1 //===- CFG.cpp - Classes for representing and building CFGs ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the CFG and CFGBuilder classes for representing and
10 // building Control-Flow Graphs (CFGs) from ASTs.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Analysis/CFG.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/Decl.h"
18 #include "clang/AST/DeclBase.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclGroup.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/OperationKinds.h"
24 #include "clang/AST/PrettyPrinter.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/StmtCXX.h"
27 #include "clang/AST/StmtObjC.h"
28 #include "clang/AST/StmtVisitor.h"
29 #include "clang/AST/Type.h"
30 #include "clang/Analysis/ConstructionContext.h"
31 #include "clang/Analysis/Support/BumpVector.h"
32 #include "clang/Basic/Builtins.h"
33 #include "clang/Basic/ExceptionSpecificationType.h"
34 #include "clang/Basic/JsonSupport.h"
35 #include "clang/Basic/LLVM.h"
36 #include "clang/Basic/LangOptions.h"
37 #include "clang/Basic/SourceLocation.h"
38 #include "clang/Basic/Specifiers.h"
39 #include "llvm/ADT/APInt.h"
40 #include "llvm/ADT/APSInt.h"
41 #include "llvm/ADT/ArrayRef.h"
42 #include "llvm/ADT/DenseMap.h"
43 #include "llvm/ADT/Optional.h"
44 #include "llvm/ADT/STLExtras.h"
45 #include "llvm/ADT/SetVector.h"
46 #include "llvm/ADT/SmallPtrSet.h"
47 #include "llvm/ADT/SmallVector.h"
48 #include "llvm/Support/Allocator.h"
49 #include "llvm/Support/Casting.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/DOTGraphTraits.h"
52 #include "llvm/Support/ErrorHandling.h"
53 #include "llvm/Support/Format.h"
54 #include "llvm/Support/GraphWriter.h"
55 #include "llvm/Support/SaveAndRestore.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <cassert>
58 #include <memory>
59 #include <string>
60 #include <tuple>
61 #include <utility>
62 #include <vector>
63
64 using namespace clang;
65
GetEndLoc(Decl * D)66 static SourceLocation GetEndLoc(Decl *D) {
67 if (VarDecl *VD = dyn_cast<VarDecl>(D))
68 if (Expr *Ex = VD->getInit())
69 return Ex->getSourceRange().getEnd();
70 return D->getLocation();
71 }
72
73 /// Returns true on constant values based around a single IntegerLiteral.
74 /// Allow for use of parentheses, integer casts, and negative signs.
IsIntegerLiteralConstantExpr(const Expr * E)75 static bool IsIntegerLiteralConstantExpr(const Expr *E) {
76 // Allow parentheses
77 E = E->IgnoreParens();
78
79 // Allow conversions to different integer kind.
80 if (const auto *CE = dyn_cast<CastExpr>(E)) {
81 if (CE->getCastKind() != CK_IntegralCast)
82 return false;
83 E = CE->getSubExpr();
84 }
85
86 // Allow negative numbers.
87 if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
88 if (UO->getOpcode() != UO_Minus)
89 return false;
90 E = UO->getSubExpr();
91 }
92
93 return isa<IntegerLiteral>(E);
94 }
95
96 /// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral
97 /// constant expression or EnumConstantDecl from the given Expr. If it fails,
98 /// returns nullptr.
tryTransformToIntOrEnumConstant(const Expr * E)99 static const Expr *tryTransformToIntOrEnumConstant(const Expr *E) {
100 E = E->IgnoreParens();
101 if (IsIntegerLiteralConstantExpr(E))
102 return E;
103 if (auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
104 return isa<EnumConstantDecl>(DR->getDecl()) ? DR : nullptr;
105 return nullptr;
106 }
107
108 /// Tries to interpret a binary operator into `Expr Op NumExpr` form, if
109 /// NumExpr is an integer literal or an enum constant.
110 ///
111 /// If this fails, at least one of the returned DeclRefExpr or Expr will be
112 /// null.
113 static std::tuple<const Expr *, BinaryOperatorKind, const Expr *>
tryNormalizeBinaryOperator(const BinaryOperator * B)114 tryNormalizeBinaryOperator(const BinaryOperator *B) {
115 BinaryOperatorKind Op = B->getOpcode();
116
117 const Expr *MaybeDecl = B->getLHS();
118 const Expr *Constant = tryTransformToIntOrEnumConstant(B->getRHS());
119 // Expr looked like `0 == Foo` instead of `Foo == 0`
120 if (Constant == nullptr) {
121 // Flip the operator
122 if (Op == BO_GT)
123 Op = BO_LT;
124 else if (Op == BO_GE)
125 Op = BO_LE;
126 else if (Op == BO_LT)
127 Op = BO_GT;
128 else if (Op == BO_LE)
129 Op = BO_GE;
130
131 MaybeDecl = B->getRHS();
132 Constant = tryTransformToIntOrEnumConstant(B->getLHS());
133 }
134
135 return std::make_tuple(MaybeDecl, Op, Constant);
136 }
137
138 /// For an expression `x == Foo && x == Bar`, this determines whether the
139 /// `Foo` and `Bar` are either of the same enumeration type, or both integer
140 /// literals.
141 ///
142 /// It's an error to pass this arguments that are not either IntegerLiterals
143 /// or DeclRefExprs (that have decls of type EnumConstantDecl)
areExprTypesCompatible(const Expr * E1,const Expr * E2)144 static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) {
145 // User intent isn't clear if they're mixing int literals with enum
146 // constants.
147 if (isa<DeclRefExpr>(E1) != isa<DeclRefExpr>(E2))
148 return false;
149
150 // Integer literal comparisons, regardless of literal type, are acceptable.
151 if (!isa<DeclRefExpr>(E1))
152 return true;
153
154 // IntegerLiterals are handled above and only EnumConstantDecls are expected
155 // beyond this point
156 assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2));
157 auto *Decl1 = cast<DeclRefExpr>(E1)->getDecl();
158 auto *Decl2 = cast<DeclRefExpr>(E2)->getDecl();
159
160 assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2));
161 const DeclContext *DC1 = Decl1->getDeclContext();
162 const DeclContext *DC2 = Decl2->getDeclContext();
163
164 assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2));
165 return DC1 == DC2;
166 }
167
168 namespace {
169
170 class CFGBuilder;
171
172 /// The CFG builder uses a recursive algorithm to build the CFG. When
173 /// we process an expression, sometimes we know that we must add the
174 /// subexpressions as block-level expressions. For example:
175 ///
176 /// exp1 || exp2
177 ///
178 /// When processing the '||' expression, we know that exp1 and exp2
179 /// need to be added as block-level expressions, even though they
180 /// might not normally need to be. AddStmtChoice records this
181 /// contextual information. If AddStmtChoice is 'NotAlwaysAdd', then
182 /// the builder has an option not to add a subexpression as a
183 /// block-level expression.
184 class AddStmtChoice {
185 public:
186 enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
187
AddStmtChoice(Kind a_kind=NotAlwaysAdd)188 AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
189
190 bool alwaysAdd(CFGBuilder &builder,
191 const Stmt *stmt) const;
192
193 /// Return a copy of this object, except with the 'always-add' bit
194 /// set as specified.
withAlwaysAdd(bool alwaysAdd) const195 AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
196 return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
197 }
198
199 private:
200 Kind kind;
201 };
202
203 /// LocalScope - Node in tree of local scopes created for C++ implicit
204 /// destructor calls generation. It contains list of automatic variables
205 /// declared in the scope and link to position in previous scope this scope
206 /// began in.
207 ///
208 /// The process of creating local scopes is as follows:
209 /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
210 /// - Before processing statements in scope (e.g. CompoundStmt) create
211 /// LocalScope object using CFGBuilder::ScopePos as link to previous scope
212 /// and set CFGBuilder::ScopePos to the end of new scope,
213 /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
214 /// at this VarDecl,
215 /// - For every normal (without jump) end of scope add to CFGBlock destructors
216 /// for objects in the current scope,
217 /// - For every jump add to CFGBlock destructors for objects
218 /// between CFGBuilder::ScopePos and local scope position saved for jump
219 /// target. Thanks to C++ restrictions on goto jumps we can be sure that
220 /// jump target position will be on the path to root from CFGBuilder::ScopePos
221 /// (adding any variable that doesn't need constructor to be called to
222 /// LocalScope can break this assumption),
223 ///
224 class LocalScope {
225 public:
226 using AutomaticVarsTy = BumpVector<VarDecl *>;
227
228 /// const_iterator - Iterates local scope backwards and jumps to previous
229 /// scope on reaching the beginning of currently iterated scope.
230 class const_iterator {
231 const LocalScope* Scope = nullptr;
232
233 /// VarIter is guaranteed to be greater then 0 for every valid iterator.
234 /// Invalid iterator (with null Scope) has VarIter equal to 0.
235 unsigned VarIter = 0;
236
237 public:
238 /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
239 /// Incrementing invalid iterator is allowed and will result in invalid
240 /// iterator.
241 const_iterator() = default;
242
243 /// Create valid iterator. In case when S.Prev is an invalid iterator and
244 /// I is equal to 0, this will create invalid iterator.
const_iterator(const LocalScope & S,unsigned I)245 const_iterator(const LocalScope& S, unsigned I)
246 : Scope(&S), VarIter(I) {
247 // Iterator to "end" of scope is not allowed. Handle it by going up
248 // in scopes tree possibly up to invalid iterator in the root.
249 if (VarIter == 0 && Scope)
250 *this = Scope->Prev;
251 }
252
operator ->() const253 VarDecl *const* operator->() const {
254 assert(Scope && "Dereferencing invalid iterator is not allowed");
255 assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
256 return &Scope->Vars[VarIter - 1];
257 }
258
getFirstVarInScope() const259 const VarDecl *getFirstVarInScope() const {
260 assert(Scope && "Dereferencing invalid iterator is not allowed");
261 assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
262 return Scope->Vars[0];
263 }
264
operator *() const265 VarDecl *operator*() const {
266 return *this->operator->();
267 }
268
operator ++()269 const_iterator &operator++() {
270 if (!Scope)
271 return *this;
272
273 assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
274 --VarIter;
275 if (VarIter == 0)
276 *this = Scope->Prev;
277 return *this;
278 }
operator ++(int)279 const_iterator operator++(int) {
280 const_iterator P = *this;
281 ++*this;
282 return P;
283 }
284
operator ==(const const_iterator & rhs) const285 bool operator==(const const_iterator &rhs) const {
286 return Scope == rhs.Scope && VarIter == rhs.VarIter;
287 }
operator !=(const const_iterator & rhs) const288 bool operator!=(const const_iterator &rhs) const {
289 return !(*this == rhs);
290 }
291
operator bool() const292 explicit operator bool() const {
293 return *this != const_iterator();
294 }
295
296 int distance(const_iterator L);
297 const_iterator shared_parent(const_iterator L);
pointsToFirstDeclaredVar()298 bool pointsToFirstDeclaredVar() { return VarIter == 1; }
299 };
300
301 private:
302 BumpVectorContext ctx;
303
304 /// Automatic variables in order of declaration.
305 AutomaticVarsTy Vars;
306
307 /// Iterator to variable in previous scope that was declared just before
308 /// begin of this scope.
309 const_iterator Prev;
310
311 public:
312 /// Constructs empty scope linked to previous scope in specified place.
LocalScope(BumpVectorContext ctx,const_iterator P)313 LocalScope(BumpVectorContext ctx, const_iterator P)
314 : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {}
315
316 /// Begin of scope in direction of CFG building (backwards).
begin() const317 const_iterator begin() const { return const_iterator(*this, Vars.size()); }
318
addVar(VarDecl * VD)319 void addVar(VarDecl *VD) {
320 Vars.push_back(VD, ctx);
321 }
322 };
323
324 } // namespace
325
326 /// distance - Calculates distance from this to L. L must be reachable from this
327 /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
328 /// number of scopes between this and L.
distance(LocalScope::const_iterator L)329 int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
330 int D = 0;
331 const_iterator F = *this;
332 while (F.Scope != L.Scope) {
333 assert(F != const_iterator() &&
334 "L iterator is not reachable from F iterator.");
335 D += F.VarIter;
336 F = F.Scope->Prev;
337 }
338 D += F.VarIter - L.VarIter;
339 return D;
340 }
341
342 /// Calculates the closest parent of this iterator
343 /// that is in a scope reachable through the parents of L.
344 /// I.e. when using 'goto' from this to L, the lifetime of all variables
345 /// between this and shared_parent(L) end.
346 LocalScope::const_iterator
shared_parent(LocalScope::const_iterator L)347 LocalScope::const_iterator::shared_parent(LocalScope::const_iterator L) {
348 llvm::SmallPtrSet<const LocalScope *, 4> ScopesOfL;
349 while (true) {
350 ScopesOfL.insert(L.Scope);
351 if (L == const_iterator())
352 break;
353 L = L.Scope->Prev;
354 }
355
356 const_iterator F = *this;
357 while (true) {
358 if (ScopesOfL.count(F.Scope))
359 return F;
360 assert(F != const_iterator() &&
361 "L iterator is not reachable from F iterator.");
362 F = F.Scope->Prev;
363 }
364 }
365
366 namespace {
367
368 /// Structure for specifying position in CFG during its build process. It
369 /// consists of CFGBlock that specifies position in CFG and
370 /// LocalScope::const_iterator that specifies position in LocalScope graph.
371 struct BlockScopePosPair {
372 CFGBlock *block = nullptr;
373 LocalScope::const_iterator scopePosition;
374
375 BlockScopePosPair() = default;
BlockScopePosPair__anon8d78c9ed0211::BlockScopePosPair376 BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
377 : block(b), scopePosition(scopePos) {}
378 };
379
380 /// TryResult - a class representing a variant over the values
381 /// 'true', 'false', or 'unknown'. This is returned by tryEvaluateBool,
382 /// and is used by the CFGBuilder to decide if a branch condition
383 /// can be decided up front during CFG construction.
384 class TryResult {
385 int X = -1;
386
387 public:
388 TryResult() = default;
TryResult(bool b)389 TryResult(bool b) : X(b ? 1 : 0) {}
390
isTrue() const391 bool isTrue() const { return X == 1; }
isFalse() const392 bool isFalse() const { return X == 0; }
isKnown() const393 bool isKnown() const { return X >= 0; }
394
negate()395 void negate() {
396 assert(isKnown());
397 X ^= 0x1;
398 }
399 };
400
401 } // namespace
402
bothKnownTrue(TryResult R1,TryResult R2)403 static TryResult bothKnownTrue(TryResult R1, TryResult R2) {
404 if (!R1.isKnown() || !R2.isKnown())
405 return TryResult();
406 return TryResult(R1.isTrue() && R2.isTrue());
407 }
408
409 namespace {
410
411 class reverse_children {
412 llvm::SmallVector<Stmt *, 12> childrenBuf;
413 ArrayRef<Stmt *> children;
414
415 public:
416 reverse_children(Stmt *S);
417
418 using iterator = ArrayRef<Stmt *>::reverse_iterator;
419
begin() const420 iterator begin() const { return children.rbegin(); }
end() const421 iterator end() const { return children.rend(); }
422 };
423
424 } // namespace
425
reverse_children(Stmt * S)426 reverse_children::reverse_children(Stmt *S) {
427 if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
428 children = CE->getRawSubExprs();
429 return;
430 }
431 switch (S->getStmtClass()) {
432 // Note: Fill in this switch with more cases we want to optimize.
433 case Stmt::InitListExprClass: {
434 InitListExpr *IE = cast<InitListExpr>(S);
435 children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
436 IE->getNumInits());
437 return;
438 }
439 default:
440 break;
441 }
442
443 // Default case for all other statements.
444 llvm::append_range(childrenBuf, S->children());
445
446 // This needs to be done *after* childrenBuf has been populated.
447 children = childrenBuf;
448 }
449
450 namespace {
451
452 /// CFGBuilder - This class implements CFG construction from an AST.
453 /// The builder is stateful: an instance of the builder should be used to only
454 /// construct a single CFG.
455 ///
456 /// Example usage:
457 ///
458 /// CFGBuilder builder;
459 /// std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1);
460 ///
461 /// CFG construction is done via a recursive walk of an AST. We actually parse
462 /// the AST in reverse order so that the successor of a basic block is
463 /// constructed prior to its predecessor. This allows us to nicely capture
464 /// implicit fall-throughs without extra basic blocks.
465 class CFGBuilder {
466 using JumpTarget = BlockScopePosPair;
467 using JumpSource = BlockScopePosPair;
468
469 ASTContext *Context;
470 std::unique_ptr<CFG> cfg;
471
472 // Current block.
473 CFGBlock *Block = nullptr;
474
475 // Block after the current block.
476 CFGBlock *Succ = nullptr;
477
478 JumpTarget ContinueJumpTarget;
479 JumpTarget BreakJumpTarget;
480 JumpTarget SEHLeaveJumpTarget;
481 CFGBlock *SwitchTerminatedBlock = nullptr;
482 CFGBlock *DefaultCaseBlock = nullptr;
483
484 // This can point to either a C++ try, an Objective-C @try, or an SEH __try.
485 // try and @try can be mixed and generally work the same.
486 // The frontend forbids mixing SEH __try with either try or @try.
487 // So having one for all three is enough.
488 CFGBlock *TryTerminatedBlock = nullptr;
489
490 // Current position in local scope.
491 LocalScope::const_iterator ScopePos;
492
493 // LabelMap records the mapping from Label expressions to their jump targets.
494 using LabelMapTy = llvm::DenseMap<LabelDecl *, JumpTarget>;
495 LabelMapTy LabelMap;
496
497 // A list of blocks that end with a "goto" that must be backpatched to their
498 // resolved targets upon completion of CFG construction.
499 using BackpatchBlocksTy = std::vector<JumpSource>;
500 BackpatchBlocksTy BackpatchBlocks;
501
502 // A list of labels whose address has been taken (for indirect gotos).
503 using LabelSetTy = llvm::SmallSetVector<LabelDecl *, 8>;
504 LabelSetTy AddressTakenLabels;
505
506 // Information about the currently visited C++ object construction site.
507 // This is set in the construction trigger and read when the constructor
508 // or a function that returns an object by value is being visited.
509 llvm::DenseMap<Expr *, const ConstructionContextLayer *>
510 ConstructionContextMap;
511
512 using DeclsWithEndedScopeSetTy = llvm::SmallSetVector<VarDecl *, 16>;
513 DeclsWithEndedScopeSetTy DeclsWithEndedScope;
514
515 bool badCFG = false;
516 const CFG::BuildOptions &BuildOpts;
517
518 // State to track for building switch statements.
519 bool switchExclusivelyCovered = false;
520 Expr::EvalResult *switchCond = nullptr;
521
522 CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry = nullptr;
523 const Stmt *lastLookup = nullptr;
524
525 // Caches boolean evaluations of expressions to avoid multiple re-evaluations
526 // during construction of branches for chained logical operators.
527 using CachedBoolEvalsTy = llvm::DenseMap<Expr *, TryResult>;
528 CachedBoolEvalsTy CachedBoolEvals;
529
530 public:
CFGBuilder(ASTContext * astContext,const CFG::BuildOptions & buildOpts)531 explicit CFGBuilder(ASTContext *astContext,
532 const CFG::BuildOptions &buildOpts)
533 : Context(astContext), cfg(new CFG()), BuildOpts(buildOpts) {}
534
535 // buildCFG - Used by external clients to construct the CFG.
536 std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement);
537
538 bool alwaysAdd(const Stmt *stmt);
539
540 private:
541 // Visitors to walk an AST and construct the CFG.
542 CFGBlock *VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc);
543 CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
544 CFGBlock *VisitAttributedStmt(AttributedStmt *A, AddStmtChoice asc);
545 CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
546 CFGBlock *VisitBreakStmt(BreakStmt *B);
547 CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
548 CFGBlock *VisitCaseStmt(CaseStmt *C);
549 CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
550 CFGBlock *VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed);
551 CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
552 AddStmtChoice asc);
553 CFGBlock *VisitContinueStmt(ContinueStmt *C);
554 CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
555 AddStmtChoice asc);
556 CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
557 CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
558 CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc);
559 CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
560 CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
561 CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
562 AddStmtChoice asc);
563 CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
564 AddStmtChoice asc);
565 CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
566 CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
567 CFGBlock *VisitCXXTypeidExpr(CXXTypeidExpr *S, AddStmtChoice asc);
568 CFGBlock *VisitDeclStmt(DeclStmt *DS);
569 CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
570 CFGBlock *VisitDefaultStmt(DefaultStmt *D);
571 CFGBlock *VisitDoStmt(DoStmt *D);
572 CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
573 AddStmtChoice asc, bool ExternallyDestructed);
574 CFGBlock *VisitForStmt(ForStmt *F);
575 CFGBlock *VisitGotoStmt(GotoStmt *G);
576 CFGBlock *VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc);
577 CFGBlock *VisitIfStmt(IfStmt *I);
578 CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
579 CFGBlock *VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc);
580 CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
581 CFGBlock *VisitLabelStmt(LabelStmt *L);
582 CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
583 CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
584 CFGBlock *VisitLogicalOperator(BinaryOperator *B);
585 std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
586 Stmt *Term,
587 CFGBlock *TrueBlock,
588 CFGBlock *FalseBlock);
589 CFGBlock *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
590 AddStmtChoice asc);
591 CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
592 CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
593 CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
594 CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
595 CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
596 CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
597 CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
598 CFGBlock *VisitObjCMessageExpr(ObjCMessageExpr *E, AddStmtChoice asc);
599 CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
600 CFGBlock *VisitReturnStmt(Stmt *S);
601 CFGBlock *VisitCoroutineSuspendExpr(CoroutineSuspendExpr *S,
602 AddStmtChoice asc);
603 CFGBlock *VisitSEHExceptStmt(SEHExceptStmt *S);
604 CFGBlock *VisitSEHFinallyStmt(SEHFinallyStmt *S);
605 CFGBlock *VisitSEHLeaveStmt(SEHLeaveStmt *S);
606 CFGBlock *VisitSEHTryStmt(SEHTryStmt *S);
607 CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
608 CFGBlock *VisitSwitchStmt(SwitchStmt *S);
609 CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
610 AddStmtChoice asc);
611 CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
612 CFGBlock *VisitWhileStmt(WhileStmt *W);
613 CFGBlock *VisitArrayInitLoopExpr(ArrayInitLoopExpr *A, AddStmtChoice asc);
614
615 CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd,
616 bool ExternallyDestructed = false);
617 CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
618 CFGBlock *VisitChildren(Stmt *S);
619 CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
620 CFGBlock *VisitOMPExecutableDirective(OMPExecutableDirective *D,
621 AddStmtChoice asc);
622
maybeAddScopeBeginForVarDecl(CFGBlock * B,const VarDecl * VD,const Stmt * S)623 void maybeAddScopeBeginForVarDecl(CFGBlock *B, const VarDecl *VD,
624 const Stmt *S) {
625 if (ScopePos && (VD == ScopePos.getFirstVarInScope()))
626 appendScopeBegin(B, VD, S);
627 }
628
629 /// When creating the CFG for temporary destructors, we want to mirror the
630 /// branch structure of the corresponding constructor calls.
631 /// Thus, while visiting a statement for temporary destructors, we keep a
632 /// context to keep track of the following information:
633 /// - whether a subexpression is executed unconditionally
634 /// - if a subexpression is executed conditionally, the first
635 /// CXXBindTemporaryExpr we encounter in that subexpression (which
636 /// corresponds to the last temporary destructor we have to call for this
637 /// subexpression) and the CFG block at that point (which will become the
638 /// successor block when inserting the decision point).
639 ///
640 /// That way, we can build the branch structure for temporary destructors as
641 /// follows:
642 /// 1. If a subexpression is executed unconditionally, we add the temporary
643 /// destructor calls to the current block.
644 /// 2. If a subexpression is executed conditionally, when we encounter a
645 /// CXXBindTemporaryExpr:
646 /// a) If it is the first temporary destructor call in the subexpression,
647 /// we remember the CXXBindTemporaryExpr and the current block in the
648 /// TempDtorContext; we start a new block, and insert the temporary
649 /// destructor call.
650 /// b) Otherwise, add the temporary destructor call to the current block.
651 /// 3. When we finished visiting a conditionally executed subexpression,
652 /// and we found at least one temporary constructor during the visitation
653 /// (2.a has executed), we insert a decision block that uses the
654 /// CXXBindTemporaryExpr as terminator, and branches to the current block
655 /// if the CXXBindTemporaryExpr was marked executed, and otherwise
656 /// branches to the stored successor.
657 struct TempDtorContext {
658 TempDtorContext() = default;
TempDtorContext__anon8d78c9ed0411::CFGBuilder::TempDtorContext659 TempDtorContext(TryResult KnownExecuted)
660 : IsConditional(true), KnownExecuted(KnownExecuted) {}
661
662 /// Returns whether we need to start a new branch for a temporary destructor
663 /// call. This is the case when the temporary destructor is
664 /// conditionally executed, and it is the first one we encounter while
665 /// visiting a subexpression - other temporary destructors at the same level
666 /// will be added to the same block and are executed under the same
667 /// condition.
needsTempDtorBranch__anon8d78c9ed0411::CFGBuilder::TempDtorContext668 bool needsTempDtorBranch() const {
669 return IsConditional && !TerminatorExpr;
670 }
671
672 /// Remember the successor S of a temporary destructor decision branch for
673 /// the corresponding CXXBindTemporaryExpr E.
setDecisionPoint__anon8d78c9ed0411::CFGBuilder::TempDtorContext674 void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) {
675 Succ = S;
676 TerminatorExpr = E;
677 }
678
679 const bool IsConditional = false;
680 const TryResult KnownExecuted = true;
681 CFGBlock *Succ = nullptr;
682 CXXBindTemporaryExpr *TerminatorExpr = nullptr;
683 };
684
685 // Visitors to walk an AST and generate destructors of temporaries in
686 // full expression.
687 CFGBlock *VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
688 TempDtorContext &Context);
689 CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
690 TempDtorContext &Context);
691 CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E,
692 bool ExternallyDestructed,
693 TempDtorContext &Context);
694 CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(
695 CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context);
696 CFGBlock *VisitConditionalOperatorForTemporaryDtors(
697 AbstractConditionalOperator *E, bool ExternallyDestructed,
698 TempDtorContext &Context);
699 void InsertTempDtorDecisionBlock(const TempDtorContext &Context,
700 CFGBlock *FalseSucc = nullptr);
701
702 // NYS == Not Yet Supported
NYS()703 CFGBlock *NYS() {
704 badCFG = true;
705 return Block;
706 }
707
708 // Remember to apply the construction context based on the current \p Layer
709 // when constructing the CFG element for \p CE.
710 void consumeConstructionContext(const ConstructionContextLayer *Layer,
711 Expr *E);
712
713 // Scan \p Child statement to find constructors in it, while keeping in mind
714 // that its parent statement is providing a partial construction context
715 // described by \p Layer. If a constructor is found, it would be assigned
716 // the context based on the layer. If an additional construction context layer
717 // is found, the function recurses into that.
718 void findConstructionContexts(const ConstructionContextLayer *Layer,
719 Stmt *Child);
720
721 // Scan all arguments of a call expression for a construction context.
722 // These sorts of call expressions don't have a common superclass,
723 // hence strict duck-typing.
724 template <typename CallLikeExpr,
725 typename = std::enable_if_t<
726 std::is_base_of<CallExpr, CallLikeExpr>::value ||
727 std::is_base_of<CXXConstructExpr, CallLikeExpr>::value ||
728 std::is_base_of<ObjCMessageExpr, CallLikeExpr>::value>>
findConstructionContextsForArguments(CallLikeExpr * E)729 void findConstructionContextsForArguments(CallLikeExpr *E) {
730 for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
731 Expr *Arg = E->getArg(i);
732 if (Arg->getType()->getAsCXXRecordDecl() && !Arg->isGLValue())
733 findConstructionContexts(
734 ConstructionContextLayer::create(cfg->getBumpVectorContext(),
735 ConstructionContextItem(E, i)),
736 Arg);
737 }
738 }
739
740 // Unset the construction context after consuming it. This is done immediately
741 // after adding the CFGConstructor or CFGCXXRecordTypedCall element, so
742 // there's no need to do this manually in every Visit... function.
743 void cleanupConstructionContext(Expr *E);
744
autoCreateBlock()745 void autoCreateBlock() { if (!Block) Block = createBlock(); }
746 CFGBlock *createBlock(bool add_successor = true);
747 CFGBlock *createNoReturnBlock();
748
addStmt(Stmt * S)749 CFGBlock *addStmt(Stmt *S) {
750 return Visit(S, AddStmtChoice::AlwaysAdd);
751 }
752
753 CFGBlock *addInitializer(CXXCtorInitializer *I);
754 void addLoopExit(const Stmt *LoopStmt);
755 void addAutomaticObjDtors(LocalScope::const_iterator B,
756 LocalScope::const_iterator E, Stmt *S);
757 void addLifetimeEnds(LocalScope::const_iterator B,
758 LocalScope::const_iterator E, Stmt *S);
759 void addAutomaticObjHandling(LocalScope::const_iterator B,
760 LocalScope::const_iterator E, Stmt *S);
761 void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
762 void addScopesEnd(LocalScope::const_iterator B, LocalScope::const_iterator E,
763 Stmt *S);
764
765 void getDeclsWithEndedScope(LocalScope::const_iterator B,
766 LocalScope::const_iterator E, Stmt *S);
767
768 // Local scopes creation.
