BI__builtin_ia32_insertf32x8: 13264 case X86::BI__builtin_ia32_inserti32x8: 13265 case X86::BI__builtin_ia32_insertf32x4_256: 13266 case X86::BI__builtin_ia32_inserti32x4_256: 13267 case X86::BI__builtin_ia32_insertf64x2_256: 13268 case X86::BI__builtin_ia32_inserti64x2_256: 13269 case X86::BI__builtin_ia32_insertf64x2_512: 13270 case X86::BI__builtin_ia32_inserti64x2_512: { 13271 unsigned DstNumElts = 13272 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13273 unsigned SrcNumElts = 13274 cast<llvm::FixedVectorType>(Ops[1]->getType())->getNumElements(); 13275 unsigned SubVectors = DstNumElts / SrcNumElts; 13276 unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue(); 13277 assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors"); 13278 Index &= SubVectors - 1; // Remove any extra bits. 13279 Index *= SrcNumElts; 13280 13281 int Indices[16]; 13282 for (unsigned i = 0; i != DstNumElts; ++i) 13283 Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i; 13284 13285 Value *Op1 = Builder.CreateShuffleVector(Ops[1], 13286 makeArrayRef(Indices, DstNumElts), 13287 "widen"); 13288 13289 for (unsigned i = 0; i != DstNumElts; ++i) { 13290 if (i >= Index && i < (Index + SrcNumElts)) 13291 Indices[i] = (i - Index) + DstNumElts; 13292 else 13293 Indices[i] = i; 13294 } 13295 13296 return Builder.CreateShuffleVector(Ops[0], Op1, 13297 makeArrayRef(Indices, DstNumElts), 13298 "insert"); 13299 } 13300 case X86::BI__builtin_ia32_pmovqd512_mask: 13301 case X86::BI__builtin_ia32_pmovwb512_mask: { 13302 Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType()); 13303 return EmitX86Select(*this, Ops[2], Res, Ops[1]); 13304 } 13305 case X86::BI__builtin_ia32_pmovdb512_mask: 13306 case X86::BI__builtin_ia32_pmovdw512_mask: 13307 case X86::BI__builtin_ia32_pmovqw512_mask: { 13308 if (const auto *C = dyn_cast<Constant>(Ops[2])) 13309 if (C->isAllOnesValue()) 13310 return Builder.CreateTrunc(Ops[0], Ops[1]->getType()); 13311 13312 Intrinsic::ID IID; 13313 switch (BuiltinID) { 13314 default: llvm_unreachable("Unsupported intrinsic!"); 13315 case X86::BI__builtin_ia32_pmovdb512_mask: 13316 IID = Intrinsic::x86_avx512_mask_pmov_db_512; 13317 break; 13318 case X86::BI__builtin_ia32_pmovdw512_mask: 13319 IID = Intrinsic::x86_avx512_mask_pmov_dw_512; 13320 break; 13321 case X86::BI__builtin_ia32_pmovqw512_mask: 13322 IID = Intrinsic::x86_avx512_mask_pmov_qw_512; 13323 break; 13324 } 13325 13326 Function *Intr = CGM.getIntrinsic(IID); 13327 return Builder.CreateCall(Intr, Ops); 13328 } 13329 case X86::BI__builtin_ia32_pblendw128: 13330 case X86::BI__builtin_ia32_blendpd: 13331 case X86::BI__builtin_ia32_blendps: 13332 case X86::BI__builtin_ia32_blendpd256: 13333 case X86::BI__builtin_ia32_blendps256: 13334 case X86::BI__builtin_ia32_pblendw256: 13335 case X86::BI__builtin_ia32_pblendd128: 13336 case X86::BI__builtin_ia32_pblendd256: { 13337 unsigned NumElts = 13338 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13339 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 13340 13341 int Indices[16]; 13342 // If there are more than 8 elements, the immediate is used twice so make 13343 // sure we handle that. 13344 for (unsigned i = 0; i != NumElts; ++i) 13345 Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i; 13346 13347 return Builder.CreateShuffleVector(Ops[0], Ops[1], 13348 makeArrayRef(Indices, NumElts), 13349 "blend"); 13350 } 13351 case X86::BI__builtin_ia32_pshuflw: 13352 case X86::BI__builtin_ia32_pshuflw256: 13353 case X86::BI__builtin_ia32_pshuflw512: { 13354 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 13355 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13356 unsigned NumElts = Ty->getNumElements(); 13357 13358 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 13359 Imm = (Imm & 0xff) * 0x01010101; 13360 13361 int Indices[32]; 13362 for (unsigned l = 0; l != NumElts; l += 8) { 13363 for (unsigned i = 0; i != 4; ++i) { 13364 Indices[l + i] = l + (Imm & 3); 13365 Imm >>= 2; 13366 } 13367 for (unsigned i = 4; i != 8; ++i) 13368 Indices[l + i] = l + i; 13369 } 13370 13371 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts), 13372 "pshuflw"); 13373 } 13374 case X86::BI__builtin_ia32_pshufhw: 13375 case X86::BI__builtin_ia32_pshufhw256: 13376 case X86::BI__builtin_ia32_pshufhw512: { 13377 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 13378 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13379 unsigned NumElts = Ty->getNumElements(); 13380 13381 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 13382 Imm = (Imm & 0xff) * 0x01010101; 13383 13384 int Indices[32]; 13385 for (unsigned l = 0; l != NumElts; l += 8) { 13386 for (unsigned i = 0; i != 4; ++i) 13387 Indices[l + i] = l + i; 13388 for (unsigned i = 4; i != 8; ++i) { 13389 Indices[l + i] = l + 4 + (Imm & 3); 13390 Imm >>= 2; 13391 } 13392 } 13393 13394 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts), 13395 "pshufhw"); 13396 } 13397 case X86::BI__builtin_ia32_pshufd: 13398 case X86::BI__builtin_ia32_pshufd256: 13399 case X86::BI__builtin_ia32_pshufd512: 13400 case X86::BI__builtin_ia32_vpermilpd: 13401 case X86::BI__builtin_ia32_vpermilps: 13402 case X86::BI__builtin_ia32_vpermilpd256: 13403 case X86::BI__builtin_ia32_vpermilps256: 13404 case X86::BI__builtin_ia32_vpermilpd512: 13405 case X86::BI__builtin_ia32_vpermilps512: { 13406 uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 13407 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13408 unsigned NumElts = Ty->getNumElements(); 13409 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128; 13410 unsigned NumLaneElts = NumElts / NumLanes; 13411 13412 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 13413 Imm = (Imm & 0xff) * 0x01010101; 13414 13415 int Indices[16]; 13416 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 13417 for (unsigned i = 0; i != NumLaneElts; ++i) { 13418 Indices[i + l] = (Imm % NumLaneElts) + l; 13419 Imm /= NumLaneElts; 13420 } 13421 } 13422 13423 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts), 13424 "permil"); 13425 } 13426 case X86::BI__builtin_ia32_shufpd: 13427 case X86::BI__builtin_ia32_shufpd256: 13428 case X86::BI__builtin_ia32_shufpd512: 13429 case X86::BI__builtin_ia32_shufps: 13430 case X86::BI__builtin_ia32_shufps256: 13431 case X86::BI__builtin_ia32_shufps512: { 13432 uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 13433 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13434 unsigned NumElts = Ty->getNumElements(); 13435 unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128; 13436 unsigned NumLaneElts = NumElts / NumLanes; 13437 13438 // Splat the 8-bits of immediate 4 times to help the loop wrap around. 13439 Imm = (Imm & 0xff) * 0x01010101; 13440 13441 int Indices[16]; 13442 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 13443 for (unsigned i = 0; i != NumLaneElts; ++i) { 13444 unsigned Index = Imm % NumLaneElts; 13445 Imm /= NumLaneElts; 13446 if (i >= (NumLaneElts / 2)) 13447 Index += NumElts; 13448 Indices[l + i] = l + Index; 13449 } 13450 } 13451 13452 return Builder.CreateShuffleVector(Ops[0], Ops[1], 13453 makeArrayRef(Indices, NumElts), 13454 "shufp"); 13455 } 13456 case X86::BI__builtin_ia32_permdi256: 13457 case X86::BI__builtin_ia32_permdf256: 13458 case X86::BI__builtin_ia32_permdi512: 13459 case X86::BI__builtin_ia32_permdf512: { 13460 unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 13461 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13462 unsigned NumElts = Ty->getNumElements(); 13463 13464 // These intrinsics operate on 256-bit lanes of four 64-bit elements. 13465 int Indices[8]; 13466 for (unsigned l = 0; l != NumElts; l += 4) 13467 for (unsigned i = 0; i != 4; ++i) 13468 Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3); 13469 13470 return Builder.CreateShuffleVector(Ops[0], makeArrayRef(Indices, NumElts), 13471 "perm"); 13472 } 13473 case X86::BI__builtin_ia32_palignr128: 13474 case X86::BI__builtin_ia32_palignr256: 13475 case X86::BI__builtin_ia32_palignr512: { 13476 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff; 13477 13478 unsigned NumElts = 13479 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13480 assert(NumElts % 16 == 0); 13481 13482 // If palignr is shifting the pair of vectors more than the size of two 13483 // lanes, emit zero. 13484 if (ShiftVal >= 32) 13485 return llvm::Constant::getNullValue(ConvertType(E->getType())); 13486 13487 // If palignr is shifting the pair of input vectors more than one lane, 13488 // but less than two lanes, convert to shifting in zeroes. 13489 if (ShiftVal > 16) { 13490 ShiftVal -= 16; 13491 Ops[1] = Ops[0]; 13492 Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType()); 13493 } 13494 13495 int Indices[64]; 13496 // 256-bit palignr operates on 128-bit lanes so we need to handle that 13497 for (unsigned l = 0; l != NumElts; l += 16) { 13498 for (unsigned i = 0; i != 16; ++i) { 13499 unsigned Idx = ShiftVal + i; 13500 if (Idx >= 16) 13501 Idx += NumElts - 16; // End of lane, switch operand. 13502 Indices[l + i] = Idx + l; 13503 } 13504 } 13505 13506 return Builder.CreateShuffleVector(Ops[1], Ops[0], 13507 makeArrayRef(Indices, NumElts), 13508 "palignr"); 13509 } 13510 case X86::BI__builtin_ia32_alignd128: 13511 case X86::BI__builtin_ia32_alignd256: 13512 case X86::BI__builtin_ia32_alignd512: 13513 case X86::BI__builtin_ia32_alignq128: 13514 case X86::BI__builtin_ia32_alignq256: 13515 case X86::BI__builtin_ia32_alignq512: { 13516 unsigned NumElts = 13517 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13518 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff; 13519 13520 // Mask the shift amount to width of a vector. 13521 ShiftVal &= NumElts - 1; 13522 13523 int Indices[16]; 13524 for (unsigned i = 0; i != NumElts; ++i) 13525 Indices[i] = i + ShiftVal; 13526 13527 return Builder.CreateShuffleVector(Ops[1], Ops[0], 13528 makeArrayRef(Indices, NumElts), 13529 "valign"); 13530 } 13531 case X86::BI__builtin_ia32_shuf_f32x4_256: 13532 case X86::BI__builtin_ia32_shuf_f64x2_256: 13533 case X86::BI__builtin_ia32_shuf_i32x4_256: 13534 case X86::BI__builtin_ia32_shuf_i64x2_256: 13535 case X86::BI__builtin_ia32_shuf_f32x4: 13536 case X86::BI__builtin_ia32_shuf_f64x2: 13537 case X86::BI__builtin_ia32_shuf_i32x4: 13538 case X86::BI__builtin_ia32_shuf_i64x2: { 13539 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 13540 auto *Ty = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13541 unsigned NumElts = Ty->getNumElements(); 13542 unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2; 13543 unsigned NumLaneElts = NumElts / NumLanes; 13544 13545 int Indices[16]; 13546 for (unsigned l = 0; l != NumElts; l += NumLaneElts) { 13547 unsigned Index = (Imm % NumLanes) * NumLaneElts; 13548 Imm /= NumLanes; // Discard the bits we just used. 13549 if (l >= (NumElts / 2)) 13550 Index += NumElts; // Switch to other source. 13551 for (unsigned i = 0; i != NumLaneElts; ++i) { 13552 Indices[l + i] = Index + i; 13553 } 13554 } 13555 13556 return Builder.CreateShuffleVector(Ops[0], Ops[1], 13557 makeArrayRef(Indices, NumElts), 13558 "shuf"); 13559 } 13560 13561 case X86::BI__builtin_ia32_vperm2f128_pd256: 13562 case X86::BI__builtin_ia32_vperm2f128_ps256: 13563 case X86::BI__builtin_ia32_vperm2f128_si256: 13564 case X86::BI__builtin_ia32_permti256: { 13565 unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue(); 13566 unsigned NumElts = 13567 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 13568 13569 // This takes a very simple approach since there are two lanes and a 13570 // shuffle can have 2 inputs. So we reserve the first input for the first 13571 // lane and the second input for the second lane. This may result in 13572 // duplicate sources, but this can be dealt with in the backend. 13573 13574 Value *OutOps[2]; 13575 int Indices[8]; 13576 for (unsigned l = 0; l != 2; ++l) { 13577 // Determine the source for this lane. 13578 if (Imm & (1 << ((l * 4) + 3))) 13579 OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType()); 13580 else if (Imm & (1 << ((l * 4) + 1))) 13581 OutOps[l] = Ops[1]; 13582 else 13583 OutOps[l] = Ops[0]; 13584 13585 for (unsigned i = 0; i != NumElts/2; ++i) { 13586 // Start with ith element of the source for this lane. 13587 unsigned Idx = (l * NumElts) + i; 13588 // If bit 0 of the immediate half is set, switch to the high half of 13589 // the source. 13590 if (Imm & (1 << (l * 4))) 13591 Idx += NumElts/2; 13592 Indices[(l * (NumElts/2)) + i] = Idx; 13593 } 13594 } 13595 13596 return Builder.CreateShuffleVector(OutOps[0], OutOps[1], 13597 makeArrayRef(Indices, NumElts), 13598 "vperm"); 13599 } 13600 13601 case X86::BI__builtin_ia32_pslldqi128_byteshift: 13602 case X86::BI__builtin_ia32_pslldqi256_byteshift: 13603 case X86::BI__builtin_ia32_pslldqi512_byteshift: { 13604 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 13605 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13606 // Builtin type is vXi64 so multiply by 8 to get bytes. 13607 unsigned NumElts = ResultType->getNumElements() * 8; 13608 13609 // If pslldq is shifting the vector more than 15 bytes, emit zero. 13610 if (ShiftVal >= 16) 13611 return llvm::Constant::getNullValue(ResultType); 13612 13613 int Indices[64]; 13614 // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that 13615 for (unsigned l = 0; l != NumElts; l += 16) { 13616 for (unsigned i = 0; i != 16; ++i) { 13617 unsigned Idx = NumElts + i - ShiftVal; 13618 if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand. 13619 Indices[l + i] = Idx + l; 13620 } 13621 } 13622 13623 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts); 13624 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast"); 13625 Value *Zero = llvm::Constant::getNullValue(VecTy); 13626 Value *SV = Builder.CreateShuffleVector(Zero, Cast, 13627 makeArrayRef(Indices, NumElts), 13628 "pslldq"); 13629 return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast"); 13630 } 13631 case X86::BI__builtin_ia32_psrldqi128_byteshift: 13632 case X86::BI__builtin_ia32_psrldqi256_byteshift: 13633 case X86::BI__builtin_ia32_psrldqi512_byteshift: { 13634 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 13635 auto *ResultType = cast<llvm::FixedVectorType>(Ops[0]->getType()); 13636 // Builtin type is vXi64 so multiply by 8 to get bytes. 13637 unsigned NumElts = ResultType->getNumElements() * 8; 13638 13639 // If psrldq is shifting the vector more than 15 bytes, emit zero. 13640 if (ShiftVal >= 16) 13641 return llvm::Constant::getNullValue(ResultType); 13642 13643 int Indices[64]; 13644 // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that 13645 for (unsigned l = 0; l != NumElts; l += 16) { 13646 for (unsigned i = 0; i != 16; ++i) { 13647 unsigned Idx = i + ShiftVal; 13648 if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand. 13649 Indices[l + i] = Idx + l; 13650 } 13651 } 13652 13653 auto *VecTy = llvm::FixedVectorType::get(Int8Ty, NumElts); 13654 Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast"); 13655 Value *Zero = llvm::Constant::getNullValue(VecTy); 13656 Value *SV = Builder.CreateShuffleVector(Cast, Zero, 13657 makeArrayRef(Indices, NumElts), 13658 "psrldq"); 13659 return Builder.CreateBitCast(SV, ResultType, "cast"); 13660 } 13661 case X86::BI__builtin_ia32_kshiftliqi: 13662 case X86::BI__builtin_ia32_kshiftlihi: 13663 case X86::BI__builtin_ia32_kshiftlisi: 13664 case X86::BI__builtin_ia32_kshiftlidi: { 13665 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 13666 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13667 13668 if (ShiftVal >= NumElts) 13669 return llvm::Constant::getNullValue(Ops[0]->getType()); 13670 13671 Value *In = getMaskVecValue(*this, Ops[0], NumElts); 13672 13673 int Indices[64]; 13674 for (unsigned i = 0; i != NumElts; ++i) 13675 Indices[i] = NumElts + i - ShiftVal; 13676 13677 Value *Zero = llvm::Constant::getNullValue(In->getType()); 13678 Value *SV = Builder.CreateShuffleVector(Zero, In, 13679 makeArrayRef(Indices, NumElts), 13680 "kshiftl"); 13681 return Builder.CreateBitCast(SV, Ops[0]->getType()); 13682 } 13683 case X86::BI__builtin_ia32_kshiftriqi: 13684 case X86::BI__builtin_ia32_kshiftrihi: 13685 case X86::BI__builtin_ia32_kshiftrisi: 13686 case X86::BI__builtin_ia32_kshiftridi: { 13687 unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff; 13688 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13689 13690 if (ShiftVal >= NumElts) 13691 return llvm::Constant::getNullValue(Ops[0]->getType()); 13692 13693 Value *In = getMaskVecValue(*this, Ops[0], NumElts); 13694 13695 int Indices[64]; 13696 for (unsigned i = 0; i != NumElts; ++i) 13697 Indices[i] = i + ShiftVal; 13698 13699 Value *Zero = llvm::Constant::getNullValue(In->getType()); 13700 Value *SV = Builder.CreateShuffleVector(In, Zero, 13701 makeArrayRef(Indices, NumElts), 13702 "kshiftr"); 13703 return Builder.CreateBitCast(SV, Ops[0]->getType()); 13704 } 13705 case X86::BI__builtin_ia32_movnti: 13706 case X86::BI__builtin_ia32_movnti64: 13707 case X86::BI__builtin_ia32_movntsd: 13708 case X86::BI__builtin_ia32_movntss: { 13709 llvm::MDNode *Node = llvm::MDNode::get( 13710 getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1))); 13711 13712 Value *Ptr = Ops[0]; 13713 Value *Src = Ops[1]; 13714 13715 // Extract the 0'th element of the source vector. 13716 if (BuiltinID == X86::BI__builtin_ia32_movntsd || 13717 BuiltinID == X86::BI__builtin_ia32_movntss) 13718 Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract"); 13719 13720 // Convert the type of the pointer to a pointer to the stored type. 13721 Value *BC = Builder.CreateBitCast( 13722 Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast"); 13723 13724 // Unaligned nontemporal store of the scalar value. 13725 StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC); 13726 SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node); 13727 SI->setAlignment(llvm::Align(1)); 13728 return SI; 13729 } 13730 // Rotate is a special case of funnel shift - 1st 2 args are the same. 13731 case X86::BI__builtin_ia32_vprotb: 13732 case X86::BI__builtin_ia32_vprotw: 13733 case X86::BI__builtin_ia32_vprotd: 13734 case X86::BI__builtin_ia32_vprotq: 13735 case X86::BI__builtin_ia32_vprotbi: 13736 case X86::BI__builtin_ia32_vprotwi: 13737 case X86::BI__builtin_ia32_vprotdi: 13738 case X86::BI__builtin_ia32_vprotqi: 13739 case X86::BI__builtin_ia32_prold128: 13740 case X86::BI__builtin_ia32_prold256: 13741 case X86::BI__builtin_ia32_prold512: 13742 case X86::BI__builtin_ia32_prolq128: 13743 case X86::BI__builtin_ia32_prolq256: 13744 case X86::BI__builtin_ia32_prolq512: 13745 case X86::BI__builtin_ia32_prolvd128: 13746 case X86::BI__builtin_ia32_prolvd256: 13747 case X86::BI__builtin_ia32_prolvd512: 13748 case X86::BI__builtin_ia32_prolvq128: 13749 case X86::BI__builtin_ia32_prolvq256: 13750 case X86::BI__builtin_ia32_prolvq512: 13751 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false); 13752 case X86::BI__builtin_ia32_prord128: 13753 case X86::BI__builtin_ia32_prord256: 13754 case X86::BI__builtin_ia32_prord512: 13755 case X86::BI__builtin_ia32_prorq128: 13756 case X86::BI__builtin_ia32_prorq256: 13757 case X86::BI__builtin_ia32_prorq512: 13758 case X86::BI__builtin_ia32_prorvd128: 13759 case X86::BI__builtin_ia32_prorvd256: 13760 case X86::BI__builtin_ia32_prorvd512: 13761 case X86::BI__builtin_ia32_prorvq128: 13762 case X86::BI__builtin_ia32_prorvq256: 13763 case X86::BI__builtin_ia32_prorvq512: 13764 return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true); 13765 case X86::BI__builtin_ia32_selectb_128: 13766 case X86::BI__builtin_ia32_selectb_256: 13767 case X86::BI__builtin_ia32_selectb_512: 13768 case X86::BI__builtin_ia32_selectw_128: 13769 case X86::BI__builtin_ia32_selectw_256: 13770 case X86::BI__builtin_ia32_selectw_512: 13771 case X86::BI__builtin_ia32_selectd_128: 13772 case X86::BI__builtin_ia32_selectd_256: 13773 case X86::BI__builtin_ia32_selectd_512: 13774 case X86::BI__builtin_ia32_selectq_128: 13775 case X86::BI__builtin_ia32_selectq_256: 13776 case X86::BI__builtin_ia32_selectq_512: 13777 case X86::BI__builtin_ia32_selectph_128: 13778 case X86::BI__builtin_ia32_selectph_256: 13779 case X86::BI__builtin_ia32_selectph_512: 13780 case X86::BI__builtin_ia32_selectps_128: 13781 case X86::BI__builtin_ia32_selectps_256: 13782 case X86::BI__builtin_ia32_selectps_512: 13783 case X86::BI__builtin_ia32_selectpd_128: 13784 case X86::BI__builtin_ia32_selectpd_256: 13785 case X86::BI__builtin_ia32_selectpd_512: 13786 return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]); 13787 case X86::BI__builtin_ia32_selectsh_128: 13788 case X86::BI__builtin_ia32_selectss_128: 13789 case X86::BI__builtin_ia32_selectsd_128: { 13790 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0); 13791 Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0); 13792 A = EmitX86ScalarSelect(*this, Ops[0], A, B); 13793 return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0); 13794 } 13795 case X86::BI__builtin_ia32_cmpb128_mask: 13796 case X86::BI__builtin_ia32_cmpb256_mask: 13797 case X86::BI__builtin_ia32_cmpb512_mask: 13798 case X86::BI__builtin_ia32_cmpw128_mask: 13799 case X86::BI__builtin_ia32_cmpw256_mask: 13800 case X86::BI__builtin_ia32_cmpw512_mask: 13801 case X86::BI__builtin_ia32_cmpd128_mask: 13802 case X86::BI__builtin_ia32_cmpd256_mask: 13803 case X86::BI__builtin_ia32_cmpd512_mask: 13804 case X86::BI__builtin_ia32_cmpq128_mask: 13805 case X86::BI__builtin_ia32_cmpq256_mask: 13806 case X86::BI__builtin_ia32_cmpq512_mask: { 13807 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; 13808 return EmitX86MaskedCompare(*this, CC, true, Ops); 13809 } 13810 case X86::BI__builtin_ia32_ucmpb128_mask: 13811 case X86::BI__builtin_ia32_ucmpb256_mask: 13812 case X86::BI__builtin_ia32_ucmpb512_mask: 13813 case X86::BI__builtin_ia32_ucmpw128_mask: 13814 case X86::BI__builtin_ia32_ucmpw256_mask: 13815 case X86::BI__builtin_ia32_ucmpw512_mask: 13816 case X86::BI__builtin_ia32_ucmpd128_mask: 13817 case X86::BI__builtin_ia32_ucmpd256_mask: 13818 case X86::BI__builtin_ia32_ucmpd512_mask: 13819 case X86::BI__builtin_ia32_ucmpq128_mask: 13820 case X86::BI__builtin_ia32_ucmpq256_mask: 13821 case X86::BI__builtin_ia32_ucmpq512_mask: { 13822 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7; 13823 return EmitX86MaskedCompare(*this, CC, false, Ops); 13824 } 13825 case X86::BI__builtin_ia32_vpcomb: 13826 case X86::BI__builtin_ia32_vpcomw: 13827 case X86::BI__builtin_ia32_vpcomd: 13828 case X86::BI__builtin_ia32_vpcomq: 13829 return EmitX86vpcom(*this, Ops, true); 13830 case X86::BI__builtin_ia32_vpcomub: 13831 case X86::BI__builtin_ia32_vpcomuw: 13832 case X86::BI__builtin_ia32_vpcomud: 13833 case X86::BI__builtin_ia32_vpcomuq: 13834 return EmitX86vpcom(*this, Ops, false); 13835 13836 case X86::BI__builtin_ia32_kortestcqi: 13837 case X86::BI__builtin_ia32_kortestchi: 13838 case X86::BI__builtin_ia32_kortestcsi: 13839 case X86::BI__builtin_ia32_kortestcdi: { 13840 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops); 13841 Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType()); 13842 Value *Cmp = Builder.CreateICmpEQ(Or, C); 13843 return Builder.CreateZExt(Cmp, ConvertType(E->getType())); 13844 } 13845 case X86::BI__builtin_ia32_kortestzqi: 13846 case X86::BI__builtin_ia32_kortestzhi: 13847 case X86::BI__builtin_ia32_kortestzsi: 13848 case X86::BI__builtin_ia32_kortestzdi: { 13849 Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops); 13850 Value *C = llvm::Constant::getNullValue(Ops[0]->getType()); 13851 Value *Cmp = Builder.CreateICmpEQ(Or, C); 13852 return Builder.CreateZExt(Cmp, ConvertType(E->getType())); 13853 } 13854 13855 case X86::BI__builtin_ia32_ktestcqi: 13856 case X86::BI__builtin_ia32_ktestzqi: 13857 case X86::BI__builtin_ia32_ktestchi: 13858 case X86::BI__builtin_ia32_ktestzhi: 13859 case X86::BI__builtin_ia32_ktestcsi: 13860 case X86::BI__builtin_ia32_ktestzsi: 13861 case X86::BI__builtin_ia32_ktestcdi: 13862 case X86::BI__builtin_ia32_ktestzdi: { 13863 Intrinsic::ID IID; 13864 switch (BuiltinID) { 13865 default: llvm_unreachable("Unsupported intrinsic!"); 13866 case X86::BI__builtin_ia32_ktestcqi: 13867 IID = Intrinsic::x86_avx512_ktestc_b; 13868 break; 13869 case X86::BI__builtin_ia32_ktestzqi: 13870 IID = Intrinsic::x86_avx512_ktestz_b; 13871 break; 13872 case X86::BI__builtin_ia32_ktestchi: 13873 IID = Intrinsic::x86_avx512_ktestc_w; 13874 break; 13875 case X86::BI__builtin_ia32_ktestzhi: 13876 IID = Intrinsic::x86_avx512_ktestz_w; 13877 break; 13878 case X86::BI__builtin_ia32_ktestcsi: 13879 IID = Intrinsic::x86_avx512_ktestc_d; 13880 break; 13881 case X86::BI__builtin_ia32_ktestzsi: 13882 IID = Intrinsic::x86_avx512_ktestz_d; 13883 break; 13884 case X86::BI__builtin_ia32_ktestcdi: 13885 IID = Intrinsic::x86_avx512_ktestc_q; 13886 break; 13887 case X86::BI__builtin_ia32_ktestzdi: 13888 IID = Intrinsic::x86_avx512_ktestz_q; 13889 break; 13890 } 13891 13892 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13893 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); 13894 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); 13895 Function *Intr = CGM.getIntrinsic(IID); 13896 return Builder.CreateCall(Intr, {LHS, RHS}); 13897 } 13898 13899 case X86::BI__builtin_ia32_kaddqi: 13900 case X86::BI__builtin_ia32_kaddhi: 13901 case X86::BI__builtin_ia32_kaddsi: 13902 case X86::BI__builtin_ia32_kadddi: { 13903 Intrinsic::ID IID; 13904 switch (BuiltinID) { 13905 default: llvm_unreachable("Unsupported intrinsic!"); 13906 case X86::BI__builtin_ia32_kaddqi: 13907 IID = Intrinsic::x86_avx512_kadd_b; 13908 break; 13909 case X86::BI__builtin_ia32_kaddhi: 13910 IID = Intrinsic::x86_avx512_kadd_w; 13911 break; 13912 case X86::BI__builtin_ia32_kaddsi: 13913 IID = Intrinsic::x86_avx512_kadd_d; 13914 break; 13915 case X86::BI__builtin_ia32_kadddi: 13916 IID = Intrinsic::x86_avx512_kadd_q; 13917 break; 13918 } 13919 13920 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13921 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); 13922 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); 13923 Function *Intr = CGM.getIntrinsic(IID); 13924 Value *Res = Builder.CreateCall(Intr, {LHS, RHS}); 13925 return Builder.CreateBitCast(Res, Ops[0]->getType()); 13926 } 13927 case X86::BI__builtin_ia32_kandqi: 13928 case X86::BI__builtin_ia32_kandhi: 13929 case X86::BI__builtin_ia32_kandsi: 13930 case X86::BI__builtin_ia32_kanddi: 13931 return EmitX86MaskLogic(*this, Instruction::And, Ops); 13932 case X86::BI__builtin_ia32_kandnqi: 13933 case X86::BI__builtin_ia32_kandnhi: 13934 case X86::BI__builtin_ia32_kandnsi: 13935 case X86::BI__builtin_ia32_kandndi: 13936 return EmitX86MaskLogic(*this, Instruction::And, Ops, true); 13937 case X86::BI__builtin_ia32_korqi: 13938 case X86::BI__builtin_ia32_korhi: 13939 case X86::BI__builtin_ia32_korsi: 13940 case X86::BI__builtin_ia32_kordi: 13941 return EmitX86MaskLogic(*this, Instruction::Or, Ops); 13942 case X86::BI__builtin_ia32_kxnorqi: 13943 case X86::BI__builtin_ia32_kxnorhi: 13944 case X86::BI__builtin_ia32_kxnorsi: 13945 case X86::BI__builtin_ia32_kxnordi: 13946 return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true); 13947 case X86::BI__builtin_ia32_kxorqi: 13948 case X86::BI__builtin_ia32_kxorhi: 13949 case X86::BI__builtin_ia32_kxorsi: 13950 case X86::BI__builtin_ia32_kxordi: 13951 return EmitX86MaskLogic(*this, Instruction::Xor, Ops); 13952 case X86::BI__builtin_ia32_knotqi: 13953 case X86::BI__builtin_ia32_knothi: 13954 case X86::BI__builtin_ia32_knotsi: 13955 case X86::BI__builtin_ia32_knotdi: { 13956 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13957 Value *Res = getMaskVecValue(*this, Ops[0], NumElts); 13958 return Builder.CreateBitCast(Builder.CreateNot(Res), 13959 Ops[0]->getType()); 13960 } 13961 case X86::BI__builtin_ia32_kmovb: 13962 case X86::BI__builtin_ia32_kmovw: 13963 case X86::BI__builtin_ia32_kmovd: 13964 case X86::BI__builtin_ia32_kmovq: { 13965 // Bitcast to vXi1 type and then back to integer. This gets the mask 13966 // register type into the IR, but might be optimized out depending on 13967 // what's around it. 13968 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13969 Value *Res = getMaskVecValue(*this, Ops[0], NumElts); 13970 return Builder.CreateBitCast(Res, Ops[0]->getType()); 13971 } 13972 13973 case X86::BI__builtin_ia32_kunpckdi: 13974 case X86::BI__builtin_ia32_kunpcksi: 13975 case X86::BI__builtin_ia32_kunpckhi: { 13976 unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth(); 13977 Value *LHS = getMaskVecValue(*this, Ops[0], NumElts); 13978 Value *RHS = getMaskVecValue(*this, Ops[1], NumElts); 13979 int Indices[64]; 13980 for (unsigned i = 0; i != NumElts; ++i) 13981 Indices[i] = i; 13982 13983 // First extract half of each vector. This gives better codegen than 13984 // doing it in a single shuffle. 