1 //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the CFG and CFGBuilder classes for representing and
11 //  building Control-Flow Graphs (CFGs) from ASTs.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Analysis/CFG.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/PrettyPrinter.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include <memory>
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/Support/Allocator.h"
27 #include "llvm/Support/Format.h"
28 #include "llvm/Support/GraphWriter.h"
29 #include "llvm/Support/SaveAndRestore.h"
30 
31 using namespace clang;
32 
33 namespace {
34 
35 static SourceLocation GetEndLoc(Decl *D) {
36   if (VarDecl *VD = dyn_cast<VarDecl>(D))
37     if (Expr *Ex = VD->getInit())
38       return Ex->getSourceRange().getEnd();
39   return D->getLocation();
40 }
41 
42 /// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral
43 /// or EnumConstantDecl from the given Expr. If it fails, returns nullptr.
44 const Expr *tryTransformToIntOrEnumConstant(const Expr *E) {
45   E = E->IgnoreParens();
46   if (isa<IntegerLiteral>(E))
47     return E;
48   if (auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
49     return isa<EnumConstantDecl>(DR->getDecl()) ? DR : nullptr;
50   return nullptr;
51 }
52 
53 /// Tries to interpret a binary operator into `Decl Op Expr` form, if Expr is
54 /// an integer literal or an enum constant.
55 ///
56 /// If this fails, at least one of the returned DeclRefExpr or Expr will be
57 /// null.
58 static std::tuple<const DeclRefExpr *, BinaryOperatorKind, const Expr *>
59 tryNormalizeBinaryOperator(const BinaryOperator *B) {
60   BinaryOperatorKind Op = B->getOpcode();
61 
62   const Expr *MaybeDecl = B->getLHS();
63   const Expr *Constant = tryTransformToIntOrEnumConstant(B->getRHS());
64   // Expr looked like `0 == Foo` instead of `Foo == 0`
65   if (Constant == nullptr) {
66     // Flip the operator
67     if (Op == BO_GT)
68       Op = BO_LT;
69     else if (Op == BO_GE)
70       Op = BO_LE;
71     else if (Op == BO_LT)
72       Op = BO_GT;
73     else if (Op == BO_LE)
74       Op = BO_GE;
75 
76     MaybeDecl = B->getRHS();
77     Constant = tryTransformToIntOrEnumConstant(B->getLHS());
78   }
79 
80   auto *D = dyn_cast<DeclRefExpr>(MaybeDecl->IgnoreParenImpCasts());
81   return std::make_tuple(D, Op, Constant);
82 }
83 
84 /// For an expression `x == Foo && x == Bar`, this determines whether the
85 /// `Foo` and `Bar` are either of the same enumeration type, or both integer
86 /// literals.
87 ///
88 /// It's an error to pass this arguments that are not either IntegerLiterals
89 /// or DeclRefExprs (that have decls of type EnumConstantDecl)
90 static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) {
91   // User intent isn't clear if they're mixing int literals with enum
92   // constants.
93   if (isa<IntegerLiteral>(E1) != isa<IntegerLiteral>(E2))
94     return false;
95 
96   // Integer literal comparisons, regardless of literal type, are acceptable.
97   if (isa<IntegerLiteral>(E1))
98     return true;
99 
100   // IntegerLiterals are handled above and only EnumConstantDecls are expected
101   // beyond this point
102   assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2));
103   auto *Decl1 = cast<DeclRefExpr>(E1)->getDecl();
104   auto *Decl2 = cast<DeclRefExpr>(E2)->getDecl();
105 
106   assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2));
107   const DeclContext *DC1 = Decl1->getDeclContext();
108   const DeclContext *DC2 = Decl2->getDeclContext();
109 
110   assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2));
111   return DC1 == DC2;
112 }
113 
114 class CFGBuilder;
115 
116 /// The CFG builder uses a recursive algorithm to build the CFG.  When
117 ///  we process an expression, sometimes we know that we must add the
118 ///  subexpressions as block-level expressions.  For example:
119 ///
120 ///    exp1 || exp2
121 ///
122 ///  When processing the '||' expression, we know that exp1 and exp2
123 ///  need to be added as block-level expressions, even though they
124 ///  might not normally need to be.  AddStmtChoice records this
125 ///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
126 ///  the builder has an option not to add a subexpression as a
127 ///  block-level expression.
128 ///
129 class AddStmtChoice {
130 public:
131   enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
132 
133   AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
134 
135   bool alwaysAdd(CFGBuilder &builder,
136                  const Stmt *stmt) const;
137 
138   /// Return a copy of this object, except with the 'always-add' bit
139   ///  set as specified.
140   AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
141     return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
142   }
143 
144 private:
145   Kind kind;
146 };
147 
148 /// LocalScope - Node in tree of local scopes created for C++ implicit
149 /// destructor calls generation. It contains list of automatic variables
150 /// declared in the scope and link to position in previous scope this scope
151 /// began in.
152 ///
153 /// The process of creating local scopes is as follows:
154 /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
155 /// - Before processing statements in scope (e.g. CompoundStmt) create
156 ///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
157 ///   and set CFGBuilder::ScopePos to the end of new scope,
158 /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
159 ///   at this VarDecl,
160 /// - For every normal (without jump) end of scope add to CFGBlock destructors
161 ///   for objects in the current scope,
162 /// - For every jump add to CFGBlock destructors for objects
163 ///   between CFGBuilder::ScopePos and local scope position saved for jump
164 ///   target. Thanks to C++ restrictions on goto jumps we can be sure that
165 ///   jump target position will be on the path to root from CFGBuilder::ScopePos
166 ///   (adding any variable that doesn't need constructor to be called to
167 ///   LocalScope can break this assumption),
168 ///
169 class LocalScope {
170 public:
171   typedef BumpVector<VarDecl*> AutomaticVarsTy;
172 
173   /// const_iterator - Iterates local scope backwards and jumps to previous
174   /// scope on reaching the beginning of currently iterated scope.
175   class const_iterator {
176     const LocalScope* Scope;
177 
178     /// VarIter is guaranteed to be greater then 0 for every valid iterator.
179     /// Invalid iterator (with null Scope) has VarIter equal to 0.
180     unsigned VarIter;
181 
182   public:
183     /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
184     /// Incrementing invalid iterator is allowed and will result in invalid
185     /// iterator.
186     const_iterator()
187         : Scope(nullptr), VarIter(0) {}
188 
189     /// Create valid iterator. In case when S.Prev is an invalid iterator and
190     /// I is equal to 0, this will create invalid iterator.
191     const_iterator(const LocalScope& S, unsigned I)
192         : Scope(&S), VarIter(I) {
193       // Iterator to "end" of scope is not allowed. Handle it by going up
194       // in scopes tree possibly up to invalid iterator in the root.
195       if (VarIter == 0 && Scope)
196         *this = Scope->Prev;
197     }
198 
199     VarDecl *const* operator->() const {
200       assert (Scope && "Dereferencing invalid iterator is not allowed");
201       assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
202       return &Scope->Vars[VarIter - 1];
203     }
204     VarDecl *operator*() const {
205       return *this->operator->();
206     }
207 
208     const_iterator &operator++() {
209       if (!Scope)
210         return *this;
211 
212       assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
213       --VarIter;
214       if (VarIter == 0)
215         *this = Scope->Prev;
216       return *this;
217     }
218     const_iterator operator++(int) {
219       const_iterator P = *this;
220       ++*this;
221       return P;
222     }
223 
224     bool operator==(const const_iterator &rhs) const {
225       return Scope == rhs.Scope && VarIter == rhs.VarIter;
226     }
227     bool operator!=(const const_iterator &rhs) const {
228       return !(*this == rhs);
229     }
230 
231     explicit operator bool() const {
232       return *this != const_iterator();
233     }
234 
235     int distance(const_iterator L);
236   };
237 
238   friend class const_iterator;
239 
240 private:
241   BumpVectorContext ctx;
242 
243   /// Automatic variables in order of declaration.
244   AutomaticVarsTy Vars;
245   /// Iterator to variable in previous scope that was declared just before
246   /// begin of this scope.
247   const_iterator Prev;
248 
249 public:
250   /// Constructs empty scope linked to previous scope in specified place.
251   LocalScope(BumpVectorContext ctx, const_iterator P)
252       : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {}
253 
254   /// Begin of scope in direction of CFG building (backwards).
255   const_iterator begin() const { return const_iterator(*this, Vars.size()); }
256 
257   void addVar(VarDecl *VD) {
258     Vars.push_back(VD, ctx);
259   }
260 };
261 
262 /// distance - Calculates distance from this to L. L must be reachable from this
263 /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
264 /// number of scopes between this and L.
265 int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
266   int D = 0;
267   const_iterator F = *this;
268   while (F.Scope != L.Scope) {
269     assert (F != const_iterator()
270         && "L iterator is not reachable from F iterator.");
271     D += F.VarIter;
272     F = F.Scope->Prev;
273   }
274   D += F.VarIter - L.VarIter;
275   return D;
276 }
277 
278 /// Structure for specifying position in CFG during its build process. It
279 /// consists of CFGBlock that specifies position in CFG and
280 /// LocalScope::const_iterator that specifies position in LocalScope graph.
281 struct BlockScopePosPair {
282   BlockScopePosPair() : block(nullptr) {}
283   BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
284       : block(b), scopePosition(scopePos) {}
285 
286   CFGBlock *block;
287   LocalScope::const_iterator scopePosition;
288 };
289 
290 /// TryResult - a class representing a variant over the values
291 ///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
292 ///  and is used by the CFGBuilder to decide if a branch condition
293 ///  can be decided up front during CFG construction.
294 class TryResult {
295   int X;
296 public:
297   TryResult(bool b) : X(b ? 1 : 0) {}
298   TryResult() : X(-1) {}
299 
300   bool isTrue() const { return X == 1; }
301   bool isFalse() const { return X == 0; }
302   bool isKnown() const { return X >= 0; }
303   void negate() {
304     assert(isKnown());
305     X ^= 0x1;
306   }
307 };
308 
309 TryResult bothKnownTrue(TryResult R1, TryResult R2) {
310   if (!R1.isKnown() || !R2.isKnown())
311     return TryResult();
312   return TryResult(R1.isTrue() && R2.isTrue());
313 }
314 
315 class reverse_children {
316   llvm::SmallVector<Stmt *, 12> childrenBuf;
317   ArrayRef<Stmt*> children;
318 public:
319   reverse_children(Stmt *S);
320 
321   typedef ArrayRef<Stmt*>::reverse_iterator iterator;
322   iterator begin() const { return children.rbegin(); }
323   iterator end() const { return children.rend(); }
324 };
325 
326 
327 reverse_children::reverse_children(Stmt *S) {
328   if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
329     children = CE->getRawSubExprs();
330     return;
331   }
332   switch (S->getStmtClass()) {
333     // Note: Fill in this switch with more cases we want to optimize.
334     case Stmt::InitListExprClass: {
335       InitListExpr *IE = cast<InitListExpr>(S);
336       children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
337                                     IE->getNumInits());
338       return;
339     }
340     default:
341       break;
342   }
343 
344   // Default case for all other statements.
345   for (Stmt *SubStmt : S->children())
346     childrenBuf.push_back(SubStmt);
347 
348   // This needs to be done *after* childrenBuf has been populated.
349   children = childrenBuf;
350 }
351 
352 /// CFGBuilder - This class implements CFG construction from an AST.
353 ///   The builder is stateful: an instance of the builder should be used to only
354 ///   construct a single CFG.
355 ///
356 ///   Example usage:
357 ///
358 ///     CFGBuilder builder;
359 ///     std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1);
360 ///
361 ///  CFG construction is done via a recursive walk of an AST.  We actually parse
362 ///  the AST in reverse order so that the successor of a basic block is
363 ///  constructed prior to its predecessor.  This allows us to nicely capture
364 ///  implicit fall-throughs without extra basic blocks.
365 ///
366 class CFGBuilder {
367   typedef BlockScopePosPair JumpTarget;
368   typedef BlockScopePosPair JumpSource;
369 
370   ASTContext *Context;
371   std::unique_ptr<CFG> cfg;
372 
373   CFGBlock *Block;
374   CFGBlock *Succ;
375   JumpTarget ContinueJumpTarget;
376   JumpTarget BreakJumpTarget;
377   CFGBlock *SwitchTerminatedBlock;
378   CFGBlock *DefaultCaseBlock;
379   CFGBlock *TryTerminatedBlock;
380 
381   // Current position in local scope.
382   LocalScope::const_iterator ScopePos;
383 
384   // LabelMap records the mapping from Label expressions to their jump targets.
385   typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
386   LabelMapTy LabelMap;
387 
388   // A list of blocks that end with a "goto" that must be backpatched to their
389   // resolved targets upon completion of CFG construction.
390   typedef std::vector<JumpSource> BackpatchBlocksTy;
391   BackpatchBlocksTy BackpatchBlocks;
392 
393   // A list of labels whose address has been taken (for indirect gotos).
394   typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
395   LabelSetTy AddressTakenLabels;
396 
397   bool badCFG;
398   const CFG::BuildOptions &BuildOpts;
399 
400   // State to track for building switch statements.
401   bool switchExclusivelyCovered;
402   Expr::EvalResult *switchCond;
403 
404   CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
405   const Stmt *lastLookup;
406 
407   // Caches boolean evaluations of expressions to avoid multiple re-evaluations
408   // during construction of branches for chained logical operators.
409   typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
410   CachedBoolEvalsTy CachedBoolEvals;
411 
412 public:
413   explicit CFGBuilder(ASTContext *astContext,
414                       const CFG::BuildOptions &buildOpts)
415     : Context(astContext), cfg(new CFG()), // crew a new CFG
416       Block(nullptr), Succ(nullptr),
417       SwitchTerminatedBlock(nullptr), DefaultCaseBlock(nullptr),
418       TryTerminatedBlock(nullptr), badCFG(false), BuildOpts(buildOpts),
419       switchExclusivelyCovered(false), switchCond(nullptr),
420       cachedEntry(nullptr), lastLookup(nullptr) {}
421 
422   // buildCFG - Used by external clients to construct the CFG.
423   std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement);
424 
425   bool alwaysAdd(const Stmt *stmt);
426 
427 private:
428   // Visitors to walk an AST and construct the CFG.
429   CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
430   CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
431   CFGBlock *VisitBreakStmt(BreakStmt *B);
432   CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
433   CFGBlock *VisitCaseStmt(CaseStmt *C);
434   CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
435   CFGBlock *VisitCompoundStmt(CompoundStmt *C);
436   CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
437                                      AddStmtChoice asc);
438   CFGBlock *VisitContinueStmt(ContinueStmt *C);
439   CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
440                                       AddStmtChoice asc);
441   CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
442   CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
443   CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc);
444   CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
445   CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
446   CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
447                                        AddStmtChoice asc);
448   CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
449                                         AddStmtChoice asc);
450   CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
451   CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
452   CFGBlock *VisitDeclStmt(DeclStmt *DS);
453   CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
454   CFGBlock *VisitDefaultStmt(DefaultStmt *D);
455   CFGBlock *VisitDoStmt(DoStmt *D);
456   CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
457   CFGBlock *VisitForStmt(ForStmt *F);
458   CFGBlock *VisitGotoStmt(GotoStmt *G);
459   CFGBlock *VisitIfStmt(IfStmt *I);
460   CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
461   CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
462   CFGBlock *VisitLabelStmt(LabelStmt *L);
463   CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
464   CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
465   CFGBlock *VisitLogicalOperator(BinaryOperator *B);
466   std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
467                                                          Stmt *Term,
468                                                          CFGBlock *TrueBlock,
469                                                          CFGBlock *FalseBlock);
470   CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
471   CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
472   CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
473   CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
474   CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
475   CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
476   CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
477   CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
478   CFGBlock *VisitReturnStmt(ReturnStmt *R);
479   CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
480   CFGBlock *VisitSwitchStmt(SwitchStmt *S);
481   CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
482                                           AddStmtChoice asc);
483   CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
484   CFGBlock *VisitWhileStmt(WhileStmt *W);
485 
486   CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
487   CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
488   CFGBlock *VisitChildren(Stmt *S);
489   CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
490 
491   /// When creating the CFG for temporary destructors, we want to mirror the
492   /// branch structure of the corresponding constructor calls.
493   /// Thus, while visiting a statement for temporary destructors, we keep a
494   /// context to keep track of the following information:
495   /// - whether a subexpression is executed unconditionally
496   /// - if a subexpression is executed conditionally, the first
497   ///   CXXBindTemporaryExpr we encounter in that subexpression (which
498   ///   corresponds to the last temporary destructor we have to call for this
499   ///   subexpression) and the CFG block at that point (which will become the
500   ///   successor block when inserting the decision point).
501   ///
502   /// That way, we can build the branch structure for temporary destructors as
503   /// follows:
504   /// 1. If a subexpression is executed unconditionally, we add the temporary
505   ///    destructor calls to the current block.
506   /// 2. If a subexpression is executed conditionally, when we encounter a
507   ///    CXXBindTemporaryExpr:
508   ///    a) If it is the first temporary destructor call in the subexpression,
509   ///       we remember the CXXBindTemporaryExpr and the current block in the
510   ///       TempDtorContext; we start a new block, and insert the temporary
511   ///       destructor call.
512   ///    b) Otherwise, add the temporary destructor call to the current block.
513   ///  3. When we finished visiting a conditionally executed subexpression,
514   ///     and we found at least one temporary constructor during the visitation
515   ///     (2.a has executed), we insert a decision block that uses the
516   ///     CXXBindTemporaryExpr as terminator, and branches to the current block
517   ///     if the CXXBindTemporaryExpr was marked executed, and otherwise
518   ///     branches to the stored successor.
519   struct TempDtorContext {
520     TempDtorContext()
521         : IsConditional(false), KnownExecuted(true), Succ(nullptr),
522           TerminatorExpr(nullptr) {}
523 
524     TempDtorContext(TryResult KnownExecuted)
525         : IsConditional(true), KnownExecuted(KnownExecuted), Succ(nullptr),
526           TerminatorExpr(nullptr) {}
527 
528     /// Returns whether we need to start a new branch for a temporary destructor
529     /// call. This is the case when the temporary destructor is
530     /// conditionally executed, and it is the first one we encounter while
531     /// visiting a subexpression - other temporary destructors at the same level
532     /// will be added to the same block and are executed under the same
533     /// condition.
534     bool needsTempDtorBranch() const {
535       return IsConditional && !TerminatorExpr;
536     }
537 
538     /// Remember the successor S of a temporary destructor decision branch for
539     /// the corresponding CXXBindTemporaryExpr E.
540     void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) {
541       Succ = S;
542       TerminatorExpr = E;
543     }
544 
545     const bool IsConditional;
546     const TryResult KnownExecuted;
547     CFGBlock *Succ;
548     CXXBindTemporaryExpr *TerminatorExpr;
549   };
550 
551   // Visitors to walk an AST and generate destructors of temporaries in
552   // full expression.