769 LocalScope* createOrReuseLocalScope(LocalScope* Scope);
770
771 void addLocalScopeForStmt(Stmt *S);
772 LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS,
773 LocalScope* Scope = nullptr);
774 LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr);
775
776 void addLocalScopeAndDtors(Stmt *S);
777
retrieveAndCleanupConstructionContext(Expr * E)778 const ConstructionContext *retrieveAndCleanupConstructionContext(Expr *E) {
779 if (!BuildOpts.AddRichCXXConstructors)
780 return nullptr;
781
782 const ConstructionContextLayer *Layer = ConstructionContextMap.lookup(E);
783 if (!Layer)
784 return nullptr;
785
786 cleanupConstructionContext(E);
787 return ConstructionContext::createFromLayers(cfg->getBumpVectorContext(),
788 Layer);
789 }
790
791 // Interface to CFGBlock - adding CFGElements.
792
appendStmt(CFGBlock * B,const Stmt * S)793 void appendStmt(CFGBlock *B, const Stmt *S) {
794 if (alwaysAdd(S) && cachedEntry)
795 cachedEntry->second = B;
796
797 // All block-level expressions should have already been IgnoreParens()ed.
798 assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
799 B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
800 }
801
appendConstructor(CFGBlock * B,CXXConstructExpr * CE)802 void appendConstructor(CFGBlock *B, CXXConstructExpr *CE) {
803 if (const ConstructionContext *CC =
804 retrieveAndCleanupConstructionContext(CE)) {
805 B->appendConstructor(CE, CC, cfg->getBumpVectorContext());
806 return;
807 }
808
809 // No valid construction context found. Fall back to statement.
810 B->appendStmt(CE, cfg->getBumpVectorContext());
811 }
812
appendCall(CFGBlock * B,CallExpr * CE)813 void appendCall(CFGBlock *B, CallExpr *CE) {
814 if (alwaysAdd(CE) && cachedEntry)
815 cachedEntry->second = B;
816
817 if (const ConstructionContext *CC =
818 retrieveAndCleanupConstructionContext(CE)) {
819 B->appendCXXRecordTypedCall(CE, CC, cfg->getBumpVectorContext());
820 return;
821 }
822
823 // No valid construction context found. Fall back to statement.
824 B->appendStmt(CE, cfg->getBumpVectorContext());
825 }
826
appendInitializer(CFGBlock * B,CXXCtorInitializer * I)827 void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
828 B->appendInitializer(I, cfg->getBumpVectorContext());
829 }
830
appendNewAllocator(CFGBlock * B,CXXNewExpr * NE)831 void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) {
832 B->appendNewAllocator(NE, cfg->getBumpVectorContext());
833 }
834
appendBaseDtor(CFGBlock * B,const CXXBaseSpecifier * BS)835 void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
836 B->appendBaseDtor(BS, cfg->getBumpVectorContext());
837 }
838
appendMemberDtor(CFGBlock * B,FieldDecl * FD)839 void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
840 B->appendMemberDtor(FD, cfg->getBumpVectorContext());
841 }
842
appendObjCMessage(CFGBlock * B,ObjCMessageExpr * ME)843 void appendObjCMessage(CFGBlock *B, ObjCMessageExpr *ME) {
844 if (alwaysAdd(ME) && cachedEntry)
845 cachedEntry->second = B;
846
847 if (const ConstructionContext *CC =
848 retrieveAndCleanupConstructionContext(ME)) {
849 B->appendCXXRecordTypedCall(ME, CC, cfg->getBumpVectorContext());
850 return;
851 }
852
853 B->appendStmt(const_cast<ObjCMessageExpr *>(ME),
854 cfg->getBumpVectorContext());
855 }
856
appendTemporaryDtor(CFGBlock * B,CXXBindTemporaryExpr * E)857 void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
858 B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
859 }
860
appendAutomaticObjDtor(CFGBlock * B,VarDecl * VD,Stmt * S)861 void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
862 B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
863 }
864
appendLifetimeEnds(CFGBlock * B,VarDecl * VD,Stmt * S)865 void appendLifetimeEnds(CFGBlock *B, VarDecl *VD, Stmt *S) {
866 B->appendLifetimeEnds(VD, S, cfg->getBumpVectorContext());
867 }
868
appendLoopExit(CFGBlock * B,const Stmt * LoopStmt)869 void appendLoopExit(CFGBlock *B, const Stmt *LoopStmt) {
870 B->appendLoopExit(LoopStmt, cfg->getBumpVectorContext());
871 }
872
appendDeleteDtor(CFGBlock * B,CXXRecordDecl * RD,CXXDeleteExpr * DE)873 void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
874 B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
875 }
876
877 void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
878 LocalScope::const_iterator B, LocalScope::const_iterator E);
879
880 void prependAutomaticObjLifetimeWithTerminator(CFGBlock *Blk,
881 LocalScope::const_iterator B,
882 LocalScope::const_iterator E);
883
884 const VarDecl *
885 prependAutomaticObjScopeEndWithTerminator(CFGBlock *Blk,
886 LocalScope::const_iterator B,
887 LocalScope::const_iterator E);
888
addSuccessor(CFGBlock * B,CFGBlock * S,bool IsReachable=true)889 void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) {
890 B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable),
891 cfg->getBumpVectorContext());
892 }
893
894 /// Add a reachable successor to a block, with the alternate variant that is
895 /// unreachable.
addSuccessor(CFGBlock * B,CFGBlock * ReachableBlock,CFGBlock * AltBlock)896 void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) {
897 B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock),
898 cfg->getBumpVectorContext());
899 }
900
appendScopeBegin(CFGBlock * B,const VarDecl * VD,const Stmt * S)901 void appendScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
902 if (BuildOpts.AddScopes)
903 B->appendScopeBegin(VD, S, cfg->getBumpVectorContext());
904 }
905
prependScopeBegin(CFGBlock * B,const VarDecl * VD,const Stmt * S)906 void prependScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
907 if (BuildOpts.AddScopes)
908 B->prependScopeBegin(VD, S, cfg->getBumpVectorContext());
909 }
910
appendScopeEnd(CFGBlock * B,const VarDecl * VD,const Stmt * S)911 void appendScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
912 if (BuildOpts.AddScopes)
913 B->appendScopeEnd(VD, S, cfg->getBumpVectorContext());
914 }
915
prependScopeEnd(CFGBlock * B,const VarDecl * VD,const Stmt * S)916 void prependScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
917 if (BuildOpts.AddScopes)
918 B->prependScopeEnd(VD, S, cfg->getBumpVectorContext());
919 }
920
921 /// Find a relational comparison with an expression evaluating to a
922 /// boolean and a constant other than 0 and 1.
923 /// e.g. if ((x < y) == 10)
checkIncorrectRelationalOperator(const BinaryOperator * B)924 TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) {
925 const Expr *LHSExpr = B->getLHS()->IgnoreParens();
926 const Expr *RHSExpr = B->getRHS()->IgnoreParens();
927
928 const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
929 const Expr *BoolExpr = RHSExpr;
930 bool IntFirst = true;
931 if (!IntLiteral) {
932 IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
933 BoolExpr = LHSExpr;
934 IntFirst = false;
935 }
936
937 if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue())
938 return TryResult();
939
940 llvm::APInt IntValue = IntLiteral->getValue();
941 if ((IntValue == 1) || (IntValue == 0))
942 return TryResult();
943
944 bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() ||
945 !IntValue.isNegative();
946
947 BinaryOperatorKind Bok = B->getOpcode();
948 if (Bok == BO_GT || Bok == BO_GE) {
949 // Always true for 10 > bool and bool > -1
950 // Always false for -1 > bool and bool > 10
951 return TryResult(IntFirst == IntLarger);
952 } else {
953 // Always true for -1 < bool and bool < 10
954 // Always false for 10 < bool and bool < -1
955 return TryResult(IntFirst != IntLarger);
956 }
957 }
958
959 /// Find an incorrect equality comparison. Either with an expression
960 /// evaluating to a boolean and a constant other than 0 and 1.
961 /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
962 /// true/false e.q. (x & 8) == 4.
checkIncorrectEqualityOperator(const BinaryOperator * B)963 TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) {
964 const Expr *LHSExpr = B->getLHS()->IgnoreParens();
965 const Expr *RHSExpr = B->getRHS()->IgnoreParens();
966
967 const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
968 const Expr *BoolExpr = RHSExpr;
969
970 if (!IntLiteral) {
971 IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
972 BoolExpr = LHSExpr;
973 }
974
975 if (!IntLiteral)
976 return TryResult();
977
978 const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr);
979 if (BitOp && (BitOp->getOpcode() == BO_And ||
980 BitOp->getOpcode() == BO_Or)) {
981 const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens();
982 const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens();
983
984 const IntegerLiteral *IntLiteral2 = dyn_cast<IntegerLiteral>(LHSExpr2);
985
986 if (!IntLiteral2)
987 IntLiteral2 = dyn_cast<IntegerLiteral>(RHSExpr2);
988
989 if (!IntLiteral2)
990 return TryResult();
991
992 llvm::APInt L1 = IntLiteral->getValue();
993 llvm::APInt L2 = IntLiteral2->getValue();
994 if ((BitOp->getOpcode() == BO_And && (L2 & L1) != L1) ||
995 (BitOp->getOpcode() == BO_Or && (L2 | L1) != L1)) {
996 if (BuildOpts.Observer)
997 BuildOpts.Observer->compareBitwiseEquality(B,
998 B->getOpcode() != BO_EQ);
999 TryResult(B->getOpcode() != BO_EQ);
1000 }
1001 } else if (BoolExpr->isKnownToHaveBooleanValue()) {
1002 llvm::APInt IntValue = IntLiteral->getValue();
1003 if ((IntValue == 1) || (IntValue == 0)) {
1004 return TryResult();
1005 }
1006 return TryResult(B->getOpcode() != BO_EQ);
1007 }
1008
1009 return TryResult();
1010 }
1011
analyzeLogicOperatorCondition(BinaryOperatorKind Relation,const llvm::APSInt & Value1,const llvm::APSInt & Value2)1012 TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation,
1013 const llvm::APSInt &Value1,
1014 const llvm::APSInt &Value2) {
1015 assert(Value1.isSigned() == Value2.isSigned());
1016 switch (Relation) {
1017 default:
1018 return TryResult();
1019 case BO_EQ:
1020 return TryResult(Value1 == Value2);
1021 case BO_NE:
1022 return TryResult(Value1 != Value2);
1023 case BO_LT:
1024 return TryResult(Value1 < Value2);
1025 case BO_LE:
1026 return TryResult(Value1 <= Value2);
1027 case BO_GT:
1028 return TryResult(Value1 > Value2);
1029 case BO_GE:
1030 return TryResult(Value1 >= Value2);
1031 }
1032 }
1033
1034 /// Find a pair of comparison expressions with or without parentheses
1035 /// with a shared variable and constants and a logical operator between them
1036 /// that always evaluates to either true or false.
1037 /// e.g. if (x != 3 || x != 4)
checkIncorrectLogicOperator(const BinaryOperator * B)1038 TryResult checkIncorrectLogicOperator(const BinaryOperator *B) {
1039 assert(B->isLogicalOp());
1040 const BinaryOperator *LHS =
1041 dyn_cast<BinaryOperator>(B->getLHS()->IgnoreParens());
1042 const BinaryOperator *RHS =
1043 dyn_cast<BinaryOperator>(B->getRHS()->IgnoreParens());
1044 if (!LHS || !RHS)
1045 return {};
1046
1047 if (!LHS->isComparisonOp() || !RHS->isComparisonOp())
1048 return {};
1049
1050 const Expr *DeclExpr1;
1051 const Expr *NumExpr1;
1052 BinaryOperatorKind BO1;
1053 std::tie(DeclExpr1, BO1, NumExpr1) = tryNormalizeBinaryOperator(LHS);
1054
1055 if (!DeclExpr1 || !NumExpr1)
1056 return {};
1057
1058 const Expr *DeclExpr2;
1059 const Expr *NumExpr2;
1060 BinaryOperatorKind BO2;
1061 std::tie(DeclExpr2, BO2, NumExpr2) = tryNormalizeBinaryOperator(RHS);
1062
1063 if (!DeclExpr2 || !NumExpr2)
1064 return {};
1065
1066 // Check that it is the same variable on both sides.
1067 if (!Expr::isSameComparisonOperand(DeclExpr1, DeclExpr2))
1068 return {};
1069
1070 // Make sure the user's intent is clear (e.g. they're comparing against two
1071 // int literals, or two things from the same enum)
1072 if (!areExprTypesCompatible(NumExpr1, NumExpr2))
1073 return {};
1074
1075 Expr::EvalResult L1Result, L2Result;
1076 if (!NumExpr1->EvaluateAsInt(L1Result, *Context) ||
1077 !NumExpr2->EvaluateAsInt(L2Result, *Context))
1078 return {};
1079
1080 llvm::APSInt L1 = L1Result.Val.getInt();
1081 llvm::APSInt L2 = L2Result.Val.getInt();
1082
1083 // Can't compare signed with unsigned or with different bit width.
1084 if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth())
1085 return {};
1086
1087 // Values that will be used to determine if result of logical
1088 // operator is always true/false
1089 const llvm::APSInt Values[] = {
1090 // Value less than both Value1 and Value2
1091 llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()),
1092 // L1
1093 L1,
1094 // Value between Value1 and Value2
1095 ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1),
1096 L1.isUnsigned()),
1097 // L2
1098 L2,
1099 // Value greater than both Value1 and Value2
1100 llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()),
1101 };
1102
1103 // Check whether expression is always true/false by evaluating the following
1104 // * variable x is less than the smallest literal.
1105 // * variable x is equal to the smallest literal.
1106 // * Variable x is between smallest and largest literal.
1107 // * Variable x is equal to the largest literal.
1108 // * Variable x is greater than largest literal.
1109 bool AlwaysTrue = true, AlwaysFalse = true;
1110 // Track value of both subexpressions. If either side is always
1111 // true/false, another warning should have already been emitted.
1112 bool LHSAlwaysTrue = true, LHSAlwaysFalse = true;
1113 bool RHSAlwaysTrue = true, RHSAlwaysFalse = true;
1114 for (const llvm::APSInt &Value : Values) {
1115 TryResult Res1, Res2;
1116 Res1 = analyzeLogicOperatorCondition(BO1, Value, L1);
1117 Res2 = analyzeLogicOperatorCondition(BO2, Value, L2);
1118
1119 if (!Res1.isKnown() || !Res2.isKnown())
1120 return {};
1121
1122 if (B->getOpcode() == BO_LAnd) {
1123 AlwaysTrue &= (Res1.isTrue() && Res2.isTrue());
1124 AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue());
1125 } else {
1126 AlwaysTrue &= (Res1.isTrue() || Res2.isTrue());
1127 AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue());
1128 }
1129
1130 LHSAlwaysTrue &= Res1.isTrue();
1131 LHSAlwaysFalse &= Res1.isFalse();
1132 RHSAlwaysTrue &= Res2.isTrue();
1133 RHSAlwaysFalse &= Res2.isFalse();
1134 }
1135
1136 if (AlwaysTrue || AlwaysFalse) {
1137 if (!LHSAlwaysTrue && !LHSAlwaysFalse && !RHSAlwaysTrue &&
1138 !RHSAlwaysFalse && BuildOpts.Observer)
1139 BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue);
1140 return TryResult(AlwaysTrue);
1141 }
1142 return {};
1143 }
1144
1145 /// A bitwise-or with a non-zero constant always evaluates to true.
checkIncorrectBitwiseOrOperator(const BinaryOperator * B)1146 TryResult checkIncorrectBitwiseOrOperator(const BinaryOperator *B) {
1147 const Expr *LHSConstant =
1148 tryTransformToIntOrEnumConstant(B->getLHS()->IgnoreParenImpCasts());
1149 const Expr *RHSConstant =
1150 tryTransformToIntOrEnumConstant(B->getRHS()->IgnoreParenImpCasts());
1151
1152 if ((LHSConstant && RHSConstant) || (!LHSConstant && !RHSConstant))
1153 return {};
1154
1155 const Expr *Constant = LHSConstant ? LHSConstant : RHSConstant;
1156
1157 Expr::EvalResult Result;
1158 if (!Constant->EvaluateAsInt(Result, *Context))
1159 return {};
1160
1161 if (Result.Val.getInt() == 0)
1162 return {};
1163
1164 if (BuildOpts.Observer)
1165 BuildOpts.Observer->compareBitwiseOr(B);
1166
1167 return TryResult(true);
1168 }
1169
1170 /// Try and evaluate an expression to an integer constant.
tryEvaluate(Expr * S,Expr::EvalResult & outResult)1171 bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
1172 if (!BuildOpts.PruneTriviallyFalseEdges)
1173 return false;
1174 return !S->isTypeDependent() &&
1175 !S->isValueDependent() &&
1176 S->EvaluateAsRValue(outResult, *Context);
1177 }
1178
1179 /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
1180 /// if we can evaluate to a known value, otherwise return -1.
tryEvaluateBool(Expr * S)1181 TryResult tryEvaluateBool(Expr *S) {
1182 if (!BuildOpts.PruneTriviallyFalseEdges ||
1183 S->isTypeDependent() || S->isValueDependent())
1184 return {};
1185
1186 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
1187 if (Bop->isLogicalOp() || Bop->isEqualityOp()) {
1188 // Check the cache first.
1189 CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
1190 if (I != CachedBoolEvals.end())
1191 return I->second; // already in map;
1192
1193 // Retrieve result at first, or the map might be updated.
1194 TryResult Result = evaluateAsBooleanConditionNoCache(S);
1195 CachedBoolEvals[S] = Result; // update or insert
1196 return Result;
1197 }
1198 else {
1199 switch (Bop->getOpcode()) {
1200 default: break;
1201 // For 'x & 0' and 'x * 0', we can determine that
1202 // the value is always false.
1203 case BO_Mul:
1204 case BO_And: {
1205 // If either operand is zero, we know the value
1206 // must be false.
1207 Expr::EvalResult LHSResult;
1208 if (Bop->getLHS()->EvaluateAsInt(LHSResult, *Context)) {
1209 llvm::APSInt IntVal = LHSResult.Val.getInt();
1210 if (!IntVal.getBoolValue()) {
1211 return TryResult(false);
1212 }
1213 }
1214 Expr::EvalResult RHSResult;
1215 if (Bop->getRHS()->EvaluateAsInt(RHSResult, *Context)) {
1216 llvm::APSInt IntVal = RHSResult.Val.getInt();
1217 if (!IntVal.getBoolValue()) {
1218 return TryResult(false);
1219 }
1220 }
1221 }
1222 break;
1223 }
1224 }
1225 }
1226
1227 return evaluateAsBooleanConditionNoCache(S);
1228 }
1229
1230 /// Evaluate as boolean \param E without using the cache.
evaluateAsBooleanConditionNoCache(Expr * E)1231 TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
1232 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
1233 if (Bop->isLogicalOp()) {
1234 TryResult LHS = tryEvaluateBool(Bop->getLHS());
1235 if (LHS.isKnown()) {
1236 // We were able to evaluate the LHS, see if we can get away with not
1237 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
1238 if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
1239 return LHS.isTrue();
1240
1241 TryResult RHS = tryEvaluateBool(Bop->getRHS());
1242 if (RHS.isKnown()) {
1243 if (Bop->getOpcode() == BO_LOr)
1244 return LHS.isTrue() || RHS.isTrue();
1245 else
1246 return LHS.isTrue() && RHS.isTrue();
1247 }
1248 } else {
1249 TryResult RHS = tryEvaluateBool(Bop->getRHS());
1250 if (RHS.isKnown()) {
1251 // We can't evaluate the LHS; however, sometimes the result
1252 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
1253 if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
1254 return RHS.isTrue();
1255 } else {
1256 TryResult BopRes = checkIncorrectLogicOperator(Bop);
1257 if (BopRes.isKnown())
1258 return BopRes.isTrue();
1259 }
1260 }
1261
1262 return {};
1263 } else if (Bop->isEqualityOp()) {
1264 TryResult BopRes = checkIncorrectEqualityOperator(Bop);
1265 if (BopRes.isKnown())
1266 return BopRes.isTrue();
1267 } else if (Bop->isRelationalOp()) {
1268 TryResult BopRes = checkIncorrectRelationalOperator(Bop);
1269 if (BopRes.isKnown())
1270 return BopRes.isTrue();
1271 } else if (Bop->getOpcode() == BO_Or) {
1272 TryResult BopRes = checkIncorrectBitwiseOrOperator(Bop);
1273 if (BopRes.isKnown())
1274 return BopRes.isTrue();
1275 }
1276 }
1277
1278 bool Result;
1279 if (E->EvaluateAsBooleanCondition(Result, *Context))
1280 return Result;
1281
1282 return {};
1283 }
1284
1285 bool hasTrivialDestructor(VarDecl *VD);
1286 };
1287
1288 } // namespace
1289
alwaysAdd(CFGBuilder & builder,const Stmt * stmt) const1290 inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
1291 const Stmt *stmt) const {
1292 return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
1293 }
1294
alwaysAdd(const Stmt * stmt)1295 bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
1296 bool shouldAdd = BuildOpts.alwaysAdd(stmt);
1297
1298 if (!BuildOpts.forcedBlkExprs)
1299 return shouldAdd;
1300
1301 if (lastLookup == stmt) {
1302 if (cachedEntry) {
1303 assert(cachedEntry->first == stmt);
1304 return true;
1305 }
1306 return shouldAdd;
1307 }
1308
1309 lastLookup = stmt;
1310
1311 // Perform the lookup!
1312 CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
1313
1314 if (!fb) {
1315 // No need to update 'cachedEntry', since it will always be null.
1316 assert(!cachedEntry);
1317 return shouldAdd;
1318 }
1319
1320 CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
1321 if (itr == fb->end()) {
1322 cachedEntry = nullptr;
1323 return shouldAdd;
1324 }
1325
1326 cachedEntry = &*itr;
1327 return true;
1328 }
1329
1330 // FIXME: Add support for dependent-sized array types in C++?
1331 // Does it even make sense to build a CFG for an uninstantiated template?
FindVA(const Type * t)1332 static const VariableArrayType *FindVA(const Type *t) {
1333 while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
1334 if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
1335 if (vat->getSizeExpr())
1336 return vat;
1337
1338 t = vt->getElementType().getTypePtr();
1339 }
1340
1341 return nullptr;
1342 }
1343
consumeConstructionContext(const ConstructionContextLayer * Layer,Expr * E)1344 void CFGBuilder::consumeConstructionContext(
1345 const ConstructionContextLayer *Layer, Expr *E) {
1346 assert((isa<CXXConstructExpr>(E) || isa<CallExpr>(E) ||
1347 isa<ObjCMessageExpr>(E)) && "Expression cannot construct an object!");
1348 if (const ConstructionContextLayer *PreviouslyStoredLayer =
1349 ConstructionContextMap.lookup(E)) {
1350 (void)PreviouslyStoredLayer;
1351 // We might have visited this child when we were finding construction
1352 // contexts within its parents.
1353 assert(PreviouslyStoredLayer->isStrictlyMoreSpecificThan(Layer) &&
1354 "Already within a different construction context!");
1355 } else {
1356 ConstructionContextMap[E] = Layer;
1357 }
1358 }
1359
findConstructionContexts(const ConstructionContextLayer * Layer,Stmt * Child)1360 void CFGBuilder::findConstructionContexts(
1361 const ConstructionContextLayer *Layer, Stmt *Child) {
1362 if (!BuildOpts.AddRichCXXConstructors)
1363 return;
1364
1365 if (!Child)
1366 return;
1367
1368 auto withExtraLayer = [this, Layer](const ConstructionContextItem &Item) {
1369 return ConstructionContextLayer::create(cfg->getBumpVectorContext(), Item,
1370 Layer);
1371 };
1372
1373 switch(Child->getStmtClass()) {
1374 case Stmt::CXXConstructExprClass:
1375 case Stmt::CXXTemporaryObjectExprClass: {
1376 // Support pre-C++17 copy elision AST.
1377 auto *CE = cast<CXXConstructExpr>(Child);
1378 if (BuildOpts.MarkElidedCXXConstructors && CE->isElidable()) {
1379 findConstructionContexts(withExtraLayer(CE), CE->getArg(0));
1380 }
1381
1382 consumeConstructionContext(Layer, CE);
1383 break;
1384 }
1385 // FIXME: This, like the main visit, doesn't support CUDAKernelCallExpr.
1386 // FIXME: An isa<> would look much better but this whole switch is a
1387 // workaround for an internal compiler error in MSVC 2015 (see r326021).
1388 case Stmt::CallExprClass:
1389 case Stmt::CXXMemberCallExprClass:
1390 case Stmt::CXXOperatorCallExprClass:
1391 case Stmt::UserDefinedLiteralClass:
1392 case Stmt::ObjCMessageExprClass: {
1393 auto *E = cast<Expr>(Child);
1394 if (CFGCXXRecordTypedCall::isCXXRecordTypedCall(E))
1395 consumeConstructionContext(Layer, E);
1396 break;
1397 }
1398 case Stmt::ExprWithCleanupsClass: {
1399 auto *Cleanups = cast<ExprWithCleanups>(Child);
1400 findConstructionContexts(Layer, Cleanups->getSubExpr());
1401 break;
1402 }
1403 case Stmt::CXXFunctionalCastExprClass: {
1404 auto *Cast = cast<CXXFunctionalCastExpr>(Child);
1405 findConstructionContexts(Layer, Cast->getSubExpr());
1406 break;
1407 }
1408 case Stmt::ImplicitCastExprClass: {
1409 auto *Cast = cast<ImplicitCastExpr>(Child);
1410 // Should we support other implicit cast kinds?
1411 switch (Cast->getCastKind()) {
1412 case CK_NoOp:
1413 case CK_ConstructorConversion:
1414 findConstructionContexts(Layer, Cast->getSubExpr());
1415 break;
1416 default:
1417 break;
1418 }
1419 break;
1420 }
1421 case Stmt::CXXBindTemporaryExprClass: {
1422 auto *BTE = cast<CXXBindTemporaryExpr>(Child);
1423 findConstructionContexts(withExtraLayer(BTE), BTE->getSubExpr());
1424 break;
1425 }
1426 case Stmt::MaterializeTemporaryExprClass: {
1427 // Normally we don't want to search in MaterializeTemporaryExpr because
1428 // it indicates the beginning of a temporary object construction context,
1429 // so it shouldn't be found in the middle. However, if it is the beginning
1430 // of an elidable copy or move construction context, we need to include it.
1431 if (Layer->getItem().getKind() ==
1432 ConstructionContextItem::ElidableConstructorKind) {
1433 auto *MTE = cast<MaterializeTemporaryExpr>(Child);
1434 findConstructionContexts(withExtraLayer(MTE), MTE->getSubExpr());
1435 }
1436 break;
1437 }
1438 case Stmt::ConditionalOperatorClass: {
1439 auto *CO = cast<ConditionalOperator>(Child);
1440 if (Layer->getItem().getKind() !=
1441 ConstructionContextItem::MaterializationKind) {
1442 // If the object returned by the conditional operator is not going to be a
1443 // temporary object that needs to be immediately materialized, then
1444 // it must be C++17 with its mandatory copy elision. Do not yet promise
1445 // to support this case.
1446 assert(!CO->getType()->getAsCXXRecordDecl() || CO->isGLValue() ||
1447 Context->getLangOpts().CPlusPlus17);
1448 break;
1449 }
1450 findConstructionContexts(Layer, CO->getLHS());
1451 findConstructionContexts(Layer, CO->getRHS());
1452 break;
1453 }
1454 case Stmt::InitListExprClass: {
1455 auto *ILE = cast<InitListExpr>(Child);
1456 if (ILE->isTransparent()) {
1457 findConstructionContexts(Layer, ILE->getInit(0));
1458 break;
1459 }
1460 // TODO: Handle other cases. For now, fail to find construction contexts.
1461 break;
1462 }
1463 case Stmt::ParenExprClass: {
1464 // If expression is placed into parenthesis we should propagate the parent
1465 // construction context to subexpressions.
1466 auto *PE = cast<ParenExpr>(Child);
1467 findConstructionContexts(Layer, PE->getSubExpr());
1468 break;
1469 }
1470 default:
1471 break;
1472 }
1473 }
1474
cleanupConstructionContext(Expr * E)1475 void CFGBuilder::cleanupConstructionContext(Expr *E) {
1476 assert(BuildOpts.AddRichCXXConstructors &&
1477 "We should not be managing construction contexts!");
1478 assert(ConstructionContextMap.count(E) &&
1479 "Cannot exit construction context without the context!");
1480 ConstructionContextMap.erase(E);
1481 }
1482
1483
1484 /// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an
1485 /// arbitrary statement. Examples include a single expression or a function
1486 /// body (compound statement). The ownership of the returned CFG is
1487 /// transferred to the caller. If CFG construction fails, this method returns
1488 /// NULL.
buildCFG(const Decl * D,Stmt * Statement)1489 std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
1490 assert(cfg.get());
1491 if (!Statement)
1492 return nullptr;
1493
1494 // Create an empty block that will serve as the exit block for the CFG. Since
1495 // this is the first block added to the CFG, it will be implicitly registered
1496 // as the exit block.
1497 Succ = createBlock();
1498 assert(Succ == &cfg->getExit());
1499 Block = nullptr; // the EXIT block is empty. Create all other blocks lazily.
1500
1501 assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) &&
1502 "AddImplicitDtors and AddLifetime cannot be used at the same time");
1503
1504 if (BuildOpts.AddImplicitDtors)
1505 if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
1506 addImplicitDtorsForDestructor(DD);
1507
1508 // Visit the statements and create the CFG.
1509 CFGBlock *B = addStmt(Statement);
1510
1511 if (badCFG)
1512 return nullptr;
1513
1514 // For C++ constructor add initializers to CFG. Constructors of virtual bases
1515 // are ignored unless the object is of the most derived class.