13985 LHS = Builder.CreateShuffleVector(LHS, LHS, 13986 makeArrayRef(Indices, NumElts / 2)); 13987 RHS = Builder.CreateShuffleVector(RHS, RHS, 13988 makeArrayRef(Indices, NumElts / 2)); 13989 // Concat the vectors. 13990 // NOTE: Operands are swapped to match the intrinsic definition. 13991 Value *Res = Builder.CreateShuffleVector(RHS, LHS, 13992 makeArrayRef(Indices, NumElts)); 13993 return Builder.CreateBitCast(Res, Ops[0]->getType()); 13994 } 13995 13996 case X86::BI__builtin_ia32_vplzcntd_128: 13997 case X86::BI__builtin_ia32_vplzcntd_256: 13998 case X86::BI__builtin_ia32_vplzcntd_512: 13999 case X86::BI__builtin_ia32_vplzcntq_128: 14000 case X86::BI__builtin_ia32_vplzcntq_256: 14001 case X86::BI__builtin_ia32_vplzcntq_512: { 14002 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType()); 14003 return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)}); 14004 } 14005 case X86::BI__builtin_ia32_sqrtss: 14006 case X86::BI__builtin_ia32_sqrtsd: { 14007 Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0); 14008 Function *F; 14009 if (Builder.getIsFPConstrained()) { 14010 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 14011 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, 14012 A->getType()); 14013 A = Builder.CreateConstrainedFPCall(F, {A}); 14014 } else { 14015 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType()); 14016 A = Builder.CreateCall(F, {A}); 14017 } 14018 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0); 14019 } 14020 case X86::BI__builtin_ia32_sqrtsh_round_mask: 14021 case X86::BI__builtin_ia32_sqrtsd_round_mask: 14022 case X86::BI__builtin_ia32_sqrtss_round_mask: { 14023 unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue(); 14024 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION), 14025 // otherwise keep the intrinsic. 14026 if (CC != 4) { 14027 Intrinsic::ID IID; 14028 14029 switch (BuiltinID) { 14030 default: 14031 llvm_unreachable("Unsupported intrinsic!"); 14032 case X86::BI__builtin_ia32_sqrtsh_round_mask: 14033 IID = Intrinsic::x86_avx512fp16_mask_sqrt_sh; 14034 break; 14035 case X86::BI__builtin_ia32_sqrtsd_round_mask: 14036 IID = Intrinsic::x86_avx512_mask_sqrt_sd; 14037 break; 14038 case X86::BI__builtin_ia32_sqrtss_round_mask: 14039 IID = Intrinsic::x86_avx512_mask_sqrt_ss; 14040 break; 14041 } 14042 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); 14043 } 14044 Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0); 14045 Function *F; 14046 if (Builder.getIsFPConstrained()) { 14047 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 14048 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, 14049 A->getType()); 14050 A = Builder.CreateConstrainedFPCall(F, A); 14051 } else { 14052 F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType()); 14053 A = Builder.CreateCall(F, A); 14054 } 14055 Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0); 14056 A = EmitX86ScalarSelect(*this, Ops[3], A, Src); 14057 return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0); 14058 } 14059 case X86::BI__builtin_ia32_sqrtpd256: 14060 case X86::BI__builtin_ia32_sqrtpd: 14061 case X86::BI__builtin_ia32_sqrtps256: 14062 case X86::BI__builtin_ia32_sqrtps: 14063 case X86::BI__builtin_ia32_sqrtph256: 14064 case X86::BI__builtin_ia32_sqrtph: 14065 case X86::BI__builtin_ia32_sqrtph512: 14066 case X86::BI__builtin_ia32_sqrtps512: 14067 case X86::BI__builtin_ia32_sqrtpd512: { 14068 if (Ops.size() == 2) { 14069 unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue(); 14070 // Support only if the rounding mode is 4 (AKA CUR_DIRECTION), 14071 // otherwise keep the intrinsic. 14072 if (CC != 4) { 14073 Intrinsic::ID IID; 14074 14075 switch (BuiltinID) { 14076 default: 14077 llvm_unreachable("Unsupported intrinsic!"); 14078 case X86::BI__builtin_ia32_sqrtph512: 14079 IID = Intrinsic::x86_avx512fp16_sqrt_ph_512; 14080 break; 14081 case X86::BI__builtin_ia32_sqrtps512: 14082 IID = Intrinsic::x86_avx512_sqrt_ps_512; 14083 break; 14084 case X86::BI__builtin_ia32_sqrtpd512: 14085 IID = Intrinsic::x86_avx512_sqrt_pd_512; 14086 break; 14087 } 14088 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); 14089 } 14090 } 14091 if (Builder.getIsFPConstrained()) { 14092 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 14093 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, 14094 Ops[0]->getType()); 14095 return Builder.CreateConstrainedFPCall(F, Ops[0]); 14096 } else { 14097 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType()); 14098 return Builder.CreateCall(F, Ops[0]); 14099 } 14100 } 14101 case X86::BI__builtin_ia32_pabsb128: 14102 case X86::BI__builtin_ia32_pabsw128: 14103 case X86::BI__builtin_ia32_pabsd128: 14104 case X86::BI__builtin_ia32_pabsb256: 14105 case X86::BI__builtin_ia32_pabsw256: 14106 case X86::BI__builtin_ia32_pabsd256: 14107 case X86::BI__builtin_ia32_pabsq128: 14108 case X86::BI__builtin_ia32_pabsq256: 14109 case X86::BI__builtin_ia32_pabsb512: 14110 case X86::BI__builtin_ia32_pabsw512: 14111 case X86::BI__builtin_ia32_pabsd512: 14112 case X86::BI__builtin_ia32_pabsq512: { 14113 Function *F = CGM.getIntrinsic(Intrinsic::abs, Ops[0]->getType()); 14114 return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)}); 14115 } 14116 case X86::BI__builtin_ia32_pmaxsb128: 14117 case X86::BI__builtin_ia32_pmaxsw128: 14118 case X86::BI__builtin_ia32_pmaxsd128: 14119 case X86::BI__builtin_ia32_pmaxsq128: 14120 case X86::BI__builtin_ia32_pmaxsb256: 14121 case X86::BI__builtin_ia32_pmaxsw256: 14122 case X86::BI__builtin_ia32_pmaxsd256: 14123 case X86::BI__builtin_ia32_pmaxsq256: 14124 case X86::BI__builtin_ia32_pmaxsb512: 14125 case X86::BI__builtin_ia32_pmaxsw512: 14126 case X86::BI__builtin_ia32_pmaxsd512: 14127 case X86::BI__builtin_ia32_pmaxsq512: 14128 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smax); 14129 case X86::BI__builtin_ia32_pmaxub128: 14130 case X86::BI__builtin_ia32_pmaxuw128: 14131 case X86::BI__builtin_ia32_pmaxud128: 14132 case X86::BI__builtin_ia32_pmaxuq128: 14133 case X86::BI__builtin_ia32_pmaxub256: 14134 case X86::BI__builtin_ia32_pmaxuw256: 14135 case X86::BI__builtin_ia32_pmaxud256: 14136 case X86::BI__builtin_ia32_pmaxuq256: 14137 case X86::BI__builtin_ia32_pmaxub512: 14138 case X86::BI__builtin_ia32_pmaxuw512: 14139 case X86::BI__builtin_ia32_pmaxud512: 14140 case X86::BI__builtin_ia32_pmaxuq512: 14141 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umax); 14142 case X86::BI__builtin_ia32_pminsb128: 14143 case X86::BI__builtin_ia32_pminsw128: 14144 case X86::BI__builtin_ia32_pminsd128: 14145 case X86::BI__builtin_ia32_pminsq128: 14146 case X86::BI__builtin_ia32_pminsb256: 14147 case X86::BI__builtin_ia32_pminsw256: 14148 case X86::BI__builtin_ia32_pminsd256: 14149 case X86::BI__builtin_ia32_pminsq256: 14150 case X86::BI__builtin_ia32_pminsb512: 14151 case X86::BI__builtin_ia32_pminsw512: 14152 case X86::BI__builtin_ia32_pminsd512: 14153 case X86::BI__builtin_ia32_pminsq512: 14154 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::smin); 14155 case X86::BI__builtin_ia32_pminub128: 14156 case X86::BI__builtin_ia32_pminuw128: 14157 case X86::BI__builtin_ia32_pminud128: 14158 case X86::BI__builtin_ia32_pminuq128: 14159 case X86::BI__builtin_ia32_pminub256: 14160 case X86::BI__builtin_ia32_pminuw256: 14161 case X86::BI__builtin_ia32_pminud256: 14162 case X86::BI__builtin_ia32_pminuq256: 14163 case X86::BI__builtin_ia32_pminub512: 14164 case X86::BI__builtin_ia32_pminuw512: 14165 case X86::BI__builtin_ia32_pminud512: 14166 case X86::BI__builtin_ia32_pminuq512: 14167 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::umin); 14168 14169 case X86::BI__builtin_ia32_pmuludq128: 14170 case X86::BI__builtin_ia32_pmuludq256: 14171 case X86::BI__builtin_ia32_pmuludq512: 14172 return EmitX86Muldq(*this, /*IsSigned*/false, Ops); 14173 14174 case X86::BI__builtin_ia32_pmuldq128: 14175 case X86::BI__builtin_ia32_pmuldq256: 14176 case X86::BI__builtin_ia32_pmuldq512: 14177 return EmitX86Muldq(*this, /*IsSigned*/true, Ops); 14178 14179 case X86::BI__builtin_ia32_pternlogd512_mask: 14180 case X86::BI__builtin_ia32_pternlogq512_mask: 14181 case X86::BI__builtin_ia32_pternlogd128_mask: 14182 case X86::BI__builtin_ia32_pternlogd256_mask: 14183 case X86::BI__builtin_ia32_pternlogq128_mask: 14184 case X86::BI__builtin_ia32_pternlogq256_mask: 14185 return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops); 14186 14187 case X86::BI__builtin_ia32_pternlogd512_maskz: 14188 case X86::BI__builtin_ia32_pternlogq512_maskz: 14189 case X86::BI__builtin_ia32_pternlogd128_maskz: 14190 case X86::BI__builtin_ia32_pternlogd256_maskz: 14191 case X86::BI__builtin_ia32_pternlogq128_maskz: 14192 case X86::BI__builtin_ia32_pternlogq256_maskz: 14193 return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops); 14194 14195 case X86::BI__builtin_ia32_vpshldd128: 14196 case X86::BI__builtin_ia32_vpshldd256: 14197 case X86::BI__builtin_ia32_vpshldd512: 14198 case X86::BI__builtin_ia32_vpshldq128: 14199 case X86::BI__builtin_ia32_vpshldq256: 14200 case X86::BI__builtin_ia32_vpshldq512: 14201 case X86::BI__builtin_ia32_vpshldw128: 14202 case X86::BI__builtin_ia32_vpshldw256: 14203 case X86::BI__builtin_ia32_vpshldw512: 14204 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false); 14205 14206 case X86::BI__builtin_ia32_vpshrdd128: 14207 case X86::BI__builtin_ia32_vpshrdd256: 14208 case X86::BI__builtin_ia32_vpshrdd512: 14209 case X86::BI__builtin_ia32_vpshrdq128: 14210 case X86::BI__builtin_ia32_vpshrdq256: 14211 case X86::BI__builtin_ia32_vpshrdq512: 14212 case X86::BI__builtin_ia32_vpshrdw128: 14213 case X86::BI__builtin_ia32_vpshrdw256: 14214 case X86::BI__builtin_ia32_vpshrdw512: 14215 // Ops 0 and 1 are swapped. 14216 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true); 14217 14218 case X86::BI__builtin_ia32_vpshldvd128: 14219 case X86::BI__builtin_ia32_vpshldvd256: 14220 case X86::BI__builtin_ia32_vpshldvd512: 14221 case X86::BI__builtin_ia32_vpshldvq128: 14222 case X86::BI__builtin_ia32_vpshldvq256: 14223 case X86::BI__builtin_ia32_vpshldvq512: 14224 case X86::BI__builtin_ia32_vpshldvw128: 14225 case X86::BI__builtin_ia32_vpshldvw256: 14226 case X86::BI__builtin_ia32_vpshldvw512: 14227 return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false); 14228 14229 case X86::BI__builtin_ia32_vpshrdvd128: 14230 case X86::BI__builtin_ia32_vpshrdvd256: 14231 case X86::BI__builtin_ia32_vpshrdvd512: 14232 case X86::BI__builtin_ia32_vpshrdvq128: 14233 case X86::BI__builtin_ia32_vpshrdvq256: 14234 case X86::BI__builtin_ia32_vpshrdvq512: 14235 case X86::BI__builtin_ia32_vpshrdvw128: 14236 case X86::BI__builtin_ia32_vpshrdvw256: 14237 case X86::BI__builtin_ia32_vpshrdvw512: 14238 // Ops 0 and 1 are swapped. 14239 return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true); 14240 14241 // Reductions 14242 case X86::BI__builtin_ia32_reduce_add_d512: 14243 case X86::BI__builtin_ia32_reduce_add_q512: { 14244 Function *F = 14245 CGM.getIntrinsic(Intrinsic::vector_reduce_add, Ops[0]->getType()); 14246 return Builder.CreateCall(F, {Ops[0]}); 14247 } 14248 case X86::BI__builtin_ia32_reduce_and_d512: 14249 case X86::BI__builtin_ia32_reduce_and_q512: { 14250 Function *F = 14251 CGM.getIntrinsic(Intrinsic::vector_reduce_and, Ops[0]->getType()); 14252 return Builder.CreateCall(F, {Ops[0]}); 14253 } 14254 case X86::BI__builtin_ia32_reduce_fadd_pd512: 14255 case X86::BI__builtin_ia32_reduce_fadd_ps512: 14256 case X86::BI__builtin_ia32_reduce_fadd_ph512: 14257 case X86::BI__builtin_ia32_reduce_fadd_ph256: 14258 case X86::BI__builtin_ia32_reduce_fadd_ph128: { 14259 Function *F = 14260 CGM.getIntrinsic(Intrinsic::vector_reduce_fadd, Ops[1]->getType()); 14261 Builder.getFastMathFlags().setAllowReassoc(); 14262 return Builder.CreateCall(F, {Ops[0], Ops[1]}); 14263 } 14264 case X86::BI__builtin_ia32_reduce_fmul_pd512: 14265 case X86::BI__builtin_ia32_reduce_fmul_ps512: 14266 case X86::BI__builtin_ia32_reduce_fmul_ph512: 14267 case X86::BI__builtin_ia32_reduce_fmul_ph256: 14268 case X86::BI__builtin_ia32_reduce_fmul_ph128: { 14269 Function *F = 14270 CGM.getIntrinsic(Intrinsic::vector_reduce_fmul, Ops[1]->getType()); 14271 Builder.getFastMathFlags().setAllowReassoc(); 14272 return Builder.CreateCall(F, {Ops[0], Ops[1]}); 14273 } 14274 case X86::BI__builtin_ia32_reduce_fmax_pd512: 14275 case X86::BI__builtin_ia32_reduce_fmax_ps512: 14276 case X86::BI__builtin_ia32_reduce_fmax_ph512: 14277 case X86::BI__builtin_ia32_reduce_fmax_ph256: 14278 case X86::BI__builtin_ia32_reduce_fmax_ph128: { 14279 Function *F = 14280 CGM.getIntrinsic(Intrinsic::vector_reduce_fmax, Ops[0]->getType()); 14281 Builder.getFastMathFlags().setNoNaNs(); 14282 return Builder.CreateCall(F, {Ops[0]}); 14283 } 14284 case X86::BI__builtin_ia32_reduce_fmin_pd512: 14285 case X86::BI__builtin_ia32_reduce_fmin_ps512: 14286 case X86::BI__builtin_ia32_reduce_fmin_ph512: 14287 case X86::BI__builtin_ia32_reduce_fmin_ph256: 14288 case X86::BI__builtin_ia32_reduce_fmin_ph128: { 14289 Function *F = 14290 CGM.getIntrinsic(Intrinsic::vector_reduce_fmin, Ops[0]->getType()); 14291 Builder.getFastMathFlags().setNoNaNs(); 14292 return Builder.CreateCall(F, {Ops[0]}); 14293 } 14294 case X86::BI__builtin_ia32_reduce_mul_d512: 14295 case X86::BI__builtin_ia32_reduce_mul_q512: { 14296 Function *F = 14297 CGM.getIntrinsic(Intrinsic::vector_reduce_mul, Ops[0]->getType()); 14298 return Builder.CreateCall(F, {Ops[0]}); 14299 } 14300 case X86::BI__builtin_ia32_reduce_or_d512: 14301 case X86::BI__builtin_ia32_reduce_or_q512: { 14302 Function *F = 14303 CGM.getIntrinsic(Intrinsic::vector_reduce_or, Ops[0]->getType()); 14304 return Builder.CreateCall(F, {Ops[0]}); 14305 } 14306 case X86::BI__builtin_ia32_reduce_smax_d512: 14307 case X86::BI__builtin_ia32_reduce_smax_q512: { 14308 Function *F = 14309 CGM.getIntrinsic(Intrinsic::vector_reduce_smax, Ops[0]->getType()); 14310 return Builder.CreateCall(F, {Ops[0]}); 14311 } 14312 case X86::BI__builtin_ia32_reduce_smin_d512: 14313 case X86::BI__builtin_ia32_reduce_smin_q512: { 14314 Function *F = 14315 CGM.getIntrinsic(Intrinsic::vector_reduce_smin, Ops[0]->getType()); 14316 return Builder.CreateCall(F, {Ops[0]}); 14317 } 14318 case X86::BI__builtin_ia32_reduce_umax_d512: 14319 case X86::BI__builtin_ia32_reduce_umax_q512: { 14320 Function *F = 14321 CGM.getIntrinsic(Intrinsic::vector_reduce_umax, Ops[0]->getType()); 14322 return Builder.CreateCall(F, {Ops[0]}); 14323 } 14324 case X86::BI__builtin_ia32_reduce_umin_d512: 14325 case X86::BI__builtin_ia32_reduce_umin_q512: { 14326 Function *F = 14327 CGM.getIntrinsic(Intrinsic::vector_reduce_umin, Ops[0]->getType()); 14328 return Builder.CreateCall(F, {Ops[0]}); 14329 } 14330 14331 // 3DNow! 14332 case X86::BI__builtin_ia32_pswapdsf: 14333 case X86::BI__builtin_ia32_pswapdsi: { 14334 llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext()); 14335 Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast"); 14336 llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd); 14337 return Builder.CreateCall(F, Ops, "pswapd"); 14338 } 14339 case X86::BI__builtin_ia32_rdrand16_step: 14340 case X86::BI__builtin_ia32_rdrand32_step: 14341 case X86::BI__builtin_ia32_rdrand64_step: 14342 case X86::BI__builtin_ia32_rdseed16_step: 14343 case X86::BI__builtin_ia32_rdseed32_step: 14344 case X86::BI__builtin_ia32_rdseed64_step: { 14345 Intrinsic::ID ID; 14346 switch (BuiltinID) { 14347 default: llvm_unreachable("Unsupported intrinsic!"); 14348 case X86::BI__builtin_ia32_rdrand16_step: 14349 ID = Intrinsic::x86_rdrand_16; 14350 break; 14351 case X86::BI__builtin_ia32_rdrand32_step: 14352 ID = Intrinsic::x86_rdrand_32; 14353 break; 14354 case X86::BI__builtin_ia32_rdrand64_step: 14355 ID = Intrinsic::x86_rdrand_64; 14356 break; 14357 case X86::BI__builtin_ia32_rdseed16_step: 14358 ID = Intrinsic::x86_rdseed_16; 14359 break; 14360 case X86::BI__builtin_ia32_rdseed32_step: 14361 ID = Intrinsic::x86_rdseed_32; 14362 break; 14363 case X86::BI__builtin_ia32_rdseed64_step: 14364 ID = Intrinsic::x86_rdseed_64; 14365 break; 14366 } 14367 14368 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID)); 14369 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0), 14370 Ops[0]); 14371 return Builder.CreateExtractValue(Call, 1); 14372 } 14373 case X86::BI__builtin_ia32_addcarryx_u32: 14374 case X86::BI__builtin_ia32_addcarryx_u64: 14375 case X86::BI__builtin_ia32_subborrow_u32: 14376 case X86::BI__builtin_ia32_subborrow_u64: { 14377 Intrinsic::ID IID; 14378 switch (BuiltinID) { 14379 default: llvm_unreachable("Unsupported intrinsic!"); 14380 case X86::BI__builtin_ia32_addcarryx_u32: 14381 IID = Intrinsic::x86_addcarry_32; 14382 break; 14383 case X86::BI__builtin_ia32_addcarryx_u64: 14384 IID = Intrinsic::x86_addcarry_64; 14385 break; 14386 case X86::BI__builtin_ia32_subborrow_u32: 14387 IID = Intrinsic::x86_subborrow_32; 14388 break; 14389 case X86::BI__builtin_ia32_subborrow_u64: 14390 IID = Intrinsic::x86_subborrow_64; 14391 break; 14392 } 14393 14394 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), 14395 { Ops[0], Ops[1], Ops[2] }); 14396 Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1), 14397 Ops[3]); 14398 return Builder.CreateExtractValue(Call, 0); 14399 } 14400 14401 case X86::BI__builtin_ia32_fpclassps128_mask: 14402 case X86::BI__builtin_ia32_fpclassps256_mask: 14403 case X86::BI__builtin_ia32_fpclassps512_mask: 14404 case X86::BI__builtin_ia32_fpclassph128_mask: 14405 case X86::BI__builtin_ia32_fpclassph256_mask: 14406 case X86::BI__builtin_ia32_fpclassph512_mask: 14407 case X86::BI__builtin_ia32_fpclasspd128_mask: 14408 case X86::BI__builtin_ia32_fpclasspd256_mask: 14409 case X86::BI__builtin_ia32_fpclasspd512_mask: { 14410 unsigned NumElts = 14411 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 14412 Value *MaskIn = Ops[2]; 14413 Ops.erase(&Ops[2]); 14414 14415 Intrinsic::ID ID; 14416 switch (BuiltinID) { 14417 default: llvm_unreachable("Unsupported intrinsic!"); 14418 case X86::BI__builtin_ia32_fpclassph128_mask: 14419 ID = Intrinsic::x86_avx512fp16_fpclass_ph_128; 14420 break; 14421 case X86::BI__builtin_ia32_fpclassph256_mask: 14422 ID = Intrinsic::x86_avx512fp16_fpclass_ph_256; 14423 break; 14424 case X86::BI__builtin_ia32_fpclassph512_mask: 14425 ID = Intrinsic::x86_avx512fp16_fpclass_ph_512; 14426 break; 14427 case X86::BI__builtin_ia32_fpclassps128_mask: 14428 ID = Intrinsic::x86_avx512_fpclass_ps_128; 14429 break; 14430 case X86::BI__builtin_ia32_fpclassps256_mask: 14431 ID = Intrinsic::x86_avx512_fpclass_ps_256; 14432 break; 14433 case X86::BI__builtin_ia32_fpclassps512_mask: 14434 ID = Intrinsic::x86_avx512_fpclass_ps_512; 14435 break; 14436 case X86::BI__builtin_ia32_fpclasspd128_mask: 14437 ID = Intrinsic::x86_avx512_fpclass_pd_128; 14438 break; 14439 case X86::BI__builtin_ia32_fpclasspd256_mask: 14440 ID = Intrinsic::x86_avx512_fpclass_pd_256; 14441 break; 14442 case X86::BI__builtin_ia32_fpclasspd512_mask: 14443 ID = Intrinsic::x86_avx512_fpclass_pd_512; 14444 break; 14445 } 14446 14447 Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 14448 return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn); 14449 } 14450 14451 case X86::BI__builtin_ia32_vp2intersect_q_512: 14452 case X86::BI__builtin_ia32_vp2intersect_q_256: 14453 case X86::BI__builtin_ia32_vp2intersect_q_128: 14454 case X86::BI__builtin_ia32_vp2intersect_d_512: 14455 case X86::BI__builtin_ia32_vp2intersect_d_256: 14456 case X86::BI__builtin_ia32_vp2intersect_d_128: { 14457 unsigned NumElts = 14458 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 14459 Intrinsic::ID ID; 14460 14461 switch (BuiltinID) { 14462 default: llvm_unreachable("Unsupported intrinsic!"); 14463 case X86::BI__builtin_ia32_vp2intersect_q_512: 14464 ID = Intrinsic::x86_avx512_vp2intersect_q_512; 14465 break; 14466 case X86::BI__builtin_ia32_vp2intersect_q_256: 14467 ID = Intrinsic::x86_avx512_vp2intersect_q_256; 14468 break; 14469 case X86::BI__builtin_ia32_vp2intersect_q_128: 14470 ID = Intrinsic::x86_avx512_vp2intersect_q_128; 14471 break; 14472 case X86::BI__builtin_ia32_vp2intersect_d_512: 14473 ID = Intrinsic::x86_avx512_vp2intersect_d_512; 14474 break; 14475 case X86::BI__builtin_ia32_vp2intersect_d_256: 14476 ID = Intrinsic::x86_avx512_vp2intersect_d_256; 14477 break; 14478 case X86::BI__builtin_ia32_vp2intersect_d_128: 14479 ID = Intrinsic::x86_avx512_vp2intersect_d_128; 14480 break; 14481 } 14482 14483 Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]}); 14484 Value *Result = Builder.CreateExtractValue(Call, 0); 14485 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr); 14486 Builder.CreateDefaultAlignedStore(Result, Ops[2]); 14487 14488 Result = Builder.CreateExtractValue(Call, 1); 14489 Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr); 14490 return Builder.CreateDefaultAlignedStore(Result, Ops[3]); 14491 } 14492 14493 case X86::BI__builtin_ia32_vpmultishiftqb128: 14494 case X86::BI__builtin_ia32_vpmultishiftqb256: 14495 case X86::BI__builtin_ia32_vpmultishiftqb512: { 14496 Intrinsic::ID ID; 14497 switch (BuiltinID) { 14498 default: llvm_unreachable("Unsupported intrinsic!"); 14499 case X86::BI__builtin_ia32_vpmultishiftqb128: 14500 ID = Intrinsic::x86_avx512_pmultishift_qb_128; 14501 break; 14502 case X86::BI__builtin_ia32_vpmultishiftqb256: 14503 ID = Intrinsic::x86_avx512_pmultishift_qb_256; 14504 break; 14505 case X86::BI__builtin_ia32_vpmultishiftqb512: 14506 ID = Intrinsic::x86_avx512_pmultishift_qb_512; 14507 break; 14508 } 14509 14510 return Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 14511 } 14512 14513 case X86::BI__builtin_ia32_vpshufbitqmb128_mask: 14514 case X86::BI__builtin_ia32_vpshufbitqmb256_mask: 14515 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: { 14516 unsigned NumElts = 14517 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 14518 Value *MaskIn = Ops[2]; 14519 Ops.erase(&Ops[2]); 14520 14521 Intrinsic::ID ID; 14522 switch (BuiltinID) { 14523 default: llvm_unreachable("Unsupported intrinsic!"); 14524 case X86::BI__builtin_ia32_vpshufbitqmb128_mask: 14525 ID = Intrinsic::x86_avx512_vpshufbitqmb_128; 14526 break; 14527 case X86::BI__builtin_ia32_vpshufbitqmb256_mask: 14528 ID = Intrinsic::x86_avx512_vpshufbitqmb_256; 14529 break; 14530 case X86::BI__builtin_ia32_vpshufbitqmb512_mask: 14531 ID = Intrinsic::x86_avx512_vpshufbitqmb_512; 14532 break; 14533 } 14534 14535 Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops); 14536 return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn); 14537 } 14538 14539 // packed comparison intrinsics 14540 case X86::BI__builtin_ia32_cmpeqps: 14541 case X86::BI__builtin_ia32_cmpeqpd: 14542 return getVectorFCmpIR(CmpInst::FCMP_OEQ, /*IsSignaling*/false); 14543 case X86::BI__builtin_ia32_cmpltps: 14544 case X86::BI__builtin_ia32_cmpltpd: 14545 return getVectorFCmpIR(CmpInst::FCMP_OLT, /*IsSignaling*/true); 14546 case X86::BI__builtin_ia32_cmpleps: 14547 case X86::BI__builtin_ia32_cmplepd: 14548 return getVectorFCmpIR(CmpInst::FCMP_OLE, /*IsSignaling*/true); 14549 case X86::BI__builtin_ia32_cmpunordps: 14550 case X86::BI__builtin_ia32_cmpunordpd: 14551 return getVectorFCmpIR(CmpInst::FCMP_UNO, /*IsSignaling*/false); 14552 case X86::BI__builtin_ia32_cmpneqps: 14553 case X86::BI__builtin_ia32_cmpneqpd: 14554 return getVectorFCmpIR(CmpInst::FCMP_UNE, /*IsSignaling*/false); 14555 case X86::BI__builtin_ia32_cmpnltps: 14556 case X86::BI__builtin_ia32_cmpnltpd: 14557 return getVectorFCmpIR(CmpInst::FCMP_UGE, /*IsSignaling*/true); 14558 case X86::BI__builtin_ia32_cmpnleps: 14559 case X86::BI__builtin_ia32_cmpnlepd: 14560 return getVectorFCmpIR(CmpInst::FCMP_UGT, /*IsSignaling*/true); 14561 case X86::BI__builtin_ia32_cmpordps: 14562 case X86::BI__builtin_ia32_cmpordpd: 14563 return getVectorFCmpIR(CmpInst::FCMP_ORD, /*IsSignaling*/false); 14564 case X86::BI__builtin_ia32_cmpph128_mask: 14565 case X86::BI__builtin_ia32_cmpph256_mask: 14566 case X86::BI__builtin_ia32_cmpph512_mask: 14567 case X86::BI__builtin_ia32_cmpps128_mask: 14568 case X86::BI__builtin_ia32_cmpps256_mask: 14569 case X86::BI__builtin_ia32_cmpps512_mask: 14570 case X86::BI__builtin_ia32_cmppd128_mask: 14571 case X86::BI__builtin_ia32_cmppd256_mask: 14572 case X86::BI__builtin_ia32_cmppd512_mask: 14573 IsMaskFCmp = true; 14574 LLVM_FALLTHROUGH; 14575 case X86::BI__builtin_ia32_cmpps: 14576 case X86::BI__builtin_ia32_cmpps256: 14577 case X86::BI__builtin_ia32_cmppd: 14578 case X86::BI__builtin_ia32_cmppd256: { 14579 // Lowering vector comparisons to fcmp instructions, while 14580 // ignoring signalling behaviour requested 14581 // ignoring rounding mode requested 14582 // This is only possible if fp-model is not strict and FENV_ACCESS is off. 14583 14584 // The third argument is the comparison condition, and integer in the 14585 // range [0, 31] 14586 unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f; 14587 14588 // Lowering to IR fcmp instruction. 14589 // Ignoring requested signaling behaviour, 14590 // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT. 14591 FCmpInst::Predicate Pred; 14592 bool IsSignaling; 14593 // Predicates for 16-31 repeat the 0-15 predicates. Only the signalling 14594 // behavior is inverted. We'll handle that after the switch. 14595 switch (CC & 0xf) { 14596 case 0x00: Pred = FCmpInst::FCMP_OEQ; IsSignaling = false; break; 14597 case 0x01: Pred = FCmpInst::FCMP_OLT; IsSignaling = true; break; 14598 case 0x02: Pred = FCmpInst::FCMP_OLE; IsSignaling = true; break; 14599 case 0x03: Pred = FCmpInst::FCMP_UNO; IsSignaling = false; break; 14600 case 0x04: Pred = FCmpInst::FCMP_UNE; IsSignaling = false; break; 14601 case 0x05: Pred = FCmpInst::FCMP_UGE; IsSignaling = true; break; 14602 case 0x06: Pred = FCmpInst::FCMP_UGT; IsSignaling = true; break; 14603 case 0x07: Pred = FCmpInst::FCMP_ORD; IsSignaling = false; break; 14604 case 0x08: Pred = FCmpInst::FCMP_UEQ; IsSignaling = false; break; 14605 case 0x09: Pred = FCmpInst::FCMP_ULT; IsSignaling = true; break; 14606 case 0x0a: Pred = FCmpInst::FCMP_ULE; IsSignaling = true; break; 14607 case 0x0b: Pred = FCmpInst::FCMP_FALSE; IsSignaling = false; break; 14608 case 0x0c: Pred = FCmpInst::FCMP_ONE; IsSignaling = false; break; 14609 case 0x0d: Pred = FCmpInst::FCMP_OGE; IsSignaling = true; break; 14610 case 0x0e: Pred = FCmpInst::FCMP_OGT; IsSignaling = true; break; 14611 case 0x0f: Pred = FCmpInst::FCMP_TRUE; IsSignaling = false; break; 14612 default: llvm_unreachable("Unhandled CC"); 14613 } 14614 14615 // Invert the signalling behavior for 16-31. 14616 if (CC & 0x10) 14617 IsSignaling = !IsSignaling; 14618 14619 // If the predicate is true or false and we're using constrained intrinsics, 14620 // we don't have a compare intrinsic we can use. Just use the legacy X86 14621 // specific intrinsic. 14622 // If the intrinsic is mask enabled and we're using constrained intrinsics, 14623 // use the legacy X86 specific intrinsic. 