553   CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary,
554                                    TempDtorContext &Context);
555   CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E, TempDtorContext &Context);
556   CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E,
557                                                  TempDtorContext &Context);
558   CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(
559       CXXBindTemporaryExpr *E, bool BindToTemporary, TempDtorContext &Context);
560   CFGBlock *VisitConditionalOperatorForTemporaryDtors(
561       AbstractConditionalOperator *E, bool BindToTemporary,
562       TempDtorContext &Context);
563   void InsertTempDtorDecisionBlock(const TempDtorContext &Context,
564                                    CFGBlock *FalseSucc = nullptr);
565 
566   // NYS == Not Yet Supported
567   CFGBlock *NYS() {
568     badCFG = true;
569     return Block;
570   }
571 
572   void autoCreateBlock() { if (!Block) Block = createBlock(); }
573   CFGBlock *createBlock(bool add_successor = true);
574   CFGBlock *createNoReturnBlock();
575 
576   CFGBlock *addStmt(Stmt *S) {
577     return Visit(S, AddStmtChoice::AlwaysAdd);
578   }
579   CFGBlock *addInitializer(CXXCtorInitializer *I);
580   void addAutomaticObjDtors(LocalScope::const_iterator B,
581                             LocalScope::const_iterator E, Stmt *S);
582   void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
583 
584   // Local scopes creation.
585   LocalScope* createOrReuseLocalScope(LocalScope* Scope);
586 
587   void addLocalScopeForStmt(Stmt *S);
588   LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS,
589                                        LocalScope* Scope = nullptr);
590   LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr);
591 
592   void addLocalScopeAndDtors(Stmt *S);
593 
594   // Interface to CFGBlock - adding CFGElements.
595   void appendStmt(CFGBlock *B, const Stmt *S) {
596     if (alwaysAdd(S) && cachedEntry)
597       cachedEntry->second = B;
598 
599     // All block-level expressions should have already been IgnoreParens()ed.
600     assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
601     B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
602   }
603   void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
604     B->appendInitializer(I, cfg->getBumpVectorContext());
605   }
606   void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) {
607     B->appendNewAllocator(NE, cfg->getBumpVectorContext());
608   }
609   void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
610     B->appendBaseDtor(BS, cfg->getBumpVectorContext());
611   }
612   void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
613     B->appendMemberDtor(FD, cfg->getBumpVectorContext());
614   }
615   void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
616     B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
617   }
618   void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
619     B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
620   }
621 
622   void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
623     B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
624   }
625 
626   void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
627       LocalScope::const_iterator B, LocalScope::const_iterator E);
628 
629   void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) {
630     B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable),
631                     cfg->getBumpVectorContext());
632   }
633 
634   /// Add a reachable successor to a block, with the alternate variant that is
635   /// unreachable.
636   void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) {
637     B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock),
638                     cfg->getBumpVectorContext());
639   }
640 
641   /// \brief Find a relational comparison with an expression evaluating to a
642   /// boolean and a constant other than 0 and 1.
643   /// e.g. if ((x < y) == 10)
644   TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) {
645     const Expr *LHSExpr = B->getLHS()->IgnoreParens();
646     const Expr *RHSExpr = B->getRHS()->IgnoreParens();
647 
648     const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
649     const Expr *BoolExpr = RHSExpr;
650     bool IntFirst = true;
651     if (!IntLiteral) {
652       IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
653       BoolExpr = LHSExpr;
654       IntFirst = false;
655     }
656 
657     if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue())
658       return TryResult();
659 
660     llvm::APInt IntValue = IntLiteral->getValue();
661     if ((IntValue == 1) || (IntValue == 0))
662       return TryResult();
663 
664     bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() ||
665                      !IntValue.isNegative();
666 
667     BinaryOperatorKind Bok = B->getOpcode();
668     if (Bok == BO_GT || Bok == BO_GE) {
669       // Always true for 10 > bool and bool > -1
670       // Always false for -1 > bool and bool > 10
671       return TryResult(IntFirst == IntLarger);
672     } else {
673       // Always true for -1 < bool and bool < 10
674       // Always false for 10 < bool and bool < -1
675       return TryResult(IntFirst != IntLarger);
676     }
677   }
678 
679   /// Find an incorrect equality comparison. Either with an expression
680   /// evaluating to a boolean and a constant other than 0 and 1.
681   /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
682   /// true/false e.q. (x & 8) == 4.
683   TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) {
684     const Expr *LHSExpr = B->getLHS()->IgnoreParens();
685     const Expr *RHSExpr = B->getRHS()->IgnoreParens();
686 
687     const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
688     const Expr *BoolExpr = RHSExpr;
689 
690     if (!IntLiteral) {
691       IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
692       BoolExpr = LHSExpr;
693     }
694 
695     if (!IntLiteral)
696       return TryResult();
697 
698     const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr);
699     if (BitOp && (BitOp->getOpcode() == BO_And ||
700                   BitOp->getOpcode() == BO_Or)) {
701       const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens();
702       const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens();
703 
704       const IntegerLiteral *IntLiteral2 = dyn_cast<IntegerLiteral>(LHSExpr2);
705 
706       if (!IntLiteral2)
707         IntLiteral2 = dyn_cast<IntegerLiteral>(RHSExpr2);
708 
709       if (!IntLiteral2)
710         return TryResult();
711 
712       llvm::APInt L1 = IntLiteral->getValue();
713       llvm::APInt L2 = IntLiteral2->getValue();
714       if ((BitOp->getOpcode() == BO_And && (L2 & L1) != L1) ||
715           (BitOp->getOpcode() == BO_Or  && (L2 | L1) != L1)) {
716         if (BuildOpts.Observer)
717           BuildOpts.Observer->compareBitwiseEquality(B,
718                                                      B->getOpcode() != BO_EQ);
719         TryResult(B->getOpcode() != BO_EQ);
720       }
721     } else if (BoolExpr->isKnownToHaveBooleanValue()) {
722       llvm::APInt IntValue = IntLiteral->getValue();
723       if ((IntValue == 1) || (IntValue == 0)) {
724         return TryResult();
725       }
726       return TryResult(B->getOpcode() != BO_EQ);
727     }
728 
729     return TryResult();
730   }
731 
732   TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation,
733                                           const llvm::APSInt &Value1,
734                                           const llvm::APSInt &Value2) {
735     assert(Value1.isSigned() == Value2.isSigned());
736     switch (Relation) {
737       default:
738         return TryResult();
739       case BO_EQ:
740         return TryResult(Value1 == Value2);
741       case BO_NE:
742         return TryResult(Value1 != Value2);
743       case BO_LT:
744         return TryResult(Value1 <  Value2);
745       case BO_LE:
746         return TryResult(Value1 <= Value2);
747       case BO_GT:
748         return TryResult(Value1 >  Value2);
749       case BO_GE:
750         return TryResult(Value1 >= Value2);
751     }
752   }
753 
754   /// \brief Find a pair of comparison expressions with or without parentheses
755   /// with a shared variable and constants and a logical operator between them
756   /// that always evaluates to either true or false.
757   /// e.g. if (x != 3 || x != 4)
758   TryResult checkIncorrectLogicOperator(const BinaryOperator *B) {
759     assert(B->isLogicalOp());
760     const BinaryOperator *LHS =
761         dyn_cast<BinaryOperator>(B->getLHS()->IgnoreParens());
762     const BinaryOperator *RHS =
763         dyn_cast<BinaryOperator>(B->getRHS()->IgnoreParens());
764     if (!LHS || !RHS)
765       return TryResult();
766 
767     if (!LHS->isComparisonOp() || !RHS->isComparisonOp())
768       return TryResult();
769 
770     const DeclRefExpr *Decl1;
771     const Expr *Expr1;
772     BinaryOperatorKind BO1;
773     std::tie(Decl1, BO1, Expr1) = tryNormalizeBinaryOperator(LHS);
774 
775     if (!Decl1 || !Expr1)
776       return TryResult();
777 
778     const DeclRefExpr *Decl2;
779     const Expr *Expr2;
780     BinaryOperatorKind BO2;
781     std::tie(Decl2, BO2, Expr2) = tryNormalizeBinaryOperator(RHS);
782 
783     if (!Decl2 || !Expr2)
784       return TryResult();
785 
786     // Check that it is the same variable on both sides.
787     if (Decl1->getDecl() != Decl2->getDecl())
788       return TryResult();
789 
790     // Make sure the user's intent is clear (e.g. they're comparing against two
791     // int literals, or two things from the same enum)
792     if (!areExprTypesCompatible(Expr1, Expr2))
793       return TryResult();
794 
795     llvm::APSInt L1, L2;
796 
797     if (!Expr1->EvaluateAsInt(L1, *Context) ||
798         !Expr2->EvaluateAsInt(L2, *Context))
799       return TryResult();
800 
801     // Can't compare signed with unsigned or with different bit width.
802     if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth())
803       return TryResult();
804 
805     // Values that will be used to determine if result of logical
806     // operator is always true/false
807     const llvm::APSInt Values[] = {
808       // Value less than both Value1 and Value2
809       llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()),
810       // L1
811       L1,
812       // Value between Value1 and Value2
813       ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1),
814                               L1.isUnsigned()),
815       // L2
816       L2,
817       // Value greater than both Value1 and Value2
818       llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()),
819     };
820 
821     // Check whether expression is always true/false by evaluating the following
822     // * variable x is less than the smallest literal.
823     // * variable x is equal to the smallest literal.
824     // * Variable x is between smallest and largest literal.
825     // * Variable x is equal to the largest literal.
826     // * Variable x is greater than largest literal.
827     bool AlwaysTrue = true, AlwaysFalse = true;
828     for (const llvm::APSInt &Value : Values) {
829       TryResult Res1, Res2;
830       Res1 = analyzeLogicOperatorCondition(BO1, Value, L1);
831       Res2 = analyzeLogicOperatorCondition(BO2, Value, L2);
832 
833       if (!Res1.isKnown() || !Res2.isKnown())
834         return TryResult();
835 
836       if (B->getOpcode() == BO_LAnd) {
837         AlwaysTrue &= (Res1.isTrue() && Res2.isTrue());
838         AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue());
839       } else {
840         AlwaysTrue &= (Res1.isTrue() || Res2.isTrue());
841         AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue());
842       }
843     }
844 
845     if (AlwaysTrue || AlwaysFalse) {
846       if (BuildOpts.Observer)
847         BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue);
848       return TryResult(AlwaysTrue);
849     }
850     return TryResult();
851   }
852 
853   /// Try and evaluate an expression to an integer constant.
854   bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
855     if (!BuildOpts.PruneTriviallyFalseEdges)
856       return false;
857     return !S->isTypeDependent() &&
858            !S->isValueDependent() &&
859            S->EvaluateAsRValue(outResult, *Context);
860   }
861 
862   /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
863   /// if we can evaluate to a known value, otherwise return -1.
864   TryResult tryEvaluateBool(Expr *S) {
865     if (!BuildOpts.PruneTriviallyFalseEdges ||
866         S->isTypeDependent() || S->isValueDependent())
867       return TryResult();
868 
869     if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
870       if (Bop->isLogicalOp()) {
871         // Check the cache first.
872         CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
873         if (I != CachedBoolEvals.end())
874           return I->second; // already in map;
875 
876         // Retrieve result at first, or the map might be updated.
877         TryResult Result = evaluateAsBooleanConditionNoCache(S);
878         CachedBoolEvals[S] = Result; // update or insert
879         return Result;
880       }
881       else {
882         switch (Bop->getOpcode()) {
883           default: break;
884           // For 'x & 0' and 'x * 0', we can determine that
885           // the value is always false.
886           case BO_Mul:
887           case BO_And: {
888             // If either operand is zero, we know the value
889             // must be false.
890             llvm::APSInt IntVal;
891             if (Bop->getLHS()->EvaluateAsInt(IntVal, *Context)) {
892               if (!IntVal.getBoolValue()) {
893                 return TryResult(false);
894               }
895             }
896             if (Bop->getRHS()->EvaluateAsInt(IntVal, *Context)) {
897               if (!IntVal.getBoolValue()) {
898                 return TryResult(false);
899               }
900             }
901           }
902           break;
903         }
904       }
905     }
906 
907     return evaluateAsBooleanConditionNoCache(S);
908   }
909 
910   /// \brief Evaluate as boolean \param E without using the cache.
911   TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
912     if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
913       if (Bop->isLogicalOp()) {
914         TryResult LHS = tryEvaluateBool(Bop->getLHS());
915         if (LHS.isKnown()) {
916           // We were able to evaluate the LHS, see if we can get away with not
917           // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
918           if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
919             return LHS.isTrue();
920 
921           TryResult RHS = tryEvaluateBool(Bop->getRHS());
922           if (RHS.isKnown()) {
923             if (Bop->getOpcode() == BO_LOr)
924               return LHS.isTrue() || RHS.isTrue();
925             else
926               return LHS.isTrue() && RHS.isTrue();
927           }
928         } else {
929           TryResult RHS = tryEvaluateBool(Bop->getRHS());
930           if (RHS.isKnown()) {
931             // We can't evaluate the LHS; however, sometimes the result
932             // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
933             if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
934               return RHS.isTrue();
935           } else {
936             TryResult BopRes = checkIncorrectLogicOperator(Bop);
937             if (BopRes.isKnown())
938               return BopRes.isTrue();
939           }
940         }
941 
942         return TryResult();
943       } else if (Bop->isEqualityOp()) {
944           TryResult BopRes = checkIncorrectEqualityOperator(Bop);
945           if (BopRes.isKnown())
946             return BopRes.isTrue();
947       } else if (Bop->isRelationalOp()) {
948         TryResult BopRes = checkIncorrectRelationalOperator(Bop);
949         if (BopRes.isKnown())
950           return BopRes.isTrue();
951       }
952     }
953 
954     bool Result;
955     if (E->EvaluateAsBooleanCondition(Result, *Context))
956       return Result;
957 
958     return TryResult();
959   }
960 
961 };
962 
963 inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
964                                      const Stmt *stmt) const {
965   return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
966 }
967 
968 bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
969   bool shouldAdd = BuildOpts.alwaysAdd(stmt);
970 
971   if (!BuildOpts.forcedBlkExprs)
972     return shouldAdd;
973 
974   if (lastLookup == stmt) {
975     if (cachedEntry) {
976       assert(cachedEntry->first == stmt);
977       return true;
978     }
979     return shouldAdd;
980   }
981 
982   lastLookup = stmt;
983 
984   // Perform the lookup!
985   CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
986 
987   if (!fb) {
988     // No need to update 'cachedEntry', since it will always be null.
989     assert(!cachedEntry);
990     return shouldAdd;
991   }
992 
993   CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
994   if (itr == fb->end()) {
995     cachedEntry = nullptr;
996     return shouldAdd;
997   }
998 
999   cachedEntry = &*itr;
1000   return true;
1001 }
1002 
1003 // FIXME: Add support for dependent-sized array types in C++?
1004 // Does it even make sense to build a CFG for an uninstantiated template?
1005 static const VariableArrayType *FindVA(const Type *t) {
1006   while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
1007     if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
1008       if (vat->getSizeExpr())
1009         return vat;
1010 
1011     t = vt->getElementType().getTypePtr();
1012   }
1013 
1014   return nullptr;
1015 }
1016 
1017 /// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
1018 ///  arbitrary statement.  Examples include a single expression or a function
1019 ///  body (compound statement).  The ownership of the returned CFG is
1020 ///  transferred to the caller.  If CFG construction fails, this method returns
1021 ///  NULL.
1022 std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
1023   assert(cfg.get());
1024   if (!Statement)
1025     return nullptr;
1026 
1027   // Create an empty block that will serve as the exit block for the CFG.  Since
1028   // this is the first block added to the CFG, it will be implicitly registered
1029   // as the exit block.
1030   Succ = createBlock();
1031   assert(Succ == &cfg->getExit());
1032   Block = nullptr;  // the EXIT block is empty.  Create all other blocks lazily.
1033 
1034   if (BuildOpts.AddImplicitDtors)
1035     if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
1036       addImplicitDtorsForDestructor(DD);
1037 
1038   // Visit the statements and create the CFG.
1039   CFGBlock *B = addStmt(Statement);
1040 
1041   if (badCFG)
1042     return nullptr;
1043 
1044   // For C++ constructor add initializers to CFG.
1045   if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
1046     for (auto *I : llvm::reverse(CD->inits())) {
1047       B = addInitializer(I);
1048       if (badCFG)
1049         return nullptr;
1050     }
1051   }
1052 
1053   if (B)
1054     Succ = B;
1055 
1056   // Backpatch the gotos whose label -> block mappings we didn't know when we
1057   // encountered them.
1058   for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
1059                                    E = BackpatchBlocks.end(); I != E; ++I ) {
1060 
1061     CFGBlock *B = I->block;
1062     const GotoStmt *G = cast<GotoStmt>(B->getTerminator());
1063     LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
1064 
1065     // If there is no target for the goto, then we are looking at an
1066     // incomplete AST.  Handle this by not registering a successor.
1067     if (LI == LabelMap.end()) continue;
1068 
1069     JumpTarget JT = LI->second;
1070     prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
1071                                            JT.scopePosition);
1072     addSuccessor(B, JT.block);
1073   }
1074 
1075   // Add successors to the Indirect Goto Dispatch block (if we have one).
1076   if (CFGBlock *B = cfg->getIndirectGotoBlock())
1077     for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
1078                               E = AddressTakenLabels.end(); I != E; ++I ) {
1079 
1080       // Lookup the target block.
1081       LabelMapTy::iterator LI = LabelMap.find(*I);
1082 
1083       // If there is no target block that contains label, then we are looking
1084       // at an incomplete AST.  Handle this by not registering a successor.
1085       if (LI == LabelMap.end()) continue;
1086 
1087       addSuccessor(B, LI->second.block);
1088     }
1089 
1090   // Create an empty entry block that has no predecessors.
1091   cfg->setEntry(createBlock());
1092 
1093   return std::move(cfg);
1094 }
1095 
1096 /// createBlock - Used to lazily create blocks that are connected
1097 ///  to the current (global) succcessor.
1098 CFGBlock *CFGBuilder::createBlock(bool add_successor) {
1099   CFGBlock *B = cfg->createBlock();
1100   if (add_successor && Succ)
1101     addSuccessor(B, Succ);
1102   return B;
1103 }
1104 
1105 /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
1106 /// CFG. It is *not* connected to the current (global) successor, and instead
1107 /// directly tied to the exit block in order to be reachable.
1108 CFGBlock *CFGBuilder::createNoReturnBlock() {
1109   CFGBlock *B = createBlock(false);
1110   B->setHasNoReturnElement();
1111   addSuccessor(B, &cfg->getExit(), Succ);
1112   return B;
1113 }
1114 
1115 /// addInitializer - Add C++ base or member initializer element to CFG.
1116 CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
1117   if (!BuildOpts.AddInitializers)
1118     return Block;
1119 
1120   bool HasTemporaries = false;
1121 
1122   // Destructors of temporaries in initialization expression should be called
1123   // after initialization finishes.
1124   Expr *Init = I->getInit();
1125   if (Init) {
1126     HasTemporaries = isa<ExprWithCleanups>(Init);
1127 
1128     if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1129       // Generate destructors for temporaries in initialization expression.
1130       TempDtorContext Context;
1131       VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1132                              /*BindToTemporary=*/false, Context);
1133     }
1134   }
1135 
1136   autoCreateBlock();
1137   appendInitializer(Block, I);
1138 
1139   if (Init) {
1140     if (HasTemporaries) {
1141       // For expression with temporaries go directly to subexpression to omit
1142       // generating destructors for the second time.
1143       return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1144     }
1145     if (BuildOpts.AddCXXDefaultInitExprInCtors) {
1146       if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Init)) {
1147         // In general, appending the expression wrapped by a CXXDefaultInitExpr
1148         // may cause the same Expr to appear more than once in the CFG. Doing it
1149         // here is safe because there's only one initializer per field.