1516 // class VBase { VBase() = default; VBase(int) {} };
1517 // class A : virtual public VBase { A() : VBase(0) {} };
1518 // class B : public A {};
1519 // B b; // Constructor calls in order: VBase(), A(), B().
1520 // // VBase(0) is ignored because A isn't the most derived class.
1521 // This may result in the virtual base(s) being already initialized at this
1522 // point, in which case we should jump right onto non-virtual bases and
1523 // fields. To handle this, make a CFG branch. We only need to add one such
1524 // branch per constructor, since the Standard states that all virtual bases
1525 // shall be initialized before non-virtual bases and direct data members.
1526 if (const auto *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
1527 CFGBlock *VBaseSucc = nullptr;
1528 for (auto *I : llvm::reverse(CD->inits())) {
1529 if (BuildOpts.AddVirtualBaseBranches && !VBaseSucc &&
1530 I->isBaseInitializer() && I->isBaseVirtual()) {
1531 // We've reached the first virtual base init while iterating in reverse
1532 // order. Make a new block for virtual base initializers so that we
1533 // could skip them.
1534 VBaseSucc = Succ = B ? B : &cfg->getExit();
1535 Block = createBlock();
1536 }
1537 B = addInitializer(I);
1538 if (badCFG)
1539 return nullptr;
1540 }
1541 if (VBaseSucc) {
1542 // Make a branch block for potentially skipping virtual base initializers.
1543 Succ = VBaseSucc;
1544 B = createBlock();
1545 B->setTerminator(
1546 CFGTerminator(nullptr, CFGTerminator::VirtualBaseBranch));
1547 addSuccessor(B, Block, true);
1548 }
1549 }
1550
1551 if (B)
1552 Succ = B;
1553
1554 // Backpatch the gotos whose label -> block mappings we didn't know when we
1555 // encountered them.
1556 for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
1557 E = BackpatchBlocks.end(); I != E; ++I ) {
1558
1559 CFGBlock *B = I->block;
1560 if (auto *G = dyn_cast<GotoStmt>(B->getTerminator())) {
1561 LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
1562 // If there is no target for the goto, then we are looking at an
1563 // incomplete AST. Handle this by not registering a successor.
1564 if (LI == LabelMap.end())
1565 continue;
1566 JumpTarget JT = LI->second;
1567 prependAutomaticObjLifetimeWithTerminator(B, I->scopePosition,
1568 JT.scopePosition);
1569 prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
1570 JT.scopePosition);
1571 const VarDecl *VD = prependAutomaticObjScopeEndWithTerminator(
1572 B, I->scopePosition, JT.scopePosition);
1573 appendScopeBegin(JT.block, VD, G);
1574 addSuccessor(B, JT.block);
1575 };
1576 if (auto *G = dyn_cast<GCCAsmStmt>(B->getTerminator())) {
1577 CFGBlock *Successor = (I+1)->block;
1578 for (auto *L : G->labels()) {
1579 LabelMapTy::iterator LI = LabelMap.find(L->getLabel());
1580 // If there is no target for the goto, then we are looking at an
1581 // incomplete AST. Handle this by not registering a successor.
1582 if (LI == LabelMap.end())
1583 continue;
1584 JumpTarget JT = LI->second;
1585 // Successor has been added, so skip it.
1586 if (JT.block == Successor)
1587 continue;
1588 addSuccessor(B, JT.block);
1589 }
1590 I++;
1591 }
1592 }
1593
1594 // Add successors to the Indirect Goto Dispatch block (if we have one).
1595 if (CFGBlock *B = cfg->getIndirectGotoBlock())
1596 for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
1597 E = AddressTakenLabels.end(); I != E; ++I ) {
1598 // Lookup the target block.
1599 LabelMapTy::iterator LI = LabelMap.find(*I);
1600
1601 // If there is no target block that contains label, then we are looking
1602 // at an incomplete AST. Handle this by not registering a successor.
1603 if (LI == LabelMap.end()) continue;
1604
1605 addSuccessor(B, LI->second.block);
1606 }
1607
1608 // Create an empty entry block that has no predecessors.
1609 cfg->setEntry(createBlock());
1610
1611 if (BuildOpts.AddRichCXXConstructors)
1612 assert(ConstructionContextMap.empty() &&
1613 "Not all construction contexts were cleaned up!");
1614
1615 return std::move(cfg);
1616 }
1617
1618 /// createBlock - Used to lazily create blocks that are connected
1619 /// to the current (global) succcessor.
createBlock(bool add_successor)1620 CFGBlock *CFGBuilder::createBlock(bool add_successor) {
1621 CFGBlock *B = cfg->createBlock();
1622 if (add_successor && Succ)
1623 addSuccessor(B, Succ);
1624 return B;
1625 }
1626
1627 /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
1628 /// CFG. It is *not* connected to the current (global) successor, and instead
1629 /// directly tied to the exit block in order to be reachable.
createNoReturnBlock()1630 CFGBlock *CFGBuilder::createNoReturnBlock() {
1631 CFGBlock *B = createBlock(false);
1632 B->setHasNoReturnElement();
1633 addSuccessor(B, &cfg->getExit(), Succ);
1634 return B;
1635 }
1636
1637 /// addInitializer - Add C++ base or member initializer element to CFG.
addInitializer(CXXCtorInitializer * I)1638 CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
1639 if (!BuildOpts.AddInitializers)
1640 return Block;
1641
1642 bool HasTemporaries = false;
1643
1644 // Destructors of temporaries in initialization expression should be called
1645 // after initialization finishes.
1646 Expr *Init = I->getInit();
1647 if (Init) {
1648 HasTemporaries = isa<ExprWithCleanups>(Init);
1649
1650 if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1651 // Generate destructors for temporaries in initialization expression.
1652 TempDtorContext Context;
1653 VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1654 /*ExternallyDestructed=*/false, Context);
1655 }
1656 }
1657
1658 autoCreateBlock();
1659 appendInitializer(Block, I);
1660
1661 if (Init) {
1662 // If the initializer is an ArrayInitLoopExpr, we want to extract the
1663 // initializer, that's used for each element.
1664 const auto *AILE = dyn_cast_or_null<ArrayInitLoopExpr>(Init);
1665
1666 findConstructionContexts(
1667 ConstructionContextLayer::create(cfg->getBumpVectorContext(), I),
1668 AILE ? AILE->getSubExpr() : Init);
1669
1670 if (HasTemporaries) {
1671 // For expression with temporaries go directly to subexpression to omit
1672 // generating destructors for the second time.
1673 return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1674 }
1675 if (BuildOpts.AddCXXDefaultInitExprInCtors) {
1676 if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Init)) {
1677 // In general, appending the expression wrapped by a CXXDefaultInitExpr
1678 // may cause the same Expr to appear more than once in the CFG. Doing it
1679 // here is safe because there's only one initializer per field.
1680 autoCreateBlock();
1681 appendStmt(Block, Default);
1682 if (Stmt *Child = Default->getExpr())
1683 if (CFGBlock *R = Visit(Child))
1684 Block = R;
1685 return Block;
1686 }
1687 }
1688 return Visit(Init);
1689 }
1690
1691 return Block;
1692 }
1693
1694 /// Retrieve the type of the temporary object whose lifetime was
1695 /// extended by a local reference with the given initializer.
getReferenceInitTemporaryType(const Expr * Init,bool * FoundMTE=nullptr)1696 static QualType getReferenceInitTemporaryType(const Expr *Init,
1697 bool *FoundMTE = nullptr) {
1698 while (true) {
1699 // Skip parentheses.
1700 Init = Init->IgnoreParens();
1701
1702 // Skip through cleanups.
1703 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
1704 Init = EWC->getSubExpr();
1705 continue;
1706 }
1707
1708 // Skip through the temporary-materialization expression.
1709 if (const MaterializeTemporaryExpr *MTE
1710 = dyn_cast<MaterializeTemporaryExpr>(Init)) {
1711 Init = MTE->getSubExpr();
1712 if (FoundMTE)
1713 *FoundMTE = true;
1714 continue;
1715 }
1716
1717 // Skip sub-object accesses into rvalues.
1718 SmallVector<const Expr *, 2> CommaLHSs;
1719 SmallVector<SubobjectAdjustment, 2> Adjustments;
1720 const Expr *SkippedInit =
1721 Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
1722 if (SkippedInit != Init) {
1723 Init = SkippedInit;
1724 continue;
1725 }
1726
1727 break;
1728 }
1729
1730 return Init->getType();
1731 }
1732
1733 // TODO: Support adding LoopExit element to the CFG in case where the loop is
1734 // ended by ReturnStmt, GotoStmt or ThrowExpr.
addLoopExit(const Stmt * LoopStmt)1735 void CFGBuilder::addLoopExit(const Stmt *LoopStmt){
1736 if(!BuildOpts.AddLoopExit)
1737 return;
1738 autoCreateBlock();
1739 appendLoopExit(Block, LoopStmt);
1740 }
1741
getDeclsWithEndedScope(LocalScope::const_iterator B,LocalScope::const_iterator E,Stmt * S)1742 void CFGBuilder::getDeclsWithEndedScope(LocalScope::const_iterator B,
1743 LocalScope::const_iterator E, Stmt *S) {
1744 if (!BuildOpts.AddScopes)
1745 return;
1746
1747 if (B == E)
1748 return;
1749
1750 // To go from B to E, one first goes up the scopes from B to P
1751 // then sideways in one scope from P to P' and then down
1752 // the scopes from P' to E.
1753 // The lifetime of all objects between B and P end.
1754 LocalScope::const_iterator P = B.shared_parent(E);
1755 int Dist = B.distance(P);
1756 if (Dist <= 0)
1757 return;
1758
1759 for (LocalScope::const_iterator I = B; I != P; ++I)
1760 if (I.pointsToFirstDeclaredVar())
1761 DeclsWithEndedScope.insert(*I);
1762 }
1763
addAutomaticObjHandling(LocalScope::const_iterator B,LocalScope::const_iterator E,Stmt * S)1764 void CFGBuilder::addAutomaticObjHandling(LocalScope::const_iterator B,
1765 LocalScope::const_iterator E,
1766 Stmt *S) {
1767 getDeclsWithEndedScope(B, E, S);
1768 if (BuildOpts.AddScopes)
1769 addScopesEnd(B, E, S);
1770 if (BuildOpts.AddImplicitDtors)
1771 addAutomaticObjDtors(B, E, S);
1772 if (BuildOpts.AddLifetime)
1773 addLifetimeEnds(B, E, S);
1774 }
1775
1776 /// Add to current block automatic objects that leave the scope.
addLifetimeEnds(LocalScope::const_iterator B,LocalScope::const_iterator E,Stmt * S)1777 void CFGBuilder::addLifetimeEnds(LocalScope::const_iterator B,
1778 LocalScope::const_iterator E, Stmt *S) {
1779 if (!BuildOpts.AddLifetime)
1780 return;
1781
1782 if (B == E)
1783 return;
1784
1785 // To go from B to E, one first goes up the scopes from B to P
1786 // then sideways in one scope from P to P' and then down
1787 // the scopes from P' to E.
1788 // The lifetime of all objects between B and P end.
1789 LocalScope::const_iterator P = B.shared_parent(E);
1790 int dist = B.distance(P);
1791 if (dist <= 0)
1792 return;
1793
1794 // We need to perform the scope leaving in reverse order
1795 SmallVector<VarDecl *, 10> DeclsTrivial;
1796 SmallVector<VarDecl *, 10> DeclsNonTrivial;
1797 DeclsTrivial.reserve(dist);
1798 DeclsNonTrivial.reserve(dist);
1799
1800 for (LocalScope::const_iterator I = B; I != P; ++I)
1801 if (hasTrivialDestructor(*I))
1802 DeclsTrivial.push_back(*I);
1803 else
1804 DeclsNonTrivial.push_back(*I);
1805
1806 autoCreateBlock();
1807 // object with trivial destructor end their lifetime last (when storage
1808 // duration ends)
1809 for (VarDecl *VD : llvm::reverse(DeclsTrivial))
1810 appendLifetimeEnds(Block, VD, S);
1811
1812 for (VarDecl *VD : llvm::reverse(DeclsNonTrivial))
1813 appendLifetimeEnds(Block, VD, S);
1814 }
1815
1816 /// Add to current block markers for ending scopes.
addScopesEnd(LocalScope::const_iterator B,LocalScope::const_iterator E,Stmt * S)1817 void CFGBuilder::addScopesEnd(LocalScope::const_iterator B,
1818 LocalScope::const_iterator E, Stmt *S) {
1819 // If implicit destructors are enabled, we'll add scope ends in
1820 // addAutomaticObjDtors.
1821 if (BuildOpts.AddImplicitDtors)
1822 return;
1823
1824 autoCreateBlock();
1825
1826 for (VarDecl *VD : llvm::reverse(DeclsWithEndedScope))
1827 appendScopeEnd(Block, VD, S);
1828 }
1829
1830 /// addAutomaticObjDtors - Add to current block automatic objects destructors
1831 /// for objects in range of local scope positions. Use S as trigger statement
1832 /// for destructors.
addAutomaticObjDtors(LocalScope::const_iterator B,LocalScope::const_iterator E,Stmt * S)1833 void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
1834 LocalScope::const_iterator E, Stmt *S) {
1835 if (!BuildOpts.AddImplicitDtors)
1836 return;
1837
1838 if (B == E)
1839 return;
1840
1841 // We need to append the destructors in reverse order, but any one of them
1842 // may be a no-return destructor which changes the CFG. As a result, buffer
1843 // this sequence up and replay them in reverse order when appending onto the
1844 // CFGBlock(s).
1845 SmallVector<VarDecl*, 10> Decls;
1846 Decls.reserve(B.distance(E));
1847 for (LocalScope::const_iterator I = B; I != E; ++I)
1848 Decls.push_back(*I);
1849
1850 for (VarDecl *VD : llvm::reverse(Decls)) {
1851 if (hasTrivialDestructor(VD)) {
1852 // If AddScopes is enabled and *I is a first variable in a scope, add a
1853 // ScopeEnd marker in a Block.
1854 if (BuildOpts.AddScopes && DeclsWithEndedScope.count(VD)) {
1855 autoCreateBlock();
1856 appendScopeEnd(Block, VD, S);
1857 }
1858 continue;
1859 }
1860 // If this destructor is marked as a no-return destructor, we need to
1861 // create a new block for the destructor which does not have as a successor
1862 // anything built thus far: control won't flow out of this block.
1863 QualType Ty = VD->getType();
1864 if (Ty->isReferenceType()) {
1865 Ty = getReferenceInitTemporaryType(VD->getInit());
1866 }
1867 Ty = Context->getBaseElementType(Ty);
1868
1869 if (Ty->getAsCXXRecordDecl()->isAnyDestructorNoReturn())
1870 Block = createNoReturnBlock();
1871 else
1872 autoCreateBlock();
1873
1874 // Add ScopeEnd just after automatic obj destructor.
1875 if (BuildOpts.AddScopes && DeclsWithEndedScope.count(VD))
1876 appendScopeEnd(Block, VD, S);
1877 appendAutomaticObjDtor(Block, VD, S);
1878 }
1879 }
1880
1881 /// addImplicitDtorsForDestructor - Add implicit destructors generated for
1882 /// base and member objects in destructor.
addImplicitDtorsForDestructor(const CXXDestructorDecl * DD)1883 void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
1884 assert(BuildOpts.AddImplicitDtors &&
1885 "Can be called only when dtors should be added");
1886 const CXXRecordDecl *RD = DD->getParent();
1887
1888 // At the end destroy virtual base objects.
1889 for (const auto &VI : RD->vbases()) {
1890 // TODO: Add a VirtualBaseBranch to see if the most derived class
1891 // (which is different from the current class) is responsible for
1892 // destroying them.
1893 const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl();
1894 if (!CD->hasTrivialDestructor()) {
1895 autoCreateBlock();
1896 appendBaseDtor(Block, &VI);
1897 }
1898 }
1899
1900 // Before virtual bases destroy direct base objects.
1901 for (const auto &BI : RD->bases()) {
1902 if (!BI.isVirtual()) {
1903 const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl();
1904 if (!CD->hasTrivialDestructor()) {
1905 autoCreateBlock();
1906 appendBaseDtor(Block, &BI);
1907 }
1908 }
1909 }
1910
1911 // First destroy member objects.
1912 for (auto *FI : RD->fields()) {
1913 // Check for constant size array. Set type to array element type.
1914 QualType QT = FI->getType();
1915 if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
1916 if (AT->getSize() == 0)
1917 continue;
1918 QT = AT->getElementType();
1919 }
1920
1921 if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
1922 if (!CD->hasTrivialDestructor()) {
1923 autoCreateBlock();
1924 appendMemberDtor(Block, FI);
1925 }
1926 }
1927 }
1928
1929 /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
1930 /// way return valid LocalScope object.
createOrReuseLocalScope(LocalScope * Scope)1931 LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
1932 if (Scope)
1933 return Scope;
1934 llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
1935 return new (alloc.Allocate<LocalScope>())
1936 LocalScope(BumpVectorContext(alloc), ScopePos);
1937 }
1938
1939 /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
1940 /// that should create implicit scope (e.g. if/else substatements).
addLocalScopeForStmt(Stmt * S)1941 void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
1942 if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
1943 !BuildOpts.AddScopes)
1944 return;
1945
1946 LocalScope *Scope = nullptr;
1947
1948 // For compound statement we will be creating explicit scope.
1949 if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1950 for (auto *BI : CS->body()) {
1951 Stmt *SI = BI->stripLabelLikeStatements();
1952 if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
1953 Scope = addLocalScopeForDeclStmt(DS, Scope);
1954 }
1955 return;
1956 }
1957
1958 // For any other statement scope will be implicit and as such will be
1959 // interesting only for DeclStmt.
1960 if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
1961 addLocalScopeForDeclStmt(DS);
1962 }
1963
1964 /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
1965 /// reuse Scope if not NULL.
addLocalScopeForDeclStmt(DeclStmt * DS,LocalScope * Scope)1966 LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
1967 LocalScope* Scope) {
1968 if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
1969 !BuildOpts.AddScopes)
1970 return Scope;
1971
1972 for (auto *DI : DS->decls())
1973 if (VarDecl *VD = dyn_cast<VarDecl>(DI))
1974 Scope = addLocalScopeForVarDecl(VD, Scope);
1975 return Scope;
1976 }
1977
hasTrivialDestructor(VarDecl * VD)1978 bool CFGBuilder::hasTrivialDestructor(VarDecl *VD) {
1979 // Check for const references bound to temporary. Set type to pointee.
1980 QualType QT = VD->getType();
1981 if (QT->isReferenceType()) {
1982 // Attempt to determine whether this declaration lifetime-extends a
1983 // temporary.
1984 //
1985 // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
1986 // temporaries, and a single declaration can extend multiple temporaries.
1987 // We should look at the storage duration on each nested
1988 // MaterializeTemporaryExpr instead.
1989
1990 const Expr *Init = VD->getInit();
1991 if (!Init) {
1992 // Probably an exception catch-by-reference variable.
1993 // FIXME: It doesn't really mean that the object has a trivial destructor.
1994 // Also are there other cases?
1995 return true;
1996 }
1997
1998 // Lifetime-extending a temporary?
1999 bool FoundMTE = false;
2000 QT = getReferenceInitTemporaryType(Init, &FoundMTE);
2001 if (!FoundMTE)
2002 return true;
2003 }
2004
2005 // Check for constant size array. Set type to array element type.
2006 while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
2007 if (AT->getSize() == 0)
2008 return true;
2009 QT = AT->getElementType();
2010 }
2011
2012 // Check if type is a C++ class with non-trivial destructor.
2013 if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
2014 return !CD->hasDefinition() || CD->hasTrivialDestructor();
2015 return true;
2016 }
2017
2018 /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
2019 /// create add scope for automatic objects and temporary objects bound to
2020 /// const reference. Will reuse Scope if not NULL.
addLocalScopeForVarDecl(VarDecl * VD,LocalScope * Scope)2021 LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
2022 LocalScope* Scope) {
2023 assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) &&
2024 "AddImplicitDtors and AddLifetime cannot be used at the same time");
2025 if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
2026 !BuildOpts.AddScopes)
2027 return Scope;
2028
2029 // Check if variable is local.
2030 if (!VD->hasLocalStorage())
2031 return Scope;
2032
2033 if (BuildOpts.AddImplicitDtors) {
2034 if (!hasTrivialDestructor(VD) || BuildOpts.AddScopes) {
2035 // Add the variable to scope
2036 Scope = createOrReuseLocalScope(Scope);
2037 Scope->addVar(VD);
2038 ScopePos = Scope->begin();
2039 }
2040 return Scope;
2041 }
2042
2043 assert(BuildOpts.AddLifetime);
2044 // Add the variable to scope
2045 Scope = createOrReuseLocalScope(Scope);
2046 Scope->addVar(VD);
2047 ScopePos = Scope->begin();
2048 return Scope;
2049 }
2050
2051 /// addLocalScopeAndDtors - For given statement add local scope for it and
2052 /// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
addLocalScopeAndDtors(Stmt * S)2053 void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
2054 LocalScope::const_iterator scopeBeginPos = ScopePos;
2055 addLocalScopeForStmt(S);
2056 addAutomaticObjHandling(ScopePos, scopeBeginPos, S);
2057 }
2058
2059 /// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
2060 /// variables with automatic storage duration to CFGBlock's elements vector.
2061 /// Elements will be prepended to physical beginning of the vector which
2062 /// happens to be logical end. Use blocks terminator as statement that specifies
2063 /// destructors call site.
2064 /// FIXME: This mechanism for adding automatic destructors doesn't handle
2065 /// no-return destructors properly.
prependAutomaticObjDtorsWithTerminator(CFGBlock * Blk,LocalScope::const_iterator B,LocalScope::const_iterator E)2066 void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
2067 LocalScope::const_iterator B, LocalScope::const_iterator E) {
2068 if (!BuildOpts.AddImplicitDtors)
2069 return;
2070 BumpVectorContext &C = cfg->getBumpVectorContext();
2071 CFGBlock::iterator InsertPos
2072 = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
2073 for (LocalScope::const_iterator I = B; I != E; ++I)
2074 InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
2075 Blk->getTerminatorStmt());
2076 }
2077
2078 /// prependAutomaticObjLifetimeWithTerminator - Prepend lifetime CFGElements for
2079 /// variables with automatic storage duration to CFGBlock's elements vector.
2080 /// Elements will be prepended to physical beginning of the vector which
2081 /// happens to be logical end. Use blocks terminator as statement that specifies
2082 /// where lifetime ends.
prependAutomaticObjLifetimeWithTerminator(CFGBlock * Blk,LocalScope::const_iterator B,LocalScope::const_iterator E)2083 void CFGBuilder::prependAutomaticObjLifetimeWithTerminator(
2084 CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) {
2085 if (!BuildOpts.AddLifetime)
2086 return;
2087 BumpVectorContext &C = cfg->getBumpVectorContext();
2088 CFGBlock::iterator InsertPos =
2089 Blk->beginLifetimeEndsInsert(Blk->end(), B.distance(E), C);
2090 for (LocalScope::const_iterator I = B; I != E; ++I) {
2091 InsertPos =
2092 Blk->insertLifetimeEnds(InsertPos, *I, Blk->getTerminatorStmt());
2093 }
2094 }
2095
2096 /// prependAutomaticObjScopeEndWithTerminator - Prepend scope end CFGElements for
2097 /// variables with automatic storage duration to CFGBlock's elements vector.
2098 /// Elements will be prepended to physical beginning of the vector which
2099 /// happens to be logical end. Use blocks terminator as statement that specifies
2100 /// where scope ends.
2101 const VarDecl *
prependAutomaticObjScopeEndWithTerminator(CFGBlock * Blk,LocalScope::const_iterator B,LocalScope::const_iterator E)2102 CFGBuilder::prependAutomaticObjScopeEndWithTerminator(
2103 CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) {
2104 if (!BuildOpts.AddScopes)
2105 return nullptr;
2106 BumpVectorContext &C = cfg->getBumpVectorContext();
2107 CFGBlock::iterator InsertPos =
2108 Blk->beginScopeEndInsert(Blk->end(), 1, C);
2109 LocalScope::const_iterator PlaceToInsert = B;
2110 for (LocalScope::const_iterator I = B; I != E; ++I)
2111 PlaceToInsert = I;
2112 Blk->insertScopeEnd(InsertPos, *PlaceToInsert, Blk->getTerminatorStmt());
2113 return *PlaceToInsert;
2114 }
2115
2116 /// Visit - Walk the subtree of a statement and add extra
2117 /// blocks for ternary operators, &&, and ||. We also process "," and
2118 /// DeclStmts (which may contain nested control-flow).
Visit(Stmt * S,AddStmtChoice asc,bool ExternallyDestructed)2119 CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc,
2120 bool ExternallyDestructed) {
2121 if (!S) {
2122 badCFG = true;
2123 return nullptr;
2124 }
2125
2126 if (Expr *E = dyn_cast<Expr>(S))
2127 S = E->IgnoreParens();
2128
2129 if (Context->getLangOpts().OpenMP)
2130 if (auto *D = dyn_cast<OMPExecutableDirective>(S))
2131 return VisitOMPExecutableDirective(D, asc);
2132
2133 switch (S->getStmtClass()) {
2134 default:
2135 return VisitStmt(S, asc);
2136
2137 case Stmt::ImplicitValueInitExprClass:
2138 if (BuildOpts.OmitImplicitValueInitializers)
2139 return Block;
2140 return VisitStmt(S, asc);
2141
2142 case Stmt::InitListExprClass:
2143 return VisitInitListExpr(cast<InitListExpr>(S), asc);
2144
2145 case Stmt::AttributedStmtClass:
2146 return VisitAttributedStmt(cast<AttributedStmt>(S), asc);
2147
2148 case Stmt::AddrLabelExprClass:
2149 return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
2150
2151 case Stmt::BinaryConditionalOperatorClass:
2152 return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
2153
2154 case Stmt::BinaryOperatorClass:
2155 return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
2156
2157 case Stmt::BlockExprClass:
2158 return VisitBlockExpr(cast<BlockExpr>(S), asc);
2159
2160 case Stmt::BreakStmtClass:
2161 return VisitBreakStmt(cast<BreakStmt>(S));
2162
2163 case Stmt::CallExprClass:
2164 case Stmt::CXXOperatorCallExprClass:
2165 case Stmt::CXXMemberCallExprClass:
2166 case Stmt::UserDefinedLiteralClass:
2167 return VisitCallExpr(cast<CallExpr>(S), asc);
2168
2169 case Stmt::CaseStmtClass:
2170 return VisitCaseStmt(cast<CaseStmt>(S));
2171
2172 case Stmt::ChooseExprClass:
2173 return VisitChooseExpr(cast<ChooseExpr>(S), asc);
2174
2175 case Stmt::CompoundStmtClass:
2176 return VisitCompoundStmt(cast<CompoundStmt>(S), ExternallyDestructed);
2177
2178 case Stmt::ConditionalOperatorClass:
2179 return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
2180
2181 case Stmt::ContinueStmtClass:
2182 return VisitContinueStmt(cast<ContinueStmt>(S));
2183
2184 case Stmt::CXXCatchStmtClass:
2185 return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
2186
2187 case Stmt::ExprWithCleanupsClass:
2188 return VisitExprWithCleanups(cast<ExprWithCleanups>(S),
2189 asc, ExternallyDestructed);
2190
2191 case Stmt::CXXDefaultArgExprClass:
2192 case Stmt::CXXDefaultInitExprClass:
2193 // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
2194 // called function's declaration, not by the caller. If we simply add
2195 // this expression to the CFG, we could end up with the same Expr
2196 // appearing multiple times.
2197 // PR13385 / <rdar://problem/12156507>
2198 //
2199 // It's likewise possible for multiple CXXDefaultInitExprs for the same
2200 // expression to be used in the same function (through aggregate
2201 // initialization).