14624 if (Builder.getIsFPConstrained() && 14625 (Pred == FCmpInst::FCMP_TRUE || Pred == FCmpInst::FCMP_FALSE || 14626 IsMaskFCmp)) { 14627 14628 Intrinsic::ID IID; 14629 switch (BuiltinID) { 14630 default: llvm_unreachable("Unexpected builtin"); 14631 case X86::BI__builtin_ia32_cmpps: 14632 IID = Intrinsic::x86_sse_cmp_ps; 14633 break; 14634 case X86::BI__builtin_ia32_cmpps256: 14635 IID = Intrinsic::x86_avx_cmp_ps_256; 14636 break; 14637 case X86::BI__builtin_ia32_cmppd: 14638 IID = Intrinsic::x86_sse2_cmp_pd; 14639 break; 14640 case X86::BI__builtin_ia32_cmppd256: 14641 IID = Intrinsic::x86_avx_cmp_pd_256; 14642 break; 14643 case X86::BI__builtin_ia32_cmpps512_mask: 14644 IID = Intrinsic::x86_avx512_mask_cmp_ps_512; 14645 break; 14646 case X86::BI__builtin_ia32_cmppd512_mask: 14647 IID = Intrinsic::x86_avx512_mask_cmp_pd_512; 14648 break; 14649 case X86::BI__builtin_ia32_cmpps128_mask: 14650 IID = Intrinsic::x86_avx512_mask_cmp_ps_128; 14651 break; 14652 case X86::BI__builtin_ia32_cmpps256_mask: 14653 IID = Intrinsic::x86_avx512_mask_cmp_ps_256; 14654 break; 14655 case X86::BI__builtin_ia32_cmppd128_mask: 14656 IID = Intrinsic::x86_avx512_mask_cmp_pd_128; 14657 break; 14658 case X86::BI__builtin_ia32_cmppd256_mask: 14659 IID = Intrinsic::x86_avx512_mask_cmp_pd_256; 14660 break; 14661 } 14662 14663 Function *Intr = CGM.getIntrinsic(IID); 14664 if (IsMaskFCmp) { 14665 unsigned NumElts = 14666 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 14667 Ops[3] = getMaskVecValue(*this, Ops[3], NumElts); 14668 Value *Cmp = Builder.CreateCall(Intr, Ops); 14669 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, nullptr); 14670 } 14671 14672 return Builder.CreateCall(Intr, Ops); 14673 } 14674 14675 // Builtins without the _mask suffix return a vector of integers 14676 // of the same width as the input vectors 14677 if (IsMaskFCmp) { 14678 // We ignore SAE if strict FP is disabled. We only keep precise 14679 // exception behavior under strict FP. 14680 // NOTE: If strict FP does ever go through here a CGFPOptionsRAII 14681 // object will be required. 14682 unsigned NumElts = 14683 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements(); 14684 Value *Cmp; 14685 if (IsSignaling) 14686 Cmp = Builder.CreateFCmpS(Pred, Ops[0], Ops[1]); 14687 else 14688 Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]); 14689 return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]); 14690 } 14691 14692 return getVectorFCmpIR(Pred, IsSignaling); 14693 } 14694 14695 // SSE scalar comparison intrinsics 14696 case X86::BI__builtin_ia32_cmpeqss: 14697 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0); 14698 case X86::BI__builtin_ia32_cmpltss: 14699 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1); 14700 case X86::BI__builtin_ia32_cmpless: 14701 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2); 14702 case X86::BI__builtin_ia32_cmpunordss: 14703 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3); 14704 case X86::BI__builtin_ia32_cmpneqss: 14705 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4); 14706 case X86::BI__builtin_ia32_cmpnltss: 14707 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5); 14708 case X86::BI__builtin_ia32_cmpnless: 14709 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6); 14710 case X86::BI__builtin_ia32_cmpordss: 14711 return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7); 14712 case X86::BI__builtin_ia32_cmpeqsd: 14713 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0); 14714 case X86::BI__builtin_ia32_cmpltsd: 14715 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1); 14716 case X86::BI__builtin_ia32_cmplesd: 14717 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2); 14718 case X86::BI__builtin_ia32_cmpunordsd: 14719 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3); 14720 case X86::BI__builtin_ia32_cmpneqsd: 14721 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4); 14722 case X86::BI__builtin_ia32_cmpnltsd: 14723 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5); 14724 case X86::BI__builtin_ia32_cmpnlesd: 14725 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6); 14726 case X86::BI__builtin_ia32_cmpordsd: 14727 return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7); 14728 14729 // f16c half2float intrinsics 14730 case X86::BI__builtin_ia32_vcvtph2ps: 14731 case X86::BI__builtin_ia32_vcvtph2ps256: 14732 case X86::BI__builtin_ia32_vcvtph2ps_mask: 14733 case X86::BI__builtin_ia32_vcvtph2ps256_mask: 14734 case X86::BI__builtin_ia32_vcvtph2ps512_mask: { 14735 CodeGenFunction::CGFPOptionsRAII FPOptsRAII(*this, E); 14736 return EmitX86CvtF16ToFloatExpr(*this, Ops, ConvertType(E->getType())); 14737 } 14738 14739 // AVX512 bf16 intrinsics 14740 case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: { 14741 Ops[2] = getMaskVecValue( 14742 *this, Ops[2], 14743 cast<llvm::FixedVectorType>(Ops[0]->getType())->getNumElements()); 14744 Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128; 14745 return Builder.CreateCall(CGM.getIntrinsic(IID), Ops); 14746 } 14747 case X86::BI__builtin_ia32_cvtsbf162ss_32: 14748 return EmitX86CvtBF16ToFloatExpr(*this, E, Ops); 14749 14750 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask: 14751 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: { 14752 Intrinsic::ID IID; 14753 switch (BuiltinID) { 14754 default: llvm_unreachable("Unsupported intrinsic!"); 14755 case X86::BI__builtin_ia32_cvtneps2bf16_256_mask: 14756 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256; 14757 break; 14758 case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: 14759 IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512; 14760 break; 14761 } 14762 Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]); 14763 return EmitX86Select(*this, Ops[2], Res, Ops[1]); 14764 } 14765 14766 case X86::BI__emul: 14767 case X86::BI__emulu: { 14768 llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64); 14769 bool isSigned = (BuiltinID == X86::BI__emul); 14770 Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned); 14771 Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned); 14772 return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned); 14773 } 14774 case X86::BI__mulh: 14775 case X86::BI__umulh: 14776 case X86::BI_mul128: 14777 case X86::BI_umul128: { 14778 llvm::Type *ResType = ConvertType(E->getType()); 14779 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); 14780 14781 bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128); 14782 Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned); 14783 Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned); 14784 14785 Value *MulResult, *HigherBits; 14786 if (IsSigned) { 14787 MulResult = Builder.CreateNSWMul(LHS, RHS); 14788 HigherBits = Builder.CreateAShr(MulResult, 64); 14789 } else { 14790 MulResult = Builder.CreateNUWMul(LHS, RHS); 14791 HigherBits = Builder.CreateLShr(MulResult, 64); 14792 } 14793 HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned); 14794 14795 if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh) 14796 return HigherBits; 14797 14798 Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2)); 14799 Builder.CreateStore(HigherBits, HighBitsAddress); 14800 return Builder.CreateIntCast(MulResult, ResType, IsSigned); 14801 } 14802 14803 case X86::BI__faststorefence: { 14804 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, 14805 llvm::SyncScope::System); 14806 } 14807 case X86::BI__shiftleft128: 14808 case X86::BI__shiftright128: { 14809 llvm::Function *F = CGM.getIntrinsic( 14810 BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr, 14811 Int64Ty); 14812 // Flip low/high ops and zero-extend amount to matching type. 14813 // shiftleft128(Low, High, Amt) -> fshl(High, Low, Amt) 14814 // shiftright128(Low, High, Amt) -> fshr(High, Low, Amt) 14815 std::swap(Ops[0], Ops[1]); 14816 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); 14817 return Builder.CreateCall(F, Ops); 14818 } 14819 case X86::BI_ReadWriteBarrier: 14820 case X86::BI_ReadBarrier: 14821 case X86::BI_WriteBarrier: { 14822 return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, 14823 llvm::SyncScope::SingleThread); 14824 } 14825 14826 case X86::BI_AddressOfReturnAddress: { 14827 Function *F = 14828 CGM.getIntrinsic(Intrinsic::addressofreturnaddress, AllocaInt8PtrTy); 14829 return Builder.CreateCall(F); 14830 } 14831 case X86::BI__stosb: { 14832 // We treat __stosb as a volatile memset - it may not generate "rep stosb" 14833 // instruction, but it will create a memset that won't be optimized away. 14834 return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], Align(1), true); 14835 } 14836 case X86::BI__ud2: 14837 // llvm.trap makes a ud2a instruction on x86. 14838 return EmitTrapCall(Intrinsic::trap); 14839 case X86::BI__int2c: { 14840 // This syscall signals a driver assertion failure in x86 NT kernels. 14841 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 14842 llvm::InlineAsm *IA = 14843 llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true); 14844 llvm::AttributeList NoReturnAttr = llvm::AttributeList::get( 14845 getLLVMContext(), llvm::AttributeList::FunctionIndex, 14846 llvm::Attribute::NoReturn); 14847 llvm::CallInst *CI = Builder.CreateCall(IA); 14848 CI->setAttributes(NoReturnAttr); 14849 return CI; 14850 } 14851 case X86::BI__readfsbyte: 14852 case X86::BI__readfsword: 14853 case X86::BI__readfsdword: 14854 case X86::BI__readfsqword: { 14855 llvm::Type *IntTy = ConvertType(E->getType()); 14856 Value *Ptr = 14857 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257)); 14858 LoadInst *Load = Builder.CreateAlignedLoad( 14859 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); 14860 Load->setVolatile(true); 14861 return Load; 14862 } 14863 case X86::BI__readgsbyte: 14864 case X86::BI__readgsword: 14865 case X86::BI__readgsdword: 14866 case X86::BI__readgsqword: { 14867 llvm::Type *IntTy = ConvertType(E->getType()); 14868 Value *Ptr = 14869 Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256)); 14870 LoadInst *Load = Builder.CreateAlignedLoad( 14871 IntTy, Ptr, getContext().getTypeAlignInChars(E->getType())); 14872 Load->setVolatile(true); 14873 return Load; 14874 } 14875 case X86::BI__builtin_ia32_paddsb512: 14876 case X86::BI__builtin_ia32_paddsw512: 14877 case X86::BI__builtin_ia32_paddsb256: 14878 case X86::BI__builtin_ia32_paddsw256: 14879 case X86::BI__builtin_ia32_paddsb128: 14880 case X86::BI__builtin_ia32_paddsw128: 14881 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::sadd_sat); 14882 case X86::BI__builtin_ia32_paddusb512: 14883 case X86::BI__builtin_ia32_paddusw512: 14884 case X86::BI__builtin_ia32_paddusb256: 14885 case X86::BI__builtin_ia32_paddusw256: 14886 case X86::BI__builtin_ia32_paddusb128: 14887 case X86::BI__builtin_ia32_paddusw128: 14888 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::uadd_sat); 14889 case X86::BI__builtin_ia32_psubsb512: 14890 case X86::BI__builtin_ia32_psubsw512: 14891 case X86::BI__builtin_ia32_psubsb256: 14892 case X86::BI__builtin_ia32_psubsw256: 14893 case X86::BI__builtin_ia32_psubsb128: 14894 case X86::BI__builtin_ia32_psubsw128: 14895 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::ssub_sat); 14896 case X86::BI__builtin_ia32_psubusb512: 14897 case X86::BI__builtin_ia32_psubusw512: 14898 case X86::BI__builtin_ia32_psubusb256: 14899 case X86::BI__builtin_ia32_psubusw256: 14900 case X86::BI__builtin_ia32_psubusb128: 14901 case X86::BI__builtin_ia32_psubusw128: 14902 return EmitX86BinaryIntrinsic(*this, Ops, Intrinsic::usub_sat); 14903 case X86::BI__builtin_ia32_encodekey128_u32: { 14904 Intrinsic::ID IID = Intrinsic::x86_encodekey128; 14905 14906 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1]}); 14907 14908 for (int i = 0; i < 3; ++i) { 14909 Value *Extract = Builder.CreateExtractValue(Call, i + 1); 14910 Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[2], i * 16); 14911 Ptr = Builder.CreateBitCast( 14912 Ptr, llvm::PointerType::getUnqual(Extract->getType())); 14913 Builder.CreateAlignedStore(Extract, Ptr, Align(1)); 14914 } 14915 14916 return Builder.CreateExtractValue(Call, 0); 14917 } 14918 case X86::BI__builtin_ia32_encodekey256_u32: { 14919 Intrinsic::ID IID = Intrinsic::x86_encodekey256; 14920 14921 Value *Call = 14922 Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[0], Ops[1], Ops[2]}); 14923 14924 for (int i = 0; i < 4; ++i) { 14925 Value *Extract = Builder.CreateExtractValue(Call, i + 1); 14926 Value *Ptr = Builder.CreateConstGEP1_32(Int8Ty, Ops[3], i * 16); 14927 Ptr = Builder.CreateBitCast( 14928 Ptr, llvm::PointerType::getUnqual(Extract->getType())); 14929 Builder.CreateAlignedStore(Extract, Ptr, Align(1)); 14930 } 14931 14932 return Builder.CreateExtractValue(Call, 0); 14933 } 14934 case X86::BI__builtin_ia32_aesenc128kl_u8: 14935 case X86::BI__builtin_ia32_aesdec128kl_u8: 14936 case X86::BI__builtin_ia32_aesenc256kl_u8: 14937 case X86::BI__builtin_ia32_aesdec256kl_u8: { 14938 Intrinsic::ID IID; 14939 StringRef BlockName; 14940 switch (BuiltinID) { 14941 default: 14942 llvm_unreachable("Unexpected builtin"); 14943 case X86::BI__builtin_ia32_aesenc128kl_u8: 14944 IID = Intrinsic::x86_aesenc128kl; 14945 BlockName = "aesenc128kl"; 14946 break; 14947 case X86::BI__builtin_ia32_aesdec128kl_u8: 14948 IID = Intrinsic::x86_aesdec128kl; 14949 BlockName = "aesdec128kl"; 14950 break; 14951 case X86::BI__builtin_ia32_aesenc256kl_u8: 14952 IID = Intrinsic::x86_aesenc256kl; 14953 BlockName = "aesenc256kl"; 14954 break; 14955 case X86::BI__builtin_ia32_aesdec256kl_u8: 14956 IID = Intrinsic::x86_aesdec256kl; 14957 BlockName = "aesdec256kl"; 14958 break; 14959 } 14960 14961 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), {Ops[1], Ops[2]}); 14962 14963 BasicBlock *NoError = 14964 createBasicBlock(BlockName + "_no_error", this->CurFn); 14965 BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn); 14966 BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn); 14967 14968 Value *Ret = Builder.CreateExtractValue(Call, 0); 14969 Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty()); 14970 Value *Out = Builder.CreateExtractValue(Call, 1); 14971 Builder.CreateCondBr(Succ, NoError, Error); 14972 14973 Builder.SetInsertPoint(NoError); 14974 Builder.CreateDefaultAlignedStore(Out, Ops[0]); 14975 Builder.CreateBr(End); 14976 14977 Builder.SetInsertPoint(Error); 14978 Constant *Zero = llvm::Constant::getNullValue(Out->getType()); 14979 Builder.CreateDefaultAlignedStore(Zero, Ops[0]); 14980 Builder.CreateBr(End); 14981 14982 Builder.SetInsertPoint(End); 14983 return Builder.CreateExtractValue(Call, 0); 14984 } 14985 case X86::BI__builtin_ia32_aesencwide128kl_u8: 14986 case X86::BI__builtin_ia32_aesdecwide128kl_u8: 14987 case X86::BI__builtin_ia32_aesencwide256kl_u8: 14988 case X86::BI__builtin_ia32_aesdecwide256kl_u8: { 14989 Intrinsic::ID IID; 14990 StringRef BlockName; 14991 switch (BuiltinID) { 14992 case X86::BI__builtin_ia32_aesencwide128kl_u8: 14993 IID = Intrinsic::x86_aesencwide128kl; 14994 BlockName = "aesencwide128kl"; 14995 break; 14996 case X86::BI__builtin_ia32_aesdecwide128kl_u8: 14997 IID = Intrinsic::x86_aesdecwide128kl; 14998 BlockName = "aesdecwide128kl"; 14999 break; 15000 case X86::BI__builtin_ia32_aesencwide256kl_u8: 15001 IID = Intrinsic::x86_aesencwide256kl; 15002 BlockName = "aesencwide256kl"; 15003 break; 15004 case X86::BI__builtin_ia32_aesdecwide256kl_u8: 15005 IID = Intrinsic::x86_aesdecwide256kl; 15006 BlockName = "aesdecwide256kl"; 15007 break; 15008 } 15009 15010 llvm::Type *Ty = FixedVectorType::get(Builder.getInt64Ty(), 2); 15011 Value *InOps[9]; 15012 InOps[0] = Ops[2]; 15013 for (int i = 0; i != 8; ++i) { 15014 Value *Ptr = Builder.CreateConstGEP1_32(Ty, Ops[1], i); 15015 InOps[i + 1] = Builder.CreateAlignedLoad(Ty, Ptr, Align(16)); 15016 } 15017 15018 Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID), InOps); 15019 15020 BasicBlock *NoError = 15021 createBasicBlock(BlockName + "_no_error", this->CurFn); 15022 BasicBlock *Error = createBasicBlock(BlockName + "_error", this->CurFn); 15023 BasicBlock *End = createBasicBlock(BlockName + "_end", this->CurFn); 15024 15025 Value *Ret = Builder.CreateExtractValue(Call, 0); 15026 Value *Succ = Builder.CreateTrunc(Ret, Builder.getInt1Ty()); 15027 Builder.CreateCondBr(Succ, NoError, Error); 15028 15029 Builder.SetInsertPoint(NoError); 15030 for (int i = 0; i != 8; ++i) { 15031 Value *Extract = Builder.CreateExtractValue(Call, i + 1); 15032 Value *Ptr = Builder.CreateConstGEP1_32(Extract->getType(), Ops[0], i); 15033 Builder.CreateAlignedStore(Extract, Ptr, Align(16)); 15034 } 15035 Builder.CreateBr(End); 15036 15037 Builder.SetInsertPoint(Error); 15038 for (int i = 0; i != 8; ++i) { 15039 Value *Out = Builder.CreateExtractValue(Call, i + 1); 15040 Constant *Zero = llvm::Constant::getNullValue(Out->getType()); 15041 Value *Ptr = Builder.CreateConstGEP1_32(Out->getType(), Ops[0], i); 15042 Builder.CreateAlignedStore(Zero, Ptr, Align(16)); 15043 } 15044 Builder.CreateBr(End); 15045 15046 Builder.SetInsertPoint(End); 15047 return Builder.CreateExtractValue(Call, 0); 15048 } 15049 } 15050 } 15051 15052 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID, 15053 const CallExpr *E) { 15054 SmallVector<Value*, 4> Ops; 15055 15056 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) 15057 Ops.push_back(EmitScalarExpr(E->getArg(i))); 15058 15059 Intrinsic::ID ID = Intrinsic::not_intrinsic; 15060 15061 switch (BuiltinID) { 15062 default: return nullptr; 15063 15064 // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we 15065 // call __builtin_readcyclecounter. 15066 case PPC::BI__builtin_ppc_get_timebase: 15067 return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter)); 15068 15069 // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr 15070 case PPC::BI__builtin_altivec_lvx: 15071 case PPC::BI__builtin_altivec_lvxl: 15072 case PPC::BI__builtin_altivec_lvebx: 15073 case PPC::BI__builtin_altivec_lvehx: 15074 case PPC::BI__builtin_altivec_lvewx: 15075 case PPC::BI__builtin_altivec_lvsl: 15076 case PPC::BI__builtin_altivec_lvsr: 15077 case PPC::BI__builtin_vsx_lxvd2x: 15078 case PPC::BI__builtin_vsx_lxvw4x: 15079 case PPC::BI__builtin_vsx_lxvd2x_be: 15080 case PPC::BI__builtin_vsx_lxvw4x_be: 15081 case PPC::BI__builtin_vsx_lxvl: 15082 case PPC::BI__builtin_vsx_lxvll: 15083 { 15084 if(BuiltinID == PPC::BI__builtin_vsx_lxvl || 15085 BuiltinID == PPC::BI__builtin_vsx_lxvll){ 15086 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy); 15087 }else { 15088 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); 15089 Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]); 15090 Ops.pop_back(); 15091 } 15092 15093 switch (BuiltinID) { 15094 default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!"); 15095 case PPC::BI__builtin_altivec_lvx: 15096 ID = Intrinsic::ppc_altivec_lvx; 15097 break; 15098 case PPC::BI__builtin_altivec_lvxl: 15099 ID = Intrinsic::ppc_altivec_lvxl; 15100 break; 15101 case PPC::BI__builtin_altivec_lvebx: 15102 ID = Intrinsic::ppc_altivec_lvebx; 15103 break; 15104 case PPC::BI__builtin_altivec_lvehx: 15105 ID = Intrinsic::ppc_altivec_lvehx; 15106 break; 15107 case PPC::BI__builtin_altivec_lvewx: 15108 ID = Intrinsic::ppc_altivec_lvewx; 15109 break; 15110 case PPC::BI__builtin_altivec_lvsl: 15111 ID = Intrinsic::ppc_altivec_lvsl; 15112 break; 15113 case PPC::BI__builtin_altivec_lvsr: 15114 ID = Intrinsic::ppc_altivec_lvsr; 15115 break; 15116 case PPC::BI__builtin_vsx_lxvd2x: 15117 ID = Intrinsic::ppc_vsx_lxvd2x; 15118 break; 15119 case PPC::BI__builtin_vsx_lxvw4x: 15120 ID = Intrinsic::ppc_vsx_lxvw4x; 15121 break; 15122 case PPC::BI__builtin_vsx_lxvd2x_be: 15123 ID = Intrinsic::ppc_vsx_lxvd2x_be; 15124 break; 15125 case PPC::BI__builtin_vsx_lxvw4x_be: 15126 ID = Intrinsic::ppc_vsx_lxvw4x_be; 15127 break; 15128 case PPC::BI__builtin_vsx_lxvl: 15129 ID = Intrinsic::ppc_vsx_lxvl; 15130 break; 15131 case PPC::BI__builtin_vsx_lxvll: 15132 ID = Intrinsic::ppc_vsx_lxvll; 15133 break; 15134 } 15135 llvm::Function *F = CGM.getIntrinsic(ID); 15136 return Builder.CreateCall(F, Ops, ""); 15137 } 15138 15139 // vec_st, vec_xst_be 15140 case PPC::BI__builtin_altivec_stvx: 15141 case PPC::BI__builtin_altivec_stvxl: 15142 case PPC::BI__builtin_altivec_stvebx: 15143 case PPC::BI__builtin_altivec_stvehx: 15144 case PPC::BI__builtin_altivec_stvewx: 15145 case PPC::BI__builtin_vsx_stxvd2x: 15146 case PPC::BI__builtin_vsx_stxvw4x: 15147 case PPC::BI__builtin_vsx_stxvd2x_be: 15148 case PPC::BI__builtin_vsx_stxvw4x_be: 15149 case PPC::BI__builtin_vsx_stxvl: 15150 case PPC::BI__builtin_vsx_stxvll: 15151 { 15152 if(BuiltinID == PPC::BI__builtin_vsx_stxvl || 15153 BuiltinID == PPC::BI__builtin_vsx_stxvll ){ 15154 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); 15155 }else { 15156 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy); 15157 Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]); 15158 Ops.pop_back(); 15159 } 15160 15161 switch (BuiltinID) { 15162 default: llvm_unreachable("Unsupported st intrinsic!"); 15163 case PPC::BI__builtin_altivec_stvx: 15164 ID = Intrinsic::ppc_altivec_stvx; 15165 break; 15166 case PPC::BI__builtin_altivec_stvxl: 15167 ID = Intrinsic::ppc_altivec_stvxl; 15168 break; 15169 case PPC::BI__builtin_altivec_stvebx: 15170 ID = Intrinsic::ppc_altivec_stvebx; 15171 break; 15172 case PPC::BI__builtin_altivec_stvehx: 15173 ID = Intrinsic::ppc_altivec_stvehx; 15174 break; 15175 case PPC::BI__builtin_altivec_stvewx: 15176 ID = Intrinsic::ppc_altivec_stvewx; 15177 break; 15178 case PPC::BI__builtin_vsx_stxvd2x: 15179 ID = Intrinsic::ppc_vsx_stxvd2x; 15180 break; 15181 case PPC::BI__builtin_vsx_stxvw4x: 15182 ID = Intrinsic::ppc_vsx_stxvw4x; 15183 break; 15184 case PPC::BI__builtin_vsx_stxvd2x_be: 15185 ID = Intrinsic::ppc_vsx_stxvd2x_be; 15186 break; 15187 case PPC::BI__builtin_vsx_stxvw4x_be: 15188 ID = Intrinsic::ppc_vsx_stxvw4x_be; 15189 break; 15190 case PPC::BI__builtin_vsx_stxvl: 15191 ID = Intrinsic::ppc_vsx_stxvl; 15192 break; 15193 case PPC::BI__builtin_vsx_stxvll: 15194 ID = Intrinsic::ppc_vsx_stxvll; 15195 break; 15196 } 15197 llvm::Function *F = CGM.getIntrinsic(ID); 15198 return Builder.CreateCall(F, Ops, ""); 15199 } 15200 case PPC::BI__builtin_vsx_ldrmb: { 15201 // Essentially boils down to performing an unaligned VMX load sequence so 15202 // as to avoid crossing a page boundary and then shuffling the elements 15203 // into the right side of the vector register. 15204 int64_t NumBytes = cast<ConstantInt>(Ops[1])->getZExtValue(); 15205 llvm::Type *ResTy = ConvertType(E->getType()); 15206 bool IsLE = getTarget().isLittleEndian(); 15207 15208 // If the user wants the entire vector, just load the entire vector. 15209 if (NumBytes == 16) { 15210 Value *BC = Builder.CreateBitCast(Ops[0], ResTy->getPointerTo()); 15211 Value *LD = Builder.CreateLoad(Address(BC, CharUnits::fromQuantity(1))); 15212 if (!IsLE) 15213 return LD; 15214 15215 // Reverse the bytes on LE. 15216 SmallVector<int, 16> RevMask; 15217 for (int Idx = 0; Idx < 16; Idx++) 15218 RevMask.push_back(15 - Idx); 15219 return Builder.CreateShuffleVector(LD, LD, RevMask); 15220 } 15221 15222 llvm::Function *Lvx = CGM.getIntrinsic(Intrinsic::ppc_altivec_lvx); 15223 llvm::Function *Lvs = CGM.getIntrinsic(IsLE ? Intrinsic::ppc_altivec_lvsr 15224 : Intrinsic::ppc_altivec_lvsl); 15225 llvm::Function *Vperm = CGM.getIntrinsic(Intrinsic::ppc_altivec_vperm); 15226 Value *HiMem = Builder.CreateGEP( 15227 Int8Ty, Ops[0], ConstantInt::get(Ops[1]->getType(), NumBytes - 1)); 15228 Value *LoLd = Builder.CreateCall(Lvx, Ops[0], "ld.lo"); 15229 Value *HiLd = Builder.CreateCall(Lvx, HiMem, "ld.hi"); 15230 Value *Mask1 = Builder.CreateCall(Lvs, Ops[0], "mask1"); 15231 15232 Ops.clear(); 15233 Ops.push_back(IsLE ? HiLd : LoLd); 15234 Ops.push_back(IsLE ? LoLd : HiLd); 15235 Ops.push_back(Mask1); 15236 Value *AllElts = Builder.CreateCall(Vperm, Ops, "shuffle1"); 15237 Constant *Zero = llvm::Constant::getNullValue(IsLE ? ResTy : AllElts->getType()); 15238 15239 if (IsLE) { 15240 SmallVector<int, 16> Consts; 15241 for (int Idx = 0; Idx < 16; Idx++) { 15242 int Val = (NumBytes - Idx - 1 >= 0) ? (NumBytes - Idx - 1) 15243 : 16 - (NumBytes - Idx); 15244 Consts.push_back(Val); 15245 } 15246 return Builder.CreateShuffleVector(Builder.CreateBitCast(AllElts, ResTy), 15247 Zero, Consts); 15248 } 15249 SmallVector<Constant *, 16> Consts; 15250 for (int Idx = 0; Idx < 16; Idx++) 15251 Consts.push_back(Builder.getInt8(NumBytes + Idx)); 15252 Value *Mask2 = ConstantVector::get(Consts); 15253 return Builder.CreateBitCast( 15254 Builder.CreateCall(Vperm, {Zero, AllElts, Mask2}, "shuffle2"), ResTy); 15255 } 15256 case PPC::BI__builtin_vsx_strmb: { 15257 int64_t NumBytes = cast<ConstantInt>(Ops[1])->getZExtValue(); 15258 bool IsLE = getTarget().isLittleEndian(); 15259 auto StoreSubVec = [&](unsigned Width, unsigned Offset, unsigned EltNo) { 15260 // Storing the whole vector, simply store it on BE and reverse bytes and 15261 // store on LE. 15262 if (Width == 16) { 15263 Value *BC = 15264 Builder.CreateBitCast(Ops[0], Ops[2]->getType()->getPointerTo()); 15265 Value *StVec = Ops[2]; 15266 if (IsLE) { 15267 SmallVector<int, 16> RevMask; 15268 for (int Idx = 0; Idx < 16; Idx++) 15269 RevMask.push_back(15 - Idx); 15270 StVec = Builder.CreateShuffleVector(Ops[2], Ops[2], RevMask); 15271 } 15272 return Builder.CreateStore(StVec, 15273 Address(BC, CharUnits::fromQuantity(1))); 15274 } 15275 auto *ConvTy = Int64Ty; 15276 unsigned NumElts = 0; 15277 switch (Width) { 15278 default: 15279 llvm_unreachable("width for stores must be a power of 2"); 15280 case 8: 15281 ConvTy = Int64Ty; 15282 NumElts = 2; 15283 break; 15284 case 4: 15285 ConvTy = Int32Ty; 15286 NumElts = 4; 15287 break; 15288 case 2: 15289 ConvTy = Int16Ty; 15290 NumElts = 8; 15291 break; 15292 case 1: 15293 ConvTy = Int8Ty; 15294 NumElts = 16; 15295 break; 15296 } 15297 Value *Vec = Builder.CreateBitCast( 15298 Ops[2], llvm::FixedVectorType::get(ConvTy, NumElts)); 15299 Value *Ptr = Builder.CreateGEP(Int8Ty, Ops[0], 15300 ConstantInt::get(Int64Ty, Offset)); 15301 Value *PtrBC = Builder.CreateBitCast(Ptr, ConvTy->getPointerTo()); 15302 Value *Elt = Builder.CreateExtractElement(Vec, EltNo); 15303 if (IsLE && Width > 1) { 15304 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ConvTy); 15305 Elt = Builder.CreateCall(F, Elt); 15306 } 15307 return Builder.CreateStore(Elt, 15308 Address(PtrBC, CharUnits::fromQuantity(1))); 15309 }; 15310 unsigned Stored = 0; 15311 unsigned RemainingBytes = NumBytes; 15312 Value *Result; 15313 if (NumBytes == 16) 15314 return StoreSubVec(16, 0, 0); 15315 if (NumBytes >= 8) { 15316 Result = StoreSubVec(8, NumBytes - 8, IsLE ? 0 : 1); 15317 RemainingBytes -= 8; 15318 Stored += 8; 15319 } 15320 if (RemainingBytes >= 4) { 15321 Result = StoreSubVec(4, NumBytes - Stored - 4, 15322 IsLE ? (Stored >> 2) : 3 - (Stored >> 2)); 15323 RemainingBytes -= 4; 15324 Stored += 4; 15325 } 15326 if (RemainingBytes >= 2) { 15327 Result = StoreSubVec(2, NumBytes - Stored - 2, 15328 IsLE ? (Stored >> 1) : 7 - (Stored >> 1)); 15329 RemainingBytes -= 2; 15330 Stored += 2; 15331 } 15332 if (RemainingBytes) 15333 Result = 15334 StoreSubVec(1, NumBytes - Stored - 1, IsLE ? Stored : 15 - Stored); 15335 return Result; 15336 } 15337 // Square root 15338 case PPC::BI__builtin_vsx_xvsqrtsp: 15339 case PPC::BI__builtin_vsx_xvsqrtdp: { 15340 llvm::Type *ResultType = ConvertType(E->getType()); 15341 Value *X = EmitScalarExpr(E->getArg(0)); 15342 if (Builder.getIsFPConstrained()) { 15343 llvm::Function *F = CGM.getIntrinsic( 15344 Intrinsic::experimental_constrained_sqrt, ResultType); 15345 return Builder.CreateConstrainedFPCall(F, X); 15346 } else { 15347 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); 15348 return Builder.CreateCall(F, X); 15349 } 15350 } 15351 // Count leading zeros 15352 case PPC::BI__builtin_altivec_vclzb: 15353 case PPC::BI__builtin_altivec_vclzh: 15354 case PPC::BI__builtin_altivec_vclzw: 15355 case PPC::BI__builtin_altivec_vclzd: { 15356 llvm::Type *ResultType = ConvertType(E->getType()); 15357 Value *X = EmitScalarExpr(E->getArg(0)); 15358 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 15359 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); 15360 return Builder.CreateCall(F, {X, Undef}); 15361 } 15362 case PPC::BI__builtin_altivec_vctzb: 15363 case PPC::BI__builtin_altivec_vctzh: 15364 case PPC::BI__builtin_altivec_vctzw: 15365 case PPC::BI__builtin_altivec_vctzd: { 15366 llvm::Type *ResultType = ConvertType(E->getType()); 15367 Value *X = EmitScalarExpr(E->getArg(0)); 15368 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 15369 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); 15370 return Builder.CreateCall(F, {X, Undef}); 15371 } 15372 case PPC::BI__builtin_altivec_vec_replace_elt: 15373 case PPC::BI__builtin_altivec_vec_replace_unaligned: { 15374 // The third argument of vec_replace_elt and vec_replace_unaligned must 15375 // be a compile time constant and will be emitted either to the vinsw 15376 // or vinsd instruction. 