1150         autoCreateBlock();
1151         appendStmt(Block, Default);
1152         if (Stmt *Child = Default->getExpr())
1153           if (CFGBlock *R = Visit(Child))
1154             Block = R;
1155         return Block;
1156       }
1157     }
1158     return Visit(Init);
1159   }
1160 
1161   return Block;
1162 }
1163 
1164 /// \brief Retrieve the type of the temporary object whose lifetime was
1165 /// extended by a local reference with the given initializer.
1166 static QualType getReferenceInitTemporaryType(ASTContext &Context,
1167                                               const Expr *Init) {
1168   while (true) {
1169     // Skip parentheses.
1170     Init = Init->IgnoreParens();
1171 
1172     // Skip through cleanups.
1173     if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
1174       Init = EWC->getSubExpr();
1175       continue;
1176     }
1177 
1178     // Skip through the temporary-materialization expression.
1179     if (const MaterializeTemporaryExpr *MTE
1180           = dyn_cast<MaterializeTemporaryExpr>(Init)) {
1181       Init = MTE->GetTemporaryExpr();
1182       continue;
1183     }
1184 
1185     // Skip derived-to-base and no-op casts.
1186     if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
1187       if ((CE->getCastKind() == CK_DerivedToBase ||
1188            CE->getCastKind() == CK_UncheckedDerivedToBase ||
1189            CE->getCastKind() == CK_NoOp) &&
1190           Init->getType()->isRecordType()) {
1191         Init = CE->getSubExpr();
1192         continue;
1193       }
1194     }
1195 
1196     // Skip member accesses into rvalues.
1197     if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
1198       if (!ME->isArrow() && ME->getBase()->isRValue()) {
1199         Init = ME->getBase();
1200         continue;
1201       }
1202     }
1203 
1204     break;
1205   }
1206 
1207   return Init->getType();
1208 }
1209 
1210 /// addAutomaticObjDtors - Add to current block automatic objects destructors
1211 /// for objects in range of local scope positions. Use S as trigger statement
1212 /// for destructors.
1213 void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
1214                                       LocalScope::const_iterator E, Stmt *S) {
1215   if (!BuildOpts.AddImplicitDtors)
1216     return;
1217 
1218   if (B == E)
1219     return;
1220 
1221   // We need to append the destructors in reverse order, but any one of them
1222   // may be a no-return destructor which changes the CFG. As a result, buffer
1223   // this sequence up and replay them in reverse order when appending onto the
1224   // CFGBlock(s).
1225   SmallVector<VarDecl*, 10> Decls;
1226   Decls.reserve(B.distance(E));
1227   for (LocalScope::const_iterator I = B; I != E; ++I)
1228     Decls.push_back(*I);
1229 
1230   for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
1231                                                    E = Decls.rend();
1232        I != E; ++I) {
1233     // If this destructor is marked as a no-return destructor, we need to
1234     // create a new block for the destructor which does not have as a successor
1235     // anything built thus far: control won't flow out of this block.
1236     QualType Ty = (*I)->getType();
1237     if (Ty->isReferenceType()) {
1238       Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
1239     }
1240     Ty = Context->getBaseElementType(Ty);
1241 
1242     if (Ty->getAsCXXRecordDecl()->isAnyDestructorNoReturn())
1243       Block = createNoReturnBlock();
1244     else
1245       autoCreateBlock();
1246 
1247     appendAutomaticObjDtor(Block, *I, S);
1248   }
1249 }
1250 
1251 /// addImplicitDtorsForDestructor - Add implicit destructors generated for
1252 /// base and member objects in destructor.
1253 void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
1254   assert (BuildOpts.AddImplicitDtors
1255       && "Can be called only when dtors should be added");
1256   const CXXRecordDecl *RD = DD->getParent();
1257 
1258   // At the end destroy virtual base objects.
1259   for (const auto &VI : RD->vbases()) {
1260     const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl();
1261     if (!CD->hasTrivialDestructor()) {
1262       autoCreateBlock();
1263       appendBaseDtor(Block, &VI);
1264     }
1265   }
1266 
1267   // Before virtual bases destroy direct base objects.
1268   for (const auto &BI : RD->bases()) {
1269     if (!BI.isVirtual()) {
1270       const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl();
1271       if (!CD->hasTrivialDestructor()) {
1272         autoCreateBlock();
1273         appendBaseDtor(Block, &BI);
1274       }
1275     }
1276   }
1277 
1278   // First destroy member objects.
1279   for (auto *FI : RD->fields()) {
1280     // Check for constant size array. Set type to array element type.
1281     QualType QT = FI->getType();
1282     if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
1283       if (AT->getSize() == 0)
1284         continue;
1285       QT = AT->getElementType();
1286     }
1287 
1288     if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
1289       if (!CD->hasTrivialDestructor()) {
1290         autoCreateBlock();
1291         appendMemberDtor(Block, FI);
1292       }
1293   }
1294 }
1295 
1296 /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
1297 /// way return valid LocalScope object.
1298 LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
1299   if (Scope)
1300     return Scope;
1301   llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
1302   return new (alloc.Allocate<LocalScope>())
1303       LocalScope(BumpVectorContext(alloc), ScopePos);
1304 }
1305 
1306 /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
1307 /// that should create implicit scope (e.g. if/else substatements).
1308 void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
1309   if (!BuildOpts.AddImplicitDtors)
1310     return;
1311 
1312   LocalScope *Scope = nullptr;
1313 
1314   // For compound statement we will be creating explicit scope.
1315   if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1316     for (auto *BI : CS->body()) {
1317       Stmt *SI = BI->stripLabelLikeStatements();
1318       if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
1319         Scope = addLocalScopeForDeclStmt(DS, Scope);
1320     }
1321     return;
1322   }
1323 
1324   // For any other statement scope will be implicit and as such will be
1325   // interesting only for DeclStmt.
1326   if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
1327     addLocalScopeForDeclStmt(DS);
1328 }
1329 
1330 /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
1331 /// reuse Scope if not NULL.
1332 LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
1333                                                  LocalScope* Scope) {
1334   if (!BuildOpts.AddImplicitDtors)
1335     return Scope;
1336 
1337   for (auto *DI : DS->decls())
1338     if (VarDecl *VD = dyn_cast<VarDecl>(DI))
1339       Scope = addLocalScopeForVarDecl(VD, Scope);
1340   return Scope;
1341 }
1342 
1343 /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
1344 /// create add scope for automatic objects and temporary objects bound to
1345 /// const reference. Will reuse Scope if not NULL.
1346 LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
1347                                                 LocalScope* Scope) {
1348   if (!BuildOpts.AddImplicitDtors)
1349     return Scope;
1350 
1351   // Check if variable is local.
1352   switch (VD->getStorageClass()) {
1353   case SC_None:
1354   case SC_Auto:
1355   case SC_Register:
1356     break;
1357   default: return Scope;
1358   }
1359 
1360   // Check for const references bound to temporary. Set type to pointee.
1361   QualType QT = VD->getType();
1362   if (QT.getTypePtr()->isReferenceType()) {
1363     // Attempt to determine whether this declaration lifetime-extends a
1364     // temporary.
1365     //
1366     // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
1367     // temporaries, and a single declaration can extend multiple temporaries.
1368     // We should look at the storage duration on each nested
1369     // MaterializeTemporaryExpr instead.
1370     const Expr *Init = VD->getInit();
1371     if (!Init)
1372       return Scope;
1373     if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init))
1374       Init = EWC->getSubExpr();
1375     if (!isa<MaterializeTemporaryExpr>(Init))
1376       return Scope;
1377 
1378     // Lifetime-extending a temporary.
1379     QT = getReferenceInitTemporaryType(*Context, Init);
1380   }
1381 
1382   // Check for constant size array. Set type to array element type.
1383   while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
1384     if (AT->getSize() == 0)
1385       return Scope;
1386     QT = AT->getElementType();
1387   }
1388 
1389   // Check if type is a C++ class with non-trivial destructor.
1390   if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
1391     if (!CD->hasTrivialDestructor()) {
1392       // Add the variable to scope
1393       Scope = createOrReuseLocalScope(Scope);
1394       Scope->addVar(VD);
1395       ScopePos = Scope->begin();
1396     }
1397   return Scope;
1398 }
1399 
1400 /// addLocalScopeAndDtors - For given statement add local scope for it and
1401 /// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
1402 void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
1403   if (!BuildOpts.AddImplicitDtors)
1404     return;
1405 
1406   LocalScope::const_iterator scopeBeginPos = ScopePos;
1407   addLocalScopeForStmt(S);
1408   addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
1409 }
1410 
1411 /// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
1412 /// variables with automatic storage duration to CFGBlock's elements vector.
1413 /// Elements will be prepended to physical beginning of the vector which
1414 /// happens to be logical end. Use blocks terminator as statement that specifies
1415 /// destructors call site.
1416 /// FIXME: This mechanism for adding automatic destructors doesn't handle
1417 /// no-return destructors properly.
1418 void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
1419     LocalScope::const_iterator B, LocalScope::const_iterator E) {
1420   BumpVectorContext &C = cfg->getBumpVectorContext();
1421   CFGBlock::iterator InsertPos
1422     = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
1423   for (LocalScope::const_iterator I = B; I != E; ++I)
1424     InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
1425                                             Blk->getTerminator());
1426 }
1427 
1428 /// Visit - Walk the subtree of a statement and add extra
1429 ///   blocks for ternary operators, &&, and ||.  We also process "," and
1430 ///   DeclStmts (which may contain nested control-flow).
1431 CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
1432   if (!S) {
1433     badCFG = true;
1434     return nullptr;
1435   }
1436 
1437   if (Expr *E = dyn_cast<Expr>(S))
1438     S = E->IgnoreParens();
1439 
1440   switch (S->getStmtClass()) {
1441     default:
1442       return VisitStmt(S, asc);
1443 
1444     case Stmt::AddrLabelExprClass:
1445       return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
1446 
1447     case Stmt::BinaryConditionalOperatorClass:
1448       return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
1449 
1450     case Stmt::BinaryOperatorClass:
1451       return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
1452 
1453     case Stmt::BlockExprClass:
1454       return VisitBlockExpr(cast<BlockExpr>(S), asc);
1455 
1456     case Stmt::BreakStmtClass:
1457       return VisitBreakStmt(cast<BreakStmt>(S));
1458 
1459     case Stmt::CallExprClass:
1460     case Stmt::CXXOperatorCallExprClass:
1461     case Stmt::CXXMemberCallExprClass:
1462     case Stmt::UserDefinedLiteralClass:
1463       return VisitCallExpr(cast<CallExpr>(S), asc);
1464 
1465     case Stmt::CaseStmtClass:
1466       return VisitCaseStmt(cast<CaseStmt>(S));
1467 
1468     case Stmt::ChooseExprClass:
1469       return VisitChooseExpr(cast<ChooseExpr>(S), asc);
1470 
1471     case Stmt::CompoundStmtClass:
1472       return VisitCompoundStmt(cast<CompoundStmt>(S));
1473 
1474     case Stmt::ConditionalOperatorClass:
1475       return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
1476 
1477     case Stmt::ContinueStmtClass:
1478       return VisitContinueStmt(cast<ContinueStmt>(S));
1479 
1480     case Stmt::CXXCatchStmtClass:
1481       return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
1482 
1483     case Stmt::ExprWithCleanupsClass:
1484       return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
1485 
1486     case Stmt::CXXDefaultArgExprClass:
1487     case Stmt::CXXDefaultInitExprClass:
1488       // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
1489       // called function's declaration, not by the caller. If we simply add
1490       // this expression to the CFG, we could end up with the same Expr
1491       // appearing multiple times.
1492       // PR13385 / <rdar://problem/12156507>
1493       //
1494       // It's likewise possible for multiple CXXDefaultInitExprs for the same
1495       // expression to be used in the same function (through aggregate
1496       // initialization).
1497       return VisitStmt(S, asc);
1498 
1499     case Stmt::CXXBindTemporaryExprClass:
1500       return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
1501 
1502     case Stmt::CXXConstructExprClass:
1503       return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
1504 
1505     case Stmt::CXXNewExprClass:
1506       return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc);
1507 
1508     case Stmt::CXXDeleteExprClass:
1509       return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);
1510 
1511     case Stmt::CXXFunctionalCastExprClass:
1512       return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
1513 
1514     case Stmt::CXXTemporaryObjectExprClass:
1515       return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
1516 
1517     case Stmt::CXXThrowExprClass:
1518       return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
1519 
1520     case Stmt::CXXTryStmtClass:
1521       return VisitCXXTryStmt(cast<CXXTryStmt>(S));
1522 
1523     case Stmt::CXXForRangeStmtClass:
1524       return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
1525 
1526     case Stmt::DeclStmtClass:
1527       return VisitDeclStmt(cast<DeclStmt>(S));
1528 
1529     case Stmt::DefaultStmtClass:
1530       return VisitDefaultStmt(cast<DefaultStmt>(S));
1531 
1532     case Stmt::DoStmtClass:
1533       return VisitDoStmt(cast<DoStmt>(S));
1534 
1535     case Stmt::ForStmtClass:
1536       return VisitForStmt(cast<ForStmt>(S));
1537 
1538     case Stmt::GotoStmtClass:
1539       return VisitGotoStmt(cast<GotoStmt>(S));
1540 
1541     case Stmt::IfStmtClass:
1542       return VisitIfStmt(cast<IfStmt>(S));
1543 
1544     case Stmt::ImplicitCastExprClass:
1545       return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
1546 
1547     case Stmt::IndirectGotoStmtClass:
1548       return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
1549 
1550     case Stmt::LabelStmtClass:
1551       return VisitLabelStmt(cast<LabelStmt>(S));
1552 
1553     case Stmt::LambdaExprClass:
1554       return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
1555 
1556     case Stmt::MemberExprClass:
1557       return VisitMemberExpr(cast<MemberExpr>(S), asc);
1558 
1559     case Stmt::NullStmtClass:
1560       return Block;
1561 
1562     case Stmt::ObjCAtCatchStmtClass:
1563       return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
1564 
1565     case Stmt::ObjCAutoreleasePoolStmtClass:
1566     return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
1567 
1568     case Stmt::ObjCAtSynchronizedStmtClass:
1569       return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
1570 
1571     case Stmt::ObjCAtThrowStmtClass:
1572       return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
1573 
1574     case Stmt::ObjCAtTryStmtClass:
1575       return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
1576 
1577     case Stmt::ObjCForCollectionStmtClass:
1578       return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
1579 
1580     case Stmt::OpaqueValueExprClass:
1581       return Block;
1582 
1583     case Stmt::PseudoObjectExprClass:
1584       return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
1585 
1586     case Stmt::ReturnStmtClass:
1587       return VisitReturnStmt(cast<ReturnStmt>(S));
1588 
1589     case Stmt::UnaryExprOrTypeTraitExprClass:
1590       return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
1591                                            asc);
1592 
1593     case Stmt::StmtExprClass:
1594       return VisitStmtExpr(cast<StmtExpr>(S), asc);
1595 
1596     case Stmt::SwitchStmtClass:
1597       return VisitSwitchStmt(cast<SwitchStmt>(S));
1598 
1599     case Stmt::UnaryOperatorClass:
1600       return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1601 
1602     case Stmt::WhileStmtClass:
1603       return VisitWhileStmt(cast<WhileStmt>(S));
1604   }
1605 }
1606 
1607 CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1608   if (asc.alwaysAdd(*this, S)) {
1609     autoCreateBlock();
1610     appendStmt(Block, S);
1611   }
1612 
1613   return VisitChildren(S);
1614 }
1615 
1616 /// VisitChildren - Visit the children of a Stmt.
1617 CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
1618   CFGBlock *B = Block;
1619 
1620   // Visit the children in their reverse order so that they appear in
1621   // left-to-right (natural) order in the CFG.
1622   reverse_children RChildren(S);
1623   for (reverse_children::iterator I = RChildren.begin(), E = RChildren.end();
1624        I != E; ++I) {
1625     if (Stmt *Child = *I)
1626       if (CFGBlock *R = Visit(Child))
1627         B = R;
1628   }
1629   return B;
1630 }
1631 
1632 CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1633                                          AddStmtChoice asc) {
1634   AddressTakenLabels.insert(A->getLabel());
1635 
1636   if (asc.alwaysAdd(*this, A)) {
1637     autoCreateBlock();
1638     appendStmt(Block, A);
1639   }
1640 
1641   return Block;
1642 }
1643 
1644 CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1645            AddStmtChoice asc) {
1646   if (asc.alwaysAdd(*this, U)) {
1647     autoCreateBlock();
1648     appendStmt(Block, U);
1649   }
1650 
1651   return Visit(U->getSubExpr(), AddStmtChoice());
1652 }
1653 
1654 CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
1655   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1656   appendStmt(ConfluenceBlock, B);
1657 
1658   if (badCFG)
1659     return nullptr;
1660 
1661   return VisitLogicalOperator(B, nullptr, ConfluenceBlock,
1662                               ConfluenceBlock).first;
1663 }
1664 
1665 std::pair<CFGBlock*, CFGBlock*>
1666 CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
1667                                  Stmt *Term,
1668                                  CFGBlock *TrueBlock,
1669                                  CFGBlock *FalseBlock) {
1670 
1671   // Introspect the RHS.  If it is a nested logical operation, we recursively
1672   // build the CFG using this function.  Otherwise, resort to default
1673   // CFG construction behavior.
1674   Expr *RHS = B->getRHS()->IgnoreParens();
1675   CFGBlock *RHSBlock, *ExitBlock;
1676 
1677   do {
1678     if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
1679       if (B_RHS->isLogicalOp()) {
1680         std::tie(RHSBlock, ExitBlock) =
1681           VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
1682         break;
1683       }
1684 
1685     // The RHS is not a nested logical operation.  Don't push the terminator
1686     // down further, but instead visit RHS and construct the respective
1687     // pieces of the CFG, and link up the RHSBlock with the terminator
1688     // we have been provided.
1689     ExitBlock = RHSBlock = createBlock(false);
1690 
1691     if (!Term) {
1692       assert(TrueBlock == FalseBlock);
1693       addSuccessor(RHSBlock, TrueBlock);
1694     }
1695     else {
1696       RHSBlock->setTerminator(Term);
1697       TryResult KnownVal = tryEvaluateBool(RHS);
1698       if (!KnownVal.isKnown())
1699         KnownVal = tryEvaluateBool(B);
1700       addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse());
1701       addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue());
1702     }
1703 
1704     Block = RHSBlock;
1705     RHSBlock = addStmt(RHS);
1706   }
1707   while (false);
1708 
1709   if (badCFG)
1710     return std::make_pair(nullptr, nullptr);
1711 
1712   // Generate the blocks for evaluating the LHS.
1713   Expr *LHS = B->getLHS()->IgnoreParens();
1714 
1715   if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
1716     if (B_LHS->isLogicalOp()) {
1717       if (B->getOpcode() == BO_LOr)
1718         FalseBlock = RHSBlock;
1719       else
1720         TrueBlock = RHSBlock;
1721 
1722       // For the LHS, treat 'B' as the terminator that we want to sink
1723       // into the nested branch.  The RHS always gets the top-most
1724       // terminator.
1725       return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
1726     }
1727 
1728   // Create the block evaluating the LHS.
1729   // This contains the '&&' or '||' as the terminator.
1730   CFGBlock *LHSBlock = createBlock(false);
1731   LHSBlock->setTerminator(B);
1732 
1733   Block = LHSBlock;
1734   CFGBlock *EntryLHSBlock = addStmt(LHS);
1735 
1736   if (badCFG)
1737     return std::make_pair(nullptr, nullptr);
1738 
1739   // See if this is a known constant.
1740   TryResult KnownVal = tryEvaluateBool(LHS);
1741 
1742   // Now link the LHSBlock with RHSBlock.