2202 return VisitStmt(S, asc);
2203
2204 case Stmt::CXXBindTemporaryExprClass:
2205 return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
2206
2207 case Stmt::CXXConstructExprClass:
2208 return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
2209
2210 case Stmt::CXXNewExprClass:
2211 return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc);
2212
2213 case Stmt::CXXDeleteExprClass:
2214 return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);
2215
2216 case Stmt::CXXFunctionalCastExprClass:
2217 return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
2218
2219 case Stmt::CXXTemporaryObjectExprClass:
2220 return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
2221
2222 case Stmt::CXXThrowExprClass:
2223 return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
2224
2225 case Stmt::CXXTryStmtClass:
2226 return VisitCXXTryStmt(cast<CXXTryStmt>(S));
2227
2228 case Stmt::CXXTypeidExprClass:
2229 return VisitCXXTypeidExpr(cast<CXXTypeidExpr>(S), asc);
2230
2231 case Stmt::CXXForRangeStmtClass:
2232 return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
2233
2234 case Stmt::DeclStmtClass:
2235 return VisitDeclStmt(cast<DeclStmt>(S));
2236
2237 case Stmt::DefaultStmtClass:
2238 return VisitDefaultStmt(cast<DefaultStmt>(S));
2239
2240 case Stmt::DoStmtClass:
2241 return VisitDoStmt(cast<DoStmt>(S));
2242
2243 case Stmt::ForStmtClass:
2244 return VisitForStmt(cast<ForStmt>(S));
2245
2246 case Stmt::GotoStmtClass:
2247 return VisitGotoStmt(cast<GotoStmt>(S));
2248
2249 case Stmt::GCCAsmStmtClass:
2250 return VisitGCCAsmStmt(cast<GCCAsmStmt>(S), asc);
2251
2252 case Stmt::IfStmtClass:
2253 return VisitIfStmt(cast<IfStmt>(S));
2254
2255 case Stmt::ImplicitCastExprClass:
2256 return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
2257
2258 case Stmt::ConstantExprClass:
2259 return VisitConstantExpr(cast<ConstantExpr>(S), asc);
2260
2261 case Stmt::IndirectGotoStmtClass:
2262 return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
2263
2264 case Stmt::LabelStmtClass:
2265 return VisitLabelStmt(cast<LabelStmt>(S));
2266
2267 case Stmt::LambdaExprClass:
2268 return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
2269
2270 case Stmt::MaterializeTemporaryExprClass:
2271 return VisitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(S),
2272 asc);
2273
2274 case Stmt::MemberExprClass:
2275 return VisitMemberExpr(cast<MemberExpr>(S), asc);
2276
2277 case Stmt::NullStmtClass:
2278 return Block;
2279
2280 case Stmt::ObjCAtCatchStmtClass:
2281 return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
2282
2283 case Stmt::ObjCAutoreleasePoolStmtClass:
2284 return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
2285
2286 case Stmt::ObjCAtSynchronizedStmtClass:
2287 return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
2288
2289 case Stmt::ObjCAtThrowStmtClass:
2290 return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
2291
2292 case Stmt::ObjCAtTryStmtClass:
2293 return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
2294
2295 case Stmt::ObjCForCollectionStmtClass:
2296 return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
2297
2298 case Stmt::ObjCMessageExprClass:
2299 return VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), asc);
2300
2301 case Stmt::OpaqueValueExprClass:
2302 return Block;
2303
2304 case Stmt::PseudoObjectExprClass:
2305 return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
2306
2307 case Stmt::ReturnStmtClass:
2308 case Stmt::CoreturnStmtClass:
2309 return VisitReturnStmt(S);
2310
2311 case Stmt::CoyieldExprClass:
2312 case Stmt::CoawaitExprClass:
2313 return VisitCoroutineSuspendExpr(cast<CoroutineSuspendExpr>(S), asc);
2314
2315 case Stmt::SEHExceptStmtClass:
2316 return VisitSEHExceptStmt(cast<SEHExceptStmt>(S));
2317
2318 case Stmt::SEHFinallyStmtClass:
2319 return VisitSEHFinallyStmt(cast<SEHFinallyStmt>(S));
2320
2321 case Stmt::SEHLeaveStmtClass:
2322 return VisitSEHLeaveStmt(cast<SEHLeaveStmt>(S));
2323
2324 case Stmt::SEHTryStmtClass:
2325 return VisitSEHTryStmt(cast<SEHTryStmt>(S));
2326
2327 case Stmt::UnaryExprOrTypeTraitExprClass:
2328 return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
2329 asc);
2330
2331 case Stmt::StmtExprClass:
2332 return VisitStmtExpr(cast<StmtExpr>(S), asc);
2333
2334 case Stmt::SwitchStmtClass:
2335 return VisitSwitchStmt(cast<SwitchStmt>(S));
2336
2337 case Stmt::UnaryOperatorClass:
2338 return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
2339
2340 case Stmt::WhileStmtClass:
2341 return VisitWhileStmt(cast<WhileStmt>(S));
2342
2343 case Stmt::ArrayInitLoopExprClass:
2344 return VisitArrayInitLoopExpr(cast<ArrayInitLoopExpr>(S), asc);
2345 }
2346 }
2347
VisitStmt(Stmt * S,AddStmtChoice asc)2348 CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
2349 if (asc.alwaysAdd(*this, S)) {
2350 autoCreateBlock();
2351 appendStmt(Block, S);
2352 }
2353
2354 return VisitChildren(S);
2355 }
2356
2357 /// VisitChildren - Visit the children of a Stmt.
VisitChildren(Stmt * S)2358 CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
2359 CFGBlock *B = Block;
2360
2361 // Visit the children in their reverse order so that they appear in
2362 // left-to-right (natural) order in the CFG.
2363 reverse_children RChildren(S);
2364 for (Stmt *Child : RChildren) {
2365 if (Child)
2366 if (CFGBlock *R = Visit(Child))
2367 B = R;
2368 }
2369 return B;
2370 }
2371
VisitInitListExpr(InitListExpr * ILE,AddStmtChoice asc)2372 CFGBlock *CFGBuilder::VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc) {
2373 if (asc.alwaysAdd(*this, ILE)) {
2374 autoCreateBlock();
2375 appendStmt(Block, ILE);
2376 }
2377 CFGBlock *B = Block;
2378
2379 reverse_children RChildren(ILE);
2380 for (Stmt *Child : RChildren) {
2381 if (!Child)
2382 continue;
2383 if (CFGBlock *R = Visit(Child))
2384 B = R;
2385 if (BuildOpts.AddCXXDefaultInitExprInAggregates) {
2386 if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Child))
2387 if (Stmt *Child = DIE->getExpr())
2388 if (CFGBlock *R = Visit(Child))
2389 B = R;
2390 }
2391 }
2392 return B;
2393 }
2394
VisitAddrLabelExpr(AddrLabelExpr * A,AddStmtChoice asc)2395 CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
2396 AddStmtChoice asc) {
2397 AddressTakenLabels.insert(A->getLabel());
2398
2399 if (asc.alwaysAdd(*this, A)) {
2400 autoCreateBlock();
2401 appendStmt(Block, A);
2402 }
2403
2404 return Block;
2405 }
2406
isFallthroughStatement(const AttributedStmt * A)2407 static bool isFallthroughStatement(const AttributedStmt *A) {
2408 bool isFallthrough = hasSpecificAttr<FallThroughAttr>(A->getAttrs());
2409 assert((!isFallthrough || isa<NullStmt>(A->getSubStmt())) &&
2410 "expected fallthrough not to have children");
2411 return isFallthrough;
2412 }
2413
VisitAttributedStmt(AttributedStmt * A,AddStmtChoice asc)2414 CFGBlock *CFGBuilder::VisitAttributedStmt(AttributedStmt *A,
2415 AddStmtChoice asc) {
2416 // AttributedStmts for [[likely]] can have arbitrary statements as children,
2417 // and the current visitation order here would add the AttributedStmts
2418 // for [[likely]] after the child nodes, which is undesirable: For example,
2419 // if the child contains an unconditional return, the [[likely]] would be
2420 // considered unreachable.
2421 // So only add the AttributedStmt for FallThrough, which has CFG effects and
2422 // also no children, and omit the others. None of the other current StmtAttrs
2423 // have semantic meaning for the CFG.
2424 if (isFallthroughStatement(A) && asc.alwaysAdd(*this, A)) {
2425 autoCreateBlock();
2426 appendStmt(Block, A);
2427 }
2428
2429 return VisitChildren(A);
2430 }
2431
VisitUnaryOperator(UnaryOperator * U,AddStmtChoice asc)2432 CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc) {
2433 if (asc.alwaysAdd(*this, U)) {
2434 autoCreateBlock();
2435 appendStmt(Block, U);
2436 }
2437
2438 if (U->getOpcode() == UO_LNot)
2439 tryEvaluateBool(U->getSubExpr()->IgnoreParens());
2440
2441 return Visit(U->getSubExpr(), AddStmtChoice());
2442 }
2443
VisitLogicalOperator(BinaryOperator * B)2444 CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
2445 CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2446 appendStmt(ConfluenceBlock, B);
2447
2448 if (badCFG)
2449 return nullptr;
2450
2451 return VisitLogicalOperator(B, nullptr, ConfluenceBlock,
2452 ConfluenceBlock).first;
2453 }
2454
2455 std::pair<CFGBlock*, CFGBlock*>
VisitLogicalOperator(BinaryOperator * B,Stmt * Term,CFGBlock * TrueBlock,CFGBlock * FalseBlock)2456 CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
2457 Stmt *Term,
2458 CFGBlock *TrueBlock,
2459 CFGBlock *FalseBlock) {
2460 // Introspect the RHS. If it is a nested logical operation, we recursively
2461 // build the CFG using this function. Otherwise, resort to default
2462 // CFG construction behavior.
2463 Expr *RHS = B->getRHS()->IgnoreParens();
2464 CFGBlock *RHSBlock, *ExitBlock;
2465
2466 do {
2467 if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
2468 if (B_RHS->isLogicalOp()) {
2469 std::tie(RHSBlock, ExitBlock) =
2470 VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
2471 break;
2472 }
2473
2474 // The RHS is not a nested logical operation. Don't push the terminator
2475 // down further, but instead visit RHS and construct the respective
2476 // pieces of the CFG, and link up the RHSBlock with the terminator
2477 // we have been provided.
2478 ExitBlock = RHSBlock = createBlock(false);
2479
2480 // Even though KnownVal is only used in the else branch of the next
2481 // conditional, tryEvaluateBool performs additional checking on the
2482 // Expr, so it should be called unconditionally.
2483 TryResult KnownVal = tryEvaluateBool(RHS);
2484 if (!KnownVal.isKnown())
2485 KnownVal = tryEvaluateBool(B);
2486
2487 if (!Term) {
2488 assert(TrueBlock == FalseBlock);
2489 addSuccessor(RHSBlock, TrueBlock);
2490 }
2491 else {
2492 RHSBlock->setTerminator(Term);
2493 addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse());
2494 addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue());
2495 }
2496
2497 Block = RHSBlock;
2498 RHSBlock = addStmt(RHS);
2499 }
2500 while (false);
2501
2502 if (badCFG)
2503 return std::make_pair(nullptr, nullptr);
2504
2505 // Generate the blocks for evaluating the LHS.
2506 Expr *LHS = B->getLHS()->IgnoreParens();
2507
2508 if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
2509 if (B_LHS->isLogicalOp()) {
2510 if (B->getOpcode() == BO_LOr)
2511 FalseBlock = RHSBlock;
2512 else
2513 TrueBlock = RHSBlock;
2514
2515 // For the LHS, treat 'B' as the terminator that we want to sink
2516 // into the nested branch. The RHS always gets the top-most
2517 // terminator.
2518 return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
2519 }
2520
2521 // Create the block evaluating the LHS.
2522 // This contains the '&&' or '||' as the terminator.
2523 CFGBlock *LHSBlock = createBlock(false);
2524 LHSBlock->setTerminator(B);
2525
2526 Block = LHSBlock;
2527 CFGBlock *EntryLHSBlock = addStmt(LHS);
2528
2529 if (badCFG)
2530 return std::make_pair(nullptr, nullptr);
2531
2532 // See if this is a known constant.
2533 TryResult KnownVal = tryEvaluateBool(LHS);
2534
2535 // Now link the LHSBlock with RHSBlock.
2536 if (B->getOpcode() == BO_LOr) {
2537 addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse());
2538 addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue());
2539 } else {
2540 assert(B->getOpcode() == BO_LAnd);
2541 addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse());
2542 addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue());
2543 }
2544
2545 return std::make_pair(EntryLHSBlock, ExitBlock);
2546 }
2547
VisitBinaryOperator(BinaryOperator * B,AddStmtChoice asc)2548 CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
2549 AddStmtChoice asc) {
2550 // && or ||
2551 if (B->isLogicalOp())
2552 return VisitLogicalOperator(B);
2553
2554 if (B->getOpcode() == BO_Comma) { // ,
2555 autoCreateBlock();
2556 appendStmt(Block, B);
2557 addStmt(B->getRHS());
2558 return addStmt(B->getLHS());
2559 }
2560
2561 if (B->isAssignmentOp()) {
2562 if (asc.alwaysAdd(*this, B)) {
2563 autoCreateBlock();
2564 appendStmt(Block, B);
2565 }
2566 Visit(B->getLHS());
2567 return Visit(B->getRHS());
2568 }
2569
2570 if (asc.alwaysAdd(*this, B)) {
2571 autoCreateBlock();
2572 appendStmt(Block, B);
2573 }
2574
2575 if (B->isEqualityOp() || B->isRelationalOp())
2576 tryEvaluateBool(B);
2577
2578 CFGBlock *RBlock = Visit(B->getRHS());
2579 CFGBlock *LBlock = Visit(B->getLHS());
2580 // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
2581 // containing a DoStmt, and the LHS doesn't create a new block, then we should
2582 // return RBlock. Otherwise we'll incorrectly return NULL.
2583 return (LBlock ? LBlock : RBlock);
2584 }
2585
VisitNoRecurse(Expr * E,AddStmtChoice asc)2586 CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
2587 if (asc.alwaysAdd(*this, E)) {
2588 autoCreateBlock();
2589 appendStmt(Block, E);
2590 }
2591 return Block;
2592 }
2593
VisitBreakStmt(BreakStmt * B)2594 CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
2595 // "break" is a control-flow statement. Thus we stop processing the current
2596 // block.
2597 if (badCFG)
2598 return nullptr;
2599
2600 // Now create a new block that ends with the break statement.
2601 Block = createBlock(false);
2602 Block->setTerminator(B);
2603
2604 // If there is no target for the break, then we are looking at an incomplete
2605 // AST. This means that the CFG cannot be constructed.
2606 if (BreakJumpTarget.block) {
2607 addAutomaticObjHandling(ScopePos, BreakJumpTarget.scopePosition, B);
2608 addSuccessor(Block, BreakJumpTarget.block);
2609 } else
2610 badCFG = true;
2611
2612 return Block;
2613 }
2614
CanThrow(Expr * E,ASTContext & Ctx)2615 static bool CanThrow(Expr *E, ASTContext &Ctx) {
2616 QualType Ty = E->getType();
2617 if (Ty->isFunctionPointerType() || Ty->isBlockPointerType())
2618 Ty = Ty->getPointeeType();
2619
2620 const FunctionType *FT = Ty->getAs<FunctionType>();
2621 if (FT) {
2622 if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
2623 if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
2624 Proto->isNothrow())
2625 return false;
2626 }
2627 return true;
2628 }
2629
VisitCallExpr(CallExpr * C,AddStmtChoice asc)2630 CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
2631 // Compute the callee type.
2632 QualType calleeType = C->getCallee()->getType();
2633 if (calleeType == Context->BoundMemberTy) {
2634 QualType boundType = Expr::findBoundMemberType(C->getCallee());
2635
2636 // We should only get a null bound type if processing a dependent
2637 // CFG. Recover by assuming nothing.
2638 if (!boundType.isNull()) calleeType = boundType;
2639 }
2640
2641 // If this is a call to a no-return function, this stops the block here.
2642 bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
2643
2644 bool AddEHEdge = false;
2645
2646 // Languages without exceptions are assumed to not throw.
2647 if (Context->getLangOpts().Exceptions) {
2648 if (BuildOpts.AddEHEdges)
2649 AddEHEdge = true;
2650 }
2651
2652 // If this is a call to a builtin function, it might not actually evaluate
2653 // its arguments. Don't add them to the CFG if this is the case.
2654 bool OmitArguments = false;
2655
2656 if (FunctionDecl *FD = C->getDirectCallee()) {
2657 // TODO: Support construction contexts for variadic function arguments.
2658 // These are a bit problematic and not very useful because passing
2659 // C++ objects as C-style variadic arguments doesn't work in general
2660 // (see [expr.call]).
2661 if (!FD->isVariadic())
2662 findConstructionContextsForArguments(C);
2663
2664 if (FD->isNoReturn() || C->isBuiltinAssumeFalse(*Context))
2665 NoReturn = true;
2666 if (FD->hasAttr<NoThrowAttr>())
2667 AddEHEdge = false;
2668 if (FD->getBuiltinID() == Builtin::BI__builtin_object_size ||
2669 FD->getBuiltinID() == Builtin::BI__builtin_dynamic_object_size)
2670 OmitArguments = true;
2671 }
2672
2673 if (!CanThrow(C->getCallee(), *Context))
2674 AddEHEdge = false;
2675
2676 if (OmitArguments) {
2677 assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
2678 assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
2679 autoCreateBlock();
2680 appendStmt(Block, C);
2681 return Visit(C->getCallee());
2682 }
2683
2684 if (!NoReturn && !AddEHEdge) {
2685 autoCreateBlock();
2686 appendCall(Block, C);
2687
2688 return VisitChildren(C);
2689 }
2690
2691 if (Block) {
2692 Succ = Block;
2693 if (badCFG)
2694 return nullptr;
2695 }
2696
2697 if (NoReturn)
2698 Block = createNoReturnBlock();
2699 else
2700 Block = createBlock();
2701
2702 appendCall(Block, C);
2703
2704 if (AddEHEdge) {
2705 // Add exceptional edges.
2706 if (TryTerminatedBlock)
2707 addSuccessor(Block, TryTerminatedBlock);
2708 else
2709 addSuccessor(Block, &cfg->getExit());
2710 }
2711
2712 return VisitChildren(C);
2713 }
2714
VisitChooseExpr(ChooseExpr * C,AddStmtChoice asc)2715 CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
2716 AddStmtChoice asc) {
2717 CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2718 appendStmt(ConfluenceBlock, C);
2719 if (badCFG)
2720 return nullptr;
2721
2722 AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
2723 Succ = ConfluenceBlock;
2724 Block = nullptr;
2725 CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
2726 if (badCFG)
2727 return nullptr;
2728
2729 Succ = ConfluenceBlock;
2730 Block = nullptr;
2731 CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
2732 if (badCFG)
2733 return nullptr;
2734
2735 Block = createBlock(false);
2736 // See if this is a known constant.
2737 const TryResult& KnownVal = tryEvaluateBool(C->getCond());
2738 addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock);
2739 addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock);
2740 Block->setTerminator(C);
2741 return addStmt(C->getCond());
2742 }
2743
VisitCompoundStmt(CompoundStmt * C,bool ExternallyDestructed)2744 CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C,
2745 bool ExternallyDestructed) {
2746 LocalScope::const_iterator scopeBeginPos = ScopePos;
2747 addLocalScopeForStmt(C);
2748
2749 if (!C->body_empty() && !isa<ReturnStmt>(*C->body_rbegin())) {
2750 // If the body ends with a ReturnStmt, the dtors will be added in
2751 // VisitReturnStmt.
2752 addAutomaticObjHandling(ScopePos, scopeBeginPos, C);
2753 }
2754
2755 CFGBlock *LastBlock = Block;
2756
2757 for (Stmt *S : llvm::reverse(C->body())) {
2758 // If we hit a segment of code just containing ';' (NullStmts), we can
2759 // get a null block back. In such cases, just use the LastBlock
2760 CFGBlock *newBlock = Visit(S, AddStmtChoice::AlwaysAdd,
2761 ExternallyDestructed);
2762
2763 if (newBlock)
2764 LastBlock = newBlock;
2765
2766 if (badCFG)
2767 return nullptr;
2768
2769 ExternallyDestructed = false;
2770 }
2771
2772 return LastBlock;
2773 }
2774
VisitConditionalOperator(AbstractConditionalOperator * C,AddStmtChoice asc)2775 CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
2776 AddStmtChoice asc) {
2777 const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
2778 const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr);
2779
2780 // Create the confluence block that will "merge" the results of the ternary
2781 // expression.
2782 CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
2783 appendStmt(ConfluenceBlock, C);
2784 if (badCFG)
2785 return nullptr;
2786
2787 AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
2788
2789 // Create a block for the LHS expression if there is an LHS expression. A
2790 // GCC extension allows LHS to be NULL, causing the condition to be the
2791 // value that is returned instead.
2792 // e.g: x ?: y is shorthand for: x ? x : y;
2793 Succ = ConfluenceBlock;
2794 Block = nullptr;
2795 CFGBlock *LHSBlock = nullptr;
2796 const Expr *trueExpr = C->getTrueExpr();
2797 if (trueExpr != opaqueValue) {
2798 LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
2799 if (badCFG)
2800 return nullptr;
2801 Block = nullptr;
2802 }
2803 else
2804 LHSBlock = ConfluenceBlock;
2805
2806 // Create the block for the RHS expression.
2807 Succ = ConfluenceBlock;
2808 CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
2809 if (badCFG)
2810 return nullptr;
2811
2812 // If the condition is a logical '&&' or '||', build a more accurate CFG.
2813 if (BinaryOperator *Cond =
2814 dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
2815 if (Cond->isLogicalOp())
2816 return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
2817
2818 // Create the block that will contain the condition.
2819 Block = createBlock(false);
2820
2821 // See if this is a known constant.
2822 const TryResult& KnownVal = tryEvaluateBool(C->getCond());
2823 addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
2824 addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
2825 Block->setTerminator(C);
2826 Expr *condExpr = C->getCond();
2827
2828 if (opaqueValue) {
2829 // Run the condition expression if it's not trivially expressed in
2830 // terms of the opaque value (or if there is no opaque value).
2831 if (condExpr != opaqueValue)
2832 addStmt(condExpr);
2833
2834 // Before that, run the common subexpression if there was one.
2835 // At least one of this or the above will be run.
2836 return addStmt(BCO->getCommon());
2837 }
2838
2839 return addStmt(condExpr);
2840 }
2841
VisitDeclStmt(DeclStmt * DS)2842 CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
2843 // Check if the Decl is for an __label__. If so, elide it from the
2844 // CFG entirely.
2845 if (isa<LabelDecl>(*DS->decl_begin()))
2846 return Block;
2847
2848 // This case also handles static_asserts.
2849 if (DS->isSingleDecl())
2850 return VisitDeclSubExpr(DS);
2851
2852 CFGBlock *B = nullptr;
2853
2854 // Build an individual DeclStmt for each decl.
2855 for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
2856 E = DS->decl_rend();
2857 I != E; ++I) {
2858
2859 // Allocate the DeclStmt using the BumpPtrAllocator. It will get
2860 // automatically freed with the CFG.
2861 DeclGroupRef DG(*I);
2862 Decl *D = *I;
2863 DeclStmt *DSNew = new (Context) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
2864 cfg->addSyntheticDeclStmt(DSNew, DS);
2865
2866 // Append the fake DeclStmt to block.
2867 B = VisitDeclSubExpr(DSNew);
2868 }
2869
2870 return B;
2871 }
2872
2873 /// VisitDeclSubExpr - Utility method to add block-level expressions for
2874 /// DeclStmts and initializers in them.
VisitDeclSubExpr(DeclStmt * DS)2875 CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
2876 assert(DS->isSingleDecl() && "Can handle single declarations only.");
2877
2878 if (const auto *TND = dyn_cast<TypedefNameDecl>(DS->getSingleDecl())) {
2879 // If we encounter a VLA, process its size expressions.
2880 const Type *T = TND->getUnderlyingType().getTypePtr();
2881 if (!T->isVariablyModifiedType())
2882 return Block;
2883
2884 autoCreateBlock();
2885 appendStmt(Block, DS);
2886
2887 CFGBlock *LastBlock = Block;
2888 for (const VariableArrayType *VA = FindVA(T); VA != nullptr;
2889 VA = FindVA(VA->getElementType().getTypePtr())) {
2890 if (CFGBlock *NewBlock = addStmt(VA->getSizeExpr()))
2891 LastBlock = NewBlock;
2892 }
2893 return LastBlock;
2894 }
2895
2896 VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
2897
2898 if (!VD) {
2899 // Of everything that can be declared in a DeclStmt, only VarDecls and the
2900 // exceptions above impact runtime semantics.
2901 return Block;
2902 }
2903
2904 bool HasTemporaries = false;
2905
2906 // Guard static initializers under a branch.
2907 CFGBlock *blockAfterStaticInit = nullptr;
2908
2909 if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
2910 // For static variables, we need to create a branch to track
2911 // whether or not they are initialized.
2912 if (Block) {
2913 Succ = Block;
2914 Block = nullptr;
2915 if (badCFG)
2916 return nullptr;
2917 }
2918 blockAfterStaticInit = Succ;
2919 }
2920
2921 // Destructors of temporaries in initialization expression should be called
2922 // after initialization finishes.
2923 Expr *Init = VD->getInit();
2924 if (Init) {
2925 HasTemporaries = isa<ExprWithCleanups>(Init);
2926
2927 if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
2928 // Generate destructors for temporaries in initialization expression.
2929 TempDtorContext Context;
2930 VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
2931 /*ExternallyDestructed=*/true, Context);
2932 }
2933 }
2934
2935 // If we bind to a tuple-like type, we iterate over the HoldingVars, and
2936 // create a DeclStmt for each of them.
2937 if (const auto *DD = dyn_cast<DecompositionDecl>(VD)) {
2938 for (auto BD : llvm::reverse(DD->bindings())) {
2939 if (auto *VD = BD->getHoldingVar()) {
2940 DeclGroupRef DG(VD);
2941 DeclStmt *DSNew =
2942 new (Context) DeclStmt(DG, VD->getLocation(), GetEndLoc(VD));
2943 cfg->addSyntheticDeclStmt(DSNew, DS);
2944 Block = VisitDeclSubExpr(DSNew);
2945 }
2946 }
2947 }
2948
2949 autoCreateBlock();
2950 appendStmt(Block, DS);
2951
2952 // If the initializer is an ArrayInitLoopExpr, we want to extract the
2953 // initializer, that's used for each element.
2954 const auto *AILE = dyn_cast_or_null<ArrayInitLoopExpr>(Init);
2955
2956 findConstructionContexts(
2957 ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
2958 AILE ? AILE->getSubExpr() : Init);
2959
2960 // Keep track of the last non-null block, as 'Block' can be nulled out
2961 // if the initializer expression is something like a 'while' in a
2962 // statement-expression.
2963 CFGBlock *LastBlock = Block;
2964
2965 if (Init) {
2966 if (HasTemporaries) {
2967 // For expression with temporaries go directly to subexpression to omit
2968 // generating destructors for the second time.
2969 ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
2970 if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
2971 LastBlock = newBlock;
2972 }
2973 else {
2974 if (CFGBlock *newBlock = Visit(Init))
2975 LastBlock = newBlock;
2976 }
2977 }
2978
2979 // If the type of VD is a VLA, then we must process its size expressions.
2980 // FIXME: This does not find the VLA if it is embedded in other types,
2981 // like here: `int (*p_vla)[x];`
2982 for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
2983 VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) {
2984 if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
2985 LastBlock = newBlock;
2986 }
2987
2988 maybeAddScopeBeginForVarDecl(Block, VD, DS);
2989
2990 // Remove variable from local scope.
2991 if (ScopePos && VD == *ScopePos)
2992 ++ScopePos;
2993
2994 CFGBlock *B = LastBlock;
2995 if (blockAfterStaticInit) {
2996 Succ = B;
2997 Block = createBlock(false);
2998 Block->setTerminator(DS);
2999 addSuccessor(Block, blockAfterStaticInit);
3000 addSuccessor(Block, B);
3001 B = Block;
3002 }
3003
3004 return B;
3005 }
3006
VisitIfStmt(IfStmt * I)3007 CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
3008 // We may see an if statement in the middle of a basic block, or it may be the
3009 // first statement we are processing. In either case, we create a new basic
3010 // block. First, we create the blocks for the then...else statements, and
3011 // then we create the block containing the if statement. If we were in the
3012 // middle of a block, we stop processing that block. That block is then the
3013 // implicit successor for the "then" and "else" clauses.
3014
3015 // Save local scope position because in case of condition variable ScopePos
3016 // won't be restored when traversing AST.
3017 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3018
3019 // Create local scope for C++17 if init-stmt if one exists.
3020 if (Stmt *Init = I->getInit())
3021 addLocalScopeForStmt(Init);
3022
3023 // Create local scope for possible condition variable.
3024 // Store scope position. Add implicit destructor.
3025 if (VarDecl *VD = I->getConditionVariable())
3026 addLocalScopeForVarDecl(VD);
3027
3028 addAutomaticObjHandling(ScopePos, save_scope_pos.get(), I);
3029
3030 // The block we were processing is now finished. Make it the successor
3031 // block.
3032 if (Block) {
3033 Succ = Block;
3034 if (badCFG)
3035 return nullptr;
3036 }
3037
3038 // Process the false branch.
3039 CFGBlock *ElseBlock = Succ;
3040
3041 if (Stmt *Else = I->getElse()) {
3042 SaveAndRestore<CFGBlock*> sv(Succ);
3043
3044 // NULL out Block so that the recursive call to Visit will
3045 // create a new basic block.
3046 Block = nullptr;
3047
3048 // If branch is not a compound statement create implicit scope
3049 // and add destructors.
3050 if (!isa<CompoundStmt>(Else))
3051 addLocalScopeAndDtors(Else);
3052
3053 ElseBlock = addStmt(Else);
3054
3055 if (!ElseBlock) // Can occur when the Else body has all NullStmts.
3056 ElseBlock = sv.get();
3057 else if (Block) {
3058 if (badCFG)
3059 return nullptr;
3060 }
3061 }
3062
3063 // Process the true branch.
3064 CFGBlock *ThenBlock;
3065 {
3066 Stmt *Then = I->getThen();
3067 assert(Then);
3068 SaveAndRestore<CFGBlock*> sv(Succ);
3069 Block = nullptr;
3070
3071 // If branch is not a compound statement create implicit scope
3072 // and add destructors.
3073 if (!isa<CompoundStmt>(Then))
3074 addLocalScopeAndDtors(Then);
3075
3076 ThenBlock = addStmt(Then);
3077
3078 if (!ThenBlock) {
3079 // We can reach here if the "then" body has all NullStmts.
3080 // Create an empty block so we can distinguish between true and false
3081 // branches in path-sensitive analyses.
3082 ThenBlock = createBlock(false);
3083 addSuccessor(ThenBlock, sv.get());
3084 } else if (Block) {
3085 if (badCFG)
3086 return nullptr;
3087 }
3088 }
3089
3090 // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
3091 // having these handle the actual control-flow jump. Note that
3092 // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
3093 // we resort to the old control-flow behavior. This special handling
3094 // removes infeasible paths from the control-flow graph by having the
3095 // control-flow transfer of '&&' or '||' go directly into the then/else
3096 // blocks directly.