15377 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 15378 assert(ArgCI && 15379 "Third Arg to vinsw/vinsd intrinsic must be a constant integer!"); 15380 llvm::Type *ResultType = ConvertType(E->getType()); 15381 llvm::Function *F = nullptr; 15382 Value *Call = nullptr; 15383 int64_t ConstArg = ArgCI->getSExtValue(); 15384 unsigned ArgWidth = Ops[1]->getType()->getPrimitiveSizeInBits(); 15385 bool Is32Bit = false; 15386 assert((ArgWidth == 32 || ArgWidth == 64) && "Invalid argument width"); 15387 // The input to vec_replace_elt is an element index, not a byte index. 15388 if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt) 15389 ConstArg *= ArgWidth / 8; 15390 if (ArgWidth == 32) { 15391 Is32Bit = true; 15392 // When the second argument is 32 bits, it can either be an integer or 15393 // a float. The vinsw intrinsic is used in this case. 15394 F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsw); 15395 // Fix the constant according to endianess. 15396 if (getTarget().isLittleEndian()) 15397 ConstArg = 12 - ConstArg; 15398 } else { 15399 // When the second argument is 64 bits, it can either be a long long or 15400 // a double. The vinsd intrinsic is used in this case. 15401 F = CGM.getIntrinsic(Intrinsic::ppc_altivec_vinsd); 15402 // Fix the constant for little endian. 15403 if (getTarget().isLittleEndian()) 15404 ConstArg = 8 - ConstArg; 15405 } 15406 Ops[2] = ConstantInt::getSigned(Int32Ty, ConstArg); 15407 // Depending on ArgWidth, the input vector could be a float or a double. 15408 // If the input vector is a float type, bitcast the inputs to integers. Or, 15409 // if the input vector is a double, bitcast the inputs to 64-bit integers. 15410 if (!Ops[1]->getType()->isIntegerTy(ArgWidth)) { 15411 Ops[0] = Builder.CreateBitCast( 15412 Ops[0], Is32Bit ? llvm::FixedVectorType::get(Int32Ty, 4) 15413 : llvm::FixedVectorType::get(Int64Ty, 2)); 15414 Ops[1] = Builder.CreateBitCast(Ops[1], Is32Bit ? Int32Ty : Int64Ty); 15415 } 15416 // Emit the call to vinsw or vinsd. 15417 Call = Builder.CreateCall(F, Ops); 15418 // Depending on the builtin, bitcast to the approriate result type. 15419 if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt && 15420 !Ops[1]->getType()->isIntegerTy()) 15421 return Builder.CreateBitCast(Call, ResultType); 15422 else if (BuiltinID == PPC::BI__builtin_altivec_vec_replace_elt && 15423 Ops[1]->getType()->isIntegerTy()) 15424 return Call; 15425 else 15426 return Builder.CreateBitCast(Call, 15427 llvm::FixedVectorType::get(Int8Ty, 16)); 15428 } 15429 case PPC::BI__builtin_altivec_vpopcntb: 15430 case PPC::BI__builtin_altivec_vpopcnth: 15431 case PPC::BI__builtin_altivec_vpopcntw: 15432 case PPC::BI__builtin_altivec_vpopcntd: { 15433 llvm::Type *ResultType = ConvertType(E->getType()); 15434 Value *X = EmitScalarExpr(E->getArg(0)); 15435 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); 15436 return Builder.CreateCall(F, X); 15437 } 15438 case PPC::BI__builtin_altivec_vadduqm: 15439 case PPC::BI__builtin_altivec_vsubuqm: { 15440 llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128); 15441 Ops[0] = 15442 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int128Ty, 1)); 15443 Ops[1] = 15444 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int128Ty, 1)); 15445 if (BuiltinID == PPC::BI__builtin_altivec_vadduqm) 15446 return Builder.CreateAdd(Ops[0], Ops[1], "vadduqm"); 15447 else 15448 return Builder.CreateSub(Ops[0], Ops[1], "vsubuqm"); 15449 } 15450 // Rotate and insert under mask operation. 15451 // __rldimi(rs, is, shift, mask) 15452 // (rotl64(rs, shift) & mask) | (is & ~mask) 15453 // __rlwimi(rs, is, shift, mask) 15454 // (rotl(rs, shift) & mask) | (is & ~mask) 15455 case PPC::BI__builtin_ppc_rldimi: 15456 case PPC::BI__builtin_ppc_rlwimi: { 15457 llvm::Type *Ty = Ops[0]->getType(); 15458 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty); 15459 if (BuiltinID == PPC::BI__builtin_ppc_rldimi) 15460 Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty); 15461 Value *Shift = Builder.CreateCall(F, {Ops[0], Ops[0], Ops[2]}); 15462 Value *X = Builder.CreateAnd(Shift, Ops[3]); 15463 Value *Y = Builder.CreateAnd(Ops[1], Builder.CreateNot(Ops[3])); 15464 return Builder.CreateOr(X, Y); 15465 } 15466 // Rotate and insert under mask operation. 15467 // __rlwnm(rs, shift, mask) 15468 // rotl(rs, shift) & mask 15469 case PPC::BI__builtin_ppc_rlwnm: { 15470 llvm::Type *Ty = Ops[0]->getType(); 15471 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty); 15472 Value *Shift = Builder.CreateCall(F, {Ops[0], Ops[0], Ops[1]}); 15473 return Builder.CreateAnd(Shift, Ops[2]); 15474 } 15475 case PPC::BI__builtin_ppc_poppar4: 15476 case PPC::BI__builtin_ppc_poppar8: { 15477 llvm::Type *ArgType = Ops[0]->getType(); 15478 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType); 15479 Value *Tmp = Builder.CreateCall(F, Ops[0]); 15480 15481 llvm::Type *ResultType = ConvertType(E->getType()); 15482 Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1)); 15483 if (Result->getType() != ResultType) 15484 Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true, 15485 "cast"); 15486 return Result; 15487 } 15488 case PPC::BI__builtin_ppc_cmpb: { 15489 if (getTarget().getTriple().isPPC64()) { 15490 Function *F = 15491 CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int64Ty, Int64Ty, Int64Ty}); 15492 return Builder.CreateCall(F, Ops, "cmpb"); 15493 } 15494 // For 32 bit, emit the code as below: 15495 // %conv = trunc i64 %a to i32 15496 // %conv1 = trunc i64 %b to i32 15497 // %shr = lshr i64 %a, 32 15498 // %conv2 = trunc i64 %shr to i32 15499 // %shr3 = lshr i64 %b, 32 15500 // %conv4 = trunc i64 %shr3 to i32 15501 // %0 = tail call i32 @llvm.ppc.cmpb32(i32 %conv, i32 %conv1) 15502 // %conv5 = zext i32 %0 to i64 15503 // %1 = tail call i32 @llvm.ppc.cmpb32(i32 %conv2, i32 %conv4) 15504 // %conv614 = zext i32 %1 to i64 15505 // %shl = shl nuw i64 %conv614, 32 15506 // %or = or i64 %shl, %conv5 15507 // ret i64 %or 15508 Function *F = 15509 CGM.getIntrinsic(Intrinsic::ppc_cmpb, {Int32Ty, Int32Ty, Int32Ty}); 15510 Value *ArgOneLo = Builder.CreateTrunc(Ops[0], Int32Ty); 15511 Value *ArgTwoLo = Builder.CreateTrunc(Ops[1], Int32Ty); 15512 Constant *ShiftAmt = ConstantInt::get(Int64Ty, 32); 15513 Value *ArgOneHi = 15514 Builder.CreateTrunc(Builder.CreateLShr(Ops[0], ShiftAmt), Int32Ty); 15515 Value *ArgTwoHi = 15516 Builder.CreateTrunc(Builder.CreateLShr(Ops[1], ShiftAmt), Int32Ty); 15517 Value *ResLo = Builder.CreateZExt( 15518 Builder.CreateCall(F, {ArgOneLo, ArgTwoLo}, "cmpb"), Int64Ty); 15519 Value *ResHiShift = Builder.CreateZExt( 15520 Builder.CreateCall(F, {ArgOneHi, ArgTwoHi}, "cmpb"), Int64Ty); 15521 Value *ResHi = Builder.CreateShl(ResHiShift, ShiftAmt); 15522 return Builder.CreateOr(ResLo, ResHi); 15523 } 15524 // Copy sign 15525 case PPC::BI__builtin_vsx_xvcpsgnsp: 15526 case PPC::BI__builtin_vsx_xvcpsgndp: { 15527 llvm::Type *ResultType = ConvertType(E->getType()); 15528 Value *X = EmitScalarExpr(E->getArg(0)); 15529 Value *Y = EmitScalarExpr(E->getArg(1)); 15530 ID = Intrinsic::copysign; 15531 llvm::Function *F = CGM.getIntrinsic(ID, ResultType); 15532 return Builder.CreateCall(F, {X, Y}); 15533 } 15534 // Rounding/truncation 15535 case PPC::BI__builtin_vsx_xvrspip: 15536 case PPC::BI__builtin_vsx_xvrdpip: 15537 case PPC::BI__builtin_vsx_xvrdpim: 15538 case PPC::BI__builtin_vsx_xvrspim: 15539 case PPC::BI__builtin_vsx_xvrdpi: 15540 case PPC::BI__builtin_vsx_xvrspi: 15541 case PPC::BI__builtin_vsx_xvrdpic: 15542 case PPC::BI__builtin_vsx_xvrspic: 15543 case PPC::BI__builtin_vsx_xvrdpiz: 15544 case PPC::BI__builtin_vsx_xvrspiz: { 15545 llvm::Type *ResultType = ConvertType(E->getType()); 15546 Value *X = EmitScalarExpr(E->getArg(0)); 15547 if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim || 15548 BuiltinID == PPC::BI__builtin_vsx_xvrspim) 15549 ID = Builder.getIsFPConstrained() 15550 ? Intrinsic::experimental_constrained_floor 15551 : Intrinsic::floor; 15552 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi || 15553 BuiltinID == PPC::BI__builtin_vsx_xvrspi) 15554 ID = Builder.getIsFPConstrained() 15555 ? Intrinsic::experimental_constrained_round 15556 : Intrinsic::round; 15557 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic || 15558 BuiltinID == PPC::BI__builtin_vsx_xvrspic) 15559 ID = Builder.getIsFPConstrained() 15560 ? Intrinsic::experimental_constrained_rint 15561 : Intrinsic::rint; 15562 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip || 15563 BuiltinID == PPC::BI__builtin_vsx_xvrspip) 15564 ID = Builder.getIsFPConstrained() 15565 ? Intrinsic::experimental_constrained_ceil 15566 : Intrinsic::ceil; 15567 else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz || 15568 BuiltinID == PPC::BI__builtin_vsx_xvrspiz) 15569 ID = Builder.getIsFPConstrained() 15570 ? Intrinsic::experimental_constrained_trunc 15571 : Intrinsic::trunc; 15572 llvm::Function *F = CGM.getIntrinsic(ID, ResultType); 15573 return Builder.getIsFPConstrained() ? Builder.CreateConstrainedFPCall(F, X) 15574 : Builder.CreateCall(F, X); 15575 } 15576 15577 // Absolute value 15578 case PPC::BI__builtin_vsx_xvabsdp: 15579 case PPC::BI__builtin_vsx_xvabssp: { 15580 llvm::Type *ResultType = ConvertType(E->getType()); 15581 Value *X = EmitScalarExpr(E->getArg(0)); 15582 llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); 15583 return Builder.CreateCall(F, X); 15584 } 15585 15586 // Fastmath by default 15587 case PPC::BI__builtin_ppc_recipdivf: 15588 case PPC::BI__builtin_ppc_recipdivd: 15589 case PPC::BI__builtin_ppc_rsqrtf: 15590 case PPC::BI__builtin_ppc_rsqrtd: { 15591 FastMathFlags FMF = Builder.getFastMathFlags(); 15592 Builder.getFastMathFlags().setFast(); 15593 llvm::Type *ResultType = ConvertType(E->getType()); 15594 Value *X = EmitScalarExpr(E->getArg(0)); 15595 15596 if (BuiltinID == PPC::BI__builtin_ppc_recipdivf || 15597 BuiltinID == PPC::BI__builtin_ppc_recipdivd) { 15598 Value *Y = EmitScalarExpr(E->getArg(1)); 15599 Value *FDiv = Builder.CreateFDiv(X, Y, "recipdiv"); 15600 Builder.getFastMathFlags() &= (FMF); 15601 return FDiv; 15602 } 15603 auto *One = ConstantFP::get(ResultType, 1.0); 15604 llvm::Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); 15605 Value *FDiv = Builder.CreateFDiv(One, Builder.CreateCall(F, X), "rsqrt"); 15606 Builder.getFastMathFlags() &= (FMF); 15607 return FDiv; 15608 } 15609 case PPC::BI__builtin_ppc_alignx: { 15610 ConstantInt *AlignmentCI = cast<ConstantInt>(Ops[0]); 15611 if (AlignmentCI->getValue().ugt(llvm::Value::MaximumAlignment)) 15612 AlignmentCI = ConstantInt::get(AlignmentCI->getType(), 15613 llvm::Value::MaximumAlignment); 15614 15615 emitAlignmentAssumption(Ops[1], E->getArg(1), 15616 /*The expr loc is sufficient.*/ SourceLocation(), 15617 AlignmentCI, nullptr); 15618 return Ops[1]; 15619 } 15620 case PPC::BI__builtin_ppc_rdlam: { 15621 llvm::Type *Ty = Ops[0]->getType(); 15622 Value *ShiftAmt = Builder.CreateIntCast(Ops[1], Ty, false); 15623 Function *F = CGM.getIntrinsic(Intrinsic::fshl, Ty); 15624 Value *Rotate = Builder.CreateCall(F, {Ops[0], Ops[0], ShiftAmt}); 15625 return Builder.CreateAnd(Rotate, Ops[2]); 15626 } 15627 // FMA variations 15628 case PPC::BI__builtin_vsx_xvmaddadp: 15629 case PPC::BI__builtin_vsx_xvmaddasp: 15630 case PPC::BI__builtin_vsx_xvnmaddadp: 15631 case PPC::BI__builtin_vsx_xvnmaddasp: 15632 case PPC::BI__builtin_vsx_xvmsubadp: 15633 case PPC::BI__builtin_vsx_xvmsubasp: 15634 case PPC::BI__builtin_vsx_xvnmsubadp: 15635 case PPC::BI__builtin_vsx_xvnmsubasp: { 15636 llvm::Type *ResultType = ConvertType(E->getType()); 15637 Value *X = EmitScalarExpr(E->getArg(0)); 15638 Value *Y = EmitScalarExpr(E->getArg(1)); 15639 Value *Z = EmitScalarExpr(E->getArg(2)); 15640 llvm::Function *F; 15641 if (Builder.getIsFPConstrained()) 15642 F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 15643 else 15644 F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 15645 switch (BuiltinID) { 15646 case PPC::BI__builtin_vsx_xvmaddadp: 15647 case PPC::BI__builtin_vsx_xvmaddasp: 15648 if (Builder.getIsFPConstrained()) 15649 return Builder.CreateConstrainedFPCall(F, {X, Y, Z}); 15650 else 15651 return Builder.CreateCall(F, {X, Y, Z}); 15652 case PPC::BI__builtin_vsx_xvnmaddadp: 15653 case PPC::BI__builtin_vsx_xvnmaddasp: 15654 if (Builder.getIsFPConstrained()) 15655 return Builder.CreateFNeg( 15656 Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg"); 15657 else 15658 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg"); 15659 case PPC::BI__builtin_vsx_xvmsubadp: 15660 case PPC::BI__builtin_vsx_xvmsubasp: 15661 if (Builder.getIsFPConstrained()) 15662 return Builder.CreateConstrainedFPCall( 15663 F, {X, Y, Builder.CreateFNeg(Z, "neg")}); 15664 else 15665 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}); 15666 case PPC::BI__builtin_vsx_xvnmsubadp: 15667 case PPC::BI__builtin_vsx_xvnmsubasp: 15668 if (Builder.getIsFPConstrained()) 15669 return Builder.CreateFNeg( 15670 Builder.CreateConstrainedFPCall( 15671 F, {X, Y, Builder.CreateFNeg(Z, "neg")}), 15672 "neg"); 15673 else 15674 return Builder.CreateFNeg( 15675 Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}), 15676 "neg"); 15677 } 15678 llvm_unreachable("Unknown FMA operation"); 15679 return nullptr; // Suppress no-return warning 15680 } 15681 15682 case PPC::BI__builtin_vsx_insertword: { 15683 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw); 15684 15685 // Third argument is a compile time constant int. It must be clamped to 15686 // to the range [0, 12]. 15687 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 15688 assert(ArgCI && 15689 "Third arg to xxinsertw intrinsic must be constant integer"); 15690 const int64_t MaxIndex = 12; 15691 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex); 15692 15693 // The builtin semantics don't exactly match the xxinsertw instructions 15694 // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the 15695 // word from the first argument, and inserts it in the second argument. The 15696 // instruction extracts the word from its second input register and inserts 15697 // it into its first input register, so swap the first and second arguments. 15698 std::swap(Ops[0], Ops[1]); 15699 15700 // Need to cast the second argument from a vector of unsigned int to a 15701 // vector of long long. 15702 Ops[1] = 15703 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2)); 15704 15705 if (getTarget().isLittleEndian()) { 15706 // Reverse the double words in the vector we will extract from. 15707 Ops[0] = 15708 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); 15709 Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ArrayRef<int>{1, 0}); 15710 15711 // Reverse the index. 15712 Index = MaxIndex - Index; 15713 } 15714 15715 // Intrinsic expects the first arg to be a vector of int. 15716 Ops[0] = 15717 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4)); 15718 Ops[2] = ConstantInt::getSigned(Int32Ty, Index); 15719 return Builder.CreateCall(F, Ops); 15720 } 15721 15722 case PPC::BI__builtin_vsx_extractuword: { 15723 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw); 15724 15725 // Intrinsic expects the first argument to be a vector of doublewords. 15726 Ops[0] = 15727 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); 15728 15729 // The second argument is a compile time constant int that needs to 15730 // be clamped to the range [0, 12]. 15731 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]); 15732 assert(ArgCI && 15733 "Second Arg to xxextractuw intrinsic must be a constant integer!"); 15734 const int64_t MaxIndex = 12; 15735 int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex); 15736 15737 if (getTarget().isLittleEndian()) { 15738 // Reverse the index. 15739 Index = MaxIndex - Index; 15740 Ops[1] = ConstantInt::getSigned(Int32Ty, Index); 15741 15742 // Emit the call, then reverse the double words of the results vector. 15743 Value *Call = Builder.CreateCall(F, Ops); 15744 15745 Value *ShuffleCall = 15746 Builder.CreateShuffleVector(Call, Call, ArrayRef<int>{1, 0}); 15747 return ShuffleCall; 15748 } else { 15749 Ops[1] = ConstantInt::getSigned(Int32Ty, Index); 15750 return Builder.CreateCall(F, Ops); 15751 } 15752 } 15753 15754 case PPC::BI__builtin_vsx_xxpermdi: { 15755 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 15756 assert(ArgCI && "Third arg must be constant integer!"); 15757 15758 unsigned Index = ArgCI->getZExtValue(); 15759 Ops[0] = 15760 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int64Ty, 2)); 15761 Ops[1] = 15762 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int64Ty, 2)); 15763 15764 // Account for endianness by treating this as just a shuffle. So we use the 15765 // same indices for both LE and BE in order to produce expected results in 15766 // both cases. 15767 int ElemIdx0 = (Index & 2) >> 1; 15768 int ElemIdx1 = 2 + (Index & 1); 15769 15770 int ShuffleElts[2] = {ElemIdx0, ElemIdx1}; 15771 Value *ShuffleCall = 15772 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts); 15773 QualType BIRetType = E->getType(); 15774 auto RetTy = ConvertType(BIRetType); 15775 return Builder.CreateBitCast(ShuffleCall, RetTy); 15776 } 15777 15778 case PPC::BI__builtin_vsx_xxsldwi: { 15779 ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]); 15780 assert(ArgCI && "Third argument must be a compile time constant"); 15781 unsigned Index = ArgCI->getZExtValue() & 0x3; 15782 Ops[0] = 15783 Builder.CreateBitCast(Ops[0], llvm::FixedVectorType::get(Int32Ty, 4)); 15784 Ops[1] = 15785 Builder.CreateBitCast(Ops[1], llvm::FixedVectorType::get(Int32Ty, 4)); 15786 15787 // Create a shuffle mask 15788 int ElemIdx0; 15789 int ElemIdx1; 15790 int ElemIdx2; 15791 int ElemIdx3; 15792 if (getTarget().isLittleEndian()) { 15793 // Little endian element N comes from element 8+N-Index of the 15794 // concatenated wide vector (of course, using modulo arithmetic on 15795 // the total number of elements). 15796 ElemIdx0 = (8 - Index) % 8; 15797 ElemIdx1 = (9 - Index) % 8; 15798 ElemIdx2 = (10 - Index) % 8; 15799 ElemIdx3 = (11 - Index) % 8; 15800 } else { 15801 // Big endian ElemIdx<N> = Index + N 15802 ElemIdx0 = Index; 15803 ElemIdx1 = Index + 1; 15804 ElemIdx2 = Index + 2; 15805 ElemIdx3 = Index + 3; 15806 } 15807 15808 int ShuffleElts[4] = {ElemIdx0, ElemIdx1, ElemIdx2, ElemIdx3}; 15809 Value *ShuffleCall = 15810 Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleElts); 15811 QualType BIRetType = E->getType(); 15812 auto RetTy = ConvertType(BIRetType); 15813 return Builder.CreateBitCast(ShuffleCall, RetTy); 15814 } 15815 15816 case PPC::BI__builtin_pack_vector_int128: { 15817 bool isLittleEndian = getTarget().isLittleEndian(); 15818 Value *UndefValue = 15819 llvm::UndefValue::get(llvm::FixedVectorType::get(Ops[0]->getType(), 2)); 15820 Value *Res = Builder.CreateInsertElement( 15821 UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0)); 15822 Res = Builder.CreateInsertElement(Res, Ops[1], 15823 (uint64_t)(isLittleEndian ? 0 : 1)); 15824 return Builder.CreateBitCast(Res, ConvertType(E->getType())); 15825 } 15826 15827 case PPC::BI__builtin_unpack_vector_int128: { 15828 ConstantInt *Index = cast<ConstantInt>(Ops[1]); 15829 Value *Unpacked = Builder.CreateBitCast( 15830 Ops[0], llvm::FixedVectorType::get(ConvertType(E->getType()), 2)); 15831 15832 if (getTarget().isLittleEndian()) 15833 Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue()); 15834 15835 return Builder.CreateExtractElement(Unpacked, Index); 15836 } 15837 15838 case PPC::BI__builtin_ppc_sthcx: { 15839 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_sthcx); 15840 Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy); 15841 Ops[1] = Builder.CreateSExt(Ops[1], Int32Ty); 15842 return Builder.CreateCall(F, Ops); 15843 } 15844 15845 // The PPC MMA builtins take a pointer to a __vector_quad as an argument. 15846 // Some of the MMA instructions accumulate their result into an existing 15847 // accumulator whereas the others generate a new accumulator. So we need to 15848 // use custom code generation to expand a builtin call with a pointer to a 15849 // load (if the corresponding instruction accumulates its result) followed by 15850 // the call to the intrinsic and a store of the result. 15851 #define CUSTOM_BUILTIN(Name, Intr, Types, Accumulate) \ 15852 case PPC::BI__builtin_##Name: 15853 #include "clang/Basic/BuiltinsPPC.def" 15854 { 15855 // The first argument of these two builtins is a pointer used to store their 15856 // result. However, the llvm intrinsics return their result in multiple 15857 // return values. So, here we emit code extracting these values from the 15858 // intrinsic results and storing them using that pointer. 15859 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc || 15860 BuiltinID == PPC::BI__builtin_vsx_disassemble_pair || 15861 BuiltinID == PPC::BI__builtin_mma_disassemble_pair) { 15862 unsigned NumVecs = 2; 15863 auto Intrinsic = Intrinsic::ppc_vsx_disassemble_pair; 15864 if (BuiltinID == PPC::BI__builtin_mma_disassemble_acc) { 15865 NumVecs = 4; 15866 Intrinsic = Intrinsic::ppc_mma_disassemble_acc; 15867 } 15868 llvm::Function *F = CGM.getIntrinsic(Intrinsic); 15869 Address Addr = EmitPointerWithAlignment(E->getArg(1)); 15870 Value *Vec = Builder.CreateLoad(Addr); 15871 Value *Call = Builder.CreateCall(F, {Vec}); 15872 llvm::Type *VTy = llvm::FixedVectorType::get(Int8Ty, 16); 15873 Value *Ptr = Builder.CreateBitCast(Ops[0], VTy->getPointerTo()); 15874 for (unsigned i=0; i<NumVecs; i++) { 15875 Value *Vec = Builder.CreateExtractValue(Call, i); 15876 llvm::ConstantInt* Index = llvm::ConstantInt::get(IntTy, i); 15877 Value *GEP = Builder.CreateInBoundsGEP(VTy, Ptr, Index); 15878 Builder.CreateAlignedStore(Vec, GEP, MaybeAlign(16)); 15879 } 15880 return Call; 15881 } 15882 bool Accumulate; 15883 switch (BuiltinID) { 15884 #define CUSTOM_BUILTIN(Name, Intr, Types, Acc) \ 15885 case PPC::BI__builtin_##Name: \ 15886 ID = Intrinsic::ppc_##Intr; \ 15887 Accumulate = Acc; \ 15888 break; 15889 #include "clang/Basic/BuiltinsPPC.def" 15890 } 15891 if (BuiltinID == PPC::BI__builtin_vsx_lxvp || 15892 BuiltinID == PPC::BI__builtin_vsx_stxvp || 15893 BuiltinID == PPC::BI__builtin_mma_lxvp || 15894 BuiltinID == PPC::BI__builtin_mma_stxvp) { 15895 if (BuiltinID == PPC::BI__builtin_vsx_lxvp || 15896 BuiltinID == PPC::BI__builtin_mma_lxvp) { 15897 Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy); 15898 Ops[0] = Builder.CreateGEP(Int8Ty, Ops[1], Ops[0]); 15899 } else { 15900 Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy); 15901 Ops[1] = Builder.CreateGEP(Int8Ty, Ops[2], Ops[1]); 15902 } 15903 Ops.pop_back(); 15904 llvm::Function *F = CGM.getIntrinsic(ID); 15905 return Builder.CreateCall(F, Ops, ""); 15906 } 15907 SmallVector<Value*, 4> CallOps; 15908 if (Accumulate) { 15909 Address Addr = EmitPointerWithAlignment(E->getArg(0)); 15910 Value *Acc = Builder.CreateLoad(Addr); 15911 CallOps.push_back(Acc); 15912 } 15913 for (unsigned i=1; i<Ops.size(); i++) 15914 CallOps.push_back(Ops[i]); 15915 llvm::Function *F = CGM.getIntrinsic(ID); 15916 Value *Call = Builder.CreateCall(F, CallOps); 15917 return Builder.CreateAlignedStore(Call, Ops[0], MaybeAlign(64)); 15918 } 15919 15920 case PPC::BI__builtin_ppc_compare_and_swap: 15921 case PPC::BI__builtin_ppc_compare_and_swaplp: { 15922 Address Addr = EmitPointerWithAlignment(E->getArg(0)); 15923 Address OldValAddr = EmitPointerWithAlignment(E->getArg(1)); 15924 Value *OldVal = Builder.CreateLoad(OldValAddr); 15925 QualType AtomicTy = E->getArg(0)->getType()->getPointeeType(); 15926 LValue LV = MakeAddrLValue(Addr, AtomicTy); 15927 auto Pair = EmitAtomicCompareExchange( 15928 LV, RValue::get(OldVal), RValue::get(Ops[2]), E->getExprLoc(), 15929 llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Monotonic, true); 15930 // Unlike c11's atomic_compare_exchange, accroding to 15931 // https://www.ibm.com/docs/en/xl-c-and-cpp-aix/16.1?topic=functions-compare-swap-compare-swaplp 15932 // > In either case, the contents of the memory location specified by addr 15933 // > are copied into the memory location specified by old_val_addr. 15934 // But it hasn't specified storing to OldValAddr is atomic or not and 15935 // which order to use. Now following XL's codegen, treat it as a normal 15936 // store. 15937 Value *LoadedVal = Pair.first.getScalarVal(); 15938 Builder.CreateStore(LoadedVal, OldValAddr); 15939 return Builder.CreateZExt(Pair.second, Builder.getInt32Ty()); 15940 } 15941 case PPC::BI__builtin_ppc_fetch_and_add: 15942 case PPC::BI__builtin_ppc_fetch_and_addlp: { 15943 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E, 15944 llvm::AtomicOrdering::Monotonic); 15945 } 15946 case PPC::BI__builtin_ppc_fetch_and_and: 15947 case PPC::BI__builtin_ppc_fetch_and_andlp: { 15948 return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E, 15949 llvm::AtomicOrdering::Monotonic); 15950 } 15951 15952 case PPC::BI__builtin_ppc_fetch_and_or: 15953 case PPC::BI__builtin_ppc_fetch_and_orlp: { 15954 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E, 15955 llvm::AtomicOrdering::Monotonic); 15956 } 15957 case PPC::BI__builtin_ppc_fetch_and_swap: 15958 case PPC::BI__builtin_ppc_fetch_and_swaplp: { 15959 return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E, 15960 llvm::AtomicOrdering::Monotonic); 15961 } 15962 case PPC::BI__builtin_ppc_ldarx: 15963 case PPC::BI__builtin_ppc_lwarx: 15964 case PPC::BI__builtin_ppc_lharx: 15965 case PPC::BI__builtin_ppc_lbarx: 15966 return emitPPCLoadReserveIntrinsic(*this, BuiltinID, E); 15967 case PPC::BI__builtin_ppc_mfspr: { 15968 llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32 15969 ? Int32Ty 15970 : Int64Ty; 15971 Function *F = CGM.getIntrinsic(Intrinsic::ppc_mfspr, RetType); 15972 return Builder.CreateCall(F, Ops); 15973 } 15974 case PPC::BI__builtin_ppc_mtspr: { 15975 llvm::Type *RetType = CGM.getDataLayout().getTypeSizeInBits(VoidPtrTy) == 32 15976 ? Int32Ty 15977 : Int64Ty; 15978 Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtspr, RetType); 15979 return Builder.CreateCall(F, Ops); 15980 } 15981 case PPC::BI__builtin_ppc_popcntb: { 15982 Value *ArgValue = EmitScalarExpr(E->getArg(0)); 15983 llvm::Type *ArgType = ArgValue->getType(); 15984 Function *F = CGM.getIntrinsic(Intrinsic::ppc_popcntb, {ArgType, ArgType}); 15985 return Builder.CreateCall(F, Ops, "popcntb"); 15986 } 15987 case PPC::BI__builtin_ppc_mtfsf: { 15988 // The builtin takes a uint32 that needs to be cast to an 15989 // f64 to be passed to the intrinsic. 15990 Value *Cast = Builder.CreateUIToFP(Ops[1], DoubleTy); 15991 llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_mtfsf); 15992 return Builder.CreateCall(F, {Ops[0], Cast}, ""); 15993 } 15994 15995 case PPC::BI__builtin_ppc_swdiv_nochk: 15996 case PPC::BI__builtin_ppc_swdivs_nochk: { 15997 FastMathFlags FMF = Builder.getFastMathFlags(); 15998 Builder.getFastMathFlags().setFast(); 15999 Value *FDiv = Builder.CreateFDiv(Ops[0], Ops[1], "swdiv_nochk"); 16000 Builder.getFastMathFlags() &= (FMF); 16001 return FDiv; 16002 } 16003 case PPC::BI__builtin_ppc_fric: 16004 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( 16005 *this, E, Intrinsic::rint, 16006 Intrinsic::experimental_constrained_rint)) 16007 .getScalarVal(); 16008 case PPC::BI__builtin_ppc_frim: 16009 case PPC::BI__builtin_ppc_frims: 16010 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( 16011 *this, E, Intrinsic::floor, 16012 Intrinsic::experimental_constrained_floor)) 16013 .getScalarVal(); 16014 case PPC::BI__builtin_ppc_frin: 16015 case PPC::BI__builtin_ppc_frins: 16016 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( 16017 *this, E, Intrinsic::round, 16018 Intrinsic::experimental_constrained_round)) 16019 .getScalarVal(); 16020 case PPC::BI__builtin_ppc_frip: 16021 case PPC::BI__builtin_ppc_frips: 16022 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( 16023 *this, E, Intrinsic::ceil, 16024 Intrinsic::experimental_constrained_ceil)) 16025 .getScalarVal(); 16026 case PPC::BI__builtin_ppc_friz: 16027 case PPC::BI__builtin_ppc_frizs: 16028 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( 16029 *this, E, Intrinsic::trunc, 16030 Intrinsic::experimental_constrained_trunc)) 16031 .getScalarVal(); 16032 case PPC::BI__builtin_ppc_fsqrt: 16033 case PPC::BI__builtin_ppc_fsqrts: 16034 return RValue::get(emitUnaryMaybeConstrainedFPBuiltin( 16035 *this, E, Intrinsic::sqrt, 16036 Intrinsic::experimental_constrained_sqrt)) 16037 .getScalarVal(); 16038 } 16039 } 16040 16041 namespace { 16042 // If \p E is not null pointer, insert address space cast to match return 16043 // type of \p E if necessary. 