1743   if (B->getOpcode() == BO_LOr) {
1744     addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse());
1745     addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue());
1746   } else {
1747     assert(B->getOpcode() == BO_LAnd);
1748     addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse());
1749     addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue());
1750   }
1751 
1752   return std::make_pair(EntryLHSBlock, ExitBlock);
1753 }
1754 
1755 
1756 CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1757                                           AddStmtChoice asc) {
1758    // && or ||
1759   if (B->isLogicalOp())
1760     return VisitLogicalOperator(B);
1761 
1762   if (B->getOpcode() == BO_Comma) { // ,
1763     autoCreateBlock();
1764     appendStmt(Block, B);
1765     addStmt(B->getRHS());
1766     return addStmt(B->getLHS());
1767   }
1768 
1769   if (B->isAssignmentOp()) {
1770     if (asc.alwaysAdd(*this, B)) {
1771       autoCreateBlock();
1772       appendStmt(Block, B);
1773     }
1774     Visit(B->getLHS());
1775     return Visit(B->getRHS());
1776   }
1777 
1778   if (asc.alwaysAdd(*this, B)) {
1779     autoCreateBlock();
1780     appendStmt(Block, B);
1781   }
1782 
1783   CFGBlock *RBlock = Visit(B->getRHS());
1784   CFGBlock *LBlock = Visit(B->getLHS());
1785   // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1786   // containing a DoStmt, and the LHS doesn't create a new block, then we should
1787   // return RBlock.  Otherwise we'll incorrectly return NULL.
1788   return (LBlock ? LBlock : RBlock);
1789 }
1790 
1791 CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
1792   if (asc.alwaysAdd(*this, E)) {
1793     autoCreateBlock();
1794     appendStmt(Block, E);
1795   }
1796   return Block;
1797 }
1798 
1799 CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1800   // "break" is a control-flow statement.  Thus we stop processing the current
1801   // block.
1802   if (badCFG)
1803     return nullptr;
1804 
1805   // Now create a new block that ends with the break statement.
1806   Block = createBlock(false);
1807   Block->setTerminator(B);
1808 
1809   // If there is no target for the break, then we are looking at an incomplete
1810   // AST.  This means that the CFG cannot be constructed.
1811   if (BreakJumpTarget.block) {
1812     addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1813     addSuccessor(Block, BreakJumpTarget.block);
1814   } else
1815     badCFG = true;
1816 
1817 
1818   return Block;
1819 }
1820 
1821 static bool CanThrow(Expr *E, ASTContext &Ctx) {
1822   QualType Ty = E->getType();
1823   if (Ty->isFunctionPointerType())
1824     Ty = Ty->getAs<PointerType>()->getPointeeType();
1825   else if (Ty->isBlockPointerType())
1826     Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1827 
1828   const FunctionType *FT = Ty->getAs<FunctionType>();
1829   if (FT) {
1830     if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1831       if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
1832           Proto->isNothrow(Ctx))
1833         return false;
1834   }
1835   return true;
1836 }
1837 
1838 CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1839   // Compute the callee type.
1840   QualType calleeType = C->getCallee()->getType();
1841   if (calleeType == Context->BoundMemberTy) {
1842     QualType boundType = Expr::findBoundMemberType(C->getCallee());
1843 
1844     // We should only get a null bound type if processing a dependent
1845     // CFG.  Recover by assuming nothing.
1846     if (!boundType.isNull()) calleeType = boundType;
1847   }
1848 
1849   // If this is a call to a no-return function, this stops the block here.
1850   bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1851 
1852   bool AddEHEdge = false;
1853 
1854   // Languages without exceptions are assumed to not throw.
1855   if (Context->getLangOpts().Exceptions) {
1856     if (BuildOpts.AddEHEdges)
1857       AddEHEdge = true;
1858   }
1859 
1860   // If this is a call to a builtin function, it might not actually evaluate
1861   // its arguments. Don't add them to the CFG if this is the case.
1862   bool OmitArguments = false;
1863 
1864   if (FunctionDecl *FD = C->getDirectCallee()) {
1865     if (FD->isNoReturn())
1866       NoReturn = true;
1867     if (FD->hasAttr<NoThrowAttr>())
1868       AddEHEdge = false;
1869     if (FD->getBuiltinID() == Builtin::BI__builtin_object_size)
1870       OmitArguments = true;
1871   }
1872 
1873   if (!CanThrow(C->getCallee(), *Context))
1874     AddEHEdge = false;
1875 
1876   if (OmitArguments) {
1877     assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
1878     assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
1879     autoCreateBlock();
1880     appendStmt(Block, C);
1881     return Visit(C->getCallee());
1882   }
1883 
1884   if (!NoReturn && !AddEHEdge) {
1885     return VisitStmt(C, asc.withAlwaysAdd(true));
1886   }
1887 
1888   if (Block) {
1889     Succ = Block;
1890     if (badCFG)
1891       return nullptr;
1892   }
1893 
1894   if (NoReturn)
1895     Block = createNoReturnBlock();
1896   else
1897     Block = createBlock();
1898 
1899   appendStmt(Block, C);
1900 
1901   if (AddEHEdge) {
1902     // Add exceptional edges.
1903     if (TryTerminatedBlock)
1904       addSuccessor(Block, TryTerminatedBlock);
1905     else
1906       addSuccessor(Block, &cfg->getExit());
1907   }
1908 
1909   return VisitChildren(C);
1910 }
1911 
1912 CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1913                                       AddStmtChoice asc) {
1914   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1915   appendStmt(ConfluenceBlock, C);
1916   if (badCFG)
1917     return nullptr;
1918 
1919   AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1920   Succ = ConfluenceBlock;
1921   Block = nullptr;
1922   CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1923   if (badCFG)
1924     return nullptr;
1925 
1926   Succ = ConfluenceBlock;
1927   Block = nullptr;
1928   CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1929   if (badCFG)
1930     return nullptr;
1931 
1932   Block = createBlock(false);
1933   // See if this is a known constant.
1934   const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1935   addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock);
1936   addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock);
1937   Block->setTerminator(C);
1938   return addStmt(C->getCond());
1939 }
1940 
1941 
1942 CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1943   LocalScope::const_iterator scopeBeginPos = ScopePos;
1944   if (BuildOpts.AddImplicitDtors) {
1945     addLocalScopeForStmt(C);
1946   }
1947   if (!C->body_empty() && !isa<ReturnStmt>(*C->body_rbegin())) {
1948     // If the body ends with a ReturnStmt, the dtors will be added in
1949     // VisitReturnStmt.
1950     addAutomaticObjDtors(ScopePos, scopeBeginPos, C);
1951   }
1952 
1953   CFGBlock *LastBlock = Block;
1954 
1955   for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1956        I != E; ++I ) {
1957     // If we hit a segment of code just containing ';' (NullStmts), we can
1958     // get a null block back.  In such cases, just use the LastBlock
1959     if (CFGBlock *newBlock = addStmt(*I))
1960       LastBlock = newBlock;
1961 
1962     if (badCFG)
1963       return nullptr;
1964   }
1965 
1966   return LastBlock;
1967 }
1968 
1969 CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1970                                                AddStmtChoice asc) {
1971   const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1972   const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr);
1973 
1974   // Create the confluence block that will "merge" the results of the ternary
1975   // expression.
1976   CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1977   appendStmt(ConfluenceBlock, C);
1978   if (badCFG)
1979     return nullptr;
1980 
1981   AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1982 
1983   // Create a block for the LHS expression if there is an LHS expression.  A
1984   // GCC extension allows LHS to be NULL, causing the condition to be the
1985   // value that is returned instead.
1986   //  e.g: x ?: y is shorthand for: x ? x : y;
1987   Succ = ConfluenceBlock;
1988   Block = nullptr;
1989   CFGBlock *LHSBlock = nullptr;
1990   const Expr *trueExpr = C->getTrueExpr();
1991   if (trueExpr != opaqueValue) {
1992     LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1993     if (badCFG)
1994       return nullptr;
1995     Block = nullptr;
1996   }
1997   else
1998     LHSBlock = ConfluenceBlock;
1999 
2000   // Create the block for the RHS expression.
2001   Succ = ConfluenceBlock;
2002   CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
2003   if (badCFG)
2004     return nullptr;
2005 
2006   // If the condition is a logical '&&' or '||', build a more accurate CFG.
2007   if (BinaryOperator *Cond =
2008         dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
2009     if (Cond->isLogicalOp())
2010       return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
2011 
2012   // Create the block that will contain the condition.
2013   Block = createBlock(false);
2014 
2015   // See if this is a known constant.
2016   const TryResult& KnownVal = tryEvaluateBool(C->getCond());
2017   addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
2018   addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
2019   Block->setTerminator(C);
2020   Expr *condExpr = C->getCond();
2021 
2022   if (opaqueValue) {
2023     // Run the condition expression if it's not trivially expressed in
2024     // terms of the opaque value (or if there is no opaque value).
2025     if (condExpr != opaqueValue)
2026       addStmt(condExpr);
2027 
2028     // Before that, run the common subexpression if there was one.
2029     // At least one of this or the above will be run.
2030     return addStmt(BCO->getCommon());
2031   }
2032 
2033   return addStmt(condExpr);
2034 }
2035 
2036 CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
2037   // Check if the Decl is for an __label__.  If so, elide it from the
2038   // CFG entirely.
2039   if (isa<LabelDecl>(*DS->decl_begin()))
2040     return Block;
2041 
2042   // This case also handles static_asserts.
2043   if (DS->isSingleDecl())
2044     return VisitDeclSubExpr(DS);
2045 
2046   CFGBlock *B = nullptr;
2047 
2048   // Build an individual DeclStmt for each decl.
2049   for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
2050                                        E = DS->decl_rend();
2051        I != E; ++I) {
2052     // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
2053     unsigned A = alignof(DeclStmt) < 8 ? 8 : alignof(DeclStmt);
2054 
2055     // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
2056     // automatically freed with the CFG.
2057     DeclGroupRef DG(*I);
2058     Decl *D = *I;
2059     void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
2060     DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
2061     cfg->addSyntheticDeclStmt(DSNew, DS);
2062 
2063     // Append the fake DeclStmt to block.
2064     B = VisitDeclSubExpr(DSNew);
2065   }
2066 
2067   return B;
2068 }
2069 
2070 /// VisitDeclSubExpr - Utility method to add block-level expressions for
2071 /// DeclStmts and initializers in them.
2072 CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
2073   assert(DS->isSingleDecl() && "Can handle single declarations only.");
2074   VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
2075 
2076   if (!VD) {
2077     // Of everything that can be declared in a DeclStmt, only VarDecls impact
2078     // runtime semantics.
2079     return Block;
2080   }
2081 
2082   bool HasTemporaries = false;
2083 
2084   // Guard static initializers under a branch.
2085   CFGBlock *blockAfterStaticInit = nullptr;
2086 
2087   if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
2088     // For static variables, we need to create a branch to track
2089     // whether or not they are initialized.
2090     if (Block) {
2091       Succ = Block;
2092       Block = nullptr;
2093       if (badCFG)
2094         return nullptr;
2095     }
2096     blockAfterStaticInit = Succ;
2097   }
2098 
2099   // Destructors of temporaries in initialization expression should be called
2100   // after initialization finishes.
2101   Expr *Init = VD->getInit();
2102   if (Init) {
2103     HasTemporaries = isa<ExprWithCleanups>(Init);
2104 
2105     if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
2106       // Generate destructors for temporaries in initialization expression.
2107       TempDtorContext Context;
2108       VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
2109                              /*BindToTemporary=*/false, Context);
2110     }
2111   }
2112 
2113   autoCreateBlock();
2114   appendStmt(Block, DS);
2115 
2116   // Keep track of the last non-null block, as 'Block' can be nulled out
2117   // if the initializer expression is something like a 'while' in a
2118   // statement-expression.
2119   CFGBlock *LastBlock = Block;
2120 
2121   if (Init) {
2122     if (HasTemporaries) {
2123       // For expression with temporaries go directly to subexpression to omit
2124       // generating destructors for the second time.
2125       ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
2126       if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
2127         LastBlock = newBlock;
2128     }
2129     else {
2130       if (CFGBlock *newBlock = Visit(Init))
2131         LastBlock = newBlock;
2132     }
2133   }
2134 
2135   // If the type of VD is a VLA, then we must process its size expressions.
2136   for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
2137        VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) {
2138     if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
2139       LastBlock = newBlock;
2140   }
2141 
2142   // Remove variable from local scope.
2143   if (ScopePos && VD == *ScopePos)
2144     ++ScopePos;
2145 
2146   CFGBlock *B = LastBlock;
2147   if (blockAfterStaticInit) {
2148     Succ = B;
2149     Block = createBlock(false);
2150     Block->setTerminator(DS);
2151     addSuccessor(Block, blockAfterStaticInit);
2152     addSuccessor(Block, B);
2153     B = Block;
2154   }
2155 
2156   return B;
2157 }
2158 
2159 CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
2160   // We may see an if statement in the middle of a basic block, or it may be the
2161   // first statement we are processing.  In either case, we create a new basic
2162   // block.  First, we create the blocks for the then...else statements, and
2163   // then we create the block containing the if statement.  If we were in the
2164   // middle of a block, we stop processing that block.  That block is then the
2165   // implicit successor for the "then" and "else" clauses.
2166 
2167   // Save local scope position because in case of condition variable ScopePos
2168   // won't be restored when traversing AST.
2169   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2170 
2171   // Create local scope for C++17 if init-stmt if one exists.
2172   if (Stmt *Init = I->getInit()) {
2173     LocalScope::const_iterator BeginScopePos = ScopePos;
2174     addLocalScopeForStmt(Init);
2175     addAutomaticObjDtors(ScopePos, BeginScopePos, I);
2176   }
2177 
2178   // Create local scope for possible condition variable.
2179   // Store scope position. Add implicit destructor.
2180   if (VarDecl *VD = I->getConditionVariable()) {
2181     LocalScope::const_iterator BeginScopePos = ScopePos;
2182     addLocalScopeForVarDecl(VD);
2183     addAutomaticObjDtors(ScopePos, BeginScopePos, I);
2184   }
2185 
2186   // The block we were processing is now finished.  Make it the successor
2187   // block.
2188   if (Block) {
2189     Succ = Block;
2190     if (badCFG)
2191       return nullptr;
2192   }
2193 
2194   // Process the false branch.
2195   CFGBlock *ElseBlock = Succ;
2196 
2197   if (Stmt *Else = I->getElse()) {
2198     SaveAndRestore<CFGBlock*> sv(Succ);
2199 
2200     // NULL out Block so that the recursive call to Visit will
2201     // create a new basic block.
2202     Block = nullptr;
2203 
2204     // If branch is not a compound statement create implicit scope
2205     // and add destructors.
2206     if (!isa<CompoundStmt>(Else))
2207       addLocalScopeAndDtors(Else);
2208 
2209     ElseBlock = addStmt(Else);
2210 
2211     if (!ElseBlock) // Can occur when the Else body has all NullStmts.
2212       ElseBlock = sv.get();
2213     else if (Block) {
2214       if (badCFG)
2215         return nullptr;
2216     }
2217   }
2218 
2219   // Process the true branch.
2220   CFGBlock *ThenBlock;
2221   {
2222     Stmt *Then = I->getThen();
2223     assert(Then);
2224     SaveAndRestore<CFGBlock*> sv(Succ);
2225     Block = nullptr;
2226 
2227     // If branch is not a compound statement create implicit scope
2228     // and add destructors.
2229     if (!isa<CompoundStmt>(Then))
2230       addLocalScopeAndDtors(Then);
2231 
2232     ThenBlock = addStmt(Then);
2233 
2234     if (!ThenBlock) {
2235       // We can reach here if the "then" body has all NullStmts.
2236       // Create an empty block so we can distinguish between true and false
2237       // branches in path-sensitive analyses.
2238       ThenBlock = createBlock(false);
2239       addSuccessor(ThenBlock, sv.get());
2240     } else if (Block) {
2241       if (badCFG)
2242         return nullptr;
2243     }
2244   }
2245 
2246   // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
2247   // having these handle the actual control-flow jump.  Note that
2248   // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
2249   // we resort to the old control-flow behavior.  This special handling
2250   // removes infeasible paths from the control-flow graph by having the
2251   // control-flow transfer of '&&' or '||' go directly into the then/else
2252   // blocks directly.
2253   if (!I->getConditionVariable())
2254     if (BinaryOperator *Cond =
2255             dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()))
2256       if (Cond->isLogicalOp())
2257         return VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
2258 
2259   // Now create a new block containing the if statement.
2260   Block = createBlock(false);
2261 
2262   // Set the terminator of the new block to the If statement.
2263   Block->setTerminator(I);
2264 
2265   // See if this is a known constant.
2266   const TryResult &KnownVal = tryEvaluateBool(I->getCond());
2267 
2268   // Add the successors.  If we know that specific branches are
2269   // unreachable, inform addSuccessor() of that knowledge.
2270   addSuccessor(Block, ThenBlock, /* isReachable = */ !KnownVal.isFalse());
2271   addSuccessor(Block, ElseBlock, /* isReachable = */ !KnownVal.isTrue());
2272 
2273   // Add the condition as the last statement in the new block.  This may create
2274   // new blocks as the condition may contain control-flow.  Any newly created
2275   // blocks will be pointed to be "Block".
2276   CFGBlock *LastBlock = addStmt(I->getCond());
2277 
2278   // If the IfStmt contains a condition variable, add it and its
2279   // initializer to the CFG.
2280   if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) {
2281     autoCreateBlock();
2282     LastBlock = addStmt(const_cast<DeclStmt *>(DS));
2283   }
2284 
2285   // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG.
2286   if (Stmt *Init = I->getInit()) {
2287     autoCreateBlock();
2288     LastBlock = addStmt(Init);
2289   }
2290 
2291   return LastBlock;
2292 }
2293 
2294 
2295 CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
2296   // If we were in the middle of a block we stop processing that block.
2297   //
2298   // NOTE: If a "return" appears in the middle of a block, this means that the
2299   //       code afterwards is DEAD (unreachable).  We still keep a basic block
2300   //       for that code; a simple "mark-and-sweep" from the entry block will be
2301   //       able to report such dead blocks.
2302 
2303   // Create the new block.
2304   Block = createBlock(false);
2305 
2306   addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
2307 
2308   // If the one of the destructors does not return, we already have the Exit
2309   // block as a successor.
2310   if (!Block->hasNoReturnElement())
2311     addSuccessor(Block, &cfg->getExit());
2312 
2313   // Add the return statement to the block.  This may create new blocks if R
2314   // contains control-flow (short-circuit operations).
2315   return VisitStmt(R, AddStmtChoice::AlwaysAdd);
2316 }
2317 
2318 CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
2319   // Get the block of the labeled statement.  Add it to our map.
2320   addStmt(L->getSubStmt());
2321   CFGBlock *LabelBlock = Block;
2322 
2323   if (!LabelBlock)              // This can happen when the body is empty, i.e.
2324     LabelBlock = createBlock(); // scopes that only contains NullStmts.
2325 
2326   assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
2327          "label already in map");
2328   LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
2329 
2330   // Labels partition blocks, so this is the end of the basic block we were
2331   // processing (L is the block's label).  Because this is label (and we have
2332   // already processed the substatement) there is no extra control-flow to worry
2333   // about.
2334   LabelBlock->setLabel(L);
2335   if (badCFG)
2336     return nullptr;
2337 
2338   // We set Block to NULL to allow lazy creation of a new block (if necessary);
2339   Block = nullptr;
2340 
2341   // This block is now the implicit successor of other blocks.