3097 BinaryOperator *Cond =
3098 (I->isConsteval() || I->getConditionVariable())
3099 ? nullptr
3100 : dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens());
3101 CFGBlock *LastBlock;
3102 if (Cond && Cond->isLogicalOp())
3103 LastBlock = VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
3104 else {
3105 // Now create a new block containing the if statement.
3106 Block = createBlock(false);
3107
3108 // Set the terminator of the new block to the If statement.
3109 Block->setTerminator(I);
3110
3111 // See if this is a known constant.
3112 TryResult KnownVal;
3113 if (!I->isConsteval())
3114 KnownVal = tryEvaluateBool(I->getCond());
3115
3116 // Add the successors. If we know that specific branches are
3117 // unreachable, inform addSuccessor() of that knowledge.
3118 addSuccessor(Block, ThenBlock, /* IsReachable = */ !KnownVal.isFalse());
3119 addSuccessor(Block, ElseBlock, /* IsReachable = */ !KnownVal.isTrue());
3120
3121 // Add the condition as the last statement in the new block. This may
3122 // create new blocks as the condition may contain control-flow. Any newly
3123 // created blocks will be pointed to be "Block".
3124 LastBlock = addStmt(I->getCond());
3125
3126 // If the IfStmt contains a condition variable, add it and its
3127 // initializer to the CFG.
3128 if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) {
3129 autoCreateBlock();
3130 LastBlock = addStmt(const_cast<DeclStmt *>(DS));
3131 }
3132 }
3133
3134 // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG.
3135 if (Stmt *Init = I->getInit()) {
3136 autoCreateBlock();
3137 LastBlock = addStmt(Init);
3138 }
3139
3140 return LastBlock;
3141 }
3142
VisitReturnStmt(Stmt * S)3143 CFGBlock *CFGBuilder::VisitReturnStmt(Stmt *S) {
3144 // If we were in the middle of a block we stop processing that block.
3145 //
3146 // NOTE: If a "return" or "co_return" appears in the middle of a block, this
3147 // means that the code afterwards is DEAD (unreachable). We still keep
3148 // a basic block for that code; a simple "mark-and-sweep" from the entry
3149 // block will be able to report such dead blocks.
3150 assert(isa<ReturnStmt>(S) || isa<CoreturnStmt>(S));
3151
3152 // Create the new block.
3153 Block = createBlock(false);
3154
3155 addAutomaticObjHandling(ScopePos, LocalScope::const_iterator(), S);
3156
3157 if (auto *R = dyn_cast<ReturnStmt>(S))
3158 findConstructionContexts(
3159 ConstructionContextLayer::create(cfg->getBumpVectorContext(), R),
3160 R->getRetValue());
3161
3162 // If the one of the destructors does not return, we already have the Exit
3163 // block as a successor.
3164 if (!Block->hasNoReturnElement())
3165 addSuccessor(Block, &cfg->getExit());
3166
3167 // Add the return statement to the block.
3168 appendStmt(Block, S);
3169
3170 // Visit children
3171 if (ReturnStmt *RS = dyn_cast<ReturnStmt>(S)) {
3172 if (Expr *O = RS->getRetValue())
3173 return Visit(O, AddStmtChoice::AlwaysAdd, /*ExternallyDestructed=*/true);
3174 return Block;
3175 }
3176
3177 CoreturnStmt *CRS = cast<CoreturnStmt>(S);
3178 auto *B = Block;
3179 if (CFGBlock *R = Visit(CRS->getPromiseCall()))
3180 B = R;
3181
3182 if (Expr *RV = CRS->getOperand())
3183 if (RV->getType()->isVoidType() && !isa<InitListExpr>(RV))
3184 // A non-initlist void expression.
3185 if (CFGBlock *R = Visit(RV))
3186 B = R;
3187
3188 return B;
3189 }
3190
VisitCoroutineSuspendExpr(CoroutineSuspendExpr * E,AddStmtChoice asc)3191 CFGBlock *CFGBuilder::VisitCoroutineSuspendExpr(CoroutineSuspendExpr *E,
3192 AddStmtChoice asc) {
3193 // We're modelling the pre-coro-xform CFG. Thus just evalate the various
3194 // active components of the co_await or co_yield. Note we do not model the
3195 // edge from the builtin_suspend to the exit node.
3196 if (asc.alwaysAdd(*this, E)) {
3197 autoCreateBlock();
3198 appendStmt(Block, E);
3199 }
3200 CFGBlock *B = Block;
3201 if (auto *R = Visit(E->getResumeExpr()))
3202 B = R;
3203 if (auto *R = Visit(E->getSuspendExpr()))
3204 B = R;
3205 if (auto *R = Visit(E->getReadyExpr()))
3206 B = R;
3207 if (auto *R = Visit(E->getCommonExpr()))
3208 B = R;
3209 return B;
3210 }
3211
VisitSEHExceptStmt(SEHExceptStmt * ES)3212 CFGBlock *CFGBuilder::VisitSEHExceptStmt(SEHExceptStmt *ES) {
3213 // SEHExceptStmt are treated like labels, so they are the first statement in a
3214 // block.
3215
3216 // Save local scope position because in case of exception variable ScopePos
3217 // won't be restored when traversing AST.
3218 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3219
3220 addStmt(ES->getBlock());
3221 CFGBlock *SEHExceptBlock = Block;
3222 if (!SEHExceptBlock)
3223 SEHExceptBlock = createBlock();
3224
3225 appendStmt(SEHExceptBlock, ES);
3226
3227 // Also add the SEHExceptBlock as a label, like with regular labels.
3228 SEHExceptBlock->setLabel(ES);
3229
3230 // Bail out if the CFG is bad.
3231 if (badCFG)
3232 return nullptr;
3233
3234 // We set Block to NULL to allow lazy creation of a new block (if necessary).
3235 Block = nullptr;
3236
3237 return SEHExceptBlock;
3238 }
3239
VisitSEHFinallyStmt(SEHFinallyStmt * FS)3240 CFGBlock *CFGBuilder::VisitSEHFinallyStmt(SEHFinallyStmt *FS) {
3241 return VisitCompoundStmt(FS->getBlock(), /*ExternallyDestructed=*/false);
3242 }
3243
VisitSEHLeaveStmt(SEHLeaveStmt * LS)3244 CFGBlock *CFGBuilder::VisitSEHLeaveStmt(SEHLeaveStmt *LS) {
3245 // "__leave" is a control-flow statement. Thus we stop processing the current
3246 // block.
3247 if (badCFG)
3248 return nullptr;
3249
3250 // Now create a new block that ends with the __leave statement.
3251 Block = createBlock(false);
3252 Block->setTerminator(LS);
3253
3254 // If there is no target for the __leave, then we are looking at an incomplete
3255 // AST. This means that the CFG cannot be constructed.
3256 if (SEHLeaveJumpTarget.block) {
3257 addAutomaticObjHandling(ScopePos, SEHLeaveJumpTarget.scopePosition, LS);
3258 addSuccessor(Block, SEHLeaveJumpTarget.block);
3259 } else
3260 badCFG = true;
3261
3262 return Block;
3263 }
3264
VisitSEHTryStmt(SEHTryStmt * Terminator)3265 CFGBlock *CFGBuilder::VisitSEHTryStmt(SEHTryStmt *Terminator) {
3266 // "__try"/"__except"/"__finally" is a control-flow statement. Thus we stop
3267 // processing the current block.
3268 CFGBlock *SEHTrySuccessor = nullptr;
3269
3270 if (Block) {
3271 if (badCFG)
3272 return nullptr;
3273 SEHTrySuccessor = Block;
3274 } else SEHTrySuccessor = Succ;
3275
3276 // FIXME: Implement __finally support.
3277 if (Terminator->getFinallyHandler())
3278 return NYS();
3279
3280 CFGBlock *PrevSEHTryTerminatedBlock = TryTerminatedBlock;
3281
3282 // Create a new block that will contain the __try statement.
3283 CFGBlock *NewTryTerminatedBlock = createBlock(false);
3284
3285 // Add the terminator in the __try block.
3286 NewTryTerminatedBlock->setTerminator(Terminator);
3287
3288 if (SEHExceptStmt *Except = Terminator->getExceptHandler()) {
3289 // The code after the try is the implicit successor if there's an __except.
3290 Succ = SEHTrySuccessor;
3291 Block = nullptr;
3292 CFGBlock *ExceptBlock = VisitSEHExceptStmt(Except);
3293 if (!ExceptBlock)
3294 return nullptr;
3295 // Add this block to the list of successors for the block with the try
3296 // statement.
3297 addSuccessor(NewTryTerminatedBlock, ExceptBlock);
3298 }
3299 if (PrevSEHTryTerminatedBlock)
3300 addSuccessor(NewTryTerminatedBlock, PrevSEHTryTerminatedBlock);
3301 else
3302 addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
3303
3304 // The code after the try is the implicit successor.
3305 Succ = SEHTrySuccessor;
3306
3307 // Save the current "__try" context.
3308 SaveAndRestore<CFGBlock *> SaveTry(TryTerminatedBlock, NewTryTerminatedBlock);
3309 cfg->addTryDispatchBlock(TryTerminatedBlock);
3310
3311 // Save the current value for the __leave target.
3312 // All __leaves should go to the code following the __try
3313 // (FIXME: or if the __try has a __finally, to the __finally.)
3314 SaveAndRestore<JumpTarget> save_break(SEHLeaveJumpTarget);
3315 SEHLeaveJumpTarget = JumpTarget(SEHTrySuccessor, ScopePos);
3316
3317 assert(Terminator->getTryBlock() && "__try must contain a non-NULL body");
3318 Block = nullptr;
3319 return addStmt(Terminator->getTryBlock());
3320 }
3321
VisitLabelStmt(LabelStmt * L)3322 CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
3323 // Get the block of the labeled statement. Add it to our map.
3324 addStmt(L->getSubStmt());
3325 CFGBlock *LabelBlock = Block;
3326
3327 if (!LabelBlock) // This can happen when the body is empty, i.e.
3328 LabelBlock = createBlock(); // scopes that only contains NullStmts.
3329
3330 assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
3331 "label already in map");
3332 LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
3333
3334 // Labels partition blocks, so this is the end of the basic block we were
3335 // processing (L is the block's label). Because this is label (and we have
3336 // already processed the substatement) there is no extra control-flow to worry
3337 // about.
3338 LabelBlock->setLabel(L);
3339 if (badCFG)
3340 return nullptr;
3341
3342 // We set Block to NULL to allow lazy creation of a new block (if necessary).
3343 Block = nullptr;
3344
3345 // This block is now the implicit successor of other blocks.
3346 Succ = LabelBlock;
3347
3348 return LabelBlock;
3349 }
3350
VisitBlockExpr(BlockExpr * E,AddStmtChoice asc)3351 CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
3352 CFGBlock *LastBlock = VisitNoRecurse(E, asc);
3353 for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) {
3354 if (Expr *CopyExpr = CI.getCopyExpr()) {
3355 CFGBlock *Tmp = Visit(CopyExpr);
3356 if (Tmp)
3357 LastBlock = Tmp;
3358 }
3359 }
3360 return LastBlock;
3361 }
3362
VisitLambdaExpr(LambdaExpr * E,AddStmtChoice asc)3363 CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
3364 CFGBlock *LastBlock = VisitNoRecurse(E, asc);
3365
3366 unsigned Idx = 0;
3367 for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
3368 et = E->capture_init_end();
3369 it != et; ++it, ++Idx) {
3370 if (Expr *Init = *it) {
3371 // If the initializer is an ArrayInitLoopExpr, we want to extract the
3372 // initializer, that's used for each element.
3373 const auto *AILE = dyn_cast_or_null<ArrayInitLoopExpr>(Init);
3374
3375 findConstructionContexts(ConstructionContextLayer::create(
3376 cfg->getBumpVectorContext(), {E, Idx}),
3377 AILE ? AILE->getSubExpr() : Init);
3378
3379 CFGBlock *Tmp = Visit(Init);
3380 if (Tmp)
3381 LastBlock = Tmp;
3382 }
3383 }
3384 return LastBlock;
3385 }
3386
VisitGotoStmt(GotoStmt * G)3387 CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
3388 // Goto is a control-flow statement. Thus we stop processing the current
3389 // block and create a new one.
3390
3391 Block = createBlock(false);
3392 Block->setTerminator(G);
3393
3394 // If we already know the mapping to the label block add the successor now.
3395 LabelMapTy::iterator I = LabelMap.find(G->getLabel());
3396
3397 if (I == LabelMap.end())
3398 // We will need to backpatch this block later.
3399 BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
3400 else {
3401 JumpTarget JT = I->second;
3402 addAutomaticObjHandling(ScopePos, JT.scopePosition, G);
3403 addSuccessor(Block, JT.block);
3404 }
3405
3406 return Block;
3407 }
3408
VisitGCCAsmStmt(GCCAsmStmt * G,AddStmtChoice asc)3409 CFGBlock *CFGBuilder::VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc) {
3410 // Goto is a control-flow statement. Thus we stop processing the current
3411 // block and create a new one.
3412
3413 if (!G->isAsmGoto())
3414 return VisitStmt(G, asc);
3415
3416 if (Block) {
3417 Succ = Block;
3418 if (badCFG)
3419 return nullptr;
3420 }
3421 Block = createBlock();
3422 Block->setTerminator(G);
3423 // We will backpatch this block later for all the labels.
3424 BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
3425 // Save "Succ" in BackpatchBlocks. In the backpatch processing, "Succ" is
3426 // used to avoid adding "Succ" again.
3427 BackpatchBlocks.push_back(JumpSource(Succ, ScopePos));
3428 return VisitChildren(G);
3429 }
3430
VisitForStmt(ForStmt * F)3431 CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
3432 CFGBlock *LoopSuccessor = nullptr;
3433
3434 // Save local scope position because in case of condition variable ScopePos
3435 // won't be restored when traversing AST.
3436 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3437
3438 // Create local scope for init statement and possible condition variable.
3439 // Add destructor for init statement and condition variable.
3440 // Store scope position for continue statement.
3441 if (Stmt *Init = F->getInit())
3442 addLocalScopeForStmt(Init);
3443 LocalScope::const_iterator LoopBeginScopePos = ScopePos;
3444
3445 if (VarDecl *VD = F->getConditionVariable())
3446 addLocalScopeForVarDecl(VD);
3447 LocalScope::const_iterator ContinueScopePos = ScopePos;
3448
3449 addAutomaticObjHandling(ScopePos, save_scope_pos.get(), F);
3450
3451 addLoopExit(F);
3452
3453 // "for" is a control-flow statement. Thus we stop processing the current
3454 // block.
3455 if (Block) {
3456 if (badCFG)
3457 return nullptr;
3458 LoopSuccessor = Block;
3459 } else
3460 LoopSuccessor = Succ;
3461
3462 // Save the current value for the break targets.
3463 // All breaks should go to the code following the loop.
3464 SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
3465 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3466
3467 CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
3468
3469 // Now create the loop body.
3470 {
3471 assert(F->getBody());
3472
3473 // Save the current values for Block, Succ, continue and break targets.
3474 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3475 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
3476
3477 // Create an empty block to represent the transition block for looping back
3478 // to the head of the loop. If we have increment code, it will
3479 // go in this block as well.
3480 Block = Succ = TransitionBlock = createBlock(false);
3481 TransitionBlock->setLoopTarget(F);
3482
3483 if (Stmt *I = F->getInc()) {
3484 // Generate increment code in its own basic block. This is the target of
3485 // continue statements.
3486 Succ = addStmt(I);
3487 }
3488
3489 // Finish up the increment (or empty) block if it hasn't been already.
3490 if (Block) {
3491 assert(Block == Succ);
3492 if (badCFG)
3493 return nullptr;
3494 Block = nullptr;
3495 }
3496
3497 // The starting block for the loop increment is the block that should
3498 // represent the 'loop target' for looping back to the start of the loop.
3499 ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
3500 ContinueJumpTarget.block->setLoopTarget(F);
3501
3502 // Loop body should end with destructor of Condition variable (if any).
3503 addAutomaticObjHandling(ScopePos, LoopBeginScopePos, F);
3504
3505 // If body is not a compound statement create implicit scope
3506 // and add destructors.
3507 if (!isa<CompoundStmt>(F->getBody()))
3508 addLocalScopeAndDtors(F->getBody());
3509
3510 // Now populate the body block, and in the process create new blocks as we
3511 // walk the body of the loop.
3512 BodyBlock = addStmt(F->getBody());
3513
3514 if (!BodyBlock) {
3515 // In the case of "for (...;...;...);" we can have a null BodyBlock.
3516 // Use the continue jump target as the proxy for the body.
3517 BodyBlock = ContinueJumpTarget.block;
3518 }
3519 else if (badCFG)
3520 return nullptr;
3521 }
3522
3523 // Because of short-circuit evaluation, the condition of the loop can span
3524 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
3525 // evaluate the condition.
3526 CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
3527
3528 do {
3529 Expr *C = F->getCond();
3530 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3531
3532 // Specially handle logical operators, which have a slightly
3533 // more optimal CFG representation.
3534 if (BinaryOperator *Cond =
3535 dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr))
3536 if (Cond->isLogicalOp()) {
3537 std::tie(EntryConditionBlock, ExitConditionBlock) =
3538 VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
3539 break;
3540 }
3541
3542 // The default case when not handling logical operators.
3543 EntryConditionBlock = ExitConditionBlock = createBlock(false);
3544 ExitConditionBlock->setTerminator(F);
3545
3546 // See if this is a known constant.
3547 TryResult KnownVal(true);
3548
3549 if (C) {
3550 // Now add the actual condition to the condition block.
3551 // Because the condition itself may contain control-flow, new blocks may
3552 // be created. Thus we update "Succ" after adding the condition.
3553 Block = ExitConditionBlock;
3554 EntryConditionBlock = addStmt(C);
3555
3556 // If this block contains a condition variable, add both the condition
3557 // variable and initializer to the CFG.
3558 if (VarDecl *VD = F->getConditionVariable()) {
3559 if (Expr *Init = VD->getInit()) {
3560 autoCreateBlock();
3561 const DeclStmt *DS = F->getConditionVariableDeclStmt();
3562 assert(DS->isSingleDecl());
3563 findConstructionContexts(
3564 ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
3565 Init);
3566 appendStmt(Block, DS);
3567 EntryConditionBlock = addStmt(Init);
3568 assert(Block == EntryConditionBlock);
3569 maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
3570 }
3571 }
3572
3573 if (Block && badCFG)
3574 return nullptr;
3575
3576 KnownVal = tryEvaluateBool(C);
3577 }
3578
3579 // Add the loop body entry as a successor to the condition.
3580 addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
3581 // Link up the condition block with the code that follows the loop. (the
3582 // false branch).
3583 addSuccessor(ExitConditionBlock,
3584 KnownVal.isTrue() ? nullptr : LoopSuccessor);
3585 } while (false);
3586
3587 // Link up the loop-back block to the entry condition block.
3588 addSuccessor(TransitionBlock, EntryConditionBlock);
3589
3590 // The condition block is the implicit successor for any code above the loop.
3591 Succ = EntryConditionBlock;
3592
3593 // If the loop contains initialization, create a new block for those
3594 // statements. This block can also contain statements that precede the loop.
3595 if (Stmt *I = F->getInit()) {
3596 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3597 ScopePos = LoopBeginScopePos;
3598 Block = createBlock();
3599 return addStmt(I);
3600 }
3601
3602 // There is no loop initialization. We are thus basically a while loop.
3603 // NULL out Block to force lazy block construction.
3604 Block = nullptr;
3605 Succ = EntryConditionBlock;
3606 return EntryConditionBlock;
3607 }
3608
3609 CFGBlock *
VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr * MTE,AddStmtChoice asc)3610 CFGBuilder::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
3611 AddStmtChoice asc) {
3612 findConstructionContexts(
3613 ConstructionContextLayer::create(cfg->getBumpVectorContext(), MTE),
3614 MTE->getSubExpr());
3615
3616 return VisitStmt(MTE, asc);
3617 }
3618
VisitMemberExpr(MemberExpr * M,AddStmtChoice asc)3619 CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
3620 if (asc.alwaysAdd(*this, M)) {
3621 autoCreateBlock();
3622 appendStmt(Block, M);
3623 }
3624 return Visit(M->getBase());
3625 }
3626
VisitObjCForCollectionStmt(ObjCForCollectionStmt * S)3627 CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
3628 // Objective-C fast enumeration 'for' statements:
3629 // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
3630 //
3631 // for ( Type newVariable in collection_expression ) { statements }
3632 //
3633 // becomes:
3634 //
3635 // prologue:
3636 // 1. collection_expression
3637 // T. jump to loop_entry
3638 // loop_entry:
3639 // 1. side-effects of element expression
3640 // 1. ObjCForCollectionStmt [performs binding to newVariable]
3641 // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil]
3642 // TB:
3643 // statements
3644 // T. jump to loop_entry
3645 // FB:
3646 // what comes after
3647 //
3648 // and
3649 //
3650 // Type existingItem;
3651 // for ( existingItem in expression ) { statements }
3652 //
3653 // becomes:
3654 //
3655 // the same with newVariable replaced with existingItem; the binding works
3656 // the same except that for one ObjCForCollectionStmt::getElement() returns
3657 // a DeclStmt and the other returns a DeclRefExpr.
3658
3659 CFGBlock *LoopSuccessor = nullptr;
3660
3661 if (Block) {
3662 if (badCFG)
3663 return nullptr;
3664 LoopSuccessor = Block;
3665 Block = nullptr;
3666 } else
3667 LoopSuccessor = Succ;
3668
3669 // Build the condition blocks.
3670 CFGBlock *ExitConditionBlock = createBlock(false);
3671
3672 // Set the terminator for the "exit" condition block.
3673 ExitConditionBlock->setTerminator(S);
3674
3675 // The last statement in the block should be the ObjCForCollectionStmt, which
3676 // performs the actual binding to 'element' and determines if there are any
3677 // more items in the collection.
3678 appendStmt(ExitConditionBlock, S);
3679 Block = ExitConditionBlock;
3680
3681 // Walk the 'element' expression to see if there are any side-effects. We
3682 // generate new blocks as necessary. We DON'T add the statement by default to
3683 // the CFG unless it contains control-flow.
3684 CFGBlock *EntryConditionBlock = Visit(S->getElement(),
3685 AddStmtChoice::NotAlwaysAdd);
3686 if (Block) {
3687 if (badCFG)
3688 return nullptr;
3689 Block = nullptr;
3690 }
3691
3692 // The condition block is the implicit successor for the loop body as well as
3693 // any code above the loop.
3694 Succ = EntryConditionBlock;
3695
3696 // Now create the true branch.
3697 {
3698 // Save the current values for Succ, continue and break targets.
3699 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3700 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
3701 save_break(BreakJumpTarget);
3702
3703 // Add an intermediate block between the BodyBlock and the
3704 // EntryConditionBlock to represent the "loop back" transition, for looping
3705 // back to the head of the loop.
3706 CFGBlock *LoopBackBlock = nullptr;
3707 Succ = LoopBackBlock = createBlock();
3708 LoopBackBlock->setLoopTarget(S);
3709
3710 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3711 ContinueJumpTarget = JumpTarget(Succ, ScopePos);
3712
3713 CFGBlock *BodyBlock = addStmt(S->getBody());
3714
3715 if (!BodyBlock)
3716 BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
3717 else if (Block) {
3718 if (badCFG)
3719 return nullptr;
3720 }
3721
3722 // This new body block is a successor to our "exit" condition block.
3723 addSuccessor(ExitConditionBlock, BodyBlock);
3724 }
3725
3726 // Link up the condition block with the code that follows the loop.
3727 // (the false branch).
3728 addSuccessor(ExitConditionBlock, LoopSuccessor);
3729
3730 // Now create a prologue block to contain the collection expression.
3731 Block = createBlock();
3732 return addStmt(S->getCollection());
3733 }
3734
VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt * S)3735 CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
3736 // Inline the body.
3737 return addStmt(S->getSubStmt());
3738 // TODO: consider adding cleanups for the end of @autoreleasepool scope.
3739 }
3740
VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt * S)3741 CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
3742 // FIXME: Add locking 'primitives' to CFG for @synchronized.
3743
3744 // Inline the body.
3745 CFGBlock *SyncBlock = addStmt(S->getSynchBody());
3746
3747 // The sync body starts its own basic block. This makes it a little easier
3748 // for diagnostic clients.
3749 if (SyncBlock) {
3750 if (badCFG)
3751 return nullptr;
3752
3753 Block = nullptr;
3754 Succ = SyncBlock;
3755 }
3756
3757 // Add the @synchronized to the CFG.
3758 autoCreateBlock();
3759 appendStmt(Block, S);
3760
3761 // Inline the sync expression.
3762 return addStmt(S->getSynchExpr());
3763 }
3764
VisitPseudoObjectExpr(PseudoObjectExpr * E)3765 CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
3766 autoCreateBlock();
3767
3768 // Add the PseudoObject as the last thing.
3769 appendStmt(Block, E);
3770
3771 CFGBlock *lastBlock = Block;
3772
3773 // Before that, evaluate all of the semantics in order. In
3774 // CFG-land, that means appending them in reverse order.
3775 for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
3776 Expr *Semantic = E->getSemanticExpr(--i);
3777
3778 // If the semantic is an opaque value, we're being asked to bind
3779 // it to its source expression.
3780 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
3781 Semantic = OVE->getSourceExpr();
3782
3783 if (CFGBlock *B = Visit(Semantic))
3784 lastBlock = B;
3785 }
3786
3787 return lastBlock;
3788 }
3789
VisitWhileStmt(WhileStmt * W)3790 CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
3791 CFGBlock *LoopSuccessor = nullptr;
3792
3793 // Save local scope position because in case of condition variable ScopePos
3794 // won't be restored when traversing AST.
3795 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3796
3797 // Create local scope for possible condition variable.
3798 // Store scope position for continue statement.
3799 LocalScope::const_iterator LoopBeginScopePos = ScopePos;
3800 if (VarDecl *VD = W->getConditionVariable()) {
3801 addLocalScopeForVarDecl(VD);
3802 addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
3803 }
3804 addLoopExit(W);
3805
3806 // "while" is a control-flow statement. Thus we stop processing the current
3807 // block.
3808 if (Block) {
3809 if (badCFG)
3810 return nullptr;
3811 LoopSuccessor = Block;
3812 Block = nullptr;
3813 } else {
3814 LoopSuccessor = Succ;
3815 }
3816
3817 CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
3818
3819 // Process the loop body.
3820 {
3821 assert(W->getBody());
3822
3823 // Save the current values for Block, Succ, continue and break targets.
3824 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3825 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
3826 save_break(BreakJumpTarget);
3827
3828 // Create an empty block to represent the transition block for looping back
3829 // to the head of the loop.
3830 Succ = TransitionBlock = createBlock(false);
3831 TransitionBlock->setLoopTarget(W);
3832 ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
3833
3834 // All breaks should go to the code following the loop.
3835 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3836
3837 // Loop body should end with destructor of Condition variable (if any).
3838 addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
3839
3840 // If body is not a compound statement create implicit scope
3841 // and add destructors.
3842 if (!isa<CompoundStmt>(W->getBody()))
3843 addLocalScopeAndDtors(W->getBody());
3844
3845 // Create the body. The returned block is the entry to the loop body.
3846 BodyBlock = addStmt(W->getBody());
3847
3848 if (!BodyBlock)
3849 BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
3850 else if (Block && badCFG)
3851 return nullptr;
3852 }
3853
3854 // Because of short-circuit evaluation, the condition of the loop can span
3855 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
3856 // evaluate the condition.
3857 CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
3858
3859 do {
3860 Expr *C = W->getCond();
3861
3862 // Specially handle logical operators, which have a slightly
3863 // more optimal CFG representation.
3864 if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
3865 if (Cond->isLogicalOp()) {
3866 std::tie(EntryConditionBlock, ExitConditionBlock) =
3867 VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor);
3868 break;
3869 }
3870
3871 // The default case when not handling logical operators.
3872 ExitConditionBlock = createBlock(false);
3873 ExitConditionBlock->setTerminator(W);
3874
3875 // Now add the actual condition to the condition block.
3876 // Because the condition itself may contain control-flow, new blocks may
3877 // be created. Thus we update "Succ" after adding the condition.
3878 Block = ExitConditionBlock;
3879 Block = EntryConditionBlock = addStmt(C);
3880
3881 // If this block contains a condition variable, add both the condition
3882 // variable and initializer to the CFG.
3883 if (VarDecl *VD = W->getConditionVariable()) {
3884 if (Expr *Init = VD->getInit()) {
3885 autoCreateBlock();
3886 const DeclStmt *DS = W->getConditionVariableDeclStmt();
3887 assert(DS->isSingleDecl());
3888 findConstructionContexts(
3889 ConstructionContextLayer::create(cfg->getBumpVectorContext(),
3890 const_cast<DeclStmt *>(DS)),
3891 Init);
3892 appendStmt(Block, DS);
3893 EntryConditionBlock = addStmt(Init);
3894 assert(Block == EntryConditionBlock);
3895 maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
3896 }
3897 }
3898
3899 if (Block && badCFG)
3900 return nullptr;
3901
3902 // See if this is a known constant.
3903 const TryResult& KnownVal = tryEvaluateBool(C);
3904
3905 // Add the loop body entry as a successor to the condition.
3906 addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
3907 // Link up the condition block with the code that follows the loop. (the
3908 // false branch).
3909 addSuccessor(ExitConditionBlock,
3910 KnownVal.isTrue() ? nullptr : LoopSuccessor);
3911 } while(false);
3912
3913 // Link up the loop-back block to the entry condition block.