16044 Value *EmitAMDGPUDispatchPtr(CodeGenFunction &CGF, 16045 const CallExpr *E = nullptr) { 16046 auto *F = CGF.CGM.getIntrinsic(Intrinsic::amdgcn_dispatch_ptr); 16047 auto *Call = CGF.Builder.CreateCall(F); 16048 Call->addRetAttr( 16049 Attribute::getWithDereferenceableBytes(Call->getContext(), 64)); 16050 Call->addRetAttr(Attribute::getWithAlignment(Call->getContext(), Align(4))); 16051 if (!E) 16052 return Call; 16053 QualType BuiltinRetType = E->getType(); 16054 auto *RetTy = cast<llvm::PointerType>(CGF.ConvertType(BuiltinRetType)); 16055 if (RetTy == Call->getType()) 16056 return Call; 16057 return CGF.Builder.CreateAddrSpaceCast(Call, RetTy); 16058 } 16059 16060 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively. 16061 Value *EmitAMDGPUWorkGroupSize(CodeGenFunction &CGF, unsigned Index) { 16062 const unsigned XOffset = 4; 16063 auto *DP = EmitAMDGPUDispatchPtr(CGF); 16064 // Indexing the HSA kernel_dispatch_packet struct. 16065 auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 2); 16066 auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset); 16067 auto *DstTy = 16068 CGF.Int16Ty->getPointerTo(GEP->getType()->getPointerAddressSpace()); 16069 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy); 16070 auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(2))); 16071 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 16072 llvm::MDNode *RNode = MDHelper.createRange(APInt(16, 1), 16073 APInt(16, CGF.getTarget().getMaxOpenCLWorkGroupSize() + 1)); 16074 LD->setMetadata(llvm::LLVMContext::MD_range, RNode); 16075 LD->setMetadata(llvm::LLVMContext::MD_invariant_load, 16076 llvm::MDNode::get(CGF.getLLVMContext(), None)); 16077 return LD; 16078 } 16079 16080 // \p Index is 0, 1, and 2 for x, y, and z dimension, respectively. 16081 Value *EmitAMDGPUGridSize(CodeGenFunction &CGF, unsigned Index) { 16082 const unsigned XOffset = 12; 16083 auto *DP = EmitAMDGPUDispatchPtr(CGF); 16084 // Indexing the HSA kernel_dispatch_packet struct. 16085 auto *Offset = llvm::ConstantInt::get(CGF.Int32Ty, XOffset + Index * 4); 16086 auto *GEP = CGF.Builder.CreateGEP(CGF.Int8Ty, DP, Offset); 16087 auto *DstTy = 16088 CGF.Int32Ty->getPointerTo(GEP->getType()->getPointerAddressSpace()); 16089 auto *Cast = CGF.Builder.CreateBitCast(GEP, DstTy); 16090 auto *LD = CGF.Builder.CreateLoad(Address(Cast, CharUnits::fromQuantity(4))); 16091 LD->setMetadata(llvm::LLVMContext::MD_invariant_load, 16092 llvm::MDNode::get(CGF.getLLVMContext(), None)); 16093 return LD; 16094 } 16095 } // namespace 16096 16097 // For processing memory ordering and memory scope arguments of various 16098 // amdgcn builtins. 16099 // \p Order takes a C++11 comptabile memory-ordering specifier and converts 16100 // it into LLVM's memory ordering specifier using atomic C ABI, and writes 16101 // to \p AO. \p Scope takes a const char * and converts it into AMDGCN 16102 // specific SyncScopeID and writes it to \p SSID. 16103 bool CodeGenFunction::ProcessOrderScopeAMDGCN(Value *Order, Value *Scope, 16104 llvm::AtomicOrdering &AO, 16105 llvm::SyncScope::ID &SSID) { 16106 if (isa<llvm::ConstantInt>(Order)) { 16107 int ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); 16108 16109 // Map C11/C++11 memory ordering to LLVM memory ordering 16110 assert(llvm::isValidAtomicOrderingCABI(ord)); 16111 switch (static_cast<llvm::AtomicOrderingCABI>(ord)) { 16112 case llvm::AtomicOrderingCABI::acquire: 16113 case llvm::AtomicOrderingCABI::consume: 16114 AO = llvm::AtomicOrdering::Acquire; 16115 break; 16116 case llvm::AtomicOrderingCABI::release: 16117 AO = llvm::AtomicOrdering::Release; 16118 break; 16119 case llvm::AtomicOrderingCABI::acq_rel: 16120 AO = llvm::AtomicOrdering::AcquireRelease; 16121 break; 16122 case llvm::AtomicOrderingCABI::seq_cst: 16123 AO = llvm::AtomicOrdering::SequentiallyConsistent; 16124 break; 16125 case llvm::AtomicOrderingCABI::relaxed: 16126 AO = llvm::AtomicOrdering::Monotonic; 16127 break; 16128 } 16129 16130 StringRef scp; 16131 llvm::getConstantStringInfo(Scope, scp); 16132 SSID = getLLVMContext().getOrInsertSyncScopeID(scp); 16133 return true; 16134 } 16135 return false; 16136 } 16137 16138 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID, 16139 const CallExpr *E) { 16140 llvm::AtomicOrdering AO = llvm::AtomicOrdering::SequentiallyConsistent; 16141 llvm::SyncScope::ID SSID; 16142 switch (BuiltinID) { 16143 case AMDGPU::BI__builtin_amdgcn_div_scale: 16144 case AMDGPU::BI__builtin_amdgcn_div_scalef: { 16145 // Translate from the intrinsics's struct return to the builtin's out 16146 // argument. 16147 16148 Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3)); 16149 16150 llvm::Value *X = EmitScalarExpr(E->getArg(0)); 16151 llvm::Value *Y = EmitScalarExpr(E->getArg(1)); 16152 llvm::Value *Z = EmitScalarExpr(E->getArg(2)); 16153 16154 llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale, 16155 X->getType()); 16156 16157 llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z}); 16158 16159 llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0); 16160 llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1); 16161 16162 llvm::Type *RealFlagType 16163 = FlagOutPtr.getPointer()->getType()->getPointerElementType(); 16164 16165 llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType); 16166 Builder.CreateStore(FlagExt, FlagOutPtr); 16167 return Result; 16168 } 16169 case AMDGPU::BI__builtin_amdgcn_div_fmas: 16170 case AMDGPU::BI__builtin_amdgcn_div_fmasf: { 16171 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 16172 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 16173 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 16174 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3)); 16175 16176 llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas, 16177 Src0->getType()); 16178 llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3); 16179 return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool}); 16180 } 16181 16182 case AMDGPU::BI__builtin_amdgcn_ds_swizzle: 16183 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle); 16184 case AMDGPU::BI__builtin_amdgcn_mov_dpp8: 16185 return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8); 16186 case AMDGPU::BI__builtin_amdgcn_mov_dpp: 16187 case AMDGPU::BI__builtin_amdgcn_update_dpp: { 16188 llvm::SmallVector<llvm::Value *, 6> Args; 16189 for (unsigned I = 0; I != E->getNumArgs(); ++I) 16190 Args.push_back(EmitScalarExpr(E->getArg(I))); 16191 assert(Args.size() == 5 || Args.size() == 6); 16192 if (Args.size() == 5) 16193 Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType())); 16194 Function *F = 16195 CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType()); 16196 return Builder.CreateCall(F, Args); 16197 } 16198 case AMDGPU::BI__builtin_amdgcn_div_fixup: 16199 case AMDGPU::BI__builtin_amdgcn_div_fixupf: 16200 case AMDGPU::BI__builtin_amdgcn_div_fixuph: 16201 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup); 16202 case AMDGPU::BI__builtin_amdgcn_trig_preop: 16203 case AMDGPU::BI__builtin_amdgcn_trig_preopf: 16204 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop); 16205 case AMDGPU::BI__builtin_amdgcn_rcp: 16206 case AMDGPU::BI__builtin_amdgcn_rcpf: 16207 case AMDGPU::BI__builtin_amdgcn_rcph: 16208 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp); 16209 case AMDGPU::BI__builtin_amdgcn_sqrt: 16210 case AMDGPU::BI__builtin_amdgcn_sqrtf: 16211 case AMDGPU::BI__builtin_amdgcn_sqrth: 16212 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sqrt); 16213 case AMDGPU::BI__builtin_amdgcn_rsq: 16214 case AMDGPU::BI__builtin_amdgcn_rsqf: 16215 case AMDGPU::BI__builtin_amdgcn_rsqh: 16216 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq); 16217 case AMDGPU::BI__builtin_amdgcn_rsq_clamp: 16218 case AMDGPU::BI__builtin_amdgcn_rsq_clampf: 16219 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp); 16220 case AMDGPU::BI__builtin_amdgcn_sinf: 16221 case AMDGPU::BI__builtin_amdgcn_sinh: 16222 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin); 16223 case AMDGPU::BI__builtin_amdgcn_cosf: 16224 case AMDGPU::BI__builtin_amdgcn_cosh: 16225 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos); 16226 case AMDGPU::BI__builtin_amdgcn_dispatch_ptr: 16227 return EmitAMDGPUDispatchPtr(*this, E); 16228 case AMDGPU::BI__builtin_amdgcn_log_clampf: 16229 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp); 16230 case AMDGPU::BI__builtin_amdgcn_ldexp: 16231 case AMDGPU::BI__builtin_amdgcn_ldexpf: 16232 case AMDGPU::BI__builtin_amdgcn_ldexph: 16233 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp); 16234 case AMDGPU::BI__builtin_amdgcn_frexp_mant: 16235 case AMDGPU::BI__builtin_amdgcn_frexp_mantf: 16236 case AMDGPU::BI__builtin_amdgcn_frexp_manth: 16237 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant); 16238 case AMDGPU::BI__builtin_amdgcn_frexp_exp: 16239 case AMDGPU::BI__builtin_amdgcn_frexp_expf: { 16240 Value *Src0 = EmitScalarExpr(E->getArg(0)); 16241 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, 16242 { Builder.getInt32Ty(), Src0->getType() }); 16243 return Builder.CreateCall(F, Src0); 16244 } 16245 case AMDGPU::BI__builtin_amdgcn_frexp_exph: { 16246 Value *Src0 = EmitScalarExpr(E->getArg(0)); 16247 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp, 16248 { Builder.getInt16Ty(), Src0->getType() }); 16249 return Builder.CreateCall(F, Src0); 16250 } 16251 case AMDGPU::BI__builtin_amdgcn_fract: 16252 case AMDGPU::BI__builtin_amdgcn_fractf: 16253 case AMDGPU::BI__builtin_amdgcn_fracth: 16254 return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract); 16255 case AMDGPU::BI__builtin_amdgcn_lerp: 16256 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp); 16257 case AMDGPU::BI__builtin_amdgcn_ubfe: 16258 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe); 16259 case AMDGPU::BI__builtin_amdgcn_sbfe: 16260 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe); 16261 case AMDGPU::BI__builtin_amdgcn_uicmp: 16262 case AMDGPU::BI__builtin_amdgcn_uicmpl: 16263 case AMDGPU::BI__builtin_amdgcn_sicmp: 16264 case AMDGPU::BI__builtin_amdgcn_sicmpl: { 16265 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 16266 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 16267 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 16268 16269 // FIXME-GFX10: How should 32 bit mask be handled? 16270 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp, 16271 { Builder.getInt64Ty(), Src0->getType() }); 16272 return Builder.CreateCall(F, { Src0, Src1, Src2 }); 16273 } 16274 case AMDGPU::BI__builtin_amdgcn_fcmp: 16275 case AMDGPU::BI__builtin_amdgcn_fcmpf: { 16276 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 16277 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 16278 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 16279 16280 // FIXME-GFX10: How should 32 bit mask be handled? 16281 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp, 16282 { Builder.getInt64Ty(), Src0->getType() }); 16283 return Builder.CreateCall(F, { Src0, Src1, Src2 }); 16284 } 16285 case AMDGPU::BI__builtin_amdgcn_class: 16286 case AMDGPU::BI__builtin_amdgcn_classf: 16287 case AMDGPU::BI__builtin_amdgcn_classh: 16288 return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class); 16289 case AMDGPU::BI__builtin_amdgcn_fmed3f: 16290 case AMDGPU::BI__builtin_amdgcn_fmed3h: 16291 return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3); 16292 case AMDGPU::BI__builtin_amdgcn_ds_append: 16293 case AMDGPU::BI__builtin_amdgcn_ds_consume: { 16294 Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ? 16295 Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume; 16296 Value *Src0 = EmitScalarExpr(E->getArg(0)); 16297 Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() }); 16298 return Builder.CreateCall(F, { Src0, Builder.getFalse() }); 16299 } 16300 case AMDGPU::BI__builtin_amdgcn_ds_faddf: 16301 case AMDGPU::BI__builtin_amdgcn_ds_fminf: 16302 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: { 16303 Intrinsic::ID Intrin; 16304 switch (BuiltinID) { 16305 case AMDGPU::BI__builtin_amdgcn_ds_faddf: 16306 Intrin = Intrinsic::amdgcn_ds_fadd; 16307 break; 16308 case AMDGPU::BI__builtin_amdgcn_ds_fminf: 16309 Intrin = Intrinsic::amdgcn_ds_fmin; 16310 break; 16311 case AMDGPU::BI__builtin_amdgcn_ds_fmaxf: 16312 Intrin = Intrinsic::amdgcn_ds_fmax; 16313 break; 16314 } 16315 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 16316 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 16317 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 16318 llvm::Value *Src3 = EmitScalarExpr(E->getArg(3)); 16319 llvm::Value *Src4 = EmitScalarExpr(E->getArg(4)); 16320 llvm::Function *F = CGM.getIntrinsic(Intrin, { Src1->getType() }); 16321 llvm::FunctionType *FTy = F->getFunctionType(); 16322 llvm::Type *PTy = FTy->getParamType(0); 16323 Src0 = Builder.CreatePointerBitCastOrAddrSpaceCast(Src0, PTy); 16324 return Builder.CreateCall(F, { Src0, Src1, Src2, Src3, Src4 }); 16325 } 16326 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64: 16327 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32: 16328 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16: 16329 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64: 16330 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64: 16331 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64: 16332 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64: 16333 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64: { 16334 Intrinsic::ID IID; 16335 llvm::Type *ArgTy = llvm::Type::getDoubleTy(getLLVMContext()); 16336 switch (BuiltinID) { 16337 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f32: 16338 ArgTy = llvm::Type::getFloatTy(getLLVMContext()); 16339 IID = Intrinsic::amdgcn_global_atomic_fadd; 16340 break; 16341 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_v2f16: 16342 ArgTy = llvm::FixedVectorType::get( 16343 llvm::Type::getHalfTy(getLLVMContext()), 2); 16344 IID = Intrinsic::amdgcn_global_atomic_fadd; 16345 break; 16346 case AMDGPU::BI__builtin_amdgcn_global_atomic_fadd_f64: 16347 IID = Intrinsic::amdgcn_global_atomic_fadd; 16348 break; 16349 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmin_f64: 16350 IID = Intrinsic::amdgcn_global_atomic_fmin; 16351 break; 16352 case AMDGPU::BI__builtin_amdgcn_global_atomic_fmax_f64: 16353 IID = Intrinsic::amdgcn_global_atomic_fmax; 16354 break; 16355 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fadd_f64: 16356 IID = Intrinsic::amdgcn_flat_atomic_fadd; 16357 break; 16358 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmin_f64: 16359 IID = Intrinsic::amdgcn_flat_atomic_fmin; 16360 break; 16361 case AMDGPU::BI__builtin_amdgcn_flat_atomic_fmax_f64: 16362 IID = Intrinsic::amdgcn_flat_atomic_fmax; 16363 break; 16364 } 16365 llvm::Value *Addr = EmitScalarExpr(E->getArg(0)); 16366 llvm::Value *Val = EmitScalarExpr(E->getArg(1)); 16367 llvm::Function *F = 16368 CGM.getIntrinsic(IID, {ArgTy, Addr->getType(), Val->getType()}); 16369 return Builder.CreateCall(F, {Addr, Val}); 16370 } 16371 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64: 16372 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32: { 16373 Intrinsic::ID IID; 16374 llvm::Type *ArgTy; 16375 switch (BuiltinID) { 16376 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f32: 16377 ArgTy = llvm::Type::getFloatTy(getLLVMContext()); 16378 IID = Intrinsic::amdgcn_ds_fadd; 16379 break; 16380 case AMDGPU::BI__builtin_amdgcn_ds_atomic_fadd_f64: 16381 ArgTy = llvm::Type::getDoubleTy(getLLVMContext()); 16382 IID = Intrinsic::amdgcn_ds_fadd; 16383 break; 16384 } 16385 llvm::Value *Addr = EmitScalarExpr(E->getArg(0)); 16386 llvm::Value *Val = EmitScalarExpr(E->getArg(1)); 16387 llvm::Constant *ZeroI32 = llvm::ConstantInt::getIntegerValue( 16388 llvm::Type::getInt32Ty(getLLVMContext()), APInt(32, 0, true)); 16389 llvm::Constant *ZeroI1 = llvm::ConstantInt::getIntegerValue( 16390 llvm::Type::getInt1Ty(getLLVMContext()), APInt(1, 0)); 16391 llvm::Function *F = CGM.getIntrinsic(IID, {ArgTy}); 16392 return Builder.CreateCall(F, {Addr, Val, ZeroI32, ZeroI32, ZeroI1}); 16393 } 16394 case AMDGPU::BI__builtin_amdgcn_read_exec: { 16395 CallInst *CI = cast<CallInst>( 16396 EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, NormalRead, "exec")); 16397 CI->setConvergent(); 16398 return CI; 16399 } 16400 case AMDGPU::BI__builtin_amdgcn_read_exec_lo: 16401 case AMDGPU::BI__builtin_amdgcn_read_exec_hi: { 16402 StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ? 16403 "exec_lo" : "exec_hi"; 16404 CallInst *CI = cast<CallInst>( 16405 EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, NormalRead, RegName)); 16406 CI->setConvergent(); 16407 return CI; 16408 } 16409 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray: 16410 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_h: 16411 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_l: 16412 case AMDGPU::BI__builtin_amdgcn_image_bvh_intersect_ray_lh: { 16413 llvm::Value *NodePtr = EmitScalarExpr(E->getArg(0)); 16414 llvm::Value *RayExtent = EmitScalarExpr(E->getArg(1)); 16415 llvm::Value *RayOrigin = EmitScalarExpr(E->getArg(2)); 16416 llvm::Value *RayDir = EmitScalarExpr(E->getArg(3)); 16417 llvm::Value *RayInverseDir = EmitScalarExpr(E->getArg(4)); 16418 llvm::Value *TextureDescr = EmitScalarExpr(E->getArg(5)); 16419 16420 Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_image_bvh_intersect_ray, 16421 {NodePtr->getType(), RayDir->getType()}); 16422 return Builder.CreateCall(F, {NodePtr, RayExtent, RayOrigin, RayDir, 16423 RayInverseDir, TextureDescr}); 16424 } 16425 16426 // amdgcn workitem 16427 case AMDGPU::BI__builtin_amdgcn_workitem_id_x: 16428 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024); 16429 case AMDGPU::BI__builtin_amdgcn_workitem_id_y: 16430 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024); 16431 case AMDGPU::BI__builtin_amdgcn_workitem_id_z: 16432 return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024); 16433 16434 // amdgcn workgroup size 16435 case AMDGPU::BI__builtin_amdgcn_workgroup_size_x: 16436 return EmitAMDGPUWorkGroupSize(*this, 0); 16437 case AMDGPU::BI__builtin_amdgcn_workgroup_size_y: 16438 return EmitAMDGPUWorkGroupSize(*this, 1); 16439 case AMDGPU::BI__builtin_amdgcn_workgroup_size_z: 16440 return EmitAMDGPUWorkGroupSize(*this, 2); 16441 16442 // amdgcn grid size 16443 case AMDGPU::BI__builtin_amdgcn_grid_size_x: 16444 return EmitAMDGPUGridSize(*this, 0); 16445 case AMDGPU::BI__builtin_amdgcn_grid_size_y: 16446 return EmitAMDGPUGridSize(*this, 1); 16447 case AMDGPU::BI__builtin_amdgcn_grid_size_z: 16448 return EmitAMDGPUGridSize(*this, 2); 16449 16450 // r600 intrinsics 16451 case AMDGPU::BI__builtin_r600_recipsqrt_ieee: 16452 case AMDGPU::BI__builtin_r600_recipsqrt_ieeef: 16453 return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee); 16454 case AMDGPU::BI__builtin_r600_read_tidig_x: 16455 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024); 16456 case AMDGPU::BI__builtin_r600_read_tidig_y: 16457 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024); 16458 case AMDGPU::BI__builtin_r600_read_tidig_z: 16459 return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024); 16460 case AMDGPU::BI__builtin_amdgcn_alignbit: { 16461 llvm::Value *Src0 = EmitScalarExpr(E->getArg(0)); 16462 llvm::Value *Src1 = EmitScalarExpr(E->getArg(1)); 16463 llvm::Value *Src2 = EmitScalarExpr(E->getArg(2)); 16464 Function *F = CGM.getIntrinsic(Intrinsic::fshr, Src0->getType()); 16465 return Builder.CreateCall(F, { Src0, Src1, Src2 }); 16466 } 16467 16468 case AMDGPU::BI__builtin_amdgcn_fence: { 16469 if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(0)), 16470 EmitScalarExpr(E->getArg(1)), AO, SSID)) 16471 return Builder.CreateFence(AO, SSID); 16472 LLVM_FALLTHROUGH; 16473 } 16474 case AMDGPU::BI__builtin_amdgcn_atomic_inc32: 16475 case AMDGPU::BI__builtin_amdgcn_atomic_inc64: 16476 case AMDGPU::BI__builtin_amdgcn_atomic_dec32: 16477 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: { 16478 unsigned BuiltinAtomicOp; 16479 llvm::Type *ResultType = ConvertType(E->getType()); 16480 16481 switch (BuiltinID) { 16482 case AMDGPU::BI__builtin_amdgcn_atomic_inc32: 16483 case AMDGPU::BI__builtin_amdgcn_atomic_inc64: 16484 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_inc; 16485 break; 16486 case AMDGPU::BI__builtin_amdgcn_atomic_dec32: 16487 case AMDGPU::BI__builtin_amdgcn_atomic_dec64: 16488 BuiltinAtomicOp = Intrinsic::amdgcn_atomic_dec; 16489 break; 16490 } 16491 16492 Value *Ptr = EmitScalarExpr(E->getArg(0)); 16493 Value *Val = EmitScalarExpr(E->getArg(1)); 16494 16495 llvm::Function *F = 16496 CGM.getIntrinsic(BuiltinAtomicOp, {ResultType, Ptr->getType()}); 16497 16498 if (ProcessOrderScopeAMDGCN(EmitScalarExpr(E->getArg(2)), 16499 EmitScalarExpr(E->getArg(3)), AO, SSID)) { 16500 16501 // llvm.amdgcn.atomic.inc and llvm.amdgcn.atomic.dec expects ordering and 16502 // scope as unsigned values 16503 Value *MemOrder = Builder.getInt32(static_cast<int>(AO)); 16504 Value *MemScope = Builder.getInt32(static_cast<int>(SSID)); 16505 16506 QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType(); 16507 bool Volatile = 16508 PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified(); 16509 Value *IsVolatile = Builder.getInt1(static_cast<bool>(Volatile)); 16510 16511 return Builder.CreateCall(F, {Ptr, Val, MemOrder, MemScope, IsVolatile}); 16512 } 16513 LLVM_FALLTHROUGH; 16514 } 16515 default: 16516 return nullptr; 16517 } 16518 } 16519 16520 /// Handle a SystemZ function in which the final argument is a pointer 16521 /// to an int that receives the post-instruction CC value. At the LLVM level 16522 /// this is represented as a function that returns a {result, cc} pair. 16523 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF, 16524 unsigned IntrinsicID, 16525 const CallExpr *E) { 16526 unsigned NumArgs = E->getNumArgs() - 1; 16527 SmallVector<Value *, 8> Args(NumArgs); 16528 for (unsigned I = 0; I < NumArgs; ++I) 16529 Args[I] = CGF.EmitScalarExpr(E->getArg(I)); 16530 Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs)); 16531 Function *F = CGF.CGM.getIntrinsic(IntrinsicID); 16532 Value *Call = CGF.Builder.CreateCall(F, Args); 16533 Value *CC = CGF.Builder.CreateExtractValue(Call, 1); 16534 CGF.Builder.CreateStore(CC, CCPtr); 16535 return CGF.Builder.CreateExtractValue(Call, 0); 16536 } 16537 16538 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID, 16539 const CallExpr *E) { 16540 switch (BuiltinID) { 16541 case SystemZ::BI__builtin_tbegin: { 16542 Value *TDB = EmitScalarExpr(E->getArg(0)); 16543 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); 16544 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin); 16545 return Builder.CreateCall(F, {TDB, Control}); 16546 } 16547 case SystemZ::BI__builtin_tbegin_nofloat: { 16548 Value *TDB = EmitScalarExpr(E->getArg(0)); 16549 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c); 16550 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat); 16551 return Builder.CreateCall(F, {TDB, Control}); 16552 } 16553 case SystemZ::BI__builtin_tbeginc: { 16554 Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy); 16555 Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08); 16556 Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc); 16557 return Builder.CreateCall(F, {TDB, Control}); 16558 } 16559 case SystemZ::BI__builtin_tabort: { 16560 Value *Data = EmitScalarExpr(E->getArg(0)); 16561 Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort); 16562 return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort")); 16563 } 16564 case SystemZ::BI__builtin_non_tx_store: { 16565 Value *Address = EmitScalarExpr(E->getArg(0)); 16566 Value *Data = EmitScalarExpr(E->getArg(1)); 16567 Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg); 16568 return Builder.CreateCall(F, {Data, Address}); 16569 } 16570 16571 // Vector builtins. Note that most vector builtins are mapped automatically 16572 // to target-specific LLVM intrinsics. The ones handled specially here can 16573 // be represented via standard LLVM IR, which is preferable to enable common 16574 // LLVM optimizations. 16575 16576 case SystemZ::BI__builtin_s390_vpopctb: 16577 case SystemZ::BI__builtin_s390_vpopcth: 16578 case SystemZ::BI__builtin_s390_vpopctf: 16579 case SystemZ::BI__builtin_s390_vpopctg: { 16580 llvm::Type *ResultType = ConvertType(E->getType()); 16581 Value *X = EmitScalarExpr(E->getArg(0)); 16582 Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType); 16583 return Builder.CreateCall(F, X); 16584 } 16585 16586 case SystemZ::BI__builtin_s390_vclzb: 16587 case SystemZ::BI__builtin_s390_vclzh: 16588 case SystemZ::BI__builtin_s390_vclzf: 16589 case SystemZ::BI__builtin_s390_vclzg: { 16590 llvm::Type *ResultType = ConvertType(E->getType()); 16591 Value *X = EmitScalarExpr(E->getArg(0)); 16592 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 16593 Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType); 16594 return Builder.CreateCall(F, {X, Undef}); 16595 } 16596 16597 case SystemZ::BI__builtin_s390_vctzb: 16598 case SystemZ::BI__builtin_s390_vctzh: 16599 case SystemZ::BI__builtin_s390_vctzf: 16600 case SystemZ::BI__builtin_s390_vctzg: { 16601 llvm::Type *ResultType = ConvertType(E->getType()); 16602 Value *X = EmitScalarExpr(E->getArg(0)); 16603 Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false); 16604 Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType); 16605 return Builder.CreateCall(F, {X, Undef}); 16606 } 16607 16608 case SystemZ::BI__builtin_s390_vfsqsb: 16609 case SystemZ::BI__builtin_s390_vfsqdb: { 16610 llvm::Type *ResultType = ConvertType(E->getType()); 16611 Value *X = EmitScalarExpr(E->getArg(0)); 16612 if (Builder.getIsFPConstrained()) { 16613 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_sqrt, ResultType); 16614 return Builder.CreateConstrainedFPCall(F, { X }); 16615 } else { 16616 Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType); 16617 return Builder.CreateCall(F, X); 16618 } 16619 } 16620 case SystemZ::BI__builtin_s390_vfmasb: 16621 case SystemZ::BI__builtin_s390_vfmadb: { 16622 llvm::Type *ResultType = ConvertType(E->getType()); 16623 Value *X = EmitScalarExpr(E->getArg(0)); 16624 Value *Y = EmitScalarExpr(E->getArg(1)); 16625 Value *Z = EmitScalarExpr(E->getArg(2)); 16626 if (Builder.getIsFPConstrained()) { 16627 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 16628 return Builder.CreateConstrainedFPCall(F, {X, Y, Z}); 16629 } else { 16630 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 16631 return Builder.CreateCall(F, {X, Y, Z}); 16632 } 16633 } 16634 case SystemZ::BI__builtin_s390_vfmssb: 16635 case SystemZ::BI__builtin_s390_vfmsdb: { 16636 llvm::Type *ResultType = ConvertType(E->getType()); 16637 Value *X = EmitScalarExpr(E->getArg(0)); 16638 Value *Y = EmitScalarExpr(E->getArg(1)); 16639 Value *Z = EmitScalarExpr(E->getArg(2)); 16640 if (Builder.getIsFPConstrained()) { 16641 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 16642 return Builder.CreateConstrainedFPCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}); 16643 } else { 16644 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 16645 return Builder.CreateCall(F, {X, Y, Builder.CreateFNeg(Z, "neg")}); 16646 } 16647 } 16648 case SystemZ::BI__builtin_s390_vfnmasb: 16649 case SystemZ::BI__builtin_s390_vfnmadb: { 16650 llvm::Type *ResultType = ConvertType(E->getType()); 16651 Value *X = EmitScalarExpr(E->getArg(0)); 16652 Value *Y = EmitScalarExpr(E->getArg(1)); 16653 Value *Z = EmitScalarExpr(E->getArg(2)); 16654 if (Builder.getIsFPConstrained()) { 16655 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 16656 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, Z}), "neg"); 16657 } else { 16658 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 16659 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, Z}), "neg"); 16660 } 16661 } 16662 case SystemZ::BI__builtin_s390_vfnmssb: 16663 case SystemZ::BI__builtin_s390_vfnmsdb: { 16664 llvm::Type *ResultType = ConvertType(E->getType()); 16665 Value *X = EmitScalarExpr(E->getArg(0)); 16666 Value *Y = EmitScalarExpr(E->getArg(1)); 16667 Value *Z = EmitScalarExpr(E->getArg(2)); 16668 if (Builder.getIsFPConstrained()) { 16669 Function *F = CGM.getIntrinsic(Intrinsic::experimental_constrained_fma, ResultType); 16670 Value *NegZ = Builder.CreateFNeg(Z, "sub"); 16671 return Builder.CreateFNeg(Builder.CreateConstrainedFPCall(F, {X, Y, NegZ})); 16672 } else { 16673 Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType); 16674 Value *NegZ = Builder.CreateFNeg(Z, "neg"); 16675 return Builder.CreateFNeg(Builder.CreateCall(F, {X, Y, NegZ})); 16676 } 16677 } 16678 case SystemZ::BI__builtin_s390_vflpsb: 16679 case SystemZ::BI__builtin_s390_vflpdb: { 16680 llvm::Type *ResultType = ConvertType(E->getType()); 16681 Value *X = EmitScalarExpr(E->getArg(0)); 16682 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); 16683 return Builder.CreateCall(F, X); 16684 } 16685 case SystemZ::BI__builtin_s390_vflnsb: 16686 case SystemZ::BI__builtin_s390_vflndb: { 16687 llvm::Type *ResultType = ConvertType(E->getType()); 16688 Value *X = EmitScalarExpr(E->getArg(0)); 16689 Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType); 16690 return Builder.CreateFNeg(Builder.CreateCall(F, X), "neg"); 16691 } 16692 case SystemZ::BI__builtin_s390_vfisb: 16693 case SystemZ::BI__builtin_s390_vfidb: { 16694 llvm::Type *ResultType = ConvertType(E->getType()); 16695 Value *X = EmitScalarExpr(E->getArg(0)); 16696 // Constant-fold the M4 and M5 mask arguments. 