2342   Succ = LabelBlock;
2343 
2344   return LabelBlock;
2345 }
2346 
2347 CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
2348   CFGBlock *LastBlock = VisitNoRecurse(E, asc);
2349   for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) {
2350     if (Expr *CopyExpr = CI.getCopyExpr()) {
2351       CFGBlock *Tmp = Visit(CopyExpr);
2352       if (Tmp)
2353         LastBlock = Tmp;
2354     }
2355   }
2356   return LastBlock;
2357 }
2358 
2359 CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
2360   CFGBlock *LastBlock = VisitNoRecurse(E, asc);
2361   for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
2362        et = E->capture_init_end(); it != et; ++it) {
2363     if (Expr *Init = *it) {
2364       CFGBlock *Tmp = Visit(Init);
2365       if (Tmp)
2366         LastBlock = Tmp;
2367     }
2368   }
2369   return LastBlock;
2370 }
2371 
2372 CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
2373   // Goto is a control-flow statement.  Thus we stop processing the current
2374   // block and create a new one.
2375 
2376   Block = createBlock(false);
2377   Block->setTerminator(G);
2378 
2379   // If we already know the mapping to the label block add the successor now.
2380   LabelMapTy::iterator I = LabelMap.find(G->getLabel());
2381 
2382   if (I == LabelMap.end())
2383     // We will need to backpatch this block later.
2384     BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
2385   else {
2386     JumpTarget JT = I->second;
2387     addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
2388     addSuccessor(Block, JT.block);
2389   }
2390 
2391   return Block;
2392 }
2393 
2394 CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
2395   CFGBlock *LoopSuccessor = nullptr;
2396 
2397   // Save local scope position because in case of condition variable ScopePos
2398   // won't be restored when traversing AST.
2399   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2400 
2401   // Create local scope for init statement and possible condition variable.
2402   // Add destructor for init statement and condition variable.
2403   // Store scope position for continue statement.
2404   if (Stmt *Init = F->getInit())
2405     addLocalScopeForStmt(Init);
2406   LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2407 
2408   if (VarDecl *VD = F->getConditionVariable())
2409     addLocalScopeForVarDecl(VD);
2410   LocalScope::const_iterator ContinueScopePos = ScopePos;
2411 
2412   addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
2413 
2414   // "for" is a control-flow statement.  Thus we stop processing the current
2415   // block.
2416   if (Block) {
2417     if (badCFG)
2418       return nullptr;
2419     LoopSuccessor = Block;
2420   } else
2421     LoopSuccessor = Succ;
2422 
2423   // Save the current value for the break targets.
2424   // All breaks should go to the code following the loop.
2425   SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2426   BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2427 
2428   CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
2429 
2430   // Now create the loop body.
2431   {
2432     assert(F->getBody());
2433 
2434     // Save the current values for Block, Succ, continue and break targets.
2435     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2436     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2437 
2438     // Create an empty block to represent the transition block for looping back
2439     // to the head of the loop.  If we have increment code, it will
2440     // go in this block as well.
2441     Block = Succ = TransitionBlock = createBlock(false);
2442     TransitionBlock->setLoopTarget(F);
2443 
2444     if (Stmt *I = F->getInc()) {
2445       // Generate increment code in its own basic block.  This is the target of
2446       // continue statements.
2447       Succ = addStmt(I);
2448     }
2449 
2450     // Finish up the increment (or empty) block if it hasn't been already.
2451     if (Block) {
2452       assert(Block == Succ);
2453       if (badCFG)
2454         return nullptr;
2455       Block = nullptr;
2456     }
2457 
2458    // The starting block for the loop increment is the block that should
2459    // represent the 'loop target' for looping back to the start of the loop.
2460    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2461    ContinueJumpTarget.block->setLoopTarget(F);
2462 
2463     // Loop body should end with destructor of Condition variable (if any).
2464     addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
2465 
2466     // If body is not a compound statement create implicit scope
2467     // and add destructors.
2468     if (!isa<CompoundStmt>(F->getBody()))
2469       addLocalScopeAndDtors(F->getBody());
2470 
2471     // Now populate the body block, and in the process create new blocks as we
2472     // walk the body of the loop.
2473     BodyBlock = addStmt(F->getBody());
2474 
2475     if (!BodyBlock) {
2476       // In the case of "for (...;...;...);" we can have a null BodyBlock.
2477       // Use the continue jump target as the proxy for the body.
2478       BodyBlock = ContinueJumpTarget.block;
2479     }
2480     else if (badCFG)
2481       return nullptr;
2482   }
2483 
2484   // Because of short-circuit evaluation, the condition of the loop can span
2485   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2486   // evaluate the condition.
2487   CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
2488 
2489   do {
2490     Expr *C = F->getCond();
2491 
2492     // Specially handle logical operators, which have a slightly
2493     // more optimal CFG representation.
2494     if (BinaryOperator *Cond =
2495             dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr))
2496       if (Cond->isLogicalOp()) {
2497         std::tie(EntryConditionBlock, ExitConditionBlock) =
2498           VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
2499         break;
2500       }
2501 
2502     // The default case when not handling logical operators.
2503     EntryConditionBlock = ExitConditionBlock = createBlock(false);
2504     ExitConditionBlock->setTerminator(F);
2505 
2506     // See if this is a known constant.
2507     TryResult KnownVal(true);
2508 
2509     if (C) {
2510       // Now add the actual condition to the condition block.
2511       // Because the condition itself may contain control-flow, new blocks may
2512       // be created.  Thus we update "Succ" after adding the condition.
2513       Block = ExitConditionBlock;
2514       EntryConditionBlock = addStmt(C);
2515 
2516       // If this block contains a condition variable, add both the condition
2517       // variable and initializer to the CFG.
2518       if (VarDecl *VD = F->getConditionVariable()) {
2519         if (Expr *Init = VD->getInit()) {
2520           autoCreateBlock();
2521           appendStmt(Block, F->getConditionVariableDeclStmt());
2522           EntryConditionBlock = addStmt(Init);
2523           assert(Block == EntryConditionBlock);
2524         }
2525       }
2526 
2527       if (Block && badCFG)
2528         return nullptr;
2529 
2530       KnownVal = tryEvaluateBool(C);
2531     }
2532 
2533     // Add the loop body entry as a successor to the condition.
2534     addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
2535     // Link up the condition block with the code that follows the loop.  (the
2536     // false branch).
2537     addSuccessor(ExitConditionBlock,
2538                  KnownVal.isTrue() ? nullptr : LoopSuccessor);
2539 
2540   } while (false);
2541 
2542   // Link up the loop-back block to the entry condition block.
2543   addSuccessor(TransitionBlock, EntryConditionBlock);
2544 
2545   // The condition block is the implicit successor for any code above the loop.
2546   Succ = EntryConditionBlock;
2547 
2548   // If the loop contains initialization, create a new block for those
2549   // statements.  This block can also contain statements that precede the loop.
2550   if (Stmt *I = F->getInit()) {
2551     Block = createBlock();
2552     return addStmt(I);
2553   }
2554 
2555   // There is no loop initialization.  We are thus basically a while loop.
2556   // NULL out Block to force lazy block construction.
2557   Block = nullptr;
2558   Succ = EntryConditionBlock;
2559   return EntryConditionBlock;
2560 }
2561 
2562 CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
2563   if (asc.alwaysAdd(*this, M)) {
2564     autoCreateBlock();
2565     appendStmt(Block, M);
2566   }
2567   return Visit(M->getBase());
2568 }
2569 
2570 CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
2571   // Objective-C fast enumeration 'for' statements:
2572   //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
2573   //
2574   //  for ( Type newVariable in collection_expression ) { statements }
2575   //
2576   //  becomes:
2577   //
2578   //   prologue:
2579   //     1. collection_expression
2580   //     T. jump to loop_entry
2581   //   loop_entry:
2582   //     1. side-effects of element expression
2583   //     1. ObjCForCollectionStmt [performs binding to newVariable]
2584   //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
2585   //   TB:
2586   //     statements
2587   //     T. jump to loop_entry
2588   //   FB:
2589   //     what comes after
2590   //
2591   //  and
2592   //
2593   //  Type existingItem;
2594   //  for ( existingItem in expression ) { statements }
2595   //
2596   //  becomes:
2597   //
2598   //   the same with newVariable replaced with existingItem; the binding works
2599   //   the same except that for one ObjCForCollectionStmt::getElement() returns
2600   //   a DeclStmt and the other returns a DeclRefExpr.
2601   //
2602 
2603   CFGBlock *LoopSuccessor = nullptr;
2604 
2605   if (Block) {
2606     if (badCFG)
2607       return nullptr;
2608     LoopSuccessor = Block;
2609     Block = nullptr;
2610   } else
2611     LoopSuccessor = Succ;
2612 
2613   // Build the condition blocks.
2614   CFGBlock *ExitConditionBlock = createBlock(false);
2615 
2616   // Set the terminator for the "exit" condition block.
2617   ExitConditionBlock->setTerminator(S);
2618 
2619   // The last statement in the block should be the ObjCForCollectionStmt, which
2620   // performs the actual binding to 'element' and determines if there are any
2621   // more items in the collection.
2622   appendStmt(ExitConditionBlock, S);
2623   Block = ExitConditionBlock;
2624 
2625   // Walk the 'element' expression to see if there are any side-effects.  We
2626   // generate new blocks as necessary.  We DON'T add the statement by default to
2627   // the CFG unless it contains control-flow.
2628   CFGBlock *EntryConditionBlock = Visit(S->getElement(),
2629                                         AddStmtChoice::NotAlwaysAdd);
2630   if (Block) {
2631     if (badCFG)
2632       return nullptr;
2633     Block = nullptr;
2634   }
2635 
2636   // The condition block is the implicit successor for the loop body as well as
2637   // any code above the loop.
2638   Succ = EntryConditionBlock;
2639 
2640   // Now create the true branch.
2641   {
2642     // Save the current values for Succ, continue and break targets.
2643     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2644     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2645                                save_break(BreakJumpTarget);
2646 
2647     // Add an intermediate block between the BodyBlock and the
2648     // EntryConditionBlock to represent the "loop back" transition, for looping
2649     // back to the head of the loop.
2650     CFGBlock *LoopBackBlock = nullptr;
2651     Succ = LoopBackBlock = createBlock();
2652     LoopBackBlock->setLoopTarget(S);
2653 
2654     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2655     ContinueJumpTarget = JumpTarget(Succ, ScopePos);
2656 
2657     CFGBlock *BodyBlock = addStmt(S->getBody());
2658 
2659     if (!BodyBlock)
2660       BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
2661     else if (Block) {
2662       if (badCFG)
2663         return nullptr;
2664     }
2665 
2666     // This new body block is a successor to our "exit" condition block.
2667     addSuccessor(ExitConditionBlock, BodyBlock);
2668   }
2669 
2670   // Link up the condition block with the code that follows the loop.
2671   // (the false branch).
2672   addSuccessor(ExitConditionBlock, LoopSuccessor);
2673 
2674   // Now create a prologue block to contain the collection expression.
2675   Block = createBlock();
2676   return addStmt(S->getCollection());
2677 }
2678 
2679 CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
2680   // Inline the body.
2681   return addStmt(S->getSubStmt());
2682   // TODO: consider adding cleanups for the end of @autoreleasepool scope.
2683 }
2684 
2685 CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
2686   // FIXME: Add locking 'primitives' to CFG for @synchronized.
2687 
2688   // Inline the body.
2689   CFGBlock *SyncBlock = addStmt(S->getSynchBody());
2690 
2691   // The sync body starts its own basic block.  This makes it a little easier
2692   // for diagnostic clients.
2693   if (SyncBlock) {
2694     if (badCFG)
2695       return nullptr;
2696 
2697     Block = nullptr;
2698     Succ = SyncBlock;
2699   }
2700 
2701   // Add the @synchronized to the CFG.
2702   autoCreateBlock();
2703   appendStmt(Block, S);
2704 
2705   // Inline the sync expression.
2706   return addStmt(S->getSynchExpr());
2707 }
2708 
2709 CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
2710   // FIXME
2711   return NYS();
2712 }
2713 
2714 CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
2715   autoCreateBlock();
2716 
2717   // Add the PseudoObject as the last thing.
2718   appendStmt(Block, E);
2719 
2720   CFGBlock *lastBlock = Block;
2721 
2722   // Before that, evaluate all of the semantics in order.  In
2723   // CFG-land, that means appending them in reverse order.
2724   for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
2725     Expr *Semantic = E->getSemanticExpr(--i);
2726 
2727     // If the semantic is an opaque value, we're being asked to bind
2728     // it to its source expression.
2729     if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
2730       Semantic = OVE->getSourceExpr();
2731 
2732     if (CFGBlock *B = Visit(Semantic))
2733       lastBlock = B;
2734   }
2735 
2736   return lastBlock;
2737 }
2738 
2739 CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
2740   CFGBlock *LoopSuccessor = nullptr;
2741 
2742   // Save local scope position because in case of condition variable ScopePos
2743   // won't be restored when traversing AST.
2744   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2745 
2746   // Create local scope for possible condition variable.
2747   // Store scope position for continue statement.
2748   LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2749   if (VarDecl *VD = W->getConditionVariable()) {
2750     addLocalScopeForVarDecl(VD);
2751     addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2752   }
2753 
2754   // "while" is a control-flow statement.  Thus we stop processing the current
2755   // block.
2756   if (Block) {
2757     if (badCFG)
2758       return nullptr;
2759     LoopSuccessor = Block;
2760     Block = nullptr;
2761   } else {
2762     LoopSuccessor = Succ;
2763   }
2764 
2765   CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
2766 
2767   // Process the loop body.
2768   {
2769     assert(W->getBody());
2770 
2771     // Save the current values for Block, Succ, continue and break targets.
2772     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2773     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2774                                save_break(BreakJumpTarget);
2775 
2776     // Create an empty block to represent the transition block for looping back
2777     // to the head of the loop.
2778     Succ = TransitionBlock = createBlock(false);
2779     TransitionBlock->setLoopTarget(W);
2780     ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2781 
2782     // All breaks should go to the code following the loop.
2783     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2784 
2785     // Loop body should end with destructor of Condition variable (if any).
2786     addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2787 
2788     // If body is not a compound statement create implicit scope
2789     // and add destructors.
2790     if (!isa<CompoundStmt>(W->getBody()))
2791       addLocalScopeAndDtors(W->getBody());
2792 
2793     // Create the body.  The returned block is the entry to the loop body.
2794     BodyBlock = addStmt(W->getBody());
2795 
2796     if (!BodyBlock)
2797       BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2798     else if (Block && badCFG)
2799       return nullptr;
2800   }
2801 
2802   // Because of short-circuit evaluation, the condition of the loop can span
2803   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2804   // evaluate the condition.
2805   CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
2806 
2807   do {
2808     Expr *C = W->getCond();
2809 
2810     // Specially handle logical operators, which have a slightly
2811     // more optimal CFG representation.
2812     if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
2813       if (Cond->isLogicalOp()) {
2814         std::tie(EntryConditionBlock, ExitConditionBlock) =
2815             VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor);
2816         break;
2817       }
2818 
2819     // The default case when not handling logical operators.
2820     ExitConditionBlock = createBlock(false);
2821     ExitConditionBlock->setTerminator(W);
2822 
2823     // Now add the actual condition to the condition block.
2824     // Because the condition itself may contain control-flow, new blocks may
2825     // be created.  Thus we update "Succ" after adding the condition.
2826     Block = ExitConditionBlock;
2827     Block = EntryConditionBlock = addStmt(C);
2828 
2829     // If this block contains a condition variable, add both the condition
2830     // variable and initializer to the CFG.
2831     if (VarDecl *VD = W->getConditionVariable()) {
2832       if (Expr *Init = VD->getInit()) {
2833         autoCreateBlock();
2834         appendStmt(Block, W->getConditionVariableDeclStmt());
2835         EntryConditionBlock = addStmt(Init);
2836         assert(Block == EntryConditionBlock);
2837       }
2838     }
2839 
2840     if (Block && badCFG)
2841       return nullptr;
2842 
2843     // See if this is a known constant.
2844     const TryResult& KnownVal = tryEvaluateBool(C);
2845 
2846     // Add the loop body entry as a successor to the condition.
2847     addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
2848     // Link up the condition block with the code that follows the loop.  (the
2849     // false branch).
2850     addSuccessor(ExitConditionBlock,
2851                  KnownVal.isTrue() ? nullptr : LoopSuccessor);
2852 
2853   } while(false);
2854 
2855   // Link up the loop-back block to the entry condition block.
2856   addSuccessor(TransitionBlock, EntryConditionBlock);
2857 
2858   // There can be no more statements in the condition block since we loop back
2859   // to this block.  NULL out Block to force lazy creation of another block.
2860   Block = nullptr;
2861 
2862   // Return the condition block, which is the dominating block for the loop.
2863   Succ = EntryConditionBlock;
2864   return EntryConditionBlock;
2865 }
2866 
2867 
2868 CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2869   // FIXME: For now we pretend that @catch and the code it contains does not
2870   //  exit.
2871   return Block;
2872 }
2873 
2874 CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2875   // FIXME: This isn't complete.  We basically treat @throw like a return
2876   //  statement.
2877 
2878   // If we were in the middle of a block we stop processing that block.
2879   if (badCFG)
2880     return nullptr;
2881 
2882   // Create the new block.
2883   Block = createBlock(false);
2884 
2885   // The Exit block is the only successor.
2886   addSuccessor(Block, &cfg->getExit());
2887 
2888   // Add the statement to the block.  This may create new blocks if S contains
2889   // control-flow (short-circuit operations).
2890   return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2891 }
2892 
2893 CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2894   // If we were in the middle of a block we stop processing that block.
2895   if (badCFG)
2896     return nullptr;
2897 
2898   // Create the new block.
2899   Block = createBlock(false);
2900 
2901   if (TryTerminatedBlock)
2902     // The current try statement is the only successor.
2903     addSuccessor(Block, TryTerminatedBlock);
2904   else
2905     // otherwise the Exit block is the only successor.
2906     addSuccessor(Block, &cfg->getExit());
2907 
2908   // Add the statement to the block.  This may create new blocks if S contains
2909   // control-flow (short-circuit operations).
2910   return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2911 }
2912 
2913 CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2914   CFGBlock *LoopSuccessor = nullptr;
2915 
2916   // "do...while" is a control-flow statement.  Thus we stop processing the
2917   // current block.
2918   if (Block) {
2919     if (badCFG)
2920       return nullptr;
2921     LoopSuccessor = Block;
2922   } else
2923     LoopSuccessor = Succ;
2924 
2925   // Because of short-circuit evaluation, the condition of the loop can span
2926   // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
2927   // evaluate the condition.
2928   CFGBlock *ExitConditionBlock = createBlock(false);
2929   CFGBlock *EntryConditionBlock = ExitConditionBlock;
2930 
2931   // Set the terminator for the "exit" condition block.
2932   ExitConditionBlock->setTerminator(D);
2933 
2934   // Now add the actual condition to the condition block.  Because the condition
2935   // itself may contain control-flow, new blocks may be created.
2936   if (Stmt *C = D->getCond()) {
2937     Block = ExitConditionBlock;
2938     EntryConditionBlock = addStmt(C);
2939     if (Block) {
2940       if (badCFG)
2941         return nullptr;
2942     }
2943   }
2944 
2945   // The condition block is the implicit successor for the loop body.
2946   Succ = EntryConditionBlock;
2947 
2948   // See if this is a known constant.
2949   const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2950 
2951   // Process the loop body.