3914 addSuccessor(TransitionBlock, EntryConditionBlock);
3915
3916 // There can be no more statements in the condition block since we loop back
3917 // to this block. NULL out Block to force lazy creation of another block.
3918 Block = nullptr;
3919
3920 // Return the condition block, which is the dominating block for the loop.
3921 Succ = EntryConditionBlock;
3922 return EntryConditionBlock;
3923 }
3924
VisitArrayInitLoopExpr(ArrayInitLoopExpr * A,AddStmtChoice asc)3925 CFGBlock *CFGBuilder::VisitArrayInitLoopExpr(ArrayInitLoopExpr *A,
3926 AddStmtChoice asc) {
3927 if (asc.alwaysAdd(*this, A)) {
3928 autoCreateBlock();
3929 appendStmt(Block, A);
3930 }
3931
3932 CFGBlock *B = Block;
3933
3934 if (CFGBlock *R = Visit(A->getSubExpr()))
3935 B = R;
3936
3937 auto *OVE = dyn_cast<OpaqueValueExpr>(A->getCommonExpr());
3938 assert(OVE && "ArrayInitLoopExpr->getCommonExpr() should be wrapped in an "
3939 "OpaqueValueExpr!");
3940 if (CFGBlock *R = Visit(OVE->getSourceExpr()))
3941 B = R;
3942
3943 return B;
3944 }
3945
VisitObjCAtCatchStmt(ObjCAtCatchStmt * CS)3946 CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *CS) {
3947 // ObjCAtCatchStmt are treated like labels, so they are the first statement
3948 // in a block.
3949
3950 // Save local scope position because in case of exception variable ScopePos
3951 // won't be restored when traversing AST.
3952 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3953
3954 if (CS->getCatchBody())
3955 addStmt(CS->getCatchBody());
3956
3957 CFGBlock *CatchBlock = Block;
3958 if (!CatchBlock)
3959 CatchBlock = createBlock();
3960
3961 appendStmt(CatchBlock, CS);
3962
3963 // Also add the ObjCAtCatchStmt as a label, like with regular labels.
3964 CatchBlock->setLabel(CS);
3965
3966 // Bail out if the CFG is bad.
3967 if (badCFG)
3968 return nullptr;
3969
3970 // We set Block to NULL to allow lazy creation of a new block (if necessary).
3971 Block = nullptr;
3972
3973 return CatchBlock;
3974 }
3975
VisitObjCAtThrowStmt(ObjCAtThrowStmt * S)3976 CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
3977 // If we were in the middle of a block we stop processing that block.
3978 if (badCFG)
3979 return nullptr;
3980
3981 // Create the new block.
3982 Block = createBlock(false);
3983
3984 if (TryTerminatedBlock)
3985 // The current try statement is the only successor.
3986 addSuccessor(Block, TryTerminatedBlock);
3987 else
3988 // otherwise the Exit block is the only successor.
3989 addSuccessor(Block, &cfg->getExit());
3990
3991 // Add the statement to the block. This may create new blocks if S contains
3992 // control-flow (short-circuit operations).
3993 return VisitStmt(S, AddStmtChoice::AlwaysAdd);
3994 }
3995
VisitObjCAtTryStmt(ObjCAtTryStmt * Terminator)3996 CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *Terminator) {
3997 // "@try"/"@catch" is a control-flow statement. Thus we stop processing the
3998 // current block.
3999 CFGBlock *TrySuccessor = nullptr;
4000
4001 if (Block) {
4002 if (badCFG)
4003 return nullptr;
4004 TrySuccessor = Block;
4005 } else
4006 TrySuccessor = Succ;
4007
4008 // FIXME: Implement @finally support.
4009 if (Terminator->getFinallyStmt())
4010 return NYS();
4011
4012 CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
4013
4014 // Create a new block that will contain the try statement.
4015 CFGBlock *NewTryTerminatedBlock = createBlock(false);
4016 // Add the terminator in the try block.
4017 NewTryTerminatedBlock->setTerminator(Terminator);
4018
4019 bool HasCatchAll = false;
4020 for (ObjCAtCatchStmt *CS : Terminator->catch_stmts()) {
4021 // The code after the try is the implicit successor.
4022 Succ = TrySuccessor;
4023 if (CS->hasEllipsis()) {
4024 HasCatchAll = true;
4025 }
4026 Block = nullptr;
4027 CFGBlock *CatchBlock = VisitObjCAtCatchStmt(CS);
4028 if (!CatchBlock)
4029 return nullptr;
4030 // Add this block to the list of successors for the block with the try
4031 // statement.
4032 addSuccessor(NewTryTerminatedBlock, CatchBlock);
4033 }
4034
4035 // FIXME: This needs updating when @finally support is added.
4036 if (!HasCatchAll) {
4037 if (PrevTryTerminatedBlock)
4038 addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
4039 else
4040 addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
4041 }
4042
4043 // The code after the try is the implicit successor.
4044 Succ = TrySuccessor;
4045
4046 // Save the current "try" context.
4047 SaveAndRestore<CFGBlock *> SaveTry(TryTerminatedBlock, NewTryTerminatedBlock);
4048 cfg->addTryDispatchBlock(TryTerminatedBlock);
4049
4050 assert(Terminator->getTryBody() && "try must contain a non-NULL body");
4051 Block = nullptr;
4052 return addStmt(Terminator->getTryBody());
4053 }
4054
VisitObjCMessageExpr(ObjCMessageExpr * ME,AddStmtChoice asc)4055 CFGBlock *CFGBuilder::VisitObjCMessageExpr(ObjCMessageExpr *ME,
4056 AddStmtChoice asc) {
4057 findConstructionContextsForArguments(ME);
4058
4059 autoCreateBlock();
4060 appendObjCMessage(Block, ME);
4061
4062 return VisitChildren(ME);
4063 }
4064
VisitCXXThrowExpr(CXXThrowExpr * T)4065 CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
4066 // If we were in the middle of a block we stop processing that block.
4067 if (badCFG)
4068 return nullptr;
4069
4070 // Create the new block.
4071 Block = createBlock(false);
4072
4073 if (TryTerminatedBlock)
4074 // The current try statement is the only successor.
4075 addSuccessor(Block, TryTerminatedBlock);
4076 else
4077 // otherwise the Exit block is the only successor.
4078 addSuccessor(Block, &cfg->getExit());
4079
4080 // Add the statement to the block. This may create new blocks if S contains
4081 // control-flow (short-circuit operations).
4082 return VisitStmt(T, AddStmtChoice::AlwaysAdd);
4083 }
4084
VisitCXXTypeidExpr(CXXTypeidExpr * S,AddStmtChoice asc)4085 CFGBlock *CFGBuilder::VisitCXXTypeidExpr(CXXTypeidExpr *S, AddStmtChoice asc) {
4086 if (asc.alwaysAdd(*this, S)) {
4087 autoCreateBlock();
4088 appendStmt(Block, S);
4089 }
4090
4091 // C++ [expr.typeid]p3:
4092 // When typeid is applied to an expression other than an glvalue of a
4093 // polymorphic class type [...] [the] expression is an unevaluated
4094 // operand. [...]
4095 // We add only potentially evaluated statements to the block to avoid
4096 // CFG generation for unevaluated operands.
4097 if (S && !S->isTypeDependent() && S->isPotentiallyEvaluated())
4098 return VisitChildren(S);
4099
4100 // Return block without CFG for unevaluated operands.
4101 return Block;
4102 }
4103
VisitDoStmt(DoStmt * D)4104 CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
4105 CFGBlock *LoopSuccessor = nullptr;
4106
4107 addLoopExit(D);
4108
4109 // "do...while" is a control-flow statement. Thus we stop processing the
4110 // current block.
4111 if (Block) {
4112 if (badCFG)
4113 return nullptr;
4114 LoopSuccessor = Block;
4115 } else
4116 LoopSuccessor = Succ;
4117
4118 // Because of short-circuit evaluation, the condition of the loop can span
4119 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
4120 // evaluate the condition.
4121 CFGBlock *ExitConditionBlock = createBlock(false);
4122 CFGBlock *EntryConditionBlock = ExitConditionBlock;
4123
4124 // Set the terminator for the "exit" condition block.
4125 ExitConditionBlock->setTerminator(D);
4126
4127 // Now add the actual condition to the condition block. Because the condition
4128 // itself may contain control-flow, new blocks may be created.
4129 if (Stmt *C = D->getCond()) {
4130 Block = ExitConditionBlock;
4131 EntryConditionBlock = addStmt(C);
4132 if (Block) {
4133 if (badCFG)
4134 return nullptr;
4135 }
4136 }
4137
4138 // The condition block is the implicit successor for the loop body.
4139 Succ = EntryConditionBlock;
4140
4141 // See if this is a known constant.
4142 const TryResult &KnownVal = tryEvaluateBool(D->getCond());
4143
4144 // Process the loop body.
4145 CFGBlock *BodyBlock = nullptr;
4146 {
4147 assert(D->getBody());
4148
4149 // Save the current values for Block, Succ, and continue and break targets
4150 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
4151 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
4152 save_break(BreakJumpTarget);
4153
4154 // All continues within this loop should go to the condition block
4155 ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
4156
4157 // All breaks should go to the code following the loop.
4158 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
4159
4160 // NULL out Block to force lazy instantiation of blocks for the body.
4161 Block = nullptr;
4162
4163 // If body is not a compound statement create implicit scope
4164 // and add destructors.
4165 if (!isa<CompoundStmt>(D->getBody()))
4166 addLocalScopeAndDtors(D->getBody());
4167
4168 // Create the body. The returned block is the entry to the loop body.
4169 BodyBlock = addStmt(D->getBody());
4170
4171 if (!BodyBlock)
4172 BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
4173 else if (Block) {
4174 if (badCFG)
4175 return nullptr;
4176 }
4177
4178 // Add an intermediate block between the BodyBlock and the
4179 // ExitConditionBlock to represent the "loop back" transition. Create an
4180 // empty block to represent the transition block for looping back to the
4181 // head of the loop.
4182 // FIXME: Can we do this more efficiently without adding another block?
4183 Block = nullptr;
4184 Succ = BodyBlock;
4185 CFGBlock *LoopBackBlock = createBlock();
4186 LoopBackBlock->setLoopTarget(D);
4187
4188 if (!KnownVal.isFalse())
4189 // Add the loop body entry as a successor to the condition.
4190 addSuccessor(ExitConditionBlock, LoopBackBlock);
4191 else
4192 addSuccessor(ExitConditionBlock, nullptr);
4193 }
4194
4195 // Link up the condition block with the code that follows the loop.
4196 // (the false branch).
4197 addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
4198
4199 // There can be no more statements in the body block(s) since we loop back to
4200 // the body. NULL out Block to force lazy creation of another block.
4201 Block = nullptr;
4202
4203 // Return the loop body, which is the dominating block for the loop.
4204 Succ = BodyBlock;
4205 return BodyBlock;
4206 }
4207
VisitContinueStmt(ContinueStmt * C)4208 CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
4209 // "continue" is a control-flow statement. Thus we stop processing the
4210 // current block.
4211 if (badCFG)
4212 return nullptr;
4213
4214 // Now create a new block that ends with the continue statement.
4215 Block = createBlock(false);
4216 Block->setTerminator(C);
4217
4218 // If there is no target for the continue, then we are looking at an
4219 // incomplete AST. This means the CFG cannot be constructed.
4220 if (ContinueJumpTarget.block) {
4221 addAutomaticObjHandling(ScopePos, ContinueJumpTarget.scopePosition, C);
4222 addSuccessor(Block, ContinueJumpTarget.block);
4223 } else
4224 badCFG = true;
4225
4226 return Block;
4227 }
4228
VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr * E,AddStmtChoice asc)4229 CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
4230 AddStmtChoice asc) {
4231 if (asc.alwaysAdd(*this, E)) {
4232 autoCreateBlock();
4233 appendStmt(Block, E);
4234 }
4235
4236 // VLA types have expressions that must be evaluated.
4237 // Evaluation is done only for `sizeof`.
4238
4239 if (E->getKind() != UETT_SizeOf)
4240 return Block;
4241
4242 CFGBlock *lastBlock = Block;
4243
4244 if (E->isArgumentType()) {
4245 for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
4246 VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr()))
4247 lastBlock = addStmt(VA->getSizeExpr());
4248 }
4249 return lastBlock;
4250 }
4251
4252 /// VisitStmtExpr - Utility method to handle (nested) statement
4253 /// expressions (a GCC extension).
VisitStmtExpr(StmtExpr * SE,AddStmtChoice asc)4254 CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
4255 if (asc.alwaysAdd(*this, SE)) {
4256 autoCreateBlock();
4257 appendStmt(Block, SE);
4258 }
4259 return VisitCompoundStmt(SE->getSubStmt(), /*ExternallyDestructed=*/true);
4260 }
4261
VisitSwitchStmt(SwitchStmt * Terminator)4262 CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
4263 // "switch" is a control-flow statement. Thus we stop processing the current
4264 // block.
4265 CFGBlock *SwitchSuccessor = nullptr;
4266
4267 // Save local scope position because in case of condition variable ScopePos
4268 // won't be restored when traversing AST.
4269 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
4270
4271 // Create local scope for C++17 switch init-stmt if one exists.
4272 if (Stmt *Init = Terminator->getInit())
4273 addLocalScopeForStmt(Init);
4274
4275 // Create local scope for possible condition variable.
4276 // Store scope position. Add implicit destructor.
4277 if (VarDecl *VD = Terminator->getConditionVariable())
4278 addLocalScopeForVarDecl(VD);
4279
4280 addAutomaticObjHandling(ScopePos, save_scope_pos.get(), Terminator);
4281
4282 if (Block) {
4283 if (badCFG)
4284 return nullptr;
4285 SwitchSuccessor = Block;
4286 } else SwitchSuccessor = Succ;
4287
4288 // Save the current "switch" context.
4289 SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
4290 save_default(DefaultCaseBlock);
4291 SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
4292
4293 // Set the "default" case to be the block after the switch statement. If the
4294 // switch statement contains a "default:", this value will be overwritten with
4295 // the block for that code.
4296 DefaultCaseBlock = SwitchSuccessor;
4297
4298 // Create a new block that will contain the switch statement.
4299 SwitchTerminatedBlock = createBlock(false);
4300
4301 // Now process the switch body. The code after the switch is the implicit
4302 // successor.
4303 Succ = SwitchSuccessor;
4304 BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
4305
4306 // When visiting the body, the case statements should automatically get linked
4307 // up to the switch. We also don't keep a pointer to the body, since all
4308 // control-flow from the switch goes to case/default statements.
4309 assert(Terminator->getBody() && "switch must contain a non-NULL body");
4310 Block = nullptr;
4311
4312 // For pruning unreachable case statements, save the current state
4313 // for tracking the condition value.
4314 SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
4315 false);
4316
4317 // Determine if the switch condition can be explicitly evaluated.
4318 assert(Terminator->getCond() && "switch condition must be non-NULL");
4319 Expr::EvalResult result;
4320 bool b = tryEvaluate(Terminator->getCond(), result);
4321 SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
4322 b ? &result : nullptr);
4323
4324 // If body is not a compound statement create implicit scope
4325 // and add destructors.
4326 if (!isa<CompoundStmt>(Terminator->getBody()))
4327 addLocalScopeAndDtors(Terminator->getBody());
4328
4329 addStmt(Terminator->getBody());
4330 if (Block) {
4331 if (badCFG)
4332 return nullptr;
4333 }
4334
4335 // If we have no "default:" case, the default transition is to the code
4336 // following the switch body. Moreover, take into account if all the
4337 // cases of a switch are covered (e.g., switching on an enum value).
4338 //
4339 // Note: We add a successor to a switch that is considered covered yet has no
4340 // case statements if the enumeration has no enumerators.
4341 bool SwitchAlwaysHasSuccessor = false;
4342 SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
4343 SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
4344 Terminator->getSwitchCaseList();
4345 addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock,
4346 !SwitchAlwaysHasSuccessor);
4347
4348 // Add the terminator and condition in the switch block.
4349 SwitchTerminatedBlock->setTerminator(Terminator);
4350 Block = SwitchTerminatedBlock;
4351 CFGBlock *LastBlock = addStmt(Terminator->getCond());
4352
4353 // If the SwitchStmt contains a condition variable, add both the
4354 // SwitchStmt and the condition variable initialization to the CFG.
4355 if (VarDecl *VD = Terminator->getConditionVariable()) {
4356 if (Expr *Init = VD->getInit()) {
4357 autoCreateBlock();
4358 appendStmt(Block, Terminator->getConditionVariableDeclStmt());
4359 LastBlock = addStmt(Init);
4360 maybeAddScopeBeginForVarDecl(LastBlock, VD, Init);
4361 }
4362 }
4363
4364 // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG.
4365 if (Stmt *Init = Terminator->getInit()) {
4366 autoCreateBlock();
4367 LastBlock = addStmt(Init);
4368 }
4369
4370 return LastBlock;
4371 }
4372
shouldAddCase(bool & switchExclusivelyCovered,const Expr::EvalResult * switchCond,const CaseStmt * CS,ASTContext & Ctx)4373 static bool shouldAddCase(bool &switchExclusivelyCovered,
4374 const Expr::EvalResult *switchCond,
4375 const CaseStmt *CS,
4376 ASTContext &Ctx) {
4377 if (!switchCond)
4378 return true;
4379
4380 bool addCase = false;
4381
4382 if (!switchExclusivelyCovered) {
4383 if (switchCond->Val.isInt()) {
4384 // Evaluate the LHS of the case value.
4385 const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
4386 const llvm::APSInt &condInt = switchCond->Val.getInt();
4387
4388 if (condInt == lhsInt) {
4389 addCase = true;
4390 switchExclusivelyCovered = true;
4391 }
4392 else if (condInt > lhsInt) {
4393 if (const Expr *RHS = CS->getRHS()) {
4394 // Evaluate the RHS of the case value.
4395 const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
4396 if (V2 >= condInt) {
4397 addCase = true;
4398 switchExclusivelyCovered = true;
4399 }
4400 }
4401 }
4402 }
4403 else
4404 addCase = true;
4405 }
4406 return addCase;
4407 }
4408
VisitCaseStmt(CaseStmt * CS)4409 CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
4410 // CaseStmts are essentially labels, so they are the first statement in a
4411 // block.
4412 CFGBlock *TopBlock = nullptr, *LastBlock = nullptr;
4413
4414 if (Stmt *Sub = CS->getSubStmt()) {
4415 // For deeply nested chains of CaseStmts, instead of doing a recursion
4416 // (which can blow out the stack), manually unroll and create blocks
4417 // along the way.
4418 while (isa<CaseStmt>(Sub)) {
4419 CFGBlock *currentBlock = createBlock(false);
4420 currentBlock->setLabel(CS);
4421
4422 if (TopBlock)
4423 addSuccessor(LastBlock, currentBlock);
4424 else
4425 TopBlock = currentBlock;
4426
4427 addSuccessor(SwitchTerminatedBlock,
4428 shouldAddCase(switchExclusivelyCovered, switchCond,
4429 CS, *Context)
4430 ? currentBlock : nullptr);
4431
4432 LastBlock = currentBlock;
4433 CS = cast<CaseStmt>(Sub);
4434 Sub = CS->getSubStmt();
4435 }
4436
4437 addStmt(Sub);
4438 }
4439
4440 CFGBlock *CaseBlock = Block;
4441 if (!CaseBlock)
4442 CaseBlock = createBlock();
4443
4444 // Cases statements partition blocks, so this is the top of the basic block we
4445 // were processing (the "case XXX:" is the label).
4446 CaseBlock->setLabel(CS);
4447
4448 if (badCFG)
4449 return nullptr;
4450
4451 // Add this block to the list of successors for the block with the switch
4452 // statement.
4453 assert(SwitchTerminatedBlock);
4454 addSuccessor(SwitchTerminatedBlock, CaseBlock,
4455 shouldAddCase(switchExclusivelyCovered, switchCond,
4456 CS, *Context));
4457
4458 // We set Block to NULL to allow lazy creation of a new block (if necessary).
4459 Block = nullptr;
4460
4461 if (TopBlock) {
4462 addSuccessor(LastBlock, CaseBlock);
4463 Succ = TopBlock;
4464 } else {
4465 // This block is now the implicit successor of other blocks.
4466 Succ = CaseBlock;
4467 }
4468
4469 return Succ;
4470 }
4471
VisitDefaultStmt(DefaultStmt * Terminator)4472 CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
4473 if (Terminator->getSubStmt())
4474 addStmt(Terminator->getSubStmt());
4475
4476 DefaultCaseBlock = Block;
4477
4478 if (!DefaultCaseBlock)
4479 DefaultCaseBlock = createBlock();
4480
4481 // Default statements partition blocks, so this is the top of the basic block
4482 // we were processing (the "default:" is the label).
4483 DefaultCaseBlock->setLabel(Terminator);
4484
4485 if (badCFG)
4486 return nullptr;
4487
4488 // Unlike case statements, we don't add the default block to the successors
4489 // for the switch statement immediately. This is done when we finish
4490 // processing the switch statement. This allows for the default case
4491 // (including a fall-through to the code after the switch statement) to always
4492 // be the last successor of a switch-terminated block.
4493
4494 // We set Block to NULL to allow lazy creation of a new block (if necessary).
4495 Block = nullptr;
4496
4497 // This block is now the implicit successor of other blocks.
4498 Succ = DefaultCaseBlock;
4499
4500 return DefaultCaseBlock;
4501 }
4502
VisitCXXTryStmt(CXXTryStmt * Terminator)4503 CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
4504 // "try"/"catch" is a control-flow statement. Thus we stop processing the
4505 // current block.
4506 CFGBlock *TrySuccessor = nullptr;
4507
4508 if (Block) {
4509 if (badCFG)
4510 return nullptr;
4511 TrySuccessor = Block;
4512 } else
4513 TrySuccessor = Succ;
4514
4515 CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
4516
4517 // Create a new block that will contain the try statement.
4518 CFGBlock *NewTryTerminatedBlock = createBlock(false);
4519 // Add the terminator in the try block.
4520 NewTryTerminatedBlock->setTerminator(Terminator);
4521
4522 bool HasCatchAll = false;
4523 for (unsigned I = 0, E = Terminator->getNumHandlers(); I != E; ++I) {
4524 // The code after the try is the implicit successor.
4525 Succ = TrySuccessor;
4526 CXXCatchStmt *CS = Terminator->getHandler(I);
4527 if (CS->getExceptionDecl() == nullptr) {
4528 HasCatchAll = true;
4529 }
4530 Block = nullptr;
4531 CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
4532 if (!CatchBlock)
4533 return nullptr;
4534 // Add this block to the list of successors for the block with the try
4535 // statement.
4536 addSuccessor(NewTryTerminatedBlock, CatchBlock);
4537 }
4538 if (!HasCatchAll) {
4539 if (PrevTryTerminatedBlock)
4540 addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
4541 else
4542 addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
4543 }
4544
4545 // The code after the try is the implicit successor.
4546 Succ = TrySuccessor;
4547
4548 // Save the current "try" context.
4549 SaveAndRestore<CFGBlock *> SaveTry(TryTerminatedBlock, NewTryTerminatedBlock);
4550 cfg->addTryDispatchBlock(TryTerminatedBlock);
4551
4552 assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
4553 Block = nullptr;
4554 return addStmt(Terminator->getTryBlock());
4555 }
4556
VisitCXXCatchStmt(CXXCatchStmt * CS)4557 CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
4558 // CXXCatchStmt are treated like labels, so they are the first statement in a
4559 // block.
4560
4561 // Save local scope position because in case of exception variable ScopePos
4562 // won't be restored when traversing AST.
4563 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
4564
4565 // Create local scope for possible exception variable.
4566 // Store scope position. Add implicit destructor.
4567 if (VarDecl *VD = CS->getExceptionDecl()) {
4568 LocalScope::const_iterator BeginScopePos = ScopePos;
4569 addLocalScopeForVarDecl(VD);
4570 addAutomaticObjHandling(ScopePos, BeginScopePos, CS);
4571 }
4572
4573 if (CS->getHandlerBlock())
4574 addStmt(CS->getHandlerBlock());
4575
4576 CFGBlock *CatchBlock = Block;
4577 if (!CatchBlock)
4578 CatchBlock = createBlock();
4579
4580 // CXXCatchStmt is more than just a label. They have semantic meaning
4581 // as well, as they implicitly "initialize" the catch variable. Add
4582 // it to the CFG as a CFGElement so that the control-flow of these
4583 // semantics gets captured.
4584 appendStmt(CatchBlock, CS);
4585
4586 // Also add the CXXCatchStmt as a label, to mirror handling of regular
4587 // labels.
4588 CatchBlock->setLabel(CS);
4589
4590 // Bail out if the CFG is bad.
4591 if (badCFG)
4592 return nullptr;
4593
4594 // We set Block to NULL to allow lazy creation of a new block (if necessary).
4595 Block = nullptr;
4596
4597 return CatchBlock;
4598 }
4599
VisitCXXForRangeStmt(CXXForRangeStmt * S)4600 CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
4601 // C++0x for-range statements are specified as [stmt.ranged]:
4602 //
4603 // {
4604 // auto && __range = range-init;
4605 // for ( auto __begin = begin-expr,
4606 // __end = end-expr;
4607 // __begin != __end;
4608 // ++__begin ) {
4609 // for-range-declaration = *__begin;
4610 // statement
4611 // }
4612 // }
4613
4614 // Save local scope position before the addition of the implicit variables.
4615 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
4616
4617 // Create local scopes and destructors for range, begin and end variables.
4618 if (Stmt *Range = S->getRangeStmt())
4619 addLocalScopeForStmt(Range);
4620 if (Stmt *Begin = S->getBeginStmt())
4621 addLocalScopeForStmt(Begin);
4622 if (Stmt *End = S->getEndStmt())
4623 addLocalScopeForStmt(End);
4624 addAutomaticObjHandling(ScopePos, save_scope_pos.get(), S);
4625
4626 LocalScope::const_iterator ContinueScopePos = ScopePos;
4627
4628 // "for" is a control-flow statement. Thus we stop processing the current
4629 // block.
4630 CFGBlock *LoopSuccessor = nullptr;
4631 if (Block) {
4632 if (badCFG)
4633 return nullptr;
4634 LoopSuccessor = Block;
4635 } else
4636 LoopSuccessor = Succ;
4637
4638 // Save the current value for the break targets.
4639 // All breaks should go to the code following the loop.
4640 SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
4641 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
4642
4643 // The block for the __begin != __end expression.
4644 CFGBlock *ConditionBlock = createBlock(false);
4645 ConditionBlock->setTerminator(S);
4646
4647 // Now add the actual condition to the condition block.
4648 if (Expr *C = S->getCond()) {
4649 Block = ConditionBlock;
4650 CFGBlock *BeginConditionBlock = addStmt(C);
4651 if (badCFG)
4652 return nullptr;
4653 assert(BeginConditionBlock == ConditionBlock &&
4654 "condition block in for-range was unexpectedly complex");
4655 (void)BeginConditionBlock;
4656 }
4657
4658 // The condition block is the implicit successor for the loop body as well as
4659 // any code above the loop.
4660 Succ = ConditionBlock;
4661
4662 // See if this is a known constant.
4663 TryResult KnownVal(true);
4664
4665 if (S->getCond())
4666 KnownVal = tryEvaluateBool(S->getCond());
4667
4668 // Now create the loop body.
4669 {
4670 assert(S->getBody());
4671
4672 // Save the current values for Block, Succ, and continue targets.
4673 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
4674 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
4675
4676 // Generate increment code in its own basic block. This is the target of
4677 // continue statements.
4678 Block = nullptr;
4679 Succ = addStmt(S->getInc());
4680 if (badCFG)
4681 return nullptr;
4682 ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
4683
4684 // The starting block for the loop increment is the block that should
4685 // represent the 'loop target' for looping back to the start of the loop.
4686 ContinueJumpTarget.block->setLoopTarget(S);
4687
4688 // Finish up the increment block and prepare to start the loop body.
4689 assert(Block);
4690 if (badCFG)
4691 return nullptr;
4692 Block = nullptr;
4693
4694 // Add implicit scope and dtors for loop variable.
4695 addLocalScopeAndDtors(S->getLoopVarStmt());
4696
4697 // If body is not a compound statement create implicit scope
4698 // and add destructors.
4699 if (!isa<CompoundStmt>(S->getBody()))
4700 addLocalScopeAndDtors(S->getBody());
4701
4702 // Populate a new block to contain the loop body and loop variable.
4703 addStmt(S->getBody());
4704
4705 if (badCFG)
4706 return nullptr;
4707 CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
4708 if (badCFG)
4709 return nullptr;
4710
4711 // This new body block is a successor to our condition block.
4712 addSuccessor(ConditionBlock,
4713 KnownVal.isFalse() ? nullptr : LoopVarStmtBlock);
4714 }
4715
4716 // Link up the condition block with the code that follows the loop (the
4717 // false branch).
4718 addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
4719
4720 // Add the initialization statements.
4721 Block = createBlock();
4722 addStmt(S->getBeginStmt());
4723 addStmt(S->getEndStmt());
4724 CFGBlock *Head = addStmt(S->getRangeStmt());
4725 if (S->getInit())
4726 Head = addStmt(S->getInit());
4727 return Head;
4728 }
4729
VisitExprWithCleanups(ExprWithCleanups * E,AddStmtChoice asc,bool ExternallyDestructed)4730 CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
4731 AddStmtChoice asc, bool ExternallyDestructed) {
4732 if (BuildOpts.AddTemporaryDtors) {
4733 // If adding implicit destructors visit the full expression for adding
4734 // destructors of temporaries.