16697 llvm::APSInt M4 = *E->getArg(1)->getIntegerConstantExpr(getContext()); 16698 llvm::APSInt M5 = *E->getArg(2)->getIntegerConstantExpr(getContext()); 16699 // Check whether this instance can be represented via a LLVM standard 16700 // intrinsic. We only support some combinations of M4 and M5. 16701 Intrinsic::ID ID = Intrinsic::not_intrinsic; 16702 Intrinsic::ID CI; 16703 switch (M4.getZExtValue()) { 16704 default: break; 16705 case 0: // IEEE-inexact exception allowed 16706 switch (M5.getZExtValue()) { 16707 default: break; 16708 case 0: ID = Intrinsic::rint; 16709 CI = Intrinsic::experimental_constrained_rint; break; 16710 } 16711 break; 16712 case 4: // IEEE-inexact exception suppressed 16713 switch (M5.getZExtValue()) { 16714 default: break; 16715 case 0: ID = Intrinsic::nearbyint; 16716 CI = Intrinsic::experimental_constrained_nearbyint; break; 16717 case 1: ID = Intrinsic::round; 16718 CI = Intrinsic::experimental_constrained_round; break; 16719 case 5: ID = Intrinsic::trunc; 16720 CI = Intrinsic::experimental_constrained_trunc; break; 16721 case 6: ID = Intrinsic::ceil; 16722 CI = Intrinsic::experimental_constrained_ceil; break; 16723 case 7: ID = Intrinsic::floor; 16724 CI = Intrinsic::experimental_constrained_floor; break; 16725 } 16726 break; 16727 } 16728 if (ID != Intrinsic::not_intrinsic) { 16729 if (Builder.getIsFPConstrained()) { 16730 Function *F = CGM.getIntrinsic(CI, ResultType); 16731 return Builder.CreateConstrainedFPCall(F, X); 16732 } else { 16733 Function *F = CGM.getIntrinsic(ID, ResultType); 16734 return Builder.CreateCall(F, X); 16735 } 16736 } 16737 switch (BuiltinID) { // FIXME: constrained version? 16738 case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break; 16739 case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break; 16740 default: llvm_unreachable("Unknown BuiltinID"); 16741 } 16742 Function *F = CGM.getIntrinsic(ID); 16743 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); 16744 Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5); 16745 return Builder.CreateCall(F, {X, M4Value, M5Value}); 16746 } 16747 case SystemZ::BI__builtin_s390_vfmaxsb: 16748 case SystemZ::BI__builtin_s390_vfmaxdb: { 16749 llvm::Type *ResultType = ConvertType(E->getType()); 16750 Value *X = EmitScalarExpr(E->getArg(0)); 16751 Value *Y = EmitScalarExpr(E->getArg(1)); 16752 // Constant-fold the M4 mask argument. 16753 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext()); 16754 // Check whether this instance can be represented via a LLVM standard 16755 // intrinsic. We only support some values of M4. 16756 Intrinsic::ID ID = Intrinsic::not_intrinsic; 16757 Intrinsic::ID CI; 16758 switch (M4.getZExtValue()) { 16759 default: break; 16760 case 4: ID = Intrinsic::maxnum; 16761 CI = Intrinsic::experimental_constrained_maxnum; break; 16762 } 16763 if (ID != Intrinsic::not_intrinsic) { 16764 if (Builder.getIsFPConstrained()) { 16765 Function *F = CGM.getIntrinsic(CI, ResultType); 16766 return Builder.CreateConstrainedFPCall(F, {X, Y}); 16767 } else { 16768 Function *F = CGM.getIntrinsic(ID, ResultType); 16769 return Builder.CreateCall(F, {X, Y}); 16770 } 16771 } 16772 switch (BuiltinID) { 16773 case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break; 16774 case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break; 16775 default: llvm_unreachable("Unknown BuiltinID"); 16776 } 16777 Function *F = CGM.getIntrinsic(ID); 16778 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); 16779 return Builder.CreateCall(F, {X, Y, M4Value}); 16780 } 16781 case SystemZ::BI__builtin_s390_vfminsb: 16782 case SystemZ::BI__builtin_s390_vfmindb: { 16783 llvm::Type *ResultType = ConvertType(E->getType()); 16784 Value *X = EmitScalarExpr(E->getArg(0)); 16785 Value *Y = EmitScalarExpr(E->getArg(1)); 16786 // Constant-fold the M4 mask argument. 16787 llvm::APSInt M4 = *E->getArg(2)->getIntegerConstantExpr(getContext()); 16788 // Check whether this instance can be represented via a LLVM standard 16789 // intrinsic. We only support some values of M4. 16790 Intrinsic::ID ID = Intrinsic::not_intrinsic; 16791 Intrinsic::ID CI; 16792 switch (M4.getZExtValue()) { 16793 default: break; 16794 case 4: ID = Intrinsic::minnum; 16795 CI = Intrinsic::experimental_constrained_minnum; break; 16796 } 16797 if (ID != Intrinsic::not_intrinsic) { 16798 if (Builder.getIsFPConstrained()) { 16799 Function *F = CGM.getIntrinsic(CI, ResultType); 16800 return Builder.CreateConstrainedFPCall(F, {X, Y}); 16801 } else { 16802 Function *F = CGM.getIntrinsic(ID, ResultType); 16803 return Builder.CreateCall(F, {X, Y}); 16804 } 16805 } 16806 switch (BuiltinID) { 16807 case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break; 16808 case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break; 16809 default: llvm_unreachable("Unknown BuiltinID"); 16810 } 16811 Function *F = CGM.getIntrinsic(ID); 16812 Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4); 16813 return Builder.CreateCall(F, {X, Y, M4Value}); 16814 } 16815 16816 case SystemZ::BI__builtin_s390_vlbrh: 16817 case SystemZ::BI__builtin_s390_vlbrf: 16818 case SystemZ::BI__builtin_s390_vlbrg: { 16819 llvm::Type *ResultType = ConvertType(E->getType()); 16820 Value *X = EmitScalarExpr(E->getArg(0)); 16821 Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType); 16822 return Builder.CreateCall(F, X); 16823 } 16824 16825 // Vector intrinsics that output the post-instruction CC value. 16826 16827 #define INTRINSIC_WITH_CC(NAME) \ 16828 case SystemZ::BI__builtin_##NAME: \ 16829 return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E) 16830 16831 INTRINSIC_WITH_CC(s390_vpkshs); 16832 INTRINSIC_WITH_CC(s390_vpksfs); 16833 INTRINSIC_WITH_CC(s390_vpksgs); 16834 16835 INTRINSIC_WITH_CC(s390_vpklshs); 16836 INTRINSIC_WITH_CC(s390_vpklsfs); 16837 INTRINSIC_WITH_CC(s390_vpklsgs); 16838 16839 INTRINSIC_WITH_CC(s390_vceqbs); 16840 INTRINSIC_WITH_CC(s390_vceqhs); 16841 INTRINSIC_WITH_CC(s390_vceqfs); 16842 INTRINSIC_WITH_CC(s390_vceqgs); 16843 16844 INTRINSIC_WITH_CC(s390_vchbs); 16845 INTRINSIC_WITH_CC(s390_vchhs); 16846 INTRINSIC_WITH_CC(s390_vchfs); 16847 INTRINSIC_WITH_CC(s390_vchgs); 16848 16849 INTRINSIC_WITH_CC(s390_vchlbs); 16850 INTRINSIC_WITH_CC(s390_vchlhs); 16851 INTRINSIC_WITH_CC(s390_vchlfs); 16852 INTRINSIC_WITH_CC(s390_vchlgs); 16853 16854 INTRINSIC_WITH_CC(s390_vfaebs); 16855 INTRINSIC_WITH_CC(s390_vfaehs); 16856 INTRINSIC_WITH_CC(s390_vfaefs); 16857 16858 INTRINSIC_WITH_CC(s390_vfaezbs); 16859 INTRINSIC_WITH_CC(s390_vfaezhs); 16860 INTRINSIC_WITH_CC(s390_vfaezfs); 16861 16862 INTRINSIC_WITH_CC(s390_vfeebs); 16863 INTRINSIC_WITH_CC(s390_vfeehs); 16864 INTRINSIC_WITH_CC(s390_vfeefs); 16865 16866 INTRINSIC_WITH_CC(s390_vfeezbs); 16867 INTRINSIC_WITH_CC(s390_vfeezhs); 16868 INTRINSIC_WITH_CC(s390_vfeezfs); 16869 16870 INTRINSIC_WITH_CC(s390_vfenebs); 16871 INTRINSIC_WITH_CC(s390_vfenehs); 16872 INTRINSIC_WITH_CC(s390_vfenefs); 16873 16874 INTRINSIC_WITH_CC(s390_vfenezbs); 16875 INTRINSIC_WITH_CC(s390_vfenezhs); 16876 INTRINSIC_WITH_CC(s390_vfenezfs); 16877 16878 INTRINSIC_WITH_CC(s390_vistrbs); 16879 INTRINSIC_WITH_CC(s390_vistrhs); 16880 INTRINSIC_WITH_CC(s390_vistrfs); 16881 16882 INTRINSIC_WITH_CC(s390_vstrcbs); 16883 INTRINSIC_WITH_CC(s390_vstrchs); 16884 INTRINSIC_WITH_CC(s390_vstrcfs); 16885 16886 INTRINSIC_WITH_CC(s390_vstrczbs); 16887 INTRINSIC_WITH_CC(s390_vstrczhs); 16888 INTRINSIC_WITH_CC(s390_vstrczfs); 16889 16890 INTRINSIC_WITH_CC(s390_vfcesbs); 16891 INTRINSIC_WITH_CC(s390_vfcedbs); 16892 INTRINSIC_WITH_CC(s390_vfchsbs); 16893 INTRINSIC_WITH_CC(s390_vfchdbs); 16894 INTRINSIC_WITH_CC(s390_vfchesbs); 16895 INTRINSIC_WITH_CC(s390_vfchedbs); 16896 16897 INTRINSIC_WITH_CC(s390_vftcisb); 16898 INTRINSIC_WITH_CC(s390_vftcidb); 16899 16900 INTRINSIC_WITH_CC(s390_vstrsb); 16901 INTRINSIC_WITH_CC(s390_vstrsh); 16902 INTRINSIC_WITH_CC(s390_vstrsf); 16903 16904 INTRINSIC_WITH_CC(s390_vstrszb); 16905 INTRINSIC_WITH_CC(s390_vstrszh); 16906 INTRINSIC_WITH_CC(s390_vstrszf); 16907 16908 #undef INTRINSIC_WITH_CC 16909 16910 default: 16911 return nullptr; 16912 } 16913 } 16914 16915 namespace { 16916 // Helper classes for mapping MMA builtins to particular LLVM intrinsic variant. 16917 struct NVPTXMmaLdstInfo { 16918 unsigned NumResults; // Number of elements to load/store 16919 // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported. 16920 unsigned IID_col; 16921 unsigned IID_row; 16922 }; 16923 16924 #define MMA_INTR(geom_op_type, layout) \ 16925 Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride 16926 #define MMA_LDST(n, geom_op_type) \ 16927 { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) } 16928 16929 static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) { 16930 switch (BuiltinID) { 16931 // FP MMA loads 16932 case NVPTX::BI__hmma_m16n16k16_ld_a: 16933 return MMA_LDST(8, m16n16k16_load_a_f16); 16934 case NVPTX::BI__hmma_m16n16k16_ld_b: 16935 return MMA_LDST(8, m16n16k16_load_b_f16); 16936 case NVPTX::BI__hmma_m16n16k16_ld_c_f16: 16937 return MMA_LDST(4, m16n16k16_load_c_f16); 16938 case NVPTX::BI__hmma_m16n16k16_ld_c_f32: 16939 return MMA_LDST(8, m16n16k16_load_c_f32); 16940 case NVPTX::BI__hmma_m32n8k16_ld_a: 16941 return MMA_LDST(8, m32n8k16_load_a_f16); 16942 case NVPTX::BI__hmma_m32n8k16_ld_b: 16943 return MMA_LDST(8, m32n8k16_load_b_f16); 16944 case NVPTX::BI__hmma_m32n8k16_ld_c_f16: 16945 return MMA_LDST(4, m32n8k16_load_c_f16); 16946 case NVPTX::BI__hmma_m32n8k16_ld_c_f32: 16947 return MMA_LDST(8, m32n8k16_load_c_f32); 16948 case NVPTX::BI__hmma_m8n32k16_ld_a: 16949 return MMA_LDST(8, m8n32k16_load_a_f16); 16950 case NVPTX::BI__hmma_m8n32k16_ld_b: 16951 return MMA_LDST(8, m8n32k16_load_b_f16); 16952 case NVPTX::BI__hmma_m8n32k16_ld_c_f16: 16953 return MMA_LDST(4, m8n32k16_load_c_f16); 16954 case NVPTX::BI__hmma_m8n32k16_ld_c_f32: 16955 return MMA_LDST(8, m8n32k16_load_c_f32); 16956 16957 // Integer MMA loads 16958 case NVPTX::BI__imma_m16n16k16_ld_a_s8: 16959 return MMA_LDST(2, m16n16k16_load_a_s8); 16960 case NVPTX::BI__imma_m16n16k16_ld_a_u8: 16961 return MMA_LDST(2, m16n16k16_load_a_u8); 16962 case NVPTX::BI__imma_m16n16k16_ld_b_s8: 16963 return MMA_LDST(2, m16n16k16_load_b_s8); 16964 case NVPTX::BI__imma_m16n16k16_ld_b_u8: 16965 return MMA_LDST(2, m16n16k16_load_b_u8); 16966 case NVPTX::BI__imma_m16n16k16_ld_c: 16967 return MMA_LDST(8, m16n16k16_load_c_s32); 16968 case NVPTX::BI__imma_m32n8k16_ld_a_s8: 16969 return MMA_LDST(4, m32n8k16_load_a_s8); 16970 case NVPTX::BI__imma_m32n8k16_ld_a_u8: 16971 return MMA_LDST(4, m32n8k16_load_a_u8); 16972 case NVPTX::BI__imma_m32n8k16_ld_b_s8: 16973 return MMA_LDST(1, m32n8k16_load_b_s8); 16974 case NVPTX::BI__imma_m32n8k16_ld_b_u8: 16975 return MMA_LDST(1, m32n8k16_load_b_u8); 16976 case NVPTX::BI__imma_m32n8k16_ld_c: 16977 return MMA_LDST(8, m32n8k16_load_c_s32); 16978 case NVPTX::BI__imma_m8n32k16_ld_a_s8: 16979 return MMA_LDST(1, m8n32k16_load_a_s8); 16980 case NVPTX::BI__imma_m8n32k16_ld_a_u8: 16981 return MMA_LDST(1, m8n32k16_load_a_u8); 16982 case NVPTX::BI__imma_m8n32k16_ld_b_s8: 16983 return MMA_LDST(4, m8n32k16_load_b_s8); 16984 case NVPTX::BI__imma_m8n32k16_ld_b_u8: 16985 return MMA_LDST(4, m8n32k16_load_b_u8); 16986 case NVPTX::BI__imma_m8n32k16_ld_c: 16987 return MMA_LDST(8, m8n32k16_load_c_s32); 16988 16989 // Sub-integer MMA loads. 16990 // Only row/col layout is supported by A/B fragments. 16991 case NVPTX::BI__imma_m8n8k32_ld_a_s4: 16992 return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)}; 16993 case NVPTX::BI__imma_m8n8k32_ld_a_u4: 16994 return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)}; 16995 case NVPTX::BI__imma_m8n8k32_ld_b_s4: 16996 return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0}; 16997 case NVPTX::BI__imma_m8n8k32_ld_b_u4: 16998 return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0}; 16999 case NVPTX::BI__imma_m8n8k32_ld_c: 17000 return MMA_LDST(2, m8n8k32_load_c_s32); 17001 case NVPTX::BI__bmma_m8n8k128_ld_a_b1: 17002 return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)}; 17003 case NVPTX::BI__bmma_m8n8k128_ld_b_b1: 17004 return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0}; 17005 case NVPTX::BI__bmma_m8n8k128_ld_c: 17006 return MMA_LDST(2, m8n8k128_load_c_s32); 17007 17008 // Double MMA loads 17009 case NVPTX::BI__dmma_m8n8k4_ld_a: 17010 return MMA_LDST(1, m8n8k4_load_a_f64); 17011 case NVPTX::BI__dmma_m8n8k4_ld_b: 17012 return MMA_LDST(1, m8n8k4_load_b_f64); 17013 case NVPTX::BI__dmma_m8n8k4_ld_c: 17014 return MMA_LDST(2, m8n8k4_load_c_f64); 17015 17016 // Alternate float MMA loads 17017 case NVPTX::BI__mma_bf16_m16n16k16_ld_a: 17018 return MMA_LDST(4, m16n16k16_load_a_bf16); 17019 case NVPTX::BI__mma_bf16_m16n16k16_ld_b: 17020 return MMA_LDST(4, m16n16k16_load_b_bf16); 17021 case NVPTX::BI__mma_bf16_m8n32k16_ld_a: 17022 return MMA_LDST(2, m8n32k16_load_a_bf16); 17023 case NVPTX::BI__mma_bf16_m8n32k16_ld_b: 17024 return MMA_LDST(8, m8n32k16_load_b_bf16); 17025 case NVPTX::BI__mma_bf16_m32n8k16_ld_a: 17026 return MMA_LDST(8, m32n8k16_load_a_bf16); 17027 case NVPTX::BI__mma_bf16_m32n8k16_ld_b: 17028 return MMA_LDST(2, m32n8k16_load_b_bf16); 17029 case NVPTX::BI__mma_tf32_m16n16k8_ld_a: 17030 return MMA_LDST(4, m16n16k8_load_a_tf32); 17031 case NVPTX::BI__mma_tf32_m16n16k8_ld_b: 17032 return MMA_LDST(2, m16n16k8_load_b_tf32); 17033 case NVPTX::BI__mma_tf32_m16n16k8_ld_c: 17034 return MMA_LDST(8, m16n16k8_load_c_f32); 17035 17036 // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike 17037 // PTX and LLVM IR where stores always use fragment D, NVCC builtins always 17038 // use fragment C for both loads and stores. 17039 // FP MMA stores. 17040 case NVPTX::BI__hmma_m16n16k16_st_c_f16: 17041 return MMA_LDST(4, m16n16k16_store_d_f16); 17042 case NVPTX::BI__hmma_m16n16k16_st_c_f32: 17043 return MMA_LDST(8, m16n16k16_store_d_f32); 17044 case NVPTX::BI__hmma_m32n8k16_st_c_f16: 17045 return MMA_LDST(4, m32n8k16_store_d_f16); 17046 case NVPTX::BI__hmma_m32n8k16_st_c_f32: 17047 return MMA_LDST(8, m32n8k16_store_d_f32); 17048 case NVPTX::BI__hmma_m8n32k16_st_c_f16: 17049 return MMA_LDST(4, m8n32k16_store_d_f16); 17050 case NVPTX::BI__hmma_m8n32k16_st_c_f32: 17051 return MMA_LDST(8, m8n32k16_store_d_f32); 17052 17053 // Integer and sub-integer MMA stores. 17054 // Another naming quirk. Unlike other MMA builtins that use PTX types in the 17055 // name, integer loads/stores use LLVM's i32. 17056 case NVPTX::BI__imma_m16n16k16_st_c_i32: 17057 return MMA_LDST(8, m16n16k16_store_d_s32); 17058 case NVPTX::BI__imma_m32n8k16_st_c_i32: 17059 return MMA_LDST(8, m32n8k16_store_d_s32); 17060 case NVPTX::BI__imma_m8n32k16_st_c_i32: 17061 return MMA_LDST(8, m8n32k16_store_d_s32); 17062 case NVPTX::BI__imma_m8n8k32_st_c_i32: 17063 return MMA_LDST(2, m8n8k32_store_d_s32); 17064 case NVPTX::BI__bmma_m8n8k128_st_c_i32: 17065 return MMA_LDST(2, m8n8k128_store_d_s32); 17066 17067 // Double MMA store 17068 case NVPTX::BI__dmma_m8n8k4_st_c_f64: 17069 return MMA_LDST(2, m8n8k4_store_d_f64); 17070 17071 // Alternate float MMA store 17072 case NVPTX::BI__mma_m16n16k8_st_c_f32: 17073 return MMA_LDST(8, m16n16k8_store_d_f32); 17074 17075 default: 17076 llvm_unreachable("Unknown MMA builtin"); 17077 } 17078 } 17079 #undef MMA_LDST 17080 #undef MMA_INTR 17081 17082 17083 struct NVPTXMmaInfo { 17084 unsigned NumEltsA; 17085 unsigned NumEltsB; 17086 unsigned NumEltsC; 17087 unsigned NumEltsD; 17088 17089 // Variants are ordered by layout-A/layout-B/satf, where 'row' has priority 17090 // over 'col' for layout. The index of non-satf variants is expected to match 17091 // the undocumented layout constants used by CUDA's mma.hpp. 17092 std::array<unsigned, 8> Variants; 17093 17094 unsigned getMMAIntrinsic(int Layout, bool Satf) { 17095 unsigned Index = Layout + 4 * Satf; 17096 if (Index >= Variants.size()) 17097 return 0; 17098 return Variants[Index]; 17099 } 17100 }; 17101 17102 // Returns an intrinsic that matches Layout and Satf for valid combinations of 17103 // Layout and Satf, 0 otherwise. 17104 static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) { 17105 // clang-format off 17106 #define MMA_VARIANTS(geom, type) \ 17107 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \ 17108 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ 17109 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \ 17110 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type 17111 #define MMA_SATF_VARIANTS(geom, type) \ 17112 MMA_VARIANTS(geom, type), \ 17113 Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \ 17114 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \ 17115 Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \ 17116 Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite 17117 // Sub-integer MMA only supports row.col layout. 17118 #define MMA_VARIANTS_I4(geom, type) \ 17119 0, \ 17120 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \ 17121 0, \ 17122 0, \ 17123 0, \ 17124 Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \ 17125 0, \ 17126 0 17127 // b1 MMA does not support .satfinite. 17128 #define MMA_VARIANTS_B1_XOR(geom, type) \ 17129 0, \ 17130 Intrinsic::nvvm_wmma_##geom##_mma_xor_popc_row_col_##type, \ 17131 0, \ 17132 0, \ 17133 0, \ 17134 0, \ 17135 0, \ 17136 0 17137 #define MMA_VARIANTS_B1_AND(geom, type) \ 17138 0, \ 17139 Intrinsic::nvvm_wmma_##geom##_mma_and_popc_row_col_##type, \ 17140 0, \ 17141 0, \ 17142 0, \ 17143 0, \ 17144 0, \ 17145 0 17146 // clang-format on 17147 switch (BuiltinID) { 17148 // FP MMA 17149 // Note that 'type' argument of MMA_SATF_VARIANTS uses D_C notation, while 17150 // NumEltsN of return value are ordered as A,B,C,D. 17151 case NVPTX::BI__hmma_m16n16k16_mma_f16f16: 17152 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f16)}}}; 17153 case NVPTX::BI__hmma_m16n16k16_mma_f32f16: 17154 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f16)}}}; 17155 case NVPTX::BI__hmma_m16n16k16_mma_f16f32: 17156 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m16n16k16, f16_f32)}}}; 17157 case NVPTX::BI__hmma_m16n16k16_mma_f32f32: 17158 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, f32_f32)}}}; 17159 case NVPTX::BI__hmma_m32n8k16_mma_f16f16: 17160 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f16)}}}; 17161 case NVPTX::BI__hmma_m32n8k16_mma_f32f16: 17162 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f16)}}}; 17163 case NVPTX::BI__hmma_m32n8k16_mma_f16f32: 17164 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m32n8k16, f16_f32)}}}; 17165 case NVPTX::BI__hmma_m32n8k16_mma_f32f32: 17166 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, f32_f32)}}}; 17167 case NVPTX::BI__hmma_m8n32k16_mma_f16f16: 17168 return {8, 8, 4, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f16)}}}; 17169 case NVPTX::BI__hmma_m8n32k16_mma_f32f16: 17170 return {8, 8, 4, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f16)}}}; 17171 case NVPTX::BI__hmma_m8n32k16_mma_f16f32: 17172 return {8, 8, 8, 4, {{MMA_SATF_VARIANTS(m8n32k16, f16_f32)}}}; 17173 case NVPTX::BI__hmma_m8n32k16_mma_f32f32: 17174 return {8, 8, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, f32_f32)}}}; 17175 17176 // Integer MMA 17177 case NVPTX::BI__imma_m16n16k16_mma_s8: 17178 return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, s8)}}}; 17179 case NVPTX::BI__imma_m16n16k16_mma_u8: 17180 return {2, 2, 8, 8, {{MMA_SATF_VARIANTS(m16n16k16, u8)}}}; 17181 case NVPTX::BI__imma_m32n8k16_mma_s8: 17182 return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, s8)}}}; 17183 case NVPTX::BI__imma_m32n8k16_mma_u8: 17184 return {4, 1, 8, 8, {{MMA_SATF_VARIANTS(m32n8k16, u8)}}}; 17185 case NVPTX::BI__imma_m8n32k16_mma_s8: 17186 return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, s8)}}}; 17187 case NVPTX::BI__imma_m8n32k16_mma_u8: 17188 return {1, 4, 8, 8, {{MMA_SATF_VARIANTS(m8n32k16, u8)}}}; 17189 17190 // Sub-integer MMA 17191 case NVPTX::BI__imma_m8n8k32_mma_s4: 17192 return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, s4)}}}; 17193 case NVPTX::BI__imma_m8n8k32_mma_u4: 17194 return {1, 1, 2, 2, {{MMA_VARIANTS_I4(m8n8k32, u4)}}}; 17195 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: 17196 return {1, 1, 2, 2, {{MMA_VARIANTS_B1_XOR(m8n8k128, b1)}}}; 17197 case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1: 17198 return {1, 1, 2, 2, {{MMA_VARIANTS_B1_AND(m8n8k128, b1)}}}; 17199 17200 // Double MMA 17201 case NVPTX::BI__dmma_m8n8k4_mma_f64: 17202 return {1, 1, 2, 2, {{MMA_VARIANTS(m8n8k4, f64)}}}; 17203 17204 // Alternate FP MMA 17205 case NVPTX::BI__mma_bf16_m16n16k16_mma_f32: 17206 return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k16, bf16)}}}; 17207 case NVPTX::BI__mma_bf16_m8n32k16_mma_f32: 17208 return {2, 8, 8, 8, {{MMA_VARIANTS(m8n32k16, bf16)}}}; 17209 case NVPTX::BI__mma_bf16_m32n8k16_mma_f32: 17210 return {8, 2, 8, 8, {{MMA_VARIANTS(m32n8k16, bf16)}}}; 17211 case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: 17212 return {4, 4, 8, 8, {{MMA_VARIANTS(m16n16k8, tf32)}}}; 17213 default: 17214 llvm_unreachable("Unexpected builtin ID."); 17215 } 17216 #undef MMA_VARIANTS 17217 #undef MMA_SATF_VARIANTS 17218 #undef MMA_VARIANTS_I4 17219 #undef MMA_VARIANTS_B1_AND 17220 #undef MMA_VARIANTS_B1_XOR 17221 } 17222 17223 } // namespace 17224 17225 Value * 17226 CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) { 17227 auto MakeLdg = [&](unsigned IntrinsicID) { 17228 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17229 clang::CharUnits Align = 17230 CGM.getNaturalPointeeTypeAlignment(E->getArg(0)->getType()); 17231 return Builder.CreateCall( 17232 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(), 17233 Ptr->getType()}), 17234 {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())}); 17235 }; 17236 auto MakeScopedAtomic = [&](unsigned IntrinsicID) { 17237 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17238 return Builder.CreateCall( 17239 CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(), 17240 Ptr->getType()}), 17241 {Ptr, EmitScalarExpr(E->getArg(1))}); 17242 }; 17243 switch (BuiltinID) { 17244 case NVPTX::BI__nvvm_atom_add_gen_i: 17245 case NVPTX::BI__nvvm_atom_add_gen_l: 17246 case NVPTX::BI__nvvm_atom_add_gen_ll: 17247 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E); 17248 17249 case NVPTX::BI__nvvm_atom_sub_gen_i: 17250 case NVPTX::BI__nvvm_atom_sub_gen_l: 17251 case NVPTX::BI__nvvm_atom_sub_gen_ll: 17252 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E); 17253 17254 case NVPTX::BI__nvvm_atom_and_gen_i: 17255 case NVPTX::BI__nvvm_atom_and_gen_l: 17256 case NVPTX::BI__nvvm_atom_and_gen_ll: 17257 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E); 17258 17259 case NVPTX::BI__nvvm_atom_or_gen_i: 17260 case NVPTX::BI__nvvm_atom_or_gen_l: 17261 case NVPTX::BI__nvvm_atom_or_gen_ll: 17262 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E); 17263 17264 case NVPTX::BI__nvvm_atom_xor_gen_i: 17265 case NVPTX::BI__nvvm_atom_xor_gen_l: 17266 case NVPTX::BI__nvvm_atom_xor_gen_ll: 17267 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E); 17268 17269 case NVPTX::BI__nvvm_atom_xchg_gen_i: 17270 case NVPTX::BI__nvvm_atom_xchg_gen_l: 17271 case NVPTX::BI__nvvm_atom_xchg_gen_ll: 17272 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E); 17273 17274 case NVPTX::BI__nvvm_atom_max_gen_i: 17275 case NVPTX::BI__nvvm_atom_max_gen_l: 17276 case NVPTX::BI__nvvm_atom_max_gen_ll: 17277 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E); 17278 17279 case NVPTX::BI__nvvm_atom_max_gen_ui: 17280 case NVPTX::BI__nvvm_atom_max_gen_ul: 17281 case NVPTX::BI__nvvm_atom_max_gen_ull: 17282 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E); 17283 17284 case NVPTX::BI__nvvm_atom_min_gen_i: 17285 case NVPTX::BI__nvvm_atom_min_gen_l: 17286 case NVPTX::BI__nvvm_atom_min_gen_ll: 17287 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E); 17288 17289 case NVPTX::BI__nvvm_atom_min_gen_ui: 17290 case NVPTX::BI__nvvm_atom_min_gen_ul: 17291 case NVPTX::BI__nvvm_atom_min_gen_ull: 17292 return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E); 17293 17294 case NVPTX::BI__nvvm_atom_cas_gen_i: 17295 case NVPTX::BI__nvvm_atom_cas_gen_l: 17296 case NVPTX::BI__nvvm_atom_cas_gen_ll: 17297 // __nvvm_atom_cas_gen_* should return the old value rather than the 17298 // success flag. 17299 return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false); 17300 17301 case NVPTX::BI__nvvm_atom_add_gen_f: 17302 case NVPTX::BI__nvvm_atom_add_gen_d: { 17303 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17304 Value *Val = EmitScalarExpr(E->getArg(1)); 17305 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val, 17306 AtomicOrdering::SequentiallyConsistent); 17307 } 17308 17309 case NVPTX::BI__nvvm_atom_inc_gen_ui: { 17310 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17311 Value *Val = EmitScalarExpr(E->getArg(1)); 17312 Function *FnALI32 = 17313 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType()); 17314 return Builder.CreateCall(FnALI32, {Ptr, Val}); 17315 } 17316 17317 case NVPTX::BI__nvvm_atom_dec_gen_ui: { 17318 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17319 Value *Val = EmitScalarExpr(E->getArg(1)); 17320 Function *FnALD32 = 17321 CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType()); 17322 return Builder.CreateCall(FnALD32, {Ptr, Val}); 17323 } 17324 17325 case NVPTX::BI__nvvm_ldg_c: 17326 case NVPTX::BI__nvvm_ldg_c2: 17327 case NVPTX::BI__nvvm_ldg_c4: 17328 case NVPTX::BI__nvvm_ldg_s: 17329 case NVPTX::BI__nvvm_ldg_s2: 17330 case NVPTX::BI__nvvm_ldg_s4: 17331 case NVPTX::BI__nvvm_ldg_i: 17332 case NVPTX::BI__nvvm_ldg_i2: 17333 case NVPTX::BI__nvvm_ldg_i4: 17334 case NVPTX::BI__nvvm_ldg_l: 17335 case NVPTX::BI__nvvm_ldg_ll: 17336 case NVPTX::BI__nvvm_ldg_ll2: 17337 case NVPTX::BI__nvvm_ldg_uc: 17338 case NVPTX::BI__nvvm_ldg_uc2: 17339 case NVPTX::BI__nvvm_ldg_uc4: 17340 case NVPTX::BI__nvvm_ldg_us: 17341 case NVPTX::BI__nvvm_ldg_us2: 17342 case NVPTX::BI__nvvm_ldg_us4: 17343 case NVPTX::BI__nvvm_ldg_ui: 17344 case NVPTX::BI__nvvm_ldg_ui2: 17345 case NVPTX::BI__nvvm_ldg_ui4: 17346 case NVPTX::BI__nvvm_ldg_ul: 17347 case NVPTX::BI__nvvm_ldg_ull: 17348 case NVPTX::BI__nvvm_ldg_ull2: 17349 // PTX Interoperability section 2.2: "For a vector with an even number of 17350 // elements, its alignment is set to number of elements times the alignment 17351 // of its member: n*alignof(t)." 