2952   CFGBlock *BodyBlock = nullptr;
2953   {
2954     assert(D->getBody());
2955 
2956     // Save the current values for Block, Succ, and continue and break targets
2957     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2958     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2959         save_break(BreakJumpTarget);
2960 
2961     // All continues within this loop should go to the condition block
2962     ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2963 
2964     // All breaks should go to the code following the loop.
2965     BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2966 
2967     // NULL out Block to force lazy instantiation of blocks for the body.
2968     Block = nullptr;
2969 
2970     // If body is not a compound statement create implicit scope
2971     // and add destructors.
2972     if (!isa<CompoundStmt>(D->getBody()))
2973       addLocalScopeAndDtors(D->getBody());
2974 
2975     // Create the body.  The returned block is the entry to the loop body.
2976     BodyBlock = addStmt(D->getBody());
2977 
2978     if (!BodyBlock)
2979       BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2980     else if (Block) {
2981       if (badCFG)
2982         return nullptr;
2983     }
2984 
2985     // Add an intermediate block between the BodyBlock and the
2986     // ExitConditionBlock to represent the "loop back" transition.  Create an
2987     // empty block to represent the transition block for looping back to the
2988     // head of the loop.
2989     // FIXME: Can we do this more efficiently without adding another block?
2990     Block = nullptr;
2991     Succ = BodyBlock;
2992     CFGBlock *LoopBackBlock = createBlock();
2993     LoopBackBlock->setLoopTarget(D);
2994 
2995     if (!KnownVal.isFalse())
2996       // Add the loop body entry as a successor to the condition.
2997       addSuccessor(ExitConditionBlock, LoopBackBlock);
2998     else
2999       addSuccessor(ExitConditionBlock, nullptr);
3000   }
3001 
3002   // Link up the condition block with the code that follows the loop.
3003   // (the false branch).
3004   addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
3005 
3006   // There can be no more statements in the body block(s) since we loop back to
3007   // the body.  NULL out Block to force lazy creation of another block.
3008   Block = nullptr;
3009 
3010   // Return the loop body, which is the dominating block for the loop.
3011   Succ = BodyBlock;
3012   return BodyBlock;
3013 }
3014 
3015 CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
3016   // "continue" is a control-flow statement.  Thus we stop processing the
3017   // current block.
3018   if (badCFG)
3019     return nullptr;
3020 
3021   // Now create a new block that ends with the continue statement.
3022   Block = createBlock(false);
3023   Block->setTerminator(C);
3024 
3025   // If there is no target for the continue, then we are looking at an
3026   // incomplete AST.  This means the CFG cannot be constructed.
3027   if (ContinueJumpTarget.block) {
3028     addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
3029     addSuccessor(Block, ContinueJumpTarget.block);
3030   } else
3031     badCFG = true;
3032 
3033   return Block;
3034 }
3035 
3036 CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
3037                                                     AddStmtChoice asc) {
3038 
3039   if (asc.alwaysAdd(*this, E)) {
3040     autoCreateBlock();
3041     appendStmt(Block, E);
3042   }
3043 
3044   // VLA types have expressions that must be evaluated.
3045   CFGBlock *lastBlock = Block;
3046 
3047   if (E->isArgumentType()) {
3048     for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
3049          VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr()))
3050       lastBlock = addStmt(VA->getSizeExpr());
3051   }
3052   return lastBlock;
3053 }
3054 
3055 /// VisitStmtExpr - Utility method to handle (nested) statement
3056 ///  expressions (a GCC extension).
3057 CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
3058   if (asc.alwaysAdd(*this, SE)) {
3059     autoCreateBlock();
3060     appendStmt(Block, SE);
3061   }
3062   return VisitCompoundStmt(SE->getSubStmt());
3063 }
3064 
3065 CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
3066   // "switch" is a control-flow statement.  Thus we stop processing the current
3067   // block.
3068   CFGBlock *SwitchSuccessor = nullptr;
3069 
3070   // Save local scope position because in case of condition variable ScopePos
3071   // won't be restored when traversing AST.
3072   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3073 
3074   // Create local scope for C++17 switch init-stmt if one exists.
3075   if (Stmt *Init = Terminator->getInit()) {
3076     LocalScope::const_iterator BeginScopePos = ScopePos;
3077     addLocalScopeForStmt(Init);
3078     addAutomaticObjDtors(ScopePos, BeginScopePos, Terminator);
3079   }
3080 
3081   // Create local scope for possible condition variable.
3082   // Store scope position. Add implicit destructor.
3083   if (VarDecl *VD = Terminator->getConditionVariable()) {
3084     LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
3085     addLocalScopeForVarDecl(VD);
3086     addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
3087   }
3088 
3089   if (Block) {
3090     if (badCFG)
3091       return nullptr;
3092     SwitchSuccessor = Block;
3093   } else SwitchSuccessor = Succ;
3094 
3095   // Save the current "switch" context.
3096   SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
3097                             save_default(DefaultCaseBlock);
3098   SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
3099 
3100   // Set the "default" case to be the block after the switch statement.  If the
3101   // switch statement contains a "default:", this value will be overwritten with
3102   // the block for that code.
3103   DefaultCaseBlock = SwitchSuccessor;
3104 
3105   // Create a new block that will contain the switch statement.
3106   SwitchTerminatedBlock = createBlock(false);
3107 
3108   // Now process the switch body.  The code after the switch is the implicit
3109   // successor.
3110   Succ = SwitchSuccessor;
3111   BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
3112 
3113   // When visiting the body, the case statements should automatically get linked
3114   // up to the switch.  We also don't keep a pointer to the body, since all
3115   // control-flow from the switch goes to case/default statements.
3116   assert(Terminator->getBody() && "switch must contain a non-NULL body");
3117   Block = nullptr;
3118 
3119   // For pruning unreachable case statements, save the current state
3120   // for tracking the condition value.
3121   SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
3122                                                      false);
3123 
3124   // Determine if the switch condition can be explicitly evaluated.
3125   assert(Terminator->getCond() && "switch condition must be non-NULL");
3126   Expr::EvalResult result;
3127   bool b = tryEvaluate(Terminator->getCond(), result);
3128   SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
3129                                                     b ? &result : nullptr);
3130 
3131   // If body is not a compound statement create implicit scope
3132   // and add destructors.
3133   if (!isa<CompoundStmt>(Terminator->getBody()))
3134     addLocalScopeAndDtors(Terminator->getBody());
3135 
3136   addStmt(Terminator->getBody());
3137   if (Block) {
3138     if (badCFG)
3139       return nullptr;
3140   }
3141 
3142   // If we have no "default:" case, the default transition is to the code
3143   // following the switch body.  Moreover, take into account if all the
3144   // cases of a switch are covered (e.g., switching on an enum value).
3145   //
3146   // Note: We add a successor to a switch that is considered covered yet has no
3147   //       case statements if the enumeration has no enumerators.
3148   bool SwitchAlwaysHasSuccessor = false;
3149   SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
3150   SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
3151                               Terminator->getSwitchCaseList();
3152   addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock,
3153                !SwitchAlwaysHasSuccessor);
3154 
3155   // Add the terminator and condition in the switch block.
3156   SwitchTerminatedBlock->setTerminator(Terminator);
3157   Block = SwitchTerminatedBlock;
3158   CFGBlock *LastBlock = addStmt(Terminator->getCond());
3159 
3160   // If the SwitchStmt contains a condition variable, add both the
3161   // SwitchStmt and the condition variable initialization to the CFG.
3162   if (VarDecl *VD = Terminator->getConditionVariable()) {
3163     if (Expr *Init = VD->getInit()) {
3164       autoCreateBlock();
3165       appendStmt(Block, Terminator->getConditionVariableDeclStmt());
3166       LastBlock = addStmt(Init);
3167     }
3168   }
3169 
3170   // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG.
3171   if (Stmt *Init = Terminator->getInit()) {
3172     autoCreateBlock();
3173     LastBlock = addStmt(Init);
3174   }
3175 
3176   return LastBlock;
3177 }
3178 
3179 static bool shouldAddCase(bool &switchExclusivelyCovered,
3180                           const Expr::EvalResult *switchCond,
3181                           const CaseStmt *CS,
3182                           ASTContext &Ctx) {
3183   if (!switchCond)
3184     return true;
3185 
3186   bool addCase = false;
3187 
3188   if (!switchExclusivelyCovered) {
3189     if (switchCond->Val.isInt()) {
3190       // Evaluate the LHS of the case value.
3191       const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
3192       const llvm::APSInt &condInt = switchCond->Val.getInt();
3193 
3194       if (condInt == lhsInt) {
3195         addCase = true;
3196         switchExclusivelyCovered = true;
3197       }
3198       else if (condInt > lhsInt) {
3199         if (const Expr *RHS = CS->getRHS()) {
3200           // Evaluate the RHS of the case value.
3201           const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
3202           if (V2 >= condInt) {
3203             addCase = true;
3204             switchExclusivelyCovered = true;
3205           }
3206         }
3207       }
3208     }
3209     else
3210       addCase = true;
3211   }
3212   return addCase;
3213 }
3214 
3215 CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
3216   // CaseStmts are essentially labels, so they are the first statement in a
3217   // block.
3218   CFGBlock *TopBlock = nullptr, *LastBlock = nullptr;
3219 
3220   if (Stmt *Sub = CS->getSubStmt()) {
3221     // For deeply nested chains of CaseStmts, instead of doing a recursion
3222     // (which can blow out the stack), manually unroll and create blocks
3223     // along the way.
3224     while (isa<CaseStmt>(Sub)) {
3225       CFGBlock *currentBlock = createBlock(false);
3226       currentBlock->setLabel(CS);
3227 
3228       if (TopBlock)
3229         addSuccessor(LastBlock, currentBlock);
3230       else
3231         TopBlock = currentBlock;
3232 
3233       addSuccessor(SwitchTerminatedBlock,
3234                    shouldAddCase(switchExclusivelyCovered, switchCond,
3235                                  CS, *Context)
3236                    ? currentBlock : nullptr);
3237 
3238       LastBlock = currentBlock;
3239       CS = cast<CaseStmt>(Sub);
3240       Sub = CS->getSubStmt();
3241     }
3242 
3243     addStmt(Sub);
3244   }
3245 
3246   CFGBlock *CaseBlock = Block;
3247   if (!CaseBlock)
3248     CaseBlock = createBlock();
3249 
3250   // Cases statements partition blocks, so this is the top of the basic block we
3251   // were processing (the "case XXX:" is the label).
3252   CaseBlock->setLabel(CS);
3253 
3254   if (badCFG)
3255     return nullptr;
3256 
3257   // Add this block to the list of successors for the block with the switch
3258   // statement.
3259   assert(SwitchTerminatedBlock);
3260   addSuccessor(SwitchTerminatedBlock, CaseBlock,
3261                shouldAddCase(switchExclusivelyCovered, switchCond,
3262                              CS, *Context));
3263 
3264   // We set Block to NULL to allow lazy creation of a new block (if necessary)
3265   Block = nullptr;
3266 
3267   if (TopBlock) {
3268     addSuccessor(LastBlock, CaseBlock);
3269     Succ = TopBlock;
3270   } else {
3271     // This block is now the implicit successor of other blocks.
3272     Succ = CaseBlock;
3273   }
3274 
3275   return Succ;
3276 }
3277 
3278 CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
3279   if (Terminator->getSubStmt())
3280     addStmt(Terminator->getSubStmt());
3281 
3282   DefaultCaseBlock = Block;
3283 
3284   if (!DefaultCaseBlock)
3285     DefaultCaseBlock = createBlock();
3286 
3287   // Default statements partition blocks, so this is the top of the basic block
3288   // we were processing (the "default:" is the label).
3289   DefaultCaseBlock->setLabel(Terminator);
3290 
3291   if (badCFG)
3292     return nullptr;
3293 
3294   // Unlike case statements, we don't add the default block to the successors
3295   // for the switch statement immediately.  This is done when we finish
3296   // processing the switch statement.  This allows for the default case
3297   // (including a fall-through to the code after the switch statement) to always
3298   // be the last successor of a switch-terminated block.
3299 
3300   // We set Block to NULL to allow lazy creation of a new block (if necessary)
3301   Block = nullptr;
3302 
3303   // This block is now the implicit successor of other blocks.
3304   Succ = DefaultCaseBlock;
3305 
3306   return DefaultCaseBlock;
3307 }
3308 
3309 CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
3310   // "try"/"catch" is a control-flow statement.  Thus we stop processing the
3311   // current block.
3312   CFGBlock *TrySuccessor = nullptr;
3313 
3314   if (Block) {
3315     if (badCFG)
3316       return nullptr;
3317     TrySuccessor = Block;
3318   } else TrySuccessor = Succ;
3319 
3320   CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
3321 
3322   // Create a new block that will contain the try statement.
3323   CFGBlock *NewTryTerminatedBlock = createBlock(false);
3324   // Add the terminator in the try block.
3325   NewTryTerminatedBlock->setTerminator(Terminator);
3326 
3327   bool HasCatchAll = false;
3328   for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
3329     // The code after the try is the implicit successor.
3330     Succ = TrySuccessor;
3331     CXXCatchStmt *CS = Terminator->getHandler(h);
3332     if (CS->getExceptionDecl() == nullptr) {
3333       HasCatchAll = true;
3334     }
3335     Block = nullptr;
3336     CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
3337     if (!CatchBlock)
3338       return nullptr;
3339     // Add this block to the list of successors for the block with the try
3340     // statement.
3341     addSuccessor(NewTryTerminatedBlock, CatchBlock);
3342   }
3343   if (!HasCatchAll) {
3344     if (PrevTryTerminatedBlock)
3345       addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
3346     else
3347       addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
3348   }
3349 
3350   // The code after the try is the implicit successor.
3351   Succ = TrySuccessor;
3352 
3353   // Save the current "try" context.
3354   SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
3355   cfg->addTryDispatchBlock(TryTerminatedBlock);
3356 
3357   assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
3358   Block = nullptr;
3359   return addStmt(Terminator->getTryBlock());
3360 }
3361 
3362 CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
3363   // CXXCatchStmt are treated like labels, so they are the first statement in a
3364   // block.
3365 
3366   // Save local scope position because in case of exception variable ScopePos
3367   // won't be restored when traversing AST.
3368   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3369 
3370   // Create local scope for possible exception variable.
3371   // Store scope position. Add implicit destructor.
3372   if (VarDecl *VD = CS->getExceptionDecl()) {
3373     LocalScope::const_iterator BeginScopePos = ScopePos;
3374     addLocalScopeForVarDecl(VD);
3375     addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
3376   }
3377 
3378   if (CS->getHandlerBlock())
3379     addStmt(CS->getHandlerBlock());
3380 
3381   CFGBlock *CatchBlock = Block;
3382   if (!CatchBlock)
3383     CatchBlock = createBlock();
3384 
3385   // CXXCatchStmt is more than just a label.  They have semantic meaning
3386   // as well, as they implicitly "initialize" the catch variable.  Add
3387   // it to the CFG as a CFGElement so that the control-flow of these
3388   // semantics gets captured.
3389   appendStmt(CatchBlock, CS);
3390 
3391   // Also add the CXXCatchStmt as a label, to mirror handling of regular
3392   // labels.
3393   CatchBlock->setLabel(CS);
3394 
3395   // Bail out if the CFG is bad.
3396   if (badCFG)
3397     return nullptr;
3398 
3399   // We set Block to NULL to allow lazy creation of a new block (if necessary)
3400   Block = nullptr;
3401 
3402   return CatchBlock;
3403 }
3404 
3405 CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
3406   // C++0x for-range statements are specified as [stmt.ranged]:
3407   //
3408   // {
3409   //   auto && __range = range-init;
3410   //   for ( auto __begin = begin-expr,
3411   //         __end = end-expr;
3412   //         __begin != __end;
3413   //         ++__begin ) {
3414   //     for-range-declaration = *__begin;
3415   //     statement
3416   //   }
3417   // }
3418 
3419   // Save local scope position before the addition of the implicit variables.
3420   SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3421 
3422   // Create local scopes and destructors for range, begin and end variables.
3423   if (Stmt *Range = S->getRangeStmt())
3424     addLocalScopeForStmt(Range);
3425   if (Stmt *Begin = S->getBeginStmt())
3426     addLocalScopeForStmt(Begin);
3427   if (Stmt *End = S->getEndStmt())
3428     addLocalScopeForStmt(End);
3429   addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
3430 
3431   LocalScope::const_iterator ContinueScopePos = ScopePos;
3432 
3433   // "for" is a control-flow statement.  Thus we stop processing the current
3434   // block.
3435   CFGBlock *LoopSuccessor = nullptr;
3436   if (Block) {
3437     if (badCFG)
3438       return nullptr;
3439     LoopSuccessor = Block;
3440   } else
3441     LoopSuccessor = Succ;
3442 
3443   // Save the current value for the break targets.
3444   // All breaks should go to the code following the loop.
3445   SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
3446   BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3447 
3448   // The block for the __begin != __end expression.
3449   CFGBlock *ConditionBlock = createBlock(false);
3450   ConditionBlock->setTerminator(S);
3451 
3452   // Now add the actual condition to the condition block.
3453   if (Expr *C = S->getCond()) {
3454     Block = ConditionBlock;
3455     CFGBlock *BeginConditionBlock = addStmt(C);
3456     if (badCFG)
3457       return nullptr;
3458     assert(BeginConditionBlock == ConditionBlock &&
3459            "condition block in for-range was unexpectedly complex");
3460     (void)BeginConditionBlock;
3461   }
3462 
3463   // The condition block is the implicit successor for the loop body as well as
3464   // any code above the loop.
3465   Succ = ConditionBlock;
3466 
3467   // See if this is a known constant.
3468   TryResult KnownVal(true);
3469 
3470   if (S->getCond())
3471     KnownVal = tryEvaluateBool(S->getCond());
3472 
3473   // Now create the loop body.
3474   {
3475     assert(S->getBody());
3476 
3477     // Save the current values for Block, Succ, and continue targets.
3478     SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3479     SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
3480 
3481     // Generate increment code in its own basic block.  This is the target of
3482     // continue statements.
3483     Block = nullptr;
3484     Succ = addStmt(S->getInc());
3485     if (badCFG)
3486       return nullptr;
3487     ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
3488 
3489     // The starting block for the loop increment is the block that should
3490     // represent the 'loop target' for looping back to the start of the loop.
3491     ContinueJumpTarget.block->setLoopTarget(S);
3492 
3493     // Finish up the increment block and prepare to start the loop body.
3494     assert(Block);
3495     if (badCFG)
3496       return nullptr;
3497     Block = nullptr;
3498 
3499     // Add implicit scope and dtors for loop variable.
3500     addLocalScopeAndDtors(S->getLoopVarStmt());
3501 
3502     // Populate a new block to contain the loop body and loop variable.
3503     addStmt(S->getBody());
3504     if (badCFG)
3505       return nullptr;
3506     CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
3507     if (badCFG)
3508       return nullptr;
3509 
3510     // This new body block is a successor to our condition block.
3511     addSuccessor(ConditionBlock,
3512                  KnownVal.isFalse() ? nullptr : LoopVarStmtBlock);
3513   }
3514 
3515   // Link up the condition block with the code that follows the loop (the
3516   // false branch).
3517   addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
3518 
3519   // Add the initialization statements.
3520   Block = createBlock();
3521   addStmt(S->getBeginStmt());
3522   addStmt(S->getEndStmt());
3523   return addStmt(S->getRangeStmt());
3524 }
3525 
3526 CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
3527     AddStmtChoice asc) {
3528   if (BuildOpts.AddTemporaryDtors) {
3529     // If adding implicit destructors visit the full expression for adding
3530     // destructors of temporaries.