4735 TempDtorContext Context;
4736 VisitForTemporaryDtors(E->getSubExpr(), ExternallyDestructed, Context);
4737
4738 // Full expression has to be added as CFGStmt so it will be sequenced
4739 // before destructors of it's temporaries.
4740 asc = asc.withAlwaysAdd(true);
4741 }
4742 return Visit(E->getSubExpr(), asc);
4743 }
4744
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E,AddStmtChoice asc)4745 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
4746 AddStmtChoice asc) {
4747 if (asc.alwaysAdd(*this, E)) {
4748 autoCreateBlock();
4749 appendStmt(Block, E);
4750
4751 findConstructionContexts(
4752 ConstructionContextLayer::create(cfg->getBumpVectorContext(), E),
4753 E->getSubExpr());
4754
4755 // We do not want to propagate the AlwaysAdd property.
4756 asc = asc.withAlwaysAdd(false);
4757 }
4758 return Visit(E->getSubExpr(), asc);
4759 }
4760
VisitCXXConstructExpr(CXXConstructExpr * C,AddStmtChoice asc)4761 CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
4762 AddStmtChoice asc) {
4763 // If the constructor takes objects as arguments by value, we need to properly
4764 // construct these objects. Construction contexts we find here aren't for the
4765 // constructor C, they're for its arguments only.
4766 findConstructionContextsForArguments(C);
4767
4768 autoCreateBlock();
4769 appendConstructor(Block, C);
4770
4771 return VisitChildren(C);
4772 }
4773
VisitCXXNewExpr(CXXNewExpr * NE,AddStmtChoice asc)4774 CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE,
4775 AddStmtChoice asc) {
4776 autoCreateBlock();
4777 appendStmt(Block, NE);
4778
4779 findConstructionContexts(
4780 ConstructionContextLayer::create(cfg->getBumpVectorContext(), NE),
4781 const_cast<CXXConstructExpr *>(NE->getConstructExpr()));
4782
4783 if (NE->getInitializer())
4784 Block = Visit(NE->getInitializer());
4785
4786 if (BuildOpts.AddCXXNewAllocator)
4787 appendNewAllocator(Block, NE);
4788
4789 if (NE->isArray() && *NE->getArraySize())
4790 Block = Visit(*NE->getArraySize());
4791
4792 for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(),
4793 E = NE->placement_arg_end(); I != E; ++I)
4794 Block = Visit(*I);
4795
4796 return Block;
4797 }
4798
VisitCXXDeleteExpr(CXXDeleteExpr * DE,AddStmtChoice asc)4799 CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE,
4800 AddStmtChoice asc) {
4801 autoCreateBlock();
4802 appendStmt(Block, DE);
4803 QualType DTy = DE->getDestroyedType();
4804 if (!DTy.isNull()) {
4805 DTy = DTy.getNonReferenceType();
4806 CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl();
4807 if (RD) {
4808 if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor())
4809 appendDeleteDtor(Block, RD, DE);
4810 }
4811 }
4812
4813 return VisitChildren(DE);
4814 }
4815
VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr * E,AddStmtChoice asc)4816 CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
4817 AddStmtChoice asc) {
4818 if (asc.alwaysAdd(*this, E)) {
4819 autoCreateBlock();
4820 appendStmt(Block, E);
4821 // We do not want to propagate the AlwaysAdd property.
4822 asc = asc.withAlwaysAdd(false);
4823 }
4824 return Visit(E->getSubExpr(), asc);
4825 }
4826
VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr * C,AddStmtChoice asc)4827 CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
4828 AddStmtChoice asc) {
4829 // If the constructor takes objects as arguments by value, we need to properly
4830 // construct these objects. Construction contexts we find here aren't for the
4831 // constructor C, they're for its arguments only.
4832 findConstructionContextsForArguments(C);
4833
4834 autoCreateBlock();
4835 appendConstructor(Block, C);
4836 return VisitChildren(C);
4837 }
4838
VisitImplicitCastExpr(ImplicitCastExpr * E,AddStmtChoice asc)4839 CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
4840 AddStmtChoice asc) {
4841 if (asc.alwaysAdd(*this, E)) {
4842 autoCreateBlock();
4843 appendStmt(Block, E);
4844 }
4845
4846 if (E->getCastKind() == CK_IntegralToBoolean)
4847 tryEvaluateBool(E->getSubExpr()->IgnoreParens());
4848
4849 return Visit(E->getSubExpr(), AddStmtChoice());
4850 }
4851
VisitConstantExpr(ConstantExpr * E,AddStmtChoice asc)4852 CFGBlock *CFGBuilder::VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc) {
4853 return Visit(E->getSubExpr(), AddStmtChoice());
4854 }
4855
VisitIndirectGotoStmt(IndirectGotoStmt * I)4856 CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
4857 // Lazily create the indirect-goto dispatch block if there isn't one already.
4858 CFGBlock *IBlock = cfg->getIndirectGotoBlock();
4859
4860 if (!IBlock) {
4861 IBlock = createBlock(false);
4862 cfg->setIndirectGotoBlock(IBlock);
4863 }
4864
4865 // IndirectGoto is a control-flow statement. Thus we stop processing the
4866 // current block and create a new one.
4867 if (badCFG)
4868 return nullptr;
4869
4870 Block = createBlock(false);
4871 Block->setTerminator(I);
4872 addSuccessor(Block, IBlock);
4873 return addStmt(I->getTarget());
4874 }
4875
VisitForTemporaryDtors(Stmt * E,bool ExternallyDestructed,TempDtorContext & Context)4876 CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
4877 TempDtorContext &Context) {
4878 assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
4879
4880 tryAgain:
4881 if (!E) {
4882 badCFG = true;
4883 return nullptr;
4884 }
4885 switch (E->getStmtClass()) {
4886 default:
4887 return VisitChildrenForTemporaryDtors(E, false, Context);
4888
4889 case Stmt::InitListExprClass:
4890 return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context);
4891
4892 case Stmt::BinaryOperatorClass:
4893 return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E),
4894 ExternallyDestructed,
4895 Context);
4896
4897 case Stmt::CXXBindTemporaryExprClass:
4898 return VisitCXXBindTemporaryExprForTemporaryDtors(
4899 cast<CXXBindTemporaryExpr>(E), ExternallyDestructed, Context);
4900
4901 case Stmt::BinaryConditionalOperatorClass:
4902 case Stmt::ConditionalOperatorClass:
4903 return VisitConditionalOperatorForTemporaryDtors(
4904 cast<AbstractConditionalOperator>(E), ExternallyDestructed, Context);
4905
4906 case Stmt::ImplicitCastExprClass:
4907 // For implicit cast we want ExternallyDestructed to be passed further.
4908 E = cast<CastExpr>(E)->getSubExpr();
4909 goto tryAgain;
4910
4911 case Stmt::CXXFunctionalCastExprClass:
4912 // For functional cast we want ExternallyDestructed to be passed further.
4913 E = cast<CXXFunctionalCastExpr>(E)->getSubExpr();
4914 goto tryAgain;
4915
4916 case Stmt::ConstantExprClass:
4917 E = cast<ConstantExpr>(E)->getSubExpr();
4918 goto tryAgain;
4919
4920 case Stmt::ParenExprClass:
4921 E = cast<ParenExpr>(E)->getSubExpr();
4922 goto tryAgain;
4923
4924 case Stmt::MaterializeTemporaryExprClass: {
4925 const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(E);
4926 ExternallyDestructed = (MTE->getStorageDuration() != SD_FullExpression);
4927 SmallVector<const Expr *, 2> CommaLHSs;
4928 SmallVector<SubobjectAdjustment, 2> Adjustments;
4929 // Find the expression whose lifetime needs to be extended.
4930 E = const_cast<Expr *>(
4931 cast<MaterializeTemporaryExpr>(E)
4932 ->getSubExpr()
4933 ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
4934 // Visit the skipped comma operator left-hand sides for other temporaries.
4935 for (const Expr *CommaLHS : CommaLHSs) {
4936 VisitForTemporaryDtors(const_cast<Expr *>(CommaLHS),
4937 /*ExternallyDestructed=*/false, Context);
4938 }
4939 goto tryAgain;
4940 }
4941
4942 case Stmt::BlockExprClass:
4943 // Don't recurse into blocks; their subexpressions don't get evaluated
4944 // here.
4945 return Block;
4946
4947 case Stmt::LambdaExprClass: {
4948 // For lambda expressions, only recurse into the capture initializers,
4949 // and not the body.
4950 auto *LE = cast<LambdaExpr>(E);
4951 CFGBlock *B = Block;
4952 for (Expr *Init : LE->capture_inits()) {
4953 if (Init) {
4954 if (CFGBlock *R = VisitForTemporaryDtors(
4955 Init, /*ExternallyDestructed=*/true, Context))
4956 B = R;
4957 }
4958 }
4959 return B;
4960 }
4961
4962 case Stmt::StmtExprClass:
4963 // Don't recurse into statement expressions; any cleanups inside them
4964 // will be wrapped in their own ExprWithCleanups.
4965 return Block;
4966
4967 case Stmt::CXXDefaultArgExprClass:
4968 E = cast<CXXDefaultArgExpr>(E)->getExpr();
4969 goto tryAgain;
4970
4971 case Stmt::CXXDefaultInitExprClass:
4972 E = cast<CXXDefaultInitExpr>(E)->getExpr();
4973 goto tryAgain;
4974 }
4975 }
4976
VisitChildrenForTemporaryDtors(Stmt * E,bool ExternallyDestructed,TempDtorContext & Context)4977 CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E,
4978 bool ExternallyDestructed,
4979 TempDtorContext &Context) {
4980 if (isa<LambdaExpr>(E)) {
4981 // Do not visit the children of lambdas; they have their own CFGs.
4982 return Block;
4983 }
4984
4985 // When visiting children for destructors we want to visit them in reverse
4986 // order that they will appear in the CFG. Because the CFG is built
4987 // bottom-up, this means we visit them in their natural order, which
4988 // reverses them in the CFG.
4989 CFGBlock *B = Block;
4990 for (Stmt *Child : E->children())
4991 if (Child)
4992 if (CFGBlock *R = VisitForTemporaryDtors(Child, ExternallyDestructed, Context))
4993 B = R;
4994
4995 return B;
4996 }
4997
VisitBinaryOperatorForTemporaryDtors(BinaryOperator * E,bool ExternallyDestructed,TempDtorContext & Context)4998 CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(
4999 BinaryOperator *E, bool ExternallyDestructed, TempDtorContext &Context) {
5000 if (E->isCommaOp()) {
5001 // For the comma operator, the LHS expression is evaluated before the RHS
5002 // expression, so prepend temporary destructors for the LHS first.
5003 CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
5004 CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), ExternallyDestructed, Context);
5005 return RHSBlock ? RHSBlock : LHSBlock;
5006 }
5007
5008 if (E->isLogicalOp()) {
5009 VisitForTemporaryDtors(E->getLHS(), false, Context);
5010 TryResult RHSExecuted = tryEvaluateBool(E->getLHS());
5011 if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr)
5012 RHSExecuted.negate();
5013
5014 // We do not know at CFG-construction time whether the right-hand-side was
5015 // executed, thus we add a branch node that depends on the temporary
5016 // constructor call.
5017 TempDtorContext RHSContext(
5018 bothKnownTrue(Context.KnownExecuted, RHSExecuted));
5019 VisitForTemporaryDtors(E->getRHS(), false, RHSContext);
5020 InsertTempDtorDecisionBlock(RHSContext);
5021
5022 return Block;
5023 }
5024
5025 if (E->isAssignmentOp()) {
5026 // For assignment operators, the RHS expression is evaluated before the LHS
5027 // expression, so prepend temporary destructors for the RHS first.
5028 CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
5029 CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
5030 return LHSBlock ? LHSBlock : RHSBlock;
5031 }
5032
5033 // Any other operator is visited normally.
5034 return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context);
5035 }
5036
VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr * E,bool ExternallyDestructed,TempDtorContext & Context)5037 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
5038 CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context) {
5039 // First add destructors for temporaries in subexpression.
5040 // Because VisitCXXBindTemporaryExpr calls setDestructed:
5041 CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr(), true, Context);
5042 if (!ExternallyDestructed) {
5043 // If lifetime of temporary is not prolonged (by assigning to constant
5044 // reference) add destructor for it.
5045
5046 const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
5047
5048 if (Dtor->getParent()->isAnyDestructorNoReturn()) {
5049 // If the destructor is marked as a no-return destructor, we need to
5050 // create a new block for the destructor which does not have as a
5051 // successor anything built thus far. Control won't flow out of this
5052 // block.
5053 if (B) Succ = B;
5054 Block = createNoReturnBlock();
5055 } else if (Context.needsTempDtorBranch()) {
5056 // If we need to introduce a branch, we add a new block that we will hook
5057 // up to a decision block later.
5058 if (B) Succ = B;
5059 Block = createBlock();
5060 } else {
5061 autoCreateBlock();
5062 }
5063 if (Context.needsTempDtorBranch()) {
5064 Context.setDecisionPoint(Succ, E);
5065 }
5066 appendTemporaryDtor(Block, E);
5067
5068 B = Block;
5069 }
5070 return B;
5071 }
5072
InsertTempDtorDecisionBlock(const TempDtorContext & Context,CFGBlock * FalseSucc)5073 void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context,
5074 CFGBlock *FalseSucc) {
5075 if (!Context.TerminatorExpr) {
5076 // If no temporary was found, we do not need to insert a decision point.
5077 return;
5078 }
5079 assert(Context.TerminatorExpr);
5080 CFGBlock *Decision = createBlock(false);
5081 Decision->setTerminator(CFGTerminator(Context.TerminatorExpr,
5082 CFGTerminator::TemporaryDtorsBranch));
5083 addSuccessor(Decision, Block, !Context.KnownExecuted.isFalse());
5084 addSuccessor(Decision, FalseSucc ? FalseSucc : Context.Succ,
5085 !Context.KnownExecuted.isTrue());
5086 Block = Decision;
5087 }
5088
VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator * E,bool ExternallyDestructed,TempDtorContext & Context)5089 CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
5090 AbstractConditionalOperator *E, bool ExternallyDestructed,
5091 TempDtorContext &Context) {
5092 VisitForTemporaryDtors(E->getCond(), false, Context);
5093 CFGBlock *ConditionBlock = Block;
5094 CFGBlock *ConditionSucc = Succ;
5095 TryResult ConditionVal = tryEvaluateBool(E->getCond());
5096 TryResult NegatedVal = ConditionVal;
5097 if (NegatedVal.isKnown()) NegatedVal.negate();
5098
5099 TempDtorContext TrueContext(
5100 bothKnownTrue(Context.KnownExecuted, ConditionVal));
5101 VisitForTemporaryDtors(E->getTrueExpr(), ExternallyDestructed, TrueContext);
5102 CFGBlock *TrueBlock = Block;
5103
5104 Block = ConditionBlock;
5105 Succ = ConditionSucc;
5106 TempDtorContext FalseContext(
5107 bothKnownTrue(Context.KnownExecuted, NegatedVal));
5108 VisitForTemporaryDtors(E->getFalseExpr(), ExternallyDestructed, FalseContext);
5109
5110 if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) {
5111 InsertTempDtorDecisionBlock(FalseContext, TrueBlock);
5112 } else if (TrueContext.TerminatorExpr) {
5113 Block = TrueBlock;
5114 InsertTempDtorDecisionBlock(TrueContext);
5115 } else {
5116 InsertTempDtorDecisionBlock(FalseContext);
5117 }
5118 return Block;
5119 }
5120
VisitOMPExecutableDirective(OMPExecutableDirective * D,AddStmtChoice asc)5121 CFGBlock *CFGBuilder::VisitOMPExecutableDirective(OMPExecutableDirective *D,
5122 AddStmtChoice asc) {
5123 if (asc.alwaysAdd(*this, D)) {
5124 autoCreateBlock();
5125 appendStmt(Block, D);
5126 }
5127
5128 // Iterate over all used expression in clauses.
5129 CFGBlock *B = Block;
5130
5131 // Reverse the elements to process them in natural order. Iterators are not
5132 // bidirectional, so we need to create temp vector.
5133 SmallVector<Stmt *, 8> Used(
5134 OMPExecutableDirective::used_clauses_children(D->clauses()));
5135 for (Stmt *S : llvm::reverse(Used)) {
5136 assert(S && "Expected non-null used-in-clause child.");
5137 if (CFGBlock *R = Visit(S))
5138 B = R;
5139 }
5140 // Visit associated structured block if any.
5141 if (!D->isStandaloneDirective()) {
5142 Stmt *S = D->getRawStmt();
5143 if (!isa<CompoundStmt>(S))
5144 addLocalScopeAndDtors(S);
5145 if (CFGBlock *R = addStmt(S))
5146 B = R;
5147 }
5148
5149 return B;
5150 }
5151
5152 /// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has
5153 /// no successors or predecessors. If this is the first block created in the
5154 /// CFG, it is automatically set to be the Entry and Exit of the CFG.
createBlock()5155 CFGBlock *CFG::createBlock() {
5156 bool first_block = begin() == end();
5157
5158 // Create the block.
5159 CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
5160 new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
5161 Blocks.push_back(Mem, BlkBVC);
5162
5163 // If this is the first block, set it as the Entry and Exit.
5164 if (first_block)
5165 Entry = Exit = &back();
5166
5167 // Return the block.
5168 return &back();
5169 }
5170
5171 /// buildCFG - Constructs a CFG from an AST.
buildCFG(const Decl * D,Stmt * Statement,ASTContext * C,const BuildOptions & BO)5172 std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement,
5173 ASTContext *C, const BuildOptions &BO) {
5174 CFGBuilder Builder(C, BO);
5175 return Builder.buildCFG(D, Statement);
5176 }
5177
isLinear() const5178 bool CFG::isLinear() const {
5179 // Quick path: if we only have the ENTRY block, the EXIT block, and some code
5180 // in between, then we have no room for control flow.
5181 if (size() <= 3)
5182 return true;
5183
5184 // Traverse the CFG until we find a branch.
5185 // TODO: While this should still be very fast,
5186 // maybe we should cache the answer.
5187 llvm::SmallPtrSet<const CFGBlock *, 4> Visited;
5188 const CFGBlock *B = Entry;
5189 while (B != Exit) {
5190 auto IteratorAndFlag = Visited.insert(B);
5191 if (!IteratorAndFlag.second) {
5192 // We looped back to a block that we've already visited. Not linear.
5193 return false;
5194 }
5195
5196 // Iterate over reachable successors.
5197 const CFGBlock *FirstReachableB = nullptr;
5198 for (const CFGBlock::AdjacentBlock &AB : B->succs()) {
5199 if (!AB.isReachable())
5200 continue;
5201
5202 if (FirstReachableB == nullptr) {
5203 FirstReachableB = &*AB;
5204 } else {
5205 // We've encountered a branch. It's not a linear CFG.
5206 return false;
5207 }
5208 }
5209
5210 if (!FirstReachableB) {
5211 // We reached a dead end. EXIT is unreachable. This is linear enough.
5212 return true;
5213 }
5214
5215 // There's only one way to move forward. Proceed.
5216 B = FirstReachableB;
5217 }
5218
5219 // We reached EXIT and found no branches.
5220 return true;
5221 }
5222
5223 const CXXDestructorDecl *
getDestructorDecl(ASTContext & astContext) const5224 CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
5225 switch (getKind()) {
5226 case CFGElement::Initializer:
5227 case CFGElement::NewAllocator:
5228 case CFGElement::LoopExit:
5229 case CFGElement::LifetimeEnds:
5230 case CFGElement::Statement:
5231 case CFGElement::Constructor:
5232 case CFGElement::CXXRecordTypedCall:
5233 case CFGElement::ScopeBegin:
5234 case CFGElement::ScopeEnd:
5235 llvm_unreachable("getDestructorDecl should only be used with "
5236 "ImplicitDtors");
5237 case CFGElement::AutomaticObjectDtor: {
5238 const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
5239 QualType ty = var->getType();
5240
5241 // FIXME: See CFGBuilder::addLocalScopeForVarDecl.
5242 //
5243 // Lifetime-extending constructs are handled here. This works for a single
5244 // temporary in an initializer expression.
5245 if (ty->isReferenceType()) {
5246 if (const Expr *Init = var->getInit()) {
5247 ty = getReferenceInitTemporaryType(Init);
5248 }
5249 }
5250
5251 while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
5252 ty = arrayType->getElementType();
5253 }
5254
5255 // The situation when the type of the lifetime-extending reference
5256 // does not correspond to the type of the object is supposed
5257 // to be handled by now. In particular, 'ty' is now the unwrapped
5258 // record type.
5259 const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl();
5260 assert(classDecl);
5261 return classDecl->getDestructor();
5262 }
5263 case CFGElement::DeleteDtor: {
5264 const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr();
5265 QualType DTy = DE->getDestroyedType();
5266 DTy = DTy.getNonReferenceType();
5267 const CXXRecordDecl *classDecl =
5268 astContext.getBaseElementType(DTy)->getAsCXXRecordDecl();
5269 return classDecl->getDestructor();
5270 }
5271 case CFGElement::TemporaryDtor: {
5272 const CXXBindTemporaryExpr *bindExpr =
5273 castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
5274 const CXXTemporary *temp = bindExpr->getTemporary();
5275 return temp->getDestructor();
5276 }
5277 case CFGElement::BaseDtor:
5278 case CFGElement::MemberDtor:
5279 // Not yet supported.
5280 return nullptr;
5281 }
5282 llvm_unreachable("getKind() returned bogus value");
5283 }
5284
5285 //===----------------------------------------------------------------------===//
5286 // CFGBlock operations.
5287 //===----------------------------------------------------------------------===//
5288
AdjacentBlock(CFGBlock * B,bool IsReachable)5289 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable)
5290 : ReachableBlock(IsReachable ? B : nullptr),
5291 UnreachableBlock(!IsReachable ? B : nullptr,
5292 B && IsReachable ? AB_Normal : AB_Unreachable) {}
5293
AdjacentBlock(CFGBlock * B,CFGBlock * AlternateBlock)5294 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock)
5295 : ReachableBlock(B),
5296 UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock,
5297 B == AlternateBlock ? AB_Alternate : AB_Normal) {}
5298
addSuccessor(AdjacentBlock Succ,BumpVectorContext & C)5299 void CFGBlock::addSuccessor(AdjacentBlock Succ,
5300 BumpVectorContext &C) {
5301 if (CFGBlock *B = Succ.getReachableBlock())
5302 B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C);
5303
5304 if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock())
5305 UnreachableB->Preds.push_back(AdjacentBlock(this, false), C);
5306
5307 Succs.push_back(Succ, C);
5308 }
5309
FilterEdge(const CFGBlock::FilterOptions & F,const CFGBlock * From,const CFGBlock * To)5310 bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
5311 const CFGBlock *From, const CFGBlock *To) {
5312 if (F.IgnoreNullPredecessors && !From)
5313 return true;
5314
5315 if (To && From && F.IgnoreDefaultsWithCoveredEnums) {
5316 // If the 'To' has no label or is labeled but the label isn't a
5317 // CaseStmt then filter this edge.
5318 if (const SwitchStmt *S =
5319 dyn_cast_or_null<SwitchStmt>(From->getTerminatorStmt())) {
5320 if (S->isAllEnumCasesCovered()) {
5321 const Stmt *L = To->getLabel();
5322 if (!L || !isa<CaseStmt>(L))
5323 return true;
5324 }
5325 }
5326 }
5327
5328 return false;
5329 }
5330
5331 //===----------------------------------------------------------------------===//
5332 // CFG pretty printing
5333 //===----------------------------------------------------------------------===//
5334
5335 namespace {
5336
5337 class StmtPrinterHelper : public PrinterHelper {
5338 using StmtMapTy = llvm::DenseMap<const Stmt *, std::pair<unsigned, unsigned>>;
5339 using DeclMapTy = llvm::DenseMap<const Decl *, std::pair<unsigned, unsigned>>;
5340
5341 StmtMapTy StmtMap;
5342 DeclMapTy DeclMap;
5343 signed currentBlock = 0;
5344 unsigned currStmt = 0;
5345 const LangOptions &LangOpts;
5346
5347 public:
StmtPrinterHelper(const CFG * cfg,const LangOptions & LO)5348 StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
5349 : LangOpts(LO) {
5350 if (!cfg)
5351 return;
5352 for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
5353 unsigned j = 1;
5354 for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
5355 BI != BEnd; ++BI, ++j ) {
5356 if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
5357 const Stmt *stmt= SE->getStmt();
5358 std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
5359 StmtMap[stmt] = P;
5360
5361 switch (stmt->getStmtClass()) {
5362 case Stmt::DeclStmtClass:
5363 DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
5364 break;
5365 case Stmt::IfStmtClass: {
5366 const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
5367 if (var)
5368 DeclMap[var] = P;
5369 break;
5370 }
5371 case Stmt::ForStmtClass: {
5372 const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
5373 if (var)
5374 DeclMap[var] = P;
5375 break;
5376 }
5377 case Stmt::WhileStmtClass: {
5378 const VarDecl *var =
5379 cast<WhileStmt>(stmt)->getConditionVariable();
5380 if (var)
5381 DeclMap[var] = P;
5382 break;
5383 }
5384 case Stmt::SwitchStmtClass: {
5385 const VarDecl *var =
5386 cast<SwitchStmt>(stmt)->getConditionVariable();
5387 if (var)
5388 DeclMap[var] = P;
5389 break;
5390 }
5391 case Stmt::CXXCatchStmtClass: {
5392 const VarDecl *var =
5393 cast<CXXCatchStmt>(stmt)->getExceptionDecl();
5394 if (var)
5395 DeclMap[var] = P;
5396 break;
5397 }
5398 default:
5399 break;
5400 }
5401 }
5402 }
5403 }
5404 }
5405
5406 ~StmtPrinterHelper() override = default;
5407
getLangOpts() const5408 const LangOptions &getLangOpts() const { return LangOpts; }
setBlockID(signed i)5409 void setBlockID(signed i) { currentBlock = i; }
setStmtID(unsigned i)5410 void setStmtID(unsigned i) { currStmt = i; }
5411
handledStmt(Stmt * S,raw_ostream & OS)5412 bool handledStmt(Stmt *S, raw_ostream &OS) override {
5413 StmtMapTy::iterator I = StmtMap.find(S);
5414
5415 if (I == StmtMap.end())
5416 return false;
5417
5418 if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
5419 && I->second.second == currStmt) {
5420 return false;
5421 }
5422
5423 OS << "[B" << I->second.first << "." << I->second.second << "]";
5424 return true;
5425 }
5426
handleDecl(const Decl * D,raw_ostream & OS)5427 bool handleDecl(const Decl *D, raw_ostream &OS) {
5428 DeclMapTy::iterator I = DeclMap.find(D);
5429
5430 if (I == DeclMap.end())
5431 return false;
5432
5433 if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
5434 && I->second.second == currStmt) {
5435 return false;
5436 }
5437
5438 OS << "[B" << I->second.first << "." << I->second.second << "]";
5439 return true;
5440 }
5441 };
5442
5443 class CFGBlockTerminatorPrint
5444 : public StmtVisitor<CFGBlockTerminatorPrint,void> {
5445 raw_ostream &OS;
5446 StmtPrinterHelper* Helper;
5447 PrintingPolicy Policy;
5448
5449 public:
CFGBlockTerminatorPrint(raw_ostream & os,StmtPrinterHelper * helper,const PrintingPolicy & Policy)5450 CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
5451 const PrintingPolicy &Policy)
5452 : OS(os), Helper(helper), Policy(Policy) {
5453 this->Policy.IncludeNewlines = false;
5454 }
5455
VisitIfStmt(IfStmt * I)5456 void VisitIfStmt(IfStmt *I) {
5457 OS << "if ";
5458 if (Stmt *C = I->getCond())
5459 C->printPretty(OS, Helper, Policy);
5460 }
5461
5462 // Default case.