17352 return MakeLdg(Intrinsic::nvvm_ldg_global_i); 17353 case NVPTX::BI__nvvm_ldg_f: 17354 case NVPTX::BI__nvvm_ldg_f2: 17355 case NVPTX::BI__nvvm_ldg_f4: 17356 case NVPTX::BI__nvvm_ldg_d: 17357 case NVPTX::BI__nvvm_ldg_d2: 17358 return MakeLdg(Intrinsic::nvvm_ldg_global_f); 17359 17360 case NVPTX::BI__nvvm_atom_cta_add_gen_i: 17361 case NVPTX::BI__nvvm_atom_cta_add_gen_l: 17362 case NVPTX::BI__nvvm_atom_cta_add_gen_ll: 17363 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta); 17364 case NVPTX::BI__nvvm_atom_sys_add_gen_i: 17365 case NVPTX::BI__nvvm_atom_sys_add_gen_l: 17366 case NVPTX::BI__nvvm_atom_sys_add_gen_ll: 17367 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys); 17368 case NVPTX::BI__nvvm_atom_cta_add_gen_f: 17369 case NVPTX::BI__nvvm_atom_cta_add_gen_d: 17370 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta); 17371 case NVPTX::BI__nvvm_atom_sys_add_gen_f: 17372 case NVPTX::BI__nvvm_atom_sys_add_gen_d: 17373 return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys); 17374 case NVPTX::BI__nvvm_atom_cta_xchg_gen_i: 17375 case NVPTX::BI__nvvm_atom_cta_xchg_gen_l: 17376 case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll: 17377 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta); 17378 case NVPTX::BI__nvvm_atom_sys_xchg_gen_i: 17379 case NVPTX::BI__nvvm_atom_sys_xchg_gen_l: 17380 case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll: 17381 return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys); 17382 case NVPTX::BI__nvvm_atom_cta_max_gen_i: 17383 case NVPTX::BI__nvvm_atom_cta_max_gen_ui: 17384 case NVPTX::BI__nvvm_atom_cta_max_gen_l: 17385 case NVPTX::BI__nvvm_atom_cta_max_gen_ul: 17386 case NVPTX::BI__nvvm_atom_cta_max_gen_ll: 17387 case NVPTX::BI__nvvm_atom_cta_max_gen_ull: 17388 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta); 17389 case NVPTX::BI__nvvm_atom_sys_max_gen_i: 17390 case NVPTX::BI__nvvm_atom_sys_max_gen_ui: 17391 case NVPTX::BI__nvvm_atom_sys_max_gen_l: 17392 case NVPTX::BI__nvvm_atom_sys_max_gen_ul: 17393 case NVPTX::BI__nvvm_atom_sys_max_gen_ll: 17394 case NVPTX::BI__nvvm_atom_sys_max_gen_ull: 17395 return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys); 17396 case NVPTX::BI__nvvm_atom_cta_min_gen_i: 17397 case NVPTX::BI__nvvm_atom_cta_min_gen_ui: 17398 case NVPTX::BI__nvvm_atom_cta_min_gen_l: 17399 case NVPTX::BI__nvvm_atom_cta_min_gen_ul: 17400 case NVPTX::BI__nvvm_atom_cta_min_gen_ll: 17401 case NVPTX::BI__nvvm_atom_cta_min_gen_ull: 17402 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta); 17403 case NVPTX::BI__nvvm_atom_sys_min_gen_i: 17404 case NVPTX::BI__nvvm_atom_sys_min_gen_ui: 17405 case NVPTX::BI__nvvm_atom_sys_min_gen_l: 17406 case NVPTX::BI__nvvm_atom_sys_min_gen_ul: 17407 case NVPTX::BI__nvvm_atom_sys_min_gen_ll: 17408 case NVPTX::BI__nvvm_atom_sys_min_gen_ull: 17409 return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys); 17410 case NVPTX::BI__nvvm_atom_cta_inc_gen_ui: 17411 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta); 17412 case NVPTX::BI__nvvm_atom_cta_dec_gen_ui: 17413 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta); 17414 case NVPTX::BI__nvvm_atom_sys_inc_gen_ui: 17415 return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys); 17416 case NVPTX::BI__nvvm_atom_sys_dec_gen_ui: 17417 return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys); 17418 case NVPTX::BI__nvvm_atom_cta_and_gen_i: 17419 case NVPTX::BI__nvvm_atom_cta_and_gen_l: 17420 case NVPTX::BI__nvvm_atom_cta_and_gen_ll: 17421 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta); 17422 case NVPTX::BI__nvvm_atom_sys_and_gen_i: 17423 case NVPTX::BI__nvvm_atom_sys_and_gen_l: 17424 case NVPTX::BI__nvvm_atom_sys_and_gen_ll: 17425 return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys); 17426 case NVPTX::BI__nvvm_atom_cta_or_gen_i: 17427 case NVPTX::BI__nvvm_atom_cta_or_gen_l: 17428 case NVPTX::BI__nvvm_atom_cta_or_gen_ll: 17429 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta); 17430 case NVPTX::BI__nvvm_atom_sys_or_gen_i: 17431 case NVPTX::BI__nvvm_atom_sys_or_gen_l: 17432 case NVPTX::BI__nvvm_atom_sys_or_gen_ll: 17433 return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys); 17434 case NVPTX::BI__nvvm_atom_cta_xor_gen_i: 17435 case NVPTX::BI__nvvm_atom_cta_xor_gen_l: 17436 case NVPTX::BI__nvvm_atom_cta_xor_gen_ll: 17437 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta); 17438 case NVPTX::BI__nvvm_atom_sys_xor_gen_i: 17439 case NVPTX::BI__nvvm_atom_sys_xor_gen_l: 17440 case NVPTX::BI__nvvm_atom_sys_xor_gen_ll: 17441 return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys); 17442 case NVPTX::BI__nvvm_atom_cta_cas_gen_i: 17443 case NVPTX::BI__nvvm_atom_cta_cas_gen_l: 17444 case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: { 17445 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17446 return Builder.CreateCall( 17447 CGM.getIntrinsic( 17448 Intrinsic::nvvm_atomic_cas_gen_i_cta, 17449 {Ptr->getType()->getPointerElementType(), Ptr->getType()}), 17450 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); 17451 } 17452 case NVPTX::BI__nvvm_atom_sys_cas_gen_i: 17453 case NVPTX::BI__nvvm_atom_sys_cas_gen_l: 17454 case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: { 17455 Value *Ptr = EmitScalarExpr(E->getArg(0)); 17456 return Builder.CreateCall( 17457 CGM.getIntrinsic( 17458 Intrinsic::nvvm_atomic_cas_gen_i_sys, 17459 {Ptr->getType()->getPointerElementType(), Ptr->getType()}), 17460 {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))}); 17461 } 17462 case NVPTX::BI__nvvm_match_all_sync_i32p: 17463 case NVPTX::BI__nvvm_match_all_sync_i64p: { 17464 Value *Mask = EmitScalarExpr(E->getArg(0)); 17465 Value *Val = EmitScalarExpr(E->getArg(1)); 17466 Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2)); 17467 Value *ResultPair = Builder.CreateCall( 17468 CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p 17469 ? Intrinsic::nvvm_match_all_sync_i32p 17470 : Intrinsic::nvvm_match_all_sync_i64p), 17471 {Mask, Val}); 17472 Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1), 17473 PredOutPtr.getElementType()); 17474 Builder.CreateStore(Pred, PredOutPtr); 17475 return Builder.CreateExtractValue(ResultPair, 0); 17476 } 17477 17478 // FP MMA loads 17479 case NVPTX::BI__hmma_m16n16k16_ld_a: 17480 case NVPTX::BI__hmma_m16n16k16_ld_b: 17481 case NVPTX::BI__hmma_m16n16k16_ld_c_f16: 17482 case NVPTX::BI__hmma_m16n16k16_ld_c_f32: 17483 case NVPTX::BI__hmma_m32n8k16_ld_a: 17484 case NVPTX::BI__hmma_m32n8k16_ld_b: 17485 case NVPTX::BI__hmma_m32n8k16_ld_c_f16: 17486 case NVPTX::BI__hmma_m32n8k16_ld_c_f32: 17487 case NVPTX::BI__hmma_m8n32k16_ld_a: 17488 case NVPTX::BI__hmma_m8n32k16_ld_b: 17489 case NVPTX::BI__hmma_m8n32k16_ld_c_f16: 17490 case NVPTX::BI__hmma_m8n32k16_ld_c_f32: 17491 // Integer MMA loads. 17492 case NVPTX::BI__imma_m16n16k16_ld_a_s8: 17493 case NVPTX::BI__imma_m16n16k16_ld_a_u8: 17494 case NVPTX::BI__imma_m16n16k16_ld_b_s8: 17495 case NVPTX::BI__imma_m16n16k16_ld_b_u8: 17496 case NVPTX::BI__imma_m16n16k16_ld_c: 17497 case NVPTX::BI__imma_m32n8k16_ld_a_s8: 17498 case NVPTX::BI__imma_m32n8k16_ld_a_u8: 17499 case NVPTX::BI__imma_m32n8k16_ld_b_s8: 17500 case NVPTX::BI__imma_m32n8k16_ld_b_u8: 17501 case NVPTX::BI__imma_m32n8k16_ld_c: 17502 case NVPTX::BI__imma_m8n32k16_ld_a_s8: 17503 case NVPTX::BI__imma_m8n32k16_ld_a_u8: 17504 case NVPTX::BI__imma_m8n32k16_ld_b_s8: 17505 case NVPTX::BI__imma_m8n32k16_ld_b_u8: 17506 case NVPTX::BI__imma_m8n32k16_ld_c: 17507 // Sub-integer MMA loads. 17508 case NVPTX::BI__imma_m8n8k32_ld_a_s4: 17509 case NVPTX::BI__imma_m8n8k32_ld_a_u4: 17510 case NVPTX::BI__imma_m8n8k32_ld_b_s4: 17511 case NVPTX::BI__imma_m8n8k32_ld_b_u4: 17512 case NVPTX::BI__imma_m8n8k32_ld_c: 17513 case NVPTX::BI__bmma_m8n8k128_ld_a_b1: 17514 case NVPTX::BI__bmma_m8n8k128_ld_b_b1: 17515 case NVPTX::BI__bmma_m8n8k128_ld_c: 17516 // Double MMA loads. 17517 case NVPTX::BI__dmma_m8n8k4_ld_a: 17518 case NVPTX::BI__dmma_m8n8k4_ld_b: 17519 case NVPTX::BI__dmma_m8n8k4_ld_c: 17520 // Alternate float MMA loads. 17521 case NVPTX::BI__mma_bf16_m16n16k16_ld_a: 17522 case NVPTX::BI__mma_bf16_m16n16k16_ld_b: 17523 case NVPTX::BI__mma_bf16_m8n32k16_ld_a: 17524 case NVPTX::BI__mma_bf16_m8n32k16_ld_b: 17525 case NVPTX::BI__mma_bf16_m32n8k16_ld_a: 17526 case NVPTX::BI__mma_bf16_m32n8k16_ld_b: 17527 case NVPTX::BI__mma_tf32_m16n16k8_ld_a: 17528 case NVPTX::BI__mma_tf32_m16n16k8_ld_b: 17529 case NVPTX::BI__mma_tf32_m16n16k8_ld_c: { 17530 Address Dst = EmitPointerWithAlignment(E->getArg(0)); 17531 Value *Src = EmitScalarExpr(E->getArg(1)); 17532 Value *Ldm = EmitScalarExpr(E->getArg(2)); 17533 Optional<llvm::APSInt> isColMajorArg = 17534 E->getArg(3)->getIntegerConstantExpr(getContext()); 17535 if (!isColMajorArg) 17536 return nullptr; 17537 bool isColMajor = isColMajorArg->getSExtValue(); 17538 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID); 17539 unsigned IID = isColMajor ? II.IID_col : II.IID_row; 17540 if (IID == 0) 17541 return nullptr; 17542 17543 Value *Result = 17544 Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm}); 17545 17546 // Save returned values. 17547 assert(II.NumResults); 17548 if (II.NumResults == 1) { 17549 Builder.CreateAlignedStore(Result, Dst.getPointer(), 17550 CharUnits::fromQuantity(4)); 17551 } else { 17552 for (unsigned i = 0; i < II.NumResults; ++i) { 17553 Builder.CreateAlignedStore( 17554 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), 17555 Dst.getElementType()), 17556 Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(), 17557 llvm::ConstantInt::get(IntTy, i)), 17558 CharUnits::fromQuantity(4)); 17559 } 17560 } 17561 return Result; 17562 } 17563 17564 case NVPTX::BI__hmma_m16n16k16_st_c_f16: 17565 case NVPTX::BI__hmma_m16n16k16_st_c_f32: 17566 case NVPTX::BI__hmma_m32n8k16_st_c_f16: 17567 case NVPTX::BI__hmma_m32n8k16_st_c_f32: 17568 case NVPTX::BI__hmma_m8n32k16_st_c_f16: 17569 case NVPTX::BI__hmma_m8n32k16_st_c_f32: 17570 case NVPTX::BI__imma_m16n16k16_st_c_i32: 17571 case NVPTX::BI__imma_m32n8k16_st_c_i32: 17572 case NVPTX::BI__imma_m8n32k16_st_c_i32: 17573 case NVPTX::BI__imma_m8n8k32_st_c_i32: 17574 case NVPTX::BI__bmma_m8n8k128_st_c_i32: 17575 case NVPTX::BI__dmma_m8n8k4_st_c_f64: 17576 case NVPTX::BI__mma_m16n16k8_st_c_f32: { 17577 Value *Dst = EmitScalarExpr(E->getArg(0)); 17578 Address Src = EmitPointerWithAlignment(E->getArg(1)); 17579 Value *Ldm = EmitScalarExpr(E->getArg(2)); 17580 Optional<llvm::APSInt> isColMajorArg = 17581 E->getArg(3)->getIntegerConstantExpr(getContext()); 17582 if (!isColMajorArg) 17583 return nullptr; 17584 bool isColMajor = isColMajorArg->getSExtValue(); 17585 NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID); 17586 unsigned IID = isColMajor ? II.IID_col : II.IID_row; 17587 if (IID == 0) 17588 return nullptr; 17589 Function *Intrinsic = 17590 CGM.getIntrinsic(IID, Dst->getType()); 17591 llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1); 17592 SmallVector<Value *, 10> Values = {Dst}; 17593 for (unsigned i = 0; i < II.NumResults; ++i) { 17594 Value *V = Builder.CreateAlignedLoad( 17595 Src.getElementType(), 17596 Builder.CreateGEP(Src.getElementType(), Src.getPointer(), 17597 llvm::ConstantInt::get(IntTy, i)), 17598 CharUnits::fromQuantity(4)); 17599 Values.push_back(Builder.CreateBitCast(V, ParamType)); 17600 } 17601 Values.push_back(Ldm); 17602 Value *Result = Builder.CreateCall(Intrinsic, Values); 17603 return Result; 17604 } 17605 17606 // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) --> 17607 // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf> 17608 case NVPTX::BI__hmma_m16n16k16_mma_f16f16: 17609 case NVPTX::BI__hmma_m16n16k16_mma_f32f16: 17610 case NVPTX::BI__hmma_m16n16k16_mma_f32f32: 17611 case NVPTX::BI__hmma_m16n16k16_mma_f16f32: 17612 case NVPTX::BI__hmma_m32n8k16_mma_f16f16: 17613 case NVPTX::BI__hmma_m32n8k16_mma_f32f16: 17614 case NVPTX::BI__hmma_m32n8k16_mma_f32f32: 17615 case NVPTX::BI__hmma_m32n8k16_mma_f16f32: 17616 case NVPTX::BI__hmma_m8n32k16_mma_f16f16: 17617 case NVPTX::BI__hmma_m8n32k16_mma_f32f16: 17618 case NVPTX::BI__hmma_m8n32k16_mma_f32f32: 17619 case NVPTX::BI__hmma_m8n32k16_mma_f16f32: 17620 case NVPTX::BI__imma_m16n16k16_mma_s8: 17621 case NVPTX::BI__imma_m16n16k16_mma_u8: 17622 case NVPTX::BI__imma_m32n8k16_mma_s8: 17623 case NVPTX::BI__imma_m32n8k16_mma_u8: 17624 case NVPTX::BI__imma_m8n32k16_mma_s8: 17625 case NVPTX::BI__imma_m8n32k16_mma_u8: 17626 case NVPTX::BI__imma_m8n8k32_mma_s4: 17627 case NVPTX::BI__imma_m8n8k32_mma_u4: 17628 case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: 17629 case NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1: 17630 case NVPTX::BI__dmma_m8n8k4_mma_f64: 17631 case NVPTX::BI__mma_bf16_m16n16k16_mma_f32: 17632 case NVPTX::BI__mma_bf16_m8n32k16_mma_f32: 17633 case NVPTX::BI__mma_bf16_m32n8k16_mma_f32: 17634 case NVPTX::BI__mma_tf32_m16n16k8_mma_f32: { 17635 Address Dst = EmitPointerWithAlignment(E->getArg(0)); 17636 Address SrcA = EmitPointerWithAlignment(E->getArg(1)); 17637 Address SrcB = EmitPointerWithAlignment(E->getArg(2)); 17638 Address SrcC = EmitPointerWithAlignment(E->getArg(3)); 17639 Optional<llvm::APSInt> LayoutArg = 17640 E->getArg(4)->getIntegerConstantExpr(getContext()); 17641 if (!LayoutArg) 17642 return nullptr; 17643 int Layout = LayoutArg->getSExtValue(); 17644 if (Layout < 0 || Layout > 3) 17645 return nullptr; 17646 llvm::APSInt SatfArg; 17647 if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1 || 17648 BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_and_popc_b1) 17649 SatfArg = 0; // .b1 does not have satf argument. 17650 else if (Optional<llvm::APSInt> OptSatfArg = 17651 E->getArg(5)->getIntegerConstantExpr(getContext())) 17652 SatfArg = *OptSatfArg; 17653 else 17654 return nullptr; 17655 bool Satf = SatfArg.getSExtValue(); 17656 NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID); 17657 unsigned IID = MI.getMMAIntrinsic(Layout, Satf); 17658 if (IID == 0) // Unsupported combination of Layout/Satf. 17659 return nullptr; 17660 17661 SmallVector<Value *, 24> Values; 17662 Function *Intrinsic = CGM.getIntrinsic(IID); 17663 llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0); 17664 // Load A 17665 for (unsigned i = 0; i < MI.NumEltsA; ++i) { 17666 Value *V = Builder.CreateAlignedLoad( 17667 SrcA.getElementType(), 17668 Builder.CreateGEP(SrcA.getElementType(), SrcA.getPointer(), 17669 llvm::ConstantInt::get(IntTy, i)), 17670 CharUnits::fromQuantity(4)); 17671 Values.push_back(Builder.CreateBitCast(V, AType)); 17672 } 17673 // Load B 17674 llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA); 17675 for (unsigned i = 0; i < MI.NumEltsB; ++i) { 17676 Value *V = Builder.CreateAlignedLoad( 17677 SrcB.getElementType(), 17678 Builder.CreateGEP(SrcB.getElementType(), SrcB.getPointer(), 17679 llvm::ConstantInt::get(IntTy, i)), 17680 CharUnits::fromQuantity(4)); 17681 Values.push_back(Builder.CreateBitCast(V, BType)); 17682 } 17683 // Load C 17684 llvm::Type *CType = 17685 Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB); 17686 for (unsigned i = 0; i < MI.NumEltsC; ++i) { 17687 Value *V = Builder.CreateAlignedLoad( 17688 SrcC.getElementType(), 17689 Builder.CreateGEP(SrcC.getElementType(), SrcC.getPointer(), 17690 llvm::ConstantInt::get(IntTy, i)), 17691 CharUnits::fromQuantity(4)); 17692 Values.push_back(Builder.CreateBitCast(V, CType)); 17693 } 17694 Value *Result = Builder.CreateCall(Intrinsic, Values); 17695 llvm::Type *DType = Dst.getElementType(); 17696 for (unsigned i = 0; i < MI.NumEltsD; ++i) 17697 Builder.CreateAlignedStore( 17698 Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType), 17699 Builder.CreateGEP(Dst.getElementType(), Dst.getPointer(), 17700 llvm::ConstantInt::get(IntTy, i)), 17701 CharUnits::fromQuantity(4)); 17702 return Result; 17703 } 17704 default: 17705 return nullptr; 17706 } 17707 } 17708 17709 namespace { 17710 struct BuiltinAlignArgs { 17711 llvm::Value *Src = nullptr; 17712 llvm::Type *SrcType = nullptr; 17713 llvm::Value *Alignment = nullptr; 17714 llvm::Value *Mask = nullptr; 17715 llvm::IntegerType *IntType = nullptr; 17716 17717 BuiltinAlignArgs(const CallExpr *E, CodeGenFunction &CGF) { 17718 QualType AstType = E->getArg(0)->getType(); 17719 if (AstType->isArrayType()) 17720 Src = CGF.EmitArrayToPointerDecay(E->getArg(0)).getPointer(); 17721 else 17722 Src = CGF.EmitScalarExpr(E->getArg(0)); 17723 SrcType = Src->getType(); 17724 if (SrcType->isPointerTy()) { 17725 IntType = IntegerType::get( 17726 CGF.getLLVMContext(), 17727 CGF.CGM.getDataLayout().getIndexTypeSizeInBits(SrcType)); 17728 } else { 17729 assert(SrcType->isIntegerTy()); 17730 IntType = cast<llvm::IntegerType>(SrcType); 17731 } 17732 Alignment = CGF.EmitScalarExpr(E->getArg(1)); 17733 Alignment = CGF.Builder.CreateZExtOrTrunc(Alignment, IntType, "alignment"); 17734 auto *One = llvm::ConstantInt::get(IntType, 1); 17735 Mask = CGF.Builder.CreateSub(Alignment, One, "mask"); 17736 } 17737 }; 17738 } // namespace 17739 17740 /// Generate (x & (y-1)) == 0. 17741 RValue CodeGenFunction::EmitBuiltinIsAligned(const CallExpr *E) { 17742 BuiltinAlignArgs Args(E, *this); 17743 llvm::Value *SrcAddress = Args.Src; 17744 if (Args.SrcType->isPointerTy()) 17745 SrcAddress = 17746 Builder.CreateBitOrPointerCast(Args.Src, Args.IntType, "src_addr"); 17747 return RValue::get(Builder.CreateICmpEQ( 17748 Builder.CreateAnd(SrcAddress, Args.Mask, "set_bits"), 17749 llvm::Constant::getNullValue(Args.IntType), "is_aligned")); 17750 } 17751 17752 /// Generate (x & ~(y-1)) to align down or ((x+(y-1)) & ~(y-1)) to align up. 17753 /// Note: For pointer types we can avoid ptrtoint/inttoptr pairs by using the 17754 /// llvm.ptrmask instrinsic (with a GEP before in the align_up case). 17755 /// TODO: actually use ptrmask once most optimization passes know about it. 17756 RValue CodeGenFunction::EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp) { 17757 BuiltinAlignArgs Args(E, *this); 17758 llvm::Value *SrcAddr = Args.Src; 17759 if (Args.Src->getType()->isPointerTy()) 17760 SrcAddr = Builder.CreatePtrToInt(Args.Src, Args.IntType, "intptr"); 17761 llvm::Value *SrcForMask = SrcAddr; 17762 if (AlignUp) { 17763 // When aligning up we have to first add the mask to ensure we go over the 17764 // next alignment value and then align down to the next valid multiple. 17765 // By adding the mask, we ensure that align_up on an already aligned 17766 // value will not change the value. 17767 SrcForMask = Builder.CreateAdd(SrcForMask, Args.Mask, "over_boundary"); 17768 } 17769 // Invert the mask to only clear the lower bits. 17770 llvm::Value *InvertedMask = Builder.CreateNot(Args.Mask, "inverted_mask"); 17771 llvm::Value *Result = 17772 Builder.CreateAnd(SrcForMask, InvertedMask, "aligned_result"); 17773 if (Args.Src->getType()->isPointerTy()) { 17774 /// TODO: Use ptrmask instead of ptrtoint+gep once it is optimized well. 17775 // Result = Builder.CreateIntrinsic( 17776 // Intrinsic::ptrmask, {Args.SrcType, SrcForMask->getType(), Args.IntType}, 17777 // {SrcForMask, NegatedMask}, nullptr, "aligned_result"); 17778 Result->setName("aligned_intptr"); 17779 llvm::Value *Difference = Builder.CreateSub(Result, SrcAddr, "diff"); 17780 // The result must point to the same underlying allocation. This means we 17781 // can use an inbounds GEP to enable better optimization. 17782 Value *Base = EmitCastToVoidPtr(Args.Src); 17783 if (getLangOpts().isSignedOverflowDefined()) 17784 Result = Builder.CreateGEP(Int8Ty, Base, Difference, "aligned_result"); 17785 else 17786 Result = EmitCheckedInBoundsGEP(Base, Difference, 17787 /*SignedIndices=*/true, 17788 /*isSubtraction=*/!AlignUp, 17789 E->getExprLoc(), "aligned_result"); 17790 Result = Builder.CreatePointerCast(Result, Args.SrcType); 17791 // Emit an alignment assumption to ensure that the new alignment is 17792 // propagated to loads/stores, etc. 17793 emitAlignmentAssumption(Result, E, E->getExprLoc(), Args.Alignment); 17794 } 17795 assert(Result->getType() == Args.SrcType); 17796 return RValue::get(Result); 17797 } 17798 17799 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 17800 const CallExpr *E) { 17801 switch (BuiltinID) { 17802 case WebAssembly::BI__builtin_wasm_memory_size: { 17803 llvm::Type *ResultType = ConvertType(E->getType()); 17804 Value *I = EmitScalarExpr(E->getArg(0)); 17805 Function *Callee = 17806 CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType); 17807 return Builder.CreateCall(Callee, I); 17808 } 17809 case WebAssembly::BI__builtin_wasm_memory_grow: { 17810 llvm::Type *ResultType = ConvertType(E->getType()); 17811 Value *Args[] = {EmitScalarExpr(E->getArg(0)), 17812 EmitScalarExpr(E->getArg(1))}; 17813 Function *Callee = 17814 CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType); 17815 return Builder.CreateCall(Callee, Args); 17816 } 17817 case WebAssembly::BI__builtin_wasm_tls_size: { 17818 llvm::Type *ResultType = ConvertType(E->getType()); 17819 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType); 17820 return Builder.CreateCall(Callee); 17821 } 17822 case WebAssembly::BI__builtin_wasm_tls_align: { 17823 llvm::Type *ResultType = ConvertType(E->getType()); 17824 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_align, ResultType); 17825 return Builder.CreateCall(Callee); 17826 } 17827 case WebAssembly::BI__builtin_wasm_tls_base: { 17828 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_base); 17829 return Builder.CreateCall(Callee); 17830 } 17831 case WebAssembly::BI__builtin_wasm_throw: { 17832 Value *Tag = EmitScalarExpr(E->getArg(0)); 17833 Value *Obj = EmitScalarExpr(E->getArg(1)); 17834 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw); 17835 return Builder.CreateCall(Callee, {Tag, Obj}); 17836 } 17837 case WebAssembly::BI__builtin_wasm_rethrow: { 17838 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow); 17839 return Builder.CreateCall(Callee); 17840 } 17841 case WebAssembly::BI__builtin_wasm_memory_atomic_wait32: { 17842 Value *Addr = EmitScalarExpr(E->getArg(0)); 17843 Value *Expected = EmitScalarExpr(E->getArg(1)); 17844 Value *Timeout = EmitScalarExpr(E->getArg(2)); 17845 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait32); 17846 return Builder.CreateCall(Callee, {Addr, Expected, Timeout}); 17847 } 17848 case WebAssembly::BI__builtin_wasm_memory_atomic_wait64: { 17849 Value *Addr = EmitScalarExpr(E->getArg(0)); 17850 Value *Expected = EmitScalarExpr(E->getArg(1)); 17851 Value *Timeout = EmitScalarExpr(E->getArg(2)); 17852 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_wait64); 17853 return Builder.CreateCall(Callee, {Addr, Expected, Timeout}); 17854 } 17855 case WebAssembly::BI__builtin_wasm_memory_atomic_notify: { 17856 Value *Addr = EmitScalarExpr(E->getArg(0)); 17857 Value *Count = EmitScalarExpr(E->getArg(1)); 17858 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_atomic_notify); 17859 return Builder.CreateCall(Callee, {Addr, Count}); 17860 } 17861 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f32: 17862 case WebAssembly::BI__builtin_wasm_trunc_s_i32_f64: 17863 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f32: 17864 case WebAssembly::BI__builtin_wasm_trunc_s_i64_f64: { 17865 Value *Src = EmitScalarExpr(E->getArg(0)); 17866 llvm::Type *ResT = ConvertType(E->getType()); 17867 Function *Callee = 17868 CGM.getIntrinsic(Intrinsic::wasm_trunc_signed, {ResT, Src->getType()}); 17869 return Builder.CreateCall(Callee, {Src}); 17870 } 17871 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f32: 17872 case WebAssembly::BI__builtin_wasm_trunc_u_i32_f64: 17873 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f32: 17874 case WebAssembly::BI__builtin_wasm_trunc_u_i64_f64: { 17875 Value *Src = EmitScalarExpr(E->getArg(0)); 17876 llvm::Type *ResT = ConvertType(E->getType()); 17877 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_unsigned, 17878 {ResT, Src->getType()}); 17879 return Builder.CreateCall(Callee, {Src}); 17880 } 17881 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32: 17882 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64: 17883 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32: 17884 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64: 17885 case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4: { 17886 Value *Src = EmitScalarExpr(E->getArg(0)); 17887 llvm::Type *ResT = ConvertType(E->getType()); 17888 Function *Callee = 17889 CGM.getIntrinsic(Intrinsic::fptosi_sat, {ResT, Src->getType()}); 17890 return Builder.CreateCall(Callee, {Src}); 17891 } 17892 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32: 17893 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64: 17894 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32: 17895 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64: 17896 case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4: { 17897 Value *Src = EmitScalarExpr(E->getArg(0)); 17898 llvm::Type *ResT = ConvertType(E->getType()); 17899 Function *Callee = 17900 CGM.getIntrinsic(Intrinsic::fptoui_sat, {ResT, Src->getType()}); 17901 return Builder.CreateCall(Callee, {Src}); 17902 } 17903 case WebAssembly::BI__builtin_wasm_min_f32: 17904 case WebAssembly::BI__builtin_wasm_min_f64: 17905 case WebAssembly::BI__builtin_wasm_min_f32x4: 17906 case WebAssembly::BI__builtin_wasm_min_f64x2: { 17907 Value *LHS = EmitScalarExpr(E->getArg(0)); 17908 Value *RHS = EmitScalarExpr(E->getArg(1)); 17909 Function *Callee = 17910 CGM.getIntrinsic(Intrinsic::minimum, ConvertType(E->getType())); 17911 return Builder.CreateCall(Callee, {LHS, RHS}); 17912 } 17913 case WebAssembly::BI__builtin_wasm_max_f32: 17914 case WebAssembly::BI__builtin_wasm_max_f64: 17915 case WebAssembly::BI__builtin_wasm_max_f32x4: 17916 case WebAssembly::BI__builtin_wasm_max_f64x2: { 17917 Value *LHS = EmitScalarExpr(E->getArg(0)); 17918 Value *RHS = EmitScalarExpr(E->getArg(1)); 17919 Function *Callee = 17920 CGM.getIntrinsic(Intrinsic::maximum, ConvertType(E->getType())); 17921 return Builder.CreateCall(Callee, {LHS, RHS}); 17922 } 17923 case WebAssembly::BI__builtin_wasm_pmin_f32x4: 17924 case WebAssembly::BI__builtin_wasm_pmin_f64x2: { 17925 Value *LHS = EmitScalarExpr(E->getArg(0)); 17926 Value *RHS = EmitScalarExpr(E->getArg(1)); 17927 Function *Callee = 17928 CGM.getIntrinsic(Intrinsic::wasm_pmin, ConvertType(E->getType())); 17929 return Builder.CreateCall(Callee, {LHS, RHS}); 17930 } 17931 case WebAssembly::BI__builtin_wasm_pmax_f32x4: 17932 case WebAssembly::BI__builtin_wasm_pmax_f64x2: { 17933 Value *LHS = EmitScalarExpr(E->getArg(0)); 17934 Value *RHS = EmitScalarExpr(E->getArg(1)); 17935 Function *Callee = 17936 CGM.getIntrinsic(Intrinsic::wasm_pmax, ConvertType(E->getType())); 17937 return Builder.CreateCall(Callee, {LHS, RHS}); 17938 } 17939 case WebAssembly::BI__builtin_wasm_ceil_f32x4: 17940 case WebAssembly::BI__builtin_wasm_floor_f32x4: 17941 case WebAssembly::BI__builtin_wasm_trunc_f32x4: 17942 case WebAssembly::BI__builtin_wasm_nearest_f32x4: 17943 case WebAssembly::BI__builtin_wasm_ceil_f64x2: 17944 case WebAssembly::BI__builtin_wasm_floor_f64x2: 17945 case WebAssembly::BI__builtin_wasm_trunc_f64x2: 17946 case WebAssembly::BI__builtin_wasm_nearest_f64x2: { 17947 unsigned IntNo; 17948 switch (BuiltinID) { 17949 case WebAssembly::BI__builtin_wasm_ceil_f32x4: 17950 case WebAssembly::BI__builtin_wasm_ceil_f64x2: 17951 IntNo = Intrinsic::ceil; 17952 break; 17953 case WebAssembly::BI__builtin_wasm_floor_f32x4: 17954 case WebAssembly::BI__builtin_wasm_floor_f64x2: 17955 IntNo = Intrinsic::floor; 17956 break; 17957 case WebAssembly::BI__builtin_wasm_trunc_f32x4: 17958 case WebAssembly::BI__builtin_wasm_trunc_f64x2: 17959 IntNo = Intrinsic::trunc; 17960 break; 17961 case WebAssembly::BI__builtin_wasm_nearest_f32x4: 17962 case WebAssembly::BI__builtin_wasm_nearest_f64x2: 17963 IntNo = Intrinsic::nearbyint; 17964 break; 