3531     TempDtorContext Context;
3532     VisitForTemporaryDtors(E->getSubExpr(), false, Context);
3533 
3534     // Full expression has to be added as CFGStmt so it will be sequenced
3535     // before destructors of it's temporaries.
3536     asc = asc.withAlwaysAdd(true);
3537   }
3538   return Visit(E->getSubExpr(), asc);
3539 }
3540 
3541 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
3542                                                 AddStmtChoice asc) {
3543   if (asc.alwaysAdd(*this, E)) {
3544     autoCreateBlock();
3545     appendStmt(Block, E);
3546 
3547     // We do not want to propagate the AlwaysAdd property.
3548     asc = asc.withAlwaysAdd(false);
3549   }
3550   return Visit(E->getSubExpr(), asc);
3551 }
3552 
3553 CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
3554                                             AddStmtChoice asc) {
3555   autoCreateBlock();
3556   appendStmt(Block, C);
3557 
3558   return VisitChildren(C);
3559 }
3560 
3561 CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE,
3562                                       AddStmtChoice asc) {
3563 
3564   autoCreateBlock();
3565   appendStmt(Block, NE);
3566 
3567   if (NE->getInitializer())
3568     Block = Visit(NE->getInitializer());
3569   if (BuildOpts.AddCXXNewAllocator)
3570     appendNewAllocator(Block, NE);
3571   if (NE->isArray())
3572     Block = Visit(NE->getArraySize());
3573   for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(),
3574        E = NE->placement_arg_end(); I != E; ++I)
3575     Block = Visit(*I);
3576   return Block;
3577 }
3578 
3579 CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE,
3580                                          AddStmtChoice asc) {
3581   autoCreateBlock();
3582   appendStmt(Block, DE);
3583   QualType DTy = DE->getDestroyedType();
3584   DTy = DTy.getNonReferenceType();
3585   CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl();
3586   if (RD) {
3587     if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor())
3588       appendDeleteDtor(Block, RD, DE);
3589   }
3590 
3591   return VisitChildren(DE);
3592 }
3593 
3594 CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
3595                                                  AddStmtChoice asc) {
3596   if (asc.alwaysAdd(*this, E)) {
3597     autoCreateBlock();
3598     appendStmt(Block, E);
3599     // We do not want to propagate the AlwaysAdd property.
3600     asc = asc.withAlwaysAdd(false);
3601   }
3602   return Visit(E->getSubExpr(), asc);
3603 }
3604 
3605 CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
3606                                                   AddStmtChoice asc) {
3607   autoCreateBlock();
3608   appendStmt(Block, C);
3609   return VisitChildren(C);
3610 }
3611 
3612 CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
3613                                             AddStmtChoice asc) {
3614   if (asc.alwaysAdd(*this, E)) {
3615     autoCreateBlock();
3616     appendStmt(Block, E);
3617   }
3618   return Visit(E->getSubExpr(), AddStmtChoice());
3619 }
3620 
3621 CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3622   // Lazily create the indirect-goto dispatch block if there isn't one already.
3623   CFGBlock *IBlock = cfg->getIndirectGotoBlock();
3624 
3625   if (!IBlock) {
3626     IBlock = createBlock(false);
3627     cfg->setIndirectGotoBlock(IBlock);
3628   }
3629 
3630   // IndirectGoto is a control-flow statement.  Thus we stop processing the
3631   // current block and create a new one.
3632   if (badCFG)
3633     return nullptr;
3634 
3635   Block = createBlock(false);
3636   Block->setTerminator(I);
3637   addSuccessor(Block, IBlock);
3638   return addStmt(I->getTarget());
3639 }
3640 
3641 CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary,
3642                                              TempDtorContext &Context) {
3643   assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
3644 
3645 tryAgain:
3646   if (!E) {
3647     badCFG = true;
3648     return nullptr;
3649   }
3650   switch (E->getStmtClass()) {
3651     default:
3652       return VisitChildrenForTemporaryDtors(E, Context);
3653 
3654     case Stmt::BinaryOperatorClass:
3655       return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E),
3656                                                   Context);
3657 
3658     case Stmt::CXXBindTemporaryExprClass:
3659       return VisitCXXBindTemporaryExprForTemporaryDtors(
3660           cast<CXXBindTemporaryExpr>(E), BindToTemporary, Context);
3661 
3662     case Stmt::BinaryConditionalOperatorClass:
3663     case Stmt::ConditionalOperatorClass:
3664       return VisitConditionalOperatorForTemporaryDtors(
3665           cast<AbstractConditionalOperator>(E), BindToTemporary, Context);
3666 
3667     case Stmt::ImplicitCastExprClass:
3668       // For implicit cast we want BindToTemporary to be passed further.
3669       E = cast<CastExpr>(E)->getSubExpr();
3670       goto tryAgain;
3671 
3672     case Stmt::CXXFunctionalCastExprClass:
3673       // For functional cast we want BindToTemporary to be passed further.
3674       E = cast<CXXFunctionalCastExpr>(E)->getSubExpr();
3675       goto tryAgain;
3676 
3677     case Stmt::ParenExprClass:
3678       E = cast<ParenExpr>(E)->getSubExpr();
3679       goto tryAgain;
3680 
3681     case Stmt::MaterializeTemporaryExprClass: {
3682       const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(E);
3683       BindToTemporary = (MTE->getStorageDuration() != SD_FullExpression);
3684       SmallVector<const Expr *, 2> CommaLHSs;
3685       SmallVector<SubobjectAdjustment, 2> Adjustments;
3686       // Find the expression whose lifetime needs to be extended.
3687       E = const_cast<Expr *>(
3688           cast<MaterializeTemporaryExpr>(E)
3689               ->GetTemporaryExpr()
3690               ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
3691       // Visit the skipped comma operator left-hand sides for other temporaries.
3692       for (const Expr *CommaLHS : CommaLHSs) {
3693         VisitForTemporaryDtors(const_cast<Expr *>(CommaLHS),
3694                                /*BindToTemporary=*/false, Context);
3695       }
3696       goto tryAgain;
3697     }
3698 
3699     case Stmt::BlockExprClass:
3700       // Don't recurse into blocks; their subexpressions don't get evaluated
3701       // here.
3702       return Block;
3703 
3704     case Stmt::LambdaExprClass: {
3705       // For lambda expressions, only recurse into the capture initializers,
3706       // and not the body.
3707       auto *LE = cast<LambdaExpr>(E);
3708       CFGBlock *B = Block;
3709       for (Expr *Init : LE->capture_inits()) {
3710         if (CFGBlock *R = VisitForTemporaryDtors(
3711                 Init, /*BindToTemporary=*/false, Context))
3712           B = R;
3713       }
3714       return B;
3715     }
3716 
3717     case Stmt::CXXDefaultArgExprClass:
3718       E = cast<CXXDefaultArgExpr>(E)->getExpr();
3719       goto tryAgain;
3720 
3721     case Stmt::CXXDefaultInitExprClass:
3722       E = cast<CXXDefaultInitExpr>(E)->getExpr();
3723       goto tryAgain;
3724   }
3725 }
3726 
3727 CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E,
3728                                                      TempDtorContext &Context) {
3729   if (isa<LambdaExpr>(E)) {
3730     // Do not visit the children of lambdas; they have their own CFGs.
3731     return Block;
3732   }
3733 
3734   // When visiting children for destructors we want to visit them in reverse
3735   // order that they will appear in the CFG.  Because the CFG is built
3736   // bottom-up, this means we visit them in their natural order, which
3737   // reverses them in the CFG.
3738   CFGBlock *B = Block;
3739   for (Stmt *Child : E->children())
3740     if (Child)
3741       if (CFGBlock *R = VisitForTemporaryDtors(Child, false, Context))
3742         B = R;
3743 
3744   return B;
3745 }
3746 
3747 CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(
3748     BinaryOperator *E, TempDtorContext &Context) {
3749   if (E->isLogicalOp()) {
3750     VisitForTemporaryDtors(E->getLHS(), false, Context);
3751     TryResult RHSExecuted = tryEvaluateBool(E->getLHS());
3752     if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr)
3753       RHSExecuted.negate();
3754 
3755     // We do not know at CFG-construction time whether the right-hand-side was
3756     // executed, thus we add a branch node that depends on the temporary
3757     // constructor call.
3758     TempDtorContext RHSContext(
3759         bothKnownTrue(Context.KnownExecuted, RHSExecuted));
3760     VisitForTemporaryDtors(E->getRHS(), false, RHSContext);
3761     InsertTempDtorDecisionBlock(RHSContext);
3762 
3763     return Block;
3764   }
3765 
3766   if (E->isAssignmentOp()) {
3767     // For assignment operator (=) LHS expression is visited
3768     // before RHS expression. For destructors visit them in reverse order.
3769     CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
3770     CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
3771     return LHSBlock ? LHSBlock : RHSBlock;
3772   }
3773 
3774   // For any other binary operator RHS expression is visited before
3775   // LHS expression (order of children). For destructors visit them in reverse
3776   // order.
3777   CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
3778   CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
3779   return RHSBlock ? RHSBlock : LHSBlock;
3780 }
3781 
3782 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
3783     CXXBindTemporaryExpr *E, bool BindToTemporary, TempDtorContext &Context) {
3784   // First add destructors for temporaries in subexpression.
3785   CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr(), false, Context);
3786   if (!BindToTemporary) {
3787     // If lifetime of temporary is not prolonged (by assigning to constant
3788     // reference) add destructor for it.
3789 
3790     const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
3791 
3792     if (Dtor->getParent()->isAnyDestructorNoReturn()) {
3793       // If the destructor is marked as a no-return destructor, we need to
3794       // create a new block for the destructor which does not have as a
3795       // successor anything built thus far. Control won't flow out of this
3796       // block.
3797       if (B) Succ = B;
3798       Block = createNoReturnBlock();
3799     } else if (Context.needsTempDtorBranch()) {
3800       // If we need to introduce a branch, we add a new block that we will hook
3801       // up to a decision block later.
3802       if (B) Succ = B;
3803       Block = createBlock();
3804     } else {
3805       autoCreateBlock();
3806     }
3807     if (Context.needsTempDtorBranch()) {
3808       Context.setDecisionPoint(Succ, E);
3809     }
3810     appendTemporaryDtor(Block, E);
3811 
3812     B = Block;
3813   }
3814   return B;
3815 }
3816 
3817 void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context,
3818                                              CFGBlock *FalseSucc) {
3819   if (!Context.TerminatorExpr) {
3820     // If no temporary was found, we do not need to insert a decision point.
3821     return;
3822   }
3823   assert(Context.TerminatorExpr);
3824   CFGBlock *Decision = createBlock(false);
3825   Decision->setTerminator(CFGTerminator(Context.TerminatorExpr, true));
3826   addSuccessor(Decision, Block, !Context.KnownExecuted.isFalse());
3827   addSuccessor(Decision, FalseSucc ? FalseSucc : Context.Succ,
3828                !Context.KnownExecuted.isTrue());
3829   Block = Decision;
3830 }
3831 
3832 CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
3833     AbstractConditionalOperator *E, bool BindToTemporary,
3834     TempDtorContext &Context) {
3835   VisitForTemporaryDtors(E->getCond(), false, Context);
3836   CFGBlock *ConditionBlock = Block;
3837   CFGBlock *ConditionSucc = Succ;
3838   TryResult ConditionVal = tryEvaluateBool(E->getCond());
3839   TryResult NegatedVal = ConditionVal;
3840   if (NegatedVal.isKnown()) NegatedVal.negate();
3841 
3842   TempDtorContext TrueContext(
3843       bothKnownTrue(Context.KnownExecuted, ConditionVal));
3844   VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary, TrueContext);
3845   CFGBlock *TrueBlock = Block;
3846 
3847   Block = ConditionBlock;
3848   Succ = ConditionSucc;
3849   TempDtorContext FalseContext(
3850       bothKnownTrue(Context.KnownExecuted, NegatedVal));
3851   VisitForTemporaryDtors(E->getFalseExpr(), BindToTemporary, FalseContext);
3852 
3853   if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) {
3854     InsertTempDtorDecisionBlock(FalseContext, TrueBlock);
3855   } else if (TrueContext.TerminatorExpr) {
3856     Block = TrueBlock;
3857     InsertTempDtorDecisionBlock(TrueContext);
3858   } else {
3859     InsertTempDtorDecisionBlock(FalseContext);
3860   }
3861   return Block;
3862 }
3863 
3864 } // end anonymous namespace
3865 
3866 /// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
3867 ///  no successors or predecessors.  If this is the first block created in the
3868 ///  CFG, it is automatically set to be the Entry and Exit of the CFG.
3869 CFGBlock *CFG::createBlock() {
3870   bool first_block = begin() == end();
3871 
3872   // Create the block.
3873   CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
3874   new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
3875   Blocks.push_back(Mem, BlkBVC);
3876 
3877   // If this is the first block, set it as the Entry and Exit.
3878   if (first_block)
3879     Entry = Exit = &back();
3880 
3881   // Return the block.
3882   return &back();
3883 }
3884 
3885 /// buildCFG - Constructs a CFG from an AST.
3886 std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement,
3887                                    ASTContext *C, const BuildOptions &BO) {
3888   CFGBuilder Builder(C, BO);
3889   return Builder.buildCFG(D, Statement);
3890 }
3891 
3892 const CXXDestructorDecl *
3893 CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3894   switch (getKind()) {
3895     case CFGElement::Statement:
3896     case CFGElement::Initializer:
3897     case CFGElement::NewAllocator:
3898       llvm_unreachable("getDestructorDecl should only be used with "
3899                        "ImplicitDtors");
3900     case CFGElement::AutomaticObjectDtor: {
3901       const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
3902       QualType ty = var->getType();
3903 
3904       // FIXME: See CFGBuilder::addLocalScopeForVarDecl.
3905       //
3906       // Lifetime-extending constructs are handled here. This works for a single
3907       // temporary in an initializer expression.
3908       if (ty->isReferenceType()) {
3909         if (const Expr *Init = var->getInit()) {
3910           ty = getReferenceInitTemporaryType(astContext, Init);
3911         }
3912       }
3913 
3914       while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3915         ty = arrayType->getElementType();
3916       }
3917       const RecordType *recordType = ty->getAs<RecordType>();
3918       const CXXRecordDecl *classDecl =
3919       cast<CXXRecordDecl>(recordType->getDecl());
3920       return classDecl->getDestructor();
3921     }
3922     case CFGElement::DeleteDtor: {
3923       const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr();
3924       QualType DTy = DE->getDestroyedType();
3925       DTy = DTy.getNonReferenceType();
3926       const CXXRecordDecl *classDecl =
3927           astContext.getBaseElementType(DTy)->getAsCXXRecordDecl();
3928       return classDecl->getDestructor();
3929     }
3930     case CFGElement::TemporaryDtor: {
3931       const CXXBindTemporaryExpr *bindExpr =
3932         castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
3933       const CXXTemporary *temp = bindExpr->getTemporary();
3934       return temp->getDestructor();
3935     }
3936     case CFGElement::BaseDtor:
3937     case CFGElement::MemberDtor:
3938 
3939       // Not yet supported.
3940       return nullptr;
3941   }
3942   llvm_unreachable("getKind() returned bogus value");
3943 }
3944 
3945 bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3946   if (const CXXDestructorDecl *DD = getDestructorDecl(astContext))
3947     return DD->isNoReturn();
3948   return false;
3949 }
3950 
3951 //===----------------------------------------------------------------------===//
3952 // CFGBlock operations.
3953 //===----------------------------------------------------------------------===//
3954 
3955 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable)
3956   : ReachableBlock(IsReachable ? B : nullptr),
3957     UnreachableBlock(!IsReachable ? B : nullptr,
3958                      B && IsReachable ? AB_Normal : AB_Unreachable) {}
3959 
3960 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock)
3961   : ReachableBlock(B),
3962     UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock,
3963                      B == AlternateBlock ? AB_Alternate : AB_Normal) {}
3964 
3965 void CFGBlock::addSuccessor(AdjacentBlock Succ,
3966                             BumpVectorContext &C) {
3967   if (CFGBlock *B = Succ.getReachableBlock())
3968     B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C);
3969 
3970   if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock())
3971     UnreachableB->Preds.push_back(AdjacentBlock(this, false), C);
3972 
3973   Succs.push_back(Succ, C);
3974 }
3975 
3976 bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3977         const CFGBlock *From, const CFGBlock *To) {
3978 
3979   if (F.IgnoreNullPredecessors && !From)
3980     return true;
3981 
3982   if (To && From && F.IgnoreDefaultsWithCoveredEnums) {
3983     // If the 'To' has no label or is labeled but the label isn't a
3984     // CaseStmt then filter this edge.
3985     if (const SwitchStmt *S =
3986         dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3987       if (S->isAllEnumCasesCovered()) {
3988         const Stmt *L = To->getLabel();
3989         if (!L || !isa<CaseStmt>(L))
3990           return true;
3991       }
3992     }
3993   }
3994 
3995   return false;
3996 }
3997 
3998 //===----------------------------------------------------------------------===//
3999 // CFG pretty printing
4000 //===----------------------------------------------------------------------===//
4001 
4002 namespace {
4003 
4004 class StmtPrinterHelper : public PrinterHelper  {
4005   typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
4006   typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
4007   StmtMapTy StmtMap;
4008   DeclMapTy DeclMap;
4009   signed currentBlock;
4010   unsigned currStmt;
4011   const LangOptions &LangOpts;
4012 public:
4013 
4014   StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
4015     : currentBlock(0), currStmt(0), LangOpts(LO)
4016   {
4017     for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
4018       unsigned j = 1;
4019       for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
4020            BI != BEnd; ++BI, ++j ) {
4021         if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
4022           const Stmt *stmt= SE->getStmt();
4023           std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
4024           StmtMap[stmt] = P;
4025 
4026           switch (stmt->getStmtClass()) {
4027             case Stmt::DeclStmtClass:
4028                 DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
4029                 break;
4030             case Stmt::IfStmtClass: {
4031               const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
4032               if (var)
4033                 DeclMap[var] = P;
4034               break;
4035             }
4036             case Stmt::ForStmtClass: {
4037               const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
4038               if (var)
4039                 DeclMap[var] = P;
4040               break;
4041             }
4042             case Stmt::WhileStmtClass: {
4043               const VarDecl *var =
4044                 cast<WhileStmt>(stmt)->getConditionVariable();
4045               if (var)
4046                 DeclMap[var] = P;
4047               break;
4048             }
4049             case Stmt::SwitchStmtClass: {
4050               const VarDecl *var =
4051                 cast<SwitchStmt>(stmt)->getConditionVariable();
4052               if (var)
4053                 DeclMap[var] = P;
4054               break;
4055             }
4056             case Stmt::CXXCatchStmtClass: {
4057               const VarDecl *var =
4058                 cast<CXXCatchStmt>(stmt)->getExceptionDecl();
4059               if (var)
4060                 DeclMap[var] = P;
4061               break;
4062             }
4063             default:
4064               break;
4065           }
4066         }
4067       }
4068     }
4069   }
4070 
4071   ~StmtPrinterHelper() override {}
4072 
4073   const LangOptions &getLangOpts() const { return LangOpts; }
4074   void setBlockID(signed i) { currentBlock = i; }
4075   void setStmtID(unsigned i) { currStmt = i; }
4076 
4077   bool handledStmt(Stmt *S, raw_ostream &OS) override {
4078     StmtMapTy::iterator I = StmtMap.find(S);
4079 
4080     if (I == StmtMap.end())
4081       return false;
4082 
4083     if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
4084                           && I->second.second == currStmt) {
4085       return false;
4086     }
4087 
4088     OS << "[B" << I->second.first << "." << I->second.second << "]";
4089     return true;
4090   }
4091 
4092   bool handleDecl(const Decl *D, raw_ostream &OS) {
4093     DeclMapTy::iterator I = DeclMap.find(D);
4094 
4095     if (I == DeclMap.end())
4096       return false;
4097 
4098     if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
4099                           && I->second.second == currStmt) {
4100       return false;
4101     }
4102 
4103     OS << "[B" << I->second.first << "." << I->second.second << "]";
4104     return true;
4105   }
4106 };
4107 } // end anonymous namespace
4108 
4109 
4110 namespace {
4111 class CFGBlockTerminatorPrint
4112   : public StmtVisitor<CFGBlockTerminatorPrint,void> {
4113 
4114   raw_ostream &OS;
4115   StmtPrinterHelper* Helper;
4116   PrintingPolicy Policy;
4117 public:
4118   CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
4119                           const PrintingPolicy &Policy)
4120     : OS(os), Helper(helper), Policy(Policy) {
4121     this->Policy.IncludeNewlines = false;
4122   }
4123 
4124   void VisitIfStmt(IfStmt *I) {
4125     OS << "if ";
4126     if (Stmt *C = I->getCond())
4127       C->printPretty(OS, Helper, Policy);
4128   }
4129 
4130   // Default case.