VisitStmt(Stmt * Terminator)5463 void VisitStmt(Stmt *Terminator) {
5464 Terminator->printPretty(OS, Helper, Policy);
5465 }
5466
VisitDeclStmt(DeclStmt * DS)5467 void VisitDeclStmt(DeclStmt *DS) {
5468 VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
5469 OS << "static init " << VD->getName();
5470 }
5471
VisitForStmt(ForStmt * F)5472 void VisitForStmt(ForStmt *F) {
5473 OS << "for (" ;
5474 if (F->getInit())
5475 OS << "...";
5476 OS << "; ";
5477 if (Stmt *C = F->getCond())
5478 C->printPretty(OS, Helper, Policy);
5479 OS << "; ";
5480 if (F->getInc())
5481 OS << "...";
5482 OS << ")";
5483 }
5484
VisitWhileStmt(WhileStmt * W)5485 void VisitWhileStmt(WhileStmt *W) {
5486 OS << "while " ;
5487 if (Stmt *C = W->getCond())
5488 C->printPretty(OS, Helper, Policy);
5489 }
5490
VisitDoStmt(DoStmt * D)5491 void VisitDoStmt(DoStmt *D) {
5492 OS << "do ... while ";
5493 if (Stmt *C = D->getCond())
5494 C->printPretty(OS, Helper, Policy);
5495 }
5496
VisitSwitchStmt(SwitchStmt * Terminator)5497 void VisitSwitchStmt(SwitchStmt *Terminator) {
5498 OS << "switch ";
5499 Terminator->getCond()->printPretty(OS, Helper, Policy);
5500 }
5501
VisitCXXTryStmt(CXXTryStmt *)5502 void VisitCXXTryStmt(CXXTryStmt *) { OS << "try ..."; }
5503
VisitObjCAtTryStmt(ObjCAtTryStmt *)5504 void VisitObjCAtTryStmt(ObjCAtTryStmt *) { OS << "@try ..."; }
5505
VisitSEHTryStmt(SEHTryStmt * CS)5506 void VisitSEHTryStmt(SEHTryStmt *CS) { OS << "__try ..."; }
5507
VisitAbstractConditionalOperator(AbstractConditionalOperator * C)5508 void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
5509 if (Stmt *Cond = C->getCond())
5510 Cond->printPretty(OS, Helper, Policy);
5511 OS << " ? ... : ...";
5512 }
5513
VisitChooseExpr(ChooseExpr * C)5514 void VisitChooseExpr(ChooseExpr *C) {
5515 OS << "__builtin_choose_expr( ";
5516 if (Stmt *Cond = C->getCond())
5517 Cond->printPretty(OS, Helper, Policy);
5518 OS << " )";
5519 }
5520
VisitIndirectGotoStmt(IndirectGotoStmt * I)5521 void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
5522 OS << "goto *";
5523 if (Stmt *T = I->getTarget())
5524 T->printPretty(OS, Helper, Policy);
5525 }
5526
VisitBinaryOperator(BinaryOperator * B)5527 void VisitBinaryOperator(BinaryOperator* B) {
5528 if (!B->isLogicalOp()) {
5529 VisitExpr(B);
5530 return;
5531 }
5532
5533 if (B->getLHS())
5534 B->getLHS()->printPretty(OS, Helper, Policy);
5535
5536 switch (B->getOpcode()) {
5537 case BO_LOr:
5538 OS << " || ...";
5539 return;
5540 case BO_LAnd:
5541 OS << " && ...";
5542 return;
5543 default:
5544 llvm_unreachable("Invalid logical operator.");
5545 }
5546 }
5547
VisitExpr(Expr * E)5548 void VisitExpr(Expr *E) {
5549 E->printPretty(OS, Helper, Policy);
5550 }
5551
5552 public:
print(CFGTerminator T)5553 void print(CFGTerminator T) {
5554 switch (T.getKind()) {
5555 case CFGTerminator::StmtBranch:
5556 Visit(T.getStmt());
5557 break;
5558 case CFGTerminator::TemporaryDtorsBranch:
5559 OS << "(Temp Dtor) ";
5560 Visit(T.getStmt());
5561 break;
5562 case CFGTerminator::VirtualBaseBranch:
5563 OS << "(See if most derived ctor has already initialized vbases)";
5564 break;
5565 }
5566 }
5567 };
5568
5569 } // namespace
5570
print_initializer(raw_ostream & OS,StmtPrinterHelper & Helper,const CXXCtorInitializer * I)5571 static void print_initializer(raw_ostream &OS, StmtPrinterHelper &Helper,
5572 const CXXCtorInitializer *I) {
5573 if (I->isBaseInitializer())
5574 OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
5575 else if (I->isDelegatingInitializer())
5576 OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
5577 else
5578 OS << I->getAnyMember()->getName();
5579 OS << "(";
5580 if (Expr *IE = I->getInit())
5581 IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5582 OS << ")";
5583
5584 if (I->isBaseInitializer())
5585 OS << " (Base initializer)";
5586 else if (I->isDelegatingInitializer())
5587 OS << " (Delegating initializer)";
5588 else
5589 OS << " (Member initializer)";
5590 }
5591
print_construction_context(raw_ostream & OS,StmtPrinterHelper & Helper,const ConstructionContext * CC)5592 static void print_construction_context(raw_ostream &OS,
5593 StmtPrinterHelper &Helper,
5594 const ConstructionContext *CC) {
5595 SmallVector<const Stmt *, 3> Stmts;
5596 switch (CC->getKind()) {
5597 case ConstructionContext::SimpleConstructorInitializerKind: {
5598 OS << ", ";
5599 const auto *SICC = cast<SimpleConstructorInitializerConstructionContext>(CC);
5600 print_initializer(OS, Helper, SICC->getCXXCtorInitializer());
5601 return;
5602 }
5603 case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind: {
5604 OS << ", ";
5605 const auto *CICC =
5606 cast<CXX17ElidedCopyConstructorInitializerConstructionContext>(CC);
5607 print_initializer(OS, Helper, CICC->getCXXCtorInitializer());
5608 Stmts.push_back(CICC->getCXXBindTemporaryExpr());
5609 break;
5610 }
5611 case ConstructionContext::SimpleVariableKind: {
5612 const auto *SDSCC = cast<SimpleVariableConstructionContext>(CC);
5613 Stmts.push_back(SDSCC->getDeclStmt());
5614 break;
5615 }
5616 case ConstructionContext::CXX17ElidedCopyVariableKind: {
5617 const auto *CDSCC = cast<CXX17ElidedCopyVariableConstructionContext>(CC);
5618 Stmts.push_back(CDSCC->getDeclStmt());
5619 Stmts.push_back(CDSCC->getCXXBindTemporaryExpr());
5620 break;
5621 }
5622 case ConstructionContext::NewAllocatedObjectKind: {
5623 const auto *NECC = cast<NewAllocatedObjectConstructionContext>(CC);
5624 Stmts.push_back(NECC->getCXXNewExpr());
5625 break;
5626 }
5627 case ConstructionContext::SimpleReturnedValueKind: {
5628 const auto *RSCC = cast<SimpleReturnedValueConstructionContext>(CC);
5629 Stmts.push_back(RSCC->getReturnStmt());
5630 break;
5631 }
5632 case ConstructionContext::CXX17ElidedCopyReturnedValueKind: {
5633 const auto *RSCC =
5634 cast<CXX17ElidedCopyReturnedValueConstructionContext>(CC);
5635 Stmts.push_back(RSCC->getReturnStmt());
5636 Stmts.push_back(RSCC->getCXXBindTemporaryExpr());
5637 break;
5638 }
5639 case ConstructionContext::SimpleTemporaryObjectKind: {
5640 const auto *TOCC = cast<SimpleTemporaryObjectConstructionContext>(CC);
5641 Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
5642 Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
5643 break;
5644 }
5645 case ConstructionContext::ElidedTemporaryObjectKind: {
5646 const auto *TOCC = cast<ElidedTemporaryObjectConstructionContext>(CC);
5647 Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
5648 Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
5649 Stmts.push_back(TOCC->getConstructorAfterElision());
5650 break;
5651 }
5652 case ConstructionContext::LambdaCaptureKind: {
5653 const auto *LCC = cast<LambdaCaptureConstructionContext>(CC);
5654 Helper.handledStmt(const_cast<LambdaExpr *>(LCC->getLambdaExpr()), OS);
5655 OS << "+" << LCC->getIndex();
5656 return;
5657 }
5658 case ConstructionContext::ArgumentKind: {
5659 const auto *ACC = cast<ArgumentConstructionContext>(CC);
5660 if (const Stmt *BTE = ACC->getCXXBindTemporaryExpr()) {
5661 OS << ", ";
5662 Helper.handledStmt(const_cast<Stmt *>(BTE), OS);
5663 }
5664 OS << ", ";
5665 Helper.handledStmt(const_cast<Expr *>(ACC->getCallLikeExpr()), OS);
5666 OS << "+" << ACC->getIndex();
5667 return;
5668 }
5669 }
5670 for (auto I: Stmts)
5671 if (I) {
5672 OS << ", ";
5673 Helper.handledStmt(const_cast<Stmt *>(I), OS);
5674 }
5675 }
5676
5677 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
5678 const CFGElement &E);
5679
dumpToStream(llvm::raw_ostream & OS) const5680 void CFGElement::dumpToStream(llvm::raw_ostream &OS) const {
5681 StmtPrinterHelper Helper(nullptr, {});
5682 print_elem(OS, Helper, *this);
5683 }
5684
print_elem(raw_ostream & OS,StmtPrinterHelper & Helper,const CFGElement & E)5685 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
5686 const CFGElement &E) {
5687 switch (E.getKind()) {
5688 case CFGElement::Kind::Statement:
5689 case CFGElement::Kind::CXXRecordTypedCall:
5690 case CFGElement::Kind::Constructor: {
5691 CFGStmt CS = E.castAs<CFGStmt>();
5692 const Stmt *S = CS.getStmt();
5693 assert(S != nullptr && "Expecting non-null Stmt");
5694
5695 // special printing for statement-expressions.
5696 if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
5697 const CompoundStmt *Sub = SE->getSubStmt();
5698
5699 auto Children = Sub->children();
5700 if (Children.begin() != Children.end()) {
5701 OS << "({ ... ; ";
5702 Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
5703 OS << " })\n";
5704 return;
5705 }
5706 }
5707 // special printing for comma expressions.
5708 if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
5709 if (B->getOpcode() == BO_Comma) {
5710 OS << "... , ";
5711 Helper.handledStmt(B->getRHS(),OS);
5712 OS << '\n';
5713 return;
5714 }
5715 }
5716 S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5717
5718 if (auto VTC = E.getAs<CFGCXXRecordTypedCall>()) {
5719 if (isa<CXXOperatorCallExpr>(S))
5720 OS << " (OperatorCall)";
5721 OS << " (CXXRecordTypedCall";
5722 print_construction_context(OS, Helper, VTC->getConstructionContext());
5723 OS << ")";
5724 } else if (isa<CXXOperatorCallExpr>(S)) {
5725 OS << " (OperatorCall)";
5726 } else if (isa<CXXBindTemporaryExpr>(S)) {
5727 OS << " (BindTemporary)";
5728 } else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
5729 OS << " (CXXConstructExpr";
5730 if (Optional<CFGConstructor> CE = E.getAs<CFGConstructor>()) {
5731 print_construction_context(OS, Helper, CE->getConstructionContext());
5732 }
5733 OS << ", " << CCE->getType() << ")";
5734 } else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
5735 OS << " (" << CE->getStmtClassName() << ", " << CE->getCastKindName()
5736 << ", " << CE->getType() << ")";
5737 }
5738
5739 // Expressions need a newline.
5740 if (isa<Expr>(S))
5741 OS << '\n';
5742
5743 break;
5744 }
5745
5746 case CFGElement::Kind::Initializer:
5747 print_initializer(OS, Helper, E.castAs<CFGInitializer>().getInitializer());
5748 OS << '\n';
5749 break;
5750
5751 case CFGElement::Kind::AutomaticObjectDtor: {
5752 CFGAutomaticObjDtor DE = E.castAs<CFGAutomaticObjDtor>();
5753 const VarDecl *VD = DE.getVarDecl();
5754 Helper.handleDecl(VD, OS);
5755
5756 QualType T = VD->getType();
5757 if (T->isReferenceType())
5758 T = getReferenceInitTemporaryType(VD->getInit(), nullptr);
5759
5760 OS << ".~";
5761 T.getUnqualifiedType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5762 OS << "() (Implicit destructor)\n";
5763 break;
5764 }
5765
5766 case CFGElement::Kind::LifetimeEnds:
5767 Helper.handleDecl(E.castAs<CFGLifetimeEnds>().getVarDecl(), OS);
5768 OS << " (Lifetime ends)\n";
5769 break;
5770
5771 case CFGElement::Kind::LoopExit:
5772 OS << E.castAs<CFGLoopExit>().getLoopStmt()->getStmtClassName() << " (LoopExit)\n";
5773 break;
5774
5775 case CFGElement::Kind::ScopeBegin:
5776 OS << "CFGScopeBegin(";
5777 if (const VarDecl *VD = E.castAs<CFGScopeBegin>().getVarDecl())
5778 OS << VD->getQualifiedNameAsString();
5779 OS << ")\n";
5780 break;
5781
5782 case CFGElement::Kind::ScopeEnd:
5783 OS << "CFGScopeEnd(";
5784 if (const VarDecl *VD = E.castAs<CFGScopeEnd>().getVarDecl())
5785 OS << VD->getQualifiedNameAsString();
5786 OS << ")\n";
5787 break;
5788
5789 case CFGElement::Kind::NewAllocator:
5790 OS << "CFGNewAllocator(";
5791 if (const CXXNewExpr *AllocExpr = E.castAs<CFGNewAllocator>().getAllocatorExpr())
5792 AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5793 OS << ")\n";
5794 break;
5795
5796 case CFGElement::Kind::DeleteDtor: {
5797 CFGDeleteDtor DE = E.castAs<CFGDeleteDtor>();
5798 const CXXRecordDecl *RD = DE.getCXXRecordDecl();
5799 if (!RD)
5800 return;
5801 CXXDeleteExpr *DelExpr =
5802 const_cast<CXXDeleteExpr*>(DE.getDeleteExpr());
5803 Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS);
5804 OS << "->~" << RD->getName().str() << "()";
5805 OS << " (Implicit destructor)\n";
5806 break;
5807 }
5808
5809 case CFGElement::Kind::BaseDtor: {
5810 const CXXBaseSpecifier *BS = E.castAs<CFGBaseDtor>().getBaseSpecifier();
5811 OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
5812 OS << " (Base object destructor)\n";
5813 break;
5814 }
5815
5816 case CFGElement::Kind::MemberDtor: {
5817 const FieldDecl *FD = E.castAs<CFGMemberDtor>().getFieldDecl();
5818 const Type *T = FD->getType()->getBaseElementTypeUnsafe();
5819 OS << "this->" << FD->getName();
5820 OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
5821 OS << " (Member object destructor)\n";
5822 break;
5823 }
5824
5825 case CFGElement::Kind::TemporaryDtor: {
5826 const CXXBindTemporaryExpr *BT =
5827 E.castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
5828 OS << "~";
5829 BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
5830 OS << "() (Temporary object destructor)\n";
5831 break;
5832 }
5833 }
5834 }
5835
print_block(raw_ostream & OS,const CFG * cfg,const CFGBlock & B,StmtPrinterHelper & Helper,bool print_edges,bool ShowColors)5836 static void print_block(raw_ostream &OS, const CFG* cfg,
5837 const CFGBlock &B,
5838 StmtPrinterHelper &Helper, bool print_edges,
5839 bool ShowColors) {
5840 Helper.setBlockID(B.getBlockID());
5841
5842 // Print the header.
5843 if (ShowColors)
5844 OS.changeColor(raw_ostream::YELLOW, true);
5845
5846 OS << "\n [B" << B.getBlockID();
5847
5848 if (&B == &cfg->getEntry())
5849 OS << " (ENTRY)]\n";
5850 else if (&B == &cfg->getExit())
5851 OS << " (EXIT)]\n";
5852 else if (&B == cfg->getIndirectGotoBlock())
5853 OS << " (INDIRECT GOTO DISPATCH)]\n";
5854 else if (B.hasNoReturnElement())
5855 OS << " (NORETURN)]\n";
5856 else
5857 OS << "]\n";
5858
5859 if (ShowColors)
5860 OS.resetColor();
5861
5862 // Print the label of this block.
5863 if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
5864 if (print_edges)
5865 OS << " ";
5866
5867 if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
5868 OS << L->getName();
5869 else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
5870 OS << "case ";
5871 if (const Expr *LHS = C->getLHS())
5872 LHS->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5873 if (const Expr *RHS = C->getRHS()) {
5874 OS << " ... ";
5875 RHS->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
5876 }
5877 } else if (isa<DefaultStmt>(Label))
5878 OS << "default";
5879 else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
5880 OS << "catch (";
5881 if (const VarDecl *ED = CS->getExceptionDecl())
5882 ED->print(OS, PrintingPolicy(Helper.getLangOpts()), 0);
5883 else
5884 OS << "...";
5885 OS << ")";
5886 } else if (ObjCAtCatchStmt *CS = dyn_cast<ObjCAtCatchStmt>(Label)) {
5887 OS << "@catch (";
5888 if (const VarDecl *PD = CS->getCatchParamDecl())
5889 PD->print(OS, PrintingPolicy(Helper.getLangOpts()), 0);
5890 else
5891 OS << "...";
5892 OS << ")";
5893 } else if (SEHExceptStmt *ES = dyn_cast<SEHExceptStmt>(Label)) {
5894 OS << "__except (";
5895 ES->getFilterExpr()->printPretty(OS, &Helper,
5896 PrintingPolicy(Helper.getLangOpts()), 0);
5897 OS << ")";
5898 } else
5899 llvm_unreachable("Invalid label statement in CFGBlock.");
5900
5901 OS << ":\n";
5902 }
5903
5904 // Iterate through the statements in the block and print them.
5905 unsigned j = 1;
5906
5907 for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
5908 I != E ; ++I, ++j ) {
5909 // Print the statement # in the basic block and the statement itself.
5910 if (print_edges)
5911 OS << " ";
5912
5913 OS << llvm::format("%3d", j) << ": ";
5914
5915 Helper.setStmtID(j);
5916
5917 print_elem(OS, Helper, *I);
5918 }
5919
5920 // Print the terminator of this block.
5921 if (B.getTerminator().isValid()) {
5922 if (ShowColors)
5923 OS.changeColor(raw_ostream::GREEN);
5924
5925 OS << " T: ";
5926
5927 Helper.setBlockID(-1);
5928
5929 PrintingPolicy PP(Helper.getLangOpts());
5930 CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP);
5931 TPrinter.print(B.getTerminator());
5932 OS << '\n';
5933
5934 if (ShowColors)
5935 OS.resetColor();
5936 }
5937
5938 if (print_edges) {
5939 // Print the predecessors of this block.
5940 if (!B.pred_empty()) {
5941 const raw_ostream::Colors Color = raw_ostream::BLUE;
5942 if (ShowColors)
5943 OS.changeColor(Color);
5944 OS << " Preds " ;
5945 if (ShowColors)
5946 OS.resetColor();
5947 OS << '(' << B.pred_size() << "):";
5948 unsigned i = 0;
5949
5950 if (ShowColors)
5951 OS.changeColor(Color);
5952
5953 for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
5954 I != E; ++I, ++i) {
5955 if (i % 10 == 8)
5956 OS << "\n ";
5957
5958 CFGBlock *B = *I;
5959 bool Reachable = true;
5960 if (!B) {
5961 Reachable = false;
5962 B = I->getPossiblyUnreachableBlock();
5963 }
5964
5965 OS << " B" << B->getBlockID();
5966 if (!Reachable)
5967 OS << "(Unreachable)";
5968 }
5969
5970 if (ShowColors)
5971 OS.resetColor();
5972
5973 OS << '\n';
5974 }
5975
5976 // Print the successors of this block.
5977 if (!B.succ_empty()) {
5978 const raw_ostream::Colors Color = raw_ostream::MAGENTA;
5979 if (ShowColors)
5980 OS.changeColor(Color);
5981 OS << " Succs ";
5982 if (ShowColors)
5983 OS.resetColor();
5984 OS << '(' << B.succ_size() << "):";
5985 unsigned i = 0;
5986
5987 if (ShowColors)
5988 OS.changeColor(Color);
5989
5990 for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
5991 I != E; ++I, ++i) {
5992 if (i % 10 == 8)
5993 OS << "\n ";
5994
5995 CFGBlock *B = *I;
5996
5997 bool Reachable = true;
5998 if (!B) {
5999 Reachable = false;
6000 B = I->getPossiblyUnreachableBlock();
6001 }
6002
6003 if (B) {
6004 OS << " B" << B->getBlockID();
6005 if (!Reachable)
6006 OS << "(Unreachable)";
6007 }
6008 else {
6009 OS << " NULL";
6010 }
6011 }
6012
6013 if (ShowColors)
6014 OS.resetColor();
6015 OS << '\n';
6016 }
6017 }
6018 }
6019
6020 /// dump - A simple pretty printer of a CFG that outputs to stderr.
dump(const LangOptions & LO,bool ShowColors) const6021 void CFG::dump(const LangOptions &LO, bool ShowColors) const {
6022 print(llvm::errs(), LO, ShowColors);
6023 }
6024
6025 /// print - A simple pretty printer of a CFG that outputs to an ostream.
print(raw_ostream & OS,const LangOptions & LO,bool ShowColors) const6026 void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
6027 StmtPrinterHelper Helper(this, LO);
6028
6029 // Print the entry block.
6030 print_block(OS, this, getEntry(), Helper, true, ShowColors);
6031
6032 // Iterate through the CFGBlocks and print them one by one.
6033 for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
6034 // Skip the entry block, because we already printed it.
6035 if (&(**I) == &getEntry() || &(**I) == &getExit())
6036 continue;
6037
6038 print_block(OS, this, **I, Helper, true, ShowColors);
6039 }
6040
6041 // Print the exit block.
6042 print_block(OS, this, getExit(), Helper, true, ShowColors);
6043 OS << '\n';
6044 OS.flush();
6045 }
6046
getIndexInCFG() const6047 size_t CFGBlock::getIndexInCFG() const {
6048 return llvm::find(*getParent(), this) - getParent()->begin();
6049 }
6050
6051 /// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
dump(const CFG * cfg,const LangOptions & LO,bool ShowColors) const6052 void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
6053 bool ShowColors) const {
6054 print(llvm::errs(), cfg, LO, ShowColors);
6055 }
6056
dump() const6057 LLVM_DUMP_METHOD void CFGBlock::dump() const {
6058 dump(getParent(), LangOptions(), false);
6059 }
6060
6061 /// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
6062 /// Generally this will only be called from CFG::print.
print(raw_ostream & OS,const CFG * cfg,const LangOptions & LO,bool ShowColors) const6063 void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
6064 const LangOptions &LO, bool ShowColors) const {
6065 StmtPrinterHelper Helper(cfg, LO);
6066 print_block(OS, cfg, *this, Helper, true, ShowColors);
6067 OS << '\n';
6068 }
6069
6070 /// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
printTerminator(raw_ostream & OS,const LangOptions & LO) const6071 void CFGBlock::printTerminator(raw_ostream &OS,
6072 const LangOptions &LO) const {
6073 CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO));
6074 TPrinter.print(getTerminator());
6075 }
6076
6077 /// printTerminatorJson - Pretty-prints the terminator in JSON format.
printTerminatorJson(raw_ostream & Out,const LangOptions & LO,bool AddQuotes) const6078 void CFGBlock::printTerminatorJson(raw_ostream &Out, const LangOptions &LO,
6079 bool AddQuotes) const {
6080 std::string Buf;
6081 llvm::raw_string_ostream TempOut(Buf);
6082
6083 printTerminator(TempOut, LO);
6084
6085 Out << JsonFormat(TempOut.str(), AddQuotes);
6086 }
6087
6088 // Returns true if by simply looking at the block, we can be sure that it
6089 // results in a sink during analysis. This is useful to know when the analysis
6090 // was interrupted, and we try to figure out if it would sink eventually.
6091 // There may be many more reasons why a sink would appear during analysis
6092 // (eg. checkers may generate sinks arbitrarily), but here we only consider
6093 // sinks that would be obvious by looking at the CFG.
isImmediateSinkBlock(const CFGBlock * Blk)6094 static bool isImmediateSinkBlock(const CFGBlock *Blk) {
6095 if (Blk->hasNoReturnElement())
6096 return true;
6097
6098 // FIXME: Throw-expressions are currently generating sinks during analysis:
6099 // they're not supported yet, and also often used for actually terminating
6100 // the program. So we should treat them as sinks in this analysis as well,
6101 // at least for now, but once we have better support for exceptions,
6102 // we'd need to carefully handle the case when the throw is being
6103 // immediately caught.
6104 if (llvm::any_of(*Blk, [](const CFGElement &Elm) {
6105 if (Optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>())
6106 if (isa<CXXThrowExpr>(StmtElm->getStmt()))
6107 return true;
6108 return false;
6109 }))
6110 return true;
6111
6112 return false;
6113 }
6114
isInevitablySinking() const6115 bool CFGBlock::isInevitablySinking() const {
6116 const CFG &Cfg = *getParent();
6117
6118 const CFGBlock *StartBlk = this;
6119 if (isImmediateSinkBlock(StartBlk))
6120 return true;
6121
6122 llvm::SmallVector<const CFGBlock *, 32> DFSWorkList;
6123 llvm::SmallPtrSet<const CFGBlock *, 32> Visited;
6124
6125 DFSWorkList.push_back(StartBlk);
6126 while (!DFSWorkList.empty()) {
6127 const CFGBlock *Blk = DFSWorkList.back();
6128 DFSWorkList.pop_back();
6129 Visited.insert(Blk);
6130
6131 // If at least one path reaches the CFG exit, it means that control is
6132 // returned to the caller. For now, say that we are not sure what
6133 // happens next. If necessary, this can be improved to analyze
6134 // the parent StackFrameContext's call site in a similar manner.
6135 if (Blk == &Cfg.getExit())
6136 return false;
6137
6138 for (const auto &Succ : Blk->succs()) {
6139 if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) {
6140 if (!isImmediateSinkBlock(SuccBlk) && !Visited.count(SuccBlk)) {
6141 // If the block has reachable child blocks that aren't no-return,
6142 // add them to the worklist.
6143 DFSWorkList.push_back(SuccBlk);
6144 }
6145 }
6146 }
6147 }
6148
6149 // Nothing reached the exit. It can only mean one thing: there's no return.
6150 return true;
6151 }
6152
getLastCondition() const6153 const Expr *CFGBlock::getLastCondition() const {
6154 // If the terminator is a temporary dtor or a virtual base, etc, we can't
6155 // retrieve a meaningful condition, bail out.
6156 if (Terminator.getKind() != CFGTerminator::StmtBranch)
6157 return nullptr;
6158
6159 // Also, if this method was called on a block that doesn't have 2 successors,
6160 // this block doesn't have retrievable condition.
6161 if (succ_size() < 2)
6162 return nullptr;
6163
6164 // FIXME: Is there a better condition expression we can return in this case?
6165 if (size() == 0)
6166 return nullptr;
6167
6168 auto StmtElem = rbegin()->getAs<CFGStmt>();
6169 if (!StmtElem)
6170 return nullptr;
6171
6172 const Stmt *Cond = StmtElem->getStmt();
6173 if (isa<ObjCForCollectionStmt>(Cond) || isa<DeclStmt>(Cond))
6174 return nullptr;
6175
6176 // Only ObjCForCollectionStmt is known not to be a non-Expr terminator, hence
6177 // the cast<>.
6178 return cast<Expr>(Cond)->IgnoreParens();
6179 }
6180
getTerminatorCondition(bool StripParens)6181 Stmt *CFGBlock::getTerminatorCondition(bool StripParens) {
6182 Stmt *Terminator = getTerminatorStmt();
6183 if (!Terminator)
6184 return nullptr;
6185
6186 Expr *E = nullptr;
6187
6188 switch (Terminator->getStmtClass()) {
6189 default:
6190 break;
6191
6192 case Stmt::CXXForRangeStmtClass:
6193 E = cast<CXXForRangeStmt>(Terminator)->getCond();
6194 break;
6195
6196 case Stmt::ForStmtClass:
6197 E = cast<ForStmt>(Terminator)->getCond();
6198 break;
6199
6200 case Stmt::WhileStmtClass:
6201 E = cast<WhileStmt>(Terminator)->getCond();
6202 break;
6203
6204 case Stmt::DoStmtClass:
6205 E = cast<DoStmt>(Terminator)->getCond();
6206 break;
6207
6208 case Stmt::IfStmtClass:
6209 E = cast<IfStmt>(Terminator)->getCond();
6210 break;
6211
6212 case Stmt::ChooseExprClass:
6213 E = cast<ChooseExpr>(Terminator)->getCond();
6214 break;
6215
6216 case Stmt::IndirectGotoStmtClass:
6217 E = cast<IndirectGotoStmt>(Terminator)->getTarget();
6218 break;
6219
6220 case Stmt::SwitchStmtClass:
6221 E = cast<SwitchStmt>(Terminator)->getCond();
6222 break;
6223
6224 case Stmt::BinaryConditionalOperatorClass:
6225 E = cast<BinaryConditionalOperator>(Terminator)->getCond();
6226 break;
6227
6228 case Stmt::ConditionalOperatorClass:
6229 E = cast<ConditionalOperator>(Terminator)->getCond();
6230 break;
6231
6232 case Stmt::BinaryOperatorClass: // '&&' and '||'
6233 E = cast<BinaryOperator>(Terminator)->getLHS();
6234 break;
6235
6236 case Stmt::ObjCForCollectionStmtClass:
6237 return Terminator;
6238 }
6239
6240 if (!StripParens)
6241 return E;
6242
6243 return E ? E->IgnoreParens() : nullptr;
6244 }
6245
6246 //===----------------------------------------------------------------------===//
6247 // CFG Graphviz Visualization
6248 //===----------------------------------------------------------------------===//
6249
6250 static StmtPrinterHelper *GraphHelper;
6251
viewCFG(const LangOptions & LO) const6252 void CFG::viewCFG(const LangOptions &LO) const {
6253 StmtPrinterHelper H(this, LO);
6254 GraphHelper = &H;
6255 llvm::ViewGraph(this,"CFG");
6256 GraphHelper = nullptr;
6257 }
6258
6259 namespace llvm {
6260
6261 template<>
6262 struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
DOTGraphTraitsllvm::DOTGraphTraits6263 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
6264
getNodeLabelllvm::DOTGraphTraits6265 static std::string getNodeLabel(const CFGBlock *Node, const CFG *Graph) {
6266 std::string OutSStr;
6267 llvm::raw_string_ostream Out(OutSStr);
6268 print_block(Out,Graph, *Node, *GraphHelper, false, false);
6269 std::string& OutStr = Out.str();
6270
6271 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
6272
6273 // Process string output to make it nicer...
6274 for (unsigned i = 0; i != OutStr.length(); ++i)
6275 if (OutStr[i] == '\n') { // Left justify
6276 OutStr[i] = '\\';
6277 OutStr.insert(OutStr.begin()+i+1, 'l');
6278 }
6279
6280 return OutStr;
6281 }
6282 };
6283
6284 } // namespace llvm
6285