17965 default: 17966 llvm_unreachable("unexpected builtin ID"); 17967 } 17968 Value *Value = EmitScalarExpr(E->getArg(0)); 17969 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); 17970 return Builder.CreateCall(Callee, Value); 17971 } 17972 case WebAssembly::BI__builtin_wasm_swizzle_i8x16: { 17973 Value *Src = EmitScalarExpr(E->getArg(0)); 17974 Value *Indices = EmitScalarExpr(E->getArg(1)); 17975 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_swizzle); 17976 return Builder.CreateCall(Callee, {Src, Indices}); 17977 } 17978 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16: 17979 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16: 17980 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8: 17981 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8: 17982 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16: 17983 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16: 17984 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8: 17985 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: { 17986 unsigned IntNo; 17987 switch (BuiltinID) { 17988 case WebAssembly::BI__builtin_wasm_add_sat_s_i8x16: 17989 case WebAssembly::BI__builtin_wasm_add_sat_s_i16x8: 17990 IntNo = Intrinsic::sadd_sat; 17991 break; 17992 case WebAssembly::BI__builtin_wasm_add_sat_u_i8x16: 17993 case WebAssembly::BI__builtin_wasm_add_sat_u_i16x8: 17994 IntNo = Intrinsic::uadd_sat; 17995 break; 17996 case WebAssembly::BI__builtin_wasm_sub_sat_s_i8x16: 17997 case WebAssembly::BI__builtin_wasm_sub_sat_s_i16x8: 17998 IntNo = Intrinsic::wasm_sub_sat_signed; 17999 break; 18000 case WebAssembly::BI__builtin_wasm_sub_sat_u_i8x16: 18001 case WebAssembly::BI__builtin_wasm_sub_sat_u_i16x8: 18002 IntNo = Intrinsic::wasm_sub_sat_unsigned; 18003 break; 18004 default: 18005 llvm_unreachable("unexpected builtin ID"); 18006 } 18007 Value *LHS = EmitScalarExpr(E->getArg(0)); 18008 Value *RHS = EmitScalarExpr(E->getArg(1)); 18009 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); 18010 return Builder.CreateCall(Callee, {LHS, RHS}); 18011 } 18012 case WebAssembly::BI__builtin_wasm_abs_i8x16: 18013 case WebAssembly::BI__builtin_wasm_abs_i16x8: 18014 case WebAssembly::BI__builtin_wasm_abs_i32x4: 18015 case WebAssembly::BI__builtin_wasm_abs_i64x2: { 18016 Value *Vec = EmitScalarExpr(E->getArg(0)); 18017 Value *Neg = Builder.CreateNeg(Vec, "neg"); 18018 Constant *Zero = llvm::Constant::getNullValue(Vec->getType()); 18019 Value *ICmp = Builder.CreateICmpSLT(Vec, Zero, "abscond"); 18020 return Builder.CreateSelect(ICmp, Neg, Vec, "abs"); 18021 } 18022 case WebAssembly::BI__builtin_wasm_min_s_i8x16: 18023 case WebAssembly::BI__builtin_wasm_min_u_i8x16: 18024 case WebAssembly::BI__builtin_wasm_max_s_i8x16: 18025 case WebAssembly::BI__builtin_wasm_max_u_i8x16: 18026 case WebAssembly::BI__builtin_wasm_min_s_i16x8: 18027 case WebAssembly::BI__builtin_wasm_min_u_i16x8: 18028 case WebAssembly::BI__builtin_wasm_max_s_i16x8: 18029 case WebAssembly::BI__builtin_wasm_max_u_i16x8: 18030 case WebAssembly::BI__builtin_wasm_min_s_i32x4: 18031 case WebAssembly::BI__builtin_wasm_min_u_i32x4: 18032 case WebAssembly::BI__builtin_wasm_max_s_i32x4: 18033 case WebAssembly::BI__builtin_wasm_max_u_i32x4: { 18034 Value *LHS = EmitScalarExpr(E->getArg(0)); 18035 Value *RHS = EmitScalarExpr(E->getArg(1)); 18036 Value *ICmp; 18037 switch (BuiltinID) { 18038 case WebAssembly::BI__builtin_wasm_min_s_i8x16: 18039 case WebAssembly::BI__builtin_wasm_min_s_i16x8: 18040 case WebAssembly::BI__builtin_wasm_min_s_i32x4: 18041 ICmp = Builder.CreateICmpSLT(LHS, RHS); 18042 break; 18043 case WebAssembly::BI__builtin_wasm_min_u_i8x16: 18044 case WebAssembly::BI__builtin_wasm_min_u_i16x8: 18045 case WebAssembly::BI__builtin_wasm_min_u_i32x4: 18046 ICmp = Builder.CreateICmpULT(LHS, RHS); 18047 break; 18048 case WebAssembly::BI__builtin_wasm_max_s_i8x16: 18049 case WebAssembly::BI__builtin_wasm_max_s_i16x8: 18050 case WebAssembly::BI__builtin_wasm_max_s_i32x4: 18051 ICmp = Builder.CreateICmpSGT(LHS, RHS); 18052 break; 18053 case WebAssembly::BI__builtin_wasm_max_u_i8x16: 18054 case WebAssembly::BI__builtin_wasm_max_u_i16x8: 18055 case WebAssembly::BI__builtin_wasm_max_u_i32x4: 18056 ICmp = Builder.CreateICmpUGT(LHS, RHS); 18057 break; 18058 default: 18059 llvm_unreachable("unexpected builtin ID"); 18060 } 18061 return Builder.CreateSelect(ICmp, LHS, RHS); 18062 } 18063 case WebAssembly::BI__builtin_wasm_avgr_u_i8x16: 18064 case WebAssembly::BI__builtin_wasm_avgr_u_i16x8: { 18065 Value *LHS = EmitScalarExpr(E->getArg(0)); 18066 Value *RHS = EmitScalarExpr(E->getArg(1)); 18067 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_avgr_unsigned, 18068 ConvertType(E->getType())); 18069 return Builder.CreateCall(Callee, {LHS, RHS}); 18070 } 18071 case WebAssembly::BI__builtin_wasm_q15mulr_sat_s_i16x8: { 18072 Value *LHS = EmitScalarExpr(E->getArg(0)); 18073 Value *RHS = EmitScalarExpr(E->getArg(1)); 18074 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_q15mulr_sat_signed); 18075 return Builder.CreateCall(Callee, {LHS, RHS}); 18076 } 18077 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8: 18078 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8: 18079 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4: 18080 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: { 18081 Value *Vec = EmitScalarExpr(E->getArg(0)); 18082 unsigned IntNo; 18083 switch (BuiltinID) { 18084 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_s_i16x8: 18085 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_s_i32x4: 18086 IntNo = Intrinsic::wasm_extadd_pairwise_signed; 18087 break; 18088 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i8x16_u_i16x8: 18089 case WebAssembly::BI__builtin_wasm_extadd_pairwise_i16x8_u_i32x4: 18090 IntNo = Intrinsic::wasm_extadd_pairwise_unsigned; 18091 break; 18092 default: 18093 llvm_unreachable("unexptected builtin ID"); 18094 } 18095 18096 Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType())); 18097 return Builder.CreateCall(Callee, Vec); 18098 } 18099 case WebAssembly::BI__builtin_wasm_bitselect: { 18100 Value *V1 = EmitScalarExpr(E->getArg(0)); 18101 Value *V2 = EmitScalarExpr(E->getArg(1)); 18102 Value *C = EmitScalarExpr(E->getArg(2)); 18103 Function *Callee = 18104 CGM.getIntrinsic(Intrinsic::wasm_bitselect, ConvertType(E->getType())); 18105 return Builder.CreateCall(Callee, {V1, V2, C}); 18106 } 18107 case WebAssembly::BI__builtin_wasm_dot_s_i32x4_i16x8: { 18108 Value *LHS = EmitScalarExpr(E->getArg(0)); 18109 Value *RHS = EmitScalarExpr(E->getArg(1)); 18110 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_dot); 18111 return Builder.CreateCall(Callee, {LHS, RHS}); 18112 } 18113 case WebAssembly::BI__builtin_wasm_popcnt_i8x16: { 18114 Value *Vec = EmitScalarExpr(E->getArg(0)); 18115 Function *Callee = 18116 CGM.getIntrinsic(Intrinsic::ctpop, ConvertType(E->getType())); 18117 return Builder.CreateCall(Callee, {Vec}); 18118 } 18119 case WebAssembly::BI__builtin_wasm_any_true_v128: 18120 case WebAssembly::BI__builtin_wasm_all_true_i8x16: 18121 case WebAssembly::BI__builtin_wasm_all_true_i16x8: 18122 case WebAssembly::BI__builtin_wasm_all_true_i32x4: 18123 case WebAssembly::BI__builtin_wasm_all_true_i64x2: { 18124 unsigned IntNo; 18125 switch (BuiltinID) { 18126 case WebAssembly::BI__builtin_wasm_any_true_v128: 18127 IntNo = Intrinsic::wasm_anytrue; 18128 break; 18129 case WebAssembly::BI__builtin_wasm_all_true_i8x16: 18130 case WebAssembly::BI__builtin_wasm_all_true_i16x8: 18131 case WebAssembly::BI__builtin_wasm_all_true_i32x4: 18132 case WebAssembly::BI__builtin_wasm_all_true_i64x2: 18133 IntNo = Intrinsic::wasm_alltrue; 18134 break; 18135 default: 18136 llvm_unreachable("unexpected builtin ID"); 18137 } 18138 Value *Vec = EmitScalarExpr(E->getArg(0)); 18139 Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType()); 18140 return Builder.CreateCall(Callee, {Vec}); 18141 } 18142 case WebAssembly::BI__builtin_wasm_bitmask_i8x16: 18143 case WebAssembly::BI__builtin_wasm_bitmask_i16x8: 18144 case WebAssembly::BI__builtin_wasm_bitmask_i32x4: 18145 case WebAssembly::BI__builtin_wasm_bitmask_i64x2: { 18146 Value *Vec = EmitScalarExpr(E->getArg(0)); 18147 Function *Callee = 18148 CGM.getIntrinsic(Intrinsic::wasm_bitmask, Vec->getType()); 18149 return Builder.CreateCall(Callee, {Vec}); 18150 } 18151 case WebAssembly::BI__builtin_wasm_abs_f32x4: 18152 case WebAssembly::BI__builtin_wasm_abs_f64x2: { 18153 Value *Vec = EmitScalarExpr(E->getArg(0)); 18154 Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType()); 18155 return Builder.CreateCall(Callee, {Vec}); 18156 } 18157 case WebAssembly::BI__builtin_wasm_sqrt_f32x4: 18158 case WebAssembly::BI__builtin_wasm_sqrt_f64x2: { 18159 Value *Vec = EmitScalarExpr(E->getArg(0)); 18160 Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType()); 18161 return Builder.CreateCall(Callee, {Vec}); 18162 } 18163 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8: 18164 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8: 18165 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4: 18166 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: { 18167 Value *Low = EmitScalarExpr(E->getArg(0)); 18168 Value *High = EmitScalarExpr(E->getArg(1)); 18169 unsigned IntNo; 18170 switch (BuiltinID) { 18171 case WebAssembly::BI__builtin_wasm_narrow_s_i8x16_i16x8: 18172 case WebAssembly::BI__builtin_wasm_narrow_s_i16x8_i32x4: 18173 IntNo = Intrinsic::wasm_narrow_signed; 18174 break; 18175 case WebAssembly::BI__builtin_wasm_narrow_u_i8x16_i16x8: 18176 case WebAssembly::BI__builtin_wasm_narrow_u_i16x8_i32x4: 18177 IntNo = Intrinsic::wasm_narrow_unsigned; 18178 break; 18179 default: 18180 llvm_unreachable("unexpected builtin ID"); 18181 } 18182 Function *Callee = 18183 CGM.getIntrinsic(IntNo, {ConvertType(E->getType()), Low->getType()}); 18184 return Builder.CreateCall(Callee, {Low, High}); 18185 } 18186 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_s_f64x2_i32x4: 18187 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_u_f64x2_i32x4: { 18188 Value *Vec = EmitScalarExpr(E->getArg(0)); 18189 unsigned IntNo; 18190 switch (BuiltinID) { 18191 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_s_f64x2_i32x4: 18192 IntNo = Intrinsic::fptosi_sat; 18193 break; 18194 case WebAssembly::BI__builtin_wasm_trunc_sat_zero_u_f64x2_i32x4: 18195 IntNo = Intrinsic::fptoui_sat; 18196 break; 18197 default: 18198 llvm_unreachable("unexpected builtin ID"); 18199 } 18200 llvm::Type *SrcT = Vec->getType(); 18201 llvm::Type *TruncT = 18202 SrcT->getWithNewType(llvm::IntegerType::get(getLLVMContext(), 32)); 18203 Function *Callee = CGM.getIntrinsic(IntNo, {TruncT, SrcT}); 18204 Value *Trunc = Builder.CreateCall(Callee, Vec); 18205 Value *Splat = Builder.CreateVectorSplat(2, Builder.getInt32(0)); 18206 Value *ConcatMask = 18207 llvm::ConstantVector::get({Builder.getInt32(0), Builder.getInt32(1), 18208 Builder.getInt32(2), Builder.getInt32(3)}); 18209 return Builder.CreateShuffleVector(Trunc, Splat, ConcatMask); 18210 } 18211 case WebAssembly::BI__builtin_wasm_shuffle_i8x16: { 18212 Value *Ops[18]; 18213 size_t OpIdx = 0; 18214 Ops[OpIdx++] = EmitScalarExpr(E->getArg(0)); 18215 Ops[OpIdx++] = EmitScalarExpr(E->getArg(1)); 18216 while (OpIdx < 18) { 18217 Optional<llvm::APSInt> LaneConst = 18218 E->getArg(OpIdx)->getIntegerConstantExpr(getContext()); 18219 assert(LaneConst && "Constant arg isn't actually constant?"); 18220 Ops[OpIdx++] = llvm::ConstantInt::get(getLLVMContext(), *LaneConst); 18221 } 18222 Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_shuffle); 18223 return Builder.CreateCall(Callee, Ops); 18224 } 18225 default: 18226 return nullptr; 18227 } 18228 } 18229 18230 static std::pair<Intrinsic::ID, unsigned> 18231 getIntrinsicForHexagonNonGCCBuiltin(unsigned BuiltinID) { 18232 struct Info { 18233 unsigned BuiltinID; 18234 Intrinsic::ID IntrinsicID; 18235 unsigned VecLen; 18236 }; 18237 Info Infos[] = { 18238 #define CUSTOM_BUILTIN_MAPPING(x,s) \ 18239 { Hexagon::BI__builtin_HEXAGON_##x, Intrinsic::hexagon_##x, s }, 18240 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pci, 0) 18241 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pci, 0) 18242 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pci, 0) 18243 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pci, 0) 18244 CUSTOM_BUILTIN_MAPPING(L2_loadri_pci, 0) 18245 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pci, 0) 18246 CUSTOM_BUILTIN_MAPPING(L2_loadrub_pcr, 0) 18247 CUSTOM_BUILTIN_MAPPING(L2_loadrb_pcr, 0) 18248 CUSTOM_BUILTIN_MAPPING(L2_loadruh_pcr, 0) 18249 CUSTOM_BUILTIN_MAPPING(L2_loadrh_pcr, 0) 18250 CUSTOM_BUILTIN_MAPPING(L2_loadri_pcr, 0) 18251 CUSTOM_BUILTIN_MAPPING(L2_loadrd_pcr, 0) 18252 CUSTOM_BUILTIN_MAPPING(S2_storerb_pci, 0) 18253 CUSTOM_BUILTIN_MAPPING(S2_storerh_pci, 0) 18254 CUSTOM_BUILTIN_MAPPING(S2_storerf_pci, 0) 18255 CUSTOM_BUILTIN_MAPPING(S2_storeri_pci, 0) 18256 CUSTOM_BUILTIN_MAPPING(S2_storerd_pci, 0) 18257 CUSTOM_BUILTIN_MAPPING(S2_storerb_pcr, 0) 18258 CUSTOM_BUILTIN_MAPPING(S2_storerh_pcr, 0) 18259 CUSTOM_BUILTIN_MAPPING(S2_storerf_pcr, 0) 18260 CUSTOM_BUILTIN_MAPPING(S2_storeri_pcr, 0) 18261 CUSTOM_BUILTIN_MAPPING(S2_storerd_pcr, 0) 18262 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq, 64) 18263 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq, 64) 18264 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq, 64) 18265 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq, 64) 18266 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstoreq_128B, 128) 18267 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorenq_128B, 128) 18268 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentq_128B, 128) 18269 CUSTOM_BUILTIN_MAPPING(V6_vmaskedstorentnq_128B, 128) 18270 #include "clang/Basic/BuiltinsHexagonMapCustomDep.def" 18271 #undef CUSTOM_BUILTIN_MAPPING 18272 }; 18273 18274 auto CmpInfo = [] (Info A, Info B) { return A.BuiltinID < B.BuiltinID; }; 18275 static const bool SortOnce = (llvm::sort(Infos, CmpInfo), true); 18276 (void)SortOnce; 18277 18278 const Info *F = std::lower_bound(std::begin(Infos), std::end(Infos), 18279 Info{BuiltinID, 0, 0}, CmpInfo); 18280 if (F == std::end(Infos) || F->BuiltinID != BuiltinID) 18281 return {Intrinsic::not_intrinsic, 0}; 18282 18283 return {F->IntrinsicID, F->VecLen}; 18284 } 18285 18286 Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID, 18287 const CallExpr *E) { 18288 Intrinsic::ID ID; 18289 unsigned VecLen; 18290 std::tie(ID, VecLen) = getIntrinsicForHexagonNonGCCBuiltin(BuiltinID); 18291 18292 auto MakeCircOp = [this, E](unsigned IntID, bool IsLoad) { 18293 // The base pointer is passed by address, so it needs to be loaded. 18294 Address A = EmitPointerWithAlignment(E->getArg(0)); 18295 Address BP = Address( 18296 Builder.CreateBitCast(A.getPointer(), Int8PtrPtrTy), A.getAlignment()); 18297 llvm::Value *Base = Builder.CreateLoad(BP); 18298 // The treatment of both loads and stores is the same: the arguments for 18299 // the builtin are the same as the arguments for the intrinsic. 18300 // Load: 18301 // builtin(Base, Inc, Mod, Start) -> intr(Base, Inc, Mod, Start) 18302 // builtin(Base, Mod, Start) -> intr(Base, Mod, Start) 18303 // Store: 18304 // builtin(Base, Inc, Mod, Val, Start) -> intr(Base, Inc, Mod, Val, Start) 18305 // builtin(Base, Mod, Val, Start) -> intr(Base, Mod, Val, Start) 18306 SmallVector<llvm::Value*,5> Ops = { Base }; 18307 for (unsigned i = 1, e = E->getNumArgs(); i != e; ++i) 18308 Ops.push_back(EmitScalarExpr(E->getArg(i))); 18309 18310 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops); 18311 // The load intrinsics generate two results (Value, NewBase), stores 18312 // generate one (NewBase). The new base address needs to be stored. 18313 llvm::Value *NewBase = IsLoad ? Builder.CreateExtractValue(Result, 1) 18314 : Result; 18315 llvm::Value *LV = Builder.CreateBitCast( 18316 EmitScalarExpr(E->getArg(0)), NewBase->getType()->getPointerTo()); 18317 Address Dest = EmitPointerWithAlignment(E->getArg(0)); 18318 llvm::Value *RetVal = 18319 Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment()); 18320 if (IsLoad) 18321 RetVal = Builder.CreateExtractValue(Result, 0); 18322 return RetVal; 18323 }; 18324 18325 // Handle the conversion of bit-reverse load intrinsics to bit code. 18326 // The intrinsic call after this function only reads from memory and the 18327 // write to memory is dealt by the store instruction. 18328 auto MakeBrevLd = [this, E](unsigned IntID, llvm::Type *DestTy) { 18329 // The intrinsic generates one result, which is the new value for the base 18330 // pointer. It needs to be returned. The result of the load instruction is 18331 // passed to intrinsic by address, so the value needs to be stored. 18332 llvm::Value *BaseAddress = 18333 Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy); 18334 18335 // Expressions like &(*pt++) will be incremented per evaluation. 18336 // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression 18337 // per call. 18338 Address DestAddr = EmitPointerWithAlignment(E->getArg(1)); 18339 DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy), 18340 DestAddr.getAlignment()); 18341 llvm::Value *DestAddress = DestAddr.getPointer(); 18342 18343 // Operands are Base, Dest, Modifier. 18344 // The intrinsic format in LLVM IR is defined as 18345 // { ValueType, i8* } (i8*, i32). 18346 llvm::Value *Result = Builder.CreateCall( 18347 CGM.getIntrinsic(IntID), {BaseAddress, EmitScalarExpr(E->getArg(2))}); 18348 18349 // The value needs to be stored as the variable is passed by reference. 18350 llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0); 18351 18352 // The store needs to be truncated to fit the destination type. 18353 // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs 18354 // to be handled with stores of respective destination type. 18355 DestVal = Builder.CreateTrunc(DestVal, DestTy); 18356 18357 llvm::Value *DestForStore = 18358 Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo()); 18359 Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment()); 18360 // The updated value of the base pointer is returned. 18361 return Builder.CreateExtractValue(Result, 1); 18362 }; 18363 18364 auto V2Q = [this, VecLen] (llvm::Value *Vec) { 18365 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandvrt_128B 18366 : Intrinsic::hexagon_V6_vandvrt; 18367 return Builder.CreateCall(CGM.getIntrinsic(ID), 18368 {Vec, Builder.getInt32(-1)}); 18369 }; 18370 auto Q2V = [this, VecLen] (llvm::Value *Pred) { 18371 Intrinsic::ID ID = VecLen == 128 ? Intrinsic::hexagon_V6_vandqrt_128B 18372 : Intrinsic::hexagon_V6_vandqrt; 18373 return Builder.CreateCall(CGM.getIntrinsic(ID), 18374 {Pred, Builder.getInt32(-1)}); 18375 }; 18376 18377 switch (BuiltinID) { 18378 // These intrinsics return a tuple {Vector, VectorPred} in LLVM IR, 18379 // and the corresponding C/C++ builtins use loads/stores to update 18380 // the predicate. 18381 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry: 18382 case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: 18383 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry: 18384 case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: { 18385 // Get the type from the 0-th argument. 18386 llvm::Type *VecType = ConvertType(E->getArg(0)->getType()); 18387 Address PredAddr = Builder.CreateBitCast( 18388 EmitPointerWithAlignment(E->getArg(2)), VecType->getPointerTo(0)); 18389 llvm::Value *PredIn = V2Q(Builder.CreateLoad(PredAddr)); 18390 llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), 18391 {EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), PredIn}); 18392 18393 llvm::Value *PredOut = Builder.CreateExtractValue(Result, 1); 18394 Builder.CreateAlignedStore(Q2V(PredOut), PredAddr.getPointer(), 18395 PredAddr.getAlignment()); 18396 return Builder.CreateExtractValue(Result, 0); 18397 } 18398 18399 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci: 18400 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci: 18401 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci: 18402 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci: 18403 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci: 18404 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci: 18405 case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr: 18406 case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr: 18407 case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr: 18408 case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr: 18409 case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr: 18410 case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr: 18411 return MakeCircOp(ID, /*IsLoad=*/true); 18412 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci: 18413 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci: 18414 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci: 18415 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci: 18416 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci: 18417 case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr: 18418 case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr: 18419 case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr: 18420 case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr: 18421 case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr: 18422 return MakeCircOp(ID, /*IsLoad=*/false); 18423 case Hexagon::BI__builtin_brev_ldub: 18424 return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty); 18425 case Hexagon::BI__builtin_brev_ldb: 18426 return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty); 18427 case Hexagon::BI__builtin_brev_lduh: 18428 return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty); 18429 case Hexagon::BI__builtin_brev_ldh: 18430 return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty); 18431 case Hexagon::BI__builtin_brev_ldw: 18432 return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty); 18433 case Hexagon::BI__builtin_brev_ldd: 18434 return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty); 18435 18436 default: { 18437 if (ID == Intrinsic::not_intrinsic) 18438 return nullptr; 18439 18440 auto IsVectorPredTy = [](llvm::Type *T) { 18441 return T->isVectorTy() && 18442 cast<llvm::VectorType>(T)->getElementType()->isIntegerTy(1); 18443 }; 18444 18445 llvm::Function *IntrFn = CGM.getIntrinsic(ID); 18446 llvm::FunctionType *IntrTy = IntrFn->getFunctionType(); 18447 SmallVector<llvm::Value*,4> Ops; 18448 for (unsigned i = 0, e = IntrTy->getNumParams(); i != e; ++i) { 18449 llvm::Type *T = IntrTy->getParamType(i); 18450 const Expr *A = E->getArg(i); 18451 if (IsVectorPredTy(T)) { 18452 // There will be an implicit cast to a boolean vector. Strip it. 18453 if (auto *Cast = dyn_cast<ImplicitCastExpr>(A)) { 18454 if (Cast->getCastKind() == CK_BitCast) 18455 A = Cast->getSubExpr(); 18456 } 18457 Ops.push_back(V2Q(EmitScalarExpr(A))); 18458 } else { 18459 Ops.push_back(EmitScalarExpr(A)); 18460 } 18461 } 18462 18463 llvm::Value *Call = Builder.CreateCall(IntrFn, Ops); 18464 if (IsVectorPredTy(IntrTy->getReturnType())) 18465 Call = Q2V(Call); 18466 18467 return Call; 18468 } // default 18469 } // switch 18470 18471 return nullptr; 18472 } 18473 18474 Value *CodeGenFunction::EmitRISCVBuiltinExpr(unsigned BuiltinID, 18475 const CallExpr *E, 18476 ReturnValueSlot ReturnValue) { 18477 SmallVector<Value *, 4> Ops; 18478 llvm::Type *ResultType = ConvertType(E->getType()); 18479 18480 for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) 18481 Ops.push_back(EmitScalarExpr(E->getArg(i))); 18482 18483 Intrinsic::ID ID = Intrinsic::not_intrinsic; 18484 unsigned NF = 1; 18485 18486 // Required for overloaded intrinsics. 18487 llvm::SmallVector<llvm::Type *, 2> IntrinsicTypes; 18488 switch (BuiltinID) { 18489 default: llvm_unreachable("unexpected builtin ID"); 18490 case RISCV::BI__builtin_riscv_orc_b_32: 18491 case RISCV::BI__builtin_riscv_orc_b_64: 18492 case RISCV::BI__builtin_riscv_clmul: 18493 case RISCV::BI__builtin_riscv_clmulh: 18494 case RISCV::BI__builtin_riscv_clmulr: 18495 case RISCV::BI__builtin_riscv_bcompress_32: 18496 case RISCV::BI__builtin_riscv_bcompress_64: 18497 case RISCV::BI__builtin_riscv_bdecompress_32: 18498 case RISCV::BI__builtin_riscv_bdecompress_64: 18499 case RISCV::BI__builtin_riscv_grev_32: 18500 case RISCV::BI__builtin_riscv_grev_64: 18501 case RISCV::BI__builtin_riscv_gorc_32: 18502 case RISCV::BI__builtin_riscv_gorc_64: 18503 case RISCV::BI__builtin_riscv_shfl_32: 18504 case RISCV::BI__builtin_riscv_shfl_64: 18505 case RISCV::BI__builtin_riscv_unshfl_32: 18506 case RISCV::BI__builtin_riscv_unshfl_64: 18507 case RISCV::BI__builtin_riscv_xperm_n: 18508 case RISCV::BI__builtin_riscv_xperm_b: 18509 case RISCV::BI__builtin_riscv_xperm_h: 18510 case RISCV::BI__builtin_riscv_xperm_w: 18511 case RISCV::BI__builtin_riscv_crc32_b: 18512 case RISCV::BI__builtin_riscv_crc32_h: 18513 case RISCV::BI__builtin_riscv_crc32_w: 18514 case RISCV::BI__builtin_riscv_crc32_d: 18515 case RISCV::BI__builtin_riscv_crc32c_b: 18516 case RISCV::BI__builtin_riscv_crc32c_h: 18517 case RISCV::BI__builtin_riscv_crc32c_w: 18518 case RISCV::BI__builtin_riscv_crc32c_d: { 18519 switch (BuiltinID) { 18520 default: llvm_unreachable("unexpected builtin ID"); 18521 // Zbb 18522 case RISCV::BI__builtin_riscv_orc_b_32: 18523 case RISCV::BI__builtin_riscv_orc_b_64: 18524 ID = Intrinsic::riscv_orc_b; 18525 break; 18526 18527 // Zbc 18528 case RISCV::BI__builtin_riscv_clmul: 18529 ID = Intrinsic::riscv_clmul; 18530 break; 18531 case RISCV::BI__builtin_riscv_clmulh: 18532 ID = Intrinsic::riscv_clmulh; 18533 break; 18534 case RISCV::BI__builtin_riscv_clmulr: 18535 ID = Intrinsic::riscv_clmulr; 18536 break; 18537 18538 // Zbe 18539 case RISCV::BI__builtin_riscv_bcompress_32: 18540 case RISCV::BI__builtin_riscv_bcompress_64: 18541 ID = Intrinsic::riscv_bcompress; 18542 break; 18543 case RISCV::BI__builtin_riscv_bdecompress_32: 18544 case RISCV::BI__builtin_riscv_bdecompress_64: 18545 ID = Intrinsic::riscv_bdecompress; 18546 break; 18547 18548 // Zbp 18549 case RISCV::BI__builtin_riscv_grev_32: 18550 case RISCV::BI__builtin_riscv_grev_64: 18551 ID = Intrinsic::riscv_grev; 18552 break; 18553 case RISCV::BI__builtin_riscv_gorc_32: 18554 case RISCV::BI__builtin_riscv_gorc_64: 18555 ID = Intrinsic::riscv_gorc; 18556 break; 18557 case RISCV::BI__builtin_riscv_shfl_32: 18558 case RISCV::BI__builtin_riscv_shfl_64: 18559 ID = Intrinsic::riscv_shfl; 18560 break; 18561 case RISCV::BI__builtin_riscv_unshfl_32: 18562 case RISCV::BI__builtin_riscv_unshfl_64: 18563 ID = Intrinsic::riscv_unshfl; 18564 break; 18565 case RISCV::BI__builtin_riscv_xperm_n: 18566 ID = Intrinsic::riscv_xperm_n; 18567 break; 18568 case RISCV::BI__builtin_riscv_xperm_b: 18569 ID = Intrinsic::riscv_xperm_b; 18570 break; 18571 case RISCV::BI__builtin_riscv_xperm_h: 18572 ID = Intrinsic::riscv_xperm_h; 18573 break; 18574 case RISCV::BI__builtin_riscv_xperm_w: 18575 ID = Intrinsic::riscv_xperm_w; 18576 break; 18577 18578 // Zbr 18579 case RISCV::BI__builtin_riscv_crc32_b: 18580 ID = Intrinsic::riscv_crc32_b; 18581 break; 18582 case RISCV::BI__builtin_riscv_crc32_h: 18583 ID = Intrinsic::riscv_crc32_h; 18584 break; 18585 case RISCV::BI__builtin_riscv_crc32_w: 18586 ID = Intrinsic::riscv_crc32_w; 18587 break; 18588 case RISCV::BI__builtin_riscv_crc32_d: 18589 ID = Intrinsic::riscv_crc32_d; 18590 break; 18591 case RISCV::BI__builtin_riscv_crc32c_b: 18592 ID = Intrinsic::riscv_crc32c_b; 18593 break; 18594 case RISCV::BI__builtin_riscv_crc32c_h: 18595 ID = Intrinsic::riscv_crc32c_h; 18596 break; 18597 case RISCV::BI__builtin_riscv_crc32c_w: 18598 ID = Intrinsic::riscv_crc32c_w; 18599 break; 18600 case RISCV::BI__builtin_riscv_crc32c_d: 18601 ID = Intrinsic::riscv_crc32c_d; 18602 break; 18603 } 18604 18605 IntrinsicTypes = {ResultType}; 18606 break; 18607 } 18608 // Vector builtins are handled from here. 18609 #include "clang/Basic/riscv_vector_builtin_cg.inc" 18610 } 18611 18612 assert(ID != Intrinsic::not_intrinsic); 18613 18614 llvm::Function *F = CGM.getIntrinsic(ID, IntrinsicTypes); 18615 return Builder.CreateCall(F, Ops, ""); 18616 } 18617