4131   void VisitStmt(Stmt *Terminator) {
4132     Terminator->printPretty(OS, Helper, Policy);
4133   }
4134 
4135   void VisitDeclStmt(DeclStmt *DS) {
4136     VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
4137     OS << "static init " << VD->getName();
4138   }
4139 
4140   void VisitForStmt(ForStmt *F) {
4141     OS << "for (" ;
4142     if (F->getInit())
4143       OS << "...";
4144     OS << "; ";
4145     if (Stmt *C = F->getCond())
4146       C->printPretty(OS, Helper, Policy);
4147     OS << "; ";
4148     if (F->getInc())
4149       OS << "...";
4150     OS << ")";
4151   }
4152 
4153   void VisitWhileStmt(WhileStmt *W) {
4154     OS << "while " ;
4155     if (Stmt *C = W->getCond())
4156       C->printPretty(OS, Helper, Policy);
4157   }
4158 
4159   void VisitDoStmt(DoStmt *D) {
4160     OS << "do ... while ";
4161     if (Stmt *C = D->getCond())
4162       C->printPretty(OS, Helper, Policy);
4163   }
4164 
4165   void VisitSwitchStmt(SwitchStmt *Terminator) {
4166     OS << "switch ";
4167     Terminator->getCond()->printPretty(OS, Helper, Policy);
4168   }
4169 
4170   void VisitCXXTryStmt(CXXTryStmt *CS) {
4171     OS << "try ...";
4172   }
4173 
4174   void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
4175     if (Stmt *Cond = C->getCond())
4176       Cond->printPretty(OS, Helper, Policy);
4177     OS << " ? ... : ...";
4178   }
4179 
4180   void VisitChooseExpr(ChooseExpr *C) {
4181     OS << "__builtin_choose_expr( ";
4182     if (Stmt *Cond = C->getCond())
4183       Cond->printPretty(OS, Helper, Policy);
4184     OS << " )";
4185   }
4186 
4187   void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
4188     OS << "goto *";
4189     if (Stmt *T = I->getTarget())
4190       T->printPretty(OS, Helper, Policy);
4191   }
4192 
4193   void VisitBinaryOperator(BinaryOperator* B) {
4194     if (!B->isLogicalOp()) {
4195       VisitExpr(B);
4196       return;
4197     }
4198 
4199     if (B->getLHS())
4200       B->getLHS()->printPretty(OS, Helper, Policy);
4201 
4202     switch (B->getOpcode()) {
4203       case BO_LOr:
4204         OS << " || ...";
4205         return;
4206       case BO_LAnd:
4207         OS << " && ...";
4208         return;
4209       default:
4210         llvm_unreachable("Invalid logical operator.");
4211     }
4212   }
4213 
4214   void VisitExpr(Expr *E) {
4215     E->printPretty(OS, Helper, Policy);
4216   }
4217 
4218 public:
4219   void print(CFGTerminator T) {
4220     if (T.isTemporaryDtorsBranch())
4221       OS << "(Temp Dtor) ";
4222     Visit(T.getStmt());
4223   }
4224 };
4225 } // end anonymous namespace
4226 
4227 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
4228                        const CFGElement &E) {
4229   if (Optional<CFGStmt> CS = E.getAs<CFGStmt>()) {
4230     const Stmt *S = CS->getStmt();
4231     assert(S != nullptr && "Expecting non-null Stmt");
4232 
4233     // special printing for statement-expressions.
4234     if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
4235       const CompoundStmt *Sub = SE->getSubStmt();
4236 
4237       auto Children = Sub->children();
4238       if (Children.begin() != Children.end()) {
4239         OS << "({ ... ; ";
4240         Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
4241         OS << " })\n";
4242         return;
4243       }
4244     }
4245     // special printing for comma expressions.
4246     if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
4247       if (B->getOpcode() == BO_Comma) {
4248         OS << "... , ";
4249         Helper.handledStmt(B->getRHS(),OS);
4250         OS << '\n';
4251         return;
4252       }
4253     }
4254     S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
4255 
4256     if (isa<CXXOperatorCallExpr>(S)) {
4257       OS << " (OperatorCall)";
4258     }
4259     else if (isa<CXXBindTemporaryExpr>(S)) {
4260       OS << " (BindTemporary)";
4261     }
4262     else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
4263       OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
4264     }
4265     else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
4266       OS << " (" << CE->getStmtClassName() << ", "
4267          << CE->getCastKindName()
4268          << ", " << CE->getType().getAsString()
4269          << ")";
4270     }
4271 
4272     // Expressions need a newline.
4273     if (isa<Expr>(S))
4274       OS << '\n';
4275 
4276   } else if (Optional<CFGInitializer> IE = E.getAs<CFGInitializer>()) {
4277     const CXXCtorInitializer *I = IE->getInitializer();
4278     if (I->isBaseInitializer())
4279       OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
4280     else if (I->isDelegatingInitializer())
4281       OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
4282     else OS << I->getAnyMember()->getName();
4283 
4284     OS << "(";
4285     if (Expr *IE = I->getInit())
4286       IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
4287     OS << ")";
4288 
4289     if (I->isBaseInitializer())
4290       OS << " (Base initializer)\n";
4291     else if (I->isDelegatingInitializer())
4292       OS << " (Delegating initializer)\n";
4293     else OS << " (Member initializer)\n";
4294 
4295   } else if (Optional<CFGAutomaticObjDtor> DE =
4296                  E.getAs<CFGAutomaticObjDtor>()) {
4297     const VarDecl *VD = DE->getVarDecl();
4298     Helper.handleDecl(VD, OS);
4299 
4300     const Type* T = VD->getType().getTypePtr();
4301     if (const ReferenceType* RT = T->getAs<ReferenceType>())
4302       T = RT->getPointeeType().getTypePtr();
4303     T = T->getBaseElementTypeUnsafe();
4304 
4305     OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
4306     OS << " (Implicit destructor)\n";
4307 
4308   } else if (Optional<CFGNewAllocator> NE = E.getAs<CFGNewAllocator>()) {
4309     OS << "CFGNewAllocator(";
4310     if (const CXXNewExpr *AllocExpr = NE->getAllocatorExpr())
4311       AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
4312     OS << ")\n";
4313   } else if (Optional<CFGDeleteDtor> DE = E.getAs<CFGDeleteDtor>()) {
4314     const CXXRecordDecl *RD = DE->getCXXRecordDecl();
4315     if (!RD)
4316       return;
4317     CXXDeleteExpr *DelExpr =
4318         const_cast<CXXDeleteExpr*>(DE->getDeleteExpr());
4319     Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS);
4320     OS << "->~" << RD->getName().str() << "()";
4321     OS << " (Implicit destructor)\n";
4322   } else if (Optional<CFGBaseDtor> BE = E.getAs<CFGBaseDtor>()) {
4323     const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
4324     OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
4325     OS << " (Base object destructor)\n";
4326 
4327   } else if (Optional<CFGMemberDtor> ME = E.getAs<CFGMemberDtor>()) {
4328     const FieldDecl *FD = ME->getFieldDecl();
4329     const Type *T = FD->getType()->getBaseElementTypeUnsafe();
4330     OS << "this->" << FD->getName();
4331     OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
4332     OS << " (Member object destructor)\n";
4333 
4334   } else if (Optional<CFGTemporaryDtor> TE = E.getAs<CFGTemporaryDtor>()) {
4335     const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
4336     OS << "~";
4337     BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
4338     OS << "() (Temporary object destructor)\n";
4339   }
4340 }
4341 
4342 static void print_block(raw_ostream &OS, const CFG* cfg,
4343                         const CFGBlock &B,
4344                         StmtPrinterHelper &Helper, bool print_edges,
4345                         bool ShowColors) {
4346 
4347   Helper.setBlockID(B.getBlockID());
4348 
4349   // Print the header.
4350   if (ShowColors)
4351     OS.changeColor(raw_ostream::YELLOW, true);
4352 
4353   OS << "\n [B" << B.getBlockID();
4354 
4355   if (&B == &cfg->getEntry())
4356     OS << " (ENTRY)]\n";
4357   else if (&B == &cfg->getExit())
4358     OS << " (EXIT)]\n";
4359   else if (&B == cfg->getIndirectGotoBlock())
4360     OS << " (INDIRECT GOTO DISPATCH)]\n";
4361   else if (B.hasNoReturnElement())
4362     OS << " (NORETURN)]\n";
4363   else
4364     OS << "]\n";
4365 
4366   if (ShowColors)
4367     OS.resetColor();
4368 
4369   // Print the label of this block.
4370   if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
4371 
4372     if (print_edges)
4373       OS << "  ";
4374 
4375     if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
4376       OS << L->getName();
4377     else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
4378       OS << "case ";
4379       if (C->getLHS())
4380         C->getLHS()->printPretty(OS, &Helper,
4381                                  PrintingPolicy(Helper.getLangOpts()));
4382       if (C->getRHS()) {
4383         OS << " ... ";
4384         C->getRHS()->printPretty(OS, &Helper,
4385                                  PrintingPolicy(Helper.getLangOpts()));
4386       }
4387     } else if (isa<DefaultStmt>(Label))
4388       OS << "default";
4389     else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
4390       OS << "catch (";
4391       if (CS->getExceptionDecl())
4392         CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper.getLangOpts()),
4393                                       0);
4394       else
4395         OS << "...";
4396       OS << ")";
4397 
4398     } else
4399       llvm_unreachable("Invalid label statement in CFGBlock.");
4400 
4401     OS << ":\n";
4402   }
4403 
4404   // Iterate through the statements in the block and print them.
4405   unsigned j = 1;
4406 
4407   for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
4408        I != E ; ++I, ++j ) {
4409 
4410     // Print the statement # in the basic block and the statement itself.
4411     if (print_edges)
4412       OS << " ";
4413 
4414     OS << llvm::format("%3d", j) << ": ";
4415 
4416     Helper.setStmtID(j);
4417 
4418     print_elem(OS, Helper, *I);
4419   }
4420 
4421   // Print the terminator of this block.
4422   if (B.getTerminator()) {
4423     if (ShowColors)
4424       OS.changeColor(raw_ostream::GREEN);
4425 
4426     OS << "   T: ";
4427 
4428     Helper.setBlockID(-1);
4429 
4430     PrintingPolicy PP(Helper.getLangOpts());
4431     CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP);
4432     TPrinter.print(B.getTerminator());
4433     OS << '\n';
4434 
4435     if (ShowColors)
4436       OS.resetColor();
4437   }
4438 
4439   if (print_edges) {
4440     // Print the predecessors of this block.
4441     if (!B.pred_empty()) {
4442       const raw_ostream::Colors Color = raw_ostream::BLUE;
4443       if (ShowColors)
4444         OS.changeColor(Color);
4445       OS << "   Preds " ;
4446       if (ShowColors)
4447         OS.resetColor();
4448       OS << '(' << B.pred_size() << "):";
4449       unsigned i = 0;
4450 
4451       if (ShowColors)
4452         OS.changeColor(Color);
4453 
4454       for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
4455            I != E; ++I, ++i) {
4456 
4457         if (i % 10 == 8)
4458           OS << "\n     ";
4459 
4460         CFGBlock *B = *I;
4461         bool Reachable = true;
4462         if (!B) {
4463           Reachable = false;
4464           B = I->getPossiblyUnreachableBlock();
4465         }
4466 
4467         OS << " B" << B->getBlockID();
4468         if (!Reachable)
4469           OS << "(Unreachable)";
4470       }
4471 
4472       if (ShowColors)
4473         OS.resetColor();
4474 
4475       OS << '\n';
4476     }
4477 
4478     // Print the successors of this block.
4479     if (!B.succ_empty()) {
4480       const raw_ostream::Colors Color = raw_ostream::MAGENTA;
4481       if (ShowColors)
4482         OS.changeColor(Color);
4483       OS << "   Succs ";
4484       if (ShowColors)
4485         OS.resetColor();
4486       OS << '(' << B.succ_size() << "):";
4487       unsigned i = 0;
4488 
4489       if (ShowColors)
4490         OS.changeColor(Color);
4491 
4492       for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
4493            I != E; ++I, ++i) {
4494 
4495         if (i % 10 == 8)
4496           OS << "\n    ";
4497 
4498         CFGBlock *B = *I;
4499 
4500         bool Reachable = true;
4501         if (!B) {
4502           Reachable = false;
4503           B = I->getPossiblyUnreachableBlock();
4504         }
4505 
4506         if (B) {
4507           OS << " B" << B->getBlockID();
4508           if (!Reachable)
4509             OS << "(Unreachable)";
4510         }
4511         else {
4512           OS << " NULL";
4513         }
4514       }
4515 
4516       if (ShowColors)
4517         OS.resetColor();
4518       OS << '\n';
4519     }
4520   }
4521 }
4522 
4523 
4524 /// dump - A simple pretty printer of a CFG that outputs to stderr.
4525 void CFG::dump(const LangOptions &LO, bool ShowColors) const {
4526   print(llvm::errs(), LO, ShowColors);
4527 }
4528 
4529 /// print - A simple pretty printer of a CFG that outputs to an ostream.
4530 void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
4531   StmtPrinterHelper Helper(this, LO);
4532 
4533   // Print the entry block.
4534   print_block(OS, this, getEntry(), Helper, true, ShowColors);
4535 
4536   // Iterate through the CFGBlocks and print them one by one.
4537   for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
4538     // Skip the entry block, because we already printed it.
4539     if (&(**I) == &getEntry() || &(**I) == &getExit())
4540       continue;
4541 
4542     print_block(OS, this, **I, Helper, true, ShowColors);
4543   }
4544 
4545   // Print the exit block.
4546   print_block(OS, this, getExit(), Helper, true, ShowColors);
4547   OS << '\n';
4548   OS.flush();
4549 }
4550 
4551 /// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
4552 void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
4553                     bool ShowColors) const {
4554   print(llvm::errs(), cfg, LO, ShowColors);
4555 }
4556 
4557 LLVM_DUMP_METHOD void CFGBlock::dump() const {
4558   dump(getParent(), LangOptions(), false);
4559 }
4560 
4561 /// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
4562 ///   Generally this will only be called from CFG::print.
4563 void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
4564                      const LangOptions &LO, bool ShowColors) const {
4565   StmtPrinterHelper Helper(cfg, LO);
4566   print_block(OS, cfg, *this, Helper, true, ShowColors);
4567   OS << '\n';
4568 }
4569 
4570 /// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
4571 void CFGBlock::printTerminator(raw_ostream &OS,
4572                                const LangOptions &LO) const {
4573   CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO));
4574   TPrinter.print(getTerminator());
4575 }
4576 
4577 Stmt *CFGBlock::getTerminatorCondition(bool StripParens) {
4578   Stmt *Terminator = this->Terminator;
4579   if (!Terminator)
4580     return nullptr;
4581 
4582   Expr *E = nullptr;
4583 
4584   switch (Terminator->getStmtClass()) {
4585     default:
4586       break;
4587 
4588     case Stmt::CXXForRangeStmtClass:
4589       E = cast<CXXForRangeStmt>(Terminator)->getCond();
4590       break;
4591 
4592     case Stmt::ForStmtClass:
4593       E = cast<ForStmt>(Terminator)->getCond();
4594       break;
4595 
4596     case Stmt::WhileStmtClass:
4597       E = cast<WhileStmt>(Terminator)->getCond();
4598       break;
4599 
4600     case Stmt::DoStmtClass:
4601       E = cast<DoStmt>(Terminator)->getCond();
4602       break;
4603 
4604     case Stmt::IfStmtClass:
4605       E = cast<IfStmt>(Terminator)->getCond();
4606       break;
4607 
4608     case Stmt::ChooseExprClass:
4609       E = cast<ChooseExpr>(Terminator)->getCond();
4610       break;
4611 
4612     case Stmt::IndirectGotoStmtClass:
4613       E = cast<IndirectGotoStmt>(Terminator)->getTarget();
4614       break;
4615 
4616     case Stmt::SwitchStmtClass:
4617       E = cast<SwitchStmt>(Terminator)->getCond();
4618       break;
4619 
4620     case Stmt::BinaryConditionalOperatorClass:
4621       E = cast<BinaryConditionalOperator>(Terminator)->getCond();
4622       break;
4623 
4624     case Stmt::ConditionalOperatorClass:
4625       E = cast<ConditionalOperator>(Terminator)->getCond();
4626       break;
4627 
4628     case Stmt::BinaryOperatorClass: // '&&' and '||'
4629       E = cast<BinaryOperator>(Terminator)->getLHS();
4630       break;
4631 
4632     case Stmt::ObjCForCollectionStmtClass:
4633       return Terminator;
4634   }
4635 
4636   if (!StripParens)
4637     return E;
4638 
4639   return E ? E->IgnoreParens() : nullptr;
4640 }
4641 
4642 //===----------------------------------------------------------------------===//
4643 // CFG Graphviz Visualization
4644 //===----------------------------------------------------------------------===//
4645 
4646 
4647 #ifndef NDEBUG
4648 static StmtPrinterHelper* GraphHelper;
4649 #endif
4650 
4651 void CFG::viewCFG(const LangOptions &LO) const {
4652 #ifndef NDEBUG
4653   StmtPrinterHelper H(this, LO);
4654   GraphHelper = &H;
4655   llvm::ViewGraph(this,"CFG");
4656   GraphHelper = nullptr;
4657 #endif
4658 }
4659 
4660 namespace llvm {
4661 template<>
4662 struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
4663 
4664   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
4665 
4666   static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
4667 
4668 #ifndef NDEBUG
4669     std::string OutSStr;
4670     llvm::raw_string_ostream Out(OutSStr);
4671     print_block(Out,Graph, *Node, *GraphHelper, false, false);
4672     std::string& OutStr = Out.str();
4673 
4674     if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
4675 
4676     // Process string output to make it nicer...
4677     for (unsigned i = 0; i != OutStr.length(); ++i)
4678       if (OutStr[i] == '\n') {                            // Left justify
4679         OutStr[i] = '\\';
4680         OutStr.insert(OutStr.begin()+i+1, 'l');
4681       }
4682 
4683     return OutStr;
4684 #else
4685     return "";
4686 #endif
4687   }
4688 };
4689 } // end namespace llvm
4690